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Preface

‘A theory is the more impressive the greater the simplicity
of its premises, the more different kinds of things it relates,
and the more extended its area of applicability. Therefore
the deep impression that classical thermodynamics made
upon me. It is the only physical theory of universal content
which I am convinced will never be overthrown’
Albert Einstein, quoted in Schlipp P A 1979 Autobiographical

Notes. A Centennial Edition (Open Court Publishing

Company) p 31

‘The law that entropy always increases holds, I think, the
supreme position among the laws of Nature …if your theory
is found to be against the second law of thermodynamics I
can give you no hope’
Eddington A S 1928 The Nature of the Physical World

(Cambridge: Cambridge University Press) chapter 4

‘There is no concept in the whole field of physics which is
more difficult to understand than is the concept of entropy,
nor is there one which is more fundamental’
Sears F 1950 Principles of Physics I: Mechanics, Heat, and

Sound (Reading, MA: Addison-Wesley) p 459

‘Few physical concepts have caused as much confusion and
misunderstanding as has that of entropy’
Lovelock J 1979, Gaia: A New Look at Life on Earth (Oxford:

Oxford University Press) p 2

‘our science colleagues may…help us with ‘entropy’, which
to me is a more difficult concept than anything economics
has to offer.’



Tjalling Koopmans, quoted in Faber M, Niemes H, and

Stephan G 2005 Entropy, Environment, and Resources: an

Essay in Physico-economics (Berlin: Springer) p 77

Entropy and the second law

The Second Law of Thermodynamics—entropy increases—is

arguably the most fundamental law of nature, as the above

quotations from Einstein, Eddington, and Sears attest. And

yet for some, entropy itself is a mystery, the cause of

confusion and misunderstanding. How can it be that

something so fundamental and universal, as evidenced from

the interests and expertise of the quoted authors, is so hard

to grasp? How can it have happened that thoughtful people

appreciate the significance and universal applicability of the

Second Law without understanding the nature of entropy, its

sole concern?

I blame Clausius, who in the middle of the 19th century

initiated the field of thermodynamics by defining entropy as

the integrated heat flow divided by the temperature. This is

the empirical result of measurement and observation. It is

undoubtedly mathematically and quantitatively correct, but

it offers nothing in the way of understanding or reason or

physical basis. To my mind it obscures rather than clarifies

the nature of entropy, and it is little wonder that anyone

approaching entropy from this viewpoint should be

confused. This definition has made entropy an enigma, and

the resultant mystique surrounding it has given rise to a

belief in the power of the Second Law of Thermodynamics

that is akin to magic. For many, the unquestioning

acceptance of both is an act of faith.

It was Boltzmann, shortly after Clausius, who identified

entropy with the logarithm of the number of molecular

configurations, thereon founding the field of statistical

mechanics. Here was not only a concrete physical picture

for entropy, but also an explanation of the Second Law of



Thermodynamics. Considering the transitions between

states of a system, it is intuitively obvious that these should

likely be to states with more configurations rather than

fewer, which is precisely the direction of entropy increase.

For example, a die is more likely to land showing an even

number than a six because there are three of the former

and only one of the latter; the state ‘even’ has more entropy

than the state ‘six’. Of course the fact that entropy is just a

way of counting explains why it and the Second Law have

such universal application beyond the fields of

thermodynamics and statistical mechanics.

What is a little puzzling is that Boltzmann’s insight into

the nature of entropy and the reason for the Second Law

has not settled the matter and that the confusion over

entropy persists amongst some to the present day. I suspect

that part of the reason for this is that the fields of

thermodynamics and statistical mechanics have remained

separate from the beginning. Practitioners have always

specialized in one or the other, and the concerns and

approaches of each are rather different. This goes deeper

than the facile observation that thermodynamics is

concerned with macroscopic phenomena and statistical

mechanics is focussed on microscopic and molecular

behavior. To some extent the two fields appeal to different

aspects of the intellect. Thermodynamics has grown as a

discipline based on empirical rules and quantitative

relationships that have been gleaned from observation and

measurement. It can be a very practical field in which

practitioners are more interested in actual outcomes and

real applications than in model systems or qualitative

explanations. It is often taught as a collection of expressions

to be memorized without necessarily recognizing the

connections between different results.

Statistical mechanics is more focussed on deducing the

thermodynamic laws and relationships from the probabilistic

behavior of atoms and molecules. It can produce



quantitative predictions of thermodynamic properties from

the molecular interactions, although just as often the

qualitative behavior of a system is what is sought. Whereas

thermodynamics has discovered universal laws by reasoning

inductively from empirical observation, statistical mechanics

has focussed more on the reasons why those laws exist, and

has sought to logically deduce them from the fundamental

mechanical laws that govern the Universe.

Statistical theoretical approaches in broader fields such

as biology, finance, economics, health, sociology etc often

use results and procedures from thermodynamics and from

statistical mechanics. However, one should be aware of a

serious caveat: the laws governing the behavior of atoms

and molecules, which give quantitative and predictive

certainty to statistical mechanics, and reproducibility to

thermodynamics, generally have no analogue in these

broader fields. The statistical data that these fields utilize

are empirical and historical, and because there is no

underlying mechanical laws, there is no certainty that the

same data will hold in the future. Despite this caveat, the

general concepts of entropy and of the Second Law of

Thermodynamics are frequently applied beyond the

disciplines of thermodynamics and statistical mechanics.

This book takes a new and unified look at

thermodynamics and statistical mechanics. It attempts to

identify their essential conceptual ingredients, and to derive

these two disciplines from the ground up as two ends of a

spectrum linked by entropy. In the equilibrium case,

chapters 1 and 2, much is already known and confirmed by

laboratory measurement, computer simulation, and

mathematical analysis. What is new in this case is not the

final results but their interpretation. For example, in chapter

1 Boltzmann’s definition of entropy is generalized as the

logarithm of the weight of a state. A small change perhaps,

but it accommodates the case that configurations are not

equally likely, it shows that probability and entropy are



conceptually equivalent, and it goes beyond physical

systems governed by molecular mechanics. These

demonstrate the universality of the statistical

thermodynamic formalism and its generic potential for

application in diverse areas of human endeavor. In this vein

the information entropy, often attributed to Shannon in his

theory of communications, and also widely exploited by

Jaynes in his ‘MaxEnt’ theory of probability and inductive

reasoning, is here shown to be no more than part of the

total thermodynamic entropy, as is demonstrated by results

for the two-dimensional Ising model of statistical mechanics.

Similarly, what is new in chapter 2 is not so much

adumbration of the conventional results of equilibrium

thermodynamics, but rather that their derivation proceeds

from the perspective of entropy. This shows, for example,

the equivalence of free energy and total entropy, and that

the minimization of the free energy is just the Second Law

of Thermodynamics in a different guise. The analysis shows

that the First Law of Thermodynamics is a statement about

conservation laws, from which very general conclusions

follow about the generic formulation of entropy for an

arbitrary system. It is this idea which in part points to the

way in which the entropy should be developed beyond

equilibrium.

Entropy beyond the second law

‘For in the sciences the authority of thousands of opinions
is not worth as much as one tiny spark of reason in an
individual man’

Galileo 1612 Third Letter on Sunspots

‘If different persons, not knowing each other’s work, have
been pursuing different clews that led to the same result,
why then it shows that there may be something in it. But if
this is only the same story, filtered through two channels,



and reaching me in two ways, then that don’t make it any
stronger’

Abraham Lincoln 1861 (Philadelphia PA)
‘A discovery must be, by definition, at variance with
existing knowledge’

Szent-Györgyi A 1972 Dionysians and Apollonians Science

176 966.

This book proceeds beyond the Second Law in several

respects. In chapter 3 attention turns to non-equilibrium

thermodynamics. For such time dependent systems, the

Second Law of Equilibrium Thermodynamics is insufficient; it

tells the direction of motion but not its speed. Nevertheless,

looked at from the right perspective, and with the insight

gleaned from the generic analysis of chapter 1, it is possible

to develop an entropy for time varying systems that is the

basis for a Second Law of Non-Equilibrium Thermodynamics.

The non-equilibrium entropy provides a driving force for

motion in a generalized sense, as, for example,

hydrodynamic fluxes, wave number selection, and pattern

formation. Accordingly, steady heat flow (chapter 3),

Brownian motion (chapter 4), and molecular motion in an

open system (chapter 5), are analyzed from this

perspective. The stochastic, dissipative equations that result

finally explain and justify some known results, such as the

Langevin equation, and the fluctuation-dissipation theorem,

and produce some new ones besides. They provide a basis

for the formulation of non-equilibrium statistical mechanics

(chapter 6).

Finally, chapter 7 formulates quantum statistical

mechanics from first principles by showing how the wave

function of an open quantum system collapses into entropy

states. This gives a type of trace for the partition function

and for the statistical average of an operator, which, via a



formally exact transformation, is written as an integral over

classical phase space. The leading order term in the

expansion gives classical statistical mechanics. Hence the

analysis shows that entropy is responsible for the fact that

classical mechanics governs the motion of the world around

us even though quantum mechanics governs the behavior

of the underlying atomic and sub-atomic constituents.

These chapters that go beyond the usual formulation of

entropy and of the Second Law lie at the cutting edge of

contemporary scientific research. As such many of the

results reflect my own analysis and ideas rather than a

consensus of opinion. As Szent-Györgyi noted above, this is

necessarily the case with any discovery. Some results, such

as those for non-equilibrium thermodynamics, may be

described as controversial given that they differ from the

very many books and papers already published on the

subject. But the point of the quotations from Galileo and

Lincoln is that multiple books or authors in agreement is not

as convincing as independent research (surprisingly enough,

even scientists copy). Similarly, authority figures are

entitled to serious consideration, but no more than that;

science would not be science if authorities were exempt

from being questioned or the rules of evidence. Although

consensus can be consoling when it is the result of

independent and critical thought, if it results from merely

copying, or from taking dictation from authority, or from

following the herd, then it adds nothing to the sum total of

knowledge. Truth is determined by evidence alone. Evidence

is not number of proponents, or status of authority, or

degree of consensus. Evidence is measurement,

computation, mathematical analysis, or reasoned argument.

It is for this reason that this book is structured a little

differently to most books on thermodynamics and statistical

mechanics. Since the content goes beyond existing

knowledge of entropy and of the Second Law of

Thermodynamics, I feel a greater than usual obligation to



justify the results with concrete evidence. I have tried to

avoid simply asserting a result as commonly held, or of

copying a result and citing some other source as its

authority. Instead I derive almost everything from first

principles, making the book largely self-contained and the

presentation uniformly coherent. This does sometimes pose

a problem in that general axioms can be introduced or

quantities defined before it is obvious that they are useful,

but it is the price to be paid for a bottom up approach.

Similarly, the novelty of the forms of entropy developed

here to go beyond the Second Law means that at this stage

the number of concrete examples that illustrate the

formalism is rather limited. Nevertheless I make many

connections with known theorems and results for which

there is a convincing consensus, and hopefully these should

provide some sort of guide to the utility of the general

approach taken here.

Entropy has given me understanding and insight into the

nature of the world, and it has provided a basis for many of

my contributions to the scientific literature. I hope in this

book to pass on some of this knowledge to the benefit of

readers in their own endeavors.

Phil Attard 
Sydney 

July, 2017



Preface to the second edition

In this second edition I have added chapters on Bose–

Einstein condensation, superfluidity, and superconductivity. I

am particularly pleased to be able to include these because

in many ways they provide concrete vindication of the

viewpoint taken in the book, namely that entropy is central

to the physical Universe, and that formulating it in a generic

statistical sense not only provides a basis for novel

mathematical treatments, but also gives new insight into

diverse physical phenomena. These new applications

illustrate just how far the Second Law of Thermodynamics

can be extended beyond its traditional purview.

One of the limitations in the first edition is the lack of

examples and applications for the classical phase space

formulation of quantum statistical mechanics, chapter 7.

Apart from the ideal gas and the numerical results for the

Lennard-Jones fluid, there is little concrete evidence

provided to support the claim that this new approach is

practically, not just potentially, useful in real world

applications. In this second edition the analysis of Bose–

Einstein condensation, chapter 8, which focusses upon the

permutation loop expansion, shows that the classical phase

space formulation gives a practical computer simulation

algorithm for the λ-transition in 4He, which is tested for a

Lennard-Jones model. It interprets the λ-transition as the

transition from position to momentum permutation loop

dominance, and it gives the new physical interpretation of

condensation as signifying multiple highly-occupied low-

lying momentum states, rather than the more conventional

ground energy state.

This new understanding extends to the phenomenon of

superfluidity, chapter 9, where theoretical prediction and



experimental measurement are compared for the critical

velocity and for the fountain pressure. Equations of motion

are given, which explain how condensed bosons collide with

uncondensed bosons without dissipating momentum. And in

chapter 10, the phenomenon of Cooper pairing of electrons,

which is central to the understanding of superconductivity,

is formulated again on the basis of the permutation loop

expansion. The difference from the conventional Bardeen–

Cooper–Schrieffer (BCS) theory that invokes lattice

vibrations is that here it is the potential of mean force that

binds the electron pair. This is a temperature-dependent

potential, and it is therefore of entropic origin, which fits

nicely in with the central premise of this book. A detailed

exploration of the oscillatory transition in the pair potential

of mean force for the one component plasma, using the

classical equilibrium techniques of chapters 2 and 5, shows

that the predicted superconducting transition occurs within

the range measured for high temperature superconductors

for realistic parameter values.

The treatment of Bose–Einstein condensation,

superfluidity, and superconductivity depends upon the loop

expansion for the permutation entropy due to wave function

symmetrization. I have therefore added section 7.7 which

derives this in detail for single-particle states, and illustrates

it with the well-known example of a system of independent

quantum oscillators, section 7.7.4, albeit from the new

perspective of the loop expansion.

I’ve also taken the opportunity of this second edition to

correct a number of typographical errors in the original. The

titles of the original chapters have changed, but their

content remains largely the same. I hope that readers find

the new chapters and sections a worthwhile extension of the

book and an informative and perhaps surprising illustration

of the way in which novel types of entropy arise in

important applications.



Phil Attard 
Sydney 

June, 2022



Author biography

Phil Attard

Dr Phil Attard has researched broadly in statistical

mechanics, thermodynamics, and colloid and surface

science. He has held academic positions at various

universities in Australia, Europe, and North America, and he

was a Professorial Research Fellow of the Australian

Research Council. He has authored some 150 papers, 10

review articles, and 5 books.

Attard has made seminal contributions to the theory of

electrolytes and the electric double layer, to measurement

techniques for atomic force microscopy, and to computer

simulation and integral equation algorithms for condensed

matter. He is perhaps best known for his discovery of

nanobubbles and for his role in establishing their nature.

Recent research has focused on non-equilibrium

thermodynamics and statistical mechanics, and on the

formulation of quantum statistical mechanics. He has

identified a new type of entropy—the second entropy—as



the variational principle for non-equilibrium

thermodynamics, and he has derived the general form of

the non-equilibrium probability distribution for statistical

mechanics. The theory provides a coherent approach to

non-equilibrium systems and to irreversible processes, and

has led to the development of stochastic molecular

dynamics and non-equilibrium Monte Carlo computer

simulation algorithms. His formulation of quantum statistical

mechanics in classical phase space has led to the

permutation loop expansion for wave function

symmetrization, and has provided new insight into Bose–

Einstein condensation, superfluidity, and high temperature

superconductivity.

Previous books:

Attard P 2002 Thermodynamics and Statistical Mechanics:

Equilibrium by Entropy Maximisation (London:
Academic)

Attard P 2012 Non-Equilibrium Thermodynamics and

Statistical Mechanics: Foundations and Applications

(Oxford: Oxford University Press)
Attard P 2015 Quantum Statistical Mechanics: Equilibrium

and Non-Equilibrium Theory from First Principles

(Bristol: IOP Publishing)
Attard P 2018 Entropy Beyond the Second Law.

Thermodynamics and Statistical Mechanics for

Equilibrium, Non-Equilibrium, Classical, and Quantum

Systems (Bristol: IOP Publishing)
Attard P 2021 Quantum Statistical Mechanics in Classical

Phase Space (Bristol: IOP Publishing)



IOP Publishing

Entropy Beyond the Second Law (Second Edition)

Thermodynamics and statistical mechanics for equilibrium, non-equilibrium, classical, and

quantum systems

Phil Attard



(1.2

a)

(1.2

b)

(1.1

)

Chapter 1

Entropy counts: universal nature of the statistical

entropy

‘How do I love thee, let me count the ways’
(Browning 1850)

‘You should call it entropy, because nobody knows what entropy really is’
(von Neumann to Shannon circa 1939)

‘Shannon entropy and Boltzmann entropy are completely unrelated’
(Kline 1999)

The main aim of this chapter is to define entropy in its generic form. Several

applications and illustrations are also given as an aid to understanding and applying

entropy.

One of the issues that will be addressed in this chapter is the meaning of the Gibbs–

Shannon information entropy,

S = −kB∑
α

℘α ln ℘α.

Here kB is Boltzmann’s constant and ℘α is the probability of the state α of the system.

This equation appears in almost all books on statistical mechanics or statistical

thermodynamics, and it would be fair to call this the conventional expression for the

entropy. It was given explicitly by Boltzmann (1866) and by Gibbs (1902). Upon it is

founded Shannon’s (1948) information theory and Jaynes’ (1957, 2003) maximum entropy

formulation of statistical mechanics and probability theory.

In my opinion, there is a great deal of misunderstanding about this expression. Most

workers believe that it is ‘the’ entropy, and that it should be maximized. And yet there are

others who believe that it is unrelated to the thermodynamic entropy. I myself believe

neither, and in section 1.1.3 I will give the derivation of the full expression for the entropy

and explain the proper use of this particular expression for the so-called information

entropy.

1.1 Entropy, weight, probability, and information

One might think that any book on entropy, particularly any book that focuses on its role in

thermodynamics and statistical mechanics, would begin with the Second Law of

Thermodynamics,

All systems evolve in the direction of increasing entropy.

Alternatively,

The entropy increases during spontaneous changes of a system.

The very simplicity of the law underscores its universality and profundity.
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But the problem with beginning with the Second Law is that entropy is undefined and

unexplained by it. And in consequence the reason for the law is not evident. To accept the

law as merely an empirical fact confirmed by countless measurement is to sell reason

short. From that limited point of view the Second Law of Thermodynamics is nothing but

superstition, a magic spell to mesmerize the credulous, an incantation to be memorized

and repeated with mind closed to further possibilities and new applications. Much better

instead to understand the nature of entropy, for then one might hope to know when the

law does not apply (in fact, systems where entropy has spontaneously decreased are quite

common), and to develop an appropriate version of the law for new situations beyond

those that form its empirical basis.

Another reason to eschew the Second Law of Thermodynamics as a starting point is that

it is the second law. If ordinal numbers mean anything, then surely the normal precedent

should be followed by beginning with the First Law of Thermodynamics, which is

sometimes stated as

The change in energy is the work done plus the heat flow.

But in many ways it is preferable to give it in the form

In short,

Energy is conserved.

 

An orderly account would obviously discuss the First Law of Thermodynamics before the

Second Law. But this raises the question of how to relate the First Law to entropy.

1.1.1 Conservation, counting, and linear additivity

The First Law is based upon the concept of conservation. Things that are conserved can be

counted. And counting is what defines entropy.

The ability to count is a fundamental human ability that occurs in a core part of the

brain, which indicates that it is very old in evolutionary terms. Our ancestors no doubt

counted things like tribe members, animals, and possessions. These are all concrete

objects that we would say in the present context share the property of being conserved.

There would be little point in, say, counting the coins in your purse if the coins appeared or

disappeared at random. One can shake the purse, or move it from one place to another

without changing the number of coins.

This is not to say that counting is restricted to conserved objects. Immaterial things

such as kisses can be counted without invoking any conservation law. But certainly in the

present context it is the counting of conserved objects that is the prime focus.

Closely connected to the notion of conservation is the notion of linear additivity. For

example, one can transfer some coins from one purse to another. The total number of coins

is conserved, which is to say that the sum of the coins in the two purses is the same before

and after the transfer.

The notion of linear additivity is not identical to that of conservation. For example, the

square root of the number of coins in a purse is conserved. But the sum of the square roots

of the coins in two purses is not the same after a transfer as before. Obviously linear

additive conserved variables are the easiest to deal with. And for all practical purposes we

can restrict attention to the conservation of linear additive quantities. Of course it is no

Energy cannot be created or destroyed,

but it can be converted from one form to another.



accident that the quantities that form the basis for scientific theories are precisely those

quantities that are both conserved and linear additive. Examples include energy,

momentum, mass, and charge. More familiar to non-scientists, quantities like length, area,

volume, and number are also conserved and linear additive.

Some quantities of value in the physical sciences are linear additive without necessarily

being conserved. As we shall see, entropy is one such linear additive, non-conserved

quantity. As we shall also see, it is most useful to formulate entropy as dependent on linear

additive quantities, which mostly but not always are also conserved quantities. Part of the

challenge in developing scientific theories from first principles is in identifying and

formulating the linear additive quantities that will form its basis.

One of the direct consequences of linear additivity is the thermodynamic concept of

extensivity. Essentially linear additive conserved variables scale with the size of the

system, other things (intensive variables) being equal. Intensive variables are neither linear

additive nor conserved; examples include pressure, temperature, voltage and surface

tension. It will be argued that entropy is best formulated as dependent solely on extensive

variables. This very simple idea of identifying the extensive variables and ensuring the

proper scaling with system size will be used profitably in several chapters below to guide

the development of quite sophisticated theory.

1.1.2 Probability, weight, and entropy

From counting it is but a short step to probability, which leads directly to entropy.

Probability theory is best formalized in terms of set theory. With the exception of parts of

chapter 7, classical probability theory is invoked throughout.

We suppose that the system exists in a variety of states. These states can be

microstates or macrostates. Microstates are the smallest indivisible states of the system.

For example the specified positions and momenta of all the particles. A macrostate is a set

of microstates with the same value of some physical observable. A collective of

macrostates correspond to the same physical observable, for example the energy

collective.

The set of all microstates is complete (the system at any one time must be in a

particular microstate), and the microstates are disjoint (the system cannot be in more than

one microstate at a time).

The set of all macrostates of a given collective is complete, and the macrostates of a

given collective are disjoint. Degenerate macrostates are forbidden in the formalism, which

means that there is a one-to-one relationship between the macrostate labels and the

values of the corresponding physical observable. The system can be simultaneously in

macrostates of different collectives.

We are interested in the probability of the system being in a particular state. We label

microstates by a Roman letter and macrostates by a Greek letter. We suppose that each

microstate j has a non-negative weight wj. The weights are usually defined up to a positive

scale factor. Weight is the generalization of number when the objects or states being

counted are not identical.

For the general formulation of the theory it does not matter how these weights come

about or are calculated. For the application of the theory to a specific problem it does. The

most convenient situation is when the microstates can be chosen such that they have

equal weight, which may then be set to unity. In this case weight is the same as number.

This is not necessary for either the formal development of the theory or for specific

applications.

The weight of a macrostate α is the total weight of the microstates that it contains,

Wα = ∑
j

wjδ(Aj − Aα) = ∑
j∈α

wj.
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The first equality contains a Kronecker-δ function (δ(0) = 1, δ(x) = 0, x ≠ 0). This follows

because the microstate j is in the macrostate α if the value of the relevant observable

for the microstate is equal to the value that defines the macrostate, Aj = Aα. In the event

that the microstates have equal weight and that this is set to unity, then the macrostate

weight is just the number of microstates that it contains.

The total system weight is the sum of the weights of the microstates. Because a

collective is complete and disjoint, this is also equal to the sum of the macrostate weights,

W = ∑
j

wj = ∑
α

Wα.

 

The probability of the system being in the microstate j is just

℘(j) =
wj

W
.

This is obviously normalized, ∑j ℘(j) = 1. Similarly the probability of the system

being in the macrostate α is just

℘(α) =
Wα

W
.

 

Consider now two different macrostate collectives, for example energy and number of

particles (without enforcing any conservation laws at this time). Label the macrostates of

these by α and β. Because macrostates of different collectives are not disjoint, the

probability that the system simultaneously has value α for the first observable and β for

the second is

This is proportional to the total weight of the set formed by the intersection of the two

macrostates, figure 1.1.

℘(α, β) =
1

W
∑

j

δ(Aj − Aα)δ(Bj − Bβ)wj

=
1

W
∑

j∈Aα∩Bβ

wj.



(1.9

)

(1.1

0)

(1.1

1)

(1.1

2)

(1.1

3)

Figure 1.1. Two macrostate collectives. The α macrostate of one (solid lines) and the

β macrostate of the other (dashed lines) are labeled. The joint state αβ, their

intersection, is shaded.

Given that the system is in the macrostate α, then the probability that it is in the

macrostate β is

This is called the conditional probability, and it is usually written in the form of Bayes’

theorem

℘(α, β) = ℘(β ∣ α)℘(α).

 

By the usual rules of set theory, the probability that the system is in the macrostate α,

or in the macrostate β is

℘(Aα ∪ Bβ) = ℘(α) + ℘(β) − ℘(α, β).

The final term corrects for double counting of the microstates in the intersection of the

two macrostates.

Now consider the case that the total system is made of two independent, non-

interacting sub-systems. The macrostates of interest for the first sub-system may be

labeled α and that for the second β. It does not matter in this case whether or not these

correspond to the same physical observable because the sub-systems are independent.

The weight of the macrostate αβ of the total system is the product of the weights of the

individual systems,

Wtot(αβ) = W1(α)W2(β).

(This is readily checked by taking the weight equal to the number of microstates.) The

total weight of the total system is also just the product of the total weights,

Correspondingly, the probability for the total macrostate is the product of the individual

probabilities,

℘tot(αβ) = ℘1(α) ℘2(β).

℘(β ∣ α) =
1

Wα
∑

j∈Aα∩Bβ

wj

=
℘(α, β)

℘(α)
.

Wtot = ∑
α,β

Wtot(αβ)

= ∑
α

W1(α)∑
β

W2(β)

= W1W2.
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As mentioned in the preceding subsection, the most convenient physical variables

are those that are linear additive. The above example of two independent sub-systems

shows that weight and probability are multiplicative rather than additive. But this

deficiency is easy to overcome by taking logarithms. One simply defines the entropy as the

logarithm of the weight. The total entropy is

S = kB ln W .

Here kB = 1.38 × 10−23J K−1 is Boltzmann’s constant. In the event that the

microstates have equal unit weight, W is just the total number of microstates and this

corresponds to Boltzmann’s original definition of entropy. Similarly, the entropy of a

microstate is

Sj = kB ln wj,

and the entropy of a macrostate is

Sα = kB ln Wα.

Because weights are usually defined up to a multiplicative constant, entropy is also

defined up to an additive constant.

It follows from these that the probability of a state is proportional to the exponential of

its entropy,

℘(α) =
wα

W
=

eSα/kB

W
.

Of course the same functional form holds also for microstates. It is important to note

that there is a one-to-one relationship between entropy and probability (apart from the

additive constant, which anyway can be absorbed into the total weight). This means, for

example, it would make no sense to attempt to maximize the entropy with respect to the

probability.

Entropy is commonly identified with disorder and unpredictability. This is a reasonable

picture because entropy increases with weight, and weight can be thought of as number.

Hence at the simplest level, the greater the entropy of a macrostate, the more microstates

that it contains. Each of these microstates is a possible configuration of the system, and it

is harder to predict which one the system is actually in when there are many possibilities

than when there are just a few possibilities. Furthermore there are many more disordered

arrangements of objects than there are ordered arrangements. This is illustrated in figure

1.2. One can see that there is just one microstate in the ordered ‘phobic’ macrostate (the

first line, no like circles touching) and just two microstates in the ordered ‘philic’

macrostate (the second line, all like circles clustered together). With such a definition of

order, one can see that in general the majority of arrangements are disordered. Hence

again there is a consonance between increasing entropy and increasing disorder.
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Figure 1.2. All 10 arrangements of two filled and three empty circles in a line. The

first line shows the ‘phobic’ and the second shows the ‘philic’ macrostate.

1.1.3 Information entropy

In view of the above definitions it is straightforward to write the total entropy as a

functional of the macrostate probability (Attard 2000, 2012),

This formula holds as well for microstates as for any collective of macrostates.

Comparing this to the conventional result, equation (1.1), one must conclude that both

cannot be correct.

Clearly equation (1.1) is missing the term ∑α ℘αSα, which can be interpreted as the

average entropy per macrostate. The term that equation (1.1) does include, 

−kB ∑α ℘α ln ℘α, can be interpreted as the uncertainty due to the system having access

to multiple macrostates. In any case, one needs both terms to give the total entropy of the

system. Further, both terms are necessary for the total entropy of the system to be

invariant to the representation: both the functional form of the formula and the numerical

result for the total entropy are the same irrespective of the collective of macrostates or

microstates that are used.

S = kB ln W

= kB∑
α

℘α ln W

= kB∑
α

℘α[ln Wα − ln
Wα

W
]

= ∑
α

℘α[Sα − kB ln ℘(α)].



Figure 1.3 shows the exact entropy per site for the two-dimensional Ising model. This is

a classic benchmark in statistical mechanics, with Onsager’s solution representing perhaps

the first exact solution of a non-trivial, physically realistic model that possesses a phase

transition (Baxter 1982). The total entropy, which is the logarithm of the partition function,

increases with increasing coupling between the spins. At high coupling this is dominated by

the reservoir entropy, which is minus the average energy divided by the temperature. At

low coupling it is dominated by the sub-system entropy, which is essentially the weighted

number of spin configurations in the most likely energy state. When the spins interact

weakly, they are free to randomly and independently orient, which increases their disorder

and the entropy of the sub-system.

Figure 1.3. The entropy per site for the Ising model on a square lattice as a function

of the coupling parameter (canonical equilibrium system). The curves are the exact

result for the total (solid), reservoir (dotted), and sub-system (dashed) entropy. The

symbols are the Gibbs–Shannon information entropy using the four-spin probability

function (Markov superposition formula (Attard 1999)).

It can be seen in figure 1.3 that the Gibbs–Shannon information entropy, equation (1.1),

evaluated in this case using the four-spin probability ℘2,2(σ4), gives only the sub-system

part of the total entropy (see section 5.6 for details of the calculation). It neglects the

reservoir entropy, which is effectively an internal entropy for each spin microstate. One can

see that when the spins are highly correlated, the Gibbs–Shannon entropy is a negligible

part of the total entropy.

One of the major uses of equation (1.1) has been in Jaynes’ (1957, 2003) maximum

entropy theory, in which the probability distribution that maximizes S[℘] is chosen. A

similar use of S[℘] is made in Shannon’s (1948) information theory. But in both cases the

procedure is dubious for two reasons. First, the idea is obviously based upon the Second

Law of Thermodynamics. We have not yet derived the Second Law of Thermodynamics but

when we do we shall show that it holds for specific types of systems and variables. It does

not hold for the probability distribution. It does not even make sense to say that the

entropy is a maximum with respect to the probability distribution because there is a one-to-

one relationship between the entropy of a state Sα and the probability of a state ℘α. The

total entropy of the system is fixed by the sum of the entropies of the macrostates and it is

pointless to attempt to use the total entropy to find the macrostate probability. The second

reason that maximizing equation (1.1) with respect to the probability is pointless is that it
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only gives part of the entropy of the system, not the total entropy. Even if the Second Law

of Thermodynamics were applicable, then it would refer to the total entropy, not part of the

total entropy. What would be the use of maximizing part of the entropy?

In some books one sees it written that equation (1.1) can be shown to be true for

equally likely states, as if this justifies the formula more generally. In this case the

probability of a microstate is just ℘i = 1/n, where the total number of microstates is 

n = ∑i. Since the states are equally likely, their weight may be set to unity, wi = 1, and

their entropy may be set to zero, Si = kB ln wi = 0. In this case both equations (1.1) and

(1.19) give the total entropy correctly as S = kB ln n. But there is no point in using

equation (1.1) for equally likely states because if you know the number of equally likely

states then you already know the total entropy. There is not even any point in using

equation (1.19) more generally because if you know Sα, which is required by that

expression, then you already know the macrostate weight Wα and probability ℘α, the total

weight W = ∑α Wα, and the total entropy S = kB ln W . And finally, the fact that

equation (1.1) is true for equally likely states does not make it true in general or useful in

particular.

The reader may be interested to pinpoint where Shannon (Shannon and Weaver 1949,

appendix 2) and Jaynes (2003, section 11.3) go wrong in their derivation of the entropy as

a functional of the probability, equation (1.1). With the microstate probability ℘i and the

macrostate probability ℘α they say that the entropy of the system can be written as a

functional of these with an additional term representing the uncertainty of locating the

microstate within each macrostate,

S[℘i] = S[℘α] +∑
α

℘αSα, Sα ≡ S[℘(i ∣ α)].

Here the macrostate entropy Sα ≡ S[℘(i ∣ α)] is meant to be the same functional of

the probability as S[℘i] and S[℘α], with the conditional probability of microstates in the

macrostate α as its argument.

As I have pointed out in greater detail elsewhere (Attard 2012), this equation has an

internal contradiction. The notation in equation (1.20) implies that the microstate

functional S[℘i] and the macrostate functional S[℘α] are the same function of their

arguments. But this contradicts the content of equation (1.20), which implies that S[℘i] is
the total entropy and that S[℘α] is only part of the total entropy. The problem is that whilst

Shannon and Jaynes accept that macrostates have internal entropy S[℘(i ∣ α)] (and so 

S[℘α] is only part of the total entropy), they assume that microstates do not (S[℘i] is the

entire total entropy). The last assumption is incorrect for microstates with non-uniform

weight. The way to resolve this discrepancy is to rewrite equation (1.20) in terms of the

macrostate probability with the total entropy explicit,

Using the subsequent arguments of Shannon (Shannon and Weaver 1949, appendix 2),

and of Jaynes (2003, section 11.3), this can be solved to yield the correct expression for the

entropy as a functional of the probability, equation (1.19) (Attard 2012), as will now be

shown.

Following Shannon and Jaynes, for uniform microstate, ℘u
i = 1/n, and uniform

macrostates, ℘u
α = m/n, suppose that S[℘u

i ] = σ(n), S[℘u
α] = σ(n/m), 

S[℘u(i ∣ α)] = σ(m), and that σ(1) = 0. Then one has

Stotal = S[℘α] +∑
α

℘αSα, Sα ≡ S[℘(i ∣ α)].
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which has solution σ(n) = kB ln n. For the case of non-uniform macrostates, 

℘α = mα/n, and uniform microstates ℘u
i = 1/n, then S[℘u(i ∣ α)] = σ(mα), and

or

This shows that the ℘ ln ℘ term is just part of the total entropy, and that the full

expression is

which is of course equation (1.19).

In describing the Gibbs–Shannon expression equation (1.1) as either incorrect, or else, in

the uniform probability case, as correct but pointless, one should concede that this formula

has long been successfully used in communications and information theory. Perhaps the

problem is one of nomenclature. If Shannon had just called his H-function the information,

as he originally introduced it (Shannon 1948, section 6), rather than calling it the entropy

based on its resemblance to a similar function used in statistical mechanics, then it could

have been judged solely on its utility for informatics, rather than by whether or not it

represented the total entropy of a physical system.

As a concrete example, consider a fair six-sided die. In the first case let the number

showing be reported, which means that there are six states each with probability ℘i = 1/6
and internal entropy Si = 0. In this case the Gibbs–Shannon information entropy is the

same as the total entropy of the system,

SGS = Stotal = kB ln 6.

In the second case, suppose that the state of the die is reported as 1, 3, 5 or even. The

first three states each have probability ℘i = 1/6 and entropy Si = 0, and the final state

has probability ℘4 = 1/2 and entropy S4 = kB ln 3. The Gibbs–Shannon information

entropy is in this case

{ }

Stotal = σ(n/m) +∑
α

℘ασ(m)

= σ(n) +∑
i

℘iσ(1),

Stotal = σ(n)

= S[℘α] +∑
α

℘ασ(mα),

S[℘α] = kB ln n −∑
α

℘αkB ln mα

= − kB∑
α

℘α ln ℘α.

Stotal = S[℘α] +∑
α

℘αSα

= ∑
α

℘α[Sα − kB ln ℘α],
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SGS = kB{
3

6
ln 6 +

1

2
ln 2} = kB ln √12 ≈ kB ln 3.5,

which is less than in the first case. The total entropy is

Stotal = SGS + kB{
3

6
ln 1 +

1

2
ln 3} = kB ln 6,

which is the same as in the first case. Arguably, information has been lost in the

second case because the even numbers are not individually identified, and so the Gibbs–

Shannon information entropy may be regarded as a realistic quantification of the

information in the two systems. Similarly, because the two systems are physically identical,

the total entropy must be the same in each, which it is. This example suggests that the

Gibbs–Shannon formula should be reserved for informatic applications, and that when

applied to physical systems the additional contribution required for the total entropy should

be added.

There has been a deal of discussion over the years as to whether or not the Gibbs–

Shannon information entropy is in any way related to the thermodynamic or physical

entropy. My attitude is that on the one hand in the physical sciences it is incorrect to imply

that the Gibbs–Shannon information entropy is ‘the’ entropy of a physical system. Clearly it

is only part of the total entropy, as the above analysis, equation (1.19), and the results in

figure 1.3 show. On the other hand it is part of the total entropy of a physical system, and it

offers a relatively straightforward and quickly converging way to calculate that part (see

section 5.6). This part can be difficult to obtain by other methods, whereas the remaining

part, the internal entropy of the macrostate, which often turns out to be the reservoir

entropy of a physical system, is not difficult to obtain. The latter can be simply added to

the Gibbs–Shannon information entropy to get the total entropy. Hence, provided that one

is explicit that the Gibbs–Shannon information entropy is only part of the total entropy, it

can be quite useful in thermodynamics and statistical mechanics.

1.1.4 Continuum

The above analysis was implicitly for discrete states. In many cases it is worthwhile taking

the continuum limit. It is quite straightforward to transform the sums to integrals in the

usual fashion. Alternatively, one can derive the results for the continuum directly, as is now

done.

Let the state of the system be x, a point in a multidimensional space, and let ω(x) be

the weight density, which is non-negative. (The quantity x may be regarded as the

continuum analogue of microstates, although similar procedures also hold for continuum

macrostates.) The total weight of the system is

W = ∫ dx ω(x).

The total entropy is just the logarithm of this S = kB ln W .

The probability density is proportional to the weight density

℘(x) =
ω(x)

W
.
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This is obviously normalized, ∫ dx ℘(x) = 1. The probability density has the interpretation

that ℘(x)dx is the probability of the system being within dx of x.

The average of a function of the state of the system is

⟨f⟩ = ∫ dx ℘(x)f(x).

 

One can introduce an arbitrary volume element Δ(x), and define the entropy of the

state of the system in terms of it as

S(x) = kB ln [ω(x)Δ(x)].

With this the probability density is

℘(x) =
eS(x)/kB

Δ(x)W
.

The volume element Δ(x) is solely a matter of convenience that makes the argument

of the logarithm dimensionless and gives the probability density the correct dimensions.

Obviously the probability density is independent of the choice of Δ(x), since the one

implicit in the state entropy cancels with the one that appears explicitly in the probability

density. Since the volume element has no physical consequences, it can be taken to be a

constant or it could be ignored altogether.

The total entropy of the system may be written as a functional of the probability density,

This is the continuum analogue of equation (1.19). Again the arbitrary volume element

that appears explicitly here, cancels with that implicit in S(x), and the total entropy is

independent of the choice of Δ(x).

In the case of the continuum, the macrostates are represented as hypersurfaces in the

space. These hypersurfaces correspond to constant values of particular observables. In

general the observables depend upon the state of the system x.

1.2 A combinatorial example

In this section a simple combinatorial example is given that illustrates the use of entropy.

The analysis follows Attard (2002, section 1.2).

1.2.1 Entropy

S = kB ln W

= ∫ dx ℘(x)kB ln W

= ∫ dx ℘(x)[S(x) − kB ln
eS(x)/kB

W
]

= ∫ dx ℘(x)[S(x) − kB ln {℘(x)Δ(x)}].
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Suppose that the system consists of a container with N cells and that there are currently 

n ⩽ N  objects in the container, with at most one object per cell. A microstate of the

system is a specification of which cells are occupied. There are 

WN (n) = N Cn ≡ N!/(N − n)!n!  possible microstates. The entropy of the system with

this number of cells and objects is therefore

SN (n) = kB ln WN (n) = kB ln
N!

(N − n)!n!
.

 

Now add a second container of M cells containing m objects to the system. The number

of microstates for this container is WM (m) = M Cm, and the entropy for this second

container alone is SM (m) = kB ln WM (m). The number of microstates of the total

system with the fixed allocation of objects in the two container is

WN ,M (n, m) = WN (n)WM (m).

It is the product that appears because for each configuration of one container all

configurations of the other container are possible. The entropy of the total system with the

fixed allocation is obviously

This is an explicit example of the linear additive nature of entropy.

1.2.2 Equilibrium allocation

Now introduce a transition rule that allows exchange of objects between the two

containers. Choose a cell at random in the first container and a cell at random in the

second container and swap their contents. (One can use similar transition rules within each

container to change their internal configurations, but this is not necessary for what

follows.) Obviously if both cells are occupied or if both cells are empty nothing happens.

But if the first cell is occupied and the second cell is empty, then an object is transferred

from the first container to the second: n ⇒ n − 1 and m ⇒ m + 1. The total number of

objects ntot = n(t) + m(t) is conserved by the transfer rule.

Intuitively, one expects that on average objects will move from the container with the

greater concentration to that with the lesser. It is concentration of particles rather than

number of particles that is relevant because simply doubling the size of the container and

doubling the number of particles does not change the probability of a net transfer.

Eventually a steady state will be reached where there is no net transfer, and the

concentrations are the same in the two containers. (Concentration is an example of an

intensive variable, whereas number is an extensive variable. It is quite common in

thermodynamics that the optimum state is found by equalizing intensive variables.) The

steady state will treat objects and empty cells equally, since the transfer of an object in

one direction is equivalent to the transfer of an empty cell in the opposite direction.

In order to makes this intuition quantitative, one needs the expression for the transfer

probability. The probability of a cell in the first container being occupied is just n/N, and the

probability of it being empty is of course (N − n)/N . Analogous expressions hold for the

SN ,M (n, m) = kB ln WN ,M (n, m)

= kB ln WN (n) + kB ln WM (m)

= SN (n) + SM (m).
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second container. The probability for an object to be transferred from the first container to

the second is therefore

℘(1 → 2) ≡ ℘(n − 1 ∣ n) =
n

N

M − m

M
.

As the product of two independent normalized probabilities, this is correctly

normalized. Obviously the probability of an object going from the second container to the

first is

℘(2 → 1) ≡ ℘(n + 1 ∣ n) =
N − n

N

m

M
.

The probability of no nett exchange is just

℘(n ∣ n) =
n

N

m

M
+

N − n

N

M − m

M
.

 

The steady state of no nett transfer is denoted with an over-line, n = n̄ and m = m̄. At

this point the transfer probabilities must be equal, ℘(n̄ − 1 ∣ n̄) = ℘(n̄ + 1 ∣ n̄), which is to

say

n̄M − n̄ m̄

NM
=

m̄N − n̄ m̄

NM
, or

n̄

N
=

m̄

M
.

As was intuited above, there is no nett transfer on average when the proportion of

occupied cells is the same in both containers. Clearly one has the same result for empty

cells, (N − n̄)/N = (M − m̄)/M .

1.2.3 Maximum entropy

It is now shown that the entropy of the total system is a maximum in this steady state.

Hence it is reasonable to call it the equilibrium state. It will be shown below that the

transition rule drives the system to this state, and that it is stable to small fluctuations.

The total entropy for the system constrained to be in the equilibrium state is

SN ,M (n̄, m̄) = kB ln
N!

(N − n̄)!n̄!
+ kB ln

M!

(M − m̄)!m̄!
.

This is the logarithm of the number of distinct arrangements of objects in each

container for the equilibrium allocation.

Now consider a state on one or other side of the equilibrium state, n = n̄ + p and 

m = m̄ − p, and consider a neighboring state, n′= n + 1, and m′= m − 1. If p > 0 then

there are more than the equilibrium number of objects in the first container, n > n̄, and if 

p < 0 then there are less than the equilibrium number of objects in the first container, 

n < n̄. The difference between their entropies is

{
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where α ≡ n̄/N = m̄/M . If p > 0 (n′= n + 1 is further from n̄ than n), both fractions

are less than unity, the logarithm is negative, and the entropy difference is negative.

Hence the entropy decreases moving further away from equilibrium and increases toward

equilibrium. If p < 0 (n′= n + 1 is closer to n̄ than n), both fractions are greater than

unity, the logarithm is positive, and the entropy difference is positive. Hence the entropy

increases toward equilibrium and decreases moving further away from equilibrium. One

concludes that the total entropy is a concave down function that attains its maximum at

equilibrium n̄.

One has to distinguish between the constrained entropy and the unconstrained entropy.

If objects are transferable between the two containers, then the total number of distinct

configurations is WN+M (n + m) = N+M Cn+m, since all cells are now accessible to all

objects. The total entropy is the usual logarithm of this 

SN+M (n + m) = kB ln WN+M (n + m). This is the unconstrained entropy, where n and m

are not individually fixed because the containers are effectively combined.

The total number of configurations in this unconstrained case must be greater than any

of those of the isolated containers with a fixed allocation of the objects. The latter case is

the constrained entropy case. The reason that the unconstrained entropy must be greater

than the constrained entropy is that it includes all the configurations of the latter, plus all

the configurations with a different allocation of the objects. That is, 

WN+M (n + m) ⩾ WN (n)WM (m) or in terms of the entropy, 

SN+M (n + m) ⩾ SN (n) + SM (m), for any n, m. (This is a strict inequality unless N or M

is 0, or unless there are no objects, n + m = 0, or no empty cells, n + m = N + M .) One

concludes that the entropy of the two containers able to exchange objects is greater than

the entropy of the two isolated containers with the equilibrium allocation of objects, which

is greater than the entropy of any other allocation of objects to the isolated containers,

SN+M (n + m) ⩾ SN (n̄) + SM (m̄) ⩾ SN (n) + SM (m),

where n̄ + m̄ = n + m, and n̄/N = m̄/M . This behavior of the constrained entropy is

shown in figure 1.4.

SN ,M (n′, m′) − SN ,M (n, m) = kB ln{
(N − n)!n!

(N − n − 1)!(n + 1)!
×

(M − m)!m!

(M − m + 1)!(m − 1

= kB ln
N − n

n + 1

m

M − m + 1

= kB ln
α −

p

M

α +
p + 1

N

1 − α −
p

N

1 − α +
1 + p

M

,
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Figure 1.4. The constrained total entropy for two containers, N = 18 and M = 24, with

a total of n + m = 12 particles, as a function of n. The maximum 

SN (n̄) + SM (m̄) = 21.8kB occurs at n̄ = 5. The dotted line is the unconstrained total

entropy, SN+M (n + m) = 23.1kB.

Note that it is the constrained entropy that is linear additive.

1.2.4 Stability and the direction of motion

We now prove that the equilibrium state is stable, which is to say that if n = n̄ + p, 

m = m̄ − p, then ℘(1 → 2) > ℘(2 → 1) if p > 0, and vice versa. For arbitrary p we have

where α ≡ n̄/N = m̄/M . Since the number of occupied cells cannot be negative, one

must have ∣ p ∣⩽ n̄, and ∣ p ∣⩽ m̄, and since the number of empty cells cannot be negative

one must have ∣ p ∣⩽ N − n̄, and ∣ p ∣⩽ M − m̄. Hence, by inspection, if p > 0, then the

two fractions are both greater than unity, and if p < 0, then the two fractions are both less

than unity. Hence one can conclude that

These say that if n > n̄, then there is more likely to be a decrease in n than an

increase, and vice versa. This shows that the equilibrium state is a stable state, which is to

℘(1 → 2)

℘(2 → 1)
=

n(M − m)

(N − n)m

=
(n̄ + p)(M − m̄ + p)

(N − n̄ − p)(m̄ − p)

=
(α +

p

N
)

(α −
p

M
)

×
(1 − α +

p

m
)

(1 − α −
p

N
)

,

℘(1 → 2)

℘(2 → 1)
= {

> 1, if n > n,

< 1, if n < n.



say that fluctuations in n from n̄ are likely to be countermanded by the subsequent

transitions.

This proof of the stability of the equilibrium state shows that if the system is displaced

from the equilibrium state, either by spontaneous fluctuations, initial preparation, or forces

of constraint, then there is a nett driving force toward the equilibrium state. The most likely

flux of particles is in the direction of increasing constrained entropy. Although the velocity

has not been discussed, on symmetry grounds (vectors are proportional to vectors) one

might anticipate that it is proportional to the gradient in entropy.

Finally, there is nothing in this model that precludes a spontaneous fluctuation from the

equilibrium state. During such a fluctuation the constrained entropy decreases. This shows

that the Second Law of Thermodynamics should not be taken overly literally. For a

macroscopic system fluctuations are relatively small and can be neglected. For a

macroscopic system prepared in a state away from equilibrium, with overwhelming

probability it will evolve in the direction of increasing entropy.

1.2.5 Physical interpretation

The interpretation of these results for this simple combinatorial model gives insight into the

behavior of thermodynamic and statistical mechanical systems more generally. One

fundamental point is the distinction between microstates and macrostates. In the present

example a microstate is a configuration of the objects, which is to say the list of occupied

cells. In contrast, a macrostate is the number of occupied cells in a container, irrespective

of the specific cells occupied. Obviously each macrostate contains many microstates. A

specified macrostate constrains the two containers to hold the given number of objects. If

no macrostate is specified, there is no such constraint, objects are free to transfer between

the two containers, and the number of occupied cells in each container ranges over all

possible values. This means that the number of configurations for the constrained system

(i.e. specified macrostate) is less than the number of configurations without constraint (i.e.

no specified macrostate). It follows that the entropy of a system constrained to be in a

given macrostate (constrained or macrostate entropy) is less than the entropy of an

unconstrained system (unconstrained or total entropy).

If the system is initially set up in a macrostate other than the equilibrium one, then

there is likely a nett flux of objects toward the equilibrium allocation. This is not driven by

any increase in the unconstrained or total entropy because once the total number of

objects is fixed and allowed to transfer between the containers the number of possible

configurations (microstates) does not change. Instead, the evolution toward equilibrium is

a macroscopic flux, with each successive macrostate likely having greater entropy than the

preceding one. That is, it is the entropy constrained by the current value of the quantity in

flux that increases during the approach to equilibrium. It is the constrained entropy that is

a maximum in the equilibrium macrostate.

It ought to be clear that the progress toward equilibrium is a statistical one that holds on

average, or in a most likely sense. It is entirely possible for a temporary reversal of the

macrostate flux to occur due to the random nature of the microstate transitions. Likewise,

once the equilibrium macrostate is attained, there can be temporary fluctuations to nearby

macrostates, which by definition have lower entropy.

The above mathematical analysis shows the increase in the constrained entropy during

the approach to the equilibrium state. The physical reason for this increase does not lie in

the microstates, because the total number of unconstrained configurations is fixed (once

the total number of particles and the freedom to exchange is specified) and hence so is the

total unconstrained entropy. The microstates do not drive the approach to equilibrium.

Transitions between microstates scramble the configurations, but each such microstate

transition is as likely as its reverse. There is no flux and no equilibration at the level of

microstates.



It is the flux in macrostates that equilibrates the system. The essential point is that the

number of microstates differs between macrostates. Because of this the transition between

macrostates is asymmetric. If the entropy increases from macrostate 1 to 2 to 3 (i.e. the

number of microstates in each macrostate increases in this sequence), then a system in a

microstate belonging to macrostate 2 is more likely to make a transition to a microstate in

3 than in 1 simply because there are more target microstates in 3 than in 1.

This point is clear in the present combinatorial example where the transitions are purely

stochastic, and the number of possible target microstates for a given microstate is

proportional to the size of the target macrostate. An example of this is illustrated in figure

1.5. Although this model is highly idealized, the broader point also holds for the statistical

contribution to more physical models with realistic dynamics.

Figure 1.5. All microstate transitions that change the macrostate for a system of two

containers, N = M = 4 with n + m = 4 particles. The initial microstate lies in the

macrostate n = 1, m = 3 (left). There is one transition that decreases n (upper right),

and nine transitions that increase n (lower right). The constrained entropy of the initial

macrostate is S4,4(1, 3) = kB ln 16, that of the n-decreasing final macrostate is 

S4,4(0, 4) = 0, and that of the n-increasing final macrostate is S4,4(2, 2) = kB ln 36,

which in fact is the maximum constrained entropy.

The asymmetry in the macrostate transition probability, ℘(2 → 3) > ℘(2 → 1) if 

S3 > S1, creates the irreversibility in the progress toward equilibrium. Of course the

opposite transition may occur at any instant, but microstate transitions that increase

macrostate entropy are more probable than the reverse, and in the long run these will

occur most frequently.

The equilibrium macrostate is the one with the most microstates. Although fluctuations

to nearby macrostates occur, which necessarily decrease the constrained entropy of the

system, usually the constrained entropy is such a sharply peaked function of the

macrostates that the effects of such fluctuations are relatively negligible.

1.3 Entropy and the Second Law

Let us return to the Second Law as enunciated by Clausius (1850),

The entropy increases during spontaneous changes in the state of asystem.
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Compare this to Boltzmann’s (1895, Brush 1964), identification of the physical basis of

entropy,

The general definition of entropy given earlier in this chapter is slightly broader than

Boltzmann’s, since it uses weight rather than number, but it reduces to Boltzmann’s in the

case that the molecular configurations have equal weight, which they do in the phase

space of an isolated system, but not more generally.

Boltzmann’s insight showed the equivalence of entropy and probability, since for equally

likely molecular configurations, the probability of a state is proportional to the number of

configurations that it contains. This equivalence was made extant in the general definition

of entropy in terms of weight given earlier in the chapter. The relationship of probability to

entropy introduces a stochastic element into thermodynamics, with the Second Law now

interpreted to mean that

This does not have quite the zing of Clausius’ version, but it does have greater

precision. For macroscopic systems the transition probability approaches certainty. This

version of the Second Law was implicitly assumed above in the discussion of the

macrostate transition probability, and it is intuitively obvious. But whether or not

Boltzmann has indeed provided an explanation and a proof of the Second Law of

Thermodynamics requires greater scrutiny.

The probabilistic nature of the Second Law of Thermodynamics can be readily seen. An

equilibrium system does not change macroscopically in time, but due to molecular motion,

fluctuations about the equilibrium state must occur. It will be seen that the relative

magnitude of these fluctuation in macroscopic variables scales inversely with the square

root of the system size, and so they are generally too small to measure experimentally. Any

spontaneous fluctuation away from the equilibrium state must be to a state of lower

entropy, which disproves any literal interpretation of Clausius’ version of the Second Law.

From this one can conclude that the Second Law of Thermodynamics in its literal form

should be applied to systems that have been prepared in an initial state far from

equilibrium, which is to say a low entropy, spontaneously improbable state. In this case the

state of the system will spontaneously evolve toward the equilibrium, maximum entropy,

most probable state, and the probability of such evolution approaches certainty for a

macroscopic system.

Boltzmann’s definition of entropy, equation (1.48), applies to the probability of a state,

whereas the Second Law, especially in its more precise form, equation (1.49), applies to

the probability of transitions between states. Obviously these are different things.

Equilibrium theory depends on Boltzmann’s identification of entropy and probability for a

state, whereas non-equilibrium theory depends on the nature of transition probabilities. It

is slightly perverse that Clausius’ Second Law is always regarded as a law of equilibrium

thermodynamics, whereas a more pedantic interpretation would be that it applies to not-in-

equilibrium systems. In any case in what fashion the transition probabilities are determined

by the Second Law is now discussed.

The challenge is to make more precise the intuitively appealing notion that transitions to

a more probable state should be more probable then transitions to a less probable state.

One would like to deduce something about the transition probability from the state

probability and relate this to the spontaneous evolution of entropy and the Second Law.

The entropy of a state is the logarithm of the number

of molecular configurations in the state.

Spontaneous transitions are more likely to occur

from less probable to more probable states.
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The unconditional probability of observing the transition from the state α to the state α′
in the time interval τ > 0 may be denoted ℘(α′, α ∣ τ). The probability of the reverse

transition is ℘(α, α′∣ τ). Since there is no preferred direction of time in an equilibrium

system, one is just as likely to observe the forward transition as the reverse, 

℘(α′, α ∣ τ) = ℘(α, α′∣ τ). (For simplicity, at this introductory level we assume that the

states are even functions of the molecular velocities.) According to Bayes’ theorem, which

was given above as one of the laws of probability, the unconditional and conditional

probabilities are related as ℘(α′, α ∣ τ) = ℘(α′∣ α, τ)℘(α). Here, ℘(α′∣ α, τ) is the

probability of the system being in the state α′ given that it was in the state α at time τ

earlier, and ℘(α) is the probability that the system is in the state α. For an equilibrium

system the latter does not depend upon time.

For a large time interval, any two states are uncorrelated. In this limit the unconditional

probability reduces to the product of the singlet probabilities, 

℘(α′, α ∣ τ) → ℘(α′)℘(α), τ → ∞. Also, the conditional probability is independent of the

initial state, ℘(α′∣ α, τ) → ℘(α′), τ → ∞. If one now introduces a third state α′′, then in

this limit

℘(α′∣ α, τ)

℘(α′′∣ α, τ)
→

℘(α′)

℘(α′′)
, τ → ∞.

If the state α′ is more probable than the state α′′ (Boltzmann would say it has more

entropy), then this says that a system in the state α is in the long term more likely to make

the transition to α′ than to the state α′′. In other words transitions to states of higher

entropy are more likely to be observed than the reverse. In this sense Boltzmann’s physical

interpretation of entropy explains Clausius’ Second Law of Thermodynamics.

Although illuminating, this argument only applies in the long-time limit, and so it cannot

be the whole story. On shorter time intervals correlations between the initial and

destination states can be expected. Although not rigorous, one can make a still informative

argument for finite time intervals. Let S(x) be the entropy of the state x. We are interested

in the microstate transitions, and let n±(x) denote the number that increase or decrease

the value of x. Now for an equilibrium system, the number of forward transitions must

equal the number of reverse transitions, n+(x) = n−(x). Let us make the intuitively

appealing assumption that the number of such molecular transitions is proportional to the

number of molecular configurations, n±(x) ∝ exp S(x)/kB. The interpretation of this

assumption is that larger states (i.e. those with the greater number of molecular

configurations) have a larger number of transitions. Now consider that a state has finite

width Δx > 0. In this case the excess number of forward transitions is 

n+(x + Δx/2) − n−(x − Δx/2) ∝ ΔxdS(x)/dx. One sees that if the states are ordered

in terms of increasing entropy, (i.e. dS(x)/dx ⩾ 0), then there are more forward

transitions in the direction of increasing entropy than backward transitions. This is the

essence of the Second Law of Thermodynamics.

This argument provides a second link between Boltzmann’s interpretation of entropy

and Clausius’ Second Law of Thermodynamics. The essential points are that the number of

transitions between configurations is proportional to the number of configurations

themselves. It is also essential that the transitions are steps of finite width, which is to say

that this does not apply for infinitesimal transitions. It follows from this second argument

that the driving force for the transitions is the gradient in the entropy, as was asserted

above in the combinatorial example, section 1.2.4. A more sophisticated version of these

arguments is given in section 3.1.5.



1.4 Nature of probability and randomness

Since entropy is in essence the same as probability (because there is a one-to-one

relationship between the two), it is worthwhile discussing the conceptual basis of

probability in the physical sciences. Such a fundamental understanding of probability

determines not just the mathematical formulation of probability theory, but also the

quantitative values of the weights that are to be applied to the microstates that occur in

statistical mechanics.

Probability is also intimately connected to the notion of randomness. Of course classical

statistical mechanics, with which the early parts of this book are concerned, is based on

the classical equations of motion (Newton’s, or equivalently, Hamilton’s). Since these are

deterministic, there is an issue as to how randomness arises in the physical sciences.

1.4.1 Probability

There are three philosophical positions that have been adopted for the nature of

probability. The first is frequency, which holds that the probability of a state (or an event) is

the frequency with which the state occurs in a long sequence of repeated trials. The second

is credibility or degree of reasonable belief. This is also known as the subjective

interpretation of probability, and it holds that the probability of a state is the strength with

which the observer believes that the state will occur. The third is measure (or propensity),

which holds that the probability of a state is the weight of the set of conditions that give

rise to the state.

Of these three philosophical positions, the present author rejects the first two and

embraces the third for the following reasons.

1.4.1.1 Frequency

To say that frequency is probability is to confuse cause and effect. The frequency with

which an event or state occurs is a direct consequence of the probability of the event or

state. In some cases where it is possible to make a sequence of trials, it is possible to

measure probability by the frequency. But in the physical sciences we would say that the

probability of the state existed whether or not the trials were carried out, whereas the

frequency only exists after the trials are performed. Further, once-only events, such as the

winner of a particular horse race, or the weather on a particular day, have a probability

associated with them prior to the event, even though it is physically impossible to repeat

these in a sequence of trials.

Of course some might say that frequency is just a mental device that allows probability

to be explained to the uninitiated, or that allows it to be concretely visualized. But the

problem with this defence is that it replaces the real physical origins of probability with an

imaginary mental artifice. What artificial properties are created by this picture, and what

real properties are overlooked?

This discussion of whether probability causes frequency, or frequency causes probability

is not an empty academic exercise carried out solely for the sake of the argument. It does

have at least one important consequence in the practice and formulation of statistical

mechanics.

The ensemble picture of statistical mechanics is very old, having been used by both

Boltzmann and Gibbs. In fact it is so widely used that many workers would be unaware that

there is any alternative way of formulating statistical mechanics. The ensemble formulation

asserts that the system is but one member of an ensemble of macroscopically identical

systems, and that the probability of a particular state of the system is equal to the

proportion of systems in the ensemble that are in that state. This ensemble interpretation

is applied to classical statistical mechanics, as well as to the density matrix of quantum

statistical mechanics. The evolution of the members of the ensemble in time is said to

correspond to the evolution of the probability. In so far as the proportion of an ensemble in



a given state is the probability of the state, the ensemble picture of statistical mechanics is

obviously just a form of the frequency interpretation of probability.

There are two main objections to the ensemble picture. First, the experimental reality is

that measurements are performed on a single system, not an ensemble of systems.

(Repeat measurements are not the same as an ensemble: they are not essential, and there

are not Avogadros’s number of them.) Either the probability theory that underlies statistical

mechanics works for a single system, or else the theory is a failure. If probability theory

works for a single system, then ensembles are as superfluous as the aether.

Second, the members of the ensemble are implicitly conserved. This implies a

conservation law for the probability during its evolution via the molecular equations of

motion. Conservation laws are very serious laws of nature, and they should not be

postulated without serious reason. That the members of an ensemble are conserved in

someone’s imagination does not make it true that probability is conserved in a real

physical system. In fact it can be shown that for certain non-equilibrium systems weight is

not conserved. This is not something that can be deduced from the ensemble picture.

However, with hindsight, because ensembles are purely imaginary, any law, real or

imaginary, can be added to ensembles to make them behave as they ought to behave. The

invocation of arbitrary laws to make ensemble theory fit nature is neither convincing nor is

it in accord with the way that science ought to be done.

1.4.1.2 Credibility

The credibility or subjectivist notion of probability holds that it is a measure of the strength

of a person’s belief that the state will occur. The beliefs must be rational and in accord with

the rules of inductive reasoning, which happen to be the same as the rules of probability.

However, two people with different information may attribute different probabilities to a

particular state. Jaynes (2003) was a particularly strong advocate of the credibility

interpretation of probability.

The problem with the subjectivists view is that it divorces probability from the

underlying physical causes. For example, in Jaynes’ treatment of the canonical probability

distribution in statistical mechanics, the temperature is nothing more than a Lagrange

multiplier that reflects the observer’s ignorance of the energy of the system. This contrasts

with the interpretation of most thermodynamicists, who view temperature as a physical

attribute independent of what an observer knows or does not know. Similarly, Jaynes views

entropy as a measure of the observer’s ignorance, whereas I view entropy as the logarithm

of the weight of relevant microstates. To most scientists who believe that physical

phenomena have an objective reality, the subjectivist view is peculiarly solipsistic.

The credibility interpretation of probability provides the conceptual basis for the maxent

theory for obtaining probability distributions, again developed by Jaynes. This has been

discussed above in connection with equations (1.1) and (1.19), where it was criticized as

being unsound.

1.4.1.3 Measure

In this book an objective interpretation of probability is used, rather similar to the

propensity interpretation of Popper (1959). Probability is taken to be a physical property of

the system, namely it is proportional to the measure or weight of microstates in the

specified macrostate. In the event that the microstates have equal weight, the weight of

the macrostate is just the number of microstates in it.

Accepting the physical nature of probability, it remains to give a prescription for

determining the microstate weights in a given system. In the simplest case the microstates

are discrete and identical apart from their label, as for example, are the six faces of a true

die. In such cases the microstates have equal weight, which, without loss of generality, can

be assigned unit value so that the weight of a macrostate is simply the number of

microstates that it contains.



One should not assume without reason that discrete microstates are equally weighted in

a particular case. Similarly, in the case that the microstates form a continuum, the weight

density may be uniform or non-uniform, depending on the physical characteristics of the

system.

One of the most important cases, and the one upon which is focussed most attention in

this book, is when the microstates represent the positions and momenta of all the particles

of the system. This is called phase space. In the fundamental case when the system is

isolated from the rest of the Universe, the weight density of the total phase space is

uniform. This can be established (see chapter 5) by equating phase space averages (i.e.

the average of a phase function over phase space using the weight density) to time

averages (i.e. the simple average of the values of the phase function at discrete time

intervals). This takes it as axiomatic that time is homogeneous and has uniform weight.

Having established the uniformity of classical phase space of the total isolated system,

it is straightforward to derive the weight density for that phase space of the particles

contained in a sub-system of the total isolated system, which, it turns out, is not uniform.

Such sub-systems are the most common application of statistical mechanics.

In the case of quantum statistical mechanics, one can take a similar approach to

establish the weight of the discrete quantum states that form the microstates of the

system, as is detailed in chapter 7.

1.4.2 Randomness and irreversibility

As mentioned at the beginning of this section, there is a close connection between

probability and randomness: if the system were fully determined, one would not need

probability and a statistical description. In classical mechanics, the motion of the particles

and the consequent evolution of the system is fully deterministic. Hence there is an issue

to be addressed regarding how randomness arises from such deterministic equations of

motion.

A related problem is that the classical equations of motion are time-reversible: if the

velocity of all the particles in the system is reversed, then continuing forward in time the

system will exactly retrace its prior history. This is called microscopic reversibility (see

sections 5.1.2 and 5.4.2). This means that if the entropy had been increasing, then upon

particle velocity reversal it would start decreasing. This reversibility in the equations of

motion apparently contradicts the time asymmetry mandated by the Second Law of

Thermodynamics, namely that a system evolves only in the direction of increasing entropy.

It turns out that the resolution of these apparent paradoxes revolves around the very

formulation of statistical mechanics and thermodynamics. But first, three alternative

proposals must be dismissed.

1.4.2.1 Quantum questions?

Some try to simply dismiss these issues as an artefact of classical mechanics that would

disappear in a proper quantum treatment. In particular, some argue that quantum

mechanics is inherently uncertain and unpredictable, and that this is sufficient to resolve

the issue. In fact this does not solve the problem for three reasons. First, in quantum

mechanics, the wave function not only evolves in a fully deterministic fashion via

Schrödinger’s equation, but also the complex conjugate of the wave function evolves in an

exactly time-reversed fashion, both of which are analogous to the classical case. Second,

most atoms and molecules behave classically due to their size; in practice for most

terrestrial condensed matter systems quantum corrections contribute less than 1% for any

atom larger than argon. The problems of indeterminacy and irreversibility holds for such

systems and the classical equations have to be able to account for them. Third, classical

statistical mechanics and thermodynamics exist as disciplines independent of quantum

mechanics, as of course is clear from the fact that they were developed more than 50



years before the discovery of quantum theory. Therefore, again one must conclude that

quantum mechanics cannot be essential to resolving these two paradoxes.

Of course, since quantum mechanics is the fundamental law of Nature, both classical

mechanics and classical statistical mechanics ought to be derived from it. This derivation is

carried out in chapter 7, where the physical picture that gives rise to the classical

equations turns out to be the same as that discussed here as the origin of randomness and

irreversibility.

1.4.2.2 Collective chaos?

A second explanation proposed by some is that of ensembles, which have already been

dealt with as an explanation of probability itself, section 1.4.1. Introduced by Boltzmann, an

ensemble consists of identical macroscopic copies that differ in their initial microscopic or

molecular configuration. The ensemble as a whole evolves according to the deterministic

equations of motion of each isolated member. The randomness in this picture arises from

the assigned distribution of the initial microstates of the members of the ensemble.

The ensemble picture is today more or less the standard view of probability and

randomness in thermodynamics and statistical mechanics, but there are several

weaknesses in it, as have already been outlined. First, ensembles are imaginary. They are

nothing but a mental image that has no relationship to the reality of a single system being

measured or characterized. Second, the ensemble picture does not fix the probability

distribution of initial states, but this must be obtained by other physical considerations,

which considerations of course could and should be instead applied directly to the real

system, not the imaginary ensemble. Third, fixing the number of ensemble members

implies a conservation law for probability that is not always true in reality. Just because

ensembles are conserved in someone’s mental picture doesn’t make it true that probability

is conserved in the real world. Fourth, ensembles are unnecessary, and that which is

unnecessary has no place in science. Instead one should seek the true physical origin of

randomness for the single real system being studied, and one should not be bound by

some imaginary scheme that obscures understanding and that blocks the mathematical

formulation of randomness in statistical mechanics.

1.4.2.3 Initially imprecise?

As a third explanation, some suggest that randomness arises in deterministic equations of

motion from imprecisely specified initial conditions. Alternatively, the precise

intermolecular interactions may be unknown or too complex to calculate, and these cause

indeterminacy in the system’s trajectory. Whilst these are undoubtedly practical

impediments to the precise calculation and application of the equations of motion, they

cannot be the physical principle that underlies randomness. For example, the irreversibility

that is embodied in the Second Law of Thermodynamics is an experimental fact that does

not require the specification of initial conditions or intermolecular interactions to be

measured. This suggests that randomness and irreversibility must be built in to the very

equations of motion that determine the evolution of the types of systems to which the

Second Law refers.

1.4.2.4 Reservoir randomness

The quantitative approach to randomness and irreversibility that this book takes is based

on the so-called reservoir formalism. The idea is sketched in figure 1.6. In this book what is

called ‘the system’ means the total system (what some others might call the Universe),

sub-system means that part of the system of direct interest (some others call this the

system), and reservoir means the remaining part of the system (what some others call the

environment).



Figure 1.6. A system consisting of a sub-system and a (much larger) reservoir. The

total system is isolated; all interactions and exchanges are forbidden across the solid

boundary. The type of reservoir is determined by the specific interactions and

exchanges that are allowed across the dotted boundary.

It is generally the case that one has a detailed interest in a very small part of the

Universe. For example, the shape of a macromolecule may be the focus, in which case the

solvent, far-separated solutes, container walls etc are of no interest except in so far as they

affect directly the macromolecule. But one cannot ignore these completely, because, for

example, the nearby solvent molecules directly affect the conformation of the

macromolecule, and the far away solvent molecules act as heat, pressure, and solvent

bath. In these circumstances the macromolecule and the nearby solvent molecules form

the sub-system, and the far away solvent molecules, container walls, external laboratory

etc form the reservoir. The sub-system is followed in molecular detail, and the reservoir is

followed at the macroscopic level, which is to say it is characterized solely by intensive

thermodynamic parameters such as temperature, pressure, chemical potential, etc.

The reservoir formalism as it gives rise to equilibrium thermodynamics will be set out in

chapter 2. Here the relevance of the formalism to randomness and irreversibility will be

described. The discussion is in terms of classical mechanics; the application of the

formalism to quantum systems is described in chapter 7.

Let Γtot denote a point in classical phase space, a microstate, of the total system (i.e.

the positions and momenta of all the molecules in the system). Since the latter is isolated it

evolves deterministically via Hamilton’s equations of motion. The microstate of the total

system at time t may be denoted Γtot(t ∣ Γtot,0), where the initial configuration at t = 0 is 

Γtot,0. (For simplicity, it is assumed that the Hamiltonian of the system is not explicitly time

dependent.) This is called the trajectory of the total system. It is both deterministic and

reversible.

Deterministic means that the initial point Γtot,0 fully determines all subsequent points.

This is to say that if the trajectory were ever to revisit one point, it would also revisit all

subsequent points in order, and after the same time intervals. This also means that the

trajectory cannot cross itself (i.e. each point on the trajectory is preceded by a unique

point, and succeeded by a unique point).

Reversible actually means three symmetries (see section 5.4.2). Time reversibility,

which says that if Γ2 transitions from Γ1 after time τ, Γ1
τ
→ Γ2, then Γ1 transitions from 

Γ2 after time −τ , or Γ2
−τ

Γ1. Conjugate reversibility, which, with a dagger denoting the



state with all velocities reversed, means that the first transition just mentioned, Γ1
τ
→ Γ2,

implies the velocity reversed transition Γ
†
2

τ
→ Γ

†
1. Microscopic reversibility is the

combination of these two, namely Γ1
τ
→ Γ2, implies Γ

†
1

−τ
Γ

†
2.

The total phase space comprises that of the sub-system and that of the reservoir, 

Γtot = {Γs, Γr}. A microstate of the sub-system is a point in the phase space of the sub-

system, Γs. This gives the position and momenta of all the molecules of the sub-system.

The sub-system phase space is a subspace of the total phase space, and a microstate of

the sub-system is the projection of a microstate of the total system. Many microstates of

the total system, each corresponding to different reservoir microstates, project onto the

same microstate of the sub-system. This projection operation has the same effect as what

is often called a contracted description.

The projection of the total trajectory onto the sub-system may be written, 

Γ
′
s = P̂sΓ(t ∣ Γs,0, Γ

′
r). For a different reservoir but the same sub-system initial point one

has a different sub-system trajectory Γs′′= P̂sΓ(t ∣ Γs,0, Γr′′). Hence the current sub-

system configuration alone does not uniquely determine the sub-system evolution; the

projection operation makes the sub-system trajectory indeterminant in the sub-system.

That is, revisiting the point Γs,0 does not guarantee that subsequent points on the original

trajectory will recur exactly, because each Γs,0 could correspond to a different Γr. Each

such configuration of the reservoir molecules has a different influence on the evolution of

the sub-system. This means that the projected trajectory can cross itself (figure 1.7) and

bifurcate (figure 1.8).

Figure 1.7. A spiral trajectory in three dimensional space (left) becomes a trajectory

with a crossing point and loop when projected onto the two-dimensional plane (right).



Figure 1.8. Two systems in which the configurations differ only by the velocity of a

single reservoir particle far from the sub-system (left). The corresponding sub-system

trajectories (right) bifurcate at the moment the perturbing influence of the reservoir

particle reaches the sub-system. A similar bifurcation point exists in the past.

This indeterminacy in the sub-system evolution when the reservoir configuration is not

treated explicitly is manifest in stochastic terms that are added to the classical picture of

Hamilton’s deterministic equations of motion, and this gives rise to a probabilistic

treatment of the sub-system state. Quantitative treatments of the probability follow from

the physical nature of the interaction between the sub-system and the reservoir, as will be

given in later chapters (chapters 4 and 6).

This interpretation of randomness in the equations of motion—it arises from the

projection of the total system onto the sub-system that is being treated explicitly—also

accounts for the second objection that was made to Boltzmann’s identification of entropy

with the number of molecular configurations, namely that the equations of motion are

time-reversible but the Second Law of Thermodynamics gives a preferred direction to time.

It turns out that the projection operation contributes both stochastic and dissipative terms

to the equations of motion, and that these are time irreversible. It will be shown that the

dissipative term is a force that increases the entropy, as legislated by Clausius.

This randomness in the equations of motion leads directly to statistical mechanics and

the need for a probabilistic treatment of molecular configurations. There is a direct link

between randomness in statistical mechanics and thermodynamics. Different

thermodynamic systems are based on the sub-system being able to exchange specified

quantities (generally linear additive conserved variables such as energy, volume, number

etc) with the reservoir. The mechanism by which this occurs is most usually via

intermolecular interactions across the boundary. Therefore, the current configuration of the

molecules of the reservoir influences the motion of the molecules of the sub-system near

the boundary immediately, and all the molecules of the sub-system ultimately. The physical

interpretation of randomness as arising from the projection of external influences leads to

the quantitative evaluation of probability.

Summary

The entropy of a system or state is the logarithm of the weight of the system or state.

In the simplest case of equally likely microstates, weight is number. States with high

entropy may be thought of as disordered or unpredictable.



Macrostates are complete and disjoint. Microstates are complete, disjoint, and

indivisible.

The probability of a state is the exponential of its entropy. Probability, like entropy and

weight, is a physical, measurable property.

Conditional transitions to a more probable state are more probable than the reverse.

The Second Law of Thermodynamics for conditional transitions is probably true.

Randomness and irreversibility arise from the projection of the deterministic motion of

the total system onto the sub-system of interest.
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Chapter 2

Variational formulation of equilibrium

thermodynamics via entropy and free energy

‘I propose to call [it] the entropy of the body, from the Greek word ‘trope’ for
‘transformation’. I have intentionally formed the word ‘entropy’ to be as similar as
possible to the word ‘energy’; for the two magnitudes to be denoted by these words
are so nearly allied in their physical meanings, that a certain similarity in designation
appears to be desirable.’

(Clausius 1854)
‘Any method involving the notion of entropy, the very existence of which depends on
the second law of thermodynamics, will doubtless seem to many far-fetched, and may
repel beginners as obscure and difficult of comprehension’

(Gibbs 1873)
‘[A reformulation of the postulates] exhibits explicitly the internal consistency of the
logical structure…it enables a deeper insight and intuition…and important extensions
and generalizations are suggested and made practical’

(Callan 1960)
‘One makes a discovery when one sees what everybody else does, but thinks what
nobody else had thought before’

(Szent-Györgyi 2011)

The main aim of this chapter is to set out the general thermodynamic procedure for

treating equilibrium systems. The procedure for obtaining the thermodynamic potential

is given in general, with examples from common equilibrium systems derived. The

novel twist on conventional thermodynamics is the relation between total entropy and

free energy, from which arises the variational principle based on the Second Law of

Thermodynamics, the nature of the constrained quantities that are its subject, and the

relation to fluctuation theory.

The so-called reservoir formalism is used. The idea of a reservoir or bath is mainly

due to Gibbs (1902), and is standard in thermodynamics (Callan 1960, Sears and

Salinger 1986). The equilibrium free energies for various reservoirs derived here are

the same as the conventional ones. However, the interpretation of these in terms of

total entropy, and the consequent variational principle, are as developed in my

previous book (Attard 2002).

As a concrete example to illustrate the general ideas, the canonical equilibrium

system is used, which is a sub-system in thermal contact with a heat reservoir. This will

bring us to the Helmholtz free energy,

F = E − TS.

Here E is the energy, T is the temperature and S is the entropy. This expression

appears in all books on thermodynamics, but the question is whether or not it is really
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understood. In particular, what exactly is ‘the’ entropy S that appears here? An

example of what commonly goes wrong is the associated idea that

the Helmholtz free energy should be minimized.

By the end of the chapter readers will understand what is wrong with this

exhortation, they will appreciate the real physical import of the Helmholtz free energy,

and they will be able to write and use the expression more powerfully.

2.1 Entropy of an isolated system

In chapter 1 the First Law of Thermodynamics was introduced as a law for the

conservation of energy. Conservation led to counting, counting to linear additivity, and

linear additivity to entropy. It was pointed out that although not all linear additive

quantities were conserved quantities, linear additivity was a very useful property to

have and that it is widely exploited in the physical science.

The fundamental quantities that have proved most useful in thermodynamics are

the conserved linear additive quantities energy E, number N, and volume V. Figure 2.1

shows an isolated system that is characterized by the values of these three quantities.

The energy is composed of kinetic energy (i.e. due to particle motion) and potential

energy (i.e. due to inter-particle interactions, as well as possible interactions with the

walls and other fixed external fields). Despite the incessant motion of the particles that

make up the system, these three quantities, E, N, and V, are unchanging.

Figure 2.1. An isolated system with number of particles N, volume V, and energy

E.

For a multi-component system, one can regard N as a vector whose components, Nα

say, represent the number of each species.

Other linear additive quantities, such as the linear or angular momentum, can also

be constants of the motion if the isolated system is not subject to external forces (and

therefore enjoys translational or rotational symmetry). However, they are not widely

used in thermodynamics.

Any function of these constants is also a constant of the motion. Hence one can

define the entropy of the isolated system as dependent on them, S(E,N ,V ). In the

language of chapter 1, the particular state point with values {E,N ,V } is the



(2.3

)

macrostate formed from the intersection of the three macrostates in the three different

collectives. The entropy S(E,N ,V ) is the logarithm of the weight of the molecular

microstates in that particular macrostate.

As mentioned, experience has shown the utility of formulating the entropy as

dependent solely on extensive variables, and a number of results that flow directly

from this will now be established. A further reason will be seen from the discussion of

fluctuation theory in section 2.5, where the Gaussian distribution of the fluctuations

follows directly from the central limit theorem, since by definition extensive variables

are the sum of linear additive variables that themselves are randomly distributed. The

same cannot be said of intensive variables.

2.1.1 Extensivity

Figure 2.2 shows two systems, both composed of λ sub-systems. In both cases the

total energy is Etot = λE1, the total number is Ntot = λN1, and the total volume is 

Vtot = λV1. In the first system, the sub-systems are identical and isolated, which is to

say each is in the macrostate {E1,N1,V1}. Since entropy is linear additive, the

entropy of the first system is

S(Etot,Ntot,Vtot;λ) = λS(E1,N1,V1).

On the left-hand side λ has been included explicitly to emphasize the fact that the

total system comprises λ isolated sub-systems. On the right-hand side the isolated

sub-system entropy S(E1,N1,V1) includes contributions from the boundaries that

contain and isolate it from the rest of the Universe. However, in the thermodynamic

limit of large sub-system size, such boundary effects scale with a boundary volume

(the surface area times a molecular interaction length), which is negligible compared

to the sub-system volume. Therefore, we may call S(E1,N1,V1) ‘the’ sub-system

entropy in the macrostate {E1,N1,V1} irrespective of the precise nature of the sub-

system boundary.

Figure 2.2. A system with total energy Etot, total number Ntot, and total volume

Vtot composed of λ = 9 identical isolated sub-systems (left), and composed of 

λ = 9 same-sized sub-systems able to exchange energy and number (right).

The second system shown in figure 2.2 contains λ equal sized sub-systems that can

exchange energy and number with each other. These sub-systems are really imaginary

cells that sub-divide the total volume. Because the cells are all the same size,

symmetry arguments indicate that most likely they have the same energy 
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E1 = Etot/λ and number N1 = Ntot/λ. (It will turn out that thermodynamics always

deals with the most likely state; in the thermodynamic limit this in fact equals the

average state). These most likely values will be signified with an overline in much of

the analysis that follows. The entropy of this system is

S(Etot,Ntot,Vtot) >
˜

λS(E1,N1,V1).

On the left-hand side is a single isolated total system. Two assumptions are made

to compare this to the right-hand side. First, for a given macrostate, the cells with

‘transparent’ boundaries that allow interactions and passage across them have the

same entropy as isolated cells with ‘opaque’ boundaries that prohibit interactions and

particle transport. This is justified in the thermodynamic limit where boundary

conditions make negligible contribution to the total. Second, the left-hand system in

figure 2.2 is constrained to be in a specific macrostate, namely the most likely one of

equal energy and number in all the sub-systems, whereas the right-hand system can

be in this macrostate, and in many other besides. Since the right-hand system is

unconstrained in this respect, it must have available more microscopic configurations

than the left-hand system and its entropy must be strictly greater than that of the

constrained system. Therefore, one must have as a strict inequality

S(Etot,Ntot,Vtot) > S(Etot,Ntot,Vtot;λ) = λS(E1,N1,V1).

(For a detailed illustration of this point, see the combinatorial example in section

1.2.3). The difference between the entropies of the two systems is due to the

fluctuations in the energy and number of the sub-systems of the right-hand total

system (ignoring, as above, other boundary effects).

The entropy due to these fluctuations is negligible compared to the entropy of the

most likely macrostate, which, by symmetry, is the state in which the sub-systems all

have the same energy and number. The reason that the fluctuation entropy is

relatively negligible is because of the large value of the constrained entropy to which it

is being added: the most likely macrostate is the state of maximum constrained

entropy. This is true by definition, since probability is the exponential of the entropy,

and ‘most likely’ means ‘most probable’. More quantitatively, to obtain the

unconstrained entropy, one must add to the maximum value of the constrained

entropy the entropy due to fluctuations about the maximal macrostate. But, as will be

shown below, the fluctuation entropy scales with the square root of the size of the sub-

system, whereas the entropy of the sub-system scales with its size, as will next be

shown. The former is negligible compared to the latter in the thermodynamic limit of

large sub-system size. This is the reason for turning the strict inequality into an

approximate inequality. In fact, in the thermodynamic limit one can write

S(Etot,Ntot,Vtot) ≈ S(Etot,Ntot,Vtot;λ) = λS(E1,N1,V1).

This says that the unconstrained total entropy is approximately equal to the

maximum value of the constrained total entropy. This is a general rule that is

illustrated by the combinatorial example shown in figure 1.4.

These last three equations try to explain two things. On the one hand the total

unconstrained entropy necessarily must be strictly greater than any one value of the

constrained total entropy, including the maximal value of the constrained total

entropy. On the other hand, in the thermodynamic limit fluctuations about the most
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likely state give a negligible contribution, and so the maximal constrained total

entropy may be taken to equal the total unconstrained entropy.

2.1.2 Intensive variables

In the final form for the total entropy, λ acts as scale factor. It says that if one scales

the extensive (i.e. linear additive) conserved variables all by the same amount, then

the total entropy is also scaled by that amount. This means that the entropy is an

extensive variable, which is to say that it scales with the size of the system. The

extensivity of the entropy may be signified as

S(E1,N1,V1) ∼ O(V1).

 

In view of this it is useful to define the energy and number densities,

ε1 ≡
E1

V1
, and ρ1 ≡

N1

V1
.

Because of extensivity, the entropy density is a function of these alone,

σ(ε1, ρ1) ≡
S(E1,N1,V1)

V1
.

 

These densities are intensive variables, which is to say that they are independent of

the size of the system, other things being equal (i.e. all extensive independent

variables are scaled by the same amount). One reason intensive variables are useful is

because they are localized in the sense that they don’t depend on the whole system.

They are often used as a first approximation for the local properties of an

inhomogeneous system. Intensive variables are sometimes called field variables.

The mathematical operation of differentiation is essentially the same as forming a

fraction. Hence the derivative of an extensive variable with respect to another

extensive variable yields an intensive variable. This is one reason why it is useful to

define the isolated system entropy as a function of the extensive variables that form

the macrostates, namely the derivatives of the entropy with respect to its independent

variables are intensive.

The first such derivative is with respect to energy, which is defined to yield the

temperature,

T −1 ≡
∂S(E,N ,V )

∂E
.

The temperature of the isolated system is intensive and dependent on the state of

the isolated system, T (E,N ,V ). At the moment this is just a mathematical definition

of the function T, and it remains to show that it has the same physical properties as

the temperature of familiar experience.

The derivative with respect to volume yields the pressure,
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p ≡ T
∂S(E,N ,V )

∂V
,

and that with respect to number yields the chemical potential,

μ ≡ −T
∂S(E,N ,V )

∂N
.

For a multi-component system, there is a chemical potential conjugate to the

number of each species, μα = −T∂S(E,N_ ,V )/∂Nα. Again these are intensive

variables that are functions of the state of the isolated system, p(E,N ,V ) and 

μ(E,N ,V ), and these can be shown to have the same properties as the physical

quantities of the same name.

With these definitions of the partial derivative of the entropy, the total derivative of

the entropy of an isolated system is

dS =
1

T
dE +

p

T
dV −

μ

T
dN .

 

In the thermodynamic limit, the intensive variables defined by the above entropy

derivatives are functions only of the energy and number density. With the entropy

density σ(ε, ρ) ≡ S(E,N ,V )/V , this may be seen explicitly,

1

T
= (

∂V σ(ε, ρ)

∂V ε
)

N ,V

= (
∂σ(ε, ρ)

∂ε
)

ρ

,

−μ

T
= (

∂V σ(ε, ρ)

∂V ρ
)

E,V

= (
∂σ(ε, ρ)

∂ρ
)

ε

,

and

That is, in the thermodynamic limit one has T (ε, ρ), p(ε, ρ), and μ(ε, ρ).

2.1.3 Concavity of the entropy

For the case of the system consisting of λ identical sub-systems able to exchange

energy with each other, the right-hand part of figure 2.2, the equilibrium state is the

one where the sub-systems all have the same energy, E = Etotal/λ. (For simplicity,

p

T
= (

∂V σ(ε, ρ)

∂V
)

E,N

= (
∂V σ(ε, ρ)

∂V
)

ε,ρ

+ (
∂V σ(ε, ρ)

∂ε
)

ρ,V

(
∂ε

∂V
)

E

+ (
∂V σ(ε, ρ)

∂ρ
)

ε,V

(
∂ρ

∂V
)

N

= σ(ε, ρ) −
ε

T
+

ρμ

T
.
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focus on only energy in the first instance.) This follows from symmetry arguments, or

from experience. Any other distribution of energy {Ei} must have a lower entropy.

Hence

where a second order Taylor expansion about E has been performed. The first term

on the right-hand side cancels with the left-hand side. The second term is zero from

energy conservation, ∑λ
i=1 Ei = λE. These mean that the third term must be

negative semi-definite, vanishing if and only if Ei = E. Since it contains a sum of non-

negative terms, one concludes that the second energy derivative of the entropy must

be strictly negative

SEE < 0.

Hence the entropy of an isolated system is strictly concave with respect to energy.

The argument can be repeated for the other extensive variables, either one at a

time or allowing simultaneous exchange. The general conclusion is

Saa < 0, and SaaSbb − S 2
ab > 0,

where the subscripts denote the second derivatives with respect to any of the

isolated sub-system extensive variables. The second form follows because the

eigenvalues of the Jacobean must be negative, and so the determinant of the Jacobean

of the extensive variables taken pairwise must be positive. (One can obtain higher

order conditions as well.) These are necessary conditions for any thermodynamic state

to be stable.

Stable means that the system can exist with uniform densities corresponding to

these values of the extensive variables. A system in a uniform state in which this

concavity condition is violated can increase its total entropy by sub-dividing into

coexisting phases, each with a uniform density that is stable, and with overall densities

equal to the original values.

2.2 Heat reservoir and the Helmholtz free energy

We now turn explicitly to the canonical equilibrium system, namely a sub-system able

to exchange energy with a heat reservoir, figure 2.3. As mentioned in section 1.4.2,

the reservoir formalism is fundamental to how randomness occurs in statistical

mechanics, and how statistical mechanics and thermodynamics are structured, and so

it is worth defining in detail what is meant by a reservoir.

λS(E,N ,V ) ⩾

λ

∑
i=1

S(Ei,N ,V )

= λS(E,N ,V ) +
∂S(E,N ,V )

∂E

λ

∑
i=1

(Ei − E)

+
1

2

∂ 2S(E,N ,V )

∂E 2

λ

∑
i=1

(Ei − E)2,



Figure 2.3. A system composed of a sub-system 1 and reservoir 2 able to

exchange energy.

A system comprising a sub-system and a reservoir has four characteristics: the

system is isolated, the reservoir is infinitely larger than the sub-system, the boundary

region between the reservoir and the sub-system is infinitely smaller than the sub-

system, and the reservoir and the sub-system can exchange one or more linear

additive, conserved variables. (In practice, in order to establish the size of the sub-

system there must be at least one linear additive, conserved variable that cannot be

exchanged.)

The reason for insisting that the sub-system be large compared to its boundary

region (i.e. its surface area times the thickness of direct molecular interactions) is so

that boundary effects can be neglected. This condition is also known as the

thermodynamic limit. The reason for the reservoir being large compared to the sub-

system is so that higher order terms in a Taylor expansion can be neglected, as will be

required shortly.

In what follows it will be important to keep track of the dependent and the

independent variables. To date energy E has been taken as an independent variable for

the isolated system entropy, S(E,N ,V ). In part of what follows it will be necessary to

regard it as dependent on the temperature, at which time it will be denoted 

E(N ,V ,T ) or by Ē. By the partial derivative definition, we have already seen that

temperature is a dependent variable, T (E,N ,V ). As will be discussed shortly, the

properties of entropy make the relationship between energy and temperature one-to-

one: T1 = T (E1,N ,V ) if and only if E1 = E(N ,V ,T1). In other words, 

T1 = T (E(N ,V ,T1),N ,V ).

2.2.1 Constrained total entropy

For the system comprising a sub-system able to exchange energy with a reservoir,

figure 2.3, the total energy is fixed, Etotal = E1 + E2. Because the reservoir is

infinitely larger than the sub-system, the sub-system energy is much less than the

total energy, E1 ≪ Etotal. This holds in practice for all conceivable configurations of

the system. Taking the thermodynamic limit for the sub-system, the boundary

conditions become negligible, and the entropy of the total system (in the energy

macrostate E1) is just the sum of the isolated sub-system and isolated reservoir

entropies (each in their corresponding macrostate). These facts mean that the entropy

of the total system, constrained to be in the macrostate E1, is
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The first equality writes the system entropy as the sum of that of the isolated sub-

system and isolated reservoir. Here we have allowed for the possibility that the

reservoir and sub-system are composed of different materials, and therefore their

entropies may be different functions of their arguments, namely S1 and S2. This is a

detail that is already irrelevant by the final equality.

The second equality performs a Taylor expansion of the reservoir entropy about the

total energy. The leading, zeroth order, term, S2(Etotal,N2,V2), is a constant

completely independent of the sub-system. It therefore has no effect on the state of

the sub-system and it can be neglected. It will be recalled from section 1.1.2 that

entropy was only defined up to an additive constant.

The first order term is linear in the sub-system energy and the (inverse) reservoir

temperature T2(Etotal,N2,V2). This term, −E1/T2, is extensive with the sub-system

size, O(V1), as is the sub-system entropy itself, S1(E1,N1,V1) ∼ O(V1). The second

order term in the Taylor expansion, which has been neglected, is

1

2
E 2

1

∂ 2S2(Etotal,N2,V2)

∂E 2
total

∼ O(
V 2

1

V2
).

In the second derivative here, the numerator scales with V2 and the denominator

with V 2
2

. Hence the full second order term is O(V 2
1 /V2), which is a factor of V1/V2

smaller than the two terms that are explicitly retained above. (Both S1(E1,N1,V1)
and E1/T2 are O(V1).) Since the reservoir is infinitely larger than the sub-system, this

and higher order terms are completely negligible. This is one of the reasons why it is

advantageous to write the entropy as a function of extensive variables only. The net

effect of neglecting the higher order terms in the Taylor expansion of the reservoir is

that the temperature of the reservoir is fixed and unchanging no matter how much

energy is exchanged with the sub-system. In other words, 

T2(E2,N2,V2) = T2(Etotal,N2,V2), with negligible error O(V1/V2).

As a result of these manipulations, one sees that the heat reservoir only enters the

equations via its temperature T2. Hence one can write the constrained total entropy as

Stotal(E1 ∣ N1,V1,T2) = S1(E1,N1,V1) −
E1

T2
.

Since the temperature is that of the reservoir, and all other properties belong to

the sub-system, one can abbreviate this still further and write

Stotal(E1 ∣ Etotal,N1,V1,N2,V2)

= S1(E1,N1,V1) + S2(Etotal − E1,N2,V2)

= S1(E1,N1,V1) + S2(Etotal,N2,V2) − E1
∂S2(Etotal,N2,V2)

∂Etotal
+ ⋯

= S1(E1,N1,V1) + const. −
E1

T2
.
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Stotal(E ∣ N ,V ,T ) = Ss(E,N ,V ) −
E

T
.

Of course this concise expression is easy to misinterpret if one is unaware of its

derivation. Hopefully the reader will never be misled; T is the temperature of the

reservoir and Ss is the entropy of the isolated sub-system. The reader will also know

that the left-hand side is the entropy of the total system constrained to be in the

macrostate that the sub-system has energy E. The reader will also recognize that 

−E/T  is the sub-system-dependent part of the reservoir entropy. Finally, the reader

will notice that all four of the arguments of the total entropy are independent.

Just a note on notation. The vertical bar here is the same as that used for the

conditional probability. Variables to the left of it are the constrained (or exchangeable,

or fluctuating) variables, and variables to the right of it are the conditioning (or fixed)

variables. The exponential of the total entropy essentially gives the probability that the

sub-system has energy E given the conditions, as will be discussed shortly. This

explains the notation that is used here and in similar circumstances throughout.

The energy derivative of the constrained total entropy is

∂Stotal(E ∣ N ,V ,T )

∂E
=

∂Ss(E,N ,V )

∂E
−

1

T
.

The first term on the right-hand side is 1/T (E,N ,V ), which is the reciprocal of

the sub-system temperature, and the second term is the reciprocal the reservoir

temperature.

Now one can appeal to the Second Law of Thermodynamics to determine the

equilibrium state. The equilibrium state is the most likely value of the sub-system

energy. The total entropy is maximized by the energy that makes its derivative vanish.

This gives the equilibrium energy Ē as the one satisfying

∂Stotal(E ∣ N ,V ,T )

∂E
∣
E=E

= 0 ⇔ T (Ē,V ,N) = T .

This says that equilibrium (i.e. the macrostate of maximum total entropy)

corresponds to temperature equality between the sub-system and the heat reservoir.

This is a version of the Zeroth Law of Thermodynamics. This is an implicit equation for

the equilibrium energy of the sub-system, Ē = E(N ,V ,T ).

In the case that the sub-system has a lower temperature than the reservoir, 

∂S(E,N ,V )/∂E = 1/T (E,N ,V ) > 1/T , then the total constrained entropy

increases when energy is transferred from the reservoir to the sub-system, 

∂Stotal(E ∣ N ,V ,T )/∂E > 0. The opposite occurs in the case that the sub-system is

hotter than the reservoir. In common parlance, heat flows from a hot body to a cold

body. This is consistent with the fact that an isolated system has entropy that is a

concave function of energy, SEE < 0, since this means that its temperature must

increase with energy, ∂T (E,N ,V )/∂E = −T 2SEE > 0. Hence energy flowing to a

cold body increases its temperature.

2.2.2 Constrained Helmholtz free energy

¯
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The constrained total entropy is the mathematical representation of the Second Law of

Thermodynamics. Constraining the energy E fixes the sub-system in a not-in-

equilibrium state. When the constraint is relaxed, the system will move toward

equilibrium by exchanging energy with the reservoir. These spontaneous changes in

the sub-system energy state are in the direction of increasing constrained total

entropy.

The equilibrium state is the state of maximum constrained total entropy.

It is important to note the physical basis of the above derivation. The constrained

variable in this case is the sub-system energy, and it is with respect to this, and only

this, that the constrained total entropy is maximized in the equilibrium state.

The present variational principle maximizes the constrained total entropy.

Alternatively, one can minimize a thermodynamic potential. The general definition of

this is simply the negative of the (reservoir) temperature times the constrained total

entropy. The negative sign converts the maximum into a minimum. Multiplying the

entropy by the temperature gives the units of energy.

In the present case the thermodynamic potential is the constrained Helmholtz free

energy,

By design, this is a minimum in the equilibrium state, and the energy flow is down

the constrained free energy gradient.

The same rule applies in the general case: the constrained thermodynamic

potential is the negative of the temperature times the constrained total entropy, 

F(X ∣ Y ,x,T ) = −TStotal(X ∣ Y ,x,T ), where the X are the exchangeable variables,

the x are the conjugate reservoir field variables, the Y are the fixed sub-system

variables, and T is the temperature of the reservoir. Concrete examples will be given in

section 2.4.

Because the relationship between the thermodynamic potential and the total

entropy is trivial, the properties of the former are essentially the same as the latter. It

is a mathematical and physical fact that the thermodynamic potential is redundant.

The present author’s main argument against it is that it is unnecessary, and it

obscures the role of entropy and its physical origin. Such rational arguments, however,

carry little weight against convention and historical tradition. It is more likely that

energy will flow from a cold body to a hot body than it is that the free energy will be

replaced by the total entropy in textbooks and the literature.

The equilibrium thermodynamic potential is defined as the minimum value of the

constrained thermodynamic potential. For the present heat reservoir this is the

Helmholtz free energy, and the minimum obviously occurs at Ē = E(N ,V ,T ),

F̄ (N ,V ,T ) ≡ F(Ē ∣ N ,V ,T ) = Ē − TSs(Ē,N ,V ).

The Helmholtz free energy is a function of just three independent variables,

namely N, V, and T, since Ē = E(N ,V ,T ) is a dependent variable. The entropy that

appears on the right of the definition of the Helmholtz free energy is that of the

isolated sub-system with the equilibrium energy Ē. The overline on the Helmholtz free

energy indicates that it is an equilibrium property.

F(E ∣ N ,V ,T ) ≡ − TStotal(E ∣ N ,V ,T )

= E − TSs(E,N ,V ).
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Note that as a short-hand notation, sometimes we write S̄ s(N ,V ,T ) instead of 

Ss(Ē(N ,V ,T ),N ,V ). This is not ideal notation because entropy is fundamentally a

function of extensive variables. Also, it risks confusion with the unconstrained total

entropy Stotal(N ,V ,T ), which is essentially the logarithm of the partition function.

This possible problem is exacerbated when the subscript s for sub-system is dropped.

In any case it should always be kept in mind that the entropy that appears explicitly in

the formula for the Helmholtz free energy is the entropy of the isolated sub-system in

the equilibrium energy macrostate.

The equilibrium thermodynamic potential, FTD(N ,V ,T ), contains less information

than the constrained thermodynamic potential, F(E ∣ N ,V ,T ), since it is a function

of three independent variables instead of four. The constrained thermodynamic

potential describes the approach to energy equilibrium and energy fluctuations about

the equilibrium state, whereas the equilibrium thermodynamic potential only describes

the equilibrium state. Because the constrained thermodynamic potential describes the

excursions of the system to not-in-equilibrium states (see section 2.5), it may also be

called the fluctuation potential.

The three types of total entropy and the respective free energies are summarized in

table 2.1. The partition function is the total weight (see section 2.5.3),

Z(N ,V ,T ) = ∑
E

eStotal(E∣N ,V ,T )/kB .

By definition, the logarithm of the total weight is the total unconstrained entropy 

Stotal(N ,V ,T ) = kB ln Z(N ,V ,T ). Since the free energy in general is minus the

temperature times the total entropy, the statistical mechanical free energy follows as 

FSM(N ,V ,T ) = −TStotal(N ,V ,T ). The thermodynamic free energy is the minimum

value of the constrained free energy, and in the present canonical equilibrium case it is

called the Helmholtz free energy, FTD(N ,V ,T ) = −TStotal(Ē ∣ N ,V ,T )
= Ē − TSs(Ē,N ,V ). One has the inequalities

Stotal(N ,V ,T ) > Stotal(Ē ∣ N ,V ,T ) ⩾ Stotal(E ∣ N ,V ,T ).

In the thermodynamic limit, fluctuations are relatively negligible, and the

inequality can be replaced by an equality and Stotal(N ,V ,T ) ≈ Stotal(Ē ∣ N ,V ,T ), or

FSM(N ,V ,T ) ≈ FTD(N ,V ,T ).

Table 2.1. Canonical equilibrium total entropies and free energies.

Entropy Free energy  Formula

Constrained Stotal(E ∣ N ,V ,T ) F(E ∣ N ,V ,T ) = E − TSs(E,N ,V )

Maximum

constrained

Stotal(Ē ∣ N ,V ,T ) FTD(N ,V ,T ) = Ē − TSs(Ē,N ,V )

Unconstrained Stotal(N ,V ,T ) FSM(N ,V ,T ) = −kBT ln Z(N ,V ,T )



One can compare the conventional expression for the Helmholtz free energy given

at the beginning of this chapter, equation (2.1) with the equilibrium equation equation

(2.27) or the more general not-in-equilibrium form, equation (2.26). In the equilibrium

comparison, which is the most direct, one sees that the conventional expression does

not avert to the dependence of the energy on the number, volume and temperature, 

Ē = E(N ,V ,T ). In this sense equation (2.1) may be criticized as being imprecise.

One also sees that it does not avert to the fact that the entropy that appears explicitly,

S(Ē,N ,V ), is the entropy for the isolated sub-system in the energy macrostate Ē. In

this sense it is misleading to call this ‘the’ entropy. In the same vein it would be better

to explicitly recognize that the Helmholtz free energy is just minus the temperature

times the maximum value of the constrained total entropy. Finally, comparing the

conventional expression for the Helmholtz free energy, equation (2.1), to the more

general constrained thermodynamic potential equation (2.26), one sees that the

conventional expression for the Helmholtz free energy neither recognizes nor exhibits

its variational nature with respect to energy.

One sometimes sees it asserted that the Helmholtz free energy is a minimum, as in

the exhortation that is equation (2.2), which implies that it gives a variational principle.

There are three things wrong with this assertion. First, the Helmholtz free energy is 

F̄ (N ,V ,T ), and this does not obey any variational principle. Second, the constrained

thermodynamic potential F(E ∣ N ,V ,T ) does obey a variational principle with

respect to the sub-system energy, and it is essential that the variational parameter be

stated and understood explicitly. This is not mere nit picking. It is not uncommon in the

literature to see the Helmholtz free energy formulated for a particular problem and

then for it to be minimized with respect to some parameter of interest. Unless that

parameter is the energy, such a procedure is a mathematical and physical absurdity.

Third, the variational principle for the constrained thermodynamic potential derives

directly from the Second Law of Thermodynamics via its relationship to the total

entropy. This essential physical basis and its further consequences are missed entirely

by the simplistic incantation that the Helmholtz free energy should be minimized.

2.2.3 Derivatives of the Helmholtz free energy

A concrete example of the power of the constrained thermodynamic potential over the

usual free energy expressions is in the ease with which it can be differentiated.

Because it provides a variational principle for equilibrium, (i.e. it is a minimum with

respect to variations in sub-system energy), the energy can effectively be regarded as

a fixed independent variable rather than a dependent variable during differentiation.

For example, the temperature derivative of the Helmholtz free energy is

∂F̄ (N ,V ,T )

∂T
= (

∂F(Ē(N ,V ,T ) ∣ N ,V ,T )

∂T
)

N ,V

=
∂F(E ∣ N ,V ,T )

∂T
∣
E=E

+
∂F(E ∣ N ,V ,T )

∂E
∣
E=E

∂E (N ,V ,T )

∂T

=
∂F(E ∣ N ,V ,T )

∂T
∣
E=E

= − Ss(Ē,N ,V ).

¯̄

¯

¯
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The result is that the temperature derivative of the Helmholtz free energy is the

negative of the sub-system entropy in the equilibrium state.

The third equality follows from the variational principle for the constrained

thermodynamic potential, ∂F(E ∣ N ,V ,T )/∂E∣E=Ē = 0. Hence even though the

equilibrium sub-system energy is a dependent variable, ∂Ē(N ,V ,T )/∂T ≠ 0, this

dependence can be ignored because it is multiplied by a derivative that vanishes at

equilibrium. In other words, because the constrained thermodynamic potential is

optimised at equilibrium, differentiating the Helmholtz free energy is the same as

differentiating the constrained thermodynamic potential holding Ē fixed. This is a

general feature of constrained thermodynamic potentials that can be exploited in all

similar derivatives.

Now let us differentiate the Helmholtz free energy with respect to volume and

number. One can use the corresponding partial derivatives of the isolated system

entropy, equations (2.11) and (2.12), since one can again hold Ē fixed. The volume

derivative gives the pressure,

and the number derivative gives the chemical potential,

It will shortly be shown that the equilibrium state is unique. Hence the pressure

that appears here p̄(N ,V ,T ) is equal to that of the isolated sub-system in the

equilibrium energy state, p(Ē(N ,V ,T ),N ,V ). This is necessary for thermodynamics

to be internally consistent. One must have the volume derivative of the Helmholtz free

energy for a sub-system in contact with a heat reservoir giving the same pressure as

an isolated system with the equilibrium energy. Similar comments apply to the

chemical potential, μ̄(N ,V ,T ) = μ(Ē(N ,V ,T ),N ,V ) and to the sub-system entropy

S̄ s(N ,V ,T ) = Ss(Ē(N ,V ,T ),N ,V ). The overline here denotes the fact that these

are properties of the sub-system in thermal equilibrium.

These results for the partial derivatives give the total differential of the Helmholtz

free energy,

(
∂F̄ (N ,V ,T )

∂V
)

T ,N

= (
∂F(Ē ∣ N ,V ,T )

∂V
)

Ē,T ,N

= − T(
∂Ss(Ē,N ,V )

∂V
)

Ē,N

= − p̄,

(
∂F̄ (N ,V ,T )

∂N
)

T ,V

= (
∂F(Ē ∣ N ,V ,T )

∂N
)

Ē,T ,V

= − T(
∂Ss(Ē,N ,V )

∂N
)

Ē,V

= μ̄.
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dF̄ (N ,V ,T ) = −S̄ s(N ,V ,T ) dT − p̄(N ,V ,T ) dV + μ̄(N ,V ,T ) dN .

 

Finally, there is one more example that exploits the variational nature of the

constrained thermodynamic potential for a sub-system in contact with a heat reservoir.

Dividing both sides of the Helmholtz free energy by temperature, 

F̄/T = Ē/T − S̄ s(Ē,N ,V ), and differentiating with respect to T −1 one obtains

(
∂(F̄ (N ,V ,T )/T )

∂(1/T )
)

N ,V

= Ē.

Again this follows because Ē and hence Ss(Ē(N ,V ,T ),N ,V ) can be held

constant.

2.2.4 Concavity, uniqueness, and thermal stability

2.2.4.1 Concavity of the entropy

It is now shown that the entropy of the isolated system is a concave function of its

arguments. The derivation is based on the extensivity of the entropy and the fact that

the constrained total entropy is a maximum at equilibrium.

In figure 2.4 are shown two systems each comprising two sub-systems that are

identical except for energy. In the left-hand system the sub-systems are isolated from

each other and have the same volume V, number N, but different energies E1 and E2.

The entropies of the sub-systems are S1 = S(E1,N ,V ) and S2 = S(E2,N ,V ). From

the linear additive nature of the entropy, the total entropy with the insulating partition

in place is Stotal = S1 + S2.

Figure 2.4. Two isolated systems, each composed of two sub-systems identical

except for energy. In the system on the left, the sub-systems are separated by an

insulating wall that prevents energy exchange. In the system on the right, the

sub-systems are separated by a conducting wall that allows energy exchange.

If the insulating partition is replaced by a conducting partition, as in the right-hand

diagram, energy irreversibly flows from the sub-system with more energy to that with

less, as is obvious on symmetry grounds. The total entropy at the end of this process

must be greater than at the beginning,

Stotal(E1 + E2, 2N , 2V ) ⩾ S(E1,N ,V ) + S(E2,N ,V ).
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This is of course demanded by the Second Law of Thermodynamics: energy flows in

the direction of entropy increase. At the microscopic level, the number of

microstates must be greater when the constraint is relaxed. This is a strict inequality

unless initially E1 = E2.

The equilibrium state is the one in which each sub-system has the same energy,

namely (E1 + E2)/2, and this is the state of maximum entropy. Once equilibrated,

there is no further nett energy flow, and the removal and insertion of the partition

becomes a reversible process. In this case the entropy does not change and one must

have

Stotal(E1 + E2, 2N , 2V ) = 2S(
E1 + E2

2
,N ,V).

This expression assumes that fluctuations about the equilibrium state make

relatively negligible contribution to the total entropy on the left-hand side. This result is

the λ = 2 case that was derived above in the discussion of extensivity; see section

2.1.1 and figure 2.2.

These two equations combined yield

S(
E1 + E2

2
,N ,V) >

1

2
[S(E1,N ,V ) + S(E2,N ,V , )].

excluding the case E1 = E2. This shows that entropy is a concave function of

energy, since any chord to the entropy curve lies below the curve. A Taylor expansion

as E1 → E2 shows that this is equivalent to

(
∂ 2S(E,N ,V )

∂E 2
)

N ,V

< 0.

Again, a negative second derivative defines a concave function. Analogous steps

can be carried out individually for volume and for particle number. One can conclude in

general that the entropy is a concave function of its arguments.

It is not much harder to derive the result for simultaneous variations. For example,

considering two isolated systems that are identical apart from their energies and

volumes, and allowing exchange of these, one can readily show that

Stotal(
E1 + E2

2
,N ,

V1 + V2

2
) >

1

2
[S(E1,N ,V1) + S(E2,N ,V2)].

Performing a Taylor expansion of the right-hand side about the equilibrium energy

and volume, the zeroth and linear terms cancel, which leaves

SEE dE2 + 2SEV dE dV + SV V dV 2 < 0,

where the subscripts denote partial derivatives, and dE and dV  are arbitrary.

Again a negative Jacobian defines a concave function of several variables. This result is

consistent with equation (2.19). We shall use this result below.
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2.2.4.2 Uniqueness of the thermodynamic state

In thermodynamics it is sometimes useful to swap dependent and independent

variables. For example, to date we have described an isolated system by its entropy,

which is a function of the extensive variables energy, number and volume, S(E,N ,V )
. For mathematical reasons it is sometimes convenient to instead take energy as the

dependent variable, E(S,N ,V ).

In general one can interchange variables, such as

x1 = x(y1) ⇔ y1 = y(x1),

if the relationship between the conjugate variables is one-to-one. This is the same

as saying that the function is invertible,

x = f(y) ⇔ y = f−1(x).

The condition for a continuous function to be invertible is that its derivative must

be finite and nonzero on the interior of its domain of definition. Since entropy is a

strictly concave function of its arguments, it is indeed an invertible.

First the energy–entropy swap. (We shall assume that entropy is a continuous

function of energy.) As we have seen, entropy is strictly concave, S′′< 0. Therefore, it

cannot have more than one turning point, which we can assume occurs at E1, with 

S′(E1) = 0. This turning point, if it exists, must be a maximum. Obviously entropy is

monotonic increasing, S′(E) > 0, for E < E1, which means that T (E) > 0. It is

monotonic decreasing, S′(E) < 0, for E > E1, which is to say that T (E) < 0. Since

systems with negative temperature are unstable, we shall only consider systems with

positive temperatures here and throughout, E < E1. Denote the lowest energy or

ground state by E0. Because the entropy is strictly concave, its gradient may possibly

be infinite here, but nowhere else. An infinite gradient, S′(E0) = ∞, corresponds to T

= 0, which is absolute zero. These considerations show that on the domain (E0,E1)
there is a one-to-one relationship between the entropy and the energy. Hence the

entropy function is invertible and one can write S(E,N ,V ) or E(S,N ,V ) as

convenient.

Now the energy–temperature swap. On the physical domain (E0,E1), the concavity

of the entropy, SEE < 0, means that ∂(1/T ) /∂E < 0, or ∂T/∂E > 0. Since

temperature is a function of energy, T (E), its energy derivative cannot be infinite

(otherwise there would be more than one temperature for a given energy). Hence the

relationship between energy and temperature must be one-to-one, which is to say that

it is invertible, T1 = T (E1,N ,V ) ⇔ E1 = E(T1,N ,V ).

Entirely analogous arguments can be made for the other variables, namely pressure

and volume can be swapped, as can number and chemical potential.

2.2.4.3 Thermal stability

For the present case of a sub-system in thermal contact with a heat reservoir, the

constrained thermodynamic potential, F(E ∣ N ,V ,T ) = E − TS(E,N ,V ), is a

convex function of energy (because S(E,N ,V ) is a concave function of energy, and

the term E is linear). Similarly, it is also a convex function of volume and number, so

that we can write generically F ′′= −TS′′> 0. As discussed at length above, the



Second Law of Thermodynamics confers upon the constrained thermodynamic

potential a variational principle that means that it is minimized by the equilibrium

energy. Its minimum value is equal to the Helmholtz free energy.

As mentioned above, the Helmholtz free energy F̄ (N ,V ,T ) = F(Ē ∣ N ,V ,T )
does not obey a variational principle. It is not a minimum with respect to number,

volume, or temperature.

The thermal stability of matter may be deduced from the convexity of the

constrained thermodynamic potential. Suppose that in a small region of the system

there is a local increase in energy, with volume and particle number remaining

constant. This increases the constrained thermodynamic potential for that region,

considering it as a quasi-isolated sub-system. Equivalently, it decreases the local

constrained total entropy. This is unfavorable, which is to say improbable, and the

change is most likely to be counteracted by energy flowing back out of the region. This

restores it to equilibrium. Conversely a local fluctuation to a lower energy is most likely

followed by a countervailing back flow of energy.

It is the convexity of the constrained thermodynamic potential that makes matter

thermally stable by damping such local fluctuations in the energy. Thermal stability

does not arise from the Helmholtz free energy, but rather from the variational nature

of the underlying constrained thermodynamic potential.

In the next section analogous optimization principles will be derived for volume and

particle number reservoirs. It will be similarly shown that matter is mechanically stable

to volume and particle number fluctuations.

2.3 Various reservoirs

The canonical equilibrium system that was just treated in detail may be called a

constant temperature system, because the reservoir sets the temperature of the sub-

system with which it can exchange energy. All that was required to obtain the

constrained total entropy (equivalently, the constrained thermodynamic potential) for

that system was to select the relevant linear additive, conserved variable, in this case

energy, write the total entropy as the sum of that of the sub-system and that of the

reservoir, and do a first order Taylor expansion of the latter, discarding the constant

term.

In this section this procedure is repeated for several common reservoirs.

2.3.1 Constant pressure

An isobaric system is one in which the reservoir sets the pressure of the sub-system.

The arrangement of the sub-system and reservoir remains the same as in figure 2.3,

except that now the boundary is permeable to both energy and volume. This means

that not only is the boundary made of conducting material, but also that it is flexible or

moveable so that the volume of the sub-system can change at the expense of that of

the reservoir. Thus the total energy Etotal = E1 + E2 and total volume 

Vtotal = V1 + V2 are fixed, but not their partitioning between the two systems.

As the second system is an energy and volume reservoir (i.e. it is very much larger

than the sub-system), the Taylor expansion of its entropy about the total energy and

volume may be terminated at the linear term. The zeroth order term, 

S2(Etotal,N2,Vtotal), is a constant independent of the sub-system that may be

discarded. Hence the sub-system-dependent part of the total entropy Stotal = S1 + S2
is (dropping the subscripts)
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Stotal(E,V ∣ N , p,T ) = Ss(E,N ,V ) −
E

T
−

pV

T
.

This uses the volume derivative of the entropy, equation (2.11), for the pressure p

of the reservoir, and the energy derivative, equation (2.10), for the temperature T of

the reservoir. The reservoir only enters through its temperature and pressure. The

constrained total entropy is extensive.

This is the constrained total entropy for the sub-system with arbitrary (i.e. not in

equilibrium) values of energy or volume. By the Second Law of Thermodynamics, a

spontaneous change in the volume must increase the total constrained entropy, or

Suppose that the system is in thermal equilibrium, T (E,N ,V ) = T , but not in

mechanical equilibrium, p(E,N ,V ) ≠ p. In this case this equation says that when the

internal sub-system pressure is greater than the external reservoir pressure, 

p(E,N ,V ) > p, the sub-system spontaneously grows, ΔV > 0, and vice versa. This is

of course what one would expect on physical grounds and it justifies identifying the

mathematical object p with the physical object ‘pressure’.

As usual, the equilibrium state is the one that maximizes the constrained total

entropy, and is denoted Ē(N , p,T ) and V̄ (N , p,T ). This variational procedure can be

flipped into a minimization problem by defining the constrained thermodynamic

potential as the negative of the temperature times the constrained total entropy,

By design this constrained thermodynamic potential is a convex function of the

sub-system volume and energy. It is appropriate for a sub-system with moveable

conducting walls in contact with a temperature and pressure reservoir. In the event

that thermal equilibrium is established, E = Ē(N ,V ,T ), one can define 

G̃(V ∣ N , p,T ) = F̄ (N ,V ,T ) + pV  as the constrained thermodynamic potential that

determines volume fluctuations and equilibration.

Minimizing G(E,V ∣ N , p,T ) with respect to energy yields T (E,V ,N) = T , which

is an implicit equation for the equilibrium sub-system energy for a given (constrained)

volume, Ē(N ,V ,T ). The minimization with respect to volume yields 

p(E,V ,N)/T (E,V ,N) = p/T , which is an implicit equation for the sub-system

volume for a given sub-system energy and reservoir temperature and pressure, 

V̄ (E ∣ N , p,T ). The simultaneous solution of these gives the equilibrium quantities, 

Ē(N , p,T ) and V̄ (N , p,T ). The equilibrium sub-system volume also follows directly

ΔStotal(E,V ∣ N , p,T ) =
∂Stotal(E,V ∣ N , p,T )

∂V
ΔV

= [
p(E,N ,V )

T (E,N ,V )
−

p

T
]ΔV

⩾ 0.

G(E,V ∣ N , p,T ) ≡ − TStotal(E,V ∣ N , p,T )

= E − TSs(E,N ,V ) + pV

= F(E ∣ N ,V ,T ) + pV .
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from the minimization of the thermally equilibrated constrained thermodynamic

potential, ∂G̃(V ∣ N , p,T )/∂V = 0, or

∂F̄ (N ,V ,T )

∂V
∣
V=V

= −p.

The minimum value of the constrained thermodynamic potential defines Gibbs

free energy,

Since the Gibbs free energy must be extensive, and since it is a function of only

one extensive variable, N, then it must be proportional to it, Ḡ ∝ N . The

proportionality constant will be derived shortly.

Again one can exploit the power of the constrained thermodynamic potential by

invoking its variational nature when taking derivatives. That is, differentiating the

Gibbs free energy is the same as differentiating the constrained thermodynamic

potential while holding V = V̄  and E = Ē fixed. Accordingly, the pressure derivative

gives the equilibrium sub-system volume,

(
∂Ḡ(N , p,T )

∂p
)

N ,T

= V̄ ,

the number derivative gives the equilibrium sub-system chemical potential,

(
∂Ḡ(N , p,T )

∂N
)

p,T

= (
∂F̄ (N , V̄ ,T )

∂N
)

V̄ ,T

= μ̄,

and the temperature derivative gives the negative of the equilibrium sub-system

entropy,

(
∂Ḡ(N , p,T )

∂T
)

N ,p

= (
∂F̄ (N , V̄ ,T )

∂T
)

N ,V

= −S̄ s.

Hence the total differential of the Gibbs free energy is

dḠ = V̄ dp + μ̄dN − S̄ sdT .

 

The second of the above derivatives combined with the above extensivity argument

shows that

¯

Ḡ(N , p,T ) ≡ G(V̄ , Ē ∣ N ,T , p)

= G̃(V̄ ∣ N ,T , p)

= F(N , V̄ ,T ) + pV̄ .
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Ḡ(N , p,T ) = μ̄(p,T )N .

 

Finally, dividing both sides of the definition by T, one also has that

(
∂(Ḡ/T )

∂(1/T )
)

N ,p

= Ē + pV̄ .

The quantity on the right-hand side is called the enthalpy, and it will recur below.

2.3.2 Constant chemical potential

Now consider a reservoir that can exchange particles and energy with the sub-system

of interest. This set-up is called an open system or, better, an open sub-system, or a

grand canonical system. It can also be called a constant chemical potential system, as

this and the temperature are fixed by the reservoir.

As usual, the total entropy is the sum of that of the sub-system and reservoir, each

considered as isolated and in the designated macrostate, Stotal = S1 + S2. The total

energy Etotal = E1 + E2 and the total particle number N = N1 + N2 are fixed, as

well as the individual volumes, V1 and V2. Again the relative size of the reservoir allows

all terms in the Taylor expansion of the reservoir entropy to be neglected except for

the linear one. (The zeroth term can again be dropped because it is a constant that is

independent of the sub-system.) Hence dropping the subscripts, the constrained total

entropy is

Stotal(N ,E ∣ μ,V ,T ) = Ss(E,V ,N) −
E

T
+

μ

T
N .

This gives the total entropy for a system when the sub-system of fixed volume V

has energy E and particle number N, which are not necessarily the equilibrium values,

while in thermal and diffusive contact with a reservoir of temperature T and chemical

potential μ.

