S| EDITION

A First Course in the

Finite Element Method

Enhanced Sixth Edition

Daryl L. Logan
R




CONVERSION FACTORS U.S. Customary Units to SI Units

Quantity Converted from U.S. Customary

To

SI Equivalent

(Acceleration)
1 foot/second? (ft/s?)
1 inch/second? (in./s?)

(Area)
1 foot? (ft?)
1 inch? (in.?)

(Density, mass)
1 pound mass/inch® (Ibm/in.?)
1 pound mass/foot® (Ibm/ft*)

(Energy, Work)

1 British thermal unit (BTU)
1 foot-pound force (ft-1b)

1 kilowatt-hour

(Force)
1 kip (1000 Ib)
1 pound force (1b)

(Length)

1 foot (ft)

1 inch (in.)

1 mile (mi), (U.S. statute)

1 mile (mi), (international nautical)

(Mass)

1 pound mass (Ibm)

1 slug (Ib-sec?/ft)

1 metric ton (2000 Ibm)

(Moment of force)
1 pound-foot (Ib-ft)
1 pound-inch (Ib-in.)

(Moment of inertia of an area)
1 inch?

(Moment of inertia of a mass)
1 pound-foot-second?(Ib- ft-s%)

(Momentum, linear)
1 pound-second (Ib-s)

(Momentum, angular)
pound-foot-second (Ib-ft-s)
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meter/second” (m/s)
meter/second” (m/s?)

meter® (m?)
meter” (m?)

kilogram/meter® (kg/m°)
kilogram/meter® (kg/m?)

Joule (J)
Joule (J)
Joule (J)

kilogram (kg)
kilogram (kg)
kilogram (kg)

Newton-meter (N-m)
Newton-meter (N-m)

meter* (m*)

kilogram-meter® (kg-m?)

kilogram-meter/second (kg-m/s)

Newton-meter-second (N-m-s)

0.3048 m/s”
0.0254 m/s?

0.0929 m?
645.2 mm?>

27.68 Mg/m?
16.02 kg/m*

1055 J
1356 J
3.60 x 10°]

4.448 kN
4.448 N

0.3048 m
254 mm
1.609 km
1.852 km

0.4536 kg
14.59 kg
907.2 kg

1.356 N-m
0.1130 N-m

0.4162 x 107¢ m*

1.356 kg-m?>

4448 N-s

1.356 N-m-s



PROPERTIES OF SOLIDS Notes: p = mass density, m = mass, I = mass moment of inertia.
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CONVERSION FACTORS U.S. Customary Units to SI Units (Continued )

Quantity Converted from U.S. Customary To SI Equivalent
(Power)

1 foot-pound/second (ft-1b/s) Watt (W) 1.356 W

1 horsepower (550 ft-1b/s) Watt (W) 745.7 W
(Pressure, stress)

1 atmosphere (std)(14.7.1b/in.?) Newton/meter® (N/m? or Pa) 101.3 kPa
1 pound/foot® (Ib/ft?) Newton/meter” (N/m? or Pa) 47.88 Pa

1 pound/inch? (Ib/in.? or psi) Newton/meter® (N/m? or Pa) 6.895 kPa
1 kip/inch?(ksi) Newton/meter” (N/m?” or Pa) 6.895 MPa
(Spring constant)

1 pound/inch (Ib/in.) Newton/meter (N/m) 175.1 N/m
(Temperature)

T(°F) = 1.8T(°C) + 32

(Velocity)

1 foot/second (ft/s) meter/second (m/s) 0.3048 m/s
1 knot (nautical mi/h) meter/second (m/s) 0.5144 m/s
1 mile/hour (mi/h) meter/second (m/s) 0.4470 m/s
1 mile/hour (mi/h) kilometer/hour (km/h) 1.609 km/h
(Volume)

1 foot® (ft*) meter® (m?) 0.02832 m*

1 inch? (in.?)

meter® (m?)

16.39 x 10° m?
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This is an electronic version of the print textbook. Due to electronic rights restrictions,
some third party content may be suppressed. Editorial review has deemed that any suppressed
content does not materially affect the overall learning experience. The publisher reserves the right
to remove content from this title at any time if subsequent rights restrictions require it. For
valuable information on pricing, previous editions, changes to current editions, and alternate
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materials in your areas of interest.

Important Notice: Media content referenced within the product description or the product
text may not be available in the eBook version.
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PREFACE TO THE SI EDITION

This edition of A First Course in the Finite Element Method, Enhanced Sixth Edition has
been adapted to incorporate the International System of Units (Le Systéme International
d’Unités or SI) throughout the book.

Le Systéme International d’Unités

The United States Customary System (USCS) of units uses FPS (foot—pound—second) units
(also called English or Imperial units). SI units are primarily the units of the MKS (meter—
kilogram—second) system. However, CGS (centimeter—gram—second) units are often accepted
as SI units, especially in textbooks.

Using Sl Units in this Book

In this book, we have used both MKS and CGS units. USCS (U.S. Customary Units) or
FPS (foot-pound-second) units used in the US Edition of the book have been converted to SI
units throughout the text and problems. However, in case of data sourced from handbooks,
government standards, and product manuals, it is not only extremely difficult to convert all
values to SI, it also encroaches upon the intellectual property of the source. Some data in
figures, tables, and references, therefore, remains in FPS units. For readers unfamiliar with
the relationship between the USCS and the SI systems, a conversion table has been provided
inside the front cover.

To solve problems that require the use of sourced data, the sourced values can be con-
verted from FPS units to SI units just before they are to be used in a calculation. To obtain
standardized quantities and manufacturers’ data in SI units, readers may contact the appropriate
government agencies or authorities in their regions.

Instructor Resources

The Instructors’ Solution Manual in ST units is available through your Sales Representative
or online through the book website at http://login.cengage.com. A digital version of the ISM,
Lecture Note PowerPoint slides for the SI text, as well as other resources are available for
instructors registering on the book website.

Feedback from users of this SI Edition will be greatly appreciated and will help us improve
subsequent editions.
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Features and Approach

The purpose of this enhanced edition is to provide an introductory approach to the finite
element method that can be understood by both undergraduate and graduate students without
the usual prerequisites (such as structural analysis and upper level calculus) required by many
available texts in this area. The book is written primarily as a basic learning tool for the under-
graduate student in civil and mechanical engineering whose main interest is in stress analysis
and heat transfer, although material on fluid flow in porous media and through hydraulic
networks and electrical networks and electrostatics is also included. The concepts are presented
in sufficiently simple form with numerous example problems logically placed throughout the
book, so that the book serves as a valuable learning aid for students with other backgrounds, as
well as for practicing engineers. The text is geared toward those who want to apply the finite
element method to solve practical physical problems.

General principles are presented for each topic, followed by traditional applications of
these principles, including longhand solutions, which are in turn followed by computer appli-
cations where relevant. The approach is taken to illustrate concepts used for computer analysis
of large-scale problems.

The book proceeds from basic to advanced topics and can be suitably used in a two-
course sequence. Topics include basic treatments of (1) simple springs and bars, leading to
two- and three-dimensional truss analysis; (2) beam bending, leading to plane frame, grid, and
space frame analysis; (3) elementary plane stress/strain elements, leading to more advanced
plane stress/strain elements and applications to more complex plane stress/strain analysis;
(4) axisymmetric stress analysis; (5) isoparametric formulation of the finite element method;
(6) three-dimensional stress analysis; (7) plate bending analysis; (8) heat transfer and fluid
mass transport; (9) basic fluid flow through porous media and around solid bodies, hydraulic
networks, electric networks, and electrostatics analysis; (10) thermal stress analysis; and
(11) time-dependent stress and heat transfer.

Additional features include how to handle inclined or skewed boundary conditions, beam
element with nodal hinge, the concept of substructure, the patch test, and practical consider-
ations in modeling and interpreting results.

The direct approach, the principle of minimum potential energy, and Galerkin’s residual
method are introduced at various stages, as required, to develop the equations needed for
analysis.

Appendices provide material on the following topics: (A) basic matrix algebra used
throughout the text; (B) solution methods for simultaneous equations; (C) basic theory of elas-
ticity; (D) work-equivalent nodal forces; (E) the principle of virtual work; and (F) properties
of structural steel shapes.
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Preface

More than 100 solved examples appear throughout the text. Most of these examples are
solved “longhand” to illustrate the concepts. More than 570 end-of-chapter problems are pro-
vided to reinforce concepts. The answers to many problems are included in the back of the
book to aid those wanting to verify their work. Those end-of-chapter problems to be solved
using a computer program are marked with a computer symbol.

Additional Features

Additional features of this edition include updated notation used by most engineering instruc-
tors, chapter objectives at the start of each chapter to help students identify what content is
most important to focus on and retain summary equations for handy use at the end of each
chapter, additional information on modeling, and more comparisons of finite element solutions
to analytical solutions.

New Features

Over 140 new problems for solution have been included, and additional design-type prob-
lems have been added to chapters 3, 5, 7, 11, and 12. Additional real-world applications from
industry have been added to enhance student understanding and reinforce concepts. New space
frames, solid-model-type examples, and problems for solution have been added. New examples
from other fields now demonstrate how students can use the Finite Element Method to solve
problems in a variety of engineering and mathematical physics areas. As in the 5% edition,
this edition deliberately leaves out consideration of special purpose computer programs and
suggests that instructors choose a program they are familiar with to integrate into their finite
element course.

Resources for Instructors

To access instructor resources, including a secure, downloadable Instructor’s Solution
Manual and Lecture Note PowerPoint Slides, please visit our Instructor Resource Center at
http://login.cengage.com.
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Digital Resources

Digital Resources

7+ CENGAGE | WEBASSIGN

New Digital Solution for Your Engineering Classroom

WebAssign is a powerful digital solution designed by educators to enrich the engineering
teaching and learning experience. With a robust computational engine at its core, WebAssign
provides extensive content, instant assessment, and superior support. WebAssign’s powerful
question editor allows engineering instructors to create their own questions or modify exist-
ing questions. Each question can use any combination of text, mathematical equations and
formulas, sound, pictures, video, and interactive HTML elements. Numbers, words, phrases,
graphics, and sound or video files can be randomized so that each student receives a different
version of the same question. In addition to common question types such as multiple choice,
fill-in-the-blank, essay, and numerical, you can also incorporate robust answer entry palettes
(mathPad, chemPad, calcPad, physPad, Graphing Tool) to input and grade symbolic expres-
sions, equations, matrices, and chemical structures using powerful computer algebra systems.

WebAssign Offers Engineering Instructors the Following

e The ability to create and edit algorithmic and numerical exercises.

e The opportunity to generate randomized iterations of algorithmic and numerical
exercises. When instructors assign numerical WebAssign homework exercises
(engineering math exercises), the WebAssign program offers them the ability
to generate and assign their students differing versions of the same engineering
math exercise. The computational engine extends beyond and provides the
luxury of solving for correct solutions/answers.

e The ability to create and customize numerical questions, allowing students to
enter units, use a specific number of significant digits, use a specific number of
decimal places, respond with a computed answer, or answer within a different
tolerance value than the default.

Visit www.webassign.com/instructors/features/ to learn more. To create an account,
instructors can go directly to the signup page at www.webassign.net/signup.html.

WebAssign Features for Students

Review Concepts at Point of Use

Within WebAssign, a “Read It” button at the bottom of each question links students
to corresponding sections of the textbook, enabling access to the MindTap Reader
at the precise moment of learning. A “Watch It” button allows a short video to play.
These videos help students understand and review the problem they need to complete,
enabling support at the precise moment of learning.
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Determine the midspan deflection and the reactions and draw the shear force and bending moment
diagrams for the simply supported beam subjected to the uniformly distributed load w shown
in the figure. Assume El constant throughout the beam.
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My Class Insights

WebAssign’s built-in study feature shows performance across course topics so that students
can quickly identify which concepts they have mastered and which areas they may need to
spend more time on.

Ask Your Teacher

This powerful feature enables students to contact their instructor with questions about a spe-
cific assignment or problem they are working on.

MindTap Reader

Available via WebAssign and our digital subscription service, Cengage Unlimited,
MindTap Reader is Cengage’s next-generation eBook for engineering students.

The MindTap Reader provides more than just text learning for the student. It offers
a variety of tools to help our future engineers learn chapter concepts in a way that
resonates with their workflow and learning styles.

Personalize their experience

Within the MindTap Reader, students can highlight key concepts, add notes, and book-
mark pages. These are collected in My Notes, ensuring they will have their own study
guide when it comes time to study for exams.

4.4 Distributed Loading

Beam members can support distributed loading as well as concentrated nodal loading.
Therefore, we must be able to account for distributed loading. Consider the fixed-fixed beam
subjected to a uniformly distributed loading w shown in Figure 4-21. The reactions, determined

from structural analysis theory [2] - , are shown in Figure 4-22. These reactions are called

fixed-end reactions. In general, fixed-end reactions are il
element if the ends of the element are assumed to be fixy
rotations are prevented. (Those of you who are unfamili
structures should assume these reactions as given and prjil
we will develop these results in a subsequent presentaticls
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Flexibility at their fingertips

With access to the book’s internal glossary, students can personalize their study expe-
rience by creating and collating their own custom flashcards. The ReadSpeaker feature
reads text aloud to students, so they can learn on the go—wherever they are.
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fixed-end reactions

4 Create a Card

The Cengage Mobile App B

Available on iOS and Android smartphones, the Cengage Mobile App provides conve-
nience. Students can access their entire textbook anyplace and anytime. They can take notes,
highlight important passages, and have their text read aloud whether they are online or off.

To learn more and download the mobile app, visit www.cengage.com/mobile-app/.
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Suggested Topics

Following is an outline of suggested topics for a first course (approximately 44 lectures,
52 minutes each) in which this textbook is used.

Topic Number of Lectures

Ju—s

Appendix A

Appendix B

Chapter 1

Chapter 2

Chapter 3, Sections 3.1-3.11, 3.14 and 3.15
Exam 1

Chapter 4, Sections 4.1-4.6
Chapter 5, Sections 5.1-5.3, 5.5
Chapter 6

Chapter 7

Exam 2

Chapter 9

Chapter 10

Chapter 11

Chapter 13, Sections 13.1-13.7
Chapter 15

Exam 3
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NOTATION

English Symbols

a;

A
(B]

[C]

Cxa Cys CZ
{d}

{d'}

D

(D]
[D']

{f
(o}
{/fn}
{fq}
{fo}
{fs}
{F}
{F.}
{F}
{Fo}
{g}

i, j,m
V1
k

(k]
[kc]

(k']
[kn ]
(K]
K., Ky,

L

generalized coordinates (coefficients used to express displacement in general
form)

cross-sectional area

matrix relating strains to nodal displacements or relating temperature
gradient to nodal temperatures

specific heat of a material

matrix relating stresses to nodal displacements

direction cosine in two dimensions

direction cosines in three dimensions

element and structure nodal displacement matrix, both in global coordinates
local-coordinate element nodal displacement matrix

bending rigidity of a plate

matrix relating stresses to strains

operator matrix given by Eq. (10.2.16)

exponential function

modulus of elasticity

global-coordinate nodal force matrix

local-coordinate element nodal force matrix

body force matrix

heat transfer force matrix

heat flux force matrix

heat source force matrix

surface force matrix

global-coordinate structure force matrix

condensed force matrix

global nodal forces

equivalent force matrix

temperature gradient matrix or hydraulic gradient matrix

shear modulus

heat-transfer (or convection) coefficient

nodes of a triangular element

principal moment of inertia

Jacobian matrix

spring stiffness

global-coordinate element stiffness or conduction matrix
condensed stiffness matrix, and conduction part of the stiffness matrix in
heat-transfer problems

local-coordinate element stiffness matrix

convective part of the stiffness matrix in heat-transfer problems
global-coordinate structure stiffness matrix

thermal conductivities (or permeabilities, for fluid mechanics) in the x and y
directions, respectively

length of a bar or beam element
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Notation

m maximum difference in node numbers in an element

m(x) general moment expression

My, My, My, ~ Moments in a plate

[m'], [m] local element mass matrix

[m!] local nodal moments

[M] global mass matrix

[M*] matrix used to relate displacements to generalized coordinates for a
linear-strain triangle formulation

[M'] matrix used to relate strains to generalized coordinates for a linear-strain
triangle formulation

ny bandwidth of a structure

ng number of degrees of freedom per node

[N] shape (interpolation or basis) function matrix

N; shape functions

P surface pressure (or nodal heads in fluid mechanics)

Dr, Dz radial and axial (longitudinal) pressures, respectively

P concentrated load

[P] concentrated local force matrix

q heat flow (flux) per unit area or distributed loading on a plate

q rate of heat flow

q* heat flow per unit area on a boundary surface

0 heat source generated per unit volume or internal fluid source

o* line or point heat source

0., 0, transverse shear line loads on a plate

r, 0,z radial, circumferential, and axial coordinates, respectively

R residual in Galerkin’s integral

Ry body force in the radial direction

R, Riy nodal reactions in x and y directions, respectively

s, 1,7 natural coordinates attached to isoparametric element

S surface area

t thickness of a plane element or a plate element

listj,ty nodal temperatures of a triangular element

T temperature function

T free-stream temperature

[T] displacement, force, and stiffness transformation matrix

[T:] surface traction matrix in the i direction

U, v, w displacement functions in the x, y, and z directions, respectively

Ui, Vi, Wi X, y, and z displacements at node i, respectively

U strain energy

AU change in stored energy

v velocity of fluid flow

\%4 shear force in a beam

w distributed loading on a beam or along an edge of a plane element

74 work

Xi, Vi, Zi nodal coordinates in the x, y, and z directions, respectively

XY, 7 local element coordinate axes

XV, 2 structure global or reference coordinate axes

[X] body force matrix

Xp, Yy body forces in the x and y directions, respectively

Zy body force in longitudinal direction (axisymmetric case)

or in the z direction (three-dimensional case)
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Notation

Greek Symbols

« coefficient of thermal expansion

a;, Bi, Vi, &; used to express the shape functions defined by Eq. (6.2.10) and
Eqgs. (11.2.5) through (11.2.8)

o spring or bar deformation
normal strain

{er} thermal strain matrix

ki, ky, kyy curvatures in plate bending

v Poisson’s ratio

b; nodal angle of rotation or slope in a beam element

T functional for heat-transfer problem

™) total potential energy

p mass density of a material

Pw weight density of a material

® angular velocity and natural circular frequency

Q potential energy of forces

o) fluid head or potential, or rotation or slope in a beam

o normal stress

{or} thermal stress matrix

T shear stress and period of vibration

0 angle between the x axis and the local x’ axis for two-dimensional
problems

0, principal angle

0., 0, 0, angles between the global x, y, and z axes and the local x’ axis,
respectively, or rotations about the x and y axes in a plate

[¥] general displacement function matrix

Other Symbols

dQ) derivat o

o erivative of a variable with respect to x

dt time differential

) the dot over a variable denotes that the variable is being differentiated
with respect to time

[1] denotes a rectangular or a square matrix

{} denotes a column matrix

(@) the underline of a variable denotes a matrix

)] the prime next to a variable denotes that the variable is being described
in a local coordinate system

[1! denotes the inverse of a matrix

[17 denotes the transpose of a matrix

%x) partial derivative with respect to x

% partial derivative with respect to each variable in {d}

X
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CHAPTER

Introduction

CHAPTER OBJECTIVES

At the conclusion of this chapter, you will be able to:
m Present an introduction to the finite element method.

m Provide a brief history of the finite element method.
m Introduce matrix notation.
m Describe the role of the computer in the development of the finite element method.
m Present the general steps used in the finite element method.
m lllustrate the various types of elements used in the finite element method.
m Show typical applications of the finite element method.
m Summarize some of the advantages of the finite element method.
Prologue

The finite element method is a numerical method for solving problems of engineering and
mathematical physics. Typical problem areas of interest in engineering and mathematical
physics that are solvable by use of the finite element method include structural analysis, heat
transfer, fluid flow, mass transport, and electromagnetic potential.

For physical systems involving complicated geometries, loadings, and material proper-
ties, it is generally not possible to obtain analytical mathematical solutions to simulate the
response of the physical system. Analytical solutions are those given by a mathematical
expression that yields the values of the desired unknown quantities at any location in a body
(here total structure or physical system of interest) and are thus valid for an infinite number of
locations in the body. These analytical solutions generally require the solution of ordinary or
partial differential equations, typically created by engineers, physicists, and mathematicians
to eliminate the need for the creation and testing of numerous prototype designs, which may
be quite costly. Because of the complicated geometries, loadings, and material properties, the
solution to these differential equations is usually not obtainable. Hence, we need to rely on
numerical methods, such as the finite element method, that can approximate the solution to
these equations.

The finite element formulation of the problem results in a system of simultaneous algebraic
equations for solution, rather than requiring the solution of differential equations. These numerical
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M Figure 1-1 Two-dimensional models of (a) discretized dam and (b) discretized bicycle wrench
(Applied loads are not shown.) All elements and nodes lie in a plane.

Fixed nodes along bottom of dam (b)

methods yield approximate values of the unknowns at discrete numbers of points in the contin-
uum. Hence, this process of modeling a body by dividing it into an equivalent system of smaller
bodies of units (finite elements) interconnected at points common to two or more elements (nodal
points or nodes) and/or boundary lines and/or surfaces is called discretization. Figure 1—1 shows
a cross section of a concrete dam and a bicycle wrench, respectively, that illustrate this process
of discretization, where the dam has been divided into 490 plane triangular elements and the
wrench has been divided into 254 plane quadrilateral elements. In both models the elements are
connected at nodes and along inter element boundary lines. In the finite element method, instead
of solving the problem for the entire body in one operation, we formulate the equations for each
finite element and then combine them to obtain the solution for the whole body.

Briefly, the solution for structural problems typically refers to determining the displace-
ments at each node and the stresses within each element making up the structure that is sub-
jected to applied loads. In nonstructural problems, the nodal unknowns may, for instance, be
temperatures or fluid pressures due to thermal or fluid fluxes.

This chapter first presents a brief history of the development of the finite element method.
You will see from this historical account that the method has become a practical one for
solving engineering problems only in the past 60 years (paralleling the developments asso-
ciated with the modern high-speed electronic digital computer). This historical account is
followed by an introduction to matrix notation; then we describe the need for matrix methods
(as made practical by the development of the modern digital computer) in formulating the
equations for solution. This section discusses both the role of the digital computer in solving
the large systems of simultaneous algebraic equations associated with complex problems and
the development of numerous computer programs based on the finite element method. Next, a
general description of the steps involved in obtaining a solution to a problem is provided. This
description includes discussion of the types of elements available for a finite element method
solution. Various representative applications are then presented to illustrate the capacity of the
method to solve problems, such as those involving complicated geometries, several different
materials, and irregular loadings. Chapter 1 also lists some of the advantages of the finite
element method in solving problems of engineering and mathematical physics. Finally, we
present numerous features of computer programs based on the finite element method.
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1.1 Brief History

m Brief History

This section presents a brief history of the finite element method as applied to both structural
and nonstructural areas of engineering and to mathematical physics. References cited here are
intended to augment this short introduction to the historical background.

The modern development of the finite element method began in the 1940s in the field of
structural engineering with the work by Hrennikoff [1] in 1941 and McHenry [2] in 1943,
who used a lattice of line (one-dimensional) elements (bars and beams) for the solution of
stresses in continuous solids. In a paper published in 1943 but not widely recognized for many
years, Courant [3] proposed setting up the solution of stresses in a variational form. Then he
introduced piecewise interpolation (or shape) functions over triangular subregions making up
the whole region as a method to obtain approximate numerical solutions. In 1947 Levy [4]
developed the flexibility or force method, and in 1953 his work [5] suggested that another
method (the stiffness or displacement method) could be a promising alternative for use in
analyzing statically redundant aircraft structures. However, his equations were cumbersome
to solve by hand, and thus the method became popular only with the advent of the high-speed
digital computer.

In 1954 Argyris and Kelsey [6, 7] developed matrix structural analysis methods using
energy principles. This development illustrated the important role that energy principles
would play in the finite element method.

The first treatment of two-dimensional elements was by Turner et al. [8] in 1956.
They derived stiffness matrices for truss elements, beam elements, and two-dimensional
triangular and rectangular elements in plane stress and outlined the procedure commonly
known as the direct stiffness method for obtaining the total structure stiffness matrix.
Along with the development of the high-speed digital computer in the early 1950s, the
work of Turner et al. [8] prompted further development of finite element stiffness equa-
tions expressed in matrix notation. The phrase finite element was introduced by Clough
[9] in 1960 when both triangular and rectangular elements were used for plane stress
analysis.

A flat, rectangular-plate bending-element stiffness matrix was developed by Melosh [10]
in 1961. This was followed by development of the curved-shell bending-element stiffness
matrix for axisymmetric shells and pressure vessels by Grafton and Strome [11] in 1963.

Extension of the finite element method to three-dimensional problems with the develop-
ment of a tetrahedral stiffness matrix was done by Martin [12] in 1961, by Gallagher et al. [13]
in 1962, and by Melosh [14] in 1963. Additional three-dimensional elements were studied by
Argyris [15] in 1964. The special case of axisymmetric solids was considered by Clough and
Rashid [16] and Wilson [17] in 1965.

Most of the finite element work up to the early 1960s dealt with small strains and small
displacements, elastic material behavior, and static loadings. However, large deflection and
thermal analysis were considered by Turner et al. [18] in 1960 and material nonlinearities by
Gallagher et al. [13] in 1962, whereas buckling problems were initially treated by Gallagher
and Padlog [19] in 1963. Zienkiewicz et al. [20] extended the method to visco elasticity prob-
lems in 1968.

In 1965 Archer [21] considered dynamic analysis in the development of the consistent-mass
matrix, which is applicable to analysis of distributed-mass systems such as bars and beams in
structural analysis.
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With Melosh’s [14] realization in 1963 that the finite element method could be set up
in terms of a variational formulation, it began to be used to solve nonstructural applications.
Field problems, such as determination of the torsion of a shaft, fluid flow, and heat conduction,
were solved by Zienkiewicz and Cheung [22] in 1965, Martin [23] in 1968, and Wilson and
Nickel [24] in 1966.

Further extension of the method was made possible by the adaptation of weighted resid-
ual methods, first by Szabo and Lee [25] in 1969 to derive the previously known elasticity
equations used in structural analysis and then by Zienkiewicz and Parekh [26] in 1970 for
transient field problems. It was then recognized that when direct formulations and variational
formulations are difficult or not possible to use, the method of weighted residuals may at
times be appropriate. For example, in 1977 Lyness et al. [27] applied the method of weighted
residuals to the determination of magnetic field.

In 1976, Belytschko [28, 29] considered problems associated with large-displacement
nonlinear dynamic behavior and improved numerical techniques for solving the resulting sys-
tems of equations. For more on these topics, consult the texts by Belytschko, Liu, Moran [58],
and Crisfield [61, 62].

A relatively new field of application of the finite element method is that of bioengineering
[30, 31]. This field is still troubled by such difficulties as nonlinear materials, geometric non-
linearities, and other complexities still being discovered.

From the early 1950s to the present, enormous advances have been made in the appli-
cation of the finite element method to solve complicated engineering problems. Engineers,
applied mathematicians, and other scientists will undoubtedly continue to develop new appli-
cations. For an extensive bibliography on the finite element method, consult the work of Kard-
estuncer [32], Clough [33], or Noor [57].

m Introduction to Matrix Notation

Matrix methods are a necessary tool used in the finite element method for purposes of simpli-
fying the formulation of the element stiffness equations, for purposes of longhand solutions of
various problems, and, most important, for use in programming the methods for high-speed
electronic digital computers. Hence matrix notation represents a simple and easy-to-use nota-
tion for writing and solving sets of simultaneous algebraic equations.

Appendix A discusses the significant matrix concepts used throughout the text. We will
present here only a brief summary of the notation used in this text.

A matrix is a rectangular array of quantities arranged in rows and columns that is
often used as an aid in expressing and solving a system of algebraic equations. As exam-
ples of matrices that will be described in subsequent chapters, the force components
(Fy, Ry, R, By, Bay Fos, oo By, By, Fy;) acting at the various nodes or points (1,2, ... ,n) on
a structure and the corresponding set of nodal displacements (u;, vi, Wi, U2, V2, Wa, .. ., Up, Vi, Wy)
can both be expressed as matrices:
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1.2 Introduction to Matrix Notation

Fix u
Fly V1
Flz wq
F2x up
F. v
(Fy=1"" {d} = 2 (1.2.1)

FZz w»
F Up
Fny Vn
F. Wn

The subscripts to the right of F identify the node and the direction of force, respectively. For
instance, Fj, denotes the force at node 1 applied in the x direction. The x, y, and z displace-
ments at a node are denoted by u, v, and w, respectively. The subscript next to u, v, and w
denotes the node. For instance, u;, v;, and w; denote the displacement components in the
X, v, and z directions, respectively, at node 1. The matrices in Eqgs. (1.2.1) are called column
matrices and have a size of n X 1. The brace notation {} will be used throughout the text to
denote a column matrix. The whole set of force or displacement values in the column matrix
is simply represented by {F'} or {d}.

The more general case of a known rectangular matrix will be indicated by use of the
bracket notation [ ]. For instance, the element and global structure stiffness matrices [k] and
[K], respectively, developed throughout the text for various element types (such as those in
Figure 1-2 on page 11), are represented by square matrices given as

ki ki kin
ky kyy o ko

k)= | "2 7% 2 (1.2.2)
knl an knn

and

Ky K K,
K1 Kb - K

k1=| ' °F o (1.2.3)
Knl Kn2 Krm

where, in structural theory, the elements k; and Kj; are often referred to as stiffness influence
coefficients.
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You will learn that the global nodal forces { F'} and the global nodal displacements {d} are
related through use of the global stiffness matrix [K] by

{F}=[K|{d} (1.2.4)

Equation (1.2.4) is called the global stiffness equation and represents a set of simultane-
ous equations. It is the basic equation formulated in the stiffness or displacement method of
analysis.