The constrained total entropy has derivatives

∂Stotal(N ,E ∣ μ,V ,T )

∂N
=

−μ(E,N ,V )

T (E,N ,V )
+

μ

T
,

and

∂Stotal(N ,E ∣ μ,V ,T )

∂E
=

1

T (E,N ,V )
−

1

T
.

The first term on the right-hand side in each case is the derivative of the isolated

sub-system entropy, and they give the chemical potential and the temperature of the

sub-system in the specified macrostate. The maximum of the constrained total entropy

of course corresponds to the vanishing of its derivatives. The implicit equations for the

equilibrium energy Ē(μ,V ,T ) and the equilibrium particle number N̄(μ,V ,T ) that
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this gives are T (Ē, N̄ ,V ) = T  and μ(Ē, N̄ ,V ) = μ. Obviously, equilibrium

corresponds to temperature and chemical potential equality between the sub-system

and the reservoir.

Spontaneous changes in the sub-system particle number ΔN  must lead to an

increase in the total entropy

Assuming thermal equilibration, T (Ē,N ,V ) = T , when the chemical potential of

the sub-system is greater than that of the reservoir, μ(Ē(N ,V ,T ),N ,V ) > μ, this

says that ΔN < 0, which is to say particles spontaneously flow from the sub-system

to the reservoir.

In words, this says that particles move down the chemical potential gradient. This is

analogous to what happens in a thermal system: energy moves down a temperature

gradient. It is the opposite of what happens in an isobaric system, where volume

moves up a pressure gradient. The similarities and differences in the three cases can

be accounted for by whether or not the definition of the field variable in terms of an

entropy derivative involves a minus sign, or whether or not the definition refers to the

reciprocal of the field variable.

The corresponding constrained thermodynamic potential is the negative of the total

entropy times the temperature,

This is a convex function of N and of E that is minimized by their equilibrium

values. Thus this is the minimization variational principle for a sub-system able to

exchange energy and particles with a reservoir of chemical potential μ and

temperature T.

If thermal equilibration is faster than diffusive equilibration, then one can define 

Ω̃(N ∣ μ,V ,T ) ≡ Ω(Ē(N ,V ,T ),N ∣ μ,V ,T ) = F̄ (N ,V ,T ) − μN . This involves the

Helmholtz free energy, and it provides a variational principle for a sub-system at the

same temperature as the reservoir, but not in diffusive equilibrium with it.

The concavity of the isolated sub-system entropy means that the constrained

thermodynamic potential is a convex function of particle number and energy, which

can be figuratively denoted Ω′′= −TSs′′> 0. The minimum value of the constrained

thermodynamic potential of this open sub-system is the equilibrium free energy, which

is this case is called the grand potential. It is

ΔStotal(N ,E ∣ μ,V ,T ) =
∂Stotal(N ,E ∣ μ,V ,T )

∂N
ΔN

= [
−μ(E,N ,V )

T (E,N ,V )
+

μ

T
]ΔN

⩾ 0.

Ω(E,N ∣ μ,V ,T ) ≡ − TStotal(E,N ∣ μ,V ,T )

= E − TSs(E,N ,V ) − μN

= F(E ∣ N ,V ,T ) − μN .
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The properties of the variational procedure allow the otherwise dependent

variables Ē and N̄  to be held fixed during differentiation of the grand potential. Hence

one has

(
∂Ω̄(μ,V ,T )

∂μ
)

V ,T

= −N̄ ,

(
∂Ω̄(μ,V ,T )

∂V
)

μ,T

= (
∂F̄ (N̄ ,V ,T )

∂V
)

N̄ ,T

= −p̄,

and

(
∂Ω̄(μ,V ,T )

∂T
)

μ,V

= (
∂F̄ (N̄ ,V ,T )

∂T
)

N̄ ,V

= −S̄ s.

This last quantity is the entropy of the isolated sub-system with the equilibrium

energy and particle number, S̄ s(μ,V ,T ) ≡ Ss(Ē(μ,V ,T ), N̄(μ,V ,T ),V ). It follows

that the total differential of the grand potential is

dΩ̄ = −N̄ dμ − p̄ dV − S̄ s dT .

One also has

(
∂(Ω̄/T )

∂(1/T )
)

μ,V

= Ē − μN̄ .

 

Finally, because the grand potential must be extensive, and because volume is the

only one of its arguments that is extensive, the grand potential must be proportional to

the volume. From the above volume derivative one concludes that

Ω̄(μ,V ,T ) = −p̄V .

2.3.2.1 Multi-component system

It is not unusual to have several particle species present. Let Nα be the number of

particles of type α in the sub-system. The chemical potential for this species is defined

as

( )

Ω̄(μ,V ,T ) ≡ Ω(Ē, N̄ ∣ μ,V ,T )

= F̄ (N̄ ,V ,T ) − μN̄ .
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μα ≡ −T(
∂Ss

∂Nα
)

E,V ,Nγ≠α

.

The formulae given above for a single species are changed to include the sum

over species. For example, for m different types of particles, the total differential of the

isolated system entropy becomes

dSs(E, N ,V ) =
1

T
dE +

p

T
dV −

1

T

m

∑
α=1

μα dNα.

 

It is often convenient to use vector notation, and to replace the sum by a scalar

product. For example, the constrained thermodynamic potential may be written as

Ω(E, N ∣ μ,V ,T ) = E − TSs(E, N ,V ) − μ ⋅ N .

The diffusive equilibrium condition is obviously chemical potential equality

between the sub-system and the reservoir for each species, μ̄α ≡ μα(Ē,N_ ,V ) = μα.

2.3.3 Constant enthalpy

We now consider an isolated sub-system with a moveable wall or piston, figure 2.5.

The number of particles in the sub-system N1 is fixed. Volume can be exchanged with

the surrounding reservoir, dV1 = −dV2. Even though the walls are insulated

(adiabatic, adiathermal, no heat flow), energy can still exchange between the sub-

system and the reservoir via so-called pV-work. The total energy is fixed, 

Etotal = E1 + E2, which means that dE1 = −dE2.

Figure 2.5. An isolated sub-system 1 with moveable piston.

The energy of the sub-system changes as its volume changes, E1(V1). As the wall

or piston moves, the change in energy of the reservoir is linearly proportional to the

change in sub-system volume, dE2 = p2dV1. (This can be seen in mechanical terms: if

the piston has area A1 and mass M, and if the acceleration due to gravity is g, then the

–

–––––

¯
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constant external pressure is p2 = Mg/A1, and the change in energy is proportional

to the change in height, dE2 = Mgdh1.) In any event, the external pressure p2 is

taken to be constant. With this it may be seen that changes in the volume and energy

of the sub-system at constant particle number are related by

dE1

dV1
= −p2, or E1 + p2V1 = const.

 

The quantity that is constant during volume changes without heat flow is like the

enthalpy,

H = E1 + p2V1.

(Usually the difference between the sub-system pressure and the reservoir

pressure is ignored.) The enthalpy previously appeared as essentially the inverse

temperature derivative of the Gibbs free energy, equation (2.53). The fact that this is

constant in the present system of no heat flow is consistent with a form of the First

Law of Thermodynamics, namely pV-work at constant pressure changes the heat of the

system as dQ = dE + p dV = d(E + pV ), which is just the change in enthalpy. In the

present case this is zero because the system has been defined to have no heat flow.

In a reversible change, the internal pressure balances the external pressure, 

p1(E1,N1,V1) = p2. In this case the enthalpy of the sub-system is constant, 

dH1 = dE1 + p1dV1 = 0. More generally, p1 ≠ p2, and it is the enthalpy-like quantity

E1 + p2V1 that is constant, where the constant externally applied pressure is used, not

the internal pressure of the sub-system.

The total entropy is that of the sub-system alone, since the entropy of the reservoir

is constant

One could have guessed that this would be the case because the external pressure

could have been made mechanical in origin. Hence the total entropy is 

Stotal(E,V ∣ N , p) = S1(E,V ,N), with E + pV = const., where the subscripts have

been dropped. Hence the change in total entropy due to a change in sub-system

volume is

dS2(E2,N2,V2) =
1

T2
dE2 +

p2

T2
dV2

=
1

T2
[p2dV1 − p2dV1]

= 0.

ΔStotal =
∂S1

∂E

dE

dV
ΔV +

∂S1

∂V
ΔV

=
p(E,N ,V ) − p

T (E,N ,V )
ΔV .
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For the total entropy to increase, the volume of the sub-system has to increase when

its pressure is greater than the external pressure, and the volume has to decrease

when the internal pressure is less than the external pressure. This was also found to be

the case for the isobaric system, which allowed heat flow, equation (2.44). Equilibrium,

of course, corresponds to pressure equality.

Since the enthalpy H = E + pV  is constant, it may be taken as one of the

independent variables for the insulated, variable volume system. The constrained

thermodynamic potential may be defined as

Φ(V ∣ H,N , p;T ) = −TSs(E,N ,V ), E ≡ H − pV .

The temperature here is arbitrary, as it is introduced solely to give the potential

the dimensions of energy. It enters as a trivial multiplicative factor whose value has no

physical consequences. By construction Φ is a convex function of volume minimized at

the equilibrium volume V̄ (H,N , p). The volume derivative is

Again, this vanishes at equilibrium, when the internal pressure of the sub-system

equals the external pressure of the reservoir, p(Ē, V̄ ,N) = p, where Ē = H − pV̄ .

As usual, the thermodynamic potential of this system is the minimum value of the

constrained thermodynamic potential, Φ̄(H,N , p;T ) = Φ(V̄ ∣ H,N , p;T ). And again

as usual, the variational nature of Φ, means that Φ̄ can be differentiated at fixed V̄ .

Hence one has

1

T
(

∂Φ̄

∂N
)

H,p,T

=
1

T
(

∂Φ

∂N
)

H,p,T ,V̄

=
μ̄

T̄
,

1

T
(

∂Φ̄

∂H
)

N ,p,T

=
1

T
(

∂Φ

∂H
)

N ,p,T ,V̄

=
−1

T̄
,

and

1

T
(

∂Φ̄

∂p
)

H,N ,T

=
1

T
(

∂Φ

∂p
)

H,N ,T ,V̄

=
V̄

T̄
.

Together with the trivial result ∂Φ̄/∂T = Φ̄/T , these give the total differential,

dΦ̄ = −
T

T̄
dH +

V̄ T

T̄
dp +

μ̄T

T̄
dN +

Φ̄

T
dT .

1

T

∂Φ(V ∣ H,N , p;T )

∂V
= −

∂Ss(E,N ,V )

∂E

∂(H − pV )

∂V
−

∂Ss(E,N ,V )

∂V

=
p − p(E,N ,V )

T (E,N ,V )
, E ≡ H − pV .
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Finally, it is worth mentioning that the change in internal energy was taken

above to be equal and opposite to that of the reservoir, dE1 = −dE2 = −p2dV1.

However, since no heat flows, the change in energy of the sub-system is just the work

done by it on the piston, dE1 = −p1dV1. There is an obvious contradiction between

these two in the case that p1 ≠ p2.

The problem can be resolved by noting that the piston acquires kinetic energy as it

accelerates due to the initial force imbalance. This has been neglected in the above

analysis. Also neglected has been any heat created by friction or by viscous

dissipation. If the viscous dissipation of the reservoir is comparable to that of the sub-

system, one cannot say how the kinetic energy of the piston is divided between the

two when it dies out. Because of the adiathermal walls, the arbitrary internal heating

does not equilibrate between them. Although equilibrium still corresponds to pressure

equality, one does not know the final energy, temperature, or volume of the sub-

system. This indeterminacy of linked isenthalpic systems has been noted by Callan

(1960, appendix C).

2.3.4 Constant entropy

So far physical reservoirs have been considered. These allow the exchange of energy,

volume, and particles, which are the independent variables of the sub-system entropy.

We now wish to consider a case in which the sub-system entropy itself is an

independently specified variable. This is done more to illustrate the mathematical

procedures than for any application to a real physical system.

Suppose that the sub-system can exchange energy and volume with a reservoir

while keeping the sub-system entropy constant. In this case we can regard the volume

as independent and write the energy as E(S,V ,N). As usual, the constrained total

entropy is

Stotal(V ∣ S, p,N ;T ) = S −
E(S,V ,N)

T
−

pV

T
,

where T and p are the temperature and pressure of the reservoir, respectively.

Only the quantities that depend on the sub-system are kept here. Again as usual, the

constrained thermodynamic potential is

One can discard the final constant term since we are interested only in variations

of the potential with the constrained volume at constant sub-system entropy,

H(V ∣ S, p,N) = E(S,V ,N) + pV .

This is just the enthalpy, and it describes volume fluctuations of an isentropic sub-

system.

Now for an isolated system at constant entropy and number,

0 = dS(E,N ,V ) =
1

T
dE +

p

T
dV .

H ∗(V ∣ S, p,N ;T ) = − TStotal(V ∣ S, p,N ;T )

= E(S,V ,N) + pV − TS.
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Hence ∂E(S,V ,N)/∂V = −p(S,V ,N). It follows that the volume derivative of the

constrained thermodynamic potential is

(
∂H

∂V
)

S,p,N

= −p(S,V ,N) + p.

As expected, the equilibrium volume, V̄ (S, p,N), equalizes the sub-system and

reservoir pressures. Being derived from the total entropy, the constrained

thermodynamic potential is a convex function of volume. Hence the extremum is a

minimum,

(
∂ 2H

∂V 2
)

S,p,N

= (
∂ 2E

∂V 2
)

S,N

= −(
∂p(S,V ,N)

∂V
)

S,N

> 0.

 

The equilibrium enthalpy is the minimum value of the constrained thermodynamic

potential,

H̄(S, p,N) = E(S, V̄ ,N) + pV̄ .

This is the equilibrium thermodynamic potential for this isentropic system. Holding

V̄  fixed as per the variational principle, one has

(
∂H̄(S, p,N)

∂p
)

N ,S

= V̄ ,

(
∂H̄(S, p,N)

∂N
)

p,S

= (
∂E(S, V̄ ,N)

∂N
)

V̄ ,S

= μ̄,

and

(
∂H̄(S, p,N)

∂S
)

N ,p

= (
∂E(S, V̄ ,N)

∂S
)

N ,V̄

= T̄ .

These may be summarised by the total differential,

dH̄ = V̄ dp + μ̄dN + T̄ dS.

 

In the case of the full thermodynamic potential, H̄
*
(S, p,N ;T ), the results remain

the same, except that the final one is replaced by
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∂H̄
*
(S, p,N ;T )

∂S
N ,p;T

= T̄ − T .

Note that there is no requirement for the temperature of the sub-system to equal

that of the reservoir. In addition one has the entropy itself

∂H̄
*
(S, p,N ;T )

∂T
S,p,N

= −S,

and the equilibrium enthalpy

∂(H̄
*
(S, p,N ;T )/T )

∂T −1

S,p,N

= −(Ē + pV̄ ).

 

The results for the various reservoirs are summarized in table 2.2.

Table 2.2. Summary of the common thermodynamic systems (Attard 2002).

System Constrained potential 

parameters

Equilibrium potential 

differential

Isolated —- Entropy, S

N, V, E TdS = dE + p dV − μ dN

Isothermal F = E − TSs(E,N ,V ) Helmholtz, F̄

E ∣ N ,V ,T dF̄ = −S̄ s dT − p̄ dV + μ̄ dN

Open Ω = E − TSs(E,N ,V ) − μN Grand, Ω̄

N ,E ∣ μ,V ,T dΩ̄ = −S̄ s dT − p̄ dV − N̄ dμ

Isobaric G = E − TSs(E,N ,V ) + pV Gibbs, Ḡ

E,V ∣ N , p,T dḠ = −S̄ s dT + V̄ dp + μ̄ dN

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

⎛⎜⎝ ⎞⎟⎠
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System Constrained potential 

parameters

Equilibrium potential 

differentialIsenthalpic Φ = −TSs(H − pV ,N ,V ) Φ̄

V ∣ N ,H, p;T T̄ dΦ̄/T = −dH + V̄ dp + μ̄ dN

+Φ̄ T̄ dT/T 2

Isentropic H = E(S,V ,N) + pV Enthalpy, H̄

V ∣ N ,S, p dH̄ = V̄ dp + μ̄ dN + T̄ dS

2.4 Thermodynamic second derivatives

The second derivatives of the equilibrium thermodynamic potentials provide

measurable physical parameters such as the heat capacity, compressibility, thermal

expansivity etc. These also determine the probability of the statistical fluctuations

about equilibrium, as will be shown in section 2.5.

The thermodynamic systems analyzed above each have a characteristic set of

dependent and independent variables. However, because there is a one-to-one

mapping between the equilibrium values of the dependent variables and the

independent variables, which is to say that the thermodynamic state is unique, one is

free to choose any set of three variables as the independent ones. To simplify the

notation in this section, equilibrium quantities will not be over-lined, and the

dependent and independent variables should be gleaned from the context.

2.4.1 Concavity of the thermodynamic potentials

The thermodynamic reservoir formalism is based on the exchange between the sub-

system and the reservoir of one or more conserved, linear additive quantities. The

constrained thermodynamic potential is convex with respect to these constrained

extensive variables, as follows from the fact that it is the negative of the constrained

total entropy. The equilibrium thermodynamic potential, which is the minimum value of

the constrained thermodynamic potential, effectively replaces as independent

variables these exchangeable extensive variables of the sub-system with the intensive

variables of the reservoir that are their thermodynamic conjugates. The equilibrium

free energy or thermodynamic potential is concave with respect to these conjugate

intensive variables, as is now shown.

Let X be the conserved extensive variable and let the conjugate intensive (field)

variable be

x = −(
∂E

∂X
)

S

,

or

x = T
∂S

∂X
.
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Typically X is E, N, or V, in which case x is 1, −μ, or p, respectively. The variable X

could also be some additional extensive, exchangeable system parameter. The

part of the total entropy that depends on the sub-system for a reservoir at x and T,

with X being exchanged, is

Stotal(X ∣ x,T ) = Ss(X) −
xX

T
.

Now as has already been shown, the total entropy is concave with respect to the

extensive variable,

(
∂ 2Stotal(X ∣ x,T )

∂X 2
)

x

< 0.

The equilibrium value of X is X̄(x,T ), and this gives the maximum total entropy, 

S̄ total(x,T ) = Stotal(X̄(x,T ) ∣ x,T ). This equilibrium value of the total entropy is a

convex function of the reservoir field x/T, as is now proven.

One has

The first two terms in the brackets cancel because at equilibrium, the sub-system

intensive variables equal those of the reservoir, x(X̄(x,T )) = x and 

T(X̄(x,T )) = T . For any value of the constrained exchangeable variable, say X′, not

equal to the equilibrium value, X′≠ X̄, then

Stotal(X′∣ x,T ) < Stotal(X̄ ∣ x,T ).

This follows because equilibrium is defined as the maximum of the total entropy.

Writing out the two sides of this inequality explicitly and re-arranging gives

xX̄

T
−

xX′

T
< Ss(X̄) − Ss(X′).

The second order expansion of the sub-system entropy about X′ is

d2Stotal(X̄ ∣ x,T )

d(x/T )2
=

d

d(x/T )
[

∂Ss(X)

∂X

dX̄

d(x/T )
−

x

T

dX̄

d(x/T )
− X̄]

=
−dX̄(x,T )

d(x/T )
,
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Inserting this into the inequality yields

[
x

T
−

x̄′

T̄ ′
](X̄ − X′) <

(X̄ − X′)
2

2
Ss,XX(X′).

Since the isolated system entropy is a concave function of its arguments, the

right-hand side is negative. Hence divide both sides by (X̄ − X′)
2
 and take the limit 

X′→ X̄ to obtain

d(x̄/T̄ )

dX
< 0.

This is equivalently but more conveniently written

dX̄

d(x/T )
< 0.

This shows that the equilibrium total entropy (i.e. its maximum value) is a convex

function of x/T,

d2Stotal(X̄(x) ∣ x)

d(x/T )2
> 0.

 

Since the equilibrium thermodynamic potential is essentially the negative of the

equilibrium total entropy F̄ (x) ≡ F(X̄(x) ∣ x) = −TStotal(X̄(x) ∣ x), the convexity of

the latter translates into concavity of the former,

d2(F̄ (x)/T )

d(x/T )2
< 0.

 

Finally, one can readily identify X and x in a given case by noting that

d(F̄ (x)/T )

d(x/T )
= X̄(x).

Ss(X̄) = Ss(X′) + (X̄ − X′)Ss,X(X′) +
(X̄ − X′)

2

2
Ss,XX(X′)

= Ss(X′) + (X̄ − X′)
x̄′

T̄ ′
+

(X̄ − X′)
2

2
Ss,XX(X′).
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2.4.2 Heat capacity

The heat capacity tells how much energy is required to change the temperature of a

sub-system. It is actually defined as the reciprocal of this, namely the rate of change of

heat with temperature.

Heat flow can be thought of as the rate of microscopic or statistical energy change.

Work is the rate of macroscopic energy change, the most common example being

pressure–volume or pV-work. Neither heat not work are state functions (one cannot

say that in a given thermodynamic state the system has a certain amount of heat, or a

certain amount of work), but changes in the sum of the two together give the change

in the energy, which is a state function.

From the First Law of Thermodynamics, the change in energy of the system is the

change in heat of the system plus the work done on the system, dE = dQ + dW .

Hence the change of energy differs if the change is at constant volume (dW = 0) or at

constant pressure (dW = −p dV ).

The heat capacity at constant volume is

CV = (
∂Q

∂T
)

V ,N

= (
∂Ē

∂T
)

V ,N

,

where this is the equilibrium energy of a sub-system in contact with a heat

reservoir of temperature T, Ē(N ,V ,T ). Since the equilibrium energy is the derivative

of the Helmholtz free energy, F̄ (N ,V ,T ), equation (2.34), this is the second

derivative

CV =
−1

T 2
(

∂ 2(F̄/T )

∂(1/T )2
)

V ,N

.

The heat capacity is evidently an extensive variable.

In the preceding section, it was established that in general the equilibrium

thermodynamic potentials were concave with respect to the conjugate intensive

variables of the reservoir. The present case corresponds to x ≡ 1 (and X ≡ E), and so

one concludes that the heat capacity at constant volume is positive,

CV > 0.

 

The heat capacity at constant pressure is

( )
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where the enthalpy E + pV  has been written as the derivative of the Gibbs free

energy, equation (2.53).

Since ∂Ḡ(N , p,T )/∂T = −S̄, the heat capacity at constant pressure can also be

written as the temperature derivative of the entropy

 

Again invoking the concavity established in the preceding section, one identifies

x ≡ 1 and X = H, and one concludes that the heat capacity at constant pressure is

positive,

Cp > 0.

Further analysis shows that Cp > CV . This signifies that additional heat is required

to raise the temperature of a sub-system at constant pressure because extra work is

required to expand the volume against the external pressure.

2.4.3 Compressibility

The compressibility is the rate of change of volume with pressure. In this case one has

a choice of making the change at constant temperature or at constant entropy. The

isothermal compressibility is defined to be

Cp = (
∂Q

∂T
)

p,N

= (
∂Ē

∂T
)

p,N

+ p(
∂V̄

∂T
)

p,N

=
−1

T 2
(

∂ 2(Ḡ/T )

∂(1/T )2
)

p,N

,

Cp =
−1

T 2

∂ 2(Ḡ(N , p,T )/T )

∂(1/T )2

= − T −2(−T 2)
∂

∂T
[(−T 2)

∂(Ḡ(N , p,T )/T )

∂T
]

=
∂

∂T
[Ḡ(N , p,T ) − T

∂Ḡ(N , p,T )

∂T
]

=
∂Ḡ(N , p,T )

∂T
−

∂Ḡ(N , p,T )

∂T
− T

∂ 2Ḡ(N , p,T )

∂T 2

= T
∂S̄(N , p,T )

∂T
.
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χT =
−1

V̄
(

∂V̄

∂p
)

T ,N

.

The compressibility is evidently an intensive variable. The volume here is 

V̄ (N , p,T ), which is the pressure derivative of the Gibbs free energy, so that this may

be rewritten

χT =
−1

V̄
(

∂ 2Ḡ

∂p2
)

T ,N

=
−1

V̄ T
(

∂ 2(Ḡ/T )

∂(p/T )2
)

T ,N

.

Invoking the concavity result and identifying x ≡ p/T  and X ≡ V , it follows that

the isothermal compressibility is positive, χT > 0.

For the case of constant entropy, the adiabatic compressibility is

χS =
−1

V̄
(

∂V̄

∂p
)

S,N

.

Since the equilibrium volume is the pressure derivative of the enthalpy at constant

entropy, equation (2.86), this can be written as the second derivative of the enthalpy,

χS =
−1

V̄
(

∂ 2H̄

∂p2
)

S,N

.

Again this is positive.

2.4.4 Thermal expansivity

The thermal expansivity is defined as

α =
−1

ρ̄

∂ρ̄(p,T )

∂T
.

This is usually positive, liquid water below 4 °C being a well-known exception. This

can also be written as the cross second derivative of the Gibbs free energy,

α =
1

V̄
(

∂V̄

∂T
)

N ,p

=
1

V̄
(

∂ 2Ḡ

∂T∂p
)

N

,

which explains why it does not have to have a definite sign

2.4.5 Maxwell relations

The four examples given above were ‘pure’ second derivatives of equilibrium

thermodynamic potentials. One can also form the mixed second derivatives.
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Interchanging the order of differentiation gives rise to the Maxwell relations.

For example, the two ways of taking the temperature and volume derivatives of the

Helmholtz free energy can be equated to each other,

∂ 2F̄ (N ,V ,T )

∂V ∂T
=

∂ 2F̄ (N ,V ,T )

∂T∂V
.

Performing the inner derivatives, equations (2.30) and (2.31) yield

(
∂S̄ s(N ,V ,T )

∂V
)

T ,N

= (
∂p̄(N ,V ,T )

∂T
)

V ,N

.

 

Another example, which will be of use later, what is essentially the energy per

particle in a canonical equilibrium system is

The second equality follows by changing the order of differentiation in the cross

second derivative of the Helmholtz free energy.

There are many such Maxwell relations. One is best advised to derive each as it is

required rather than attempting to remember them all.

2.5 Probability and fluctuation theory

In this section the probability of fluctuations in the state of a sub-system able to

exchange with a reservoir is analyzed in a generic fashion.

We shall denote by Y the set of extensive sub-system variables that are fixed, and

by X the extensive sub-system variables that can be exchanged with the reservoir. The

conjugate intensive variables are defined by the derivatives of the isolated sub-system

entropy,

x = T
∂S(X,Y )

∂X
and y = T

∂S(X,Y )

∂Y
.

The most usual pairs of conjugate variables are {x,X} = {1,E}, {p,V }, and 

{−μα,Nα}. The X and the x are vectors in the case that more than one quantity is

exchangeable with the reservoir.

2.5.1 Exchange with a reservoir

∂Ē(N ,V ,T )

∂N
=

∂ 2(F̄ (N ,V ,T )/T )

∂N∂(1/T )

=
∂(μ̄/T )

∂(1/T )

= μ̄ − T
∂μ̄

∂T
.
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Using a subscript s for the sub-system and r for the reservoir, as usual the total

entropy is

Only that part of the total entropy that depends on the sub-system, and terms

extensive with the sub-system, have been kept here. Dropping the subscripts since the

reservoir only enters through its intensive variables this is

Stotal(X ∣ Y ,x,T ) = Ss(X,Y ) −
x

T
X.

The temperature that appears here is that of the reservoir. In the event of multiple

exchangeable parameters, xX ⇒ x ⋅ X.

The probability that the sub-system is in the macrostate X (i.e. has an amount X of

exchangeable material) is simply proportional to the exponential of the total entropy,

where β ≡ 1/kBT  is often called the inverse temperature. The normalizing factor 

Z(Y ,x,T ) is called the partition function.

As we have seen, the total entropy is a maximum when the conjugate sub-system

field variable equals that of the reservoir,

∂Stotal(X ∣ Y ,x,T )

∂X
∣
X=X

= 0 ⇔ xs(X̄s,Ys) = xr.

Obviously this corresponds to the maximum of the probability distribution, and X̄
is the most likely macrostate of the system, or, equivalently, the most likely value of

the exchangeable variable of the sub-system.

2.5.1.1 Concavity of the entropy

It was argued in section 2.1.3 that the entropy of an isolated sub-system must be a

concave function of its extensive arguments in order for the thermodynamic state to

be stable. This condition leads to

Sii < 0, and SiiSjj − S 2
ij > 0,

where the subscripts denote the second derivatives with respect to any of the

isolated sub-system Xi. (The second condition comes from the fact that the

eigenvalues of the Jacobean matrix must all be negative, and, for two exchangeable

parameters, the product of the two eigenvalues is the determinant.)

Stotal(Xs ∣ Ys,Yr,Xtotal) = Ss(Xs,Ys) + Sr(Xtotal − Xs,Yr)

= Ss(Xs,Ys) −
xr

Tr
Xs.

℘(X ∣ Y ,x,T ) =
1

Z(Y ,x,T )
eStotal(X∣Y ,x,T )/kB

=
1

Z(Y ,x,T )
eSs(X,Y )/kBe−βxX,

¯



(2.1

28)

(2.1

29)

(2.1

30)

In the present case of exchange with a reservoir, for a stable equilibrium state, the

total entropy must be a concave function of its constrained arguments. But this is

guaranteed by the concavity of the isolated system entropy, since the part of the total

entropy connected to the reservoir is a linear function of the exchangeable variables,

and concavity reflects the second derivative.

The connection between the two cases is not so surprising since a macroscopic

isolated system forms a reservoir for any part of itself.

2.5.1.2 Gaussian probability

The concavity of the total entropy means that the probability distribution for the

constrained variable that the sub-system can exchange with a reservoir has a well-

defined peak at X̄. One can make a second order expansion of the exponent about this

peak to obtain a Gaussian distribution,

℘(X ∣ Y ,x,T ) ≈
1

ZG(Y ,x,T )
eSs′′(X−X̄)

2
/2kB .

where Ss′′≡ Ss′′(X̄(Y ,x,T ),Y ) is the Jacobian matrix of second derivatives of

the isolated sub-system entropy evaluated in the equilibrium state.

Note that the contributions from higher order derivatives are negligible, as can be

seen from extensivity arguments. (The nth entropy derivative S
(n)
s  scales with V 1−n,

whereas (X − X̄)
n
 scales with V n/2, so that their product decreases in magnitude

with increasing volume for n > 2.) Hence this Gaussian form for the probability

distribution is exact in the thermodynamic limit, V → ∞.

This result is essentially the central limit theorem, which in essence says that the

probability distribution of variables that are the sum of random variables is Gaussian.

The utility of Gaussian distributions is another strong argument for formulating the

entropy as dependent solely on extensive variables.

From the easily proved properties of the Gaussian distribution, the average value is

equal to the most likely value,

⟨X⟩Y ,x,T = X̄(Y ,x,T ).

This result is essential to the consistency of thermodynamics and statistical

mechanics. Thermodynamics always refers to the most likely state or value. Statistical

mechanics mainly deals with average values. By this result the two are the same.

2.5.2 Constrained and equilibrium thermodynamic potential

As we have seen, in order to make more direct contact with conventional

thermodynamics, it is useful to introduce the constrained thermodynamic potential as

the negative of the temperature times the constrained total entropy,

(The reservoir temperature T that appears here affects the potential only trivially

in the event that energy is not an exchangeable parameter.) This may also be called

F(X ∣ Y ,x;T ) = − TStotal(X ∣ Y ,x,T )

= xX − TSs(X,Y ).
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the fluctuation potential, for reasons that will become clearer shortly. It follows that the

probability distribution is essentially the exponential of this constrained

thermodynamic potential

℘(X ∣ Y ,x,T ) =
1

Z(Y ,x,T )
e−βF(X∣Y ,x,T ).

 

By design, the constrained thermodynamic potential is a convex function of the

exchangeable parameters that reaches its minimum at the equilibrium value, 

X = X̄(Y ,x,T ). This minimum value is called the equilibrium thermodynamic

potential,

F̄ (Y ,x,T ) = F(X̄ ∣ Y ,x,T ) = xX̄ − TSs(X̄,Y ).

 

The utility of the constrained thermodynamic potential is that it provides a

variational principle for the exchanged variable. Amongst other things, this makes

differentiation of the equilibrium thermodynamic potential particularly simple because

one may effectively hold the exchanged variable constant during differentiation. For

example

For the same reason differentiation with respect to one of the non-exchangeable

sub-system variables yields

where the conjugate intensive variable of the sub-system and also the sub-system

temperature appear. Dividing by temperature and differentiating by inverse

temperature yields

∂F̄ (Y ,x,T )

∂x
=

∂F(X̄ ∣ Y ,x,T )

∂x
+

∂F(X ∣ Y ,x,T )

∂X
∣
X=X

∂X(Y ,x,T )

∂x

=
∂F(X̄ ∣ Y ,x,T )

∂x

= X̄.

¯

¯

∂F̄ (Y ,x,T )

∂Y
=

∂F(X̄ ∣ Y ,x,T )

∂Y
+

∂F(X ∣ Y ,x,T )

∂X
∣
X=X

∂X̄(Y ,x,T )

∂Y

=
∂F(X̄ ∣ Y ,x,T )

∂Y

= − T
∂S(X̄,Y )

∂Y

= − T
y

Ts
,

¯
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In the event of multiple exchangeable variables, the right-hand side is x ⋅ X̄.

The equilibrium thermodynamic potential is a convex function of the non-

exchangeable extensive variables, (because its second derivative is the negative of

the second derivative of the isolated sub-system entropy). It is a concave function of

the reservoir field variables conjugate to the exchangeable variables. Hence

∂ 2F̄

∂x2
i

< 0, and
∂ 2F̄

∂x2
i

∂ 2F̄

∂x2
j

− (
∂ 2F̄

∂xi∂xj

)

2

> 0.

The curvature of the equilibrium thermodynamic potential determines the sign of

physical quantities such as the heat capacity or the compressibility.

2.5.3 Partition function

The partition function that normalizes the probability distribution is

In the integral form one often introduces an appropriate constant factor that

makes the partition function dimensionless. This is unimportant as it has no non-trivial

consequences. Since the partition function is the weighted sum over all macrostates,

its logarithm is the unconstrained total entropy,

Stotal(Y ,x,T ) ≡ kB ln Z(Y ,x,T ).

This explains why any constant factor multiplying the partition function has no

physical consequences: entropy is only defined up to an additive constant.

2.5.3.1 Averages

The partition function acts as a generating function for the system. The average value

of various properties of the sub-system may be obtained as derivatives of the

∂(F̄ (Y ,x,T )/T )

∂T −1

=
∂(F(X̄ ∣ Y ,x,T )/T )

∂T −1
+

∂(F(X ∣ Y ,x,T )/T )

∂X
∣
X=X̄

∂X̄(Y ,x,T )

∂T −1

=
∂(F(X̄ ∣ Y ,x,T )/T )

∂T −1

= xX̄.

Z(Y ,x,T ) = ∑
X

eStotal(X∣Y ,x,T )/kB

= ∑
X

eSs(X,Y )/kBe−βxX

= ∫ dX eSs(X,Y )/kBe−βxX.
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logarithm of the partition function. The latter is the unconstrained total entropy of the

system.

The average of an exchangeable variable of the sub-system is

 

Similarly, the sub-system field parameters conjugate to the non-exchangeable

variables, y = Ts∂S(X,Y )/∂Y , have average value

 

The average of the sub-system field parameters conjugate to the exchangeable

variables, is

⟨X⟩Y ,x,T = ∫ dX ℘(X ∣ Y ,x,T ) X

=
1

Z(Y ,x,T )
∫ dX eSs(X,Y )/kBe−βxX X

=
1

Z(Y ,x,T )
∫ dX eSs(X,Y )/kB

−∂e−βxX

∂(βx)

=
−∂ ln Z(Y ,x,T )

∂(βx)
.

⟨βsy⟩Y ,x,T = ∫ dX ℘(X ∣ Y ,x,T ) βsy

=
1

Z(Y ,x,T )
∫ dX eSs(X,Y )/kBe−βxX

∂Ss(X,Y )

kB∂Y

=
1

Z(Y ,x,T )
∫ dX e−βxX ∂eSs(X,Y )/kB

∂Y

=
∂ ln Z(Y ,x,T )

∂Y
.

⟨βsxs⟩Y ,x,T = ∫ dX ℘(X ∣ Y ,x,T ) βsxs

=
1

Z(Y ,x,T )
∫ dX eSs(X,Y )/kBe−βxX ∂Ss(X,Y )

kB∂X

=
1

Z(Y ,x,T )
∫ dX e−βxX ∂eSs(X,Y )/kB

∂X

=
−1

Z(Y ,x,T )
∫ dX e−βxX ∂e−βxX

∂X

= βx.
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An integration by parts has been performed here, with the integrated part vanishing

because extreme (i.e. at the integral limits) values of the exchangeable parameter

have vanishingly small probability. This says that the average of the sub-system

intensive variable conjugate to the exchangeable parameter is equal to that of the

reservoir. This is what one would expect from the above finding that average values

equal most likely values.

2.5.3.2 Fluctuations

As we have just seen, the derivative of the unconstrained total entropy, which is the

logarithm of the partition function, give the average of various properties of the sub-

system. Likewise, the second derivative gives the fluctuations in those quantities. One

has

Here the fluctuation or departure from the norm is ΔX ≡ X − ⟨X⟩Y ,x,T . The

square root of the average of the square of the fluctuation is a measure of the extent

to which the system can be expected to depart at any instant from its average value.

The average of the square of the departure is evidently positive. Hence the

unconstrained total entropy is a convex function of the reservoir conjugate field

variables. The fluctuation in X measures the width of the probability distribution 

℘(X ∣ Y ,x,T ): a small fluctuation means a sharply peaked distribution. The

numerator on the left-hand side is extensive (the total entropy scales with the size of

the sub-system), and the denominator is intensive. Hence the average of the square of

the fluctuation is extensive. The expected relative error in a measurement of X is

√⟨(ΔX)2⟩
Y ,x,T

⟨X⟩Y ,x,T

∼ O(V −1/2),

since the denominator is extensive. This vanishes in the thermodynamic limit, 

V → ∞. Hence the probability distribution for the exchangeable parameter becomes

infinitely sharply peaked in the thermodynamic limit. This means that the average

value is the same as the most likely value. It also means that the relative statistical

error in the measured value of the exchangeable quantity is negligible for a

macroscopic system.

Similarly, for two exchangeable quantities, the cross second derivative is

∂ 2 ln Z(Y ,x,T )

∂(βx)2
=

−∂⟨X⟩Y ,x,T

∂(βx)

=
−∂

∂(βx)
{

1

Z(Y ,x,T )
∫ dX eSs(X,Y )/kBe−βxX X}

= ⟨X 2⟩
Y ,x,T

− ⟨X⟩2
Y ,x,T

= ⟨(ΔX)2⟩
Y ,x,T

.
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This is called the cross-correlation, and it can be positive or negative. If it vanishes

then the two exchangeable quantities are said to be uncorrelated with each other.

It is possible to combine the cross- and self-correlation in such a way that a positive

quantity is obtained,

The averages on the left-hand side are to be regarded here as constants that are

not differentiated.

Differentiation with respect to the inverse temperature yields

This gives the fluctuation of the exchangeable work term; for multiple quantities, 

xX ⇒ x ⋅ X.

One can similarly analyze the non-exchangeable extensive variables of the sub-

system. This yields

The unconstrained total entropy is extensive, and so the left-hand side is O(V −1).

The final term on the right-hand side is similarly O(V −1). Hence the average of the

square of the fluctuation in the sub-system intensive variables (the ones not conjugate

to the exchangeable variables) must scale as O(V −1), which in the thermodynamic

limit is negligible compared to ⟨βsy⟩Y ,x,T ∼ O(V 0).

∂ 2 ln Z(Y ,x,T )

∂(βxi)∂(βxj)
= ⟨XiXj⟩Y ,x,T − ⟨Xi⟩Y ,x,T ⟨Xj⟩Y ,x,T

= ⟨ΔXi ΔXj⟩Y ,x,T .

(
∂

⟨Xi⟩Y ,x,T∂(βxi)
−

∂

⟨Xj⟩Y ,x,T
∂(βxj)

)

2

ln Z(Y ,x,T )

= ⟨(
Xi

⟨Xi⟩Y ,x,T

−
Xj

⟨Xj⟩Y ,x,T

)

2

⟩
Y ,x,T

.

∂ 2 ln Z(Y ,x,T )

∂β2
=

−∂⟨xX⟩Y ,x,T

∂β

= ⟨(Δ(xX))2⟩
Y ,x,T

.

∂ 2 ln Z(Y ,x,T )

∂Y 2
=

∂⟨βsy⟩Y ,x,T

∂Y

= ⟨(βsy)2⟩
Y ,x,T

− ⟨βsy⟩
2
Y ,x,T +⟨

∂(βsy)

∂Y
⟩

Y ,x,T

= ⟨(Δ(βsy))2⟩
Y ,x,T

+⟨
∂ 2Ss(X,Y )/kB

∂Y 2
⟩

Y ,x,T

.
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The first term on the right-hand side is positive, whereas the second term is

negative due to the concavity of the entropy of the isolated sub-system. Hence the

sign of the left-hand side is indeterminate. However, the result may be rewritten as

∂ 2 ln Z(Y ,x,T )

∂Y 2
−⟨

∂ 2Ss(X,Y )/kB

∂Y 2
⟩

Y ,x,T

= ⟨(Δ(βsy))2⟩
Y ,x,T

,

which says that the left-hand side is positive.

2.5.3.3 Partition function and thermodynamic potential

The logarithm of the partition function is essentially the unconstrained total entropy,

Stotal(Y ,x,T ) = kB ln Z(Y ,x,T ).

This plays an important role in the formalism as its derivatives generate average

values and their fluctuations.

In conventional approaches instead of this it is the equilibrium thermodynamic

potential that is equated to the logarithm of the partition function. There is no

inconsistency here because for macroscopic systems (i.e. in the thermodynamic limit)

the two are equal because fluctuations are relatively negligible. This can be seen

explicitly,

For multiple exchangeable parameters, xX̄ ⇒ x_ ⋅ X̄_ , and Ss′′(X̄,Y ) is the

Jacobean matrix of second derivatives. In this derivation the exponent has been

expanded to second order and the Gaussian integral evaluated. This gives the

equilibrium thermodynamic potential or free energy plus a logarithmic correction. The

latter arises from the contribution of the fluctuations to the unconstrained total

entropy, and for a macroscopic system it can be neglected. (This is in essence the

same result as was given for the combinatorial example in section 1.2.3). One

concludes that to leading order the conventional expression is correct: the equilibrium

thermodynamic potential is essentially the logarithm of the partition function,

F̄ (Y ,x,T ) = −kBT ln Z(Y ,x,T ).

 

− kBT ln Z(Y ,x,T )

= −kBT ln ∫ dX eSs(X,Y )/kBe−βxX

≈ −kBT ln [eSs(X̄,Y )/kBe−βxX̄ ∫ dX e
Ss′′(X̄,Y )(X−X̄)

2
/2kB]

= βxX̄ − TSs(X̄,Y ) −
kBT

2
ln [Det{−Ss′′(X̄,Y )/2πkB}]

= F̄(Y ,x,T)−
kBT

2
ln [Det{−Ss′′(X̄,Y )/2πkB}].



This result means that the logarithmic derivative of the partition function equals

essentially the derivative of the equilibrium thermodynamic potential. Hence average

values, which are given by the former, equal most likely values, which are given by the

latter. Similarly for the second derivatives, so that the sign of the average square

fluctuation determines the sign corresponding to equilibrium derivatives.

Summary

The constrained total entropy is the sum of the sub-system entropy and the

reservoir entropy, each isolated and in the specified macrostate. The reservoir

entropy upon Taylor expansion is the negative of the sub-system constrained

exchangeable parameters times the conjugate reservoir field variables. The

constrained thermodynamic potential is the negative of the reservoir temperature

times the constrained total entropy.

The constrained total entropy is maximized by the equilibrium or most likely value

of the constrained parameter. The corresponding minimum value of the

constrained thermodynamic potential is the equilibrium thermodynamic potential,

which is commonly called a free energy.

The concavity of the isolated system entropy leads to the concavity of the

constrained total entropy, the stability of matter, the uniqueness of the

thermodynamic state, and the equivalence of the equilibrium state obtained with

different reservoirs. Exchangeable variables flow up the entropy gradient, which

makes the conjugate field variable more uniform spatially. In common parlance,

energy flows from a hot body to a cold body, thereby decreasing the temperature

disparity.

The constrained total entropy, constrained thermodynamic potential, and

equilibrium thermodynamic potential are all extensive.

The equilibrium thermodynamic potential is a concave function of its field variables

and a convex function of its extensive variables. These determine the sign of its

second derivatives, which give common thermodynamic parameters such as the

heat capacity, compressibility, etc.

The values of the sub-system variables exchangeable with a reservoir fluctuate

about their equilibrium values. The logarithm of the partition function gives the

total unconstrained entropy, which is approximately equal to the maximum value

of the constrained total entropy, which is essentially the equilibrium

thermodynamic potential.

Fluctuations of extensive variables are Gaussian distributed with a variance

determined by the second derivative of the equilibrium thermodynamic potential

(equivalently, the isolated system entropy). Fluctuations are relatively negligible

for a macroscopic system, to which extent the Second Law of Thermodynamics

may be regarded as a deterministic rather than a probabilistic law.
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Chapter 3

The entropy for transitions and non-equilibrium

systems

‘the decay of a system from a given non-equilibrium state produced by a spontaneous
fluctuation obeys, on the average, the (empirical) law for the decay from the same state
back to equilibrium, when it has been produced by a constraint which is then suddenly
removed’

(Onsager and Machlup 1953)

‘Entropy’ is a word that seems to attract the crackpots of the pseudo-scientific societies …
the second law is highly attractive to those who are rather more philosophic and hand-
waving than is acceptable in the normal circles of the hard-sciences’

(Paltridge in Kleidon and Lorenz 2005)

‘The mistakes of the common herd are usually in the same direction. Like sheep, they all
follow a single leader’

(Fisher 1906)

The main aim of this chapter is to formulate non-equilibrium thermodynamics as a

variational principle of the appropriate entropy. The particular theory has been developed

by me (Attard 2005a), and the presentation follows previous work (Attard 2012). The

approach is illustrated by treating in detail the canonical non-equilibrium system, namely

steady heat flow.

The most wide-spread competing approach to non-equilibrium thermodynamics is a

variational principle based on the rate of entropy production,

δṠ∣J̄ = 0.

This asserts that the optimum non-equilibrium state (symbolized by the flux J̄ ) is the

one that extremizes the rate of entropy production, Ṡ, which is also called the dissipation.

There are also variants of this based on extremizing different functions of the dissipation.

This is claimed to be the variational principle upon which the field of non-equilibrium

thermodynamics must be based. It is meant to be the generalization of the Second Law of

Thermodynamics to non-equilibrium systems. This formula has quite a long history (see

below), and it has been advocated and used by at least three Nobel Laureates (Rayleigh,

Onsager, Prigogine), and other authorities besides.

3.1 Entropy for non-equilibrium systems

In this section the way to formulate an entropy for non-equilibriums systems is given in the

generality of sets and states. But first is briefly discussed the need to develop a principle

beyond the Second Law as a basis for non-equilibrium thermodynamics, which leads to a

historical review of the above canard.

3.1.1 The Second Law is not enough
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Chapter 2 analyzed the variational principle for equilibrium thermodynamics, namely the

Second Law of Thermodynamics that entropy is maximized. An equilibrium system does

not change macroscopically with time, although of course microscopic fluctuations occur

due to the incessant molecular motion.

A non-equilibrium system is one that changes macroscopically with time. Such changes

can be due to an applied time-dependent mechanical field, or to an applied thermodynamic

gradient. An example of the latter is steady heat flow, where the energy of the hot

reservoir decreases and that of the cold reservoir increases over time.

In fact equilibrium and non-equilibrium systems are more closely connected than is

implied by the above distinction. As we shall see, the fluctuations in time of an equilibrium

system are intimately related to the flux or motion in a non-equilibrium system.

The reader may be puzzled by the opening paragraph of this subsection in which the

Second Law of Thermodynamics was referred to as the basis of equilibrium

thermodynamics. Surely the fact that it refers to spontaneous changes in a system is a

signifier of a non-equilibrium system?

It is certainly true that the Second Law refers to macroscopic changes, and that these

are the stuff of non-equilibrium thermodynamics. It is also undeniably true that the Second

Law provides the variational principle that underlies the quantitative treatment of

equilibrium systems, as evidenced by the results in chapter 2. The point is, however, that

whilst the Second Law sets the direction of change for a system that is not in equilibrium, it

does not quantitatively determine the rate of change. In short, the Second Law gives the

future direction of time’s arrow but not its speed. Any thermodynamic theory for non-

equilibrium systems must involve time in a quantitative not just qualitative sense.

3.1.2 Principle of extreme dissipation

‘these [reciprocal] relations can be summarized in a variation-principle…an extension of
Lord Rayleigh’s ‘principle of the least dissipation of energy’…the rate of increase of the
entropy plays the rôle of a potential’ (Onsager 1931)
This brings us to the history and motivation for the principle of extreme dissipation,

equation (3.1). The absence of quantitative time in the Second Law of Thermodynamics

has led many scientists to the same general conclusion: the Second Law must be modified

for non-equilibrium systems.

In order to insert time quantitatively, almost the only approach that has been tried is to

replace the entropy that appears there by its time rate of change. The latter is also known

as the rate of entropy production, or the rate of dissipation, or just the dissipation.

In all cases the argument has been made by analogy with the Second Law rather than

from first principles, and so workers pursuing such an approach have had to guess at the

variational principle. As a result two contradictory versions have been promulgated. A

substantial fraction of the advocates of this approach assert that the general principle that

underlies non-equilibrium thermodynamics is that the rate of entropy production is a

minimum. Or by analogy to the Second Law,

Onsager, in his Noble-prize winning paper on the reciprocal relations, calls this ‘The

Principle of Least Dissipation’. He characterizes the dissipation by generalizing the energy

dissipation functions given earlier by Rayleigh (Strutt 1871), and by Kelvin (Onsager 1931).

Rayleigh (Strutt 1913) attributes it to Helmholtz (1971) and to Korteweg (1883). This

principle of minimal entropy production has also been asserted by Prigogine (1967), de

Groot and Mazur (1984), Biot (1955, 1975), Paltridge (1979), and many others besides.

The rate of entropy production decreases during

spontaneous changes of the system.
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Contradicting this, more than half of the advocates of extremizing the rate of entropy

production assert the exact opposite. They say that the rate of entropy production is a

maximum, which, by analogy to the Second Law, can be formulated as

Examples of scientists arguing for this include Prigogine (1967), Paltridge (1979),

Swenson and Turvey (1991), Schneider and Kay (1994), and Dewar (2003). For other

examples and reviews see Kleidon and Lorenz (2005) and Martyushev and Seleznev (2006).

Some scientists, including the Noble laureate Prigogine, have advocated both principles.

Of some influence has been the variational functional given by Onsager and Machlup

(1953), based on different quadratic forms for the entropy production, and whose

extremum is designed to give the optimum steady state of a non-equilibrium system. They

chose the extremum to be a minimum. The variational functionals given by Hashitsume

(1952, 1956), Gyarmati (1968, 1970), and Bochkov and Kuzovlev (1980), are in essence

identical to that given by Onsager and Machlup (1953). Some of the proponents of this

functional say the extremum should be a maximum, and others say is should be a

minimum.

The reader will doubtless be troubled by the fact that two directly opposed criteria have

been proposed and argued for with equal fervor. Surely there should be a unique general

principle that determines the optimum non-equilibrium state, and this principle should be

self-evident, incontrovertible, and backed by evidence. It is perhaps surprising that those

who argue for a principle based on the rate of entropy production cannot agree amongst

themselves whether it should be a maximum or a minimum. Despite the evident

contradiction and the dearth of convincing evidence for either, there has been little

criticism in the literature of the principle of extreme dissipation. Doubtless most workers

have chosen discretion over valor, preferring to follow each other rather than to question

authority. The few honorable exceptions that I am aware of are Gage et al (1966), Keizer

and Fox, (1974), Lavenda (1985), Hunt et al (1987), Ross and Vlad (2005), and of course

myself (Attard 2006).

I won’t give here a detailed critique of the principle of extreme dissipation (for such, see

Attard (2006)) since it is preferable to devote this chapter to the correct non-equilibrium

variational principle rather than to be distracted by a fundamentally flawed approach.

Briefly however, it can be noted that the rate of change of an extensive variable Ẋ is a

flux, and multiplying by the conjugate field variable x/T, a thermodynamic force, gives the

rate of entropy production,

Ṡ =
x

T
Ẋ.

There are many details that are skipped here, but the essence of the argument can be

readily appreciated. Since this is a function bilinear in the flux and the force, extremizing it

with respect to either can only ever yield ±∞. Onsager and Machlup (1953) get around

this problem by adding quadratic terms in the force and in the flux, which also give the

entropy dissipation in the optimum state, and these serve to produce an extremum at finite

values (for detailed analysis, see Attard (2006)). There are of course an infinite number of

variational functionals that one can construct to give the known optimum steady state.

What is required is the unique variational formula that comes from the physical principles

that generalize the Second Law of Thermodynamics. This matter is further discussed

following equation (3.95).

The rate of entropy production increases during

spontaneous changes of the system.
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3.1.3 Entropy of joint macrostates

In section 1.1.2, entropy and probability were defined in terms of the weight of macrostates

and microstates, which is basically set theory. It will be recalled that microstates are

disjoint, indivisible, and form a complete set, and that macrostates are disjoint and also

form a complete set. With wi the weight of microstate i, the weight of the macrostate α is

Wα = ∑
i

wiδ(Ai − Aα) = ∑
i∈α

wi,

and the total weight of the system is

W = ∑
i

wi = ∑
α

Wα.

The entropy is essentially the logarithm of the weight, so that the microstate,

macrostate, and total entropy is respectively

Si = kB ln wi, Sα = kB ln Wα, and S = kB ln W .

 

Since macrostates from different collectives, labeled by say α and β, are not disjoint,

their joint weight can be calculated as the weight of their intersection,

W(αβ) = ∑
i

wiδ(Ai − Aα)δ(Bi − Bβ) = ∑
i∈Aα∩Bβ

wi.

This is sketched in figure 1.1. This is the unconditional weight. If α and β belong to the

same collective, this is W(αβ) = Wαδ(α − β).

Because the collectives are complete, summing over one of the macrostates must

reduce the joint weight to the weight of the remaining macrostate,

∑
β

W(αβ) = Wα.

This is a type of conservation law for weight. The idea can again be seen in figure 1.1,

where it is evident that the α macrostate is covered by all the intersecting β macrostates.

It follows that summing over the joint weight must yield the total weight

∑
α,β

W(αβ) = W .

The entropy of the joint macrostate is of course the logarithm of its weight, and the

joint probability is

℘(αβ) =
W(αβ)

W
=

eS(αβ)/kB

W
.

This is the unconditional probability, which is to say the probability of the system being

in the state α and in the state β. The conditional probability ℘(α ∣ β), which is to say the
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probability that the system is in the state α given that it is in the state β, was discussed in

section 1.1.2. It is

℘(α ∣ β) =
℘(αβ)

℘(β)
=

W(αβ)

W(β)
= e[S(αβ)−S(β)]/kB .

3.1.4 Second entropy for transitions

Consider the transition between two microstates in the time interval τ, i
τ
→ j. This is the

key to the analysis. Just as the microstates i themselves provided the elements for the

analysis of equilibrium systems, it is these transitions between microstates that are the

elements of non-equilibrium theory.

As the microstates have weight, so also do the transitions between them, and the

manipulation of these transition weights is based on set theory rather similar to the

analysis of the microstate weights above and in section 1.1.2. The state with the system in

the microstate i at time t1 and j at time t2 may be described as a transition microstate.

Attached to it is the weight, w(j, t2; i, t1) = w(j, i ∣ t21), where t21 ≡ t2 − t1. That this

depends only on the time interval is true for an equilibrium system, which is homogeneous

in time, and which is the sole concern here.

This is the unconditional weight, and one can just as well reverse the order of the

arguments and times,

w(j, t2; i, t1) = w(i, t1; j, t2) ⇔ w(j, i ∣ t21) = w(i, j ∣ t12).

These all give the weight for the system to be in the microstate i at time t1 and j at

time t2. This is the unconditional weight, and the unconditional transition probability is

proportional to it.

In common parlance, if t2 > t1, this would normally be called the transition from i to j.

However it is important in the present theory to also consider transitions backward in time.

Because of the symmetry of the unconditional weight, forward and backward unconditional

transitions have equal weight. However, we know from the Second Law of Thermodynamics

that there must be an asymmetry or irreversibility in time. For this reason we shall try to

avoid using the word transition in association with the unconditional weight, and instead

restrict it to conditional weights.

Conditional weights are defined in the usual way, via

w(j, i ∣ τ) = w(j ∣ i, τ) w(i).

That the microstate weight w(i) is independent of time is true for the present

equilibrium system. The conditional weight w(j ∣ i, τ) is to be read as the weight

associated with the fact the system is in the microstate j given that it was in the microstate

i a time τ earlier. Here i is the initial microstate and j is the destination microstate. This is

the weight for the unconditional transition i to j in time τ, which is denoted i
τ
→ j. This may

be a forward or a backward transition, according to the sign of τ.

The conditional weight is in general asymmetric in time. This follows since 

w(j, i ∣ τ) = w(i, j ∣ −τ), which may be rearranged as

w(j ∣ i, τ)

w(i ∣ j, −τ)
=

w(j)

w(i)
.
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This says that the weights of the forward and backward conditional transitions have the

same ratio as the weights of the destination microstates.

In general microstate transitions are stochastic, and their probability is reflected in their

weight. Of course saying that the transition is stochastic does not rule out the possibility

that it has a deterministic component, or even that the random component may be a small

perturbation on the deterministic component. In the event that the transition is fully

deterministic, then the weight becomes a δ-function. In general the stochastic contribution

to the microstate transitions of a sub-system comes from the interactions with the

reservoirs, which are treated in projection. It may also come from internal motion of the

microstates that is not treated explicitly. (Although the microstates are defined to be

indivisible, this is a statement of how the system is to be treated mathematically rather

than a statement of the physical reality.)

Continuing in the same vein as the equilibrium formulation, one defines the macrostate

transition, α
τ
→ β (cf figure 3.1). These can belong to the same or to different collectives.

The unconditional transition weight for this is

It ought to be clear that even if the microstate transitions were fully deterministic, the

macrostate transitions must contain a stochastic element because specifying the initial

macrostate does not fix the initial microstate that is required to determine the subsequent

transition.

Figure 3.1. A transition in time τ from the α macrostate to the β macrostate of a

collective.

In equation (3.9), the weight of joint (i.e. simultaneous) macrostates was reduced to the

weight of one of them by summing over the other, ∑βW(αβ) = Wα. The present

transition weights can be taken to obey a similar reduction condition. We take it as a

theorem (shortly proven by a time average) that for an equilibrium system the

unconditional microstate weight is conserved in a microstate transition,

∑
j

w(j, i ∣ τ) = w(i) and ∑
i

w(j, i ∣ τ) = w(j).

W(β,α ∣ τ) = ∑
i,j

w(j, i ∣ τ)δ(Ai − Aα)δ(Bj − Bβ)

= ∑
i∈α

∑
j∈β

w(j, i ∣ τ).
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The first says that all the weight in microstate i is distributed without loss or gain amongst

the possible target microstates j. (It is possible to scale the right-hand side by a

positive constant, but this is only material in some non-equilibrium cases.) The second says

that all the weight in the target microstates come from the possible initial microstates. The

second is the same as the first with τ changed to −τ . For the conditional microstate weight

the conservation rule is equivalent to

∑
j

w(j ∣ i, τ) = 1.

This is plausible because the system must be in one and only one microstate at a time.

The proof of the conservation of weight during a transition follows from the axiom that

time is uniform, at least in an equilibrium system. By this is meant that a time average

over nodes of equal weight gives the same result as a statistical average using the

microstate weights. Since the system must be in one and only one microstate at a time,

one can define its trajectory in time through the microstates as i(t). Let a label the nodes, 

ta = aτ , and let the ath microstate on the trajectory be ia ≡ i(aτ). The microstate weight

is proportional to the number of times the trajectory visits the microstate,

w(i) ∝ n(i) = ∑
a

δ(ia − i).

The unconditional transition weight is proportional to the number of times the

transition occurs on the trajectory,

w(j, i ∣ τ) ∝ n(j, i ∣ τ) = ∑
a

δ(ia − i) δ(ia+1 − j).

Summing over the destination microstates gives

The penultimate equality follows because the set of microstates is complete and

disjoint (and hence non-degenerate). Hence the weight is conserved during a transition.

Obviously one gets the second result in equation (3.17) by summing over i instead of j.

For certain time-varying non-equilibrium systems it is necessary to include a time-

dependent scale factor in this conservation law (see chapter 6).

Each microstate i has a conjugate microstate i†
. The physical interpretation of this is

that in the conjugate state all the velocities of the particles in the system have their

velocities reversed. (And also any velocity-derived external fields like magnetic fields or

Coriolis forces, if present.) For an equilibrium system, the weight of a microstate and its

conjugate are equal,

w(i†) = w(i).

∑
j

n(j, i ∣ τ) = ∑
j

∑
a

δ(ia − i) δ(ia+1 − j)

= ∑
a

δ(ia − i)

= n(i).
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Since reversing all the velocities is the same as reversing the direction of time, this says

that time has no preferred direction in an equilibrium system. Note that in the sum over

microstates, ∑i
, (for example, to obtain the total weight) both j and j†

 each appear once.

Because reversing the velocities is the same as reversing time, one must have for the

unconditional transition weight

w(j, i ∣ τ) = w(j†, i† ∣ −τ).

This might be called microscopic equilibrium reversibility. Combining these two with

equation (3.15) yields

w(j ∣ i, τ)

w(j† ∣ i†, −τ)
=

w(i†)

w(i)
= 1, or w(j ∣ i, τ) = w(j† ∣ i†, −τ).

This means that the forward transition has the same conditional weight as the

backward transition between the conjugate microstates, This is called microscopic

reversibility.

Microscopic reversibility may be confirmed explicitly for an isolated system evolving

adiabatically with Hamilton’s equations of motion. It holds also for stochastic dissipative

transitions for an equilibrium system (see section 5.4.2).

Each macrostate α has a conjugate macrostate α†
. Consider the physical observable A,

with Aα its value in the macrostate α. If A is an even function of the velocities (for example,

energy, number etc), then Aα = Aα† . Since degenerate macrostates are precluded in the

formalism (there is a one-to-one relationship between the macrostate labels and the values

of the physical observable), this means that α = α†
, which is to say that in this even parity

case the macrostates are self-conjugate. If the physical observable is an odd function of the

velocities, for example, the total momentum of the system, then Aα = −Aα† , and α ≠ α†.

If an observable is not of even parity (i.e. it is of odd or mixed parity), then both α and α†

occur in the sum over macrostates. In view of this, whether the parity is even, odd, or

mixed, the reverse transition between the conjugate macrostates has weight

The second equality follows because for every i† ∈ α† there is an i ∈ α and for every 

j† ∈ β†
 there is a j ∈ β. The third equality follows because i†(i) = i†

 and j†(j) = j†
. The

fourth equality results from microscopic reversibility. The first and last equalities are just

the definition of the macrostate transition weight. The derivation shows that macroscopic

equilibrium reversibility, W(α†,β† ∣ τ) = W(α,β ∣ −τ), is a direct consequence of

microscopic equilibrium reversibility w(i†, j† ∣ τ) = w(i, j ∣ −τ). As in that case it says that

W(α†,β† ∣ τ) = ∑
i†∈α†

∑
j†∈β†

w(i†, j† ∣ τ)

= ∑
i∈α

∑
j∈β

w(i†(i), j†(j) ∣ τ)

= ∑
i∈α

∑
j∈β

w(i†, j† ∣ τ)

= ∑
i∈α

∑
j∈β

w(i, j ∣ −τ)

= W(α,β ∣ −τ).
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the forward and reverse transitions between macrostates have the same conditional

weight,

W(α† ∣ β†, τ) = W(α ∣ β, −τ).

If the macrostates have even parity, α† = α and β† = β then this becomes 

W(α,β ∣ τ) = W(α,β ∣ −τ). This is a stronger result but it will seldom be required for

what follows.

Macroscopic reversibility appears to contradict the Second Law of Thermodynamics.

Macroscopic reversibility says that there is no preference between forward and reverse

transitions, whereas the Second Law says that there is a preferred direction for time. This

apparent contradiction is addressed below.

The conservation law for the microstate transition weight, equation (3.17) also follows

for the macrostate transition weights,

∑
α

W(α,β ∣ τ) = W(β), and ∑
β

W(α,β ∣ τ) = W(α).

 

From these conservations laws it follows that the total unconditional transition weight is

just the total weight itself,

∑
i,j

w(j, i ∣ τ) = ∑
i

w(i) = W .

This is independent of the time interval τ. Evidently the same result holds for the total

macrostate transition weight,

∑
α,β

W(β,α ∣ τ) = ∑
β

W(β) = W .

 

As in the formulation of entropy for the equilibrium case, one can define the second

entropy as the logarithm of the transition weight,

S (2)(β,α ∣ τ) ≡ kB ln W(β,α ∣ τ).

There is an analogous expression for the microstate transitions. This could also be

called the transition entropy, or the two-time entropy.

Obviously the unconditional transition probability is essentially the exponential of the

second entropy,

℘(β,α ∣ τ) =
W(β,α ∣ τ)

W
=

1

W
eS

(2)(β,α∣τ)/kB .

 

The conditional transition probability is the probability that the system will be in the

macrostate β at a time τ, given that it is currently in the macrostate α. It is given by
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℘(β ∣ α, τ) ≡
℘(β,α ∣ τ)

℘(α)
=

W(β,α ∣ τ)

W(α)
.

If τ > 0 this a forward transition, and if τ < 0 this a backward transition.

The macroscopic reversibility condition on the transition weight, equation (3.25), yields

a similar result for the unconditional transition probability,

℘(α†,β† ∣ τ) = ℘(α,β ∣ −τ) = ℘(β,α, ∣ τ).

The interpretation of this is that the forward transition between two macrostates is as

likely to occur as the reverse transition between their conjugate states. Applying this to the

conditional transition probability yields

℘(α† ∣ β†, τ) =
℘(α†,β† ∣ τ)

℘(β†)
=

℘(β,α ∣ τ)

℘(β)
= ℘(β ∣ α, τ)

℘(α)

℘(β)
.

This may be rearranged as

℘(α† ∣ β†, τ)

℘(β ∣ α, τ)
=

℘(α)

℘(β)
= e[S(α)−S(β)]/kB .

Recall that from microscopic reversibility, ℘(α† ∣ β†, τ) = ℘(α ∣ β, −τ). One can

conclude that the ratio of forward and reverse conditional transition probabilities equals the

exponential of the entropy difference of the two macrostates.

The conditional transition probability in terms of the second entropy is

℘(β ∣ α, τ) = e[S (2)(β,α∣τ)−S(α)]/kB .

One could define the exponent to be the conditional second entropy, but this does not

appear to be particularly useful.

A quantity that will prove of some interest is the most likely conditional transition state.

In particular, given the current macrostate β, the most likely macrostate a time τ distant

may be denoted ᾱ ≡ ᾱ(τ ∣ β). This is the macrostate that maximizes the second entropy,

∂S (2)(α,β ∣ τ)

∂α
∣
α=ᾱ

= 0.

Maximizing the second entropy S (2)(α,β ∣ τ) is the same as maximizing the transition

weight W(α,β ∣ τ). This definition of ᾱ, together with the conservation condition on the

transition weight, equation (3.27), can be used to ‘reduce’ the second entropy to the first

or ordinary entropy. One has

S(β) = kB ln W(β)

= kB ln ∑
α

W(α,β ∣ τ)

≈ kB ln W(ᾱ(τ ∣ β),β ∣ τ)

= S (2)(ᾱ(τ ∣ β),β ∣ τ).
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The third equality approximates the logarithm of a sum by the logarithm of the largest term

in the sum. This holds when the distribution of target macrostates α is sharply peaked

about the most likely macrostate, ᾱ. It is the same concept as that which sets the

unconstrained total entropy equal to the maximum value of the constrained total entropy

(cf figure 1.4, and also the derivation leading to equation (2.152)).

This expression may be called the reduction condition (more precisely, the type 2

reduction condition; the conservation law for the transition weight may be called the

reduction condition of type 1), and it turns out to be of central importance in the theory

that follows. It says that the maximum value of the second entropy over the future

macrostates (if τ > 0, or over the past macrostates if τ < 0) is equal to the first entropy of

the current macrostate.

3.1.5 Another proof of the second law

In section 1.3 an argument was given that purported to show that Boltzmann’s

identification of entropy with the logarithm of the macrostate weight (number of molecular

configurations in simplest terms) justifies the Second Law of Thermodynamics as

enunciated by Clausius. That argument was necessarily approximate, and it seems

worthwhile to revisit the issue in the light of the present results for the transition

probability.

Consider macrostates in a single collective, and order them according to the first

entropy. Suppose that γ is a macrostate approximately half way between the macrostates α

and β. In this case equation (3.35) gives the product of the ratio of the conditional

transition probabilities from the mid-state γ is

e[S(α)−S(β)]/kB =
℘(α ∣ γ, τ)

℘(γ † ∣ α†, τ)

℘(γ ∣ β, τ)

℘(β† ∣ γ †, τ)
≈

℘(α ∣ γ, τ)2

℘(β† ∣ γ †, τ)2
.

By ordering the states and choosing γ to be in the middle, one can expect that the

transition γ
τ
→ α is approximately the same as the transition β

τ
→ γ, and similarly for the

conjugate transitions. This gives the final approximation.

For simplicity one can focus on even parity macrostates, α† = α etc, in which case this

becomes

℘(α ∣ γ, τ)

℘(β ∣ γ, τ)
≈ e[S(α)−S(β)]/2kB .

The interpretation of this is that if the states are ordered S(α) > S(γ) > S(β), then

the likelihood of observing an entropy increasing transition over an entropy decreasing

transition is just the exponential of half the total difference in entropy. The factor of one

half here is more correct than its absence in the argument given in section 1.3. One can

invoke the mid-point theorem to say that there always exists a γ that makes this result

correct.

This result again shows the connection between the entropy of Boltzmann and the

Second Law of Thermodynamics of Clausius. It also again shows the probabilistic nature of

the Second Law.

For even parity states, macroscopic reversibility is ℘(α,β ∣ τ) = ℘(β,α ∣ τ). This means

that the forward transition and the backward transition have equal probability in an

unconditional sense. In consequence, if one state is far more likely than the other,

℘(α) ≫ ℘(β), then the conditional transition to the less likely state is far less likely than

the reverse, ℘(β ∣ α, τ) ≪ ℘(α ∣ β, τ). The result means that one is just as likely to
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observe a fluctuation from equilibrium as to observe the reverse fluctuation to equilibrium,

in an unconditional sense. In other words, an entropy increasing transition β
τ
→ α, is just as

unconditionally likely an entropy decreasing transition, α
τ
→ β.

The assertion in the Second Law of Thermodynamics that spontaneous transitions

increase the entropy refers to the conditional future transition probability from an unlikely

(not-in-equilibrium) state. The Second Law does not apply to the unconditional transition

probability. In general the Second Law is probabilistic, not deterministic, and so

spontaneous transitions from the equilibrium macrostate to states of lower entropy in the

conditional sense may well be unlikely but in general they are not impossible.

In macroscopic systems, fluctuations in the transitions are relatively negligible, and the

transitions become effectively deterministic. Hence if the system is set up in a not-in-

equilibrium macrostate, it will spontaneously evolve toward macrostates of higher entropy.

If the system is set up in the equilibrium or most likely macrostate, it will stay there. In this

macroscopic case the Second Law holds for future conditional transitions with probability

approaching unity.

3.1.6 Two points on the arrow of time

‘If as we follow the arrow we find more and more of the random element in the state of
the world, then the arrow is pointing towards the future; if the random element decreases
the arrow points towards the past.’ (Eddington 1928)
There is an interesting twist on the arrow of time argument popularized by Eddington. For a

system currently observed in a not-in-equilibrium macrostate, the usual formulation asks

‘where will the system go to?’. But what if the obverse question were asked, namely ‘from

whence came the system?’. Since an answer is impossible if the previous states were set

by some artificial unspecified process, one must assume that the current state arose by a

spontaneous fluctuation of the system itself. In this case the answer is ‘most likely the

system came from a state of higher entropy’.

This answer is entirely consistent with the quantitative analysis above, where it can be

noted that nothing was said about the sign of τ.

One must conclude that the usual formulation of the Second Law of Thermodynamics,

All systems evolve to states with greater entropy,

is valid, and equally valid is its obverse,

All systems have evolved from states with greater entropy.

Alternatively, the formulation

The entropy increases during spontaneous transitions from the current state,

is as correct as

The entropy decreases during spontaneous transitions to the current state.

These statements hold in a probabilistic sense (i.e. they are most likely true), they are

conditional on the current state alone, and they hold for a system undergoing spontaneous

fluctuations (i.e. without outside interference or specific preparation). From these

alternative formulations it is clear that the notion that the arrow of time points in the

direction of increasing entropy is a selective interpretation of the Second Law that entirely

ignores history.
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The fact of the matter is that the arrow of time is symmetric with regard to the change

in entropy. If one defines a fixed arrow of time as pointing from what we call the past to the

future, then entropy most likely increases in a forward transition to the future (i.e. in the

direction of the arrow of time), and it most likely increases in a backward transition to the

past (i.e. against the arrow of time). The present results contradict the quote from

Eddington given at the beginning of this subsection. In view of this symmetry, one must

conclude that there is no such thing as the arrow of time as defined by Eddington (1928).

3.2 Pure parity fluctuation analysis

3.2.1 Gaussian distribution

As was shown in section 2.5.3, for an equilibrium system the probability distribution for an

extensive exchangeable parameter becomes infinitely sharply peaked in the

thermodynamic limit. This means it can be accurately modeled as a Gaussian distribution,

with the variance determined by the second derivative of the isolated system entropy.

In fact the prevalence of Gaussian distributions in physical systems is more general than

this. Gaussian distributions are stable because any variable that is the sum of variables

that are Gaussian distributed is itself Gaussian distributed. And if the variables are

arbitrarily distributed, then by the central limit theorem their sum tends toward a Gaussian

distribution as their number increases. Since the physical observables that define

macrostates have multiple stochastic influences, it is no surprise that they have a Gaussian

distribution.

Let X be a vector of extensive variables. The present analysis is simplified by taking all

the components to be of the same parity, X † = X or else X † = −X. That is, upon

reversal of the velocities of all particles in the Universe, the values of the observables

comprising X are either all unchanged or else all negated. The more general mixed parity

case will be analyzed in section 3.3 below.

We are primarily interested in non-conserved, extensive variables, which is to say

variables whose value can change with time in an isolated system. The spatial distribution

of energy or number are examples. Furthermore the variable is defined such that its most

likely or average value in the isolated system vanishes,

X̄ = 0.

For example, the difference in energy between the two halves of an isolated system

most likely vanishes, because a uniform energy distribution is the one that maximizes the

entropy. Obviously one can always subtract off any nonzero most likely value and interpret

X as the departure from the most likely value. A nonzero value of X is called a fluctuation.

Because X is extensive, higher order contributions to its fluctuations can be expected to be

relatively negligible, and its probability distribution can be expected to be Gaussian.

The focus of this section is on an isolated system. The value of the non-conserved

variable can evolve in time, Ẋ
0
(t) ≠ 0, where t is time, the superscript dot signifies the

time derivative, and the superscript 0 signifies the adiabatic (Hamiltonian) evolution. In this

isolated system, X̄ = 0. An initial nonzero fluctuation, X0 ≠ 0, most likely evolves

adiabatically back to zero, X 0(t ∣ X0) → 0, t → ∞. (The evolution is not deterministic

even in this isolated system because X0 is a macrostate and the initial microstate

conditioned on this macrostate is statistically distributed.) What we expect, and it remains

to prove, is that there is a regime in which the rate of regression is constant and

proportional to the initial fluctuation, Ẋ
0

= Λ̃X0.

¯

¯
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Further, the formalism is designed to accommodate reservoirs that can exchange

material related to X in such a way that the most likely value is nonzero, X̄(xr) ≠ 0, where

xr is a reservoir parameter. In this case one expects, and again it remains to prove, that the

adiabatic rate of change of X in the presence of the reservoir is the same as if the nonzero

value had arisen from a spontaneous fluctuation of the isolated system, Ẋ
0

= Λ̃X̄(xr).

The arrangement of the reservoir induces a thermodynamic non-equilibrium system in a

steady state, and this idea is one aspect of Onsager’s regression hypothesis (Onsager

1931).

For the present no reservoirs are included so that the results pertain to an equilibrium

isolated system. The time correlation matrix for X is defined to be

Q(τ) ≡ k−1
B ⟨X(τ) X(0)⟩.

The averand is a dyadic matrix; some authors write it as X(τ) X(0)T
, where the

superscript T means transpose. The average is over the configurations of the isolated

system. The auto- or self-correlation functions for the elements of X correspond to the

diagonal elements of this matrix, and the cross-correlation functions correspond to the off-

diagonal elements. Note the unconventional appearance of Boltzmann’s constant in the

definition of the time correlation matrix, which simplifies many of the following results.

An equilibrium system is homogeneous in time, which means that

⟨X(τ) X(0)⟩ = ⟨X(0) X(−τ)⟩, or Q(τ) = Q(−τ)T.

The condition of macroscopic reversibility is manifest as

This result only holds for the present pure parity case. Together these two results say

that the pure parity time correlation matrix is symmetric, Q(τ) = Q(τ)T
, and even in the

time interval.

The entropy of the isolated system may be expanded to second order about X = 0,

S(X) = S(0) +
1

2
S′′: XX.

The linear term vanishes because X = 0 is the most likely state, which is to say the

state of maximum entropy, S′(0) = 0. One can discard the constant term S(0) because we

are only interested in the variation with X. The Taylor expansion can be terminated at the

quadratic term, because higher order terms scale with successive higher powers of the

inverse of the square root of the system size. The quadratic term is intensive on average,

since ⟨XX⟩ ∼ O(V ).

The second derivative matrix is

S′′≡
∂ 2S(X)

∂X∂X
∣
X=0

.

¯

⟨X(τ) X(0)⟩ = ⟨X(−τ)†
X(0)†⟩

= ⟨X(−τ) X(0)⟩, or Q(τ) = Q(−τ).
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This can be called the fluctuation matrix, and it is obviously symmetric S′′T= S′′, since 

∂ 2S/∂Xα∂Xβ = ∂ 2S/∂Xβ∂Xα. Since the entropy is a maximum at X = 0, the fluctuation

matrix must be negative definite.

The probability distribution for the fluctuation is the exponential of the entropy. By the

above expansion the exponent is a quadratic form, which is to say that the distribution is

Gaussian

℘(X) =
1

W
eS′′:XX/2kB , W = √Det{−2πkBS′′−1}.

The negative of the inverse of the fluctuation matrix is the static correlation function,

Q0 ≡ Q(0) = −S′′−1.

This is readily derived from its definition,

In the integration by parts, the integrated part is zero because extreme fluctuations at

the limits of integration have vanishing probability.

In the same fluctuation spirit we shall expand the second entropy of the isolated system

to quadratic order,

S (2)(X′,X ∣ τ) =
1

2
A(τ) : XX + B(τ) : X′X +

1

2
A′(τ) : X′X′.

This is for the unconditional transition X
τ
→ X′. Here X is the current macrostate and 

X′ is the destination macrostate. If τ > 0 then X′ is the future macrostate, and if τ < 0
then X′ is the past macrostate. The coefficient matrices are the second derivatives of the

second entropy evaluated in the most likely state, X = X′= 0,

A(τ) ≡
∂ 2S (2)(0,X ∣ τ)

∂X∂X
∣
X=0

, A′(τ) ≡
∂ 2S (2)(X′, 0 ∣ τ)

∂X′∂X′
∣
X′=0

,

and

B(τ) ≡
∂ 2S (2)(X′,X ∣ τ)

∂X∂X′
∣
X′=X=0

.

Q(0) = k−1
B ⟨X(0) X(0)⟩

=
1

kBW
∫ dX XXeS′′:XX/2kB

=
1

kBW
∫ dX XkBS′′−1 ∂

∂X
eS′′:XX/2kB

=
1

W
{[XS′′−1eS′′:XX/2kB]

∞

−∞ − S′′−1∫ dX eS′′:XX/2kB}

= − S′′−1.
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Clearly the first two matrices are symmetric, A(τ) = A(τ)T
 and A′(τ) = A′(τ)T

. The

fluctuation second entropy has maximum value S (2)(0, 0 ∣ τ) = 0.

For the present equilibrium isolated system one has time homogeneity, which implies 

S (2)(X′,X ∣ τ) = S (2)(X,X′∣ −τ). This yields

A(−τ) = A′(τ), and B(τ) = B(−τ)T.

Macroscopic reversibility says that the second entropy must have the symmetry

S (2)(X′,X ∣ τ) = S (2)(X′ †,X † ∣ −τ) = S (2)(X′,X ∣ −τ).

The final equality, which only holds in the present pure parity case, can be confirmed

by inspection of the quadratic form. It follows that

A(τ) = A′(τ) and B(τ) = B(τ)T.

 

Maximizing the second entropy with respect to X′ yields the most likely destination

state given the present state,

∂S (2)(X′,X ∣ τ)

∂X′
∣
X′=X′

= 0.

Performing the derivative on the quadratic form yields the most likely destination

explicitly,

X′ ≡ X̄(τ ∣ X) = −A(τ)−1
B(τ)X.

 

The destination may be in the future, τ > 0, or in the past, τ < 0. If in the future, this

result answers the question ‘where will the system most likely go to?’. If in the past it

answers the question ‘where did the system most likely come from?’. In either case this

result says that the most likely destination fluctuation is linearly proportional to the current

fluctuation. This is a direct consequence of the Gaussian form for the fluctuations. Because

the fluctuation form for the first or normal entropy is quadratic in the fluctuation, 

S(X) = S′′: XX/2, its gradient is linear in the fluctuation, ∇S(X) ≡ S′(X) = S′′X. The

gradient in the first entropy can be called the thermodynamic force. The fact that the most

likely destination is linearly proportional to the fluctuation X is the same as saying that it is

linearly proportional to the thermodynamic force. Hence the present result for the most

likely destination provides the justification for an aspect of the regression hypothesis

(Onsager 1931), namely that the rate of return to equilibrium is linearly proportional to the

gradient in the entropy.

It is useful to rewrite the second entropy as a function of the departure from the most

likely destination state,

¯

¯

S (2)(X′,X ∣ τ) =
1

2
A(τ) : [X′+A(τ)−1

B(τ)X]
2

+
1

2
[A(τ) − B(τ)A(τ)−1

B(τ)] : XX.
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Here and often below the notation of a vector squared is short-hand for the corresponding

dyadic matrix.

Above the reduction condition on the second entropy was given, equation (3.38). It says

that the second entropy for the transition to the most likely destination state equals the

first entropy of the current state,

S (2)(X′,X ∣ τ) = S(X).

Physically, the reduction condition arises from the sharply peaked nature of the

probability distribution, which means that fluctuations are relatively negligible. In the above

form for the second entropy, the first term vanishes when X′= X̄(τ ∣ X), leaving only the

final term that is quadratic in X. Hence by the reduction condition, the coefficient of this

must be equal to the first entropy fluctuation matrix,

A(τ) − B(τ)A(τ)−1B(τ) = S′′.

This is an exact relation between the two fluctuation transition matrices, the third

matrix already having been eliminated, A′(τ) = A(τ). Because this holds for all time

intervals, it will prove to be the key equation in determining the coefficients of a small τ

expansion of the fluctuation transition matrices.

The transition probability is the exponential of the second entropy,

℘(X′,X ∣ τ) =
1

W (2)
eS

(2)(X′,X∣τ)/kB .

The exponent is a quadratic form, which means that the transition probability is a

Gaussian, by design. Using the second entropy rearranged as above, and also the reduction

condition, the normalization factor is readily seen to be

W (2) = √Det{−2πkBA(τ)−1}√Det{−2πkBS′′−1}.

 

For a Gaussian distribution, the average value equals the most likely value. This allows

the easy evaluation of the time correlation matrix, and gives its relationship with the

transition fluctuation matrices,

 

Using these, the most likely destination, equation (3.57), can be rewritten in terms of

the time correlation function,

X′ = −A(τ)−1
B(τ)X = −Q(τ)S′′X.

¯

Q(τ) = k−1
B ⟨X′X⟩

= k−1
B ⟨X′X⟩

= − A(τ)−1
B(τ)k−1

B ⟨XX⟩

= A(τ)−1
B(τ)S′′−1.

¯

¯
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The final two factors give the gradient in the first entropy, S′′X = S′(X) ≡ ∇S(X). This

is the thermodynamic force that drives the fluctuation back to its equilibrium value.

This result is a general form of the regression hypothesis that holds for arbitrary time

intervals τ. If one multiplies both sides of this by XT on the right and takes the average

then one obtains the identity,

⟨[∇S(X)]XT⟩ = −kBI.

 

One can eliminate the two fluctuation transition matrices in favor of the time correlation

matrix. From the reduction condition, equation (3.60), and the time correlation function

expression equation (3.63), one obtains

A(τ)−1
S′′= I − A(τ)−1

B(τ)A(τ)−1
B(τ) = I − Q(τ)S′′Q(τ)S′′.

Hence

A(τ) = [I − S′′Q(τ)S′′Q(τ)]−1
S′′.

This is evidently symmetric, as it must be. Taking the transpose of the time correlation

expression equation (3.63), and using the result of macroscopic reversibility, 

B(τ)T = B(τ), one also obtains

B(τ) = [I − S′′Q(τ)S′′Q(τ)]−1
S′′Q(τ)S′′= A(τ)Q(τ)S′′.

Hence the time correlation function matrix completely determines the fluctuation

transition matrices. It follows that it also determines the second entropy and the transition

probability.

3.2.2 Exponential Markovian decay

So far the analysis describes exactly fluctuations, with the coefficients having been related

to the time correlation function. The general result for the most likely destination state,

equation (3.64), is a form of the regression hypothesis, since it showed that this was

linearly proportional to the current state. That result was valid for arbitrary time intervals.

Now the aim is to elucidate the time dependence of the time correlation function and of the

fluctuation transition matrices, which form the proportionality constant for the most likely

destination.

The time correlation function can of course be obtained quantitatively and in molecular

detail using statistical mechanics for any particular system. The aim of thermodynamics,

however, is to abstract from any particular system and to obtain a general description of

matter in terms of a few macroscopic parameters that can be measured, which aim is

pursued here.

The starting point is Markovian systems, which in many cases are a good model of real

world behavior. It will now be shown that the time correlation functions in these systems

are exponentially decaying. Following that derivation, the small time limit will be analyzed,

in which limit it will be shown that both Markovian and non-Markovian time correlation

functions decay linearly. This limit turns out to be sufficient to develop the formalism of

non-equilibrium thermodynamics of steady-state systems.

For the transition X
τ
→ X′, for sufficiently long-time intervals the current and the

destination macrostate are uncorrelated. This means that the transition probability

becomes the product of the probability of each fluctuation independently, and the second
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entropy becomes the sum of the first entropies, S (2)(X′,X ∣ τ) → S(X′) +S(X), τ → ∞.

This means that the transition fluctuation matrices must behave as

A(τ) → S′′, B(τ) → 0, τ → ∞.

These limiting expressions can also be derived from equations (3.67) and (3.68) using

the fact that the time correlation function vanishes in the long-time limit, Q(τ) → 0, 

τ → ∞.

For small time intervals, the most likely destination state must be the same as the

current state, X̄(τ ∣ X) → X, τ → 0. This must be so since it takes time to depart the

current macrostate. Inserting this into equation (3.57) yields

A(τ)−1
B(τ) → −I, τ → 0.

Again, I is the identity matrix.

The present analysis is for fluctuations all with the same time parity. In this case

equations (3.53) and (3.55) show that the fluctuation transition matrices are even functions

of time, A(τ) = A(−τ), and B(τ) = B(−τ). From this one can see that the time

correlation function is also an even function of time, Q(τ) = Q(−τ), which in fact was

shown in equations (3.44) and (3.45).

The results for τ → ∞ are formally exact. However this is not the limit that is required

for the formal thermodynamic analysis of steady-state non-equilibrium systems. For these

one has to ascertain the applicable time regime, and the qualitative behavior of the time

correlation function therein. This can be done by looking at a specific system, and

reasoning inductively that the behavior is universally applicable.

The regression of a fluctuation, X̄(τ ∣ X), is shown in figure 3.2. The particular

macrostate illustrated is the first energy moment, X ≡ E1, which is a non-conserved

extensive variable that is the simplest measure of the non-uniformity of the energy

distribution in the system. The negative values shown indicate that initially there is excess

energy in the negative half of the system.



Figure 3.2. Adiabatic decay of the first energy moment (dimensionless units). The

solid curve is the average over dynamically disordered initial states of molecular

dynamics trajectories of a Lennard-Jones fluid. The dotted line is fitted, 

E1(τ) = a + b ∣ τ ∣, and the dashed curve is an exponential, E1(τ) = ae∣τ∣b/a
. The

lower chart magnifies the data at small times. Data from Attard (2005a).

The behavior shown in figure 3.2 typify the regression of all fluctuations of the same

time parity. In this case the regression is an even function of time. There are three more or

less distinct time regimes. In the molecular or infinitesimal time regime, for the data of

figure 3.2 this is ∣ τ ∣<
˜

0.1, the fluctuation is smooth about τ = 0, as can be seen in the

lower part of the figure. Hence it has a Taylor expansion in even powers of τ, 

X̄(τ ∣ X) ∼ X + c(X)τ 2 + d(X)τ 4 + ⋯.

The small time regime is 0.1 <
˜

∣ τ ∣<
˜

1 in figure 3.2, and it is identified by linear or

steady decay of the fluctuation. Because of the pure parity, the regression must be an even

function of time, which means that there must be non-analytic terms in its expansion in

this regime, X̄(τ ∣ X) ∼ a(X) + b(X) ∣ τ ∣, with a(X) ≈ X. Terms of order O(τ 2, ∣ τ ∣3)
have been neglected here. This non-analytic expansion is the only expansion that is both

linear in τ and even in τ. It cannot apply in the molecular regime, where the expansion
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must be analytic, as the lower part of figure 3.2 shows. The non-analytic terms in the small-

τ expansion sum an infinity of terms in the molecular regime Taylor expansion.

The long-time regime is here ∣ τ ∣>
˜

1. In this particular system the fluctuation regresses

exponentially to zero, as the fit in figure 3.2 confirms. However such exponential behavior

is not the case for all fluctuations, and sometimes the regression can be power law or even

non-monotonic.

The molecular regime can be thought of as an inertial regime where the regression of

the fluctuation comes up to speed from a standing start. The extent and nature of this

regime varies with the type of fluctuation and the details of the intermolecular potential.

More universal is the small time regime in which the rate of change of the fluctuation is

constant. The actual rate of change is proportional to the magnitude of the initial

fluctuation, with the proportionality constant depending upon the specific system. The

latter are related to the hydrodynamic transport coefficients, as will shortly be clarified.

This is the reason why the short time regime is the relevant regime for steady-state non-

equilibrium thermodynamics. Since the magnitude of the fluctuation decreases with

increasing time, so must the driving force and the rate of change. This sets an upper limit

on the small time regime which is defined by a constant rate of change. That is, in the

small time regime, the change in magnitude of the fluctuation must be relatively negligible,

∣ X(τ) − X(0) ∣≪∣ X(0) ∣.
The exponential decay evident in figure 3.2 is an indicator of a Markov system. Such a

system is defined by the present state solely determining the future state irrespective

previous history of the system. In a Markov system the transition probability for three

states at times t1 < t2 < t3 factorizes

The first equality is the formally exact expression for the conditional probability: the

probability of X3 depends upon the preceding two states. The final equality is true if the

intermediate state X2 removes any influence of the state X1 on the final state X3. One can

say that the final state has no memory of the earlier state. This is the Markov

approximation

Markovian systems have a greatly simplified form of regression. The most likely

transition X1 → X3 in time t31 according to equation (3.64) is

X̄3 = −Q(t31)S′′X1.

Similar to the analysis of Fox and Uhlenbeck (1970), one can divide the time interval

with an intermediate time, t1 < t2 < t3, so that the total transition is the product of a pair

of successive transitions,

X̄3 = −Q(t32)S′′X̄2 = Q(t32)S′′Q(t21)S′′X1.

The first equality invokes the Markov approximation: the transition X2 → X3 is not

influenced directly by the prior state X1. For these two expressions to be equal one must

have

−Q(t31)S′′= Q(t32)S′′Q(t21)S′′,

which implies that

∣ ∣ /

℘(X3,X2,X1 ∣ t32; t21) = ℘(X3 ∣ t32,X2; t21,X1)℘(X2,X1 ∣ t21)

≈ ℘(X3 ∣ t32,X2)℘(X2,X1 ∣ t21).
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Q(τ) = −e∣τ∣ΛS′′/2S′′−1.

Here Λ is a constant matrix, and exponentiation is defined by the power law expansion.

This is known as Doob’s theorem, and it applies to any random process that is both

Gaussian and Markov (Doob 1942). The absolute value of the time interval appears here

because the time correlation function must be an even function of time in the present case

of pure parity.

This general analysis proves the exponentially decay of the time correlation functions in

a Markov systems. The decay rate is determined by Λ, which will turn out to be related to

the transport coefficients of the system.

For small enough time intervals the exponential can be linearized,

Q(τ) = −S′′−1−
∣ τ ∣

2
Λ, ∣ τ ∣ Det{ΛS′′} ≪ 1.

A more precise delineation of the regime of validity of this linearization would invoke

the eigenvalue of ΛS′′ that is smallest in magnitude.

3.2.3 Small time expansion

The preceding result that the time correlation function of a Markov system was linear in 

∣ τ ∣ on short time scales cannot hold on infinitesimal time scales. Instead in that regime

the Taylor expansion, which is analytic, must involve only even powers of the time interval,

Q(τ) = −S′′−1+
1

2
τ 2Q̈(0) + ⋯ , τ → 0.

 

This and the preceding two equations give different expressions for the time

dependence of the time correlation function. The expressions apply respectively in each of

the three time regimes identified in figure 3.2.

The physical origin of these three time regimes is readily understood. Initially, τ = 0,

the system is positionally ordered, X(0) ≠ 0, and dynamically disordered, Ẋ(0) = 0. Over

molecular time scales, say τrelax, the system becomes dynamically ordered, Ẋ(τrelax) ≠ 0.

Even though dynamic order is a lower entropy state than dynamic disorder, we shall soon

show that dynamic order that leads to increasing position disorder has greater second

entropy than dynamic disorder.

The amount of dynamic order induced after this molecular time interval is proportional

to the extent of the fluctuation, Ẋ(τ) ∝ X(τ), τ > τrelax. This result is manifest in the

exponential decay of X̄(τ ∣ X) in a Markov system. However the result is more general

than Markov systems, both on symmetry grounds (the vector X is the only vector present,

and so it must be the one that sets the direction of the vector Ẋ, which is the so-called

Curie principle), and on the grounds that for fluctuations higher order terms in X can be

neglected.

For time intervals longer than the infinitesimal time τrelax, but not too much longer, the

changes in the fluctuation from its initial value are negligible, X(τ) ≈ X(0), and so one

has Ẋ(τ) ∝ X(0). Integrating this over this so-called short time regime leads to equation

(3.76), where the absolute value of the time interval is required from the symmetry of the

present pure parity system. We shall call the time intervals where this is valid short time

intervals.
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From the nature of the above argument, the short time expansion equation (3.76), is

likely to be universally applicable. It is not restricted to the Markov systems that were used

to derive it.

The following results apply to the small time regime. Expansions in powers of ∣ τ ∣ will

now be obtained for the second entropy fluctuation matrices.

One can rearrange the fluctuation form of the second entropy as

This is for a pure parity system. This uses the inside-out convention for the double

scalar product, A : XY ≡ Y ⋅ AX, and writes the symmetric dyadic matrix as the square

of a vector, X 2 ≡ XX.

As mentioned above, in the limit τ → 0 the destination state must be the same as the

current state, X′ = X. Hence the transition probability must become a delta-function, 

℘(X′,X ∣ τ) → δ(X′−X)℘(X), τ → 0. In view of this, the first term in the second

equality of the second entropy above must diverge,

B(τ) =
1

∣ τ ∣
Λ−1 + B + O(τ), ∣ τ ∣→ 0.

The constant matrix Λ is written to be consistent with the Markov analysis, as will soon

be made clear explicitly. Since the second term in the second equality of the second

entropy must remain finite, the leading term must cancel so that the expansion for A(τ)
must be of the form

A(τ) =
−1

∣ τ ∣
Λ−1 + A + O(τ), ∣ τ ∣→ 0.

To leading-order these two expansions give A(τ)−1
B(τ) = −I, ∣ τ ∣→ 0, which result

was already given as equation (3.70). By design, in the present case of pure parity, only

terms even in time appear in these expansions.

Because the second entropy gives the transition probability, the quadratic form must be

negative, which means that A(τ) must be negative definite, which means that Λ must be

positive definite. Since A(τ) is symmetric, so is Λ.

Inserting these two expansions into the reduction condition, equation (3.60), yields

Only the leading order term, O(∣ τ ∣0) has been retained here, linear and higher order

terms having been neglected. One sees from this that the sum of the two constant

coefficient matrices in the small time expansion of the transition fluctuation matrices is

S (2)(X′,X ∣ τ) =
1

2
A(τ) : X 2 + B(τ) : X′X +

1

2
A(τ) : X′2

=
−1

2
B(τ) : [X′−X]2 +

1

2
[A(τ) + B(τ)] : [X′2 + X 2].

¯

S′′ = A(τ) − B(τ)A(τ)−1
B(τ)

=
−1

∣ τ ∣
Λ−1 + A − [

1

∣ τ ∣
Λ−1 + B][

−1

∣ τ ∣
Λ−1 + A]

−1

[
1

∣ τ ∣
Λ−1 + B]

= 2[A + B] + O(τ).



(3.8

2)

(3.8

3)

(3.8

4)

determined to equal half the first entropy fluctuation matrix. This will turn out to be a

remarkably powerful result.

For a Markov system one has the stronger result, B = 0 and A = S′′/2. This is not

required for what follows.

With this result one can give the explicit proof of the regression hypothesis. Given the

current state X, the most likely destination state of a transition, equation (3.57), for short

time intervals τ, is

This says that the most likely change or regression in a fluctuation is linear in time and

linearly proportional to the thermodynamic force ∇S(X) ≡ S′(X) = S′′X. The regression

is symmetric in the future and in the past. This holds for systems of pure parity and is the

general form of the regression hypothesis.

Multiplying both sides of this equation by k−1
B X on the right, the average yields the time

correlation function, Q(τ) = −S′′−1− ∣ τ ∣ Λ/2. This is just the Markov result in the small

time limit, equation (3.76).

For such a Markov system, one can simply piece together this result for a small time

interval to obtain the result for larger time intervals, which is exponential decay of the time

correlation function. For a non-Markov system such a procedure would be invalid, because

successive time intervals would be correlated with each other, whereas the present second

entropy expression neglects all conditions prior to the current state.

In the small time limit the second entropy is explicitly

This neglects −B : [X′−X]2/2 and other terms of order τ 2
. By design, the first

equality satisfies the reduction condition exactly. That is, the maximum value of the second

entropy with respect to the destination state given the current state equals the first

entropy of the current state,

S (2)(τ ∣ X) ≡ S (2)(X′,X ∣ τ) =
1

2
S′′: X 2.

X̄(τ ∣ X) = − A(τ)−1
B(τ)X

= − [
−1

∣ τ ∣
Λ−1 + A]

−1

[
1

∣ τ ∣
Λ−1 + B]X

= [I+ ∣ τ ∣ Λ(A + B)]X

= X +
∣ τ ∣

2
ΛS′′X + O(τ 2).

S (2)(X′,X ∣ τ) =
−1

2 ∣ τ ∣
Λ−1 : [X′−X̄(τ ∣ X)]

2
+

1

2
S′′: X 2

=
−1

2 ∣ τ ∣
Λ−1 : [X′−X]2 +

1

2
S : X′X −

∣ τ ∣

8
X ⋅ S′′ΛS′′X

=
−1

2 ∣ τ ∣
Λ−1 : [X′−X]2 +

1

4
S′′: [X′2 + X 2] −

∣ τ ∣

8
X ⋅ S′′ΛS′′X

+ O(τ 2).

¯̄
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However, the final equality in equation (3.83) is more approximate in the sense that it

satisfies the reduction condition to O(τ).

3.2.4 Stochastic dissipative equations of motion

The difference between the actual destination and the most likely destination is the

stochastic part of the transition,

X′−X̄(τ ∣ X) = R̃.

Hence the transition in full is

X(t + τ) = X(t) +
∣ τ ∣

2
ΛS′′X(t) + R̃(t) + O(τ 2).

This is the stochastic dissipative equation of motion.

The second entropy in the small time limit given by the first equality in equation (3.83)

is

S (2)(X′,X ∣ τ) = S(X) −
1

2 ∣ τ ∣
Λ−1 : [X′−X̄(τ ∣ X)]

2
.

Since ℘(X′,X ∣ τ) = ℘(X′∣ X, τ)℘(X), and ℘(X) = eS(X)/kB/Z (1), in the small time

limit the conditional transition probability is just the Gaussian

where Z′≡ [Det {2πkB ∣ τ ∣ Λ}]1/2
. Since R̃ = X′−X̄(τ ∣ X), the conditional

probability distribution for X′ is equal to the probability distribution for R̃ because at

constant X, dX′= dR̃. From this it follows that the stochastic change on average vanishes, 

⟨R̃⟩ = 0, and it has variance

⟨R̃R̃⟩ =∣ τ ∣ kBΛ.

This last result is the fluctuation–dissipation theorem.

3.2.5 Regression theorem and the reciprocal relations

The small time expansion is all that is required to treat steady-state, thermodynamic, non-

equilibrium systems, as will shortly be made clear. It also gives several related results that

have been long known, albeit by different methods.

It has just been established that in the small time limit to linear order in τ, given the

current state X, the most likely destination state is

℘(X′∣ X, τ) =
1

Z′
e

−Λ−1:[X′−X̄(τ∣X)]
2
/2kB∣τ∣

=
1

Z′
e−Λ−1:R̃R̃/2kB∣τ∣

= ℘(R̃),
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X′ ≡ X̄(τ ∣ X) = −Q(τ)S′′X = X +
1

2
∣ τ ∣ ΛS′′X.

One may define the coarse velocity as the average velocity over the interval. Its most

likely value is

◦
X(X) ≡

X′ − X

τ
=

τ̂

2
ΛS′′X.

Here and throughout the sign of the time interval is τ̂ ≡ sign(τ) = τ/ ∣ τ ∣. This says

that the coarse velocity is proportional to the thermodynamic force, 

S′(X) ≡ ∂S(X)/∂X = S′′X.

This result is essentially the Onsager regression hypothesis: the most likely flux is

linearly proportional to the thermodynamic driving force (Onsager 1931). Of course the

present derivation makes it a theorem rather than an hypothesis. Flux is here the coarse

velocity 

◦
X, as will become clearer in the explicit treatment of heat flow in section 3.4. The

‘internal’ thermodynamic driving force is here the gradient of the sub-system entropy. This

will be shown below to equal the ‘external’ thermodynamic driving force that is imposed by

the reservoirs.

An interesting feature of the present result is that the coarse velocity is independent of

the length of the time interval over which it is measured, which one would expect of any

velocity, but it does depend upon the sign of τ. The most likely flux reverses sign for the

future, τ̂ > 0, compared to the past, τ̂ < 0. This is an obvious consequence of a

fluctuation in an equilibrium system: the system will most likely return to equilibrium, and

the system most likely came from equilibrium.

The transport matrix Λ is the coefficient matrix for the leading order term in the small

time expansion of A(τ) and B(τ), equations (3.79) and (3.80). Since both of these are

symmetric the transport matrix itself must be symmetric

Λ = ΛT.

This says that the off-diagonal transport coefficients, which couple different forces and

fluxes, are equal. This result is just the reciprocal relations, which Onsager (1931) originally

explained in terms of macroscopic reversibility.

There are a number of comparatively well-known examples of reciprocal relations. One

simple example is multi-component isothermal diffusion. The regression theorem in this

case is equivalent to Fick’s law, since it says that the mass fluxes are proportional to the

chemical potential gradients. There are two relevant diffusion constants for species α and

β. One gives the proportionality of the flux α to the chemical potential gradient β, and the

other gives the obverse, the proportionality of the flux β to the chemical potential gradient

α. Because the transport matrix is symmetric, these are equal to each other.

Another example is the thermoelectric effect, which couples electric and heat currents.

The Seebeck effect applies to an electric current driven by a temperature gradient, and the

Peltier effect applies to a heat flux driven by a voltage difference, or electro-chemical

gradient. The symmetry of the transport matrix Λ ensures that the respective

proportionality constants for these two effects are equal to each other.

Probably the most widely used example of a reciprocal relation, albeit one in which the

origin of the phenomenon is rarely acknowledged, is chemical reaction rates. Even

undergraduate students learn that the rate coefficient for the forward reaction is equal to

that of the reverse reaction. This result in fact can only be proven by the symmetry of the

transport matrix. This at that time unexplained example of a reciprocal relation was one of

¯

¯̄
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the original motivations for Onsager’s (1931) work for which he was subsequently awarded

a Nobel prize.

Onsager’s original derivation of the reciprocal relations consisted of combining the

regression hypothesis (that the rate of regression of a fluctuation was proportional to the

fluctuation itself) with macroscopic reversibility. In the present case the regression

hypothesis has been derived as a theorem. Macroscopic reversibility was used in the

present derivation to show that the cross fluctuation transition matrix is symmetric, 

B(τ) = B(τ)T
, and that the two ‘pure’ fluctuation transition matrices are equal, 

A(τ) = A′(τ). Equivalently, the time correlation function is symmetric, Q(τ) = Q(τ)T
.

These symmetries, as well as the symmetry of the transport matrix, only hold for the

pure parity case. Mixed parity is treated in section 3.3.

3.2.6 Green–Kubo expression

The Green–Kubo relations give the hydrodynamic transport coefficients as time integrals of

the time correlation function of an equilibrium system (Green 1954, Kubo 1966, Kubo et al

1978, Keizer 1987, Zwanzig 2001). The above result for the small time expansion of the

most likely destination equation (3.90), is equivalent to the Green–Kubo expressions, as is

now shown. Since Onsager (1931) gave the relationship between the time correlation

function and the transport coefficient in his paper on the reciprocal relations, it may be

observed that he had given the Green–Kubo expressions some 20 years before either

Green or Kubo.

The result for the most likely destination, equation (3.90), may be rewritten in Green–

Kubo form as

For small but non-infinitesimal τ, where the present expansion is valid, the right-hand

side must be independent of τ. In practice this defines the regime of validity for the small τ

expansion. Typically simulations show the right-hand side has a broad peak as a function of

τ, the maximum of which is generally taken as ‘the’ transport coefficient. The average is an

equilibrium average, and it is typically taken for an isothermal rather than an isolated

system. One can use integration by parts and various symmetry arguments to rewrite this

is in several mathematically (but not necessarily computationally) equivalent ways.

3.2.7 Physical meaning of the second entropy

In order to provide a physical interpretation of the second entropy, it is useful to rewrite it

in terms of the flux (i.e. the coarse velocity, 

◦
X ≡ (X′−X)/τ) and the transport matrix.

Using equation (3.90), the departure from the most likely destination is

X′−X′ = τ
◦
X −

∣ τ ∣

2
ΛS′′X + O(τ 2).

Inserting this into the expression for the second entropy, the first equality in equation

(3.83), to leading-order in τ one has

Λ =
−2

∣ τ ∣
[Q(τ) + S′′−1]

=
−2

kB ∣ τ ∣
[⟨X(τ)X(0)⟩ − ⟨X(0)X(0)⟩]

=
−2

kB ∣ τ ∣
∫

τ

0
dt′ ⟨Ẋ(t′)X(0)⟩.

¯
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5)This expression writes the second entropy explicitly in terms of the coarse velocity; as

a quadratic form, it gives the entropy due to the fluctuations in flux. By construction the

flux, 

◦
X, does not depend upon the length of the time interval, and as such it is an intensive

function of time. In contrast, the second entropy as a linear function of the time interval is

extensive in time.

3.2.7.1 Dynamic order versus structural disorder

Writing the second entropy in terms of the fluctuation in the flux allows for a

straightforward physical interpretation. The four terms on the right-hand side of the final

equality each contribute to the understanding of it.

The first term is the ordinary entropy S(X) = S′′: X 2/2. Once the optimum flux 

◦
X(X)

has been established, this is all that remains of the second entropy. Given the optimum

flux, maximizing S(X) yields the optimum static structure X̄. For the case of an isolated

system this vanishes, but when exchange with a reservoir is allowed, the reservoir first

entropy added to this term gives an optimum structure that is nonzero, X̄(xr) ≠ 0. This

case will be analyzed below. The appearance of the first entropy is a direct consequence of

the reduction condition, equation (3.38). On the basis of this discussion one can say that

the first or ordinary entropy determines the static structure of a non-equilibrium system.

Turning to the second term, one sees that it is quadratic in the flux. Since the transport

matrix must be positive definite (cf the discussion following equation (3.80)), this term is

negative and acts to reduce the second entropy. This is the term that prevents the flux

becoming infinitely large, which is a crucial difference between the second entropy

approach and the approaches based upon the principle of extreme dissipation (cf the

discussion in section 3.1.2 and following equation (3.96)). The reason that the optimum

flux must have an upper limit is that it represents a dynamically ordered state, which is a

state of low entropy. Of course the challenge, and the point of the second entropy, is to

balance quantitatively the unfavorable aspects of dynamic order with the favorable aspect

of reducing the structural order over time.

This brings us to the third term, which is proportional to the thermodynamic force, 

∇S(X) = S′(X) = S′′X. In fact it is proportional to the scalar product of the flux and the

force, τ
◦
X ⋅ ∇S(X)/2. In the future, τ > 0, this term is positive when the flux is in the

same direction as the force, which is the direction that increases the first entropy. (The

case τ < 0, and the meaning of the appearance of terms with τ and ∣ τ ∣ in the second

entropy is discussed along with the irreversibility of the fluctuation below.) Because S′′ is
negative definite, the direction of increasing first entropy is opposite to the direction of the

fluctuation X, which is to say that the first entropy increases when the flux reduces X

(going forward in time). This term is half the entropy dissipated over the time interval. It is

this second term that drives the flux to be nonzero and that balances the entropic cost of

the dynamic order that is the flux.

S (2)(X′,X ∣ τ) = S(X) +
1

2
[

−Λ−1

∣ τ ∣
+ O(τ 0)] : [X′−X̄′]

2

= S(X) −
∣ τ ∣

2
Λ−1 : [

◦
X −

◦
X]

2

+ O(τ 2)

= S(X) −
∣ τ ∣

2
Λ−1 :

◦
X

2

+
τ

2

◦
X ⋅ S′′X −

∣ τ ∣

8
X ⋅ S′′ΛS′′X + O(τ 2).

¯
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The final term does not appear to have a straightforward physical interpretation.

Obviously it is negative and depends on the static structure, not the flux. Mathematically

the reduction condition demands it so that the second and third terms can be canceled

when the flux is optimum.

One can see that the physical basis for the variational principle embodied by the second

entropy is rather simple, namely that the optimum flux arises from two competing effects.

The (static) order of the system decreases over time as entropy is produced by the flux

being aligned with the thermodynamic gradient. This term is favorable, linear in the flux,

and dominates at small fluxes. Competing against this is the dynamic order of the system,

which increases as the magnitude of the flux increases. This term unfavorable, quadratic in

the flux, and dominates at large fluxes.

3.2.7.2 Dissipation

The variational nature of the second entropy stands in stark contrast to the dissipation, the

extremization of which, it will be recalled from section 3.1.2, has been advocated by some

authorities as the principle for determining the optimum non-equilibrium state. In general

the rate of entropy production is a function of both the fluctuation and the flux,

Ṡ(Ẋ,X) = Ẋ ⋅
∂S(X)

∂X
= Ẋ ⋅ S′′X.

In this formally exact expression, the fluctuation X and the flux Ẋ are independent

variables.

According to the second entropy, for a given fluctuation X, the optimal rate of entropy

production is therefore

◦
S(X) ≡ S(

◦
X,X) =

τ̂

2
X ⋅ S′′ΛS′′X.

The optimal flux that appears here was determined by maximizing the second entropy,

not by extremizing the dissipation. Since the transport matrix Λ is positive definite, the

optimal dissipation is evidently positive. (The flux is generally measured going forward in

time, τ̂ > 0.)

The rate of entropy production, equation (3.96), is neither maximized nor minimized by

the optimum flux. At a glance one can see from equation (3.96), taking a one-component

system and X > 0 to make the point, that the maximum dissipation occurs at Ẋ = −∞,

and the minimum dissipation occurs at Ẋ = +∞. A function that is linear in the flux has no

non-trivial extrema; it can be a maximum or a minimum only at the boundaries of its

range. It is the quadratic form of the second entropy that enables it to be used as a

variational principle, which is in stark contrast to the dissipation. As was remarked in

section 3.1.2, this is fundamentally why the dissipation does not give the variational

principle for non-equilibrium systems.

3.2.7.3 Irreversible trajectory

As mentioned, the second entropy contains terms that depend on τ and on ∣ τ ∣. (Actually

terms dependent on τ only occur in the mixed parity case; see section 3.3.) The former

distinguishes between the future and the past, whereas the latter does not. It is these

latter terms that make the trajectory irreversible.

Irreversibility means that if one goes backward from the most likely destination, most

likely one does not regain the original state. If X is the original fluctuation then this reversal

¯̄
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operation corresponds to

One sees that reversing the time step after the first step gives more of the same.

Consider the sequence of transitions X1
τ
→ X2

−τ
X3. The initial state is X1, the most

likely intermediate state is X2 ≡ X̄(τ ∣ X1), and the most likely final state is 

X3 ≡ X̄(−τ ∣ X2). This says that in the future, τ > 0 the system will move from X1 toward

equilibrium, so that S(X2) > S(X1). However, the most likely prior state for X2 is X3 not

X1, since the former is even closer to equilibrium, S(X3) > S(X2) > S(X1). Reversibility

and irreversibility is further discussed in section 5.4.2.

3.2.8 Third entropy

Although only the second entropy is necessary to deal with steady-state, thermodynamic,

non-equilibrium systems, it is of interest to discuss the third entropy because this shows

how non-Markovian behavior can arise. Since Gaussian fluctuations of all orders are the

sum of pair-wise products, the third entropy in its most general form is

For simplicity the dependence on the time intervals of the fluctuation transition

matrices has been suppressed. In the symmetric case that t32 = t21, the primed and

unprimed matrices are equal. By rearranging this in terms of (X3 − X2)2
 and (X2 − X1)2

,

in the limit t31 → 0 one would conclude that to leading order the fluctuation transition

matrices C, D, and E would go like ∣ t21 ∣−1. The fluctuation transition matrix F contains the

non-Markovian behavior. It goes like O(∣ t21 ∣0) to leading order.

This matrix is zero in a Markovian system, F = 0. In this case the third entropy is just the

sum of the consecutive second entropies,

S (3)(X3,X2,X1 ∣ t32, t21) = S (2)(X3,X2 ∣ t32) + S (2)(X2,X1 ∣ t21) − S(X2).

The final term cancels the first entropy that is counted twice for the intermediate state.

3.2.9 Beyond fluctuations

The above analysis was for fluctuations in an isolated system, and for these the quadratic

forms for the first and second entropy are valid. One can expect that the fluctuations in an

extensive variable are relatively small. For heat flow below, in section 3.4.4 we shall treat

the case of energy exchange with heat reservoirs. This raises the general possibility of how

to treat the problem when the relevant variable X is not relatively small.

Suppose that the reservoirs impose a nonzero most likely value, X̄(xr). The fluctuation

about this may be denoted δX = X − X̄(xr). This fluctuation may be considered small,

and the first and second entropy may be expanded to quadratic order in it. All the above

theory now holds with X ⇒ δX. The first entropy fluctuation matrix S′′ is evaluated at 

X̄(−τ ∣ X̄(τ ∣ X)) = [I +
∣ τ ∣

2
ΛS′′][I +

∣ τ ∣

2
ΛS′′]X

= X+ ∣ τ ∣ ΛS′′X + O(τ 2).

−→

S (3)(X3,X2,X1 ∣ t32, t21) =
1

2
C : X 2

3 +
1

2
C′: X 2

1 +
1

2
D : X 2

2

+ E : X2X3 + E′: X2X1 + F : X1X3.
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X = X̄(xr) rather than at X = 0, and similarly for the second entropy fluctuation transition

matrices A(τ) and B(τ). The time correlation function is define in terms of this fluctuation,

Q(τ) = k−1
B ⟨δX(τ) δX(0)⟩xr

.

3.3 Mixed parity fluctuations

3.3.1 Second entropy

Up to now fluctuations of pure time parity have been treated, which is to say either 

X † = X, or else X † = −X. (Recall that the dagger denotes the macrostate with the same

molecular positions but with the molecular velocities reversed.) Now our attention turns to

the mixed parity case, where the components of X each have pure parity, but they do not

all necessarily have the same parity. This is not a serious restriction because any mixed

parity macrostate can be decomposed into its pure parity components, 

X±
α = [Xα ± X

†
α]/2, and these individually can be included in X.

The diagonal parity matrix ε is defined with elements εij = ±δij such that

X † = εX,

Obviously ε2 = I, and X
†
i = εiiXi.

In general the time correlation function is the equilibrium average of the dyadic matrix

of the fluctuations, Q(τ) ≡ k−1
B ⟨X(τ)X(0)⟩. The time homogeneity of an equilibrium

system holds as well for mixed parity systems as it does for pure parity systems,

⟨X(τ)X(0)⟩ = ⟨X(0)X(−τ)⟩, or Q(τ) = Q(−τ)T.

However, macroscopic reversibility in the mixed parity case reads,

⟨X(τ)X(0)⟩ = ⟨X(−τ)†
X(0)†⟩, or Q(τ) = εQ(τ)T

ε.

 

The first entropy in fluctuation approximation is unchanged,

S(X) =
1

2
S′′: XX,

again with the fluctuation matrix related to the time correlation matrix,

S′′≡
∂ 2S(X)

∂X∂X
∣
X=0

= −kB⟨XX⟩−1 = −Q(0)−1.

Macroscopic reversibility at τ = 0 reads Q(0) = εQ(0)ε, which means that

εS′′ε = S′′, or εS′′= S′′ε.
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Macroscopic reversibility at τ = 0, means the coupling between variables of different

time parity instantaneously vanishes,

⟨Xi(0)Xj(0)⟩ = 0, if εii ≠ εjj.

From this it follows that {S′′−1}ij = 0 if εiiεjj = −1. This result says that if all

variables of the same parity are grouped together then the time correlation matrix is

‘block’ diagonal at τ = 0, as is the fluctuation matrix. This result does not imply that

variables of different parity are uncorrelated for all times.

The quadratic form for the second entropy in this mixed parity case can most generally

be written as

S (2)(X′,X ∣ τ) =
1

2
X ⋅ A(τ)X + X ⋅ B(τ)X′+

1

2
X′⋅C(τ)X′.

Here X ≡ X(0) is the current state, and X′≡ X(τ) is the destination state. The

matrices A(τ) and C(τ) are second derivative matrices of the same variable,

A(τ) ≡
∂ 2S (2)(0,X ∣ τ)

∂X∂X
∣
X=0

, and C(τ) ≡
∂ 2S (2)(X′, 0 ∣ τ)

∂X′∂X′
∣
X′=0

.

These are clearly symmetric, A(τ) = A(τ)T
 and C(τ) = C(τ)T

. The matrix B(τ) is

the cross second derivative,

B(τ) ≡
∂ 2S (2)(X′,X ∣ τ)

∂X∂X′
∣
X′=X=0

.

 

The second entropy must be negative S (2)(X′,X ∣ τ) ⩽ S (2)(0, 0 ∣ τ) = 0. This follows

because fluctuations are unfavorable, and constant contributions have been set to zero.

This means that the matrices A(τ) and C(τ) must be negative definite, and the double

matrix formed from the three coefficient matrices must also be negative definite.

The second entropy has similar symmetries to the time correlation function. From time

homogeneity, S (2)(X′,X ∣ τ) = S (2)(X,X′∣ −τ), it follows that

A(−τ) = C(τ), and B(τ) = B(−τ)T.

Macroscopic reversibility applied to the second entropy reads 

S (2)(X′,X ∣ τ) = S (2)(X′ †,X † ∣ −τ) = S (2)(εX′, εX ∣ −τ). Hence the fluctuation

transition matrices have the symmetries

εA(τ)ε = C(τ), and εB(τ)ε = B(τ)T.

 

The most likely destination state given the present state maximizes the second entropy

over X′. This gives

X′ ≡ X̄(τ ∣ X) = −C(τ)−1
B(τ)T

X.̄
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Similarly, the most likely initial state that would lead to the destination X′ maximizes the

second entropy over X,

X̄ ≡ X̄(−τ ∣ X′) = −A(τ)−1
B(τ)X′.

This can also be written X̄(−τ ∣ X′) = −C(−τ)−1
B(−τ)T

X′.
It is useful to rewrite the second entropy in terms of the departure from the most likely

destination state,

Alternatively, it can be written in terms of the departure from the most likely initial

state,

 

The reduction condition, equation (3.38), for the present mixed parity case reads

S (2)(X̄′,X ∣ τ) = S(X), or S (2)(X′, X̄ ∣ τ) = S(X′).

It follows from the preceding expressions that

A(τ) − B(τ)C(τ)−1
B(τ)T = S′′,

and

C(τ) − B(τ)T
A(τ)−1

B(τ) = S′′.

These two expressions are equivalent to each other, since one can be turned into the

other by multiplying before and after by the parity matrix, and applying macroscopic

reversibility, equation (3.113). This result of the reduction condition may be compared to

the result in the pure parity case, equation (3.60), in which case A(τ) = C(τ) and 

B(τ) = B(τ)T
.

The transition fluctuation matrices can be related to the time correlation matrix by

invoking the fact that for Gaussian statistics, the average value and the most likely value

are the same. Hence the time correlation function is given by

S (2)(X′,X ∣ τ) =
1

2
[X′+C(τ)−1

B(τ)T
X]

T
C(τ)[X′+C(τ)−1

B(τ)T
X]

+
1

2
XT[A(τ) − B(τ)C(τ)−1

B(τ)T]X.

S (2)(X′,X ∣ τ) =
1

2
[X + A(τ)−1B(τ)X′]

T
A(τ)[X + A(τ)−1B(τ)X′]

+
1

2
X′ T[C(τ) − B(τ)T

A(τ)−1
B(τ)]X′.
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Similarly, Q(τ) = S′′−1B(τ)T
A(τ)−1

.

Using these and the reduction condition, equation (3.119), the transition fluctuation

matrices can each be expressed of the time correlation matrix and the entropy fluctuation

matrix. One can readily show that

A(τ) = [I − S′′Q(τ)T
S′′Q(τ)]

−1
S′′.

This reduces to the pure parity result, equation (3.67), when the time correlation

function matrix is symmetric.

Inserting this into the second form for the time correlation function, one obtains for the

cross fluctuation matrix

B(τ) = [I − S′′Q(τ)T
S′′Q(τ)]

−1
S′′Q(τ)T

S′′= A(τ)Q(τ)T
S′′.

As in the pure parity case, the time correlation function completely determines the

fluctuation transition matrices, the second entropy, and the transition probability. In

particular, the most likely destination, equation (3.114), may be written

X̄(τ ∣ X) = −Q(τ)S′′X.

This is formally unchanged from the result in the case of pure parity, equation (3.64)

(although of course Q(τ) is not now symmetric). The term S′′X = S′(X) ≡ ∇S(X)
remains the thermodynamic driving force toward the equilibrium state. Again, as in the

pure parity case, multiplying by XT on the right, the subsequent average yields an identity,

since ⟨[∇S(X)]X⟩ = −kBI.