To obtain a clearer understanding of elements K;; in Eq. (1.2.3), we use Eq. (1.2.1) and
write out the expanded form of Eq. (1.2.4) as

F, Ky K - Ky, u
Fly _ Ky Ky - Ky Vi (1.2.5)
Fnz Kn Kppo -+ K Wn

Now assume a structure to be forced into a displaced configuration defined by
up = 1,vi =w; = ---w, = 0. Then from Eq. (1.2.5), we have

F.=Kn  F,=Ks,....,F, =Ky (1.2.6)

Equations (1.2.6) contain all elements in the first column of [K]. In addition, they show that
these elements, K, K»i,...,K,, are the values of the full set of nodal forces required to
maintain the imposed displacement state. In a similar manner, the second column in [K] rep-
resents the values of forces required to maintain the displaced state v; =1 and all other nodal
displacement components equal to zero. We should now have a better understanding of the
meaning of stiffness influence coefficients.

Subsequent chapters will discuss the element stiffness matrices [k] for various element
types, such as bars, beams, plane stress, and three-dimensional stress. They will also cover the
procedure for obtaining the global stiffness matrices [K] for various structures and for solving
Eq. (1.2.4) for the unknown displacements in matrix {d}.

Using matrix concepts and operations will become routine with practice; they will be
valuable tools for solving small problems longhand. And matrix methods are crucial to the
use of the digital computers necessary for solving complicated problems with their associated
large number of simultaneous equations.

m Role of the Computer

As we have said, until the early 1950s, matrix methods and the associated finite element
method were not readily adaptable for solving complicated problems. Even though the finite
element method was being used to describe complicated structures, the resulting large number
of algebraic equations associated with the finite element method of structural analysis made
the method extremely difficult and impractical to use. However, with the advent of the com-
puter, the solution of thousands of equations in a matter of minutes became possible.

The first modern-day commercial computer appears to have been the UNIVAC, IBM 701,
which was developed in the 1950s. This computer was built based on vacuum-tube technology.
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1.4 General Steps of the Finite Element Method

Along with the UNIVAC came the punch-card technology whereby programs and data were
created on punch cards. In the 1960s, transistor-based technology replaced the vacuum-tube
technology due to the transistor’s reduced cost, weight, and power consumption and its higher
reliability. From 19609 to the late 1970s, integrated circuit-based technology was being devel-
oped, which greatly enhanced the processing speed of computers, thus making it possible to
solve larger finite element problems with increased degrees of freedom. From the late 1970s
into the 1980s, large-scale integration as well as workstations that introduced a windows-type
graphical interface appeared along with the computer mouse. The first computer mouse
received a patent on November 17, 1970. Personal computers had now become mass-market
desktop computers. These developments came during the age of networked computing, which
brought the Internet and the World Wide Web. In the 1990s the Windows operating system was
released, making IBM and IBM-compatible PCs more user friendly by integrating a graphical
user interface into the software.

The development of the computer resulted in the writing of computational programs.
Numerous special-purpose and general-purpose programs have been written to handle various
complicated structural (and nonstructural) problems. Programs such as [46-56] illustrate the
elegance of the finite element method and reinforce understanding of it.

In fact, finite element computer programs now can be solved on single-processor machines,
such as a single desktop or laptop personal computer (PC) or on a cluster of computer nodes.
The powerful memories of the PC and the advances in solver programs have made it possible
to solve problems with over a million unknowns.

To use the computer, the analyst, having defined the finite element model, inputs the
information into the computer. This information may include the position of the element nodal
coordinates, the manner in which elements are connected, the material properties of the ele-
ments, the applied loads, boundary conditions, or constraints, and the kind of analysis to be
performed. The computer then uses this information to generate and solve the equations nec-
essary to carry out the analysis.

m General Steps of the Finite Element Method

This section presents the general steps included in a finite element method formulation and
solution to an engineering problem. We will use these steps as our guide in developing solu-
tions for structural and nonstructural problems in subsequent chapters.

For simplicity’s sake, for the presentation of the steps to follow, we will consider only
the structural problem. The nonstructural heat-transfer, fluid mechanics, and electrostatics
problems and their analogies to the structural problem are considered in Chapters 13 and 14.

Typically, for the structural stress-analysis problem, the engineer seeks to determine dis-
placements and stresses throughout the structure, which is in equilibrium and is subjected to
applied loads. For many structures, it is difficult to determine the distribution of deformation
using conventional methods, and thus the finite element method is necessarily used.

There are three primary methods that can be used to derive the finite element equations
of a physical system. These are (1) the direct method or direct equilibrium method for struc-
tural analysis problems, (2) the variational methods consisting of among the subsets energy
methods and the principle of virtual work, and (3) the weighted residual methods. We briefly
describe these three primary methods as follows, and more details of each will be described
later in this section under step 4.
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Direct Methods

The direct method, being the simplest and yielding a clear physical insight into the finite ele-
ment method, is recommended in the initial stages of learning the concepts of the finite element
method. However, the direct method is limited in its application to deriving element stiffness
matrices for one-dimensional elements involving springs, uniaxial bars, trusses, and beams.

There are two general direct approaches traditionally associated with the finite element
method as applied to structural mechanics problems. One approach, called the force, or flexi-
bility, method, uses internal forces as the unknowns of the problem. To obtain the governing
equations, first the equilibrium equations are used. Then necessary additional equations are
found by introducing compatibility equations. The result is a set of algebraic equations for
determining the redundant or unknown forces.

The second approach, called the displacement, or stiffness, method, assumes the displace-
ments of the nodes as the unknowns of the problem. For instance, compatibility conditions
requiring that elements connected at a common node, along a common edge, or on a common
surface before loading remain connected at that node, edge, or surface after deformation takes
place are initially satisfied. Then the governing equations are expressed in terms of nodal
displacements using the equations of equilibrium and an applicable law relating forces to
displacements.

These two direct approaches result in different unknowns (forces or displacements) in the
analysis and different matrices associated with their formulations (flexibilities or stiffnesses).
It has been shown [34] that, for computational purposes, the displacement (or stiffness)
method is more desirable because its formulation is simpler for most structural analysis prob-
lems. Furthermore, a vast majority of general-purpose finite element programs have incorpo-
rated the displacement formulation for solving structural problems. Consequently, only the
displacement method will be used throughout this text.

Variational Methods

The variational method is much easier to use for deriving the finite element equations for
two- and three-dimensional elements than the direct method. However, it requires the existence
of a functional, that upon minimizing yields the stiffness matrix and related element equations.
For structural/stress analysis problems, we can use the principle of minimum potential energy
as the functional, for this principle is a relatively easy physical concept to understand and has
likely been introduced to the reader in an undergraduate course in basic applied mechanics [35].

It can be used to develop the governing equations for both structural and nonstructural
problems. The variational method includes a number of principles. One of these principles,
used extensively throughout this text because it is relatively easy to comprehend and is often
introduced in basic mechanics courses, is the theorem of minimum potential energy that
applies to materials behaving in a linear-elastic manner. This theorem is explained and used
in various sections of the text, such as Section 2.6 for the spring element, Section 3.10 for
the bar element, Section 4.7 for the beam element, Section 6.2 for the constant strain triangle
plane stress and plane strain element, Section 9.1 for the axisymmetric element, Section 11.2
for the three-dimensional solid tetrahedral element, and Section 12.2 for the plate bending
element. A functional analogous to that used in the theorem of minimum potential energy is
then employed to develop the finite element equations for the nonstructural problem of heat
transfer presented in Chapter 13.
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1.4 General Steps of the Finite Element Method

Another variational principle often used to derive the governing equations is the prin-
ciple of virtual work. This principle applies more generally to materials that behave in a
linear-elastic fashion, as well as those that behave in a nonlinear fashion. The principle of
virtual work is described in Appendix E for those choosing to use it for developing the general
governing finite element equations that can be applied specifically to bars, beams, and two-
and three-dimensional solids in either static or dynamic systems.

Weighted Residual Methods

The weighted residual methods [36] allow the finite element method to be applied directly to
any differential equation without having the existence of a variational principle. Section 3.12
introduces the Galerkin method (a very well-known residual method) for deriving the bar ele-
ment stiffness matrix and associated element equations. Section 3.13 introduces other residual
methods for solving the governing differential equation for the axial displacement along a bar.

The finite element method involves modeling the structure using small interconnected
elements called finite elements. A displacement function is associated with each finite ele-
ment. Every interconnected element is linked, directly or indirectly, to every other element
through common (or shared) interfaces, including nodes and/or boundary lines and/or sur-
faces. By using known stress/strain properties for the material making up the structure, one
can determine the behavior of a given node in terms of the properties of every other element in
the structure. The total set of equations describing the behavior of each node results in a series
of algebraic equations best expressed in matrix notation.

We now present the steps, along with explanations necessary at this time, used in the
finite element method formulation and solution of a structural problem. The purpose of setting
forth these general steps now is to expose you to the procedure generally followed in a finite
element formulation of a problem. You will easily understand these steps when we illustrate
them specifically for springs, bars, trusses, beams, plane frames, plane stress, axisymmetric
stress, three-dimensional stress, plate bending, heat transfer, fluid flow, and electrostatics in
subsequent chapters. We suggest that you review this section periodically as we develop the
specific element equations.

Keep in mind that the analyst must make decisions regarding dividing the structure or
continuum into finite elements and selecting the element type or types to be used in the anal-
ysis (step 1), the kinds of loads to be applied, and the types of boundary conditions or sup-
ports to be applied. The other steps, 2 through 7, are carried out automatically by a computer
program.

Step 1 Discretize and Select the Element Types

Step 1 involves dividing the body into an equivalent system of finite elements with associ-
ated nodes and choosing the most appropriate element type to model most closely the actual
physical behavior. The total number of elements used and their variation in size and type
within a given body are primarily matters of engineering judgment. The elements must be
made small enough to give usable results and yet large enough to reduce computational effort.
Small elements (and possibly higher-order elements) are generally desirable where the results
are changing rapidly, such as where changes in geometry occur; large elements can be used
where results are relatively constant. We will have more to say about discretization guide-
lines in later chapters, particularly in Chapter 7, where the concept becomes quite significant.
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The discretized body or mesh is often created with mesh-generation programs or preprocessor
programs available to the user.

The choice of elements used in a finite element analysis depends on the physical makeup
of the body under actual loading conditions and on how close to the actual behavior the
analyst wants the results to be. Judgment concerning the appropriateness of one-, two-, or
three-dimensional idealizations is necessary. Moreover, the choice of the most appropriate
element for a particular problem is one of the major tasks that must be carried out by the
designer/analyst. Elements that are commonly employed in practice—most of which are con-
sidered in this text—are shown in Figure 1-2.

The primary line elements [Figure 1-2(a)] consist of bar (or truss) and beam elements.
They have a cross-sectional area but are usually represented by line segments. In general,
the cross-sectional area within the element can vary, but throughout this text it will be con-
sidered to be constant. These elements are often used to model trusses and frame structures
(see Figure 1-3 on page 17, for instance). The simplest line element (called a linear ele-
ment) has two nodes, one at each end, although higher-order elements having three nodes
[Figure 1-2(a)] or more (called quadratic, cubic, etc., elements) also exist. Chapter 10 includes
discussion of higher-order line elements. The line elements are the simplest of elements to
consider and will be discussed in Chapters 2 through 5 to illustrate many of the basic concepts
of the finite element method.

The basic two-dimensional (or plane) elements [Figure 1-2(b)] are loaded by forces in
their own plane (plane stress or plane strain conditions). They are triangular or quadrilateral
elements. The simplest two-dimensional elements have corner nodes only (linear elements)
with straight sides or boundaries (Chapter 6), although there are also higher-order elements,
typically with midside nodes [Figure 1-2(b)] (called quadratic elements) and curved sides
(Chapters 8 and 10). The elements can have variable thicknesses throughout or be constant.
They are often used to model a wide range of engineering problems (see Figures 1-4 and 1-5
on pages 17 and 18).

The most common three-dimensional elements [Figure 1-2(c)] are tetrahedral and hexa-
hedral (or brick) elements; they are used when it becomes necessary to perform a three-
dimensional stress analysis. The basic three-dimensional elements (Chapter 11) have corner
nodes only and straight sides, whereas higher-order elements with midedge nodes (and
possible midface nodes) have curved surfaces for their sides [Figure 1-2(c)].

The axisymmetric element [Figure 1-2(d)] is developed by rotating a triangle or quad-
rilateral about a fixed axis located in the plane of the element through 360°. This element
(described in Chapter 9) can be used when the geometry and loading of the problem are
axisymmetric.

Step 2 Select a Displacement Function

Step 2 involves choosing a displacement function within each element. The function is
defined within the element using the nodal values of the element. Linear, quadratic, and cubic
polynomials are frequently used functions because they are simple to work with in finite
element formulation. However, trigonometric series can also be used. For a two-dimensional
element, the displacement function is a function of the coordinates in its plane (say, the x-y
plane). The functions are expressed in terms of the nodal unknowns (in the two-dimensional
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(a) Simple two-noded line element (typically used to represent a bar or beam element) and the
higher-order line element
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(b) Simple two-dimensional elements with corner nodes (typically used to represent plane stress/strain)
and higher-order two-dimensional elements with intermediate nodes along the sides
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Tetrahedrals Regular hexahedral Trregular hexahedral

(c) Simple three-dimensional elements (typically used to represent three-dimensional stress state) and
higher-order three-dimensional elements with intermediate nodes along edges

Quadrilateral ring

Triangular ring r
(d) Simple axisymmetric triangular and quadrilateral elements used for axisymmetric problems

M Figure 1-2 Various types of simple lowest-order finite elements with corner nodes only and higher-
order elements with intermediate nodes
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problem, in terms of an x and a y component). The same general displacement function can
be used repeatedly for each element. Hence the finite element method is one in which a con-
tinuous quantity, such as the displacement throughout the body, is approximated by a discrete
model composed of a set of piecewise-continuous functions defined within each finite domain
or finite element.

For the one-dimensional spring and bar elements, the displacement function is a function of
a single coordinate (say x, along the axis of the spring or bar). For the spring and bar elements one
can then skip step 2 and go directly to step 3 to derive the element stiffness matrix and equations.
This will be explicitly demonstrated in Chapters 2 and 3 for the spring and bar, respectively.

Step 3 Define the Strain/Displacement and Stress/Strain Relationships

Strain/displacement and stress/strain relationships are necessary for deriving the equations for
each finite element. In the case of one-dimensional deformation, say, in the x direction, we
have strain &, related to displacement u by

_au (1.4.1)

for small strains. In addition, the stresses must be related to the strains through the stress/
strain law—generally called the constitutive law. The ability to define the material behavior
accurately is most important in obtaining acceptable results. The simplest of stress/strain laws,
Hooke’s law, which is often used in stress analysis, is given by

o, = E¢, (1.4.2)

where o, = stress in the x direction and E = modulus of elasticity.

Step 4 Derive the Element Stiffness Matrix and Equations

Initially, the development of element stiffness matrices and element equations was based on the
concept of stiffness influence coefficients, which presupposes a background in structural analysis.
We now present alternative methods used in this text that do not require this special background.

Direct Equilibrium Method

According to this method, the stiffness matrix and element equations relating nodal forces
to nodal displacements are obtained using force equilibrium conditions for a basic element,
along with force/deformation relationships. Because this method is most easily adaptable to
line or one-dimensional elements, Chapters 2, 3, and 4 illustrate this method for spring, bar,
and beam elements, respectively.

Work or Energy Methods

To develop the stiffness matrix and equations for two- and three-dimensional elements, it is
much easier to apply a work or energy method [35]. The principle of virtual work (using vir-
tual displacements), the principle of minimum potential energy, and Castigliano’s theorem are
methods frequently used for the purpose of derivation of element equations.
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1.4 General Steps of the Finite Element Method

The principle of virtual work outlined in Appendix E is applicable for any material behav-
ior, whereas the principle of minimum potential energy and Castigliano’s theorem are appli-
cable only to elastic materials. Furthermore, the principle of virtual work can be used even
when a potential function does not exist. However, all three principles yield identical element
equations for linear-elastic materials; thus which method to use for this kind of material in
structural analysis is largely a matter of convenience and personal preference. We will present
the principle of minimum potential energy—probably the best known of the three energy
methods mentioned here—in detail in Chapters 2 and 3, where it will be used to derive the
spring and bar element equations. We will further generalize the principle and apply it to the
beam element in Chapter 4 and to the plane stress/strain element in Chapter 6. Thereafter, the
principle is routinely referred to as the basis for deriving all other stress-analysis stiffness
matrices and element equations given in Chapters 8, 9, 11, and 12.

For the purpose of extending the finite element method outside the structural stress anal-
ysis field, a functional' (a function of another function or a function that takes functions as
its argument) analogous to the one to be used with the principle of minimum potential energy
is quite useful in deriving the element stiffness matrix and equations (see Chapters 13 and 14
on heat transfer and fluid flow, respectively). For instance, letting 7 denote the functional and
f(x,y) denote a function f of two variables x and y, we then have 7 = 7(f(x,y)), where mis a
function of the function f. A more general form of a functional depending on two independent
variables u(x,y) and v(x,y), where independent variables are x and y in Cartesian coordinates,
is given by

70 = [[F Q6 Yl Vol sy Vo 3 Vi sl Vg Yelx dy (1.4.3)

where the comma preceding the subscripts x and y denotes differentiation with respect to x or

Ju

v, 1.e., Uy, = .

, etc.

Weighted Residuals Methods

The weighted residuals methods are useful for developing the element equations; particularly
popular is Galerkin’s method. These methods yield the same results as the energy methods
wherever the energy methods are applicable. They are especially useful when a functional
such as potential energy is not readily available. The weighted residual methods allow the
finite element method to be applied directly to any differential equation.

Galerkin’s method, along with the collocation, the least squares, and the subdomain
weighted residual methods are introduced in Chapter 3. To illustrate each method, they will
all be used to solve a one-dimensional bar problem for which a known exact solution exists for
comparison. As the more easily adapted residual method, Galerkin’s method will also be used
to derive the bar element equations in Chapter 3 and the beam element equations in Chapter 4

! Another definition of a functional is as follows: A functional is an integral expression that implicitly contains differential
equations that describe the problem. A typical functional is of the form /(«) = |F (x,u,u")dx where u(x), x, and F are real so
that I(u) is also a real number. Here u’ = du/dx.
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and to solve the combined heat-conduction/convection/mass transport problem in Chapter 13.
For more information on the use of the methods of weighted residuals, see Reference [36]; for
additional applications to the finite element method, consult References [37] and [38].

Using any of the methods just outlined will produce the equations to describe the behav-
ior of an element. These equations are written conveniently in matrix form as

fi ki ki kizooo ki d
f kot kop koz - ko d>
Hor = kst kan ko - k3, d3 (1.4.4)
fn kn] e kﬂl’l dﬂ

or in compact matrix form as

{r}=1Kk1{d} (1.4.5)

where {f} is the vector of element nodal forces, [£] is the element stiffness matrix (normally
square and symmetric), and {d} is the vector of unknown element nodal degrees of freedom
or generalized displacements, n. Here generalized displacements may include such quantities
as actual displacements, slopes, or even curvatures. The matrices in Eq. (1.4.5) will be devel-
oped and described in detail in subsequent chapters for specific element types, such as those
in Figure 1-2.

Step 5 Assemble the Element Equations to Obtain the Global or Total
Equations and Introduce Boundary Conditions

In this step the individual element nodal equilibrium equations generated in step 4 are assembled
into the global nodal equilibrium equations. Section 2.3 illustrates this concept for a two-spring
assemblage. Another more direct method of superposition (called the direct stiffness method),
whose basis is nodal force equilibrium, can be used to obtain the global equations for the whole
structure. This direct method is illustrated in Section 2.4 for a spring assemblage. Implicit in
the direct stiffness method is the concept of continuity, or compatibility, which requires that the
structure remain together and that no tears occur anywhere within the structure.
The final assembled or global equation written in matrix form is

{F}=[KW{d} (1.4.6)

where {F} is the vector of global nodal forces, [K] is the structure global or total stiffness
matrix, (for most problems, the global stiffness matrix is square and symmetric) and {d} is now
the vector of known and unknown structure nodal degrees of freedom or generalized displace-
ments. It can be shown that at this stage, the global stiffness matrix [K] is a singular matrix
because its determinant is equal to zero. To remove this singularity problem, we must invoke
certain boundary conditions (or constraints or supports) so that the structure remains in place
instead of moving as a rigid body. Further details and methods of invoking boundary condi-
tions are given in subsequent chapters. At this time it is sufficient to note that invoking bound-
ary or support conditions results in a modification of the global Eq. (1.4.6). We also emphasize
that the applied known loads have been accounted for in the global force matrix {F}.
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Step 6 Solve for the Unknown Degrees of Freedom (or Generalized
Displacements)

Equation (1.4.6), modified to account for the boundary conditions, is a set of simultaneous
algebraic equations that can be written in expanded matrix form as

R Ky Kpp - Ky, d
F- K K - K d
R I R (1.4.7)
Fn Knl Kn2 Knn dn

where now # is the structure total number of unknown nodal degrees of freedom. These equa-
tions can be solved for the ds by using an elimination method (such as Gauss’s method) or
an iterative method (such as the Gauss-Seidel method). These two methods are discussed in
Appendix B. The ds are called the primary unknowns, because they are the first quantities
determined using the stiffness (or displacement) finite element method.

Step 7 Solve for the Element Strains and Stresses

For the structural stress-analysis problem, important secondary quantities of strain and stress
(or moment and shear force) can be obtained because they can be directly expressed in terms
of the displacements determined in step 6. Typical relationships between strain and displace-
ment and between stress and strain—such as Eqgs. (1.4.1) and (1.4.2) for one-dimensional
stress given in step 3—can be used.

Step 8 Interpret the Results

The final goal is to interpret and analyze the results for use in the design/analysis process.
Determination of locations in the structure where large deformations and large stresses occur
is generally important in making design/analysis decisions. Postprocessor computer programs
help the user to interpret the results by displaying them in graphical form.

m Applications of the Finite Element Method

The finite element method can be used to analyze both structural and nonstructural problems.
Typical structural areas include

1. Stress analysis, including truss and frame analysis (such as pedestrian walk bridges, high
rise building frames, and windmill towers), and stress concentration problems, typically
associated with holes, fillets, or other changes in geometry in a body (such as automotive
parts, pressures vessels, medical devices, aircraft, and sports equipment)

2. Buckling, such as in columns, frames, and vessels

Vibration analysis, such as in vibratory equipment

4. Impact problems, including crash analysis of vehicles, projectile impact, and bodies fall-
ing and impacting objects

bl
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Nonstructural problems include

1. Heat transfer, such as in electronic devices emitting heat as in a personal computer micro-
processor chip, engines, and cooling fins in radiators

2. Fluid flow, including seepage through porous media (such as water seeping through
earthen dams), cooling ponds, and in air ventilation systems as used in sports arenas, etc.,
air flow around racing cars, yachting boats, and surfboards, etc.

3. Distribution of electric or magnetic potential, such as in antennas and transistors

Finally, some biomechanical engineering problems (which may include stress analysis) typ-
ically include analyses of human spine, skull, hip joints, jaw/gum tooth implants, heart, and eye.

We now present some typical applications of the finite element method. These applica-
tions will illustrate the variety, size, and complexity of problems that can be solved using the
method and the typical discretization process and kinds of elements used.

Figure 1-3 illustrates a control tower for a railroad. The tower is a three-dimensional
frame comprising a series of beam-type elements. The 48 elements are labeled by the circled
numbers, whereas the 28 nodes are indicated by the uncircled numbers. Each node has three
rotation and three displacement components associated with it. The rotations (6s) and dis-
placements (i, v, w) are called the degrees of freedom. Because of the loading conditions to
which the tower structure is subjected, we have used a three-dimensional model.

The finite element method used for this frame enables the designer/analyst quickly to
obtain displacements and stresses in the tower for typical load cases, as required by design
codes. Before the development of the finite element method and the computer, even this rela-
tively simple problem took many hours to solve.

The next illustration of the application of the finite element method to problem solving
is the determination of displacements and stresses in an underground box culvert subjected to
ground shock loading from a bomb explosion. Figure 1-4 shows the discretized model, which
included a total of 369 nodes, 40 one-dimensional bar or truss elements used to model the
steel reinforcement in the box culvert, and 333 plane strain two-dimensional triangular and
rectangular elements used to model the surrounding soil and concrete box culvert. With an
assumption of symmetry, only half of the box culvert need be analyzed. This problem requires
the solution of nearly 700 unknown nodal displacements. It illustrates that different kinds of
elements (here bar and plane strain) can often be used in one finite element model.

Another problem, that of the hydraulic cylinder rod end shown in Figure 1-5, was mod-
eled by 120 nodes and 297 plane strain triangular elements. Symmetry was also applied to the
whole rod end so that only half of the rod end had to be analyzed, as shown. The purpose of
this analysis was to locate areas of high stress concentration in the rod end.

Figure 1-6 shows a chimney stack section that is four form heights high (or a total of
9.75 m high). In this illustration, 584 beam elements were used to model the vertical and
horizontal stiffeners making up the formwork, and 252 flat-plate elements were used to model
the inner wooden form and the concrete shell. Because of the irregular loading pattern on the
structure, a three-dimensional model was necessary. Displacements and stresses in the con-
crete were of prime concern in this problem.

Figure 1-7 shows the finite element discretized model of a proposed steel die used in a
plastic film-making process. The irregular geometry and associated potential stress concentra-
tions necessitated use of the finite element method to obtain a reasonable solution. Here 240
axisymmetric elements were used to model the three-dimensional die.
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1.5 Applications of the Finite Element Method

Figure 1-8 illustrates the use of a three-dimensional solid element to model a swing cast-
ing for a backhoe frame. The three-dimensional hexahedral elements are necessary to model
the irregularly shaped three-dimensional casting. Two-dimensional models certainly would
not yield accurate engineering solutions to this problem.

Figure 1-9 illustrates a two-dimensional heat-transfer model used to determine the tem-

perature distribution in earth subjected to a heat source—a buried pipeline transporting a hot
gas.
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M Figure 1-3 Discretized railroad control tower (28 nodes, 48 beam elements) with typical
degrees of freedom shown at node 1, for example (By Daryl L. Logan)

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 | Introduction
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M Figure 1-4 Discretized model of an underground box culvert (369 nodes, 40 bar elements,
and 333 plane strain elements) [39]

Figure 1-10 shows a three-dimensional model of human pelvis which can be used to
study stresses in the bone and the cement layer between the bone and the implant.

Figure 1-11 shows a three-dimensional model of a 710G bucket, used to study stress
throughout the bucket.

More recently, mechanical event simulation (MES), including nonlinear behavior and
contact, such as in roll forming processes, has been studied using finite element analysis [46],
as shown in Figure 1-12 and wind mill generator stress analysis under various loading con-
ditions, including wind, ice, and earthquake while the blades are rotating has been performed
[46], as shown in Figure 1-13.
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1.5 Applications of the Finite Element Method

> ——
* AFixed nodes

M Figure 1-5 Two-dimensional analysis of a hydraulic cylinder rod end (120 nodes, 297
plane strain triangular elements)

\— Applied loads

Concrete shell (plate elements)

Inner form (plate elements)
Rigid rods Vertical stiffener (beam elements)

Adjustable rod
Angle ring
Sling cable

Whaler
(beam
elements)

Derrick

Concrete shell
(plate elements)

M Figure 1-6 Finite element model of a chimney stack section (end view rotated 45°) (584
beam and 252 flat-plate elements) (By Daryl L. Logan)
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M Figure 1-7 (a) Model of a high-strength steel die (240 axisymmetric elements) used in the
plastic film industry (By Daryl L. Logan) and (b) the three-dimensional visual of the die as the
elements in the plane are rotated through 360° around the z-axis of symmetry (See the full-
color insert for a color version of this figure.) (By Daryl L. Logan)
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M Figure 1-8 Three-dimensional solid element model of a swing casting for a backhoe frame

Finally, the field of computational fluid dynamics (CFD) using finite element analysis has
recently been used to design ventilation systems, such as in large sports arenas, and to study
air flow around race cars and around golf balls when suddenly struck by a golf club [63].

These illustrations suggest the kinds of problems that can be solved by the finite element
method. Additional guidelines concerning modeling techniques will be provided in Chapter 7.

m Advantages of the Finite Element Method

As previously mentioned, the finite element method has been applied to numerous problems,
both structural and nonstructural. This method has a number of advantages over conventional
approximate methods, such as presented by traditional courses in mechanics of material and
heat transfer, and for modeling and determining physical quantities, such as displacements,
stresses, temperatures, pressures, and electric currents that have made it very popular. They
include the ability to

1. Model irregularly shaped bodies quite easily

2. Handle general load conditions without difficulty

3. Model bodies composed of several different materials because the element equations are
evaluated individually

4. Handle unlimited numbers and kinds of boundary conditions

5. Vary the size of the elements to make it possible to use small elements where necessary
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MW Figure 1-9 Finite element model for a two-dimensional temperature distribution in the
earth

M Figure 1-10 Finite element model of a human
pelvis (© Studio MacBeth/Photo Researchers,
Inc.)
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1 | Introduction

M Figure 1-12 Finite element model of contour roll forming or cold roll forming process (Courtesy of
Valmont West Coast Engineering) (See the full-color insert for a color version of this figure.)

a

Alter the finite element model relatively easily and cheaply
Include dynamic effects
8. Handle nonlinear behavior existing with large deformations and nonlinear materials

.

The finite element method of structural analysis enables the designer to detect stress,
vibration, and thermal problems during the design process and to evaluate design changes
before the construction of a possible prototype. Thus confidence in the acceptability of the
prototype is enhanced. Moreover, if used properly, the method can reduce the number of pro-
totypes that need to be built.