3.3.2 Small time expansion

The difference between the small time expansion for the previous pure parity systems and

the present mixed parity system, is that the time correlation function is no longer an even

function of time. This means that now both τ and ∣ τ ∣ appear in the expansion. Because of

this, we shall need the sign of the time interval, τ̂ ≡ sign τ ≡ τ/ ∣ τ ∣.
The pure parity expansions (3.79) and (3.80) carry over directly to the present mixed

parity case by including additional terms,

A(τ) = C(−τ) =
A−1

∣ τ ∣
+

A′
−1

τ
+ A0 + A′

0τ̂ + O(τ),

and

Q(τ) = k−1
B ⟨X′X⟩

= k−1
B ⟨X′X⟩

= − C(τ)−1
B(τ)T

k−1
B ⟨XX⟩

= C(τ)−1
B(τ)T

S′′−1.
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B(τ) =
B−1

∣ τ ∣
+

B′
−1

τ
+ B0 + B′

0τ̂ + O(τ).

Since A(τ) = A(τ)T
, all the coefficient matrices that appear in its expansion are

symmetric. Since B(−τ) = B(τ)T
, in its expansion the unprimed coefficient matrices are

symmetric, and the primed coefficient matrices are antisymmetric.

As in the pure parity case, equation (3.70), since X̄(τ ∣ X) → X, τ → 0 still holds, one

must still have that A(τ)−1
B(τ) → −I, τ → 0. Hence the leading-order coefficients satisfy

B−1 + τ̂ B′
−1 = −A−1 − τ̂ A′

−1.

Now A′
−1 is symmetric, whereas B′

−1 is antisymmetric. Since the two parts of this

equation must separately be equal, it follows that A′
−1 = B′

−1 = 0. With this the

expansions become

A(τ) =
−Λ−1

∣ τ ∣
+ A0 + A′

0τ̂ + O(τ),

and

B(τ) =
Λ−1

∣ τ ∣
+ B0 + B′

0τ̂ + O(τ).

As in the pure parity case, because A(τ) is symmetric and negative definite, the

transport matrix must be symmetric and positive definite.

The two remaining symmetric coefficient matrices A0 and B0, can be related to each

other by invoking the reduction condition. Expanding this to zeroth order in the time

interval one has

 

The time correlation function may also be expanded for small times,

S′′ = A(τ) − B(τ)C(τ)−1
B(τ)T

= [− Λ−1 ∣ τ ∣−1 +A0 + A′
0τ̂ ] − [Λ−1 ∣ τ ∣−1 +B0 + B′

0τ̂ ]

× [−Λ−1 ∣ τ ∣−1 +A0 − A′
0τ̂ ]

−1
[Λ−1 ∣ τ ∣−1 +B0 − B′

0τ̂ ]

= [− Λ−1 ∣ τ ∣−1 +A0 + A′
0τ̂ ] − [Λ−1 ∣ τ ∣−1 +B0 + B′

0τ̂ ]

× [−I+ ∣ τ ∣ ΛA0 − τΛA′
0]−1[I+ ∣ τ ∣ ΛB0 − τΛB′

0]

= [− Λ−1 ∣ τ ∣−1 +A0 + A′
0τ̂ ] − [Λ−1 ∣ τ ∣−1 +B0 + B′

0τ̂ ]

× [−I+ ∣ τ ∣ Λ(A0 + B0) − τΛ(A′
0 + B′

0) + O(τ 2)]

= [− Λ−1 ∣ τ ∣−1 +A0 + A′
0τ̂ ] + [Λ−1 ∣ τ ∣−1 +A0 + 2B0 − A′

0τ̂ + O(τ)]

= 2(A0 + B0) + O(τ).
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The final equality defines Θ, the coefficient matrix of τ. Since Q(−τ) = Q(τ)T
, this

must be antisymmetric, which yields

Θ ≡ Λ(A′
0 + B′

0)S′′−1= −S′′−1(A′
0 − B′

0)Λ.

The fluctuation transition coefficient matrices that couple to τ̂  can be written in terms

of the antisymmetric transport matrix,

A′
0 =

1

2
[Λ−1ΘS′′−S′′ΘΛ−1], and B′

0 =
1

2
[Λ−1ΘS′′+S′′ΘΛ−1].

 

In view of equation (3.131), one can define ‘the’ transport matrix in the mixed parity

case as L(τ̂ ) ≡ Λ − 2τ̂Θ. This is defined in this way to retain the same proportionality

between flux and thermodynamic force as in the pure parity case, as will shortly be made

explicit. The transport matrix L(τ̂ ) consists of a symmetric and an antisymmetric matrix.

These give an irreversible and a reversible contribution to the trajectory, respectively. The

antisymmetric matrix changes sign if the transport matrix is used to predict the past rather

than the more usual case of predicting the future. This is a real physical effect.

The time correlation matrix has the symmetry Q(−τ) = εQ(τ)ε, or, in component form,

Qij(−τ) = εiiεjjQij(τ). From the small time expansion, equation (3.131), it follows that

the symmetric part of the transport matrix has elements that vanish for states of different

parity,

Λij = 0 if εiiεjj = −1.

We have already seen the equivalent result that {S′′−1}ij = 0 if εiiεjj = −1. It also

follows that the antisymmetric part of the transport matrix has elements that vanish for

states of the same parity,

Θij = 0 if εiiεjj = 1.

 

In view of this behavior, it is often convenient to group the components of X of the same

parity together. In such a representation the various coefficient matrices subdivide into four

square blocks, with those linking components of like parity on the main diagonal, and those

linking unlike parity components on the off-diagonal. One sees that in this representation,

the matrices Λ, S′′−1 (and hence S′′) are symmetric and block diagonal, and the matrix Θ

is antisymmetric and block adiagonal.

Inserting the above expansions and definitions into equation (3.124), one obtains the

optimum flux as

Q(τ) = C(τ)−1
B(τ)T

S′′−1

= [− Λ−1 ∣ τ ∣−1 +A0 − A′
0τ̂ ]

−1
[Λ−1 ∣ τ ∣−1 +B0 − B′

0τ̂ ]S′′−1

= [I− ∣ τ ∣ ΛA0 + τΛA′
0]−1[−I− ∣ τ ∣ ΛB0 + τΛB′

0]S′′−1

= [− I− ∣ τ ∣ Λ(A0 + B0) + τΛ(A′
0 + B′

0)]S′′−1

= − S′′−1−
∣ τ ∣

2
Λ + τΘ + O(τ 2).
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◦
X =

τ̂

2
[Λ − 2τ̂Θ]S′′X =

τ̂

2
L(τ̂ )S′(X).

As in the pure parity case, the most likely flux is linearly proportional to the

thermodynamic driving force. The term in brackets is the origin of the definition of ‘the’

transport matrix used above. In the present case there are both reversible and irreversible

contributions to the most likely flux, whereas in the pure parity case the contributions were

only irreversible.

The second entropy may be rewritten in terms of the flux. Invoking the departure of X′
from its most likely value and the reduction condition one has

As in the pure parity case, section 3.2.7, there is a term quadratic in the flux, which is

negative and therefore unfavorable. There are now two terms linear in the flux, which also

couple to the thermodynamic gradient, again as in the pure parity case. The second of

these terms includes the antisymmetric transport matrix Θ, which does not appear in the

pure parity case.

The antisymmetric part of the transport matrix Θ gives a reversible contribution to the

most likely evolution of the fluctuation. It will be recalled from the pure parity case that the

symmetric transport matrix Λ gave an irreversible contribution. For the present mixed

parity case one has,

This would be zero for the pure parity case. This is analogous to the result that one

would obtain for ordinary mechanical evolution such as that given by Hamilton’s equations,

which is why it is called a reversible contribution.

It should be noted that although Θ affects the most likely evolution of the fluctuation in

the present mixed parity case, it has no effect on the optimum rate of entropy production.

This follows from the symmetric nature of the entropy fluctuation matrix, since one has

¯

S (2)(X′,X ∣ τ) = S(X) +
1

2
C(τ) : [X′−X′]

2

= S(X) +
1

2
[

−Λ−1

∣ τ ∣
+ O(τ 0)] : [X′−X −

∣ τ ∣

2
L(τ̂ )S′′X + O(τ 2)]

2

= S(X) −
∣ τ ∣

2
Λ−1 : [

◦
X −

τ̂

2
L(τ̂ )S′′X]

2

+ O(τ 2)

= S(X) −
∣ τ ∣

2
Λ−1 :

◦
X

2

+
τ

2

◦
X ⋅ S′′X− ∣ τ ∣

◦
X ⋅ Λ−1ΘS′′X

−
∣ τ ∣

2
Λ−1 : [L(τ̂ )S′′X]2 + O(τ 2).

¯

X̄(τ ∣ X) − X̄(−τ ∣ X) = − [Q(τ) − Q(−τ)]S′′X

= − 2τΘS′′X + O(τ 2).
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The contribution from Θ vanishes because it is an antisymmetric matrix, and the

double scalar product is symmetric. Hence the optimum dissipation is formally the same as

for a pure parity system, equation (3.97). One might have predicted this because by the

Second Law of Thermodynamics the entropy production must be irreversible, which is to

say it must be proportional to the sign of the time interval τ̂ , as this result shows.

3.4 Steady heat flow

The canonical non-equilibrium system is that of steady heat flow. This is now analyzed in

detail. Analogous methods can be applied to other types of thermodynamic fluxes (driven

diffusion, volume changes, electrical currents etc). The remaining generic type not treated

here is a mechanical non-equilibrium system, which typically has an applied potential that

varies with time. Both thermodynamic and mechanical non-equilibrium systems will be

treated at the level of statistical mechanics in chapter 6.

3.4.1 First energy and first temperature

3.4.1.1 Canonical equilibrium system

Heat is a form of energy, and so the latter is the focus of this chapter. It will be recalled

from chapter 2 that the derivative of the isolated system entropy with respect to energy is

essentially the temperature,

1

T
=

∂S

∂E
.

Because the number and volume of the sub-system will be held constant throughout,

these will not be shown and we can simply write S(E).

The temperature is an intensive variable and as such it is also given by the energy

density derivative of the entropy density, equation (2.15),

1

T
=

∂σ

∂ε
,

where σ ≡ S/V  and ε = E/V .

The canonical equilibrium system consists of a sub-system able to exchange energy

with a reservoir of temperature T. The constrained total entropy is

Stotal(E ∣ T ) = S(E) −
E

T
.

This is maximized by the equilibrium energy Ē(T ),

◦
S(X) =

1

τ
[X̄(τ ∣ X) − X] ⋅ S′′X

= X ⋅ [
τ̂

2
S′′Λ + S′′Θ]S′′X

=
τ̂

2
X ⋅ S′′ΛS′′X + O(τ).

¯
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∂Stotal(E ∣ T )

∂E
∣
Ē

= 0 ⇔ Ts(Ē) = T ,

at which point the temperature of the sub-system equals that of the reservoir. The

constrained thermodynamic potential is minus the temperature times the constrained total

entropy,

F(E ∣ T ) ≡ −TStotal(E ∣ T ) = E − TS(E).

The Helmholtz free energy is the minimum value of this,

F̄ (T ) = F(Ē(T ) ∣ T ) = Ē(T ) − TS(Ē(T )).

3.4.1.2 Canonical non-equilibrium system

The canonical non-equilibrium system consists of a sub-system sandwiched between, and

in thermal contact with, two heat reservoirs of different temperatures (figure 3.3). The heat

flux J, which is uniform in the optimum non-equilibrium state, is the rate of energy change

of a reservoir per unit cross-sectional area.

Figure 3.3. The canonical non-equilibrium system consists of two heat reservoirs of

temperatures T+ > T−, in thermal contact with a sub-system with zeroth E0 and first

E1 energy moments. The uniform heat flux is J.

The treatment of the canonical non-equilibrium system first requires a detailed analysis

of the static and dynamic properties of the sub-system in isolation. This is where we begin,

and reservoirs will not be introduced until section 3.4.4.

For the analysis of equilibrium thermodynamics, chapter 2, the thermodynamic limit was

invoked. This says that the reservoir is infinitely larger than the sub-system, and that the

boundary region is infinitely smaller than the sub-system. The first of these ensures that

exchange with the sub-system does not change the field variables of the reservoir, and the

second of these ensures that the precise boundary conditions have no effect on the

properties of the sub-system, so that the latter may be analyzed as isolated.

For the analysis of non-equilibrium thermodynamics, the same thermodynamic limit has

to be invoked for both reservoirs and both boundaries. For this reason the boundary

conditions parallel to the flux need not be specified as they have negligible effect on the

sub-system. An additional condition is imposed, namely that the gradient in the reservoir

field variables, essentially their difference divided by the width of the sub-system, is small.

This means that all quantities can be expanded in the gradient and all terms beyond the

first order can be neglected.
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It is also necessary to insist that the conductivity of the reservoirs be much greater than

that of the sub-system. This means that the temperature within each reservoir is equal to

that at its boundary with the sub-system. Or at least the width of any region of

temperature non-uniformity in the reservoirs is small compared to the width of the sub-

system.

The reservoirs impose a temperature gradient on the sub-system. Because of the local

properties of the entropy density, there will be a corresponding gradient in energy density.

One can specify the energy density ε(r) as a macrostate of the constrained system.

Choosing the z-axis to be aligned with the gradient, one need only consider spatial

variations in this direction, ε(z).

The energy density may be expanded to first order (since the gradient is vanishingly

small, all higher order contributions can be neglected),

ε(z) = ε0 + ε1z.

The macrostate is now specified by two parameters, {ε0, ε1}.

For a sub-system of width L and cross-sectional area A, the total energy is just the

zeroth energy moment,

E0 = A∫
L/2

−L/2
dz ε(z) = ALε0.

The first energy moment is

E1 = A∫
L/2

−L/2
dz ε(z)z =

AL3

12
ε1.

With these the macrostate of the isolated sub-system can be specified in a global

sense by the zeroth and first energy moments and one can write

S(E0,E1) = A∫
L/2

−L/2
dz σ(ε(z)).

Note that it does not matter whether or not the optimum number density is spatially

varying as this is a second order effect that can be neglected.

It is important to note that both of these energy moments are extensive with the cross-

sectional area of the sub-system, A. In chapter 2 where the theory for equilibrium

thermodynamics was developed, it was pointed out that extensivity played a key role, so

that entropy was best formulated in terms of extensive variables. An explicit benefit of this

is that in the thermodynamic limit the Taylor expansion of the reservoir entropy could be

terminated at the linear term. A second benefit was that the fluctuations in the extensive

exchangeable variables were relatively negligible. These same benefits can be exploited in

the present formulation of non-equilibrium thermodynamic systems. In this case the

thermodynamic limit of relevance is A → ∞. Since the width L is fixed, this also

corresponds to the volume of the sub-system becoming infinite.

The local reciprocal temperature of the sub-system may also be expanded to linear

order
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This defines the zeroth temperature T0 as the temperature at the mid-plane, and the

first temperature T1 as the reciprocal of the gradient of the reciprocal temperature at the

mid-plane, T −1
1 = −T −2∇T . These are properties of the sub-system, which will

sometimes below be emphasized with the sub-script s.

A change in the energy density is Δε(z) = Δε0 + zΔε1. This changes the isolated sub-

system entropy in the specified macrostate by

Hence one can conclude that the zeroth temperature is the thermodynamic conjugate

of the zeroth energy moment,

∂S(E0,E1)

∂E0
=

1

T0
,

and that the first temperature is the conjugate of the first energy moment,

∂S(E0,E1)

∂E1
=

1

T1
.

This last one says in brief that the first energy moment is conjugate to the temperature

gradient, a result that will play a key role in the analysis of heat flow. These give the

temperatures as functions of the moments, T0(E0,E1) and T1(E0,E1). We shall assume

without proof that these relationships are invertible, E0(T0,T1) and E1(T0,T1).

It is somewhat idiosyncratic to analyze heat flow in terms of the zeroth and first

temperatures. The relationship with conventional results is that the zeroth temperature

corresponds to the temperature, T0 ⇒ T , and the first temperature to the temperature

gradient, T −1
1 ⇒ −T −2∇T . Like the present treatment, the conventional treatment

assumes that the temperature gradient is small so that terms beyond first order can be

neglected.

∂σ(ε(z))

∂ε(z)
=

1

T (z)

=
1

T (0)
+ z

dT (z)−1

dz
∣
z=0

+ O(T ′′, (T ′)2)

≡
1

T0
+ z

1

T1
.

ΔS(E0,E1) = A∫
L/2

−L/2
dz

∂σ(ε(z))

∂ε(z)
Δε(z)

= A∫
L/2

−L/2
dz [

1

T0
+ z

1

T1
][Δε0 + zΔε1]

= AL
Δε0

T0
+

AL3

12

Δε1

T1

=
ΔE0

T0
+

ΔE1

T1
.
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3.4.2 Second entropy

The second entropy formalism, section 3.1.4, was based on extensive non-conserved

variables of the isolated system that most likely vanished, X̄ = 0. For the present case of

heat flow, the corresponding variable is the first energy moment, E1, since this is not

conserved, and it is extensive with the system cross-sectional area A. Further, it is most

likely zero, since the entropy is a maximum when the energy is uniformly distributed

throughout the system. As we have just seen, the field variable conjugate to the first

energy moment is the first temperature, T1. From now on the zeroth energy moment, E0,

and also the zeroth temperature, T0, will be suppressed and not treated explicitly.

For heat flow we can fix the direction (e.g. parallel to the z-axis), and take E1 to be a

scalar. This means that X is a scalar because it is the only fluctuating variable that we shall

consider. Hence all of the matrices that were defined in the general first and second

entropy analysis, section 3.1.4, become scalars here.

Accordingly, the part of the first entropy of the isolated system relevant to heat flow

depends upon the first energy moment, with Ē1 = 0 being the macrostate of maximum

entropy. Invoking the fluctuation approximation the first entropy is

S(E1) =
1

2
S′′E 2

1 .

As just mentioned, the fluctuation coefficient is a scalar,

S′′≡
∂ 2S(E1)

∂E 2
1

∣
E1=0

=
−kB

⟨E1(0)2⟩
.

The averages here and below are canonical equilibrium ones. By the uniqueness of the

thermodynamic state, these are the same as in an equilibrium isolated system at the

energy E0 = Ē0(T0).

The thermodynamic force is the inverse first temperature,

1

T1
≡

∂S(E1)

∂E1
= S′′E1.

One can also write the thermodynamic force as ∇S(E1) = S′(E1) = S′′E1.

For the transition E1
τ
→ E ′

1, the second entropy is

S (2)(E ′
1,E1 ∣ τ) =

A(τ)

2
[E ′

1
2 + E1

2] + B(τ)E ′
1E1.

(Obviously as a scalar X has pure parity; in this case it is even.) From the expansions of

the fluctuation transition coefficients for short times, equations (3.79) and (3.80), in the

present scalar, even parity case one has

A(τ) =
−1

∣ τ ∣ Λ
+ A + O(τ), and B(τ) =

1

∣ τ ∣ Λ
+ B + O(τ),

with A + B = S′′/2 from the reduction condition, equation (3.81). Inserting the

expansion into the most likely destination gives
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Writing the second entropy in terms of the departure from this most likely destination,

in the small time limit one has

where τ̂ = sign(τ). This is the particular form of equation (3.95) for heat flow. The first

term on the right-hand side is the first entropy, and so this satisfies the reduction condition

for the most likely destination.

The coarse velocity, 

◦
E1 ≡ [E ′

1 − E1]/τ , which is the average rate of change over the

time interval, has most likely value τ̂ΛS′′E1/2. The rate of change of the first energy

moment is directly related to the energy flux in the isolated system. Because the system is

isolated, the dynamics are adiabatic, which fact is signified by appending the superscript 0.

The energy flux, J 0
E

, is defined as the amount of energy crossing a plane, per unit area,

per unit time. Because we are presently considering the energy flux alone, the number flux

is necessarily assumed zero, and so this corresponds to the conductive energy flux.

To be definite, we assume that the flux is in the z-direction. We also assume that it is

uniform, J 0
E(r) = J 0

E, which can be expected to be the average or most likely flux. This

means that the only change in energy density occurs at the z-boundaries of the isolated

system; the same amount of energy per unit time flows across each and every plane

perpendicular to the z-axis throughout the system. Because we take the thermodynamic

limit, we need not be overly concerned with the nature of the boundary regions beyond

quantifying the rate of energy change in them.

Such a uniform flux removes energy at a rate AJ 0
E from the boundary region at 

z = −L/2, and it adds energy at the same rate to the boundary region at z = L/2. The

rate of change of the first energy moment due to this is

◦
E1 =

−L

2
(−AJ 0

E) +
L

2
(AJ 0

E) = V J 0
E

Here V = AL is the volume of the isolated sub-system.

We are interested in time intervals τ that are longer than molecular times, so that

following a fluctuation the rate of change of energy moment can accelerate from zero to a

steady value. We also want non-uniformities in the energy profile to decay away (or to

average to zero), which can be expected since in general short wavelength

inhomogeneities decay more quickly than long wavelength ones, and the first moment is

the non-uniformity with the longest wavelength. However, we also require the time interval

E ′
1 =

−B(τ)

A(τ)
E1

= E1 +
∣ τ ∣ Λ

2
S′′E1 + O(τ 2).

¯

S (2)(E ′
1,E1 ∣ τ) =

1

2
S′′E 2

1 −
1

2Λ ∣ τ ∣
[E ′

1 − E1 −
∣ τ ∣ Λ

2
S′′E1]

2

+ O(τ 2)

=
1

2
S′′E 2

1 −
∣ τ ∣

2Λ
[

◦
E1 −

τ̂Λ

2
S′′E1]

2

=
1

2
S′′E 2

1 −
∣ τ ∣

2Λ
(

◦
E1)

2

+
τ

2

◦
E1S′′E1 −

∣ τ ∣ Λ

8
(S′′E1)2,
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to be sufficiently short so that the change in energy moment is relatively negligible, and so

that the short time expansion can be terminated at the linear term. The data in figure 3.2

show the regression of the first energy moment in a particular system, and it can be seen

that there exist a range of values for the time interval τ in which both requirements are

satisfied.

Under these circumstance, we expect a steady decay of the first energy moment, in

which case the coarse velocity and the instantaneous velocity are equal. Equating the most

likely energy flux to the most likely coarse rate of change of energy moment per unit

volume, one has

Hydrodynamics almost invariably refers to the future state. In this case τ̂ = 1, and this

result says that the most likely energy flux is linearly proportional to the temperature

gradient, and in the opposite direction (i.e. energy flows from hot to cold). This is Fourier’s

law, and one can identify the conventional thermal conductivity as λ ≡ Λ/2V T 2
.

3.4.3 Green–Kubo thermal conductivity

Green–Kubo theory relates the hydrodynamic transport coefficients to an integral of the

time correlation function. The general approach was derived in section 3.2.6 from the

regression theorem. For the present problem of heat transport, the thermal conductivity is

related to the transport coefficient by λ ≡ Λ/2V T 2
. One can rearrange the most likely

regression of the first energy moment, equation (3.159), in several ways to give Λ and

hence λ. If one multiplies by E1(t) and averages then one obtains

Terms O(τ) have been neglected here. In the second equality, the actual value

replaces the most likely value, which is permissible for Gaussian statistics.

In principle, λ(τ) ought to be independent of the time interval. Multiplying both sides by

τ, differentiating with respect to τ, and ignoring dλ(τ)/dτ , yields

λ(τ) =
−τ̂

V kBT 2
⟨Ė1(t + τ)E1(t)⟩.

 

The averages that appear here are equilibrium averages. One can evaluate them for a

canonical equilibrium system. The procedure is to generate points in phase space, Γ0,

according to the Maxwell–Boltzmann distribution at the zeroth temperature, ℘MB(Γ0 ∣ T0).

Then the adiabatic trajectory (i.e. Hamiltonian trajectory for an isolated system) is

J̄
0
E =

τ̂Λ

2V
S′′E1

=
τ̂Λ

2V

1

T1

=
−τ̂Λ

2V T 2
∇T .

λ(τ) =
−1

V kBT 2 ∣ τ ∣
⟨[Ē1(t + τ ∣ E1(t)) − E1(t)]E1(t)⟩

=
−1

V kBT 2 ∣ τ ∣
⟨[E1(t + τ) − E1(t)]E1(t)⟩.
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generated, Γ
0(τ ∣ Γ0). The first moments, E1(0) ≡ E1(Γ0) and E1(τ) ≡ E1(Γ

0(τ ∣ Γ0))
are then calculated and multiplied together. This is then averaged over the initial points.

Equivalently, the change in first moment E1(τ) − E1(0) can be calculated by integrating

its rate of change Ė1(t) on the adiabatic trajectory over the time interval. Specifically,

equation (3.163) can be written

λ(τ) =
−1

V kBT 2 ∣ τ ∣
∫ dΓ0 ℘MB(Γ0 ∣ T0)∫

τ

0
dt Ė1(Γ

0(t ∣ Γ0))E1(Γ0).

To the extent that this or equation (3.164) is independent of τ, then the short time

regime can be said to exist and the theory is applicable.

The two formulae above are tested in a simulation of a Lennard-Jones fluid in figure 3.4.

It is evident that λ(τ) converges more quickly to the steady-state value λ using the

terminal velocity of the first energy moment, equation (3.164), than it does using the

coarse velocity, equation (3.163). This makes sense because the latter includes the

conductivity of the inertial phase, which is low or zero, and the relative contribution of this

to the overall conductivity decays as τ −1
, which is quite slow. The instantaneous terminal

velocity, after sufficient time, gives the conductivity of the system in the steady state.

Figure 3.4. Thermal conductivity from Green–Kubo expressions for a Lennard-Jones

fluid at ρ = 0.8 and T0 = 2 (dimensionless units). The simulations use the coarse

velocity, Equation (3.163) (crosses), or the instantaneous velocity, equation (3.164)

(circles). The solid line is a guide to the eye. Data from Attard (2005b).

3.4.4 Reservoirs of different temperatures

The analysis of the static and dynamic structure of the isolated sub-system for heat flow is

now complete. It has been shown that the first energy moment of the sub-system and its

rate of change were the extensive variables essential to the treatment of heat flow. Now

the analysis is extended to include energy exchange with heat reservoirs. Two reservoirs of

different temperatures are used, sandwiching the sub-system as in figure 3.3. It will be

shown that the reservoirs induce a nonzero first energy moment in the sub-system. It will

also be shown that the energy flux through the sub-system due to the reservoirs is equal to
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the rate of decay of the energy moment as if it had arisen from a spontaneous fluctuation

in an isolated sub-system. Finally, it will be shown how the two apparently contradictory

requirements of constant energy moment and constant rate of decay of the energy

moment are enforced by the reservoirs to give a steady-state system.

3.4.4.1 First entropy

With reference to figure 3.3, the reservoir and sub-system boundaries are at z = ±L/2,

and the temperature of each respective reservoir is Tr±. Let ΔEr± be the change in

energy of the respective reservoir due to exchange with the sub-system at the boundary. It

follows that the total change in the reservoir entropy is

The second equality is exact and no approximation has been invoked here. The change

in the zeroth and first energy moments of the reservoirs are defined as

ΔEr0 ≡ ΔEr+ + ΔEr−, and ΔEr1 ≡
L

2
ΔEr+ −

L

2
ΔEr−.

The zeroth and first reservoir temperatures are defined as

1

Tr0
≡

1

2
[

1

Tr+
+

1

Tr−
], and

1

Tr1
≡

1

L
[

1

Tr+
−

1

Tr−
].

These definitions are obviously analogous to those used for the isolated sub-system. It

is implicitly assumed that the energy exchange takes place at the boundary and that the

reservoir temperature Tr± applies here because any temperature gradients within a

reservoir are negligible.

Let ΔrEs± be the reservoir-induced change in the sub-system energy at each respective

boundary. This change is due to exchange with the reservoir, and so from energy

conservation one must have ΔrEs± = −ΔEr±. This can be written in terms of the change

in zeroth and first moment,

ΔrEs0 = −ΔEr0, and ΔrEs1 = −ΔEr1.

Obviously the energy exchange is assumed to occur at each boundary over a region

with width small compared to the length of the sub-system.

In addition to this reservoir-induced change, the energy moments also change

adiabatically. Adiabatic evolution means that of the isolated sub-system, as determined by

Hamilton’s equations of motion, without any direct influence of the reservoir (or artificial

thermostats, or dissipative or stochastic forces). The adiabatic change can also be called

the internal change because it is determined solely by the sub-system forces and it would

occur if the sub-system were isolated from the reservoirs. The total change in the sub-

system energy moments is

ΔEs0 = Δ0Es0 + ΔrEs0, and ΔEs1 = Δ0Es1 + ΔrEs1.

ΔSr =
ΔEr+

Tr+
+

ΔEr−

Tr−

=
ΔEr0

Tr0
+

ΔEr1

Tr1
.
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The superscript 0 denotes the adiabatic change, and the superscript r denotes the

reservoir-induced change. The total energy of an isolated system is conserved, which

means that the adiabatic change of the zeroth energy moment vanishes, Δ0Es0 = 0.

In the canonical equilibrium case the reservoir energy was written Er = Etotal − Es and

the reservoir entropy was written Sr = −Es/Tr, the constant independent of the sub-

system being discarded. We shall use similar notions for the present canonical non-

equilibrium case, with two adjustments. First, the reservoirs exchange energy over time,

and so we have to keep this in mind, at least notionally. Second, the change in reservoir

energy cannot be equated to the entire change in the sub-system energy, but only the

reservoir-induced part of it. In view of these considerations, and of the definitions of

moments and temperatures above, the reservoir entropy can be written as

Sr(t) =
Er0(t)

Tr0
+

Er1(t)

Tr1
.

The time-dependent moments defined here are meant to be only the part due to

exchanges with the sub-system. Although we expect a monotonic energy flux from the hot

reservoir to the cold via the sub-system, we assume that the reservoirs are so large that

over the time of any measurement the reservoir temperatures are constant. These

moments are defined such that their changes are the changes in reservoir moment given

above,

ΔEr0(t) = ΔEr0 = −ΔrEs0,

and

ΔEr1(t) = ΔEr1 = −ΔrEs1.

With these, the constrained entropy of the total system may be written as

Stotal(Es0,Es1 ∣ Tr0,Tr1) = Ss(Es0,Es1) +
Er0(t)

Tr0
+

Er1(t)

Tr1
.

As above, we shall write the sub-system entropy as a quadratic form in the first energy

moment. This is valid provided that the temperature gradient between the reservoirs is

small.

The total entropy here has two constraints: the zeroth and first energy moments.

Because the zeroth moment is a conserved variable, its treatment does not materially

differ from the canonical equilibrium case. To find its optimum value one can maximize the

total entropy with respect to Es0, which, is the same as differentiating with respect to

ΔrEs0. The first energy moment is not conserved, and it can change by either Δ0Es1 or by

ΔrEs1. In maximizing the constrained total entropy with respect to Es1, one has to specify

which of these two possible changes is meant. Because the reservoir first energy moment

is Er1(t), it is clear that the reservoir-induced change is the required one. The justification

for this is that in this structural part of the problem the reservoir is the determining factor.

It is only in the dynamic part of the problem that the adiabatic change becomes an

essential element, as will be seen.

In view of this discussion, the derivatives of the constrained total entropy with respect

to the reservoir-induced change in sub-system moments are
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∂Stotal

∂ rEs0
=

1

Ts0
−

1

Tr0
,

and

∂Stotal

∂ rEs1
=

1

Ts1
−

1

Tr1
.

The reservoir terms here follow from the results above, ΔEr0(t) = −ΔrEs0, and 

ΔEr1(t) = −ΔrEs1.

This formally gives the result that intuition expected: the constrained total entropy is a

maximum with respect to reservoir-induced changes of energy when the zeroth

temperature of the sub-system equals that of the reservoir, and similarly for the first

temperature,

T̄ s0 = Tr0, and T̄ s1 = Tr1.

Of course if one unpacks the definitions, these simply say that the sub-system

temperatures at the boundaries most likely equal those of the reservoirs. This result gives

the most likely static structure for this steady-state thermodynamic non-equilibrium

system.

In obtaining this static structure the adiabatic change, Δ0 was not required or used. It

will now be shown that maximizing the second entropy with respect to this adiabatic

change is what gives the most likely heat flux.

3.4.4.2 Second entropy

We now turn to the energy flux, and for this we need the second entropy. Since the zeroth

energy moment is a conserved variable with no adiabatic change, Δ0Es0 = 0, we can

suppress both the zeroth energy moment and zeroth temperature. The equality of the

zeroth temperature of the sub-system and the reservoir, T̄ s0 = Tr0, determines the most

likely zeroth energy moment Ēs0 = Es0(T̄ s0).

In terms of notation, above Δr denoted the mathematical variation in a constraint. Such

a variation was used to optimize the first entropy. In this section Δ0
τ  and Δr

τ  will be used to

denote the adiabatic and reservoir-induced physical change over the time interval τ.

Dividing by τ these give the adiabatic and reservoir-induced energy fluxes. In the formalism

Δ0
τ  and Δr

τ  are constrained variables with respect to which the second entropy will be

maximized.

Above, the second entropy for an isolated system was given in terms of fluxes in

general, equation (3.95), and in particular for heat flow, equation (3.160). These were in

the small time limit, valid to O(τ). The four terms in the expressions have obvious physical

interpretations. First is the first or ordinary entropy of the sub-system, which is quadratic in

the first energy moment. Second is the term quadratic in the flux, which acts to limit the

flux. Third is the rate of entropy production, which is linear in the flux. Fourth is a term

quadratic in the first entropy gradient which is required by the reduction condition. By flux

in equation (3.160) is meant 

◦
E1, the coarse rate of change of the first energy moment,

which for an isolated system is the internal or adiabatic rate of change.

The present case differs from the earlier one by the addition of reservoirs. Hence one

has to modify equation (3.160) in several respects. First, the first entropy of the sub-system

has to be replaced by that of the total system. Second, the term quadratic in the internal
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flux remains unchanged, because this remains the cost of dynamic order with or without

reservoirs. Third, to the internal rate of entropy production is added the rate of entropy

production due to the reservoirs. The latter consists of the dissipation of the reservoir

entropy, plus the reservoir-induced dissipation of the sub-system entropy. Fourth, the term

independent of the flux is determined by the reduction condition for the total system,

namely that the maximum value of the second entropy (i.e. its value in the state of

optimum flux), equals the total first entropy.

These give the second entropy for the case of heat reservoirs as

This is valid in the small time limit, with terms O(τ 2) neglected. The thermodynamic

force of the sub-system is Ss′′Es1 = T −1
s1 . The various terms here can be matched with the

required modifications of equation (3.160) that were just discussed. The fourth term here is

the internal rate of entropy production, and is the same as the third term in equation

(3.160). The fifth term here is the reservoir-induced production of total first entropy, which

is the sum of that of the sub-system and that of the reservoir. The sixth term is determined

by the reduction condition, the fact that it must comprise terms quadratic and linear in the

first energy moment, and the need for its derivative to vanish at the optimum moment, as

is discussed shortly.

It will be noted that this is linear in the reservoir-induced change in moment, Δr
τEs1.

Hence the second entropy cannot be maximized with respect to the latter. Physically, since

this is boundary driven flow, and since the conductivity of the reservoir is much greater

than that of the sub-system, any change in sub-system moment from its optimum value

can be immediately counteracted by flow from the reservoir. Hence one expects

Δr
τEs1 = −Δ0

τEs1.

We shall discuss this further shortly, and below we shall rewrite the second entropy

imposing this condition explicitly.

Differentiating the second entropy with respect the internal flux gives

∂S (2)
total

∂Δ0
τEs1

=
−1

Λ ∣ τ ∣
Δ0

τEs1 +
1

2
Ss′′Es1.

In this Δr
τEs1 has been held constant; see below for the contrary case. Setting this to

zero yields the most likely internal flux,

◦
E1

0 ≡
Δ0

τEs1

τ
=

τ̂Λ

2

1

Ts1
.

This is identical to that obtained for the isolated system, equation (3.162), as might

have been expected because it arises from the adiabatic optimization of the flux. Again in

S
(2)
total(Δ0

τEs1, Δr
τEs1,Es1 ∣ Tr1, τ)

=
1

2
Ss′′E 2

s1 +
Er1(t)

Tr1
−

1

2Λ ∣ τ ∣
[Δ0

τEs1]
2

+
1

2
Δ0

τEs1Ss′′Es1

+
1

2
Δr

τEs1[Ss′′Es1 −
1

Tr1
] +

∣ τ ∣ Λ

8
[Ss′′2E 2

s1 −
2Ss′′Es1

Tr1
].

¯

¯̄
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essence, it gives Fourier’s law, that the sub-system flux is proportional to the sub-system

temperature gradient.

Differentiating with respect to the reservoir-induced change in moment gives

Setting this to zero determines Ēs1, the optimum sub-system moment at the start of

the transition. For this purpose one need only consider the reservoir-induced derivative, 

∂ rEs1, assuming that adiabatic changes are negligible in comparison. This is equivalent to

assuming that the thermal conductivity of the reservoirs is much greater than that of the

sub-system. This is a necessary assumption for the reservoir formalism of non-equilibrium

thermodynamics, akin to the thermodynamic limit in defining what a reservoir is.

From the results of maximizing the first entropy, equation (3.177), the optimum first

moment is given by

Ss′′Ēs1 ≡
1

T̄ s1

=
1

Tr1
.

In order for the preceding derivative to vanish at this point, and hence for the second

entropy to be consistent with the first entropy, one must have

Δr
τEs1 = −Δ0

τEs1.

This is the result anticipated above, namely that the reservoir-induced change in

moment must cancel exactly the adiabatic change in moment.

One can insert this result into the expression for the second entropy and eliminate the

reservoir-induced change in moment,

The final term has also been changed in order to satisfy the reduction condition. With

this expression, the derivative with respect to the internal flux now gives

∂S (2)
total

∂Δ0
τEs1

=
−1

Λ ∣ τ ∣
Δ0

τEs1 +
1

2Tr1
,

which vanishes when

◦
E1

0 ≡
Δ0

τEs1

τ
=

τ̂Λ

2

1

Tr1
.

This is practically equivalent to the original result, equation (3.181), since T̄ s1 = Tr1.

∂S (2)
total

∂ rEs1
= Ss′′Es1 −

1

Tr1
+

1

2
Ss′′[Δ0

τEs1 + Δr
τEs1]

+
∣ τ ∣ Λ

8
[2Ss′′2Es1 −

2Ss′′

Tr1
].

S
(2)
total(Δ0

τEs1,Es1 ∣ Tr1, τ)

=
1

2
Ss′′E 2

s1 +
Er1(t)

Tr1
−

1

2Λ ∣ τ ∣
[Δ0

τEs1]
2

+
1

2Tr1
Δ0

τEs1 −
∣ τ ∣ Λ

8T 2
r1

.

¯̄
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The second entropy evaluated for the most likely adiabatic change is

By design, this satisfies the reduction condition exactly.

The original second entropy expression, equation (3.178), evaluated at 

Δ0
τEs1 =∣ τ ∣ ΛSs′′Es1/2 and ΔrEs1 = −Δ0

τEs1, is

By design, this also satisfies the reduction condition exactly.

3.4.4.3 Cancelation of adiabatic flux

Let us further discuss the condition Δr
τEs1 = −Δ0

τEs1. This says that the adiabatic change

in the sub-system energy moment is exactly canceled by the reservoir-induced change.

Once the sub-system has reached the optimum static structure induced by the reservoirs 

Ts1(Ēs1) = Tr1, then most likely there is no further change over time in that structure, 

ΔτEs1 = 0.

This cancelation between the internally and externally induced changes in first energy

moment has the effect of holding it constant. Hence there is no longer an inertial period

over molecular time scales in which the flux comes up to speed. Nor is there decay over

longer time scales as the fluctuation and hence driving force are reduced. In this steady-

state system there is no distinction between the coarse velocity 

◦
E1

0 and the instantaneous

velocity Ė1
0.

The total change in the sub-system first energy moment over the time interval is of

course the sum of the adiabatic change and the reservoir-induced change, which are

individually nonzero. By energy conservation, the reservoir-induced change in the sub-

system first energy moment is equal and opposite to the change in the reservoir first

energy moment,

Δ0
τEs1 = −Δr

τEs1 = ΔτEr1.

Although the steady state is defined as the state in which the sub-system is

macroscopically constant in time, ΔτEs1 = 0, this result says that there remains a steady

energy flow between the reservoirs. In fact the energy discrepancy manifest in their

temperature difference is steadily diminishing. (However, the reservoirs are so large that

S
(2)
total(Δ0

τEs1,Es1 ∣ Tr1, τ)

= Stotal(Es1) −
1

2Λ ∣ τ ∣
[

∣ τ ∣ Λ

2Tr1
]

2

+
1

2Tr1

∣ τ ∣ Λ

2Tr1
−

∣ τ ∣ Λ

8T 2
r1

= Stotal(Es1).

¯

¯̄

S
(2)
total(Δ0

τEs1, Δr
τEs1,Es1 ∣ Tr1, τ)

= Stotal(Es1) −
1

2Λ ∣ τ ∣
[

∣ τ ∣

2
ΛSs′′Es1]

2

+
∣ τ ∣

4
ΛSs′′Es1S′′Es1

−
∣ τ ∣

4
ΛSs′′Es1[Ss′′Es1 −

1

Tr1
] +

∣ τ ∣ Λ

8
[Ss′′2E 2

s1 −
2Ss′′Es1

Tr1
]

= Stotal(Es1).

¯

¯

¯

¯

¯̄̄

¯
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this effect is immeasurably small.) In a steady-state non-equilibrium system, the entropy of

the system steadily increases while the entropy (i.e. structure and dynamics) of the sub-

system is constant.

The important quantitative meaning of this last result is that given the sub-system

temperature gradient equal to that between the reservoirs, then the adiabatic energy flow

in the sub-system is equal to the energy flow between the reservoirs. Since the adiabatic

energy flow is equal to the rate of regression of the fluctuation of the isolated system (with

the same energy moment), equation (3.181), this proves another aspect of Onsager’s

regression hypothesis: the flux in an isolated system is the same as the flux in the same

system between two reservoirs if the spontaneous structural fluctuation in the isolated

system is the same as that induced by the reservoirs.

3.5 Variational hydrodynamics

This treatment of heat flow can be extended to hydrodynamic fluxes in general. The second

entropy provides a variational principle for these fluxes, and it gives in the optimum state

the conventional hydrodynamic equations such as the Navier–Stokes and energy

equations. The derivation is a little lengthy (Attard 2012 ch 5) and in this section only the

final variational principle is given. This is then applied to the case of steady heat flow in

slab geometry, where the results reduce to those derived above from the behavior of the

first energy moment.

The present variational formulation of hydrodynamics treats the material fluxes as

constrained or fluctuating quantities that can take values independent of the

thermodynamic driving forces. A similar fluctuation approach was pursued by Landau and

Lifshitz (1957, 1959). Other researchers have extended and applied this approach to a

range of different hydrodynamic phenomena (Fox and Uhlenbeck 1970, Keizer 1987,

Schöpf and Rehberg 1994, Ortiz de Zárate and Sengers 2006). Such variational approaches

to hydrodynamics possibly have computational and numerical advantages over

conventional methods of evolving the system with the usual hydrodynamic equations. The

present approach is directly based on the second entropy, and as such it makes direct the

connection between non-equilibrium thermodynamics and hydrodynamic phenomena.

3.5.1 General result

For a system consisting of a sub-system and a reservoir, the total dissipation in the steady

state is (Attard 2012)

This is valid for arbitrary fluxes and fields; everything in the integrand is a function of

position and time. This assumes that if energy can cross the boundary, then the

temperature of the sub-system equals that of the reservoir at every point on the boundary,

and similarly for any thermodynamic field variable conjugate to any flux across the

boundary (Attard 2012, section 5.2). This is for the steady state; in the contrary case the

boundary integrals are nonzero.

Here T (r, t) is the temperature,  is the local barycentric or center of mass velocity,

μk is the chemical potential of species k, and ψk(r, t) is the external potential. For

chemical reaction α, Aα = ∑k μkναk is the chemical affinity, ναk is the stoichiometric

Ṡtotal = ∫ dr {J
0
E ⋅ ∇

1

T
−

1

T
Π : ∇v +

1

T
∑
α

ξ̇αAα

− ∑
k

J
0
N,k ⋅ [

∇ψk

T
+ ∇

μk

T
]}.

––
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coefficient. These are the specified field variables of the sub-system that give the

thermodynamic driving forces. For the constrained fluxes, ξ̇α is the rate of reaction, and 

JE(r, t) and JN(r, t) are the energy and number fluxes, respectively. The superscript 0 on

the latter denotes the diffusive part of the flux, which is the flux in excess of the convective

flux carried by the local barycentric velocity. The diffusive part of the momentum flux, 

Π(r, t), is also called the viscous pressure tensor.

In general, the second entropy consists of four terms: the first entropy of the structure,

the term quadratic in the fluxes, the term bilinear in the fluxes and the thermodynamic

forces that represent half the rate of total entropy production, and the term independent of

the fluxes that ensures that the reduction condition is satisfied by the optimum fluxes.

Since the rate of dissipation is a scalar, because of the Curie symmetry principle (de Groot

and Mazur 1984, section VI.2) for an isotropic system there can be no coupling between

scalars, vectors, and traceless second rank tensors, nor between vector components in

different directions. Hence the three types of fluxes decouple and the second entropy is

S (2) = Stot+ ∣ τ ∣ [S
(2)
0 + S

(2)
1 + S

(2)
2 ].

The total first entropy is

Stot = ∫ dr σ0(εint(r, t),n(r, t)) + ∮ dr
Er(r, t)

Tr(r)
.

This the sum of the sub-system entropy and the reservoir entropy, with the latter being

the boundary integral form of the reservoir terms in equation (3.174), assuming that only

energy is exchangeable. The first entropy density, σ0, is a function of the local species

number density, n(r, t), and the internal entropy density, 

, where ρ is the local total mass density,

and  is the square of the local barycentric velocity. When the total first entropy is

optimized with respect to the internal energy density, the sub-system temperature on the

boundary equals the reservoir temperature.

The remaining three terms in the second entropy come from the independently coupled

scalar, vector, and traceless second rank tensor fluxes. The viscous pressure tensor is

decomposed into its scalar and traceless parts, Π = πI–– + Π*
, with π = TR[Π]/3.

Similarly, the shear rate tensor may be decomposed as . Since the

viscous pressure tensor is symmetric, one has the result that .

The second entropy for the scalar fluxes is a mixed parity case,

One sees here and below the usual terms: a term quadratic in the flux, a term bilinear

in the flux and thermodynamic force, and a term independent of the flux designed to

satisfy the reduction condition for the optimum fluxes.

The second entropy for the vector fluxes is a pure parity case,

––

–

–

––––––

S
(2)
0 = ∫ dr

−1

2
Λ−1

0 : {π, ξ̇
–

}2 −
1

2
Λ−1

0 : {π̄,
¯̇
ξ
–

}2

+
τ̂

2T
{π, ξ̇

–
} ⋅ Λ−1

0 L0(τ̂ ){−∇ ⋅ v,A}.–
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In an isotropic system, there is no coupling between different Cartesian components,

and so Λ1 is composed of three identical blocks on the main diagonal.

The second entropy for the traceless part of the viscous pressure tensor (i.e. diffusive

momentum flux tensor) is also a pure parity case,

S
(2)
2 = ∫ dr

−1

2
Λ−1

2 : Π*Π* −
1

2
Λ−1

2 : Π
*
Π

*
−

τ̂

2T
Π* : [∇v]sym,*.

In an isotropic system there is a single transport constant, Λ−1
2 : Π*Π* = λ−1

2 Π* : Π*
.

This completes the variational formulation of hydrodynamics in the most general case.

Maximization of this most general form for the second entropy with respect to the

diffusive fluxes gives the standard equations of hydrodynamics (Attard 2012, ch 5). This

allows the transport constants that appear here, the various Λ, to be identified with the

conventional hydrodynamic transport coefficients.

3.5.2 Conductive heat flow

For the case of conductive heat flow, the only nonzero flux is that of energy. In the slab

geometry invoked earlier in this chapter, this related to the rate of change of the first

energy moment of the sub-system, J
0
E = Ė

0

1ẑ/V .

The total first entropy is as given earlier, equation (3.174),

Stotal(Es0,Es1 ∣ Tr0,Tr1) = Ss(Es0,Es1) +
Er0(t)

Tr0
+

Er1(t)

Tr1
.

As usual, maximizing this with respect to the first energy moment of the sub-system

shows that the sub-system first temperature in the optimum state is equal to that of the

reservoir, T̄ s1 = Tr1. In the remainder of the second entropy only the term that couples the

vector fluxes is nonzero, and it is

Combined with the expression for the total first entropy, this is identical to the

expression for the second entropy earlier derived directly for the transitions in the first

energy moment, equation (3.185). That expression enforced the condition that the

reservoir-induced change in first energy moment was equal and opposite to the adiabatic

S
(2)
1 = ∫ dr

−1

2
Λ−1

1 : {J
0
E, J

0
N}2 −

1

2
Λ−1

1 : {J̄
0
E, J

0

N}2

+
τ̂

2
{J

0
E, J

0
N} ⋅ {∇

1

T
, [

−1

T
∇ψ − ∇

μ

T
]}.

–
¯
–

––
–

––––
¯
––
¯
––––

––––––––

S
(2)
1 = ∫ dr {

−1

2
Λ−1

1 : J
0
EJ

0
E −

1

2
Λ−1

1 : J̄
0
EJ̄

0
E +

τ̂

2
J

0
E ⋅ ∇

1

T
}

= A∫
L/2

−L/2
dz {

−1

2Λ1V 2
(Ė

0

1)
2

−
1

2Λ1V 2
(Ė

0

1)
2

+
τ̂

2V
Ė

0

1
1

Ts1
}

=
−1

2Λ1V
(Ė

0

1)
2

−
1

2Λ1V
(Ė

0

1)
2

+
τ̂

2
Ė

0

1
1

Ts1
.

¯

¯



(3.1

99)

(3.2

00)

(3.2

01)

(3.2

02)

change, which in physical terms ensures temperature equality between the sub-system

and the reservoir on each boundary.

In the present notation, the optimum heat flux is given by ∂S (2)/∂Ė
0

1∣
Ė

0

1

= 0, which

gives

Ė
0

1 =
τ̂ VΛ1

2

1

Ts1
, or J̄

0
E =

−τ̂Λ1

2T 2
∇T .

Comparing this to Fourier’s law, one can identify the thermal conductivity in terms of

the present transport coefficient as λ = Λ1/2T 2.

3.6 Stochastic, dissipative hydrodynamic equations

An important question in hydrodynamics is how to include noise in the evolution equations.

Whilst it is understood that many systems require such a stochastic contribution to initiate

or to modify a transition, there is little consensus on the way to characterize such a random

element, or how to include it in the evolution equations, or what its probability distribution

is.

In actual fact this problem was addressed and solved by Landau and Lifshitz (1957,

1959). Although most conventional hydrodynamicists do not recognize the fluctuating

hydrodynamics approach of Landau and Lifshitz, a number of more enlightened workers

have variously applied and developed it (Fox and Uhlenbeck 1970, Keizer 1987, van

Beijeren and Cohen 1988, Schöpf and Rehberg 1994, Ortiz de Zárate and Sengers 2006).

The present second entropy approach to non-equilibrium systems provides a basis for, and

a way of systematizing, fluctuating hydrodynamics.

The stochastic dissipative hydrodynamic equations in general begin with the

conventional equations of hydrodynamics, as given, in any standard book on

hydrodynamics. To be definite, here is followed the notation used in section 5.4 of Attard

(2012). The conventional equations give the most likely evolution, to which must be added

the stochastic contributions. The latter are just the Gaussian distributed diffusive fluxes, as

given by the exponential of the three contributions to the second entropy, equations

(3.194), (3.195), and (3.196).

For simplicity, I shall illustrate the idea in the Boussinesq approximation, which is well

established (Reid and Harris 1958, Busse 1967, Bodenschatz et al 2000, Attard 2012). The

conventional hydrodynamic equations for convective flow in Boussinesq approximation

comprise the incompressibility equation,

0 = ∇ ⋅ v(r, t),

the Navier–Stokes equation (infinite Prandtl number, instantaneous velocity

relaxation),

0 = R∇2
∥T (r, t) + ∇2∇2vz(r, t).

and the energy equation is

∂T (r, t)

∂t
= vz(r, t) − v(r, t) ⋅ ∇T (r, t) + ∇2T (r, t).

These are in dimensionless form with R being the Rayleigh number. The temperature

here is the departure from that in the conducting state.

¯

¯
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For the stochastic, dissipative version of these, one simply returns the energy equation

to its exact form in terms of the diffusive energy flux explicitly, and writes the latter as the

sum of its most likely and stochastic parts,

This is written in SI units, Δt is the time step, and the heat flux and temperature are

the departure from conduction. With this the stochastic, dissipative energy equation is

(dimensionless)

∂T (r, t)

∂t
= vz(r, t) − v(r, t) ⋅ ∇T (r, t) + ∇2T (r, t) −

1

Δ*
t

R̃
*
(r, t).

The probability distribution of the stochastic heat flux increment is given by the

exponential of the vector contribution to the second entropy, equation (3.195),

Here the dimensionless heat capacity is c
*
p ≡ cpL

3
z/kB, the unit of time is τ ≡ L2

zcp/λ,

and the dimensionless stochastic heat increment is R̃
*

= R̃/(−ΔT)cpLz, with Lz being

the height of the convective cell, T00 being the mid-plane temperature, and ΔT < 0 being

the temperature difference. The stochastic heat flux increment is independently distributed

at each time step.

It can be mentioned that this is equivalent in fluctuating hydrodynamics to determining

the variance of the stochastic heat flux from the fluctuation–dissipation theorem (Landau

and Lifshitz 1957, 1959, Fox and Uhlenbeck 1970, Keizer 1987, van Beijeren and Cohen

1988, Schöpf and Rehberg 1994, Ortiz de Zárate and Sengers 2006).

3.7 Non-equilibrium pattern formation

In this chapter it has been argued that the second entropy, which is the entropy of

transitions, is the appropriate entropy for non-equilibrium systems. The first entropy, which

is essentially the entropy of structure or of state, is not so much irrelevant or non-existent

for non-equilibrium systems, but rather it is insufficient to answer the important questions

that one can ask about a non-equilibrium system.

An important and interesting example that underscores this point occurs in the

phenomena of transitions between non-equilibrium states, or, relatedly, the formation of

patterns in non-equilibrium systems. (The present author deprecates calling these non-

equilibrium phases, primarily because their thermodynamic behavior is qualitatively

different to that of equilibrium phases, especially in the nature of their stability and the

transitions between them.) The general principle for non-equilibrium systems is that it is

the transitions not the states that are the basic elements. For the present discussion we

J
0
E(r, t) = J

0
E(r, t) +

1

Δt

R̃(r, t)

= − λ∇T (r, t) +
1

Δt

R̃(r, t).

¯

S
(2)
1 /kB =

−1

4T 2
00λkB ∣ Δt ∣

∫ dr R̃(r, t) ⋅ R̃(r, t)

=
−c

*
p

4T *2
00 ∣ Δ*

t ∣
∫ dr

*
R̃

*
(r, t) ⋅ R̃

*
(r, t),



select a subset of all non-equilibrium systems, namely steady-state non-equilibrium

systems, in which this general principle may be clearly elucidated. In steady-state systems

the macroscopic state of the sub-system is constant in time, while at the same time

entropy is produced continually in the reservoir or environment.

A possibly confusing point about steady-state systems is that the ‘state’ of the sub-

system appears constant in time, and therefore it is tempting to ask: what is the optimum

state? In fact, because entropy is continually produced by the reservoir, such a question is

meaningless. The correct question is: what is the optimum current state given the initial

state?, or, what is the optimal transition from a given initial state? Such questions can be

answered even if the final state, once established, is steady and constant in time.

A common and relatively simple example is the convective rolls that can occur in a fluid

transporting heat. The challenge is to articulate the principle that determines the optimum

shape and arrangement of such convective rolls for a given temperature gradient. This is

an open question long-standing in hydrodynamics where it is called the wave number

selection problem (see e.g. Bodenschatz et al (2000), and references therein).

In an equilibrium system, in which both the sub-system and the reservoir are

macroscopically constant in time, the optimum state (or structure, or pattern) is the one

with maximum total first entropy, (equivalently, minimum free energy). Of course there can

often be barriers between the different states of the subs-system, and so sometimes more

than one state may be observed. Nevertheless, the equilibrium state is well-defined as the

state of maximum total entropy, and other possible states with lower total entropy are

described as meta-stable states and, by definition, they occur with a lower likelihood.

One cannot apply the same principle to a state or pattern of a non-equilibrium system,

even of a steady-state non-equilibrium system, because entropy is continually produced.

Hence it would make little sense to maximize the sub-system first entropy (both because it

is only part of the total entropy, and because it would eventually be swamped by the

amount of entropy produced by the reservoirs). Nor would it be meaningful to maximize

the total entropy, because this monotonically increases with time. One cannot salvage the

situation by maximizing (or extremizing) the rate of entropy production, because there is

no law in thermodynamics that says that the rate of dissipation should be a maximum (see

section 3.1.2).

As argued above, it is the second entropy rather than the first entropy that is useful for

non-equilibrium systems. Instead of maximizing the first entropy, one should maximize the

second entropy. Since the latter is the entropy of transitions, the question that should be

posed is not what is the optimum non-equilibrium state?, but rather what is the optimum

transition? Or, equivalently, given the current state, what is the optimum state after a

given time?

Here I give two quantitative examples from convective heat flow that answer this

question. The first concerns the conductive-convective transition, and the second concerns

the cross-roll transition.

I compute the optimum transitions comparing the deterministic and stochastic versions

of the hydrodynamic equations in the Boussinesq approximation. I also compare a semi-

analytic theory, developed in section 3.7.2, that gives the mode with the fastest initial

growth rate from conduction. A numerical version of this method, combined with white

noise added to the initial state, is applied in section 3.7.4 to the cross-roll transition.

3.7.1 Stochastic method

Numerical results for the conduction–convection transition are given shortly. In this case

the convective state is modeled as ideal straight rolls parallel to the y-axis, or y-rolls.

Following Busse (1967), a discrete Fourier expansion for the fields is used, with the

temperature being expanded as
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where πn = 2nπ and π′
n = (2n − 1)π. Boussinesq symmetry is not enforced, but

emerges spontaneously in the course of the transition. A similar expansion holds for the z-

component of velocity (but without the j = 0 term). The x-component of velocity

interchanges sines and cosines.

For the deterministic evolution, the small wave number a1 ≈ 0.1 is replaced by the

wave number of the specified fundamental mode ax = 2.5–6, and only about six harmonics

are used.

The (dimensionless) stochastic heat increment has expansion

and

R̃x(r, t) =
N

∑
n=1

jmax

∑
j=jmin

{Rs
x,nj sin πnz sin ja1x + Rc

x,nj cos π′
nz sin ja1x}.

The (dimensionless) second entropy is

 

Based on the experimental configuration of Busse and Whitehead (1971), Lx = Ly =
30–80 cm, Lz = 0.5–1 cm, and a1 ≈ 2π/Lx ≈ 0.1–0.2 cm−1. It was found that N = 6, 

jmin = 1–25, jmax = 175 and Δ
*
t = 10−4

–10−3
 yielded reliable results. With these

parameters, the standard deviation in the (dimensionless) stochastic heat increment

coefficients is typically O(10−12).

Note that in addition to the stochastic contribution to the rate of change of temperature

(and the other fields), there is also a stochastic contribution to the initial state at the

commencement of the transition. This is governed by the exponential of the static part of

the total first entropy. The fluctuation in the internal energy contribution of the static part

of the total entropy is (Attard 2012 section 6.2)

T (r, t) =
N

∑
n=1

T s
n0 sin πnz

+
N

∑
n=1

jmax

∑
j=jmin

{T s
nj sin πnz cos ja1x + T c

nj cos π′
nz cos ja1x},

R̃z(r, t) =
N

∑
n=1

Rc
z,n0 cos πnz

+
N

∑
n=1

jmax

∑
j=jmin

{Rc
z,nj cos πnz cos ja1x + Rs

z,nj sin π′
nz cos ja1x},

S
(2)
1 /kB =

−c
*
p

4T *2
00 ∣ Δ*
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L
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*
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This gives independent Gaussian distributions for the Fourier coefficients for the

fluctuation about the initial state.

The gravitational contribution is

σ
g
tot,st(r; ΔT ) =

αmn00gz

T00
{1 −

zΔT

LzT00
}ΔT (r),

and the kinetic energy contribution is

σKE
tot,st(r; Δv) =

−mn00

2T00
{1 −

zΔT

LzT00
}Δv(r) ⋅ Δv(r).

Consistent with the Boussinesq approximation, these have here been neglected.

The stochastic algorithm used in Attard (2012, section 6.6) solved the deterministic

hydrodynamic equations with white noise added to the initial state. The power added by

the noise was O(105) times the power that would have been added by the present

Gaussian distribution. Nevertheless, as will be seen, it does not appear to have affected the

result for the optimum wave number following the conduction–convection or the cross-roll

transition.

3.7.2 Linear perturbation growth rate

A plausible alternative approach to find the optimum transition from conduction to

convection is based on the mode with the fastest initial growth rate. A small amplitude,

periodic, convective perturbation is imposed on the conductive state and its rate of growth

or decay is determined. (Linear perturbation theory more generally in convection is

reviewed by Bodenschatz et al (2000).) It is plausible that the wave number of the

perturbation with the largest positive growth rate is the wave number of the most likely

final state for the conduction–convection transition.

The temperature and velocity perturbations are written with a time-dependent

amplitude

T (r, t) = A(t)T (r), and vz(r, t) = A(t)vz(r),

so that the energy equation becomes

Ȧ(t)

A(t)
=

vz(r)

T (r)
+

1

T (r)
∇2T (r) = ξ.

Here the non-linear term has been neglected because the perturbation can be take to

be infinitesimal in its initial growth phase. The two sides of the first equality must

individually be constant because they depend upon different independent variables. It

follows that A(t) = A0eξt, and ξ is the growth rate of the perturbation.

The perturbation is taken to be periodic with wave number a,

ΔS
(1),int
tot,st = ∫

V

dr σint
tot,st(r; ΔT )

= ∫
V

dr
−cp

2T 2
00

ΔT (r)2.
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∇2
∥T (r) = −a2T (r), and ∇2

∥vz(r) = −a2vz(r).

With this the Navier–Stokes equation becomes

0 = −a2
RT (r) + [∂ 2

z − a2]
2
vz(r).

Putting this into the energy equation and rearranging gives

This is the same as the result given by Reid and Harris (1958) except for the inclusion

of the growth rate term, ξ ≠ 0. The solution is evidently

vz(r) = {A1 cosh p1z + A2 cosh p2z + A3 cosh p3z}f(x, y),

where f is periodic with wave number a, ∇2
∥f = −a2f. The pj are the roots of the cubic

equation

0 = a2
R − ξ[p2 − a2]

2
+ [p2 − a2]

3
.

 

The three boundary conditions at z = ±1/2 are

vz = ∂zvz = [∂ 2
z − a2]

2
vz = 0.

The first says that the normal component of the velocity must vanish at the upper and

lower rigid surfaces. The second comes from the fact that the horizontal velocity vanishes

at the surfaces (stick boundary conditions) and the compressibility equation. The third

comes from the vanishing of the temperature perturbation at the surfaces and the Navier–

Stokes equation. Since the boundary conditions are homogeneous, a non-trivial solution

exists only if the determinant of the linear system of equations vanishes. The characteristic

equation for this is

∣ ∣ = 0.

Here Cj ≡ cosh pj/2 and Sj ≡ sinh pj/2, j = 1, 2, 3. Given that the roots pj(R, a, ξ)
have been found, this is a transcendental equation that determines the rate of growth of

the mode, ξ(R, a). It proved relatively straightforward to solve this equation numerically. It

is a reasonable proposition —absent contrary evidence in specific cases— that the

preferred final wave number ā(R) for any transition is the one that has the largest positive

initial growth rate.

3.7.3 Wave number selection: conduction to convection

Figure 3.5 shows the most likely wave number of straight roll convection following a

transition from conduction. The circles are the stochastic, dissipative hydrodynamics

equations, section 3.6, the triangles are deterministic hydrodynamic equations with added

0 = a2Rvz(r) − ξ[∂ 2
z − a2]

2
vz(r) + [∂ 2

z − a2]
3
vz(r).

C1 C2 C3

p1S1 p2S2 p3S3

[p2
1 − a2]

2
C1 [p2

2 − a2]
2
C2 [p2

3 − a2]
2
C3



initial white noise (Attard 2012, section 6.6), and the solid curve is the wave number of the

initially fastest growing mode given by the linear perturbation theory, section 3.7.2. It can

be seen that the mode with the initial fastest growth rate obtained from the perturbation

analysis agrees with both the stochastic results. As mentioned above, the fluctuations in

the initial temperature are given by equation (3.210), which is Gaussian white noise. There

is no fundamental justification for instead adding uniform white noise to the initial state

and then using conventional deterministic hydrodynamics equations for the transition,

which is the method used in section 6.6 of Attard (2012). Moreover, the total power that

was added as white noise turns out to be several orders of magnitude larger than what

would have been given by equation (3.210). Nevertheless, the white noise does not appear

to have done much damage, and both stochastic methods in figure 3.5 show that the

initially fastest growing mode from conduction most likely establishes itself as the final

steady state. The non-linear coupling in the hydrodynamic equations that comes into play

as the amplitudes of the modes increases during the transition is, with rare exceptions,

insufficient to change the dominant mode once it has begun to be established.

Figure 3.5. Wave number of the spontaneous conduction–convection transition as a

function of Rayleigh number. The circles result from the stochastic, dissipative

hydrodynamics equations, section 3.6, the triangles result from the conventional

deterministic hydrodynamics equations with uniform white noise initially added to the

temperature (Attard 2012 section 6.6), and the solid curve is the linear perturbation

theory based on the largest initial growth rate, section 3.7.2. Also shown is the wave

number of maximum heat flux (maximum Nusselt number, dashed curve), and the

wave number of maximum sub-system first entropy (dotted curve) (Attard 2012,

section 6.6).

The results in figure 3.5 show a wave number that increases with increasing Rayleigh

number, at first rapidly, and then, beyond about R ≈ 104
, slowly. In contrast, the

experimental measurements of Willis et al (1972) for a large Prandtl number silicone oil

show a wave number for convection that strongly decreases with increasing Rayleigh

number, in apparent contradiction of the present results. One possible reason for the

discrepancy is that the present model of perfect straight rolls is too great an idealization of

the experiments, and that the defects, curved rolls, and finite domains included in the

experimental averages need to be accounted for. Another possibility, more germane to the

present point, is that the experimental protocol of Willis et al corresponds to a convection–



convection transition that is induced by a change in Rayleigh number, ax
ΔR

a′
x, whereas

the present results are for the conduction–convection transition at fixed Rayleigh number.

Arguably, the contradiction between the two results actually confirms the point being

made: there is no such thing as an optimum non-equilibrium state, but there is an optimum

transition from a given non-equilibrium state.

Also shown in the figure are the wave number of maximum sub-system first entropy and

of maximum first entropy production (equivalently maximum heat flow, also known as the

Nusselt number). These are one-time properties that are a function only of the convecting

state, not of the transition. It can be seen that neither the first entropy nor the rate of first

entropy production determine the wave number of the convecting state selected by the

transition.

It should be mentioned that at each Rayleigh number the range of wave numbers that

yield stable steady-state solutions to the hydrodynamic equations can be quite broad. For

example, at R = 10 000, the present perturbation theory yields a positive growth rate in

the range 0.75 ⩽ α ⩽ 8.97, and at R = 6000 the range is 0.99 ⩽ α ⩽ 7.54, which agrees

with the region of stability estimated by Reid and Harris (1958).

In the present case of the conduction–convection transition, one can conclude that the

initial growth rate is responsible for wave number selection of the non-equilibrium pattern.

This is a combined property of the initial state (the calculations are a perturbation carried

out in the conducting state) and of the final state (the growth rate is of a trial wave number

for the final steady state). It is the entropy of the transition, the second entropy, not the

entropy of the final state, that is maximized by the optimum non-equilibrium pattern.

3.7.4 Wave number selection: cross-roll transition

The principle being argued here—that the objects of non-equilibrium systems are the

transitions not the states—is exemplified by the calculated and measured data shown in

figure 3.6. In this case the transition is between two linear straight roll convective states

that are mutually orthogonal.

Figure 3.6. Cross-roll transition at a Rayleigh number R = 104
. The circles are the

most likely final wave number for the full transition, and the crosses are the wave

number ay with initial fastest growth rate, both from the hydrodynamics equations in

Boussinesq approximation (see text) and initially in a stable straight roll state with

wave number ax. The curve is a linear perturbation theory (Busse 1967) giving the

wave number with largest initial growth rate (solid portion positive, dotted portion

negative) (Busse and Whitehead 1971). The horizontal dashed lines approximate the

range of measured laboratory data (Busse and Whitehead 1971). The horizontal

−→



arrows on the vertical axis denote for straight rolls at R = 104
 the calculated wave

number of maximum heat flow (ay = 3.77), maximum sub-system entropy (ay = 4.53
), and the most likely wave number following a spontaneous transition from the

conducting state (āy = 4.25).

In the experiments the system was initially given a wave number by a shadow mask and

intense light source, and the transition to an orthogonal state upon removal of the light

source was observed (Busse and Whitehead 1971). Although the final state was generally

dominated by straight rolls, systems with defects, curved rolls, and finite domains were

also used in the reported results.

The circles represent the full cross-roll transition, which were obtained using typically N

= 6 vertical z-modes, Q = 6 horizontal x-modes (harmonics of ax), and jmax = 150
horizontal y-modes (harmonics of a1 = 0.2, with jmin = 1). Both the conventional

deterministic hydrodynamic equations and the stochastic, dissipative hydrodynamic

equations of section 3.6 were used. The initial conditions were either no added noise,

Gaussian white noise (section 3.6), or uniform white noise that was several orders of

magnitude larger (Attard 2012, section 6.6). No systematic differences between the various

cases were found.

The initial growth rate was also estimated by again solving both the deterministic and

the stochastic hydrodynamic equations in Boussinesq approximation, with or without added

white noise. Again no systematic differences between the various cases were found. A

particular fundamental mode ay and five harmonics were specified, and the exponential

growth rate during the initial, linear part of the transition was obtained. This was repeated

with different specified fundamental modes to find the one with the largest growth rate.

The calculations for the initial growth rate are in principle identical to the linear

perturbation theory of Busse (1967), notwithstanding slightly different computational

parameters. The latter essentially solves the deterministic hydrodynamic equations in

Boussinesq approximation using a Fourier expansion with N + Q = 6–12 modes, and finds

the wave number of the perturbation to the initial straight roll steady state with the largest

initial growth rate. If this is negative the initial state is stable and no transition is expected

to occur; if it is positive the initial state is unstable and a cross-roll transition is expected to

occur. In the latter case one expects that at least the initial growth will be dominated by

the transverse straight roll state with that wave number. Numerical results from this

perturbation approach are given by Busse and Whitehead (1971) and are shown as the

curves in figure 3.6.

It can be seen in figure 3.6 that the two calculations of the mode with the initial fastest

growth rate are in good agreement with each other. They are also in relatively good

agreement with the most likely final wave number for the full transition. In some ways this

agreement is surprising because in the full transitions it was often observed that, due to

the stochastic nature of the process, the dominant wave number at small times was not

always the calculated most likely fastest growing mode. It was also observed that the wave

number that dominated most of the transition was sometimes overtaken by another mode

toward the end of the transition, due no doubt to non-linear coupling that becomes

important in the late stages. The fact that there is statistical noise in the final wave number

also indicates that the fastest initial growth rate is not the sole determinant of the final

state. Despite these phenomena, it can be seen in figure 3.6 that the linear perturbation

theory for the fastest initial growth rate gives a quite good estimate of the final wave

number of the cross-roll transition. Computationally, the linear perturbation theory obtains

the initially fastest growing mode many, many orders of magnitude more efficiently than

the full calculation of the final transition. Figure 3.6 shows that the calculated results

overestimate the experimental measured final state (Busse and Whitehead 1971) by about



half a wave number. In the experiments, the cross-roll transition often begins

independently over small domains, which grow and join up to occupy the entire convection

box, often with defects (Busse and Whitehead 1971). In the calculations, combinations of

ideal straight rolls are used that occupy the entire convection box. Also, in the

computations, the initial y-rolls are constrained to the fundamental wave number ax and up

to five harmonics. Any transition pathway that proceeds by occupying a spectrum of

nearby wave numbers is precluded in the computations. Such pathways may or may not

contribute to the experimentally measured cross-roll transition. Finally, it is likely that

mechanical noise from water flow in the heat bath in the experiments is much larger than

the statistical noise used here. These differences may possibly account for the discrepancy

between the calculated final wave numbers in figure 3.6 and the measured ones.

In figure 3.6, as in figure 3.5, it can be seen that the optimum final state is not equal to

the state that maximizes the rate of (first) entropy production (in this case maximum heat

flow), nor to the state that maximizes the sub-system first entropy. It is also not equal to

the optimum state that follows a transition from conduction at this Rayleigh number.

It can be mentioned that the total entropy monotonically increased during these

spontaneous transitions (Attard 2012, section 6.6). The sub-system entropy and the sub-

system dependent part of the total entropy (i.e. the static entropy) were higher in the final

state than in the initial state, as was the rate of entropy production (the heat flux, or the

Nusselt number). The increase in these was not monotonic during a spontaneous transition.

The various approaches in figure 3.6 agree that the final steady state depends on the

initial steady state. All three theories show that the final wave number varies with the

initial wave number, āy(ax). Also, both the experiments and the theories identify a range

of initial wave numbers for which no transition occurs.

The fact that the final wave number varies with the initial wave number precludes the

existence of any one-time property that is optimized by the final state. The data in figure

3.6 are a graphic illustration of the general principle that for a non-equilibrium system

there is no such thing as an optimum state. Rather, there is an optimum transition, or,

equivalently, an optimum final state conditional upon a given initial state.

Summary

The Second Law of Thermodynamics characterizes equilibrium systems. For these it

gives a variational principle, namely that for a not-in-equilibrium system the

equilibrium value of the constrained parameter corresponds to a maximum in the

constrained entropy. Non-equilibrium systems are not characterized by any analogy of

the Second Law based on extremizing the rate of change of entropy.

The second entropy characterizes transitions between two states over a time interval,

and hence also rates of change and fluxes. For a constrained non-equilibrium system,

the second entropy is a maximum for the optimum rate or flux. The reduction condition

says that the maximum value of the second entropy equals the first entropy for the

initial state.

Fluctuations of non-conserved extensive variables are Gaussian distributed according

to a quadratic form for the second entropy. The most likely regression of such a

fluctuation maximizes the second entropy. A small time expansion of the second

entropy shows that a fluctuation most likely regresses at a constant rate in proportion

to the gradient of the first entropy. The proportionality constant comes from the leading

coefficient of the small time expansion of the second entropy and may be identified

with the hydrodynamic transport matrix.

The hydrodynamic transport matrix is symmetric, which is known as the Onsager

reciprocal relations, and it can be related to the time correlation function, which is

known as the Green–Kubo relations.



For the case of steady-state thermodynamic non-equilibrium system, the appropriate

extensive non-conserved variable to be constrained is typically the first moment of an

extensive conserved variable. Its spontaneous fluctuation when isolated can also be

induced by two spatially separated reservoirs with a difference between the respective

conjugate field variables. The adiabatic (isolated) regression of the fluctuation is

compensated by the rate of exchange with the reservoirs, which means that the

structure of the induced moment is constant, as is the driven flux.

Hydrodynamics can be formulated as a variational principle in which the second

entropy is maximized by the optimum fluxes for the specified thermodynamic forces.

Stochastic contributions to the conventional hydrodynamic equations are distributed

according to the exponential of the second entropy.

The conditionally optimum state or pattern of a non-equilibrium system is

characterized by maximizing the second entropy for the transition, and it depends

upon the given initial state.
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Chapter 4

Entropy for Brownian motion, fluctuations, and

stochastic trajectories

‘All chance [is] direction which thou canst not see’
(Pope 1734)

‘We ought to regard the present state of the Universe as the effect of its antecedent state
and as the cause of the state that is to follow’

Laplace (Weinert 2005 p 197)

The main aim of this chapter is to derive the equations of motion for macroscopic

variables. Such variables range from the traditional Brownian particles to the more abstract

thermodynamic fluctuations. Some of the results also apply to molecular coordinates, and

to the evolution of the probability density. It will be shown in general that because the

reservoir coordinates are projected out of the problem, the equations of motion are both

stochastic and dissipative.

This dual consequence of the projection of the reservoir onto the sub-system is seldom

taken into account in contemporary treatments of statistical systems. In particular,

deterministic thermostatted equations of motion are widely used in computer simulations,

as exemplified by the isokinetic thermostat,

ṗ = −∇qH(p, q) + αp, α(Γ) ≡
1

p ⋅ p
p ⋅ ∇qH(p, q).

Here q are the positions, p are the momenta, and H is the Hamiltonian. Because this

neglects the stochastic part of the projection operation, it violates the fluctuation–

dissipation theorem, one of the most fundamental theorems of statistical mechanics.

A related misunderstanding invokes Liouville’s theorem for the evolution of the

probability density together with such deterministic, non-Hamiltonian equations of motion,

d℘(X, t)

dt
=

∂℘(X, t)

∂t
+ Ẋ

det
⋅ ∇℘(X, t).

Here X is the macrostate, Ẋ
det

 is its deterministic velocity, and ℘(X, t) is its

probability. It will be shown that in general this is an approximation rather than an exact

theorem, and that its accuracy and reliability depends on the circumstances of each

particular application.

4.1 Brownian motion

Brownian motion refers to the random movements of a microscopic solute or colloid

particle in a solvent (Brown 1828, Haw 2002). This is a prototype of all stochastic

processes. In science Einstein (1905) and Smoluchowski (1906) gave the earliest statistical

treatments of Brownian motion, and these provided more or less direct evidence for the
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existence of molecules and the validity of statistical mechanics. (Bachelier (1900, 1914)

earlier derived these and other results in the context of financial markets and gambling.)

The diffusion of the probability density that was the basis of their treatment was further

developed by Fokker (1914) and Planck (1916). Langevin (1908) gave a stochastic

dissipative equation that described Brownian motion itself, and this has become the

general model for almost all the different types of random processes.

Here the stochastic dissipative equation for Brownian motion is derived from the second

entropy, first in the Einstein–Smoluchowski form for position macrostates, and then in the

more useful Langevin form for velocity macrostates. Following these the Fokker–Planck

equation is discussed.

4.1.1 Position macrostates and Einstein’s treatment

In this and the following sub-section we regard the Brownian particle’s position r as

labeling the macrostate of the system. The formalism for the time evolution of the

macrostate is just the pure parity fluctuation case of chapter 3. The solvent in which the

particle is embedded is treated as a reservoir and its microstates are not specified.

We shall suppose that the Brownian particle is trapped by a potential U(r) centered on

the origin, U ′(0) = 0 and U ′′(0) > 0, so that the average position vanishes,

⟨r⟩ = 0.

The reason for requiring this is so that nonzero values of r can be treated as a

fluctuation. With the pinning potential, ⟨r2⟩ < ∞.

The limit U(r) → 0 gives results for the free Brownian particle. It will turn out that in

this section the final results are independent of U(r), and so this is a conceptually clear

way of obtaining the free-particle results even in the thermodynamic limit.

For a solvent of temperature T, the reservoir entropy for the macrostate r is

Sr(r) =
−U(r)

T
.

For a Brownian particle, the reservoir entropy is the total entropy. The fluctuation

matrix is the matrix of second derivatives of the total entropy,

S′′=
−1

T
U ′′(0).

The probability is just the exponential of the entropy,

℘(r) =
1

Z(T )
eSr(r)/kBT ,

For a parabolic potential, this is a Gaussian in the position. Hence the average of the

square of the position is

⟨rr⟩ = −kBS′′−1

 

The second entropy in the pure parity case is now applied to the transition between

positions of the Brownian particle. For this purpose equation (3.86) is
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r′= r +
∣ τ ∣

2
ΛrS′′r + R̃, ∣ τ ∣≫ τmolec.

Here τmolec is a molecular time scale. Assuming a spherical particle, the transport

coefficient is diagonal with the same values on the diagonal. It can be written as

Λr = 2k−1
B D I.

Here and below I is the 3 × 3 identity matrix. The quantity D is the diffusion constant,

as will be justified by comparison with Einstein’s result below.

This equation does not include explicitly any adiabatic contribution to the transition. For

a small time step this would be . In the present case this would vanish since

the transition is not conditioned on the initial velocity, and its most likely or average value

is zero, . The direct adiabatic force due to the applied potential causes a change of

particle velocity. But the particle velocity is projected out of the problem, taking with it the

adiabatic force. These effects are subsumed in the reservoir entropy. That is, the effects of

the external force are included in a cumulative manner in the dissipative term, ∇Sr = S′′r
.

The probability distribution for the stochastic part is the Gaussian, equation (3.88),

This is effectively the probability distribution of the step taken by a free Brownian

particle over the time interval τ. It is the same as a step in a random walk. It is evidently a

Gaussian, as sketched in figure 4.1, with the width increasing as the square root of the time

interval.

Figure 4.1. The backward or forward evolution of the position probability of a free

Brownian particle. The central spike is the δ-function for the current time.

From this it follows that the stochastic change on average vanishes, ⟨R̃⟩ = 0, and it has

variance

℘(R̃) =
1

Z′
e−Λ−1

r :R̃R̃/2kB∣τ∣

=
1

(4πD ∣ τ ∣)3/2
e−R̃⋅R̃/4D∣τ∣.
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⟨R̃R̃⟩ =∣ τ ∣ kBΛr = 2 ∣ τ ∣ D I.

This last result is a form of the fluctuation–dissipation theorem: the variance of the

fluctuations is proportional to the strength of the dissipative term.

Note that there is no correlation between the stochastic change at successive time

steps, ⟨R̃(t + τ)R̃(t)⟩ = 0. This means that this is a Markov system in which one can

string successive transitions together to form a trajectory.

The correlation between the macrostate change over the transition and the initial

macrostate is

This result is independent of the external potential U(r). Hence taking the limit 

U(r) → 0 shows that this result holds also for the free Brownian particle.

One can write this in a more symmetric form as

Taking the trace of this dyadic matrix gives the result in the form originally given by

Einstein (1905),

⟨[r(t + τ) − r(t)] ⋅ [r(t + τ) − r(t)]⟩ = 6 ∣ τ ∣ D.

The agreement justifies the identification of D as the diffusion constant for the particle

in the particular solvent. One notes that the root mean square displacement of the

Brownian particles grows with the square root of time. This is the well-known result for a

random walk.

Differentiating the Einstein result with respect to τ yields

⟨v(t + τ) ⋅ [r(t + τ) − r(t)]⟩ = −⟨v(t + τ) ⋅ r(t)⟩ = 3τ̂ D.

The first equality follows because variables of opposite time parity are instantaneously

uncorrelated in an equilibrium system, . The result says that from the

starting position, the particle moves toward the origin at constant velocity.

4.1.2 Langevin equation

We now turn to the stochastic dissipative equation given for Brownian motion by Langevin

(1908). We shall derive the equations of motion from the pure parity second entropy result,

equation (3.86), and show their equivalence to Langevin’s result, giving an interpretation of

his physical justification.

⟨[r(t + τ) − r(t)]r(t)⟩ =
∣ τ ∣

2
ΛrS′′⟨r(t)r(t)⟩

= − kB
∣ τ ∣

2
ΛrS′′S′′−1

=
−kB ∣ τ ∣

2
Λr

= − ∣ τ ∣ DI.

⟨[r(t + τ) − r(t)][r(t + τ) − r(t)]⟩

= ⟨[r(t + τ) − r(t)]r(t + τ)⟩ − ⟨[r(t + τ) − r(t)]r(t)⟩

= 2 ∣ τ ∣ DI.
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The Langevin equation treats the Brownian particle’s position r and velocity  explicitly,

and so we take  as a macrostate of the system. The Hamiltonian is the sum of the

kinetic and potential energies of the particle,

H(r, v) = K(v) + U(r), K(v) =
m

2
v2 =

1

2m
p2,

where  is the particle’s momentum and m is its mass.

The reservoir entropy for a position–velocity macrostate is just

Sr(r, v) =
−H(r, v)

T
,

and the fluctuation or second derivative matrix is

S′′=
−1

T
( ).

As has been mentioned, for the Brownian particle the reservoir entropy is the same as

the total entropy.

Denote the trajectory of the Brownian particle in position–velocity space by . A

transition over the time interval τ has the form

This assumes that τ is of molecular or infinitesimal dimensions.

This transition contains both adiabatic and reservoir (solvent) contributions. The

adiabatic contribution is

These are just Hamilton’s equations of motion for the applied force −∇U(r).

The reservoir contributions consist of a deterministic or most likely force , and a

stochastic force F̃r(τ). (The dependence of the stochastic force on the time interval will be

obtained below.) These arise from the random (but statistically predictable) forces of the

solvent molecules on the Brownian particle. These are real physical forces. These solvent

forces effect the position evolution via the acceleration at O(τ 2), which for infinitesimal τ

is negligible over a single time step. The fact that the reservoir forces are irreversible (i.e.

proportional to ∣ τ ∣ rather than to τ) is justified by the symmetry arguments used to derive

the second entropy for the pure parity case, section 3.2.3.

Comparing this functional form to the second entropy result, equation (3.86), one sees

several similarities and differences. First, the position evolution is purely adiabatic and is

not treated as a stochastic transition governed by the second entropy. This is justified for

infinitesimal time intervals, as argued above. The position is a ‘slave’ to the velocity over

the time interval, which explains why the problem is treated as stochastic in the velocity

U ′′(0) 0

0 m

r(t + τ) = r(t) + τv(t)

v(t + τ) = v(t) −
τ

m
∇U(r) +

∣ τ ∣

m
F̄r(r, v) +

1

m
F̃r(τ).

r0(τ ∣ r, v) = r + τv,

v0(τ ∣ r, v) = v(t) −
τ

m
∇U(r).



only. This is therefore a pure parity case, rather than a mixed parity case of position and

velocity.

Second, whereas the present equation for the velocity contains both adiabatic and

statistical contributions, the pure parity second entropy result, equation (3.86), contains

only statistical contributions. This difference is explained by the fact that the fluctuations

treated in chapter 3 were for macrostates with no external potential acting on the

macrostate. Their evolution had to be treated statistically because the microstates

necessary to determine adiabatic motion were unspecified. In the present case the applied

potential acts directly on the transition between macrostates and this has to be directly

accounted for.

For the present problem there is complete separation between the applied force acting

on the Brownian particle, which gives the adiabatic contribution to the infinitesimal

transition, and the solvent forces, which are characterized statistically by the second

entropy. The adiabatic forces are reversible, ∝ τ , whereas the dissipative and stochastic

forces are irreversible, ∝∣ τ ∣, as the second entropy analysis showed.

Third, the present and former problem are treated at different time scales. The second

entropy result, equation (3.86), was derived for small time intervals, which are much larger

than the present infinitesimal time intervals. This difference in time scales raises the

question of whether it is valid to apply the second entropy analysis over infinitesimal time

scales as here. The original justification for requiring small time scales, say ∣ τ ∣≫∣ τmolec ∣,
was that a fluctuation had an initial inertial period in which the velocities became organized

into a steady flux. Time symmetry arguments showed that the term giving this steady flux

was proportional to ∣ τ ∣ in the pure parity case. There are three arguments for

extrapolating this result down to infinitesimal time scales in the present case. First, the

present velocity macrostate is the end point of a continuous evolution, and the solvent

already has had adequate time to become organized. This is particularly true in the case

that the mass of the Brownian particle is much greater than the mass of the solvent

molecules. Second, the relaxation time for velocity is much shorter than for position. And

third, any term linearly proportional to ∣ τ ∣ can be broken down into a series of

infinitesimal transitions each proportional to ∣ τmolec ∣≪∣ τ ∣, and over the longer term

these in series return the original expression.

The fourth point in the comparison is that the second entropy approach explicitly

determines the dissipative and stochastic forces in equation (3.86), whereas without

additional assumptions these are undetermined in the Langevin equation. As an historical

fact Langevin assumed that the dissipative force was the hydrodynamic drag force, and

that the variance of the stochastic force was such that the equipartition theorem was

satisfied. Such assumptions are quite plausible on physical grounds, and have been proven

correct over a century of application. Nevertheless, it would be better to have a derivation

of these from first principles, if for no other reason than to explain how it is possible that

the hydrodynamic drag force can be applicable on molecular length scales. Also, a first

principles derivation likely indicates the full generality of the stochastic dissipative

equation, how to extend it to non-equilibrium systems, and how to apply them beyond the

physical sciences to fields such as sociology, economics, financial markets, health, etc.

Obviously such extensions cannot invoke hydrodynamic drag forces or the equipartition

theorem.

This last point can be made explicit by applying equation (3.86) to the present problem.

Adding the adiabatic transition, the stochastic dissipative equation for Brownian motion is



(4.2

1)
Here the entropy for the velocity macrostate is , which has second

derivative, S′′vv= −mI/T , the transport matrix is proportional to the identity matrix, 

, and the stochastic force is Gaussian distributed, equation (3.88), 

. Shortly γ will be identified with the friction or

drag coefficient.

One sees that in the second entropy theory the dissipative force in general takes the

form of a drag force, . It is not that the dissipative force arises from hydrodynamic

drag, but rather that hydrodynamic drag forces themselves are dissipative forces. The very

general statistical considerations of the second entropy show that dissipative forces are

proportional to the gradient of the entropy. Since the entropy contains the kinetic energy,

which is quadratic in the velocity, its velocity gradient is proportional to the velocity. The

present result for a Brownian particle in a solvent would also apply to a Brownian particle in

a solid, where no hydrodynamic forces are present. (Friction forces are also dissipative

forces that arise from the gradient of the entropy.) Even though hydrodynamic forces and

friction forces only hold on macroscopic length scales, dissipative forces are statistical in

origin and apply on molecular and even sub-molecular length scales.

In the second entropy analysis there is a single parameter—the transport coefficient—

that determines both the variance of the stochastic force and the magnitude of the

dissipative force. In contrast, conventional treatments of the theory of Langevin (1908)

regard the two forces as separate and determine the variance of the stochastic force from

the equipartition theorem (cf Pathria 1972 section 13.4).

Figure 4.2 shows the most likely trajectory of a Brownian particle. This contains the

adiabatic contributions, which are time reversible, and the dissipative contributions, which

are time irreversible. Hence the discontinuous first derivative in the trajectory at t = 0. The

stochastic contributions perturb the trajectory, increasingly so as time progresses or

regresses from the present.

Figure 4.2. The most likely trajectory of a Brownian particle forward and backward in

time from the present time (circle). The shaded areas indicate the stochastic

contribution within a one-standard deviation envelope.

The discontinuity in the derivative of the trajectory means that one has to specify

whether the time derivative of a function on the trajectory is the forward or the backward

derivative,

r(t + τ) = r(t) + τv(t)

v(t + τ) = v(t) −
τ

m
∇U(r) +

∣ τ ∣

2
ΛvS′′vvv + R̃v

= v(t) −
τ

m
∇U(r) −

∣ τ ∣ γ

m
v + R̃v.
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The upper sign refers to the forward derivative and the lower sign to the backward

derivative.

4.1.3 Markov behavior

The second entropy analysis of Brownian motion in terms of position (i.e. Einstein’s result)

is consistent with the analysis in terms of velocity (i.e. Langevin’s result). This may be seen

as follows.

For a free Brownian particle, U(r) = 0, the most likely rate of change of velocity given

by equation (4.21) is

v̇(t) =
−τ̂ γ

m
v(t).

Since τ is molecular scale, this takes the coarse velocity to equal the instantaneous

velocity, .

According to this, the rate of change of velocity depends only on the current velocity,

and so this is a Markov process. The solution is

v(t) = e−∣t∣γ/m
v(0).

This says that the velocity decays exponentially from the current value (and to the

current value).

The time correlation of the velocity is also exponential,

The final equality follows because ⟨vv⟩ = −kBS′′−1
vv = (kBT/m) I, which is equivalent

to the equipartition theorem.

Now in the analysis of the Brownian particle from the perspective of position, the

Einstein result linked the diffusion constant to the correlation of velocity and position,

equation (4.15). Writing τr as the time step used for the position equation (the interval for

velocity is much smaller, as sketched in figure 4.3), that result may be written as

d±f(v(t), t)

dt
=

∂f(v(t), t)

∂t
+ v̇

±(t) ⋅ ∇vf(v(t), t)

=
∂f(v(t), t)

∂t
+

v(t± ∣ τ ∣) − v(t)

± ∣ τ ∣
⋅ ∇vf(v(t), t)

=
∂f(v(t), t)

∂t
+ [

−1

m
∇U(r) ∓

γ

m
v ±

1

∣ τ ∣
R̃v] ⋅ ∇vf(v(t), t).

¯

¯

⟨v(t) ⋅ v(0)⟩ = ⟨v(t) ⋅ v(0)⟩

= e−∣t∣γ/m⟨v(0) ⋅ v(0)⟩

=
3kBT

m
e−γ∣t∣/m.

¯
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This says that the diffusion constant is inversely proportional to the drag constant

provided that the time interval for positional diffusion is relatively large. This shows the

consistency of the Einstein result for free-particle diffusion with the Langevin result for the

evolution of the free-particle velocity.

Figure 4.3. A Brownian trajectory in position (left) and in velocity (right).

One can also find the regime of validity for a pinned Brownian particle. For the case of a

parabolic pinning potential,

U(r) =
κ

2
r2,

the reservoir entropy is

S(r, v) =
−m

2T
v2 −

κ

2T
r2.

 

In this case the stochastic dissipative equation of motion for the position, equation (4.8),

becomes

r′= r− ∣ τr ∣
κD

kBT
r + R̃, ∣ τr ∣≫ τmolec.

D =
τ̂ r

3
⟨v(t + τr) ⋅ [r(t + τr) − r(t)]⟩

=
τ̂ r

3
∫

τr

0

dt′ ⟨v(t + τr) ⋅ v(t + t′)⟩

=
τ̂ r

3
∫

τr

0

dt′
3kBT

m
e−γ∣τr−t′∣/m

=
τ̂ rkBT

m

mτ̂ r

γ
[1 − e−γ∣τr∣/m]

=
kBT

γ
, ∣ τr ∣≫

m

γ
.
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In order for the discretization to be valid, the change in position must be small compared to

the position itself, which means

m

γ
≪∣ τr ∣≪

kBT

κD
=

γ

κ
.

The lower limit is that obtained above for the free particle from the Markov analysis of

velocity. This says that if the drag coefficient is large, or the curvature of the potential is

small, then there is a time interval in which the stochastic dissipative equation of motion

for the position can validly be applied in the case of an applied potential.

4.2 Fokker–Planck equation

We shall now derive the Fokker–Planck equation in general for stochastic dissipative

equations of motion, and then use it to show that the Langevin equation yields a stationary

equilibrium probability distribution when the fluctuation–dissipation theorem is satisfied.

We shall also show that the stochastic dissipative equation derived from the second

entropy analysis also yields a stationary probability distribution. For a more specialised

treatment of the Fokker–Planck equation, see Risken (1984).

In the present book, the probability is taken to be the exponential of the entropy, and so

it does not make much sense to speak of the evolution of an arbitrary probability density in

the equilibrium case. Similarly, the transition probability is taken to be fixed by the

exponential of the second entropy, which in turn fixes the stochastic, dissipative equations

of motion. So again it is strange to speak of arbitrary equations of motion.

Nevertheless, one of the benefits that arise from the following derivation of the Fokker–

Planck equation is a consistency rule that arbitrary stochastic dissipative equations of

motion have to obey in order for the equilibrium probability density to be stationary. This

leads to the fluctuation–dissipation theorem independent of the second entropy. It is shown

that Langevin’s equation not only has to have such a quantitative relationship, but that the

qualitative form of the equation is fixed and unchangeable. Also the Fokker–Planck

equation provides a basis for discussing Liouville’s theorem.

4.2.1 General expression

We consider a generic stochastic dissipative transition,

X′= X + τẊ
det

+ R̃.

Here the macrostate X is to be considered quite generally. It can be a single

coordinate, or a vector of multiple coordinates, possibly of mixed parity. The deterministic

part of the transition consists of the adiabatic evolution and the most likely contribution

due to the reservoir. For future use, the stochastic part is the difference between the actual

and the most likely destination, X′−X′ = R̃. (We habitually use the word ‘stochastic’ to

mean the zero mean part of the random reservoir contribution. Strictly speaking, the entire

reservoir contribution is stochastic; it can be divided into a most likely deterministic part, 

R̄ = τ[Ẋ
det

− Ẋ
0
], and a zero mean random part, R̃. It is the latter that we mean by the

word ‘stochastic’.)

We shall suppose that the probability distribution for the stochastic part of the transition

is Gaussian

℘(R̃) =
1

Z′
e−Λ−1:R̃R̃/2kB∣τ∣, Z′≡ {Det [2πkB ∣ τ ∣ Λ]}1/2.

¯
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Clearly ⟨R̃⟩ = 0. This Gaussian is just the conditional transition probability, which means

that the unconditional transition probability can be written as

℘(X′, X ∣ τ) = ℘(X′∣ X, τ)℘(X) = ℘(R̃)℘(X).

 

With these, and using the conservation law for probability in the equilibrium case,

equation (3.17), one has

 

The evolution of a volume element is sketched in figure 4.4. With this and a little

thought (cf equation (5.7)) one can see that the compressibility of the equations of motion

is

Note that the adiabatic equations of motion are incompressible, ∇ ⋅ Ẋ
0

= 0, and so

only the dissipative part contributes to this. Writing X′−X = τẊ
det

+ R̃, and neglecting

quadratic powers of τẊ
det

 and odd powers of R̃, the evolution becomes

℘(X′, t + τ) = ∫ dX ℘(X′, X ∣ τ)

=
1

Z′
∫ dX e

−Λ−1:[X′−X′]
2
/2kB∣τ∣

℘(X, t)

=
1

Z′
∫ dX′ ∣

dX′

dX
∣

−1

e
−Λ−1:[X′−X′]

2
/2kB∣τ∣

× {℘(X′, t) + (X − X′) ⋅ ∇℘(X′, t)

+
1

2
(X − X′)(X − X′) : ∇∇℘(X′, t) + ⋯}.

¯

¯
¯̄

∣
dX′

dX
∣ = ∣I + τ

dẊ
det

dX
∣

= 1 + τ Tr
dẊ

det

dX
+O(τ 2)

= 1 + τ∇ ⋅ Ẋ
det

.

¯

{



(4.3

6)

(4.3

7)

The neglected terms are O(τ 2). To leading order τẊ
det

 can be evaluated at X′, which

is why it has been taken outside of the integral twice here. This gives the partial time

derivative as

∂℘(X, t)

∂t
= −[∇ ⋅ Ẋ

det
]℘(X, t) − Ẋ

det
⋅ ∇℘(X, t) +

τ̂ kB

2
Λ : ∇∇℘(X, t).

This is the Fokker–Planck equation.

Figure 4.4. The evolution of a volume element in time τ.

Note that this partial time derivative on the left-hand side does not distinguish

notationally between the forward and backward time derivatives. In contrast the right-hand

side contains irreversible terms in the dissipative contribution to the deterministic velocity

and in the stochastic contribution, with τ̂ ≡ τ/ ∣ τ ∣= +1 for the forward time derivative

and τ̂ = −1 for the backward time derivative. It will be shown next (and also in section

5.4.3) that for equilibrium systems, the right-hand side is zero with the irreversible terms

canceling each other. (In chapter 6 the same cancelation will be shown to occur for non-

equilibrium steady state systems.)

4.2.2 Second entropy

The equilibrium probability is just the exponential of the total entropy,

℘(X′, t + τ) =
1

Z′
[1 − τ∇ ⋅ Ẋ

det
] ∫ dR̃ e−Λ−1:R̃R̃/2kB∣τ∣{℘(X′, t)

− (τẊ
det

+ R̃) ⋅ ∇℘(X′, t) +
1

2
(τẊ

det
+ R̃)(τẊ

det
+ R̃) : ∇∇℘(X′, t)

=
1

Z′
[1 − τ∇ ⋅ Ẋ

det
] ∫ dR̃ e−Λ−1:R̃R̃/2kB∣τ∣{℘(X′, t)

− τẊ
det

⋅ ∇℘(X′, t) +
1

2
R̃R̃ : ∇∇℘(X′, t)}

= ℘(X′, t) − τ∇ ⋅ Ẋ
det

℘(X′, t) − τẊ
det

⋅ ∇℘(X′, t) +
kB ∣ τ ∣

2
Λ : ∇∇℘(X
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℘(X, t) =
1

Z
eS(X)/kB .

In the second entropy case, the deterministic part of the transition is

Ẋ
det

= Ẋ
0

+
τ̂

2
Λ∇S(X).

Because in the equilibrium case S(X) = −H(X)/T  it follows that Ẋ
0

⋅ ∇S(X) = 0.

This assumes that the sub-system state X has no internal entropy, so that the total entropy

is the same as the reservoir entropy. This is a valid assumption for a Brownian particle, or

for a point in classical phase space, but it does not hold, for example, for a fluctuation of a

non-conserved variable in the sub-system, such as the first energy moment treated in

section 3.4.

A second result required is that the adiabatic equations of motion are incompressible, 

∇ ⋅ Ẋ
0

= 0. These two results mean that there is no adiabatic contribution to the Fokker–

Planck equation. What remains is

This vanishes identically, as it must in the present equilibrium case.

4.2.2.1 Mixed parity

In the second entropy, mixed parity case, the deterministic part of the transition is given by

equation (3.135) with the adiabatic evolution added,

Ẋ
det

= Ẋ
0

+
τ̂

2
[Λ − 2τ̂ Θ]S′′X ≡ Ẋ

0
+

τ̂

2
L(τ̂ )∇S(X).

The random forces remain Gaussian distributed with the variance ΛkB ∣ τ ∣ unchanged

from the pure parity case.

One can use the above pure parity result for the partial time derivative of the probability

with the first two transport matrices replaced by L(τ̂ ),

∂℘(X, t)

∂t
= {

−τ̂

2
Λ : ∇∇S(X) −

τ̂

2kB
Λ : ∇S(X)∇S(X)

+
τ̂

2kB
Λ : ∇S(X)∇S(X) +

τ̂

2
Λ : ∇∇S(X)}℘(X, t)

= 0.
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The second equality follows because any symmetric scalar product with the

antisymmetric matrix Θ vanishes. Hence for both the pure and mixed parity case, the

second entropy formulation of the stochastic dissipative equations of motion yield a

stationary equilibrium probability distribution.

4.2.3 Dissipation in the Langevin equation

Now it is shown that the solvent force, Fr, in the Langevin equation must necessarily be of

the form of a drag force in order for the equilibrium probability distribution to be stable.

In the case of the Langevin equation, , the deterministic rates of change are

The velocity gradient of the total entropy is . Again using the equilibrium

probability, , the Fokker–Planck equation in this case is

since . To make this vanish for all , it is clear that one must take

Fr = −γv,

which gives

∂℘(X, t)

∂t
= {

3τ̂

m
γ −

τ̂

kBT
γv ⋅ v +

τ̂ m2λv

2kBT 2
v ⋅ v −

3τ̂ mλv

2T
}℘(X, t).

∂℘(X, t)

∂t
= {

−τ̂

2
L(τ̂ ) : ∇∇S(X) −

τ̂

2kB
L(τ̂ ) : ∇S(X)∇S(X)

+
τ̂

2kB
Λ : ∇S(X)∇S(X) +

τ̂

2
Λ : ∇∇S(X)}℘(X, t)

= {
−τ̂

2
Λ : ∇∇S(X) −

τ̂

2kB
Λ : ∇S(X)∇S(X)

+
τ̂

2kB
Λ : ∇S(X)∇S(X) +

τ̂

2
Λ : ∇∇S(X)}℘(X, t)

= 0.

ṙ
det = ṙ

0

v̇
det = v̇

0 +
τ̂

m
Fr(r, v).

∂℘(X, t)

∂t
= {

−τ̂

m
∇v ⋅ Fr −

τ̂

mkB
Fr ⋅ ∇vS(X)

+
τ̂

2kB
Λv : ∇vS(X)∇vS(X) +

τ̂

2
Λv : ∇v∇vS(X)}℘(X, t)

= {
−τ̂

m
∇v ⋅ Fr +

τ̂

kBT
Fr ⋅ v +

τ̂ m2

2kBT 2
Λv : vv −

τ̂ m

2T
Tr Λv}℘(X, t)

= {
−τ̂

m
∇v ⋅ Fr +

τ̂

kBT
Fr ⋅ v +

τ̂ m2λv

2kBT 2
v ⋅ v −

3τ̂ mλv

2T
}℘(X, t),
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This vanishes when the strength of the dissipation, the drag force, is related to the strength

of the fluctuations via

γ =
m2λv

2T
.

This is another version of the fluctuation–dissipation theorem. This theorem was

originally derived by Langevin (1908) by demanding that the equipartition theorem be

satisfied. Since the equilibrium probability yields the equipartition theorem, the present

derivation based on the stationarity of the former includes the latter as a special case.

4.2.4 No dissipation without fluctuation

The Langevin equation for velocity, equation (4.19), may be rewritten in terms of

momentum  as

ṗ =
−∂H(p, q)

∂q
−

γ

m
p +

1

τ
F̃r(τ).

Here the position is written q ≡ r, and it has been assumed that τ is infinitesimal. This

may be interpreted as applying to the coordinates of a single Brownian particle, or to the

phase space of the molecules of a system.

The fluctuation–dissipation theorem says that the variance of the stochastic force is

⟨F̃rF̃r⟩ = m2kB ∣ τ ∣ λvI =
2kBT

γ
∣ τ ∣ I.

 

Comparing the above stochastic dissipative Langevin equation with the dissipative

equations of motion with the isokinetic thermostat given at the start of the chapter,

equation (4.1), one sees that the latter has the same dissipative term, α ≡ γ/m, but it

completely neglects the stochastic term, ⟨F̃rF̃r⟩ = 0. This is a violation of the fluctuation–

dissipation theorem.

The consequence of this violation is that the equilibrium probability distribution cannot

be stationary under the isokinetic equations of motion despite (or because of) the fact that

the kinetic energy is a constant of the motion and the equipartition theorem is obeyed. It

follows that any property of the system (apart from the kinetic energy) that is obtained as

a time average over the isokinetic trajectory cannot be equal to its correct average value

obtained with the proper probability distribution.

The approach of using deterministic equations of motion—dissipation without fluctuation

—is very commonly used for non-equilibrium molecular dynamics simulations. Although we

shall not analyze non-equilibrium systems until chapter 6, one can anticipate that any

dissipative equations of motion for the non-equilibrium system based upon an isokinetic or

any similar deterministic thermostat, and any other deterministic term designed to mimic a

particular thermodynamic flow, in the absence of a stochastic contribution that obeys a

generalized fluctuation–dissipation theorem, will likewise yield erroneous results.

4.3 Stochastic calculus

The stochastic calculus refers to that branch of mathematics that deals with integrals and

derivatives of functions of stochastic variables. The issue addressed here is whether or not

the stochastic calculus is relevant to statistical mechanics in the physical sciences. For the
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conventional view of the stochastic calculus and the Fokker–Planck equation, see Gardener

(1983) or Risken (1984); for a more detailed discussion of what follows, see Attard (2012,

section 11.3.3).

There are two commonly used versions of the stochastic calculus, one due to Itô and the

other to Stratonovitch, as is now explained. In the simplest case, consider a trajectory with

a random displacement added at each discrete node, tn = nΔt,

xn = x̄(tn) + R̃n,

or

xn+1 = xn + Δt ̇̄x(tn) + [R̃n+1 − R̃n].

We shall return to the variance of the increment in the random displacement below. For

the present purpose of connecting with the mathematics literature on the stochastic

calculus, one can consider it to be linear in the time interval, ⟨[R̃n+1 − R̃n]
2
⟩ = 2D ∣ Δt ∣,

as in Einstein’s treatment of a free Brownian particle.

The point is that the above stochastic equation specifies the trajectory at the nodes, but

it is silent about what happens between the nodes. One is free to make any convenient

choice, but any such choice has consequences.

The Itô calculus says that the random displacement is applied entirely at the beginning

of the node, and so between nodes one has

x(t) = x̄(t) + R̃n, tn < t < tn+1.

The Stratonovitch calculus says that between nodes the average random displacement

at the termini is applied,

x(t) = x̄(t) +
1

2
[R̃n+1 + R̃n], tn < t < tn+1.

These are sketched in figure 4.5. These are not the only choices that can be made, but

they are the most common.

Figure 4.5. From top to bottom, (a) the most likely trajectory with four nodes, (b) four

random displacements, (c) the Itô trajectory, and (d) the Stratonovitch trajectory.
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The choice of calculus makes a difference for the integral of a function over a trajectory.

One has

Here t′= ti + αΔt, and α ∈ [0, 1). Ordinarily the precise value of α is immaterial;

different choices of α ∈ [0, 1) change g(x(t′)) by O(Δt), and hence G(t) by 

O(nΔ2
t ) = O(Δt), which is negligible in the limit Δt → 0.

In the stochastic calculus the choice of α makes a difference to the final result. To see

this, note that the value of the function within the interval differs between the two

versions,

g(x(t′)) = {

Subtracting one version of the integral from the other and averaging yields a result

proportional to the variance of the increment in the random displacement

Since there are n = t/Δt terms here, the difference between the two version of the

integral is O(1), which cannot be neglected even for an infinitesimal time step. This shows

that one has to make a particular choice for the stochastic calculus, either Itô or

Stratonovitch, or some other, and the value of any integral over a stochastic trajectory is

dependent on the choice.

In the physical sciences this situation is unacceptable because one cannot have any

such ambiguity in the value of physical variables.

The resolution of the problem comes from noticing that in the final equality above it was

assumed that the variance is twice the diffusion constant times the length of the time step.

This corresponds to the Einstein result, that the variance in the displacement of a free

Brownian particle scales with the length of the time interval. In the mathematics literature,

and particularly in financial applications of stochastic difference equations, this is taken as

an axiomatic definition of stochastic behavior. It is also assumed that the time interval can

G(t) = ∫
x(t)

x0

dx(t′) g(x(t′))

=
n−1

∑
i=0

[xi+1 − xi] g(x(t′)),

=
n−1

∑
i=0

[Δt ̇̄x(ti) + R̃i+1 − R̃i] g(x(t′)).

g(xi) + [αΔt ̇̄x(ti) + R̃i]g′(xi) + ⋯ , Itô,

g(xi) + [αΔt ̇̄x(ti) + (R̃i + R̃i+1)/2]g′(xi) + ⋯ , Strat.

⟨GStrat.(t) − GIto(t)⟩ =
n−1

∑
i=0

⟨[Δt ̇̄x(ti) + Ri+1 − Ri] [(R̃i+1 − R̃i)/2]g′(xi)⟩

=
1

2

n−1

∑
i=0

⟨[R̃i+1 − R̃i]
2
⟩g′(xi)

= D ∣ Δt ∣
n−1

∑
i=0

g′(xi).
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be regarded as infinitesimal on the scale of the considered motion (otherwise the

discretization of the trajectory would yield inaccurate results).

In fact, however, in statistical mechanics as applied to real physical systems, the

variance must equal the position self-correlation function, and this has different asymptotic

behavior in different time regimes. As discussed in connection with figure 3.2, one has

As in equation (4.13), the symmetrized position autocorrelation function is

q s
0(τ) ≡

1

2kB
⟨[x(t + τ) − x(t)] [x(t + τ) − x(t)]⟩0,

and its ‘acceleration’ is

The sub-script 0 signifies a free Brownian particle, in which case q̈
s
0 (0) = T/m, but the

analysis is in fact more general than this (cf section 4.6.2).

This result shows that in physical applications, the behavior of the variance of the

increment in the random displacement is quadratic in the time interval for intervals of the

order of molecular time scales, and is linear in the time interval for intervals longer than

the relaxation time of the system.

If in a particular application one uses an infinitesimal time step, (because, for example,

the function of interest g(x(t)) is rapidly varying), then the variance is quadratic in the

time step, and the difference between the Itô and the Stratinovich calculus is 

O(nΔ2
t ) ∼ tΔt, which is negligible, and the choice of the stochastic calculus makes no

difference. If on the other hand one uses a relatively large time step beyond the system

relaxation time (because ∣ Δg(x(t′)) ∣≪∣ g(x(t′)) ∣ over the time step), then the variance

would indeed be linear in the time step, as mathematicians invariably assume. However,

since the whole theory requires that the stochastic influence be a small perturbation on the

adiabatic evolution (otherwise the reservoir influence would have to be treated explicitly

rather than statistically), the contribution of the stochastic forces to the change in a

function over the time interval must be a small perturbation on the deterministic change, 

∣ Dg′(x(t)) ∣≪∣ ̇̄x(t)g(x(t)) ∣. If this holds, then the difference between the two versions of

the stochastic calculus is negligible. If it does not hold then one must use instead a time

step smaller than the system relaxation time (because this reduces the stochastic

influence, O(Δ2
t ), more quickly than the adiabatic influence, O(Δt)).

One concludes from these arguments that the stochastic calculus of Itô and Stratinovich

plays no rôle in the statistical mechanics of physical systems.

In some books and papers, the Fokker–Planck equation is derived using the stochastic

calculus, and different versions result depending upon the choice. The differences depend

upon the gradient of the diffusion constant with respect to the current trajectory variable,

namely ∇ ⋅ D (Ermak and McCammon 1978, Gardiner 1983, Risken 1984, Tough et al 1986,

⟨[R̃n+1 − R̃n]
2
⟩ = 2kBq s

0(Δt)

∼ {
kBq̈

s
0 (0)Δ2

t , Δt → 0,

2D ∣ Δt ∣, Δt ≫ τmolec.

q̈
s
0 (τ) =

−1

2kB
[⟨ẍ(t + τ)x(t)⟩0 + ⟨x(t)ẍ(t + τ)⟩0]

=
1

kB
⟨ẋ(t + τ)ẋ(t)⟩0.
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Keizer 1987, Allen and Tildesley 1987, and Mazo 2008). These competing versions of the

Fokker–Planck equation only occur for the standard ‘no memory’ Langevin equation; no

such differences occur for the generalized Langevin equation that has memory.

It should be understood that the divergence of the transport coefficient in that analysis

is with respect to the actual trajectory variable, which means that it is only nonzero if 

D = D(x(t)) in the present case. However, since the transport coefficient is an average,

as given for example by the time correlation function, or by Green–Kubo theory, in physical

problems it is impossible for the transport coefficient to depend on the current point on the

trajectory. (It may depend upon space and time, for example D(x̄(t), t), but not upon the

system state x. Obviously, ∇ ⋅ D(x̄(t), t) = 0.) By the fluctuation–dissipation theorem, this

independence holds equivalently for the variance of the stochastic forces. In a system

without memory, the transport coefficient must also be independent of prior points on the

trajectory. In the opinion of the present author, for systems without memory, ∇ ⋅ D = 0,

and there is no ambiguity in the Fokker–Planck equation or in the evolution of any physical

variable.

There remains the case of non-Markov systems, which is to say systems with memory.

For these the generalized Langevin equation is required,

ẋ(t) =
1

T
∫

t

0

dt′ q̈
s
0 (t − t′)F(x(t′), t′) + R̃(t),

where F(x, t) is an externally applied force. This and variants are derived in section

4.6. Detailed analysis (Attard 2012, chapters 10 and 11) shows that the different versions

of the stochastic calculus have no influence on the Fokker–Planck equation or on any

function of the trajectory for systems with memory.

4.4 Generalized equipartition theorem

For an equilibrium system with kinetic energy , and potential energy U(r), the

entropy is , and the probability is . This is

for a Brownian particle with no internal entropy so that the total entropy is the same as the

reservoir entropy. Because of the Gaussian form of the velocity distribution, the variance of

the velocity is

⟨vv⟩ =
kBT

m
I.

This is the equipartition theorem. It holds for any system with the entropy having the

stated form.

For the case that there are N particles, so that  is a 3N-dimensional vector, then the

trace of this is extensive, and fluctuations are relatively negligible. In this case the theorem

applies locally,

⟨v ⋅ v⟩ ≈ v ⋅ v =
3NkBT

m
.

Obviously one could choose sets of velocities where this fails badly. But if one chooses

likely velocities, or if the velocities arise spontaneously in the system, then this is an

increasingly good approximation as N → ∞.

The equipartition theorem is a rather trivial consequence of the Gaussian nature of the

probability. It is possible to obtain a powerful generalization of this theorem even when the
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probability is non-Gaussian. The derivation is quite simple and is based on the fact that the

averand on the left-hand side can be considered to be in essence the dyadic product of the

velocity gradient of the entropy, and the right-hand side can be considered to be the

dyadic second velocity gradient of the entropy.

To this end represent the phase space of the sub-system of interest by X, and the

reservoir entropy by Sr(X, t). For greatest generality we consider a general non-

equilibrium system dependent on time t. Explicit expressions for the non-equilibrium

entropy are given in chapter 6 but will not be required here. The probability is as usual 

℘(X, t) = Z(t)−1eSr(X,t)/kB . (It will be shown in section 5.2 that phase space is the set of

microstates, and that they have no internal entropy, Stotal(X, t) = Sr(X, t). When X

represents a macrostate with internal entropy, the total entropy 

Stotal(X, t) = Ss(X, t) + Sr(X, t) has to be used in place of the reservoir entropy.)

In view of the observation made in the penultimate paragraph above, the average of the

dyadic product of the phase space gradient of the entropy is

The third equality follows after an integration by parts, the integrated portion vanishing

because the probability vanishes on the boundaries of the integration region. For the case

of position components, this gives the virial equation provided that the total potential is

used (i.e. including any one-body contributions from the walls containing the sub-system).

This is the first generalized equipartition theorem. For a single component, say x, it reads

⟨(
∂Sr(X, t)

kB∂x
)

2

⟩ +⟨
∂ 2Sr(X, t)

kB∂x2
⟩ = 0.

Taking x =  and the reservoir entropy as above, one sees that this reduces to the

usual equipartition theorem.

The first generalized equipartition theorem is equivalent to

∫ dX ∇∇℘(X, t) = 0.

This can be seen directly to be true by performing a single integration and noting that 

∮ dnX ⋅ ∇℘(X, t) = 0, since the probability and its gradient can be taken to vanish on the

boundary. This is a global theorem, but one suspects that it may be a reasonable

approximation applied point by point. That is

k−2
B ⟨[∇Sr(X, t)][∇Sr(X, t)]⟩ = k−2

B ∫ dX ℘(X, t)[∇Sr(X, t)][∇Sr(X, t)]

= k−1
B ∫ dX [∇℘(X, t)][∇Sr(X, t)]

= − k−1
B ∫ dX ℘(X, t)∇∇Sr(X, t)

= − k−1
B ⟨∇∇Sr(X, t)⟩.

∇∇℘(X, t) ≡ [k−1
B ∇∇Sr(X, t) + k−2

B {∇Sr(X, t)}{∇Sr(X, t)}]℘(X, t)

≈ 0.
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Of course there are values of X when the term in brackets has a large magnitude, but one

expects such X to be rather improbable, ℘(X, t) ≈ 0. Conversely, probable values of X

correspond to the approximate cancelation of the two terms in the brackets. It is important

to note that for this approximation to be true locally in phase space, both factors (the

bracketed terms and the probability density) are required.

This local approximation can be made with even greater certainty by summing over

components. For example, summing the diagonal elements of the dyadic matrix yields

[k−1
B ∇2Sr(X, t) + k−2

B {∇Sr(X, t)} ⋅ {∇Sr(X, t)}]℘(X, t) ≈ 0.

The reason that one can have confidence in this result is that the bracketed term is

extensive, which is to say it scales with the size of the system. It will be recalled that

fluctuations in extensive variables are relatively negligible. Hence in the thermodynamic

limit one can write this as

k−1
B ∇2Sr(X, t) + k−2

B {∇Sr(X, t)} ⋅ {∇Sr(X, t)} = 0.

It is implicitly understood that the values of X in this arise spontaneously in the

system.

In the case of N particles in three dimensions, for an equilibrium system with the kinetic

energy given above, Sr(X, t) = −mv2/2T − U(r)/T , using the velocity gradient in the

last expression gives

−3Nm

kBT
+

m2

k2
BT 2

v2 = 0, or v2 = 3NmkBT .

One often sees the equipartition function written in this form. Again the reason that

one can expect it to apply locally and not just on average is that it is extensive. Provided

that these are velocities that have arisen in the system, the fluctuations that would

invalidate this result are unlikely to occur. Arguably it would be better to show the

probability density explicitly here to ensure that unlikely fluctuations that violate the

equipartition theorem have zero weight.

There is another result that can be called a generalized equipartition theorem. Consider

the average of the dyadic,

The third equality follows from an integration by parts. This may be called the second

generalized equipartition theorem.

Choosing Sr(X, t) = −H(q, p)/T , for a single momentum component this gives the

conventional equipartition theorem,

⟨X
∂Sr(X, t)

∂X
⟩ =

1

Z
∫ dX eSr(X,t)/kBX

∂Sr(X, t)

∂X

=
kB

Z
∫ dX X

∂eSr(X,t)/kB

∂X

=
−kB

Z
∫ dX eSr(X,t)/kB

∂X

∂X

= − kB I.
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⟨p2
jα⟩

N ,V ,T
= mkBT .

More generally it gives

⟨pjαpiγ⟩N ,V ,T
= δj,iδα,γmkBT ,

⟨qjα

∂U(q)

∂qiγ

⟩
N ,V ,T

= δj,iδα,γkBT ,

and

⟨pjα

∂U(q)

∂qiγ

⟩
N ,V ,T

= ⟨qjαpiγ⟩N ,V ,T
= 0.

This last result exemplifies the principle that in an equilibrium system there can be no

instantaneous correlation between variables of different time parity.

Finally, it should be pointed out that in general one should replace the reservoir entropy

in the two generalized theorems everywhere above by the total entropy. In most cases this

makes no difference to the results, but for some choices of macrostate X the sub-system

entropy is non-constant and its inclusion does make a difference.

4.5 Liouville’s approximation

The stochastic dissipative equation in the pure parity case, was given above as equation

(4.31),

Although derived with a Brownian particle in mind, the quantity X can be interpreted

quite generally. The deterministic velocity can be written as the sum of the adiabatic and

the most likely reservoir-induced velocity, equation (4.39),

Ẋ
det

= Ẋ
0

+ ̇̄X = Ẋ
0

+
τ̂

2
Λ∇S(X),

Here S(X) is the total entropy, which for a Brownian particle and for phase space, is

the same as the reservoir entropy. (For the mixed parity case, the transport matrix is

instead L(τ̂ ), equation (3.135).) The stochastic contribution is Gaussian distributed,

equation (4.32),

℘(R̃) =
1

Z′
e−Λ−1:R̃R̃/2kB∣τ∣, Z′≡ {Det [2πkB ∣ τ ∣ Λ]}1/2.

The time development of a probability distribution due to this stochastic dissipative

equation is given by the Fokker–Planck equation, derived above as equation (4.36). This

can be rearranged as

X(t + τ) = X(t) + τẊ
det

(t) + R̃(t).
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The final term can be written like this because the transport matrix Λ is independent of

X (cf the discussion of the stochastic calculus, section 4.3).

Written in this way, the right-hand side of the Fokker–Planck equation represents a

conservation law for the probability, ∂℘(X, t)/∂t = −∇ ⋅ J℘(X, t), with the probability

flux being

J℘(X, t) = Ẋ
det

℘(X, t) +
τ̂ kB

2
Λ∇℘(X, t).

The first term on the right-hand side represents the flux of probability carried by the

deterministic motion, and the second term is that carried by the stochastic part of the

equations of motion.

Liouville’s theorem for an open sub-system corresponds to the neglect of the stochastic

contribution in the equations of motion and in the Fokker–Planck equation. In this case the

total time derivative is

The first line is exact for deterministic equations of motion, and the second line follows

from the Fokker–Planck equation with the stochastic contribution neglected. This is called

Liouville’s theorem, and it was critically referred to at the start of this chapter, equation

(4.2). This gives the probability flux as J℘(X, t) = Ẋ
det

(X, t)℘(X, t).

It would be better to call this Liouville’s approximation. As has been mentioned several

times, when one projects the reservoir coordinates out of the problem, one must

necessarily have both dissipative (most likely) and stochastic (zero mean) forces in the

equations of motion. When a reservoir is present, it is not possible to have a dissipative

part without a fluctuation part. The only legitimate case with zero dissipative part and zero

fluctuation part is the adiabatic equations of motion, which are valid for an isolated sub-

system that does not interact with its environment or a reservoir. In this case, and only this

case, Liouville’s theorem is an exact theorem and it reads

The second equality follows because adiabatic equations of motion are incompressible,

∇ ⋅ Ẋ
0

= 0, (assuming X represents a point in phase space).