Even though the finite element method was initially used for structural analysis, it has
since been adapted to many other disciplines in engineering and mathematical physics, such
as fluid flow, heat transfer, electromagnetic potentials, soil mechanics, and acoustics [22-24,
27, 42-44].
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Tlm: .'.-'Uds
Time Step: 176 of 5000 Q
M Figure 1-13 Finite element model showing the von Mises stress plot of a wind mill tower
at a critical time step using a nonlinear finite element simulation (Courtesy of Valmont West

Coast Engineering)

Computer Programs for the Finite Element Method

There are two general computer methods of approach to the solution of problems by the finite
element method. One is to use large commercial programs, many of which have been con-
figured to run on personal computers (PCs); these general-purpose programs are designed to
solve many types of problems. The other is to develop many small, special-purpose programs
to solve specific problems. In this section, we will discuss the advantages and disadvantages
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of both methods. We will then list some of the available general-purpose programs and discuss
some of their standard capabilities.
Some advantages of general-purpose programs:

1. The input is well organized and is developed with user ease in mind. Users do not need
special knowledge of computer software or hardware. Preprocessors are readily available
to help create the finite element model.

2. The programs are large systems that often can solve many types of problems of large or
small size with the same input format.

3. Many of the programs can be expanded by adding new modules for new kinds of prob-
lems or new technology. Thus they may be kept current with a minimum of effort.

4. With the increased storage capacity and computational efficiency of PCs, many
general-purpose programs can now be run on PCs.

5. Many of the commercially available programs have become very attractive in price and
can solve a wide range of problems [45-56].

Some disadvantages of general-purpose programs:

[

. The initial cost of developing general-purpose programs is high.

2. General-purpose programs are less efficient than special-purpose programs because the
computer must make many checks for each problem, some of which would not be neces-
sary if a special-purpose program were used.

3. Many of the programs are proprietary. Hence the user has little access to the logic of the

program. If a revision must be made, it often has to be done by the developers.

Some advantages of special-purpose programs:

The programs are usually relatively short, with low development costs.

Small computers are able to run the programs.

Additions can be made to the program quickly and at a low cost.

The programs are efficient in solving the problems they were designed to solve.

Ealt ol M

The major disadvantage of special-purpose programs is their inability to solve different
classes of problems. Thus one must have as many programs as there are different classes of
problems to be solved. A list of special-purpose, public-domain finite-element programs is
given in the website [60].

There are numerous vendors supporting finite element programs, and the interested user
should carefully consult the vendor before purchasing any software. However, to give you
an idea about the various commercial personal computer programs now available for solving
problems by the finite element method, we present a partial list of existing programs.

Autodesk Simulation Multiphysics [46]
Abaqus [47]

ANSYS [48]

COSMOS/M [49]

GT-STRUDL [50]

LS-DYNA [59]

MARC [51]

MSC/NASTRAN [52]

A S e
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9. NISA [53]

10. Pro/MECHANICA [54]
11. SAP2000 [55]

12. STARDYNE [56]

Standard capabilities of many of the listed programs are provided in the preceding refer-
ences and in Reference [45]. These capabilities include information on

Element types available, such as beam, plane stress, and three-dimensional solid

Type of analysis available, such as static and dynamic

Material behavior, such as linear-elastic and nonlinear

Load types, such as concentrated, distributed, thermal, and displacement (settlement)

Data generation, such as automatic generation of nodes, elements, and restraints (most

programs have preprocessors to generate the mesh for the model)

6. Plotting, such as original and deformed geometry and stress and temperature contours
(most programs have postprocessors to aid in interpreting results in graphical form)

7. Displacement behavior, such as small and large displacement and buckling

8. Selective output, such as at selected nodes, elements, and maximum or minimum values

AW =

All programs include at least the bar, beam, plane stress, plate-bending, and three-
dimensional solid elements, and most now include heat-transfer analysis capabilities.

Complete capabilities of the programs and their cost are best obtained through program
reference manuals and websites, such as References [46-56, 59].
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PROBLEMS

1.1 Define the term finite element.

1.2 What does discretization mean in the finite element method?

1.3 In what year did the modern development of the finite element method begin?
14 In what year was the direct stiffness method introduced?

1.5 Define the term matrix.

1.6 What role did the computer play in the use of the finite element method?

1.7 List and briefly describe the general steps of the finite element method.

1.8 What is the displacement method?

1.9 List four common types of finite elements.

1.10  Name three commonly used methods for deriving the element stiffness matrix and
element equations. Briefly describe each method.

1.11 To what does the term degrees of freedom refer?

1.12 List five typical areas of engineering where the finite element method is applied.

1.13 List five advantages of the finite element method.
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CHAPTER

Introduction to the Stiffness
(Displacement) Method

CHAPTER OBJECTIVES

At the conclusion of this chapter, you will be able to:
m Define the stiffness matrix.
m Derive the stiffness matrix for a spring element.
m Demonstrate how to assemble stiffness matrices into a global stiffness matrix.
[ |

[llustrate the concept of direct stiffness method to obtain the global stiffness matrix
and solve a spring assemblage problem.

Describe and apply the different kinds of boundary conditions relevant for spring
assemblages.

m Show how the potential energy approach can be used to both derive the stiffness
matrix for a spring and solve a spring assemblage problem.

Introduction

This chapter introduces some of the basic concepts on which the direct stiffness method is
founded. The linear spring is introduced first because it provides a simple yet generally instruc-
tive tool to illustrate the basic concepts. We begin with a general definition of the stiffness
matrix and then consider the derivation of the stiffness matrix for a linear-elastic spring ele-
ment. We next illustrate how to assemble the total stiffness matrix for a structure comprising an
assemblage of spring elements by using elementary concepts of equilibrium and compatibility.
We then show how the total stiffness matrix for an assemblage can be obtained by superimpos-
ing the stiffness matrices of the individual elements in a direct manner. The term direct stiffness
method evolved in reference to this technique.

After establishing the total structure stiffness matrix, we illustrate how to impose bound-
ary conditions—both homogeneous and nonhomogeneous. A complete solution including the
nodal displacements and reactions is thus obtained. (The determination of internal forces is
discussed in Chapter 3 in connection with the bar element.)

We then introduce the principle of minimum potential energy, apply it to derive the spring
element equations, and use it to solve a spring assemblage problem. We will illustrate this
principle for the simplest of elements (those with small numbers of degrees of freedom) so
that it will be a more readily understood concept when applied, of necessity, to elements with
large numbers of degrees of freedom in subsequent chapters.
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2 | Introduction to the Stiffness (Displacement) Method
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M Figure 2-1 (a) Single spring element and (b) three-spring assemblage

XD Definition of the Stiffness Matrix

Familiarity with the stiffness matrix is essential to understanding the stiffness method.
We define the stiffness matrix as follows: For an element, a stiffness matrix [k] is a matrix
such that

{r} =1kl{a} (2.1.1)

where [k] relates nodal displacements {d} to nodal forces { f} of a single element, such as the
spring shown in Figure 2—1a.

For a continuous medium or structure comprising a series of elements, such as shown for
the spring assemblage in Figure 2—1b, stiffness matrix [K] relates global-coordinate (x, y, z)
nodal displacements {d} to global forces {F'} of the whole medium or structure. such that

{F} =[KNd} (2.1.2)

where [K] represents the stiffness matrix of the whole spring assemblage.

¥ Derivation of the Stiffness Matrix
for a Spring Element

Using the direct equilibrium approach, we will now derive the stiffness matrix for a one-
dimensional linear spring—that is, a spring that obeys Hooke’s law and resists forces only in
the direction of the spring. Consider the linear spring element shown in Figure 2-2. Reference
points 1 and 2 are located at the ends of the element. These reference points are called the nodes
of the spring element. The local nodal forces are fi, and f>, for the spring element associated
with the local axis x. The local axis acts in the direction of the spring so that we can directly
measure displacements and forces along the spring. The local nodal displacements are #; and
uy for the spring element.

These nodal displacements are called the degrees of freedom at each node. Positive direc-
tions for the forces and displacements at each node are taken in the positive x direction as
shown from node 1 to node 2 in the figure. The symbol % is called the spring constant or
stiffness of the spring.
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2.2 Derivation of the Stiffness Matrix for a Spring Element
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M Figure 2-2 Linear spring element with positive nodal displacement and force conventions

Analogies to actual spring constants arise in numerous engineering problems. In Chapter 3,
we see that a prismatic uniaxial bar has a spring constant k = AE/L, where A represents the
cross-sectional area of the bar, E is the modulus of elasticity, and L is the bar length. Similarly,
in Chapter 5, we show that a prismatic circular-cross-section bar in torsion has a spring constant
k = JG/L, where J is the polar moment of inertia and G is the shear modulus of the material.
For one-dimensional heat conduction (Chapter 13), k = AK,, /L, where K, is the thermal
conductivity of the material, and for one-dimensional fluid flow through a porous medium
(Chapter 14), k = AK /L, where K, is the permeability coefficient of the material.

We will then observe that the stiffness method can be applied to nonstructural problems,
such as heat transfer, fluid flow, and electrical networks, as well as structural problems by sim-
ply applying the proper constitutive law (such as Hooke’s law for structural problems, Fourier’s
law for heat transfer, Darcy’s law for fluid flow, and Ohm’s law for electrical networks) and a
conservation principle such as nodal equilibrium or conservation of energy.

We now want to develop a relationship between nodal forces and nodal displacements for
a spring element. This relationship will be the stiffness matrix. Therefore, we want to relate
the nodal force matrix to the nodal displacement matrix as follows:

flx _ lkll klZ}{ul } (221)
Jox kor ko | |u2
where the element stiffness coefficients k;; of the [k] matrix in Eq. (2.2.1) are to be determined.
Recall from Eqgs. (1.2.5) and (1.2.6) that k;; represent the force F; in the ith degree of freedom
due to a unit displacement d; in the jth degree of freedom while all other displacements are
zero. That is, when we let d; = 1 and d; = 0 for k # j, force F; = kj.

We now use the steps outlined in Section 1.4 to derive the stiffness matrix for the spring
element. However, for the simple one-dimensional spring element, step 2 (selecting a displace-
ment function) may be skipped using the direct method. In Section 3.2 we describe guidelines
for selecting displacement functions and then use step 2 throughout the derivations of stiffness
matrices for beams and two- and three-dimensional elements, as it makes the derivations based
on the steps to follow much easier to obtain. Because our approach throughout this text is to
derive various element stiffness matrices and then to illustrate how to solve engineering prob-
lems with the elements, step 1 now involves only selecting the element type.

Step 1 Select the Element Type

Consider the linear spring element (which can be an element in a system of springs) subjected
to resulting nodal tensile forces 7" (which may result from the action of adjacent springs)
directed along the spring axial direction x as shown in Figure 2-3, so as to be in equilibrium.
The local x axis is directed from node 1 to node 2. We represent the spring by labeling nodes
at each end and by labeling the element number. The original distance between nodes before
deformation is denoted by L. The material property (spring constant) of the element is k.
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2 | Introduction to the Stiffness (Displacement) Method

Step 2 Select a Displacement Function

For the simple one-dimensional spring element, Step 2 may be skipped using the direct method.
In Section 3.2 we describe guidelines for selecting displacement functions and then use step
2 throughout the derivations of stiffness matrices for beams and two- and three-dimensional
elements.

Step 3 Define the Strain/Displacement and Stress/Strain Relationships

The tensile forces T produce a total elongation (deformation) § of the spring. The typical

total elongation of the spring is shown in Figure 2—4. Here u, is a negative value because the

direction of displacement is opposite the positive x direction, whereas u; is a positive value.
The total deformation of the spring is represented by the difference in nodal displacements as

6= Uy — U (222)

For a spring element, we can relate the force in the spring directly to the deformation.
Therefore, the strain/displacement relationship is not necessary here.

The stress/strain relationship can be expressed in terms of the force/deformation relation-
ship instead as

T = ko6 (2.2.3)
Now, using Eq. (2.2.2) in Eq. (2.2.3), we obtain

T =k(up —w) (2.24)

Step 4 Derive the Element Stiffness Matrix and Equations

We now derive the spring element stiffness matrix. By the sign convention for nodal forces and
equilibrium, (see Figures 2-2 and 2-3) we have

S =-T  for =T (2.2.5)
Using Eqgs. (2.2.4) and (2.2.5), we have

T =—fix = k(up —uy)

(22.6)
T =f =k(uy —u)

W Figure 2-3 Linear spring subjected to tensile forces M Figure 2-4 Deformed spring
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2.2 Derivation of the Stiffness Matrix for a Spring Element

Rewriting Egs. (2.2.6), we obtain

fix =k —up)
Sox = k(ua — uy)

Now expressing Eqgs. (2.2.7) in a single matrix equation yields

S| |k —k||m
{fzx}_[—k kHuz} (2.2.8)

This relationship holds for the spring along the x axis. From our basic definition of a stiffness
matrix and application of Eq. (2.2.1) to Eq. (2.2.8), we obtain

[k] = {_k _k} (2.2.9)

(2.2.7)

kK

as the stiffness matrix for a linear spring element. Here [k] is called the local stiffness matrix
for the element. We observe from Eq. (2.2.9) that [k] has the following properties:

1. It is symmetric (that is, k;; = kj; for i 7 j). This is proven by the reciprocal theorem of
Rayleigh and Betti [4].

2. Itis square (the number of rows equals the number of columns in [k]) as it relates the same
number of nodal forces to nodal displacements.

3. Itis singular. That is, the determinant of [k] is equal to zero, so [k] cannot be inverted.

Step 5 Assemble the Element Equations to Obtain the Global Equations
and Introduce Boundary Conditions

The global stiffness matrix and global force matrix are assembled using nodal force equilib-
rium equations, force/deformation and compatibility equations from Section 2.3, and the direct
stiffness method described in Section 2.4. This step applies for structures composed of more
than one element such that

N N
[K1=Y[k@] and {F}=Y{r@} (2.2.10
e=1 e=1

where [k(©)] and { f(©)} are now element stiffness and force matrices expressed in a global ref-
erence frame. This concept becomes relevant for instance when considering truss structures
in Chapter 3. (Throughout this text, the 2 sign used in this context does not imply a simple
summation of element matrices but rather denotes that these element matrices must be assem-
bled properly according to the direct stiffness method described in Section 2.4.)

Step 6 Solve for the Nodal Displacements

The displacements are then determined by imposing boundary conditions, such as support
conditions, and solving a system of equations simultaneously as

{F} =[KN{d} (2.2.11)
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2 | Introduction to the Stiffness (Displacement) Method

Step 7 Solve for the Element Forces

Finally, the element forces are determined by back-substitution, applied to each element, into
equations similar to Egs. (2.2.7).

XD Example of a Spring Assemblage

Structures such as trusses, building frames, and bridges comprise basic structural components
connected together to form the overall structures. To analyze these structures, we must deter-
mine the total structure stiffness matrix for an interconnected system of elements. Before con-
sidering the truss and frame, we will determine the total structure stiffness matrix for a spring
assemblage by using the force/displacement matrix relationships derived in Section 2.2 for
the spring element, along with fundamental concepts of nodal equilibrium and compatibility.
Step 5 will then have been illustrated.

We will consider the specific example of the two-spring assemblage shown in Figure 2-5.%*
This example is general enough to illustrate the direct equilibrium approach for obtaining the
total stiffness matrix of the spring assemblage. Here we fix node 1 and apply axial forces for F3,
atnode 3 and F;, at node 2. The stiffnesses of spring elements 1 and 2 are k; and k», respectively.
The nodes of the assemblage have been numbered 1, 3, and 2 for further generalization because
sequential numbering between elements generally does not occur in large problems.

The x axis is the global axis of the assemblage. The local x axis of each element coincides
with the global axis of the assemblage.

For element 1, using Eq. (2.2.8), we have

(1) _ (1)
O O A 2.3.1)
of Tl k]l
and for element 2, we have
@) _ )
G|l | ke —ka|ju3 (2.3.2)
w2 "l e [

Furthermore, elements 1 and 2 must remain connected at common node 3 throughout the
displacement. This is called the continuity or compatibility requirement. The compatibility
requirement yields

us) =u®P = us (2.3.3)

71 @ 3 @ 2

k, Fy k, Fa

M Figure 2-5 Two-spring assemblage

*Throughout this text, element numbers in figures are shown with circles around them.
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2.3 Example of a Spring Assemblage
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M Figure 2-6 Nodal forces consistent with element force sign convention

where, throughout this text, the superscripts in parentheses above u refers to the element
number to which they are related. Recall that the subscript to the right identifies the node of
displacement and that u3 is the node 3 displacement of the total or global spring assemblage.

Free-body diagrams of each element and node (using the established sign conventions for
element nodal forces in Figure 2-2) are shown in Figure 2—-6.

Based on the free-body diagrams of each node shown in Figure 2—6 and the fact that exter-
nal forces must equal internal forces at each node, we can write nodal equilibrium equations
at nodes 3, 2, and 1 as

By =f0 + £ (2.3.4)
By, =f2 (2.3.5)
B, =f1 (2.3.6)

where Fj, results from the external applied reaction at the fixed support.
Here Newton’s third law, of equal but opposite forces, is applied in moving from a node
to an element associated with the node. Using Eqs. (2.3.1) through (2.3.3) in Egs. (2.3.4)
through (2.3.6), we obtain
Fi = (ki + k) + (kaus — kouz)
By = —kouz + koup (2.3.7)
F. =k — kus

In matrix form, Egs. (2.3.7) are expressed by

Fx ki thky =k —ki ||us
Py =| —k kry 0 u (2.3.8)
Fix _kl 0 kl u
Rearranging Eq. (2.3.8) in numerically increasing order of the nodal degrees of freedom, we
have
F, e 0 k[
sz = 0 k2 _k2 ur (239)
Fsx —ki —ky ki t+ky||U3

Equation (2.3.9) is now written as the single matrix equation

{F} =[K){d} (2.3.10)
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2 | Introduction to the Stiffness (Displacement) Method

Fiy Uy
where {F} = { B, is called the global nodal force matrix, {d} = 4 u, ; is called the
F;, us

global nodal displacement matrix, and

Kl=| 0 k ko 2.3.11)
-k —ky Ky + ko

is called the total or global or system stiffness matrix.

In summary, to establish the stiffness equations and stiffness matrix, Eqs. (2.3.9) and
(2.3.11), for a spring assemblage, we have used force/deformation relationships Eqgs. (2.3.1)
and (2.3.2), compatibility relationship Eq. (2.3.3), and nodal force equilibrium Eqs. (2.3.4)
through (2.3.6). We will consider the complete solution to this example problem after con-
sidering a more practical method of assembling the total stiffness matrix in Section 2.4 and
discussing the support boundary conditions in Section 2.5.

X8 Assembling the Total Stiffness Matrix
by Superposition (Direct Stiffness Method)

We will now consider a more convenient method for constructing the total stiffness matrix. This
method is based on proper superposition of the individual element stiffness matrices making
up a structure (also see References [1] and [2]).

Referring to the two-spring assemblage of Section 2.3, the element stiffness matrices are
given in Egs. (2.3.1) and (2.3.2) as

up uz us Uy
(kD] = S k@] = ko —ka | us 2.4.1)
—ki k| ou3 ~ky ko | wo

Here the u;s written above the columns and next to the rows in the [k]s indicate the degrees of
freedom associated with each element row and column.

The two element stiffness matrices, Egs. (2.4.1), are not associated with the same degrees
of freedom; that is, element 1 is associated with axial displacements at nodes 1 and 3, whereas
element 2 is associated with axial displacements at nodes 2 and 3. Therefore, the element stiff-
ness matrices cannot be added together (superimposed) in their present form. To superimpose
the element matrices, we must expand them to the order (size) of the total structure (spring
assemblage) stiffness matrix so that each element stiffness matrix is associated with all the
degrees of freedom of the structure. To expand each element stiffness matrix to the order of
the total stiffness matrix, we simply add rows and columns of zeros for those displacements
not associated with that particular element.
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2.4 Assembling the Total Stiffness Matrix by Superposition (Direct Stiffness Method)

For element 1, we rewrite the stiffness matrix in expanded form so that Eq. (2.3.1) becomes

Uy uy us

k Lol u b= D (2.4.2)
1100 o0 2 2x at
-1 0 1 ugl) f3(,1()

where, from Eq. (2.4.2), we see that u$" and f{! are not associated with [k"]. Similarly, for
element 2, we have

4 [
0 0 0 (2) (2)

kz O 1 —1 l/£2 = f2x (243)
0 -1 1 U o)

Now, considering force equilibrium at each node results in

Y 0 Fi,
0+l =1p, (2.4.4)
Y 2) Fix

where Eq. (2.4.4) is really Egs. (2.3.4) through (2.3.6) expressed in matrix form. Using Egs.
(2.4.2) and (2.4.3) in Eq. (2.4.4), we obtain

(1) (2)
1 0 —1|[" 0 0 ofl"n Ix
k| 00 0QRuPt+k|0 1 —1{3u?} =3P, (2.4.5)
-1 0 1 ul) 0 -1 1 ugz) By

where, again, the superscripts on the u’s indicate the element numbers. Simplifying Eq. (2.4.5)

results in
ki 0 —k u Fix
0 k2 —k2 U r = sz (246)
—ky —ky ki tky||U3 B

Here the superscripts indicating the element numbers associated with the nodal displacements
have been dropped because ufl) is really uy, uﬁz) is really uy, and, by Eq. (2.3.3), ugl) = ugz) = u3,
the node 3 displacement of the total assemblage. Equation (2.4.6), obtained through superpo-
sition, is identical to Eq. (2.3.9).
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2 | Introduction to the Stiffness (Displacement) Method

The expanded element stiffness matrices in Egs. (2.4.2) and (2.4.3) could have been added
directly to obtain the total stiffness matrix of the structure, given in Eq. (2.4.6). This reliable
method of directly assembling individual element stiffness matrices to form the total structure
stiffness matrix and the total set of stiffness equations is called the direct stiffness method. It
is the most important step in the finite element method.

For this simple example, it is easy to expand the element stiffness matrices and then
superimpose them to arrive at the total stiffness matrix. However, for problems involving a
large number of degrees of freedom, it will become tedious to expand each element stiffness
matrix to the order of the total stiffness matrix. To avoid this expansion of each element
stiffness matrix, we suggest a direct, or shortcut, form of the direct stiffness method to obtain
the total stiffness matrix. For the spring assemblage example, the rows and columns of each
element stiffness matrix are labeled according to the degrees of freedom associated with them
as follows:

up us us up
ki =k | w ky —ky | us
kD1 = kK271 = 247
e ~k k| w3 e —ky ko | w2 @47

[K] is then constructed simply by directly adding terms associated with degrees of freedom
in [kM] and [k ] into their corresponding identical degree-of-freedom locations in [K] as
follows. The u; row, u; column term of [K] is contributed only by element 1, as only element
1 has degree of freedom u; [Eq. (2.4.7)], that is, k11 = k;. The uz row, uz column of [K] has
contributions from both elements 1 and 2, as the u; degree of freedom is associated with both
elements. Therefore, k33 = k; + ky. Similar reasoning results in [K] as

uj Uus usz
ki 0 k| oy
Kl=1| 0 k —k |w (2.4.8)

—kl —k2 k] + k2 us

Here elements in [K] are located on the basis that degrees of freedom are ordered in
increasing node numerical order for the total structure. Section 2.5 addresses the com-
plete solution to the two-spring assemblage in conjunction with discussion of the support
boundary conditions.

X3 Boundary Conditions

We must specify boundary (or support) conditions for structure models such as the spring
assemblage of Figure 2-5, or [K] will be singular; that is, the determinant of [K] will be zero,
and its inverse will not exist. This means the structural system is unstable. Without our speci-
fying adequate kinematic constraints or support conditions, the structure will be free to move
as arigid body and not resist any applied loads. In general, the number of boundary conditions
necessary to make [K] nonsingular is equal to the number of possible rigid body modes.
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2.5 Boundary Conditions

Boundary conditions relevant for spring assemblages are associated with nodal displace-
ments. These conditions are of two types. Homogeneous boundary conditions—the more
common—occur at locations that are completely prevented from movement; nonhomogeneous
boundary conditions occur where finite nonzero values of displacement are specified, such as
the settlement of a support.

In the mathematical sense in regard to solving boundary value problems, we encounter two
general classifications of boundary conditions when imposed on an ordinary or partial differ-
ential equation or derived upon taking the first variation of a functional as shown in References
[4, 5, 8], but these are avoided in this more basic textbook.

The first type—primary, essential, or Dirichlet—boundary condition [named after Johann
Dirichlet (1805-1859)], specifies the values a solution, such as the displacement, must satisfy
on the boundary of the domain.

The second type—natural or Neumann—boundary condition [named after Carl Neumann
(1832-1925)], specifies the values that the derivatives of a solution must satisfy on the bound-
ary of the domain.

To illustrate the two general displacement types of boundary conditions, let us consider
Eq. (2.4.6), derived for the spring assemblage of Figure 2—5. which has a single rigid body
mode in the direction of motion along the spring assemblage.

Homogeneous Boundary Conditions

We first consider the case of homogeneous boundary conditions. Hence all boundary conditions
are such that the displacements are zero at certain nodes. Here we have u; = 0 because node
1 is fixed. Therefore, Eq. (2.4.6) can be written as

kk 0 —k 0 F.
0 k2 —k2 U ¢ = sz (251)
—ky —ky k +tky||U3 F3x

Equation (2.5.1), written in expanded form, becomes

ki1 (0) + Oux — kjuz = ki,
0(0) + k2u2 - k2u3 = sz (252)
—ki1(0) = kouy + (ki + ko)uz = F3x

where Fj, is the unknown reaction and F,, and F3, are known applied loads.
Writing the second and third of Egs. (2.5.2) in matrix form, we have

ky —ka U _ Py (253)
—ky kit ky ||u3 B3,
We have now effectively partitioned off the first column and row of [K] and the first row of
{d} and {F} to arrive at Eq. (2.5.3).
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2 | Introduction to the Stiffness (Displacement) Method

For homogeneous boundary conditions, Eq. (2.5.3) could have been obtained directly by
deleting the row and column of Eq. (2.5.1) corresponding to the zero-displacement degrees
of freedom. Here row 1 and column 1 are deleted because one is really multiplying column 1
of [K] by u; = 0. However, Fj, is not necessarily zero and can be determined once u; and u3
are solved for.

After solving Eq. (2.5.3) for u; and u3, we have

k b | (E kL +kl I |[F
us _ 2 2 2 [ _ 2 1 1 2x (2.5.4)
us —ky ki +ky B, 1 i F5x
k

Now that u, and u3 are known from Eq. (2.5.4), we substitute them in the first of Egs. (2.5.2)
to obtain the reaction Fj, as

F, = —ku;s (2.5.5)

We can express the unknown nodal force at node 1 (also called the reaction) in terms of the
applied nodal forces F;, and Fi, by using Eq. (2.5.4) for u3 substituted into Eq. (2.5.5). The
result is

le = _FZX - F3x (256)

Therefore, for all homogeneous boundary conditions, we can delete the rows and columns
corresponding to the zero-displacement degrees of freedom from the original set of equations
and then solve for the unknown displacements. This procedure is useful for hand calculations.
(However, Appendix B.4 presents a more practical, computer-assisted scheme for solving the
system of simultaneous equations.)

Nonhomogeneous Boundary Conditions

We now consider the case of nonhomogeneous boundary conditions. Hence one or more of
the specified displacements are nonzero. For simplicity’s sake, let u; = &, where 6 is a known
displacement (Figure 2-7), in Eq. (2.4.6). We now have

kl 0 _kl S le
0 k2 —kz Uus = sz (257)
—kl _kz kl + kz u3 FSx

Equation (2.5.7) written in expanded form becomes

k16 + 0u2 - k1u3 = le
06 + kzuz - k2u3 = sz (258)
—ki0 — koup + (ki + ko)uz = F3,
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2.5 Boundary Conditions

1 3 2
Q—/\/\/\/\/\/_Q_Av[\/\/\/\/_o_._u X
& [=— K Fy, ky Fy,

M Figure 2-7 Two-spring assemblage with known displacement § at node 1

where Fj, is now a reaction from the support that has moved an amount 6. Considering the
second and third of Egs. (2.5.8) because they have known right-side nodal forces F;, and F3,,
we obtain

06 + kzuz - k2u3 = sz

(2.5.9)
—ki8 — kouy + (ki + ko)uz = Fs,
Transforming the known & terms to the right side of Egs. (2.5.9) yields
kauy — kauz = Fay
(2.5.10)

—kour + (ky + ky)uz = +ki6 + F5,

Rewriting Egs. (2.5.10) in matrix form, we have

k  —k Py
: S Pl 2 2.5.11)
—ky ki +ky||u3 kid + F3y

Therefore, when dealing with nonhomogeneous boundary conditions, we cannot initially delete
row | and column 1 of Eq. (2.5.7), corresponding to the nonhomogeneous boundary condi-
tion, as indicated by the resulting Eq. (2.5.11) because we are multiplying each element by
a nonzero number. Had we done so, the k6 term in Eq. (2.5.11) would have been neglected,
resulting in an error in the solution for the displacements. For nonhomogeneous boundary
conditions, we must, in general, transform the terms associated with the known displacements
to the right-side force matrix before solving for the unknown nodal displacements. This was
illustrated by transforming the k6 term of the second of Egs. (2.5.9) to the right side of the
second of Egs. (2.5.10).

We could now solve for the displacements in Eq. (2.5.11) in a manner similar to that used
to solve Eq. (2.5.3). However, we will not further pursue the solution of Eq. (2.5.11) because
no new information is to be gained.

However, on substituting the displacement back into Eq. (2.5.7), the reaction now becomes

F]x = k15 - k1M3 (2512)

which is different than Eq. (2.5.5) for Fi,.

Notice that if the displacement is known at a node (say u; = &), then the force Fj, at the
node in the same direction as the displacement is not initially known and is determined using
the global equation of Eq. (2.5.7) after solving for the unknown nodal displacements.
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2 | Introduction to the Stiffness (Displacement) Method

At this point, we summarize some properties of the global stiffness matrix in Eq. (2.5.7)
that are also applicable to the generalization of the finite element method.

1. [K] is square, as it relates the same number of forces and displacements.

2. [K] is symmetric, as is each of the element stiffness matrices. If you are familiar with
structural mechanics, you will not find this symmetry property surprising. It can be proved
by using the reciprocal laws described in such References as [3] and [4].

3. [K]is singular (its determinant is equal to zero), and thus, no inverse exists until sufficient
boundary conditions are imposed to remove the singularity and prevent rigid body motion.

4. The main diagonal terms of [K] are always positive. Otherwise, a positive nodal force F;
could produce a negative displacement d;—a behavior contrary to the physical behavior
of any actual structure.

5. [K] is positive semidefinite (that is {x}” [K]{x} > 0 for all non-zero vector {x} with real
numbers). (For more about positive semidefinite matrices, see Appendix A.)

In general, specified support conditions are treated mathematically by partitioning the
global equilibrium equations as follows:

[Kii]l [Ki2] @y | | {R}
|: [K71] 1[K22] :| { {dz} } o { {FZ} } (2513)

where we let {d; } be the unconstrained or free displacements and {d, } be the specified dis-
placements. From Eq. (2.5.13), we have

[Knl{di} = {R} — [Kix{da} (2.5.14)

and

(R} =[Kaldi} +[Knlda} (2.5.15)

where { F{ } are the known nodal forces and { > } are the unknown nodal forces at the specified
displacement nodes. { F» } is found from Eq. (2.5.15) after {d, } is determined from Eq. (2.5.14).
In Eq. (2.5.14), we assume that [K;;] is no longer singular, thus allowing for the determination
of {d1 }

To illustrate the stiffness method for the solution of spring assemblages we now present
the following examples.

EXAMPLE 2.1

For the spring assemblage with arbitrarily numbered nodes shown in Figure 2—8, obtain
(a) the global stiffness matrix, (b) the displacements of nodes 3 and 4, (c) the reaction
forces at nodes 1 and 2, and (d) the forces in each spring. A force of 25 kN is applied
at node 4 in the x direction. The spring constants are given in the figure. Nodes 1 and 2
are fixed.
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2.5 Boundary Conditions

k; = 200 N/mm ky = 400 N/mm ky = 600 N/mm
z
I 3 4 P 2

® @ "™ o ¥

M Figure 2-8 Spring assemblage for solution

SOLUTION:
(a) We begin by making use of Eq. (2.2.18) to express each element stiffness matrix as
follows:
1 3 3 4
kD] = 200 =200 1 @)= 400 —400| 3
—200 200 3 —400 400 | 4
(2.5.16)
4 2
[k®] = 600 —600 | 4
—600 600 | 2

where the numbers above the columns and next to each row indicate the nodal degrees of free-
dom associated with each element. For instance, element 1 is associated with degrees of free-
dom u; and u3. Also, the local element x axis coincides with the global x axis for each element.

Using the concept of superposition (the direct stiffness method), we obtain the global stiff-
ness matrix as

(K1 = kO] + k] + (kD]

or
u us us Uy
200 0 —200 0 u
600 0 —600 Uy (2.5.17)
LK1= —200 0 200 + 400 —400 u3
0 —600 —400 400 + 600 | U4

(b) The global stiffness matrix, Eq. (2.5.17), relates global forces to global displacements

as follows:
F. 200 0 —200 0 U
Fo 0 600 0 =600 ||u,
= (2.5.18)
Fs, -200 0 600 —400 ||us3
Fyy 0 —600 —400 1000 | |4
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2 | Introduction to the Stiffness (Displacement) Method

Applying the homogeneous boundary conditions #; = 0 and u, = 0 to Eq. (2.5.18), sub-
stituting applied nodal forces, and partitioning the first two equations of Eq. (2.5.18) (or
deleting the first two rows of {F} and {d} and the first two rows and columns of [K]
corresponding to the zero-displacement boundary conditions), we obtain

0 600 —400 | |45
= (2.5.19)
2500 —400 1000 | |us
Solving Eq. (2.5.19), we obtain the global nodal displacements

U3 =— — mm Uugs = — mm
T MR

(c) To obtain the global nodal forces (which include the reactions at nodes 1 and 2),
we back-substitute Eqs. (2.5.20) and the boundary conditions #; = 0 and u, = 0 into
Eq. (2.5.18). This substitution yields

. 2000 0 —200 0 0
o 0 600 0 —600]||0

= 250 (2.5.21)
Fiy —200 0 600 —400 ||
Fiy 0 —600 —400 1000 | |38

Multiplying matrices in Eq. (2.5.21) and simplifying, we obtain the forces at each node

- —22
R, = 5(1),1000 N By, = 1'51,000 N P =0
275,000 (2.5.22)
4y = ——— N

11

From these results, we observe that the sum of the reactions Fj, and F>, is equal in mag-
nitude but opposite in direction to the applied force F;,. This result verifies equilibrium of
the whole spring assemblage.

(d) Next we use local element Eq. (2.2.8) to obtain the forces in each element.

Element 1

AP | 200 —200{[ 0 2523
70 —200 200 || o
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2.5 Boundary Conditions

Simplifying Eq. (2.5.23), we obtain

N 2.5.24
¥ 11 3 11 ( )

A free-body diagram of spring element 1 is shown in Figure 2-9(a). The spring is subjected
to tensile forces given by Egs. (2.5.24). Also, fl(;) is equal to the reaction force Fj, given in
Eq. (2.5.22). A free-body diagram of node 1 [Figure 2-9(b)] shows this result.

11 11 F|,<—0—> f](xl)

(a) (b)

M Figure 2-9 (a) Free-body diagram of element 1 and (b) free-body diagram of node 1

Element 2
2) 250
A [_333 jgg} 2.5.25)
f4x 11
Simplifying Eq. (2.5.25), we obtain
@ — 250,000 @ _ 30,000 o (2.5.26)

3x 11 4x 11

A free-body diagram of spring element 2 is shown in Figure 2—10. The spring is subjected
to tensile forces given by Egs. (2.5.26).

50,000 3 4 50,000
- ~“NVVVVVVV™® T

M Figure 2-10 Free-body diagram of element 2

Element 3
| _[ 600 —600]]33 (2527
P —-600 600 || o o

Simplifying Eq. (2.5.27) yields

@ _ 225000 ) _ —225,000

N 2.5.28
4x 11 2x 11 ( )
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2 | Introduction to the Stiffness (Displacement) Method

225,000

11

2
0P,
®

M Figure 2-11 (a) Free-body diagram of element 3 and (b) free-body diagram of node 2

A free-body diagram of spring element 3 is shown in Figure 2—11(a). The spring is sub-
jected to compressive forces given by Eqs. (2.5.28). Also, f,, is equal to the reaction force
F,, given in Eq. (2.5.22). A free-body diagram of node 2 (Figure 2—11b) shows this result.

]

EXAMPLE 2.2

For the spring assemblage shown in Figure 2—12, obtain (a) the global stiffness matrix,
(b) the displacements of nodes 2—4, (c) the global nodal forces, and (d) the local element
forces. Node 1 is fixed while node 5 is given a fixed, known displacement 6 = 20.0 mm.
The spring constants are all equal to k = 200 kN/m.

® ©) ® ®

FSx
M Figure 2-12 Spring assemblage for solution

5 5K
»
SOLUTION:

(a) We use Eq. (2.2.9) to express each element stiffness matrix as

200 —200
(kD] = [kP] = [k®] = [kP] = {_200 200} (2.5.29)
Again using superposition, we obtain the global stiffness matrix as
200 —200 0 0 0
—200 400 —200 0 0
[K]= 0 -—200 400 -—200 0 kN (2.5.30)
0 0 —200 400 -200 "
0 0 0 —-200 200

(b) The global stiffness matrix, Eq. (2.5.30), relates the global forces to the global displace-

ments as follows:

A 200 —200 0 0 0 |u
. 1
Py —200 400 —-200 0 0 |lu
F, b= 0 —200 400 —200 0 |Jus (2.5.31)
Fy, 0 0 —200 400 —200 ||u4
Fsy 0 0 0 —200 200 ||%
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2.5 Boundary Conditions

Applying the boundary conditions #; = 0 and us = 20 mm (= 0.02 m), substituting known
global forces F>, = 0, F3, = 0, and F;, = 0, and partitioning the first and fifth equations
of Eq. (2.5.31) corresponding to these boundary conditions, we obtain

0

0 —200 400 —200 O 0 0y
ol=| 0 —200 400 —200 0 s (2.5.32)

0 0 0 —200 400 —200|| us

0.02m

We now rewrite Eq. (2.5.32), transposing the product of the appropriate stiffness coefficient
(—200) multiplied by the known displacement (0.02 m) to the left side.

0 400 =200 0 |[u,
0 \=|-200 400 —200 |{us (2.5.33)
4kN 0 —200 400 ||u,

Solving Eq. (2.5.33), we obtain

uy = 0.005m uz = 0.0l m uy = 0.015m (2.5.34)

(c) The global nodal forces are obtained by back-substituting the boundary condition dis-
placements and Eqgs. (2.5.34) into Eq. (2.5.31). This substitution yields

Fix = (—200)(0.005) = —1.0 kN

By = (400)(0.005) — (200)(0.01) = 0

Fie = (—200)(0.005) + (400)(0.01) — (200)(0.015) = 0 (2.5.35)
Fix = (—200)(0.01) + (400)(0.015) — (200)(0.02) = 0

Fs, = (—200)(0.015) + (200)(0.02) = 1.0 kN

The results of Eqs. (2.5.35) yield the reaction Fj, opposite that of the nodal force Fs,
required to displace node 5 by 6 = 20.0 mm. This result verifies equilibrium of the whole
spring assemblage.

Remember if the displacement is known at a node in a given direction (in this example,
us = 20 mm), then the force Fs, at that same node and in that same direction is not initially
known. The force is determined after solving for the unknown nodal displacements.

(d) Next, we make use of local element Eq. (2.2.10) to obtain the forces in each element.

Element 1

AL _T 200 —200]) 0 2536
£~ (=200 200 |]0.005 >
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2 | Introduction to the Stiffness (Displacement) Method

Simplifying Eq. (2.5.36) yields

0 =—1.0kN  fi) = LOKN (25.37)
Element 2
) 200 —200](0.005
Yl : (2.5.38)
) 200 200 |]0.01

Simplifying Eq. (2.5.38) yields

D _ kN A2 = 1kN (2.5.39)
Element 3
i 200 —200][0.01
v : (2.5.40)
£ —200 200 []0.015

Simplifying Eq. (2.5.40), we have

3 = _1kN  fO = 1kN (2.5.41)
Element 4
(4)
ax | _ 200 —2001/0.015 (2.5.42)
fs(f) —200 200 110.02

Simplifying Eq. (2.5.42), we obtain
B =—1kN 9 =1kN (2.5.43)

You should draw free-body diagrams of each node and element and use the results of
Eqgs. (2.5.35) through (2.5.43) to verify both node and element equilibria.
|

Finally, to review the major concepts presented in this chapter, we solve the following
example problem.
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2.5 Boundary Conditions

EXAMPLE 2.3

(a) Using the ideas presented in Section 2.3 for the system of linear elastic springs shown
in Figure 2—13, express the boundary conditions, the compatibility or continuity condi-
tion similar to Eq. (2.3.3), and the nodal equilibrium conditions similar to Egs. (2.3.4)
through (2.3.6). Then formulate the global stiffness matrix and equations for solution of
the unknown global displacement and forces. The spring constants for the elements are
ki, ko, and k3; P is an applied force at node 2.

(b) Using the direct stiffness method, formulate the same global stiffness matrix and equa-
tion as in part (a).

7

M Figure 2-13 Spring assemblage for solution

SOLUTION:
(a) The boundary conditions are

w =0 u3=0 uy =0 (2.5.44)
The compatibility condition at node 2 is

W = u® = u = u, (2.5.45)

The nodal equilibrium conditions are

Fix :fl(;)
P=£)+AD 1)
(2.5.46)
Ro=r)
Fyo = 4()3c)

where the sign convention for positive element nodal forces given by Figure 2-2 was
used in writing Eqgs. (2.5.46). Figure 2—14 shows the element and nodal force free body
diagrams.
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2 | Introduction to the Stiffness (Displacement) Method

)y (h |
le 1x flx i\'}
— Q-

1 1 @ 2

MW Figure 2-14 Free-body diagrams of elements and nodes of spring assemblage of
Figure 2-13

Using the local stiffness matrix Eq. (2.2.17) applied to each element and compatibility
condition Eq. (2.5.45), we obtain the total or global equilibrium equations as

Ry =k — ko
P = —k1u1 + k1u2 + kgblz - k2u3 + k3M2 - k3u4

2.5.47
By = —kouy + kous ( )
Fio = —k3up + kauy
In matrix form, we express Eqgs. (2.5.47) as
Fi. ky —k; 0 0 u
P _ —ky ki +ky +hkys —ky —k3 1753
F3x - 0 _kZ k2 0 s (25 48)
Fyx 0 —k3 0 k3 ||ua

Therefore, the global stiffness matrix is the square, symmetric matrix on the right side of
Eq. (2.5.48). Making use of the boundary conditions, Eqs. (2.5.44), and then considering
the second equation of Egs. (2.5.47) or (2.5.48), we solve for u, as

P

= (2.5.49)
ki + ko + ks

up

We could have obtained this same result by deleting rows 1, 3, and 4 in the {F} and {d}
matrices and rows and columns 1, 3, and 4 in [K], corresponding to zero displacement, as
previously described in Section 2.4, and then solving for u,.

Using Eqgs. (2.5.47), we now solve for the global forces as

F, = —ku By = —kous Fyy = —k3uy (2.5.50)

The forces given by Egs. (2.5.50) can be interpreted as the global reactions in this example.
The negative signs in front of these forces indicate that they are directed to the left (opposite
the x axis).
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2.5 Boundary Conditions

(b) Using the direct stiffness method, we formulate the global stiffness matrix. First, using
Eq. (2.2.18), we express each element stiffness matrix as

U up ur us U Uy
kD] = ki —k k] = ky —ky (kO] = ks —k3 (2.5.51)
—k ki —k» k> —ks ks

where the particular degrees of freedom associated with each element are listed in the col-
umns above each matrix. Using the direct stiffness method as outlined in Section 2.4, we
add terms from each element stiffness matrix into the appropriate corresponding row and
column in the global stiffness matrix to obtain

up u us Uy
ki —k 0 0
T e R (2.5.52)
0 —k kry 0
0 —k3 0 k3

We observe that each element stiffness matrix [k] has been added into the location in the
global [K] corresponding to the identical degree of freedom associated with the element
[k]. For instance, element 3 is associated with degrees of freedom u, and u4; hence its
contributions to [K] are in the 2-2, 2-4, 4-2, and 4—4 locations of [K], as indicated in
Eq. (2.5.52) by the k3 terms.

Having assembled the global [K] by the direct stiffness method, we then formulate the
global equations in the usual manner by making use of the general Eq. (2.3.10),{F} = [K]{d}.
These equations have been previously obtained by Eq. (2.5.48) and therefore are not
repeated.

Another method for handling imposed boundary conditions that allows for either homoge-
neous (zero) or nonhomogeneous (nonzero) prescribed degrees of freedom is called the penalty
method. This method is easy to implement in a computer program.

Consider the simple spring assemblage in Figure 2—15 subjected to applied forces F7, and
F;, as shown. Assume the horizontal displacement at node 1 to be forced to be u; = 6.

We add another spring (often called a boundary element) with a large stiffness &, to the
assemblage in the direction of the nodal displacement #; = § as shown in Figure 2—-16. This
spring stiffness should have a magnitude about 10 times that of the largest k;; term.

[~ ® ©

M Figure 2-15 Spring assemblage used to illustrate the penalty method
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2 | Introduction to the Stiffness (Displacement) Method

M Figure 2-16 Spring assemblage with a boundary spring element added at node 1

Now we add the force k;,6 in the direction of u; and solve the problem in the usual manner as
follows.
The element stiffness matrices are

k] _kl k2 _k2
M7 = 2)7 =
(kD] |:_kl Iq] (k@] l:—kz kz] (2.5.53)

Assembling the element stiffness matrices using the direct stiffness method, we obtain the
global stiffness matrix as
ki thky —k 0

(Kl1=| —ki ki +k —k (2.5.54)
0 —kz k>

Assembling the global { F} = [K]{d} equations and invoking the boundary condition u3 = 0,
we obtain

F, + k,6 ki + kp —ky 0 uj
sz = —k] k[ + kz _k2 U (2555)
F3x O _kz k2 uz — O

Solving the first and second of Egs. (2.5.55), we obtain

— (ki +
= B (klk ka Juz (2.5.56)
K]

and

+ + +
4y = it ke)Foy + Fiuki + kodhy (2.5.57)
kpky + kpky + kiks

Now as k;, approaches infinity, Eq. (2.5.57) simplifies to

_ B, + 6k

2.5.58
ki + ko ( )

u
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2.6 Potential Energy Approach to Derive Spring Element Equations

and Eq. (2.5.56) simplifies to
u =6 (2.5.59)

These results match those obtained by setting #; = 6 initially.

In using the penalty method, a very large element stiffness should be parallel to a degree
of freedom as is the case in the preceding example. If k;, were inclined, or were placed within
a structure, it would contribute to both diagonal and off-diagonal coefficients in the global
stiffness matrix [K]. This condition can lead to numerical difficulties in solving the equations
{F} = [K]{d}. To avoid this condition, we transform the displacements at the inclined support
to local ones as described in Section 3.9.

Potential Energy Approach to Derive Spring
Element Equations

One of the alternative methods often used to derive the element equations and the stiffness
matrix for an element is based on the principle of minimum potential energy. (The use of this
principle in structural mechanics is fully described in Reference [4].) This method has the
advantage of being more general than the method given in Section 2.2, which involves nodal
and element equilibrium equations along with the stress/strain law for the element. Thus the
principle of minimum potential energy is more adaptable to the determination of element
equations for complicated elements (those with large numbers of degrees of freedom) such as
the plane stress/strain element, the axisymmetric stress element, the plate bending element,
and the three-dimensional solid stress element.

Again, we state that the principle of virtual work (Appendix E) is applicable for any
material behavior, whereas the principle of minimum potential energy is applicable only
for elastic materials. However, both principles yield the same element equations for linear-
elastic materials, which are the only kind considered in this text. Moreover, the principle of
minimum potential energy, being included in the general category of variational methods
(as is the principle of virtual work), leads to other variational functions (or functionals)
similar to potential energy that can be formulated for other classes of problems, primarily of
the nonstructural type. These other problems are generally classified as field problems and
include, among others, torsion of a bar, heat transfer (Chapter 13), fluid flow (Chapter 14),
and electric potential (Chapter 14).

Still other classes of problems, for which a variational formulation is not clearly defin-
able, can be formulated by weighted residual methods. We will describe Galerkin’s method
in Section 3.12, along with collocation, least squares, and the subdomain weighted residual
methods in Section 3.13. In Section 3.13, we will also demonstrate these methods by solving
a one-dimensional bar problem using each of the four residual methods and comparing each
result to an exact solution. (For more information on weighted residual methods, also consult
References [5-7].)

Here we present the principle of minimum potential energy as used to derive the spring
element equations. We will illustrate this concept by applying it to the simplest of elements in
hopes that the reader will then be more comfortable when applying it to handle more compli-
cated element types in subsequent chapters.
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FA
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M Figure 2-17 (a) Spring subjected to gradually increasing force F (b) Force/deformation
curve for linear spring

The total potential energy 7, of a structure is expressed in terms of displacements.
In the finite element formulation, these will generally be nodal displacements such that
n, = n,(di, da,..., d,). When 7, is minimized with respect to these displacements, equilib-
rium equations result. For the spring element, we will show that the same nodal equilibrium
equations [k]{d} = {f} result as previously derived in Section 2.2.

We first state the principle of minimum potential energy as follows:

Of all the geometrically possible shapes that a body can assume, the true one,
corresponding to the satisfaction of stable equilibrium of the body, is identified by
a minimum value of the total potential energy.

To explain this principle, we must first explain the concepts of potential energy and of a
stationary value of a function. We will now discuss these two concepts.
Total potential energy is defined as the sum of the internal strain energy U and the
potential energy of the external forces Q; that is,

m,=U+Q (2.6.1)

Strain energy is the capacity of internal forces (or stresses) to do work through deformations
(strains) in the structure; € is the capacity of forces such as body forces, surface traction forces,
and applied nodal forces to do work through deformation of the structure.

To understand the concept of internal strain energy, we first describe the concept of exter-
nal work. In this section, we consider only the external work due to an applied nodal force. In
Chapter 3, Section 10, we consider work due to body forces (typically self weight) and surface
tractions (distributed forces). External work is done on a linear-elastic behaving member [here
we consider an elastic spring shown in Figure 2—17(a)] by applying a gradually increasing
magnitude force F'to the end of the spring up to some maximum value Fp,,x less than that which
would cause permanent deformation in the spring. The maximum deformation Xy,,x occurs
when the maximum force occurs as shown in Figure 2—17(b). The external work is given by
the area under the force-deformation curve shown in Figure 2—17(b), where the slope of the
straight line is equal to the spring constant k. The external work W, is then given from basic
mechanics principles as the integral of the dot product of vector force F with the differential
displacement dx. This expression is represented by Eq. (2.6.2) as
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2.6 Potential Energy Approach to Derive Spring Element Equations

W, = [F-dx= jo Fmax(i) dx = FoyaxXonax 2 (2.6.2)

max
where F in Eq. (2.6.2) is given by
F = Fmax (x/xmax) (263)

In Eq. (2.6.2), we note that F and dx are in the same direction when expressing the second
integral on the right side of Eq. (2.6.2).

By the conservation of mechanical energy principle, the external work due to the applied
force F is transformed into the internal strain energy U of the spring. This strain energy is then
given by

W =U= Fmaxxmax/2 (2.6.4)

Upon gradual reduction of the force to zero, the spring returns to its original undeformed state.
This returned energy that is stored in the deformed elastic spring is called internal strain energy
or just strain energy. Also

Frnax = kXmax (2.6.5)

By substituting Eq. (2.6.5) into Eq. (2.6.4), we can express the strain energy as
U = kxtay /2 (2.6.6)
The potential energy of the external force, being opposite in sign from the external work
expression because the potential energy of the external force is lost when the work is done by

the external force, is given by

Q = —FraxXmax (2.6.7)

Therefore, substituting Egs. (2.6.6) and (2.6.7) into (2.6.1), yields the total potential
energy as

kxax = FnaxXmax (2.6.8)

1
ﬂp—E

In general for any deformation x of the spring corresponding to force F, we replace X,
with x and Fp,x with F and express U and Q as
U(x) = kx2/2 (2.6.8a)

Q(x) = —Fx (2.6.8b)
Substituting Eq. (2.6.8a) and (2.6.8b) into Eq. (2.6.1), we express the total potential energy as
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o4

Maximum

Neutral

Minimum

X

M Figure 2-18 Stationary values of a function

1 2
mp(x) = Jha® = Fx (2.6.9)

The concept of a stationary value of a function G (used in the definition of the principle of
minimum potential energy) is shown in Figure 2—18. Here G is expressed as a function of the
variable x. The stationary value can be a maximum, a minimum, or a neutral point of G(x). To
find a value of x yielding a stationary value of G(x), we use differential calculus to differentiate
G with respect to x and set the expression equal to zero, as follows:

L) (2.6.10)

An analogous process will subsequently be used to replace G with 7, and x with discrete
values (nodal displacements) d;. With an understanding of variational calculus (see Reference
[8]), we could use the first variation of 7, (denoted by 67, where 6 denotes arbitrary change
or variation) to minimize 7,. However, we will avoid the details of variational calculus and
show that we can really use the familiar differential calculus to perform the minimization of
7. To apply the principle of minimum potential energy—that is, to minimize 77,—we take the
variation of 1, which is a function of nodal displacements d; defined in general as

om, = %5[11 + Sﬂgdz 4o+ 8&561" (2.6.11)
8d, bd, od

n

The principle states that equilibrium exists when the d; define a structure state such that
or, = 0(change in potential energy = 0) for arbitrary admissible variations in displacement
dd; from the equilibrium state. An admissible variation is one in which the displacement
field still satisfies the boundary conditions and interelement continuity. Figure 2—19(a)
shows the hypothetical actual axial displacement and an admissible one for a spring with
specified boundary displacements u; and u,. Figure 2—19(b) shows inadmissible functions
due to slope discontinuity between endpoints 1 and 2 and due to failure to satisfy the right
end boundary condition of u(L) = u,. Here éu represents the variation in u. In the general
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2.6 Potential Energy Approach to Derive Spring Element Equations

Admissible displacement function, u + du

Actual displacement function, u

L
1 I/\/\/\/\/—2—>x

' (a)

Inadmissible slope discontinuity

Inadmissible—does not satisfy
right end boundary condition

L
I 12 L
(b)
M Figure 2-19 (a) Actual and admissible displacement functions and (b) inadmissible displacement

functions

finite element formulation, 6u would be replaced by 6d;. This implies that any of the 6d;
might be nonzero. Hence, to satisfy o7, = 0, all coefficients associated with the 54, must
be zero independently. Thus,

on, . on
—+ = =1,2,3,..., .
d. (@ n) or o

=0 (2.6.12)

where n equations must be solved for the n values of d; that define the static equilib-
rium state of the structure. Equation (2.6.12) shows that for our purposes throughout this
text, we can interpret the variation of 7, as a compact notation equivalent to differenti-
ation of 7, with respect to the unknown nodal displacements for which 7, is expressed.
For linear-elastic materials in equilibrium, the fact that 7, is a minimum is shown, for
instance, in Reference [4].

Before discussing the formulation of the spring element equations, we now illustrate
the concept of the principle of minimum potential energy by analyzing a single-degree-of-
freedom spring subjected to an applied force, as given in Example 2.4. In this example, we
will show that the equilibrium position of the spring corresponds to the minimum potential
energy.
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2 | Introduction to the Stiffness (Displacement) Method

EXAMPLE 2.4

For the linear-elastic spring subjected to a force of 5000 N shown in Figure 2-20, evaluate
the potential energy for various displacement values and show that the minimum potential
energy also corresponds to the equilibrium position of the spring.

F = 5000 N

n

k = 125 N/mm

7

M Figure 2-20 Spring subjected to force; load/displacement curve

SOLUTION:

We evaluate the total potential energy as

w, =U+Q
1
where U = E(kx)x and Q= —Fx

We now illustrate the minimization of 7, through standard mathematics. Taking the
variation of 7, with respect to x, or, equivalently, taking the derivative of 7, with
respect to x (as 7, is a function of only one displacement x), as in Eqs. (2.6.11) and
(2.6.12), we have

o, = %6;;0

or, because Ox is arbitrary and might not be zero,
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2.6 Potential Energy Approach to Derive Spring Element Equations

Using our previous expression for 77,,, we obtain

9T 125¢ — 5000 = 0
X
or x = 40 mm

This value for x is then back-substituted into 77, to yield
T, = 62.5(40)* — 5000(40) = —100,000 N-mm

which corresponds to the minimum potential energy obtained in Table 2—1 by the follow-
ing searching technique. Here U = 5 (kx)x is the strain energy or the area under the load/

displacement curve shown in Figure 2-20, and Q2 = —Fx is the potential energy of load F.
For the given values of F and k, we then have

T, = l(125)x2 — 5000x = 62.5x% — 5000x
2

‘We now search for the minimum value of 7z, for various values of spring deformation x.
The results are shown in Table 2—1. A plot of 7, versus x is shown in Figure 2-21,

M Table 2-1 Total potential energy for various spring deformations

Deformation Total Potential Energy
X, in. 7,, N-m
-80 800
—60 525
—40 300
-20 125
0.00 0
20 =75
40 -100
60 =75
80 0
100 125
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2 | Introduction to the Stiffness (Displacement) Method

4 7,, N-m

- 800
- 600

- 400

- 200

-80 —40 40 80

M Figure 2-21 Variation of potential energy with spring deformation

where we observe that 77, has a minimum value at x = 40 mm. This deformed position
also corresponds to the equilibrium position because (drr, /dx) = 125(40) — 5000 = 0.
]

We now derive the spring element equations and stiffness matrix using the principle of
minimum potential energy. Consider the linear spring subjected to nodal forces shown in
Figure 2-22. Using Eq. (2.6.9) reveals that the total potential energy is

1
ﬂ:pZEk(MZ —w)? = fiam — foyi (2.6.13)

where uy — u is the deformation of the spring in Eq. (2.6.9). The first term on the right in Eq.
(2.6.13) is the strain energy in the spring. Simplifying Eq. (2.6.13), we obtain

T, = —ku3 — 2uouy + uf) — fixn — foxitn (2.6.14)

N | =

The minimization of 77, with respect to each nodal displacement requires taking partial deriv-
atives of 7, with respect to each nodal displacement such that

‘;ﬂ - %k(—Zuz +2u) — fiy = 0

8”1 1 (2.6.15)
p

= Zk@us — 2u) — for = 0

EP Cuy u) —f
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2.6 Potential Energy Approach to Derive Spring Element Equations

k
LA A A A A 2
fr L fax

M Figure 2-22 Linear spring subjected to nodal forces

Simplifying Egs. (2.6.15), we have

k(_u2 + ul) =f1x

(2.6.16)
k(uz —w) = fox

In matrix form, we express Eq. (2.6.16) as

keo—kjJu | _ )i 2.6.17)
—k k uz f2x
Because {f} =[k1{d}> we have the stiffness matrix for the spring element obtained from
Eq. (2.6.17):
k —k

k= 2.6.18
[k] {_ ) k} (2.6.18)

As expected, Eq. (2.6.18) is identical to the stiffness matrix obtained in Section 2.2, Eq. (2.2.9).
We considered the equilibrium of a single spring element by minimizing the total
potential energy with respect to the nodal displacements (see Example 2.4). We also devel-
oped the finite element spring element equations by minimizing the total potential energy
with respect to the nodal displacements. We now show that the total potential energy of an
entire structure (here an assemblage of spring elements) can be minimized with respect to
each nodal degree of freedom and that this minimization results in the same finite element
equations used for the solution as those obtained by the direct stiffness method.