At the time that Liouville derived his theorem the only equations of motion that were

used were Hamilton’s. Over the years workers have developed ad hoc non-Hamiltonian

equations of motion. One such example is the isokinetic equations of motion, equation

∂℘(X, t)

∂t
= − ∇ ⋅ Ẋ

det
℘(X, t) − Ẋ

det
⋅ ∇℘(X, t) +

τ̂ kB

2
Λ : ∇∇℘(X, t)

= − ∇ ⋅ {Ẋ
det

℘(X, t)} +
τ̂ kB

2
∇ ⋅ {Λ∇℘(X, t)}.

d℘(X, t)

dt
=

∂℘(X, t)

∂t
+ Ẋ

det
(X, t) ⋅ ∇℘(X, t)

= − [∇ ⋅ Ẋ
det

(X, t)]℘(X, t).

d℘(X, t)

dt
= − [∇ ⋅ Ẋ

0
(X, t)]℘(X, t)

= − Ẋ
0
(X, t) ⋅ ∇℘(X, t).



(4.1), which were criticized in section 4.2.4. Unfortunately, some have naively assumed

that Liouville’s theorem holds also for these.

This raises three questions. Is it reasonable to neglect stochastic contributions to the

evolution of the probability density? Is it a reasonable approximation to neglect stochastic

contributions to the equations of motion themselves? And, is it reasonable to approximate

the evolution of an arbitrary function as deterministic?

First, in equation (4.66) it was shown that the dyadic gradient of the probability density

could be neglected not only globally, but also locally for extensive formulations such as the

Laplacian. The relevance of this is that the stochastic contributions to the rate of change of

the probability density, equation (4.78), involve the Laplacian of the probability density. If

the local version of the generalized equipartition theorem, equation (4.66), is a reasonable

approximation, then so also is Liouville’s approximation for the evolution of the probability

density. The double scaler product with the transport matrix makes the term extensive, and

so local fluctuations from the generalized equipartition theorem are negligible in the

thermodynamic limit. Arguably, Liouville’s approximation gives the evolution of the

probability density for the exact stochastic dissipative equations of motion, with the

generalized equipartition theorem applied locally making the stochastic contribution

negligible.

Second, deterministic, non-Hamiltonian equations of motion are invalid for a sub-system

interacting with a reservoir or environment. Since the condition for the equilibrium

probability density to be stationary is that the fluctuation–dissipation theorem be satisfied,

and since the latter says that the variance of the fluctuations must be linearly proportional

to the strength of the dissipation, it is not possible to have a dissipative deterministic non-

Hamiltonian term in the equations of motion without having the corresponding stochastic

term that is related by the fluctuation–dissipation theorem. We shall analyze non-

equilibrium systems in chapter 6, but here one can already see that if purely deterministic

non-Hamiltonian equations are forbidden for equilibrium systems, then they must

necessarily be invalid for non-equilibrium systems. In general deterministic, non-

Hamiltonian equations of motion are unphysical as they violate the equilibrium or non-

equilibrium fluctuation– dissipation theorem.

Deterministic, non-Hamiltonian equations of motion suffer from two additional errors.

Not including the stochastic contribution to the equations of motion neglects the

randomness that is an inevitable consequence of the projection from the total system to

the sub-system. Because of this, purely deterministic non-Hamiltonian equations of motion

cannot represent a real physical system. In addition, lacking a physical basis, the ad hoc

non-Hamiltonian dissipative term has not only the wrong magnitude, but often also the

wrong functional form. It is an illusion to imagine that the fitting parameters that this

freedom from the laws of nature allow in any way compensates for the uncertainty that it

introduces into the results.

Third, the evolution of an arbitrary function is dependent upon the chosen equations of

motion. Since there is no dissipation without fluctuation, it is not reasonable to

approximate such evolution as deterministic.

4.6 Generalized Langevin equation

4.6.1 Perturbation theory

Consider a Brownian particle at r, acted upon by a time-varying external force 

F(r, t) = −∇U(r, t). The Brownian particle is the sub-system and the solvent is the

thermal reservoir with temperature T. The aim here is to account for solvent memory

effects when the external potential varies rapidly. To this end a perturbation or linear

response theory for the particle motion is developed.
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All of the change in external energy over a specified trajectory due to the movement of

the Brownian particle comes from the solvent, and this changes the reservoir entropy from

what it would be for the same trajectory in the absence of the external potential,

Sr(t ∣ [r], [U ]) = Sr,0(t ∣ [r]) −
1

T
∫

t

0

dt′ ṙ(t′) ⋅ ∇U(r(t′), t′).

The quantity ṙ ⋅ ∇U  is the rate of change of external energy due to the particle

motion, and, by energy conservation, this is equal and opposite to the rate of change of

solvent energy additional to what would have occurred for the bare particle on the same

trajectory.

The average velocity at time t in the presence of the external potential is

In the second equality the exponentials have been linearized with respect to the

external potential. In the third equality the facts that the velocity in the bare system

averages to zero, ⟨ṙ(t′)⟩0 = 0, and that it is uncorrelated with the current position, 

⟨ṙ(t′)r(t′)⟩0 = 0, have been used. In the fourth equality the force has been taken outside

of the average because in the bare system r(t′) is uncorrelated with ṙ(t)ṙ(t′), t > t′. In
the final equality, the bare velocity autocorrelation function has been defined as in

equation (4.59),

This is a symmetric, even, matrix, q̈0(τ) = q̈0(−τ) = q̈0(τ)T
.

The final result says that the velocity autocorrelation function of the bare Brownian

particle is the response function that gives the current velocity due to the preceding values

of the external force. This function contains the memory effects of the solvent. Because

these are short-ranged, the result is independent of the lower limit of the integral.

In the event that the external potential is slowly varying, F(r(t′), t′) ≈ F(r(t), t), this

becomes

⟨ṙ(t)⟩U =

∫ d[ṙ] eSr(t∣[r],[U ])/kB ṙ(t)

∫ d[ṙ] eSr(t′∣[r],[U ])/kB

=

∫ d[ṙ] eSr,0(t∣[r])/kB[1 − β∫
t

0

dt′ ṙ(t′) ⋅ ∇U(r(t′), t′)]ṙ(t)

∫ d[ṙ] eSr,0(t∣[r])/kB[1 − β∫
t

0

dt′ ṙ(t′) ⋅ ∇U(r(t′), t′)]

= − β∫
t

0

dt′ ⟨ṙ(t′) ⋅ ∇U(r(t′), t′)ṙ(t)⟩0

= − β∫
t

0

dt′ ⟨ṙ(t)ṙ(t′)⟩0 ⋅ ∇U(r(t′), t′)

=
1

T
∫

t

0

dt′ q̈0(t − t′)F(r(t′), t′).

q̈0(τ) = k−1
B ⟨ṙ(t + τ)ṙ(t)⟩0.
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The final equality uses equation (4.15) for the diffusion constant. This is known as the

Smoluchowski equation and it is applicable in the large drag limit (Smoluchowski 1906). It

is equivalent to the over damped case in which the acceleration is set to zero in the

Langevin equation (4.19), so that the drag force is always equal and opposite to the

applied force, ̇̄r(t) = γ −1F(r̄(t), t) = βDF(r̄(t), t).

One can add the random force to the full result to obtain the Langevin equation with

memory,

ṙ(t) = Rv(t) +
1

T
∫

t

−∞

dt′ q̈0(t − t′)F(r(t′), t′).

One can discretize this to generate the stochastic, dissipative trajectory of the

Brownian particle driven by a rapidly varying external force. The variance of the random

force (actually force divided by mass) can be obtained by setting the external force to zero,

multiplying the respective sides of this by their value at t = t′, and taking the average,

⟨Rv(t)Rv(t′)⟩0 = ⟨ṙ(t)ṙ(t′)⟩0 = kBq̈0(t − t′).

When memory effects are important, this form of the fluctuation–dissipation theorem

tells how the random forces at different times are correlated.

The present perturbation theory has two advantages. First, an explicit formula is given

for the memory function, namely it is the velocity autocorrelation function. Second, the

difficult part of the calculation, the memory function, need be done for the bare system

once only, and the same memory function can be used for arbitrary applied time-

dependent forces.

4.6.2 Thermodynamic fluctuations with memory

We now analyze the effects of memory on the evolution of thermodynamic fluctuations.

This has many similarities to the just treated case of a driven Brownian particle, with the

main differences coming from the more general mixed parity system treated here. This

gives rise to some terms that would otherwise be zero in the pure parity case of a Brownian

particle.

What are here called thermodynamic variables can also be called phase functions or

dynamical variables, and what is here called a perturbation approach can also be called

linear response theory.

4.6.2.1 Bare system

Let x denote a vector of fluctuating thermodynamic variables arranged so that they vanish

on average ⟨x⟩ = 0. Each variable has pure time parity, but the vector is of mixed parity, 

x(Γ†) = εx(Γ), where, as in section 3.3, the parity matrix is diagonal with elements 

εjk = [xj(Γ†)/xj(Γ)]δjk.

The velocity autocorrelation matrix is

¯̇r(t) = ⟨ṙ(t)⟩U

≈
1

T
∫

t

0

dt′ q̈0(t − t′)F(r(t), t)

= β⟨ṙ(t)[r(t) − r(0)]⟩0F(r(t), t)

= βDF(r(t), t).



(4.8

8)

(4.8

9)

(4.9

0)

(4.9

1)

(4.9

2)

(This assumes that x is real. For the case of Fourier transforms, this is defined with a

complex conjugate.) From the parity rules one has q̈0(−τ) = εq̈0(τ)ε = q̈0(τ)T
. This is one

difference from the pure parity case, equations (4.59) and (4.84).

The position–velocity correlation matrix is

with q̇0(−τ) = −εq̇0(τ)ε = −q̇0(τ)T
. Note that q̇0(τ) → 0, τ → ∞. At τ = 0 this is an

antisymmetric matrix, q̇0(0) = −q̇0(0)T ≠ 0. This is in contrast with Brownian motion

above, where the pure parity position–velocity correlation function vanishes at τ = 0.

The position autocorrelation matrix is

q0(τ) = −k−1
B ⟨x(t + τ)x(t)⟩0,

with q0(τ) → 0, τ → ∞. This differs from the symmetrized position autocorrelation

function defined for a free Brownian particle, equation (4.57), because the present

fluctuations are localized about the origin, unlike the free Brownian particle. The parity rule

is q0(−τ) = εq0(τ)ε = q0(τ)T
. Note the negative sign in this definition of the position

autocorrelation matrix, which is implied by the choice of a positive sign in the definition of

the velocity autocorrelation matrix. With this convention, it is generally the case that the

diagonal elements of the autocorrelation matrix are global maxima for the velocity and

global minima for the position at τ = 0. These definitions of the time correlation matrices

may be confirmed by differentiation.

The preceding observation about global extrema is based on the generic properties of

the time correlation function. In probability theory, the covariance inequality, which is a

form of the Cauchy–Schwarz inequality, states that in the present case of real variables

with zero mean,

⟨AB⟩2
0 ⩽ ⟨A2⟩0 ⟨B2⟩0.

In the present context, one can evaluate A at t + τ  and B at t, and each can be any of

the components of x, ẋ, or ẍ. For example, taking A = xj(t + τ) and B = xk(t), this says

{q0(τ)}2
jk ⩽ {q0(0)}jj {q0(0)}kk.

Summing over both indices, this is Tr [q0(τ)q0(−τ)] ⩽ [Tr q0(0)]2
. Taking j = k, this

is {q0(τ)}2
jj ⩽ {q0(0)}2

jj
, which shows that the magnitude of a diagonal element of the

time correlation function decays from its magnitude at τ = 0.

Consider a trajectory x[t]. This can be discretized into n nodes of spacing τ, and

described by a vector consisting of the final position and the velocities leading up to that

position, X(n+1) = {x(t), ẋ(t), ẋ(t − τ), … , ẋ(t − (n − 1)τ)} = {x(t), ẋ
(n)}. The time

step may be positive or negative. Each entry here is itself a vector of thermodynamic

q̈0(τ) = k−1
B ⟨ẋ(t + τ)ẋ(t)⟩0

= − k−1
B ⟨ẍ(t + τ)x(t)⟩0.

q̇0(τ) = k−1
B ⟨x(t + τ)ẋ(t)⟩0

= − k−1
B ⟨ẋ(t + τ)x(t)⟩0,
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variables. Since we are dealing with fluctuations, we take the trajectory entropy to be a

quadratic form,

where x = x(t) and the matrices have an implicit dependence on the time step τ. The

fluctuation matrix S
(n+1,n+1)
0

 has been broken into four sub-matrices in an obvious

notation.

The trajectory correlation matrix is

Q
(n+1,n+1)
0 ≡ k−1

B ⟨X(n+1)X(n+1)⟩
0
.

This can also be decomposed into sub-matrices,

Q0;xx ≡ k−1
B ⟨x(t)x(t)⟩0 = −q0(0),

Q
(nn)

0;ẋẋ
≡ k−1

B ⟨ẋ
(n)

ẋ
(n)⟩

0
= Q̈

(nn)

0 ,

and

Q
(n)

0;xẋ
≡ k−1

B ⟨x(t)ẋ
(n)⟩

0
,

with Q
(n)

0;ẋx
= [Q

(n)

0;xẋ
]
T

.

The elements of the velocity autocorrelation matrix are

Q̈
(nn)

0;jk = k−1
B ⟨ẋ(tj)ẋ(tk)⟩

0
= q̈0(tj − tk).

In the present mixed parity case Q̈
(nn)

0  is symmetric, Q̈
(nn)

0;kα,jγ = Q̈
(nn)

0;jγ,kα, where Roman

letters range over the time nodes and Greek letters range over the thermodynamic

components. Equivalently, q̈0(t) = q̈0(−t)T
 or q̈0;αγ(t) = q̈0;γα(−t).

The position–velocity time correlation n-vector has elements

Q
(n)

0;xẋ;k
≡ k−1

B ⟨x(t)ẋ(tk)⟩0 = q̇0(t − tk).

Each of these elements is actually a matrix of the thermodynamic variables, 

{Q
(n)

0;ẋx;k
}

αβ
= {Q

(n)

0;xẋ;k
}

βα
 = q̇0;αβ(t − tk) = −q̇0;βα(tk − t). Recall that t1 ≡ t.

As usual, the fluctuation matrix is the negative inverse of the correlation matrix 

Q
(n+1,n+1)
0 S

(n+1,n+1)
0 = −I(n+1,n+1)

. It is straightforward to show that the fluctuation sub-

matrices are given by

S0(X(n+1)) =
1

2
S

(n+1,n+1)
0 : X(n+1)X(n+1)

=
1

2
S0;xx : x2 + S

(n)

0;xẋ
: ẋ

(n)
x +

1

2
S

(nn)

0;ẋẋ
: ẋ

(n)
ẋ

(n),
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S0;xx = −[1 − [Q0;xx]−1
Q

(n)

0;xẋ
[Q

(nn)

0;ẋẋ
]
−1

[Q
(n)

0;xẋ
]
T
]

−1

[Q0;xx]−1,

S
(nn)

0;ẋẋ
= −[I(nn) − [Q

(nn)

0;ẋẋ
]
−1

Q
(n)

0;ẋx
[Q0;xx]−1Q

(n)

0;xẋ
]

−1

[Q
(nn)

0;ẋẋ
]
−1

,

and

S
(n)

0;ẋx
= [I(nn) − [Q

(nn)

0;ẋẋ
]
−1

Q
(n)

0;ẋx
[Q0;xx]−1

Q
(n)

0;xẋ
]

−1

[Q
(nn)

0;ẋẋ
]
−1

Q
(n)

0;ẋx
[Q0;xx]−1.

The last two give

−[S
(nn)

0;ẋẋ
]
−1

S
(n)

0;ẋx
= Q

(n)

0;ẋx
[Q0;xx]−1.

For the terminal node this is Q
(n)

0;ẋx;1
[Q0;xx]−1 = −q̇0(0)T

q0(0)−1
, which will be used

below.

The inverse of the velocity fluctuation matrix will turn out to be the memory matrix,

M (nn) ≡ [S
(nn)

0;ẋẋ
]
−1

= −Q
(nn)

0;ẋẋ
+ Q

(n)

0;ẋx
[Q0;xx]−1

Q
(n)

0;xẋ
.

The first term in essence is the unconditional contribution to the entropy from the

direct correlation between the velocities at a pair of nodes. The second term is the indirect

contribution conditional on the fixed terminal value of the fluctuation x(t). For the case of a

free Brownian particle, Q0;xx → ∞, leaving M (nn) = −Q
(nn)

0;ẋẋ
.

The components of the memory matrix are

M
(nn)
jk = −q̈0(tj − tk) − q̇0(t − tj)

T
q0(0)−1

q̇0(t − tk).

Recall that t1 ≡ t. The memory matrix is in total symmetric, M
(nn)
jα,kγ = M

(nn)
kγ,jα

.

The terminal case, j = 1, will be required below, and so with t1 ≡ t one can define the

memory vector with components

M
(n)
k ≡ M

(nn)
1k = −q̈0(t − tk) − q̇0(0)Tq0(0)−1q̇0(t − tk).

In the continuum limit this is the memory function 

M(t − t′) ≡ −q̈0(t − t′) − q̇0(0)T
q0(0)−1

q̇0(t − t′). The memory function is a matrix in

the thermodynamic variables with symmetry Mαγ(t − t′) = Mγα(t′−t). Because the

correlation functions are short-ranged, so is the memory function, M(t) → 0, ∣ t ∣→ ∞.

For the pure parity case, q̇0(0) = 0. Hence the pure parity memory function is just the

velocity autocorrelation function alone.

4.6.2.2 Regression of fluctuation

The derivative of the trajectory entropy with respect to the velocities is

( )
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10)
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11)

(4.1
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∂S0(X(n+1))

∂ẋ
(n)

= S
(n)

0;ẋx
x(t) + S

(nn)

0;ẋẋ
ẋ

(n).

Setting this to zero gives the most likely trajectory conditional on the terminal position 

x1 = x(t1) as

The second equality follows from equation (4.103).

This must be the same as that given by the definitions of the time correlation functions,

which may be confirmed by multiplying the nth element of this on the right by x1 and

taking the average. One obtains for the left-hand side

LHS = ⟨ẋnx1⟩
0

= ⟨ẋnx1⟩0 = kBq̇0(t1 − tn)T,

and for the right-hand side

RHS = −q̇0(t1 − tn)T
q0(0)−1⟨x1x1⟩0 = kBq̇0(t1 − tn)T.

These are equal, which confirms the validity of the approach.

The element ẋn, is the most likely velocity after an interval tn − t1 given that the

system was (will be) at x1 at t1. This is explicitly

This uses the fluctuation form for the equilibrium entropy,

S(x) =
1

2
S′′: xx, S′′= −kB⟨xx⟩−1

0 = q0(0)−1.

The result for the most likely velocity is really just a form of Onsager’s regression

hypothesis, with F = ∂S/∂x = S′′x being the thermodynamic force, and q̇0(tn − t1)
being the mixed parity transport matrix for the given time interval.

This result for the regression of a fluctuation ignores the history of the system beyond t1

(prior to t1 if tn > t1; after t1 if t1 > tn). This is equivalent to assuming that the system is

dynamically disordered at t1. This remark is of relevance in interpreting the perturbation

theory that is now developed.

4.6.2.3 Time-varying perturbation force

Now add to the bare system an external time-varying force that acts on the fluctuation, 

F(x, t) = −∇xU(x, t). For example x might include the electric or magnetic polarization

of the system, and the external force would contain the corresponding applied field. We

ẋ
(n)

= − [S
(nn)

0;ẋẋ
]
−1

S
(n)T

0;ẋx
x1

= Q
(n)

0;ẋx
[Q0;xx]−1

x1

= ⟨ẋ
(n)

x1⟩0 ⟨x1x1⟩
−1
0 x1.

¯

¯

¯

ẋ(tn ∣ x1, t1) = ⟨ẋ(tn)x1⟩0 ⟨x1x1⟩
−1
0 x1

= q̇0(tn − t1) Sx1.

¯
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shall continue to regard x as possibly a mixed parity vector, even if the external forces

couple directly to only some of the variables.

As in section 4.6.1, the rate of change of entropy due to the motion of the

thermodynamic variables is

Ṡ(x, t) =
−1

T
ẋ ⋅ ∇xU(x, t) =

1

T
ẋ ⋅ F(x, t).

The quantity ẋ ⋅ ∇xU = −ẋ ⋅ F(x, t) is the rate of change of external energy due to

the particle motion. This energy comes from the solvent reservoir itself, which decreases

the entropy of the reservoir accordingly; T is the temperature of the reservoir.

As in equation (4.82), for a given trajectory the reservoir entropy is just the bare

trajectory entropy plus the change in entropy over the trajectory due to the motion in the

external field,

 

Differentiating this and using equation (4.107) gives

∂S(X(n+1), [U ])

∂ẋ
(n)

= S
(n)

0;ẋx
x(t) + S

(nn)

0;ẋẋ
ẋ

(n) +
τ

T
F(n) +O(F 2).

This neglects a contribution from the dependence of the force at time t′ on the position

x(t′), which depends on the velocities ẋ(t′′), t′′∈ [t, t′]. This neglected term contains the

product of ẋ(t′) and the derivative of the force, ∇x(t′)F(x(t′), t′)∂x(t′)/∂ẋ(t′′). Since the

most likely value of the velocity is a linear function of the force and of the position x(t),

and since the most likely value of the latter is also linearly proportional to the force, the

neglected term is quadratic in the force.

Setting the derivative to zero gives the most likely velocities and hence the trajectory as

This uses equation (4.103) and the memory matrix given in equation (4.104), 

M (n) ≡ [S
(n)

0;ẋẋ
]
−1

. This confirms the above assertion that the most likely value of the

velocity is a linear function of the force and of the position x(t). This is essentially the

same as the result for Brownian motion, section 4.6.1, with differences arising from terms

that are nonzero in the present mixed parity case.

Evaluating this at the terminal node, ẋ(t1), and writing t1 ≡ t, and transforming back to

the continuum this is

S(X(n+1), [U ]) = S0(X(n+1)) −
1

T
∫

t

0

dt′ ẋ(t′) ⋅ ∇xU(x(t′), t′)

=
1

2
S

(n+1,n+1)
0 : X(n+1)X(n+1) +

τ

T
ẋ

(n)
⋅ F(n).

ẋ
(n)

= − [S
(nn)

0;ẋẋ
]
−1

S
(n)

0;ẋx
x1 −

τ

T
[S

(n)

0;ẋẋ
]
−1

F(n)

= Q
(n)

0;ẋx
[Q0;xx]−1

x1 −
τ

T
M (n)F(n).

¯

¯

t
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The first term on the right-hand side is just the result for the (instantaneous) regression

of a fluctuation in the absence of an external field, equation (4.111), 

ẋ(tn ∣ x1, t1) = q̇0(tn − t1) Sx1. The memory function is given by equation (4.106),

The memory function is short-ranged and so the integral can be truncated after some

fixed interval beyond the relaxation time.

One can perform similar analysis to obtain the most likely velocity at t, given the

position at some prior time t′ and the velocities leading up to t, ẋ. In this case the memory

function changes to reflect this different condition (Attard 2012, equation (10.161)).

4.6.2.4 Internal thermodynamic force

As mentioned, the way in which the external force enters the above equations is that it

gives the rate of entropy production on the trajectory, Ṡ(x, t) = ẋ ⋅ F(x, t)/T . But as

pointed out by Onsager (1931) in his regression hypothesis, the system behaves the same

whether the current state is bought about by a previously applied external force or by a

spontaneous fluctuation of the system itself. In the latter case the internal thermodynamic

force is the gradient of the entropy, and the rate of change of system entropy is just 

Ṡ(x) = ẋ ⋅ ∇xS(x). Hence for a ‘bare’ system one can write

F(x, t)

T
⇒ ∇xS(x(t)) = S′′x(t),

the second equality holding in the linear regime. With this replacement the most likely

velocity in the bare system without an applied force is

 

This result gives ẋ(t ∣ X), the most likely velocity conditional on the specified preceding

trajectory X = {x, ẋ}, leading up to the current position x = x(t). The result for the

regression of a fluctuation, equation (4.111), namely ẋ(t′∣ x, t) = q̇0(t′−t) S′′x, gives the

most likely current velocity given the position at a different time and not specifying the

trajectory leading up to that position. The present result is useful when memory effects are

non-negligible and one has knowledge of how the system reached its current state.

One can form dyadic matrices by multiplying this on the right by k−1
B x(0). Taking the

average gives

ẋ(t) = − q̇0(0)T
q0(0)−1

x(t) −
1

T
∫

t

0

dt′ M(t − t′)F(x(t′), t′).̄

¯

M(t − t′) ≡ − q̈0(t − t′) − q̇0(0)T
q0(0)−1

q̇0(t − t′)

= − k−1
B ⟨ẋ(t)ẋ(t′)⟩0 + k−1

B ⟨ẋ(t)x(t)⟩0⟨x(t)x(t)⟩−1
0 ⟨x(t)ẋ(t′)⟩0.

ẋ(t) = − q̇0(0)T
q0(0)−1

x(t) − ∫
t

0

dt′ M(t − t′)∇xS(x(t′))

= q̇0(0)q0(0)−1
x(t)

+ ∫
t

0

dt′ {q̈0(t − t′) − q̇0(0)q0(0)−1
q̇0(t − t′)}S′′x(t′).

¯

¯

¯
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This is, presumably, an identity.

4.6.2.5 Generalized Langevin equation

Adding a stochastic zero mean term to the above result for the most likely velocity due to a

perturbing time-dependent external force gives the generalized Langevin equation

ẋ(t) = R(t) + q̇0(0)q0(0)−1
x(t) −

1

T
∫

t

0

dt′ M(t − t′)F(x(t′), t′).

The covariance of the random forces is given by the memory matrix

⟨R(t)R(0)⟩0 = −kBM(t),

where the memory matrix is given by equation (4.118).

This is readily checked for the discretized trajectory, in which case one has

The covariance of the fluctuation in velocity, the first equality, can be taken to be the

same as in the bare system, the second equality. The fourth equality is the definition of the

memory function as the velocity autocorrelation matrix, equation (4.104). The probability

distribution of the last n random forces is just the corresponding multivariate Gaussian.

The memory matrix satisfies M(−t) = M(t)T
. The relationship between the covariance

of the random ‘force’ and the memory function is the same as for Brownian motion,

equation (4.86). That the memory function gives both the covariance of the random forces

and the dissipative force is the fluctuation–dissipation theorem for a system with memory.

The generalized Langevin equation in this form has the advantage that the memory

function is constructed from the bare time correlation functions and it can be used for

arbitrary applied forces.

For the case of the internal thermodynamic force for a fluctuation in the bare system, 

F(x, t)/T ⇒ ∇xS(x(t)) = S′′x(t), the generalized Langevin equation is

t

q̇0(t) ≡ − k−1
B ⟨ẋ(t)x(0)⟩0

= − k−1
B ⟨ẋ(t)x(0)⟩

0

= − k−1
B q̇0(0)q0(0)−1⟨x(t)x(0)⟩0

− k−1
B ∫

t

0

dt′ {q̈0(t − t′) − q̇0(0)q0(0)−1
q̇0(t − t′)}S′′⟨x(t′)x(0)⟩0

= q̇0(0)q0(0)−1
q0(t)

+ ∫
t

0

dt′ {q̈0(t − t′) − q̇0(0)q0(0)−1
q̇0(t − t′)}q0(0)−1

q0(t′).

¯

⟨R(n)R(n)⟩ = ⟨[ẋ
(n) − ẋ

(n)
][ẋ

(n) − ẋ
(n)
]⟩

= ⟨ẋ
(n)

ẋ
(n)⟩

0

= − kB[S
(nn)

0;ẋẋ
]
−1

= − kBM (nn).

¯̄
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ẋ(t) = R(t) + q̇0(0)q0(0)−1
x(t) − ∫

t

0

dt′ M(t − t′)S′′x(t′).

The memory function, equation (4.118), and the covariance of the random force

remain unchanged. It can be shown that these results are formally the same as the

generalized Langevin equation given by the projector operator formalism of Zwanzig

(1961) and Mori (1965) (see Attard 2012 section 10.7). The present approach gives the

memory function explicitly in terms of the time correlation functions.

Summary

Brownian motion is the archetypical stochastic process in which hidden forces

contribute as well as the extant adiabatic forces. These hidden forces arise from

projection of reservoir interactions, they must be treated statistically, and they obey

certain thermodynamic and time symmetry rules.

The Langevin equation and the fluctuation–dissipation theorem are consequences of

the second entropy for transitions. The dissipative force drives the system up the

reservoir entropy gradient, and the fluctuation force randomizes the transition, with a

bias toward more probable sub-system macrostates. These compete with each other,

reaching a balance in the equilibrium macrostate.

The Fokker–Planck equation gives the evolution of the probability density under

stochastic, dissipative equations of motion. The equilibrium probability density is

stationary under the second entropy stochastic, dissipative equations of motion.

The equation due to Liouville for the time derivative of the probability density is an

exact theorem for adiabatic equations of motion. It is an approximation for

deterministic, dissipative equations of motion that is valid when the generalized

equipartition theorem can be applied locally.

The first generalized equipartition theorem relates the dyadic of the gradient of the

reservoir entropy to the dyadic gradient of the reservoir entropy. These two are equal

on average, and they may be approximately equal locally on likely points in phase

space. The second generalized equipartition theorem says that the average of dyad

formed from the state coordinate and the coordinate gradient of the reservoir entropy

is proportional to the identity matrix.

The Langevin equation can be generalized to replace the friction coefficient by a

memory function for a Brownian particle or thermodynamic variable that is driven by a

time-dependent external potential. The formalism holds also for thermodynamic

fluctuations.
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Chapter 5

Equilibrium statistical mechanics and entropy in

classical phase space

‘Indeed it is clear that any individual uniform distribution, which might arise after a
certain time from some particular initial state, is just as improbable as an individual non-
uniform distribution…. It is only because there are many more uniform distributions than
non-uniform ones that the distribution of states will become uniform in the course of
time.’

(Boltzmann 1877)

‘A new scientific truth does not triumph by convincing its opponents and making them see
the light, but rather because its opponents eventually die, and a new generation grows up
that is familiar with it’

(Planck 1949)

The main aim of this chapter is to formulate classical equilibrium statistical mechanics

from first principles. The approach is to derive the Maxwell–Boltzmann distribution from

Hamilton’s classical equations of motion in phase space. The stochastic, dissipative

equations of motion for phase space for an open sub-system are also derived. Two

approximations for the information entropy are tested against exact results for the two-

dimensional Ising model.

The Boltzmann distribution is often invoked for an equilibrium system,

℘α =
1

Z(T )
e−Uα/kBT .

Here ℘α is the probability of the state α, Uα is its potential energy, and T is the

temperature. Despite its use being common in papers and textbooks, as a general result

there is a quite serious problem with this that is discussed in section 5.3.3. The point of

deriving the Maxwell–Boltzmann distribution from first principles is to explain why

equilibrium statistical mechanics is formulated the way it is, and why the Boltzmann

distribution in this form cannot be blindly applied to the states of an equilibrium system

5.1 Phase space and Hamilton’s equations of motion

The preceding chapter dealt with the properties of Brownian motion, which is a generic

model of the stochastic behavior of a macroscopic coordinate due to the hidden

deterministic behavior of microscopic coordinates. Most of the results carry over directly to

the stochastic behavior of microscopic coordinates of a sub-system due to the hidden

deterministic behavior of a reservoir with which it interacts. Here and in the remainder of

this chapter the focus is on the formulation of classical equilibrium statistical mechanics in

terms of classical phase space, eventually leading to the Maxwell–Boltzmann probability

distribution and to the stochastic, dissipative equation of motion in phase space.

5.1.1 Classical phase space
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In this section points in phase space are identified as the microstates of a classical system.

At the simplest level this is the space of positions and linear momenta of the particles in

the sub-system. In the present case the sub-system is isolated from the rest of the

Universe and is the same as the system. It is emphasized that this is the adiabatic case in

which no interactions with a reservoir are permitted.

For N particles in three dimensions phase space is 6N-dimensional, with a phase space

point being denoted Γ = {q,p}, with the positions being

q = {q1,q2,… ,qN}, qj = {qjx, qjy, qjz},

and the momenta being

p = {p1,p2,… ,pN}, pj = {pjx, pjy, pjz}.

 

At this level of description the particles are modeled as spherical. Although it is possible

to augment phase space to include orientational degrees of freedom, the present choice is

sufficiently realistic to derive the formalism of statistical mechanics without needlessly

complicating the mathematical analysis.

The assertion that 6N-dimensional classical phase space represents the microstates of

the isolated sub-system is a statement about the level of description that is necessary and

sufficient to describe the physical properties of the present sub-system with an acceptable

level of accuracy. It is a statement that for this particular sub-system not only are

orientational effects negligible, but so also are quantum effects, the electronic degrees of

freedom, intra-nuclear configurations, etc. These effects may be subsumed grossly into an

effective interaction potential. But in any case, having decided upon classical phase space,

no finer level of description will be pursued.

Of course, this raises the question: if a point in classical phase space is an effective

microstate, then might it not have some internal entropy, and might not this entropy vary

from point to point? In other words, what is the entropy of a point in classical phase space?

Before addressing these questions we first give Hamilton’s equations of motion for

classic phase space. A derivation of the primacy of classical phase space and of Hamilton’s

classical equations of motion from the underlying quantum mechanical equations for the

system is given in chapter 7.

5.1.2 Hamilton’s equations of motion

Hamilton’s equations of motion are

ṗ
0 =

−∂H(Γ)

∂q
, and q̇

0 =
∂H(Γ)

∂p
.

The Hamiltonian, H(Γ), is the total energy of the isolated sub-system, and it is the

sum of the kinetic and potential energies, H(Γ) = K(p) + U(q). Usually the kinetic

energy is

K(p) =
1

2m

N

∑
j=1

∑
α=x,y,z

p2
jα =

p2

2m
.

Here m is the mass of the particles, assuming they are all identical. The momentum

derivative of this yields the velocity, q̇
0 = ∂K(p)/∂p = p/m.
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The superscript 0 here and throughout (excepting the quantum adiabatic evolution in

subsection 9.4.4) signifies the Hamiltonian or adiabatic evolution. In the present case the

sub-system is isolated, and Hamilton’s equations of motion are exact and entirely

characterize the motion of a point in phase space. In later parts of this chapter and in most

of this book the sub-system interacts with a reservoir, and Hamilton’s equations of motion

for the sub-system is just part of the total evolution. In such cases the superscript 0 is

necessary to distinguish the adiabatic part internal to the sub-system from the dissipative

and the stochastic parts due to the reservoir, and from the total evolution that is the sum

of all three parts.

The energy is a constant of the motion of the isolated sub-system,

In addition to the energy being a constant of the adiabatic motion, it is also

approximately linear additive, which is to say it is extensive with the sub-system size. (It is

exactly linear additive in the thermodynamic limit when interactions with and across

boundaries are relatively negligible.) Because of these two facts energy plays a pre-

eminent role in the analysis that follows.

There are six other constants of the adiabatic motion, namely the components of the

linear and angular momentum. These tend to play a comparatively minor role in

equilibrium thermodynamics and statistical mechanics. (They can be important in

hydrodynamics and non-equilibrium thermodynamics.) The reason that momentum is

usually ignored is possibly that the conservation law for them depends upon the system

having linear and rotational symmetry. Since almost all systems have a fixed boundary, this

symmetry is broken, and in practice linear and angular momentum are not conserved if the

boundary interactions are accounted for.

In addition to conserving energy, Hamilton’s equations of motion are incompressible.

That is

This vanishing of the compressibility means that phase space volume is conserved

during its adiabatic evolution.

To see the relationship between compressibility and volume change, let Γ1 be the initial

phase space point, and let Γ2 = Γ1 +ΔtΓ̇
0

1 be the adiabatically evolved point in an

infinitesimal time step Δt. The relative change in volume element is

dH(Γ)

dt
= Γ̇

0
⋅ ∇H(Γ)

= q̇
0 ⋅ ∇qH(Γ) + ṗ

0 ⋅ ∇pH(Γ)

=
N

∑
j=1

∑
α=x,y,z

{
∂H(Γ)

∂pjα

∂H(Γ)

∂qjα
−

∂H(Γ)

∂qjα

∂H(Γ)

∂pjα
}

= 0.

∇ ⋅ Γ̇
0
= ∇q ⋅ q̇

0
+∇p ⋅ ṗ

0

=
N

∑
j=1

∑
α=x,y,z

{
∂ 2H(Γ)

∂qjα∂pjα
−

∂ 2H(Γ)

∂pjαqjα
}

= 0.
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)The second equality follows because the determinant is the product of the eigenvalues,

each one of which is of the form 1 + Δtλk, and ∏k(1 + Δtλk) = 1 +Δt ∑k λk + O(Δ2
t ),

where the sum of the eigenvalues is just the trace of the corresponding matrix. One sees

that if the trajectory velocity has no divergence, then the ratio of volume elements on a

trajectory is unity, which is to say they are incompressible.

The incompressibility of phase space during adiabatic evolution will be used to obtain an

important result for the conservation of probability density on an adiabatic trajectory

below.

5.1.2.1 Uniqueness of the adiabatic trajectory

The adiabatic trajectory passing through Γ0 at time t0 is Γ0(t ∣ Γ0, t0) = Γ0(t − t0 ∣ Γ0).
The equality holds because an equilibrium system is homogeneous in time. For Hamilton’s

equations of motion, for an infinitesimal time step Δt, the evolution of the adiabatic

trajectory is

Γ2 ≡ Γ0(t +Δt Γ1) = Γ1 +ΔtΓ̇
0
(Γ1).

By the fundamental theorem of calculus, the full trajectory is obtained by integrating

Hamilton’s equations,

Γ0(t ∣ Γ0) = Γ0 + ∫
t

0

dt′ Γ̇
0
(Γ0(t′∣ Γ0)).

 

Since t here may be taken to be positive or negative, Hamilton’s equations specify a

unique trajectory passing through each point in the isolated sub-system’s phase space.

Each phase space point has a unique destination in a transition forward in time, and a

unique destination in a transition backward in time. This means that adiabatic trajectories

can never cross or terminate.

This in turn means that a region of phase space adiabatically evolves in a unique and

well-defined fashion: phase space points initially interior to the region can never cross the

evolving boundaries as they themselves evolve. Conversely points initially exterior to the

specified region can never enter the region. The evolution of a region of phase space is

sketched in figure 5.1.

∣
dΓ2

dΓ1
∣ = ∣I + Δt

dΓ̇
0

1

dΓ1
∣

= 1 +Δt Tr
dΓ̇

0

1

dΓ1
+ O(Δ2

t )

= 1 +Δt∇ ⋅ Γ̇
0
.∣
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Figure 5.1. An adiabatic trajectory in phase space (curved arrow), and two regions of

phase space (circle and ellipse) whose boundaries are related by adiabatic evolution.

The labels refer to the times when the trajectory enters and exits the regions

considered as fixed in phase space.

Because adiabatic trajectories cannot cross the boundary of an evolving region of phase

space, the number of trajectories inside an evolving region is a constant of the adiabatic

motion. By the incompressibility of Hamilton’s equations proved above, the volume of an

evolving region is also a constant of the adiabatic motion. This is also sketched in figure

5.1, where the regions have different shapes but the same volume. These two constants of

the motion can be combined to conclude that the number density of trajectories in phase

space is a constant of the adiabatic motion. This result will be used in the following

subsection, section 5.2.1, to discuss a result due to Boltzmann, namely the uniformity of

phase space weight on an adiabatic trajectory.

5.1.2.2 Reversibility of Hamilton’s equations

Hamilton’s equations of motion are reversible. To see what this means, define the

conjugate of a phase space point of the isolated sub-system as the point with all the

momenta reversed,

Γ = {q,p} ⇔ Γ
† = {q, −p}.

The energy is insensitive to the direction of the particle’s velocities,

H(Γ) = H(Γ†).

 

The adiabatic rate of change of a conjugate point is the negative conjugate of that of

the original point,

 

Consider an adiabatic transition over a single time step, Γ2 = Γ1 +ΔtΓ̇
0
(Γ1). To

leading order it does not matter whether the velocity is evaluated at Γ1 or Γ2, 

Γ̇
0
(Γ1) = Γ̇

0
(Γ2) + O(Δt). Hence in view of the fact that a unique adiabatic trajectory

passes through each point in phase space, and the above result for the velocity of the

conjugate point, one has three symmetries

Γ̇
0
(Γ†) = {q̇

0(Γ†), ṗ
0(Γ†)}

= {
∂H(Γ†)

∂p†
,
−∂H(Γ†)

∂q†
}

= {
−∂H(Γ)

∂p
,
−∂H(Γ)

∂q
}

= − Γ̇
0
(Γ)†.
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Here Γ can be either Γ1 or Γ2. One sees that microscopic reversibility is a combination

of temporal and conjugate reversibility.

Integrating these over time an adiabatic trajectory has symmetries

The first of these can be called the temporal or time reversibility of Hamilton’s

equations of motion. Microscopic reversibility, the final one, says that if Γ2 is the adiabatic

destination of Γ1 going forward in time, then Γ
†
2
 is the adiabatic destination of Γ

†
1
 going

backward in time. This is sketched in figure 5.2. Note that time goes in the opposite

direction on these trajectories. This is what is meant by the microscopic reversibility of

Hamilton’s equations of motion.

Figure 5.2. Microscopic reversibility for two adiabatic trajectories, from Γ1 (upper)

and Γ
†
1
 (lower). The arrows point in the direction of the transition; the two trajectories

move in opposite directions in time.

5.1.2.3 Time-dependent potential

At this point a small digression can be made to address the nature of microscopic

reversibility in the case that the sub-system has applied to it an external potential that

varies explicitly with time, U(Γ, t).
Consider the time interval [t1, t2], and let the termini of the adiabatic trajectory satisfy 

Γ2 = Γ0(t2 ∣ Γ1, t1). This of course can equally well be written Γ1 = Γ0(t1 ∣ Γ2, t2). On

this time interval one can also write Γ′= Γ0(t′∣ Γ1, t1) = Γ0(t′∣ Γ2, t2), t′∈ [t1, t2].
Define the conjugate potential on this time interval as

Γ2 = Γ1 +ΔtΓ̇
0
(Γ) ⇔ Γ1 = Γ2 −ΔtΓ̇

0
(Γ), (temporal)

⇔ Γ
†
1 = Γ

†
2 +ΔtΓ̇

0
(Γ†), (conjugate)

⇔ Γ
†
2 = Γ

†
1 −ΔtΓ̇

0
(Γ†), (microscopic).

Γ2 = Γ0(τ ∣ Γ1) ⇔ Γ1 = Γ0(−τ ∣ Γ2), (temporal)

⇔ Γ
†
1 = Γ0(τ Γ

†
2), (conjugate)

⇔ Γ
†
2 = Γ0(−τ Γ

†
1), (microscopic).∣ ∣
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Ũ(Γ, t) ≡ U(Γ, t1 + t2 − t), t ∈ [t1, t2].

This is in effect the temporal mirror image of the original potential on the time interval.

In so far as the applied potential arises from atoms and molecules external to the system,

reversing its time dependence in this way as well as conjugating the momenta of the

particles of the sub-system is equivalent to reversing the momenta of all the atoms and

molecules in the Universe.

This conjugate potential is required for the reverse trajectory,

Γ2 = Γ0(t2 Γ1, t1; [U ]) ⇔ Γ
†
1 = Γ0(t2 Γ

†
2, t1; [Ũ]),

and

Γ′= Γ
0(t′ Γ1, t1; [U ]) ⇔ Γ′† = Γ

0(t′′ Γ
†
2, t1; [Ũ]), t′′≡ t1 + t2 − t′.

This is one form of microscopic reversibility for a time-dependent potential.

5.2 Entropy of a point in phase space

The aim in this section is to derive the entropy of a point in the phase space of the isolated

system, S(Γ). By the axioms of chapter 1, this is in essence equivalent to the weight

density w(Γ) and the probability density ℘(Γ). This ‘internal’ entropy of a phase space

point for the isolated system is a necessary prerequisite for the derivation of the Maxwell–

Boltzmann probability for an open sub-system that can exchange energy with a heat

reservoir (see section 5.3).

In the following sub-sections, three approaches are discussed, each with the same aim

of proving that the entropy density is constant in phase space, which means that it can be

set to zero, S(Γ) = 0. Equivalently, the weight density and the probability density are

constant, w(Γ) = const. and ℘(Γ) = const. The first approach, section 5.2.1, is the

ergodic hypothesis, which essentially takes the result to be an axiom. The second

approach, section 5.2.2, essentially proves that the probability density is uniform on an

adiabatic trajectory, and assumes that this implies the final result. The third approach,

section 5.2.3, derives the final result from time homogeneity.

5.2.1 Ergodic hypothesis

In most books on statistical mechanics the uniform weight density of phase space is but

one of a several axioms that together form what is called the ergodic hypothesis

(Boltzmann 1871). This hypothesis is traditionally central to the formulation of statistical

mechanics; Münster (1969), for example, discusses the role of the former in the axiomatic

development of the latter.

The ergodic hypothesis comprises three points: for an isolated sub-system

1. all points in phase space with a given energy lie on a single trajectory;

2. the probability density in phase space is uniform on an energy hypersurface;

3. the probability density in phase space is uniform.

The second of these is sometimes called the equal a priori hypothesis (Pathria 1972,

section 2.3).

The first of these assertions says that a trajectory is dense on the energy hypersurface

that it is confined to. It further says that the hypersurface is not broken up into distinct

regions each covered by its own trajectory that can’t communicate with the rest.

∣ ∣∣ ∣
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Since adiabatic trajectories do not terminate, they must be in the form of loops. Hence,

since every point on the energy hypersurface belongs to an adiabatic trajectory, it is

obvious that the entire energy hypersurface must be covered by one or more loops, each

distinct and non-communicating. According to this first axiom, there is only one such loop

for the whole energy hypersurface.

In the formal development of statistical mechanics this first axiom appears to be

essential, because it is necessary to go from a property established for a single trajectory

to a property of the entire energy hypersurface (and thence to a property of the entire

phase space). In the following sub-subsection, following Boltzmann it is established that the

probability density on a given trajectory has a uniform value. But it does not follow that this

value must be the same on all distinct trajectories with the same energy. Hence without the

first axiom of the ergodic hypothesis it is not possible to prove that the second axiom is a

consequence of Boltzmann’s result.

It strains credulity that an energy hypersurface with Avogadro’s number of dimensions

should be covered by one and only one trajectory loop. As a contrary example, if the

isolated sub-system was itself composed of isolated sub-systems, then there would be at

least one distinct adiabatic trajectory loop for each such sub-system, the starting position

of each being arbitrary. Further, the total energy can be arbitrarily partitioned amongst the

isolated sub-sub-systems. Each combination of starting positions or energies corresponds

to a different trajectory loop of the total sub-system. This example obviously violates the

first axiom of the ergodic hypothesis.

Some texts emphasize the second assertion in the ergodic hypothesis, which is claimed

to be self-evident: because there is nothing to choose between phase space points with the

same energy, they must all have the same weight. (Against this one could point out that

the speed of the trajectory varies on the energy hypersurface, and this could reasonably be

expected to influence the weight.) Equivalently, on the basis of the first axiom, it is claimed

that the system must pass thorough all possible points ‘without fear or favor’ (Pathria

1972, p 38).

Whether or not one finds the second assertion self-evident, it is the third assertion that

is the one that is really needed to obtain the Maxwell–Boltzmann probability density. The

point is that even if one accepts the second assertion, or the result derived next—that the

probability density is uniform on a trajectory—one still has to find a way to prove the third

assertion.

5.2.2 Constant probability on a trajectory

Consider the adiabatic trajectory Γ0(t ∣ Γ0), which passes through the point Γ0 at time t =

0. Consider also the possibly time-dependent phase space probability density, ℘(Γ, t) that

has initial value ℘(Γ, 0) = ℘0(Γ). Using the adiabatic equations of motion for the present

isolated sub-system, the Fokker–Planck equation, equation (4.36), for the partial time

derivative is

It is worth emphasizing that this result is a direct consequence of the conservation law

for the transition probability, equation (3.17). The second equality follows because the

adiabatic equations of motion are incompressible.

With this, the total rate of change of the probability density is

∂℘(Γ, t)

∂t
= −∇ ⋅ Γ̇

0
℘(Γ, t) − Γ̇

0
⋅ ∇℘(Γ, t)

= − Γ̇
0
⋅ ∇℘(Γ, t).
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The first equality is the definition of the total rate of change with time. Combining this

with the Fokker–Planck equation gives the second equality. This is just Liouville’s theorem,

equation (4.80), which is exact for an adiabatic trajectory. This vanishing of the total time

derivative says that the probability density in phase space is a constant of the adiabatic

motion, ℘(Γ0(t ∣ Γ0), t) = ℘0(Γ0).

One can give a straightforward physical interpretation to this result. As has been

mentioned above in connection with figure 5.1, the adiabatic incompressibility of phase

space means that volume is conserved during their evolution under Hamilton’s equations

of motion. Since adiabatic trajectories do not cross, trajectories inside the volume stay

there for their entire evolution. Combined with the conservation law for weight during a

transition, equation (3.17), this implies that the total weight inside the volume is a constant

of the adiabatic motion. Since the volume itself is constant, this means that the weight

density, and hence the probability density is constant along the length of a trajectory.

Boltzmann gave an equivalent argument that is also illuminating. In figure 5.1 are

shown two regions, the second of which evolved from the first adiabatically. An adiabatic

trajectory is also shown, along with the times it entered, tA and tA′, and exited, tB and tB′,

the respective regions (considered now as fixed in phase space). Since the evolution of the

region is defined by the evolution of the boundary, the difference in these respective times

must be equal, tB′ − tB = tA′ − tA. This means that the trajectory spent an equal amount

of time in each region, tB − tA = tB′ − tA′. Assuming that the weight of a region of phase

space is proportional to the time spent in it, it follows that regions of phase space lying on

a single trajectory have the same weight density.

Both arguments show that the probability density is a constant of the adiabatic motion 

℘(Γ0(t ∣ Γ0), t) = ℘0(Γ0).
Now for the present equilibrium system, the probability density must be independent of

time,

∂℘(Γ, t)

∂t
= 0.

Hence ℘(Γ, t) = ℘(Γ). These last two results imply that ℘(Γ0(t ∣ Γ0)) = ℘0(Γ0). This

says that the probability density is uniform along the length of an adiabatic trajectory. That

is, if Γ1 and Γ2 lie on the same trajectory, Γ2 = Γ0(t2 ∣ Γ1, t1), then they must have the

same probability density, ℘0(Γ2) = ℘0(Γ1).

With the first part of the ergodic hypothesis, this result becomes that all points that lie

on the same energy hypersurface have equal probability density. As mentioned above, this

is the equal a priori hypothesis (Pathria 1972, section 2.3). In equation form this says that

given that the isolated sub-system has energy E, then the phase space probability density

is

℘(Γ ∣ E) =
δ(H(Γ) − E)

Ω(E)
.

d℘(Γ, t)

dt
=

∂℘(Γ, t)

∂t
+ Γ̇

0
⋅ ∇℘(Γ, t)

= − Γ̇
0
⋅ ∇℘(Γ, t) + Γ̇

0
⋅ ∇℘(Γ, t)

= 0.
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Here the normalizing factor is essentially the number of phase space points in the energy

hypersurface,

Ω(E) = ∫ dΓ δ(H(Γ) − E).

 

However, even if one accepts this result (notwithstanding the arguments given above

against the first axiom), one still has to convert this result from a conditional probability

density to an unconditional probability density. That is, it is the phase space weight w(Γ)
that is required.

Formally the unconditional probability density is

Again formally, the entropy of an energy macrostate is given by the weight of the

macrostate, which is just the sum total of the phase space weight in the macrostate

With this the phase space probability density

In general, since neither W(H(Γ)) nor Ω(H(Γ)) are known (contrast equation (5.23)

with equation (5.25)), this is not a constant in phase space.

However, if one assumes uniform phase space weight, w(Γ) = 1 (any set of weights

can be re-scaled by a positive factor, and so if this is constant, then that constant may be

set to unity), then one has

W(E) = Ω(E) iff ω(Γ) = 1,

and the phase space probability density becomes

℘(Γ) =
1

W
,

which is the desired constant in phase space. Regrettably this result begs the question:

it shows that phase space has uniform weight if it is assumed that phase space has uniform

weight.

5.2.3 Time and energy

℘(Γ) = ∫ dE ℘(Γ ∣ E)℘(E)

= ∫ dE
δ(H(Γ) − E)

Ω(E)

eS(E)/kB

W
.

eS(E)/kB ≡ W(E) = ∫ dΓ ω(Γ) δ(H(Γ) − E).

℘(Γ) = ∫ dE
δ(H(Γ) − E)

Ω(E)

W(E)

W

=
W(H(Γ))

Ω(H(Γ)) W
.
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Now the weight density of phase space is derived from a more satisfactory perspective that

avoids invoking the three axioms of the ergodic hypothesis.

The adiabatic trajectory Γ0(t ∣ Γ0) that is determined by the Hamiltonian is confined to

the energy hypersurface H(Γ) = E. This suggests proceeding in two stages to obtain the

phase space weight density: first obtain the weight density on an energy hypersurface, and

then obtain the density of energy hypersurfaces in phase space.

Define a coordinate system for the energy hypersurface, γ(Γ). The relationship is

invertible, Γ(γ,E). The trajectory may be written as γ(t) = γ(Γ(t)). It is axiomatic that

an average of a phase space function is a simple time average over a trajectory, which is

to say that time is homogeneous. In consequence of this, the weight density on the energy

hypersurface must be inversely proportional to the speed of the trajectory at that point,

The second equality follows because on a trajectory over a time step, 

∣ γ2 − γ1 ∣=∣ Γ2 − Γ1 ∣. Since a time average is a simple average, the weight is large in

regions of slow speed because the system spends more time there. This physical picture is

incompatible with the equal a priori hypothesis. In the left of figure 5.3 can be seen an

adiabatic trajectory of varying speed. Closely spaced marks signify slow speed, in which

regions the trajectory spends more time, and which therefore have larger weight.

Figure 5.3. Left: an adiabatic trajectory in phase space marked in equal time

increments. Right: contours of the energy hypersurface. The boxes signify regions of

phase space, with the dashed region having greater weight than the dotted region in

each case, all other things being equal.

The proportionality constant neglected here is essentially the length of the time interval

over which the weights are measured. It is important to note that this cannot depend upon

the energy E, and that it must be the same constant on different energy hypersurfaces.

The assertion that time is uniform, and that the weight of a state is proportional only to the

time spent in the state, precludes any such energy dependence.

The weight density of phase space itself is related to this this by the usual rule for the

transformation of densities,

ω(γ ∣ E) ∝
1

∣ γ̇
0 ∣

=
1

∣ Γ̇
0
∣
.

d
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The second factor from the transformation of coordinates, ∣ ∇H(Γ) ∣ /dE, is

essentially the number of energy hypersurfaces per unit phase space. One can perhaps see

the need and form for this transformation more clearly by noting that the volume of the

energy hypersurface can be equally written

With this transformation rule, the expression for the phase space weight gives the

same total weight whether expressed as an integral over the energy hypersurface, or as an

integral over phase space,

 

The result for ω(Γ ∣ E) says that the weight is larger for steep gradients because in

such regions there are more energy hypersurfaces per unit phase space distance. This real

physical effect is also inconsistent with the equal a priori hypothesis. In the right of figure

5.3 can be seen the contours of the energy hypersurface of an isolated system. The box

crossed by many contour lines has greater weight than the box crossed by few. The former

lies in a region with steeper energy gradient than the latter.

The function ω(Γ ∣ E) is the phase space weight density conditional on a given energy.

The unconditional weight of an isolated system phase space point is

As was argued above, there cannot be an additional weight factor w̃(E) ⇒ w̃(H(Γ))
included in this final result because this would violate the principle of time homogeneity.

ω(Γ ∣ E) = ω(γ ∣ E)
dγ

dΓ
, ∣ H(Γ) − E ∣< dE

=
1

∣ Γ̇
0
∣

∣ ∇H(Γ) ∣

dE
, ∣ H(Γ) − E ∣< dE

=
∣ ∇H(Γ) ∣

∣ Γ̇
0
∣

δ(H(Γ) − E).

A(E) = ∮
E

dγ

= ∫ dΓ ∣ ∇H(Γ) ∣ δ(H(Γ) − E).

W(E) = ∮
E

dγ ω(γ ∣ E)

= ∫ dΓ ω(γ ∣ E) ∣ ∇H(Γ) ∣ δ(H(Γ) − E)

= ∫ dΓ ω(Γ ∣ E).

ω(Γ) = ∫ dE ω(Γ ∣ E)

=
∣ ∇H(Γ) ∣

∣ Γ̇
0
∣

.
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This has a straightforward physical interpretation. The weight of a phase space point is

proportional to the time the system spends in the volume element about that point, which

is to say that it is inversely proportional to the speed of the trajectory at that point. Since

the system is confined to an energy hypersurface, the weight of a phase space point is also

proportional to the number of energy hypersurfaces per unit volume, which is to say that it

is proportional to the gradient of the energy at that point.

Both of these properties—the trajectory speed and the energy gradient—are local

properties in phase space. The big advantage of this derivation of the weight density of

phase space, ω(Γ), is that it relies only on the properties of the particular point, Γ. This

contrasts with the ergodic hypothesis, for example, where one has to postulate a global

property, namely that a single trajectory passes infinitesimally close to every point on an

energy hypersurface, and also that the weights on all energy hypersurfaces are equal.

In order to evaluate the energy gradient and the speed that appear here, position and

momentum components have to be added together, and these have different dimensions.

To get around this problem a metric element, the length scales lq and lp, can be introduced

into the definition of the scalar product and the gradient operator (Galea and Attard 2002).

Scalar products have the form

Γ1 ⋅ Γ2 =
1

l2q
q1 ⋅ q2 +

1

l2p
p1 ⋅ p2,

and gradients have the form

∇f(Γ) = l2q
∂f(Γ)

∂q
+ l2p

∂f(Γ)

∂p
.

The ratio of the particular values chosen for these length scales will change the value

of the length of the gradient and of the speed of the trajectory, but it will make no

difference to the final conclusion that the two cancel.

With these scale factors, the square of the magnitude of the gradient of the Hamiltonian

is

The proportionality of these is a remarkable coincidence, and is a unique feature of

Hamilton’s equations of motion. The proportionality constant lqlp has the dimensions of

energy × time, which is the same dimensions as Planck’s constant h. Since such positive

multiplicative constants are immaterial, the phase space weight density of the isolated

system is constant. Without loss of generality, it may be set equal to unity,

ω(Γ) = 1.

 

This is obviously a constant on an adiabatic trajectory. In this case this result is

consistent with, but stronger than, the result derived in section 5.2.2 from the Fokker–

Planck equation and Liouville’s theorem: the probability density is uniform along the length

∣ ∇H(Γ) ∣2 =
l4q

l2q

∂H

∂q
⋅
∂H

∂q
+

l4p

l2p

∂H

∂p
⋅
∂H

∂p

= l2qṗ
0 ⋅ ṗ

0 + l2pq̇
0 ⋅ q̇

0

= l2ql2p ∣ Γ̇
0
∣2.
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of an adiabatic trajectory, ℘(Γ0(t ∣ Γ0)) = ℘0(Γ0). Neither the trajectory speed nor the

energy gradient are constants of the adiabatic motion, and hence it is essential that they

cancel as here. This result says that the weight density is not just constant on a trajectory,

but that it is a constant throughout phase space itself.

With this result, the total weight of an energy macrostate for the isolated system is just

W(E) = ∫ dΓ δ(H(Γ) − E).

One can interpret this as the number of phase space points (microstates) in an energy

macrostate of an isolated system. This is not the volume of the energy hypersurface, A(E)
.

5.3 Canonical equilibrium system

5.3.1 Constrained entropy of a phase space point

The canonical equilibrium system consists of a sub-system that can exchange energy with

a thermal reservoir. The Hamiltonian of the sub-system is independent of time, H(Γ). The

microstates of the system, which are the smallest indivisible states that will be analyzed,

will be taken to be the microstates of the sub-system, namely the points in the sub-system

phase space Γ.

Conversely, it could be argued that the sub-system phase space point Γ is actually a

macrostate of the total system, since the microstates of the total system are in fact points

in the total phase space of the sub-system and reservoir, Γtotal = {Γ,Γr}. However, since

the rationale of the reservoir formalism is to focus on the sub-system, I think it best to

regard the sub-system phase space point Γ as a microstate of the total system. The

projection of the reservoir phase space points Γr out of the formalism contributes to the

internal entropy of the microstate Γ. This argument over terminology is purely academic

because the formalism for entropy is the same for microstates as for macrostates.

To obtain the probability of a microstate Γ we need its total entropy. The result has the

same form as the total constrained entropy obtained in section 2.3.1. That analysis was

also for the canonical equilibrium system, with the difference being that the sub-system

energy macrostate E was used. In the present case we essentially replace E in equation

(2.21) by the present sub-system microstate Γ.

First we need the temperature of the reservoir. The entropy of an isolated system with

energy E is by definition

S(E) = kB ln W(E).

where the total weight is the number of phase space points in the energy

hypersurface, as given by the immediately preceding analysis. Here the number and

volume arguments have been suppressed.

By the definition (2.11), the temperature is given by

 

If the fixed total energy of the total isolated system is Etotal, then the reservoir energy in

the sub-system microstate Γ is Er(Γ) = Etotal − H(Γ), and the reservoir entropy in that

1

T
≡

∂S(E)

∂E
=

kB

W(E)

∂W(E)

∂E
.
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microstate is

where T is the reservoir temperature. The constant part independent of the sub-system

may be dropped.

As in equation (2.21), the constrained total entropy for the canonical equilibrium system

in the microstate Γ is

since there is no internal entropy for a point in the sub-system phase space, 

Ss(Γ) = kB ln ω(Γ) = 0.

5.3.2 Maxwell–Boltzmann probability

With this result, the phase space probability distribution for the canonical equilibrium

system is

This is the Maxwell–Boltzmann distribution. Here and throughout, the inverse

temperature is β ≡ 1/kBT . The pre-factor of N!h3N
 will be discussed shortly.

The normalizing partition function is

Z(N ,V ,T ) =
1

N!h3N
∫ dΓ e−βH(Γ).

This is the total weight of the system. As has been mentioned, weight is only defined

up to an arbitrary positive constant, and so the pre-factor N!h3N  has relatively trivial

effects.

Planck’s constant h = 6.626 × 10−34
 J s has the dimensions of energy × time

(equivalently, position × momentum), and including it makes the partition function

dimensionless, which is often desirable even though it is not essential. This factor is often

interpreted to mean that quantum mechanics gives a phase space volume per microstate

of h3N
. This is a little loose, but not completely incorrect. Two points can be made: first,

within classical mechanics there is nothing to give Planck’s constant, and the above

formalism would still be valid if it were replaced by something else with the same

dimensions or even by nothing at all. Weight is only defined up to a positive scale factor.

Second, in chapter 7 this result is derived as the leading order term in an expansion of

Sr(Er(Γ)) ≡ Sr(Etotal) − H(Γ)
∂Sr(Etotal)

∂Etotal

= const. −
1

T
H(Γ),

Stotal(Γ ∣ T ) = Ss(Γ) + Sr(Er(Γ))

=
−1

T
H(Γ),

℘(Γ ∣ N ,V ,T ) =
1

Z′(T )
eSr(Γ∣T )/kB

=
e−βH(Γ)

N!h3N Z(N ,V ,T )
.
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quantum statistical mechanics, and in this exact expansion Planck’s constant is mandated

and appears exactly as here.

The factor of N! was introduced by Gibbs as the resolution to the paradox of the

entropy of mixing (Pathria 1972, section 1.5). The way to understand it is to note that the

entropy or weight of a state should count only the weight of distinct configurations in the

state. Since particles are indistinguishable, a permutation of the particle labels does not

change the configuration. For example, for two particles, particle 1 at r and particle 2 at s
is the same configuration as particle 1 at s and particle 2 at r. The partition function above

involves the integral over all of phase space, which means that each distinct configuration

is counted N! times. (In classical mechanics configurations with particles at the same

phase space point form a set of measure zero and can be neglected.) This over counting is

corrected by the pre-factor of 1/N! in the partition function. In chapter 7, this factor arises

from wave function symmetrization in the zeroth order term in an expansion of quantum

statistical mechanics.

These two factors together may be considered to be the uniform ‘internal’ weight of a

phase space of the isolated sub-system,

w(Γ) =
1

N!h3N
.

In this case the sub-system entropy of a phase space point is

Ss(Γ) = kB ln w(Γ) = NkB − NkB ln(Nh3),

where Stirling’s approximation for N! has been used. In general, one can either show 

w(Γ) = 1/N!h3N
 as an explicit pre-factor for the phase space probability and use the

reservoir entropy in the exponent, or else one can include it as the sub-system entropy and

use the total entropy in the exponent.

The statistical mechanical Helmholtz free energy is essentially the logarithm of this

partition function,

F(N ,V ,T ) = −kBT ln Z(N ,V ,T ).

This is a particular form of the generic analysis given in sections 2.3.2 and 2.5.3.

5.3.3 Not Boltzmann distributed

At the beginning of this chapter, the widespread use of the Boltzmann distribution in the

form of equation (5.1),

℘α =
1

Z(T )
e−Uα/kBT ,

was described as questionable. Here ℘α is meant to be the probability of the state α,

Uα is its potential energy, and T is the temperature.

Comparison with the Maxwell–Boltzmann distribution, equation (5.43) shows that this

neglects the kinetic energy. This is a relatively minor problem because often one is only

interested in static properties and since the kinetic energy and the potential energy are

separable, the velocity can be integrated out.

A much more serious problem is that this neglects any internal entropy associated with

the state α. The exponent that appears explicitly here is the entropy of the thermal

reservoir alone. The point of section 5.2.3 was to rigorously justify that the internal entropy
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of a point in phase space could be neglected, Ss(Γ) = 0. This was necessary for the

Maxwell–Boltzmann phase space form. The problem with the above is that it neglects

without justification Ss(α), the internal entropy of the sub-system macrostate α. In general,

for an arbitrary static property the entropy cannot simply be assumed constant or

negligible. Instead one must use

℘α =
1

Z(T )
eSs(α)/kBe−Uα/kBT =

1

Z(T )
e−Fα/kBT ,

where Fα = Uα − TSs(α) is the Helmholtz free energy of the macrostate.

For example, if the state α represents the conformation of a macromolecule in a solvent,

in addition to the potential energy between the atoms of the macromolecule in this

particular configuration, there is also the (weighted) number of possible arrangements of

the solvent molecules, which varies with α. As another example, if α represents the location

of a defect in a crystal, in addition to the variation of the potential energy of the crystal

with defect location, one may also need to account for the change in the spectrum of

vibrations of the crystal with defect location, which is another form of entropy. Or if α

represents a crystal type, one would need to include the entropy associated with the

weighted displacements of the atoms about their mean locations that can occur without

destroying the crystal structure.

It may well be that for the specific problem at hand one has reason to believe that any

such internal entropy is either constant or its variation is relatively negligible. The

important thing is to explicitly justify such an assumption in the given case. Conversely, it

is poor practice and likely erroneous to invoke the Boltzmann distribution without explicit

justification for neglecting the internal entropy of the state.

5.4 Stochastic, dissipative equations of motion

5.4.1 Equations of motion

We now turn to the equations of motion for the canonical equilibrium system. As above, 

Γ = {q,p} is a point in the phase space of the sub-system, H(Γ) is the sub-system

energy, and T is the temperature of the reservoir with which the sub-system can exchange

energy.

The equations of motion are dominated by the adiabatic part that is internal to the sub-

system. The additional external contribution due to the interactions with the reservoir must

be a relatively small perturbation because they directly occur only in the region of the

boundary of the sub-system, and this is much smaller than the sub-system itself.

These reservoir interactions are treated statistically rather than literally. The stochastic,

dissipative terms in the equations of motion that they give rise to are applied equally

throughout the sub-system rather than only in the boundary region. This is in the spirit of

the reservoir formalism, where the focus is on the sub-system, and the reservoir only

enters through certain generic parameters that abstract the microscopic details in any

particular case. Of course the functional form and magnitude of the stochastic, dissipative

terms are uniquely fixed by the thermodynamic properties of the reservoir.

The Langevin equation for Brownian motion was given in section 4.1.2, and its

relationship to the second entropy form for the transition of a thermodynamic fluctuation,

equation (3.87), was discussed. One can take the second entropy form of the Langevin

equation for Brownian motion, equation (4.21), directly over to the present problem. The

position and the velocity of the Brownian particle become the position and momentum

coordinates in phase space, and the solvent entropy becomes the reservoir entropy. With

these, the stochastic, dissipative equations of motion for the sub-system are
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The adiabatic parts of these are

q0(τ ∣ Γ) = q + τ
∂H(Γ)

∂p
= q +

τ

m
p,

and

p
0(τ ∣ Γ) = p − τ

∂H(Γ)

∂q
= p − τ∇qU(q).

 

Since the reservoir entropy is Sr(Γ) = −H(Γ)/T , the dissipative term in these

equations of motion is

∣ τ ∣

2
Λ∇pSr(Γ) =

− ∣ τ ∣

2mT
Λp.

The 3N × 3N  transport matrix Λ is symmetric, positive definite, and couples only the

momentum components. The stochastic ‘force’ is Gaussian distributed, equation (3.89),

℘(R̃) =
1

[Det 2πkB ∣ τ ∣ Λ]1/2
e−Λ−1:R̃R̃/2kB∣τ∣.

That Λ appears in these last two equations is the form that the fluctuation–dissipation

theorem takes for phase space.

The equilibrium Maxwell–Boltzmann distribution is stationary under these equations of

motion for any choice of the symmetric, positive definite, momentum transport matrix Λ. It

is simplest, however, to assume that different components of the momenta are uncoupled,

which means that Λ is diagonal. In the simplest case that the particles are identical, it is

proportional to the identity matrix, Λ = λI. Again, the Maxwell–Boltzmann distribution is

stationary for any choice of the scalar λ. (The constant λ/2T  may be called the friction or

drag coefficient.)

In this simplest case the stochastic, dissipative equations of motion for the canonical

equilibrium system are

with

℘(R̃) =
1

[2πλkB ∣ τ ∣]3N/2
e−R̃⋅R̃/2λkB∣τ∣.

q(t + τ) = q(t) +
τ

m
p(t)

p(t + τ) = p(t) − τ∇qU(q) +
∣ τ ∣

2
Λ∇pSr(Γ) + R̃.

q(t + τ) = q(t) +
τ

m
p(t)

p(t + τ) = p(t) − τ∇qU(q) −
∣ τ ∣ λ

2mT
p + R̃,
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The physical interpretation of these stochastic, dissipative equations of motion is

illuminating. The dissipative term, τ̂ λ∇pSr, drives the system up the reservoir entropy

gradient, which is to say toward sub-system microstates of higher reservoir entropy. The

irreversible factor τ̂  means that going forward in time, τ̂ = +1, this term determines that

the destination of the transition will have higher reservoir entropy than the present state. If

one operates the equations of motion backward to predict where the system came from, 

τ̂ = −1, this term determines that the previous state had higher reservoir entropy than the

present state.

The stochastic term R̃ randomizes the transition without regard to the reservoir entropy.

It is, however, sensitive to the sub-system entropy in that there are more sub-system

phase space points Γ at higher sub-system energy H(Γ) than at lower, because the sub-

system entropy Ss(E,N ,V ) is a monotonic increasing function of energy. Since the

stochastic term R̃ chooses destination phase space points uniformly at random, it is more

likely to increase the sub-system energy than to decrease it. This stochastic term on

average acts like an irreversible deterministic driving force toward macrostates of higher

sub-system energy.

There is a competition between the dissipative and the stochastic term. The former

drives the sub-system to states of low sub-system energy, because these correspond to

high reservoir entropy, Sr(Γ) = −H(Γ)/T . The latter drives the sub-system to states of

high sub-system energy, which is to say high sub-system entropy, Ss(H(Γ),N ,V ). These

two competing forces balance when the current phase space point belongs to a sub-system

energy macrostate corresponding to a sub-system temperature that equals that of the

reservoir (see figure 5.4).

Figure 5.4. The reservoir entropy of a sub-system phase space point (full line) and

the sub-system entropy of an energy macrostate (dashed curve) as a function of sub-

system energy. The circles signify the point at which the tangents are equal and

opposite.

It is worthwhile to reprise the justification for these stochastic, dissipative equations of

motions in phase space. It is more or less the same as was given for the Langevin equation
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for Brownian motion, equation (4.21).

The position coordinate must evolve adiabatically over an infinitesimal time interval ∣ τ ∣
. It is only over a sequence of consecutive intervals that forces from the sub-system

particles and from the reservoir can indirectly effect the position evolution via their direct

effect on the momentum evolution. This means that the position is a ‘slave’ to the

momentum. It also means that only the momentum coordinate is to be treated statistically,

which requires only the pure parity second entropy theory, equation (3.87).

For the present evolution of phase space over an infinitesimal time interval, the

adiabatic evolution of the momentum appears explicitly. This is in contrast to the second

entropy treatment of a fluctuation, equation (3.87). Although that case was for an isolated

sub-system in which the evolution is purely adiabatic, because the time interval was long

on molecular time scales, the adiabatic contributions to it had to be treated in toto rather

than individually, which is to say statistically rather than explicitly. In the present case of

phase space and an infinitesimal time interval, the forces due to the particles of the sub-

system must appear explicitly in addition to the statistical forces from the reservoir.

The solvent forces acting on the Brownian particle in equation (4.21) are replaced here

by the reservoir forces acting on the sub-system. The statistical treatment of the latter is

identical to the pure parity second entropy analysis: the reservoir-induced transitions are

treated as Gaussian fluctuations, with the coefficients being expanded for small time

intervals in accord with general rules for the time symmetry of the transition in an

equilibrium system. The result is that in the stochastic, dissipative equations of motion, the

adiabatic forces are reversible, ∝ τ , whereas the dissipative and stochastic forces are

irreversible, ∝∣ τ ∣.
There are three reasons why it is valid to apply the second entropy analysis over

infinitesimal time scales. First, the present momentum macrostate is the end point of a

continuous evolution, and there is no need for an inertial period for it to become organized.

Second, the relaxation time for individual particle momenta can be expected to be

relatively short compared to that for a macroscopic fluctuation comprising Avogadro’s

number of particles. And third, any term linearly proportional to ∣ τmacro ∣ can be broken

down into a series of infinitesimal transitions each proportional to ∣ τmolec ∣≪∣ τmacro ∣, and

over the longer term these in series return the original expression.

It is important to note that these stochastic, dissipative equations of motions in phase

space are justified by the second entropy analysis, and only by it. They cannot be justified

by the Langevin equation for Brownian motion because the hydrodynamic drag term that is

invoked therein has no justification on molecular length scales. The point is that the second

entropy analysis shows that the dissipative force τ̂ λ∇pSr is a direct consequence of the

time symmetry of the second entropy. The hydrodynamic drag force is an effect, not a

cause, of the second entropy dissipative force. It would be wrong to interpret the transport

scalar λ as the product of the radius of the molecule and the viscosity of the sub-system

(i.e. Stoke’s drag coefficient) since it is not determined by hydrodynamics. All that is

essential is that the fluctuation–dissipation theorem be satisfied: the magnitude of the

dissipation must be equal to the strength of the fluctuations. Since both are linearly

proportional to λ, the actual value of λ is immaterial (except, of course, that the reservoir

forces should be negligible compared to the adiabatic forces.)

5.4.2 Reversibility of the stochastic, dissipative equations of motion

As was shown in section 5.1.2.2, the adiabatic equations of motion are time reversible,

Γ2 = Γ0(t ∣ Γ1) ⇔ Γ1 = Γ0(−t ∣ Γ2).

This may be called temporal reversibility. It follows because a unique adiabatic

trajectory passes through each phase space point. The adiabatic equations of motion also
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display what might be called conjugate reversibility,

Γ2 = Γ0(t ∣ Γ1) ⇔ Γ
†
1 = Γ0(t ∣ Γ

†
2).

Recall that each phase space point Γ = {q,p} has conjugate point with all the

momenta reversed, Γ† = {q, −p}. The combination of temporal reversibility and

conjugate reversibility can be called microscopic reversibility,

Γ2 = Γ0(t ∣ Γ1) ⇔ Γ
†
2 = Γ0(−t ∣ Γ

†
1).

The distinction between conjugate reversibility and microscopic reversibility is usually

overlooked because in the adiabatic case temporal reversibility is both obvious and trivial.

For stochastic dissipative equations it is necessary to distinguish the two.

Microscopic reversibility says that if both the velocities and the time interval are

reversed, then the end point of this transition is the conjugate of the end point of the

original transition. The physical origin of microscopic reversibility is that reversing the

velocities causes the particles to retrace their previous paths, and hence reversing both the

velocities and time is equivalent to the original transition. Mathematically, for a single time

step,

These are a more explicit version of equation (5.13). One sees that the sign of the time

step has been reversed in the conjugate system. Temporal, conjugate, and microscopic

reversibility for an adiabatic transition are shown in table 5.1.

Table 5.1. Time symmetries of equations of motion.

Adiabatic Dissipative

Temporal

Conjugate

Microscopic

ΔtΓ̇
0

q(Γ
†) = Δt{∇p†K(p†)}q = −Δt{∇pK(p)}q = −Δt{∇pK(p)}†q

ΔtΓ̇
0

p(Γ
†) = Δt{∇q †U(q†)}p = Δt{∇qU(q)}p = −Δt{∇qU(q)}†p.

Γ2 = Γ0(Δt ∣ Γ1)

= Γ1 +ΔtΓ̇
0
(Γ)

Γ2 = Γ̄(Δt ∣ Γ1)

= Γ1 +ΔtΓ̇
0
(Γ) +

∣Δt∣
2 λ∇pSr(Γ)

Γ1 = Γ0(−Δt ∣ Γ2)

= Γ2 −ΔtΓ̇
0
(Γ)

Γ3 = Γ̄(−Δt ∣ Γ2)

= Γ2 −ΔtΓ̇
0
(Γ) +

∣Δt∣
2 λ∇pSr(Γ)

Γ
†
1 = Γ0(Δt ∣ Γ

†
2)

= Γ
†
2 +ΔtΓ̇

0
(Γ†)

Γ
†
4 = Γ̄(Δt ∣ Γ2)

†

= Γ
†
2 +ΔtΓ̇

0
(Γ†) +

∣Δt∣
2 λ∇pSr(Γ

†)

Γ
†
2 = Γ0(−Δt ∣ Γ

†
1)

= Γ
†
1 −ΔtΓ̇

0
(Γ†)

Γ
†
2 = Γ̄(−Δt ∣ Γ1)

†

= Γ
†
1 −ΔtΓ̇

0
(Γ†) +

∣Δt∣
2 λ∇pSr(Γ

†)
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The stochastic part of the stochastic, dissipative equations of motion is dependent on

the magnitude of the time interval, and is as likely positive as negative. Hence it displays

each of temporal, conjugate, and microscopic reversibility.

The dissipative part depends on the magnitude of the time interval, and hence it is

irreversible in a temporal sense. The difference upon temporarily reversing a dissipative

transition is

The dissipative force increases the entropy at both stages of the cyclic transition,

which causes the stochastic, dissipative equations of motion to be irreversible in a

temporal sense.

Similarly, reversing the momenta at the end of the first transition and continuing

forward another time step gives a difference of

The second equality follows because for an equilibrium system Sr(Γ) is an even

function of the momenta, which means that the dissipative force, ∝ ∇pSr(Γ), is an odd

function of momenta. One sees that over this particular cycle the entropy has decreased,

and that the dissipative equations of motion are irreversible in a conjugate sense.

Figure 5.5 shows several dissipative trajectories, both forward and backward in time

from their initial point. It can be seen that a point in phase space does not have a unique

trajectory through it. This is one reason for the temporal and conjugate irreversibility just

mentioned. Although in figure 5.5 the square lies on the most likely backward trajectory

from the circle, the circle does not lie on the most likely forward trajectory from the square.

This is another reason for the temporal irreversibility of a dissipative trajectory. The

discontinuity in the derivative of a trajectory at its initial point was discussed in connection

with figure 4.2, where it was attributed to the fact that the dissipative contribution is

proportional to the absolute value of the time interval. The essential physical reason for the

kink in the trajectory at the initial point, and for the irreversibility, is that most likely the

sub-system will head toward an equilibrium state, and most likely the sub-system came

from an equilibrium state. The stochastic contributions will perturb the most likely

trajectories shown in figure 5.5, increasingly so as time progresses or regresses from the

initial time (cf figure 4.2), but the qualitative picture remains as sketched.

Figure 5.5. Six dissipative trajectories. The circle on the solid curve marks the initial

point at time t1 of a forward and a backward trajectory. The triangle on the dashed

Γ̄(−Δt ∣ Γ̄(Δt ∣ Γ1)) − Γ1 = Γ̄(Δt ∣ Γ1) − ΔtΓ̇
0
(Γ) +

∣ Δt ∣

2
λ∇pSr(Γ) − Γ1

= ∣ Δt ∣ λ∇pSr(Γ) + O(Δ2
t ).

Γ̄(Δt ∣ Γ̄(Δt ∣ Γ1)
†) − Γ

†
1 = Γ̄(Δt ∣ Γ1)

† +ΔtΓ̇
0
(Γ†) +

∣ Δt ∣

2
λ{∇pSr(Γ

†)}p − Γ
†
1

= − ∣ Δt ∣ λ∇pSr(Γ) + O(Δ2
t ).
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curve at t2 marks the initial point of a forward and a backward trajectory. The square

on the dotted curve at t3 < t1 marks the initial point of a forward and a backward

(obscured) trajectory.

As was mentioned in the discussion of figure 4.2 and equation (4.22), the discontinuity

in the derivative of the trajectory means that the forward or backward time derivative of a

function on the trajectory has to be specified. The irreversibility embodied by the

dissipative and stochastic terms means that the forward and backward time derivatives are

not equal to each other.

Microscopic reversibility for the dissipative transition is equivalent to

This says that the original transition forward in time is equivalent to reversing the

momenta, making a transition backward in time, and reversing the momenta again.

Temporal and conjugate irreversibility, and microscopic reversibility for a dissipative

transition are shown in table 5.1.

For the stochastic, dissipative equations of motion for the canonical equilibrium system

equation (5.55), one can exhibit microscopic reversibility explicitly. The position evolution

in a time step is purely adiabatic and hence microscopic reversible. The most likely

momentum evolution is

p2 ≡ p̄(Δt ∣ Γ1) = p1 −Δt∇qU(q1) −
∣ Δt ∣ λ

2mT
p1.

Negating both sides this can be written as

This says explicitly that the most likely part of the stochastic, dissipative equations of

motion for the momenta for the canonical equilibrium system are microscopically

reversible. (The dissipative equations for the position are purely adiabatic, and so they are

automatically microscopically reversible.)

Microscopic reversibility for the dissipative equations of motion may in general be

written as

Γ2 = Γ̄(t ∣ Γ1) ⇔ Γ
†
2 = Γ̄(−t ∣ Γ

†
1).

Γ̄(−Δt ∣ Γ
†
1) − Γ̄(Δt ∣ Γ1)

†

= Γ
†
1 −ΔtΓ̇

0
(Γ†) +

∣ Δt ∣

2
λ{∇pSr(Γ†)}p

− Γ
†
1 −ΔtΓ̇

0
(Γ)† −

∣ Δt ∣

2
λ{∇pSr(Γ)}†p

=
− ∣ Δt ∣

2
λ{∇pSr(Γ)}p +

∣ Δt ∣

2
λ{∇pSr(Γ)}p + O(Δ2

t )

= 0.

p
†
2 = p

†
1 +Δt∇qU(q

†
1) −

∣ Δt ∣ λ

2mT
p

†
1

= p̄(−Δt ∣ Γ
†
1).



(5.6

6)

(5.6

7)

(5.6

8)

(5.6

9)

This is identical to microscopic reversibility for adiabatic equations of motion, which was

sketched in figure 5.2. Since the stochastic part of the transition is insensitive to the

direction of time, and is as likely positive as negative, ℘(R̃) = ℘(R̃
†
), the stochastic,

dissipative equations of motion for an equilibrium system themselves are microscopically

reversible

Γ2 = Γ(t ∣ Γ1) ⇔ Γ
†
2 = Γ(−t ∣ Γ

†
2).

This is to be understood in a probabilistic sense: the conditional probability of the

transition Γ1
t
→ Γ2 is equal to that of Γ

†
1

−t
Γ

†
2
. Since for an equilibrium system the

probability of a point in phase space is equal to that of the conjugate point, ℘(Γ1) = ℘(Γ†
1)

, the unconditional probability of the forward and the conjugate backward transition must

also be equal.

5.4.3 Stationarity of the Maxwell–Boltzmann distribution

The Fokker–Planck equation for the evolution of an arbitrary phase space probability

distribution under stochastic, dissipative equations of motion was derived above as

equation (4.36). Replacing X ⇒ Γ it is

Since phase space is incompressible under the adiabatic equations of motion, 

∇ ⋅ Γ̇
det

= −τ̂ λ∇p ⋅ p/2mT .

With the Maxwell–Boltzmann distribution, ℘MB(Γ) = Z−1e−βH(Γ)
, and the fact that

energy is conserved on an adiabatic trajectory, Γ̇
0
⋅ ∇H(Γ) = 0, the right-hand side of this

is

This shows that the Maxwell–Boltzmann distribution is stationary under the stochastic,

dissipative equations of motion. Of course these equations of motion simply implement the

second entropy transition probability for the canonical equilibrium system, and so they are

consistent with the Maxwell–Boltzmann distribution by design.

5.4.4 Grand canonical system

−→

∂℘(Γ, t)

∂t
= − [∇ ⋅ Γ̇

det
]℘(Γ, t) − Γ̇

det
⋅ ∇℘(Γ, t) +

τ̂ kB

2
Λ : ∇∇℘(Γ, t)

=
3Nτ̂ λ

2mT
℘(Γ, t) − Γ̇

det
⋅ ∇℘(Γ, t) +

τ̂ kB

2
λ∇2

p℘(Γ, t).

RHS =
3Nτ̂ λ

2mT
℘MB(Γ) +

τ̂ λ

2mT
p ⋅ ∇p[−βH(Γ)]℘MB(Γ)

+
τ̂ kBλ

2
[−β∇2

pH(Γ) + β2(∇pH(Γ))2]℘MB(Γ)

= {
3Nτ̂ λ

2mT
−

τ̂ λ

2m2kBT 2
p ⋅ p −

τ̂ 3Nλ

2mT
+

τ̂ λ

2m2kBT 2
p ⋅ p}℘MB(Γ)

= 0.
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A grand canonical system can exchange particles and energy with a reservoir of constant

chemical potential μ and temperature T. As was discussed in section 2.4.1, the total

constrained entropy for an energy-number macrostate is 

Stotal(N ,E ∣ μ,V ,T ) = Ss(E,V ,N) − E/T + μN/T . The reservoir entropy for a point in

the sub-system phase space Γ is therefore

Sr(Γ,N ∣ μ,V ,T ) =
−H(Γ)

T
+

μ

T
N .

 

In the derivation of the Maxwell–Boltzmann distribution above, the sub-system entropy

of a phase space point was given as equation (5.46), Ss(Γ) = NkB − NkB ln(Nh3). With

this the total entropy for the microstate Γ is

Hence the probability density for the grand canonical system can be written explicitly

either in terms of the reservoir entropy,

℘(Γ,N ∣ μ,V ,T ) =
eSr(Γ,N ∣μ,V ,T )/kB

N!h3NΞ(μ,V ,T )
=

e−βH(Γ)+βμN

N!h3NΞ(μ,V ,T )
,

or else in terms of the total entropy,

℘(Γ,N ∣ μ,V ,T ) =
eStotal(Γ,N ∣μ,V ,T )/kB

Ξ(μ,V ,T )
=

eN−N ln(Nh3)−βH(Γ)+βμN

Ξ(μ,V ,T )
.

In the thermodynamic limit these are the same, although the former is the more

conventional expression. In these the grand partition function is

Ξ(μ,V ,T ) =
∞

∑
N=0

eβμN

N!h3N
∫ dΓ e−βH(Γ).

Sometimes the fugacity, z ≡ eβμ
, is used instead of the chemical potential as the

independent variable of the grand canonical system.

5.4.4.1 Grand canonical stochastic molecular dynamics

Let the number of particles in the sub-system be described by a positive real number N ,

with the integer part of this N = ⌊N ⌋ being the number of fully coupled particles, and 

ξ = N − N  being the extent of coupling of the (N + 1)st particle. The Hamiltonian of the

system is

H(ΓN ) = H(ΓN) + ξ
p2

N+1

2m
+ ξU(qN ,qN+1).

Stotal(Γ,N ∣ μ,V ,T ) = Ss(Γ) + Sr(Γ,N ∣ μ,V ,T )

= NkB − NkB ln(Nh3) −
H(Γ)

T
+

μ

T
N .
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Here a linear coupling has been chosen for the partial particle, which is simplest but not

essential. The reservoir entropy is

Sr(Γ
N ,N ∣ μ,V ,T ) =

−1

T
H(ΓN ) +

μ

T
N .

The internal entropy of a sub-system phase point is

Ss(Γ) = N kB − N kB ln(N h3),

and so the total entropy is

 

The equations of motion for the particles are

Here −∂H(ΓN )/∂qN+1
 is the force for N fully coupled particles and the (N + 1)st

partially coupled particle, and the gradient of the total entropy is

∂Stot(Γ
N ,N ∣ μ,V ,T )

∂pN+1
=

−1

mT
{p

N , ξpN+1}.

The transport matrix has been chosen to be diagonal with all elements equal to λ. The

probability distribution for the stochastic force is

℘(R̃
N+1

) =
1

Z
e−R̃

N+1
⋅R̃

N+1
/2λkB∣Δt∣.

 

The equation of motion for the number is

Stot(Γ,N ∣ μ,V ,T ) = Ss(Γ) + Sr(Γ,N ∣ μ,V ,T )

= N kB − N kB ln(N h3) −
1

T
H(ΓN ) +

μ

T
N .

qN(t +Δt) = qN(t) +
Δt

m
pN(t)

qN+1(t +Δt) = qN+1(t) +
Δtξ

m
pN+1(t)

pN+1(t +Δt) = pN+1(t) − Δt

∂H(ΓN )

∂qN+1
+

∣ Δt ∣

2
λ
∂Stot(Γ

N )

∂pN+1
+ R̃

N+1
.

N (t +Δt) = N (t) +
∣ Δt ∣

2
λ′

∂Stot(ΓN (t),N ∣ μ,V ,T )

∂N
+ R̃′

= N (t) −
∣ Δt ∣

2T
λ′{

p2
N+1

2m
+ U(qN ,qN+1) − μ + kBT ln(N h3)}+ R̃′.
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Notice how the sub-system entropy contributes to this. The probability distribution for the

stochastic force in this case is

℘(R̃′) =
1

Z′
e−R̃′

2
/2λ′kB∣Δt∣.

The positive scalar λ′ is the ‘drag’ or ‘friction’ coefficient for number.

When ξ(t +Δt) exceeds 1, then the (N + 1)st particle becomes an ordinary particle in

the sub-system, and a new partially coupled particle is created, coupled to the extent 

ξ(t +Δt) − 1. This is randomly placed in the sub-system phase space according to the

probability distribution ∝ exp − β(ξ − 1)[p2
N+2/2 m + U(qN+1,qN+2)]. (The momentum

can be chosen using the Gaussian; the position using several trial steps of the Metropolis

algorithm, for example.) When ξ(t +Δt) drops below 0, the existing partially coupled

particle is eliminated, and one of the remaining N fully coupled particles is randomly

chosen as the new partially coupled particle, and it is coupled to the extent ξ(t +Δt) + 1.

5.4.5 Isobaric system

An isobaric system can exchange volume and energy with a reservoir of constant pressure

p and temperature T. As was discussed in section 2.4.1, the total constrained entropy for

an energy–volume macrostate is Stotal(E,V ∣ N , p,T ) = Ss(E,V ,N) − E/T − pV /T .

Hence the reservoir entropy for the sub-system phase space Γ is 

Sr(Γ,V ∣ N , p,T ) = −H(Γ)/T − pV /T . The sub-system entropy for Γ is constant, 

Ss(Γ) = NkB − NkB ln(Nh3). Hence the total entropy is

Stotal(Γ,V ∣ N , p,T ) = NkB − NkB ln(Nh3) −
H(Γ)

T
−

p

T
V .

This gives the probability density for the grand canonical system as

℘(Γ,V ∣ N , p,T ) =
eSr(Γ,V ∣N ,p,T )/kB

N!h3NΔV Z(N , p,T )
=

e−βH(Γ)−βpV

N!h3NΔV Z(N , p,T )
.

Here the isobaric partition function is

Z(N , p,T ) =
1

N!h3NΔV

∫ dV e−βpV ∫ dΓ e−βH(Γ).

The volume width ΔV  is used to make the partition function dimensionless and its

actual value has no physical consequences.

5.4.5.1 Isobaric stochastic molecular dynamics

Let the sub-system volume be cubic, V = L3, and use the edge length to scale the

positions, q = Lx. The potential energy may be written U(q) = U(x;L). The reservoir

entropy is

Sr(p,x,L ∣ N , p,T ) =
−1

T
H(p,x;L) −

p

T
L3.
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The internal entropy of a sub-system phase point is Ss(Γ) = NkB − NkB ln(Nh3), and so

the total entropy is

 

The equations of motion for the particles are

Here the adiabatic force is −∂U(q)/∂q = −∂U(x;L)/L∂x, and the gradient of the

reservoir entropy is

∂Stot(p,x,L ∣ N , p,T )

∂p
=

−1

mT
p.

The N × N transport matrix has been chosen to be diagonal with all elements equal to

λ. The probability distribution for the stochastic force is

℘(R̃) =
1

Z
e−R̃

2
/2λkB∣Δt∣.

The equation of motion for the edge length is

Again the adiabatic force is −∂U(q)/∂q = −∂U(x;L)/L∂x. The probability

distribution for the stochastic force is

℘(R̃′) =
1

Z′
e−R̃′

2
/2λ′kB∣Δt∣.

5.5 Equilibrium phase space averages

5.5.1 Probability densities and averages

The stochastic, dissipative equations of motion derived above may be used to generate a

trajectory through the sub-system phase space, Γ(t ∣ Γ0). The canonical equilibrium

statistical average of a phase function f(Γ) can then be written as a time average,

t

Stot(p,x,L ∣ N , p,T ) = Ss(Γ) + Sr(p,x,L ∣ N , p,T )

= NkB − NkB ln(Nh3) −
1

T
H(p,x;L) −

p

T
L3.

x(t +Δt) = x(t) +
Δt

mL
p(t)

p(t +Δt) = p(t) − Δt

∂U(q)

∂q
+

∣ Δt ∣

2
λ
∂Stot(p,x,L ∣ N , p,T )

∂p
+ R̃.

L(t +Δt) = L(t) +
∣ Δt ∣ λ′

2

∂Stot(p,x,L ∣ N , p,T )

∂L
+ R̃′

= L(t) −
∣ Δt ∣ λ′

2TL
{q ⋅

∂U(q)

∂q
+ 3pL3}+ R̃′.
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⟨f⟩N ,V ,T =
1

t
∫

t

0

dt′ f(Γ(t′∣ Γ0)).

For a long enough trajectory, the results can be expected to be independent of the

starting position Γ0.

The statistical average can also be written as an integral over phase space,

⟨f⟩N ,V ,T = ∫ dΓ ℘(Γ ∣ N ,V ,T )f(Γ),

where the Maxwell–Boltzmann probability density is

℘(Γ ∣ N ,V ,T ) =
e−βH(Γ)

N!h3N Z(N ,V ,T )
,

and the normalizing partition function is Z(N ,V ,T ) = (N!h3N)
−1

∫ dΓ e−βH(Γ).

Where there is no ambiguity the Maxwell–Boltzmann probability density will be written

simply as ℘(Γ).

Results will be presented in this section for averages of various phase functions. We

shall focus on the formula that gives these as an integral over phase space. In general the

average is the same for all systems (canonical, grand canonical, isobaric, etc). Fluctuations

about the average vary from system to system (e.g. the fluctuations in number are zero for

a canonical system, but nonzero for a grand canonical system). For brevity most of the

following results will be given for a canonical equilibrium system.

5.5.2 Helmholtz free energy and entropy

Since the partition function is the integral over phase space of the weight of phase space

points, it is the total weight of the total system. Hence its logarithm is the total entropy of

the total system,

Here F(N ,V ,T ) is the statistical mechanical and F̄ (N ,V ,T ) is the thermodynamic

Helmholtz free energy (see chapter 2). Also, Ē(N ,V ,T ) is the most likely sub-system

energy, which is equal to the average sub-system energy.

Recall from chapter 2 that the constrained total entropy is 

Stotal(E ∣ N ,V ,T ) = Ss(E,N ,V ) − E/T , and therefore that the Helmholtz free energy is

F(Ē ∣ N ,V ,T ) = Ē − TSs(Ē,N ,V ).

 

Re-arranging these and equating the most likely energy to the average energy, the

entropy of the sub-system may be written as

Stotal(N ,V ,T ) = kB ln Z(N ,V ,T )

≡ − F(N ,V ,T )/T

≈ − F̄ (N ,V ,T )/T

≡ − F(Ē(N ,V ,T ) ∣ N ,V ,T )/T .
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The third equality follows because the probability density is normalized to unity. The

penultimate equality follows because ℘(Γ) = e−βH(Γ)/h3N N!Z(N ,V ,T ). The final

equality neglects an immaterial constant, −kB ln h3N N!, which can be interpreted as the

internal entropy of each phase space point. One sees from this that the so-called Gibbs or

Shannon entropy is only the sub-system entropy, which is just part of the total entropy (cf

the information entropy, equation (1.1), and the discussion of it in reference to the full

result equation (1.19)).

5.5.3 Energy and heat capacity

Multiplying both sides of the Helmholtz free energy, equation (5.98), by the inverse

temperature and differentiating yields the most likely energy of the sub-system,

∂(βF̄ )

∂β
= Ē.

Here Ē(N ,V ,T ) has been held constant during the differentiating because the

constrained Helmholtz free energy, F(E ∣ N ,V ,T ), is a variational principle for the

energy. This was given in chapter 2 as equation (2.35). From the above, the left-hand side

is the negative logarithmic derivative of the partition function,

This is equation (2.141) with x = 1 and X = E.

The energy of the sub-system is extensive, and its fluctuations are Gaussian. Hence the

average value equals the most likely value,

⟨H⟩N ,V ,T = Ē(N ,V ,T ).

With this one sees that the thermodynamic derivative equals the statistical mechanical

derivative, which shows the consistency of the two.

The second derivative of the Helmholtz free energy gives the heat capacity at constant

volume, equation (2.110),

Ss(Ē,N ,V ) =
Ē

T
+ Stotal(N ,V ,T )

= kB ∫ dΓ ℘(Γ){βH(Γ) + ln Z(N ,V ,T )}

= − kB ∫ dΓ ℘(Γ) ln [h3N N!℘(Γ)]

= − kB ∫ dΓ ℘(Γ) ln ℘(Γ).

−∂ ln Z(N ,V ,T )

∂β
=

1

N!h3N Z
∫ dΓ

−∂

∂β
e−βH(Γ)

=
1

N!h3N Z
∫ dΓ e−βH(Γ)H(Γ)

= ⟨H⟩N ,V ,T .
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CV =
−1

T 2
(

∂ 2(F̄/T )

∂(1/T )2
)

V ,N

= −kBβ2 ∂

∂β

∂(βF̄ )

∂β
.

In terms of the partition function this is

This is just equation (2.144) with x = 1 and X = E. This is evidently positive and

extensive (because the free energy is extensive). The square root of the right-hand side

tells how likely an individual measurement of the energy is to depart from the average

energy due to statistical variations. The relative root mean square fluctuation, 

⟨[H − ⟨H⟩]2⟩1/2 /⟨H⟩ ∼ V −1/2
, vanishes in the thermodynamic limit, which is to say that

the statistical measurement error is relatively negligible.

5.5.4 Virial pressure

The volume derivative of the Helmholtz free energy gives the pressure, equation (2.110),

(
∂F̄ (N ,V ,T )

∂V
)

T ,N

= −p̄.

Using y = p and Y = V in equation (2.141) gives the equivalent expression for the

logarithmic derivative of the partition function,

∂ ln Z(N ,V ,T )

∂V
= ⟨βsp⟩N ,V ,T .

Most commonly one regards the fluctuations in the sub-system temperature as

negligible and one takes βs = β and takes it outside of the average.

That part of the partition function that depends upon the volume is called the

configuration integral. It is

CV = kBβ2 ∂

∂β

Z′(β)

Z(β)

= kBβ2{
Z′′(β)

Z(β)
− (

Z′(β)

Z(β)
)

2

}

= kBβ2{⟨H2⟩
N ,V ,T

− ⟨H⟩2N ,V ,T}

= kBβ2⟨[H − ⟨H⟩N ,V ,T]
2

⟩
N ,V ,T

.

Q(N ,V ,T ) = ∫
V

dq e−βU(q)

= L3N ∫
1

0

dx e−βU(x;L).
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In the second equality L has been used to scale all of the coordinates, qjα = Lxjα. Note

that some authors use the opposite notation convention to here, denoting the partition

function by Q and the configuration integral by Z.

Note that the potential energy that appears here is solely that due to the intermolecular

contributions. The external contributions, which provide the external forces that balance

the internal pressure being obtained here, implicitly appear as the limit on the

configuration integral.

The derivative of the potential energy is

In the final equality has been defined the virial of Clausius, V. This is essentially the

sum of the force acting on each particle due to the other particles. (We assume that only

the internal potential energy between the particles alone appears here. Any external

energy such as that due to the walls of the sub-system is incorporated into the limits on

the integrals.) With this the logarithmic derivative of the partition function is

This is the virial equation for the pressure. The first term is the pressure of an ideal gas

(see below), and the second is the average of the intermolecular forces. For a dilute real

gas, this is dominated by the long-ranged attractions between the particles, which makes

the pressure less than that of the corresponding ideal gas. For solids and dense fluids, the

short-ranged core repulsion that defines the size of the particles typically dominates, which

makes the pressure greater than that of the corresponding ideal gas. Because the core

repulsion is short-ranged, it is steep, and therefore its contribution to the pressure

increases rapidly with increasing density as the particles sample more of it. This means

that dense fluids and solids have a pressure that increases more rapidly with density than

an ideal gas, which means that they have a lower compressibility.

5.5.5 Ideal gas

The Hamiltonian separates into momentum and position parts, H(Γ) = K(p) + U(q). For

an equilibrium system one is generally interested in the average of a function of the

velocity alone or of the position alone. Accordingly, the canonical equilibrium partition

function can be written

∂U(x;L)

∂L
=

∂U(q)

∂q
⋅
∂q

∂L

= L−1q ⋅ ∇U(q)

≡ − L−1V.

⟨βsp⟩ =
∂ ln Z(N ,V ,T )

∂V

=
1

Q

∂Q(N ,V ,T )

3L2∂L

=
1

3L2Q
[3NL3N−1 ∫

1

0

dx e−βU(x;L) − βL3N ∫
1

0

dx e−βU(x;L)
∂U(x;L)

∂L
]

=
N

V
+

β⟨V⟩N ,V ,T

3V
.



(5.1

10)

(5.1

11)

(5.1

12)

(5.1

13)

(5.1

14)

The configuration integral was defined above as Q(N ,V ,T ) ≡ ∫
V
dq e−βU(q)

.

The ideal gas has U(q) = 0, and the corresponding partition function is

The thermal wave length here and below is

Λ ≡√
2πℏ2

mkBT
,

where ℏ ≡ h/2π. This quantity will recur in the quantum analysis of chapter 7, where it

will be shown that it is the lower limit of the length scales on which wave function

symmetrization effects are negligible. One must glean from the context in each case

whether Λ means the thermal wave length or the transport coefficient matrix.

The average energy for the ideal gas is

 

The total unconstrained entropy of the ideal gas for this canonical equilibrium system is

just the logarithm of the partition function,

S id
tot(N ,V ,T ) = kB ln Z id(N ,V ,T ) = NkB[1 − ln ρΛ3],

where the density is ρ = N/V . The reservoir part of this is

⟨ d⟩

Z(N ,V ,T ) =
1

N!h3N
∫ dΓ e−βH(Γ)

=
1

N!h3N
∫ dp e−βp2/2 m ∫

V

dq e−βU(q)

=
Λ−3N

N!
∫

V

dq e−βU(q)

= Z id(N ,V ,T )V −N Q(N ,V ,T ).

Z id(N ,V ,T ) =
1

N!h3N
∫ dp e−βp2/2 m ∫

V

dq

=
1

N!h3N
[2πmkBT ]3N/2

V N

≡
V N

N!Λ3N
.

⟨Hid⟩
N ,V ,T

=
−∂ ln Z id(N ,V ,T )

∂β

=
−∂ ln Λ−3N

∂β

=
3N

2
kBT .
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S id
r (N ,V ,T ) =

−⟨Hid⟩
N ,V ,T

T
=

−3NkB

2
,

and the sub-system part is

S id
s (N ,V ,T ) = S id

tot(N ,V ,T ) − S id
r (N ,V ,T ) = NkB[

5

2
− ln ρΛ3].

 

The ideal gas heat capacity at constant volume is

This is evidently independent of temperature.

The pressure of the ideal gas is given by

⟨βsp⟩
id
N ,V ,T =

∂ ln Z id(N ,V ,T )

∂V
=

N

V
.

Setting the sub-system temperature to that of the reservoir, βs = β = 1/kBT , and

defining the number density as ρ ≡ N/V , this is p̄ id = ρkBT , which is the well-known

result. Rewriting equation (2.115) for a canonical equilibrium system, the ideal gas

isothermal compressibility is

χid
T =

−1

V
(

∂p̄ id

∂V
)

−1

T ,N

= (ρkBT )−1.

This says that as the number density and temperature increase, the ideal gas becomes

less compressible.

The chemical potential of the ideal gas is given by

⟨βsμ⟩idN ,V ,T =
−∂ ln Z id(N ,V ,T )

∂N
= ln ρΛ3,

or ρΛ3 = eβμid
.

5.5.6 Equipartition theorem

The generalized equipartition theorem, equation (4.62), in the case of the canonical

equilibrium system is

C id
V = − kBβ2 ∂

∂β

∂(βF̄
id
)

∂β

= − kBβ2
∂⟨Hid⟩

N ,V ,T

∂β

=
3N

2
kB.
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If, for example, this is evaluated for the momentum components of the gradient

operator, the averand on the left-hand side is

k−2
B [∇pSr(Γ)][∇pSr(Γ)] =

β2

m2
pp,

and that on the right-hand side is

−k−1
B ∇p∇pSr(Γ) =

β

m
I.

If one actually evaluates the average of the left-hand side, since the momentum

probability is a Gaussian, ℘(Γ) ∝ e−βp⋅p/2m, one sees indeed that

β2

m2
⟨pp⟩N ,V ,T =

β

m
I.

This is a general form of the traditional equipartition theorem.

More interesting is to consider whether or not this generalized equipartition theorem

holds locally. That is, can these be equated without averaging,

pp ℘(Γ) = mkBT℘(Γ) I?

We have included the probability density in this since it also appears in the integrand,

and we wish to emphasize the fact that if this holds anywhere it can only be on the likely

points of space. This is probably not such a good approximation, as one could choose

values of the momentum components that are not individually unlikely but where the two

matrices disagree in individual terms. (In fact, no dyadic matrix can be diagonal, a point

which will prove of some significance in chapter 7.)

On the other hand, if one takes the trace of both sides this becomes

p2℘(Γ) = 3NmkBT℘(Γ).

This is actually quite a good approximation. Since the kinetic energy is extensive, on

the likely points of phase space the fluctuations in it are relatively negligible, and the left-

hand side can indeed be expected to equal the right-hand side. Although in a formal

mathematical sense one can cancel the probability density on both sides of this, we prefer

to leave it in to again emphasize that this only holds on the likely points of phase space. If

one chose a set of momenta p2 ≠ 3NmkBT , then for this set ℘(Γ) ≈ 0 and both sides of

the equation are zero.

k−2
B ⟨[∇Sr(Γ)][∇Sr(Γ)]⟩N ,V ,T = k−2

B ∫ dΓ ℘(Γ)[∇Sr(Γ)][∇Sr(Γ)]

= k−1
B ∫ dΓ [∇℘(Γ)][∇Sr(Γ)]

= − k−1
B ∫ dΓ ℘(Γ)∇∇Sr(Γ)

= − k−1
B ⟨∇∇Sr(Γ)⟩N ,V ,T .
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The generalized equipartition theorem is not restricted to momenta. For example, taking

the position coordinates of the gradient operators yields

β2⟨[∇qU(q)][∇qU(q)]⟩N ,V ,T = β⟨∇q∇qU(q)⟩N ,V ,T .

Taking the trace of this and assuming that it holds locally allows it to be written

β℘(Γ) ∇qU(q) ⋅ ∇qU(q) = ℘(Γ) ∇2
qU(q).

This takes on a rather simple form if the only potential energy is a one-body, parabolic,

potential trap.

There is another result that can be called a generalized equipartition theorem. Consider

the canonical equilibrium average of the 6N × 6N  dyadic,

The third equality follows from an integration by parts. Choosing a single momentum

component this gives the conventional equipartition theorem,

⟨
1

m
p2

jα⟩
N ,V ,T

= kBT .

More generally, it gives

⟨
1

m
pjαpiγ⟩

N ,V ,T

= δj,iδα,γkBT ,

⟨qjα

∂U(q)

∂qiγ

⟩
N ,V ,T

= δj,iδα,γkBT ,

and

⟨pjα

∂U(q)

∂qiγ

⟩
N ,V ,T

= ⟨qjα

1

m
piγ⟩

N ,V ,T

= 0.

In order to connect the second of these with the virial of Clausius, one should ensure

that the total potential energy is used, including the singlet potential due to any containing

walls.

5.5.7 Particle densities and distributions

⟨Γ
∂H(Γ)

∂Γ
⟩

N ,V ,T

=
1

h3N N!Z
∫ dΓ e−βH(Γ)Γ

∂H(Γ)

∂Γ

=
−kBT

h3N N!Z
∫ dΓ Γ

∂e−βH(Γ)

∂Γ

=
kBT

h3N N!Z
∫ dΓ e−βH(Γ) ∂Γ

∂Γ

= kBT I.
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The one-particle density ρ(1)(r), usually denoted ρ(r), or ρ for a homogeneous system,

gives the number of particles per unit volume at r. For a canonical equilibrium system it is

The final equality follows because all the particles are identical. Equivalently,

ρ(1)(qN) =
N

Q(N ,V ,T )
∫

V

dqN−1 e−βU(qN),

where the integration is over the first N − 1 particles, and the Nth particle is at qN .

The two-particle density is proportional to the probability of finding two different

particles simultaneously at two positions. It is

ρ(2)(r, s) = ⟨
N

∑
j=1

N

∑
k=1

(k≠j) δ(r − qj)δ(s − qk)⟩
N ,V ,T

,

or

ρ(2)(qN ,qN−1) =
N(N − 1)

Q(N ,V ,T )
∫

V

dqN−2 e−βU(qN).

Similarly, the n-particle density is

ρ(n)(qN ,qN−1,… ,qN−n+1) =
N!/(N − n)!

Q(N ,V ,T )
∫

V

dq
N−n e−βU(qN).

Appending the subscript N to make it clear that this is a closed or canonical density,

this is evidently normalized such that

∫
V

dq
n ρ

(n)
N (qn) =

N!

(N − n)!
.

 

For an open or grand canonical system, the normalization is

⟨ ⟩

ρ(1)(r) = ⟨
N

∑
j=1

δ(r − qj)⟩
N ,V ,T

=
1

h3N N!Z(N ,V ,T )
∫ dΓ e−βH(Γ)

N

∑
j=1

δ(r − qj)

=
1

Q(N ,V ,T )
∫

V

dq e−βU(q)
N

∑
j=1

δ(r − qj)

=
N

Q(N ,V ,T )
∫

V

dq e−βU(q)δ(r − qN).
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∫
V

dqn ρ
(n)
μ (qn) = ⟨

N!

(N − n)!
⟩

μ,V ,T

.

 

One can confirm that the fluctuations in particle number are given by

This is also the second derivative of the grand potential, (cf equation (2.144)), and it is

related to the isothermal compressibility, (cf equation (2.115)), as is shown in equation

(5.158).

For an ideal gas, Qid = V N
. Hence in the uniform case of no external one-body

potential, the n-particle canonical density is

ρ
(n),id
N (qn) =

N!V N−n

(N − n)!V N
=

N

V

N − 1

V
⋯

N − n + 1

V
.

For n ≪ N  this is just ρn, where the singlet density is ρ = N/V .

For the case of an ideal gas in an external field U(r), this is

ρ
(n),id
N (qn) =

N!

(N − n)!Ṽ
n

n

∏
j=1

e−βU(qj), Ṽ ≡ ∫
V

dr e−βU(r).

 

In general, particles are only correlated over short-ranges. At large separations between

clusters of particles, the multi-particle density is a product form

ρ(m+n)(rm, sn) → ρ(m)(rm) ρ(n)(sn), all ∣ rj − sk ∣→ ∞.

 

In the opposite limit of small separations, real particles have finite size and a repulsive

core that prevents overlap. Hence

ρ(n)(rn) → 0, any ∣ rj − rk ∣→ 0.

 

The n-particle distribution function is defined to be

g(n)(rn) =
ρ(n)(rn)

∏n
j=1 ρ(1)(rj)

.

The departure of this from unity is a measure of the correlation between the particles.

Asymptotically,

( )

⟨[N − ⟨N⟩μ,V ,T]
2
⟩

μ,V ,T

= ∫
V

dr ds {ρ
(2)
μ (r, s) − ρ

(1)
μ (r)ρ

(1)
μ (s) + ρ

(1)
μ (r)δ(r − s)}.
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g(n)(rn) → 1, all rjk → ∞.

 

The most important distribution function is the pair one. For a uniform fluid (no one-

body potential) in which the particles interact with a radially symmetric pair potential, this

is the radial distribution function,

g(2)(r1, r2) = g(r12).

Here r12 =∣ r1 − r2 ∣ is the separation between the particles. One has

g(r) → {

One also has

g(r) → e−βu(r), ρ → 0.

 

Consider a uniform fluid, U (1)(r) = 0, with a radially symmetric pair potential,

U(q) =
N

∑
j=1

N

∑
k=j+1

u(qjk) ≡
N

∑
k<j

u(qjk).

 

The excess energy is the average potential energy, which is to say the energy without

the kinetic energy. In this case for a canonical equilibrium system it is

The integral is convergent and independent of V because generally r3u(r) → 0, 

r → ∞. (Coulomb and dipole interactions require special treatment.)

The virial of Clausius, equation (5.108), in this case is

1, r → ∞,

0, r → 0.

E ex = ⟨
N

∑
k<j

u(qjk)⟩
N ,V ,T

=
N(N − 1)

2Q(N ,V ,T )
∫

V

dqN e−βU(qN)u(qN ,N−1)

=
1

2
∫

V

dqN dqN−1 ρ(2)(qN ,qN−1)u(qN ,N−1)

=
ρ2V

2
∫

V

dr g(r)u(r).
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The canonical equilibrium average of this is

The analysis is identical to that for the excess energy with the replacement 

u(r) ⇒ −ru′(r). From the virial equation (5.109), the average pressure is

The first term is the ideal gas result. At low densities, g(r) ∼ 1, the second term is

dominated by the long-range tail, which is generally attractive (i.e. a negative potential

decreasing with increasing separation, which is to say a positive slope). Hence the second

term is negative in this range, and so the pressure is less than that of an ideal gas at the

same density and temperature.

In section 2.5.3, the isothermal compressibility was given as the derivative of the

volume with pressure at constant number and temperature, equation (2.115),

χT =
−1

V̄
(

∂V̄

∂p
)

T ,N

=
1

ρ
(

∂ρ

∂p
)

T

.

In the second equality the number density ρ ≡ N/V  has been used. In section 2.5.3

this was written as the second pressure derivative of the Gibbs free energy.

This can also be written as the second chemical potential derivative of the grand

potential as follows. Above, the density was considered as a function of pressure and

temperature, ρ(p,T ). But because of the uniqueness of the thermodynamic state, one can

instead write ρ(μ,T ) and p(μ,T ), with which the compressibility becomes

V = − q ⋅ ∇U(q)

= −
N

∑
i=1

qi ⋅
N

∑
j<k

∂u(qjk)

∂qi
= −

N

∑
i=1

qi ⋅
N

∑
k=1

(k≠i)
∂u(qik)

∂qi

= −
N

∑
i≠k

u′(qik)qi ⋅
qik

qik
= −

N

∑
i<k

u′(qik)qik ⋅
qik

qik

=
−1

2

N

∑
i≠k

qiku′(qik).

⟨V⟩N ,V ,T = ⟨−
N

∑
k<j

qkju′(qkj)⟩

N ,V ,T

=
−ρ2V

2
∫

V

dr g(r)ru′(r).

⟨βsp⟩ =
N

V
+

β⟨V⟩N ,V ,T

3V

= ρ −
βρ2

6
∫

V

dr g(r)ru′(r).

( ) ( )
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Writing Ω(μ,V ,T ) = −kBT ln Ξ(μ,V ,T ), this is

This is just equation (2.144) with x = −μ and X = N.

In equation (5.141), the fluctuations in number were related to the integral over the pair

density. For a homogeneous system, ρ
(1)
μ (r) = ρ, with spherically symmetric pair potential, 

ρ
(2)
μ (r, s) = ρ2g(∣ r − s ∣) this is

The quantity in the integrand is called the total correlation function, h(r) ≡ g(r) − 1. It

evidently goes to zero at large separations.

The isothermal compressibility diverges at spinodal points where the system is infinitely

compressible. The curve of spinodal points lies inside the coexistence curve and it marks

the limit of absolute thermodynamic stability of a phase. The critical point is the extremum

of the spinodal curve. It is also the point at which the spinodal and coexistence curves

coincide. The divergence of the density fluctuations due to the infinitely compressibility

gives rise to the phenomenon known as critical opalescence.

5.6 Sub-system entropy as a functional of particle

densities

χT =
1

ρ
(

∂ρ

∂μ
)

T

(
∂μ

∂p
)

T

=
1

ρ
(

−∂ 2Ω

V ∂μ2
)

T ,V

(
N −1∂G

∂p
)

T ,N

=
−1

ρ2V
(

∂ 2Ω

∂μ2
)

T ,V

.

χT =
1

kBTρ2V

∂ 2 ln Ξ(μ,V ,T )

∂(βμ)2

=
1

kBTρ2V
{

Ξ′′(βμ)

Ξ(βμ)
− (

Ξ′(βμ)

Ξ(βμ)
)

2

}

=
1

kBTρ2V
{⟨N 2⟩

μ,V ,T
− ⟨N⟩2μ,V ,T}

=
1

kBTρ2V
⟨[N − ⟨N⟩μ,V ,T]

2

⟩
μ,V ,T

.

⟨[N − ⟨N⟩μ,V ,T]
2
⟩

μ,V ,T

= ∫
V

dr ds {ρ
(2)
μ (r, s) − ρ

(1)
μ (r)ρ

(1)
μ (s) + ρ

(1)
μ (r)δ(r − s)}

= ∫
V

dr ds {ρ2g(∣ r − s ∣) − ρ2 + ρδ(r − s)}

= ρV + ρ2V ∫ dr {g(r) − 1}.
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5.6.1 Gibbs–Shannon information entropy

As was discussed in section 2.4.1, the Gibbs–Shannon information entropy, 

SGS[℘α] = −kB ∑α ℘α ln ℘α, gives only part of the total entropy, because it lacks the

entropy internal to each macrostate α, ∑α ℘αSα. In thermodynamics and statistical

mechanics, the ‘external’ entropy that is retained is the sub-system entropy, and the

‘internal’ entropy that is lacking is the reservoir entropy.

For example, for a canonical equilibrium system, the total entropy is

the second equality holding for the most likely energy macrostate in the

thermodynamic limit. The reservoir entropy is

Sr(Ē) =
−Ē(N ,V ,T )

T
=

−1

T
⟨H⟩N ,V ,T ,

and, as shown in equation (5.99), the sub-system entropy is

Ss(Ē,N ,V ) = −kB ∫ dΓ ℘(Γ) ln ℘(Γ).

5.6.2 Lattice models

We now give a rather useful approximation for calculating the sub-system entropy using

the Gibbs–Shannon form and the multi-particle probability density. The scheme is most

transparent for a lattice model.

Consider a lattice of N sites labeled j = 1, 2,… ,N , with a discrete variable σi at each

site. This variable can represent whether or not a site is occupied by a particle, or the

species of particle, or the magnetic spin state etc. The microstate of the system is signified

σN , and it is assumed that for an isolated system all microstates have equal weight. The

energy of the system is H(σN). At this stage we do not need to specify this or the

dimensionality of the system.

For the canonical equilibrium case, the probability of a configuration is

℘(σN) =
1

Z(N ,T )
e−βH(σN),

the partition function being

Z(N ,T ) = ∑
σN

e−βH(σN).

There is no N! here because the sites are regarded as distinguishable. The total

unconstrained entropy is Stot(N ,T ) = kB ln Z(N ,T ). This is the sum of the reservoir

entropy,

Sr(Ē) =
−Ē

T
=

−1

T
∑
σN

℘(σN) H(σN),

Stot(N ,V ,T ) = kB ln Z(N ,V ,T )

= Ss(Ē) + Sr(Ē),
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and the sub-system entropy, which is the Gibbs–Shannon information entropy,

Ss(Ē) = SGS [℘] = −kB∑
σN

℘(σN) ln ℘(σN).

 

A naive approximation to the sub-system entropy can be made based on its extensivity.

The entropy per site may be expected to be independent of the size of the system provided

that the system is not too small,

(It will be shown that this is not a very accurate approximation for a highly coupled

system.) Here ℘(σn) is the n-site probability obtained in the full N-site system. For n ≪ N ,

the sum over configurations σn
 is much more tractable than the one over σN

. Although

this expression for the entropy is more accurate for large n, it is also more difficult to obtain

℘(σn) when n becomes larger.

The formal expression for the n-site probability is

℘(σ′n) = ∑
σN

℘(σN) δ(σn − σ′n).

In general terms it is relatively easy to numerically obtain accurate statistical results

for the several site probability function, but this becomes more challenging as the order of

the probability is increased. What is required is an approximation for the many-body

probability in terms of the few body probability.

5.6.3 One dimension

It is most transparent to initially carry out the analysis for a one-dimensional crystal, and

then to generalize it to two and three dimensions. We shall mainly consider consecutive

sites, with the notation σn
j  denoting the configurations of the n sites from site j, 

σn
j = {σj,σj+1,… ,σj+n−1}.

We shall write the n-site probability for σn at arbitrary sites jn as

℘(n)(σn, jn) = g(n)(σn, jn)
n

∏
k=1

℘(1)(σk),

where the distribution function is unity for far separated sites. For n consecutive sites

beginning at j we shall write

℘(n)(σn
j ) = G(n)(σn

j )
j+n−1

∏
k=j

℘(1)(σk).

 

1

N
SGS [℘] =

−kB

N
∑
σN

℘(σN) ln ℘(σN)

≈
−kB

n
∑
σn

℘(σn) ln ℘(σn).
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Assuming a homogeneous system, the singlet site probability is ℘(1)(σ). The two-site

probability is ℘(2)(σ1,σ2). To leading order this can be taken to be the product of singlet

probabilities,

℘(2)(σ1,σ2) = ℘(1)(σ1)℘
(1)(σ2)g

(2)(σ1,σ2) ≈ ℘(1)(σ1)℘
(1)(σ2).

This is equivalent to setting the distribution function g or G to unity.

A very common approximation for the three consecutive site probability, 

℘(3)(σ1,σ2,σ3) = ℘(1)(σ1)℘
(1)(σ2)℘

(1)(σ3)G
(3)(σ1,σ2,σ3), is the Kirkwood superposition

approximation,

G(3)(σ1,σ2,σ3) ≈ G(2)(σ1,σ2)G
(2)(σ2,σ3)g

(2)(σ1,σ3; 1, 3).