EXAMPLE 2.5

Obtain the total potential energy of the spring assemblage (Figure 2-23) for Example 2.1
and find its minimum value. The procedure of assembling element equations can then be
seen to be obtained from the minimization of the total potential energy.

7

k; = 200 N/mm , = 400 N/mm k5 = 600 N/mm

M Figure 2-23 Spring assemblage
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2 | Introduction to the Stiffness (Displacement) Method

SOLUTION:
Using Eq. (2.6.8a), the strain energy stored in spring 1 is given by

UD = ky(us — up)?/2 (2.6.19)

where the difference in nodal displacements u3 — u; is the deformation x in spring 1.
Eq. (2.6.19) can be written in matrix form as

1 k1 _kl usz
U = =~ =
2[143 ul]|: ko k H " }

We observe from Eq. (2.6.20) that the strain energy U is a quadratic function of the nodal
displacements.

{a}" [K1{d} (2.6.20)

N | =

Similar strain energy expressions for springs 2 and 3 are given by
U(z) = kz(u4 - u3)2/2 and U(3) = k3(u2 - u4)2/2 (2621)

with similar matrix expressions as given by Eq. (2.6.20) for spring 1.

Since the strain energy is a scalar quantity, we can add the energy in each spring to
obtain the total strain energy in the system as

3 e
U= Zi:] U® (2.6.22)

The potential energy of the external nodal forces given in the order of the node numbering
for the spring assemblage is

Q = —(Fuy + Fyuy + Fyug + Foup) (2.6.23)

Equation (2.6.23) can be expressed in matrix form as

Fi,
B,

Q = —[uy u2 u3 1y ] F2 (2.6.24)
3x

F4x

The total potential of the assemblage is the sum of the strain energy and the potential energy
of the external forces given by adding Egs. (2.6.19), (2.6.21) and (2.6.23) together as

I, =U+Q = %k1(u3 —w)* + %kz(u4 —u3)? + %k3(uz —ug)?

— Fixun — Faxuy — Bz — Fylig (2.6.25)
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Summary Equations

Upon minimizing 7, with respect to each nodal displacement, we obtain

8& = —k1u3 +k1u1 —le =0
8141
3ﬂ =k3u2 —k3u4 _sz =0
8”2 (2.6.26)
9 =kiuz — kjuy — kougy + kous — F5, =0
3”3
I7)
ﬂ = k2u4 - k2u3 - k3u2 + k3u4 - F4x =0
<9u4
In matrix form, Egs. (2.6.26) become
ky 0 —k; 0 u A,
0 k3 0 _k3 uy | sz
_k1 0 kl + kz _kz usz F3x (2627)
0 —k;3 —k» ky + k3 || Ua Fyx
Substituting numerical values for kj, k», and k3 into Eq. (2.6.27), we obtain
200 0 —200 0 u F.
0 600 0 —600 | juz | | Fox
—200 0 6000 —400 ||u3 F3x (2.6.28)
0 —600 —400 1000 | | ug Fy,

Equation (2.6.28) is identical to Eq. (2.5.18), which was obtained through the direct stiff-
ness method as described in Section 2.4. Hence the assembled equations using the principle
of minimum potential energy result in the same equations obtained by the direct stiffness
assembly method.

SUMMARY EQUATIONS

Definition of an element stiffness matrix:
{r} = 1ki{d} @2.1.1)
Definition of global or total stiffness matrix for a structure:

{F} =[KHd} (2.1.2)
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2 | Introduction to the Stiffness (Displacement) Method

Basic matrix equation relating nodal forces to nodal displacement for spring element:

S| |k —k||m
{fzx}_{—k kHuz} (2.2.10)

Stiffness matrix for linear spring element:
[k] = [_k k } (2.2.11)

Global equations for a spring assemblage:

[F1=[K){d} (2.2.13)
Total potential energy:
T, =U+Q (2.6.1)
For a system of springs:
1
U= E{d}T (K1{d} (2.6.20)
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PROBLEMS

2.1 a. Obtain the global stiffness matrix [K] of the assemblage shown in Figure P21 by
superimposing the stiffness matrices of the individual springs. Here &y, k;, and k3
are the stiffnesses of the springs as shown.
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Problems

b. If nodes 1 and 2 are fixed and a force P acts on node 4 in the positive x direction,
find an expression for the displacements of nodes 3 and 4.

c. Determine the reaction forces at nodes 1 and 2.
(Hint: Do this problem by writing the nodal equilibrium equations and then making
use of the force/displacement relationships for each element as done in the first part
of Section 2.4. Then solve the problem by the direct stiffness method.)

W Figure P2-1

2.2 For the spring assemblage shown in Figure P2-2, determine the displacement at
node 2 and the forces in each spring element. Also determine the force F;. Given:
Node 3 displaces an amount 6 = 20 mm in the positive x direction because of the
force F5 and k; = ko = 100 N/mm.

— 5 |

M Figure P2-2

2.3 a. For the spring assemblage shown in Figure P2-3, obtain the global stiffness matrix
by direct superposition.
b. If nodes 1 and 5 are fixed and a force P is applied at node 3, determine the nodal
displacements.
¢. Determine the reactions at the fixed nodes 1 and 5.

M Figure P2-3

24 Solve Problem 2.3 with P = 0 (no force applied at node 3) and with node 5 given
a fixed, known displacement of & as shown in Figure P2—4.

M Figure P24
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2 | Introduction to the Stiffness (Displacement) Method

2.5 For the spring assemblage shown in Figure P2-5, obtain the global stiffness
matrix by the direct stiffness method. Let k' = 200 N/mm, £ = 400 N/mm,
k3 = 600 N/mm, k® = 800 N/mm, and k® = 1000 N/mm.

g
ONAAAANAD

1 O NN IL L, .
O—/\/\/\/\/\/\/\O
35 9 oz

W Figure P2-5

2.6 For the spring assemblage in Figure P2-5, apply a concentrated force of 10,000 N
at node 2 in the positive x direction and determine the displacements at nodes 2 and
4.

2.7 Instead of assuming a tension element as in Figure P2-3, now assume a compres-
sion element. That is, apply compressive forces to the spring element and derive the
stiffness matrix.

2.8-2.16 For the spring assemblages shown in Figures P2—-8 through P2-16, determine the
nodal displacements, the forces in each element, and the reactions. Use the direct
stiffness method for all problems.

k=100kN/m & =100 kN/m

2.5kN

H Figure P2-8

k=200 kN/m
S5kN

k= 200kN/m k=200 kN/m

20 kN

M Figure P2-9

k=100 kN/m

Rigid bar — ]

M Figure P2-10
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Problems

1000 N/m ; 3000N/m3

-

8 = 20mm
M Figure P2-11

10,000 N/m 30,000 N/m 10,000 N/m
450 N

M Figure P2-12

2 60 kN/m 60 kN/m SKN 60 kN/m 60 kN/m
! 3 XNV 3 Xy

M Figure P2-13

) 4000 N/m 100 N 4000 N/m 200 N

2 kN

1000 kN/m

2 kN

H Figure P2-16

2.17 For the five-spring assemblage shown in Figure P2—17, determine the displacements
at nodes 2 and 3 and the reactions at nodes 1 and 4. Assume the rigid vertical bars
at nodes 2 and 3 connecting the springs remain horizontal at all times but are free
to slide or displace left or right. There is an applied force at node 3 of 1000 N to the
right.
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2 | Introduction to the Stiffness (Displacement) Method

M Figure P2-17

Let kM = 500 N/mm, k?® = k® = 300 N/mm, and k¥ = k® = 400 N/mm.

2.18 Use the principle of minimum potential energy developed in Section 2.6 to solve
the spring problems shown in Figure P2—18. That is, plot the total potential energy
for variations in the displacement of the free end of the spring to determine the
minimum potential energy. Observe that the displacement that yields the minimum
potential energy also yields the stable equilibrium position.

5000 N
k = 200 kN/m
5000 N

(a) (b)

\ ~

k = 2000 N/mm k = 400 N/mm

400 kg 100 kg

(c) )
H Figure P2-18

2.19 Reverse the direction of the load in Example 2.4 and recalculate the total potential

energy. Then use this value to obtain the equilibrium value of displacement.
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Problems

2.20  Thenonlinear spring in Figure P2-20 has the force/deformation relationship f = k&2
Express the total potential energy of the spring, and use this potential energy to
obtain the equilibrium value of displacement.

“Z

k = 250 N/mm

2500 N

M Figure P2-20

2.21-2.22  Solve Problems 2.10 and 2.15 by the potential energy approach (see Example 2.5).

2.23 Resistor type elements are often used in electrical circuits. Consider the typical
resistor element shown in Figure P2-23 with nodes 1 and 2. One form of Ohm’s
law says that the potential voltage difference across two points is equal to the
current / through the conductor times the resistance R between the two points.
In equation form, V = IR where I denotes the current in units of amperes (amps)
and V is the potential or voltage drop in units of volts (V) across the conductor
of resistance R in units of ohms (). Use the method in Section 2.2 to derive the
“stiffness” matrix relating potential drop to current at the nodes shown as

il _ 1 -1 I _
{ W }—R[ 11 H I, } or  {V}=I[K|{I}

R
1y, Vé/\/\/\ézv Va

H Figure P2-23
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CHAPTER

Development of Truss
Equations

CHAPTER OBJECTIVES

At the conclusion of this chapter, you will be able to:

m Derive the stiffness matrix for a bar element.
[llustrate how to solve a bar assemblage by the direct stiffness method.
Introduce guidelines for selecting displacement functions.

Describe the concept of transformation of vectors in two different coordinate
systems in the plane.

Derive the stiffness matrix for a bar arbitrarily oriented in the plane.
Demonstrate how to compute stress for a bar in the plane.
Show how to solve a plane truss problem.

Develop the transformation matrix in three-dimensional space and show how to use
it to derive the stiffness matrix for a bar arbitrarily oriented in space.

Demonstrate the solution of space trusses.

Define symmetry and describe the use of symmetry to solve a problem.
Introduce and solve problems with inclined supports.

Derive the bar equations using the theorem of minimum potential energy.
Compare the finite element solution to an exact solution for a bar.

Introduce Galerkin’s residual method to derive the bar element stiffness matrix and
equations.

Introduce other residual methods and their application to the one-dimensional bar.

Create a flow chart of a finite element computer program for truss analysis and
describe a step-by-step solution from a commercial program.

Introduction

Having set forth the foundation on which the direct stiffness method is based, we will now
derive the stiffness matrix for a linear-elastic bar (or truss) element using the general steps
outlined in Chapter 1. We will include the introduction of both a local coordinate system,
chosen with the element in mind, and a global or reference coordinate system, chosen to be
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3.1 Derivation of the Stiffness Matrix for a Bar Element in Local Coordinates

convenient (for numerical purposes) with respect to the overall structure. We will also discuss
the transformation of a vector from the local coordinate system to the global coordinate system,
using the concept of transformation matrices to express the stiffness matrix of an arbitrarily
oriented bar element in terms of the global system. We will solve three example plane truss
problems (see Figure 3—1 for a typical railroad trestle plane truss and a lift bridge truss over the
Illinois River) to illustrate the procedure of establishing the total stiffness matrix and equations
for solution of a structure.

Next we extend the stiffness method to include space trusses. We will develop the trans-
formation matrix in three-dimensional space and analyze two space trusses. Then we describe
the concept of symmetry and its use to reduce the size of a problem and facilitate its solution.
We will use an example truss problem to illustrate the concept and then describe how to handle
inclined, or skewed, supports.

We will then use the principle of minimum potential energy and apply it to rederive the
bar element equations. We then compare a finite element solution to an exact solution for
a bar subjected to a linear varying distributed load. We will introduce Galerkin’s residual
method and then apply it to derive the bar element equations. Finally, we will introduce other
common residual methods—collocation, subdomain, and least squares—to merely expose
you to them. We illustrate these methods by solving a problem of a bar subjected to a linear
varying load.

Derivation of the Stiffness Matrix for a Bar Element
in Local Coordinates

We will now consider the derivation of the stiffness matrix for the linear-elastic, constant
cross-sectional area (prismatic) bar element shown in Figure 3-2. The derivation here will
be directly applicable to the solution of pin-connected trusses. The bar is subjected to tensile
forces T directed along the local axis of the bar and applied at nodes 1 and 2.

The bar element is assumed to have constant cross-sectional area A, modulus of elasticity
E, and initial length L. The nodal degrees of freedom are local axial displacements (longitudinal
displacements directed along the length of the bar) represented by u; and u, at the ends of the
element as shown in Figure 3-2.

From Hooke’s law [Eq. (3.1.1)] and the strain/displacement relationship [Eq. (3.1.2) or
Eq. (1.4.1)], we write

oy =Ee&, 3.1.1)
du
& = — 3.1.2
I ( )
From force equilibrium, we have
Ao, =T = constant (3.1.3)

for a bar with loads applied only at the ends. (We will consider distributed loading in
Section 3.10.) Using Eq. (3.1.2) in Eq. (3.1.1) and then Eq. (3.1.1) in Eq. (3.1.3) and
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3 | Development of Truss Equations

(b)

m Figure 3-1 (a) A typical railroad trestle plane truss By Daryl L. Logan; (b) lift bridge truss
over the Illinois River (By Daryl L. Logan)
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3.1 Derivation of the Stiffness Matrix for a Bar Element in Local Coordinates

F—xu
1 L 2

T <— f—T
b up. fix 13, o«

m Figure 3-2 Bar subjected to tensile forces T; positive nodal displacements and forces are
all in the local x direction

differentiating with respect to x, we obtain the differential equation governing the linear-elastic
bar behavior as

i(AE@) =0 3.1.4)
dx dx

where u is the axial displacement function along the element in the x direction and A and E are
written as though they were functions of x in the general form of the differential equation, even
though A and E will be assumed constant over the whole length of the bar in our derivations to
follow.

The following assumptions are used in deriving the bar element stiffness matrix:

1. The bar cannot sustain shear force or bending moment, that is,
ﬁy = O,fzy = O,m1 = Oandmg =0.
2. Any effect of transverse displacement is ignored.
Hooke’s law applies; that is, axial stress oy is related to axial strain &, by o, = E¢,.
4. No intermediate applied loads.

w

The steps previously outlined in Chapter 1 are now used to derive the stiffness matrix for
the bar element and then to illustrate a complete solution for a bar assemblage.

Step 1 Select the Element Type

Represent the bar by labeling nodes at each end and in general by labeling the element number
(Figure 3-2).

As in deriving the spring element stiffness matrix, step 2 can be skipped at this time in
deriving the one-dimensional bar element stiffness matrix. To facilitate the derivation, we can
proceed directly to step 3

Step 3 Define the Strain/Displacement and Stress/Strain Relationships
The strain/displacement relationship is
gy = ——1 (3.1.5)

and the stress/strain relationship by Hooke’s law is

o, = Ee, (3.1.6)

Step 4 Derive the Element Stiffness Matrix and Equations
The element stiffness matrix is derived as follows. From elementary mechanics, we have

T =Ao, (3.1.7)
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3 | Development of Truss Equations

Now, using Egs. (3.1.5) and (3.1.6) in Eq. (3.1.7), we obtain

T=AE(“2_MIJ 318
7 (3.1.8)

Also, by the nodal force sign convention of Figure 3-2,

Jix =T (3.1.9)
When we substitute Eq. (3.1.8), Eq. (3.1.9) becomes
—AE
Six = (2 — w) (3.1.10)
L
Similarly,
fox =T (3.1.11)
or, by Eq. (3.1.8), Eq. (3.1.11) becomes
AE
fox = T(uz = ur) (3.1.12)

Expressing Egs. (3.1.10) and (3.1.12) together in matrix form, we have

fix | _AE| 1 —1||m
{fzx}_T{—l lHuz} (3.1.13)

Now, because { f} = [k]{d}, we have, from Eq. (3.1.13),

_AE[ 1 -1
k1= — {_1 J (3.1.14)

Equation (3.1.14) represents the stiffness matrix for a bar element in local coordinates.
In Eq. (3.1.14), AE/L for a bar element is analogous to the spring constant & for a spring element.

Step 5 Assemble Element Equations to Obtain Global or Total Equations

Assemble the global stiffness and force matrices and global equations using the direct stiffness
method described in Chapter 2 (see Section 3.6 for an example truss). This step applies for
structures composed of more than one element such that (again)

N N
[K]= Y.[k©] and {F}= Y{f“} (3.1.15)
e=1 e=1
where now all local element stiffness matrices [k(¢)] must be transformed to global element
stiffness matrices [k] (unless the local axes coincide with the global axes) before the direct
stiffness method is applied as indicated by Eq. (3.1.15). (This concept of coordinate and stiff-
ness matrix transformations is described in Sections 3.3 and 3.4.)

Step 6 Solve for the Nodal Displacements

Determine the displacements by imposing boundary conditions and simultaneously solving a
system of equations, {F} = [K]{d}.
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3.1 Derivation of the Stiffness Matrix for a Bar Element in Local Coordinates

Step 7 Solve for the Element Forces

Finally, determine the strains and stresses in each element by back-substitution of the displace-
ments into equations similar to Eqs. (3.1.5) and (3.1.6).
We will now illustrate a solution for a one-dimensional bar problem.

EXAMPLE 3.1

For the three-bar assemblage shown in Figure 3-3 determine (a) the global stiffness matrix,
(b) the displacements of nodes 2 and 3, and (c) the reactions at nodes 1 and 4. A force of
15,000 N is applied in the x direction at node 2. The length of each element is 0.6 m. Let
E=20X10"Paand A = 6 X 10~*m?2 forelements 1 and 2, and let E = 1 X 10'! Pa and
A =12 X 10™#m? for element 3. Nodes 1 and 4 are fixed.

15000 N

2 © 2]/ ® 3 @ .
O.6m—+—0.6m~+—0.6m%
%

4 1.8 m
M Figure 3-3 Three-bar assemblage
SOLUTION:
(a) Using Eq. (3.1.14), we find that the element stiffness matrices are
20
2 3@
X 10™)(2 x 10" - -
(k) = (o = ©XIODCXTODT T =1y s | 1 =1 N5 4
0.6 -1 1 -1 1| m
3 4
—4 11 _ _
[k(B)]z(IZXIO XAX10H) | 1 —1 — % 108 1 —-1|N
0.6 -1 1 -1 1|m

where, again, the numbers above the matrices in Eqgs. (3.1.16) indicate the displacements
associated with each matrix. Assembling the element stiffness matrices by the direct stiff-
ness method, we obtain the global stiffness matrix as

u us U3 Uy
1 -1 0 0

[K]=2 X108 -1 1+1 -1 0| N (3.1.17)
0 -1 1+41 —-1|m
0 —1 1
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3 | Development of Truss Equations

(b) Equation (3.1.17) relates global nodal forces to global nodal displacements as follows:

Fix 1 -1 0 Of|u
By -1 2 -1 0w
=2 X108 3.1.18
F, 0 —1 2 —1||us ( )
Fiy 0 0 -1 1 Uy
Invoking the boundary conditions, we have
uy =0 us =0 (3.1.19)

Using the boundary conditions, substituting known applied global forces into Eq. (3.1.18),
and partitioning equations 1 and 4 of Eq. (3.1.18), we solve equations 2 and 3 of Eq. (3.1.18)

to obtain
15000 2 —1||u2
=2 X 108 1.2

Solving Eq. (3.1.20) simultaneously for the displacements yields
w =5 X 10°m=0.05mm u3 =2.5 x 10 m=0.025 mm (3.1.21)

(¢) Back-substituting Egs. (3.1.19) and (3.1.21) into Eq. (3.1.18), we obtain the global nodal
forces, which include the reactions at nodes 1 and 4, as follows:

Fi, =2 X108 —up) =2 X 10%(0 — 5 X 107) = —10,000 N

Foy =2 X 108(—u; + 2up —uz) =2 X 103[0 + 2(5 X 107) — 2.5 X 107°] = 15,000 N
Fy, =2X108(—up + 2u3 —uy) =2 X 108[—5 X 10 +2(25 X 10°) - 0] =0

Fie =2 X 103(—uz + ug) =2 X 108(—2.5 X 107> + 0) = —5000 N (3.1.22)
The results of Egs. (3.1.22) show that the sum of the reactions F, and F; is equal in magnitude
but opposite in direction to the applied nodal force of 15,000 N at node 2. Equilibrium of
the bar assemblage is thus verified. Furthermore, Eqs. (3.1.22) show that />, = 15,000 N
and F3, = 0 are merely the applied nodal forces at nodes 2 and 3, respectively, which further

enhances the validity of our solution.

5P selecting a Displacement Function in Step 2
of the Derivation of Stiffness Matrix for the
One-Dimensional Bar Element

Consider the following guidelines, as they relate to the one-dimensional bar element, when
selecting a displacement function. (Further discussion regarding selection of displacement func-
tions and other kinds of approximation functions (such as temperature functions) will be pro-
vided in Chapter 4 for the beam element, in Chapter 6 for the constant-strain triangular element,
in Chapter 8 for the linear-strain triangular element, in Chapter 9 for the axisymmetric element,
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3.2 Selecting a Displacement Function in Step 2 of the Derivation of Stiffness Matrix

in Chapter 10 for the three-noded bar element and the plane quadrilateral element, in Chapter
11 for the three-dimensional stress element, in Chapter 12 for the plate bending element, and in
Chapter 13 for the heat transfer problem. More information is also provided in References [1-3].

Guidelines for Selecting Displacement Functions

1. We must choose in advance the mathematical function to represent the deformed shape of the
bar element under loading. Because it is difficult, if not impossible at times, to obtain a closed
form or exact solution, we assume a solution shape or distribution of displacement within the
element by using an appropriate mathematical function. The most common functions used are
polynomials.

Because the bar element resists axial loading only with the local degrees of freedom for
the element being displacement u; and u; along the x direction, we choose a displacement func-
tion u to represent the axial displacement throughout the element. Here a linear displacement
variation along the x axis of the bar is assumed [Figure 3—4(b)], because a linear function with
specified endpoints has a unique path. Therefore,

u=a +ax 3.2.1)

In general, the total number of coefficients a is equal to the total number of degrees of freedom
associated with the element. Here the total number of degrees of freedom is two—an axial
displacement at each of the two nodes of the element. In matrix form, Eq. (3.2.1) becomes

a

u=1[1 x] 4 (3.2.2)

2

‘We now want to express u as a function of the nodal displacements u; and u,, as this will allow
us to apply the physical boundary conditions on nodal displacements directly as indicated in

1 L 2

@

u=a +ayx

“ "
®)
1 oM=1-7
© ’
I 1
‘ @

M Figure 3-4 (a) Bar element showing plots of (b) displacement function u and shape
functions, (c) My and, (d) N, over domain of element
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3 | Development of Truss Equations

step 3 and to then relate the nodal displacements to the nodal forces in step 4. We achieve this
by evaluating u at each node and solving for @; and a, from Eq. (3.2.1) as follows:

u0) =u =a (3.2.3)
u(L) =ur, = aL + uy (3.2.4)
or, solving Eq. (3.2.4) for a,
U — U
= - 3.2.5
as I ( )

Upon substituting Egs. (3.2.3) and (3.2.5) into Eq. (3.2.1), we have
u= (”ZT_”‘);C + (3.2.6)

In matrix form, we express Eq. (3.2.6) as

X u
Z} {Mz} 3.2.7)

or

uj
u = [N1 Ng]{uz} (328)

Here

N1=1—£ and N2=£
L L

3.2.9)
are called the shape functions because the N;’s express the shape of the assumed displacement
function over the domain (x coordinate) of the element when the ith element degree of freedom
has unit value and all other degrees of freedom are zero. In this case, Ny and N, are linear func-
tions that have the properties that Ny = 1 at node 1 and N; = 0 at node 2, whereas N, = 1 at
node 2 and N, = 0 atnode 1. See Figure 3—4(c) and (d) for plots of these shape functions over
the domain of the spring element. Also, N + N, = 1 for any axial coordinate along the bar.
The significance of the shape functions summing to one is described more fully under
Guideline 4. In addition, the N;’s are often called interpolation functions because we are
interpolating to find the value of a function between given nodal values. The interpolation
function may be different from the actual function except at the endpoints or nodes, where the
interpolating function and actual function must be equal to specified nodal values.

2. The approximation function should be continuous within the bar element. The simple linear
function for u of Eq. (3.2.1) certainly is continuous within the element. Therefore, the linear
function yields continuous values of u within the element and prevents openings, overlaps, and
jumps because of the continuous and smooth variation in u (Figure 3-5).
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3.2 Selecting a Displacement Function in Step 2 of the Derivation of Stiffness Matrix

Uz — Uy
u? = —— x+u,

m Figure 3-5 Interelement continuity of a two-bar structure

3. The approximating function should provide interelement continuity for all degrees of free-
dom at each node for discrete line elements and along common boundary lines and surfaces
for two- and three-dimensional elements. For the bar element, we must ensure that nodes
common to two or more elements remain common to these elements upon deformation and
thus prevent overlaps or voids between elements. For example, consider the two-bar structure
shown in Figure 3-5. For the two-bar structure, the linear function for u [Eq. (3.2.1)] within
each element will ensure that elements 1 and 2 remain connected; the displacement at node 2
for element 1 will equal the displacement at the same node 2 for element 2; that is, ug) = uéz).
This rule was also illustrated by Eq. (2.3.3). The linear function is then called a conforming, or
compatible, function for the bar element because it ensures the satisfaction both of continuity
between adjacent elements and of continuity within the element.

In general, the symbol C” is used to describe the continuity of a piecewise field (such as
axial displacement), where the superscript m indicates the degree of derivative that is interele-
ment continuous. A field is then C° continuous if the function itself is interelement continuous.
For instance, for the field variable being the axial displacement illustrated in Figure 3-5, the dis-
placement is continuous across the common node 2. Hence the displacement field is said to be
CY continuous. Bar elements, plane elements (see Chapter 7), and solid elements (Chapter 11)
are C elements in that they enforce displacement continuity across the common boundaries.

If the function has both its field variable and its first derivative continuous across the
common boundary, then the field variable is said to be C' continuous. We will later see that
the beam (see Chapter 4) and plate (see Chapter 12) elements are C! continuous. That is, they
enforce both displacement and slope continuity across common boundaries.

4. The approximation function should allow for rigid-body displacement and for a state of
constant strain within the element. The one-dimensional displacement function [Eq. (3.2.1)]
satisfies these criteria because the a; term allows for rigid-body motion (constant motion of the
body without straining) and the a,x term allows for constant strain because &, = du/dx = a,
is a constant. (This state of constant strain in the element can, in fact, occur if elements are
chosen small enough.) The simple polynomial Eq. (3.2.1) satisfying this fourth guideline is
then said to be complete for the bar element.

This idea of completeness also means in general that the lower-order term cannot be omitted
in favor of the higher-order term. For the simple linear function, this means a; cannot be omitted
while keeping a,x. Completeness of a function is a necessary condition for convergence to the
exact answer, for instance, for displacements and stresses (Figure 3—6) (see Reference [3]). Figure
3—6 illustrates monotonic convergence toward an exact solution for displacement as the number
of elements in a finite element solution is increased. Monotonic convergence is then the process in
which successive approximation solutions (finite element solutions) approach the exact solution
consistently without changing sign or direction.
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Exact solution —¢

Number of elements

Displacement

Convergence to
exact solution

m Figure 3-6 Convergence to the exact solution for displacement as the number of elements
of a finite element solution is increased

The idea that the interpolation (approximation) function must allow for a rigid-body
displacement means that the function must be capable of yielding a constant value (say, a;),
because such a value can, in fact, occur. Therefore, we must consider the case

u=a (3.2.10)

For u = a; requires nodal displacements u; = u, to obtain a rigid-body displacement.
Therefore

a =u; = up (3.2.11)
Using Eq. (3.2.11) in Eq. (3.2.8), we have
u = Ny + Noup = (Ny + Ny)ay (3.2.12)
From Egs. (3.2.10) and (3.2.12), we then have
u=a = (N +Nya (3.2.13)
Therefore, by Eq. (3.2.13), we obtain
Ny + N, =1 (3.2.14)

Thus Eq. (3.2.14) shows that the displacement interpolation functions must add to unity at every
point within the element so that u will yield a constant value when a rigid-body displacement
occurs.

BEED Transformation of Vectors in Two Dimensions

In many problems it is convenient to introduce both local (x” — y”) and global (or reference)
(x — y) coordinates. Local coordinates are always chosen to represent the individual element
conveniently. Global coordinates are chosen to be convenient for the whole structure.

Given the nodal displacement of an element, represented by the vector d in Figure 3—7, we
want to relate the components of this vector in one coordinate system to components in another.
For general purposes, we will assume in this section that d is not coincident with either the local or
the global axis. In this case, we want to relate global displacement components to local ones. In so
doing, we will develop a transformation matrix that will subsequently be used to develop the global
stiffness matrix for a bar element. We define the angle 6 to be positive when measured counterclock-
wise from x to x”. We can express vector displacement d in both global and local coordinates by

d=ui +vj=ui' +V'j 3.3.1)
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3.3 Transformation of Vectors in Two Dimensions

1%

0

-

W Figure 3-7 General displacement vector d in two dimensions

where i and j are unit vectors in the x and y global directions and i’ and j" are unit vectors
in the x” and y’ local directions. From Figure 3-7, we have the following vectors in terms of
reference letters as

it =0A,v =AB,u =0C,v =CB (33.2)
From Figure 3-7, we can observe by vector addition along the x" axis, the relationship
OC = 0D + DC (3.3.3)
Using standard trigonometric relations in Figure 3—7 and use of Eq. (3.3.2), we obtain
OD = OAcosf = iicosf and DC = AE = vsinf (3.3.4)
Using Eq. (3.3.2) for u" and Eq. (3.3.4) in Eq. (3.3.3), we have
' =ucosf + vsinf (3.3.5)
In a similar fashion, by vector addition in the y’ direction of Figure 37, we have
CB = —AD + BE (3.3.6)
Again using standard trigonometric relations in Figure 3—7 and use of Eq. (3.3.2), we have
AD = OAsin® = i sinf and BE = AB cos = v cosf (3.3.7)
Now using Eq. (3.3.2) for v’ and Eq. (3.3.7) in Eq. (3.3.6), we obtain
v/ = —usinf + vcos6 (3.3.8)

Expressing Eqgs. (3.3.5) and (3.3.8) together in matrix form, we get

HE R -

where C = cosf and § = sin6.
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3 | Development of Truss Equations

Equation (3.3.9) relates the global displacement matrix {d} to the local displacement {d’} as
{d'} = [T|{d} (3.3.10)

where

{d}:{g}, {m}:{zj}, [T]=[_§ g} 33D

The matrix [7] is called the transformation (or rotation) matrix. For an additional description
of this matrix, see Appendix A. It will be used in Section 3.4 to develop the global stiffness
matrix for an arbitrarily oriented bar element and to transform global nodal displacements and
forces to local ones.