The problem with this is that it double counts the correlation between sites 1 and 3,

most of which is already counted in the product of the first two factors. It is far better to

make a Markov approximation for this,

G(3)(σ1,σ2,σ3) ≈ G(2)(σ1,σ2)G
(2)(σ2,σ3).

 

One can formalize this by defining

G(3)(σ1,σ2,σ3) ≡ G(2)(σ1,σ2)G
(2)(σ2,σ3)Δ

(3)(σ1,σ2,σ3).

The disparity Δ(3)
 is what makes this exact. Setting the triplet disparity to unity yields

the Markov approximation for the triplet distribution function.

Similarly, for four consecutive sites one defines

This again is exact. The G(2)
 in the denominator of the first equality accounts for

double counting. Setting Δ(4) = 1 gives the triplet Markov approximation for the four-

particle distribution, and in addition setting Δ(3) = 1 gives the pair Markov approximation

for the four- particle distribution.

In general one has the formally exact product form

 

G(4)(σ1,σ2,σ3,σ4) ≡
G(3)(σ1,σ2,σ3)G

(3)(σ2,σ3,σ4)

G(2)(σ2,σ3)
Δ(4)(σ1,σ2,σ3,σ4)

= G(2)(σ1,σ2)G
(2)(σ2,σ3)G

(2)(σ3,σ4)

×Δ(3)(σ1,σ2,σ3)Δ
(3)(σ2,σ3,σ4)Δ

(4)(σ1,σ2,σ3,σ4).

G(N)(σ1,… ,σN) ≡
G(N−1)(σ1,… ,σN−1)G(N−1)(σ2,… ,σN)

G(N−2)(σ2,… ,σN−1)
Δ(N)(σ1,… ,σN)

= G(2)(σ1,σ2)G(2)(σ2,σ3)⋯G(2)(σN−1,σN)

×Δ(3)(σ1,σ2,σ3)⋯Δ(N)(σ1,… ,σN).
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Inserting this into the Gibbs–Shannon expression for the sub-system entropy, the

logarithm of this product becomes a sum of terms, starting with the singlet, pair, triplet,

etc. Summing over the redundant spin variables, the probability multiplying the logarithms

is reduced to a singlet, pair, triplet, probability etc,

For a homogeneous system there are N equivalent singlet terms, N − 1 equivalent

pair terms, N − 2 equivalent triplet terms, etc. In the thermodynamic limit each of these

may be replaced by N and the expansion for the sub-system entropy per site is

 

If one has obtained the probability ℘(n), then one can evaluate this up to order n, since

all the ℘(j)
 and Δ(j)

, j ⩽ n can be obtained by reducing ℘(n)
. This can be called the nth

order Markov superposition approximation to the Gibbs–Shannon form of the sub-system

entropy.

Terminating this expansion at some order n is expected to be accurate because it is

equivalent to invoking a Markov superposition approximation at that order. This is much

more accurate than, for example, the Kirkwood superposition approximation, because it

does not double count the correlations, which can be particularly problematic at high

couplings. This nth order Markov superposition approximation is also more accurate than

simply inserting ℘(n) directly into the Gibbs–Shannon form of the sub-system entropy,

S
(n)
s ≡ −kB∑

σn

℘(n)(σn) ln ℘(n)(σn),

and taking Ss(N)/N ≈ S
(n)
s /n.

Ss(N) = − kB∑
σN

℘(N)(σN) ln{G(N)(σ1,… ,σN)∏N
j=1 ℘

(1)(σj)}

= − kB

N

∑
j=1

∑
σj

℘(1)(σj) ln ℘(1)(σj)

− kB

N−1

∑
j=1

∑
σj,σj+1

℘(2)(σj,σj+1) ln G(2)(σj,σj+1)

− kB

N−2

∑
j=1

∑
σj,σj+1,σj+2

℘(3)(σj,σj+1,σj+2) ln Δ(3)(σj,σj+1,σj+2)

− ⋯− kB∑
σN

℘(N)(σN) ln Δ(N)(σN).

Ss(N)/N = − kB∑
σ

℘(1)(σ) ln ℘(1)(σ)

− kB ∑
σ1,σ2

℘(2)(σ1,σ2) ln G(2)(σ1,σ2)

− kB ∑
σ1,σ2,σ3

℘(3)(σ1,σ2,σ3) ln Δ(3)(σ1,σ2,σ3)

− ⋯.
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There is another way to write the nth order Markov superposition approximation that is

particularly easy to generalize to higher dimensions. In view of the definition of the

disparity,

Δ(n)(σ1,… ,σn) ≡
℘(n)(σ1,… ,σn)℘

(n−2)(σ2,… ,σn−1)

℘(n−1)(σ1,… ,σn−1)℘(n−1)(σ2,… ,σn)
,

one can write the difference between successive approximations to the entropy as

Obviously, one can repeat this down to n = 3 to obtain

One sees that this is identical to the nth order Markov superposition approximation to

the Gibbs–Shannon form of the sub-system entropy per site,

Ss(N)/N ≈ S
(n)
s − S

(n−1)
s (Markov).

The difference between the two terms on the right-hand side reflects the subtraction of

the doubly counted correlations, which is a feature of the Markov approach. This

approximation is equivalent to setting the higher order disparities to unity, Δ(m) = 1, 

m ⩾ n + 1. This expression is expected to be much more accurate than the simple minded

Ss(N)/N ≈ S
(n)
s /n, particularly at higher couplings between the sites.

5.6.4 Two and three dimensions

S
(n)
s − S

(n−1)
s = − kB∑

σn

℘(n)(σn) ln
℘(n)(σn)

℘(n−1)(σn−1)

= − kB∑
σn

℘(n)(σn) ln
Δ(n)(σn)℘(n−1)(σn−1)

℘(n−2)(σn−2)

= S
(n−1)
s − S

(n−2)
s − kB∑

σn

℘(n)(σn) ln Δ(n)(σn).

S
(n)
s − S

(n−1)
s = − kB∑

σn

℘(n)(σn) ln Δ(n)(σn)

− kB∑
σn−1

℘(n−1)(σn−1) ln Δ(n−1)(σn−1)

− ⋯− kB∑
σ3

℘(3)(σ3) ln Δ(3)(σ3)

− kB∑
σ2

℘(2)(σ2) ln ℘(2)(σ2) + kB∑
σ

℘(1)(σ) ln ℘(1)(σ)

= − kB∑
σn

℘(n)(σn) ln Δ(n)(σn) −⋯− kB∑
σ3

℘(3)(σ3) ln Δ(3)(σ3)

− kB∑
σ2

℘(2)(σ2) ln G(2)(σ2) − kB∑
σ

℘(1)(σ) ln ℘(1)(σ).
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Consider a two-dimensional lattice. For simplicity take this to be a square lattice, but this is

not essential. Let ℘(n,m)(σnm) be the probability for the configuration σnm
 on an n × m

block of sites. The sub-system entropy of such a block is

S
(n,m)
s ≡ −kB∑

σnm

℘(n,m)(σnm) ln ℘(n,m)(σnm).

The n, mth Markov superposition approximation to the Gibbs–Shannon form of the sub-

system entropy in two dimensions is

Ss(N)/N ≈ S
(n,m)
s − S

(n−1,m)
s − S

(n,m−1)
s + S

(n−1,m−1)
s .

This is generalization of the one-dimensional result. It can be seen that the entropy of

the common sites that is subtracted twice is added back by the final term. Again, since this

correctly counts the correlated contributions, it can be expected to be much more accurate

than the simple minded Ss(N)/N ≈ S
(n,m)
s /nm, particularly at high couplings.

Analogously, the three-dimensional result is

Here the Gibbs–Shannon form of the sub-system entropy of a n × m × k block of sites

is

S
(n,m,k)
s ≡ −kB∑

σnmk

℘(n,m,k)(σnmk) ln ℘(n,m,k)(σnmk).

5.6.4.1 Ising model test

These approximations are readily tested for the two-dimensional Ising model, for which

exact results are known (Baxter 1982). In this model the Hamiltonian is

H(σN) = −J ∑
j,k

(nn) σjσk.

where nn denotes the nearest neighbors on the lattice, and the spin variable can be 

σ = ±1. The weight of each microstate for an isolated sub-system is unity, and hence the

sub-system microstate entropy vanishes, Ss(σ
N) = 0.

From Onsager’s exact solution, the unconstrained total entropy per site is (Wikipedia

2017)

Ss(N)/N ≈ S
(n,m,k)
s − S

(n−1,m,k)
s − S

(n,m−1,k)
s − S

(n,m,k−1)
s

+ S
(n,m−1,k−1)
s + S

(n−1,m,k−1)
s + S

(n−1,m−1,k)
s

− S
(n−1,m−1,k−1)
s .

Stotal(N ,T )

N
≡

1

N
ln ZN(T )

=
1

2
ln 2 +

1

2π
∫

π

0

dθ ln{cosh2 2K + k−1√1 + k2 − 2k cos(2θ)},
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where the dimensionless coupling parameter is K ≡ J/kBT , and k ≡ 1/ sinh2 2K. The

average (equivalently, most likely) energy per site is (Wikipedia 2017)

β

N
Ē(N ,T ) = −K coth 2K 1 +

2

π
[2 tanh2 2K − 1]∫

π/2

0

dθ

√1 − 4k(1 + k)−2 sin2 θ

 

From these can be calculated the reservoir entropy per site

Sr(N ,T )

N
=

−1

NT
Ē(N ,T ),

and the sub-system entropy per site

Ss(N ,T )

N
=

Stot(N ,T )

N
+

1

NT
Ē(N ,T ).

 

Figure 5.6 shows the exact results for the entropy of the two-dimensional Ising model as

a function of the coupling parameter. The reservoir entropy goes to zero as the coupling

parameter goes to zero because in this regime the sub-system energy vanishes, and hence

so does the reservoir entropy. The sub-system entropy decreases as the coupling

parameter increases because the spins are increasingly correlated and aligned, which is an

ordered arrangement.

Figure 5.6. The entropy per site for the Ising model on a square lattice as a function

of the coupling parameter for the canonical equilibrium system. The curves are the

exact result for the total (solid), reservoir (dotted), and sub-system (dashed) entropy.

The symbols are the Gibbs–Shannon information entropy using the four-spin

probability function on a 2 × 2 block, with the filled triangles being the Markov

superposition formula, S
(2,2)
s − 2S

(2,1)
s + S

(1,1)
s , and the empty circles being S

(2,2)
s /4.

Data from Attard (1999).

⎧⎪⎨⎪⎩ ⎫

⎭
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The two approximations for the Gibbs–Shannon form of the sub-system entropy are

tested, both based on the four-spin probability ℘(2,2)(σ4) on a 2 × 2 block. The probability

was obtained by enumerating all configurations on a 5 × 5 lattice with periodic boundary

conditions (Attard 1999). It can be seen that the Gibbs–Shannon entropy agrees with the

exact sub-system entropy, which confirms that it is just part of the total entropy. The

Markov superposition approximation, S
(2,2)
s − 2S

(2,1)
s + S

(1,1)
s , performs much better than

the naive S
(2,2)
s /4 at higher couplings. It appears that the simple approach implicitly

assumes a disordered state for spins beyond the domain upon which it is calculated. At

high couplings when the correlation length extends beyond this domain, this

underestimates the real degree of correlation beyond the domain, and hence

overestimates the entropy of the system. Evidently, the Markov approach is able to

correctly account for the correlations between the spins, even at high couplings. It is

surprising how well the Markov superposition approximation performs considering that only

the four-spin distribution function was used.

5.6.5 Continuum disordered fluid

In this subsection the focus is on the positional contribution to the sub-system entropy for

particles in a continuum. The ideal gas contribution, which is to be added to this excess,

was given above as equation (5.116).

The n-particle position probability, ℘(n)(r1, r2,… , rn), is symmetric with respect to

interchange of the arguments. In two and three dimensions, this appears to create

difficulties for developing a Markov-type approximation for the entropy. Nevertheless, one

can proceed at least formally.

Define the thee-particle disparity as

g(3)(r1, r2, r3) ≡ g(2)(r1, r2)g
(2)(r2, r3)Δ

(3)(r1, r2, r3).

Since the left-hand side is symmetric in its arguments, the disparity must be

asymmetric in its arguments. One expects the disparity to be close to unity when r2 lies

between the other two positions. One can define the higher order disparities also as in the

one-dimensional spin lattice case.

Proceeding as in that case, the excess (i.e. without the ideal gas part) Gibbs–Shannon

form of the sub-system entropy is

S ex
s (N) = − kB ∫

V

drN ℘(N)(rN) ln {g(N)(r1,… , rN)∏N
j=1 ℘

(1)(rj) }

= − kB

N

∑
j=1

∫
V

drj ℘(1)(rj) ln ℘(1)(rj)

− kB

N−1

∑
j=1

∫
V

drj drj+1 ℘(2)(rj, rj+1) ln g(2)(rj, rj+1)

− kB

N−2

∑
j=1

∫
V

drj drj+1 drj+2 ℘(3)(rj, rj+1, rj+2) ln Δ(3)(rj, rj+1, rj+2)

− ⋯− kB ∫
V

drN ℘(N)(rN) ln Δ(N)(rN).
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For a homogeneous system each of these contributes essentially N equivalent terms, and

the expansion for the excess sub-system entropy per particle is

Recall that Δ(3)(r, s, t) is symmetric with respect to interchange of r and t, but that it

is asymmetric for any interchange with s. This expansion is formally exact.

Define

S
ex,(n)
s = −kB ∫

V

drn ℘(n)(rn) ln ℘(n)(rn).

One has

which telescopes to

This is just the Markov expression obtained above. Hence one can take the excess sub-

system entropy per particle to be

S ex
s (N)/N ≈ S

ex,(n)
s − S

ex,(n−1)
s .

Whatever the general utility of the Markov expansion for the particle distribution

functions in two and three dimensions, this is, presumably, the best approximation to the

sub-system entropy that one can make.

5.7 Time correlation and van Hove functions

S ex
s (N)/N = − kB ∫

V

dr ℘(1)(r) ln ℘(1)(r)

− kB ∫
V

dr ds ℘(2)(r, s) ln g(2)(r, s)

− kB ∫
V

dr ds dt ℘(3)(r, s, t) ln Δ(3)(r, s, t) −⋯

S
ex,(n)
s − S

ex,(n−1)
s = − kB ∫

V

drn ℘(n)(rn) ln
℘(n)(rn)

℘(n−1)(rn−1)

= − kB ∫
V

drn ℘(n)(rn) ln
Δ(n)(rn)℘(n−1)(rn−1)

℘(n−2)(rn−2)

= S
ex,(n−1)
s − S

ex,(n−2)
s − kB ∫

V

drn ℘(n)(rn) ln Δ(n)(rn),

S
ex,(n)
s − S

ex,(n−1)
s = − kB ∫

V

drn ℘(n)(rn) ln Δ(n)(rn)

− ⋯− kB ∫
V

dr3 ℘(3)(r3) ln Δ(3)(r3)

− kB ∫
V

dr2 ℘(2)(r2) ln g(2)(r2) − kB ∫
V

dr ℘(1)(r) ln ℘(1)(r).
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5.7.1 Time correlation function

Let A(Γ) and B(Γ) be functions of phase space. The time correlation function for them is

usually defined in terms of the correlation between the fluctuations from their average

value,

CAB(τ) = ⟨[A(τ) − ⟨A⟩] [B(0) − ⟨B⟩]⟩N ,V ,T .

In the long-time limit the two variables must be uncorrelated and so one has

 

In terms of the stochastic, dissipative trajectory Γ(t ∣ Γ0) this is

CAB(τ) =
1

t
∫

t

0

dt′ [A(Γ(t′+τ ∣ Γ0)) − ⟨A⟩] [B(Γ(t′∣ Γ0)) − ⟨B⟩].

For large t this should be independent of the starting position Γ0. One often sees in the

literature the stochastic, dissipative trajectory that appears here approximated by an

adiabatic or even by a deterministic thermostatted trajectory.

Let ε = ±1 be the time parity such that

A(Γ†) = εAA(Γ) and B(Γ†) = εBB(Γ).

Recall that the conjugate phase point has the same positions but reversed momenta.

Note that ⟨A⟩ is nonzero only if A has even parity. Hence one can always write 

⟨A⟩ = εA⟨A⟩ and ⟨B⟩ = εB⟨B⟩.

As shown in section 5.4.2, the stochastic, dissipative equations of motion possess

microscopic reversibility. Equation (5.67) reads,

Γ2 = Γ(t ∣ Γ1) ⇔ Γ
†
2 = Γ(−t ∣ Γ

†
1),

which is to be understood in a probabilistic sense. With these, and starting the

trajectory from the equally likely conjugate phase space point Γ
†
0
, the time correlation

function has the symmetry

CAB(τ) → ⟨[A(τ) − ⟨A⟩]⟩N ,V ,T ⟨[B(0) − ⟨B⟩]⟩N ,V ,T , τ → ∞

= 0.

CAB(τ) =
1

t
∫

t

0

dt′ [A(Γ(t′+τ ∣ Γ
†
0)) − ⟨A⟩][B(Γ(t′∣ Γ

†
0)) − ⟨B⟩]

=
1

t
∫

t

0

dt′ [A(Γ(−t′−τ ∣ Γ0)
†) − ⟨A⟩][B(Γ(−t′∣ Γ0)

†) − ⟨B⟩]

=
εAεB

t
∫

t

0

dt′ [A(Γ(−t′−τ ∣ Γ0)) − ⟨A⟩][B(Γ(−t′∣ Γ0)) − ⟨B⟩]

= εAεBCAB(−τ).
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The final equality follows because of time homogeneity: only the relative times at which A

and B are evaluated matters.

One can conclude from this that

CAB(0) = 0, εA ≠ εB.

This says that there can be no instantaneous correlation between variables of opposite

time parity.

5.7.2 van Hove function

The one-particle number density phase space function is defined as

ρ̂
(1)

(r, t) =
N

∑
j=1

δ(r − qj(t)),

where qj is the position of molecule j. For a closed system, this integrates to the total

number, ∫ dr ρ̂(r, t) = N .

The caret distinguishes this phase space function from the average particle density of

the type discussed in section 5.5.7. The singlet density is

⟨ρ̂
(1)

(r, t)⟩ = ρ(1)(r).

An equilibrium system is assumed here.

The density–density correlation function is a form of time correlation function. Taking 

A ≡ ρ̂
(1)

(r′+r, t) and B ≡ ρ̂
(1)

(r′, 0), this can be defined as

G(2)(r, r′, t) ≡ N −1⟨ρ̂
(1)

(r′+r, t) ρ̂
(1)

(r′, 0)⟩.

This gives the probability of a molecule being at r′ and a molecule being located a

distance r from r′ at a time t later. These may be the same molecule.

This density–density correlation function should not be confused with the pair

distribution function g(2)
 introduced in section 5.5.7, or the consecutive site correlation

function of equation (5.170). Asymptotically, G(2)(r, r′, t) ∼ ρ(1)(r′+r)ρ(1)(r)/N , as 

r′→ ∞ or t → ∞. In contrast, g(2)(r, r′) ∼ 1, as ∣ r − r′∣→ ∞.

For a homogenous system only the distance matters. Integrating the density–density

correlation function over the volume gives the van Hove function (Hansen and McDonald

1990),

G(r, t) = ∫ dr′ G(r, r′, t)

= ∫ dr′
1

N
⟨

N

∑
i=1

N

∑
j=1

δ(r′+r − qi(t)) δ(r′−qj(0))⟩

=
1

N

N

∑
i=1

N

∑
j=1

⟨δ(r + qj(0) − qi(t))⟩.
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This is equivalent to G(r, t) = V G(r,0, t) = ρ−1⟨ρ̂
(1)

(r, t)ρ̂
(1)

(0, 0)⟩. The van Hove

function can be measured by x-ray or neutron scattering techniques.

The self-part of this gives the motion of an individual molecule over time,

Gs(r, t) =
1

N

N

∑
j=1

⟨δ(r + qj(0) − qj(t))⟩.

In essence, this is the probability that a molecule moves r in time t. The distinct part

gives the correlation of different molecules

Gd(r, t) =
1

N

N

∑
i=1

N

∑
j=1

(i≠j)⟨δ(r + qi(0) − qj(t))⟩.

At large distances and at large times the molecules are uncorrelated, so that one has 

limr→∞Gd(r, t) = limt→∞Gd(r, t) = ρ, assuming a homogeneous system.

Summary

Classical phase space forms the microstates for a classical system. Hamilton’s

equations of motion govern the adiabatic evolution of an isolated sub-system in phase

space. For an isolated sub-system, classical phase space has uniform weight density

and therefore zero internal entropy.

The canonical equilibrium probability density in phase space is the Maxwell–Boltzmann

distribution. In general equilibrium probability distributions in phase space are

proportional to the exponential of the reservoir entropy.

Equilibrium averages can be given as either a time average over the stochastic,

dissipative trajectory in phase space, or else as an integral over phase space weighted

by the equilibrium probability distribution.

The Gibbs–Shannon information entropy equals the sub-system entropy. Markov

expansions for lattice and continuum systems in various dimensions facilitate its

evaluation and are more accurate than direct approaches.

The time correlation function for two phase functions can be obtained as a time

average over the stochastic, dissipative trajectory.

References

Attard P 1999 Markov superposition expansion for the entropy and correlation functions in two and three dimensions
Statistical Physics on the Eve of the Twenty-First Century ed Batchelor M T (ed) and Wille L T (ed) (Singapore:
World Scientific)

Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (London: Academic)
Boltzmann L 1871 Über das wärmegleichgewicht zwischen mehratomigen gasmolekule Wien. Ber. 63 397 679 712
Boltzmann L 1877 On the relation of a general mechanical theorem to the second law of thermodynamics Irreversible

Processes: Kinetic Theory ed Brush S G (ed) (Oxford: Pergamon) p 191
Galea T M and Attard P 2002 Constraint method for deriving non-equilibrium molecular dynamics equations of motion

Phys. Rev. E 66 041207
Hansen J-P and McDonald I R 1990 Theory of Simple Liquids 2nd edn (London: Academic)
Münster A 1969 Statistical Thermodynamics vol 1 (Berlin: Springer)
Pathria R K 1972 Statistical Mechanics (Oxford: Pergamon)
Planck M 1949 Scientific Autobiography, and Other Papers in Gaynor (New York: Philosophical Library) p 33 (English

translation by F Gaynor)
Wikipedia 2017 Square-Lattice Ising Model (accessed 8 April 2017)

https://en.wikipedia.org/wiki/Square_lattice_Ising_model

http://dx.doi.org/10.1103/PhysRevE.66.041207
https://en.wikipedia.org/wiki/Square_lattice_Ising_model


IOP Publishing

Entropy Beyond the Second Law (Second Edition)

Thermodynamics and statistical mechanics for equilibrium, non-equilibrium, classical, and

quantum systems

Phil Attard



(6.1

)

Chapter 6

Non-equilibrium statistical mechanics and path

entropy

‘Time that is moved by little fidget wheels / Is not my time, the flood that does not flow’
K Slessor (1939)

‘It can scarcely be denied that the supreme goal of all theory is to make the irreducible
basic elements as simple and as few as possible without having to surrender the adequate
representation of a single datum of experience’

A Einstein (1933)

‘Medicine is a philosophy and this is not compatible with the renouncement of criticism of
the leading authors’

al-Razi (Weinberg 2015 page 111)
The main aim of this chapter is to develop non-equilibrium classical statistical

mechanics by deriving the general form for the probability density in phase space for a

thermodynamic or a mechanical non-equilibrium system.

The need for such a first principles derivation is no better illustrated than by an

expression often found in books on statistical mechanics that is meant to give the phase

space probability density for a non-equilibrium system with Hamiltonian that varies with

time,

℘(Γ, t) ∝ e−βH(Γ,t).

Although this expression has the great virtue of being simple, it has the significant

drawback of being wrong. The chapter begins by showing why this expression goes awry.

6.1 Reservoir entropy

There are two generic types of non-equilibriums systems, mechanical and thermodynamic.

A mechanical non-equilibrium system has an explicitly time-dependent Hamiltonian, 

H(Γ, t). Typically, the time variation is due to a time-varying external potential that is

applied to the sub-system. Usually the sub-system is in thermal contact with a heat

reservoir.

A thermodynamic non-equilibrium system is typically a sub-system across which there is

a thermodynamic gradient applied by two spatially separated reservoirs with different

values of certain field variables. In this case there is a steady flux of the conjugate

exchangeable material from one reservoir to the other through the sub-system. Steady

heat flow that was treated in chapter 3 is an example of thermodynamic non-equilibrium

system.

Both of these generic non-equilibrium systems are sensitive to the direction of time,

either because the external potential is explicitly time dependent, or else because of the

steady induced flux that increases the entropy of the total system with time. This time

sensitivity means that the probability distribution for the molecular configurations must be

sensitive to the molecular velocities, since reversing time is equivalent to reversing all the
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velocities. Recall the definition of the conjugation operation, namely that each point in the

phase space of the particles’ positions and momenta, Γ ≡ {q, p}, has a conjugate point

with all the momenta reversed, Γ† ≡ {q, −p}. The fact that by definition a non-

equilibrium system must be sensitive to time means that the phase space point and its

conjugate must have different probabilities,

℘(Γ, t) ≠ ℘(Γ†, t).

This is a formally exact requirement that must hold for both mechanical and

thermodynamic non-equilibrium systems.

However, the kinetic energy in the time-dependent Hamiltonian is a quadratic function

of velocities. Hence it is unchanged by their reversal,

H(Γ, t) = H(Γ†, t).

This means that the Maxwell–Boltzmann probability distribution that is the simplistic

equation (6.1) cannot be the probability distribution for any non-equilibrium system.

6.1.1 Trajectory entropy

In chapter 5, it was shown that the weight density of a point in the phase space of an

isolated system was uniform, which means that its entropy vanishes. (The constant

contributions, Planck’s constant h3N
 for the volume of a quantum microstate, and N! for

distinct microstates, can be defined as the phase point entropy, or else they can be shown

explicitly, as will be done here.) This result was derived from the adiabatic equations of

motion for an isolated system. Since the same Hamilton’s equations hold for the isolated

sub-system even when the Hamiltonian is time-dependent, one can assume that the same

result holds in the non-equilibrium case. That is, the internal entropy of a point in the phase

space of the isolated sub-system vanishes.

In view of this, for the case of a sub-system that can exchange with a reservoir, the

entropy of a sub-system phase space point Γ is just the entropy of the reservoir that is

associated with that point at that time, Sr(Γ, t). Hence the non-equilibrium phase space

probability density is

℘(Γ, t) =
eSr(Γ,t)/kB

h3N N!Z(t)
.

This result is formally exact but practically useless until an explicit expression for the

reservoir entropy can be derived.

In order to be definite, and to give the clearest and most transparent derivation, we

shall henceforth assume the canonical mechanical non-equilibrium system until it is stated

otherwise. The sub-system Hamiltonian is H(Γ, t), and the sub-system is assumed to be

able to exchange energy with a heat reservoir of temperature T.

Consider a specific trajectory in the sub-system, Γ(t). Let us take this to be a forward

trajectory from t = 0, which is convenient but not essential. This contains both adiabatic,

superscript 0, and reservoir, R, influences, as is sketched in figure 6.1. The rate of change

of the trajectory is

Γ̇(t) = Γ̇
0
(t) + Ṙ(t).
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Figure 6.1. Sketch of a trajectory in the sub-system phase space. The arrows

represent the force at intervals, with the solid tangential arrows being the total

force, the dashed arrows being the adiabatic force, and the dotted arrows being

the reservoir force.

This is meant to be an actual trajectory, and the reservoir forces are the real forces that

are necessary to give the specified departure from the adiabatic trajectory. For this reason

we do not have to distinguish between forward and backward time derivatives. This is in

contrast to the cases discussed with reference to equation (4.22) and to figure 5.5, where

the statistical reservoir contributions to the trajectory are irreversible and create a

discontinuity in the time derivative.

The rate of change of energy of the sub-system on the trajectory is

The adiabatic velocity does not contribute to the change in energy. The final term is

the reservoir-induced rate of change of energy. By energy conservation, this is equal and

opposite to the rate of change of the reservoir energy. Hence the rate of change of the

reservoir entropy on this particular trajectory is

Ṡr(Γ(t), t) =
−1

T
Ṙ(t) ⋅ ∇H(Γ(t), t).

Finally, the trajectory entropy, which is the change in reservoir entropy over the

particular trajectory is

It is convenient but not essential to insist that this is a forward trajectory and that 

t > 0.

The first term on the right-hand side of the final equality is the instantaneous or static

reservoir entropy at the end of the trajectory less than that at the beginning. This static

part of the entropy is the entropy based solely on the instantaneous structure of the sub-

dH(Γ(t), t)

dt
=

∂H(Γ, t)

∂t
+ Γ̇(t) ⋅ ∇H(Γ, t)

=
∂H(Γ, t)

∂t
+ Ṙ(t) ⋅ ∇H(Γ, t).

Sr([Γ(t)], t) =
−1

T
∫

t

0

dt′ Ṙ(t′) ⋅ ∇H(Γ(t′), t′)

=
−1

T
∫

t

0

dt′ [Ḣ(Γ(t′), t′) − Ḣ
0
(Γ(t′), t′)]

=
−1

T
[H(Γ(t), t) −H(Γ(0), 0)] +

1

T
∫

t

0

dt′
∂H(Γ(t′), t′)

∂t′
.
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system, which is the entropy that would occur if the system were an equilibrium system. In

the present mechanical case the static entropy is defined as

Sr,st(Γ, t) =
−1

T
H(Γ, t).

The second term on the right-hand side may be called the dynamic part of the entropy.

It is the correction to the static entropy that arises from the non-equilibrium nature of the

system. It subtracts the sum total of the change of the static part of the reservoir entropy

that is due to adiabatic processes,

The integral of the first equality may be recognized as the work done by the external

potential on the system over the particular trajectory. With these the trajectory entropy is

This neglects the static entropy at the start of the trajectory, Sr,st(Γ(0), 0), since for a

long enough trajectory this is a constant that is uncorrelated with the end point.

Subtracting the second term, the dynamic part of the entropy, ensures that only

reservoir-induced changes in energy contribute to the reservoir trajectory entropy. One

virtue of writing the trajectory entropy this way is that the non-equilibrium part is explicit

and can easily be treated as a perturbation about the equilibrium part, if desired.

A second virtue of writing the trajectory entropy this way is is that it holds formally

unchanged for a thermodynamic non-equilibrium system. For example, in the case of

steady heat that was treated in section 3.4, the static part of the entropy is just

Sr,st(Γ) =
−E0(Γ)

T0
−

E1(Γ)

T1
,

and its adiabatic rate of change is

Ṡ
0

r,st(Γ) =
−1

T1
Ė

0

1(Γ) =
−1

T1
Γ̇

0
⋅ ∇E1(Γ).

 

The larger point is that for any non-equilibrium system, it is trivial to write explicitly the

expression for the static part of the reservoir entropy. It is defined as the instantaneous

reservoir entropy that changes directly from exchanges between the sub-system and the

reservoir.

Sr,dyn([Γ(t)], t) =
1

T
∫

t

0

dt′
∂H(Γ(t′), t′)

∂t′

=
1

T
∫

t

0

dt′ Ḣ
0
(Γ(t′), t′)

= − ∫
t

0

dt′ Ṡ
0

r,st(Γ(t′), t′).

Sr([Γ(t)], t) = Sr,st(Γ, t) + Sr,dyn([Γ(t)], t)

= Sr,st(Γ, t) − ∫
t

0

dt′ Ṡ
0

r,st(Γ(t′), t′).
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From this point on, it is no longer assumed that the analysis is restricted to a mechanical

non-equilibrium system.

6.1.2 Point entropy

What is required to formulate non-equilibrium statistical mechanics is the reservoir entropy

associated with a phase point Γ, whereas the above expression is for the reservoir entropy

of a particular trajectory Γ(t). The obvious way to proceed is to neglect fluctuations and to

focus on the most likely backward trajectory from the current point Γ, namely Γ̄(t′∣ Γ, t), 

t′⩽ t. (It is also possible to invoke instead the most likely forward trajectory from the

current point.) With this the reservoir entropy for Γ for the non-equilibrium system is

Sr(Γ, t) = Sr,st(Γ, t) + Sr,dyn(Γ, t),

where the dynamic part of the entropy on the most likely backward trajectory is

Note that although the most likely trajectory has a discontinuous first time derivative,

the adiabatic time derivative on this backward most likely trajectory is continuous, and so

there is no distinction between the forward and backward adiabatic time derivatives.

This result formally gives the explicit expression for the phase space non-equilibrium

probability density, equation (6.4). Details for the most likely trajectory in the non-

equilibrium system are derived in section 6.2.2.

6.1.2.1 Asymptote

The integrand of the dynamic entropy has asymptote

Ṡ
0

r,st(Γ̄(t′∣ Γ, t), t′) → Ṡ
0

r,st(t′), ∣ t′−t ∣→ ∞.

This says that with overwhelming probability the system reverts back to the most likely

rate of adiabatic entropy production no matter how far the current point Γ is from a likely

point in phase space.

With this one can write

Sr,dyn(Γ, t) = S̄ r,dyn(t) − ∫
t

0

dt′ [Ṡ
0

r,st(Γ̄(t′∣ Γ, t), t′) − Ṡ
0

r,st(t′)],

where the constant is S̄ r,dyn(t) ≡ − ∫ t

0
dt′ Ṡ

0

r,st(t′). The integrand of the dynamic

entropy is now short-ranged and so it is insensitive to the value chosen for the lower limit,

which facilitates its numerical evaluation.

6.1.2.2 Forward trajectory

As was mentioned above, the dynamic part of the entropy can equally well be written as an

integral over the forward trajectory as the backward one,

Sr,dyn(Γ, t) ≡ Sr,dyn([Γ̄(t′∣ Γ, t)], t)

= − ∫
t

0

dt′ Ṡ
0

r,st(Γ̄(t′∣ Γ, t), t′).

¯

¯

¯

t
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These two expression may differ by an immaterial term that is constant in phase

space.

6.1.3 Changes in entropy

6.1.3.1 Reservoir-induced change in reservoir entropy

In section 6.2.2 we shall derive the stochastic, dissipative equations of motion for the non-

equilibrium system. In view of the equilibrium result one can anticipate that they are of the

form

Γ2 = Γ1 + ΔtΓ̇
0

+ Rp(Δt, Γ, t).

As usual, the superscript 0 denotes the adiabatic velocity and the reservoir

contribution effects only the momenta over a single infinitesimal time step.

One can rewrite the result for the reservoir entropy directly in terms of its change over

the most likely trajectory. With the initial most likely point being Γ0 ≡ Γ̄(0 ∣ Γ, t), the

change in reservoir entropy is

On both sides of the first equality, the previously neglected constant static entropy at

the start of the trajectory has been reinserted. Because the first time derivative is

discontinuous on the most likely trajectory, it is necessary to specify that it is the backward

derivative that appears here. One can see that the integrand is entirely the reservoir-

induced change in reservoir entropy. That the reservoir force Rp couples to ∇pSr,st defines

the static reservoir entropy as the instantaneous reservoir entropy that changes directly

from exchanges between the sub-system and the reservoir.

One can also give an explicit expression for the change in reservoir entropy on the most

likely backward trajectory, Δt < 0. Since the integral for the dynamic entropy is precisely

over this most likely backward trajectory, by the fundamental theorem of calculus one has

Sr,dyn(Γ, t) = − ∫
t

−∞

dt′ Ṡ
0

r,st(Γ̄(t′∣ Γ, t), t′)

= − ∫
∞

t

dt′ Ṡ
0

r,st(Γ̄(t′∣ Γ, t), t′).

Sr(Γ, t) − Sr(Γ0, 0) = Sr,st(Γ, t) − Sr,st(Γ0, 0) − ∫
t

0

dt′ Ṡ
0

r,st(Γ̄(t′∣ Γ, t), t′)

= ∫
t

0

dt′ {Ṡ
−

r,st(Γ̄(t′∣ Γ, t), t′) − Ṡ
0

r,st(Γ̄(t′∣ Γ, t), t′)}

= ∫
t

0

dt′ ̇̄R
−

p (Γ̄(t′∣ Γ, t), t′) ⋅ ∇pSr,st(Γ̄(t′∣ Γ, t), t′).

Sr(Γ̄(t + Δt ∣ Γ, t), t) − Sr(Γ, t)

= ΔtṠ
0

r,st(Γ, t) + R̄p(Γ, t, Δt) ⋅ ∇pSr,st(Γ, t) − ΔtṠ
0

r,st(Γ, t)

= R̄p(Γ, t, Δt) ⋅ ∇pSr,st(Γ, t), Δt < 0.
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Notice that the adiabatic contributions cancel. Again given the definition of Rp as the

reservoir forces, and the definition of the static entropy as the reservoir entropy

instantaneously effected by exchange with the sub-system, this result is physically

sensible.

Formally, the rate of change of the reservoir entropy on a trajectory is

The first term on the right-hand side of the final equality is the adiabatic rate of change

of the reservoir entropy. Evaluating the total rate of change on the most likely backward

trajectory and using the above result this is

The dynamic part of the reservoir entropy depends upon the most likely backward

trajectory. In the next section, section 6.2, the stochastic dissipative equations that give

this are derived. In section 6.3 the dynamic part of the entropy is reformulated in a more

computationally efficient form, which includes utilizing adiabatic trajectories, and the

connection of this to the Green–Kubo relations is elucidated.

6.1.3.2 Rate of change of total entropy

The partition function normalizes the probability distribution, equation (6.4),

Z(t) =
1

N!h3N
∫ dΓ eSr(Γ,t)/kB .

Its logarithm gives the total unconstrained entropy of the total system,

Stot(t) = kB ln Z(t).

The rate of change of the total entropy is

 

dSr(Γ, t)

dt
=

∂Sr(Γ, t)

∂t
+ Γ̇

0
⋅ ∇Sr(Γ, t) +

1

Δt
Rp ⋅ ∇Sr(Γ, t)

= Ṡ
0

r (Γ, t) +
1

Δt
Rp ⋅ ∇pSr(Γ, t).

Ṡ
0

r (Γ, t) =
1

Δt
R̄p(Γ, t, Δt) ⋅ ∇pSr,st(Γ, t) −

1

Δt
R̄p(Γ, t, Δt) ⋅ ∇pSr(Γ, t)

=
−1

Δt
R̄p(Γ, t, Δt) ⋅ ∇pSr,dyn(Γ, t), Δt < 0.

Ṡtot(t) =
kBŻ(t)

Z(t)

=
kB

Z(t)

1

N!h3N
∫ dΓ eSr(Γ,t)/kB

∂Sr(Γ, t)

kB∂t

= ⟨
∂Sr(Γ, t)

∂t
⟩.
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Let Γ2 = Γ0(t2 ∣ Γ1, t1) = Γ1 + t21Γ̇
0

1 be the adiabatic evolution of Γ1 over an

infinitesimal time step. From the incompressibility of phase space under Hamilton’s

equations of motion one has

Hence the rate of change of the total entropy is also given by

Ṡtot(t) = ⟨Ṡ
0

r (Γ, t)⟩.

Subtracting these two expressions for Ṡtot(t) yields

⟨Γ̇
0

⋅ ∇Sr(Γ, t)⟩ = 0.

 

Because these are the averages of an extensive variable, one can expect fluctuations to

be relatively negligible. In this case these should hold locally, on points in phase space that

are likely to occur. Hence to a good approximation,

Ṡ
0

r (Γ, t) ≈
∂Sr(Γ, t)

∂t
≈ Ṡtot(t),

and

Γ̇
0

⋅ ∇Sr(Γ, t) ≈ 0.

6.2 Stochastic, dissipative equations of motion

6.2.1 Foundations for the transition probability in the time-varying case

Following Attard (2012, section 8.3.1), the set theoretic formulation of weight, entropy, and

probability is now given in the case of time-varying systems. This extends the equilibrium

formalities given in sections 1.1.2, 3.1.3, and 3.1.4. Although the transition analysis of

section 3.1.4 was applied to the non-equilibrium system of steady heat flow, in a sense

steady-state systems are a special non-equilibrium system in which the sub-system does

not change macroscopically with time. The analysis given here removes that restriction.

Suppose that the weights depend on time. These are microstate, ω(i, t), macrostate, 

ω(α, t) = ∑i∈α ω(i, t), and total W(t) = ∑i ω(i, t) = ∑α ω(α, t). This is sketched in

figure 6.2 The entropies are the logarithm of these: microstate, S(i, t) = kB ln ω(i, t),

macrostate, S(α, t) = kB ln ω(α, t), and total S(t) = kB ln W(t). Again as usual, the

Stot(t2) = kB ln
1

N!h3N
∫ dΓ2 eSr(Γ2,t2)/kB

= kB ln
1

N!h3N
∫ dΓ1 e

{Sr(Γ1,t1)+t21Ṡ
0

r (Γ1,t1)}/kB

= kB ln Z(t1)∫ dΓ1 ℘(Γ1, t1){1 + t21Ṡ
0

r (Γ1, t1)/kB}

= Stot(t1) + t21⟨Ṡ
0

r (Γ, t1)⟩.
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probabilities are proportional to the weight, and hence to the exponential of the entropy, 

℘(i, t) = ω(i, t)/W(t) = exp[S(i, t)/kB]/W(t) and 

℘(α, t) = ω(α, t)/W(t) = exp[S(α, t)/kB]/W(t).

Figure 6.2. Sketch of the evolution of a collective of macrostates in a time-varying

system. The weight of a macrostate is proportional to the size of its cell.

The macrostate transition, {α, t} → {γ, t′}, has weight ω(γ, t′; α, t). There is similarly a

weight for microstate transitions, ω(j, t′; k, t). From statistical symmetry the unconditional

weight is unchanged by swapping the order of the arguments, ω(γ, t′; α, t) = ω(α, t; γ, t′).

This is the weight attached to the system being in the macrostate α at time t and in the

macrostate γ at time t′.
For an equilibrium system two conservation laws for weight were established. The first

was for the weight of a system being jointly in two macrostates, equation (3.9), 

∑γ ω(α, γ) = ω(α). The second was for the system making a transition between two

macrostates, equation (3.17), ∑γ ω(α, γ ∣ τ) = ω(α), and ∑α ω(α, γ ∣ τ) = ω(γ). These

may also be called reduction conditions (of the first type), although they are slightly

different to the reduction condition (of the second type) given in equation (3.38).

Fundamentally the basis of both of these conservation laws is the fact that the

macrostates of a given collective are disjoint and form a complete set. One therefore

expects similar conservation conditions to hold in the present time-varying case. One has

to modify the conservation condition on the transition weight to account for the fact that

since the total weight changes with time, W(t), it cannot be conserved in a transition. For

this reason perhaps it is better to call this a reduction condition of the first type, or else just

a sum rule for the transition weight.

This variation in the total weight can be accounted for by including a time-dependent

scale factor in the sum rule,

∑
γ

ω(γ, t′; α, t) = f(t′, t)ω(α, t).

With this the total weight of the transition is

∑
α,γ

ω(γ, t′; α, t) = f(t′, t)W(t).

For this to be symmetric in both times the scale factor must be of the form

f(t′, t) = W(t′)a
W(t)a−1.
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This must give the equilibrium result in the time-independent case, namely f(t′, t) = 1,

which means that a = 1/2, and that f(t′, t) = √W(t′)/W(t). That is, the sum rule

for the transition weight in a time-varying system is

∑
γ

ω(γ, t′; α, t) =√
W(t′)

W(t)
ω(α, t),

and the total weight of the transition is

∑
αγ

ω(γ, t′; α, t) = √W(t′)W(t).

This is just the geometric mean of the total weights at the two termini of the transition,

which has a pleasing symmetry.

In the time-independent case of equation (3.17), the weight was conserved as it was

distributed amongst the target states in a transition. In the present time-dependent case,

the weight of the initial state α is scaled and distributed amongst all the target states γ.

This scaling is necessary whenever the weights of the states and the total weight change

with time.

It is clear that a similar scaling has to occur for the sum over initial states,

∑
α

ω(γ, t′; α, t) =√
W(t)

W(t′)
ω(γ, t′).

This says that the weight of the target macrostate γ must have come from somewhere,

and been scaled. The laws of probability require these two sum rules in the time-varying

case for its internal consistency.

The unconditional transition probability has the total transition weight as the

normalizing factor,

℘(γ, t′; α, t) =
ω(γ, t′; α, t)

√W(t′)W(t)
.

As usual, the conditional transition probability is

The first equality is just Bayes’ theorem, ℘(γ, t′; α, t) = ℘(γ, t′∣ α, t)℘(α, t).

℘(γ, t′∣ α, t) =
℘(γ, t′; α, t)

℘(α, t)

=
ω(γ, t′; α, t)

ω(α, t)
√

W(t)

W(t′)

=
ω(γ, t′; α, t)

∑γ ω(γ, t′; α, t)
.
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As in the equilibrium case, the second entropy is defined to be essentially the logarithm

of the transition weight, S (2)(γ, t′; α, t) = kB ln ω(γ, t′; α, t). In terms of it the transition

probability is

℘(γ, t′; α, t) =
eS (2)(γ,t′;α,t)/kB

√W(t′)W(t)
.

The conditional transition probability follows as

℘(γ, t′∣ α, t) =√
W(t)

W(t′)
e[S (2)(γ,t′;α,t)−S(α,t)]/kB .

This is evidently normalized to unity when summed over γ. The conditional probability

refers to a forward transition if t′> t, which is to say that tells where the system will go to

in the future given the current state. If t′< t it refers to a backward transition, which tells

where the system came from in the past to get to the current state.

The important equilibrium reduction condition of the second type, equation (3.38), also

has to be modified slightly for the time-dependent case. As previously, define the

conditionally most likely target state γ̄ ≡ γ̄(t′∣ α, t) as the state that maximizes the second

entropy,

∂S (2)(γ, t′; α, t)

∂γ
∣
γ=γ̄

= 0.

The reduction condition of the second type says that the maximal value of the

conditional second entropy equals the entropy of the initial state α. That is,

Since one expects the probability distribution to be sharply peaked in any macroscopic

physical system, one can approximate the logarithm of a sum over states by the logarithm

of the largest term in the sum, as in the third equality. This is equivalent to assuming that

the fluctuations about the most likely state are relatively negligible. Here 

S(t) = kB ln W(t) is the total unconstrained entropy. This second type of reduction

condition can be re-written as

S (2)(γ̄, t′; α, t) = S(α, t) +
1

2
[S(t′) − S(t)].

S(α, t) = kB ln ω(α, t)

= kB ln [√
W(t)

W(t′)
∑

γ

ω(γ, t′; α, t)]

≈ kB ln [√
W(t)

W(t′)
ω(γ̄, t′; α, t)]

= S (2)(γ̄, t′; α, t) +
1

2
[S(t) − S(t′)].
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It is obvious that the reduction condition holds for both forward and backward transitions,

and so one also has

S (2)(γ, t′; ᾱ, t) = S(γ, t′) +
1

2
[S(t) − S(t′)],

where ᾱ ≡ ᾱ(t ∣ γ, t′). Of course the order of the arguments in the second entropy is

irrelevant since the times at which each state occurs are stated explicitly. In the time-

independent case, equation (3.38), the maximal value of the second entropy equals the

first entropy alone. In the present time-varying non-equilibrium system, the maximal value

of the second entropy equals the first entropy plus half the difference in the total entropy

of the two states.

6.2.2 Second entropy and the transition probability

In previous work (Attard 2012, section 8.2.3 and section 8.3.2; Attard 2014), I derived the

stochastic, dissipative equations of motion for a non-equilibrium system from a fluctuation

form for the second entropy. The analysis that is now given improves upon this earlier work

in three respects. First, the adiabatic contributions were originally treated as fluctuating

quantities within the mixed parity second entropy formulation, whereas here the pure

parity slave formulation used for Brownian motion, equation (4.21), and for a phase space

trajectory in the canonical equilibrium system, equation (5.50), is invoked. Second, the

original analysis was based on fluctuations about the most likely point in phase space, Γ̄(t)
, aspects of which may be questioned. Fluctuations play a much smaller role in the present

analysis, and a more direct physical interpretation of various quantities is given. And third,

the present derivation is about one quarter the length of the original, which makes for

greater simplicity and transparency, and which leaves less room for error. As the quote

from Einstein given at the head of the chapter has been paraphrased: a theory should be

as simple as possible, but no simpler.

We shall take the equations of motion in phase space over an infinitesimal time step to

be of the form

As usual the superscript 0 represents the adiabatic velocity,

Γ̇
0

q(Γ, t) =
∂H(Γ, t)

∂Γp
, and Γ̇

0

p(Γ, t) =
−∂H(Γ, t)

∂Γq
.

The force due to the reservoir Rp only effects the momenta directly. In this formulation

the position coordinates are treated as slaves to the momenta, as was done in the case of

the Langevin equation for Brownian motion, equation (4.21), and in the case of phase

space for the canonical equilibrium system, equation (5.50). The reservoir force can be

divided into a deterministic, dissipative part, R̄p, and a stochastic part of zero mean R̃p,

Rp = R̄p + R̃p.

The explicit form for the former will shortly be determined from the second entropy

form of the transition probability.

Γq(t + Δt) = Γq(t) + ΔtΓ̇
0

q(Γ, t),

Γp(t + Δt) = Γp(t) + ΔtΓ̇
0

p(Γ, t) + Rp(Γ, t, Δt).
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We assume that the probability distribution for the fluctuations in the present non-

equilibrium system has the same time symmetry as for an equilibrium system, namely that

the progression and regression of a fluctuation are equally likely. This means that the

stochastic reservoir force is Gaussian distributed, with variance proportional to the

magnitude of the time step,

℘(R̃p) =
e−Λ−1:R̃pR̃p/2kB∣Δt∣

√Det{2πkB ∣ Δt ∣ Λ}
.

Evidently the random force has zero mean, ⟨R̃⟩ = 0, and its variance is

⟨R̃(t) R̃(t)⟩ =∣ Δt ∣ kBΛ.

Random forces at different time steps are uncorrelated. It would be possible to have a

time-dependent variance, Λ(t), but this is not pursued here. Typically, and most simply,

one may take the fluctuation matrix to be diagonal, Λ = λIpp. In some cases (e.g.

boundary driven flow) there may be value in making the parameter position dependent.

In summary, the equations of motion for the transition Γ1

Δt
Γ2 are

Γ2 = Γ1 + ΔtΓ̇
0

+ R̄p + R̃p.

The total reservoir force, R(t), for the present transition, Γ1

Δt
Γ2, is equal and

opposite to that for the opposite transition, Γ2

−Δt
Γ1. The same is true for the adiabatic

force. The two individual components of the total reservoir force, the most likely and the

stochastic, are not individually equal and opposite their respective counterpart.

The transition probability is just the exponential of the second entropy, equation (6.40),

The second equality writes this as the conditional probability times the probability of

the initial state, which is Bayes’ theorem, equation (6.39). The conditional transition

probability is just the probability of the random force, ℘(Γ2, t2 ∣ Γ1, t1) = ℘(R̃p), since Γ2

is randomly distributed about Γ̄(t2 ∣ Γ1, t1). Hence the unconditional probability of the

transition may also be written

Writing the exponent in this form is equivalent to the reduction condition of the second

type, equation (6.44).

−→

−→

−→

℘(Γ2, t2; Γ1, t1) =
eS (2)(Γ2,t2;Γ1,t1)/kB

√Z(t2)Z(t1)

= ℘(Γ2, t2 ∣ Γ1, t1) ℘(Γ1, t1).

℘(Γ2, t2; Γ1, t1) = ℘(Γ2, t2 ∣ Γ1, t1) ℘(Γ1, t1)

=
e−Λ−1:R̃pR̃p/2kB∣Δt∣

√Det{2πkB ∣ Δt ∣ Λ}

eSr(Γ1,t1)/kB

Z(t1)
.
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Now we determine the most likely reservoir force. Unlike in chapter 3, we do not further

use the reduction condition of the second type, equation (6.44), because this is for discrete

states and it does not account for the compressibility of phase space. Instead we invoke

the first type of reduction condition, equation (6.37), which involves an integral over the

initial phase space transition point. This is equivalent to deriving the Fokker–Planck

equation for the evolution of the probability density, as is discussed in section 6.2.4.

From the reduction condition of the first type, equation (6.37), one has

This uses R̃p = Γ2 − Γ̄2, Γ̄2 ≡ Γ̄(t2 ∣ Γ1, t1) = Γ1 + t21Γ̇
det

, 

∣dΓ1/dΓ̄2∣ = {1 − t21∇ ⋅ Γ̇
det

}, and 

Sr(Γ1, t1) = Sr(Γ2, t1) + [Γ1 − Γ2] ⋅ ∇Sr + [Γ1 − Γ2]2 : ∇∇Sr/2. Only terms to linear

order in t21 and in Λ have been kept. This obviously places an upper limit on their

magnitude in practical computations involving the stochastic, dissipative equations of

motion.

Since the first factor on the right-hand side of the final equality is ℘(Γ2, t2), the product

of the three remaining factors must be unity to linear order in the time step. Hence the

sum of the terms proportional to the time step must vanish,

℘(Γ2, t2) = ∫ dΓ1 ℘(Γ2, t2; Γ1, t1)

= ∫ dΓ̄2 ∣
dΓ1

dΓ̄2

∣
e−Λ−1:R̃pR̃p/2kB∣Δt∣

√Det{2πkB ∣ Δt ∣ Λ}

eSr(Γ1,t1)/kB

Z(t1)

= ∣
dΓ1

dΓ̄2

∣
eSr(Γ2,t1)/kB

Z(t1)

× ∫ dΓ̄2
e−Λ−1:R̃pR̃p/2kB∣Δt∣

√Det{2πkB ∣ Δt ∣ Λ}
{1 +

1

kB
[Γ1 − Γ2] ⋅ ∇Sr

+
1

2kB
[Γ1 − Γ2]2 : ∇∇Sr +

1

2k2
B

([Γ1 − Γ2] ⋅ ∇Sr)
2}

=
eSr(Γ2,t2)/kB

Z(t2)
{1 − t21∇ ⋅ Γ̇

det
}{1 − t21

∂Sr(Γ, t)

kB∂t
+ t21

Ż(t)

Z(t)
}

×{1 −
t21

kB
Γ̇

det
⋅ ∇Sr +

1

2kB
kB ∣ t21 ∣ Λ : ∇p∇pSr

+
1

2k2
B

kB ∣ t21 ∣ Λ : [∇pSr][∇pSr]}.

0 = − t21Ṡ
0

r (Γ, t) + t21Ṡtot(t) − t21kB∇ ⋅ Γ̇
det

− R̄p ⋅ ∇Sr +
kB ∣ t21 ∣

2
Λ : ∇p∇pSr +

∣ t21 ∣

2
Λ : [∇pSr][∇pSr],
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where Sr ≡ Sr(Γ, t). Recall that the total unconstrained entropy is Stot(t) = kB ln Z(t),

and that its rate of change is Ṡtot(t) = kBŻ(t)/Z(t). This is equivalent to the Fokker–

Planck equation, as is discussed in section 6.2.4.

The deterministic velocity is the sum of the adiabatic and the most likely reservoir-

induced velocity,

Γ̇
det

( t̂ 21, Γ, t) = Γ̇
0
(Γ, t) +

1

t21
R̄p(t21, Γ, t).

Here and below, t̂ 21 ≡ sign t21. The adiabatic compressibility vanishes, ∇ ⋅ Γ̇
0

= 0.

Since the above equation contains both reversible, ∝ t21, and irreversible ∝∣ t21 ∣ terms, it

is evident that the most likely reservoir force should be similarly decomposed,

R̄p(t21, Γ, t) =∣ t21 ∣ a(Γ, t) + t21b(Γ, t).

This only has momentum components. According to the pure parity analysis equation

(3.86) or equation (4.19) or equation (4.38), only the irreversible term survives, so that 

b(Γ, t) = 0. Strictly speaking, however, position coordinates are also present, which makes

this a mixed parity case, and so the reversible term may be nonzero (Attard 2012, section

8.3.4). Using this and equating the irreversible terms to zero in the above yields

By inspection, this has the exact solution

 

The reversible terms must satisfy

Ṡ
0

r (Γ, t) − Ṡtot(t) = −kB∇p ⋅ b(Γ, t) − b(Γ, t) ⋅ ∇pSr(Γ, t).

By equation (6.30) (see also equation (6.115)), the left-hand side is approximately

zero, and so one expects b(Γ, t) to be small or negligible.

The exact solution for a is difficult to work with, primarily because of the challenging

nature of Sr,dyn. In contrast, Sr,st is always relatively trivial to manipulate and to calculate.

In the time honored tradition of physics, one simply discards such difficult terms, which

gives the zeroth order approximation,

a(0)(Γ, t) =
1

2
Λ∇pSr,st(Γ, t), b(0)(Γ, t) = 0.

0 = − kB∇p ⋅ a(Γ, t) − a(Γ, t) ⋅ ∇pSr(Γ, t)

+
kB

2
Λ : ∇p∇pSr(Γ, t) +

1

2
Λ : [∇pSr(Γ, t)] [∇pSr(Γ, t)].

a(Γ, t) =
1

2
Λ∇pSr(Γ, t)

=
1

2
Λ∇pSr,st(Γ, t) +

1

2
Λ∇pSr,dyn(Γ, t).
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The first of these is equivalent to ∇pSr,dyn(Γ, t) = 0. Of course in so far as the non-

equilibrium contributions are expected to be a small perturbation on the instantaneous

static structure of the system, ∣ Sr,dyn(Γ, t) ∣≪∣ Sr,st(Γ, t) ∣, one can expect this zeroth

order approximation to be relatively accurate.

To do better than this, define the most likely configuration as the one that maximizes

the reservoir entropy,

∇Sr(Γ, t)∣
Γ=Γ̄(t) = 0.

Equivalently (see figure 6.3),

∇Sr,st(Γ̄(t), t) = −∇Sr,dyn(Γ̄(t), t).

The abbreviated notation here means that the gradient is evaluated at the most likely

configuration. We shall not address issues such as the multiplicity of solutions to this, other

than to say that Γ̄(t) is to be interpreted as the zero of the reservoir entropy gradient that

is closest to Γ at time t. With this, instead of discarding completely the dynamic part of the

reservoir entropy, one can approximate it by its value at the most likely point,

∇pSr,dyn(Γ, t) ≈ ∇pSr,dyn(Γ̄(t), t) = −∇pSr,st(Γ̄(t), t).

This approximation can be expected to be accurate in so far as departures from the

most likely configuration are small. The utility of the most likely configuration is that it

allows the dynamic entropy to be replaced by the static entropy, which is relatively easy to

evaluate. It is not essential for what follows, but it may be a reasonable to approximate this

gradient at the most likely configuration by the most likely gradient, 

∇pSr,st(Γ̄(t), t) ≈ S′r,st(t).

Figure 6.3. Sketch of the reservoir entropy (solid curve), and its static (dashed curve)

and dynamic (dotted curve) parts in the vicinity of the most likely point in phase space

at that time.

With this the more refined expression for the irreversible contribution to the reservoir

force is

a(Γ, t) =
1

2
Λ∇pSr,st(Γ, t) −

1

2
Λ∇pSr,st(Γ̄(t), t).

¯
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The most likely configuration Γ̄(t) evolves in time. This evolution can be expected

to be given by the dissipative equations of motion, Γ̄(t′∣ Γ̄(t), t) = Γ̄(t′). Since this is

assumed to be a single trajectory, this evolution must be reversible and given by the

coefficient b(Γ, t). Hence the more refined expression for the reversible contribution to the

reservoir force is to set it equal to the zeroth approximation a(0) evaluated at the most

likely configuration,

b(Γ, t) = a(0)(Γ̄(t), t) =
1

2
Λ∇pSr,st(Γ̄(t), t).

In the present approximation this is equivalent to b(Γ, t) ≈ −Λ∇pSr,dyn(Γ, t)/2,

which point is discussed in connection with equation (6.72). Since the dynamic part of the

entropy is a small perturbation, this is consistent with the above observation that 

b(Γ, t) ≈ 0.

With these, the most likely reservoir force is

Notice that on a forward trajectory, the most likely configuration is not required.

Further, one can see by inspection that on the most likely configuration, Γ = Γ̄(t), the

most likely reservoir force is purely reversible, R̄p(Δt, Γ̄(t), t) = ΔtΛ∇pSr,st(Γ̄(t), t)/2.

The extra term, (Δt− ∣ Δt ∣)∇pSr,st(Γ̄(t), t)/2, compared to the zeroth order

approximation, (see equation (6.74)), is a constant in phase space. Hence it can play no

role in determining the relative probability of points in phase space. See equation (6.171)

for a discussion of this in the context of a detailed calculation of driven Brownian motion.

One can look at the consequences of the full result and check a number of consistency

requirements. On the most likely backward trajectory, the change in reservoir entropy is

given exactly by the reservoir force times the gradient in the static part of the reservoir

entropy,

But formally one also has the Taylor expansion

Subtracting these and rearranging yields

R̄p =
∣ Δt ∣

2
Λ[∇pSr,st(Γ, t) − ∇pSr,st(Γ̄(t), t)] +

Δt

2
Λ∇pSr,st(Γ̄(t), t)

=

⎧⎪⎨⎪⎩ ∣ Δt ∣

2
Λ∇pSr,st(Γ, t), Δt > 0,

∣ Δt ∣

2
Λ∇pSr,st(Γ, t)− ∣ Δt ∣ Λ∇pSr,st(Γ̄(t), t), Δt < 0.

ΔSr = R̄p(− ∣ Δt ∣, Γ, t) ⋅ ∇pSr,st(Γ, t)

= (
∣ Δt ∣

2
Λ∇pSr,st(Γ, t)− ∣ Δt ∣ Λ∇pSr,st(Γ̄(t), t)) ⋅ ∇pSr,st(Γ, t).

ΔSr = − ∣ Δt ∣ Ṡ
0

r (Γ, t) + R̄p(− ∣ Δt ∣, Γ, t) ⋅ ∇pSr(Γ, t).
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The third equality approximates the gradient of the static part of the reservoir entropy

at an arbitrary configuration by its value at the most likely configuration, 

∇pSr,st(Γ, t) ≈ ∇pSr,st(Γ̄(t), t), which is reasonable since one expects fluctuations to be

small. The next two approximations invoke the above result for the dynamic part of the

entropy, ∇pSr,dyn(Γ, t) ≈ −∇pSr,st(Γ̄(t), t).

Now equation (6.30), shows that the adiabatic rate of entropy production, the left-hand

side, can be approximated by the time-dependent constant in phase space, namely the

rate of total entropy production, Ṡ
0

r (Γ, t) ≈ Ṡtot(t). (See also equation (6.115).) In view of

the final equality, also a time-dependent constant in phase space, since Λ is positive

definite, one concludes that the rate of total entropy production is positive, as it must be.

One sees therefore a certain consistency in the above expression for the most likely

reservoir force. Equation (6.60) gave the exact equation that the reversible coefficient had

to satisfy. Inserting the present expression for b(Γ, t) into this yields

The final two equalities invoke the most likely gradients, 

∇pSr,dyn(Γ, t) ≈ ∇pSr,dyn(Γ̄(t), t) = −∇pSr,st(Γ̄(t), t), and 

∇pSr,st(Γ, t) ≈ ∇pSr,st(Γ̄(t), t). One sees again that this is consistent with equation

(6.30), which is also based upon the concept that fluctuations are relatively negligible in

the thermodynamic limit.

The above results were based on the approximation that the reversible coefficient was

given by b(Γ, t) = Λ∇pSr,st(Γ̄(t), t)/2 ≈ −Λ∇pSr,dyn(Γ, t)/2. One might speculate that

the final approximation is in fact the exact result. Combining this with the exact result for

the irreversible coefficient, a(Γ, t) = Λ∇pSr(Γ, t)/2 this would mean the reservoir force is

exactly given by

Ṡ
0

r (Γ, t) =
1

∣ Δt ∣
R̄p(− ∣ Δt ∣, Γ, t) ⋅ ∇pSr,dyn(Γ, t)

= (
1

2
Λ∇pSr,st(Γ, t) − Λ∇pSr,st(Γ̄(t), t)) ⋅ ∇pSr,dyn(Γ, t)

≈
−1

2
Λ : [∇pSr,st(Γ̄(t), t)] [∇pSr,dyn(Γ, t)]

≈
1

2
Λ : [∇pSr,dyn(Γ, t)] [∇pSr,dyn(Γ, t)]

≈
1

2
Λ : [∇pSr,st(Γ̄(t), t)] [∇pSr,st(Γ̄(t), t)].

Ṡ 0
r (Γ, t) − Ṡtot(t) = − kB∇p ⋅ b(Γ, t) − b(Γ, t) ⋅ ∇pSr(Γ, t)

=
−kB

2
∇p ⋅ [Λ∇pSr,st(Γ̄(t), t)]

−
1

2
Λ∇pSr,st(Γ̄(t), t) ⋅ [∇pSr,st(Γ, t) + ∇pSr,dyn(Γ, t)]

≈
−1

2
Λ∇pSr,st(Γ̄(t), t) ⋅ [∇pSr,st(Γ, t) − ∇pSr,st(Γ̄(t), t)]

≈ 0.
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This has a certain beauty to it, which may signify truth. Continuing with the hypothesis,

the exact condition equation (6.60) becomes

The left-hand side of this equation is approximately zero, equation (6.30). (See also

equation (6.115).)

In any case, using either the approximate result or the putative exact result, the

dynamic entropy gradient is a second order contribution that can be neglected. As such,

the most likely reservoir force to leading order is

R̄p ≈
∣ Δt ∣

2
Λ∇pSr,st(Γ, t).

To this leading order the dissipative force is independent of the sign of the time step, 

R̄
21

p = R̄
12

p , where the superscript represents the direction of the transition. This makes it

fully irreversible, just as in the equilibrium case. In fact it has the same functional form as

in the equilibrium case, with the gradient of the static entropy providing the driving force

toward the optimum non-equilibrium state. This zeroth order approximation is tested for

driven Brownian motion in equation (6.171), and it is found to correctly give the relative

entropy and hence relative probability of points in phase space.

The irreversible contributions break the symmetry of time reversibility, which is

essential for consistency with the Second Law of Thermodynamics. The approximation to

the gradient of the dynamic part of the entropy provides a correction to the zeroth order

expression so that the reservoir force has both reversible and irreversible components. The

fact that Λ gives the magnitude of the dissipation and the variance of the stochastic force

shows that the fluctuation–dissipation theorem holds also for a non-equilibrium system.

Ultimately the approximations invoked in deriving these stochastic, dissipative

equations of motion for the non-equilibrium system, should be judged by the results of

their application to specific systems. It can be mentioned that they have been tested by

computer simulation for both mechanical (Attard and Gray-Weale 2008, Attard 2009a,

2009b) and thermodynamic (Attard 2006b, 2009a) non-equilibrium systems. They are

further tested analytically below with the derivation of the behavior of a driven Brownian

particle, section 6.4.

6.2.3 Generalized equipartition theorem

It is of interest to discuss the result for the most likely reservoir force a little more generally

in the context of the generalized equipartition theorem for a non-equilibrium system (cf

section 4.4). Since the probability density and its gradient must vanish at the extremes of

phase space, one must have that

R̄p =
∣ Δt ∣

2
Λ∇pSr(Γ, t) −

Δt

2
Λ∇pSr,dyn(Γ, t)

=

⎧⎪⎨⎪⎩ ∣ Δt ∣

2
Λ∇pSr,st(Γ, t), Δt > 0,

∣ Δt ∣

2
Λ∇pSr,st(Γ, t)+ ∣ Δt ∣ Λ∇pSr,dyn(Γ, t), Δt < 0.

Ṡ
0

r (Γ, t) − Ṡtot(t)

=
kB

2
Λ : ∇p∇pSr,dyn(Γ, t) +

1

2
Λ : [∇pSr,dyn(Γ, t)] [∇pSr(Γ, t)].
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∫ dΓ ∇∇℘(Γ, t) = 0.

This implies that

⟨∇∇Sr(Γ, t)⟩ = −k−1
B ⟨[∇Sr(Γ, t)] [∇Sr(Γ, t)]⟩.

This is a generalized equipartition theorem for a non-equilibrium system.

Taking the trace, or the double scalar product with a matrix, makes these the average of

an extensive quantity. One can assume that in these cases they hold locally on the likely

points in phase space. That is

∇2Sr(Γ, t) ≈ −k−1
B [∇Sr(Γ, t)] ⋅ [∇Sr(Γ, t)],

and

Λ : ∇p∇pSr(Γ, t) ≈ −k−1
B Λ : [∇pSr(Γ, t)] [∇pSr(Γ, t)].

In the thermodynamic limit these are likely exact.

Applying the second of these to equation (6.58), one would deduce that

0 ≈ −kB∇p ⋅ a(Γ, t) − a(Γ, t) ⋅ ∇pSr(Γ, t).

This implies that a(Γ, t) must be small, if not zero. This is consistent with the result

invoked above, a(Γ, t) = Λ[∇pSr,st(Γ, t) − ∇pSr,st(Γ̄(t), t)]/2, equation (6.65), which is

indeed zero on the most likely points in phase space.

6.2.4 The Fokker–Planck equation

Inserting the second of these into equation (6.4), one deduces that

The second equality is equation (6.55) rearranged. This is the Fokker–Planck equation.

Since the stochastic, dissipative equations of motion for a non-equilibrium system have

essentially the same functional form as those for an equilibrium system, it should not be

surprising that this is identical in form to the equilibrium result, equation (5.68).

The superscript ± on the left-hand side is formally required because there are

irreversible terms (those proportional to Δ̂t ≡ sign Δt = ±1, both explicit and implicit in 

Γ̇
det

) on the right-hand side. However, these irreversible terms must cancel with each

∂ ±℘(Γ, t)

∂t
≡ {

∂Sr(Γ, t)

kB∂t
−

Ż(t)

Z(t)
}℘(Γ, t)

= {− ∇ ⋅ Γ̇
det

− Γ̇
det

⋅ ∇Sr/kB

+
Δ̂t

2
Λ : ∇p∇pSr +

Δ̂t

2kB
Λ : [∇pSr][∇pSr]}℘(Γ, t)

= − [∇ ⋅ Γ̇
det

]℘(Γ, t) − Γ̇
det

⋅ ∇℘(Γ, t) +
Δ̂tkB

2
Λ : ∇p∇p℘(Γ, t).



(6.8

1)

(6.8

2)

(6.8

3)

other because they are just the irreversible terms in equation (6.58). This makes the

superscript ± on the left-hand side redundant. (It is redundant for the exact equations; the

approximate ansatz will be discussed below.)

With the reversible part of the deterministic velocity that remains, Γ̇
det,rev

= Γ̇
0

+ b,

the Fokker–Planck equation becomes

The formally exact expression for the reversible reservoir contribution, equation (6.60),

makes this an identity.

Now let us analyze the Fokker–Planck equation for the the approximation to the most

likely reservoir force, equation (6.67). In this case the irreversible part of the equation is

This is evidently nonzero, although one might argue that it is small if not negligible. In

this approximation the reversible part of the deterministic velocity is

Γ̇
det,rev

= Γ̇
0

+
1

2
Λ∇pSr,st(Γ̄(t), t).

Since the reservoir part is a constant in phase space, one has that ∇ ⋅ Γ̇
det,rev

= 0, and

the reversible part of the Fokker–Planck equation in this case reduces to

∂℘(Γ, t)

∂t
≡ {

∂Sr(Γ, t)

kB∂t
−

Ż(t)

Z(t)
}℘(Γ, t)

= − [∇ ⋅ b]℘(Γ, t) − [Γ̇
0

+ b] ⋅ ∇℘(Γ, t).

1

2
{

∂ +℘(Γ, t)

∂t
−

∂ −℘(Γ, t)

∂t
}

= −[∇ ⋅ a(Γ, t)]℘(Γ, t) − a(Γ, t) ⋅ ∇℘(Γ, t) +
kB

2
Λ : ∇p∇p℘(Γ, t)

= {
−1

2
Λ : ∇p∇pSr,st(Γ, t)

−
1

2kB
Λ : [∇pSr,st(Γ, t) − ∇pSr,st(Γ̄(t), t)] [∇pSr(Γ, t)]

+
1

2
Λ : ∇p∇pSr(Γ, t) +

1

2kB
Λ : [∇pSr(Γ, t)] [∇pSr(Γ, t)]}℘(Γ, t)

= {
1

2
Λ : ∇p∇pSr,dyn(Γ, t)

+
k−1

B

2
Λ : [∇pSr,dyn(Γ, t) − ∇pSr,dyn(Γ̄(t), t)][∇pSr(Γ, t)]}℘(Γ, t).
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To the extent that equation (6.71) is satisfied, this is the expected result.

The hypothetical exact result for the most likely reservoir force, equation (6.72), gives

for the irreversible part of the Fokker–Planck equation as

This vanishes, which is not surprising because a(Γ, t) is formally exact in this case.

The reversible part is

I have no independent evidence for the veracity or otherwise of this.

6.3 Odd projection of the dynamic entropy

This section is concerned in the first place with using only the odd time parity projection of

the dynamic part of the reservoir entropy, and in the second place with replacing the

backwards most likely trajectories that appear in the integrand with adiabatic trajectories.

There are several reasons for rewriting the dynamic part of the reservoir entropy in

these two ways. First, it identifies and focusses on the dominant contributions to the

reservoir entropy. Second, it allows certain analytic results for the rate of change of the

entropy to be obtained. Third, it gives an explicit connection between the novel dynamic

part of the reservoir entropy and the well-known Green–Kubo expressions for the transport

coefficients of a steady-state system, which provides additional confirmation of the validity

of the former. And fourth it offers a different, possibly more efficient procedure for the

∂℘(Γ, t)

∂t
= − Γ̇

det,rev
⋅ ∇℘(Γ, t)

= − [Γ̇
0

+
1

2
Λ∇pSr,st(Γ̄(t), t)] ⋅ ∇℘(Γ, t).

1

2
{

∂ +℘(Γ, t)

∂t
−

∂ −℘(Γ, t)

∂t
}

= − [∇ ⋅ a(Γ, t)]℘(Γ, t) − a(Γ, t) ⋅ ∇℘(Γ, t) +
kB

2
Λ : ∇p∇p℘(Γ, t)

= {
−1

2
Λ : [∇p∇pSr(Γ, t)] [∇pSr(Γ, t)]

−
1

2kB
Λ : [∇pSr(Γ, t)][∇pSr(Γ, t)] +

1

2
Λ : ∇p∇pSr(Γ, t)

+
1

2kB
Λ : [∇pSr(Γ, t)] [∇pSr(Γ, t)]}℘(Γ, t)

= 0.

∂℘(Γ, t)

∂t
= − [∇ ⋅ b(Γ, t)]℘(Γ, t) − [Γ̇

0
+ b(Γ, t)] ⋅ ∇℘(Γ, t)

= {
1

2
Λ : ∇p∇pSr,dyn(Γ, t)

− [Γ̇
0

−
1

2
Λ∇pSr,dyn(Γ, t)] ⋅ ∇pSr(Γ, t)}℘(Γ, t).



(6.8

7)

(6.8

8)

(6.8

9)

numerical computation of the reservoir entropy associated with a point in the sub-system

phase space.

6.3.1 Odd projection

It is now argued that the odd projection of the dynamic part of the reservoir entropy is

dominant. Two definitions of the odd projection are given. The first has the virtue of being

physically intuitive and it can be applied immediately to steady-state thermodynamic

systems. The second is more abstract and more general, and it can be applied both to

steady-state thermodynamic systems and to mechanical non-equilibrium systems.

6.3.1.1 Simplest definition

As was mentioned in section 6.1, the crucial distinction between an equilibrium and a non-

equilibrium system is that the probability distribution for the latter depends upon the sign

of the molecular velocities, ℘(Γ, t) ≠ ℘(Γ†, t). For a sub-system phase space point 

Γ = {qN , pN }, the conjugate phase space point is the one with the velocities reversed, 

Γ† = {qN , (−p)N }. Since the probability density cannot have even parity, neither can its

exponent, the reservoir entropy, Sr(Γ, t) ≠ Sr(Γ†, t). Since the static part of the reservoir

entropy is a purely equilibrium quantity, it necessarily has even parity, 

Sr,st(Γ, t) = Sr,st(Γ†, t). This means that the dynamic part of the reservoir entropy cannot

be even, Sr,dyn(Γ, t) ≠ Sr,dyn(Γ†, t).

Further, because the non-equilibrium aspects of the system are a perturbation on the

equilibrium aspects, one can neglect the even projection of Sr,dyn(Γ, t) in comparison with 

Sr,st(Γ, t) and so write

Sr(Γ, t) ≈ Sr,st(Γ, t) + S odd
r,dyn(Γ, t) + S̄ r,dyn(t).

First the odd projection is discussed, and then the time-dependent constant that is

retained here.

The simplest definition of the odd projection of the dynamic part of the reservoir entropy

is

A more abstract form of the odd projection will be given shortly.

In addition to the odd projection, there also has been retained in the above the

asymptotic contribution of the dynamic part of the reservoir entropy, which is constant in

phase space and which therefore has even parity. On the most likely trajectory the

asymptote of the integrand of the dynamic part of the reservoir entropy is

Ṡ
0

r,st(Γ̄(t′∣ Γ, t), t′) → Ṡ
0

r,st(t′), ∣ t′−t ∣→ ∞.

This asymptote arises from the fact that with overwhelming probability the system

came from its most likely value in the past (and will return there in the future), independent

of the current phase space point of the sub-system. As a consequence of this

S odd
r,dyn(Γ, t) ≡

1

2
[Sr,dyn(Γ, t) − Sr,dyn(Γ†, t)]

=
−1

2
∫

t

0

dt′ [Ṡ
0

r,st(Γ̄(t′∣ Γ, t), t′) − Ṡ
0

r,st(Γ̄(t′∣ Γ†, t), t′)].

¯
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independence, the asymptote holds unchanged for the conjugate point, 

Ṡ
0

r,st(Γ̄(t′∣ Γ†, t), t′) → Ṡ
0

r,st(t′), ∣ t′−t ∣→ ∞.

One can add and subtract this asymptote before taking the odd projection,

Sr,dyn(Γ, t) = −∫
t

0

dt′[Ṡ
0

r,st(Γ̄(t′∣ Γ, t), t′) − Ṡ
0

r,st(t′)]+ S̄ r,dyn(t),

where

S̄ r,dyn(t) = −∫
t

0

dt′ Ṡ
0

r,st(t′).

(This result was given above as equation (6.17).) Since this is constant in phase space,

it has even parity. Hence the asymptote does not contribute to the odd projection.

Although it could be neglected, it is arguably best to retain the even parity asymptotic

contribution to the dynamic part of the entropy. This is a constant in phase space, so it has

no effect on the relative probability of phase space points. It could simply be neglected,

which effectively cancels it with the same contribution to the partition function. However, it

does represent part of the total entropy produced as a function of time in the total system,

which is a useful physical quantity. For this reason this even parity, constant term has been

retained explicitly.

6.3.1.2 Abstract definition

The argument for keeping the odd time projection, and only the odd projection, of the

dynamic part of the reservoir entropy was that the even time projection was dominated by

the static part, and that the non-equilibrium probability could not have even time parity if it

is to satisfy the Second Law of Thermodynamics. Now a second definition of conjugation is

given that has more general application than the physically appealing momentum reversal

definition used above.

For each phase space point Γ denote a conjugate point as Γ#. This new conjugation

operation is meant to include velocity reversal, but it can also include other operations

besides. (I shall be more specific in the treatment of mechanical non-equilibrium systems

below.) The conjugation operation is defined to have two properties. First it leaves the

static part of the reservoir entropy unchanged,

Sr,st(Γ#, t) = Sr,st(Γ, t).

This is exactly as in the case of velocity reversal alone, Sr,st(Γ†, t) = Sr,st(Γ, t).

Second, it reverses the sign of the adiabatic rate of static entropy production,

Ṡ
0

r,st(Γ#, t) = −Ṡ
0

r,st(Γ, t).

For the case of a steady-state system, which is not explicitly dependent on time, 

Ṡ
0

r,st(Γ) = Γ̇
0

⋅ ∇Sr,st(Γ), this condition is also the same as for velocity reversal, 

Ṡ
0

r,st(Γ†) = −Ṡ
0

r,st(Γ). However, for a system explicitly dependent on time, the extra term

in the adiabatic time derivative, ∂Sr,st(Γ, t)/∂t, has even parity, and so 

¯

¯

¯
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Ṡ
0

r,st(Γ†, t) ≠ −Ṡ
0

r,st(Γ, t). Hence this second condition defines the more general

conjugation operation # such that the adiabatic rate of static entropy production must

reverse sign also for explicitly time-dependent systems such as mechanical non-

equilibrium systems.

Define the odd projection of the dynamic part of the reservoir entropy with respect to

this conjugation operation as

As for the usual conjugation operation of velocity reversal, since the asymptote in

independent of the starting point, one can add and subtract the asymptote before taking

the odd projection.

The even projection is defined analogously and one has for the reservoir entropy

where, as above, the asymptotic contribution is S̄ r,dyn(t) = − ∫ t

0 dt′ Ṡ
0

r,st(t′). The

justification for the second equality is as in the first definition of conjugation, namely that

the static part of the reservoir entropy has even parity and it dominates the even

projection of the dynamic part of the reservoir entropy. And since the Second Law of

Thermodynamics mandates that a non-equilibrium system must have time asymmetry, it is

necessary to retain the odd projection of the dynamic part of the reservoir entropy since

this is the only part of the reservoir entropy with such a time asymmetry. Since the Second

Law of Thermodynamics refers to the change in entropy, it makes sense to take the

definition of the conjugation operation to be that it reverses exactly the rate of entropy

production, rather than the more obvious definition that it reverses the velocities, since

there are some systems (i.e. mechanical non-equilibrium systems, which have a time-

dependent external potential) where the two are not equivalent.

Retaining the even parity asymptotic contribution that is constant in phase space is not

necessary for determining the relative probability of phase space points, but it does have a

transparent physical interpretation and it contributes to the rate of dissipation of the total

system, which make it useful to retain this constant term explicitly rather than

incorporating it into the partition function.

6.3.2 Adiabatic odd projection, steady-state system

Consider in this subsection a steady-state, thermodynamic, non-equilibrium system.

Examples include steady heat flow, shear flow, and diffusion. Since it is steady state, the

static part of the reservoir entropy is independent of time, Sr,st(Γ, t) = Sr,st(Γ), and

velocity reversal alone is sufficient to negate the adiabatic rate of static entropy

production, Ṡ
0

r,st(Γ†) = Γ̇
0
(Γ†) ⋅ ∇†Sr,st(Γ†) = −Ṡ

0

r,st(Γ). Hence velocity reversal serves

as the conjugation operation for this steady-state system.

The behavior of the adiabatic rate of entropy production on various trajectories for a

steady-state thermodynamic system is sketched in figure 6.4. On the most likely trajectory

S odd
r,dyn(Γ, t) ≡

1

2
[Sr,dyn(Γ, t) − Sr,dyn(Γ#, t)]

=
−1

2
∫

t

0

dt′ [Ṡ
0

r,st(Γ̄(t′∣ Γ, t), t′) − Ṡ
0

r,st(Γ̄(t′∣ Γ#, t), t′)].

Sr(Γ, t) = Sr,st(Γ, t) + S odd
r,dyn(Γ, t) + S even

r,dyn(Γ, t)

≈ Sr,st(Γ, t) + S odd
r,dyn(Γ, t) + ¯Sr,dyn(t).

¯
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the asymptotes are

Ṡ
0

r,st(Γ̄(t′∣ Γ, t), t′) → Ṡ
0

r,st(t′), ∣ t′−t ∣→ ∞.

This asymptote arises from the fact that with overwhelming probability the system

came from its most likely value in the past (and will return there in the future), independent

of the current phase space point of the sub-system. For the present steady-state system,

the asymptote is independent of t′ and t.

Figure 6.4. Sketch of the adiabatic rate of entropy production, Ṡ
0

r,st, for a steady-

state thermodynamic non-equilibrium system, in the future (right-hand side) and in

the past (left-hand side), starting from a likely phase space point Γ (upper), and from

its unlikely conjugate Γ†
 (lower). The solid curves are on most likely trajectories, 

Γ̄(t′∣ Γ, 0) and Γ̄(t′∣ Γ†, 0), and the short dashed curves are on adiabatic trajectories, 

Γ0(t′∣ Γ, 0) and Γ0(t′∣ Γ†, 0). After Attard (2009c).

In contrast, the asymptotic behavior on the adiabatic trajectory is

This behavior can be seen in the case of steady heat flow in figure 3.2, where the

tangent of the curve is proportional to the adiabatic rate of entropy production. The

asymptotic behavior sets in for ∣ t′−t ∣>
˜

τrelax, where τrelax is a relaxation time that is long

enough for the system to reach its asymptote, but not so long that the structure has

changed significantly, ∣ τrelaxṠ
0

r,st ∣≪∣ Sr,st ∣. (One does not need to impose this condition

for the dissipative trajectory because the interactions with the reservoir maintain the

structure of the sub-system.) For an isolated system, the structure represents a fluctuation,

and Ṡ
0

r,st represents its regression, which must be an odd function of time, at least for a

¯

Ṡ
0

r,st(Γ0(t′∣ Γ, t), t′) ∼ sign(t′−t) Ṡ
0

st(t′).
¯
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steady-state system. For t′> 0, the adiabatic asymptote and the actual asymptote

approximately coincide, which is just Onsager’s regression hypothesis (Onsager 1931).

In view of the trajectories shown in figure 6.4 and the above discussion, the odd

projection of the dynamic part of the reservoir entropy may be transformed from an

integral over the most likely trajectory to an integral over the adiabatic trajectories.

Successive transformations yield

The result says that for a steady-state thermodynamic system, the odd projection of

the dynamic part of the reservoir entropy can be well-approximated by adiabatic

trajectories. The first equality is the area between the solid curves in the left half of the

figure. The second equality is the area between the solid curves in the right half of the

figure. This follows because the dissipation on the most likely trajectory is to a good

approximation even in time. The third equality is the area between the short dashed curves

in the right half of the figure. This follows from Onsager’s regression hypothesis. The fourth

equality is the area between the short dashed curves in the left half of the figure. This

follows from the microscopic reversibility of Hamilton’s equations of motion,

Γ0(t′∣ Γ†, t) = Γ0(2t − t′∣ Γ, t)
†
.

This holds for a steady-state system in which the internal and any external potentials

do not depend explicitly on time. The penultimate equality also holds for a steady-state

system, since in this case the adiabatic rate of change of the static part of the reservoir

entropy is Ṡ
0

r,st(Γ) = Γ̇
0

⋅ ∇Sr,st(Γ), and this has odd parity, Ṡ
0

r,st(Γ†) = −Ṡ
0

r,st(Γ).

It is obvious from the figure that the integrand asymptotes to zero. This means that the

lower limit of the integral can be replaced by t − τ  for some convenient interval τ > 0.

Although the integrand is an exact differential, there is no point in analytically evaluating

the integral because the actual value at the lower limit would be required, 

S odd
r,dyn(Γ, t) = [Sr,st(Γ0(t − τ ∣ Γ, t), t − τ) − Sr,st(Γ0(t − τ ∣ Γ†, t), t − τ)]/2. (Although 

Ṡ
0

r,st has the same asymptote starting at Γ and at Γ†
, there is a finite difference between

the respective asymptotes of Sr,st that corresponds to the area between the two curves in

the left half of the figure.) It takes no more computational effort to perform the quadrature

numerically than it does to calculate the adiabatic trajectories backward to their lower

limit.

S odd
r,dyn(Γ, t) =

−1

2
∫

t

0

dt′ [Ṡ
0

r,st(Γ̄(t′∣ Γ, t), t′) − Ṡ
0

r,st(Γ̄(t′∣ Γ†, t), t′)]

≈
−1

2
∫

2t

t

dt′ [Ṡ
0

r,st(Γ̄(t′∣ Γ, t), t′) − Ṡ
0

r,st(Γ̄(t′∣ Γ†, t), t′)]

≈
−1

2
∫

2t

t

dt′[Ṡ
0

r,st(Γ0(t′∣ Γ, t), t′) − Ṡ
0

r,st(Γ0(t′∣ Γ†, t), t′)]

=
−1

2
∫

t

0

dt′[Ṡ
0

r,st(Γ0(t′∣ Γ†, t)
†
, t′) − Ṡ

0

r,st(Γ0(t′∣ Γ, t)†, t′)]

=
−1

2
∫

t

0

dt′[Ṡ
0

r,st(Γ0(t′∣ Γ, t), t′) − Ṡ
0

r,st(Γ0(t′∣ Γ†, t), t′)]

≡ S
odd;0
r,dyn (Γ, t).
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In summary, this section argues that in some circumstances the odd projection of the

dynamic part of the reservoir entropy is either dominant or is all that is required. Further, it

says that for a steady-state thermodynamic system, the odd projection of the dynamic part

of the reservoir entropy may be evaluated on the past adiabatic trajectories. With this

result, one does not need to evaluate the most likely backwards trajectory. (On the other

hand, calculating the dissipative trajectory, or even the stochastic dissipative trajectory

may be advantageous because it is thermostatted and therefore stable, in contrast to the

adiabatic trajectory.) This adiabatic expression for the dynamic part of the reservoir

entropy has been tested with computer simulations of non-equilibrium systems and found

to be accurate (Attard 2006b). This adiabatic approximation for the trajectories of the

dynamic part of the entropy, and the general formulation of the non-equilibrium

probability, will be tested analytically by direct comparison with the Green–Kubo relations

in section 6.3.6.

6.3.3 Adiabatic odd projection, mechanical system

In this subsection is considered a mechanical non-equilibrium system that has a time-

dependent external potential. A specific example will be considered from which the general

procedure can be extrapolated.

Consider a solvent in which there is a solute acted upon by a time-varying potential, and

also a thermal reservoir with which energy can be exchanged. Suppose that the sub-

system Hamiltonian is of the form H(Γ, t) = H0(Γ) + U(x, t). The time-independent

Hamiltonian H0(Γ) describes the interactions of the solvent particles amongst themselves

and with the solute particle. The solute particle is acted upon by a time-dependent external

potential that takes the form of a moving parabolic trap,

U(x, t) =
κ

2
[x − b(t)] ⋅ [x − b(t)].

Here x is the position of the solute and b(t) is location of the trap. The sub-system

phase space point Γ includes the solute as well as the solvent particles, 

Γ = {Γq, x; Γp, Mẋ}, where M is the solute mass. Velocity conjugation applies to the

solvent and to the solute,

Γ† = {Γq, x; −Γp, −Mẋ}.

 

The sub-system can exchange energy with a thermal reservoir of temperature T, and

therefore the static part of the reservoir entropy is

Sr,st(Γ, t) =
−1

T
H(Γ, t).

Evidently this has even parity with respect to velocity reversal, Sr,st(Γ†, t) = Sr,st(Γ, t)
. The adiabatic rate of change of the static entropy is

Ṡ
0

r,st(Γ, t) =
−1

T
[

∂H(Γ, t)

∂t
+ Γ̇

0
⋅ ∇H(Γ, t)] =

−1

T

∂U(x, t)

∂t
.

This has even parity with respect to velocity reversal, Ṡ
0

r,st(Γ†, t) = Ṡ
0

r,st(Γ, t), since

the right-hand side is independent of the solvent and solute velocity.
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In addition to velocity reversal symmetry, the Hamiltonian is symmetric with respect to

reflection of the solute and all of the solvent particles about the trap minimum,

Γ‡ = {2b(t) − Γq, 2b(t) − x; Γp, Mẋ}.

Hence the static part of the reservoir entropy is unchanged by this reflection operation,

Sr,st(Γ‡, t) = Sr,st(Γ, t).

For this symmetry to hold, all the solvent particles have to be reflected at the same

time as the solute particle. This assumes that the solvent and the solute are not chiral, and

also that the sub-system is homogeneous apart from the moving trap potential.

This reflection symmetry as well as the velocity reversal symmetry is sketched in figure

6.5. The four configurations shown have the same energy and hence static part of the

reservoir entropy,

Sr,st(Γ, t) = Sr,st(Γ†, t) = Sr,st(Γ‡, t) = Sr,st(Γ†‡, t).

(Since this depends on the total energy of the solute and solvent, H(Γ, t), one can see

why the solvent particles also have to be reflected in the trap minimum, since this is the

only way that their interaction potential with the solute is unchanged.)

Figure 6.5. Four configurations of a Brownian particle (circle) in a solvent (not shown)

in a moving potential trap (curve). The arrows indicate the velocity of the particle and

of the trap. The phase space point Γ is a likely point. The dagger signifies velocity

reversal, and the double dagger signifies reflection in the trap minimum. These

operations apply to the solute and the solvent particles. All four configurations have

the same Hamiltonian energy.

As mentioned, the adiabatic rate of change of the static part of the reservoir entropy is

Ṡ
0

r,st(Γ, t) =
−1

T

∂U(x, t)

∂t
=

κ

T
ḃ(t) ⋅ [x − b(t)].

By inspection one sees that that this is independent of solvent and solute velocity, 

Ṡ
0

r,st(Γ, t) = Ṡ
0

r,st(Γ†, t), but that it changes sign upon position reflection,
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Ṡ
0

r,st(Γ, t) = −Ṡ
0

r,st(Γ‡, t), and also Ṡ
0

r,st(Γ, t) = −Ṡ
0

r,st(Γ†‡, t).

In view of the definition of the generalized conjugation operation, equation (6.93), one

can choose either # ≡ ‡, or else # ≡ †‡.

In previous work it has been argued that the combined symmetry operation †‡ should

be used to define the odd projection (Attard 2009c), and this has been successfully used in

computer simulations of a driven Brownian particle (Attard 2009b). A possible reason for

needing to combine both is that non-equilibrium systems are necessarily sensitive to both

velocity reversal and the rate of entropy production. The combined symmetry operation is

discussed for an explicit calculation of driven Brownian motion in equation (6.172).

Following that earlier work, the odd projection of the dynamic part of the reservoir entropy

is here also defined as

In the second equality the most likely trajectories have been replaced by adiabatic

trajectories. This result is formally identical to equation (6.98) for a steady-state

thermodynamic system (but with the present definition of conjugation).

Figure 6.6 sketches the backwards evolution from a likely point Γ1 and from its unlikely

conjugate Γ
†‡
1

. As in the preceding derivation, it is assumed that the most likely trajectory

is approximately the same as the adiabatic trajectory in each case. This is a reasonable

assumption in view of the fact that the solute is surrounded by solvent that is included in

the adiabatic evolution. In this case over not too long-time periods, the reservoir is

redundant, since the solvent itself acts like a heat sink. Hence the dissipative trajectories of

the system can be replaced by adiabatic trajectories of the sub-system, provided that the

time period concerned is short enough that any perturbation by the reservoir is

insignificant.

Figure 6.6. A Brownian particle in a solvent in a moving potential trap. Time

increases from left to right, with the current time t1 being on the far right. The first line

shows a backward trajectory from the current point Γ1, Γ̄(t′∣ Γ1, t1) ≈ Γ0(t′∣ Γ1, t1),

S odd
r,dyn(Γ, t) =

−1

2
∫

t

0

dt′ [Ṡ
0

r,st(Γ̄(t′∣ Γ, t), t′) − Ṡ
0

r,st(Γ̄(t′∣ Γ†‡, t), t′)]

≈
−1

2
∫

t

0

dt′[Ṡ
0

r,st(Γ0(t′∣ Γ, t), t′) − Ṡ
0

r,st(Γ0(t′∣ Γ†‡, t), t′)]

≡ S
odd;0
r,dyn (Γ, t).
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and the second line shows a trajectory from the unlikely conjugate point, 

Γ̄(t′∣ Γ
†‡
1 , t1) ≈ Γ0(t′∣ Γ

†‡
1 , t1). The dotted line is fixed in space as a guide to the eye.

The two different starting configurations at t1 in figure 6.6 both most likely end up at the

same destination at t2 < t1. This means that the integrand for S
odd;0
r,dyn (Γ, t) goes to zero,

and that the lower limit on the integral can be replaced by t − τ  for some convenient time

interval.

It is quite common in the treatment of a driven Brownian particle to make the particle

the entire sub-system and to include all of the solvent as the reservoir; such a model is

explored in section 6.4. In this approach solvent effects are subsumed entirely into the

diffusion constant (or the related memory function for rapidly varying applied potentials).

The adiabatic approximation would be quite inappropriate in such a picture, since one can

only justify replacing the most likely dissipative trajectories by adiabatic trajectories if the

latter include the solvent to provide a mechanism and sink for dissipation.

6.3.4 Adiabatic time derivative of the entropy

In this section the adiabatic time derivative of the odd projection of the dynamic part of the

reservoir entropy is sought. It is actually much simpler to evaluate the adiabatic derivative

first, and then take the odd projection. However, the operations of trajectory derivative and

odd projection do not commute. In using the result now derived, one implicitly assumes

that the non-commuting part is negligible compared to the commuting part.

The odd projection of the adiabatic derivative of the dynamic part of the reservoir

entropy may be obtained by approximating the dissipative trajectories by adiabatic ones.

This is more valid for a mechanical non-equilibrium system than for a steady-state

thermodynamic system. One has

The surviving term is the integrand evaluated at the upper limit of the integral

(Leibnitz rule). The remaining terms cancel because a point on an adiabatic trajectory at

time t′ is unchanged by specifying any point and time that lies on it, 

Γ0(t′∣ Γ + ΔtΓ̇
0
, t + Δt) = Γ0(t′∣ Γ, t). With this the odd projection of the adiabatic

derivative of the dynamic part of the reservoir entropy is

d0Sr,dyn(Γ, t)

dt
≈

d0S 0
r,dyn(Γ, t)

dt

=
S 0

r,dyn(Γ + ΔtΓ̇
0
, t + Δt) − S 0

r,dyn(Γ, t)

Δt

=
−1

Δt

{ΔtṠ
0

r,st(Γ0(t ∣ Γ, t), t) − ∫
t

0

dt′[Ṡ
0

r,st(Γ0(t′∣ Γ, t), t′)

− Ṡ
0

r,st(Γ0(t′∣ {Γ + ΔtΓ̇
0
}, t + Δt), t′)]}

= − Ṡ
0

r,st(Γ, t).
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since by definition, Ṡ
0

r,st(Γ#, t) = −Ṡ
0

r,st(Γ, t). The accuracy or utility of this result is

unclear.

This result should not be confused with the adiabatic derivative of the odd projection of

the dynamic part of the reservoir entropy. The latter is not so easy to obtain explicitly

because the conjugate starting points of the adiabatic trajectories do not lie on the same

trajectory,

 

The even projection of the dynamic part of the reservoir entropy can be approximated

by the asymptote of the integrand. Hence the adiabatic derivative of the even projection of

the dynamic part of the reservoir entropy is approximately

 

With this the adiabatic total time derivative of the dynamic part of the reservoir entropy

may be taken to be

Ṡ
0

r,dyn(Γ, t) ≡
d0Sr,dyn(Γ, t)

dt
≈ −Ṡ

0

r,st(Γ, t) − Ṡ
0

r,st(t).

As mentioned above, the form of the first term on the right-hand side assumes that the

commuting part of the adiabatic derivative of the odd projection dominates the non-

commuting part.

It follows that the adiabatic total time derivative of the reservoir entropy is

Ṡ
0;odd

r,dyn(Γ, t) ≡
1

2
{

d0Sr,dyn(Γ, t)

dt
−

d0Sr,dyn(Γ#, t)

dt
}

≈ − Ṡ
0

r,st(Γ, t).

Γ0(t′∣ {Γ + ΔtΓ̇
0
}†, t + Δt) = Γ0(t′∣ Γ† + Δt{Γ̇

0
}

†

− ΔtΓ̇
0
(Γ†), t)

= Γ0(t′∣ Γ† + Δt{Γ̇
0
}

†

+ Δt{Γ̇
0
}

†

), t)

= Γ0(t′∣ Γ† + 2Δt{Γ̇
0
}

†

, t).

d0S even
r,dyn(Γ, t)

dt
≈

d0S̄ r,dyn(t)

dt

=
∂S̄ r,dyn(t)

∂t

= − Ṡ
0

r,st(t).
¯

¯

Ṡ
0

r (Γ, t) ≡
d0Sr(Γ, t)

dt

≈ − Ṡ
0

r,st(t).
¯
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This is evidently a constant in phase space. This holds for both steady-state

thermodynamic systems and for mechanical non-equilibrium system (subject to the

validity of the various approximations invoked above).

This is consistent with equation (6.30), which assumed that the exact result for the

average adiabatic time derivative of the reservoir entropy held locally. That result is

Ṡ
0

r (Γ, t) =
kBŻ(t)

Z(t)
= Ṡtot(t).

One can therefore conclude that the rate of change of the total entropy is equal and

opposite to the most likely adiabatic rate of change of the static part of the reservoir

entropy,

Ṡtot(t) = −Ṡ
0

r,st(t).

6.3.5 Steady-state system

This general result applied to a general steady-state system is

Ṡtot(xr, ∇xr, t) = Ṡr(xr, ∇xr, t) = −Ṡ
0

r,st.

Here xr is the reservoir field variable or variables. Because this is a steady-state

system, the structure and hence the sub-system entropy does not change with time, 

Ṡs(t) = 0, and so only the reservoir entropy contributes to the rate of change of the total

entropy. For a steady-state system, Ṡ
0

r,st is independent of time. The physical interpretation

of this result is that in a steady state, the internal change in the structure of the sub-

system is canceled by exchange with the reservoir, which means that the internal change

in entropy is equal and opposite to the change in reservoir entropy.

Since the material flux is constant, so is the rate of change of reservoir entropy, and so

integrating the latter gives the reservoir entropy as a linear function of time, 

Sr(xr, ∇xr, t) = Sr(xr, ∇xr, 0) − tṠ
0

r,st. The partition function is therefore of the form

Z(xr, ∇xr, t) = Z(xr, ∇xr)e−tṠ
0

r,st/kB ,

which gives the total unconstrained entropy as

Stot(xr, ∇xr, t) = Stot(xr, ∇xr) − tṠ
0

r,st.

 

A steady-state system is homogeneous in time,

Γ̄(t ∣ Γ0, t0) = Γ̄(t − t0 ∣ Γ0).

Hence the dynamic part of the reservoir entropy may be written

¯

¯

¯

¯

¯

¯

t
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The partial time derivative of this is

This is evidently a constant in phase space. The second equality holds because the

dynamic part of the entropy is formulated such that t is assumed large enough for the

system to have settled into a steady state and the integrand to have reached its

asymptotic limit.

For a steady-state system the macroscopic structure of the sub-system is fixed and the

static part of the reservoir entropy is not explicitly dependent on time, Sr,st(Γ). Hence in

this case the partial time derivative of the reservoir entropy is just that of the dynamic part

alone,

∂Sr(Γ ∣ xr, ∇xr, t)

∂t
=

∂Sr,dyn(Γ ∣ ∇xr, t)

∂t
= −Ṡ

0

r,st.

In view of equation (6.115), Ṡ
0

r (Γ, t) = −Ṡ
0

r,st(t), this implies that

Γ̇
0

⋅ ∇Sr(Γ, t) = 0.

This agrees with equation (6.31).

With this result for the partial time derivative of the dynamic entropy for a steady-state

system, one can write

Sr,dyn(Γ ∣ xr, ∇xr, t) = Sr,dyn(Γ ∣ ∇xr) − tṠ
0

r,st

with

Sr,dyn(Γ ∣ ∇xr) = −∫
0

−∞

dt′′ {Ṡ
0

r,st(Γ̄(t′′∣ Γ, 0)) − Ṡ
0

r,st}.

 

The probability density is

Sr,dyn(Γ ∣ ∇xr, t) = − ∫
t

0

dt′ Ṡ
0

r,st(Γ̄(t′∣ Γ, t))

= − ∫
0

−t

dt′′ Ṡ
0

r,st(Γ̄(t′′∣ Γ)), t′′= t′−t.

∂Sr,dyn(Γ ∣ ∇xr, t)

∂t
= − Ṡ

0

r,st(Γ̄(−t ∣ Γ, 0))

= − Ṡ
0

r,st.
¯

¯

¯

¯

¯

( ∣ )/ ( ∣ )/
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The passage from the first to the second equality confirms the first three equations in

this subsection, equation (6.118) et seq.

The constant part of the partition function is just

The second equality is exact when fluctuations are negligible, which they are in the

thermodynamic limit. In terms of the total unconstrained entropy this is

The sub-system entropy in the most likely macrostate, S̄ s, contains the effects of the

dynamic order due to the induced energy flux, which is embodied in the dynamic part of

the entropy.

6.3.5.1 Steady heat flow

For steady heat flow, the static part of the reservoir entropy is

Sr,st(Γ) =
−E0(Γ)

T0
−

E1(Γ)

T1
.

The most likely heat flux is

Since the present case is that of an applied temperature gradient rather than a

spontaneous fluctuation, one has τ̂ = +1 here.

The adiabatic rate of change of the static part of the reservoir entropy is

Ṡ
0

r,st =
−1

T1
Ė

0

1.

Since the flux is constant, the reservoir entropy increases linearly with time, and it may

be written as Sr(t ∣ T0, T1) = Sr(0 ∣ T0, T1) + tĖ
0

1/T1, with the (immaterial) value at t = 0

taken to be

℘(Γ ∣ xr, ∇xr) =
eSr,st(Γ∣xr,∇xr)/kBeSr,dyn(Γ∣∇xr,t)/kB

h3N N!Z(xr, ∇xr, t)

=
eSr,st(Γ∣xr,∇xr)/kBeSr,dyn(Γ∣∇xr)/kB

h3N N!Z(xr, ∇xr)
.

Z(xr, ∇xr) =
1

h3N N!
∫ dΓ eSr,st(Γ∣xr,∇xr)/kBeSr,dyn(Γ∣∇xr)/kB

= eSs(X̄s,Ẋ
0

s ∣xr,∇xr)/kBeSr,st(X̄s∣xr,∇xr)/kB ,
¯

Stot(xr, ∇xr) = Ss(X̄s, Ẋ
0

s ∣ xr, ∇xr) + Sr,st(X̄s ∣ xr, ∇xr).
¯

J̄
0

e =
1

V
Ė

0

1

=
τ̂

2V
Λ

1

T1
.

¯

¯̄

¯
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Sr(0 ∣ T0, T1) = S̄ r,st(T0, T1) =
−Ē0(Γ)

T0
−

Ē1(Γ)

T1
.

The partition function is therefore of the form

Z(T0, T1, t) = Z(T0, T1)e−tṠ
0

r,st/kB ,

which gives the total unconstrained entropy as

Stot(T0, T1, t) = Stot(T0, T1) − tṠ
0

r,st.

 

The partial time derivative of the dynamic part of the reservoir entropy is

∂Sr,dyn(Γ, t ∣ T1)

∂t
= −Ṡ

0

r,st =
1

T1
Ė

0

1.

 

The probability density is

 

The time-independent part of the partition function is just

The second equality is exact when fluctuations are negligible, which they are in the

thermodynamic limit. In terms of the total unconstrained entropy this is

The sub-system entropy in the most likely macrostate, Ss(Ē0, Ē1, Ė
0

1 ∣ T0, T1),

contains the effects of the dynamic order due to the induced energy flux, which is

embodied in the dynamic part of the entropy.

6.3.6 Green–Kubo relations

¯

¯

¯̄

℘(Γ ∣ T0, T1) =
eSr,st(Γ∣T0,T1)/kBeSr,dyn(Γ∣T1,t)/kB

h3N N!Z(T0, T1, t)

=
eSr,st(Γ∣T0,T1)/kBeSr,dyn(Γ∣T1)/kB

h3N N!Z(T0, T1)
.

Z(T0, T1) =
1

h3N N!
∫ dΓ eSr,st(Γ∣T0,T1)/kBeSr,dyn(Γ∣T1)/kB

= eSs(Ē0,Ē1,Ė
0

1∣T0,T1)/kBeSr,st(Ē0,Ē1∣T0,T1)/kB .
¯

Stot(T0, T1) = Ss(Ē0, Ē1, Ė
0

1 ∣ T0, T1) + Sr,st(Ē0, Ē1 ∣ T0, T1)

= Ss(Ē0, Ē1, Ė
0

1 ∣ T0, T1) −
Ē0

T0
−

Ē1

T1
.

¯

¯

¯
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The validity and utility of the expression for the non-equilibrium probability will now be

illustrated with a simple derivation of the Green–Kubo relations (Onsager 1931, Green

1954, Kubo 1966). These relate the hydrodynamic transport coefficients to the equilibrium

time correlation functions of the fluxes.

For the particular case of heat flow, the static part of the reservoir entropy is (see

chapter 3)

Sr,st(Γ) =
−E0(Γ)

T0
−

E1(Γ)

T1
,

where the nth energy moment in the z-direction is En(Γ) ≡ ∫ dr ϵ(r; Γ)zn, with

ϵ(r; Γ) being the energy density at r. Also the zeroth temperature is the mid-temperature

of the two reservoirs, T −1
0 ≡ [T −1

+ + T −1
− ]/2 = T −1 +O(∇T )2

, and the first temperature

is essentially the temperature gradient imposed by them, 

T −1
1 ≡ [T −1

+ − T −1
− ]/Lz = −T −2∇T +O(∇T )2

.

The instantaneous heat flux, a phase function of the isolated sub-system, is essentially

the adiabatic rate of change of the first energy moment

JE(Γ) ≡ Ė
0

1(Γ)/V ,

where V is the volume of the sub-system. Due to energy conservation of the isolated

system, Ė
0

0(Γ) = 0 and Ṡ
0

r,st(Γ) = −Ė
0

1(Γ)/T1.

Fourier’s law gives the heat flow in the presence of an applied thermal gradient, and it is

(Kubo et al 1978, Zwanzig 2001, Bellac et al 2004, Pottier 2010, Attard 2012)

J̄ E = −λ∇T ,

where λ is the thermal conductivity. The left-hand side is the most likely heat flux,

which equals the average heat flux. This law of course holds to linear order in the

temperature gradient.

The average heat flux given by the present non-equilibrium theory is
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In the third equality the exponentials have been expanded in powers of the

temperature gradient and second order terms have been neglected. As well, terms that are

the product of an even parity function, Sr,st(Γ) or S even
r,dyn(Γ), and an odd parity function, 

Ṡ
0

r,st(Γ) or Ė
0

1(Γ), vanish upon integration over phase space. In addition, the most likely

trajectory has been replaced by the adiabatic trajectory, equation (6.98). The equilibrium

average arises because Z(T0)−1e−E0(Γ)/kBT0  is the Maxwell–Boltzmann distribution.

Comparing this to Fourier’s law, one can identify the thermal conductivity as

The right-hand side is independent of τ for τ >
˜

τrelax. This can be written in a number

of different ways, but all involve the equilibrium time correlation function of the heat flux or

an integral thereof. This is a typical example of a Green–Kubo relation (Onsager 1931,

Green 1954, Kubo 1966). It is to be noted that the time correlation function in any Green–

Kubo relation always invokes adiabatic trajectories (Kubo et al 1978, Zwanzig 2001, Bellac

et al 2004, Pottier 2010, Attard 2012).

From this analysis one sees that the general formula for obtaining the Green–Kubo

relations for a steady-state thermodynamic system is

⟨JE⟩non−equil =
1

V
∫ dΓ ℘(Γ ∣ T0, T1)Ė

0

1(Γ)

=
1

V

∫ dΓ e[Sr,st(Γ)+Sr,dyn(Γ)]/kBĖ
0

1(Γ)

∫ dΓ e[Sr,st(Γ)+Sr,dyn(Γ)]/kB

=
1

V kB

∫ dΓ e−E0(Γ)/kBT0Ė
0

1(Γ)S
odd;0
r,dyn (Γ)

∫ dΓ e−E0(Γ)/kBT0

+O(∇T )2

=
1

2V kBT1
∫

0

−τ

dt′ ⟨Ė
0

1(Γ)[Ė
0

1(Γ0(t′∣ Γ, 0) − Ė
0

1(Γ0(t′∣ Γ†, 0)]⟩
equil

=
−∇T

2V kBT 2
0

∫
τ

−τ

dt′ ⟨Ė
0

1(Γ)Ė
0

1(Γ0(t′∣ Γ, 0)⟩
equil

.

λ =
1

2V kBT 2
0

∫
τ

−τ

dt′ ⟨E 0
1 (Γ)Ė

0

1(Γ0(t′∣ Γ, 0)⟩
equil

=
1

2V kBT 2
0

⟨Ė
0

1(t)[E1(t + τ) − E1(t − τ)]⟩
equil

.
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In the third equality the exponentials have been expanded in powers of the gradient in

the reservoir field variable, and second order terms have been neglected. In the

denominator the term linear in the gradient vanishes because it has odd spatial symmetry.

In the fourth equality the odd temporal parity projection of the dynamic part of the

reservoir entropy is the only nonzero contribution because the adiabatic flux has odd

temporal parity. In the fifth equality, the most likely trajectory has been replaced by the

adiabatic trajectory, equation (6.98). The equilibrium average arises because 

Sr,st(Γ ∣ xr, ∇xr) is the equilibrium reservoir entropy for the point in phase space. The left-

hand side is the flux times the volume averaged in the non-equilibrium system with applied

reservoir gradient. The right-hand side is the equilibrium average of that flux multiplied by

the temporal integral that is here identified with the dynamic part of the reservoir entropy.

The fact that the theory gives the Green–Kubo relations should give one confidence both

in the adiabatic transformation of the dynamic part of the reservoir entropy, equation

(6.98), and in the general expression for the phase space probability for non-equilibrium

systems, equations (6.4) and (6.14). Of course the Green–Kubo relations are a linear

theory, whereas the full expression for the phase space probability for non-equilibrium

systems, equations (6.4) and (6.14), applies in all circumstances, linear and non-linear.

6.4 Driven Brownian motion

Consider mechanical non-equilibrium system consisting of a solute that is acted upon by a

time-varying potential,

U(x, t) =
κ

2
[x − b(t)] ⋅ [x − b(t)].

Here x is the position of the solute. The potential is in the form of a trap, with κ > 0.

We shall assume that the location of the trap is in uniform motion,

b(t) = ḃt.

All of the solvent is subsumed into the reservoir of temperature T, and so the

Hamiltonian of the sub-system is

⟨Ṡ
0

r,st(Γ)⟩
non−equil

= ∫ dΓ ℘(Γ ∣ xr, ∇xr) Ṡ
0

r,st(Γ)

=

∫ dΓ e[Sr,st(Γ∣xr,∇xr)+Sr,dyn(Γ∣∇xr)]/kB Ṡ
0

r,st(Γ)

∫ dΓ e[Sr,st(Γ∣xr,∇xr)+Sr,dyn(Γ∣∇xr)]/kB

= k−1
B

∫ dΓ eSr,st(Γ∣xr)/kBSr,dyn(Γ ∣ ∇xr) Ṡ
0

r,st(Γ)

∫ dΓ eSr,st(Γ∣xr)/kB

+O(∇xr)
2

= k−1
B ⟨S odd

r,dyn(Γ ∣ ∇xr) Ṡ
0

r,st(Γ)⟩
equil

≈ k−1
B ⟨S

odd;0
r,dyn (Γ ∣ ∇xr) Ṡ

0

r,st(Γ)⟩
equil

.
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H(ẋ, x; t) =
m

2
ẋ

2 + U(x, t),

where m is the mass of the solute. The static part of the reservoir entropy is

 

From physical considerations, for uniform trap velocity, it is most likely that the particle

will move with the same velocity as the trap, and that it will lag the trap location such that

the mechanical force is equal and opposite to the drag force (see figure 6.7). That is, the

most likely configuration can be expected to be

X̄(t) ≡ {x̄(t), ẋ(t)} = {b(t) − γḃ/κ, ḃ}.

This maximizes the reservoir entropy,

∇Sr(X, t)∣
X̄(t) = 0.

This result will be confirmed by explicit calculation toward the end of the following

analysis.

Figure 6.7. Most likely configuration of a Brownian particle in a solvent in a steadily

moving potential trap. Time increases from left to right, and the dotted line is fixed in

space as a guide to the eye.

The adiabatic rate of static entropy production is

According to equation (6.117), we should expect that the rate of total entropy

production is equal and opposite of the most likely value of this

Ṡtot(t) = −Ṡ
0

r,st(t) = −Ṡ
0

r,st(X̄(t), t) =
γ

T
ḃ

2
.

Sr,st(ẋ, x; t) =
−H(ẋ, x; t)

T

=
−mẋ

2

2T
−

κ

2T
[x − b(t)] ⋅ [x − b(t)].

¯

Ṡ
0

r,st(X, t) =
∂Sr,st(X, t)

∂t

=
κ

T
ḃ ⋅ (x − b(t)).

¯
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From the results of section 6.2.2, the stochastic dissipative equations of motion over

an infinitesimal time step are

Note that the reservoir ‘force’ is here in velocity space rather than the more

conventional momentum space. Hence it is the actual reservoir force divided by the

particle mass.

In the present model all of the solvent is subsumed into the reservoir, and the sub-

system consists of a single Brownian particle. In this case it would be an exceedingly poor

approximation to replace the dissipative equations of motion by adiabatic equations of

motion.

Making contact with Langevin’s equation (4.19), specifically in the second entropy form,

equation (4.21), the transport matrix can be written in terms of the the drag coefficient, 

Λ = 2m−2TγI. Hence the probability distribution of the stochastic part of the force is

℘(R̃ ∣ Δt) =
e−m2R̃

2
/4γ∣Δt∣kBT

(4πm−2γ ∣ Δt ∣ kBT )3/2
.

The diffusion constant D and the drag coefficient γ are related as D = kBT/γ.

According to equation (6.67), the dissipative force is

The usual drag force going forward in time is Fd = −γẋ, which can be identified in

this.

For future comparison, the zeroth order approximation, equation (6.74), which is here 

, is equivalent to setting the second term of the first and second

equalities to zero.

Therefore, the stochastic, dissipative equations of motion for the uniformly driven

Brownian particle are explicitly

 

x(t + Δt) = x(t) + Δtẋ(t),

ẋ(t + Δt) = ẋ(t) −
Δt

m

∂H(ẋ, x; t)

∂x
+ R(ẋ, x; t, Δt)

= ẋ(t) −
Δtκ

m
[x(t) − b(t)] + R̄ + R̃.

R̄v =
∣ Δt ∣

2
Λ∇vSr,st(X(t), t) −

∣ Δt ∣ −Δt

2
Λ∇vSr,st(X̄(t), t)

=
− ∣ Δt ∣ γ

m
ẋ(t) +

(∣ Δt ∣ −Δt)γ

m
ẋ(t)

=
− ∣ Δt ∣ γ

m
[ẋ(t) − ẋ(t)] −

Δtγ

m
ẋ(t).

¯

¯̄

x(t + Δt) = x(t) + Δtẋ(t),

ẋ(t + Δt) = ẋ(t) −
Δtκ

m
[x(t) − b(t)] −

∣ Δt ∣ γ

m
ẋ +

(∣ Δt ∣ −Δt)γ

m
ḃ + R̃v.
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Setting , and taking the limit Δt → 0, these dissipative equations may be re-

written in the form

where Δ̂t = sign Δt.

Since b(t) = ḃt, in vector form this is

̇̄X(t ∣ X(t), t) = AX(t) + Bt + C,

with

In these matrices and vectors, the three components of direction are independent and

can be considered separately. On a backward trajectory, Δ̂t = −1, and 

C = {0, (−2γ/m)ḃ}.

Again for future comparison, the zeroth order approximation, equation (6.74), takes 

C = 0.

As can be confirmed by direct substitution, the solution to the differential equation is

As mentioned, the three components of direction are independent from each other.

For future reference, the eigenvalues of A are given by the characteristic equation

λ±[λ± +
Δ̂tγ

m
]+

κ

m
= 0,

or

dx̄(t′∣ X(t), t)

dt′
∣
t′=t±

= ẋ(t),

dẋ(t′∣ X(t), t)

dt′
∣
t′=t±

=
−κ

m
[x(t) − b(t)] −

Δ̂tγ

m
ẋ(t) +

(Δ̂t − 1)γ

m
ḃ,

¯

A ≡ ( ),

B ≡ {0, (κ/m)ḃ},

and C ≡ {0, ((Δ̂t − 1)γ/m)ḃ}.

0 I

(−κ/m)I (−Δ̂tγ/m)I

X̄(t′∣ X, t) = e(t′−t)A[X + tA−1B + A−1C + A−2B]

− t′A−1B − A−1C − A−2B.

λ± =
−Δ̂tγ

2m
{1 ± √1 − 4κm/γ 2}

∼ {
−Δ̂tγ

m
,

−Δ̂tκ

γ
}, κ → 0.
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On a backwards trajectory, Δ̂t = −1, both eigenvalues are positive (assuming 

4κm/γ 2 < 1).

Using the adiabatic rate of static entropy production, Ṡ
0

r,st(X, t) = κḃ ⋅ [x(t) − b(t)]/T ,

and the full expression for the most likely backward trajectory, the dynamic part of the

reservoir entropy is

Note that because this is the most likely backward trajectory in the integrand, 

Δ̂t = −1 in A and C. Assuming both eigenvalues are positive, since t > 0 the exponential

term may be neglected and this becomes

Sr,dyn(X, t) =
κḃ

2
t2

2T
−

κ

T
ḃ ⋅{A−1X + A−2C + A−3B −

t2

2
A−1B − tA−1C}

x

.

As has been mentioned, the zeroth order approximation, equation (6.74), takes C = 0.

The term quadratic in t in the braces is

This term is equal and opposite the term outside the braces and it therefore cancels

with it.

The term linear in time is

 

Sr,dyn(X, t) = − ∫
t

0

dt′ Ṡ
0

r,st(X̄(t′∣ X, t), t′)

=
−κ

T
ḃ ⋅ ∫

t

0

dt′ [x̄(t′∣ X, t) − ḃt′]

=
κḃ

2
t2

2T
−

κ

T
ḃ ⋅ {A−1[I − e−tA][X + tA−1B + A−1C + A−2B]

−
t2

2
A−1B − tA−1C − tA−2B}

x

.

{A−1B}
x

= {( )
− 1

( )}
x

=
m

κ
{( )( )}

x

= − ḃ.

0 I

(−κ/m)I (γ/m)I

0

κḃ/m

(γ/m)I −I

(κ/m)I 0

0

κḃ/m

{A−1C}
x

=
m

κ
{( )( )}

x

=
2γ

κ
ḃ.

(γ/m)I −I

(κ/m)I 0

0

−2γḃ/m
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One of the terms independent of time and of X is

 

The other term independent of time and of X is

The term dependent on X is

Putting these together the dynamic part of the reservoir entropy is

{A−3B}
x

=
m3

κ3
{( )

3

( )}
x

=
m3

κ3
{( )

2

( )}
x

=
m3

κ3
{( )( )}

x

=
m3

κ3
[

−γ 2κ

m3
+

κ2

m2
]ḃ

= [
m

κ
−

γ 2

κ2
]ḃ.

(γ/m)I −I

(κ/m)I 0

0

κḃ/m

(γ/m)I −I

(κ/m)I 0
−κḃ/m

0

(γ/m)I −I

(κ/m)I 0

−γκḃ/m2

−κ2ḃ/m2

{A−2C}
x

=
m2

κ2
{( )

2

( )}
x

=
m2

κ2
{( )( )}

x

=
2γ 2

κ2
ḃ.

(γ/m)I −I

(κ/m)I 0

0

−2γḃ/m

(γ/m)I −I

(κ/m)I 0

2γḃ/m

0

{A−1X}
x

=
m

κ
{( )( )}

x

=
γ

κ
x −

m

κ
ẋ.

(γ/m)I −I

(κ/m)I 0

x

ẋ

Sr,dyn(X, t) =
κḃ

2
t2

2T
−

κ

T
ḃ ⋅{A−1X + A−2C + A−3B −

t2

2
A−1B − tA−1C}

x

= [
γ 2

κT
−

m

T
]ḃ

2
−

γ

T
ḃ ⋅ x +

m

T
ḃ ⋅ ẋ −

2γ 2

κT
ḃ

2
+ t

2γ

T
ḃ

2

=
−γ

T
ḃ ⋅ [x − b(t) +

γ

κ
ḃ] +

m

T
ḃ ⋅ [ẋ − ḃ] + t

γ

T
ḃ

2
.
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The final equality uses the fact that b(t) = ḃt. The gradient of this is constant in phase

space, . This is consistent with the approximation

equation (6.64), which underpins the expression for the most likely reservoir force,

equation (6.67). The final constant linear in time is the reservoir entropy produced to date,

equation (6.154), as will be confirmed shortly.