EXAMPLE 3.2

The global nodal displacements at node 2 have been determined to be u, = 2.5 mm and
vy = 5 mm for the bar element shown in Figure 3—8. Determine the local x displacement

at node 2.
y x
2
60°
1 X

W Figure 3-8 Bar element with local axis x” acting along the element

SOLUTION:
Using Eq. (3.3.5), we obtain

uy = (cos60°)(2.5) + (sin60°)(5) = 5.58 mm

Global Stiffness Matrix for Bar Arbitrarily Oriented in
the Plane

We now consider a bar inclined at an angle 6 from the global x axis identified by the local axis
x” directed from node 1 to node 2 along the direction of the bar, as shown in Figure 3-9. Here
positive angle 6 is taken counterclockwise from x to x’.
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3.4 Global Stiffness Matrix for Bar Arbitrarily Oriented in the Plane

»,v

U, fax

2

Ut S

W Figure 3-9 Bar element arbitrarily oriented in the global x — y plane

We now use Eq. (3.1.13) where a prime notation is used to denote the local element stift-
ness matrix {k’} which relates the local coordinate nodal forces { '} to local nodal displace-
ments {d’} as shown by Eq. (3.4.1).

i =A—E{ ! _1} & (3.4.1)
e L [—1 1],
or
{r} =1k1{a’} (3.4.2)

We now want to relate the global element nodal forces {f} to the global nodal displacements
{d} for a bar element arbitrarily oriented with respect to the global axes as shown in Figure 3-9.
This relationship will yield the global stiffness matrix [k] of the element. That is, we want to
find a matrix [k] such that

flx up
fly %1

=k 343
o (k] 0 (3.4.3)
f2y V2

or, in simplified matrix form, Eq. (3.4.3) becomes

{f} =k1{d} (3.4.4)

We observe from Eq. (3.4.3) that a total of four components of force and four of displacement
arise when global coordinates are used. However, a total of two components of force and two
of displacement appear for the local-coordinate representation of a spring or a bar, as shown
by Eq. (3.4.1). By using relationships between local and global force components and between
local and global displacement components, we will be able to obtain the global stiffness matrix.
We know from transformation relationship Eq. (3.3.5) that

u{ = ujcosf + v;sinf

) (3.4.5)
w5 = urcosf + v, sinf
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3 | Development of Truss Equations

In matrix form, Egs. (3.4.5) can be written as

uj
uf C S 0 0w
= (3.4.6)
ué |:0 0o C S:| up
V2
or as
{a'} =T {d} (3.4.7)
where
cC S 0 0
T*] = 3.4.8
s {0 § 0 S} (348)

Similarly, because forces transform in the same manner as displacements, we replace local and
global displacements in Eq. (3.4.6) with local and global forces and obtain

Jix
fie| _ {c S0 0} Jiy (3.4.9)
#, 0 0 C S||fu
Jay
Similar to Eq. (3.4.7), we can write Eq. (3.4.9) as
{r}=[11{r} (3.4.10)
Now, substituting Eq. (3.4.7) into Eq. (3.4.2), we obtain
{r} =T {d} (3.4.11)
and using Eq. (3.4.10) in Eq. (3.4.11) yields
(T*1{f} = [K'IT*{d} (3.4.12)

However, to write the final expression relating global nodal forces to global nodal displace-
ments for an element, we must invert [7"] in Eq. (3.4.12). This is not immediately possible
because [T*] is not a square matrix. Therefore, we must expand {d’}, { f ’}, and [k’] to the order
that is consistent with the use of global coordinates even though f{, and v5, are zero. Using
Eq. (3.3.9) for each nodal displacement, we thus obtain

ui cC S 0 0of|m
vi -S C 0 0||wn

- 3.4.13
uh 00 C S|lw ( )
Vb 0 0 =S Cl|wn
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3.4 Global Stiffness Matrix for Bar Arbitrarily Oriented in the Plane

or {d'} =[T1{d} (3.4.14)
where c s 0 0
=S C 0 O

T] = 3.4.15

7] 0O 0 C S§ ( )
0O 0 -8 C

Similarly, we can write

{rt=1m{r} (3.4.16)

because forces are like displacements—both are vectors. Also, [k’] must be expanded to a
4 X 4 matrix. Therefore, Eq. (3.4.1) in expanded form becomes

Jis 10 -1 0]|"
fiy| _AE| 0 0 0 0]V (3.4.17)
#, L{=10 10|y
00 00
Jay V3

In Eq. (3.4.17), because f{, and f3, are zero, rows of zeros corresponding to the row numbers
fiy and f3, appear in [k’]. Now, using Eqs. (3.4.14) and (3.4.16) in Eq. (3.4.2), we obtain

[THf} = KT} (3.4.18)

Equation (3.4.18) is Eq. (3.4.12) expanded. Premultiplying both sides of Eq. (3.4.18) by [T]"',
we have

{r} =T ' [K1[T){d} (3.4.19)
where [T]_1 is the inverse of [T]. However, it can be shown (see Problem 3.28) that
(71" = (1] (3.4.20)

where [T]T is the transpose of [T]. The property of square matrices such as [7T] given by
Eq. (3.4.20) defines [7] to be an orthogonal matrix. For more about orthogonal matrices,
see Appendix A. The transformation matrix [7] between rectangular coordinate frames is
orthogonal. This property of [7] is used throughout this text. Substituting Eq. (3.4.20) into
Eq. (3.4.19), we obtain

{f} = [TV KT {d} (3.4.21)
Equating Egs. (3.4.4) and (3.4.21), we obtain the global stiffness matrix for an element as
[k] = [T]" [K][T] (3.4.22)

Substituting Eq. (3.4.15) for [T] and the expanded form of [k’] given in Eq. (3.4.17) into
Eq. (3.4.22), we obtain [k] given in explicit form by
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3 | Development of Truss Equations

> ¢S —C* —CS
2 _ _ Q2

] = 48 §7 €8 =S (3.4.23)
L c cs

Symmetry 52

Equation (3.4.23) is the explicit stiffness matrix for a bar arbitrarily oriented in the x — y plane.

Now, because the trial displacement function Eq. (3.2.6) and Figure 3-5 was assumed
piece-wise-continuous element by element, the stiffness matrix for each element can be
summed by using the direct stiffness method to obtain

i[k@] = [K] (3.4.24)
e=1

where [K] is the total stiffness matrix and N is the total number of elements. Similarly, each
element global nodal force matrix can be summed such that

N
N (@) ={F} (3.4.25)

e=1

[K] now relates the global nodal forces {F'} to the global nodal displacements {d} for the
whole structure by

{F} = [K|{d} (3.4.26)

EXAMPLE 3.3

For the bar element shown in Figure 3—10, evaluate the global stiffness matrix with respect
to the x — y coordinate system. Let the bar’s cross-sectional area equal 6 X 10™* m?, length
equal 1.2 m, and modulus of elasticity equal 2 X 10'! Pa. The angle the bar makes with the
x axis is 30°.

30°

X

m Figure 3-10 Bar element for stiffness matrix evaluation

SOLUTION:

To evaluate the global stiffness matrix [£] for a bar, we use Eq. (3.4.23) with angle 6 defined
to be positive when measured counterclockwise from x to x'. Therefore,
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3.5 Computation of Stress for a Bar in the x— y Plane

0 = 30° C = cos30° = ? S = sin30° = %

33 3 3
4 4 4 4
1 -3 -1
X —4 X 11 - _
k= O X0 4 4 4 | N (3.427)
1.2 é ﬁ
4 4
Symmet; l
i y ry 4
Simplifying Eq. (3.4.27), we have
0.75 0433 —-0.75 —0.433
0.25 —-0433 —-0.25
[k] =108 N (3.4.28)

0.75 0433 | m
Symmetry 0.25

EXD computation of Stress for a Bar in the x — y Plane

‘We will now consider the determination of the stress in a bar element. For a bar, the local forces
are related to the local displacements by Eq. (3.4.1) or Eq. (3.4.17). This equation is repeated
here for convenience.

i =A—E{_1 _1} . (35.1)

F1% I

uy
The usual definition of axial tensile stress is axial force divided by cross-sectional area.
Therefore, axial stress is

_ S
o= 1=

- (3.5.2)

where f7, is used because it is the axial force that pulls on the bar as shown in Figure 3—11.
By Eq. (3.5.1),

AP [—1 1] v (3.5.3)

ffx:T ,

Therefore, combining Egs. (3.5.2) and (3.5.3) yields
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3 | Development of Truss Equations

1
fix

m Figure 3-11 Basic bar element with positive nodal forces

E
{o} = Z[—l 1]{d") (3.5.4)
Now, using Eq. (3.4.7), we obtain
E *
{o} = T [-1 1][7"|{d} (3.5.5)
Equation (3.5.5) can be expressed in simpler form as
{o} = [C'{a} (3.5.6)
where, when we use Eq. (3.4.8) for [T* ],
E cC § 0 0
1=—|-11 3.5.7
€1-700 106 8 &S 652

After multiplying the matrices in Eq. (3.5.7), we have

[C’]=%[—C -5 C ] (3.5.8)

EXAMPLE 3.4

For the bar shown in Figure 3—12, determine the axial stress. Let A = 4 X 107 m?,
E = 210GPa, and L = 2 m, and let the angle between x and x’ be 60°. Assume the global dis-
placements have been previously determined to be ; = 0.25 mm, v; = 0.0, 4, = 0.50 mm,
and v, = 0.75 mm.

SOLUTION:

We can use Eq. (3.5.6) to evaluate the axial stress. Therefore, we first calculate [C’] from
Eq. (3.5.8) as

(€]

_ 210 X 10° kN/m” [—_1 —~3 1 ﬁ} (3.5.9)

2m 2 2 2 2
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3.6 Solution of a Plane Truss

1 = X

W Figure 3-12 Bar element for stress evaluation

where we have used C = cos60° = % and § = sin60° = \/5/2 in Eq. (3.5.9). Now {d} is

given by
w 0.25 X103 m
R 0.0
)= w | 050 %103 m (3.5.10)
V2 0.75 X 103 m

Using Egs. (3.5.9) and (3.5.10) in Eq. (3.5.6), we obtain the bar axial stress as

0.25
210 X 10° {—_1 —3 1 \/3} 0.0

2 2 2 2 21]0s0
0.75

81.32 X 10° kN/m? = 81.32 MPa

X 1073

Ox

X solution of a Plane Truss

We will now illustrate the use of equations developed in Sections 3.4 and 3.5, along with the
direct stiffness method of assembling the total stiffness matrix and equations, to solve the fol-
lowing plane truss example problems. A plane truss is a structure composed of bar elements
that all lie in a common plane and are connected by frictionless pins. The plane truss also must
have loads acting only in the common plane and all loads must be applied at the nodes or joints.

EXAMPLE 3.5

For the plane truss composed of the three elements shown in Figure 3—13 subjected to a
downward force of 50 kN applied at node 1, determine the x and y displacements at node 1
and the stresses in each element. Let £ = 200 Gpa and A = 6 X 10~* m? for all elements.
The lengths of the elements are shown in the figure.
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3 | Development of Truss Equations

3m
50.000N'y i

m Figure 3-13 Plane truss

SOLUTION:

First, we determine the global stiffness matrices for each element by using Eq. (3.4.23).
This requires determination of the angle § between the global x axis and the local x” axis
for each element. In this example, the direction of the x” axis for each element is taken in
the direction from node 1 fo the other node as shown in Figure 3—13. The node numbering is
arbitrary for each element. However, once the direction is chosen, the angle 6 is then estab-
lished as positive when measured counterclockwise from positive x to x’. For element 1,
the local x{ axis is directed from node 1 to node 2; therefore, 0V = 90°. For element 2, the
local x5 axis is directed from node 1 to node 3 and 0® = 45°. For element 3, the local x4
axis is directed from node 1 to node 4 and 8 = 0°. It is convenient to construct Table 3—1
to aid in determining each element stiffness matrix.

There are a total of eight nodal components of displacement, or degrees of freedom,
for the truss before boundary constraints are imposed. Thus the order of the total stiff-
ness matrix must be 8§ X 8. We could then expand the [k] matrix for each element to
the order 8 X 8 by adding rows and columns of zeros as explained in the first part of
Section 2.4. Alternatively, we could label the rows and columns of each element stiffness
matrix according to the displacement components associated with it as explained in the
latter part of Section 2.4. Using this latter approach, we construct the total stiffness
matrix [K] simply by adding terms from the individual element stiffness matrices into
their corresponding locations in [K]. This approach will be used here and throughout
this text.

M Table 3-1 Data for the truss of Figure 3-13

Element 0° C S C? S2 CS
1 90° 0 1 0 1 0
A S
3 0° 1 0 1 0 0
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3.6 Solution of a Plane Truss

For element 1, using Eq. (3.4.23), along with Table 3—1 for the direction cosines, we
obtain

O 0 0 o0
(kD] = (2 X 10')(6 X 107) 0 0 —1 3.6.1)
3 0 0 0
0 -1 0 1
Similarly, for element 2, we have
U Vi u3 V3
05 05 —-05 —-05
(kO] = 2 X106 X10% | 05 05 —05 —05 (3.6.2)
3 X2 -05 —-05 05 05
-05 —-05 05 05
and for element 3, we have
U v ug V4
1 0 -1 0
)= @XI0NOE X101 0 0 0 0 (3.6.3)
3 -1 0 1 0
0O 0 0 O

The common factor of 2 X 10!! X 6 X 107#/3 (= 4 X 107) can be taken from each of
Egs. (3.6.1) through (3.6.3), where each term in the square bracket of Eq. (3.6.2) is now
multiplied by 1/ V2. After adding terms from the individual element stiffness matrices into
their corresponding locations in [K], we obtain the total stiffness matrix as

u V1 1753 1% usz V3 Uy V4
[ 1354 0354 0 0 —0354 —0354 —1 0]
0.354 1354 0 -1 —-035 -0354 0 O
0 0 0 0 0 0 0 O
_ (3.6.4)
[K] = (4 X 107) 0 1 0 1 0 0 0 0
—-0354 —-0354 0 O 0.354 0.354 0 0
—0354 —-0354 0 O 0.354 0.354 0 0
-1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0]
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3 | Development of Truss Equations

The global [K] matrix, Eq. (3.6.4), relates the global forces to the global displacements. We
thus write the total structure stiffness equations, accounting for the applied force at node 1
and the boundary constraints at nodes 2—4 as follows:

_5(()) 000 1354 0354 0 0 —0354 —0354 —1 0
’ 0354 1354 0 —1 —0354 —0354 0 0
Fax 0 0 0 0 0 0 00
Fay _axi10ny| O -1 0 1 0 0 00
F3, —0354 —0354 0 0 0354 0354 0 0
B, —0354 —0354 0 0 0354 0354 0 0
i, -1 0 0 0 0 0 1 0
F, 0 0 0 0 0 0 0 0]
y

up

Vi

u2=O
V2:0

X (3.6.5)

u3=0
V3:0
u4=0
V4:O

We could now use the partitioning scheme described in the first part of Section 2.5 to obtain
the equations used to determine unknown displacements u; and vi—that is, partition the
first two equations from the third through the eighth in Eq. (3.6.5). Alternatively, we could
eliminate rows and columns in the total stiffness matrix corresponding to zero displace-
ments as previously described in the latter part of Section 2.5. Here we will use the latter
approach; that is, we eliminate rows and column 3-8 in Eq. (3.6.5) because those rows
and columns correspond to zero displacements. (Remember, this direct approach must be
modified for nonhomogeneous boundary conditions as was indicated in Section 2.5.) We

then obtain
0 1.354 0.354 | |um
= (4 X 107 3.6.6
{—50,000} ( ){0.354 1.354}{\/1} ( )

Equation (3.6.6) can now be solved for the displacements by multiplying both sides of the
matrix equation by the inverse of the 2 X 2 stiffness matrix or by solving the two equations
simultaneously. Using either procedure for solution yields the displacements

u = 2.59075 X 10* m vi = —9.90925 X 107* m

The minus sign in the v; result indicates that the displacement component in the y direction
at node 1 is in the direction opposite that of the positive y direction based on the assumed
global coordinates, that is, a downward displacement occurs at node 1.
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3.6 Solution of a Plane Truss

Using Eq. (3.5.6) and Table 3—1, we determine the stresses in each element as follows:

u = 259075 X 104

2 x 10" =— -
o = 2210 0y g g T 7990925 X0 L _ 6 6 Mpa
3 Uy = 0
V) = 0

w = 259075 X 10~
Lo 2x 10! [—\/E -2 2 ﬁ} v = —9.90925 X 10~*
2 2

2 2

3\2 u; =0
v3 =0
= 24.4 MPa
W =2.59075 X 10~
o = 2X100 X;OH 1 0 1 04"~ ;9'90925 X107 _ 1757 Mpa
Uy =

V4=0

‘We now verify our results by examining force equilibrium at node 1; that is, summing forces
in the global x and y directions, we obtain

YFE =0 (244MPa)6 x 107 m2)% — (17.27 MPa)(6 X 10~ m2) = 0

ZFy =0 (66.06 MPa)(6 X 10™* m?) + (24.4 MPa)(6 X 107 mz)% — 50,000 =0

EXAMPLE 3.6

For the two-bar truss shown in Figure 3—14, determine the displacement in the y direction
of node 1 and the axial force in each element. A force of P = 1000 kN is applied at node 1
in the positive y direction while node 1 settles an amount 6 = 50 mm in the negative x
direction. Let E = 210 GPaand A = 6.00 X 10~* m? for each element. The lengths of the
elements are shown in the figure.

SOLUTION:
We begin by using Eq. (3.4.23) to determine each element stiffness matrix.

Element 1

cosf) = 0.60  sing) =

| W
I
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3 | Development of Truss Equations

7> @ _ v ! P = 1000 kN
x5 é 5 I 8 = 50 mm
IL 4m i
m Figure 3-14 Two-bar truss
0.36 048 —0.36 —0.48
6.0 X 107*m?)(210 X 10° kN/m? _ _
(k] = ( m?)( /m”) 064 —048 —064| 5o
5m 0.36 048
Symmetry 0.64
Simplifying Eq. (3.6.7), we obtain
u Vi u V2
0.36 048 —-0.36 —0.48
_ _ (3.6.8)
(k1] = (25,200) 0.64 —-048 —0.64
036 0.48
Symmetry 0.64
Element 2
cos 0 = 0.0 sin6? =1.0
0 0 0 O
—4 6 _
(k@] = (6.0 X 107%)(210 X 10°) 1 0 (3.6.9)
4 0 0
Symmetry 1
u V1 uz V3
0 0 O 0
125 0 —1.25 (3.6.10)
[k?] = (25,200) 0 0

Symmetry 1.25
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3.6 Solution of a Plane Truss

where, for computational simplicity, Eq. (3.6.10) is written with the same factor (25,200)
in front of the matrix as Eq. (3.6.8). Superimposing the element stiffness matrices,
Egs. (3.6.8) and (3.6.10), we obtain the global [K] matrix and relate the global forces to
global displacements by

Fiy (036 048 —036 —048 0 0 U
Fiy 1.89 —-048 —-064 0 —125|(Wn
By
21 = (25.200) 036 048 0 0 2 (3.6.11)
Fay 064 0 0 V2
F3x 0 0 us
By Symmetry 1.25 || vs

We can again partition equations with known displacements and then simultaneously solve
those associated with unknown displacements. To do this partitioning, we consider the
boundary conditions given by

u = 1) U — 0 Vo = 0 us = 0 V3 = 0 (3612)

Therefore, using Eqgs. (3.6.12), we partition equation 2 from equations 1, 3, 4, 5, and 6 of
Eq. (3.6.11) and are left with

P =125,200(0.486 + 1.89v;) (3.6.13)

where Fj, = P and u; = 6 were substituted into Eq. (3.6.13). Expressing Eq. (3.6.13)
in terms of P and & allows these two influences on v; to be clearly separated. Solving
Eq. (3.6.13) for v;, we have

v = 0.000021P — 0.2540 (3.6.14)

Now, substituting the numerical values P = 1000 kN and 6 = —0.05 m into Eq. (3.6.14),
we obtain

vi = 0.0337 m (3.6.15)

where the positive value indicates horizontal displacement to the left.
The local element forces are obtained by using Eq. (3.4.11). We then have the following.

Element 1
uy = —0.05
fx 1 —1//060 0.80 0 0 v = 0.0337
— 25’200 : ' 3.6.16
, ( ) -1 1|0 0 0.60 0.80||ux =0 ( )
f2x
Vo = 0
Performing the matrix triple product in Eq. (3.6.16) yields
flx = —76.6 kN f3y = 76.6 kN (3.6.17)
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3 | Development of Truss Equations

Element 2
u = —0.05
v — v = 0.0337
A I F I e ST
v3 =0
Performing the matrix triple product in Eq. (3.6.18), we obtain
fix =1061 kN f5, = —1061 kN (3.6.19)

Verification of the computations by checking that equilibrium is satisfied at node 1 is left
to your discretion.

EXAMPLE 3.7

To illustrate how we can combine spring and bar elements in one structure, we now solve
the two-bar truss supported by a spring shown in Figure 3—15. Both bars have £ = 210 GPa
and A = 5.0 X 10™* m?. Bar one has a length of 5 m and bar two a length of 10 m. The
spring stiffness is k = 2000 kN/m.

2 25kN

5m @,
X

1
3 ® 45
n 1 X
10m X2 Yo

® < k=2000kN/m

4

W Figure 3-15 Two-bar truss with spring support

SOLUTION:

We begin by using Eq. (3.4.23) to determine each element stiffness matrix.
Element 1
00 =135°,  cosdM = —2/2,  sind® = 2/2
05 —-05 —-05 05
0] = GOX107 m)210 X10°kN/mY) ~0.5 0.5 05 05| (3620,

S5m -05 05 05 —05
05 —-05 —-05 05
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3.6 Solution of a Plane Truss

Simplifying Eq. (3.6.20), we obtain

u vi Uy V2

I -1 -1 1

[k1] =105 X 102 -1 1 1 -1 (3.6.21)
- 11 -1
I -1 -1 1

Element 2

0 = 180°, cosf@ = —1.0, sinf® =0

10 -10
(k@] = (5 X104 m?)(210 X 10°kN/m*) | 0 0 0 0 (3.622)
10m -10 10 "
00 00
Simplifying Eq. (3.6.22), we obtain
u Vi uz vs
10 -10
00 00 (3.6.23)
k] =105 x 10
e -10 10
0 00

Element 3

0 = 270°, cosf® =0, sind® = —1.0

Using Eq. (3.4.23) but replacing AE/L with the spring constant k, we obtain the stiffness
matrix of the spring as

0 00 O
0 1 0 —1 (3.6.24)
k®] =20 x 10?
L 0 00 O
0 -1 0 1
Applying the boundary conditions, we have
Uy =Vy) = U3 = V3 = Uy = Vy4 = 0 (3625)

Using the boundary conditions in Eq. (3.6.25), the reduced assembled global equations are

given by:
Fy =0 210 —105 ||
=10? 3.6.26
{Fly =-25 kN} {—105 125 | | v ( )
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3 | Development of Truss Equations

Solving Eq. (3.6.26) for the global displacements, we obtain

u =—1.724 X103 m v = —3.448 X 103 m (3.6.27)

We can obtain the stresses in the bar elements by using Eq. (3.5.6) as

—1.724 X 1073
210 X 10° MN/m? - -3
o = ™ 10707 ~0.707 ~0.707 0.707]] 3448 X 10
S5m 0
0
Simplifying, we obtain
o =51.2 MPa (T)
Similarly, we obtain the stress in element two as
—1.724 X 1073
210 X 103 MN/m? - -3
@ = /m [0 0 —10 ] 3448 x10
10 m 0

0
Simplifying, we obtain

o® = —36.2 MPa (C)

Transformation Matrix and Stiffness Matrix for a Bar
in Three-Dimensional Space

We will now derive the transformation matrix necessary to obtain the general stiffness matrix of
a bar element arbitrarily oriented in three-dimensional space as shown in Figure 3—16. Let the
coordinates of node 1 be taken as x;, y;, and z;, and let those of node 2 be taken as x», y,, and z5.
Also, let 0,, 0y, and 0, be the angles measured from the global x, y, and z axes, respectively, to
the local x” axis. Here x” is directed along the element from node 1 to node 2. We must now
determine [T* ] such that{d’'} = [T* ]{d }+. We begin the derivation of [T* ] by considering the
vector d’ = d expressed in three dimensions as

u/i/ 4 v/j/ + W/k, — ui + Vj + Wk (371)

where i, j/, and k” are unit vectors associated with the local x’, y’, and 7’ axes, respectively,
and i, j, and k are unit vectors associated with the global x, y, and z axes. Also w and w’ now
denote the displacements in the z and z” directions, respectively. Taking the dot product of
Eq. (3.7.1) with i’, we have

w+0+0=ud-i+vi-j +wi- k) (3.7.2)
and, by definition of the dot product,
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3.7 Transformation Matrix and Stiffness Matrix for a Bar in Three-Dimensional Space

y, v

vid

Fix

L, w A
Z,w

m Figure 3-16 Bar in three-dimensional space along with local nodal displacements

=== C,
ij=2"-¢ (3.7.3)
L
Vo= 22-a _c.
L
where
L=[(x —x1)* + (2 —y)? + (22 — 21)*]"?
and

C, = cosb, C, = cost, C, = cosb, (3.7.4)

Here C,, C, and C; are the projections of i’ on i, j, and k, respectively. Therefore, using
Egs. (3.7.3) in Eq. (3.7.2), we have

w =Cwu+Cy+Cw (3.7.5)

For a vector in space directed along the x” axis, Eq. (3.7.5) gives the components of that vector
in the global x, y, and z directions. Now, using Eq. (3.7.5), we can write the local axial displace-
ment at node 1 and 2 in explicit form as

uy
Vi
uf C. C, C. 0 0 0 ||w
= (3.7.6)
uh 0 0 0 C, Cy Cz up
V2
w2
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3 | Development of Truss Equations

Now

u

Vi
; uf w i c. C, ¢, 0 0 O

la} = ulz Jd} = uzl cand define [7°] = | * % " e ¢ c| 6717

V2

w2

Using Eq. (3.7.7), we write Eq. (3.7.6) in matrix form as
{a'} = [17]{a} (a)

Here [T*] is the transformation matrix, which enables the local displacement matrix {d’} to be
expressed in terms of the displacement matrix {d} components in the global coordinate system.

Based on Eq. (a), it will be convenient to express the global force matrix in terms of the
local force matrix using [T*] as

iy =111 (b)
Now in local coordinates, the local forces are related to the local displacements by
{#} =[KHa} ©
Upon substituting for {d’} from Eq. (a) into Eq. (c) and premultiplying both sides by {T* }T,
we have
(1" {f'} = [T* /"K' NT*1{d} CY
Now using Eq. (b) in the left side of Eq. (c), we obtain
{f} = 1rwir-d} @

The global forces are related to the global displacements by

{r} = [kl{d} ()

Comparing the right sides of Egs. (e) and (f), we then observe that the global stiffness matrix
for a bar arbitrarily oriented in space is

(k] = [T*]"[k1[T*] (2
Using Eq. (3.7.7) for [T*] and Eq. (3.4.2) in Eq. (3.4.1) for [k’] we obtain [k] as follows:

c, 0
c, 0
=< 0 A_E[ ! *HCX € 6 0 00 (3.7.8)
0 ¢|Z|-1 1/lo 0 0 ¢ ¢ c
e
0 C.
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3.7 Transformation Matrix and Stiffness Matrix for a Bar in Three-Dimensional Space

Simplifying Eq. (3.7.8), we obtain the explicit form of [k] as

C2 CC, CC. —C! —CC, —C.C:
C? CC. —CC, -C} —C,C.

c: -c.c. —-C.C —C?
k] = AE : S : (3.7.9)
L C? Cc.C, C.C,
2 G0
Symmetry C?

Equation (3.7.9) is the basic form of the stiffness matrix for a bar element arbitrarily
oriented in three-dimensional space. We will now analyze a simple space truss to illustrate the
concepts developed in this section. We will show that the direct stiffness method provides a
simple procedure for solving space truss problems.

EXAMPLE 3.8

Analyze the space truss shown in Figure 3—17. The truss is composed of four nodes, whose
coordinates (in millimeters) are shown in the figure, and three elements, whose cross-
sectional areas are given in the figure. The modulus of elasticity £ = 8 GPa for all elements.
A load of 5000 N is applied at node 1 in the negative z direction. Nodes 2—4 are supported
by ball-and-socket joints and thus constrained from movement in the x, y, and z directions.
Node 1 is constrained from movement in the y direction by the roller shown in Figure 3—17.

(0, 900, 1800)

A = 200 mm?
A® = 500 mm?
A® = 125 mm?

(0, 900, 0)

| Figure 3-17 Space truss

Roller preventing
5 / y displacement

(1800, 0, 0)

/

0,0, 1200
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3 | Development of Truss Equations

SOLUTION:

Using Eq. (3.7.9), we will now determine the stiffness matrices of the three elements in
Figure 3—17. To simplify the numerical calculations, we first express [k] for each element,
given by Eq. (3.7.9), in the form

_:___;_f[_)tl_} (3.7.10)

where [A]is a3 X 3 submatrix defined by

C? C.C, CC,
Al =]cc ¢ oc. (3.7.11)
c.C. C.C, C(?

Therefore, determining [A] will sufficiently describe [k].

Element 3
The direction cosines of element 3 are given, in general, by

X4 — X1
13

c, =2 =24 (3.7.12)

G = 78 78

where the notation x;, y;, and z; is used to denote the coordinates of each node, and L(©
denotes the element length. From the coordinate information given in Figure 3—17, we
obtain the length and the direction cosines as

3 =[(—1.8m)2 + (-12m)?]"> = 2.16 m

— _ (3.7.13)
C, = 18 —0.833 C,=0 C. = 12 —0.550
2.16 2.16
Using the results of Egs. (3.7.13) in Eq. (3.7.11) yields
0.69 0 046
AJ=]0 0 0 (3.7.14)
046 0 0.30

and, from Eq. (3.7.10),

UIVIW] ULV W4

(12.5 X 1079)(8 X 10?) l [A]} —A] } (3.7.15)

= Ue2 20U 8 A V) AL LA
L&) 2.16
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3.7 Transformation Matrix and Stiffness Matrix for a Bar in Three-Dimensional Space

Element 1

Similarly, for element 1, we obtain

LD =20lm
C,=-08 C,=045 C,=0
0.79 —0.40 0
[A] =]-040 020 0
0 0 0
and
upviwy Up Vo Wy
[0] = (200 X 108 X 10°) my (3.7.16)
2.01 —Al [A]
Element 2
Finally, for element 2, we obtain
[P =27m
C,=-0667 C,=033 C,=0.667
045 —022 —045
[A] =|-022 o011 022
—045 022 045
and
UVIwy U3 V3w3
(ko] = (00 x 109@® X 109 A (3.7.17)
2.7 —IAl [A]

Using the zero-displacement boundary conditions v =0, up =v, =wy =0, u3 =
vy = w3z = 0,anduy =vq4 = wy = 0, we can cancel the corresponding rows and columns of
each element stiffness matrix. After canceling appropriate rows and columns in Egs. (3.7.15)
through (3.7.17) and then superimposing the resulting element stiffness matrices, we have
the total stiffness matrix for the truss as

u wp

— (3.7.18)
K] = 10° x 1615 —453
—453 805
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3 | Development of Truss Equations

The global stiffness equations are then expressed by

0 1615 453w
= 10° 37.19
{—5000} 8 {—453 sousl} G719

Solving Eq. (3.7.19) for the displacements, we obtain

w =-2.07 x 107 m = —2.07mm

(3.7.20)
w = —738 x 10 m = —7.383 mm

where the minus signs in the displacements indicate these displacements to be in the
negative x and z directions.

We will now determine the stress in each element. The stresses are determined by using
Eq. (3.5.6) expanded to three dimensions. Thus, for an element with first node i and second
node j, Eq. (3.5.6) expanded to three dimensions becomes

{o} =%[—cx —C, —C. C. C, CJ3 (3.7.21)

Derive Eq. (3.7.21) in a manner similar to that used to derive Eq. (3.5.6) (see Problem 3.44,
for instance). For element 3, using Eqs. (3.7.13) for the direction cosines, along with the
proper length and modulus of elasticity, we obtain the stress as

~0.00207
0
8 X 10° —
o®) =22 1083 0 055 —083 0 —055){ “OBL 3799
216 0
0

0

Simplifying Eq. (3.7.22), we find that the result is
o = —21.4 Mpa

where the negative sign in the answer indicates a compressive stress. The stresses in the
other elements can be determined in a manner similar to that used for element 3.

For brevity’s sake, we will not show the calculations but will merely list these stresses:

oM =—-71Mpa o® =10.8 Mpa
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3.7 Transformation Matrix and Stiffness Matrix for a Bar in Three-Dimensional Space

EXAMPLE 3.9

Analyze the space truss shown in Figure 3—18. The truss is composed of four nodes, whose
coordinates (in meters) are shown in the figure, and three elements, whose cross-sectional
areas are all 10 X 10~* m2. The modulus of elasticity £ = 210 GPa for all the elements.
A load of 20 kN is applied at node 1 in the global x-direction. Nodes 2—4 are pin supported
and thus constrained from movement in the x, y, and z directions.

(0,0,0)

(14,6,0)

(12,-3,-7)

W Figure 3-18 Space truss

SOLUTION:

First calculate the element lengths using the distance formula and coordinates given in
Figure 3—18 as

LD = [(0 = 12)2 + (0 = (=3)% + (0 = (~4)?]"2 = 13m
LD =[(12 = 12)? + (=3 + 3)2] + (-7 + H?]"2 = 3m
L3 =[14 —12)2 + (6 + 3)2 + (0 + 4)2]¥2 = 10.05m

For convenience, set up a table of direction cosines, where the local x” axis is taken from
node 1 to 2, from 1 to 3 and from 1 to 4 for elements 1, 2, and 3, respectively.

Element Number C: = C, = 25> C, =
—12/13 3/13 4/13
2 0 0 -1
2/10.05 9/10.05 4/10.05

Now set up a table of products of direction cosines as indicated by the definition of [A]
defined by Eq. (3.7.11) as
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3 | Development of Truss Equations

Element Number C? C.Cy C.C, C? C,C, C?
1 0.852 -0.213 -0.284 0.053 -0.071 0.095
2 0 0 0 0 0 1
3 0.040 0.178 0.079 0.802 0.356 0.158

Using Eq. (3.7.11), we express [A] for each element as

0.852 —0.213 —0.284 0 00 0.040 0.178 0.079
[AD]=]-0.213 0.053 0.071| [A@]=[0 0 0| [A®]=]0.128 0.802 0.356
—0.284  0.071  0.095 0 0 1 0.079 0.356 0.158
(3.7.23)
The boundary conditions are given by
uzsz=W2=0, u3=V3=W3=0, u4=V4=W4=0 (3.7.24)

Using the stiffness matrix expressed in terms of [A] in the form of Eq. (3.7.10), we obtain
each stiffness matrix as

“IAO] [A0]

-1 O]

k1= 25
1] 3 10.05 !

AE[_ ww]!—m(”]_] KO = A_E{_ [A@)]!—[M]_} o = AE { [A@]E—[M]_]
13

(3.7.25)

Applying the boundary conditions and canceling appropriate rows and columns associated
with each zero displacement boundary condition in Egs. (3.7.25) and then superimposing
the resulting element stiffness matrices, we have the total stiffness matrix for the truss as

69.519 1.327 —13.985

[K] =210 1.327 83.879  40.885 | kN/m (3.7.26)
—13.985 40.885 356.363

The global stiffness equations are then expressed by

20 kN 69.519 1327 —13.985 ]|
0 =210 1.327 83.879  40.885|{ v, (3.7.27)
0 —13.985 40.885 356.363 || w

Solving for the displacements, we obtain

u =1383 X103 m
y = 5119 X 105 m (3.7.28)
w; = 6.015 X 10> m
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3.8 Use of Symmetry in Structures

We now determine the element stresses using Eq. (3.7.21) as

1.383 X 1073
—5.119 X 107
o = %2106[12/13 —3/13 —4/13 —12/13 3/13 4/13] 6-0150>< 1072
0
0
(3.7.29)
Simplifying Eq. (3.7.29), we obtain upon converting to MPa units
oM =20.51 MPa (3.7.30)
The stress in the other elements can be found in a similar manner as
o® =421 MPa o® = —529 MPa (3.7.31)

The negative sign in Eq. (3.7.31) indicates a compressive stress in element 3.

EXD  Use of Symmetry in Structures

Different types of symmetry may exist in a structure. These include reflective or mirror, skew,
axial, and cyclic. Here we introduce the most common type of symmetry, reflective symme-
try. Axial symmetry occurs when a solid of revolution is generated by rotating a plane shape
about an axis in the plane. These axisymmetric bodies are common, and hence their analysis
is considered in Chapter 9.

In many instances, we can use reflective symmetry to facilitate the solution of a problem.
Reflective symmetry means correspondence in size, shape, and position of loads; material
properties; and boundary conditions that are on opposite sides of a dividing line or plane.
The use of symmetry allows us to consider a reduced problem instead of the actual problem.
Thus, the order of the total stiffness matrix and total set of stiffness equations can be reduced.
Longhand solution time is then reduced, and computer solution time for large-scale problems is
substantially decreased. Example 3.10 will be used to illustrate reflective symmetry. Additional
examples of the use of symmetry are presented in Chapter 4 for beams and in Chapter 7 for
plane problems.

EXAMPLE 3.10

Solve the plane truss problem shown in Figure 3—19. The truss is composed of eight elements
and five nodes as shown. A vertical load of 2P is applied at node 4. Nodes 1 and 5 are pin
supports. Bar elements 1, 2, 7, and 8 have axial stiffnesses of \/EAE, and bars 3-6 have
axial stiffness of AE. Here again, A and E represent the cross-sectional area and modulus
of elasticity of a bar.
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3 | Development of Truss Equations

In this problem, we will use a plane of symmetry. The vertical plane perpendicular to
the plane truss passing through nodes 2, 4, and 3 is the plane of reflective symmetry because
identical geometry, material, loading, and boundary conditions occur at the corresponding
locations on opposite sides of this plane. For loads such as 2P, occurring in the plane of
symmetry, half of the total load must be applied to the reduced structure. For elements
occurring in the plane of symmetry, half of the cross-sectional area must be used in the
reduced structure. Furthermore, for nodes in the plane of symmetry, the displacement com-
ponents normal to the plane of symmetry must be set to zero in the reduced structure; that
is, we setu, = 0,u3 = 0, and uy = 0. Figure 3-20 shows the reduced structure to be used
to analyze the plane truss of Figure 3—19.

N D —
_T, 2
] O/ @ \O
2P
Oy ® O\, .
m Figure 3-19 Plane truss W Figure 3-20 Truss of Figure
3-19 reduced by symmetry
SOLUTION:

We begin the solution of the problem by determining the angles 6 for each bar element.
For instance, for element 1, assuming x” to be directed from node 1 to node 2, we obtain
01 = 45° as measured from the global x to the local x” axis. Table 3-2 is used in deter-
mining each element stiffness matrix based on the x” axes shown in Figure 3-20 for each
element.

There are a total of eight nodal components of displacement for the truss before bound-
ary constraints are imposed. Therefore, [K] must be of order 8 X 8. For element 1, using
Eq. (3.4.23) along with Table 3-2 for the direction cosines, we obtain

Table 3-2 Data for the truss of Figure 3-20

Element 0° C S C? S2 CS
1 45° NeT V22 12 12 12
2 315° NeT ) 12 12 112
3 0° 0 0 0
4 90° 0 1 0 1 0
5 90° 1 1 0
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3.8 Use of Symmetry in Structures

11 11
2 2 2 2
i1 1 1
oy Y24E |22 2 2 (3.8.1)
NCT7 I N L B |
2 2 2 2
L
2 2 2 2]
Similarly, for elements 2-5, we obtain
u Vi u3 V3
111
2 2 2 2
R T
ko= Y24E | 2 2 2 2 (3.8.2)
vep |11 11
2 2 2 2
1 1 1
2 2 2 2]
uy Vi Ug V4
1 0 -1 0
@y =AE | 0.0 00 (3.8.3)
L -1 0 1 0
00 00
Uuq V4 U V2
0 00 0]
1 1
0 - 0 —=
(k) = AE 2 2 (3.8.4)
L 0 00 0
o Lo 1
2 2
us V3 Uy V4
0 00 o]
1 1
0 - 0 —=
k5] = AE 2 2 (3.8.5)
L 0 00 0
o L, 1
2 2|
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3 | Development of Truss Equations

where, in Egs. (3.8.1) through (3.8.5), the column labels indicate the degrees of freedom
associated with each element. Also, because elements 4 and 5 lie in the plane of symmetry,
half of their original areas have been used in Eqs. (3.8.4) and (3.8.5).

We will limit the solution to determining the displacement components. Therefore,
considering the boundary constraints that result in zero-displacement components, we can
immediately obtain the reduced set of equations by eliminating rows and columns in each
element stiffness matrix corresponding to a zero-displacement component. That is, because
u; = 0 and v; = 0 (owing to the pin support at node 1 in Figure 3-20) and u, = 0,u3 = 0,
and us = 0 (owing to the symmetry condition), we can cancel rows and columns corre-
sponding to these displacement components in each element stiffness matrix before assem-
bling the total stiffness matrix. The resulting set of stiffness equations is

0 —%
V2 0
AE 1
— 0 1 —— Ky = 0 (3.8.6)
L 2 _p
R "
| - 2 2 .

On solving Eq. (3.8.6) for the displacements, we obtain

_ —PL

—2PL
vy = = —

—PL
V3 = —— V4 =

= (3.8.7)
AE AE AE

The ideas presented regarding the use of symmetry should be used sparingly and cautiously
in problems of vibration and buckling. For instance, a structure such as a simply supported
beam has symmetry about its center but has antisymmetric vibration modes as well as sym-
metric vibration modes. This will be shown in Chapter 16. If only half the beam were modeled
using reflective symmetry conditions, the support conditions would permit only the symmetric
vibration modes.

XD Inclined, or Skewed, Supports

In the preceding sections, the supports were oriented such that the resulting boundary condi-
tions on the displacements were in the global directions, x and y.

However, if a support is inclined, or skewed, at an angle o from the global x axis, as shown
at node 3 in the plane truss of Figure 3-21, the resulting boundary conditions on the displace-
ments are not in the global x — y directions but are in the local x” — y” directions. We will now
describe two methods used to handle inclined supports.

In the first method, to account for inclined boundary conditions, we must perform a trans-
formation of the global displacements at node 3 only into the local nodal coordinate system
x” —y’, while keeping all other displacements in the x — y global system. We can then enforce
the zero-displacement boundary condition v3 in the force/displacement equations and, finally,
solve the equations in the usual manner.
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3.9 Inclined, or Skewed, Supports

- X

M Figure 3-21 Plane truss with inclined boundary conditions at node 3

The transformation used is analogous to that for transforming a vector from local to global
coordinates. For the plane truss, we use Eq. (3.3.16) applied to node 3 as follows:

us| _ [ cosa sina||us (3.9.1)
Vi —sina cosa | |v3 o

Rewriting Eq. (3.9.1), we have

{as} = [14ds} (3.9.2)

where
[t3] _ [ cosar sma} (3.9.3)
—sina  cosa

We now write the transformation for the entire nodal displacement vector as

{d'} = [T ]{d} (3.9.4)
or

{d} = [1]"{a"} (3.9.5)

where the transformation matrix for the entire truss is the 6 X 6 matrix

[ [o] [o]
=0 0 O 396
o] [0] [s]
Each submatrix in Eq. (3.9.6) (the identity matrix [/], the null matrix [0], and matrix [#;] has

the same 2 X 2 order, that order in general being equal to the number of degrees of freedom
at each node.
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3 | Development of Truss Equations

To obtain the desired displacement vector with global displacement components at nodes
1 and 2 and local displacement components at node 3, we use Eq. (3.9.5) to obtain

w0 E 0|
1:2 =[] [ [o] uz (3.9.7)
ol |0 [,

In Eq. (3.9.7), we observe that only the node 3 global components are transformed, as indicated
by the placement of the [#; ]T matrix. We denote the square matrix in Eq. (3.9.7) by [Tl]T In
general, we place a 2 X 2 [¢] matrix in [77] wherever the transformation from global to local
displacements is needed (where skewed supports exist).

Upon considering Egs. (3.9.5) and (3.9.6), we observe that only node 3 components of
{d} are really transformed to local (skewed) axes components. This transformation is indeed
necessary whenever the local axes x” — y’ fixity directions are known.

Furthermore, the global force vector can also be transformed by using the same transfor-
mation as for {d'}:

{r}=[nl{r} (3.9.8)
In global coordinates, we then have
{r} = [KHd} (3.9.9)
Premultiplying Eq. (3.9.9) by [T} ], we have

(n{s} = [n]IK{d} (3.9.10)

For the truss in Figure 3-21, the left side of Eq. (3.9.10) is

ﬁx ﬁx

fr| [
1 o1 o1 b
[0] [1] [0] bl = 1P (3.9.11)
(0] [0] [z] i 7

Jay Ay

where the fact that local forces transform similarly to Eq. (3.9.2) as

{£} = 1A} (3.9.12)

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



3.9 Inclined, or Skewed, Supports

has been used in Eq. (3.9.11). From Eq. (3.9.11), we see that only the node 3 components
of { £} have been transformed to the local axes components, as desired. Using Eq. (3.9.5) in
Eqg. (3.9.10), we have

(M{f} = [RIKIK] {d’} (3.9.13)
Using Eq. (3.9.11), we find that the form of Eq. (3.9.13) becomes

le ul
Fy v
Fyy - up
By, (= [RIKIAT 4, (3.9.14)
F3, u5
F,’)/y V3

asu; = ui,v; = v{,uy = uj, and v, = v5 from Eq. (3.9.7). Equation (3.9.14) is the desired form
that allows all known global and inclined boundary conditions to be enforced. The global forces
now result in the left side of Eq. (3.9.14). To solve Eq. (3.9.14), first perform the matrix triple prod-
uct [73 ][K][7;]". Then invoke the following boundary conditions (for the truss in Figure 3-21):

u =0 vi =0 vi =0 (3.9.15)

Then substitute the known value of the applied force F>, along with F>, = 0 and F%, = 0 into
Eq. (3.9.14). Finally, partition the equations with known displacements— here equations 1, 2,
and 6 of Eq. (3.9.14)—and then simultaneously solve those associated with the unknown
displacements uy, v, and u3.

After solving for the displacements, return to Eq. (3.9.14) to obtain the global reactions
Fi and Fi, and the inclined roller reaction F3.

EXAMPLE 3.11

For the plane truss shown in Figure 3-22, determine the displacements and reactions. Let
E =210 GPa, A = 6.00 X 10~% m? for elements 1 and 2, and A = 63/2 X 10~* m?2 for
element 3.

W Figure 3-22 Plane truss with inclined support
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3 | Development of Truss Equations

SOLUTION:

We will solve this problem by two methods: (1) using the Eq. (3.9.14) outlined in this
section to transform the node 3 boundary condition to its actual local y” direction, thus
making v4 = 0 and (2) by using the displacements in the global reference frame without
transforming to the local frame for node 3 components. Both methods begin by obtaining
the element stiffness matrices and then assembling the global stiffness matrix by the direct
stiffness method.

We begin by using Eq. (3.4.23) to determine each element stiffness matrix.

Element 1
6D =90°,  cos# =0  sinf =1
u Vi up
0 0 0 0
(k)] = (6.0 X 1074 m?)(210 X 10° N/m?) 10 -1 (3.9.16)
Im 0 0
Symmetry 1
Element 2
0 =0°,  cosf =1 sinf = 0
U V2 us 3
1 -1 0
(k) = 60 107* m2)(210 % 10° N/m?) 0 0 0
Im 1 0
Symmetry 0
Element 3
2 2
0B = 45°, cosh = % sinf = £
uj Vi us V3
05 05 —-0.5 —05
(kO] = (632 X 1074 m?)(210 X 10° N/m?) 05 —05 —05 (3.9.18)
V2 m 0.5 0.5
Symmetry 0.5
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3.9 Inclined, or Skewed, Supports

Using the direct stiffness method on Eqs. (3.9.16) through (3.9.18), we obtain the global

[K] matrix as

[ 05 05 0 0 —05 —05 |
15 0 -1 —05 —05
[K]= 1260 X 10° N/m o =1 0 (3.9.19)
1 0 0
15 05
Symmetry 0.5

Next, using the first method, we obtain the transformation matrix [7}] using Eq. (3.9.6) to
transform the global displacements at node 3 into local nodal coordinates X" — y”. In using

Eq. (3.9.6), the angle a is 45°.

1 0 00 0 0
01 00 0 0
001 0 0 0
(1= 0 o0 o 1 0 0 (3.9.20)
00 0 0 ~2/2 2/2
00 0 0 —~2/2 2/2

Next we use Eq. (3.9.14) (in general, we would use Eq. (3.9.13)) to express the assembled
equations. First define [K]* = [T ][K][T;]" and evaluate in steps as follows:

05 0.5 0 0 -05 -05 |
0.5 15 0 -1 -05 -05
0 0 1 0 -1 0
[T1[K] = 1260 X 10 (3.9.21)
0 -1 0 10 0
—0.707 —0.707 —0.707 0 1414 0.707
0 0 0707 0 —0707 0
and
u; %1 us %) ué Vé
05 0.5 0 0 —-0707 0 |
05 15 0 ~1 -0707 0
T T 12605 10° N/ 0 1 0 —0707 0707 | 3922
[TKIT ) = mo . Lo .
0707 —0.707 —0.707 0 1500 —0.500
0 0707 0 —0500 0.500
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3 | Development of Truss Equations

Notice in comparing [K*] in Eq. (3.9.22) to [K] from Eq. (3.9.19) that only the stiffness
terms associated with skewed node 3 degrees of freedom have changed as expected.
Applying the boundary conditions, u; = v; = v, =v3 = 0 to Eq. (3.9.22), we obtain

} = (126 X 103 kN/m) ! —0.707 H u2 } (3.9.23)

Py, = 1000 kN
—0.707  1.50 "

F, =0
Solving Eq. (3.9.23) for the displacements yields

w; =11.91 X103 m
(3.9.24)
uy =5.613 X103 m

Postmultiplying the known displacement vector times Eq. (3.9.22) (see Eq. (3.9.14), we
obtain the reactions as

F, = —500 kN

F, = —500 kN

By =0 (3.9.25)
Ff, = 707kN

The free-body diagram of the truss with the reactions is shown in Figure 3-23. You can
easily verify that the truss is in equilibrium.

Now using the second method, we initially express the global equations without transform-
ing to the local node 3 components as follows:
Using the global stiffness matrix, Eq. (3.9.19), the global matrix equation is written as

05 05 0 0 —-05 —-05 i Fix
1.5 0 -1 =05 -05 v Hy
I 0 —1 0 u F
5 2L 2 ) 3.9.26
1260 X 10 1 o 0 vy B, ( )
15 05 ||lus By
Symmetry 0.5 |3 F3y

Now applying the boundary conditions, we have
u =v; =vy, =0andvj =0 (3.9.27)

We also use the applied forces as F>, = 1000 kN and F3, = 0.
From the transformation relation, Eq. (3.3.16) for the v4 displacement at node 3, we have

vy = {—QQ}{ “ } = Q(—m +v3)=0 or uy — vy =0 (3.9.28)
2 2 v3 2
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3.9 Inclined, or Skewed, Supports

Equation (3.9.28) is sometimes called a multipoint constraint. We can also write Eq (3.9.28) as
w3 = s (3.9.29)

Similarly, as forces transform just like displacements (both being vectors), from the transfor-
mation relation for the force at node 3 (See Eq. (3.3.16) but replace u” with F3,), we obtain

, V2 2| B V2
Fi, = {7 S0 A = 7(F3x +Fy)=0 or F, +F,=0 (3930

Applying the boundary conditions into the global Eq. (3.9.26) and eliminating the first,
second, and fourth rows and columns in the usual manner, we obtain the reduced set of
equations as

1 -1 0]|w 1000
1260 X 105| =1 1.5 05| us s = { F, (3.9.31)
0 05 05| Fi,

Now using the Eq. (3.9.29) and the force relation at node 3, Eq. (3.9.30), Eq. (3.9.31)

becomes
1 -1 0 ||u 1000
1260 X 105| —1 1.5 05|3uzp =< Fiy (3.9.32)
0 05 05||us —F;,

Equation (3.9.32) can be simplified to

-1y, 1000
1260 X 105| =1 2 { 2} =B, (3.9.33)
0 1 “ _F3x

The third equation of Eq. (3.9.33) yields
Fy = —1260 X 10° u3 (3.9.34)

Using the first and second equations of Eq. (3.9.33) and substituting in Eq. (3.9.34) for F3,,

we obtain
1 -1 u 1000
1260 X 103 = (3.9.35)

Solving Eq. (3.9.35) for u; and u3

u = 1191 X107 *m and w3 =3.97 X103 m (3.9.36)
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3 | Development of Truss Equations

From Eq. (3.9.29), we have
vy =u3 =3.97 X103 m (3.9.37)

From the transformation equation, Eq. (3.3.16), we obtain the local displacement, u5 in the
x” direction along the slope as

w5 = uz cos45° + v3sin45°
(3.9.38)
=3.97 X 1073 cos45° + 3.97 X 1073sin45° = 5.614 X 103 m

This is the same magnitude of local displacement u5 as found directly by method 1 [See
Eq. (3.9.24)].
From the global equation, Eq. (3.9.26), we calculate the reaction forces as

Fix 0 —05 —05 —500

Fiy 0 —05 —05||uw —500

By b =1260 X105 0 0 0 [Hust =100 LkN) (3.9.39)
P, -1 15 05 ||n —500

F 0 05 05 500

3y

Again using the transformation equation, Eq. (3.3.16), where we substitute 3, for v/, we
obtain the local F3, force as

F{y = —F, sin45° + Fy, cos45° = 707 kN (3.9.40)
2 3
1000 kN !
707 kN
1 500 kN
Y 500 kN

B Figure 3-23 Free-body diagram of the truss of Figure 3-22

This force is the same magnitude of local force F3, as found directly by method 1
[See Eq. (3.9.25)].

In yet another method used to handle skewed boundary conditions, we use a boundary
element of large stiffness to constrain the desired displacement. This is the method used in
some computer programs [9].
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3.10 Potential Energy Approach to Derive Bar Element Equations

Boundary elements are used to specify nonzero displacements and rotations to nodes.
They are also used to evaluate reactions at rigid and flexible supports. Boundary elements
are two-node elements. The line defined by the two nodes specifies the direction along
which the force reaction is evaluated or the displacement is specified. In the case of moment
reaction, the line specifies the axis about which the moment is evaluated and the rotation
is specified.

We consider boundary elements that are used to obtain reaction forces (rigid boundary
elements) or specify translational displacements (displacement boundary elements) as truss
elements with only one nonzero translational stiffness. Boundary elements used to either
evaluate reaction moments or specify rotations behave like beam elements with only one
nonzero stiffness corresponding to the rotational stiffness about the specified axis.

The elastic boundary elements are used to model flexible supports and to calculate
reactions at skewed or inclined boundaries. Consult Reference [9] for more details about
using boundary elements.

Potential Energy Approach to Derive
Bar Element Equations

‘We now present the principle of minimum potential energy to derive the bar element equations.
Recall from Section 2.6 that the total potential energy 1, was defined as the sum of the internal
strain energy U and the potential energy of the external forces Q:

7, =U+Q (3.10.1)

To evaluate the strain energy for a bar,we consider only the work done by the internal
forces during deformation. Because we are dealing with a one-dimensional bar, the internal
force doing work on a differential element of sides Ax, Ay, Az, is given in Figure 3-24 as
o, (Ay)(Az), due only to normal stress o,. The displacement of the x face of the element is
Ax(e&,); the displacement of the x + Ax face is Ax(e, + de, ). The change in displacement
is then Ax de,, where de, is the differential change in strain occurring over length Ax. The
differential internal work (or strain energy) dU is the internal force multiplied by the displace-
ment through which the force moves, given by

dU = o, (Ay)(Az)(Ax)d e, (3.10.2)

i Ay
% A = = o, (Ay)(Az)
4

G %
% L / A—x—l le— axde,

W Figure 3-24 Internal force in a one-dimensional bar due to applied external force F
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3 | Development of Truss Equations

Rearranging and letting the volume of the element approach zero, we obtain, from Eq. (3.10.2),

dU = o,de dV (3.10.3)
For the whole bar, we then have
v =[] {jo a’xdax} av (3.10.4)
v

Now, for a linear-elastic (Hooke’s law) material as shown in Figure 3-25, we see thato, = E¢,.
Hence substituting this relationship into Eq. (3.10.4), integrating with respect to &y, and then
resubstituting o, for Ee,, we have

U= %J_{Ja’xa‘xdv (3.10.5a)

as the expression for the strain energy for one-dimensional stress.
For a uniform cross-sectional area A of a bar with stress and strain dependent only on the
x coordinate, Eq. (3.10.5a) can be simplified to

A
U= E{(rxexdx (3.10.5b)

We observe from the integral in Eq. (3.10.5b) that the strain energy is described as the area
under the stress/strain curve.

The potential energy of the external forces, being opposite in sign from the external work
expression because the potential energy of external forces is lost when the work is done by the
external forces, is given by

Q= [[[Xyuav — [[Tusds — fﬁxui (3.10.6)
v M i=1

where the first, second, and third terms on the right side of Eq. (3.10.6) represent the poten-
tial energy of (1) body forces X, typically from the self-weight of the bar (in units of force
per unit volume) moving through displacement function u, (2) surface loading or traction 7,

€y

W Figure 3-25 Stress/strain curve for linear-elastic (Hooke’s law) material
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3.10 Potential Energy Approach to Derive Bar Element Equations

typically from distributed loading acting along the surface of the element (in units of force per
unit surface area) moving through displacements u,, where u, are the displacements occurring
over surface Sj, and (3) nodal concentrated forces f; moving through nodal displacements ;.
The forces X, Ty, and f;, are considered to act in the local x direction of the bar as shown in
Figure 3-26. In Egs. (3.10.5) and (3.10.6), V is the volume of the body and S; is the part of the
surface S on which surface loading acts. For a bar element with two nodes and one degree of
freedom per node, M = 2.

We are now ready to describe the finite element formulation of the bar element equations
by using the principle of minimum potential energy.