The zeroth order approximation, equation (6.74), sets C = 0, in which case this reduces

to

Compared to the full result, this has lost the term linear in time, which represents the

important physical quantity of the entropy produced to date, and it has changed the first

term in brackets. Both of these changes are constants in phase space, so in fact the zeroth

order approximation, equation (6.74), gives the same relative probability for points in

phase space as the full expression, equation (6.67).

The full result for the dynamic part of the reservoir entropy is not odd with respect to

velocity reversal, nor with respect to reflection in the trap minimum. The even terms that

would be projected out are significant in these two individual projections. It is not exactly

odd with respect to both operations simultaneously, but the even part in this case is

immaterial. That is, the odd projection of this with respect to both operations is

This differs from the full expression by constant terms (one of which is the even

asymptotic contribution). One can see that it is necessary to perform both operations

simultaneously otherwise one or other of x or ẋ is projected out by the operation. As far as

determining the relative probability of phase space points is concerned, this odd projection

with respect to both operations is equally as good as the full expression.

The static part of the reservoir entropy,

Sr,st(X, t) =
−m

2T
ẋ ⋅ ẋ −

κ

2T
[x − b(t)] ⋅ [x − b(t)],

added to the dynamic part of the reservoir entropy gives the reservoir entropy,

Sr,dyn(X, t) =
κḃ

2
t2

2T
−

κ

T
ḃ ⋅{A−1X + A−3B −

t2

2
A−1B}

x

= [
γ 2

κT
−

m

T
]ḃ

2
−

γ

T
ḃ ⋅ x +

m

T
ḃ ⋅ ẋ

=
−γ

T
ḃ ⋅ [x − b(t) −

γ

κ
ḃ] +

m

T
ḃ ⋅ [ẋ − ḃ].

S odd
r,dyn(X, t) ≡

1

2
[Sr,dyn(X, t) − Sr,dyn(X†‡, t)]

= −
γ

T
ḃ ⋅ [x − b(t)] +

m

T
ḃ ⋅ ẋ.
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By inspection, one can see that this is a maximum with respect to x when 

x̄(t) = b(t) − γḃ/κ, and it is a maximum with respect to ẋ when ẋ(t) = ḃ. This confirms

the result deduced on physical grounds in equation (6.151).

The partial time derivative of this in the most likely state is

∂Sr(X, t)

∂t
∣
X=X̄(t)

=
γ

T
ḃ

2
.

This is equal to the rate of total entropy production, and is equal and opposite to the

adiabatic rate of static entropy production, equation (6.154).

The X-dependent part of the reservoir entropy is in the form of a fluctuation entropy

about the most likely state. It would give a Gaussian probability distribution. The

fluctuation coefficients (i.e. −m/2T  for the velocity, −κ/2T  for the position) come from

the second derivatives of the static entropy, and they would be the same in the

corresponding equilibrium system.

6.5 Path entropy and trajectory probability

6.5.1 Path entropy

For a transition {Γ1, t1} → {Γ2, t2}, the actual change in reservoir entropy is

Here Sr(Γ2, t2 ∣ Γ1, t1) is the conditional reservoir entropy, which is the entropy for

the point {Γ2, t2} given that the system had previously been at {Γ1, t1}. Here and in what

follows, the forward trajectory is considered, t2 > t1. Also, R is the actual force from the

reservoir, and so by the conservation laws, R ⋅ ∇Sr,st(Γ, t) is the actual change in

reservoir entropy. We always work to linear order in the time step and so {Γ, t} can be

anywhere on the interval. The final two equalities are simply rearrangements that make the

adiabatic contributions explicit.

Sr(X, t) =
−m

2T
ẋ ⋅ ẋ −

κ

2T
[x − b(t)] ⋅ [x − b(t)]

−
γ

T
ḃ ⋅ [x − b(t) +

γ

κ
ḃ] +

m

T
ḃ ⋅ [ẋ − ḃ] + t

γ

T
ḃ

2

=
−m

2T
[ẋ − ḃ] ⋅ [ẋ − ḃ]

−
κ

2T
[x − b(t) +

γ

κ
ḃ] ⋅ [x − b(t) +

γ

κ
ḃ]

+ t
γ

T
ḃ

2
−

m

2T
ḃ

2
−

κ

2T

γ 2

κ2
ḃ

2
.

¯

→ΔSr(Γ2, t2; Γ1, t1) ≡ Sr(Γ2, t2 ∣ Γ1, t1) − Sr(Γ1, t1)

= Rp ⋅ ∇pSr,st(Γ, t)

= [Γ2 − Γ1 − t21Γ̇
0
] ⋅ ∇Sr,st(Γ, t)

= Sr,st(Γ2, t2) − Sr,st(Γ1, t1) − t21Ṡ
0

r,st(Γ, t).
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Note that this, →ΔSr the actual change in entropy on an actual transition, is not the same

as the difference in entropy, ΔSr ≡ Sr(Γ2, t2) − Sr(Γ1, t1). Both quantities in the latter

are calculated as if the phase space point had been reached via the most likely trajectory

(see figure 6.8).

Figure 6.8. The actual transition between two points in phase space (dashed arrow),

and the two most likely trajectories leading to the points (solid arrows). The change in

entropy, →ΔSr, is calculated on the former, whereas the difference in entropy, ΔSr, is

calculated using the latter.

From equation (6.67), the most likely reservoir force for this transition is

since t21 > 0.

In view of equations (6.52) and (6.53), the second entropy for the transition may be

written

S (2)(Γ2, t2; Γ1, t1) =
−Λ−1 : R̃pR̃p

2 ∣ t21 ∣
+ Sr(Γ1, t1) +

1

2
[Stot(t2) − Stot(t1)].

This neglects the (constant) contribution from the fluctuations, the normalizing factor

for the Gaussian. Writing the random part of the reservoir force as R̃p = Rp − R̄p, the

conditional second entropy can be defined and re-written as

R̄p =
∣ t21 ∣

2
Λ[∇pSr,st(Γ, t) − ∇pSr,st(Γ̄(t), t)] +

t21

2
Λ∇pSr,st(Γ̄(t), t)

=
t21

2
Λ∇pSr,st(Γ, t),

S (2)(Γ2, t2 ∣ Γ1, t1) ≡ S (2)(Γ2, t2; Γ1, t1) − Sr(Γ1, t1) −
1

2
[Stot(t2) − Stot(t1)]

=
−1

2 ∣ t21 ∣
Λ−1 : R̃pR̃p

=
−1

2 ∣ t21 ∣
Λ−1 : [RpRp + R̄pR̄p] +

1

∣ t21 ∣
Λ−1 : RpR̄p

=
−1

2 ∣ t21 ∣
Λ−1 : [RpRp + R̄pR̄p] +

1

2
Rp ⋅ ∇pSr,st(Γ, t)

=
−1

2 ∣ t21 ∣
Λ−1 : [RpRp + R̄pR̄p] +

1

2
→ΔSr(Γ2, t2; Γ1, t1).
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Since R̄p and Rp scale with the size of the time step, the conditional second entropy itself

also scales with the size of the time step, as can also be seen directly from the

definition.

This result for a single transition is now extended to a trajectory, which is a series of

such transitions. Denote the trajectory by Γ_ . Divide the interval [t0, tf ] of the trajectory

into uniformly spaced nodes, tn = t0 + nΔt, n = 0, 1, … , f, with Γn = Γ(tn) and the

time step being Δt = [tf − t0]/f > 0. We assume that the change in entropy for each

nodal transition is independent of the prior trajectory of the system. With these, the actual

change in entropy for this trajectory is

Here Rn is the actual reservoir force applied at the nth node, and the final equality

defines the dynamic part of the trajectory entropy. This is sketched in figure 6.9.

Figure 6.9. Sketch of a trajectory in the sub-system phase space (solid arrow)

showing the adiabatic rate of entropy production on it at regular intervals (dashed

arrows).

It is a significant assumption that the change in entropy for each nodal interval is

independent of the preceding trajectory. This assumes that on the present infinitesimal

time steps, Hamilton’s equations apply to both the sub-system and the reservoir, and these

are strictly Markovian. Of course a certain statistical re-summation of the reservoir

perturbation has taken place in the formulations of R̄ and of R̃. But this is not same as, for

example, the integration of fast modes in Brownian dynamics, where memory effects can

be important.

In view of the Markov assumption, the trajectory entropy is just the sum of the second

entropy for the transition between each node,

→ΔSr(Γ_ ) =
f−1

∑
n=0

→ΔSr(Γn+1, tn+1; Γn, tn)

=
f−1

∑
n=0

Rn ⋅ ∇pSr,st(Γn, tn)

=
f−1

∑
n=0

{Sr,st(Γn+1, tn+1) − Sr,st(Γn, tn) − ΔtṠ
0

r,st(Γn, tn)}

= Sr,st(Γf , tf) − Sr,st(Γ0, t0) − ∫
tf

t0

dt′ Ṡ
0

r,st(Γ(t′), t′)

≡ Sr,st(Γf , tf) − Sr,st(Γ0, t0) + Sr,dyn(Γ_ ).
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Here the total reservoir force at the nth node is Rn = Γn+1 − Γn − ΔtΓ̇
0

n.

The probability of the trajectory conditioned on the starting point is just the exponential

of this trajectory entropy. This is usefully written as the product of Gaussians, the second

equality above,

Here and below, the un-normalized Gaussian distribution is

ΘΛ(Rp) ≡ e−Λ−1
pp :RpRp/2kB∣Δt∣.

By inspection, one sees that this expression for the conditional trajectory probability is

correctly normalized.

This result for the conditional trajectory probability is based on the second equality for

the trajectory entropy. The conditional trajectory probability can also be written in terms of

the change in entropy over the trajectory, which occurs in the final equality for the

trajectory entropy,

Because the exponent here is equal to the previous Gaussian form, this must also be

correctly normalized.

It is usually the case that the initial probability distribution is that of the non-equilibrium

system at time t0,

Sr(Γ_ ∣ Γ0, t0) =
f−1

∑
n=0

S (2)(Γn+1, tn+1 ∣ Γn, tn)

=
f−1

∑
n=0

−1

2 ∣ Δt ∣
Λ−1 : R̃nR̃n

=
f−1

∑
n=0

{
−Λ−1 :

2 ∣ Δt ∣
[RnRn + R̄nR̄n] +

1

2
→ΔSr(Γn+1, tn+1; Γn, tn)}

=
1

2
→ΔSr(Γ_ ) −

1

2 ∣ Δt ∣

f−1

∑
n=0

Λ−1 : [RnRn + R̄nR̄n].

℘(Γ_ ∣ Γ0, t0) = ∏f−1
n=0 ℘(Γn+1, tn+1 ∣ Γn, tn)

= ∏f−1
n=0

eS (2)(Γn+1,tn+1∣Γn,tn)/kB

Z(tn+1, tn)

= ∏f−1
n=0

ΘΛ(R̃n)

[Det 2π ∣ Δt ∣ kBΛ]1/2
.

℘(Γ_ ∣ Γ0, t0) =
1

Z(t_)
eSr(Γ_ ∣Γ,t0)/kB

= e[Sr,st(Γf ,tf)−Sr,st(Γ0,t0)]/2kBeSr,dyn(Γ_ )/2kB

× ∏f−1
n=0

ΘΛ(Rn)ΘΛ(R̄n)

[Det 2π ∣ Δt ∣ kBΛ]1/2
.
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℘(Γ, t0) =
1

Z(t0)
eSr(Γ,t0)/kB =

1

Z(t0)
e[Sr,st(Γ,t0)+Sr,dyn(Γ,t0)]/kB .

For convenience, sometimes one instead assumes a dynamically disordered system,

namely one that is initially distributed according to the static part of the reservoir entropy

alone,

℘st(Γ, t0) =
1

Zst(t0)
eSr,st(Γ,t0)/kB .

With this latter assumption the unconditional trajectory probability in the second form

is

For a long trajectory, the actual initial distribution of states makes little difference to

the unconditional trajectory probability.

6.5.1.1 Conjugate trajectory

We now wish to analyse the properties of the conjugate trajectory upon which the

velocities are reversed. To this end, in the event that the Hamiltonian is explicitly time

dependent, we define the conjugate Hamiltonian on the trajectory time interval as 

H̃(Γ, t) = H(Γ, t0 + tf − t). This is the same conjugation operation as was defined in

equation (5.16) for the discussion of microscopic reversibility for a time-dependent

potential. With † representing velocity reversal, the phase space point Γ = {q, p} has

conjugate Γ† = {q, −p}. The trajectory in the conjugate system, Γ̃_ , has the property that 

Γ̃(t) = Γ(t0 + tf − t)†
. Equivalently, Γ̃n = Γ

†
f−n

. Time proceeds in the positive direction

on the conjugate trajectory, with the initial point being the conjugate of the original final

point, Γ̃0 = Γ
†
f
.

The static entropy is the instantaneous equilibrium entropy, and as such it has even

parity, Sr,st(Γ†, t) = Sr,st(Γ, t). Hence S̃ r,st(Γ̃(t), t) = Sr,st(Γ(t0 + tf − t), t0 + tf − t). In

the conjugate system this is a function of the conjugate Hamiltonian, H̃(Γ, t). The

adiabatic derivatives are equal and opposite in the two systems,

̇̃
S

0

r,st(Γ̃(t), t) = −Ṡ
0

r,st(Γ(t0 + tf − t), t0 + tf − t).

This result only holds for the conjugate Hamiltonian as defined here. Of course there

are some systems where the conjugate Hamiltonian is the same as the original, such as

equilibrium and thermodynamic steady-state systems, where the Hamiltonian does not

depend on time. Also, harmonic systems with time dependence of the form 

cos(2πlt/(t0 + tf)), with l an integer.

The conditional trajectory probability in the conjugate system is

℘(Γ_ ) = ℘(Γ_ ∣ Γ0, t0)℘st(Γ0, t0)

=
1

Zst(t0)
e[Sr,st(Γf ,tf)+Sr,st(Γ0,t0)]/2kBeSr,dyn(Γ_ )/2kB

× ∏f−1
n=0

ΘΛ(Rn)ΘΛ(R̄n)

[Det 2π ∣ Δt ∣ kBΛ]1/2
.
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The second equality follows from three facts. First, the dynamic trajectory entropy is

negated on the conjugate trajectory,

Second, the reservoir force on the conjugate trajectory is the negative conjugate of

that on the original trajectory,

Hence the Gaussian exponent is unchanged, 

Λpp : [−R
†
f−n−1] [−R

†
f−n−1] = Λpp : Rf−n−1Rf−n−1. The sum of the Gaussian exponents

in both cases adds together all the reservoir forces. Third, the most likely reservoir also

simply changes sign,

Recall that the time step is positive on both trajectories, and so the most likely force is

proportional to the gradient of the static part of the reservoir entropy alone. And so again

the Gaussian factor of these is unchanged.

The ratio of the conditional trajectory probabilities for the two systems is

℘(Γ̃_ ∣ Γ̃0; H̃) = e[S̃ r,st(Γ̃f , t̃ f)−S̃ r,st(Γ̃0, t̃ 0)]/2kBeS̃ r,dyn(Γ̃_ )/2kB

× ∏f−1
n=0

ΘΛ(R
conj
n )ΘΛ(R̄

conj

n )

[Det 2π ∣ Δt ∣ kBΛ]1/2

= e[Sr,st(Γ0,t0)−Sr,st(Γf ,tf)]/2kBe−Sr,dyn(Γ_ )/2kB

× ∏f−1
n=0

ΘΛ(Rn)ΘΛ(R̄n)

[Det 2π ∣ Δt ∣ kBΛ]1/2
.

S̃ r,dyn(Γ̃_ ) = − ∫
tf

t0

dt
̇̃

S
0

r,st(Γ̃(t), t)

= ∫
tf

t0

dt Ṡ
0

r,st(Γ(t0 + tf − t), t0 + tf − t)

= ∫
tf

t0

dt′ Ṡ
0

r,st(Γ(t′), t′)

= − Sr,dyn(Γ_ ).

R
conj
n = Γ̃n+1 − Γ̃n − Δt

̇̃Γ
0

n

= Γ
†
f−n−1 − Γ

†
f−n − ΔtΓ̇

0
(Γ

†
f−n−1, tf−n−1)

= Γ
†
f−n−1 − Γ

†
f−n + ΔtΓ̇

0
(Γf−n−1, tf−n−1)†

= − R
†
f−n−1

.

R̄
conj

n =
∣ Δt ∣

2
Λpp∇̃pS̃ r,st(Γ̃(tn), tn)

=
− ∣ Δt ∣

2
Λpp∇pSr,st(Γf−n, tf−n).
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The time interval is implicit in the trajectory, and for simplicity it is not shown explicitly

as a conditioning argument. The exponent on the right-hand side of the second equality is

the actual change in reservoir entropy over the original trajectory. This obviously scales

with the length of the trajectory, and so for a long enough trajectory the initial conditions

can be neglected. This means that this result also holds approximately for the ratio of

unconditional probabilities.

Alternatively, for the unconditional probability, one assumption that one can make is

that the system is initially and finally in the non-equilibrium state given by the usual

expression for the reservoir entropy. In this case the ratio of the unconditional probabilities

is

The final approximation assumes that the total unconstrained entropy does not

increase monotonically over time.

A different set of initial conditions is for the system to be in the static state initially and

finally. Now the ratio of the unconditional probabilities is

In general, the logarithm of the partition function is the total unconstrained entropy,

which when multiplied by the negative of the temperature gives a free energy. Hence the

first factor in the first equality is essentially the exponential of the difference in the static

total entropy or static free energy. For a cyclic trajectory, H(Γ, tf) = H(Γ, t0), the final

approximation is exact as Zst(tf) = Zst(t0).

In any case these examples confirm the general conclusion that for a large enough time

interval one can ignore the state of the system beyond it. The ratio of probabilities,

conditional or unconditional, of the original and conjugate trajectories is the exponential of

the change in the reservoir entropy over the interval.

6.5.2 Fluctuation and work theorems

Although the Second Law of Thermodynamics asserts that the entropy increases with time,

from the discussion in preceding sections of this book, specifically sections 1.2.4, 1.3, and

3.1.5, it is clear that this is meant in a probabilistic sense only. Hence the question arises:

how much more probable is the entropy to increase than to decrease?

The expressions given above for the trajectory probability give a quantitative answer to

this question. The probability of observing the reservoir entropy change by →ΔSr over the

℘(Γ_ ∣ Γ0)

℘(Γ̃_ ∣ Γ̃0; H̃)
= e[Sr,st(Γf ,tf)−Sr,st(Γ0,t0)]/kBeSr,dyn(Γ_ )/kB

= e
→∇Sr(Γ_ )/kB

≈ eSr,dyn(Γ_ )/kB .

℘(Γ_ ∣ Γ0)℘(Γ0, t0)

℘(Γ̃_ ∣ Γ̃0; H̃)℘(Γ̃0, t0; H̃)
=

Z(t0; H̃)

Z(t0)

eSr,dyn(Γ0,t0)/kB

eSr,dyn(Γ̃0,t0;H̃)/kB

eSr,dyn(Γ_ )/kB

≈ eSr,dyn(Γ_ )/kB .

℘(Γ_ ∣ Γ0)℘st(Γ0, t0)

℘(Γ̃_ ∣ Γ̃0; H̃)℘st(Γ̃0, t0; H̃)
=

Zst(tf)

Zst(t0)
eSr,dyn(Γ_ )/kB

≈ eSr,dyn(Γ_ )/kB .
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given time interval can be related to the probability of observing the opposite change by

elementary manipulations of the above results. For a specified time interval one has

Here →ΔSr is just a number, the specified change in entropy over the given time

interval. All possible trajectories are integrated over in obtaining this result. Again, the time

interval is implicit in the trajectory, and for simplicity it is not shown explicitly in the

trajectory probability.

This result relies upon the conjugate system as defined above. As has been mentioned,

in some cases the conjugate system is the same as the original system. Examples include

equilibrium systems, steady-state thermodynamic systems, and mechanical non-

equilibrium systems with harmonic Hamiltonian.

This result is exact for the conditional trajectory probability, which is to say that the

initial and final points of the trajectory are specified. In any case for a sufficiently long

trajectory, end effects can be neglected and it also holds approximately for the

unconditional probability.

The result says that the probability of a particular entropy increase is exponentially

more likely than the same decrease. This shows why the Second Law of Thermodynamics

can be considered exact for a macroscopic system. In essence this result is the fluctuation

theorem that was first derived by Bochkov and Kuzovlev (1981). Different versions and

applications of the theorem have subsequently been presented by others (Evans et al

1993, Jarzynski 1997, Evans 2003, Attard 2006b). A feature of the present derivation is that

it includes the stochastic, dissipative forces from the reservoir (i.e. it is not restricted to

adiabatic trajectories), and it applies also to non-equilibrium thermodynamic systems (i.e.

it is not restricted to mechanical non-equilibrium systems).

The work theorem is closely related to the fluctuation theorem. This is derived from the

average over trajectories of the exponential of the negative of the entropy change on each

trajectory. For a specified time interval one has

On the left-hand side appears the negative of the change in reservoir entropy over the

trajectory. End effects have again been neglected, which is valid for long enough

trajectories. What is interesting about this result is that the exponent on the left-hand side

scales linearly with the length of the time interval, but the average itself is independent of

the time interval.

As an illustration of this, consider the average of the exponential of the negative of the

dynamic part of the reservoir entropy. This is just the thermodynamic work. Assuming static

℘( →ΔSr ∣ t21) = ∫ dΓ_ δ( →ΔSr − →ΔSr(Γ_ ))℘(Γ_ )

= ∫ dΓ̃_ δ( →ΔSr − →ΔSr(Γ_ ))℘(Γ̃_ ∣ H̃)e
→ΔSr(Γ_ )/kB

= e
→ΔSr/kB ∫ dΓ̃_ δ( →ΔSr + →ΔSr(Γ̃_ ))℘(Γ̃_ ∣ H̃)

= e
→ΔSr/kB℘(− →ΔSr ∣ t21, H̃).

⟨e− →ΔSr(Γ_ )/kB⟩ = ∫ dΓ_ ℘(Γ_ )e− →ΔSr(Γ_ )/kB

= ∫ dΓ̃_ ℘(Γ̃_ ∣ H̃)

= 1.
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equilibrium initially and finally, this is

This uses the fact that Zst(t0; H̃) = Zst(tf), and also the fact that the free energy is 

−kBT  times the logarithm of the partition function. The dynamic trajectory entropy,

equation (6.182), is in essence the work done on the sub-system (at least it is for a

mechanical non-equilibrium system; the present definition also applies to a thermodynamic

non-equilibrium system), and so one sees that the left-hand side is the exponential of the

negative of the work done. On the right-hand side, the exponent is the negative of the

difference in the static free energy divided by kBT .

The work theorem was first given by Bochkov and Kuzovlev (1981), who assumed a long

cyclic trajectory. A similar result was also given by Jarzynski (1997), who also treated a

mechanical non-equilibrium system and assumed a Boltzmann distribution at the beginning

and end of the trajectory. The present result is valid both for applied thermodynamic

gradients and for external time-dependent mechanical fields.

6.6 Path entropy for mechanical work

6.6.1 Stochastic dissipative equations of motion

We now analyze a mechanical non-equilibrium system, which is a sub-system with a time-

varying Hamiltonian, H(Γ, t) = K(p) + U(q, t). Energy can be exchanged with a thermal

reservoir of temperature T. The kinetic energy may be taken to be K(p) = ∑jα p2
jα/2m,

where j = 1, 2 … , N  labels the atoms and α = x, y, z labels the axes. The time

dependence of the potential is generally contained in an externally applied potential, and

the initial aim is to calculate the mechanical work that this does on the sub-system over

time.

The static part of the reservoir entropy is the usual equilibrium expression, 

Sr,st(Γ, t) = −H(Γ, t)/T . Hence the change in entropy for a transition, Γ2

Δt
Γ1, 

Δt ≡ t2 − t1, is explicitly

The total reservoir force is the force required beyond the adiabatic force to give the

designated transition, R = Γ2 − Γ1 − ΔtΓ̇
0
. As usual, it comprises a dissipative part and

⟨e−Sr,dyn(Γ_ )/kB⟩ = ∫ dΓ_ ℘(Γ_ ∣ Γ0)℘st(Γ0, t0)e−Sr,dyn(Γ_ )/kB

= ∫ dΓ̃_ ℘(Γ̃_ ∣ Γ̃0; H̃)℘st(Γ̃0, t0; H̃)
℘st(Γ0, t0)

℘st(Γ̃0, t0; H̃)

× e−Sr,st(Γ0,t0)/kBeSr,st(Γf ,tf)/kB

=
Zst(tf)

Zst(t0)

= e−βΔFst .

−→

→ΔSr(Γ2, t2; Γ1, t1) = R ⋅ ∇pSr,st(Γ, t)

=
−1

mT
∑
jα

Rjα pjα.
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a stochastic part, R = R̄ + R̃.

We shall take the second entropy fluctuation matrix to be proportional to the identity

matrix in momentum space, Λ = λIpp. In this case the variance of the stochastic part of

the force is

⟨R̃(t) R̃(t)⟩ = kB ∣ Δt ∣ λ Ipp,

and the most likely reservoir force is

Here and throughout, Δ̂t ≡ sign Δt.

The scalar λ represents the influence of the reservoir on the sub-system. In practical

computations, the magnitude of this is to a large extent arbitrary. (One does have to

consider the twin effects of the length of the time step and the variance of the stochastic

force in solving the equations of motion by simple time stepping. These are not

independent, and the statistical averages must be insensitive to the chosen values.) Of

course the same constant λ must be used for the variance of the stochastic force as for the

magnitude of the dissipative force, which is just the fluctuation–dissipation theorem. For a

positive time step, Δt > 0, which is usually the case in the results analyzed below, the

most likely momenta are not required because Δ̂t − 1 = 0.

The stochastic, dissipative equations of motion over a single time step for the present

mechanical non-equilibrium mechanical system are explicitly

As usual, the adiabatic rates of change are

q̇
0
jα(t) =

∂H(Γ, t)

∂pjα
=

pjα

m
and ṗ

0
jα(t) =

−∂H(Γ, t)

∂qjα
.

In these equations of motion, the stochastic forces at each time step are uncorrelated.

The dissipative force, −(∣ Δt ∣ λ/2 mT )pjα, has the form of a drag force. The final term

that appears here, −(∣ Δt ∣ λ/2 mT )[Δ̂t − 1]p̄ jα(t), is only nonzero for a backward time

step. As mentioned, that equality of the drag coefficient and the variance of the stochastic

force is known as the fluctuation–dissipation theorem. These stochastic, dissipative

equations of motion have the same form as the Langevin equation for Brownian motion,

section 4.1.2, but of course the justification for the present molecular application is

statistical rather than hydrodynamic.

The conditional second entropy for the transition is

R̄(Δt, Γ, t) =
∣ Δt ∣ λ

2
[∇pSr,st(Γ, t) + [Δ̂t − 1]∇pSr,st(Γ̄(t), t)]

=
− ∣ Δt ∣ λ

2mT
[Γp + [Δ̂t − 1]Γ̄p(t)].

qjα(t + Δt) = qjα(t) + Δtq̇
0
jα(t),

pjα(t + Δt) = pjα(t) + Δtṗ
0
jα(t) −

∣ Δt ∣ λ

2 mT
[pjα + [Δ̂t − 1]p̄ jα(t)] + R̃jα.
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With this the conditional transition probability is

The normalization factor is Z(t2, t1) = (2πkB ∣ Δt ∣ λ)3N/2
, and β ≡ 1/kBT .

The final exponent, −β ∑jα Rjα pjα/2m = −βR ⋅ ∇pH(Γ, t)/2, is essentially half the

change in entropy for the transition. It is interesting to note that the present second

entropy analysis yields the same factor of β/2 as in Glauber and Kawasaki dynamics, which

are stochastic approaches to dynamical systems that neglect adiabatic evolution (Glauber

1963, Kawasaki 1966, Langer 1969, Metiu et al 1975). The present result for the conditional

stochastic transition probability satisfies detailed balance for an equilibrium Boltzmann

distribution. It has been applied with a stochastic molecular dynamics algorithm for

equilibrium systems (Attard 2002, Boinepalli and Attard 2003), It has also been used as the

basis for a non-equilibrium molecular dynamics algorithm for steady heat flow and for

driven Brownian motion (Attard 2006b, 2009a).

6.6.2 Work done and free energy difference

As in section 6.5.1, denote a trajectory by the vector Γ_ , with elements Γn = Γ(tn), and

nodes tn = t0 + nΔt, n = 0, 1, … , f, the time step being Δt = [tf − t0]/f > 0. The

change in reservoir entropy for a mechanical non-equilibrium system is

where Γ′≡ Γ(t′). The dynamic part of the reservoir entropy, the final term, is the work

done over the actual trajectory divided by temperature, Sr,dyn(Γ_ ) = W(Γ_ )/T , with the

work done being

S (2)(Γ2, t2 ∣ Γ1, t1) =
−1

2 ∣ Δt ∣ λ
R̃ ⋅ R̃

=
−1

2 ∣ Δt ∣ λ
[R ⋅ R + R̄ ⋅ R̄] +

1

2
→ΔSr(Γ2, t2; Γ1, t1)

=
−1

2 ∣ Δt ∣ λ
∑
jα

[R2
jα +

∣ Δt ∣2 λ2

4m2T 2
p2

jα]−
1

2mT
∑
jα

Rjα pjα, Δ

℘(Γ2, t2 ∣ Γ1, t1) =
1

Z(t2, t1)
eS (2)(Γ2,t2∣Γ1,t1)/kB

=
1

Z(t2, t1)
e−R̃⋅R̃/2kB∣Δt∣λδ(Γq2 − Γq1 − ΔtΓ̇

0

q)

=
1

Z(t2, t1)
δ(Γq2 − Γq1 − ΔtΓ̇

0

q)

× ∏jα e
−[R2

jα+∣Δt∣
2λ2p2

jα/4m2T 2]/2kB∣Δt∣λ ∏jα e−βRjα pjα/2 m.

→ΔSr(Γ_ ) = Sr,st(Γf , tf) − Sr,st(Γ0, t0) − ∫
tf

t0

dt′ Ṡ
0

r,st(Γ(t′), t′)

=
1

T
[H(Γ0, t0) −H(Γf , tf)] +

1

T
∫

tf

t0

dt′
∂U(Γ′, t′)

∂t′
,

t
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The earlier figure 6.9 serves also to illustrate this. The adiabatic rate of change of the

energy is just the partial time derivative of the potential, Ḣ
0
(Γ, t) = ∂U(Γ, t)/∂t. Other

recipes for discretizing the integral give the same result to leading order in the time step.

As has been mentioned in section 6.5.1, the work term dominates the change in entropy

for a sufficiently long trajectory and the contributions of the initial and final states may be

neglected. The exception to this is if the time-dependent part of the potential grossly

changes in proportion to the length of the time interval.

The conditional trajectory entropy is

The total reservoir force at the nth node is Rn ≡ Γp,n+1 − Γp,n − ΔtΓ̇
0

p,n, with the

adiabatic velocity being evaluated anywhere on the nth interval.

The conditional trajectory probability is the exponential of this divided by Boltzmann’s

constant,

where the un-normalized Gaussian probability distribution is

Θλ(Rn) ≡ e−Rn⋅Rn/2kB∣Δt∣λ.

 

W(Γ_ ) = ∫
tf

t0

dt′
∂U(Γ′, t′)

∂t′

= ∫
tf

t0

dt′ Ḣ
0
(Γ(t′), t′)

= Δt

f−1

∑
n=0

Ḣ
0
(Γn, tn).

S(Γ_ ∣ Γ0, t0) =
1

2
→ΔSr(Γ_ ) −

1

2 ∣ Δt ∣ λ

f−1

∑
n=0

∑
jα

[R2
n;jα +

∣ Δt ∣2 λ2

4m2T 2
p2

n;jα]

=
1

2T
[H(Γ0, t0) −H(Γf , tf)] +

W(Γ_ )

2T

−
1

2 ∣ Δt ∣ λ

f−1

∑
n=0

∑
jα

[R2
n;jα +

∣ Δt ∣2 λ2

4m2T 2
p2

n;jα].

℘(Γ_ ∣ Γ0, t0) = ∏f−1
n=0

Θλ(R̃n)

(2πkB ∣ Δt ∣ λ)3N/2

= e
→ΔSr(Γ_ )/2kB ∏f−1

n=0

Θλ(Rn)Θλ(R̄n)

(2πkB ∣ Δt ∣ λ)3N/2

= e−β[H(Γf ,tf)−H(Γ0,t0)]/2eβW(Γ_ )/2 ∏f−1
n=0

Θλ(Rn)Θλ(R̄n)

(2πkB ∣ Δt ∣ λ)3N/2
,
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As in section 6.5.1, define a conjugate system that on the interval t ∈ [t0, tf ] has

Hamiltonian H̃(Γ, t) = H(Γ, tf + t0 − t). The conjugate trajectory satisfies 

Γ̃(t) = Γ(tf + t0 − t)†
, where the dagger denotes velocity reversal. The respective

conditional probabilities are in the ratio

℘(Γ_ ∣ Γ0)

℘(Γ̃_ ∣ Γ̃0; H̃)
= e

→ΔSr(Γ_ )/kB = e−β[H(Γf ,tf)−H(Γ0,t0)]eβW(Γ_ ).

As in the general case, the Gaussians cancel in this ratio.

Assuming that the system was in the non-equilibrium state at the start of the original

trajectory, ℘(Γ0, t0) = Z(t0)−1eSr(Γ0,t0)/kB , and also of the conjugate trajectory, 

℘(Γ̃0, t0; H̃) = Z( t̃ 0)
−1

eSr(Γ̃0,t0;H̃)/kB , with Sr,st(Γ̃0, t0; H̃) = Sr,st(Γf , tf), the ratio of the

unconditional trajectory probabilities is

℘(Γ_ ∣ Γ0)℘(Γ0, t0)

℘(Γ̃_ ∣ Γ̃0; H̃)℘(Γ̃0, t0; H̃)
=

Z(t0; H̃)

Z(t0)

eβW̄(Γ0,t0)

eβW̄(Γ̃0,t0;H̃)
eβW(Γ_ ).

This follows because the dynamic part of the reservoir entropy is essentially the most

likely work done,

These require the definition of the Hamiltonian to be extended beyond the time

interval. For a cyclic system, H(Γ, t0) = H(Γ, tf), with extended Hamiltonian 

H̃(Γ, t) = H(Γ, t), t ⩽ t0, the dynamic part of the entropies are equal, 

Sr,dyn(Γ, t; H̃) = Sr,dyn(Γ, t). In this case Z(t0; H̃) = Z(t0) and

℘(Γ_ ∣ Γ0)℘(Γ0, t0)

℘(Γ̃_ ∣ Γ̃0; H̃)℘(Γ̃0, t0; H̃)
= eβW(Γ_ ).

This result also holds for a system in which the pre-factors do not change grossly over

the time interval, provided that the time interval is long enough.

A similar result holds for a dynamically disordered system prior to and after the

trajectory. This corresponds to the instantaneous static distribution which is just the

Maxwell–Boltzmann distribution,

℘st(Γ, t) ≡
1

Zst(t)
e−βH(Γ,t), t = t0 or tf .

In this case the unconditional probability ratio is given exactly by,

W̄(Γ, t) ≡ TSr,dyn(Γ, t)

= − T ∫
t

0

dt′ Ṡ
0

r (Γ̄(t′∣ Γ, t), t′)

= ∫
t

0

dt′
U(Γ′, t′)

∂t′
, Γ′≡ Γ̄(t′∣ Γ, t).
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Here the static or instantaneous Helmholtz free energy is the logarithm of the total

entropy, which is just the partition function,

Fst(t) = −kBT ln Zst(t) = −kBT ln
1

h3N N!
∫ dΓ e−βH(Γ,t).

For a cyclic system, H(Γ, t0) = H(Γ, tf), the static partition functions are equal, and

the Helmholtz free energy is the same at the start as at the end of the time interval.

The fluctuation and work theorems were given above for the general non-equilibrium

case, equations (6.198), and (6.199). Those results obviously can be applied to the present

case of mechanical work. To be explicit, equation (6.200) is the average Boltzmann factor

of the work done. Assuming thermal equilibrium at the beginning and at the end of the

interval, this is

The left-hand side is the average of the exponential of the negative of the mechanical

work actually done over the time interval, divided by kBT . This average is over all possible

trajectories. The exponent on the right-hand side of the final equality is the negative of the

difference in the Helmholtz free energy divided by kBT . The assumption that the system is

in an equilibrium state at the termini of the trajectory is valid if the time dependence of the

Hamiltonian is negligible near the termini of the trajectory: H(Γ, t) ≈ H(Γ, t0), for 

t ∈ [t0, t0 − τ], H(Γ, t) ≈ H(Γ, tf), for t ∈ [tf , tf + τ], where τ is some relaxation time.

For example, if

H(Γ, t) → {

then the exponent on the right-hand side is the difference in Helmholtz free energy for

the two equilibrium systems with the respective Hamiltonians. Most commonly, H(Γ, t) is

chosen to smoothly transform from one to the other. Also common is for the trajectories to

be calculated adiabatically, and the average of the work done over them is taken with

respect to a Maxwell–Boltzmann distribution of the initial point and initial Hamiltonian. The

present formulation allows the average to be more correctly taken over stochastic

dissipative trajectories with the correct Gaussian weight, which is the right-hand side of the

first equality above.

As has been mentioned, this mechanical work theorem was first given by Bochkov and

Kuzovlev (1981) (for the case of a long cyclic trajectory), and was later given by Jarzynski

(1997). The advantage of the present derivation is that it explicitly accounts for the

℘(Γ_ ∣ Γ0)℘st(Γ0, t0)

℘(Γ̃_ ∣ Γ̃0; H̃)℘st(Γ̃0, t0; H̃)
=

Zst(t0; H̃)

Zst(t0)
eβW(Γ_ )

= e−β[Fst(tf)−Fst(t0)]eβW(Γ_ ).

⟨e−βW(Γ_ )⟩ = ∫ dΓ_ ℘(Γ_ ∣ Γ0)℘MB(Γ0, t0)e−βW(Γ_ )

= ∫ dΓ̃_ ℘̃(Γ̃_ ∣ Γ̃0)℘̃MB(Γ̃0, t0)e−β[Fst(tf)−Fst(t0)]

= e−β[Fst(tf)−Fst(t0)].

H1(Γ), t <
˜

t0

H2(Γ), t >
˜

tf ,



exchange of heat between the sub-system and the reservoir during the performance of the

work.

Summary

The non-equilibrium probability in the sub-system phase space is the exponential of the

reservoir entropy, which is the sum of a static or instantaneous part, and a dynamic

part. The latter is the time integral over the most likely backward trajectory of the

adiabatic rate of static reservoir entropy production. In the mechanical case it may be

interpreted as the negative of the most likely work done by the external potential on

the sub-system.

The stochastic, dissipative equations of motion for a non-equilibrium system can be

derived from the second entropy for the transition probability. The stochastic reservoir

force is Gaussian distributed, and the dissipative force is dominated by an irreversible

term proportional to the gradient of the static part of the reservoir entropy. That a

single transport matrix gives the variance of the former and the strength of the latter is

a non-equilibrium version of the fluctuation–dissipation theorem in phase space.

The dynamic part of the reservoir entropy can be approximated by its odd projection,

which in turn can often be approximated by an integral over adiabatic trajectories.

The Green–Kubo relations for the transport coefficients can be derived from the

average flux by linearizing the non-equilibrium probability with respect to the dynamic

part of the reservoir entropy.

A Brownian particle in a potential trap in uniform motion serves to illustrate results for

a mechanical non-equilibrium system simply and explicitly. From the stochastic,

dissipative equations of motion, which have Langevin form, the dynamic part of the

reservoir entropy may be obtained. Maximizing the full reservoir entropy of the non-

equilibrium system shows that the most likely configuration has the particle moving

with the same velocity as the trap, and lagging the trap such that the drag force is

equal and opposite to the mechanical restoring force.

Analysis of the path entropy in general gives the probability of a trajectory, from which

the average of various function of the change in entropy may be deduced. These give

the fluctuation and work theorems for both mechanical and thermodynamic non-

equilibrium systems.
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Chapter 7

Quantum statistical mechanics as entropy collapse in

classical phase space

‘Inspiration and aesthetic judgement are important in the development of scientific
theories, but the verification of these theories relies finally on impartial experimental tests
of their predictions. Though mathematics is used in the formulation of physical theories
and in working out their consequences, science is not a branch of mathematics, and
scientific theories cannot be deduced by purely mathematical reasoning’

Weinberg (2015 p xiii)

‘Let me tell you the secret that has led me to my goal. My only strength lies in my
tenacity’

Pasteur (Dubos 1950)

The main aim of this chapter is to formulate quantum statistical mechanics from first

principles. Specifically, the von Neumann trace (i.e. mixture of states) for the partition

function and statistical averages is derived from the postulates of quantum mechanics. A

dual expansion for these that accounts for non-commutativity and particle symmetry is

developed, with the leading order term giving classical statistical mechanics, and hence

classical mechanics.

Perhaps the key equation in quantum statistical mechanics is the trace over the density

operator form of the partition function,

Z = TR ρ̂ = ∑
n

e−βHn .

This is due to von Neumann (1932) and it is said to give the canonical partition

function of a quantum system as the trace of the density operator, which in turn is said to

equal the Maxwell–Boltzmann weighted sum over all the energy eigenstates. The challenge

is to actually derive both of these from first principles, and to give their correct form and

interpretation.

7.1 Conventional quantum statistical average

7.1.1 Expectation value

We begin by establishing the basic notation and by setting out the conventional approach

to quantum statistical mechanics.

The state of a quantum system may be specified by a particular wave function ψ. A

wave function will usually be denoted in the position representation, ψ(r), or else in the

bra-ket notation, ∣ ψ⟩ and ⟨ψ ∣. The squared norm (or squared modulus) of the wave

function is

N(ψ) ≡ ⟨ψ ∣ ψ⟩ = ∫ dr ψ(r)
*

ψ(r),
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where the asterisk denotes the complex conjugate. It is usually the case that the wave

function is normalized, N(ψ) = 1.

The expectation value of an operator Ô when the system is in the wave state ψ is

(Messiah 1961, Merzbacher 1970)

O(ψ) =
1

N(ψ)
⟨ψ ∣ Ô ∣ ψ⟩ =

1
N(ψ)

∫ dr ψ(r)
*

Ô(r)ψ(r).

 

The system can also be described as being in a particular quantum state n = 0, 1, 2, …,

which are the eigenstates of some operator. The corresponding eigenfunctions ζn are

orthonormal, ⟨ζn ∣ ζm⟩ = δn,m, and they form a complete basis for the Hilbert space.

Hence the wave function can be written

ψ(r) = ∑
n

ψnζn(r), ψn = ⟨ζn ∣ ψ⟩.

An arbitrary operator can also be represented in this basis, Omn = ⟨ζm ∣ Ô ∣ ζn⟩, and

its expectation value then takes the form (Messiah 1961, Merzbacher 1970)

O(ψ) =
1

N(ψ)
∑
m,n

ψ
*
mOmnψn.

 

Suppose ζOn (r) is a normalized eigenfunction of the operator with eigenvalue On, 

ÔζOn = Onζ
O
n . The eigenstates may possibly be degenerate, but nevertheless the

eigenfunctions can be organized to form a complete set, ψ = ∑n ψ
O
n ζ

O
n . In the

eigenfunction basis the operator is diagonal, OO
mn = Onδmn, and the expectation value in

the wave state ψ is

O(ψ) =
1

N(ψ)
∑
n

ψO*
n ψO

nOn.

The quantity ψO*
n ψO

n /N(ψ) has the interpretation as the probability of the system

being in the quantum state n (given that it is in the wave state ψ).

In this form, the eigenvalues On are the possible outcomes of the application of the

operator Ô, and the square of the amplitude ψO*
n ψO

n  is proportional to the probability that

that particular outcome will occur. (Many believe that a measurement is the application of

an operator. I think that this is too simplistic, and that the outcome of a measurement

involves statistical effects of the type enunciated below.) In the more general form for the

expectation value as the double sum in an arbitrary basis, equation (7.5), the complex

numbers ψ
*
mψn cannot be interpreted in terms of classical probability theory because, as

discussed in section 1.1.2, the latter is predicated upon real, non-negative weights. The

general form exhibits the phenomenon of quantum superposition and interference: the

quantum system can be in more than one state at a time, and the different states affect

each other.
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The wave function collapses upon operator application, ψ ⇒ ζOn , which is to say that the

system no longer exists in a superposition of states but rather becomes a pure state. The

wave function could be said to be decoherent in that there is no interference between

states. In general a decoherent system is a mixture of pure states, and its expectation

value is formally identical to a classical average. The specifically quantum aspects of the

system (interference, superposition) are no longer present.

One may use the bra-ket notation for the wave function to construct the (single wave

function) density operator,

ρ̂ ≡
1

N(ψ)
∣ ψ⟩ ⟨ψ ∣.

With this the expectation value may be written in the form of the trace of the operator

product,

O(ψ) = TR ρ̂ Ô =
1

N(ψ)
∑
m,n

ψnψ
*
mOmn.

 

Because the density operator constructed from a single wave function has a dyadic

form, it cannot be diagonalized. To see this, consider some representation in which it is

diagonal. If ρn1n1 =∣ ψn1 ∣2 and ρn2n2 =∣ ψn2 ∣2 are two distinct nonzero diagonal elements,

then the corresponding off-diagonal elements, ρn1n2 = ρ
*
n2n1

= ψ
*
n1
ψn2

, would also be

nonzero. This contradiction proves that the single wave function density operator cannot

be diagonal in any representation. The exception to this is if it has precisely one nonzero

element, as only occurs upon collapse due to measurement.

7.1.2 Statistical average

In the context of the statistical average in quantum statistical mechanics, the non-diagonal

nature of the single wave function density operator is directly relevant. This is because

conventionally the statistical average is expressed as a trace over the density operator

(von Neumann 1932). We shall return to this matter shortly, but for the present let us

assume the existence of a probability operator, ℘̂. Let us further assume that the statistical

average can be expressed as the trace of it and the observable operator

In the second last equality the eigenstates of the observable operator have been used.

This form only requires the diagonal elements of the probability operator, whether or not

the latter is diagonalizable. This is identical to the classical probability form for a statistical

average, namely the sum over states of the operator eigenvalue, OO
nn = On, times the

⟨Ô⟩
stat

= TR ℘̂ Ô

= ∑
m,n

℘mn Onm

= ∑
n

℘O
nn O

O
nn

= ∑
n

℘S
nn O

S
nn.
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probability of the state, ℘O
nn. From the point of view of classical probability this is rather

appealing, but it does raise the question of how it arises from the quantum expectation

value form that reflects a superposition of states and interference between states.

The final equality for the statistical average is also problematic. Here the eigenstates of

the probability operator are invoked. Although not essential for the present discussion, and

anticipating somewhat results to come, these can be assumed to be entropy eigenstates

and denoted by the superscript S, ℘̂ ∣ ζSn ⟩ = ℘n ∣ ζSn ⟩, and ℘S
mn = ℘nδm,n. Again this is

apparently dissonant with the expectation value for a wave state, where the density

operator cannot be diagonalized. This demands a more careful examination of the origin of

the trace form for the statistical average and of the properties of the probability operator.

One can already see that any such diagonalizable probability operator cannot be a single

wave function density operator.

The challenge is to get from the expectation value form to the statistical average form.

In the former, the density operator always includes off-diagonal contributions, (except in

the observable operator representation itself). In the latter the off-diagonal contributions

vanish in both the entropy and the observable operator representations. The qualitative

difference between these two expressions can be seen in figure 7.1.

Figure 7.1. Density operator for a superposition of states (left) and for a mixture of

pure states (right). The amplitude and phase of the wave function is represented on

the axes.

The conventional view of quantum statistical mechanics is in terms of the density

operator rather than the probability operator (von Neumann 1932, Messiah 1961,

Merzbacher 1970). Because the density operator of a single-wave function cannot be

diagonalized, most workers instead imagine an ensemble of systems, labeled 

a = 1, 2, … ,M , each with its own wave function ψa. The ensemble average of the single-

wave function density operators defines the many-wave function density operator,

ˆ̄ρ ≡
1
M

M

∑
a=1

∣ ψa⟩ ⟨ψa ∣
⟨ψa ∣ ψa⟩

.

(Almost always the wave functions are taken to be normalized, ⟨ψa ∣ ψa⟩ = 1, and the

denominator is redundant.) This can also be called the averaged density operator. This

does not factorize into a dyadic product, which is the crucial difference from the single-

wave function density operator.
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There is no reason to suppose that this cannot be diagonalized. Hence the many-wave

function density operator can be equated to the probability operator introduced above. In

the representation in which it is diagonal (presumably the entropy representation), the

entries equal the state probabilities,

ρ̄S
mn =

1
M

M

∑
a=1

ψS*
a,mψ

S
a,n

⟨ψa ∣ ψa⟩
= ℘nδm,n.

One can see that the off-diagonal terms average to zero if the phase angles of the

coefficients are uncorrelated (decoherent). The diagonal terms all have zero phase angle

exactly and so they cannot cancel with each other. This shows that the crucial difference

between the one- and many-wave function density operators is this averaging process.

In view of this, in so far as one or other exists, the averaged density operator is equal to

the probability operator, ˆ̄ρ = ℘̂. This operator relationship holds in any representation, not

just the entropy representation in which both were said to be diagonal. If the probability

operator is an ordinary operator, then it can only be diagonal in the basis formed from the

eigenfunctions of the entropy operator (or of any operator that commutes with the entropy

operator). This would mean that the off-diagonal phase cancelation just discussed for the

averaged density operator only occurred in the entropy basis and not in any other basis. It

remains to prove this, either for the averaged density operator in the ensemble picture, or

else for the probability operator directly.

With this definition of the many-wave function density operator, and its equality with the

probability operator, the statistical average can be written as the trace of it and the

observable operator,

⟨Ô⟩
stat

= TR ˆ̄ρ Ô =
1
M

M

∑
a=1

⟨ψa ∣ Ô ∣ ψa⟩

⟨ψa ∣ ψa⟩
.

The conventional presentation of the ensemble picture is that the wave functions ψa

are each a pure quantum state, in which case the ensemble comprises a mixture of pure

quantum states. This means that each system in the ensemble has a fully collapsed wave

function. The above discussion departs slightly from this in that it is sufficient for equation

(7.11) to hold, which is to say that the phases of the entropy states are decoherent. In

other words we need not insist that each member of the ensemble be in a pure quantum

state.

In the presentation of classical statistical mechanics, the ensemble picture was

criticized, sections 1.4.1 and 1.4.2. Since the many-wave particle density operator is a

direct manifestation of the ensemble, it is similarly unsatisfactory. The problem is that such

a collection of independent replica systems has no physical reality. The fact of the matter is

that an actual measurement is made on a single system. This is not to say that the trace

form of the quantum statistical average (with a probability operator equivalent to an

averaged density operator) is incorrect; in fact this trace form has long been successfully

used. Rather, it says that the explanation and justification for it does not lie in the

ensemble picture. And of course, without the ensemble picture there is no need or basis for

the many-wave function density operator.

Instead of an ensemble average one might consider that the decoherent system arises

from a time average for the density operator. Let us imagine that a measurement extends

over a brief time interval, τ. In this period the wave function evolves, ψ(t), and one can

define the averaged density operator as
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ˆ̄ρ ≡
1

τN0
∫

τ

0
dt ∣ ψ(t)⟩ ⟨ψ(t) ∣,

assuming unitary evolution of the wave function, N(ψ(t)) ≡ ⟨ψ(t) ∣ ψ(t)⟩ = N0.

Again, assuming that this is the same as to the probability operator, ˆ̄ρ = ℘̂, it must be

diagonal in the entropy representation,

ρ̄ ln
S =

1
τN0

∫
τ

0
dt ψS*

l (t)ψS
n(t) = ℘nδl,n.

Presumably, the phase factors of the entropy modes evolve independently, which

makes them effectively random. This means that the off-diagonal elements average to zero

over the measurement time.

It is not clear that this putative temporal averaging over the measurement time is any

more realistic than the ensemble averaging. Both explanations have the appearance of

post facto rationalization. Under the circumstances it would perhaps be more honest not to

pretend to justify equation (7.9), but rather simply to assert it as the definition of the

statistical average, taking the existence of the probability operator as a given. In my

opinion it is better not to introduce or to invoke the averaged density operator as it has no

physical reality.

In the following two sections, a derivation from first principles is given of the von

Neumann trace form for the statistical average equation (7.9). The derivation gives the

explicit form for the probability operator and shows that it is diagonal in the entropy

representation. It also demonstrates the passage from the wave function and expectation

value formulation of quantum mechanics to the statistical average formulation as a

weighted sum over quantum states.

7.2 Uniform weight density of wave space

In chapter 5 equilibrium classical statistical mechanics was derived. It was shown in section

5.2 that the entropy of a point in the phase space of an isolated system was uniform. This

result was first discussed in terms of the conventional ergodic hypothesis, section 5.2.1,

then in terms of constant probability on a trajectory, section 5.2.2, and finally, and most

satisfactorily, a proof was given based on uniformity in time and the density of energy

hypersurfaces, section 5.2.3.

For the present quantum problem one can proceed analogously. For an isolated system,

in section 7.2.1 it is simply asserted that quantum states are equally probable. In section

7.2.2 it is shown that the probability density is constant on a trajectory. And in section 7.2.3

it is proven that the probability density is uniform in wave space based on time uniformity

and energy and norm hypersurface density.

7.2.1 Equal state probability hypothesis

The simplest presentation of the probability operator focuses on the quantum states, and,

as in the classical case, it begins with the microstates of an isolated system. From their

weight the required quantum state probabilities follow, first for an isolated system, and

thence for a sub-system interacting with a reservoir. By analogy with the ergodic

hypothesis of classical statistical mechanics, one can take it as an axiom that

all quantum states of an isolated system have equal weight.

As will be seen, the quantum states are the eigenstates of any complete operator.

These are the diagonal elements in any representation.
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In the two following subsections, this hypothesis is actually derived from more formal

considerations; it appears as equation (7.40). Instead of quantum states, the following

analysis in sections 7.2.2 and 7.2.3 is based on the Hilbert space of wave functions. The

aim is to show that the wave space probability density for an isolated system is uniform.

7.2.2 Trajectory uniformity

Consider an isolated system with wave function ψ. Schrödinger’s equation for the time rate

of change of the latter is

iℏψ̇
0

= Ĥψ.

Here Ĥ is the Hamiltonian or energy operator. This is here taken to be independent of

time. As in the earlier classical analysis, the superscript 0 is used for adiabatic quantities,

which are those of the isolated system. In this section only the total isolated system

appears.

One can construct a trajectory by integrating this

ψ(t) ≡ ψ0(t ∣ ψ0, t0) = Û
0
(t − t0)ψ0.

Here the adiabatic time propagator is Û
0
(t) = etĤ/iℏ

. For a time-dependent

Hamiltonian, this is Û
0
(t − t0) = e∫

t

t0
dt′ Ĥ(t′)/iℏ

, with time-ordering assumed.

Each point ψ in wave space has a real, non-negative weight density ω(ψ, t). As usual,

the normalized form of this is the probability density ℘(ψ, t). In section 7.3 these will be

related to the probability operator and to the statistical average.

As for any density, dψ ℘(ψ, t) is the probability of the system being within ∣ dψ ∣ of ψ.

This is a real non-negative number: dψ ℘(ψ, t) = ∣dψ ℘(ψ, t)∣ = ∣dψ∣ ∣℘(ψ, t)∣. Since it is

always the product that occurs, without loss of generality one may take each to be

individually real.

The probability density is normalized

∫ dψ ℘(ψ, t) = ∫ dψ ℘(ψ, t) = 1.

Here has been invoked an arbitrary representation, ψ = {ψn}, n = 1, 2, …. The

coefficients are complex, ψn = ψr
n + iψi

n, and the infinitesimal volume element can be

written as

dψ = dψr dψ i ≡ dψr
1 dψi

1 dψr
2 dψi

2 ⋯

With this all the integrations are over the real line, ψr
n ∈ [−∞, ∞], and ψi

n ∈ [−∞, ∞]
, n = 1, 2, ….

As is the case for Hamilton’s classical equations of motion, Schrödinger’s equation gives

an incompressible trajectory,

––

–

–––



(7.2

0)

(7.2

1)

(7.2

2)

(7.2

3)

The first two equalities are in fact the general expression for the trajectory

compressibility. They hold as well for the total time derivative when the sub-system is open

to a reservoir, heat bath, or environment. The final two equalities only hold when the

evolution is given by Schrödinger’s equation.

Again as in classical phase space, the compressibility gives the logarithmic rate of

change of the volume element. Since the compressibility vanishes, the volume element is a

constant of the motion of the isolated system,

dψ0(t) = dψ0.

 

The total time derivative of the probability density on the adiabatic trajectory is

The first and second equalities are just the general definition of the total derivative.

The final equality is valid on an adiabatic trajectory, upon which the compressibility

vanishes. The probability flux can be seen to be J℘(ψ, t) ≡ ψ̇℘(ψ, t).

For the isolated system, the probability density evolves adiabatically,

℘(ψ1, t1) = ∫ dψ0 ℘(ψ0, t0) δ(ψ1 − ψ0(t1 ∣ ψ0, t0)).

This invokes Bayes’ theorem for the transition probability, essentially equation (3.14), 

℘(ψ1, t1;ψ0, t0) = ℘(ψ1, t1 ∣ ψ0, t0) ℘(ψ0, t0), together with the type 1 reduction

condition, equation (3.17). The conditional transition probability in the present adiabatic

case is ℘(ψ1, t1 ∣ ψ0, t0) = δ(ψ1 − ψ0(t1 ∣ ψ0, t0)), which reflects the deterministic nature

of Schrödinger’s equation.

From the incompressibility of wave space under Schrödinger’s equation, dψ0 = dψ1.

With t1 = t0 + Δt, expanding to linear order in the time step yields

dψ̇
0

dψ
= ∂ψr ⋅ ψ̇ 0,r + ∂ψi ⋅ ψ̇ 0,i

= ∂ψ ⋅ ψ̇ 0 + ∂ψ* ⋅ ψ̇ 0*

=
1
iℏ

TR H −
1
iℏ

TR H

= 0.

––––

––––

––––

d0℘(ψ, t)
dt

=
∂℘(ψ, t)

∂t
+ ψ̇ 0,r ⋅ ∂ψr℘(ψ, t) + ψ̇ 0,i ⋅ ∂ψi℘(ψ, t)

=
∂℘(ψ, t)

∂t
+ ψ̇

0
⋅ ∂ψ℘(ψ, t) + ψ̇

0*
⋅ ∂ψ*℘(ψ, t)

=
∂℘(ψ, t)

∂t
+ ∂ψ ⋅ [ψ̇

0
℘(ψ, t)] + ∂ψ* ⋅ [ψ̇

0*
℘(ψ, t)].

––––

––––

––––
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Rearranging, this gives the partial time derivative as

∂℘(ψ, t)
∂t

= −ψ̇ 0 ⋅ ∂ψ℘(ψ, t) − ψ̇ 0* ⋅ ∂ψ*℘(ψ, t).

This holds for an isolated system evolving under Schrödinger’s equation.

Combining this with the second equality of equation (7.22), one sees that the total

adiabatic time derivative of the probability density vanishes, d0℘(ψ, t)/dt = 0. Hence for

an isolated system, the probability density is a constant of the motion,

℘(ψ(t), t) = ℘(ψ0, t0),

where ψ(t) ≡ ψ0(t ∣ ψ0, t0).

This is the quantum analogue of equation (5.20), in which the total time derivative of

the probability density in the phase space of an isolated system vanishes under Hamilton’s

equations. This is not surprising as the physical picture underlying the original classical

result is the same as that which holds for the present quantum result. Like Hamilton’s

equations, Schrödinger’s equation is deterministic, which means that trajectories do not

cross, and they are neither created nor destroyed. In both cases trajectories within a given

volume remain inside throughout its evolution. In so far as the probability of the volume is

proportional to the number of trajectories it contains, this is conserved by both Hamilton’s

and Schrödinger’s equation. What the two equations additionally have in common is that

they are incompressible, which means that the volume is also a constant of the motion.

These two facts mean that the probability density must be conserved moving along the

trajectory.

For the present equilibrium system, the Hamiltonian operator does not depend upon

time. In this case the probability density must be independent of time, ℘(ψ). One therefore

has the stronger result

℘(ψ0(t ∣ ψ0, t0)) = ℘(ψ0).

This says that the probability density is the same everywhere on a trajectory.

Finally, by analogy with the classical ergodic hypothesis, one may suppose that a single

trajectory passes sufficiently close to all relevant points of the state space. The hypothesis

says that one can take any two points in state space, ψ1 and ψ2, with the same norm and

energy expectation to lie on a single trajectory. (It will be shown explicitly shortly that

Schrödinger’s equation conserves the norm and energy of the wave function.) By the

above, they therefore have the same probability density

℘(ψ2) = ℘(ψ1), if E(ψ2) = E(ψ1) and N(ψ2) = N(ψ1).

Hence the wave space probability density must be of the form

℘(ψ1, t1) = ∫ dψ0 ℘(ψ0, t0) δ(ψ1 − ψ0(t1 ∣ ψ0, t0))

= ℘(ψ1 − Δtψ̇
0
, t0)

= ℘(ψ1, t0) − Δtψ̇
0 ⋅ ∂ψ℘(ψ, t0) − Δtψ̇

0* ⋅ ∂ψ*℘(ψ, t0).––––

––––
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℘(ψ ∣ E,N) =
δ(E(ψ) − E) δ(N(ψ) − N)

W(E,N)
,

with the normalizing factor being

W(E,N) = ∫ dψ δ(E(ψ) − E) δ(N(ψ) − N).

 

These are the quantum analogues of equations (5.22) and (5.23). And so one is faced

with an identical problem: in order to transform from the conditional wave space

probability, ℘(ψ ∣ E,N), to the unconditional wave space probability, ℘(ψ), one has to

make some hypothesis about the dependence of the wave space weight density on the

hypersurface, w(E,N). If one assumes that this is constant or negligibly varying with

energy and norm, then one can conclude that an isolated system has uniform weight in

wave space,

℘(ψ) =
1
W

, W = ∫ dψ.

Obviously it is a little unsatisfactory to simply assume this. It is also unsatisfactory to

assume that a single trajectory completely fills each hypersurface. Now an alternative

derivation of the result is given, which avoids these assumptions. The approach is the

direct analogue of the classical derivation of section 5.2.3.

7.2.3 Time average and hypersurface density

Schrödinger’s equations conserve energy and norm. These are well-known results which

are straightforward to prove directly.

The norm squared of the wave function is N(ψ) ≡ ⟨ψ ∣ ψ⟩. Its adiabatic rate of change

is

The final equality follows because the Hamiltonian operator, like all physical operators,

is Hermitian conjugate, Ĥ
†

= Ĥ. In fact the Hamiltonian operator obeys a stronger

symmetry: it is both real, Ĥ
*

= Ĥ, and symmetric, Ĥ
T

= Ĥ.

The energy of the wave state ψ is E(ψ) ≡ ⟨ψ ∣ Ĥ ∣ ψ⟩/N(ψ). Hence by a similar

argument it is also a constant of the adiabatic motion,

Ṅ
0
(ψ) = ⟨ψ̇

0
∣ ψ⟩ + ⟨ψ ∣ ψ̇

0
⟩

= ⟨
1
iℏ
Ĥψ∣ψ⟩+⟨ψ∣

1
iℏ
Ĥψ⟩

=
−1
iℏ

⟨ψ ∣ Ĥ
†

∣ ψ⟩ +
1
iℏ

⟨ψ ∣ Ĥ ∣ ψ⟩

= 0.
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These results show that the trajectory of an isolated system, ψ(t), is confined to a

hypersurface of constant norm and energy. In view of this let ψ̃ denote a normalized wave

function. Let χ denote a wave function on a hypersurface of constant energy E and norm

squared N. This hypersurface can be labeled {N ,E}, and it is obviously a sub-space of the

Hilbert space of all wave functions. In this notation the normalized wave function is 

ψ̃ = ψ̃(χ,E), and the full wave function is ψ = ψ(ψ̃,N) = ψ(χ,E,N).

Ultimately, the weight density of the full wave space of the isolated system, ω(ψ), is

sought. Initially the weight density on the hypersurface, ω(χ ∣ N ,E), is derived. This is

then combined with the density of the {N ,E}-hypersurface in the wave space to obtain

the full weight density.

As in section 5.2.3, it is taken as axiomatic that time is homogeneous, which means that

a statistical average is a simple time average over a trajectory. This implies that the weight

density on the {N ,E}-hypersurface must be inversely proportional to the speed of the

trajectory,

since the Hamiltonian operator is Hermitian. Notice that this depends upon ψ. This is

just the time that the system spends in a volume element ∣ dχ ∣, which is the same as the

time spent in the volume element of the full wave space ∣ dψ ∣. The proportionality factor is

an immaterial constant on the hypersurface. As argued in section 5.2.3, this constant

cannot vary with energy E or with norm squared N because this would violate the axiom

that a statistical average is a simple time average over the trajectory irrespective of

energy or norm squared.

Now we transform this hypersurface weight density to the full wave space. The Jacobean

for the transformation χ ⇒ ψ̃ is

∣∇̃E∣ = [
∂E(ψ)

∂∣ψ̃ ⟩

∂E(ψ)

∂⟨ψ̃ ∣
]

1/2

= ⟨ψ̃ ∣ ĤĤ ∣ ψ̃⟩1/2,

and that for the transformation ψ̃ ⇒ ψ,

∣∇N ∣ = [
∂N(ψ)
∂∣ψ ⟩

∂N(ψ)
∂⟨ψ ∣

]
1/2

= ⟨ψ ∣ ψ⟩1/2.

Ė
0
(ψ) =

1
N(ψ)

⟨ψ̇
0

∣ Ĥ ∣ ψ⟩ +
1

N(ψ)
⟨ψ ∣ Ĥ ∣ ψ̇

0
⟩

=
1

N(ψ)
⟨

1
iℏ
Ĥψ ∣ Ĥ ∣ ψ⟩+

1
N(ψ)

⟨ψ ∣ Ĥ ∣
1
iℏ
Ĥψ⟩

=
−1

iℏN(ψ)
⟨ψ ∣ Ĥ

†
Ĥ ∣ ψ⟩ +

1
iℏN(ψ)

⟨ψ ∣ ĤĤ ∣ ψ⟩

= 0.

ω(χ ∣ N ,E) ∝ ∣ ψ̇
0

∣−1

= ⟨ψ ∣ ĤĤ ∣ ψ⟩−1/2,



(7.3

6)

(7.3

7)

(7.3

8)

(7.3

9)

(7.4

0)

With these the full weight density is

Integrating this over all energies and norm squareds yields the unconditional weight

density for the wave space of the isolated system,

ω(ψ) = 1.

 

The interpretation of the origin of this result is essentially the same as that for the result

for classical phase space in section 5.2.3. The weight density is inversely proportional to

the speed of the trajectory (i.e. low speed equates to more time in a volume element), and

proportional to the hypersurface density, (i.e. for fixed spacing between discrete

hypersurfaces, ΔE and ΔN , large gradients correspond to more hypersurfaces per unit

wave space volume). These ideas are the same as those depicted in the classical case in

figure 5.3.

Just as in the classical case for Hamilton’s equations of motion, it is a remarkable

consequence of Schrödinger’s equation that the speed is identical to the magnitude of the

gradient of the hypersurface, so that these two cancel to give a weight density that is

uniform in wave space. This result is the same as that given above as equation (7.31),

which was obtained only by assuming that the hypersurface weight w(E,N) was constant

or negligibly varying.

This weight density is a physical observable, and as such there must be a corresponding

weight operator whose expectation value it is. Hence one must have

ω(ψ) ≡
⟨ψ ∣ ω̂ ∣ ψ⟩

⟨ψ ∣ ψ⟩
= 1.

Since this must hold for all wave states, the weight operator for the isolated system

must be the identity operator, and one must have

ω̂ = Î, or ωmn = δm,n.

The result holds in any representation.

One conclusion that follows from this is that the quantum microstates of the system are

not unique. Rather, any complete operator gives a collective of microstates. Also, a

particular set of microstates is the set of diagonal elements of a particular representation.

Equivalently, they are the eigenstates of any complete operator. This result implies that

these microstates all have equal weight, which is the axiom given as equation (7.15) at the

start of this section.

A second conclusion is that the off-diagonal elements in any representation have zero

weight. It should be clear from this that the weight operator is of no use for the expectation

value, since the off-diagonal elements of the single wave function density matrix, the

dyadic ψ
*
mψn, m ≠ n, certainly contribute to the expectation value. Nevertheless, it will be

ω(ψ ∣ N ,E) = ω(χ ∣ N ,E)
∣ ∇̃E ∣

ΔE

∣ ∇N ∣
ΔN

, ∣ N(ψ) − N ∣< ΔN , ∣ E(ψ) − E ∣< ΔE

∝
⟨ψ̃ ∣ ĤĤ ∣ ψ̃⟩1/2⟨ψ ∣ ψ⟩1/2

⟨ψ ∣ ĤĤ ∣ ψ⟩1/2
δ(N(ψ) − N) δ(E(ψ) − E)

= δ(N(ψ) − N) δ(E(ψ) − E).
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shown that for two interacting systems, the expectation value of an operator on one

system has to be weighted by the states of the other system, and for this a weight

operator is required (albeit one derived from the weight operator of the present isolated

system).

7.3 Canonical equilibrium system

Now the canonical equilibrium system is analyzed in detail. As usual, the total isolated

system consists of a sub-system and a thermal reservoir that can exchange energy with

each other. In the literature the reservoir is often called the bath, or, particularly in the

quantum field, the environment. Also the phrase ‘the system’ is often used to mean what is

here called ‘the sub-system’. Here and throughout this book the terms used are total

system, sub-system, and reservoir. These are denoted by superscripts or subscripts tot, s,

and r where any ambiguity exists.

7.3.1 Entropy of energy states

As outlined in section 1.1.2, the classical theory of probability is formulated in terms of

microstates and macrostates, and these now need to be defined for a quantum system. A

microstate, which is labeled by a single lower case Roman letter, usually corresponds to an

eigenstate of a complete set of commuting operators. In this case the eigenvalue is unique.

However, it can also correspond to an eigenstate of an incomplete operator. In such a case

the microstates are degenerate and microstates with different labels can share the same

eigenvalue of the incomplete operator. A macrostate, which is labeled by a lower case

Greek letter, corresponds to the principal quantum number of an operator. Each

macrostate has a unique label and corresponds to a unique eigenvalue of the operator. A

Greek and a Roman letter paired together are used to signify a microstate, with the Greek

letter labeling the principal quantum number, and the Roman letter labeling the

degenerate quantum states.

For example, writing the eigenfunctions with a single microstate label, one has 

Ô ∣ ζO
n ⟩ = On ∣ ζO

n ⟩. In this case different values of n may yield the same eigenvalue

(assuming that Ô is incomplete operator). Alternatively, the eigenfunctions may be written

as the combination of principal and degenerate state labels, Ô ∣ ζO
αg⟩ = Oα ∣ ζO

αg⟩. In this

case different values of α necessarily yield different eigenvalues.

For the present canonical equilibrium system, it is energy that is exchanged between

the sub-system and the reservoir. Hence the focus is here on energy states. Since the

microstates of an isolated system must have equal weight, equation (7.40) the weight of

the energy microstates is wE
αg = 1, since without loss of generality this can be set to unity.

This means that the energy microstates of the total system have no internal entropy, 

SE
αg = kB ln wE

αg = 0.

In the general formulation of classical probability, section 1.1.2, the weight of a

macrostate is the sum of the weights of the microstates contained within it. In the present

case the energy macrostate weight is

wE
α = ∑

g

(E,α) wE
αg ≡ N E

α .

This is just the number of degenerate states with energy Eα. Hence the entropy of an

energy macrostate is the logarithm of the degeneracy,

SE
α = kB ln N E

α .
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Analogous to the analysis for classical thermodynamics, section 2.3.1, the entropy

of the reservoir when the sub-system is in a particular energy microstate will be required.

Since energy is conserved one must have

Etot = Es + Er.

As mentioned, tot means the total system, s means the sub-system, and r means the

reservoir. The interaction energy between the sub-system and the reservoir is included in

the reservoir energy.

Now the reservoir entropy can be written in two different ways, which will be equated to

each other below. The first expression directly invokes the energy degeneracy discussed

above,

S r(E r
α) = kB ln N Er

α , with N Er
α ≡ ∑

g∈α

(Er).

This is the entropy of the isolated reservoir in this energy macrostate.

The second expression for the reservoir entropy invokes the definition of the

thermodynamic temperature, equation (2.11), T −1 ≡ ∂S(E)/∂E. By definition the

reservoir is much larger than the sub-system, and so the sub-system energy may be used

as an expansion variable. The Taylor expansion yields

S r(Er) = S r(Etot − Es) = const. −
Es

T r .

The higher order terms are negligible in the thermodynamic limit. This gives the

reservoir entropy as a function of the sub-system energy. Henceforth the superscript on the

reservoir temperature will be dropped as it is the only temperature that will appear.

7.3.2 Wave function entanglement

For the total system, the wave function lies in the Hilbert space that comprises that of the

sub-system and the reservoir. It is assumed that the sub-system and the reservoir interact

so weakly that they may be treated as quasi-independent. This means that for any state of

one all permitted states of the other are available. The total number of states is essentially

the product of the two individual totals, subject to the conservation laws. Also the basis

functions for the total system are the product of the basis functions of the sub-system and

of the reservoir, each considered as isolated.

With {∣ ζ s
n⟩} an orthonormal basis for the sub-system and {∣ ζ r

m⟩} an orthonormal basis

for the reservoir, the most general wave state of the total system can be expanded in

terms of these basis functions,

∣ ψtot⟩ = ∑
n,m

cnm ∣ ζ s
n, ζ r

m⟩.

If the coefficient matrix is dyadic, cnm = cs
nc

r
m, then the wave state is separable, 

∣ ψtot⟩ =∣ ψs,ψr⟩ with ∣ ψs⟩ = ∑n
(s)cs

n ∣ ζ s
n⟩, and ∣ ψr⟩ = ∑m

(r)cr
m ∣ ζ r

m⟩. Alternatively, if

the coefficients are not dyadic, then the wave state is inseparable, which is called an

entangled state (Messiah 1961, Merzbacher 1970).

In general terms entangled states arise from the conservation laws. This can be seen

explicitly for the present case of energy exchange, in which the total energy is fixed, 
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Etot = Es + Er. (Recall that the interaction energy is included in the reservoir energy.)

Using the respective energy eigenfunctions as a basis for the sub-system and the reservoir,

the most general expansion of the total wave function is

∣ ψtot⟩ = ∑
αg,βh

cαg,βh ∣ ζEs
αg , ζEr

βh⟩.

From energy conservation one must have that

cαg,βh = 0 if E s
α + E r

β ≠ Etot.

 

This condition cannot be satisfied for a system able to exchange energy if the coefficient

is in dyadic from. To see this, suppose the contrary, that cαg,βh = cs
αgc

r
βh

. Denote one of the

occupied sub-system energy macrostates by α1, so that cs
α1g

≠ 0. Because the macrostate

labels are distinct, there can be only one nonzero reservoir macrostate, say β1, that

conserves energy, E s
α1

+ E r
β1

= Etot. Hence one must have that cr
βh = 0, β ≠ β1. But a

unique occupied reservoir energy macrostate implies that α1 must also be unique, which is

to say that there can be no other occupied sub-system energy macrostate.

This shows that if the total wave function is in product form, then the sub-system and

reservoir each can only have a single fixed energy. This in turn means that neither wave

function, ψs or ψr, can contain a superposition of principal energy states (because these

are non-degenerate). It follows from this that the sub-system is unable to change energy

by exchange with the reservoir, because during such an exchange it would be in a

superposition of the initial and final energy states. Therefore, a dyadic form for the

expansion coefficient corresponds to the sub-system and the reservoir being isolated from

each other. But this contradicts the basis of a canonical equilibrium system, namely that

the energy of the sub-system fluctuates over time as it exchanges energy with the

reservoir. One concludes from this contradiction that if the sub-system and the reservoir

can exchange energy, then the total wave function must be entangled.

Accordingly, for the present canonical equilibrium system, the total wave function

cannot be factorized. Instead it must have a representation of the form

∣ ψtot⟩ = ∑
α,g,h

cαg,h ∣ ζEs
αg , ζEr

βαh
⟩.

Here the reservoir principal energy label βα depends upon the sub-system principal

energy α and is defined implicitly by E s
α + E r

βα
= Etot. For brevity, the coefficients are

written, cαg,h ≡ cs
αgc

r
βαh

. Because βα depends upon α, this is entangled (i.e. the sum of the

products is not equal to the product of the sums).

The most well-known case of entanglement is that of particles with spin that result from

radioactive decay (figure 7.2). It is the conservation of spin that is responsible for the

entanglement. Measurement of the spin of either daughter particle collapses the

superposed wave function into one or other of the two wave functions that form it. If it

were not for spin conservation, the daughter wave function would be the superposition of

four possible wave functions, which are the independent (i.e. unentangled) product of two

spinors for each particle (figure 7.3). It is spin conservation that entangles the two

daughter particles and that reduces the superposition basis set from four to two

possibilities.



Figure 7.2. The two possible decays (upper and lower left) of a spin 0 particle (center

left) into two spin half particles. On the right are the two wave functions that are

superposed for the final state. Each represents the entanglement of two single-particle

wave functions.

Figure 7.3. The dyadic product of two spin half-particle wave functions (left), and the

four wave functions this gives for superposition, each representing two unentangled

single-particle wave functions (right).

It should be clear in this example that the entangled and unentangled wave functions

are very different. For the entangled case, a measurement of the product of the spins of

the two daughter particles yields ⟨ψ ∣ σ̂lσ̂r ∣ ψ⟩ = −1. The same measurement on the

unentangled wave function yields ⟨ψ ∣ σ̂lσ̂r ∣ ψ⟩ = 0. This example is but one of many that

could be offered, since quite generally entanglement has far-reaching consequences.

7.3.3 Expectation values and wave function collapse

For the present canonical equilibrium system, conservation of energy causes the

entanglement of the sub-system and reservoir wave functions. It will now be shown that

this causes the principal energy states of the sub-system to collapse, which is to say that a

sub-system expectation value is diagonal in these. This is quite significant for quantum

statistical mechanics in view of the discussion in section 7.1 that the single wave function

density operator cannot be diagonalized. In contrast, if a probability operator existed in the

usual sense of an observable operator, then it can be diagonalized. Therefore, the collapse

of the principal energy states due to entanglement that will now be established already

goes a long way to proving the existence of the probability operator.

In view of the expansion for the wave function of the total system, equation (7.49), and

assuming a normalized wave function, ⟨ψtot ∣ ψtot⟩ = 1, the expectation value of an

operator on the sub-system is
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macrostates are non-degenerate), ⟨ζEr
βα′h′ ∣ ζEr

βαh
⟩ = δα′,α δh′,h. Only the principal diagonal

elements of the sub-system matrix operator in the energy representation contribute to this.

This can be equivalently cast in terms of the diagonal elements of the density matrix. The

projection onto the sub-system in this case has the effect of converting a superposition of

the sub-system basis states into a mixture of pure sub-system basis states, as arises from

a collapsed wave function.

In this result energy conservation and entanglement have reduced and collapsed the

original four sums over independent principal energy states into a single sum over principal

energy states, from α′α,β′β then to two sums, α′α, and then to a single sum, α. The

degenerate energy states of the reservoir have also collapsed, since the orthogonality of

the reservoir basis functions have reduced the sums over h and h′ to a single sum over h.

Specifically, whereas for an isolated system the non-diagonal entries of the operator matrix

in the energy representation would contribute to the expectation value, when energy

exchange with a reservoir occurs, orthogonality of the reservoir energy basis functions

together with energy conservation eliminate the off-diagonal sub-system energy terms.

The principal energy states have at this stage collapsed, whilst the degenerate energy

states of the sub-system remain in superposition form.

Here collapse refers to the collapse of the wave function and to the collapse into

principal energy states. Collapse means that the number of possible states has been

reduced, and also that the interference between superposition states has been reduced by

the elimination of off-diagonal energy terms.

7.3.3.1 Random phase approach

The microstates of the total isolated system have equal weight. This can be taken as an

hypothesis, equation (7.15), or as a theorem that follows from the uniform density of wave

space, equation (7.40). In view of this, the coefficients in the representation of the total

wave function all have the same magnitude, which can be set to unity, ∣ cαg,h ∣= 1. (With

this choice, the expectation value, which is actually the statistical average, has to be

explicitly normalized.) The coefficients therefore are of the form

cαg,h = eiθαg,h ,

with the phase θ being real and i ≡ √−1.

This form is reminiscent of the so-called EPR (Einstein–Podolsky–Rosen) state in which

entangled qubits are often described in similar terms (cf figure 7.2).

A given total wave functions correspond to a specific sets of phases, {θαg,h}. Therefore,

averaging over the phases makes the product of coefficients that appears in equation

⟨ψtot∣Ô
s
∣ψtot⟩ = ∑

α′g′;h′

∑
αg;h

c
*
α′g′,h′ cαg,h⟨ζEs

α′g′, ζ
Er
βα′h′∣Ô

s
∣ζEs

αg , ζEr
βαh

⟩

= ∑
α′g′;h′

∑
αg;h

c
*
α′g′,h′ cαg,h⟨ζEs

α′g′∣Ô
s
∣ζEs

αg⟩⟨ζEr
βα′h′∣ ζ

Er
βαh

⟩

= ∑
α,g,g′

∑
h∈βα

(Er) c
*
αg′,h cαg,h⟨ζEs

αg′∣Ô
s
∣ζEs

αg⟩

= ∑
α,g,g′

∑
h∈βα

(Er) c
*
αg′,h cαg,h O

s,E
αg′,αg.
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(7.50), zero unless g′= g,

⟨c
*
αg′,h cαg,h ⟩stat = ⟨ei[θαg,h−θαg′,h]⟩stat = δg,g′.

This will be explicitly shown in the next section by averaging over the total wave

space. With this, the reservoir sum in the expectation value becomes

The statistical average on the left-hand side means the average over total wave

functions, which means the average over randomly and uniformly distributed phases. The

penultimate equality gives the entropy of the reservoir macrostate βα as the logarithm of

the number of microstates it contains, equation (7.44), and the final equality uses the

thermodynamic relationship, equation (7.45), with the constant part effectively

incorporated into the normalization factor.

The effect of averaging the expectation value over the wave function is to collapse the

degenerate sub-system energy states, g = g′. This both reduces the number of elements

contributing to the expectation value and removes the interference between the

degenerate energy states (i.e. they are no longer in superposition). Hence both the

principal and degenerate states in the energy representation of an operator on the sub-

system are in diagonal form. It will be recalled that this result had to be established in

order to derive the mixture form for the statistical average, equation (7.9). Equivalently,

the probability operator is fully diagonal in the energy representation. Since in the

canonical equilibrium system, the entropy operator is proportional to the energy operator, 

Ŝ = −Ĥ/T , this means that the probability operator is fully diagonal in the entropy

representation. (In general the entropy operator is derived from the variables that are

exchangeable between the sub-system and the reservoir, and so in all equilibrium and non-

equilibrium systems the probability operator will be diagonal in the entropy

representation.)

The diagonal nature of the probability operator signifies the elimination of the

interference between energy states, both principal and degenerate. This transforms the

sub-system from a superposition of states to a mixture of states.

The statistical average also counts the degenerate reservoir energy states. The sum of

these gives a weight to each sub-system energy state that is just the number of

degenerate reservoir microstates. But by equation (7.44), this is just the exponential of the

corresponding reservoir entropy. It is this second effect, combined with equation (7.45),

that gives the Maxwell–Boltzmann form for the probability operator.

The average over the phases of the expectation value, equation (7.50), is the statistical

average of the operator. With the above result it is

⟨Ô
s
⟩

stat
=

1
Z
∑
α,g

e−Eα/kBTOs,E
αg,αg.

⟨∑
h∈βα

(Er) c
*
αg′,h cαg,h ⟩

stat

= δg,g′ ∑
h∈βα

(Er)

= δg,g′ N
Er
βα

= δg,g′ eS
r
βα

/kB

= δg,g′ e−Es
α/kBT .



(7.5

5)

Here Z is just the normalization constant (actually partition function), and the sum is over

the primary and degenerate energy states of the sub-system. This has the same functional

form as the final equality in equation (7.9), which is the von Neumann trace form for the

statistical average. This gives explicitly the probability matrix as the Maxwell–Boltzmann

form, ℘S
αg,αg = Z−1e−Eα/kBT .

7.3.3.2 Wave space approach

The statistical average of an operator on the sub-system can also be expressed as an

integral over the total wave space of the expectation value with respect to the entangled

wave function. The weight density of the total wave space is uniform, section 7.2. The

integral over wave space is carried out by integrating the coefficients in the energy basis

state expansion. The allowed coefficients respect energy conservation, equation (7.49),

which means that dψtot ≡ dc–– ≡ ∏αg,h dcr
αg,h dci

αg,h. The real and imaginary parts of the

coefficient each belong to the real line, ∈ (−∞, ∞). Entanglement has reduced the

number of indeces from four to three. With the expectation value given by equation (7.50), 

Os(ψtot) ≡ ⟨ψtot ∣ Ô
s

∣ ψtot⟩/⟨ψtot ∣ ψtot⟩, the statistical average is

Here the norm squared is N(ψtot) = ∑αg,h ∣ cαg,h ∣2
. The third equality follows since

the terms in which the integrand is odd with respect to any coefficient vanish, and so the

only non-vanishing terms have g = g′. The fourth equality follows because all the

integrations are identical and give a constant that is independent of α, g, and h, which can

be incorporated into the normalization factor. The fourth and fifth equalities use the two

forms for the reservoir entropy, equations (7.44) and (7.45). The partition function ensures

that ⟨ Î
s
⟩stat = 1.

This agrees with the random phase approach, equation (7.54), which should not be

surprising since the uniformity of wave space of an isolated system implies the equal

weight of isolated system microstates. Both methods show that the reduction and collapse

of the energy macrostates is due to energy conservation and the consequent entanglement

of the total wave function. They both also show that the collapse of the sub-system

degenerate energy states is due to the fact that the off-diagonal contributions average to

zero.

This equivalence demonstrates that quantum statistical mechanics can be as well

formulated in terms of the wave function as in terms of quantum states.

⟨Ô
s
⟩

stat
=

1
Z′

∫ dψtot O
s(ψtot)

=
1
Z′

∑
α,g,g′

∑
h∈βα

(Er) O
s,E
αg′,αg ∫ dc––

c
*
αg′,h cαg,h

N(ψtot)

=
1
Z′

∑
α,g

∑
h∈βα

(Er) O
s,E
αg,αg ∫ dc––

∣ cαg,h ∣2

N(ψtot)

=
1
Z′

∑
α,g

eS
r
βα

/kBO
s,E
αg,αg × const.

=
1
Z
∑
α,g

e−E s
α/kBTO

s,E
αg,αg.



(7.5

6)

(7.5

7)

(7.5

8)

7.3.4 Maxwell–Boltzmann probability operator

The statistical average given by both approaches agree with the von Neumann trace form,

specifically the final equality in equation (7.9). This is in the form of a classical average: it

is the sum over states of the probability of a state times the value of the observable in the

state. It is essential to the result that the off-diagonal elements in the entropy

representation of the probability (density) matrix vanish, which is to say that the wave

function in this basis is decoherent.

One can easily convert the present result for the average to the generic von Neumann

trace form, the first equality in equation (7.9). Of course, the probability operator replaces

the conventional many-wave function density operator. In the energy basis, the

representation of any function of the Hamiltonian operator is diagonal, and the diagonal

entries are just the function of the eigenvalues,

e−E s
α/kBT δα′,αδg′,g = {e−Ĥ/kBT}

E

α′g′,αg
,

with Ĥ being the sub-system Hamiltonian operator. For the canonical equilibrium

system, the reservoir entropy operator is Ŝ = −Ĥ/T , a consequence of equation (7.45).

This means that in the present canonical equilibrium system entropy eigenfunctions are

identical to the energy eigenfunctions. More generally, the entropy representation is

always the representation in which an open quantum system is diagonal. With this the

quantum statistical average of a sub-system operator can be written

The final form is independent of any specific representation or basis. One can conclude

that the probability operator for the canonical equilibrium system is just the Maxwell–

Boltzmann operator,

℘̂ ≡
1
Z

eŜ/kB ≡
1
Z

e−Ĥ/kBT .

The normalizing partition function is Z = TR e−Ĥ/kBT . The first equality holds in

general, whereas the second equality is specific for the canonical equilibrium system. This

result for the canonical equilibrium probability operator (or many-wave function density

operator) is well known, for example Feynman (1998), but seldom derived.

The Maxwell–Boltzmann probability operator is the direct quantitative consequence of

the sum over the degenerate energy microstates of the reservoir. This gives the

exponential of the reservoir entropy for each particular sub-system energy macrostate.

This is just the matrix representation of the Maxwell–Boltzmann probability operator in the

energy basis. Although the energy representation was used to derive this result, the final

expression as a trace of the product of the two operators is invariant with respect to the

representation.

One sees in this derivation that it is the statistical average that causes the superposition

of the degenerate energy microstates of the sub-system to collapse into a mixture. The

⟨Ô⟩
stat

=
1
Z
∑
α,g

e−Eα/kBTO
s,E
αg,αg

=
1
Z

∑
αg,α′g′

{e−Ĥ/kBT}
E

α′g′,αg
O

s,E
αg,α′g′

= TR ℘̂ Ô.
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reduction and collapse of the energy macrostates occurred at the level of the expectation

value due to the energy conservation law and the entanglement of the reservoir and the

sub-system. As has been mentioned above, both collapses are necessary for the mixture

form for the statistical average, equation (7.9). The superposition entropy states, both

principle and degenerate, had to collapse so that the probability operator was diagonal in

the entropy representation. Although we do not work with a density operator, if we were to,

the result (i.e. equating it to the probability operator) would imply that the density operator

is an average over multiple wave functions.

The Maxwell–Boltzmann probability operator can be written as a Feynman path integral

for the time propagator (Feynman and Hibbs 1965). In this approach the temperature is

interpreted as an imaginary time. Although this technique has been successfully exploited

in many applications (Schulman 1981, Kleinert 2009) it is not analyzed or invoked in what

follows.

For the present formulation, the statistical average can be written as an integral of the

expectation value over the sub-system wave space

⟨Ô⟩
stat

= ∫ dψ
⟨ψ ∣ ℘̂ Ô ∣ ψ⟩

⟨ψ ∣ ψ⟩
.

It is no longer necessary to show that these belong to the sub-system, the superscript

s, because the reservoir has been integrated out. This is a continuum version of the trace.

The equivalence of this with the above discrete expression for the trace can be shown by

expanding the sub-system wave function in any basis, ∣ ψ⟩ = ∑n ψn ∣ ζn⟩, and

integrating,

In the second equality l = m because odd powers of ψl vanish. Since the integration is

the same for all m, it is a constant that can be taken outside of the sums and incorporated

into the partition function, as in the third equality.

In section 7.2, the probability density in wave space for an isolated total system was

shown to be uniform in wave space. In contrast, the probability density in the wave space

of a sub-system of a total system is non-uniform. For the present canonical equilibrium sub-

system that can exchange energy with a reservoir, it is given by the expectation value of

the Maxwell–Boltzmann probability operator. The probability density is the expectation

value of the probability operator,

℘(ψ) =
⟨ψ ∣ ℘̂ ∣ ψ⟩

⟨ψ ∣ ψ⟩
,

∫ dψ
⟨ψ ∣ ℘̂ Ô ∣ ψ⟩

⟨ψ ∣ ψ⟩
= ∫ dψ

∑m,n,l ψ
*
mψl℘mnOnl

⟨ψ ∣ ψ⟩

=
1
Z′′

∑
m,n

{eŜ/kB}
mn

Onm ∫ dψ
ψ

*
mψm

⟨ψ ∣ ψ⟩

=
const.
Z′′

∑
m,n

{eŜ/kB}
mn

Onm

= TR ℘̂ Ô.

–

–
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where ψ is the wave function of the sub-system. It should be clear that the statistical

average is not the integral over the sub-system wave space of the probability density and

the expectation value of the operator,

⟨Ô⟩
stat

≠ ∫ dψ ℘(ψ)O(ψ).

The physical reason that this does not hold is that in general statistical averages are

the value of a variable in a state times the probability of the state, summed over the

states. The problem with this expression, is that both ℘(ψ) and O(ψ) are expectation

values, which include the superposition of states.

7.3.4.1 Environmental selection

In the quantum literature, the present sub-system that can exchange energy with a

thermal reservoir is generally called an open quantum system. These have been treated in

detail from a number of different perspectives (Davies 1976, Breuer and Petruccione 2002,

Weiss 2008). One approach that is related to that developed here is environmental

selection, or einselection (Zeh 2001, Zurek 2003 Schlosshauer 2005). Einselection includes

the influence of the environment on the system of interest, and this is one obvious point in

common with the above analysis of the sub-system and reservoir. The specific goal of

einselection is to explain the apparent collapse and decoherence of the wave function upon

measurement. Wave function collapse occurred several times in the derivation of

equilibrium quantum statistical mechanics just given, and this is another point of similarity.

Although the quantitative details differ, the basic conclusion of einselection—that the

reservoir or environment suppresses the superposition states of the open sub-system

rendering it diagonal—is essentially the same as that drawn here. A more detailed

discussion of einselction in the context of the present approach is given in section 1.4 of

Attard (2015).

7.4 Quantum statistical mechanics in classical phase

space

7.4.1 Partition function

The probability operator derived above for the canonical equilibrium system is

℘̂ =
e−βĤ

Z(T )
,

where the canonical partition function that normalizes this is

Z(T ) = TR′ e−βĤ = ∑
n

′e−βHn .

 

In general, the partition function is the total number of states of the total system, and

its logarithm gives the total entropy. The prime that has been added here signifies the

restriction on the counting of states, so that forbidden states are not included, and so that

the same state is not counted more than once. This restriction is essential, but it is usually

not explicitly shown or averted to in the conventional expression for the partition function,

equation (7.1).
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The symmetrization of the wave function plays a rôle in the correct counting, as states

that differ only by the permutation of the particle labels are not distinct. Further, states

with repeated label values may be allowed for bosons but forbidden for fermions. The way

to properly formulate the partition function to account for these effects is to define a

symmetrization factor for the microstates.

7.4.1.1 Symmetrization factor

A basis wave function formed from the orthonormal set of unsymmetrized wave functions 

{ϕn} has symmetrized form

ϕ±
n =

1

√N!χ±
n

∑
P̂

(±1)pϕP̂n
.

Here P̂ is the permutation operator, p is its parity, the upper sign is for bosons, and the

lower sign is for fermions. The symmetrization factor for the state, χ±
n , is inversely

proportional to the number of nonzero distinct permutations of the wave function.

Specifically, normalization, ⟨ϕ±
n ∣ ϕ±

n ⟩ = 1, gives

χ±
n = ∑

P̂

(±1)p⟨ϕn ∣ ϕP̂n
⟩.

 

With the symmetrization factor, the sum over distinct, allowed states of some

symmetric function fP̂n
= fn can be written as a sum over all states,

∑
n

′fn =
1
N!

∑
n

χ±
n fn.

7.4.1.2 Example: two particles in two states

As an example, consider a two-particle system, with symmetrization factor χ±
k1k2

, where k1

is the state of the first particle and k2 is that of the second. Suppose that there are just two

one-particle states, ki ∈ {1, 2}, i = 1, 2. One has

Since two fermions cannot be in the same state, the 11 and 22 states are forbidden for

a fermionic system. Also,

χ±
11 = ⟨ϕ11 ∣ ϕ11⟩ ± ⟨ϕ11 ∣ ϕ11⟩

= {

= χ±
22.

2
0

χ±
12 = ⟨ϕ12 ∣ ϕ12⟩ ± ⟨ϕ12 ∣ ϕ21⟩

= 1

= χ±
21.
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The state 12 is the same as the state 21.

Hence the sum over distinct, allowed states of some symmetric function fP̂n
= fn can

be written as the sum over all states by using the symmetrization factor,

The upper line is for bosons, and the lower line is for fermions. For fermions, the 11

and 22 states are excluded. For bosons the 11 and 22 states are each counted with weight

1. The 12 = 21 state is counted once for both bosons and fermions.

7.4.1.3 Grand partition function

Let ϕn be an entropy eigenfunction. In the canonical equilibrium case, entropy

eigenfunctions are the same as energy eigenfunctions. With Ĥ the Hamiltonian or energy

operator, in the canonical equilibrium case the eigenvalue equation is Ĥ ∣ ϕn⟩ = Hn ∣ ϕn⟩.
Here the {ϕn} form a complete orthonormal unsymmetrized set, and n labels entropy

microstates.

The partition function is the total number of allowed, distinct states of the total system,

which is the total number of reservoir-weighted allowed, distinct states of the sub-system.

The emphasis is on the words allowed and distinct, because it would be wrong to count

forbidden states, or to count the same state more than once. It is most convenient to work

in the grand canonical system (constant chemical potential, variable particle number). With

correct counting, the grand partition function is (Attard 2017, 2018)

Here N is the number of particles, the fugacity is z ≡ eβμ, where μ is the chemical

potential, and β = 1/kBT  is sometimes called the inverse temperature, with kB being

∑
n

′fn = {

=

=
1
2

{χ±
11f11 + χ±

12f12 + χ±
21f21 + χ±

22f22}

=
1
N!

∑
n

χ±
n fn.

f11 + f12 + f22

f12

⎧⎪⎨⎪⎩f11 +
1
2

[f12 + f21] + f22

1
2

[f12 + f21]

Ξ± =
∞

∑
N=0

zN ∑
n

′e−βHn

=
∞

∑
N=0

zN

N!
∑

n

χ±
n e−βHn

=
∞

∑
N=0

zN

N!
∑

n

∑
P̂

(±1)p⟨ϕP̂n
∣ ϕn⟩e−βHn

=
∞

∑
N=0

zN

N!
∑

n

∑
P̂

(±1)p⟨ϕP̂n
∣ e−βĤ ∣ ϕn⟩.
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Boltzmann’s constant and T the temperature.

The partition function (and statistical average) is usually written as the simple trace of

the Maxwell–Boltzmann operator (Neumann 1932, Messiah 1961, Merzbacher 1970).

Usually this does not explicitly exclude forbidden states or count duplicate states with

correctly reduced weight. The present expression corrects this deficiency. It is dependent

upon using entropy microstates and their symmetrization factor χ±(ϕn). If the partition

function (and statistical average) is to be written as the trace of an operator, then the

definition of trace has to be altered to explicitly count only distinct, allowed states.

The partition function can be usefully cast in an arbitrary basis. Consider another

orthonormal, complete, unsymmetrized but otherwise at this stage arbitrary basis {ζp}.

(Here the subscript is used as both an index and a label.) Since this is complete, 

∑p ∣ ζp⟩⟨ζp ∣= Î, the identity operator in this form can be inserted to yield

The second equality follows from the replacements n ⇒ P̂n and p ⇒ P̂p, and the fact

that ⟨ζP̂p
∣ ϕP̂n

⟩ = ⟨ζp ∣ ϕn⟩. The final equality has the same form as the final form of the

sum over entropy states.

Finally, it will prove useful to express the partition function as a sum over a dual basis

set. Consider another orthonormal, complete, unsymmetrized, but otherwise at this stage

arbitrary basis {ζq}, with ∑q ∣ ζq⟩⟨ζq ∣= Î. One can write

(One could replace here q ⇒ p′, in which case the final form is just the non-diagonal

sum over a single basis set, analogous to the diagonal sum over the entropy basis set.)

7.4.2 Momentum and position states

7.4.2.1 Basis functions

Now the analysis is restricted to momentum and position basis functions. The

eigenfunctions of the momentum operator in the position representation r are plane

waves,

Ξ± =
∞

∑
N=0

zN

N!
∑

n

∑
p

∑
P̂

(±1)p⟨ϕP̂n
∣ e−βĤ ∣ ζp⟩ ⟨ζp ∣ ϕn⟩

=
∞

∑
N=0

zN

N!
∑

n

∑
p

∑
P̂

(±1)p⟨ϕn ∣ e−βĤ ∣ ζP̂p
⟩ ⟨ζp ∣ ϕn⟩

=
∞

∑
N=0

zN

N!
∑

p

∑
P̂

(±1)p⟨ζp ∣ e−βĤ ∣ ζP̂p
⟩.

Ξ± =
∞

∑
N=0

zN

N!
∑
q,p

∑
P̂

(±1)p⟨ζp ∣ ζq⟩ ⟨ζq ∣ e−βĤ ∣ ζP̂p
⟩

=
∞

∑
N=0

zN

N!
∑
q,p

∑
P̂

(±1)p⟨ζP̂p
∣ ζq⟩ ⟨ζq ∣ e−βĤ ∣ ζp⟩.
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Here p is the configuration momentum, and V is the sub-system volume. These form a

complete orthonormal set. Periodic boundary conditions give the width of the momentum

state per particle per dimension as Δp = 2πℏ/V 1/3
, assuming a cubic volume.

The position basis functions are Gaussians,

Here q is the configuration position. Normalization fixes the spacing of the

configuration position states as Δq = √8πξ2, which gives the completeness expression, 

∑q ∣ ζq(r′)⟩ ⟨ζq(r) ∣= e−(r′−r)2/8ξ2
/(8πξ2)3N/2 ≡ δξ(r′−r). In the limit ξ → 0 the position

basis functions form a complete orthonormal set. This limit will be taken in the final results

below.

Note the distinction between the representation position r and the configuration

position q.

The transformation coefficient for the two basis sets is readily shown to be

Again, N is the number of particles in the sub-system. It is important for the treatment

of permutation loops below that this is the product of individual particle factors. The

product of this and its complex conjugate is obviously

⟨ζp ∣ ζq⟩ ⟨ζq ∣ ζp⟩ ≡
(8πξ2)3N/2

V N
e−2ξ2p2/ℏ

2
,

which product will shortly appear in the summand of the partition function.

7.4.2.2 Commutation function

The position and momentum operators do not commute, which fundamental property can

be accounted for by recasting the partition function to include what we shall call the

commutation function ω(p, q) ≡ eW(p,q). We call ω the commutation function and W the

commutation function exponent. These are defined by

ζp(r) =
1

V N/2
e−p⋅r/iℏ

= ∏N
j=1

e−pj⋅rj/iℏ

V 1/2
.

ζq(r) =
e−(r−q)2/4ξ2

(2πξ2)3N/4

= ∏N
j=1

e−(rj−qj)
2/4ξ2

(2πξ2)3/4
.

⟨ζp ∣ ζq⟩ ≡
(8πξ2)3N/4

V N/2
e−ξ2p2/ℏ2

eq⋅p/iℏ

= ∏N
j=1

(8πξ2)3/4

V 1/2
e−ξ2p2

j/ℏ2
eqj⋅pj/iℏ.
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e−βH(p,q)ω(p, q) =
⟨ζq ∣ e−βĤ ∣ ζp⟩

⟨ζq ∣ ζp⟩
.

In Attard (2021 section 7.1.1) this ω was denoted ωp and its complex conjugate was

written ωq.

The commutation function exponent, W(q, p), is extensive. This is one reason that the

formulation in terms of it is preferable to those given by Wigner (1932) and by Kirkwood

(1933). A recursion relation leading to an expansion for W(q, p) will be given in section

7.5.3. To leading order, when Planck’s constant can be regarded as small, or else the

temperature is high, the commutation function exponent vanishes, 

W(ℏ = 0) = W(β = 0) = 0, as can be seen by inspection.

7.4.2.3 Symmetrization function

The obvious merit of formulating the grand partition function in terms of the asymmetric

expectation value of the Maxwell–Boltzmann operator is that the sum over entropy states

has become a sum over points in classical phase space. The continuum limit of this is

∑
q,p

⇒
1

(ΔpΔq)
3N ∫ dΓ.

The volume elements are Δp = 2πℏ/V 1/3
 and Δq = √8πξ2.

The present way of representing quantum mechanics in classical phase space is

distinctly different to the way advocated by Wigner (1932) and by Kirkwood (1933). The

Wigner–Kirkwood method has been followed and modified by many workers (for example,

Groenewold 1946, Moyal 1949, Praxmeyer and Wódkiewicz 2002, Barnett and Radmore

2003, Gerry and Knight 2005, Zachos et al 2005, Dishlieva 2008, and Barker 2010). In

particular, previous authors focus upon a transform of the wave function rather than the

states themselves, they do not distinguish the position representation r from the position

configuration q as here, and they do not account for wave function symmetrization. Finally,

the Wigner–Kirkwood phase space representation has principally been applied or used in

quantum optics, whereas the present focus is on the generic formulation of quantum

statistical mechanics.

In view of the above, the partition function becomes

Notice that the factors of ξ cancel, which allows the limit ξ → 0 to be taken. Here

Ξ± =
∞

∑
N=0

zN

N!
∑
q,p

∑
P̂

(±1)p⟨ζP̂p
∣ ζq⟩ ⟨ζq ∣ e−βĤ ∣ ζp⟩

=
∞

∑
N=0

zN

N!(ΔpΔq)
3N

∫ dΓ∑
P̂

(±1)p⟨ζP̂p
∣ ζq⟩⟨ζq ∣ ζp⟩e−βH(q,p)ω(q, p)

=
∞

∑
N=0

zN

N!(ΔpΔq)
3N

∫ dΓ η±(q, p)⟨ζp ∣ ζq⟩⟨ζq ∣ ζp⟩e−βH(q,p)ω(q, p)

=
∞

∑
N=0

zN

N!h3N
∫ dΓ e−βH(Γ)ω(Γ)η±(Γ).
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η±(Γ) ≡
1

⟨ζp ∣ ζq⟩
∑

P̂

(±1)p⟨ζP̂p
∣ ζq⟩

is called the symmetrization function.

7.4.2.4 Statistical average

The statistical average of an operator is

One sees that compared to the grand partition function, the Maxwell–Boltzmann

operator has simply been replaced by the product of it and the observable operator, 

e−βĤ ⇒ Âe−βĤ. Hence as for the commutation function itself, equation (7.78), the

statistical average can be obtained as a phase space average of the phase functions

e−βH(p,q)A(p, q)ωA(p, q) =
⟨ζq ∣ e−βĤÂ ∣ ζp⟩

⟨ζq ∣ ζp⟩
.

In Attard (2021 section 7.1.2) this was denoted ωA,p and its complex conjugate was

written ωA,q.

With this, one sees that the expression for the statistical average of an operator

observable is essentially the same as that for the grand partition function with 

ω(Γ) ⇒ ωA(Γ). This is

 

If the operator being averaged is ‘pure’ in that sense that it only depends upon position

or it only depends momentum operator, then ωA(Γ) = ω(Γ) (Attard 2021 section 7.1.2).

This also holds for any linear combination of pure operators, such as the Hamiltonian

operator.

7.5 Expansions for non-commutativity and

symmetrization

7.5.1 Monomer and classical grand potential

Shortly it will be shown that the symmetrization function, η±, breaks up into loops of

particles, l = 1, 2, …, which may be called monomers, dimers etc. The monomer term is

⟨Â⟩
stat

=
1

Ξ± TR′ zNÂe−βĤ

=
1

Ξ±

∞

∑
N=0

zN ∑
n

′ Ane−βHn

=
1

Ξ±

∞

∑
N=0

zN

N!
∑
q,p

∑
P̂

(±1)p⟨ζP̂p
∣ ϕq⟩ ⟨ζq ∣ Âe−βĤ ∣ ζp⟩.

⟨Â⟩
stat

=
1

Ξ±

∞

∑
N=0

zN

N!h3N
∫ dΓ e−βH(Γ)ωA(Γ)η±(Γ)A(Γ).
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unity, η(1) = 1, and the monomer grand partition function is

Ξ1 =
∞

∑
N=0

zN

N!h3N
∫ dΓ e−βH(Γ)ω(Γ).

The ratio of the full partition function to the monomer partition function is just the

monomer average of the symmetrization function,

 

Since the leading order of the commutation function exponent is zero, 

W(ℏ = 0) = W(β = 0) = 0 (see section 7.5.3 below), the leading order of the monomer

grand potential is just the classical grand potential,

Ξ1,0 ≡ Ξ1(W = 0) =
∞

∑
N=0

zN

N!h3N ∫ dΓ e−βH(Γ).

Recall that ω(Γ) ≡ eW(Γ)
.

The logarithm of this gives the classical equilibrium grand potential,

Ωcl(μ,V ,T ) ≡ Ω1,0 = −kBT ln Ξ1,0.

With this result, classical statistical mechanics has been derived from quantum

statistical mechanics.

The quantum correction from monomers is the classical average

e−β[Ω1−Ω1,0] =
Ξ1

Ξ1,0
= ⟨eW⟩1,0,

where Ω1 is the full monomer grand potential. The subscript 1,0 is synonymous with

the classical equilibrium average and with the classical equilibrium thermodynamic

potential.

7.5.2 Permutation loop expansion of the grand potential

In the treatment of wave function symmetrization, the basis functions can be composed

from single-particle functions,

ζn(r) = ζn1(r1)ζn2(r2) ⋯ ζnN
(rN).

This factorized form holds for the position and momentum basis functions, equations

(7.74) and (7.75). The permutation operator can be applied to either the arguments, 

ζn(P̂r) or else the indices ζP̂n
(r).

Here and in what follows for an N-particle system, bold face is used for an N-dimensional

state vector such as n = {n1,n2, … ,nN}, and plain type is used for a single-particle

Ξ±

Ξ1
=

1
Ξ1

∞

∑
N=0

zN

N!h3N
∫ dΓ e−βH(Γ)ω(Γ)η±(Γ)

= ⟨η±⟩1.
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state such as n or nj. Such a single-particle state may in fact be a three-dimensional vector,

although qj and pj will be used to denote the position state and the momentum state of

particle j.

In general, any permutation of objects can be factored as the product of permutation

loops. In such a loop, each successive element is the one permuted into the position

originally occupied by the preceding element (see figure 7.4).

Figure 7.4. Six objects (top row) and a permutation of their order (second row). The

bottom row shows the permutation factored into the product of the 2-loop a → e → a,

the 1-loop c → c, and the 3-loop d → f → b → d.

Accordingly, any particular particle permutation operator can be factored into loop

permutation operators. Hence the sum over all permutation operators can be written as the

sum over all possible factors of loop permutations,

Here P̂jk is the transpose of particles j and k. The primes on the sums restrict them to

unique loops, with each index being different. The first term is just the identity. The second

term is a dimer loop, the third term is a trimer loop, and the fourth term shown is the

product of two different dimers.

The symmetrization function, η±(Γ) = ∑P̂ (±1)p ⟨ζP̂p
∣ ζq⟩/⟨ζp ∣ ζq⟩, is the sum of the

expectation values of these loops.

The monomer symmetrization function comes from the unpermuted expectation value,

η(1)(Γ) ≡
⟨ζp ∣ ζq⟩

⟨ζp ∣ ζq⟩
= 1.

 

The dimer symmetrization function in the microstate Γ for particles j and k is

∑
P̂

(±1)p P̂ = Î ± ∑
i,j

′ P̂ij + ∑
i,j,k

′ P̂ijP̂jk + ∑
i,j,k,l

′ P̂ijP̂kl ± ⋯
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Note that since the basis functions are the product of single-particle functions,

equations (7.74) and (7.75), the expectation value factorizes leaving only the permuted

particles to contribute.

The symmetrization functions are localized in the sense that they are only nonzero when

the separations between consecutive neighbors around the loop are all small. This will be

shown explicitly below (cf equation (7.122)), but here it can be noted that the exponents

give highly oscillatory behavior and therefore cancel unless the differences in configuration

positions are all close to zero.

Similarly, the trimer symmetrization function for particles j, k, and l is

 

Continuing in this fashion, the symmetrization function can be written as a series of loop

products,

η±(Γ) = 1 + ∑
ij

′η±(2)
ij (Γ) + ∑

ijk

′η±(3)
ijk (Γ) + ∑

ijkl

′η±(2)
ij (Γ)η±(2)

kl (Γ) + ⋯

Here the superscript is the order of the loop, and the subscripts are the atoms involved

in the loop.

This gives the ratio of the full to the monomer partition function as

η
±(2)
jk (Γ) =

±⟨ζP̂jkp
∣ ζq⟩

⟨ζp ∣ ζq⟩

=
±⟨ζpk

∣ ζqj
⟩⟨ζpj

∣ ζqk
⟩

⟨ζpj
∣ ζqj

⟩⟨ζpk
∣ ζqk

⟩

= ± e(qk−qj)⋅pj/iℏe(qj−qk)⋅pk/iℏ.

η
±(3)
jkl (Γ) =

⟨ζP̂jkP̂klp
∣ ζq⟩

⟨ζp ∣ ζq⟩

=
⟨ζpk

∣ ζqj
⟩⟨ζpj

∣ ζql
⟩⟨ζpl

∣ ζqk
⟩

⟨ζpj
∣ ζqj

⟩⟨ζpk
∣ ζqk

⟩⟨ζpl
∣ ζql

⟩

= e(qj−qk)⋅pk/iℏe(qk−ql)⋅pl/iℏe(ql−qj)⋅pj/iℏ.
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The third and following equalities write the average of the product as the product of

the averages. This is valid in the thermodynamic limit, since the product of the average of

two loops scales as V2, whereas the correlated interaction of two loops scales as V. The

combinatorial factor accounts for the number of unique loops in each term; η±(l)
 without

subscripts refers to any one set of l particles, since all sets give the same average.

Explicitly, the l-loop symmetrization function is

The subscripts for particles in a loop are to be understood mod l; in the first equality, 

ql+1 ≡ q1. In the second equality, q = {q1, q2, … , ql} and q′= {ql, q1, q2, … , ql−1}.

The grand potential is essentially the logarithm of the grand partition function, 

Ω ≡ −kBT ln Ξ. Hence the difference between the full grand potential and the monomer

grand potential is just the series of loop potentials,

 

Ξ±

Ξ1
= ⟨η±⟩1

= 1 +⟨∑
ij

′η±(2)
ij ⟩

1

+⟨∑
ijk

′η±(3)
ijk ⟩

1

+⟨∑
ijkl

′η±(2)
ij η

±(2)
kl ⟩

1

+ ⋯

= 1 +⟨
N!

(N − 2)!2
η±(2)⟩

1
+⟨

N!

(N − 3)!3
η±(3)⟩

1

+
1
2
⟨

N!

(N − 2)!2
η±(2)⟩

2

1
+ ⋯

= ∑
{ml}

1
ml!

∏∞
l=2 ⟨

N!

(N − l)!l
η±(l)⟩

ml

1

= ∏∞
l=2

∞

∑
ml=0

1
ml!

⟨
N!

(N − l)!l
η±(l)⟩

ml

1

= ∏∞
l=2 exp ⟨

N!

(N − l)!l
η±(l)⟩

1
.

η±(l)(Γl) = (±1)l−1 ∏l
j=1 e−(qj−qj+1)⋅pj/iℏ

≡ (±1)l−1e−(q−q′)⋅p/iℏ.

− β[Ω± − Ω1] = ln
Ξ±

Ξ1

=
∞

∑
l=2

⟨
N!

(N − l)!l
η±(l)⟩

1

≡ − β
∞

∑
l=2

Ω±
l .
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The monomer grand potential is of course Ω1 ≡ −kBT ln Ξ1, with the monomer grand

partition function being given by equation (7.85).

7.5.3 Expansion of the commutation function

Now several high temperature expansions for the commutation function w(Γ) are given.

(See Attard (2021) for other expansions of, and approaches to, the commutation function.)

The approach is similar to that of Kirkwood (1933). Whereas in essence he expanded the

function that is here denoted ω = eW , here is expanded the function W itself. This is an

extensive function, which is an advantage.

The definition of the commutation function, equation (7.78), may be written as 

e−βH(p,q)eW(p,q)⟨q ∣ p⟩ = ⟨q ∣ e−βĤ ∣ p⟩. The Hamiltonian operator is the sum of kinetic

energy and potential energy operators, Ĥ = (−ℏ2/2m)∇2 + U(q), and the momentum

eigenfunction is ⟨q ∣ p⟩ = e−p⋅q/iℏ/V N/2
. Suppressing the arguments the derivative of the

left-hand side is

That of the right-hand side is

Equating these and rearranging gives

 

The commutation function exponent expanded in powers of Planck’s constant is

W ≡
∞

∑
n=1

Wnℏ
n.

(Actually an expansion in powers of inverse temperature is slightly simpler.) This

begins at n = 1 because it must reduce to the classical Maxwell–Boltzmann factor when

Planck’s constant is zero, W(ℏ = 0) = 0. This expansion leads to the recursion relation for 

n > 2,

∂
∂β

{e−βHeWe−p⋅q/iℏ} = {
∂W
∂β

−H}e−βHeWe−p⋅q/iℏ.

∂
∂β

⟨q ∣ e−βĤ ∣ p⟩ = − Ĥ{e−βHeWe−p⋅q/iℏ}

= {−H[e−βHeW ] +
ℏ2

2m
∇2[e−βHeW ] + 2

iℏ
2m

p ⋅ ∇[e−βHeW ]}e−p⋅q/

∂W
∂β

=
iℏ
m

eβU−Wp ⋅ ∇{eW−βU} +
ℏ2

2m
eβU−W∇2{eW−βU}

=
iℏ
m

p ⋅ ∇(W − βU) +
ℏ2

2m
{∇(W − βU) ⋅ ∇(W − βU) + ∇2(W − βU)}.
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It is straightforward to derive the first several coefficient functions explicitly. One has for

n = 1,

W1 =
−iβ2

2m
p ⋅ ∇U ,

for n = 2,

for n = 3,

W3 =
iβ4

24m3 ppp⋮∇∇∇U +
5iβ4

24m2 p(∇U) : ∇∇U −
iβ3

6m2 p ⋅ ∇∇2U ,

and for n = 4,

 

Notice that the odd coefficient functions are pure imaginary and odd in momentum.

Because H(Γ) is an even function of momentum, these terms in the quantum weight eW

average out to real oscillatory (cosine) contributions. (The η±(l) contain terms that are

either real and even, or else imaginary and odd in momentum.)

7.5.3.1 Monomer expansion A

The quantum correction to the classical grand potential due to the monomers is just a

classical average of the quantum weight due to commutativity, equation (7.89). To fourth

order in ℏ this is

∂Wn

∂β
=

i
m

p ⋅ ∇Wn−1 +
1

2m

n−2

∑
j=0

∇Wn−2−j ⋅ ∇Wj

−
β

m
∇Wn−2 ⋅ ∇U +

1
2m

∇2Wn−2.

W2 =
β3

6m2 pp : ∇∇U +
1

2m
{
β3

3
∇U ⋅ ∇U −

β2

2
∇2U},

W4 =
−β5

5!m4 (p ⋅ ∇)4
U −

3β5

40m3 (∇U)pp⋮∇∇∇U

−
β5

15m2 (∇U)(∇U) : ∇∇U +
β4

16m2 ∇U ⋅ ∇∇2U

+
β4

16m3 pp : ∇∇∇2U +
β4

48m2 ∇2(∇U ⋅ ∇U)

−
β3

24m2 ∇2∇2U −
β5

15m3 (p ⋅ ∇∇U) ⋅ (p ⋅ ∇∇U).

⟨ ⟩
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All higher order contributions have been set to zero, and the odd imaginary terms have

explicitly canceled here. It is Wj(p, q) whose average is taken. Recall that the subscript

1,0 denotes the classical average over position and momentum configurations. Note that

the right-hand side must be extensive, which requires the cancelation of products of

extensive terms. This expansion terminated at O(ℏ2) may be called A2, and at O(ℏ4) it

may be called A4.

7.5.3.2 Monomer expansion B

One can define the cumulative weight as

W (n) = ℏW1 + ℏ
2W2 + ⋯ + ℏ

nWn,

and the nth approximation to the quantum correction to the monomer grand potential

as

ΔΩ(n)
1 = −kBT ln ⟨eW

(n)
⟩

1,0
.

One has limn→∞ΔΩ(n)
1 = Ω1 − Ω1,0.

The classical average ⟨⋯⟩1,0 includes an average over the momenta ⟨⋯⟩1,0,p as well

as one over the position configurations. The classical monomer probability distribution for

momentum is a Gaussian,

℘(p) =
e−βp2/2m

[2πmkBT ]3N/2
.

Hence ⟨pp⟩1,0,p = mkBT I––.

Because the probability distribution over momenta is a Gaussian, it is straightforward, if

perhaps a little tedious, to perform the momentum integrals analytically. To a particular

order one has

⟨eW
(n)(q,p)⟩

1,0,p
≡ eW

(n)(q).

− β[Ω1 − Ω1,0] = ln ⟨eW⟩1,0

= ln ⟨1 + W +
1
2!

W 2 +
1
3!

W 3 +
1
4!

W 4⟩
1,0

= ⟨W +
1
2
W 2 +

1
3!

W 3 +
1
4!

W 4⟩
1,0

−
1
2
⟨W +

1
2
W 2⟩

2

1,0

= ℏ2⟨W2⟩1,0 +
ℏ2

2
⟨W 2

1 ⟩1,0

+
ℏ4

2
⟨W 2

2 − ⟨W2⟩
2
1,0⟩1,0

+
ℏ4

4!
⟨W 4

1 ⟩1,0 −
ℏ4

8
⟨W 2

1 ⟩
2
1,0

+ ℏ4⟨W4⟩1,0 + ℏ4⟨W1W3⟩1,0 +
ℏ4

2
⟨W 2

1 W2⟩1,0 −
ℏ4

2
⟨W 2

1 ⟩1,0⟨W2⟩1,0
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One can show (details are given in Attard (2017); the same method is used in section

7.5.5) that to fourth order the result is

This is the exponent that one has to use to weight the position configurations (in

addition to the Boltzmann factor of the potential energy). This expansion terminated at 

O(ℏ2) may be called B2, and at O(ℏ4) it may be called B4.

7.5.3.3 Monomer expansion C

Expansion A has the merit of requiring less analysis, and of requiring the classical average

of extensive terms and their products. It has the additional advantage of being explicitly

dependent upon the momenta, which means it can be used for higher order loops (dimer,

trimer, etc). It has the disadvantage of requiring the average over the momentum

configurations to be taken numerically. Also, as a fluctuation expression, it requires

relatively high accuracy in the individual averages of products to get the necessary

cancelation between these super-extensive terms to end up with the final extensive result

for Ω1 − Ω1,0. The larger the system size, the greater the number of configurations that

need to be generated to get acceptable statistical accuracy.

Expansion B does not require numerical momentum averaging, which leads to higher

accuracy. In a computer simulation, this can make it 1–2 orders of magnitude more efficient

than expansion A. Also, exponentiating the expansion, as in B, should give faster

convergence than expanding the final expression, as in A. A disadvantage expansion B has

is that it requires more explicit algebra. Also, more problematic, since W is an extensive

variable, taking the average of eW
(n)

 can lead to computational overflow problems for large

systems.

One way to avoid numerical overflow in evaluating the exponent in expansion B, but to

preserve the advantage of analytical momentum average, is to use the momentum

averaged W (4)
 in the expansion A. That is, writing equation (7.113) as explicit powers of

Planck’s constant, W (4) ≡ ℏ2W̃ 2 + ℏ4W̃ 4, this can be inserted into expansion A, equation

(7.108), with W1 = W3 = 0,

This may be called expansion C4. The averages here are classical averages over

configuration positions. The neglected terms are O(ℏ6). The difference from expansion A4

is that the momentum averages have been performed analytically to leading order before

expanding the exponential.

W (4)(q) =
ℏ2β3

24m
∇U ⋅ ∇U −

ℏ2β2

12m
∇2U

+
2ℏ4β4

45m2 (∇∇U) : (∇∇U) −
ℏ4β5

240m2 ∇U∇U : ∇∇U

+
ℏ4β4

20m2 (∇U) ⋅ ∇∇2U −
11ℏ4β3

240m2 ∇2∇2U +O(ℏ6)

≡ ℏ
2W̃ 2(q) + ℏ

4W̃ 4(q).

− β[Ω1 − Ω1,0] = ln ⟨eW
(4)
⟩

1,0

= ℏ2⟨W̃ 2⟩
1,0

+
ℏ

4

2
⟨W̃

2
2 − ⟨W̃ 2⟩

2

1,0
⟩

1,0
+ ℏ4⟨W̃ 4⟩

1,0
.



7.5.3.4 Results for Lennard-Jones Ar, Ne, and He

Classical Monte Carlo simulations for Lennard-Jones models of argon, neon, and helium

have been carried to test the three expansions given above for the change in the monomer

grand potential due to non-commutativity, Ω1 − Ω1,0 (see Attard (2017) for full details).

The Lennard-Jones pair potential is u(r) = 4ε[(σ/r)12 − (σ/r)6], and the thermal wave

length is Λ = [2πℏ2/mkBT ]1/2
. Comparing this difference with the classical virial pressure,

pcl = −Ω1,0/V , measures the quantum correction due to non-commutativity, since

symmetrization does not affect the monomer term. Basically, the Metropolis algorithm was

used to generate the position configurations for the averages, and, for expansion A,

momentum configurations (typically 32 for each position configuration used for the

average) were drawn directly from the Gaussian distribution. There was generally quite

good agreement between the three expansions, although A had the worst statistical error.

There was good agreement between A2 and the Wigner–Kirkwood second order expansion

(Wigner 1932, Kirkwood 1933).

Results on a typical sub-critical isotherm are shown in figure 7.5. Regions where the

pressure has negative slope are unstable in the thermodynamic limit. From the classical

virial pressure, there is a gas phase for ρσ3 <
˜

0.1, a liquid phase 0.8 <
˜

ρσ3 <
˜

0.95, and

a solid phase ρσ3 >
˜

1. Inclusion of the quantum correction may shift these phase

boundaries. The C4 quantum correction is qualitatively similar for all three noble elements,

with it being positive and mainly increasing with increasing density. Compared to the

classical virial pressure, the quantum correction is substantially less for argon, somewhat

larger for neon, and very much larger for helium. Judging by the change between the

second and the fourth order expansions, the fourth order quantum correction calculated

here as an estimate of the total quantum correction appears reliable for argon, marginal for

neon, and unreliable for helium.

Figure 7.5. Quantum correction C4 at kBT/ε = 0.6 for argon (filled triangles, ×100, 

Λ = 0.093 7σ), for neon (open circles, Λ = 0.301 1σ), and for helium (asterisks, 

×10−3
, Λ = 1.378 7σ). The solid curve is the classical virial pressure. The standard

deviation is less than 1%. Data from Attard (2017).

7.5.4 Expansion of the symmetrization function
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The difference between the full grand potential and the monomer grand potential may be

expanded in terms of loop potentials

Ω± − Ω1 =
∞

∑
l=2

Ω±
l .

The loop potentials arise from factoring the permutations involved in symmetrizing the

wave function, with the l-loop potential being given by equation (7.98),

The monomer grand partition function is given by equation (7.85),

Ξ1 =
∞

∑
N=0

zN

N!h3N
∫ dΓ e−βH(Γ)eW(Γ).

The monomer grand potential is of course Ω1 ≡ −kBT ln Ξ1.

7.5.4.1 Commuting part of the expansion

In the preceding sub-section, three expansions for the weight W(Γ) were discussed. Of

particular interest is what might be called the commuting part of the expansion, in which

case one sets W(Γ) = 0. This can be denoted by an additional subscript 0, so that the

commuting part of the loop potential is

 

Since this l-loop symmetrization factor depends only on the first l particles, its classical

equilibrium average can be written as an integral over their configuration momenta and

positions. The standard definition in classical equilibrium statistical mechanics of the l-

particle density is (Attard 2002)

− βΩ±
l ≡ ⟨

N!

(N − l)!l
η±(l)⟩

1

=
1

Ξ1

∞

∑
N=0

zN

N!h3N ∫ dΓ e−βH(Γ)eW(Γ) N!

(N − l)!l
η±(l)(Γ).

− βΩ±
l,0 ≡ ⟨

N!

(N − l)!l
η±(l)⟩

1,0

=
1

Ξ1,0

∞

∑
N=0

zN

N!h3N
∫ dΓ e−βH(Γ) N!

(N − l)!l
η±(l)(Γ).

ρ(l)(ql) =
1

Ξ1,0

∞

∑
N=l

Λ−3NzN

(N − l)!
∫ dql+1 ⋯ dqN e−βU(qN)

=
1

Ξ1,0

∞

∑
N=l

zNΛ−3leβK(pl)

(N − l)!h3(N−l)
∫ dΓl+1 ⋯ dΓN e−βH(ΓN).
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Recall that the thermal wave length is Λ = [2πℏ2/mkBT ]1/2
. With this the commuting part

of the l-loop grand potential can be written

The final equality uses the l-loop symmetrization function, equation (7.97). In this 

q = {q1, q2, … , ql} and q′= {ql, q1, q2, … , ql−1}.

The part of the exponent that depends upon the momenta is

−Λ2p2

4πℏ2 +
p ⋅ (q − q′)

iℏ
=

−Λ2

4πℏ2 [p −
2πℏ2

Λ2iℏ
(q − q′)]

2

−
π

Λ2 (q − q′)2.

Hence the momentum contributes just a Gaussian integral, which is readily evaluated,

reducing the loop potential to

Since this is homogeneous in space, in the final equality particle l has been fixed at the

origin, and a factor of V has replaced the integration over this coordinate.

The thermal wavelength Λ = [2πℏ2/mkBT ]1/2
 provides the length scale for the

symmetrization Gaussian. If any nearest neighbors around the loop are separated by much

more than this, then the Gaussian is zero and the configuration does not contribute to the

loop potential. Therefore, one needs qj,j+1 <
˜

Λ. Conversely, it is generally the case that

particles have finite size, say σ, and at low and moderate densities and the l-particle

density is zero if any two particles are separated by less than this. Therefore, at low and

moderate densities one needs

Λ >
˜

qj,j+1 >
˜

σ

for symmetrization effects to be measurable. For the noble elements on the isotherm 

kBT/ε = 0.6, in figure 7.5, this suggests that symmetrization is negligible for argon and

neon.

In fact of course there is never such a thing as a perfectly impenetrable and rigid hard

core; σ is really a measure of the onset of a steep inter-particle repulsion. Hence if the

density is high, then the separation between nearest neighbors is approximately the cube

− βΩ±
l,0 =

1
Ξ1,0

∞

∑
N=l

zN

l(N − l)!h3N
∫ dΓ e−βH(Γ)η±(l)(Γ)

=
Λ3l

lh3l
∫ dΓl e−βK(pl)ρ(l)(ql)η±(l)(Γ)

=
(±1)l−1Λ3l

lh3l
∫ dΓl e−βK(pl)ρ(l)(ql)ep⋅(q−q′)/iℏ.

− βΩ±
l,0 =

(±1)l−1Λ3l

lh3l
(4π2ℏ2/Λ2)3l/2

∫ dql e−π(q−q′)2/Λ2
ρ(l)(q)

=
(±1)l−1

l
∫ dql e−π(q−q′)2/Λ2

ρ(l)(q)

=
(±1)l−1

V

l
∫ dql−1 e−π(q−q′)2/Λ2

ρ(l)(q), ql = 0.
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root of the particle volume, ρ−1/3
. In this case, for symmetrization effects to be

measurable, one requires

ρΛ3 >
˜

1.

By this criterion, only helium is affected by wave function symmetrization over the

density range of figure 7.5. But even in this case one suspects that the effects of non-

commutativity, which are O(104) times the classical pressure, quantitatively dominate

those of particle symmetrization, since ρΛ3
He <
˜

3 at this temperature (T
*
LJ = 0.6

corresponds to T ≈ 6.1 K for He). However, the qualitative effects of symmetrization in

liquid helium-4, such as superfluidity, can be remarkable (see chapters 8 and 9).

It is worth pointing out that the Gaussian exponent can be written as a quadratic form.

With ql = 0, and α = x, y, z, one simply has

where q2
jk,α = (qj,α − qk,α)2

. Here A
(l−1)

 is an (l − 1) × (l − 1) tridiagonal matrix with

2 on the main diagonal and −1 immediately above and below the main diagonal, and all

other entries 0. It is readily shown that this has determinant

This result will be used in section 7.6.

7.5.5 Second order non-commuting dimer contribution

For the case of a dimer loop, l = 2, the symmetrization function, equation (7.93), is

since the averaging makes all particle pairs equivalent. From the general expression,

equation (7.98), the dimer loop potential is

 

Note that the integrand is highly oscillatory unless q1 ≈ q2. Hence the integral vanishes

unless the two particles are close together, which means that the integral has effectively

(q − q′)2
α = q2

1;α + q2
12;α + q2

23;α + ⋯ + q2
l−2,l−1;α + q2

l−1;α

= A(l−1) : q–
l−1
α

q–
l−1
α

,––

––

∣A(l−1)∣ = 2∣A(l−2)∣ − ∣A(l−3)∣

= l.
––––––

N!

(N − 2)!2
η±(2)(ΓN) = ±

N

∑
j<k

e−qjk⋅pjk/iℏ

=
±N(N − 1)

2
e−q12⋅p12/iℏ,

− βΩ±
2 ≡ ⟨

N!

(N − 2)!2
η±(2)⟩

1

=
1

Ξ±
1

∞

∑
N=0

±zN

2h3N(N − 2)!
∫ dΓN e−βH(Γ)eW(Γ)e−q12⋅p12/iℏ.
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lost a factor of volume compared to Ξ±
1 . Conversely, the denominator of (N − 2)! is a

factor of N2 smaller than the denominator N! of Ξ±
1 . Hence in total Ω±

2 ∼ O(V −1N 2),

which is extensive, as it must be.

The second order approximation for non-commutativity, using equations (7.104) and

(7.105), is

The two momenta terms have here been separated out.

In the integrand of the loop potential, it is simplest to deal with the Gaussian exponent

for the momenta directly by completing the squares. Write U′≡ ∇U , U′′≡ ∇∇U , and

{Ũ′}jα ≡ ∇jαU −
2m

ℏ2β2 q12;α{δj,1 − δj,2}.

The final term here comes from the exponent of the dimer loop symmetrization

function. With these, that part of the exponent in the integrand that depends upon the

momenta is

where A ≡ I − ℏ2β2U′′/3m. The final equality is correct to O(ℏ2). Clearly,

A−1 = I +
ℏ2β2

3m
U′′+O(ℏ

4).

Since the sum of the squares of the eigenvalues is the trace of the square of the

matrix, one has

 

W (2) = ℏW1 + ℏ2W2

=
−iℏβ2

2m
p ⋅ ∇U +

ℏ2β3

6m2 pp : ∇∇U +
ℏ2

2m
{
β3

3
∇U ⋅ ∇U −

β2

2
∇2U}

≡ W
(2)
p + W

(2)
q .

ep ≡
−β

2m
p ⋅ p −

iℏβ2

2m
p ⋅ ∇U +

ℏ2β3

6m2 pp : ∇∇U −
q12 ⋅ p12

iℏ

=
−β

2m
p ⋅ p −

iℏβ2

2m
p ⋅ Ũ′+

ℏ2β3

6m2 pp : U′′

=
−β

2m
A : [p +

2m
2β

iℏβ2

2m
A−1Ũ′]

2

−
ℏ2β3

8m
A−1 : Ũ′Ũ′,

ln ∣ A ∣1/2 =
1
2
∑
j

ln[1 + λj]

=
1
2
∑
j

[λj −
1
2
λ2
j + ⋯]

=
−ℏ2β2

6m
∇2U −

1
4

ℏ4β4

9m2 (∇∇U) : (∇∇U).
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With these the integral over the momenta for the dimer loop grand potential with

second order expansion for the commutation factor yields

Arguably, only terms to O(ℏ2) should be retained in the exponent. The second order

approximation to the monomer grand partition function, the denominator Ξ±
1,2, is identical

to this with the replacements Ũ′(q) ⇒ U′(q) and 2(N − 2)! ⇒ N!. The full result may

be called ‘the’ Ω±
2,2 term, although of course there is more than one way of expanding the

commutation weight. As mentioned above, Ω±
2,2 is extensive.

7.6 Quantum ideal gas

For an ideal gas the potential energy is zero, U(r) = 0, and the classical Hamiltonian is

equal to the classical kinetic energy, Hid(r, p) = K(p) = p2/2m. In this case the defining

equation for the commutation function, equation (7.78), becomes

e−βK(p)ωid(q, p) =
⟨ζq ∣ e−βK̂ ∣ ζp⟩

⟨ζq ∣ ζp⟩
= e−βK(p).

Obviously, for the ideal gas the commutation function is unity, and the commutation

function exponent vanishes,

ωid(q, p) = 1, and W id(q, p) = 0.

This is to be expected since for the ideal gas the momentum eigenfunctions, ζp(r), are

also energy eigenfunctions. In view of this result, one need only retain the commuting part

of the expansion, section 7.5.4.1, Ω±,id
l ≡ Ω±,id

l,0 .

The commuting part of the l-loop grand potential, equation (7.122), requires the

classical l-particle density. For the case of the ideal gas this is (Attard 2002)

ρ(l),id(q) = Λ−3lzl.

This assumes a homogeneous system.

With this and using equation (7.126), the l-loop grand potential is

− βΩ±
2,2 =

1

Ξ±
1,2

∞

∑
N=0

±zN/2h3N

(N − 2)!
∫ dΓN e−βH(Γ)eW

(2)(Γ)e−q12⋅p12/iℏ

=
1

Ξ±
1,2

∞

∑
N=0

±zN/2h3N

(N − 2)!
∫ dqN e−βU(q)eW

(2)
q (q)

× ∣2πmkBTA(q)−1∣
1/2

e(−ℏ
2β3/8m)A(q)−1:Ũ′(q)Ũ′(q)

=
1

Ξ±
1,2

∞

∑
N=0

±zNΛ−3N

2(N − 2)!
∫ dqN e−βU(q)eW

(2)
q (q)

× e(ℏ
2β2/6m)∇2U(q)+(ℏ

4β4/36m2)(∇∇U(q)):(∇∇U(q))

× e(−ℏ2β3/8m)A(q)−1:Ũ′(q)Ũ′(q).
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The upper sign is for bosons, and the lower for fermions. This holds for l ⩾ 2. The

monomer case, l = 1, is the classical case, and direct calculation shows that 

−βΩid
1 = zV /Λ3. This is just this expression for −βΩ±,id

l
 with l = 1.

The thermodynamic relation between the pressure and the grand potential is given by

equation (2.66), p = −Ω/V . The classical ideal gas pressure is 

pcl,id = zkBT/Λ3 = −Ωid
1 /V . With these and the above result, the pressure of the

quantum ideal gas is given by

This is the known result (Pathria 1972).

The relationship between density and fugacity for the quantum ideal gas is readily

obtained from the thermodynamic result, equation (2.61),

N̄(z,V ,T ) =
−∂Ω(z,V ,T )

∂μ
.

Applying this to the loop expansion gives

7.7 Permutation loop expansion

The following treatment of the loop expansion closely follows section 3.4.3 of Attard (2021).

It is an example of the exact permutation loop expansion for general single-particle states.

The loop expansion is applied to a system of independent harmonic oscillators in section

7.7.4, which follows section 4.2 of Attard (2021). The permutation loop expansion plays an

essential role in the treatment of Bose–Einstein condensation, superfluidity, and

superconductivity in subsequent chapters.

7.7.1 Loop expansion for single-particle states

− βΩ±,id
l =

(±1)l−1
VΛ−3lzl

l
∫ dql−1 e−π(q−q′)2/Λ2

=
(±1)l−1

VΛ−3lzl

l
(

2πΛ2

2π
)

3(l−1)/2

∣A(l−1)∣
−3/2

=
(±1)l−1Λ−3V zl

l5/2
.

––

βp±,id(z,T )Λ3 =
−βΛ3

V

∞

∑
l=1

Ω±,id
l

=
∞

∑
l=1

(±1)l−1
zll−5/2.

ρ±,id(z,T ) =
1
β

∂βp±,id(z,T )
∂z

∂z
∂μ

= Λ−3
∞

∑
l=1

(±1)l−1
zll−3/2.
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In section 7.5, a permutation loop expansion of the symmetrization function contribution to

the grand potential was given. This used momentum single-particle states. An analogous

expansion holds for non-interacting particles in terms of single-particle energy states (see

section 3.4.3 of Attard (2021)).

The sum over states for the grand partition function, whose logarithm is the grand

potential, can be made unrestricted, equation (7.71), by invoking the symmetrization factor

(Attard 2021 section 3.2), which requires the sum over all permutations of the quantum

states, equation (7.66). We now obtain a systematic series expansion for the

symmetrization factor and hence the grand potential using single-particle energy states.

For N particles, the unsymmetrized normalized sub-system basis functions for single-

particle states are

ϕn(r) =
N

∏
j=1

ϕ
(1)
nj

(rj), ⟨nj ∣ n′
j⟩ = δnj,n′

j
.

Recall that for the quantum state, a bold face label indicates the system state, 

n = {n1,n2, … ,nN}, and a plain type indicates a single-particle state, n or nj. Such

single-particle state labels may be multi-dimensional.

The symmetrization factor, equation (7.66), is

χ±
n = ∑

P̂

(±1)p⟨ϕn(P̂r) ∣ ϕn(r)⟩.

The sum over all particle permutators is systematically decomposed into sums over

permutation loops and their products, equation (7.91), and the symmetrization factor is the

sum of the expectation values of these loops. The monomer symmetrization factor is unity,

χ
±,(1)
n = ⟨ϕn(r) ∣ ϕn(r)⟩ = 1.

The dimer symmetrization factor for particles j and k in the state n is

This dimer symmetrization factor for the permutation of particles j and k only involves

their respective single-particle wave functions.

Similarly the trimer symmetrization factor is

Again since the expectation values of the unpermuted monomers each contribute a

factor of unity, only the permuted particles and their states contribute to this.

χ
±,(2)
n;jk = ± ⟨ϕn(P̂jkr) ∣ ϕn(r)⟩

= ± ⟨ϕ
(1)
nj

(rk) ∣ ϕ(1)
nk

(rk)⟩ ⟨ϕ
(1)
nk

(rj) ∣ ϕ(1)
nj

(rj)⟩

= ± ⟨nj ∣ nk⟩ ⟨nk ∣ nj⟩.

χ
±,(3)
n;jkl = ⟨ϕn(P̂jkP̂klr) ∣ ϕn(r)⟩

= ⟨ϕ
(3)
nj,nk,nl

(rl, rj, rk) ∣ ϕ(3)
nj,nk,nl

(rj, rk, rl)⟩

= ⟨ϕ
(1)
nk

(rj) ∣ ϕ(1)
nj

(rj)⟩ ⟨ϕ
(1)
nj

(rl) ∣ ϕ(1)
nl

(rl)⟩ ⟨ϕ
(1)
nl

(rk) ∣ ϕ(1)
nk

(rk)⟩

= ⟨nk ∣ nj⟩ ⟨nj ∣ nl⟩ ⟨nl ∣ nk⟩.
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In general for single-particle states the l-loop symmetrization factor is

The product of Kronecker-deltas means that this is only nonzero if all the particles in

the permutation loop occupy the same single-particle state. This result is exact, correct,

and necessary, even for fermions. It is only the sum over all permutations (i.e. over all

permutation loops and products thereof) that must come to zero if more than one fermion

is in the same single-particle state. In section 7.7.4 it will be shown by explicit calculation

that this expression gives the known textbook result for independent harmonic oscillators

for both bosons and fermions.

Since the particle states are independent, disjoint permutation loops factorize into the

product of their corresponding expectation values. Hence the factor for the product of

dimer loops reduces to the product of dimer symmetrization factors,

By definition of distinct permutations, the i, j, k, and l must all be different, in which

case this factorization is exact. By this same argument, a similar factorization holds for the

symmetrization factors of all products of permutation loops.

Because the symmetrization factor χn is the sum over all permutations, it can be

rewritten as the sum over all possible monomers and loops. This gives the loop expansion

for the symmetrization factor for use in the partition function as

Note that the parity factor for fermions and bosons, (±1)l−1
, has been incorporated

into the definition of the χ
±,(l)
n . This is analogous to the result for the symmetrization

function for classical phase space, equation (7.95). Accordingly, the factorization of the

grand partition function when written in terms of the present single-particle energy states

is identical.

The grand partition function is

Ξ±(μ,V ,T ) =
∞

∑
N=0

zNZ±(N ,V ,T ) =
∞

∑
N=0

zN

N!
∑

n

χ±
n e−βHn ,

where the fugacity is z = eβμ, μ being the chemical potential, and the total energy

eigenvalue is Hn = ∑N
j=1 ϵnj

, with the single-particle energy eigenvalue being written 

ϵnj
≡ H

(1)
nj

.

Analogous to the derivation for momentum states in section 7.5, the loop expansion and

resummation gives the grand partition function using single-particle energy states as

χ
±,(l)
n;j1j2…jl

= (±1)l−1⟨nj1 ∣ nj2⟩ ⟨nj2 ∣ nj3⟩ ⋯ ⟨njl ∣ nj1⟩

= (±1)l−1
δnj1 ,nj2

δnj2 ,nj3
⋯ δnjl

,nj1
.

χ
±,(2,2)
n;ij,kl = ⟨ϕn(P̂ijP̂klr) ∣ ϕn(r)⟩

= ⟨ϕn(P̂ijr) ∣ ϕn(r)⟩ ⟨ϕn(P̂klr) ∣ ϕn(r)⟩

= χ
±,(2)
n;ij χ

±,(2)
n;kl .

χ±
n = 1 + ∑

ij

′χ±,(2)
n;ij + ∑

ijk

′χ±,(3)
n;ijk + ∑

ijkl

′χ±,(2)
n;ij χ

±,(2)
n;kl + ⋯
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where ml is the number of loops of l particles, and the loop grand potential for l ⩾ 2 is

given by

This formula also holds for the monomer grand potential, l = 1.

Notice how equation (7.147) for the loop symmetrization factor collapses the l sums

over all loop particles’ single-particle states to a single sum over the single-particle states,

since the loop symmetrization factor is only nonzero when all the loop particles are in the

same single-particle state. This makes the loop expansion very efficient. If one includes M

single-particle states and L loop potentials, then there are just L × M terms in the series for

the grand potential. The contribution of successive loops decays exponentially with l, so L

need not be large. Contrast this with the direct calculation of the partition function for N̄

particles, which would require on the order of N̄
M

 terms.

The grand potential is given by the logarithm of the grand partition function, 

Ω±(μ,V ,T ) = −kBT ln Ξ±(μ,V ,T ), which is just the sum of the loop potentials,

Even with permutation symmetrization, this reduces to a sum over single-particle

states, as one might expect for independent, non-interacting particles.

In the case that the particles can move throughout the volume of the sub-system V, the

loop potentials are extensive. That is, they scale with the volume of the sub-system

(assuming no externally applied potential). Hence one can define the loop grand potential

Ξ±(μ,V ,T ) = Ξ1 + (−βΩ±
2 )Ξ1 + (−βΩ±

3 )Ξ1 +
1
2

(−βΩ±
2 )2Ξ1 + ⋯

= Ξ1 ∑
{ml}

∏∞
l=2

1
ml!

(−βΩ±
l )ml

= Ξ1 ∏∞
l=2

∞

∑
ml=0

1
ml!

(−βΩ±
l )ml

= Ξ1 ∏∞
l=2 e−βΩ±

l ,

− βΩ±
l =

zl

l
∑

n1,…,nl

e−βH
(l)
n1…nlχ

±,(l)
n1…nl

=
(±1)l−1

zl

l
∑

n1,…,nl

e−βH
(1)
nl δnl,n1 ∏l−1

j=1[e−βH(1)
nj δnj,nj+1]

=
(±1)l−1

zl

l
∑
ϵ

e−lβϵ

− βΩ±(μ,V ,T ) = − β
∞

∑
l=1

Ω±
l .

=
∞

∑
l=1

(±1)l−1
zl

l
∑
ϵ

e−lβϵ

= ∓ ∑
ϵ

ln [1 ∓ ze−βϵ].
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density, Ω±
l (μ,V ,T )/V . The reason that the loop potentials are extensive is that the

center of mass of the l-mer is free to roam throughout the homogeneous volume V. But the

particles of the loop must remain in the vicinity of the center of mass because of the

connectivity of the loop. It is essential that the loop potentials are extensive because the

grand potential of the quantum system has to be extensive.

7.7.2 Occupancy of single-particle energy states

The fugacity derivative of the grand potential gives the average or most likely number,

equation (2.61)

N̄ =
z∂(−βΩ±(μ,V ,T ))

∂z
= ∑

ϵ

ze−βϵ

1 ∓ ze−βϵ
.

From this one sees that the average occupancy of a single-particle state is

⟨Nϵ⟩
± =

ze−βϵ

1 ∓ ze−βϵ
.

For fermions, the lower sign, this is less than unity, and for bosons, the upper sign, it

diverges for the ground energy state, ϵ = 0, as z → 1−.

Since the grand partition function for single-particle energy states can be written as a

sum over occupancies,

Ξ± =
∞

∑
N=0

zN ∑
N

′∏
ϵ

e−βNϵϵ,

one sees that the average occupancy can also be obtained from the energy derivative,

⟨Nϵ⟩
± = −β−1 ∂Ξ±

Ξ±∂ϵ
= −β−1 ∂(−βΩ±)

∂ϵ
.

Similarly, one sees that the fluctuation squared is

Hence the relative fluctuation in occupancy is given by

 

⟨N 2
ϵ ⟩

±
− (⟨Nϵ⟩

±)
2

= − β−1 ∂
∂ϵ

⟨Nϵ⟩
±

=
ze−βϵ

[1 ∓ ze−βϵ]2 .

⟨N 2
ϵ ⟩

±
− (⟨Nϵ⟩

±)
2

(⟨Nϵ⟩
±)

2 = z−1eβϵ

=
1

⟨Nϵ⟩
±

± 1.
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For classical statistics the second term on the right-hand side of the final equality would

be missing, in which case one sees that the relative fluctuations decrease with increasing

average occupancy. For fermions, the lower sign, the fluctuations are less than the classical

case. For the fully occupied fermion case at low temperatures, ⟨Nϵ⟩
− → 1, the fluctuations

vanish. For bosons, the upper sign, a state with high average occupancy, ⟨Nϵ⟩
+ ≫ 1, has

relative fluctuation of order unity. This is quite different to the classical case, and it means

that the state might sometimes be occupied by many times the average number of bosons.

Equally, a state highly-occupied on average has non-negligible probability of being few-

occupied or even empty. This latter observation will prove of some significance in the

discussion of the Bose–Einstein condensation in chapter 8, and of superfluidity in chapter 9.

7.7.3 Effective pair potential for ideal particles

Following section 3.4.1.3 of Attard (2021), one can analyze the effect of symmetrization on

the position density for an ideal sub-system. The complete orthogonal set of position

eigenfunctions are Dirac-δ functions,

∣ q⟩ = δ(r − q),

and the symmetrized position basis functions are

∣ q±⟩ =
1

√N!

∑
P̂

(±1)pδ(P̂r − q).

This sets the symmetrization factor to unity, χ±
q = 1, which gives the correct

orthonormalization,

The right-hand side is zero unless q′′ is a permutation of q′. In the latter case, if, for

example, P̂0q′= q′′, then one term on the right-hand side is nonzero, namely 

(±1)p0δ(q′′−q′′). (This assumes that at any instant not more than one particle can occupy

a given position.) This is the correct normalization for the continuum.

The quantum probability density for the superposition of position, neglecting

proportionality constants, is

⟨q′± ∣ q′′±⟩ = ∑

P̂′, P̂′′

(±1)p′+p′′ 1
N!

∫ dr δ(P̂′r − q′)δ(P̂′′r − q′′)

=
1
N!

∑

P̂′, P̂′′

(±1)p′+p′′
δ(P̂′q′−P̂′′q′′)

= ∑
P̂

(±1)pδ(P̂q′−q′′).



(7.1

63)

(7.1

64)

(7.1

65)

(7.1

66)

Here ϕ±
p (r) is a symmetrized momentum eigenfunction, and χ±

p
 is the associated

symmetrization factor that ensures the correct normalization and completeness condition.

The momentum eigenfunctions are also energy eigenfunctions of the ideal gas Hamiltonian

operator. Now

With this and transforming to the momentum continuum, one sees that the position

probability density is proportional to

Here and throughout, the thermal wave length is Λ ≡ √2πℏ2/mkBT . The diagonal

element of the particle position density is therefore

where j′ is the label of particle j after the permutation P̂.

The nature of the Gaussians that appear here means that the particle position density is

dominated by permutations amongst particles that are close together (since in order for 

WN(q′′, q′) ∝ ⟨q′′±∣ e−βĤ ∣ q′±⟩

= ∑
p

χ±
p ⟨q′′±∣ e−βĤ ∣ ϕ±

p ⟩ ⟨ϕ±
p ∣ q′±⟩

= ∑
p

χ±
p e−βp2/2m⟨q′′±∣ ϕ±

p ⟩ ⟨ϕ±
p ∣ q′±⟩.

⟨q′′±∣ ϕ±
p ⟩ =

1

N!√χ±
p

∑

P̂′, P̂′′

(±1)p′+p′′⟨δ(P̂′′r − q′′) ∣ ϕp(P̂′r)⟩

=
1

√χ±
p

∑

P̂′

(±1)p′⟨δ(r − q′′) ∣ ϕp(P̂′r)⟩

=
1

√χ±
p

∑

P̂′

(±1)p′ϕp(P̂′q′′).

WN(q′′, q′) ∝ ∑

P̂′, P̂′′

(±1)p′+p′′ ∫ dp e−βp2/2mϕp(P̂′′q′′)ϕp(P̂′q′)
*

∝ ∑

P̂′, P̂′′

(±1)p′+p′′ ∫ dp e−βp2/2me−p⋅(P̂′′q′′)/iℏep⋅(P̂′q′)/iℏ

∝ ∑
P̂

(±1)pe
−π(q′−P̂q′′)

2
/Λ2

.

WN(q, q) = ∑
P̂

(±1)pe−π(q−P̂q)
2
/Λ2

= ∑
P̂

(±1)p ∏N
j=1 e−π(qj−qj′)

2/Λ2
,
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(qj − qj′)
2
 to be small, particle j must be close to particle j′). To leading order this is the

identity permutation, with j′= j, followed by a single transposition, say P̂jk, with j′= k and

k′= j, followed by the permutation of three particles, P̂jkℓ = P̂ℓjP̂jk, with j′= ℓ, k′= j, and

ℓ′= k, etc. Hence one can expand the density as

WN(q, q) = 1 ± ∑
j<k

e−2πq2
jk/Λ2

+ ∑
j<k<ℓ

e−πq2
jk/Λ2

e−πq2
kℓ/Λ2

e−πq2
ℓj/Λ2

+ ⋯

where qjk = qj − qk and q2
jk = qjk ⋅ qjk. The Gaussian in qjk vanishes when qjk ≫ Λ.

In the low density N/V → 0 and/or high temperature Λ → 0 limits, one has NΛ3/V ≪ 1.

Since the spacing between particles is on the order of the inverse of the cube root of the

number density, one sees that in the high temperature, low density limit the corrections

due to quantum symmetrization are negligible. This decay of symmetrization effects with

distance illustrates how it is localized to clusters of neighboring particles.

In the low density, high temperature limit the single-pair transpositions dominate the

permutation sum. In this case one can write the position probability density in Maxwell–

Boltzmann form with an effective pair potential (Pathria 1972, section 5.5, Attard 2021,

equation (3.43)),

v(qjk) = −kBT ln [1 ± e−2πq2
jk/Λ2

].

This potential is for ideal particles and it arises from wave function symmetrization.

The upper sign is for bosons and the lower sign is for fermions. This is graphed in figure

7.6. One can see that wave function symmetrization induces an effective attraction

between bosons and an effective repulsion between fermions. This is how particle

occupancy statistics manifest themselves in the continuum. Although this effective

potential was derived for ideal non-interacting particles, one will not go too far wrong in

thinking of real interacting particles as having a similar effective potential.

Figure 7.6. Effective pair potential due to wave function symmetrization for ideal

bosons (solid curve) and ideal fermions (dashed curve).

7.7.4 Quantum harmonic oscillators
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For the case of the simple harmonic oscillator of frequency ω in d-dimensions, the well-

known single-particle energy is (Messiah 1961, Merzbacher 1970)

ϵn = [
d

2
+ nx + ny + ⋯ + nd]ℏω,

with the quantum state label being nα = 0, 1, 2, …. Below for brevity we shall often

sum over ϵ rather than n. Using the above loop expansion, the grand potential for a system

of non-interacting simple harmonic oscillators is therefore

Note that this diverges for z > edβℏω/2.

The average energy of this system of independent harmonic oscillators is

This is plotted in figure 7.7, where the monomer l = 1 term may also be called the

result for classical or distinguishable particles. It can be seen that at fixed temperature the

average energy increases with increasing fugacity. In general, the average energy for

bosons is greater than that for fermions, and the monomer energy lies between the two. At

low values of the fugacity all three energies converge. As z → edβℏω/2, the boson energy

diverges.

− βΩ± =
∞

∑
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(±1)l−1
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l
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α=x
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l
[
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]
d
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Figure 7.7. Average energy of a system of independent harmonic oscillators at 

βℏω = 1 and d = 3 for bosons (full curve), for fermions (long dashed curve), and for

monomers (short dashed curve). From Attard (2021).

The average number of oscillators in the open system is given by the fugacity derivative

of the grand potential. Hence the average number of oscillators in a permutation loop of

size l is

The average number of oscillators in total is

⟨N⟩±
z,T = −βz(

∂Ω±

∂z
)

T

=
∞

∑
l=1

(±1)l−1
zl[elβℏω/2 − e−lβℏω/2]

−d

.

It can be seen in figure 7.8 that the average number increases monotonically with

increasing fugacity. Fractional numbers of course result from the averaging process. At low

values of the fugacity particle statistics again have no influence, and all three cases—

bosons, fermions, and monomers—coincide. In general, there are more bosons for a given

fugacity than fermions, and the number of monomers lies between the two. The average

number of bosons diverges in the limit z → edβℏω/2
. The average energy per particle, 

⟨Ĥ⟩±
z,T/⟨N⟩±

z,T , at constant temperature with increasing fugacity decreases monotonically

for bosons, and increases monotonically for fermions. For monomers it is a constant (equal

to the ratio of the first terms in the respective series) that lies between the two.

⟨N⟩
±,(l)
z,T = − βz(

∂Ω±,(l)

∂z
)

T

= (±1)l−1
zl∑

n

e−βlεn

= (±1)l−1
zle−dlβℏω/2 ∏d

α=x

∞

∑
nα=0

e−lβℏωnα

= (±1)l−1
zl[elβℏω/2 − e−lβℏω/2]

−d
.
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Figure 7.8. Average number of independent oscillators in the system at βℏω = 1 and

d = 3 for bosons (full curve), for fermions (long dashed curve), and for monomers

(short dashed curve). From Attard (2021).

7.7.5 Conventional quantum oscillators and interpretation

Although the present derivation of the general result for non-interacting particles via the

loop expansion is different to the approach usually taken in textbooks, it may be shown to

agree with those standard results. The loop series provides a novel interpretation of how

symmetrization effects contribute to the grand potential.

Following Pathria (1972 section 6.2), single-particle states labeled by ε can be occupied

by Nϵ = 0, 1, … ,N± particles, with N+ = ∞ for bosons, and N− = 1 for fermions. The

grand partition function is the weighted sum over all possible occupancies of each state,

The sums and products over energy is an abbreviated notation that visits each state

once, as is explicit in the final equality. This is the expression given by Pathria (1972). The

grand potential is given by the logarithm of this, a subsequent expansion of which yields

This agrees with the above expression based on symmetrization loops, equation

(7.153).

Again it must be emphasized that in the loop expansion all particles in the loop must be

in the same single-particle state in order for the symmetrization factor to be nonzero. This

holds even for fermions. From this perspective it is remarkable that the loop expansion

approach gives the same result as the textbook particle occupancy approach, which

explicitly excludes system states with more than one fermion in the same single-particle

state.

For the case of a system of independent simple harmonic oscillators, the first equality in

equation (7.175) is
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−βΩ± = ∓
∞

∑
nx=0

⋯
∞

∑
nd=0

ln [1 ∓ ze−βℏωd/2e−βℏωnx ⋯ e−βℏωnd].

This multi-dimensional sum over possible energy states is not as neat as the one-

dimensional sum over symmetrization loops, equation (7.170). That latter appears to be

rapidly converging and computationally efficient.

Although the present approach and the textbook approach arrive at the same result for

ideal states, the present approach proceeds from a rather different view-point, namely that

the symmetrization of the wave function is the fundamental axiom, and that the occupancy

of states (multiple for bosons, single for fermions) is a quantity derived from it. The present

approach is extremely useful when the results are transformed to the continuum that is

classical phases space. In the case of the continuum it is impossible to define

unambiguously discrete states and the occupancy thereof, whereas the symmetrization of

the wave function itself remains a valid concept.

7.8 The classical world

In view of the above formulation of quantum statistical mechanics as an expansion with

classical statistical mechanics as the leading term, it is of interest to discuss the origin of

the classical world around us. The puzzle is that the underlying laws of the Universe must

be quantum mechanical, but the behavior that we actually observe, and the equations of

motion that have historically been developed to describe the world quantitatively, are

classical in nature. How in actual fact does quantum mechanics give rise to classical

behavior in general, and to classical mechanics in particular, on the terrestrial sphere?

The usual answer to this question, with which teachers have fobbed off students for

generations, is that quantum mechanics applies to the very small, and that classical

mechanics applies to macroscopic objects. This answer is as unsatisfactory as it is

uninformative. It is nothing more than a restatement of the original question and it

provides no mechanistic explanation as to why the everyday world is classical.

It seems to me that a genuine attempt to address this issue should proceed in two

stages. First qualitatively, namely to explain why quantum phenomena are absent from

everyday experience. And second quantitatively, namely to demonstrate how Newton’s

(equivalently, Hamilton’s) equations of motion account for the movement that we observe

and measure.

The following discussion invokes the quantum statistical mechanical results of sections

7.3 and 7.4 for a sub-system interacting with a reservoir. We shall apply those results to

part of a macroscopic object, taking it as axiomatic that if any part behaves classically,

then the object as a whole must behave classically. The results also imply the classical

behavior of individual microscopic particles and molecules that interact with each other

and with an environment.

The non-classical world is defined by three quantum phenomena: lack of simultaneity

for certain variables (non-commutativity), the superposition of states (coherence, or

interference), and the complete symmetrization or anti-symmetrization of the wave

function with respect to particle interchange. These are absent in the classical Universe,

where in the first place there is no impediment in principle to measuring any two properties

at the same time, which is to say that the system can be simultaneously in macrostates of

different collectives. Also, a classical measurement of a property yields only one value at a

time, which is to say that it is in one and only one state of a collective at a time, and that

these states cannot interfere with each other. Finally, classically identical particles can be

interchanged without measurable consequences.

The results in section 7.3 explain the absence of the superposition of states in the

classical world around us. There it was shown that the conservation law for the exchange of
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energy and material between a sub-system and a reservoir (equivalently, an open system

and its environment) caused the total wave function to become entangled, which caused

the suppression of the superposition of the principle quantum states, and the cancelation

of the superposition of the degenerate quantum states. The result of this collapse of the

total wave function is that the sub-system is manifest as a mixture of pure quantum states,

which do not interfere with each other and which defines a classical statistical system.

This result explains the corresponding absence of superposition states in our classical

world. Any macroscopic particle, can be considered as the sum total of sub-systems that

can exchange energy and material with each other. Hence each such sub-system acts as a

mixture of pure states, and the total wave function of such an object has collapsed.

Measurements of the mass, energy, position, or momentum of the object yield results

compatible with classical experience.

The formulation of quantum statistical mechanics in section 7.4 showed that the effects

of non-commutativity of the position and momentum operators could be dealt with by a

particular expansion, the leading order term of which corresponded to the classical case in

which both could be measured simultaneously. Higher order terms, which are weighted by

powers of Planck’s constant and of inverse temperature, are negligible at terrestrial

temperatures and pressures. As above, any macroscopic object must therefore behave

classically in so far as it simultaneously possesses a well-defined position and momentum.

Also, in section 7.4 wave function symmetrization was expressed as an expansion, with

the higher order term depending on the spacing between particles relative to their thermal

wave length. Again, for terrestrial temperatures and pressures, these are practically

negligible. Hence any macroscopic object must behave classically in so far as insensitivity

to identical particle interchange is concerned.

The analysis of sections 7.3 and 7.4 explains qualitatively the origins of the classical

nature of the world around us given the underlying quantum properties of the atoms and

molecules. The three unique features of a quantum system—the superposition of states,

the lack of simultaneity, and particle interchange total symmetry or asymmetry—are

absent in the observed Universe because of the collapse of the total wave function due to

entanglement, and because the effects of non-commutativity and of interchange symmetry

are quantitatively negligible at terrestrial temperatures and pressures. This argument,

which was made explicitly for macroscopic particles, also holds for microscopic particles

and molecules that interact with each other and their environment.

It remains to explain how the quantitative characterization of classical motion, namely

Hamilton’s equations of motion, arise from Schrödinger’s equation. An elementary result in

quantum mechanics is Ehrenfest’s theorem (Messiah 1961, Merzbacher 1970). For a

system in the wave state ψ, the particle positions and momenta are given by the

expectation values

q(ψ) = ⟨ψ ∣ q̂ ∣ ψ⟩, and p(ψ) = ⟨ψ ∣ p̂ ∣ ψ⟩.

Ehrenfest’s theorem says that the (adiabatic) rate of change of these is given by the

expected derivatives of the Hamiltonian operator,

q̇
0(ψ) = ⟨ψ ∣

∂Ĥ

∂p̂
∣ ψ⟩, and ṗ

0(ψ) = ⟨ψ ∣
−∂Ĥ

∂q̂
∣ ψ⟩.

The Hamiltonian operator is just the classical Hamiltonian function of the position and

momentum operators, Ĥ ≡ Hcl(p̂, q̂). Ehrenfest’s theorem derives directly from

Schrödinger’s equation (Messiah 1961, Merzbacher 1970).

The derivation of the first of these from Schrödinger’s equation is
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The Hermitian nature of the Hamiltonian operator gives the second equality, and

integration by parts gives the fourth equality after some cancelation. The derivation of the

second of these from Schrödinger’s equation is

The fourth equality follows from the product rule for differentiation, since the gradient

operator acts on everything to its right.

For the case of momentum eigenfunctions, p̂ ∣ ζp⟩ = p ∣ ζp⟩, the first of these is just

q̇
0 = ⟨ζp ∣

∂Ĥ

∂p̂
∣ ζp⟩ =

∂Hcl(p, q)
∂p

,

since in an eigenstate, the expectation of a function of an operator is just that function

of the eigenvalue. For the case of position eigenfunctions, q̂ ∣ ζq⟩ = q ∣ ζq⟩, the second of

these is just

ṗ
0 = ⟨ζq ∣

−∂Ĥ

∂q̂
∣ ζq⟩ =

−∂Hcl(p, q)
∂q

.

These are just Hamilton’s equations of motion. Since we have just seen that any

macroscopic object or microscopic particle that interacts with its environment is

q̇
0(ψ) = ⟨ψ ∣ q̂ ∣ ψ̇

0
⟩ + ⟨ψ̇

0
∣ q̂ ∣ ψ⟩

=
1
iℏ

⟨ψ ∣ {q̂Ĥ− Ĥq̂} ∣ ψ⟩

=
−ℏ2/2m

iℏ
∫ dr ψ(r)*{r∇2 − ∇2r}ψ(r)

=
−iℏ
m

∫ dr ψ(r)*∇ψ(r)

=
1
m

⟨ψ ∣ p̂ ∣ ψ⟩

= ⟨ψ ∣
∂Ĥ

∂p̂
∣ ψ⟩.

ṗ
0(ψ) = ⟨ψ ∣ p̂ ∣ ψ̇

0
⟩ + ⟨ψ̇

0
∣ p̂ ∣ ψ⟩

=
1
iℏ

⟨ψ ∣ {p̂Ĥ− Ĥp̂} ∣ ψ⟩

= − ∫ dr ψ(r)*{∇U(r) − U(r)∇}ψ(r)

= − ∫ dr ψ(r)*
ψ(r)∇U(r)

= ⟨ψ ∣
−∂Ĥ

∂q̂
∣ ψ⟩.



simultaneously in a well-defined position and momentum state, this shows how in the

terrestrial sphere Hamilton’s (equivalently, Newton’s) classical equations of motion apply.

Summary

The wave space of an isolated quantum system has uniform weight. This implies that

the microstates of an isolated system have equal weight.

In an open quantum system, the conservation laws entangle the wave functions of the

sub-system and reservoir, which causes them to collapse into principle entropy states.

Statistical averaging over the reservoir causes the degenerate entropy states to also

collapse. These mean that an open sub-system is a mixture of pure entropy

microstates.

The probability operator is the exponential of the entropy operator, which, for the

canonical equilibrium system, is the negative of the sub-system Hamiltonian operator

divided by the reservoir temperature.

The partition function and statistical average are the weighted sum over distinct,

allowed entropy microstates. Accounting for symmetrization transforms this into a sum

over all entropy microstates, and thence into a double sum over simultaneous position

and momentum states.

Written as an integral over classical phase space, the partition function and the

statistical average include the classical Maxwell–Boltzmann weight, a commutation

factor for the position and momentum states, and a permutation loop factor from wave

function symmetrization.

Expansion of these factors in powers of Planck’s constant shows that classical

statistical mechanics is the leading order contribution to quantum statistical

mechanics. Classical mechanics is just quantum statistical mechanics for an open

system.
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Chapter 8

Entropy in Bose–Einstein condensation and the λ-

transition

‘McLennan noticed that when pumping to cool it down, liquid helium stopped boiling
below 2.2 K’

S Balibar (2017)

‘In 1924… Einstein remarked that this removal of the last vestige of individuality … would
imply a statistical preference of the molecules for having the same velocity, and this
preference would lead, at a well-defined temperature, to a kind of change of state of
aggregation; the molecules would ‘condense’ into the lowest quantum state, the state of
momentum zero.’

F London (1950)

8.1 Introduction

It is generally believed that Bose–Einstein condensation signifies the occupancy of the

ground energy state. Here evidence is presented that condensation is instead into multiple

multiply-occupied momentum states.

The λ-transition in liquid helium-4 is signified by a sharp spike in the heat capacity at

2.17  K and the onset of superfluidity. This chapter applies the classical phase space

formulation of quantum statistical mechanics to the phenomenon. Compared to existing

treatments, what is new is the formulation in terms of momentum states, the emphasis on

the permutation entropy, and the inclusion of interactions between the 4He bosons. Initially

at least, the analysis follows previous presentations (Attard 2021, chapter 5, Attard 2022).

The λ-transition in liquid helium is one of the earliest quantum phenomenon discovered

in a condensed matter system (Keesom et al 1927, 1932). Since the heat capacity at the

spike appeared to be continuous, Keesom et al (1927) argued that the transition was a

second order liquid–liquid phase transition, which they dubbed helium I at high

temperatures and helium II at low. F London (1938) made the connection with Bose–

Einstein condensation, which had been theorized to occur at low temperatures when the

majority of bosons transitioned from occupying the excited energy states to occupying the

ground energy state (Landsberg 1954). F London (1938) analyzed ideal (non-interacting)

bosons, and showed that they had a peak in the heat capacity that resembled the λ-

transition. For ideal bosons with the mass of 4He this occurred at T id
λ = 3.13 K, which is

remarkably close to the measured value of Tλ = 2.17 K (Donnelly and Barenghi 1998).

Tisza (1938) suggested that superconductivity, which had been observed at and below the

λ-transition, could be explained by a mixture of the two fluids, with He I comprising bosons

in the excited energy states with normal viscosity, and He II being composed of bosons in

the ground energy state and having zero viscosity.

Landau (1941) proposed a different model of the λ-transition and superfluidity to that of

F London (1938) and Tisza (1938). He eschewed the ideas of Bose–Einstein condensation,

the two-fluid model, and the non-interacting boson picture and instead attempted to

quantize hydrodynamics by including collective behavior for interacting bosons as quantum

excitations (phonons). He postulated the existence of rotons, whose energy spectrum he
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fitted to measured heat capacity data. Later theoretical work focussed on interpreting

rotons as quantized vortices (Feynman 1954, Kawatra and Pathria 1966, Pathria 1972),

although direct evidence for this is lacking. Landau (1941) never accepted Bose–Einstein

condensation as playing a role in the λ-transition, nor that Tisza’s two-fluid model of

superfluidity would not display friction and viscosity from collisions. Accounts of the

fascinating history of the λ-transition and superfluidity have been given by Donnelly (1995,

2009) and by Balibar (2014, 2017). Griffin (1999) has reviewed the theoretical

developments in the understanding of Bose–Einstein condensation.

The analysis of Bose–Einstein condensation and the λ-transition in this chapter begins

with ideal bosons, sections 8.2 and 8.3. The formal analysis for interacting bosons and

Monte Carlo computer simulation results are then given for pure permutation loops, section

8.4, and for mixed loops, section 8.5. This is followed by a discussion of the physical

interpretation of the analysis and results, section 8.6.

The analysis in this chapter is based upon the binary division of bosons into either

ground momentum state or else the set of excited momentum states, which form a

continuum. This is a first approximation that makes direct contact with F London’s (1938)

original ideal boson analysis, and it also enables a relatively simple Monte Carlo simulation

algorithm for interacting bosons. Undoubtedly it contains many elements of reality and it

reveals the major physical principles that underly the λ-transition. However, some of the

predictions that arise from this simple binary division at and below the λ-transition are

difficult to reconcile with experimental measurement. At the end of this chapter, in section

8.6.6, and in the following chapter 9, a more nuanced model is discussed that replaces

condensation into the ground momentum state by condensation into low-lying momentum

states. This appears to be more realistic below the λ-transition, particularly in

understanding the mechanism that underpins superfluid flow.

8.2 Ideal boson approach to the λ-transition

We now analyze Bose–Einstein condensation for ideal bosons. In this case the energy is

purely kinetic, and energy states are effectively equivalent to momentum states. This is a

significant point, which is useful in that it allows a deliberate ambiguity in referring to the

ground state: one does not have to decide whether it is energy or momentum

condensation that is occurring. On the other hand, it can lead to confusion, because for

interacting bosons energy and momentum states are no longer equivalent. Because the

ideal boson calculations appear to give Bose–Einstein condensation into the energy ground

state, it has often been assumed that the same applies for interacting bosons. Logically,

however, one should consider the possibility that the correct generalization of the ideal

boson results to interacting bosons is that condensation occurs in the momentum ground

state, which in such a case is not equivalent to the energy ground state. From the

formulation of quantum statistical mechanics in chapter 7, the reader may anticipate that

in this and the following chapters the view is that condensation is into momentum states,

which in the binary division approximation is the momentum ground state.

8.2.1 Loop forms of the grand potential and number

The grand partition function, equation (7.71), for bosons, in terms of energy states, is

Here N is the number of bosons, the fugacity is z ≡ eβμ
, where μ is the chemical

potential, and β = 1/kBT  is sometimes called the inverse temperature, with kB being

Boltzmann’s constant and T the temperature. In the context of the following discussion,

Ξ+ =
∞

∑
N=0

zN

N!
∑

n

χ+
n e−βHn .
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small fugacity means z → 0, and large fugacity means z → 1 −
. For ideal non-interacting

bosons, the energy states are the sum of single-particle kinetic energy states,

Hn = Kn =
N

∑
j=1

K
(1)
nj

=
1

2m

N

∑
j=1

p
2
nj

,

where m is the boson mass and pα,nαj
= nαjΔp is the α-component of momentum of

boson j, with the quantized momentum states being nαj = 0, ±1, ±2, …. We shall assume

ordinary three-dimensional space, with the bosons being confined to a cube of volume 

V = L3, giving the spacing between momentum states as Δp = 2πℏ/L (Merzbacher

1970, Messiah 1961). Because these are single-particle energy states, the analysis of

section 7.7 holds, and the grand potential is given by equation (7.150) applied to bosons

Here n1 is a single-particle momentum state label.

Now transform the sum over states to a continuum integral. We need to retain the

discrete ground momentum state explicitly in order to identify condensation. Therefore, to

correct for double counting, we need to subtract the integral over the ground momentum

state interval. This gives

The thermal wavelength is Λ = √2πℏ2β/m.

The asymptotic forms of the error function are erf(x) ∼ (2/√π)x, x → 0, and 

erf(x) ∼ 1 − e−x2
/√π x, x → ∞ (Abramowitz and Stegun 1970). It follows that the

limiting results for the loop grand potential are

In the limit of small argument, lΛ2/L2 ≪ 1 (high temperature, small loops), the two

ground state contributions cancel exactly and only the integral over excited states

survives. In the limit of large argument, lΛ2/L2 ≫ 1 (low temperature, large loops), the

− βΩ+(μ, V , T ) = − β
∞

∑
l=1

Ω+,(l).

=
∞

∑
l=1

zl

l
∑
n1

e−lβK
(1)
n1 .

− βΩ+,(l) =
zl

l
[1 + Δ−3

p ∫ dp e−lβp2/2 m − Δ−3
p ∫

Δ3
p

dp e−lβp2/2 m]

=
zl

l
1 + (

L2

lΛ2
)

3/2

− (
L2

lΛ2
)

3/2

erf (√
2πlΛ2

8L2
)

3

.
⎡

⎣

⎤

⎦

− βΩ+,(l) ∼

⎧⎪⎨⎪⎩ zl

l
(

L2

lΛ2
)

3/2

, lΛ2/L2 ≪ 1,

zl

l
, lΛ2/L2 ≫ 1.
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integral over excited states cancels with the integral about the ground state, and only the

discrete ground state contribution survives.

Each of these two asymptotic limits dominates the other in its respective regime. Hence

if we simply add them together the resultant function is guaranteed correct in both

asymptotic limits,

When summed over l this gives

This is the same as the expression given by F London (1938) (see also Pathria (1972

chapter 7)). The first term is the discrete ground state contribution and the second term is

the continuum excited state contribution. The contribution from the ground state correction

integral about the origin has been neglected. One sees that the approximate expression

gives the correct result in the two respective asymptotic limits. It might therefore be

expected to be a reasonable approximation throughout, as is confirmed in section 8.3.

The excited state contribution here is extensive, being proportional to volume V. From

this one sees that for small values of the fugacity, z ≪ 1, the excited states dominate the

grand potential.

It will be shown next that z = N̄
+
0 /(1 + N̄

+
0 ) → 1 − 1/N̄

+
0  in the large fugacity limit.

Hence the ground state contribution grows as the logarithm of system size, −βΩ+
0 ∼ ln N̄ ,

which is relatively negligible. Hence for all values of the fugacity only the excited state

contribution to the boson grand potential itself needs to be retained (Pathria 1972 section

7.1). This does not hold for the derivatives of the grand potential.

8.2.1.1 Number and energy of ideal bosons

The average number of bosons contributed by l-loops is the fugacity derivative of the loop

grand potential, N̄
+,(l)

= z(∂(−βΩ+,(l))/∂z)T ,V . This is evidently just l times the loop

grand potential itself,

N̄
+,(l)

= zl + Λ−3V zll−3/2, l ⩾ 1.

One can identify zl as the average number of bosons contributed by l-loops to the

ground state. The average number of bosons in the ground state in total is

N̄
+
0 =

∞

∑
l=1

zl =
z

1 − z
.

The number in the ground state evidently diverges as z → 1 − . One can invert this to

express the fugacity as z = N̄
+
0 /(1 + N̄

+
0 ), which is strictly less than one.

− βΩ+,(l) ≈
zl

l
+

zl

l
(

L2

lΛ2
)

3/2

≡ − βΩ+,(l)
0 − βΩ+,(l)

* .

− βΩ+ = − ln[1 − z] + Λ−3V
∞

∑
l=1

zll−5/2

≡ − βΩ+
0 − βΩ+

* .
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The average total number of bosons is the sum of that in the ground state and that in

the excited states, N̄
+

= N̄
+
0 + N̄

+
* . For the average number of bosons in a loop of given

size, the ratio of those in the excited states to those in the ground state is independent of

the fugacity and decreases with increasing size, N̄
+,(l)
* /N̄

+,(l)
0 ∼ l−3/2 → 0, l → ∞. As 

z → 1 − , larger loops contribute increasingly to the total number, and hence the total

proportion of contributions from the ground state also increases, N̄
+
0 /N̄

+
→ 1, z → 1 − .

One can conclude that as the fugacity approaches one from below, large symmetrization

loops become filled in the ground state but not in the excited states. Hence the extra

bosons entering the system do so in the ground state. This is the phenomenon of Bose–

Einstein condensation.

The loop energy for these ideal bosons is

Ē
+,(l)

= (
∂(βΩ+,(l))

∂β
)

V ,z

=
3

2β
Λ−3V zll−5/2.

Obviously the ground state does not contribute to this. Since the total pressure is

related to the total grand potential by βΩ+ = −βp+V , we may identify the contribution

to the pressure from each permutation loop as p+,(l) = −Ω+,(l)/V . Hence one sees that

the pressure is proportional to the energy,

p+,(l) =
2E+,(l)

3V
, and p+ =

2E+

3V
.

This is the usual result for the ideal gas.

8.2.2 Total grand potential and number

We now analyze the total grand potential and number, which are the sum of the loop

contributions. To this end it is useful to define the Bose–Einstein integral (Pathria 1972

appendix D)

This is related to the Riemann zeta-function, ζ(n) = gn(1). The symmetrization loop

analysis provides a physical interpretation for the otherwise mathematical fugacity

expansion of the Bose–Einstein integral. With this one sees that the total grand potential,

neglecting the ground state contribution, is

−βΩ+ = −
∞

∑
l=1

βΩ+,(l) = Λ−3V g5/2(z),

and, keeping the ground state, the total number is

gn(z) =
1

Γ(n)
∫

∞

0
dx xn−1 ze−x

1 − ze−x

=
∞

∑
l=1

zll−n.
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N̄
+

=
∞

∑
l=1

N̄
+,(l)

= N̄
+
0 + N̄

+
* = N̄

+
0 + Λ−3V g3/2(z).

 

In the limit z → 0, where g3/2(z) ∼ z, then N̄
+
0 ∼ z and N̄

+
* ∼ Λ−3V z. The second is a

factor of volume larger than the first, and so for a macroscopic system one concludes that

for small values of the fugacity most bosons are in excited states, and that 

N̄
+

≈ N̄
+
* ∼ Λ−3V z, which is the classical result.

The Bose–Einstein integral g3/2(z) increases monotonically with z and has largest value

at the terminus of its domain, g3/2(1) = ζ(3/2) = 2.612. It follows that the total number of

excited bosons at a given temperature is bounded, N̄
+
* (z, V , T ) ⩽ Λ(T )−3

V ζ(3/2).

For large values of the fugacity, z <
˜

1, the Bose–Einstein integral is a relatively slowly

varying function of z, g3/2(z) ≈ g3/2(1) = ζ(3/2). Hence as the fugacity is increased the

actual number of bosons in the excited states is close to the upper bound at the specified

temperature.

When the total number of bosons exceeds the maximum number that can be

accommodated in the excited states at the specified temperature, N + > Λ−3V ζ(3/2),

then the excess must go into the ground state. This is Bose–Einstein condensation.

Rewriting this criterion for the temperature one can say that condensation occurs when

T < Tc ≡
h2

2πmkB
(

N +

V ζ(3/2)
)

2/3

.

The thermal wavelength at this condensation temperature is about 40% larger than

the average spacing of neighbors in the liquid.

For low temperatures, T ⩽ Tc, the system can be regarded as a mixture of two phases:

the gaseous phase, which consists of N̄
+
* = (T/Tc)3/2

N  bosons in excited states;

the condensed phase, which consists of N̄
+
0 = N + − N̄

+
*  bosons in the ground state.

For T > Tc, there is only a gaseous phase of bosons in excited states N̄
+
* = N +

 and 

N̄
+
0 = 0. This corresponds to Keesom’s (1927) helium I. Below the λ-transition these two

coexisting phases that emerge from F London’s (1938) ideal gas model of Bose–Einstein

condensation correspond to Tisza’s (1938) two-fluid model of superconductivity, with

bosons in the ground state forming the zero-viscosity liquid. Figure 8.1 plots the fraction of

the system in the ground and excited states according to this model.
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Figure 8.1. Ideal gas model of Bose–Einstein condensation. The graph shows the

fraction of ideal bosons in the ground state (full curve) and in excited states (dashed

curve) as a function of temperature.

The boson number density is ρ(z, V , T ) = N̄
+

(z, V , T )/V . For temperatures greater

than the condensation temperature, T > Tc, ρ(z, V , T ) = Λ(T )−3g3/2(z). In the high

temperature limit this is ρ(z, V , T ) = Λ(T )−3
z, T → ∞, which is the classical result. For 

T < Tc, the ground state ground state plus continuum excited states ideal gas picture

gives ρ(z, V , T ) = z/(1 − z)V + Λ(T )−3
ζ(3/2). One expects that for fixed N, 

z ∼ 1 −O(V −1).

The pressure is proportional to the grand potential,

βp+(z, V , T ) =
−βΩ+(z, V , T )

V
= Λ(T )−3

g5/2(z),

as also derived above, equation (8.11). The present result derives from classical

thermodynamics and is based on the facts that the pressure is the volume derivative of the

grand potential, and that the grand potential is proportional to the volume. In the present

case we have shown above that the ground state contribution to the grand potential, which

is not proportional to the volume, can be neglected. The excited state contribution is

proportional to the volume, and so the above result holds in the present case. One sees

that the pressure depends upon only two intensive variables, even in the condensed

regime.

8.2.3 Heat capacity

Now for the heat capacity at constant number and volume. One has at constant volume 

dN̄ = (∂N̄/∂z)T ,V dz + (∂N̄/∂T )z,V dT . Hence (∂z/∂T )N ,V = −(∂N̄/∂T )z,V  

/(∂N̄/∂z)T ,V . Now

(
∂N̄

+

∂z
)

T ,V

=
1

(1 − z)2
+ Λ−3V z−1g1/2(z),
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since g′
n(z) = z−1gn−1(z), and

From the average loop energy found above, the average energy is

Ē
+

(z, V , T ) =
∞

∑
l=1

Ē
+,(l)

(z, V , T ) =
3

2β
Λ−3V g5/2(z).

Putting these together the heat capacity per particle at constant number and volume is

We now evaluate this for the ideal gas model above and below the transition

temperature.

For T ⩽ Tc, N̄
+
* = (T/Tc)3/2

N +
 and N̄

+
0 = N +(1 − (T/Tc)3/2). In this regime we can

take gn(z) = gn(1) = ζ(n), and (∂N̄
+

/∂z)T ,V = (1 − z)−2
. This gives

The second term in the first equality is proportional to the fugacity times the square of

the ratio of the number of bosons in excited states to the number in the ground state,

which may be taken to be negligible for temperature less than the condensation

temperature. Since in the ideal gas model of Bose–Einstein condensation 

ρΛ(T )3 = (T/Tc)−3/2
ζ(3/2), this says that at low temperatures the heat capacity is

proportional to T 3/2
.

At the condensation temperature, where ρΛ(Tc)3 = ζ(3/2) this is

C +
V (Tc)

kBN + =
15ζ(5/2)

4ζ(3/2)
= 1.925.

(
∂N̄

+

∂T
)

z,V

=
3

2
T −1Λ−3V g3/2(z).

C +
V

kBN +
=

1

kBN +
(

∂Ē
+

∂T
)

N ,V

=
1

kBN +
(

∂Ē
+

∂T
)

z,V

−(
∂Ē

+

∂z
)

T ,V

(
∂N̄

+

∂T
)

z,V

(
∂N̄

+

∂z
)

−1

T ,V

=
1

kBN + {
15kB

4
Λ−3V g5/2(z)

−
3kBT

2
Λ−3V z−1g3/2(z)

(3/2)T −1Λ−3V g3/2(z)

(1 − z)−2 + Λ−3V z−1g1/2(z)
}.

⎧
⎨
⎩

⎫
⎬
⎭

C +
V

kBN +
=

1
kBN + {

15kB

4
Λ−3V ζ(5/2) −

9kB

4
Λ−6V 2ζ(3/2)2

z−1(1 − z)2}

≈
15

4ρΛ3
ζ(5/2), T ⩽ Tc.
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(Experimentally, the measured specific heat capacity at the λ-transition is integrably

divergent.)

For T > Tc, we can neglect the ground state contributions and take 

N + = N̄
+
* = Λ−3V g3/2(z), or ρΛ3 = g3/2(z), which implicitly gives z(ρ, T ). This gives

As z → 0, this gives C +
V /kBN + → (15/4) − (9/4) = 3/2, which is the classical

result.

As z → 1, g1/2(z) → ∞, and the second term in can be neglected. The formula then

gives C +
V /kBN + = 15ζ(5/2)/4ζ(3/2), which equals the result found above at the

condensation temperature. Hence the model predicts that the heat capacity is continuous

at the condensation temperature. However, it does give a second order discontinuity at the

transition point.

For plotting purposes use the facts that ρΛ(T )3 = g3/2(z), T ⩾ Tc, which implicitly

gives z(ρ, T ), ρΛ(T )3/ρΛ(Tc)3 = (Tc/T )3/2
 at constant density, and ρΛ(Tc)3 = ζ(3/2).

Hence

C +
V

kBN +
=

15

4ρΛ3
ζ(5/2) =

15ζ(5/2)

4ζ(3/2)
(T/Tc)3/2, T ⩽ Tc,

and

C +
V

kBN +
=

15g5/2(z)

4g3/2(z)
−

9g3/2(z)

4g1/2(z)
, T > Tc,

with T (z)/Tc = [ζ(3/2)/g3/2(z)]2/3
.

These are plotted in figure 8.2, where the first order discontinuity in the heat capacity at

T = Tc is evident. It can be seen that the heat capacity asymptotes to the classical ideal

gas result at high temperatures. Also, it falls to zero as T → 0, where almost all the bosons

are in the ground state of zero energy, and those that are excited by increasing the

temperature from absolute zero are a negligible fraction of the total. The famous λ shape of

the curve is reasonably clear in the figure. The similarity in shape to the measured heat

capacity of He4 allows the laboratory data to be interpreted as signifying ground state

condensation, which is ultimately due to the fully symmetrized wave function of bosons.

Undoubtedly, particle interactions play some role in the quantitative values of the heat

capacity. For example, the transition in He4 is measured at 2.17 K, and the ideal gas model

gives Tc = 3.13 K (Pathria 1972, section 7.1). The finite value of the peak of the ideal

boson specific heat capacity contrasts with the experimentally measured integrable

divergence at the λ-transition.

C +
V

kBN + =
1

kBΛ−3V g3/2(z)
{

15kB

4
Λ−3V g5/2(z) −

9kB

4

Λ−3V g3/2(z)2

g1/2(z)
}

=
15g5/2(z)

4g3/2(z)
−

9g3/2(z)

4g1/2(z)
, T > Tc.



Figure 8.2. Specific heat capacity of ideal bosons as a function of temperature. The

dotted line is a guide to the eye.

8.2.4 Discussion of ground state condensation

There is an issue with the F London (1938) ideal boson theory for the occupancy of the

ground momentum state following condensation. As shown in equation (8.9), this gives the

number of ideal bosons in the ground momentum state as N̄
+,id
0 = z/[1 − z]. Here z is the

fugacity, which is an intensive variable.

In general the thermodynamic state of a single component system can be specified by

two intensive variables and one extensive variable (chapter 2). Any intensive variable can

be expressed as a function of two other independent intensive variables. For two fixed

intensive variables, any extensive variable is linearly proportional to any other extensive

variable. In the present case of the λ-transition, the prediction that the number of

condensed bosons, N̄
+,id
0 , is a function only of the fugacity, which is a function of the

chemical potential and the temperature, means that it is an intensive variable. Hence, this

predicts that two systems with the same pressure and temperature below the λ-transition

have the same number of condensed bosons even if they have different sizes. Since the

total number of bosons N is an extensive variable, this says that the fraction of condensed

bosons N̄
+,id
0 /N  must go to zero in the thermodynamic limit (fixed intensive variables, 

V → ∞).

On the other hand, equation (8.14) gives the number of excited momentum state

bosons as N̄
+,id
* = Λ−3V g3/2(z) ∼ Nζ(3/2)/ρΛ3, which is extensive. This means that the

number of ground momentum state bosons must also be extensive 

N̄
+,id
0 = N − N̄

+,id
* ∼ N [ρΛ3 − ζ(3/2)]/ρΛ3.

It is not possible to make the fugacity depend on number in an extensive fashion

without fundamentally changing the usual thermodynamic relationships. Hence one has to

conclude that this contradiction is an artefact of the procedures used by F London (1938) in

his analysis of condensation of ideal bosons. In section 8.6.6, it is argued that the binary

division into ground and excited momentum state bosons is responsible for the problem.

Although a reasonable first approximation, a more sophisticated picture of condensation

and superfluidity is required. In section 8.6.6 it is shown that in fact the occupancy of a

momentum state, including the ground momentum state, is an intensive variable. The

more sophisticated picture of condensation beyond the binary division is given in sections
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8.6.6, 9.2, and 9.3. The new interpretation reconciles the lack of a measured latent heat at

the λ-transition (Donnelly and Barenghi 1998), with the notion that superfluidity is carried

by condensed bosons.

8.3 Ideal bosons: exact enumeration

One can further explore the ideal gas model of Bose–Einstein condensation and the λ-

transition in liquid helium by the exact enumeration of the quantum states. This avoids the

transformation to the continuum, and the binary division approximation invoked by F

London (1938) that was just discussed.

For non-interacting particles the energy states are single-particle states. For the present

ideal gas the single-particle energy eigenvalues are

H
(1)
n1 =

Δ2
p

2m
[n2

x + n2
y + n2

z], nα = 0, ±1, ±2, … , Δp = 2πℏ/L.

Here the volume of the system is V = L3
.

The loop grand potential for ideal bosons, equation (8.3), is

where the thermal wave-length is Λ = √h2β/2πm. The total grand potential is

−βΩ+ = − ∑
nx,ny,nz

ln [1 − ze−π(Λ/L)2
n2

], n2 = n2
x + n2

y + n2
z.

This is exact. Differentiating this one can obtain expressions for the most likely

number, energy, and heat capacity as sums over states (Attard 2021 section 5.3).

8.3.1 Numerical results

Figure 8.3 shows the specific heat capacity at constant density for ideal bosons at a

function of temperature near the λ-transition. The ground state plus continuum excited

states model, equations (8.21) and (8.23) (full curve) is the same as in figure 8.2. The

exact enumeration results use the derivatives of the sum over states, which were

terminated when the Maxwell–Boltzmann exponent exceeded 20.

− βΩ+,(l) =
zl

l
∑
n1

e−lβH
(1)
n1

=
zl

l
[

∞

∑
nx=−∞

e−πl(Λ/L)2n2
x]

3

, l ⩾ 1,



Figure 8.3. Specific heat capacity of ideal bosons as a function of temperature. The

solid curve is the ground state plus continuum excited states model, section 8.2, and

the remaining curves are exact results for fixed density ρ = 0.3 and N = 500 (dotted)

and N = 5000 (short dashed). The condensation temperature Tc was defined by the

location of the maximum for each curve. The dotted line is a guide to the eye.

It can be seen that there is relatively good agreement between the ground state plus

continuum excited states model and the exact results for finite N. Indeed it appears that in

the thermodynamic limit, the present exact results converge upon the earlier results. As an

example of this, the present peak occurs at: {N , ρΛ3
c , CV,c/NkB} = {500, 2.25, 1.948}, 

{1000, 2.34, 1.944}, {2000, 2.40, 1.940} {5000, 2.45, 1.937} and {10 000, 2.49, 1.934}.

The ground state plus continuum excited states model gives ρΛ3
c = 2.612 and 

CV,c/NkB = 1.925.

Figure 8.4 shows the fractional occupancy of the ground and one of each of the first

several excited momentum states for ideal bosons around the λ-transition. The number in

the ground state increases monotonically with decreasing temperature, whereas the

number in each excited momentum state first increases and then decreases. The change in

behavior coincides with the peak in the heat capacity. The number in each excited

momentum state decreases with increasing quantum number. Note that the energy is

degenerate in momentum states, and so at higher temperatures there is not monotonic

order in the occupancy of the energy states. Obviously most bosons are distributed

amongst even higher excited energy states in the high temperature regime. The number

occupancy for the energy continuum would be peaked at a nonzero value that increased

with increasing temperature.



Figure 8.4. Average fraction of ideal bosons in the ground momentum state (solid

curve), and in one of the six first excited momentum states (long dashed curve), one

of the 12 second excited momentum states (dashed curve), and one of the eight third

excited momentum states (short dashed curve). The total number is N + = 10 000
and the density is ρ = 0.3, both fixed while the temperature and fugacity are varied.

The dotted line locates the heat capacity maximum. Inset. Long-range view.

More or less at the transition, where the heat capacity peaks, the fraction of bosons in

the excited states also reaches a peak before decreasing to zero at absolute zero. The

fraction of bosons in the ground momentum state grows after the transition and appears to

dominate the occupancy (inset to figure 8.4). This, however, is not the whole story as the

results depend upon the system size (see section 9.2). For N = 500 about 20% of the

bosons are in the ground momentum state at the λ-transition. For N = 1000 it is about

10%, for N = 5000 it is about 5% and for N = 10 000 it is about 4%. In the thermodynamic

limit the exact treatment of ideal bosons apparently shows a continuous condensation

transition, beginning with zero ground momentum state occupation at the transition itself.

The F London (1938) treatment of ideal bosons also begins at zero and shows a continuous

increase in ground momentum state occupation below the transition, which is consistent

with the exact behavior shown in the inset to figure 8.4. But as discussed in section 8.2.4,

the F London (1938) theory inconsistently gives the ground momentum state occupancy as

both an intensive and an extensive variable. If the former, then the fractional occupancy

would be dependent on the system size, and it must vanish in the thermodynamic limit.

The present exact calculations do indeed show a system-size dependence for the

occupancy, and they confirm the intensive nature of the ground momentum state

occupancy (see section 9.2).

Figure 8.5 shows the number of bosons as monomers and in the first three loops as a

function of temperature. At high temperatures most bosons are monomers and

permutation loops are practically non-existent. The number of monomers decreases

monotonically with decreasing temperature. Obviously, this means that the number of

bosons in permutation loops increases monotonically with decreasing temperature. The

number of bosons in each of the loops shown increases with decreasing temperature and

reaches a peak on the high temperature side of the transition. For dimers this peak occurs

at T/Tc = 1.44 for N + = 1000, and 1.48 for N + = 5000, which is almost within the

plotting point digitization error. The number of bosons in dimers exceeds those as trimers,

which exceeds those as tetramers, for all temperatures shown. The gap between these

decreases with decreasing temperature.



Figure 8.5. Average number of ideal bosons as monomers (solid curve), as dimers

(long dashed curve), as trimers (short dashed curve), and as tetramers (dotted curve).

The total number is N + = 1000 and the density is ρ = 0.3, both fixed while the

temperature and fugacity are varied. The dotted line is a guide to the eye.

The decrease with decreasing temperature in the number of bosons in the first several

loops on the low temperature side of the transition, together with the decrease in the

number of monomers, suggests that larger loops are being populated at the expense of

monomers and smaller loops (because the total number of bosons is fixed). But bosons in

these larger loops must increasingly be in the ground state, because of the l in the

Maxwell–Boltzmann exponent in equation (8.27). (It was pointed out in section 8.2.1 that

large loops are mainly in the ground state, and that large loops increasingly dominate as 

T → 0.) This is consistent with the increasing occupancy of the ground state shown in

figure 8.4.

The total heat capacity is the sum of the heat capacity of the monomers and loops. The

loop heat capacity varies with the excited state of the loop. Ground state bosons contribute

nothing to the heat capacity. Hence one can see the reason why the heat capacity first

increases and then decreases with decreasing temperature at the λ-transition: On the high

temperature side the number of bosons in small loops is increasing, and a significant

number of these bosons are in excited states. On the low temperature side the number of

bosons in small loops decreases as they are cannibalized by large loops of bosons in the

ground state.

8.4 The λ-transition for interacting bosons

This section goes beyond ideal bosons to present mathematical analysis and numerical

results for Bose–Einstein condensation and the λ-transition for interacting spin-zero bosons

that experience a pair potential. The analysis is applied to helium-4, whose atom is a spin-

zero boson because it comprises three pairs of spin-half fermions each with opposite spin

and occupying the same single-particle state. The analysis utilizes the classical phase

space formulation of quantum statistical mechanics, chapter 7.

The analysis accounts for the permutation symmetrization of bosons via the

symmetrization function. This is ultimately the cause of Bose–Einstein condensation, and,

as will be seen, is a non-local property that can be dominated by long-range effects.

Accordingly, the commutation function, which accounts for the non-commutativity of the

position and momentum operators in the classical phase space formulation of quantum

statistical mechanics, is neglected because in general it is short-ranged compared to the
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pair potential. The neglect of the commutation function certainly simplifies the analysis and

allows the exploration of extensive numerical results. The fact that these results are

qualitatively and even semi-quantitatively in agreement with experimental measurements

for the λ-transition in 4He tends to confirm the validity of the approximation.

A counter argument is provided by figure 7.5, which shows the effect of the

commutation function evaluated to fourth order on the pressure of Lennard-Jones 4He.

Such a large increase in the quantum contribution to the liquid-state pressure would

require a liquid-state density smaller than classical to equal the required saturation vapor

pressure. This would reduce the position permutation loop symmetrization contribution

compared to the results given below.

As is shown in this and the following sections, the results that include the

symmetrization function but not the commutation function do depend upon the pair

potential and other short-range effects. The discrepancies with laboratory results might

indicate the need to take into account the commutation function to improve the accuracy

and the reliability of the numerical results.

The numerical results given here for the Lennard-Jones model of 4He were obtained by

Monte Carlo simulation. Details of the algorithm are given in section 5.4 of Attard (2021).

8.4.1 Formal analysis

Consider a system of N identical bosons interacting with potential energy U(qN ), or more

simply U(q), which does not depend on the momentum state of the bosons. At any instant

there are N0 bosons in the ground momentum state and N* in excited momentum states,

with N = N0 + N*. Ground momentum state bosons are labeled j ∈ N0, and excited

momentum state bosons are labeled j ∈ N*. The momentum eigenvalue of boson j is pj.

The classical kinetic energy is K(pN ) = K(pN*) = ∑j∈N*
p2

j /2 m = p2/2m. The

normalized momentum eigenfunctions for the discrete momentum case are 

∣ p⟩ = V −N/2e−q⋅p/iℏ
. The system has volume V = L3

 and the spacing between

momentum states is Δp = 2πℏ/L (Messiah 1961, Merzbacher 1970).

The grand partition function for bosons is (cf equation (7.80), and also Attard (2018,

2021))

The superscript + has been dropped because this chapter deals only with bosons. The

permutation operator is P̂. In the penultimate equality the commutation function has been

neglected; the error introduced by this approximation is negligible in systems that are

Ξ = TR′ e−βĤ

=
∞

∑
N=0

zN

N!
∑

P̂

∑
p

⟨P̂p∣e−βĤ∣p⟩

=
∞

∑
N=0

zN

N!
∑

P̂

∑
p

∫ dq ⟨P̂p q⟩ ⟨q∣e−βĤ∣p⟩

≈
∞

∑
N=0

zN

N!V N
∑

P̂

∑
p

∫ dq e−βH(q,p)
⟨P̂p q⟩

⟨p ∣ q⟩

=
∞

∑
N=0

zN

N!V N
∑

p

∫ dq e−βH(q,p)η(q, p).∣ ∣
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dominated by long-range effects (Attard 2018, 2021). The classical Hamiltonian phase

space function is H(q, p) = K(p) + U(q). The symmetrization function η(q, p) is the sum

of Fourier factors over all boson permutations.

As shown above in the derivation of equation (8.6), the F London (1938) analysis of the

λ-transition for ideal bosons depended upon making the transformation to the momentum

continuum while including separately the ground momentum state, and neglecting the

continuum integral correction around the ground momentum state. We make an identical

approximation for the present interacting bosons, which gives

In the final equality there are N0 ground momentum state bosons and N* = N − N0
excited momentum state bosons; below we write ∑N ,N0

⇒ ∑N0,N*
. All N bosons

contribute to the potential energy and to the symmetrization function. Also pj = 0 if 

j ∈ N0.

8.4.2 Pure loops

The symmetrization function is the sum of all permutations of the bosons in the Fourier

factors. Each permutation can be expressed as a product of disjoint permutation loops,

section 7.5 (Attard 2018, 2021). In the present context permutation loops can be classified

as pure or mixed. A pure permutation loop consists only of ground momentum state

bosons, or only of excited momentum state bosons. A mixed permutation loop contains

both.

In this section we shall pursue the leading order approximation in which all mixed

permutation loops are neglected, so that the symmetrization function is the product of the

ground momentum state symmetrization function and the excited momentum state

symmetrization function,

η(q
N , p

N ) ≈ η0(q
N0 , p

N0) η*(q
N* , p

N*).

Here η0 is the sum total of weighted permutations of ground momentum state bosons.

Since their momentum is zero, pj = 0, j ∈ N0, one has that

⟨P̂pN0 qN0⟩

⟨pN0 ∣ qN0⟩
= 1, all P̂.

Hence

η0(q
N0 , p

N0) = N0!.

Ξ =
∞

∑
N=0

zN

N!V N
∏N

j=1{δpj,0 + Δ−3
p ∫ dpj }

×∫ dqN e−βH(qN ,pN )η(qN , pN )

=
∞

∑
N=0

zN

N!V N

N

∑
N0=0

N! Δ−3N*
p

N0!N*!
∫ dpN* e−βK(pN*)

× ∫ dqN e−βU(qN )η(qN , pN ).∣
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Of relevance to the later discussion of superfluidity, this result is a manifestation of

quantum non-locality for ground momentum state bosons. All the ground momentum

state bosons in the system contribute equally regardless of spatial location.

The remaining factor η* is the sum total of weighted permutations of excited

momentum state bosons. In previous work (Attard 2021 section 5.4) the number of discrete

ground momentum state bosons was taken to be negligible, N0 = 0 and the continuum

integral over momentum space was applied to all N bosons. Hence all of those previous

formal results carry over directly to the present case of pure excited momentum state

permutation loops with the replacement N ⇒ N*. (An adjustment has to be made to the

statistical averages when the ground momentum state bosons are not negligible, as is

discussed below.) In particular, η*, is a sum of products of loops. One can define 

◦
η* = ∑l⩾2 η

(l)
*

 as the sum of single loops, and one can write either

η*(q
N* , p

N*) = exp
◦
η*(q

N* , p
N*),

or else

⟨η*⟩cl = e
⟨

◦
η*⟩cl

.

One can drop the subscript * on η when the bosons that contribute are obvious from its

arguments.

A formal derivation of the symmetrization function as the exponential of a loop series

that gives the grand partition function as the series of loop grand potentials is given in

section 7.5.2. Here it may be sufficient to illustrate these two results by writing out the first

few terms of the permutation series explicitly,

The double prime indicates that the sums are over unique permutations, and also that

in any product term no boson may belong to more than one permutation loop. The first

term is the monomer or unpermuted one, and it gives rise to classical statistics. The

second term is the dimer, the third is the trimer, and the fourth is the double dimer. The

second equality no longer forbids permutation loop intersections; the error from this

approximation ought to be negligible in the thermodynamic limit.

In view of these results, in particular the one that writes the classical average of the full

symmetrization function as the exponential of the classical average of the single loop

η(qN* , pN*) = 1 +
N*

∑
j,k

′′ e−pj⋅qjk/iℏe−pk⋅qkj/iℏ

+
N*

∑
j,k,n

′′ e−pj⋅qjk/iℏe−pk⋅qkn/iℏe−pn⋅qnj/iℏ

+
N*

∑
j,k,n,m

′′ e−pj⋅qjk/iℏe−pk⋅qkj/iℏe−pn⋅qnm/iℏe−pm⋅qmn/iℏ + ⋯

≈ 1 + η(2)(qN* , pN*) + η(3)(qN* , pN*) +
1
2

η(2)(qN* , pN*)
2

+ ⋯
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symmetrization function, it is straightforward to write the grand potential as the sum of

loop grand potentials,

 

The monomer grand potential is just the classical grand potential, with a trivial

adjustment for N0 and N* as independent. It is given by

Again N = N0 + N*. The N0! in the denominator has canceled with η0 = N0! in the

integrand, since this multiplies each of the terms in η*. The classical configurational

integral, Q(N , V , T ), does not distinguish between ground and excited momentum state

bosons. The thermal wavelength is Λ = √2πβℏ2/m.

The loop grand potentials l ⩾ 2 are classical averages (Attard 2021 section 5.3), which

can be taken in a canonical system

We have transformed the average from the mixed {N0, N*} system to the classical

configurational system of N bosons that does not distinguish their state. This

transformation invokes a factor of (N*/N)l
, which is the uncorrelated probability that l

bosons chosen at random in the original mixed system are all excited. The Gaussian

position loop function is

G(l)(q
N ) =

N

∑
j1,…,jl

′ e−πq2
jl,j1

/Λ2
l−1

∏
k=1

e−πq2
jk,jk+1

/Λ2

.

Ω(z, V , T ) = − kBT ln Ξ(z, V , T )

=
∞

∑
l=1

Ω(l)
* (z, V , T ).

e−βΩ(1)(z,V ,T ) = Ξcl(z, V , T )

= ∑
N0,N*

zN Δ−3N*
p

N*!V N
∫ dpN* e−βK(pN*) ∫ dqN e−βU(qN )

= ∑
N0,N*

zN Λ−3N*

N*!V N0
∫ dqN e−βU(qN )

= ∑
N0,N*

zN Λ−3N*

N*!V N0
Q(N , V , T ).

− βΩ(l)
* = ⟨η(l)(pN* , qN*)⟩

N0,N*,cl

= ⟨G(l)(qN*)⟩
N0,N*,cl

= (
N*

N
)

l

⟨G(l)(qN )⟩
N ,cl

≡ N*(
N*

N
)

l−1

g(l).
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The prime indicates that no two indeces may be equal and that distinct loops must be

counted once only. There are N!/(N − l)!l distinct l-loops here, the overwhelming

number of which are negligible upon averaging. Since the pure excited momentum state

permutation loops are compact in configuration space, one can define an intensive form of

the average loop Gaussian, g(l) ≡ ⟨G(l)(qN )⟩
N ,cl

/N . This is convenient because it does

not depend upon N*.

The mix of ground and excited momentum state bosons can be determined by

minimizing the grand potential with respect to N* at constant N. This is equivalent to

maximizing the total entropy. The derivative is

(
∂(−βΩ)

∂N*
)

N

= − ln
N*Λ3

V
+

∞

∑
l=2

l(
N*

N
)

l−1

g(l).

If this is positive, then N* should be increased, and vice versa. In terms of the number

density ρ* = N*/V  and ρ = N/V , if ρ*Λ3 ⩽ ρΛ3 < 1, then both terms are positive (since 

g(l) ⩾ 0). In this case the only stable solution is ρ̄ * = ρ, which is to say that there are no

ground momentum state bosons. The value ρΛ3 = 1 provides a lower bound on the λ-

transition.

The structure of this equation indicates that N̄ * is extensive, and hence so is 

N̄ 0 = N − N̄ *. This should be considered in the context of the discussion in section 8.2.4,

and also section 8.6.6. The present analysis, like that for ideal bosons in section 8.2, is

based on the binary division into ground and excited momentum state bosons.

8.4.3 Pure loop numerical results

Figure 8.6 shows the simulated heat capacity for interacting bosons, namely helium-4 with

Lennard-Jones pair interactions. Details of the Monte Carlo algorithm are given by Attard

(2021 section 5.3.2). The difference between the present results and those reported by

Attard (2021 section 5.3.3) is that the earlier results were for an inhomogeneous canonical

system consisting of a liquid drop in equilibrium with its own vapor. The present results are

for a homogenous canonical system at the saturated liquid density previously established

at each temperature by the inhomogeneous simulation. Artifacts due to the fluctuations in

the liquid drop that contribute significantly to the heat capacity for the total system

reported by Attard (2021) are absent in figure 8.6. It can be seen that the magnitude of the

heat capacity for the Lennard-Jones liquid at the lowest temperature shown is much larger

than that of the ideal gas, figure 8.2, and that measured experimentally for 4He in the

vicinity of the λ-transition (Donnelly and Barenghi 1998).



Figure 8.6. The heat capacity for Lennard-Jones 4He along the saturation curve

(canonical Monte Carlo, homogeneous, N* = N = 5000). The symbols are the total of

the monomer and loop contributions. The full curve is the monomer contribution. The

loop contribution curves are dimer (long dashed), trimer (short dashed), tetramer

(dotted), and pentamer (dash-dotted). Each arm of an error bar is twice the standard

error. Inset. Magnification of the loop contributions.

The individual loop contributions come from expressing the second temperature

derivative of the loop grand potentials as classical averages (Attard 2021 section 5.3.1). It

can be seen that for T <
˜

0.9 the quantum contributions are negligible. For 

0.6 ≲ T * ≲ 0.8 the loop contributions increase with decreasing temperature, with the

lower order loops having largest effect. At about T * = 0.6 the order of the loops flips, and

the loop series appears divergent. This suggests that for the Lennard-Jones fluid the λ-

transition occurs around about T
*
λ ≈ 0.6, which for the usual Lennard-Jones parameters of

4He (van Sciver 2012) corresponds to Tλ ≈ 6 K. (It will be shown in section 8.5 that

including mixed loops gives the temperature 0.625 ⩽ T * < 0.65 as the onset of ground

momentum state condensation.) At T * = 0.65, the pure loop heat capacity is 

C LJ
V /NkB = 4.77, which is comparable to the maximum heat capacity measured at the λ-

transition, Cs/NkB = 5.49 (Donnelly and Barenghi 1998).

One should not be unduly concerned that this predicted λ-transition temperature differs

from the measured one, Tc = 2.17 K (Donnelly and Barenghi 1998). The present Lennard-

Jones parameters, εHe = 10.22kB J and σHe = 0.255 6 nm (van Sciver 2012) could be

simply rescaled, ε = 0.43εHe and σ = 1.4σHe, to bring the transition temperature and the

saturation density into consonance with the measured values. The functional form of the

Lennard-Jones pair potential, and the absence of many-body potentials, appear inadequate

for a quantitatively accurate description of liquid helium at these low temperatures. The

real message from figure 8.6 is that particle interactions play an essential role in the λ-

transition and that this can be explored with computer simulations.

A second limitation of the simulation results in figure 8.6 is that they used classical

canonical averages with N bosons and the momentum continuum, ⟨⋯⟩N ,cl. This is valid if

the number of bosons in the ground momentum state is negligible compared to the

number of excited momentum state bosons, N0 ≪ N*. Such an assumption obviously

breaks down after the λ-transition. In the unmixed case the primary correction for this

effect is to multiply the energy due to an l-loop, l ⩾ 2, by (N̄ */N)
l
, using an estimate of



the optimum fraction of excited momentum state bosons at each temperature. This is

discussed in section 8.5.4. If condensation increases continuously with decreasing

temperature, as will now be shown in the unmixed case, such a correction reduces the heat

capacity in figure 8.6 following the λ-transition.

Using the mean field results of the previous section the number of ground momentum

state bosons can be estimated. Table 8.1 gives the intensive Gaussian loop weights, 

g(l) ≡ ⟨G(l)(qN )⟩N ,cl/N . These were obtained from the Monte Carlo simulations of

Lennard-Jones 4He (Attard 2021). The statistical error was less than the displayed digits. It

can be seen that the terms increase with decreasing temperature. At each temperature the

terms decrease with increasing loop size, except possibly at the lowest temperature shown.

Table 8.1. Intensive Gaussian loop g(l) = ⟨G(l)⟩N ,cl/N  from liquid drop Monte Carlo simulations (N = 500, 

ρσ3 = 0.3) for saturated Lennard-Jones He
4
 at various temperatures, T * ≡ kBT/ε.

l T * = 1 0.9 0.8 0.7

2 2.44 × 10−3 5.59 × 10−3 1.24 × 10−2 2.70 × 10−2

3 6.77 × 10−5 2.81 × 10−4 1.11 × 10−3 4.25 × 10−3

4 3.84 × 10−6 2.60 × 10−5 1.67 × 10−4 1.06 × 10−3

5 3.20 × 10−7 3.28 × 10−6 3.38 × 10−5 3.57 × 10−4

l T * = 0.6 0.55 0.5 0.45

2 5.90 × 10−2 8.72 × 10−2 1.29 × 10−1 1.96 × 10−1

3 1.63 × 10−2 3.20 × 10−2 6.32 × 10−2 1.33 × 10−1

4 6.62 × 10−3 1.68 × 10−2 4.28 × 10−2 1.30 × 10−1

5 3.62 × 10−3 1.19 × 10−2 3.94 × 10−2 1.56 × 10−1

6 2.08 × 10−3 8.76 × 10−3 3.72 × 10−2 2.24 × 10−1

Table 8.2 shows the optimal fraction of bosons in the system that are in the ground

momentum state as a function of temperature. The mean field theory, equation (8.41), was

used together with the results in table 8.1. The results represent the stable solutions. At 

T * = 0.45, changing lmax from 6 to 5 changes N̄ 0/N  from 0.682 to 0.684.

Table 8.2. Saturation density and fraction of ground momentum state bosons in Lennard-Jones He
4
. From liquid

drop Monte Carlo simulations with N* = N = 500 at an overall density of ρσ3 = 0.3.

kBT/ε ρσ3 ρΛ3
T (K)

† ρm (kg m 
−3

)
† N̄ 0/N

1 0.62 0.76 10.220 246.76 0

0.9 0.73 1.04 9.198 290.54 0.027



kBT/ε ρσ3 ρΛ3
T (K)

† ρm (kg m 
−3

)
† N̄ 0/N

0.8 0.77 1.31 8.176 306.46 0.220

0.7 0.81 1.68 7.154 322.38 0.381

0.6 0.88 2.31 6.132 350.24 0.536

0.55 0.87 2.60 5.621 346.26 0.583

0.5 0.91 3.13 5.110 366.16 0.635

0.45 0.95 3.82 4.599 376.91 0.682

0.4 0.98 4.72 4.088 390.04 0.709

†εHe = 10.22kB J and σHe = 0.255 6 nm.

One can compare these results to the exact calculations for ideal bosons given in

section 8.3. As reported in Attard (2021 section 5.2) for N = 500 about 20% of the bosons

are in the ground momentum state at the λ-transition. For N = 1000 it is about 10%, and

for N = 5000 it is about 5%. In the thermodynamic limit the ideal bosons apparently show a

continuous condensation transition, beginning with zero ground momentum state

occupation at the transition itself, followed by a continuous increase in occupancy below

the transition. In contrast, the present results for the Lennard-Jones liquid, table 8.2, have a

substantial fraction of bosons occupying the ground momentum state at the transition. The

present prediction that the fraction of condensed interacting bosons, N0/N , is nonzero and

independent of system size contradicts the ideal boson prediction that the number of

condensed (or ground momentum state) bosons is intensive (i.e. the fraction goes to zero

in the thermodynamic limit), section 8.2.4. The present prediction is predicated on the

binary division approximation. The result is qualitatively consistent with reported

experimental results that the fraction is nonzero after the transition, although those

experimental measurements give a zero fraction at the λ-transition itself (Donnelly and

Barenghi 1998). This matter is further discussed in section 8.6.6. The present mean field

results indicate that the ground momentum state occupancy increases continuously

through the transition, which prediction will be revisited in the following results for mixed

permutation loops, section 8.5.

The difference between the present results for interacting bosons and those for ideal

bosons in sections 8.2 and 8.3 shows that the interaction potential has a quantitative effect

on the λ-transition. One concludes that although the transition and condensation may be

dominated by behavior at long-range, short-range effects are not completely negligible.

This raises the possibility that the commutation function may also play a role in these

phenomena, and that it would be useful to quantify this. Since the commutation function

substantially raises the pressure above the classical prediction for Lennard-Jones 4He,

figure 7.5, the saturation liquid density would be lower in an accurate quantum calculation

than the present classical value, which would reduce the contribution of the position

permutation loops at a given temperature.

8.5 Mixed loops

In order to go beyond the mean field (i.e. no mixing) approach one must include mixed

permutation loops that contain both ground and excited momentum state bosons. Such



(8.4

4)

(8.4

2)

(8.4

3)

mixed loops are essential because they provide the nucleating mechanism for ground

momentum state condensation. Despite the strong inference based on the experimental

and computational evidence that mixed loops nucleate condensation, their very existence

poses a surprising conceptual and mathematical challenge.

For ideal bosons, only pure permutation loops are allowed: momentum states cannot be

mixed in any one loop. The prohibition on mixing for ideal bosons is due to the

orthogonality of the momentum eigenfunctions; the ideal boson configuration integral is

the same as the expectation value integral. For interacting bosons this restriction does not

apply directly because the interaction potential in the Maxwell–Boltzmann factor means

that the configuration integral differs from the expectation value integral in which

orthogonality would otherwise hold.

This observation might lead one to conclude that mixed ground and excited momentum

permutation loops for interacting bosons are fully permitted. But there is a complication,

namely that at large separations the interaction potential goes to zero, which means that

when far enough apart the bosons behave ideally with respect to each other. From this

point of view mixed ground and excited momentum state loops would be forbidden also for

interacting bosons because the large separation regime dominates the configuration

integral.

There is an issue to be resolved here that turns on the F London (1938) approximation

that separates the discrete ground state from the excited momentum continuum, section

8.2.1, and the nature of the generalized functions in each case. In the discrete momentum

picture,

∫
V

dq12 e−p12⋅q12/iℏ = V δp1,p2 ,

whereas in the continuum momentum picture

∫ dq12 e−p12⋅q12/iℏ = (2πℏ)3
δ(p1 − p2).

In these Kronecker and Dirac δ-functions, respectively, appear. Because of this

difference, one can only apply the London approximation after performing the position

integral for the particle density asymptote, as will be demonstrated.

8.5.1 Mixed dimer

In order to account for mixed permutation loops write the symmetrization function as

Here η0 = N0! is the pure ground momentum state symmetrization function, η* is the

pure excited momentum state symmetrization function, and ηmix is the sum of mixed loop

weights.

The ground momentum state bosons in any one mixed loop are inaccessible to η0 and

their number have to be removed from it. This is most easily done by fixing η0 = N0! and

multiplying each mixed symmetrization loop with n0 ground momentum state bosons by 

(N0 − n0)!/N0!. The excited loops are compact, and so we can neglect any similar

dependence on n* in the thermodynamic limit.

Here we focus on the leading mixed contribution, which is the mixed dimer,

η(q, p) = η0(qN0 , pN0)η*(qN* , pN*)[1 + ηmix(q, p)].
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η
(1;1)
0* (q, p) =

N0

∑
j

N*

∑
k

e−pk⋅qkj/iℏ.

This is also the dimer chain, η̃ (2)
, and it belongs to the class of singly excited mixed

loops, η(n;1)
, both of which are treated below. As mentioned, we can account for the fact

that there are now N0 − 1 ground momentum state bosons available for pure loops by

dividing this by N0, which will then leave η0 = N0! unchanged.

We suppose that we can factorize the classical average of the symmetrization function

⟨η0η*η
(1;1)
0* /N0⟩

z,cl
= ⟨η0η*⟩z,cl ⟨η

(1;1)
0* /N0⟩

z,cl
.

The first average on the right-hand side is the unmixed product of pure loops, which

was dealt with in section 8.4.2.

Using for convenience a canonical rather than a grand canonical average, in the discrete

momentum case one can write for the mixed dimer average

The angular brackets represent the configurational average, the momentum average

being explicit: the prefactor for the first equality is the normalization for the momentum

states, which invokes the continuum integral for the excited states because in this case

there is no issue with generalized functions. The second equality converts the configuration

average to an integral over the canonical pair density, which is normalized as 

∫V dq1 dq2 ρ
(2)
N (q1, q2) = N(N − 1). In this case particle 1 is in an excited momentum

state and particle 2 is in the momentum ground state, although this makes no difference to

the configuration integral.

The asymptotic contribution to the configurational integral is

ρ2 ∫
V

dq1 dq2 e−p1⋅q12/iℏ = ρ2V δp1,0.

Since p1 > 0 by design, this vanishes. Therefore, in order to transform the sum over

excited states to the integral over the momentum continuum and interchange the order of

integration we must first replace the pair density by its connected part, the total correlation

function,

( ) ( )

⟨η
(1;1)
0* /N0⟩

N0,N*,cl
=

Λ3N*

V N*
∏N0

j δpj,0 ∏
N*

k ∑
pk

(pk>0)e−βp2
k
/2 m

×⟨
1

N0

N0

∑
j

N*

∑
k

e−pk⋅qkj/iℏ⟩
N ,cl

=
Λ3N*

V N*

N*

N(N − 1)
∏N0

j δpj,0 ∏
N*

k ∑
pk

(pk>0)e−βp2
k
/2 m

× ∫
V

dq1 dq2 ρ
(2)
N (q1, q2)e−p1⋅q12/iℏ.
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ρ2h
(2)
N (q1, q2) = ρ

(2)
N (q1, q2) − ρ2.

By subtracting the asymptote we ensure that this goes to zero at large separations.

Here we assume a homogeneous system, ρ
(1)
N (q1) = ρ = N/V , in which case the total

correlation function is a function only of the particle separation, h
(2)
N (q1, q2) = h

(2)
N (q12).

Subtracting the asymptote we are left with a short-ranged integrand and therefore no

generalized function. As we have just seen, the asymptotic contribution is zero when

integrated over position configurations for fixed nonzero momentum, and so we are

permitted to subtract it. Having subtracted the asymptote, we may transform to the

momentum continuum, interchange the order of integration, and perform the integral over

the excited states. These give

This can also be written

The final average, which is in a canonical classical system of N particles, has the

asymptotic correction as defined by the preceding equality. The result is intensive.

For high temperatures such that thermal wavelength is less than about the core

diameter, Λ ≲ σ, the integrand of the first equality vanishes because the factors are

nowhere simultaneously nonzero: the density vanishes in the core, ρ
(2)
N (q12) = 0, q12 ≲ σ,

⟨η
(1;1)
0* /N0⟩

N0,N*,cl
=

Λ3N*

V N*

N*

N(N − 1)
∏N0

j δpj,0 ∏
N*

k ∑
pk

(pk>0)e−βp2
k/2 m

× ∫ dq1 dq2 ρ2h
(2)
N (q1, q2)e−p1⋅q12/iℏ

=
Λ3N*

V N*

N*

N(N − 1)
Δ−3N*

p ∫ dpN* e−βK(p
N*)

× ∫ dq1 dq2 ρ2h
(2)
N (q1, q2)e−p1⋅q12/iℏ

=
ρ2N*

N(N − 1)
∫ dq1 dq2 h

(2)
N (q1, q2)e−πq2

12/Λ2

=
N*

V
∫ dq12 h

(2)
N (q12)e−πq2

12/Λ2
.

⟨η
(1;1)
0* /N0⟩

N0,N*,cl
=

N*V

N 2
∫ dq12 ρ

(2)
N (q12)e−πq2

12/Λ2
−

N*V

N 2
ρ2Λ3

=
N*

N
⟨

2

N

N

∑
j<k

e−πq2
jk

/Λ2

⟩

N ,cl

−
N*V

N 2
ρ2Λ3

=
N*

N
⟨

1

N

N

∑
j,k

′[e−πq2
jk

/Λ2

−
ρΛ3

N
]⟩

N ,cl

≡
N*

N
⟨η̃ (2)/N⟩

corr

N ,cl
.
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and the Gaussian vanishes beyond the core, e−πq2
12/Λ2

≈ 0, q12 <
˜

σ. Hence at high

temperatures ⟨η
(1;1)
0* /N0⟩N0,N*,cl ∼ −ρΛ3. That this is negative means that such mixed

dimers are entropically unfavorable in the high temperature regime. This suppresses

ground momentum state occupation, which will turn out to be significant.

8.5.2 Singularly exciting mixed loops

8.5.2.1 Analysis

Consider mixed l-loops with one excited momentum state boson, labeled 1 or j1, and l − 1
ground momentum state bosons, labeled 2, … , l or k2, … , kl, whose weight we shall

denote as η
(l−1;1)
0*

. A particular such loop with particle 1 excited has symmetrization factor 

e−p1⋅q12/iℏ
, which is independent of the positions of all the ground momentum state bosons

in the loop, q3, q4, … , ql, except the adjacent one labeled 2. Therefore, we can arrange

them in (l − 2)! ways without changing the value of the symmetrization factor. The total

weight involving all such singly excited mixed loops is

The mixed factor is obviously intensive (i.e. independent of N0 and of N*) in the

thermodynamic limit, since for each ground momentum state boson there is a limited

number of excited momentum state bosons in the neighborhood that will give a nonzero

weight after averaging.

The singularly excited mixed loop phase function defined by the final equality here, 

η
(l−1;1)
0* (q, p), is identical to the mixed dimer phase function, equation (8.45). Hence its

average is also the same. Importantly, it is independent of l, which means that their total

contribution is

where the final factor on the right-hand side is given in equation (8.51). This is the

total from all mixed symmetrization loops that have a single excited momentum state

boson.

η0 η*η
(l−1;1)
0* = (N0 − l + 1)! η*(N*)

N0

∑
k2,…,kl

′
N*

∑
j1

e−pj1
⋅qj1,k2

/iℏ

= (N0 − l + 1)! η*(N*)
(N0 − 1)!

(N0 − l + 1)!

N0

∑
k2

N*

∑
j1

e−pj1
⋅qj1,k2

/iℏ

= η0(N0) η*(N*)
1

N0

N0

∑
k2

N*

∑
j1

e−pj1
⋅qj1,k2

/iℏ.

− βΩ(1)
mix =

N0+1

∑
l=2

⟨η
(l−1;1)
0* /N0⟩

N0,N*,cl

= N0⟨η
(1;1)
0* /N0⟩

N0,N*,cl

=
N0N*

N
⟨η̃

(2)/N⟩
corr

N ,cl
,
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One can write the grand potential as Ω = Ωcl + Ω* + Ωmix, with the first two terms

being given by equations (8.38) and (8.39), respectively. The present Ω(1)
mix is the leading

order contribution to the mixed term. Its derivative at constant N is

∂(−βΩ(1)
mix)

∂N*
N

=
N − 2N*

N
⟨η̃

(2)/N⟩
corr

N ,cl
.

The average is independent of N*. The prefactor is negative for N* > N/2, which is

the case at high temperatures. As mentioned above, the average of the mixed dimer must

be negative for high temperatures. These two facts mean that at high temperatures this

derivative is positive, which increases the occupation of the excited states compared to the

classical and pure terms alone.

8.5.2.2 Numerical results

Simulation results for the mixed dimer are shown in table 8.3. The difference in the

Lennard-Jones saturation density compared to that in table 8.2 is partly due to the larger

system size and lower overall density here, which means that the periodic boundary

conditions have less influence on the shape of the liquid phase. The primary difference is

that here the averages were taken over a sphere of radius 10σ about the center of mass,

whereas in table 8.2 they were taken over the whole system, of which approximately 20%

of the bosons were in the vapor phase or interfacial region. For the present larger system

at T * = 0.5, the radius of the interface at half density is ≈ 10.6σ. The central density

measured within 2σ of the center of mass is ρσ3 = 0.943(1), whereas the density

measured within 10σ is ρσ3 = 0.911 6(5). For T * ≲ 0.5 the system was somewhat

glassy, with limited or no macroscopic diffusion of the particles.

Table 8.3. Liquid density, mixed dimer weight, and optimum ground momentum state fraction for saturated

Lennard-Jones He
4
 at various temperatures, T * ≡ kBT/ε. From liquid drop Monte Carlo simulations with N =

5000, overall density of ρσ3 = 0.2, using the central liquid volume of radius 10σ for the averages.

T *
ρσ3 ρΛ3 ⟨η̃

(2)
⟩corr

N ,cl

N

N̄ 0

N
N̄ 0

N

stable unstable

1.00 0.67 0.81 −0.60 0 –

0.90 0.73 1.05 −0.70 0 –

0.80 0.79 1.34 −0.79 0 –

0.70 0.83 1.73 −0.87 0 –

0.65 0.86 1.99 −0.90 0 –

0.60 0.88 2.29 −0.93 0.640 0.35

0.55 0.90 2.67 −0.96 0.754 0.35

0.50 0.91 3.14 −0.99 0.818 0.35

⎛⎜⎝ ⎞⎟⎠



T *
ρσ3 ρΛ3 ⟨η̃

(2)
⟩corr

N ,cl

N

N̄ 0

N
N̄ 0

N

0.45 0.97 3.93 −1.04 0.872 0.45

0.40 0.99 4.74 −1.06 0.902 0.55

It can be seen in table 8.3 that the mixed dimer weight is negative at all temperatures.

This means that the asymptotic correction dominates. The weight increases in magnitude

with decreasing temperature, although the dependence on temperature is rather weak.

The mixed dimer weight was combined with the classical pure loop grand potential, 

Ω = Ωcl + Ωpure + Ω
(1)
mix, with the first two terms being given by equations (8.38) and

(8.39), and the singly excited mixed grand potential by equation (8.53). The pure loops

used lmax = 4 for T * ⩾ 0.7 and lmax = 5 for T * ⩽ 0.65. The results were little different

when lmax was increased by one. The optimum fraction of bosons in the ground momentum

state, N̄ 0/N , corresponds to the vanishing of the derivative of the grand potential,

equation (8.41) plus equation (8.54). It can be seen in table 8.3 that for T * ⩾ 0.65 there

is only one stable solution, namely all the bosons in the system are in excited states. For

temperatures T * ⩽ 0.6 (6.13 K), there are two zeros for the derivative, the higher fraction

being the stable solution (i.e. the minimum in the grand potential). At T * = 0.6 the stable

fraction of ground momentum state bosons is N̄ 0/N = 0.640, which is a rather abrupt

change from N̄ 0/N = 0 at T * = 0.65. It would be fair to call this ground momentum

state condensation. The transition more or less coincides with the passage of N̄ 0/N  from

greater than one half to less than one half, as given by the pure loops only in table 8.2. At 

T * = 0.6, the value N̄ 0/N = 0.640 obtained by including the mixed dimer is greater

than the value N̄ 0/N = 0.536 in table 8.2 obtained with the pure loops only, as is

expected for a negative values of ⟨η̃ (2)⟩corr
N ,cl (cf the remarks following equation (8.54)).

In table 8.3 it can be seen that ⟨η̃ (2)⟩corr
N ,cl/N > −1 for T * > 0.45. Obviously there is

some uncertainty in where it first exceeds this bound as it is the difference between two

positive comparable quantities, and it therefore has a larger relative error than either

alone. Minus one is significant because it marks the point where 1 + (N*/N)⟨η̃ (2)⟩corr
N ,cl/N ,

becomes negative if the system is fully excited, N* = N . At the dimer level of

approximation, beyond this point it is not possible to have a fully excited system (cf

dressed bosons below in section 8.5.3).

In any case the present mixed loop calculations provide a credible mechanism for

condensation. (Within the present binary division approximation, the condensation is

necessarily into the ground momentum state.) The unmixed results in table 8.2 show

condensation that grows continuously from zero at ρΛ3 = 1. In the present mixed case the

condensation is rather sudden, and it occurs at ρΛ3 = 2.29. Since mixed loops are

forbidden for ideal bosons this effect is specific to interacting bosons. It shows that the

growth of excited state position permutation loops nucleate, or are responsible for,

condensation (Attard 2021 section 5.6.1.7). Such coupling and nucleation means that for

interacting bosons the number of condensed bosons must be extensive, just like the

number of excited momentum state bosons. Again the present binary division

approximation means that the condensation is necessarily into the ground momentum

state. The issue of the extensivity of the ground momentum state is discussed in sections

8.2.4 and 8.6.6.
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8.5.3 Dressed bosons

In the preceding subsection the non-local nature of the ground momentum state was

exploited to incorporate an arbitrary number of ground momentum state bosons into the

mixed dimer permutation loop to obtain the so-called singly excited grand potential as the

leading order contribution from mixed ground and excited momentum state permutation

loops. In this subsection this idea is generalized to form mixed permutation loops by

concatenating permutation chains, which consist of a ground momentum state boson as

the head and excited momentum state bosons as the tail. The series of such chains may be

called a dressed ground momentum state boson, or dressed boson for short. The theory

based on them is like the ideal solution theory of physical chemistry, with the dressed

ground momentum state bosons being the solute that forms a dilute solution in the fluid of

excited momentum state bosons.

Consider an l-chain, with the ground momentum state boson at the head, which we

designate as position l, and with l − 1 excited momentum state bosons forming the tail. A

particular chain has symmetrization function

 

The sum of all possible dimer chains is the same as the mixed dimer symmetrization

function, equation (8.45),

The average of this correcting for the asymptote is given as equation (8.51).

The sum of all possible trimer chains is the same as the mixed trimer symmetrization

function with one ground and two excited momentum state bosons, equation (A.1) of

Attard (2022),

The prime on the sum indicates that no two indeces may be equal. The average of this

correcting for the asymptote is given as equations (A.5) and (A.6) of Attard (2022),

η̃
(l)
j1,…,jl

= e−pj1
⋅qj1,j2

/iℏe−pj2
⋅qj2,j3/iℏ ⋯ e−pjl−1

⋅qjl−1,jl
/iℏ.

η
(1;1)
0* (q, p) =

N0

∑
j

N*

∑
k

e−pk⋅qkj/iℏ

=
N0

∑
j

N*

∑
k

η̃
(2)
k,j .

η
(1;2)
0* (q, p) =

N0

∑
j

N*

∑
k,l

′ e−pk⋅qkl/iℏe−pl⋅qlj/iℏ

=
N0

∑
j

N*

∑
k,l

′ η̃
(3)
k,l,j.

{
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For a ground state boson k, chains of a given length may be summed over all excited

momentum state bosons,

η̃
(l)
k (q, p) =

N*

∑
j1,…,jl−1

′ η̃
(l)
j1,…,jl−1,k(q, p).

These in turn may be summed over all lengths

η̃k(q, p) =
N*+1

∑
l=2

η̃
(l)
k (q, p).

The quantity η̃k(q, p) is the symmetrization weight of the dressed ground momentum

state boson k at this point in phase space. We may average this weight, either before or

after summing over chain length, and treat the dressed ground momentum state bosons as

independent, which is valid if they are dilute compared to the excited momentum state

bosons, N0(lmax − 1) ≪ N*.

One can form N0! permutations of the dressed bosons. But for this to work one needs to

show that the weight upon concatenation of two chains into a permutation loop is the same

as the product of the weights of the two individual permutation chains. To this end,

consider an l-chain j1, j2, … , jl and an m-chain, k1, k2, … , km. The symmetrization

function for the permutation loop formed from them is

The two transposition factors that link the chains, e−pjl
⋅qjl,k1/iℏ

 and e−pkm ⋅qkm,j1
/iℏ

, are

unity because the head bosons are in the ground momentum state, pjl
= pkm

= 0. Hence

the permutation loop function formed by concatenating the two chains is just the product

of the two chain functions, with the restriction that no index can be the same. Since the

chains are compact, and since it is assumed that N0 ≪ N* (dilute solution), this restriction

can be dropped with negligible error. From this it follows that the N0! permutations of

⟨η
(1;2)
0* /N0⟩

N0,N*,cl
=

N*(N* − 1)

N(N − 1)(N − 2)
{ρ3 ∫ dq1 dq2 dq3 h

(3)
N (q1, q2, q3)e−πq2

12/Λ2
e

+ 2−3/2ρ3V Λ3 ∫
V

dq13 h
(2)
N (q13)e−πq2

13/2Λ2
}

=
N 2

*

N 2
⟨

1
N

N

∑
j,k,l

′[e−πq2
jk/Λ2

−
ρΛ3

N
][e−πq2

kl/Λ2
−

ρΛ3

N
]⟩

N ,cl

≡
N 2

*

N 2
⟨η̃

(3)/N⟩
corr

N ,cl
.

η̃
(l+m)
jl,km (q, p) = e−pj1

⋅qj1,j2
/iℏ ⋯ e−pjl−1

⋅qjl−1,jl
/iℏ

× e−pk1 ⋅qk1,k2/iℏ ⋯ e−pkm−1 ⋅qkm−1,km/iℏ

= η̃
(l)
jl (q, p) η̃

(m)
km (q, p).
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particular chains form legitimate permutation loops, and that all N0! permutations have

the same total weight, which is equal to the product of the weights of the individual chains.

The average weight of a dressed ground momentum state boson is

The l = 2 term is the mixed dimer, equation (8.51), and the l = 3 term is the mixed

trimer, equation (8.58). The chain Gaussian is

The prime indicates that no two indices may be equal.

The product of the dressed weights of all the bosons gives the mixed grand partition

function,

Ξ̃ = 1 + ηmix = [1 + ⟨η̃(q, p)⟩N0,N*,cl]
N0

,

where the bare boson (monomer chain), η̃
(1) = 1, appears explicitly. The logarithm

gives the mixed grand potential

−βΩ̃ = N0 ln [1 + ⟨η̃(q, p)⟩N0,N*,cl].

The total grand potential is Ω = Ωcl + Ω* + Ω̃. Implicitly, N0 = N̄ 0(z, V , T ) and 

N* = N̄ *(z, V , T ), although as a variational formulation this is a second order effect. The 

N0! permutations of the chains, which is the pure ground momentum state symmetrization

weight, cancels with the same factor in the denominator of the partition function. The total

weight of the ground momentum state bosons is the product of their average dressed

weight, assuming that they do not overlap.

If one linearizes the expression for the mixed grand potential one obtains

⟨η̃(q, p)⟩N0,N*,cl = ⟨
1

N0

N0

∑
k

η̃k(q, p)⟩
N0,N*,cl

=
∞

∑
l=2

⟨
1

N0

N0

∑
k

η̃
(l)
k (q, p)⟩

N0,N*,cl

=
∞

∑
l=2

N l−1
*

N l
⟨G̃

(l)
⟩

corr

N ,cl

=
∞

∑
l=2

N l−1
*

N l−1
g̃

(l).

G̃
(l)

(qN ) =
N

∑
j1,…,jl

′ ∏l−1
k=1 e−πqjk,jk+1

/Λ2

.
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The dimer term is just equation (8.53), and the trimer term is just equation (A.7) of

Attard (2022). This shows how the present dressed boson theory is the non-linear

generalization of the singly and doubly excited loops of section 8.5.1 and appendix A of

Attard (2022).

The derivative of the non-linear mixed grand potential is

Add this to the unmixed result, equation (8.41), to obtain the fraction of excited

momentum state bosons in the system. One can also linearize this.

Table 8.4 shows results for chains up to lmax = 4. That the chain weights alternate in

sign poses convergence problems. For T * ≲ 0.55 it is not clear that the chain series is

converging (although of course each term must be multiplied by (N*/N)l−1
). Retaining the

first four terms in the series (including the monomer term of unity) gives a result for the

optimum fraction of ground momentum state bosons in broad agreement with those

predicted retaining two terms only, table 8.3. The suppression of the occupation of the

ground momentum state for T * ⩾ 0.65 is likewise clear in the two tables. There is little

difference between the linear and non-linear results, which perhaps suggests that the

linear theory is exact. The location of the condensation, T * = 0.6, ρΛ3 = 2.29, is

relatively insensitive to the level of the theory.

Table 8.4. Chain weights, g̃
(l) = ⟨η̃ (l)⟩corr

N ,cl/N , and optimum fraction of ground momentum state bosons for

saturated Lennard-Jones He
4
 at various temperatures.

T * ⟨η̃ (2)⟩corr
N ,cl

N

⟨η̃ (3)⟩corr
N ,cl

N

⟨η̃ (4)⟩corr
N ,cl

N

N̄ 0

N
N̄ 0

N

linear non-linear

1.00 −0.599 0.357 −0.213 0 0

0.90 −0.700 0.486 −0.339 0 0

0.80 −0.790 0.613 −0.485 0 0

0.70 −0.866 0.728 −0.650 0 0

− βΩ̃ = N0

∞

∑
l=2

⟨
1

N0

N0

∑
k

η̃
(l)
k (q, p)⟩

N0,N*,cl

= N0

∞

∑
l=2

N l−1
*

N l−1
g̃

(l)

= − β
∞

∑
l=2

Ω(l−1)
mix .

∂(βΩ̃)

∂N*

N

= − ln [1 +
∞

∑
l=2

N l−1
*

N l−1
g̃(l)]+

N0

N
∑∞

l=2(l − 1)
N l−2

*

N l−2
g̃(l)

1 + ∑∞
l=2

N l−1
*

N l−1
g̃

(l)

.
⎛⎜⎝ ⎞⎟⎠



T * ⟨η̃ (2)⟩corr
N ,cl

N

⟨η̃ (3)⟩corr
N ,cl

N

⟨η̃ (4)⟩corr
N ,cl

N

N̄ 0

N
N̄ 0

N

0.65 −0.904 0.782 −0.754 0 0.527

0.60 −0.934 0.820 −0.875 0.560 0.658

0.55 −0.963 0.852 −1.058 0.677 0.745

0.50 −0.992 0.889 −1.398 0.771 0.812

0.45 −1.038 1.089 −2.496 0.845 0.868

0.40 −1.063 1.180 −4.069 0.887 0.900

Figure 8.7 shows the optimum fraction of ground momentum state bosons as a function

of the maximum chain length at T * = 0.6. There is clearly an even/odd effect for 

lmax ⩽ 5, but for larger values the fraction appears to have converged to N̄ 0/N ≈ 0.15.

Condensation appears to have occurred by T * = 0.6, although for individual choices of

lmax it can occur by T * = 0.65 (cf table 8.4 for lmax = 4, non-linear).

Figure 8.7. Fraction of ground momentum state bosons as a function of maximum

chain length at T * = 0.6. The circles are non-linear results and the triangles are linear

results. The connecting lines are an eye-guide. The unmixed excited momentum state

loops used lmax = 7 in all cases. The statistical error is on the order of 1%.

Similar behavior as a function of lmax occurred for T * = 0.62, 0.60, and 0.55.

Condensation had occurred for almost all lmax, linear and non-linear; the two exceptions in

the 42 cases calculated happened at low lmax. Using lmax = 7, the following ground

momentum state bosons fractions were found: For T * = 0.62, N̄ 0/N = 0.148  0(3)

(linear) and 0.157  7(18) (non-linear). For T * = 0.6, N̄ 0/N =  0.148  7(7) (linear) and

0.169 5(23) (non-linear). And for T * = 0.55 N̄ 0/N = 0.140 5(4) (linear) and 0.198 1(14)

(non-linear). Since the change in the condensed fraction over these temperature intervals

is negligible compared to the change from zero at T * = 0.65, one can conclude that the
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condensation transition is discontinuous. The transition occurs somewhere in the range 

0.62 ⩽ T
*
c < 0.65.

Experimentally, the fraction of condensed bosons (i.e. He II) inferred from viscosity

measurements at the λ-transition is zero (Donnelly and Barenghi 1998).

8.5.4 Energy and heat capacity in the condensed regime

In these results there is either no increase or else a slow increase in the fraction of ground

momentum state bosons with decreasing temperature after the transition. The slowness of

the increase appears to be an artefact that arises from assuming that the dressed bosons

do not interfere with each other. The condition for non-interference, N0(lmax − 1) ≪ N*,

holds barely in the present case, if it holds at all; dividing through by N, the left-hand side

is typically 0.15 × 5 = 0.75, whereas the right-hand side is 0.85. If interference were taken

into account the contribution from mixed loops would be reduced (because many loops

currently counted would be prohibited). Since the mixed loop contribution suppresses the

number of ground momentum state bosons compared to the pure loop prediction, table

8.2, interference between the mixed loops would reduce their negative contribution and

hence increase the number of ground momentum state bosons above that calculated

above. This means that the pure loop result becomes increasingly accurate below the

condensation transition, as is its prediction that the ground momentum state is increasingly

occupied as the temperature is decreased, table 8.2.

This discussion leads to the conclusion that the mixed loop theory is probably accurate

for predicting the location of the condensation transition, but that it underestimates the

number of ground momentum state bosons, and its rate of increase with decreasing

temperature, once condensation has occurred. The pure loop theory is likely more accurate

in the condensed regime. In calculating the effect of condensation on the energy and on

the heat capacity, our strategy will be to use the mixed loop theory to locate the transition,

and the pure loop theory to estimate the number of ground momentum state bosons in the

condensed regime.

The use of different theories on either side of the transition is not entirely satisfactory. It

leads directly to the energy discontinuity and latent heat that is now discussed. These

ultimately are an artefact of the binary division approximation (see sections 8.6.6, 9.3, and

9.2).