The finite element process seeks a minimum in the potential energy within the constraint
of an assumed displacement pattern within each element. The greater the number of degrees
of freedom associated with the element (usually meaning increasing the number of nodes),
the more closely will the solution approximate the true one and ensure complete equilibrium
(provided the true displacement can, in the limit, be approximated). An approximate finite
element solution found by using the stiffness method will always provide an approximate
value of potential energy greater than or equal to the correct one. This method also results in
a structure behavior that is predicted to be physically stiffer than, or at best to have the same
stiffness as, the actual one. This is explained by the fact that the structure model is allowed to
displace only into shapes defined by the terms of the assumed displacement field within each
element of the structure. The correct shape is usually only approximated by the assumed field,
although the correct shape can be the same as the assumed field. The assumed field effectively
constrains the structure from deforming in its natural manner. This constraint effect stiffens
the predicted behavior of the structure.

Apply the following steps when using the principle of minimum potential energy to derive
the finite element equations.

1. Formulate an expression for the total potential energy.

2. Assume the displacement pattern to vary with a finite set of undetermined parameters (here
these are the nodal displacements #;), which are substituted into the expression for total
potential energy.

3. Obtain a set of simultaneous equations minimizing the total potential energy with respect
to these nodal parameters. These resulting equations represent the element equations.

The resulting equations are the approximate (or possibly exact) equilibrium equations
whose solution for the nodal parameters seeks to minimize the potential energy when back-
substituted into the potential energy expression. The preceding three steps will now be followed
to derive the bar element equations and stiffness matrix.

Consider the bar element of length L, with constant cross-sectional area A, shown in
Figure 3-26. Using Eqgs. (3.10.5) and (3.10.6), we find that the total potential energy,
Eqg. (3.10.1), becomes

7y = Sy oeends = i = foas - js Justeas = [[fux,av G.107)

because A is a constant and variables o, and &, at most vary with x.
From Egs. (3.2.8) and (3.2.9), we have the axial displacement function expressed in terms
of the shape functions and nodal displacements by

u=[N{d} u, =[N,]{d} (3.10.8)
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3 | Development of Truss Equations

l Ix
1

M Figure 3-26 General forces acting on a one-dimensional bar

where

[, xx
[N]—[l . J (3.109)

[N,]is the shape function matrix evaluated over the surface that the distributed surface traction
acts and

up

{d} = (3.10.10)

uz

Then, using the strain/displacement relationship &, = du/dx, we can write the axial strain in
matrix form as

{ec} = [—% H{d} (3.10.11)

or
{e.} = [Bl{d} (3.10.12)

where we define [B] as the gradient matrix

11
[B] = |:_z Z:| (3.10.13)
The axial stress/strain relationship in matrix form is given by
{o.} = [Dl{e.} (3.10.14)
where
[D] = [E] (3.10.15)
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3.10 Potential Energy Approach to Derive Bar Element Equations

for the one-dimensional stress/strain relationship matrix and E is the modulus of elasticity.
Now, by Eq. (3.10.12), we can express Eq. (3.10.14) as

{o} = [DI[Bl{d} (3.10.16)

Using Eq. (3.10.7) expressed in matrix notation form, we have the total potential energy
given by

7y = S o Ledds = (@Y {P) = [[{w) (1ds = [[[ ()" (xhav (1017

where { P} now represents the concentrated nodal loads and where in general both {o, } and
{e.} are column matrices. For proper matrix multiplication, we must place the transpose on
{o,}. Similarly, {u} and {T, } in general are column matrices, so for proper matrix multiplica-
tion, {u} is transposed in Eq. (3.10.17).

Using Egs. (3.10.8), (3.10.12), and (3.10.16) in Eq. 3.10.17, we obtain

7= 5 [ 1) (81 (DT [Bl{a}as — {a) (P}

3.10.18
~[H{ay [N {1 }as = [[[{a} [N {x,}av o

In Eq. (3.10.18), 7, is seen to be a function of {d}; thatis, 7, = 7, (u, u>). However, [B] and
[D], Egs. (3.10.13) and (3.10.15), and the nodal degrees of freedom u; and u; are not functions
of x. Therefore, integrating the first integral in Eq. (3.10.18) with respect to x yields

7y = SE(aY 1B (0 (81} ~ {4V {1} (310.19)
where
{r} =P} + [JINT {T3as + [[]INT {x,}av (3.10.20)

From Eq. (3.10.20), we observe three separate types of load contributions from concen-
trated nodal forces, surface tractions, and body forces, respectively. We define these surface
tractions and body-force matrices as

(£} = [T {7} ds (3.10.20a)
{5} = [[JINT" {Xs }av (3.10.20b)

The expression for [f] given by Eq. (3.10.20) then describes how certain loads can be
considered to best advantage.

Loads calculated by Egs. (3.10.20a) and (3.10.20b) are called consistent because they
are based on the same shape functions [N] used to calculate the element stiffness matrix.
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3 | Development of Truss Equations

The loads calculated by Eq. (3.10.20a) and (3.10.20b) are also statically equivalent to the
original loading; that is, both { £, } and {f;} and the original loads yield the same resultant
force and same moment about an arbitrarily chosen point.

The minimization of 7, with respect to each nodal displacement requires that

I, _ and Jarp

=0
I T (3.10.21)

Now we explicitly evaluate 7, given by Eq. (3.10.19) to apply Eq. (3.10.21). We define the
following for convenience:

{v*} = {a}" [BY D] [B1{d} (3.10.22)

Using Egs. (3.10.10), (3.10.13), and (3.10.15) in Eq. (3.10.22) yields

1
o L 117w
U} = uz] 1 [E][ i LH s } (3.10.23)
L

U* = E(uf — 2uuy + u3) (3.10.24)

Also, the explicit expression for {d}" {f} is

{dY {1} = whic + w2 fou (3.10.25)
Therefore, using Eqgs. (3.10.24) and (3.10.25) in Eq. (3.10.19) and then applying Egs. (3.10.21),
we obtain
o, AL[E
— = —|=Qu —2 —fix =0
o 2 [L2( “ "‘2)} fi
and (3.10.26)
on, AL[ E }
— = —|=(—2u;y +2 —fox =0
duy 2 L2( o+ 20) | =

In matrix form, we express Egs. (3.10.26) as
1 -1
or, _ AE al el _Jo (3.1027)
ofd} L |-1 1| Jax 0
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3.10 Potential Energy Approach to Derive Bar Element Equations

or, because {f} = [k]{d}, we have the stiffness matrix for the bar element obtained from
Eq. (3.10.27) as

AEl 1T —1
k= "= (3.10.28a)
L&1 L [—1 1]

As expected, Eq. (3.10.28a) is identical to the stiffness matrix Eq. (3.1.14) obtained in

Section 3.1.
Now that we have derived the bar stiffness matrix by using the theorem of minimum
potential energy, we can observe that the strain energy U [the first term on the right side of

Eq. (3.10.18)] can also be expressed in the quadratic form U = 1/2{d}" [k]{d} as follows:

1 1 AE| 1 —1|ju AE

Finally, instead of the cumbersome process of explicitly evaluating 77, we can use the
matrix differentiation as given by Eq. (2.6.12) and apply it directly to Eq. (3.10.19) to obtain

ar,

a{d}

=AL[B]"[D][Bl{d} — {f} =0 (3.10.29)

where [D]" =[D] has been used in writing Eq. (3.10.29). The result of the evaluation of
AL[B]" [D][B] is then equal to [k] given by Eq. (3.10.28a). Throughout this text, we will use
this matrix differentiation concept (also see Appendix A), which greatly simplifies the task of

evaluating [k].
To illustrate the use of Eq. (3.10.20a) to evaluate the equivalent nodal loads for a bar
subjected to axial loading traction 7, we now solve Example 3.12.

EXAMPLE 3.12

A bar of length L is subjected to a linearly distributed axial line loading that varies from zero
at node 1 to a maximum of CL at node 2 (Figure 3—27). Determine the energy equivalent
nodal loads.

T, = Cx (force/length)

lrr e

W Figure 3-27 Element subjected to linearly varying axial line load
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3 | Development of Truss Equations

SOLUTION:

Using Eq. (3.10.20a) and shape functions from Eq. (3.10.9), we solve for the energy equiv-
alent nodal forces of the distributed loading as follows:

Jix T (L L
{fo} = { y } = J.[N] [T }ds = jo . {Cx}dx (3.10.30)

L

2 3L
Cx3

3L
0 (3.10.31)

where the integration was carried out over the length of the bar, because 7, is in units of
force/length.
Note that the total load is the area under the load distribution given by

c

F= %(L)(CL) - (3.10.32)

Therefore, comparing Eq. (3.10.31) with (3.10.32), we find that the equivalent nodal loads
for a linearly varying load are

fix = =—F = one-third of the total load

(3.10.33)

foe = —F = two-thirds of the total load

WiN W=

In summary, for the simple two-noded bar element subjected to a linearly varying load
(triangular loading), place one-third of the total load at the node where the distributed load-
ing begins (zero end of the load) and two-thirds of the total load at the node where the peak
value of the distributed load ends.

We now illustrate (Example 3.13) a complete solution for a bar subjected to a surface
traction loading.
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3.10 Potential Energy Approach to Derive Bar Element Equations

EXAMPLE 3.13

For the rod loaded axially as shown in Figure 3-28, determine the axial displacement and
axial stress. Let E = 2 X 10" N/m?, A = 12.5 X 10™* m?, and L = 1.5 m Use (a) one and
(b) two elements in the finite element solutions. In Section 3.11, one-, two-, four-, and eight-
element solutions will be presented from the computer program Autodesk [9].

T, =-80,000 N/m

Ay

W Figure 3-28 Rod subjected to triangular load distribution
(a) One-element solution (Figure 3-31).

—120,000

2

4
4
W44

M Figure 3-29 One-element model

SOLUTION:
From Egq. (3.10.20a), the distributed load matrix is evaluated as follows:

{R} = [CINT{T.}dx (3.10.34)

where 7, is a line load in units of newtons per meter and { fy} = {F}. Therefore, using
Eq. (3.2.9) for [N] in Eq. (3.10.34), we obtain

X
{fo} = JOL . L Lr_g0,000x) dx (3.10.35)
L
or

80,0007 , 80,0002 ~80,00022 80,000(1.5°

le _ 2 3 _ 6 _ 6
{ Fox } _—80,0002% —80,0002% —80,000(1.5)*

3 3 3
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3 | Development of Truss Equations

or F, =—30,000 N F, = —60,000 N (3.10.36)

Using Eq. (3.10.33), we could have determined the same forces at nodes 1 and 2—that is,
one-third of the total load is at node 1 and two-thirds of the total load is at node 2.

Using Eq. (3.10.28), we find that the stiffness matrix is given by

(k] = 16.67 X 107 [_} _ﬂ

The element equations are then

1 —1|ju —30,000
16.67 X 107 = 3.10.37
{—1 1}{ 0} {sz — 60,000 ( )
Solving Eq. 1 of Eq. (3.10.37), we obtain
uy = —0.18 mm (3.10.38)

The stress is obtained from Eq. (3.10.14) as

{ou} = [DNer}
= E[B{d}

i) ]
-o(=7)

o 1011(0 + 0.00018)
1.5

= 24 Mpa (T) (3.10.39)
(b) Two-element solution (Figure 3-30).

~120,000 \?

2 3
@ @ 7
M Figure 3-30 Two-element model

We first obtain the element forces. For element 2, we divide the load into a uniform part
and a triangular part as shown in Figure 3—30. For the uniform part, half the total uniform
load is placed at each node associated with the element. Therefore, the total uniform part is

(0.75 m)(—60,000 N/m) = —45,000 N
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3.10 Potential Energy Approach to Derive Bar Element Equations

and using Eq. (3.10.33) for the triangular part of the load, we have, for element 2,

) —{1(45,000) + 1(22,500)]|  (-30,000N
_ = (3.10.40)

@[ | -[4(45,000) + 2(22,500))[ | ~37.500N
For element 1, the total force is from the triangle-shaped distributed load only and is given by

1
5(0.75 m)(—60,000 N/m) = —22,500 N

On the basis of Eq. (3.10.33), this load is separated into nodal forces as shown:

2(ch) 2(-22,500) —15,000 N
The final nodal force matrix is then
F, —7500
F, ¢t = <1—30,000 — 15,000 (3.10.42)
Fs, Rs;, — 37,500
The element stiffness matrices are now
1 2 2
2 3 2 3 (3.10.43)
AE 1 —1 1 -1
kD] =[] = Z— = (33.34 x 107
L L/Z{—l 1} ( ){—1 1}

The assembled global stiffness matrix is

1 -1 0

[K] = (3334 x107)| -1 2 -1 N (3.10.44)
o -1 1™
The assembled global equations are then
I =1 0|wm —7500
(3334 X107)| —1 2 —1|u, = —45,000 (3.10.45)

0 -1 1 us = 0 R3X - 37,500
where the boundary condition u3 = 0 has been substituted into Eq. (3.10.45). Now, solving
equations 1 and 2 of Eq. (3.10.45), we obtain

uy = —0.18 mm
u, = —0.1575 mm (3.10.46)
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3 | Development of Truss Equations

The element stresses are as follows:

Element 1
E[ 1 1 } u; = —0.00018
(T.x = —_— e [
0.75 0.75]| up = —0.0001575 (3.10.47)
= 6 Mpa (T)
Element 2
[ 1 1 } u, = —0.0001575
Oy =F --— —
0.75 0.751| us =0 (3.10.48)
=42 Mpa (T)

ERED comparison of Finite Element Solution
to Exact Solution for Bar

We will now compare the finite element solutions for Example 3.13 using one, two, four, and
eight elements to model the bar element and the exact solution. The exact solution for displace-
ment is obtained by solving the equation

1 ¢x
u= EJO P(x)dx (3.11.1)
where, using the following free-body diagram,

<—80,000x N/m
[ S—
- P ()

x

we have P(x) = %x(S0,000x) = 40,000x% N (3.11.2)

Therefore, substituting Eq. (3.11.2) into Eq. (3.11.1), we have

u= ij0"40,000x2 dx
AE (3.11.3)

3
_ 40,0008
3AE

Now, applying the boundary condition at x = L, we obtain

_ 40,0002

L)=0
u(L) 3AE

+ G
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3.11 Comparison of Finite Element Solution to Exact Solution for Bar

0
0.00005
E 4 One element
g © Two elements
g ® Four elements
§ 0.0001 - A Eight elements
=
2
0.0015 - N~ Exact solution
u=5.333(10)x% - 0.00018
-0.00018 | 1 1 -
0 0.5 1.0 1.5

Axial coordinate in meters
W Figure 3-31 Comparison of exact and finite element solutions for axial displacement
(along length of bar)

or

40,0003
3AE

(3.11.4)

=
Substituting Eq. (3.11.4) into Eq. (3.11.3) makes the final expression for displacement

40,000
u = —

TR (3.11.5)

Substituting A = 12.5 X 10™“#m? E = 2 X 10" N/m?, and L = 1.5 m into Eq. (3.11.5), we
obtain

u=5.333xX1073x3 — 0.00018 (3.11.6)
The exact solution for axial stress is obtained by solving the equation

P(x) _ 40, 000x2

— 13,2 p (3.11.7)
A Dsxi0dmr ke

ag(x) =

Figure 3-31 shows a plot of Eq. (3.11.6) along with the finite element solutions (part of
which were obtained in Example 3.13). Some conclusions from these results follow.

1. The finite element solutions match the exact solution at the node points. The reason why
these nodal values are correct is that the element nodal forces were calculated on the basis
of being energy-equivalent to the distributed load based on the assumed linear displace-
ment field within each element. (For uniform cross-sectional bars and beams, the nodal
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3 | Development of Truss Equations

72
0 One element
60~ o Two elements
4 Four elements A—A A—h
o Eight elements
<
[a W)
= 40 F
g
172
1%2)
5
& A a N

O3 I S =

--8-e—a—8—o—8—8—8 S - 3 5o =
20 /<
e Exact solution

o(x) = 324%

»
[ 3

0 1 | 1 1
0 0.5 1.0 1.5

Axial coordinate in meters

W Figure 3-32 Comparison of exact and finite element solutions for axial stress (along length
of bar)

degrees of freedom are exact. In general, computed nodal degrees of freedom are not
exact.)

2. Although the node values for displacement match the exact solution, the values at loca-
tions between the nodes are poor using few elements (see one- and two-element solutions)
because we used a linear displacement function within each element, whereas the exact
solution, Eq. (3.11.6), is a cubic function. However, because we use increasing numbers
of elements, the finite element solution converges to the exact solution (see the four- and
eight-element solutions in Figure 3-31).

3. The stress is derived from the slope of the displacement curve as o = Ee = E(du/dx).
Therefore, by the finite element solution, because u is a linear function in each element,
axial stress is constant in each element. It then takes even more elements to model the first
derivative of the displacement function or, equivalently, the axial stress. This is shown in
Figure 3-32, where the best results occur for the eight-element solution.

4. The best approximation of the stress occurs at the midpoint of the element, not at the nodes
(Figure 3-32). This is because the derivative of displacement is better predicted between
the nodes than at the nodes.

5. The stress is not continuous across element boundaries. Therefore, equilibrium is not sat-
isfied across element boundaries. Also, equilibrium within each element is, in general, not
satisfied. This is shown in Figure 3—33 for element 1 in the two-element solution and ele-
ment 1 in the eight-element solution [in the eight-element solution the forces are obtained
from the Autodesk computer code [9]]. As the number of elements used increases, the
discontinuity in the stress decreases across element boundaries, and the approximation of
equilibrium improves.

Finally, in Figure 3-34, we show the convergence of axial stress at the fixed end (x = L)
as the number of elements increases.
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3.11 Comparison of Finite Element Solution to Exact Solution for Bar

_+— 60,000 N/m

22,500 N
7500 N —«—— | 7500 N 7500 N  ~s=————mmemme— 7500 N
R oy B
0.75 m
(a) Two-element solution
//////

e
® )

15,000 N/m 1405 N
~— ——
4688 N €—{ | 4688 N = 4688 N <€—{  }—> 468.8N
0.1875m

(b) Eight-element solution

W Figure 3-33 Free-body diagram of element 1 in both two- and eight-element models,
showing that equilibrium is not satisfied

However, if we formulate the problem in a customary general way, as described in detail
in Chapter 4 for beams subjected to distributed loading, we can obtain the exact stress distri-
bution with any of the models used. That is, letting { f} = [k]{d} — {fo}, where {fy } is the
initial nodal replacement force system of the distributed load on each element, we subtract the
initial replacement force system from the [k]{d} result. This yields the nodal forces in each
element. For example, considering element 1 of the two-element model, we have [see also
Eqgs. (3.10.33) and (3.10.41)]

| —7500N
o} = { —15,000 N }

Using {f} = [kI{d} — {fo}, we obtain

(= (125 X102 X 10| 1 -1 ~0.00018m | | —7500N
(0.75 m) -1 1 || —0.0001575m —15,000 N

_ ] —7500 + 7500 | _ 0
7500 + 15,000 22,500

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



3 | Development of Truss Equations

———

Exact solution: o = 72 MPa
80 - L/

(=)
(=]

N
(e
T 1T 7T

& (MPa)

] ] 1 1 1
2 4 6 8

Number of elements

M Figure 3-34 Axial stress at fixed end as number of elements increases

as the actual nodal forces. Drawing a free-body diagram of element 1, we have

SF =0: —%(60,000 N/m)(0.75 m) + 22,500 N = 0

.—— 60,000 N/m

i - —-—
0 —| ——— 22,500 N
0.75m

For other kinds of elements (other than beams), this adjustment is ignored in practice. The
adjustment is less important for plane and solid elements than for beams. Also, these adjust-
ments are more difficult to formulate for an element of general shape.

Galerkin’s Residual Method and Its Use to Derive
the One-Dimensional Bar Element Equations

General Formulation

We developed the bar finite element equations by the direct method in Section 3.1 and by the poten-
tial energy method (one of a number of variational methods) in Section 3.10. In fields other than
structural/solid mechanics, it is quite probable that a variational principle, analogous to the principle
of minimum potential energy, for instance, may not be known or even exist. In some flow problems
in fluid mechanics and in mass transport problems (Chapter 13), we often have only the differential
equation and boundary conditions available. However, the finite element method can still be applied.

The methods of weighted residuals applied directly to the differential equation can be used
to develop the finite element equations. In this section, we describe Galerkin’s residual method
in general and then apply it to the bar element. This development provides the basis for later
applications of Galerkin’s method to the beam element in Chapter 4 and to the nonstructural
heat-transfer element (specifically, the one-dimensional combined conduction, convection, and
mass transport element described in Chapter 13). Because of the mass transport phenomena, the
variational formulation is not known (or certainly is difficult to obtain), so Galerkin’s method
is necessarily applied to develop the finite element equations.

There are a number of other residual methods. Among them are collocation, least squares,
and subdomain as described in Section 3.13. (For more on these methods, see Reference [5].)
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3.12 Galerkin’s Residual Method and Its Use to Derive the One-Dimensional Bar Element Equations

In weighted residual methods, a trial or approximate function is chosen to approximate
the independent variable, such as a displacement or a temperature, in a problem defined by a
differential equation. This trial function will not, in general, satisfy the governing differential
equation. Thus substituting the trial function into the differential equation results in a residual
over the whole region of the problem as follows:

J.”RdV = minimum (3.12.1)

In the residual method, we require that a weighted value of the residual be a minimum over
the whole region. The weighting functions allow the weighted integral of residuals to go to zero.
If we denote the weighting function by W, the general form of the weighted residual integral is

j j j RWdAV =0 (3.12.2)

Using Galerkin’s method, we choose the interpolation function, such as Eq. (3.2.8), in
terms of N; shape functions for the independent variable in the differential equation. In general,
this substitution yields the residual R # 0. By the Galerkin criterion, the shape functions N;
are chosen to play the role of the weighting functions W. Thus for each i, we have

”J.RNI‘ dv =0 (i=12,..,n) (3.12.3)

Equation (3.12.3) results in a total of n equations. Equation (3.12.3) applies to points
within the region of a body without reference to boundary conditions such as specified applied
loads or displacements. To obtain boundary conditions, we apply integration by parts to
Eq. (3.12.3), which yields integrals applicable for the region and its boundary.

Bar Element Formulation

We now illustrate Galerkin’s method to formulate the bar element stiffness equations. We begin
with the basic differential equation, without distributed load, derived in Section 3.1 as

i(AEQJ =0 (3.12.4)
dx dx

where constants A and E are now assumed. The residual R is now defined to be Eq. (3.12.4).

Applying Galerkin’s criterion [Eq. (3.12.3)] to Eq. (3.12.4), we have

jLi(AE@)N,- k=0 (i=12) (3.12.5)
0 dx dx

We now apply integration by parts to Eq. (3.12.5). Integration by parts is given in general by
Ju dv =uv — Ivdu (3.12.6)

where u and v are simply variables in the general equation. Letting

dN;

u = N; du = —dx
dx (3.12.7)
dv = i(AE@)dx v =AE@
dx dx dx
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3 | Development of Truss Equations

in Eq. (3.12.5) and integrating by parts according to Eq. (3.12.6), we find that Eq. (3.12.5) becomes

(NiAEﬂ)
dx

L
~[Fapdedt

0 0 dx dx

dx =0 (3.12.8)

where the integration by parts introduces the boundary conditions.
Recall that, because u = [N]{d}, we have

a _dv 9N (3.12.9)

or, when Egs. (3.2.9) are used for Ny =1 — x/L and N, = x/L,

du _ [_l l} th (3.12.10)
dx L L]|| u
Using Eq. (3.12.10) in Eq. (3.12.8), we then express Eq. (3.12.8) as
ag[" [—l l:ldx Mol = (N,-AE @j
0 dx LL up dx

Equation (3.12.11) is really two equations (one for N; = N;and one for N; = N,). First, using
the weighting function N; = N, we have

L
AE @[—l l}dx N (NIAE@)
0 dx L L up dx
Substituting for dN; /dx, we obtain

_1p_ 11 o _
AEJO[ L}[ 7 J dx{ uz} fia (3.12.13)

where fi, = AE(du/dx) because Ny =1 at x =0 and Ny =0 at x = L. Evaluating
Eq. (3.12.13) yields

L

(i=12) (3.12.11)

0

L
(3.12.12)

0

AE
T(m —up) = fix (3.12.14)

Similarly, using N; = N,, we obtain

B EIE PN

Simplifying Eq. (3.12.15) yields

L
(3.12.15)

0

AE
T(Mz —uy) = for (3.12.16)
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3.13 Other Residual Methods and Their Application to a One-Dimensional Bar Problem

where f>, = AE(du/dx) because N, = lat x = L and N, = 0 at x = 0. Equations (3.12.14)
and (3.12.16) are then seen to be the same as Egs. (3.1.13) and (3.10.27) derived, respectively,
by the direct and the variational method.

ERE) other Residual Methods and Their Application to a
One-Dimensional Bar Problem

As indicated in Section 3.12 when describing Galerkin’s residual method, weighted residual
methods are based on assuming an approximate solution to the governing differential equa-
tion for the given problem. The assumed or trial solution is typically a displacement or a
temperature function that must be made to satisfy the initial and boundary conditions of the
problem. This trial solution will not, in general, satisfy the governing differential equation.
Thus, substituting the trial function into the differential equation will result in some residuals
or errors. Each residual method requires the error to vanish over some chosen intervals or at
some chosen points. To demonstrate this concept, we will solve the problem of a rod subjected
to a triangular load distribution as shown in Figure 3-28 (see Section 3.10) for which we also
have an exact solution for the axial displacement given by Eq. (3.11.5) in Section 3.11. We
will illustrate four common weighted residual methods: collocation, subdomain, least squares,
and Galerkin’s method.

It is important to note that the primary intent in this section is to introduce you to the gen-
eral concepts of these other weighted residual methods through a simple example. You should
note that we will assume a displacement solution that will in general yield an approximate
solution (in our example the assumed displacement function yields an exact solution) over the
whole domain of the problem (the rod previously solved in Section 3.10). As you have seen
already for the spring and bar elements, we have assumed a linear function over each spring or
bar element, and then combined the element solutions as was illustrated in Section 3.10 for the
same rod solved in this section. It is common practice to use the simple linear function in each
element of a finite element model, with an increasing number of elements used to model the rod
yielding a closer and closer approximation to the actual displacement as seen in Figure 3-31.

For clarity’s sake, Figure 3-35(a) shows the problem we are solving, along with a free-
body diagram of a section of the rod with the internal axial force P(x) shown in Figure 3-35(b).

20 OQQXNI =

%0 QOQXNI“\

— = P

1.5m

(a) (b)

M Figure 3-35 (a) Rod subjected to triangular load distribution and (b) free-body diagram of
section of rod
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3 | Development of Truss Equations

The governing differential equation for the axial displacement, u, is given by
(AE@) —P(x)=0 (3.13.1)
dx

where the internal axial force is P(x) = 40,000x2. The boundary condition is u(x = L) = 0.

The method of weighted residuals requires us to assume an approximation function for the
displacement. This approximate solution must satisfy the boundary condition of the problem.
Here we assume the following function:

u(x) =c;(x —L) +e2(x —L)* +¢3(x — L) (3.13.2)

where cj, ¢, and c¢3 are unknown coefficients. Equation (3.13.2) also satisfies the boundary
condition given by u(x = L) = 0.

Substituting Eq. (3.13.2) for u into the governing differential equation, Eq. (3.13.1), results
in the following error function, R:

AE[c; + 2¢3(x — L) + 3c3(x — L)*] — 40,000x> =R (3.13.3)

We now illustrate how to solve the governing differential equation by the four weighted resid-
ual methods.

Collocation Method

The collocation method requires that the error or residual function, R, be forced to zero at as
many points as there are unknown coefficients. Equation (3.13.2) has three unknown coeffi-
cients. Therefore, we will make the error function equal zero at three points along the rod. We
choose the error function to go to zero at x = 0, x = L/3 and x = 2L/3 as follows:

R(c,x=0)=0 =AE[01 + 2¢2(—L) + 3c3 (—L)Z:I =0

=
—_—
o
=
Il

1/3)=0 = AE| e + 2e3(=2L/3) + 3e; (=21/3)" | ~40,000(1/3) = 0 (3.13.4)

=
—_
o
=
Il

21/3)=0 = AE[ e + 263 (=1/3) + 3¢5 (~L/3)" | ~40,000(22/3)" =0

The three linear equations, Eq. (3.13.4), can now be solved for the unknown coefficients,
1, ¢ and c3. The result is

¢ = 40,0002 /(AE) ¢, = 40,000L/(AE) c¢3 = 40,000/(3AE)  (3.13.5)

Substituting the numerical values, A = 12.5 X 104, E = 2 X 10'!'and L = 1.5 m into Eq.
(3.13.5), we obtain the ¢’s as:

g =3.6X107%, ¢ =24X107% ¢ =5.333 X107 (3.13.6)

Substituting the numerical values for the coefficients given in Eq. (3.13.6) into Eq. (3.13.2),
we obtain the final expression for the axial displacement as

u(x) =3.6 X107*(x —L) + 24 X 107*(x — L)* +5.333 X1075(x —L)* (3.13.7)
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3.13 Other Residual Methods and Their Application to a One-Dimensional Bar Problem

Because we have chosen a cubic displacement function, Eq. (3.13.2), and the exact solu-
tion, Eq. (3.11.6), is also cubic, the collocation method yields the identical solution as the exact
solution. The plot of the solution is shown in Figure 3-31 on page 133.

Subdomain Method

The subdomain method requires that the integral of the error or residual function over some
selected subintervals be set to zero. The number of subintervals selected must equal the number
of unknown coefficients. Because we have three unknown coefficients in the rod example, we
must make the number of subintervals equal to three. We choose the subintervals from O to L/3,
from L/3 to 2L/3, and from 2L/3 to L as follows:

L3 L3
j Rdx=0= j {AE[c; + 2¢3(x — L) + 3¢3(x — L)2] — 40,000x2} dx
0 0

2L)3 2L/3
j Rdx 