The average energy is the sum of loop energies, H̄ = ∑∞
l=1 Ē

(l)
. The averages are

classical. One can relate each average loop energy for a system of N̄ 0 ground momentum

state bosons and N̄ * = N − N̄ 0 excited momentum state bosons, Ē
(l)

(N̄ 0, N̄ *), to one

obtained in a classical system of N bosons, Ē
(l)

(N), as follows. The classical or monomer

contribution is the sum of the classical kinetic energy and the potential energy,

Ē
(1)

(N̄ 0, N̄ *) =
3
2

N̄ *kBT + ⟨U⟩cl
N ,V ,T .

Obviously only excited momentum state bosons contribute to the kinetic energy. The

potential energy does not distinguish ground and excited momentum state bosons. The

dimer and higher loop energies are

Ē
(l)

(N̄ 0, N̄ *) = (
N̄ *

N
)

l

Ē
(l)

(N), l ⩾ 2.



Above the condensation transition there are only excited momentum state bosons, 

N̄ * = N , which means that the two systems are the same.

The average energy resulting from these formulae is shown in figure 8.8. These data are

from homogeneous canonical Monte Carlo simulations along the saturated liquid density

curve using the densities from table 8.3. The condensation transition was set at 

T
*
c = 0.625, as determined by the mixed loop theory described in the preceding

subsection. The fraction of ground momentum state bosons below the condensation

transition was determined by the unmixed theory of section 8.4.2 at the heptamer level of

approximation. One can see in figure 8.8 that the condensed branch energy (solid curve)

does not coincide with the non-condensed branch extrapolated to lower temperatures

(dotted curve). At the highest condensed temperature in the figure, T * = 0.625, the

value of the extrapolated energy that neglects the difference between ground and excited

momentum state bosons is β⟨H⟩/N = −9.017(2), whereas the actual condensed energy

is −9.295. Hence the latent heat for the Lennard-Jones condensation transition is 

Elatent = 0.3NkBT , which is 3% of the total energy. This surprisingly small value results

from three effects: first, the kinetic energy, which is positive, is lower in magnitude in the

condensed regime. Second, the loop energies, which are negative, are also lower in

magnitude in the condensed regime. And third, the classical potential energy, 

βŪ
(1)

/N = −9.958(1), which is 90% of the total, is unchanged. Because at the transition

the fraction of ground momentum bosons is on the order of 50% (according to the unmixed

theory), each individual change in energy is large relative to its contribution to the total.

But their relative contribution to the total is only about 10%, and the two changes partially

cancel each other. This leaves a residual latent heat of 3% of the total energy.

Figure 8.8. Canonical Monte Carlo (homogeneous, N = 5000) results for the average

energy for Lennard-Jones He4 along the saturation curve using llmax = 5. The dashed

and dotted curves use N* = N , whereas the solid curve uses N̄ 0 given by the pure

loop theory with lmax = 7. The error bars, whose total length is four times the

standard statistical error, are less than the size of the symbols. Inset. Focus on the

transition.

This predicted latent heat is entirely dependent on the simple binary division into

ground or else the set of excited momentum states. There is reason to believe that

condensation actually represents the shift to pure momentum loops and increased

occupancy of low-lying momentum states rather than just the ground momentum state
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(see sections 8.6.6, 9.3, and 9.2). These suggest that the present discontinuity in ground

momentum state occupancy and the consequent latent heat for the λ-transition may be an

artefact of the binary division approximation.

The heat capacity, which is the temperature derivative of the energy, can be similarly

analyzed. The monomer term is

C
(1)
V (N̄ 0, N̄ *) =

3N̄ *kB

2
+

3kBT

2

∂N̄ *

∂T
+ C

cl,ex
V (N).

The dimer and higher loops, l ⩾ 2, contribute

The results are plotted in figure 8.9. The data are from homogeneous canonical Monte

Carlo simulations at the saturated density. The difference with figure 8.6 is that those

results are CV (N), which assume that all N bosons are excited, whereas the results in

figure 8.9 are CV(N̄ 0, N̄ *), which take into account the number of ground momentum

state bosons given by the pure loop theory below the condensation transition given by the

mixed loop theory. The qualitative and quantitative resemblance to the measured λ-

transition in liquid helium-4 is unmistakable.

Figure 8.9. The λ-transition in a homogeneous Lennard-Jones liquid at saturation. The

specific heat is obtained by Monte Carlo simulation using pentamer permutation loops.

Below the condensation temperature the ground momentum state occupancy is

obtained from the pure permutation loop approximation, section 8.4.2. Note that for

4He, T [K] = 10.22T *
.

The divergence and discontinuity in the heat capacity appear to result from using the

simplest approximation, namely the binary division into either the ground momentum state

or else the set of excited momentum states. There is evidence (figure 8.4, section 8.6.2,

8.6.6, 9.3, and 9.2) that condensation in fact represents the formation of pure momentum

loops in the low-lying momentum states. By instead forcing all-or-nothing macroscopic

occupation of the ground momentum state, the binary division creates a large loss in

kinetic energy, a latent heat, and a divergence in the heat capacity at the λ-transition.

C
(l)
V (N̄ 0, N̄ *) = l(

N̄ *

N
)

l−1
∂N̄ *

N∂T
Ē

(l)
(N) +(

N̄ *

N
)

l

C
(l)
V (N).
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The measured heat capacity diverges at the λ-transition, going like 

Csat ∼ A ∣ 1 − T/Tλ ∣−0.013 (Lipa et al 1996). However, this is an integrable singularity,

which means that the energy is continuous and there is no latent heat at the λ-transition.

The experimentally measured fraction of condensed bosons (i.e. He II) at the λ-transition is

reported to be zero (Donnelly and Barenghi 1998), which is difficult to reconcile with the

known discontinuous transition to superfluidity.

8.5.5 Dressed bosons are ideal

The non-linear form for the weight of dressed ground momentum state bosons has the

appearance of a fugacity, and so in the grand canonical system one can make the

replacement zN0 ⇒ (z[1 + ⟨η̃⟩N0,N*,cl])
N0

. One then has a form of ideal solution theory,

with the dressed ground momentum state bosons acting as dilute solutes in a fluid of

excited momentum state bosons. In this case the ground momentum state contribution to

the grand potential, including the mixed loops with excited momentum state bosons, is

that of an effective ideal gas,

−βΩ̃(z, V , T ) ≈ − ln{1 − z[1 + ⟨η̃⟩N̄ 0,N̄ *,cl]}.

Compare this with the first term in equation (8.7). This shows formally how interactions

between bosons modify the ground momentum state contribution to the ideal gas grand

potential. To this should be added the classical and the pure excited state contributions, 

Ωcl + Ω*.

If −1 < ⟨η̃⟩N̄ 0,N̄ *,cl < 0, which is likely the case on the high temperature side of the

transition, then the effective fugacity is less than the actual fugacity, and the number of

ground momentum state bosons would be less than predicted by neglecting mixed loops.

For ⟨η̃⟩N̄ 0,N̄ *,cl < −1, the effective fugacity would be negative, which would be

problematic. Each term in the series of chain weights in table 8.4 has to be multiplied by 

(N*/N)l−1
, and so one cannot say a priori that the total is less than −1 without taking this

into account. On the other hand, what one can see in table 8.4 is that for the fully excited

system, N*/N = 1, the sum l ∈ [2, 4] is less than −1 for T * < 0.6. This is thus the

spinodal limit for full excitation, at least at this level of approximation. (The sum l ∈ [2, 7]
at T * = 0.6 is 1.4 ± .1, which says that the spinodal limit has not yet been reached at

this temperature at the lmax = 7 level of approximation.)

8.5.6 Dressed excited momentum state bosons

Above it has been discussed how mixed permutation loops can be resummed as dressed

ground momentum state bosons. The permutations between these are non-local, and

therefore they make a significant contribution to the grand potential. The non-locality was

demonstrated by considering the concatenation of two chains, equation (8.61). It was

shown that the exponents of the linking Fourier factors vanished, which is to say that it did

not matter how far apart the two chains were.

In fact, a similar result holds for any two bosons in the same momentum state provided

that they belong to a permutation loop rather than a chain. That is, for the l-loop, with

boson in momentum state pjl
 at the head, suppose that the distance between head and

tail is small, qj1,jl
≲ Λ. And similarly for the m-loop, with boson in momentum state 

pkm
= pjl

 at the head, qk1,km
≲ Λ. The product of the two transposition factors that link

the two loops is

/ /
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Hence one can regard each of the bosons in a given multiply-occupied momentum state

as dressed by summing over the bosons in singly occupied momentum states that form a

permutation loop with each. These dressed excited momentum state bosons may then be

permuted non-locally, exactly as for ground momentum state bosons. The main difference

between ground momentum state bosons and bosons in multiply-occupied momentum

states is that the dress of the former consists of permutation chains, whereas that of the

latter consists of permutation loops. The weight of loops is much less than that of chains;

compare g(l) in table 8.1 with g̃
(l)

 in table 8.4. There are of course many nonzero

momentum states able to be multiply-occupied, whereas there is just one ground

momentum state. These different distinct advantages make both possibilities relevant for

the discussion of condensation in subsection 8.6.6.

8.6 Discussion

8.6.1 Ideal versus interacting bosons

For ideal bosons with the mass of 4He, condensation into the ground state (energy is

equivalent to momentum), which marks the λ-transition, begins at Tλ = 3.13 K, with

ρΛ3 = 2.61, and C id
V /NkB = 1.93. These are close to the measured values for the λ-

transition: Tλ = 2.17 K, with ρΛ3 = 4.57 and Csat/NkB = 5–12 (Donnelly and Barenghi

1998). (The values depend on how close to the transition it is measured since the heat

capacity is actually divergent (Lipa et al 1996).) One can conclude from this agreement

that the λ-transition is indeed a manifestation of Bose–Einstein condensation. One can

further conclude that the phenomenon is dominated by ideal statistics, which must mean

that it comes from long-range effects and that the interaction potential between the

bosons is a perturbing rather than a determining factor.

The analytic results for ideal bosons based on the F London (1938) approximation,

section 8.2, are in good agreement with those obtained by exact enumeration of

momentum states (section 8.3) at least in the thermodynamic limit. This largely vindicates

F London’s (1938) binary division into ground and excited momentum states, as well the

present mathematical formulation in terms of momentum loops. However, one should be

aware that only a finite number of excited states are included in the exact enumeration

calculations, which is significant for the discussion of the relative occupancy of the ground

momentum state discussed in sections 8.2.4 and 8.6.6.

The ideal boson analysis predicts that at the λ-transition the heat capacity is continuous

and finite, with a discontinuity in its temperature first derivative. This means that there is

no latent heat for the transition, which is to say that the energy is continuous. Related to

this is that for ideal bosons ground state occupancy is also continuous, since it begins at

zero at the λ-transition, and that number is extensive below the transition (section 8.2.4).

Experimental data indicate that the heat capacity is divergent at the λ-transition (Lipa et al

1996). The divergence is integrable, which means that the energy and the enthalpy are

continuous and that there is no latent heat associated with the λ-transition. Also, the

experimentally deduced fraction of He II begins at zero at the λ-transition (Donnelly and

Barenghi 1998). On the other hand, measurement shows that superfluidity begins

discontinuously at the λ-transition. If one accepts that superfluidity is due to condensed

bosons, and that condensed bosons are ground state bosons, this would appear to indicate

that the fraction of ground state bosons must be nonzero at the λ-transition, and that their

number must be extensive at the λ-transition. One would expect that any such

e−pjl
⋅qjl,k1

/iℏe−pkm ⋅qkm,j1/iℏ = e−pjl
⋅[qjl

−qk1
+qkm−qj1

]/iℏ

= e−pjl
⋅qjl,j1

/iℏe−pkm ⋅qkm,k1/iℏ.



discontinuity in ground state occupancy would give a discontinuity in the energy. As is

discussed in section 8.6.6, it seems likely that these contradictions in the ideal bosons

results and in the interpretation of the experimental data can be traced to the simplest

binary division approximation and the assertion that condensation means occupation solely

of the momentum ground state.

Including interactions between the bosons changes aspects of the ideal boson picture of

Bose–Einstein condensation and the λ-transition both quantitatively and qualitatively. The

computer simulations for Lennard-Jones 4He use the F London (1938) binary division

approximation (i.e. excited momentum state continuum plus the explicit ground

momentum state). These can be discussed in the first instance in terms of pure (unmixed)

loops, in which individual permutations are restricted to amongst bosons of the same type

(i.e. either ground state or excited state). The simulations show a rapid growth in the loop

series and in the heat capacity approaching T * = 0.5 (T = 5  K for the Lennard-Jones

parameters of 4He) from higher temperatures. Terminating the series at pentamer loops

and setting the number of ground momentum state bosons to zero gives a heat capacity 

C LJ
V /NkB = 17.6 (with ρΛ3 = 3.21 here). The loop series appears to be divergent using 

N0 = 0. Optimizing the number of ground momentum state bosons in the unmixed

approximation gives the fraction of condensed bosons as N̄ 0/N = 0.635 at T * = 0.5. If

taken into account this would substantially lower the heat capacity and it would also likely

make the loop series convergent. The unmixed approximation gives a continuous increase

in the optimum fraction of condensed bosons with decreasing temperature from 

N̄ 0/N = 0 at ρΛ3 = 1.

Compared to the result for unmixed loops alone, including also mixed permutation

loops, which consist of both ground and excited momentum state bosons, initially

suppresses ground momentum state occupancy as the temperature is decreased from the

point at which ρΛ3 = 1. Such loops comprise concatenated chains (dressed ground

momentum state bosons), and they are specific to interacting bosons since they are

forbidden for ideal bosons. Using up to the heptamer loops, it is found that occupancy of

the ground momentum state occurs discontinuously at a point within the temperature

range 0.65 > T
*
λ ⩾ 0.625. At T * = 0.65, ρΛ3 = 2.02, one has N̄ 0/N = 0 and 

C LJ
V /NkB = 4.77. At T * = 0.625, ρΛ3 = 2.16, the condensed fraction using the mixed

approximation is N̄ 0/N = 0.15, whereas using the unmixed approximation it is 

N̄ 0/N = 0.49. Using the former, C LJ
V /NkB = 4.04, whereas using the latter, 

C LJ
V /NkB = 2.93. (The more accurately the λ-transition is pinned down, the higher is the

one-sided heat capacity on either side.)

Of course there is a certain inconsistency in using the mixed theory to determine the

location of the condensation transition and on the high temperature side of it, and then

using the unmixed theory on the low temperature side of the transition to determine the

fraction of condensed bosons and the consequent heat capacity. One can only argue in

defence of this that the mixed theory invokes independent dressed ground momentum

state bosons, and it is expected to fail when the fraction of condensed bosons becomes

large. The qualitative picture of a barrier to condensation provided by the mixed theory can

be expected to be robust. The quantitative values for the fraction of ground momentum

state bosons following condensation (N̄ 0/N = 0.49 unmixed, versus N̄ 0/N = 0.15 mixed)

are questionable, in part because of the handling of mixed loops does not forbid

intersections, and in part because of limited computer resources (i.e. the termination of the

loop series at the heptamer level). The latent heat at the λ-transition only occurs within the

context of the binary division approximation and the mixed loop analysis. The unmixed

theory, which is exact for ideal bosons, is expected to become more accurate for



interacting bosons as the temperature approaches absolute zero and the system is

dominated by condensed bosons.

Approaching the λ-transition from the high temperature side, the heat capacity

increases more rapidly for interacting than for ideal bosons. The increase in heat capacity

is due to the increase in size and number of permutation loops. For both interacting and

ideal bosons the dominant or only contribution comes from the excited state momentum

continuum, which is embodied in the thermal wavelength Λ, which appears in the Gaussian

that arises after momentum integration of the kinetic energy Maxwell–Boltzmann factor.

The difference between ideal and interacting bosons is the increase in classical

configurational (position) structure of the liquid with decreasing temperature for interacting

bosons. When the thermal wavelength exceeds the location of the growing peak in the

structure factor, a type of percolation transition takes place wherein individual permutation

loops can become macroscopic.

The coupling of loop entropy and liquid structure for interacting bosons is consistent

with the experimental result that the liquid saturation density for 4He is a maximum at the

λ-transition (Donnelly and Barenghi 1998, Sachdeva and Nuss 2010). Usually in a simple

liquid the density increases monotonically with decreasing temperature because the

thermal energy makes the nearest-neighbor separation on average greater than the

minimum in the pair potential, which effect decreases with decreasing temperature. The

relatively sharp increase in density in liquid helium approaching the λ-transition from the

high temperature side is consistent with the increase in position permutation loops, since

these create an attractive effective potential between bosons, equation (7.165). The more

gradual decrease in density with decreasing temperature on the low temperature side of

the transition suggests that this extra attraction is diminishing in part due to the decline in

position permutation loops themselves. Also, the attractive force due to the Gaussian

effective potential weakens once the thermal wavelength significantly exceeds the

separation at which the pair potential is a minimum as further increase does little to alter

the structure of the liquid. In any case, the measured density appears to be continuous, but

its temperature derivative appears discontinuous at Tλ (Donnelly and Barenghi 1998,

Sachdeva and Nuss 2010).

In the following section it is explained that permutations cause the formation of position

loops on the high temperature side of the transition, and momentum loops on the low.

Momentum loops depend upon the quantized momentum picture, and they are

independent of the thermal wavelength and configurational structure of the liquid. There is

a competition between the two types of loops that explains the maximum in the heat

capacity at the λ-transition, since the growth in heat capacity is due to the growth in

position loops, and this comes to an abrupt end when momentum loops take over. Within

the context of the binary division approximation, the mixed loop calculations explain the

coincidence of the λ-transition (the peak in the heat capacity) and the Bose–Einstein

condensation transition, since ground momentum state occupancy is initially suppressed

allowing position permutation loops to grow, until it occurs discontinuously, marking both

transitions.

8.6.2 Position and momentum symmetrization loops

A symmetrization loop, in either the discrete quantum picture or in the continuum phase

space prior to momentum integration, consists of loops of Fourier factors that can be

written either as e−qjk,jk+1
⋅pjk

/iℏ
, or as e−qjk

⋅pjk,jk+1
/iℏ

. Although both forms yield the same

value when evaluated over the loop, they serve to explain the different regions of phase

space where the permutation loops contribute. The exponent must be small in magnitude

in order for the loop to which it belongs to be significant upon averaging. Hence in practice

there are two cases: either all qjk,jk+1
 are small (position loops) or else all pjk,jk+1

 are small



or zero (momentum loops). This division is convenient as the two types are qualitatively

different.

Position loops are localized in position space. They are the ones that give rise to the loop

phenomena that have been identified on the high temperature side of the λ-transition in

the simulations, section 8.4. The effective pair potential derived in section 7.7.3 is a

position dimer. Position loops are usually small in size l, and small in spatial extent. For high

temperatures they are few in number. Approaching the transition from the high

temperature side, T → T +
λ

, their number, size, and extent increases.

Increasingly for T < Tλ, loops are localized in momentum space (momentum loops).

They tend to be large in size l and large in spatial extent. (These assertions are justified

below.) They are an example of the non-locality of quantum mechanics. The particles

belonging to a momentum loop are highly correlated in momentum notwithstanding the

fact that they are separated beyond the range of the interaction potential. With quantized

momenta, all atoms in a loop can be in the same single-particle discrete momentum state, 

pjk,jk+1 = 0. Quantum leaps in momenta around the loop limit the loop’s size and spatial

extent in a way that having all the bosons in the same momentum state does not. Indeed

to be definite, one can define a momentum loop to be one in which all bosons are in the

same momentum state, and position loops to be everything else. (By this definition the

permutation loop simulations of section 8.4 invoke position loops, and the exact ideal

boson analysis of section 8.3 involves only momentum loops.)

When there are many more accessible momentum states than bosons, most bosons are

monomers. When the number of accessible momentum states is comparable to or less

than the number of bosons, a significant number, or even the majority, of bosons share a

momentum eigenvalue with others.

In the quantized picture, the number of accessible single-particle momentum states is 

np ≈ (√2πmkBT/Δp)
3

= Λ−3V . This formula for np comes from the momentum

eigenvalues and the exponent of the Maxwell–Boltzmann factor for a single boson. The

factor of 2π is an order of magnitude constant that simplifies the following estimate. Since 

Δp = 2πℏ/L, the number of accessible single-particle momentum states is macroscopic

even at low temperatures, np ∝ T 3/2V . However, the number of bosons is also

macroscopic, and the probability that none of the N bosons is in the same momentum state

as any other is vanishingly small when np = O(N) (birthday paradox). This occurs at low

temperatures when ρΛ3 = O(1). More exactly, with the above formula,

np = N ⇔ ρΛ3 = 1. In the simulations of the Lennard-Jones liquid, the λ-transition occurs

at about ρΛ3 = 2–3. The measured value for helium-4 is ρΛ3 = 4.57, and that for the ideal

gas is ρΛ3 = 2.61. These suggest that the present criterion, ρΛ3 ≳ 1 (equivalently,

multiple occupancy of momentum states), is necessary but not sufficient for the λ-

transition.

In summary, on the high temperature side of the λ-transition, the system is dominated

by position loops, whose number, size l, and spatial extent all increase with decreasing

temperature. But increasing the number of excited state position loops encourages the

dressing of ground momentum state bosons, and hence of occupancy of the ground

momentum state. Condensation into the momentum ground state interferes with the

formation of position loops because there are fewer excited momentum state bosons

available, and because a ground momentum state boson blocks the formation of excited

momentum state boson position loops in the vicinity. More generally, bosons belonging to

pure momentum loops interfere with the formation of position loops in their neighborhood.

After the λ-transition the number, size l, and spatial extent of position loops all decrease

with decreasing temperature.

8.6.3 Effect of commutation function on position loops
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In the analysis in this chapter the commutation function was neglected. It will be recalled

from section 7.4.2 that this is a phase space function that accounts for the non-

commutativity of the position and momentum operators. One can qualitatively predict the

effect of the commutation function exponent by focussing upon the two-body contribution, 

w(2)(q1, q2; p1, p2).

For the present case of a spherically symmetric pair potential, this reduces to a function

of the separation and the axial component of the relative momentum,

where q = q12, p∥ = p ⋅ q/q = p12 ⋅ q12/2q12, and μ = m/2.

The commutation function exponent is largest at the minimum of the pair potential.

About this minimum one approximation is to use the commutation function for a simple

harmonic oscillator, for which an exact analytic expression exists (Attard 2021 section 8.6).

Figure 8.1 of Attard (2021) shows that at the minimum of the kinetic and potential energy,

which is the maximum of the Maxwell–Boltzmann classical phase space weight, the

commutation function exponent is negative, and it increases in magnitude with decreasing

temperature. Figure 8.2 of Attard (2021) shows that the magnitude of the commutation

function exponent decreases with increasing separation and relative momentum.

From this one concludes that at the two-body level for a system with a pair potential

minimum (like the present Lennard-Jones potential), the commutation function exponent

acts like a repulsive pair potential that will decrease the depth and curvature of the pair

potential of mean force compared to the case where the commutation function is

neglected. This will lead to a broader distribution of separations and relative momenta than

would be the case classically. This is consistent with one’s expectations based on the

Heisenberg uncertainty principle.

Since the minimum in the pair potential of mean force essentially determines the

structure of the fluid, it plays a key role in position permutation loops; the growth in size

and number of the latter with decreasing temperature over and above that of the ideal gas

is a direct result of the increase in fluid structure. Hence including the commutation

function will reduce the contribution from position permutation loops to the various

thermodynamic properties. In particular, the divergence in the loop series and in the heat

capacity found here for Lennard-Jones 4He at T * = 0.65 (T = 6.6 K) would be pushed to

lower temperatures if the commutation function were included.

In addition to, or as a result of, the above effects, the commutation function

substantially raises the pressure above the classical prediction for Lennard-Jones 4He

(figure 7.5, T * = 0.6). This means that the saturation liquid density would be lower in an

accurate quantum calculation than the classical coexistence value used in the present

calculations because the saturated vapor has low density and low pressure, which are quite

well accounted for classically. The decrease in density would reduce the contribution of the

position permutation loops at a given temperature compared to the present calculations.

8.6.4 Molecular contributions to the entropy of loops

Position loops do not strongly restrict momenta, although they definitely favor low-lying

momentum states. Momentum loops do not strongly restrict positions. Strictly, momentum

loops comprise bosons with the same momenta, which can only occur in the quantized

case, and they can extend spatially throughout the whole system.

These differences in the two types of loops induce a difference in the configurational or

molecular contribution to their entropy. (The combinatorial entropy of loops is treated

below.) Momentum loops require highly correlated momenta, and they therefore have low

momentum entropy. This is quite costly at high temperatures where there are many

e−βp2/2μe−βu(q)ew(2)(p∥,q) = ep∥q/iℏe−β[(−ℏ2/2μ)∇2
q+u(q)]e−p∥q/iℏ.



momentum states available. It is much less costly at low temperatures where there are few

accessible momentum states.

In contrast the spatial structure of the liquid is relatively insensitive to temperature, and

so the configuration cost of the short-range spatial order of position loops changes little

with temperature. This is particularly true at temperatures below the λ-transition.

What favors momentum loops is that the atoms that comprise them can range

throughout the volume of the system, because the differences in consecutive momenta

can (or must) be precisely zero. Momentum loops are unconstrained by space. As

mentioned, they are an example of quantum non-locality. In three-dimensional space, there

are many more possible loops comprising far-separated consecutive atoms than close-

separated ones because the number of possible partners increases quadratically with

separation.

Position loops never have the same freedom in momentum space because the atoms

never attain zero separation. And also, the accessible volume of momentum space

decreases with decreasing temperature. Instead there is a threshold where the thermal

wave-length extends beyond the nearest-neighbor separation in which the atoms in

position loops can be composed from the available momentum states.

8.6.5 Combinatorial entropy of loops

The loop grand potential in the form −βΩ±,(l)
 measures the entropy due to loops. The

reader may have trouble accepting this, particularly in view of the fact that position loops

require atoms localized to small spatial neighborhoods, and momentum loops require the

atoms to have highly correlated momenta. To understand the loop entropy, one has to

recall that the loop expansion begins with the monomer or classical term. This accounts for

in its entirety the classical picture of entropy in terms of molecular configurations in phase

space. The loop entropy is in addition to the classical entropy, and it is irrelevant that the

loops themselves consist of ordered sets of molecules.

Loops are distinct arrangements of molecules, and such arrangements can be counted.

Hence there is an entropy associated with them (chapter 1). The partition function, for

example equation (7.71) or (8.1), is the sum over states and also over wave function

symmetrization permutations. The logarithm of the partition function is the total entropy. In

the case of bosons, all distinct permutation states add to the entropy. In the case of

fermions, some permutations preclude otherwise acceptable states, which subtracts from

the total entropy. The effective pair potential, equation (7.165), ,

is attractive for bosons and repulsive for fermions. This comes from the dimer loop, and, as

signified by its temperature-dependence, is entropic in nature.

For bosons in a given momentum state, instead of subdividing the permutations into

momentum loops, it is often more convenient to focus on the occupancy of the momentum

state as a whole. In the example of Na bosons occupying the single-particle momentum

state a, there are χ+
a (Na) = Na! possible arrangements in total. The logarithm of this

gives the internal entropy of the momentum state with this occupancy, S
+,int
a = kB ln Na!

. Note that these permutations of bosons in the same momentum state do not depend

upon their positions, which is to say that they are non-local. (This occupancy picture

neglects the contribution of mixed loops of interacting bosons, which are important above

and in the vicinity of the λ-transition.)

8.6.6 Condensation is into low-lying momentum states

Permutation entropy favors bosons in the same momentum state, as these can form non-

local permutation loops. From the point of view of permutation entropy, any single

momentum state is as good as any other for forming non-local pure permutation loops.

This raises the question: is it true that at the λ-transition bosons condense overwhelmingly



into the ground momentum state rather than into any other low-lying momentum state, or

perhaps several of them?

The answer begins with the mixed loops analyzed in section 8.5. In subsection 8.5.3 it

was shown that dressed bosons, which are localized permutation chains with a ground

momentum state head and excited momentum state tails, could be concatenated to form

non-local mixed permutation loops. This property is not unique to the ground momentum

state, since section 8.5.6 shows that multiply-occupied momentum states can form dressed

loops. But chains have a greater weight than loops; compare g(l)
 in table 8.1 with g̃

(l)
 in

table 8.4. In this regard there is a preference for the ground momentum state. Since so

much entropy is available from such non-local permutations, and since there are significant

numbers of such dressed ground momentum state bosons present in the vicinity of the λ-

transition (because localized excited momentum state permutation loops are present in

large numbers), this drives condensation into the ground momentum state at the

transition.

Although condensation into the ground momentum state occurs at the λ-transition, it

appears that the process does not end there. The condensation contributes to the

destruction of position permutation loops at the transition because the ground momentum

state bosons interfere with the ability to form loops composed only of excited momentum

state bosons. Also, the open nature of dressed boson chains, and the non-local loops

formed from chains, diminish the fluid structure that is formed by, and that is necessary

for, position permutation loops. In short, ground momentum state bosons poison the very

position permutation loops that catalyze them.

Figure 8.10 sketches this mechanism. The left-hand cluster illustrates that position

trimers can only form when the excited state bosons are sufficiently close to each other.

When one of these is converted to a ground momentum state boson, as in the right-hand

cluster, two of the trimer loops become chains, which loosens the bond between the

ground momentum state boson and the central boson because there is no longer the

requirement that it be close in order for the permutation to average to a nonzero value.

This means in turn that the cluster is less strongly bound together, and that it will break up

more easily than if there had been no conversion to the ground momentum state.

Figure 8.10. When one of five excited momentum state bosons (open circles) is

converted to a ground momentum state boson (shaded circle), the three position

trimer loops (dotted arrows, left) are converted to one trimer loop and two trimer

chains (dashed arrows, right).

In the context of what follows, it is important to note that this mechanism for the

destabilization of position permutation loops also results from any boson that is in a

multiply-occupied momentum state, which is to say that it participates in pure momentum

permutation loops. Loops formed from dressed bosons in such multiply-occupied



momentum states, as in section 8.5.6, also upset position permutation loops. Non-local

permutations confer a momentum stability to the dressed boson that is anathema to

position permutation loops, which are necessarily composed of bosons that can be

summed over multiple momentum states. Although chains have a greater weight than

loops (tables 8.1 and 8.4), there are an extensive number of nonzero momentum states,

each of which can head a dressed boson loop. Thus in the competition with position loops,

both ground and excited state momentum loops may contribute comparably.

Since position permutation loops both require and encourage bosons to be in different

momentum states (the thermal wavelength results from independent integration over each

boson’s momentum), the reduction in position permutation loops must be accompanied by

an increase in the number of bosons in the same momentum state. So while the λ-

transition signifies the growth of dressed ground momentum state bosons and the growth

of the occupancy of the momentum ground state, the accompanying loss of position

permutation loops also signifies the growth in pure momentum loops and condensation into

the low-lying momentum states. (It can equally be argued that the growth of some pure

excited state momentum loops from the very large number of possible excited momentum

states cause the decline in the position permutation loops.) This makes sense, because in

practical terms the energy gap between the momentum ground state and the low-lying

momentum excited states is orders of magnitude smaller than the thermal energy, and it is

not possible to argue that there should be any sharp distinction between the ground

momentum state and the low-lying momentum states. As discussed in the first paragraph

of this section, any pure momentum loop is non-local, and the permutation entropy

contributed by a momentum state depends only upon its occupancy, not upon the value of

the momentum.

One has to conclude from this that the λ-transition, and Bose–Einstein condensation

more generally, does not represent a marked increase in the occupancy solely of the

momentum ground state. Rather, the condensation represents a marked increase in the

occupancies of occupied low-lying momentum states. Equivalently, it marks the shift in

dominance of position to momentum permutation loops.

This idea is sketched in figure 8.11, which shows that at a given temperature the range

of accessible momentum states is about the same for non-condensed bosons, otherwise

known as He I, as it is for condensed bosons, otherwise known as He II. Further, the

envelope of the occupancy distribution has more or less the same shape in the two cases,

which explains how there can be no latent heat at the λ-transition despite macroscopic

condensation occurring discontinuously. What is different is that for condensed bosons the

instantaneous occupancy of occupied states is much greater than for non-condensed

bosons, and the instantaneous number of empty momentum states within the range of

accessible states is much greater below the condensation transition than above.

Figure 8.11. Occupancy of momentum states by non-condensed bosons (He I, left),

and by condensed bosons (He II, instantaneous, right).



In the conventional binary division approximation, He I comprises the excited

momentum (or energy) state bosons and He II comprises the ground momentum (or

energy) state bosons. In the picture advocated here, He I comprises bosons in few-

occupied momentum states, and He II comprises bosons in highly-occupied momentum

states.

The ‘spiked’ occupancy diagram in figure 8.11 is consistent with the fluctuations in

single-particle energy state occupancy for bosons, equation (7.156). (For ideal bosons,

momentum states are the same as energy states, and there is reason to believe that ideal

behavior dominates below the condensation transition (section 9.3).). Following equation

(7.156) it was pointed out that the fluctuations in the occupancy of states with high

average occupancy were as large as the occupancy itself, which means that there is a non-

negligible probability of finding them empty or occupied by only a few bosons. There is also

a non-negligible probability of some states having occupancy much greater than their

average. In this sense the spikes represent an instantaneous snapshot of the condensed

system rather than the average. The lifetime of the individual fluctuations is not specified a

priori, but in the light of the discussion of the mechanism for superfluidity discussed in

section 9.4, it is probably relatively long.

With He II being the condensed bosons in highly-occupied momentum states, and He I

being non-condensed bosons in singly (or few) occupied momentum states, one can see

that it is possible for the two to coexist, and that 4He below the λ-transition can be

considered a mixture of the two. Superfluidity is carried by the bosons in the highly-

occupied momentum states, as is discussed in section 9.2.

It will be recalled from section 8.5.4 that the mixed loop computations for Lennard-Jones

4He produced a latent heat for the λ-transition, which gives a divergence in the heat

capacity. The divergence in the experimentally measured heat capacity is integrable (Lipa

et al 1996), which means that the energy and the enthalpy are continuous and that there is

no latent heat at the λ-transition. The latent heat computed in section 8.5.4 is dependent

on using mixed and unmixed loops on either side of the transition, and on the binary

division approximation. The assertion that condensation is into the ground state forces a

discontinuity in the kinetic energy at the transition. The present picture of condensation

into multiple highly occupied momentum states allows the occupancy to be discontinuous

while the kinetic energy can remain continuous at the transition. In other words, unlike the

binary division approximation, there is likely no latent heat in the present more

sophisticated model of Bose–Einstein condensation.

This picture suggests that the binary division of bosons as belonging to either the

ground momentum state or else the set of excited momentum states (F London 1938),

which was used for the ideal and interacting boson results in this chapter, is only a first

approximation. It produces reasonable results on the high-temperature side of the λ-

transition, and also for the location of the transition. A more sophisticated model would

account for the fact that below the λ-transition pure momentum loops form, and some or

all of the low-lying momentum states are each occupied by large numbers of bosons (see

sections 9.3 and 9.4).

It is possible that the molecular mechanism for the λ-transition discussed above—

excited momentum state position permutation loops nucleating ground momentum state

condensation, and ground momentum state bosons breaking up position permutation loops

—may be exaggerated by the binary division approximation. In the more nuanced picture,

multiple multiply-occupied low-lying momentum states occur at low enough temperatures,

and the entropy from the non-local nature of their permutation loops may be enough to

overcome the entropy of the localised position permutation loops without needing the

specific intervention of ground momentum state bosons.

To the extent that the chain weight is greater than the loop weight, g̃
(l) > g(l)

 (tables

8.1 and 8.4), and that non-condensed bosons dress the condensed bosons below the λ-

transition, the ground momentum state will enjoy greater weight than any individual



excited momentum state. This means that below the λ-transition the average occupancy of

the ground momentum state will be greater than that of any individual excited momentum

state, even though the total number of condensed bosons in excited momentum states

exceeds those in the ground momentum state.

Following this last point, it is worth mentioning that a significant difference between

Bose–Einstein condensation in liquid helium and that in Bose–Einstein condensates is the

size of the system. The former has on the order of Avogadro’s number of atoms, whereas

the latter typically has O(102
–105) atoms (Wikipedia 2022), which is fewer than in even

one occupied low-lying momentum state of 4He. Because of the size difference, the

conclusions drawn here for liquid helium below the λ-transition do not automatically carry

over to Bose–Einstein condensates. Nevertheless it does appear that even in such

condensates the condensation is into a range of low-lying momentum states rather than

solely into the ground momentum state (le Bellac et al 2004 figure 5.17, Wikipedia 2022

velocity-distribution data).

The common conception and experimental measurement of a specific fraction of He II

below the λ-transition may be interpreted in the light of this more sophisticated model of

condensation as occupancy of multiple low-lying momentum states. In this new picture He I

consists of bosons instantaneously in few-occupied momentum states, and He II consists of

bosons instantaneously in highly-occupied momentum states. Whether there is a sharp

boundary between the two is unclear. This more nuanced model of condensation is

discussed in greater detail in the context of superfluidity in chapter 9.

Summary

Momentum states are better than energy states for representing interacting particles.

In the first approximation (binary division), condensation is into the ground momentum

state rather than into the ground energy state. Ground momentum state permutations

are non-local.

Ideal bosons semi-quantitatively capture the λ-transition in 4He, which confirms that it

is a manifestation of Bose–Einstein condensation, and that it is dominated by long-

range particle statistics that are independent of the boson interactions to leading order.

Interactions between bosons significantly contribute to the magnitude and growth rate

of the heat capacity approaching the λ-transition from the high temperature side in

liquid 4He. They couple position permutation loops to liquid structure. They also give

rise to ground and excited momentum state mixed permutation loops, which are

prohibited for ideal bosons, and which initially create an entropy barrier to

condensation. The change in dominance from position to momentum loops defines the

λ-transition, after which the position loops begin to decline.

Experimental measurements at the λ-transition show that the heat capacity is

integrably divergent, which implies that the energy is continuous, that the density is

continuous, and that the fraction of He II grows continuously from zero. Experiments

also show that superfluidity is discontinuous and nonzero at the λ-transition. The

present theory for interacting bosons using mixed loops and defining condensation as a

binary division shows discontinuous ground momentum state occupancy at the λ-

transition, which implies energy, density, and superfluid discontinuities.

The binary division into the ground momentum state and the excited momentum state

continuum is a good first approximation for locating the condensation transition, and

also for describing the high temperature side of it. However, inconsistencies on the low

temperature side predicted for both ideal and for interacting bosons suggest that the

condensed state actually consists instantaneously of multiple highly-occupied

momentum states.
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Chapter 9

Superfluidity: flow without entropy dissipation

‘helium below the λ-point enters a special state which might be called superfluid’
P Kapitza (1938)

‘A verification of equ. (11) should be the easiest method of proving the hypothesis
that the helium atoms moving through narrow capillaries are in their lowest
quantized state.’

H London (1939)

[F. London and] ‘L. Tisza suggested that helium II should be considered as a
degenerate ideal Bose gas…. This point of view, however, cannot be considered as
satisfactory… nothing would prevent atoms in a normal state from colliding with
excited atoms, i.e. when moving through the liquid they would experience a
friction and there would be no superfluidity at all. In this way the explanation
advanced by Tisza not only has no foundation in his suggestions but is in direct
contradiction to them.’

L Landau (1941)

‘The division into a normal fluid and a superfluid although yielding a simple model
for understanding the final equations appears artificial from a microscopic point of
view.’

R P Feynman (1954)

9.1 Introduction

Superfluid He II is commonly believed to be bosons condensed in the energy ground

state. It is further asserted that this necessarily forbids momentum exchange, which

explains why they flow without viscous dissipation. What happens in a collision with

a non-condensed boson or a wall is not explained. In this chapter evidence is

presented that following Bose–Einstein condensation, the system instantaneously

consists of multiple highly occupied momentum states. Equations of motion are

given that explain that He II does not dissipate momentum in collisions because of

the non-local nature and the large permutation entropy of each instantaneously

highly occupied momentum state.

Superfluidity, which is flow without viscosity, was discovered in helium-4 by

Kapitza (1938) and by Allen and Misener (1938). The transition to superfluidity

coincides with the λ-transition. Therefore it should be clear that superfluidity is

connected with Bose–Einstein condensation, which is the accepted basis for the λ-

transition (see chapter 8). Readable histories of superfluidity have been given by

Donnelly (1995, 2009) and by Balibar (2014, 2017).



Superfluid helium was originally called He II, being the fluid whose properties

become noticeable on the low temperature side of the liquid-liquid λ-transition

(Keesom et al 1927, 1932). The ideal boson two-fluid theory of F London (1938) and

Tsiza (1938) asserts that below the λ-transition the system consists of coexisting

superfluid (He II) and normal (He I) fluid. The superfluid consists of bosons in the

ground energy state, which are said to have zero viscosity, and the normal fluid

comprises bosons in excited states having the usual viscosity (Tsiza 1938). The

superfluid is said to be able to flow unimpeded through the normal fluid, although

the precise mechanism for this is unstated. The equilibrium thermodynamics of the

two-component mixture is given by the ideal boson approach of F London (1938), as

detailed in section 8.2.

The phonon-roton theory of Landau (1941) is also a type of two-fluid scheme,

with the superfluid again being bosons in the ground energy state, forming a

quiescent background, and again said to have zero viscosity. But in this case the

normal fluid consists of a gas of elementary energy excitations, which are related to

quantized sound waves, which are termed phonons and rotons, and which are taken

to be bosons. The theory is said to be applicable far below the λ-transition close to

absolute zero (Pathria 1972), although of course superfluidity sets in at the λ-

transition itself. The postulated rotons, whose energy spectrum Landau (1941) fitted

to measured heat capacity data, have been interpreted as quantized vortices

(Feynman 1954, Kawatra and Pathria 1966, Pathria 1972), although direct evidence

for this is lacking. Landau (1941) never accepted Bose–Einstein condensation as

playing a role in the λ-transition (Balibar 2014, 2017) (see the quote at the head of

the chapter). It is difficult to imagine that his phonon-roton theory can have any

relevance to superfluidity if the latter is accepted to be a consequence of Bose–

Einstein condensation and the λ-transition. Bogolubov (1947) gave for superfluidity

a quantum mechanical wave function theory that included weak interactions but

which was explicitly based on Bose–Einstein condensation. A summary of these and

other conventional theoretical treatments of Bose–Einstein condensation and of

superfluidity has been given by Griffin (1999).

Measurements of superfluidity generally involve non-equilibrium phenomena,

and so a complete analysis would invoke the formulations of chapters 3, 4, and 6.

The analysis of superfluidity in the present chapter is incomplete. Section 9.2 makes

the case for a new interpretation of the Bose–Einstein condensed state. Section 9.3

presents an analysis of interacting bosons far below λ-transition where pure

momentum permutation loops dominate. Section 9.4, based on the evidence for the

state of 4He below the λ-transition, discusses in detail the molecular mechanism for

inviscid superfluid flow, and compares the predicted and measured critical

velocities. Section 9.4.4 gives superfluid equations of motion, and offers a physical

explanation of how condensed bosons collide without dissipating momentum.

Section 9.5 treats the fountain effect in liquid 4He, which arises in two chambers

held at different temperatures and connected by a thin capillary. Although this

appears to be merely structural, it is in actual fact a steady-state phenomenon that

reveals the principle that drives superfluid flow.

9.2 Nature of the Bose–Einstein condensed state

As mentioned above, it is universally accepted that Bose–Einstein condensation is

into the energy ground state. My view however is that after condensation a



snapshot of the system would reveal multiple highly occupied low-lying momentum

states (as well as a majority of states that are empty, and also states that are few-

occupied, the number of which depends on the proximity to the transition). Perhaps

Feynman’s observation, as quoted at the head of this chapter, was remarkably

prescient. Because my picture of Bose–Einstein condensation is contrary to the

widespread and longstanding understanding, it is incumbent upon me to lay out my

evidence in detail.

The argument was largely made in section 8.6.6, based on the computer

simulations of the λ-transition in 4He. These revealed the dominance of position

permutation loops leading up to the transition, the nucleation of ground momentum

state occupancy at the transition, and the growth of momentum permutation loops

at the expense of position permutation loops after the transition. Roughly speaking,

in the conventional language of the binary division approximation, position loops

are associated with excited state bosons (non-condensed He I), and momentum

loops are associated with condensed bosons (He II) (section 8.6.2). Here I reprise

some of those arguments and present new ones for condensation into low-lying

momentum states, as opposed to condensation solely into the ground momentum

state (equivalently, the ground energy state).

First to extensivity, which is important because superfluid flow must scale with

the size of the system. If one doubles the size of the subsystem V = L3 at constant

intensive variables, then one doubles the number of particles. Since the volume of

each momentum state, Δ3
p = (2πℏ/L)3

, is halved, there are now twice as many

accessible states, which means that the occupancy of each momentum state must

remain unchanged. This includes the ground momentum state and individual

excited momentum states. Occupancy of any one individual state is thus an

intensive variable (cf section 8.2.4).

This argument that the occupancy of any one momentum state must be an

intensive variable implies that the fractional occupancy of a state must go to zero in

the thermodynamic limit. This can be seen in figure 9.1, which results from the

exact enumeration over momentum states for ideal bosons (section 8.3). The figure

shows that the fraction of ideal bosons in the momentum ground state decreases

with increasing system size at fixed temperature and density. The same trend holds

for each excited momentum state. Obviously, however, the number of momentum

states within a given energy band increases with increasing system size. Whilst the

number of bosons in the ground momentum state is an intensive variable, the total

number of condensed bosons (i.e. those in low-lying multiply-occupied momentum

states) is extensive.



Figure 9.1. Average fraction of ideal bosons in the ground momentum state

for total N + = 1000 (solid curve), N + = 2000 (long dashed curve), 

N + = 5000 (dashed curve), and for N + = 10 000 (short dashed curve). The

abscissa is essentially T −3/2
. The dotted lines locate the heat capacity

maximum for the smallest (left) and largest (right) system. Exact enumeration

(section 8.3) is used, and the density is ρ = 0.3.

Average occupancy is also practically continuous, because the spacing between

momentum states scales inversely with subsystem edge length. There seems

nothing special about the ground momentum state, at least not on the far side of

the λ-transition. The pure momentum loops do not single out the ground

momentum state, since the permutation entropy contributed by pure momentum

loops in any momentum state is equally non-local. Condensation and superfluidity

appear to be carried by the pure momentum loops of the low-lying momentum

states, because the total occupancy of these is an extensive variable. Since the

occupancy of the ground momentum state is intensive, it alone cannot carry

superfluidity.

It was F London (1938) who originally devised the binary division into the ground

and continuum excited momentum states for his ideal boson treatment. As pointed

out in section 8.2.4, this predicts that the occupancy of the ground momentum

state is a function of the fugacity, N̄
+,id

0 = z/[1 − z], which is an intensive variable.

It also predicts that the ground momentum state occupancy is extensive, 

N̄
+,id

0 ∼ N [ρΛ3 − ζ(3/2)]/ρΛ3. This contradiction arises because the binary

division approximation forces the ground momentum state to perform two roles:

one is as literally the ground momentum state, in which the occupancy is intensive.

And the other is as the condensed state, which in the present language is the set of

low-lying, multiply-occupied momentum states, whose total occupancy is extensive.

The divergence of the F London (1938) expression for the ground momentum state

occupancy as z → 1−, seems to be an artefact of the continuum approximation for

the excited momentum states, which severely limits the number of bosons that can



be accommodated. (The divergence would be physical if it applied to the condensed

states as an extensive whole, rather than to the ground state as an intensive single

state.) The exact enumeration of discrete momentum states for ideal bosons

confirms that the fraction of bosons in the momentum ground state goes to zero in

the thermodynamic limit, figure 9.1. If one does not make the continuum

approximation, or indeed the binary division, then there would be no limit on the

number of bosons that could occupy the low-lying momentum states. Consequently

there would be no excess bosons that would be forced to condense into the

momentum ground state.

In the present picture of condensation into the discrete low-lying momentum

states, it might be argued that due to the growth of the permutation entropy with

the occupancy of a state, there could be a non-linear effect in which all the bosons

with low-lying momenta condense into a single state. Such a non-linear effect alone

would not single out the momentum ground state, since it applies equally to any

single low-lying momentum state. Since the spacing between kinetic energy states

is on the order of 10−14kBT  for a macroscopic subsystem, it’s difficult to argue that

the thermal preference for the momentum ground state is large enough to drive the

putative non-linear condensation into it. Even symmetry arguments, which say that

the average momentum must be zero, do not persuade that there is a marked

preference for condensation into the momentum ground state.

It can also be pointed out that the experimentally measured enthalpy is

continuous at the λ-transition (Donnelly and Barenghi 1998), which is consistent

with the fact that the divergence in the heat capacity is integrable (Lipa et al 1996).

This suggests that there remains substantial occupation of the excited low-lying

momentum states immediately after the transition (i.e. the kinetic energy is more

or less unchanged by the λ-transition). Therefore the bosons in the low-lying

momentum states cannot all condense into the ground momentum state (or indeed

into any one momentum state) by the non-linear effect canvassed in the preceding

paragraph because this would give a discontinuity in the kinetic energy and hence a

latent heat for the λ-transition. In order to avoid such a latent heat the envelope of

occupancy of momentum states must be more or less the same before and after the

λ-transition (cf figure 8.11).

As mentioned in conjunction with figure 8.11, the relative fluctuations in highly

occupied states are of order unity, equation (7.156), which implies that there is a

non-negligible probability of finding some empty or occupied by only a few bosons,

and others with an occupancy many times their average. These instantaneous

spikes in the occupancy of low-lying momentum states, as depicted in figure 8.11,

enable the present picture that condensation consists of multiple multiply-occupied

momentum states, at least instantaneously. In fact the lifetime of highly occupied

states could well be extended by their non-local permutation entropy (section 9.3).

The arguments against condensation being solely into the ground state also

include mechanical and trajectory considerations. It is difficult to envisage forces

and collisions that would conspire to cause a macroscopic number of bosons to lose

their momenta and condense into the zero momentum state instantaneously at the

λ-transition. If instead such condensation occurred continuously over a finite time

interval, then some of the intermediate low-lying momentum states must become

highly occupied, in which case it is difficult to design forces and collisions that

would subsequently empty them to achieve zero momentum. As will be shown



below, it is highly unlikely for forces to occur that will empty a state one boson at a

time (sections 9.4.1, 9.4.3, and 9.4.4).

A subsystem of size 1 cm3 at 1 K has N = 2.2 × 1022
 helium atoms, and on the

order of (2 mkBT/Δ2
p)

3/2
= 23/2L3/Λ3 = 2.7 × 1020

 accessible momentum

states. This averages out to 102 helium atoms in each accessible momentum state,

independent of subsystem size. This is a crude estimate based on setting the

Maxwell–Boltzmann kinetic energy exponent to unity.

As mentioned, fluctuations mean that at any instant many low-lying momentum

states are empty or few-occupied, equation (7.156). Due to the relatively small gap

between kinetic energy states, the permutation entropy might coalesce the bosons

in any kinetic energy neighborhood into a single momentum state. Provided that

there were many such condensed states, the overall kinetic energy distribution

would remain unchanged while the majority of low-lying momentum states would

be unoccupied. This is what is sketched in figure 8.11. The advantage of this picture

is that it would leave the total kinetic energy unchanged, in accordance with the

absence of a measured latent heat, it would enable many large pure momentum

loops to form because now large numbers of bosons are in the same momentum

state, albeit with very many such distinct occupied states, and it would necessarily

leave many if not most low-lying momentum states empty. Evidence is presented in

subsection 9.4.3 that the great majority of low-lying momentum states are

instantaneously empty. These arguments suggest that the instantaneously occupied

low-lying momentum states have much greater than 102 bosons in each.

9.3 Interactions on the far side

The treatment of the λ-transition for interacting bosons with computer simulations

in chapter 8 is reliable on the high temperature side, which is dominated by the

position loops that form the basis of the loop expansion algorithm. The thermal

wavelength that defines those loops arises from independent integration over the

excited momentum state continuum, which means that the bosons are in different

momentum states. The binary division into ground or else the set of excited

momentum states does no harm on the high temperature side of the transition.

Below the transition the dominance of momentum loops implies the increasing

occupancy of individual low-lying momentum states, which makes the binary

division problematic. It is no longer appropriate to make the continuum

approximation for the excited states because then one cannot identify the

occupancy of individual momentum states. Nor is it appropriate to assert that the

ground momentum state is the only discrete momentum state. In order to explore

the behavior of the system at very low temperatures one has to carry out the

analysis for discrete momentum states.

The analytic but approximate approach pursued here is motivated on physical

grounds. It partially explains mathematically the otherwise puzzling success of the

ideal boson model (section 8.2 and 8.3) applied to interacting 4He by demonstrating

the insensitivity of the system to the interaction potential at low temperatures.

9.3.1 Factorization and the heat capacity

We proceed with discrete momentum states. The canonical equilibrium partition

function for bosons, equation (7.71) or equation (8.1), neglecting the commutation
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function, and with a momentum eigenvalue being pjα = njαΔp, Δp = 2πℏ/L, is

Here j = 1, 2, … , N , α = x, y, z, ∑n = ∏j,α ∑
∞
njα=−∞

, and n′≡ P̂n, where P̂

is the permutation operator. The second equality sets the commutation function to

unity, as argued in the introduction to section 8.4. The symmetrization function

used here may be the complex conjugate of that used in the formulation of

quantum statistical mechanics in chapter 7, ηp = η
*
q , which is not important

because the commutation function here is real (it is unity), and since the partition

function is real, the imaginary parts must sum to zero.

This section focusses on low temperatures, β → ∞. In this case there is a

limited number of accessible momentum states available, say ∣ njα ∣≲ L/Λ, where

L is the cubic subsystem edge length and Λ = √2πℏ2β/m is the thermal

wavelength. The number of accessible momentum states per particle at the λ-

transition can be estimated as np = Λ−3V ≲ N . This gives up to O(102) 4He

atoms on average in each accessible momentum state. In subsection 9.4.3 it will be

estimated that below the λ-transition each occupied state is on average occupied

by O(106) 4He atoms. Under these circumstances the permutation loops are

predominantly momentum loops in which all particles in a loop are in the same

momentum state. In this case the momentum sum and the position integral

factorize (because if njα − njα′= 0, then the Fourier factor is unity for all values of 

q). The momentum factor that arises is

Z +,id(N , V , T ) =
1

N!
∑

P̂

∏
j,α

∞

∑
njα=−∞

e−βΔ2
pn2

jα/2mδ(njα − njα′).

This neglects mixed momentum permutation loops, which do not necessarily

contribute zero upon integration because of the interaction potential in the

integrand. However, when pure permutation loops give the dominant contribution,

as is assumed here, then all the wave function symmetrization effects are contained

within this momentum factor. Because of the factorization, this is purely an ideal

gas result, and it is directly connected with the grand canonical ideal bosons results

of section 8.2 and 8.3. What is different to that analysis is that here in the low

temperature regime we avoid the binary division continuum approximation, and

instead focus on the occupancy of the discrete momentum states.

Z +(N , V , T ) =
1

N!
∑

n

∑
P̂

⟨n ∣ e−βĤ ∣ P̂n⟩

≈
1

N!
∑

n

∑
P̂

1

V N
∫ dq e−βH(q,pn)eq⋅pn/iℏe−q⋅P̂pn/iℏ

=
1

N!
∑

P̂

1

V N
∫ dq e−βU(q) ∑

n

e−βΔ2
pn2/2meq⋅(n−n′)Δp/iℏ.
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The remaining factor contains the classical configuration integral, 

Qcl(N , V , T ) = ∫ dq e−βU(q)
, and so one has

Z +(N , V , T ) = Z +,id(N , V , T )
Qcl(N , V , T )

V N
, β → ∞.

It must be emphasized that this factorization is predicated upon the neglect of

the commutation function, and upon the explicit restriction to pure momentum

permutation loops.

The average energy is just the logarithmic temperature derivative of this,

This is the sum of the quantum average energy for ideal bosons plus the

classical average potential energy of their interactions. Hence the heat capacity at

constant density is similarly the sum of the quantum ideal part and the classical

interaction part. The former in binary division approximation (ground state plus

continuum excited states) is derived in subsection 8.2.3.

Approaching absolute zero, the potential energy is practically constant as the

structure of the fluid is insensitive to temperature, ⟨U⟩cl
N ,V ,T → const. Hence its

contribution to the heat capacity must be negligible, and to a good approximation

the dominant energy contribution to the heat capacity at constant density is that

from ideal bosons. In other words, at low temperatures approaching absolute zero,

the present analysis of interacting bosons shows that the classical excess

contributes negligibly to the heat capacity. The ideal boson expression, equation

(8.20), dominates even for interacting bosons. One concludes that interactions

make little difference to the heat capacity deep below the transition temperature.

It should be emphasized that the main approximation in the above analysis is to

restrict the permutation loops to those consisting of bosons in the same momentum

state (pure momentum loops). This neglects permutation loops composed from

bosons in different momentum states, which are the ones that give rise to the

thermal wavelength in the momentum continuum. These give the dominant

contribution to the heat capacity in the vicinity of the λ-transition, and so the

present analysis cannot be expected to be accurate in that regime.

9.3.2 Permutation entropy for condensation

There is an alternative and arguably better way to view the preceding factorization

that brings out its explicit relationship to entropy and that sheds light on the nature

of the system in the superfluid regime.

⟨E⟩+
N ,V ,T =

−V −N

Z +(N , V , T )
{Qcl(N , V , T )

∂Z +,id(N , V , T )

∂β

+ Z +,id(N , V , T )
∂Qcl(N , V , T )

∂β
}

= ⟨E⟩+,id
N ,V ,T + ⟨U⟩cl

N ,V ,T .
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The microstates of the system are n = {n1, n2, … , nN }. The elements here are

single-particle momentum states, with njα = 0, ±1, ±2, …, with j = 1, 2, … , N
and α = x, y, z, and the corresponding the phase space momentum is p = Δpn, 

Δp = 2πℏ/L. A microstate has internal subsystem entropy due to permutations,

S s,+
n = kB ln χ+

n .

Here χ+
n

 is the symmetrization factor for bosons, which appears in the

expression for the partition function, equation (7.71) or equation (8.1). It is the

number of allowed permutations. Since the momentum state is the product of

single-particle states this is (Attard 2021 equation (2.20))

χ+
n = ∑

P̂

⟨P̂n ∣ n⟩ = ∏
a

Na(n)!.

The only nonzero permutations are between bosons in the same momentum

state, the number of which is equal to the occupancy of the state,

Na(n) =
N

∑
j=1

δnj,a.

Here a = {ax, ay, az} and aα = 0, ±1, ±2, …. Since the logarithm of the

partition function is the total entropy, and since the Maxwell–Boltzmann factor is

the reservoir entropy, one can identify the symmetrization factor with the internal

or subsystem entropy for the momentum states due to permutations.

Obviously we add this internal entropy to the canonical equilibrium reservoir

entropy to get the total entropy of the subsystem microstate,

S +
n = S s,+

n + S r
n = kB ln χ+

n −
H(q, p)

T
.

Here H(q, p) = K(p) + U(q) is the classical Hamiltonian phase space

function.

The specific contribution from the permutation entropy can be elucidated in

terms of a trial momentum move for particle j, pj → pj′. If pj = aΔp and 

pj′= bΔp, then this may be written

a → b, or {Na, Nb} → {Na − 1, Nb + 1}.

Obviously Na ⩾ 1. The change in the internal subsystem entropy for this is

ΔS s,+
n (a → b) = kB ln

Nb + 1

Na

.
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This is positive if the number of bosons in the destination state ends up being

greater than the number in the initial state (the rich get richer). This what drives

the bosons’ momenta to become highly correlated at low temperatures, the

formation of large momentum loops, and increased momentum state occupancy.

The change in reservoir entropy, ΔS r
n(a → b)/kB = −β(b2 − a2)Δ2

p/2m,

should be added to this. This tends to drive the particles into the momentum

ground state. Assuming that structure, not dynamics, are of interest, the particles

positions can be independently changed, ΔS r(q → q′)/kB = −β(U(q′) − U(q)).

The changes in momentum are conveniently done one particle at a time, and

similarly for position. The changes in entropy can be used in conjunction with, for

example, the Metropolis algorithm, to generate a trajectory through (semi-discrete)

phase space (which includes the ground momentum state) that ensures that the

trajectory average equals the equilibrium average. They can also be used to

formulate stochastic dissipative equations of motion (see sections 3.2.4, 4.1, and

5.4). More sophisticated equations of motion for superfluid flow are given in section

9.4.4.

The canonical equilibrium partition function for bosons, equation (9.1), is

The third equality neglects the commutation function. The fourth equality

makes the same approximation as in the preceding subsection, namely it neglects

permutations between bosons in different momentum states on the grounds that

these give highly oscillatory Fourier factors. This means that we only need retain

permutations amongst bosons in the same momentum state, the number of which

is given by χ+
n , and the logarithm of which number gives the internal subsystem

entropy of the microstate. The final factor is just the configurational integral, 

Qcl(N , V , T ), and so this expression is the same as that given in the preceding

subsection, equation (9.3), except that here the sum over permutations has been

performed explicitly to give the subsystem internal microstate entropy.

The symmetrization factor differs from unity only at low temperatures when

there are a restricted number of momentum states accessible so that there is high

probability of some being occupied by multiple bosons. It should be noted that the

Z +(N , V , T ) =
1

N!
∑

n

∑
P̂

⟨ϕn(q) ∣ e−βĤ ∣ ϕn(P̂q)⟩

=
1

N!V N
∑

n

∑
P̂

∫ dq eq⋅pn/iℏe−βĤeq⋅P̂pn/iℏ

≈
1

N!V N
∑

n

∑
P̂

∫ dq eq⋅pn/iℏe−βH(q,pn)eq⋅P̂pn/iℏ

≈
1

N!V N
∑

n

∫ dq e−βH(q,pn)χ+
n

=
1

N!V N
∑

n

e−βKneS
s,+
n /kB ∫ dq e−βU(q).
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permutation entropy of a momentum state depends only upon its occupancy, not

upon the value of its momentum. In this sense there is no qualitative difference

between the ground momentum state and low-lying excited momentum states

(section 8.6.6 and 9.2). It is the entropy embodied in the symmetrization factor, and

its increase with increasing momentum correlation, that is ultimately responsible for

superfluidity below the λ-transition.

9.4 Entropy of superfluidity

The puzzle with superfluidity is the physical mechanism by which bosons flow

without viscosity. One hint to the answer is the fact that the onset of superfluidity

coincides with the λ-transition. As shown in chapter 8, in the first approximation this

signifies Bose–Einstein condensation into the zero momentum state. More detailed

arguments in sections 8.6.6, 9.2, and 9.3.2 extend the simple binary picture to say

that condensation represents the occupancy of multiple low-lying momentum

states, not just the ground momentum state.

The coexistence of He II and He I below the λ-transition is consistent with the

condensed bosons being the ones in highly occupied momentum states, and the

non-condensed bosons being the ones in singly (or few) occupied momentum

states. This binary division based upon occupancy is likely a better approximation

than the binary division developed by F London (1938) based upon ground and

excited states. One can see that below the λ-transition 4He is a mixture of bosons in

highly occupied (He II) and in few-occupied (He I) momentum states, with the

proportion of He II increasing with decreasing temperature. Superfluidity is carried

by the bosons in the highly occupied momentum states, as is now discussed.

9.4.1 Momentum loop entropy in collisions

In section 9.3.2 the permutation entropy for condensation into pure momentum

permutation loops was analyzed. The change in the total entropy for a change in

the momentum state of a single boson was given as (cf equations (9.8) and (9.10))

k−1
B ΔS +

n (a → b) = ln
Nb + 1

Na

−
βΔ2

p

2m
(b2 − a2).

The internal permutation entropy, the first term on the right-hand side, will

increase if the destination state ends up with greater numbers than were in the

original state. The reservoir entropy, the second term on the right-hand side, will

increase if the destination state has lower kinetic energy than the original state.

These two terms are the deterministic or dissipative contribution to the evolution

and maintenance of the equilibrium distribution of momentum states. One can also

include the mechanical forces if one were to implement these to generate a

trajectory over time. This is a bowdlerized version of the stochastic dissipative

equations of motion (3.86), (4.21), and (5.50). A more complete description of the

equations of motion for superfluid flow is given in section 9.4.4.

One can draw two important conclusions from this result. First, if the two states

have the same momentum magnitude, then this tends to drive the boson into the

most highly occupied state. This supports the suggestion above that it is possible

that only one or a few momentum states in each kinetic energy neighborhood are



occupied. Second, the reservoir term tends to drive bosons into the momentum

ground state. However, the reservoir term is extremely weak, being O(10−14).

On both these points one has to be aware that there has to be added a

stochastic contribution to the equations of motion (see sections 3.2.4, 4.1, and 5.4).

The randomizing effect of this tends to drive bosons out of the ground momentum

state, and out of a single momentum state in any given kinetic energy

neighborhood. So despite the fact that the dissipative terms given explicitly above

favor ground momentum state occupation, the reality is that the picture enunciated

above in section 9.2, and earlier in subsection 8.6.6, is most likely correct:

condensation occurs into the low-lying momentum states, rather than solely into

the ground momentum state. The superfluid equations of motion conform to this

picture (section 9.4.4).

In view of these arguments and the very small spacing between momentum

states estimated for 4He below the λ-transition, βΔ2
p/2 m = 2 × 10−14

 for T = 1 K

and L = 1 cm, the equilibrium probability distribution for momentum states likely

takes the form of a Gaussian peaked at the ground momentum state, n̄ = {0, 0, 0},

with a rather broad width that encompasses on the order of 1014 low-lying

momentum states in each direction. It is probably the case that at any one instant

the majority of the individual momentum states within this Gaussian envelope are

unoccupied.

For the case of steady flow down a narrow channel or capillary driven by an

external force or pressure gradient, the most likely momentum state is of the form 

n̄ = {n̄x, 0, 0}, for some n̄x > 0. Again there would be a broad, essentially one-

dimensional, Gaussian envelope of momentum states about this, most of which are

unoccupied at any one time. (The transverse width of the Gaussian would be 

O(n̄xL2
y/L2

x).) Since the occupied states have a high number of bosons in them,

their permutation entropy is high. Unless the collision force is large, or the

momentum state is high, any attempt to shift an individual boson out of an

occupied state and into an unoccupied state would most likely not succeed because

of the loss of part of the permutation entropy of the occupied state. The probability

is that such a force would not occur in the first place. If the forces were such as to

attempt to transfer a boson from one occupied state to another occupied state,

then there may be a change of momentum state, depending upon the relative

occupancies. Of course the only destination states where this could happen are

those likely occupied in accordance with the probability distribution centered on n̄.

A more sophisticated presentation of the equations of motion for superfluid flow is

given in section 9.4.4.

9.4.2 Non-local momentum correlations and plug flow

The non-local nature of the momentum correlations induced by the pure momentum

permutation loops is the fundamental cause of superfluidity. Since the λ-transition

marks the change in dominance from position to momentum permutation loops

(section 8.6.2), and since the former are localized in space and the latter aren’t, it is

clear that non-localization must be essential for superfluidity.

Recall the molecular origin of shear viscosity in a classical fluid. In shear flow,

the inhomogeneous momentum flux is dissipated by molecular collisions. In effect

faster moving fluid layers are slowed and adjacent slower layers are accelerated as



momentum is transferred between them. This momentum dissipation has the effect

of increasing the subsystem entropy, since the order represented by spatial

variations in momentum flux is a state of low configurational entropy (cf section 3.4

for heat flow, and Attard (2012 section 9.5) for shear flow).

In general for a classical fluid, or for a quantum fluid above the λ-transition

where position permutation loops dominate, the momentum correlations must be

spatially localized, which gives rise to shear flow. For example, for Poiseuille flow,

which is laminar flow in a pipe or channel under a pressure gradient, the flow is zero

at the walls and increases continuously toward the center.

In the case of bosons below the λ-transition, those bosons in the same highly

occupied momentum state are correlated without regard to separation. Such non-

local momentum correlations prohibit the Poiseuille parabolic profile, since the high

momentum state in the center of the channel would induce the same state in the

bosons near the walls. Non-local momentum correlations imply momentum spatial

homogeneity: the only mathematical solution for nonzero flow is plug flow in which

the most likely momentum state of the bosons is uniform across the channel. This

of course is also the classical solution for inviscid hydrodynamic flow.

9.4.3 Critical velocity

Laboratory measurements show the existence of a critical velocity above which

superfluid flow through pores is destroyed. Pathria (1972 section 10.8) gives

measured experimental values for the critical velocity of  0.13, 0.08, and 0.04 m

for capillary diameter D = 0.12, 0.79, and 3.9 μm, respectively. The common

explanation is that above a critical velocity the production and growth of excitations

destroy the superfluid. The type of excitations generally invoked are associated with

the rotons of Landau’s (1941) theory, which are commonly interpreted as vortex

rings.

In the context of the present approach to the λ-transition based upon

momentum state occupancy, the fact that the critical velocity increases with

decreasing pore diameter suggests instead that we should compare it to the

velocity of the first excited transverse momentum state. (The theoretical basis for

this prediction is derived below following the comparison with measured data.) For

the rectangular geometry that we have focussed on thus far this is 

. (This would also apply to a liquid film, where the vanishing of

the wave function at the solid surface and at the liquid–vapor interface creates just

such a transverse momentum gap.) For a cylinder of diameter D, the transverse

momentum gap is Δpr = 2j01ℏ/D, where j01 = 2.4 is the first zero of the zeroth

order Bessel function (Blinder 2011). Hence according to the present theory the

critical velocity for a cylindrical pore is .

This predicted critical velocity is tested in figure 9.2. Over some three orders of

magnitude in pore diameter it remains within a factor of three of the measured

data. The Landau stability criterion for superfluid flow gives a critical velocity of

about 60 m s−1, which is several orders of magnitude larger than the measured

values (Batrouni et al 2004, Balibar 2017). The vortex prediction of Kawatra and

Pathria (1966), which implements Feynman’s (1954) suggestion that the rotons

invented by Landau (1941) in his theory of superfluidity were in fact quantized

vortices, is also compared in the figure. Although limited, the present theory lies

closer to the experimental data in figure 9.2 than does the vortex/roton theory.



For the case of a planar (actually annular) film, Ahlers (1969) measured the

critical velocity times the thickness, which was estimated as 0.25 μm. Ahlers (1969)

found that sufficiently below the λ-transition this approaches a constant value of 

 m2 s−1. The present prediction,  m2 s−1,

compares agreeably with the measured value (figure 9.2). The results of Ahlers

(1969) agree with those obtained by Clow and Reppy (1967) for thickness 0.2 μm

using a different method.

Figure 9.2. Critical velocity times the pore diameter for superfluid flow of

helium through a cylindrical pore of diameter D. The circles (Pathria 1972

section 10.8) and triangle (Allum et al 1977) are measured values, the solid

line is the present prediction , and the dotted line is the vortex

result of Kawatra and Pathria (1966) . The arrows are for planar

films, with the open arrow measured (Ahlers 1969, Clow and Reppy 1967) and

the filled arrow predicted, .

It should be mentioned that for superfluid flow in a film, collisions that change

momentum parallel to the surface do not dissipate momentum or create shear flow.

It is only collisions that change momentum normal to the surface that must be

suppressed. Hence it is the momentum gap normal to the surface that determines

the critical velocity.

As discussed in subsection 9.4.1, superfluid flow down a channel in the z-

direction most likely occurs in a ground transverse momentum state, n̄ = {0, 0, n̄z}
. The probability distribution of momentum states is peaked about this, with a

relatively broad width within which many momentum state are probably empty. The

occupied states in the vicinity of n̄ likely have large numbers of bosons in each.

Since the channel is usually much longer than it is wide, the spacing of momentum

states in the flow direction is much less than those in the transverse direction.

Again, as discussed in subsection 9.4.1, such flow with bosons in the transverse

momentum ground state is arguably dissipationless, in order that the flow be

inviscid. It will be shown shortly that when the flow velocity exceeds the velocity of

the first excited transverse momentum state, interactions and collisions with the
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wall are able to excite the bosons out of the state n̄, thereby destroying the

superfluid flow.

The measured critical velocities are several orders of magnitude smaller than a

component of the thermal velocity of an individual boson, which at T = 1 K is 

 m s−1. But this measure is not entirely appropriate because the

longitudinal momentum states with smaller quantum numbers have greater

occupancy and permutation entropy; one cannot really consider them individually.

The external force or pressure gradient that drives the superfluid flow in the pore

gives rise to the non-equilibrium probability distribution that is peaked at n̄.

The stochastic dissipative equations of motion provide a quantitative estimate of

the effect of a collision. Let Nn̄ be the occupancy of the most likely state, and

suppose that this is a relatively large number. Let  be the flow velocity

for this initial state. Consider the final state to be the first excited transverse

momentum state and longitudinal ground state, n′= {1, 0, 0}, with velocity 

. Consider two possible collisions with the wall related to this final state.

In the first case one particular boson transitions to the final state. In this case the

changes in internal and reservoir (wall) entropy from the collision are (cf equation

(9.12))

ΔS int = kB ln[
(Nn̄ − 1)!

Nn̄!

1!

0!
] = −kB ln Nn̄, and ΔS r =

−m(v2
⊥ − v̄2

z)

2T
,

respectively. The first term is negative and large in magnitude because Nn̄ is

large. The second term is small because the velocities  and  are much less than

the thermal velocity. Hence the total change in entropy is negative, which means

that the dissipative part of the stochastic equations of motion suppress such

individual boson collisions. This is a dynamic example of the tendency of bosons to

occupy the same state.

The second type of collision to be considered is when all of the bosons in the

pore are excited into the state n′. This might be called an occupied state collision.

In this case the respective changes in entropy are

ΔS int = kB ln[
0!

Nn̄!

Nn̄!

0!
] = 0, and ΔS r =

−mNn̄(v2
⊥ − v̄2

z)

2T
.

For this occupied state collision the decrease in the internal entropy of the

initial state cancels with the increase for the final state. Hence the nett change in

permutation entropy is zero. In contrast, the change in reservoir entropy is now

large, because it scales with the occupancy of the most likely state. It is positive if

and only if the flow velocity  exceeds the velocity of the first excited transverse

momentum state . Because it is macroscopic, its exponential is effectively a

Heaviside step function so that the dissipative part of the stochastic equations of

motion either forbids or else mandates such an occupied state collision and

transition, depending on which of the two speeds is largest.

This argument only works when the occupancy is sufficiently large, which fact

can be used to estimate a lower bound. Taking the difference in the kinetic energies
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to be about equal to the kinetic energy at the critical flow velocity, the change in

reservoir entropy can only be much greater than unity if

Nn̄ ≫
2kBT

mv2
c

= 2
v2

th

v2
c

.

With  m s−1 and  m s−1, this gives Nn̄ >
˜

106
. This is

substantially larger than the average occupancy estimated for the accessible low-

lying momentum states from the thermal energy, Nn = O(102). This suggests that

most of the low-lying momentum states are unoccupied. Since this lower bound is

very much less than the total number of bosons in the channel, one can also see

that it is not necessary for only one momentum state to be occupied for

superfluidity to occur. That is, the existence of a critical velocity for superfluid flow

suggests that condensation need not be solely into the momentum ground state.

Although the above collision calculation has been performed for the transition

between the two specific states n̄ and n′, it should be clear that similar conclusions

will hold for any initial occupied state in the vicinity of n̄, and any final state out of

that neighborhood. Also, because forces are local but occupancy is non-local, it may

be that not all of the bosons in the most likely momentum state instantaneously

change state. This leads to the idea of partitions of the occupied states, as is

discussed in the following presentation of the superfluid equations of motion.

The first calculation shows that when the most likely state is occupied by

macroscopic numbers of bosons, then excitation or transition by individual bosons is

effectively forbidden. The second calculation shows that the measured critical

velocity is the velocity of the transverse momentum spacing, , and that

the necessary and sufficient condition for stable superfluid flow is that the flow

velocity must be less than this critical velocity.

9.4.4 Superfluid equations of motion

The key remaining challenge is to explain mechanistically how superfluid flow

actually occurs. Whilst the preceding subsections point out that the loss of

permutation entropy for highly occupied momentum states makes momentum-

changing collisions improbable, they remain vague on how or whether such

collisions are actually avoided. Recall Landauʼs (1941) criticism: ‘nothing would

prevent atoms in a normal state from colliding with excited atoms, ie. when moving

through the liquid they would experience a friction and there would be no

superfluidity at all’. To answer this a more detailed picture of the trajectory with

specific equations of motion is discussed.

The general form of the stochastic dissipative equations of motion is based on

the second entropy of non-equilibrium thermodynamics (Attard 2012 sections 3.6

and 7.4.5). Similar to equation (5.50), the equations of motion are

Γ(t + τ) = Γ0(t + τ ∣ Γ(t), t) + Rp(t).

A point in classical phase space is Γ ≡ {q, p} and the gradient operator is 

∇ ≡ {∇q, ∇p}. The thermostat contribution has only momentum components, 
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Rp(t) = Rp(t) + R̃p(t), with the dissipative and stochastic forces satisfying

Rp(t) =
σ2

2kB
∇pS(Γ(t)), and ⟨R̃p(t)R̃p(t′)⟩ = σ2δt,t′Ipp,

with ⟨R̃p⟩ = 0. The thermostat should represent a small perturbation on the

adiabatic trajectory.

In the present quantum case, S(Γ) = S r(Γ)+ S int(p), where the reservoir

entropy is S r(Γ) = −H(Γ)/T , and the permutation entropy depends upon the

occupancy of the momentum states, S int(p) = kB ∑a ln Na!. This expression for

the total entropy is the same as in the treatment on the far-side of the λ-transition

in section 9.3. It includes only permutations of bosons in the same momentum state

(pure momentum loops). It precludes mixed loops, which, as discussed in section

8.5, are important on the high-temperature side of the λ-transition, where they

create a barrier to condensation. The present treatment in principle allows dynamic

properties to be obtained, which was not possible with the analytic factorization

given in section 9.3 for the static case.

Take the quantum adiabatic velocity to be

Γ̇
0

= −T∇†S(Γ), ∇† ≡ {∇p, −∇q}.

This formulation ensures that time averages equal phase space averages

(section 5.2.3). Hamiltonʼs equations of motion, which are the classical adiabatic

equations of motion, is this with S ⇒ S r ≡ −H/T . As in the classical case, these

quantum adiabatic equations of motion are time reversible (cf section 5.4.2). As in

the classical case, these equations are incompressible, ∇ ⋅ Γ̇
0

= 0, so that volume

elements are conserved on a quantum adiabatic trajectory. And also as in the

classical case, the adiabatic rate of change of entropy vanishes, Γ̇
0

⋅ ∇S = 0, and

so the entropy is also conserved on a quantum adiabatic trajectory. Hence the

quantum probability density in phase space, ℘(Γ) = Z −1eS(Γ)/kB , is a constant of

the quantum adiabatic motion. Of course, the need to conserve the equilibrium

probability is a statistical requirement.

The momentum p = {p1, p2, … , pN } is a continuous variable that is not

quantized. It is non-trivial to combine this with the occupation of discrete states and

the permutation entropy. The gradients of the total entropy are required for the

adiabatic and dissipative forces. This is straightforward for the reservoir entropy

since these are just the gradients of the Hamiltonian phase space function.

However the permutation entropy requires the occupancies of discrete momentum

states, which are necessarily discontinuous. Whilst it is easy to obtain the number

of bosons in each momentum state given the spacing Δp, to define the momentum

gradient of the occupancy, which is necessary for the ∇pS int(p) that appears in

the above equations of motion, in practice a continuous definition of occupancy can

be used. Computer simulations of molecular interactions and collisions in superfluid

¯

¯
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helium-4 using the present equations of motion have been successfully performed

(Attard 2023, to be published).

The fundamental conceptual conclusion that can be drawn from these equations

of motion is that the rate of change of the permutation entropy must vanish on the

quantum adiabatic trajectory,

Ṡ
int,0

(p) = 0.

(Actually it is the total entropy that must be constant. But in so far as in any

significant collision this is dominated by the permutation entropy, for the present

discussion one may focus on the low probability of large changes in the latter.) This

means that in an adiabatic collision all bosons in an occupied state either remain in

the same state, or else all change momentum to a single new state (ie. the

occupied state as a whole changes). For a singly occupied state this is possible, but

it is difficult to imagine for a highly occupied one. One could conceive of a singleton

boson colliding with a boson in a highly occupied state, and the two swapping

positions (also known as a transposition permutation). This would leave the

permutation entropy unchanged. For a singleton boson that has a glancing collision

with a boson in a highly occupied state, the bosons in the highly occupied state

must continue on unchanged in order to preserve the permutation entropy, which,

from momentum conservation, means that the singleton boson is also undeflected.

If the bosons in a highly occupied state were all to identically change their state in

response to, say, a head-on collision between one of them and a singleton boson or

wall particle, or because the momentum gap was sufficiently small, then this would

imply that the total force on the state is divided equally amongst them in a non-

local fashion. In this case the bosons in a highly occupied state would behave like a

perfectly rigid heavy object with mass proportional to the occupancy number.

These equations show that it is unlikely for condensed bosons (ie. those in a

highly occupied momentum state) to exchange momentum with uncondensed

bosons (ie. those in a singly or few-occupied momentum state). Obviously there is a

probabilistic element to this. For driven superfluid flow in a channel or film, the

relatively large transverse momentum gap, Δp,⊥, means that in a collision with a

boson in a highly occupied state, the change in transverse momentum for a

condensed boson is less than Δp,⊥. Thus the change in the transverse momentum

state is forbidden. Since the transverse momentum of the condensed bosons

cannot change, neither can that of the non-condensed boson involved in the

collision, since momentum must be conserved. In these circumstances where the

transverse momentum gap suppresses the lateral transfer of longitudinal

momentum, one can conclude that there can be no shear force on highly occupied

states. In the second entropy formulation of variational hydrodynamics (section

3.5), the most likely viscous pressure tensor (ie. the traceless momentum flux

tensor) is proportional to the symmetric traceless velocity gradient tensor (Attard

2012 equation (5.61)),

Π
*
(r) = −2η sign(τ) [∇v(r)]*,sym ,̄––



where η is the shear viscosity. For condensed bosons we have just shown that the

off-diagonal elements of the momentum flux tensor are zero, whereas the velocity

gradient tensor is non-zero for uncondensed bosons in shear flow (cf section 9.5.7).

This means that there is no coupling between the momentum of condensed bosons

and that of the non-condensed bosons in shear flow. Since η is the proportionality

constant between the two, this implies that the shear viscosity for condensed

bosons vanishes.

In conclusion, these equations of motion explain dissipationless superfluid flow.

They answer Landauʼs (1941) objection that Bose–Einstein condensation is

incompatible with superfluidity because collisions between condensed and

uncondensed bosons would cause friction, or so he believed. What these equations

show is that the entropy is conserved on an adiabatic trajectory, which means that

bosons in highly occupied momentum states are unlikely to individually change

their momentum in collisions. Nor can they all change to a single new momentum

state, not unless the total force on the state acts on all of them in equal fraction in a

non-local fashion.

9.5 Fountain pressure

9.5.1 Introduction

One of the earliest and perhaps still the most spectacular manifestation of

superfluidity is the fountain effect. In this helium vigorously spurts from the open

end of a heated tube that is connected by a capillary or microporous frit to a

chamber of liquid helium maintained below the condensation temperature (Allen

and Misener 1938, Balibar 2017). Measuring the fountain pressure with the heated

chamber closed (apart from the connecting capillary) is a common experimental

technique for obtaining the entropy (Donnelly and Barenghi 1998).

There is one common qualitative explanation, and one common quantitative

treatment of the fountain effect. First the explanation, which is that the physical

origin of the fountain effect is an osmotic pressure (Tisza 1938, Balibar 2017). The

notion is based on Tisza’s two-fluid model, which in turn is based on F London’s

(1938) proposal that the λ-transition in liquid helium is due to Bose–Einstein

condensation. The two-fluid model says that helium consists of a mixture of He I

and He II, which are excited state and ground state bosons, respectively. The latter

comprise the superfluid and their fraction increases with decreasing temperature

below the condensation temperature. This gives rise to the notion that osmosis

drives He II selectively through the capillary from the low temperature, high

concentration chamber to the high temperature, low concentration one. In general

in a binary solution the mixing entropy favors concentration equality, and this is

what is believed to create the osmotic pressure. A common conclusion drawn from

the osmotic pressure explanation is that condensed bosons are attracted to heat.

In section 9.5.9 statistical mechanical analysis and calculations are performed of

the osmotic prediction for the fountain pressure using both calculated (section 8.4)

and measured (Donnelly and Barenghi 1998) data for the condensed boson fraction.

It is shown that the predicted fountain pressures do not agree with measured values

(Hammel and Keller 1961). Although these calculations are made at the level of

ideal solution theory, the quantitative error is so large that the osmotic explanation

for the fountain effect appears nonviable.



Actually, the osmotic pressure explanation could have been ruled out from

almost the beginning since both He I and He II pass through the capillary. It is

known experimentally from heat flow measurements that there is viscous flow of He

I from the high temperature, high pressure chamber to the low temperature, low

pressure one (F London and Zilsel 1948, Keller and Hammel 1960). This is quite

contrary to the usual osmotic pressure, which only arises because a semi-

permeable membrane excludes at least one of the components of the mixture from

the flow.

Now to the accepted quantitative expression for the fountain pressure. H London

(1939) carried out a thermodynamic analysis of the fountain effect that made a

quantitative prediction for the pressure difference for a given temperature

difference. His result is historically important as the quantitative experimental

verification of this formula was taken to be evidence for the picture of superfluid

helium being in a state of zero entropy. To the present day his expression remains

significant as fountain pressure measurements are used to establish benchmark

results against which calorimetric methods for the entropy of helium may be tested

(Donnelly and Barenghi 1998). The results obtained from his expression are also

used as calibration standards for instruments (Hammel and Keller 1961).

Elsewhere (Attard 2022b appendix A) I have presented detailed physical and

mathematical arguments that the derivation of the H London (1939) expression is

flawed. Further evidence is presented here of an internal contradiction in that

derivation (section 9.5.4). These criticisms raise the question of whether the H

London (1939) expression for the fountain pressure is a formally exact

thermodynamic result, or whether it is merely a good approximation that fits the

measured data. The distinction between the two can be appreciated from the role

the expression has played in establishing benchmarks for calorimetry

measurements and its use in instrument calibration. Also, the expression and its

derivation have provided insight into the nature of superfluid helium, and the

picture that emerges ought to be either rigorously confirmed or else refuted.

In section 9.5.2 four results are established: first, that the entropy is maximized

when the chemical potential divided by the temperature of the two chambers is

equal (equivalently, the fugacity is equal). Second, that the energy is minimized at

constant entropy when the chemical potential of the two chambers is equal. Third,

that equality of chemical potential is thermodynamically equivalent to the H London

(1939) expression for the fountain pressure. And fourth, that these two expressions

(equality of fugacity and equality of chemical potential) can be expected to give the

same numerical result for the fountain pressure to within between about one part in

ten and one part in one thousand, depending upon the temperatures.

In section 9.5.6 the three expressions are tested against measured fountain

pressures. These use measured thermodynamic data, which tests are not

straightforward because of errors that are identified in the fitted values of the

enthalpy and the entropy derived by Donnelly and Barenghi (1998) from the

measured heat capacity data. When these errors are corrected and the enthalpy

and entropy are recalculated, the two thermodynamically equivalent forms of the H

London (1939) expression are practically indistinguishable from each other and

from the measured fountain pressures. The fountain pressures resulting from

fugacity equality are 3%–5% below the measured values. It is tentatively concluded

that the measured data support H London (1939) as being an exact expression. An
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interpretation and rationalization of energy minimization at constant entropy as the

principle that underlies superfluid flow is given in section 9.5.8.

9.5.2 Thermodynamic analysis

As mentioned, H London (1939) gave an expression for the temperature derivative

of the fountain pressure that has been confirmed with high accuracy by

experimental measurement. An important question is whether the derivation of H

London (1939) is rigorous or whether it has been fudged. One must decide whether

his expression is formally exact, or whether it is merely an accurate approximation.

A critical analysis of H London’s (1939) derivation of this expression is given in

appendix A of Attard (2022b). An additional argument is presented in section 9.5.4

that the derivation is internally inconsistent. The jury’s judgement is the Scottish

one: his expression is not proven.

Consider two closed chambers of helium, A and B, each in contact with its own

thermal reservoir of temperature TA and TB, and having pressure pA and pB. The

chambers are connected by a capillary through which fluid can flow. Chamber A in

practice is at the lower temperature, and consists of saturated liquid and vapor, but

these points are presently unimportant. As H London (1939) points out, in the

optimum steady state the pressure of the second chamber is a function of its

temperature and the pressure and temperature of the first chamber, 

pB = p(TB; pA, TA).

The result given by H London (1939) says that the derivative of the pressure of

the second chamber with respect to its temperature for fixed first chamber equals

the entropy density,

dpB

dTB

= ρBsB.

Here ρ is the number density and s is the entropy per particle. (I use lower case

letters to denote quantities per particle; H London (1939) uses them to denote

quantities per unit mass.) The derivative of the pressure and like quantities with

respect to temperature for fixed first chamber parameters are total derivatives,

which means that their integral along the fountain path can be evaluated

analytically.

H London (1939) purported to derive this result using a work-heat flow cycle,

which derivation I have reason to doubt (Attard 2022b appendix A). (See also

section 9.5.4.) I note that it is not very hard to guess this result as the left-hand side

has units of Boltzmann’s constant per unit volume, and the only ‘pure’

thermodynamic quantity with those units is the entropy density. It is possible that H

London (1939) first guessed the result, and retrospectively cooked up a derivation.

In any case here I show that this result is equivalent to chemical potential equality

of the two chambers, which I seek to locate within the broader principles of

thermodynamics.

First I clarify a subtle point regarding extensivity. In equilibrium thermodynamics

it is generally recognized that quantities such as energy, entropy, and free energy

are extensive, which means that the total value is the sum of the individual values

for independent or quasi-independent subsystems. For the present case of two

subsystems of different temperatures this general rule does not hold for the free
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energy. This is easily seen by considering the two to be quasi-independent such that

the probability of a joint state is the product of the individual probabilities (see

chapter 2, and also Attard (2002))

Here kB is Boltzmann’s constant, and S and F are the appropriate total entropy

and free energy. From this it is clear that the entropy is simply additive, 

Stot(XA, XB) = SA(XA) + SB(XB), but it is the free energy divided by

temperature, rather than the free energy itself, that is additive, 

Ftot(XA, XB)/Teff = FA(XA)/TA + FB(XB)/TB. It is only in the case of

subsystems all with the same temperature that the free energy is extensive (i.e.

simply additive).

In contrast to the free energy, by the usual principles of mechanics, the energy is

simply additive Etot(XA, XB) = EA(XA) + EB(XB). This simple additivity is

independent of the temperatures of the two chambers.

In searching for the thermodynamic principle that gives the H London (1939)

expression (9.21), there are two possible axioms to be considered. The first is that

the total entropy of the total system is a maximum, which is of course just the

Second Law of Thermodynamics, albeit applied to a non-equilibrium steady-state

system (see chapter 3, and also Attard (2012)). The second is that the total energy

of the subsystems is a minimum, which has the appearance of a mechanical law

and which is generally without thermodynamic relevance.

A third possible axiom, that the total free energy of the total system is a

minimum is not viable for two related reasons. First, as just explained, it is not free

energy but free energy divided by temperature that is the relevant thermodynamic

potential, so it should be the sum of the free energy divided by temperature that is

a minimum. And second, the free energy divided by temperature is derived directly

from the total entropy, and so the principle of free energy divided by temperature

minimization is not separate to, and does not yield any new information beyond,

total entropy maximization. This can be seen by the trivial relationship between the

second and third equalities in the above equation. To be clear and unambiguous on

this point: for the case of systems with different temperatures, there is no principle

of free energy minimization. There is a principle of free energy divided by

temperature minimization, but this is no different to the principle of entropy

maximization.

Consider now the first possible axiom, that the total entropy of the system is a

maximum. Since the systems are closed, the total entropy is (section 2.3.2)

Stot =
−F(NA, VA, TA)

TA

−
F(NB, VB, TB)

TB
,

where N is the number, V is the volume, and F is the Helmholtz free energy.

With the total number of helium atoms fixed, N = NA + NB, its derivative is (see

equation (2.33))

℘(XA, XB) = ℘A(XA)℘B(XB)

∝ eSA(XA)/kBeSB(XB)/kB

= e−FA(XA)/kBTAe−FB(XB)/kBTB .



(9.2

4)

(9.2

5)

(9.2

6)

(9.2

7)

(9.2

8)

∂Stot

∂NA
=

−μA

TA
+

μB

TB
,

where μ is the chemical potential. The maximum total entropy occurs when this

is zero, which gives the condition for the optimum steady state that follows from the

first possible axiom as

μA

TA
=

μB

TB
.

Since the fugacity is z = eβμ, this condition is equivalent to

zA = zB.

To save words, I shall refer to this result as equal fugacity rather than equal

chemical potential divided by temperature.

It should be emphasized that measurements of the fountain pressure involve two

closed chambers and a heater. Hence it is a non-equilibrium steady-state system.

Usually maximization of the first entropy plays no direct role in determining the

optimum state of such systems (see chapter 3, and also Attard (2012)). Also, there

is nothing specifically superfluid about this result, which may or may not be

important.

Consider now the second possible axiom, that the total energy is a minimum.

The energy of each chamber is a function of its entropy, volume, and number, 

Etot = E(SA, VA, NA) + E(SB, VB, NB), (see sections 2.3.4 and 2.4.4). In this

case the derivative at fixed total N is (table 2.2 line 1)

∂Etot

∂NA
= μA − μB.

Obviously the minimum energy state corresponds to

μA = μB.

For the physical interpretation of this result, section 9.5.8, it is important to

note that the chamber entropy is unchanged. There is currently no principle of

energy minimization in thermodynamics or statistical mechanics. In mechanics, the

force points toward the potential energy minimum (Newton 1687), but even in this

case the total energy is constant on a trajectory. Further, mechanical laws have no

direct isolated application to thermodynamic or statistical systems. Although one

could obtain equality of chemical potential by minimizing the simple sum of the free

energies of the two chambers, as discussed above such procedure is not correct as

it is actually the free energy divided by temperature that is additive.

The chemical potential is the Gibbs free energy per particle, μ = G(N , p, T )/N ,

equation (2.53). The derivative of equation (9.28) with respect to TB at constant

pressure and temperature of the first chamber, and number of the second, is

(section 2.4.1)
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where g, s, and  are the Gibbs free energy, entropy, and volume per

particle, respectively. This is the same as H London’s expression, equation (9.21).

(Since TB = TA implies μB = μA, the constant of integration must be zero.)

Therefore, equality for chemical potential, equation (9.28) is thermodynamically

equivalent to the H London’s expression for the fountain pressure, equation (9.21).

9.5.3 Relationship between the two principles

One might imagine it a simple matter to distinguish the two principles invoked

above by appealing to experimental measurement. Unfortunately, it is not so easy.

Differentiating the condition of constant fugacity, equation (9.26), with respect to

temperature on the fountain path gives

0 = zBβB
dμB

dTB

− zBβBμB
1

TB

.

 

On the saturation curve the chemical potential divided by temperature must be

small and negative because the liquid is in equilibrium with a gas. In fact, using

measured values for the enthalpy and the entropy for 4He on the saturation curve

(Donnelly and Barenghi 1998), the value at T = 1 K is βμsat = −1.26 × 10−3
, and

at T = 2.15 K it is βμsat = −1.05 × 10−1
. The fugacity for bosons must be

bounded above by unity, z < 1, otherwise the denominator of the momentum state

distribution would pass through zero. (For the case of ideal bosons, F London (1938)

showed that zid → 1−
 below the λ-transition (see section 8.2).) Since the

compressibility is positive, and since the fountain pressure is greater than the

saturation pressure at the same temperature, on a fountain path one must have 

μsat
B ⩽ μB < 0. Hence on a fountain path

−1 ≪ βBμB < 0.

This result may be confirmed using measured fountain pressures (Hammel and

Keller 1961) and saturation data (Donnelly and Barenghi 1998).

This means that one can neglect the term proportional to βμ in the above

derivative, which then gives

dμB

dTB

= O(10−3)kB.

0 =
d(GB/NB)

dTB

=
∂gB

∂TB
+

∂gB

∂pB

dpB

dTB

= − sB + vB

dpB

dTB
,
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This says that for practical purposes the condition of constant fugacity is equivalent

to the condition of constant chemical potential to within about one part in one

thousand. Closer to the λ-transition the difference is about one part in ten. One can

see from this that there is some question whether current measurements have the

accuracy to distinguish the two principles.

Is there a theoretical reason to prefer one of the principles over the other?

In the present case it may be said that the condition of chemical potential

equality is a rigorous mathematical consequence of energy minimization at

constant entropy. But not all mathematical results have physical relevance. Given

the fact that energy minimization plays no role in the usual thermodynamic

systems, if it is indeed the underlying principle for superfluid flow then a physical

explanation is called for (section 9.5.8).

Equally, it must be conceded that there is no reason to believe that maximizing

the entropy is a principle relevant to the present non-equilibrium steady-state

system (chapter 3).

The tests against measured data (section 9.5.6) and the arguments that can be

made (section 9.5.8) favor the principle of energy minimization. Perhaps in time it

will become axiomatic that it is the principle that drives superfluid flow.

9.5.4 Inconsistency in the derivation of the H London expression

An essential step in H London’s (1939) derivation of his expression for the fountain

pressure is where he invokes the Nernst heat theorem to conclude that the enthalpy

divided by temperature and the entropy both go to zero at absolute zero. These

mean that the chemical potential must go to zero at absolute zero. H London (1939)

also assumes that there exists a continuous fountain path to absolute zero from an

arbitrary thermodynamic point.

As shown above, the H London (1939) expression is thermodynamically

equivalent to the chemical potential being constant on the fountain path, equation

(9.28). Hence the assumptions made by H London (1939) in his derivation imply

that the chemical potential is zero at an arbitrary thermodynamic point. This is in

general nonsense, and it is in particular wrong for saturated 4He. It follows,

therefore, that if the H London (1939) expression is exact, then either the Nernst

heat theorem is invalid, or else that there does not exist a fountain path to absolute

zero, or both. In any case, the failure of either of these assumptions renders the

derivation of H London (1939) invalid.

It should be mentioned that the result of entropy maximization, namely the

constancy of fugacity, equation (9.25), when combined with these two assumptions,

would also yield nonsense, namely that the fugacity is always unity. However, in

this case, the failure of either or both of these assumptions has no effect on the

derivation of the result by entropy maximization.

It is not my intention to assess the Nernst heat theorem in detail. But I cannot

help but observe that if H London (1939) is correct in that it implies that the

chemical potential divided by temperature vanishes at absolute zero, then it would

imply that the fugacity equalled unity at absolute zero. But the fugacity is bound to

be strictly less than unity, at least for a system with single-particle energy states

(section 8.2). Contrariwise, the number of bosons would be infinite. In so far as 4He

appears to be dominated by ideal statistics deep below the λ-transition (section

9.3), a finite-sized system must arguably violate the Nernst heat theorem.
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Similarly, I don’t wish to traverse step-by-step a fountain path to absolute zero,

but I do note that situating the high temperature chamber on the saturation curve

would require a negative pressure in the other chamber at absolute zero. (The

saturated vapor pressure is relatively low, but as the pressure of the high

temperature chamber, it must be much greater than the pressure in the chamber at

absolute zero.) Conversely, if one insists upon a stable thermodynamic state at

absolute zero, then this places a lower bound on the pressure in the high

temperature chamber that would exceed the saturation pressure. In other words,

not all thermodynamic state points lie on a fountain path to a stable point at

absolute zero.

9.5.5 Proof that the energy is a minimum

Using analogous analysis to that of section 2.4.4, define the number-constrained

total entropy for a fixed subsystem entropy system

Stot(N ∣ μ, S, V ; T ) = S −
1

T
E(S, V , N) +

μ

T
N .

Here T is a temperature parameter. The associated constrained free energy is

A*(N ∣ μ, S, V ; T ) = E(S, V , N) − μN − TS.

Since we are mainly interested in the variation with number we can discard the

final constant and write

A(N ∣ μ, S, V ) = E(S, V , N) − μN .

This describes number fluctuations in an isentropic subsystem. It has number

derivative

∂A(N ∣ μ, S, V )

∂N
= μ(S, V , N) − μ,

which shows that the constrained free energy is extremised at the equilibrium

number N̄(S, V , μ) such that the chemical potentials are equal, μ(S, V , N̄) = μ.

As usual, with Ā(μ, S, V ) = A(N̄ ∣ μ, S, V ), one has

dĀ = T̄ dS − p̄ dV − N̄ dμ.

 

Derived from the total entropy, the free energy must be a minimum,

∂ 2A(N ∣ μ, S, V )

∂N 2
=

∂ 2E(S, V , N)

∂N 2
=

∂μ(S, V , N)

∂N
> 0.
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We conclude from this that if the H London (1939) expression is exact then the

fountain pressure is determined by the minimum in the subsystem energy with

respect to number at constant subsystem entropy.

9.5.6 Comparison with experiment

9.5.6.1 Expressions for the fountain pressure

In practice in experimental application (Hammel and Keller 1961) the H London

(1939) expression for the derivative of the fountain pressure, equation (9.21), is

integrated along the saturation curve,

pB − pA = ∫
TB

TA

dT ′ ρsat(T ′)ssat(T ′).

 

Since the integral for the fountain pressure should be evaluated on the fountain

path rather than the saturation path, one can correct this as follows. One has, with

pressure and temperature as the independent variables,

In the second equality the liquid has been taken to be incompressible. The

thermal expansivity is given by equation (2.118), α = −ρ−1∂ρ(p, T )/∂T . The final

equality follows from the cross-derivative of the Gibbs free energy (cf section 2.4.5)

Here and throughout β = 1/kBT , with kB being Boltzmann’s constant. With this

the fountain pressure integral can be translated from the fountain path to the

saturation path,

ρs = ρsatssat + (p − psat)(
∂(ρs)

∂p
)

sat

T

≈ ρsatssat + (p − psat)ρsat(
1

T

∂h

∂p
−

v

T
)

sat

T

= ρsatssat − αsat(p − psat).

∂h

∂p
=

∂ 2(βG(N , p, T )/N)

∂p∂β

=
∂(βv)

∂β

= v − αvT .
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The fountain pressure in the second term in the integrand may be

approximated by that given by the uncorrected expression, equation (9.39), rather

than iterated to self-consistency. Numerically using measured data this form is

indistinguishable from the raw H London (1939) form on the saturation path,

equation (9.39).

A second equation for the fountain pressure comes from the equality of chemical

potential, equation (9.28), which is thermodynamically equivalent to the H London

(1939) expression, equation (9.21). This can be used to obtain the fountain pressure

by writing , which holds for an incompressible liquid.

Rearranging gives

Invariably the experimental measurements are performed at saturation of

chamber A, and so all quantities on the right-hand side, including 

μsat = hsat − Tssat
, can be obtained from standard tables such as those given by

Donnelly and Barenghi (1998). It is emphasized that any difference between the

fountain pressure given by equation (9.39) and that given by equation (9.43) must

be due to experimental error, and the difference between them gives a guide to the

quantitative reliability of the measurements.

A third equation for the fountain pressure comes from the equality of chemical

potential divided by temperature, equation (9.25). Again using the incompressible

liquid expression for the departure of the chemical potential from its saturation

value, this gives for the fountain pressure

pB − pA = psat
B − pA + ρsat

B (TBμA/TA − μsat
B ).

9.5.6.2 An unfortunate error in the reported entropy and enthalpy

In order to test these expressions against the measured fountain pressure it is

necessary to obtain measured values for the enthalpy per particle h = H/N , the

entropy per particle s = S/N , and the chemical potential μ = h − Ts.

Unfortunately, the fitted values given by Donnelly and Barenghi (1998) are in error.

This can be seen in figure 9.3, which compares the three expressions for the

fountain pressure with the measured values of Hammel and Keller (1961). This

figure is essentially the same as that given in Attard (2022b). Only the integral form

of the H London (1939) expression, equation (9.39), agrees with the measured

values. What is somewhat concerning is that the results for constant chemical

potential, equation (9.43), do not agree with the original H London (1939)

expression, equation (9.39), even though these are thermodynamically equivalent.

pB − pA = ∮
TB

TA

dT ′ ρ(T ′)s(T ′)

≈ ∫
TB

TA

dT ′ {ρsat(T ′)ssat(T ′) − αsat(T ′)[p(T ′; pA, TA) − psat(T ′)]}.

pB − pA ≈ psat
B − pA + ρsat

B (μB − μsat
B )

= psat
B − pA + ρsat

B (μA − μsat
B ).
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If the discrepancy were due to random experimental error in either the

thermodynamic data or the fountain pressure data, then there should be a similar

disagreement between the symbols and the short dashed curve in the figure. The

figure confirms that there is an error in the entropy and enthalpy data given by

Donnelly and Barenghi (1998) that was used in the expressions. Correct expressions

for these are now derived, and the recalculated data is used below.

Figure 9.3. Measured and calculated fountain pressure for TA = 1.502 K

(left), 1.724 K (middle), and 1.875 K (right). The symbols are measured data

(Hammel and Keller 1961), the short dashed curve is the saturation line

integral form of the H London (1939) expression, equation (9.39), the dotted

curve is for fixed chemical potential, equation (9.43), and the long dashed

curve is for fixed fugacity, equation (9.44). The calculated curves use the

enthalpy (table 7.6) and entropy (table 8.5) obtained by Donnelly and Barenghi

(1998) from measured heat capacity data.

The heat capacity at constant pressure, equation (2.111), is

The second equality can be seen by dividing both sides of the definition of the

unconstrained Gibbs free energy, G(E, V ∣ N , p, T ) = E + pV − TS(E, V , N), by

T and differentiating with respect to 1/T , holding as usual Ē and V̄  fixed. The third

equality follows by expressing the first equality as a derivative with respect to T,

equation (2.112).

Cp =
−1

T 2

∂ 2(Ḡ(N , p, T )/T )

∂(1/T )2

=
∂H̄(N , p, T )

∂T

= T
∂S̄(N , p, T )

∂T
.



(9.4

6)

(9.4

7)

(9.4

8)

In practice measurements are made along the saturation curve, psat(T ). The

change in enthalpy is measured, ΔH = H(N , psat(T2), T2) − H(N , psat(T1), T1).

At constant number,

This heat capacity at constant saturation is larger than that at constant

pressure. I believe this to be the quantity reported in table 7.4 of Donnelly and

Barenghi (1998) and denoted Cs by them. This assertion is justified by the internal

consistency of the numerical results presented below.

From this one sees that the difference in enthalpy on the saturation curve is

This contradicts the expression given in note 11 to section 7 of Donnelly and

Barenghi (1998), who appear to have inadvertently mixed up Cp and Csat. The

results they present for the enthalpy in their table 7.6 have a relative systematic

error of O(10−2). Although this is comparable to the random measurement and

fitting error, because it is a systematic error, and because the chemical potential is

the difference between two comparable quantities, it leads to errors on the order of

5% in the fountain pressure (figure 9.3).

Now the temperature derivative of the entropy along the saturation curve at

constant number is

Accordingly the difference in entropy on the saturation curve is

Csat ≡ (
dH̄(N , p, T )

dT
)

N

=
∂H̄(N , p, T )

∂T
+

∂H̄(N , p, T )

∂p

dpsat(T )

dT

= Cp + V̄
dpsat(T )

dT
.

H(N , psat, T ) − H(N , psat
0 , T0) = ∫

T

T0

dT ′ Csat(T ′).

(
dS̄(N , p, T )

dT
)

N

=
∂S̄(N , p, T )

∂T
+

∂S̄(Ē, V̄ , N)

∂p

dpsat(T )

dT

=
1

T
Cp −

∂V̄ (N , p, T )

∂T

dpsat(T )

dT

=
1

T
Cp − αV̄ (N , p, T )

dpsat(T )

dT

=
1

T
Csat − Nρ−1[

1

T
+ α]

dpsat(T )

dT
.



(9.4

9)This contradicts the expression given in note 8 to section 11 of Donnelly and

Barenghi (1998), which neglects the second term in the braces. Compared to the

present expression, the results for the calorimetric entropy in their table 8.5 have a

relative systematic error of O(10−2). It turns out that those erroneous values of the

entropy give good results for the fountain pressure when used in the integral form

of the H London (1939) expression, equation (9.39), but not when used in the

chemical potential equality form (figure 9.3). Neglecting α, and using either the

form with the correct Csat(T ′) or else the one with correct Cp(T ′), gives a relative

systematic error of O(10−4), which is reasonable since the thermal expansivity is 

O(10−3).

9.5.6.3 Measured and calculated fountain pressure

Figure 9.4 tests the various equations for the fountain pressure against the

measured values (Hammel and Keller 1961). The calculations use the measured

data for the heat capacity at constant saturation, Csat (Donnelly and Barenghi 1998

table 7.4), from which the enthalpy, equation (9.47), and the entropy, equation

(9.49), and the chemical potential, μ = h − Ts, are obtained. This entropy was also

used for the integrated H London (1939) expression, equation (9.39).

Figure 9.4. Measured and calculated fountain pressure for TA = 1.502 K

(left), 1.724 K (middle), and 1.875 K (right). The symbols are measured data

(Hammel and Keller 1961), the short dashed curve is the saturation line

integral form of the H London (1939) expression, equation (9.39), the

coincident dotted curve is for fixed chemical potential, equation (9.43), and the

long dashed curve is for fixed fugacity, equation (9.44), both using the

incompressible fluid estimate for the departure from the saturation value. The

S(N , psat(T ), T ) − S(N , psat(T0), T0)

= ∫
T

T0

dT ′
1

T ′
{Csat(T ′) −

N

ρ′
[1 + α′T ′]

dpsat(T ′)

dT ′
}.



calculated curves use the measured saturation heat capacity, Csat (Donnelly

and Barenghi 1998 table 7.4), to obtain the enthalpy, equation (9.47), and the

entropy, equation (9.49).

It can be seen the fountain pressure predicted by the H London expression

evaluated as an integral along the fountain curve, Equation (9.39), and that

evaluated by equal chemical potential, equation (9.43), are virtually

indistinguishable. This confirms the thermodynamic equivalence of the two, the

validity of the thermodynamic analysis that corrects the results of Donnelly and

Barenghi (1998), and the reliability of the experimental data when analyzed

correctly.

It can be seen that the two forms of the H London expression are in quite good

agreement with the measured values of the fountain pressure (Hammel and Keller

1961). Adding the correction for the translation from the fountain path to the

saturation path, equation (9.42), makes a difference of about −0.5% at the highest

fountain pressure shown, which would be indistinguishable from the uncorrected

result, equation (9.39), on the scale of the figure.

Hammel and Keller (1961) estimated the error in their fountain pressure

measurements as on the order of 2%. Hammel and Keller (1961) compared their

measurements of the fountain pressure with that predicted using the integrated

form of the H London (1939) equation (9.39) together with values of the entropy

measured calorimetrically (Kramers et al 1951, Hill and Lounasmaa 1957) and

found agreement within the estimated measurement error.

Donnelly and Barenghi (1998 table 7.4), for the heat capacity at what I believe is

constant saturation, give the measurement error as 1%–3% and the fitting error as

1%–2%.

The values of the fountain pressure predicted by equality of fugacity, equation

(9.44), lie systematically below the measured values. The difference is on the order

of 3%–5%, which appears significant compared to the various measurement errors.

On the basis of the results in figure 9.4, one can tentatively conclude that the

measured data favor the principle of energy minimization at constant entropy for

superfluid flow, and that they likely rule out the principle of entropy maximization.

Of course experimental data is no substitute for mathematical derivation for

proving a result is exact. But experimental data has historically been used to

formulate general scientific principles that can then be used axiomatically to derive

exact and approximate expressions to describe that and other data. It is usually the

case that such principles gain acceptance over time when no contradictory

evidence emerges, when they explain a range of physical phenomena, and when

scientists become familiar with them. A rationale for the principle of energy

minimization at constant entropy for superfluid flow is offered in section 9.5.8.

9.5.7 Convective flow

In the fountain effect with closed chambers a non-equilibrium steady state exists

with viscous flow of He I from the high to the low temperature chamber and

superfluid flow of He II in the other direction to maintain mass balance. These flows

occur simultaneously in the same capillary. There is also net energy flow from the

high temperature chamber to the low. The flow of He I is viscous Poiseuille flow



driven by the pressure difference (but see next) and it carries the energy

convectively (F London and Zilsel 1948, Keller and Hammel 1960). The superfluid

flow of He II arriving in the high temperature chamber is in total equal and opposite

to the viscous flow of He I leaving it. A similar balance but in the opposite direction

occurs for the low temperature chamber. In the steady state the total number of

4He atoms in each of the two closed chambers is conserved. There is of course a

net energy flux between the two chambers, with energy supplied by a heater in one

and removed by a refrigerator in the other.

In normal convective flow the two species are hot and cold particles and their

spatially distinct flows are driven by respective entropy gradients. One would

expect similar gradients in the present fountain system. The evidence is that 

μA = μB < 0. Since TB > TA, this means that (−μA/TA) > (−μB/TB), which

means that there is an entropy gradient that drives number from B to A. (Recall 

∂S(E, V , N)/∂N = −μ/T .) This is what really drives the viscous Poiseuille flow of

He I.

But what drives the steady flow of condensed 4He from A to B? Recall that when 

μA = μB the energy is minimized and there is no driving force. One concludes that

there must strictly be a gradient with μB < μA, and, to linear order, 

J0 = c2(μA − μB). (It is possible but unusual that the right-hand side could instead

be non-analytic in the difference.) In this case, then strictly speaking the measured

fountain pressure should lie between that predicted by constant chemical potential

and that predicted by constant fugacity. The fact that the measured fountain

pressure lies so close to the prediction from μA = μB indicates that superfluid flow

is extremely efficient at eliminating gradients, c2 ≫ βAJ*. It seems likely that the

thinner the capillary, and the lower the temperature difference, the closer to

equality would be the chemical potentials (because the Poiseuille flow is reduced,

and a smaller balancing superfluid flow requires a smaller energy gradient). It would

appear that one needs a wide slit and better than the 2% precision of current

measurements to confirm or refute the hypothesis μB < μA (equivalently, 

pmeas
B < pHLondon

B
).

In the experiments of Keller and Hammel (1960), the mean velocity of the

viscous flow of He I in the case of the greatest fountain pressure is on the order of

60 times the critical velocity for superfluid flow predicted by the momentum gap for

the slit (section 9.4.3). Assuming a comparable speed for the condensed bosons,

this suggests that collisions are strong enough to convert a proportion of the back

flow of superfluid He II to viscous He I. But in the case of the fountain effect, this

does not block the capillary because the fountain pressure is so large that

substantial Poiseuille flow continues.

9.5.8 Rationale for the principle of energy minimization

The H London (1939) expression for the fountain pressure agrees with the

measured values within experimental error (figure 9.4). H London’s (1939)

expression corresponds to chemical potential equality of the two chambers (section

9.5.2). Equal chemical potential minimizes the subsystem energy at constant

subsystem entropy. (In the pseudo-equilibrium thermodynamic treatment of the

fountain effect, each chamber is a subsystem in contact with its own thermal



reservoir.) Two questions are addressed here: how does the fountain pressure arise,

and what is the justification for energy minimization?

Equality of chemical potential offers a thermodynamic mechanism for the

fountain pressure difference. Imagine that initially the high temperature chamber is

at saturation, μini
B = μsat(TB). The low temperature chamber is always at

saturation, μA = μsat(TA). For 4He, on the saturation curve the chemical potential

from the measured enthalpy and entropy (Donnelly and Barenghi 1998) decreases

with increasing temperature, dμsat/dT < 0. Hence μsat
B < μsat

A
. Since ,

the only way that the chemical potential of the high temperature chamber can be

increased to achieve equality is by increasing the pressure beyond its saturation

value. This occurs as more 4He arrives in the second chamber because each atom

occupies a certain impenetrable volume (i.e. the compressibility is positive). Given

the goal of equalizing the chemical potentials, these are the reasons why

condensed 4He initially flows down the chemical potential gradient from the low

temperature chamber to the high temperature chamber, and why the high

temperature chamber subsequently settles at a higher pressure.

The physical basis for the principle of energy minimization at constant entropy is

as follows. Superfluid flow is dissipationless flow that preserves the momentum

state of each condensed boson involved and hence the permutation entropy of that

state (section 9.4). To the extent that permutation entropy dominates, we may say

that subsystem entropy is preserved in the superfluid transfer of a condensed

boson from A ⇒ B. (The more highly occupied is a momentum state, the greater is

its permutation entropy, and the more likely it contributes to superfluid flow.) Recall

that each chamber is regarded as a subsystem in contact with its own thermal

reservoir, and that the total energy of the two subsystems and the two reservoirs is

conserved. Hence minimization of the total subsystems’ energy, 

E(SA, VA, NA) + E(SB, VB, NB), by number exchange at constant subsystem

entropy, increases the total reservoirs’ energy and hence the reservoirs’ entropy.

Since the subsystems’ entropy is constant, this increases the entropy of the

Universe. Hence the principle of subsystem energy minimization at constant

subsystem entropy is just the Second Law of Thermodynamics realized by

superfluid flow.

9.5.9 Osmotic pressure

A statistical mechanical analysis of the fountain pressure is now performed with a

view to confirming or refuting the osmotic pressure explanation of Tisza (1938). The

binary division approximation is used. I begin with the incompressible classical ideal

solution in order to identify exactly what is meant by the osmotic pressure

explanation.

9.5.9.1 Incompressible classical ideal solution

Consider two chambers, A and B, connected by a semi-permeable membrane

transparent to the solvent 1. Assume that the solvent and solute are

incompressible, so that the volume of the first chamber is , and

similarly for the second chamber. The total number is fixed, Nn = NAn + NBn, 

n = 1, 2. Assume that the two chambers are at the same temperature. For the

classical ideal gas, the constrained Gibbs free energy is, section 2.4.1
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Here β = 1/kBT  is the reciprocal temperature, Λ = √2πℏ2β/m is the thermal

wavelength, m is the mass, and μ is the chemical potential. Since G = μN , this

shows that for an incompressible fluid, . The derivative is

This vanishes at equilibrium, which is therefore given by

ln
ρ̄ A1

ρ̄ B1

− [ρ̄ A1 + ρ̄ A2 − ρ̄ B1 − ρ̄ B2]v1v1 = −β[pA − pB]v1.

For simplicity choose , so that  and ρA = ρB. In this

case the equilibrium condition becomes

ln
ρ̄ A1

ρ̄ B1

=
−β

ρ
[pA − pB].

Hence pA ⩾ pB implies that ρ̄ A1 ⩽ ρ̄ B1. The chamber with the greater pressure

is the one with the lower solvent fraction (and hence higher solute fraction). This is

the classical osmotic pressure.

9.5.9.2 Incompressible ideal bosons

Consider a system consisting of two chambers at different temperatures below the

condensation temperature and containing 4He. We give the free energy for a single

chamber, and differentiate it to obtain an expression for the chemical potential. This

allows us to equate chemical potentials, as found in section 9.5.2, and hence to

obtain the fountain pressure.

βG(NA1 ∣ N , pA, pB, T ) =
2

∑
n=1

{NAn ln
NAnΛ3

NA1v1 + NA2v2
− NAn

+ NBn ln
NBnΛ3

NB1v1 + NB2v2
− NBn}

+ βpA[NA1v1 + NA2v2] + βpB[NB1v1 + NB2v2].

–

(
∂βG

∂NA1
)

N1

= ln
NA1Λ3

NA1v1 + NA2v2
− ln

NB1Λ3

NB1v1 + NB2v2

−
NA1v1

NA1v1 + NA2v2
+

NB1v1

NB1v1 + NB2v2

−
NA2v1

NA1v1 + NA2v2
+

NB2v1

NB1v1 + NB2v2

+ βpAv1 − pBβv1

= ln
ρA1

ρB1
− [ρA1 + ρA2 − ρB1 − ρB2]v1 + β[pA − pB]v1.
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The constrained Helmholtz free energy for a single system with N0 ground

momentum state bosons and N* excited momentum state bosons is given by

(chapter 8)

−βF(N0 ∣ N , V , T ) = ln
Λ−3N*Q

N*!V N0
+

∞

∑
l=2

N l
*

N l−1
g(l).

Here N = N0 + N*, β ≡ 1/kBT , and Λ ≡ √2πβℏ2/m is the thermal

wavelength. The series contains the loop grand potentials, which is a quantum

effect that arises from the symmetrization of the wave function. The logarithmic

term is the classical or monomer term, and it contains the configuration integral for

interacting bosons, Q(N , V , T ). Compared to the classical statistical mechanics of

a binary mixture (see section 9.5.9.1), for the condensed boson case there is no 

N0! in the denominator, and instead of Λ3N0  there appears V N0 . These differences

are a consequence of the non-locality of the permutations of ground momentum

state bosons (cf equation (8.33)).

We make the incompressible liquid approximation, V = Nv. The constrained

Gibbs free energy, G = F + pV , for chamber A is then given by

Recall that NA = N*A + N0A.

Now for an incompressible fluid, since  (see section 9.5.9.1), the

derivative of the configuration integral term vanishes,

This result effectively removes the interactions between the 4He atoms, and

makes the analysis more or less the same as that for an ideal solution, apart from

the way in which the fraction of ground and excited momentum state bosons is

calculated or measured. Consequently, inserting the incompressible fluid

assumption at this stage of the analysis is a rather serious approximation. It would

be better to calculate the chemical potential for interacting atoms, which is quite

feasible.

The derivative of the constrained Gibbs free energy gives the chemical potential,

which with the vanishing of the derivative of the configurational integral, is

G(N0A ∣ NA, pA, TA) = β−1
A
[N*A ln

N*AΛ3
A

NAvA

− N*A − ln
QA

V NA
]

−
∞

∑
l=2

β−1
A N l

*A

N l−1
A

g
(l)
A + pANAvA.

∂

∂N
ln

Q(N , V , T )

V N
=

∂(−βF ex(N , V , T ))

∂N
+ v

∂(−βF ex(N , V , T ))

∂V

= − βμex + βpexv = 0.

( )
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Here f*A = N*A/NA is the fraction of bosons in excited states in chamber A.

One can similarly obtain an expression for the excited state chemical potential,

In the equilibrium state, μ0A = μ*A, in which case one must have

ln[f*AρAΛ3
A] =

∞

∑
l=2

lg
(l)
A f l−1

*A
.

Since the right-hand side is a series of positive terms, one must have that 

f*A > 1/ρAΛ3
A

, which places a lower bound on the fraction of excited state bosons

(He I) as T → 0. This result is predicated on the incompressible liquid, ideal solution

approximation, the no mixing approximation, and on the binary division

approximation.

Similar expressions hold for chamber B. Hence equating the chemical potential

of the two chambers, μ0A = μ0B, yields the fountain pressure as

Ignoring the loop terms, and taking into account the fact that the excited

momentum state fraction increases with increasing temperature, one sees that the

higher temperature chamber has the higher pressure. Again neglecting the loop

terms, notice the difference between this and the usual osmotic pressure equation

(9.53). It is only in the linear regime that they are the same.

μ0A ≡ (
∂GA

∂N0A

)
N*A,pA,TA

=
−β−1

A NA*v

VA
+ pAvA + β−1

A

∞

∑
l=2

(l − 1)
N l

*A
g

(l)

A

N l
A

=
−f*A

βA
+ pAρ−1

A + β−1
A

∞

∑
l=2
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The left-hand side can be written as a height difference, 

[pA − pB]ρ−1 ≈ mg[hA − hB], where m is the molecular mass. (Note that here g is

the acceleration due to gravity, not the specific Gibbs free energy, and h is the

height, not the specific enthalpy.)

9.5.9.3 Numerical results

Extensive calculation of the intensive loop Gaussians g(l)
 up to l = 7 have been

performed for a Lennard-Jones model of 4He (see chapter 8, and also Attard (2021,

2022a)). The fraction of excited state bosons following condensation has been

calculated in the so-called unmixed approximation (section 8.4.2). These have been

used in the present expression for the pressure difference. The λ-transition in

Lennard-Jones helium-4 occurs at T = 0.65 (section 8.5).

Figure 9.5 shows the calculated height difference as a function of the low

temperature TA for fixed high temperature TB = 0.65, which is the λ- temperature

in Lennard-Jones 4He. It also shows the height difference for fixed low temperature 

TA = 0.50, It can be seen that the height difference increases with increasing

temperature difference. The magnitude of the fountain effect is surprisingly large

considering that the largest temperature difference shown is about 1.5 K. The loop

series contribution to the total height difference is on the order of 1%–5%. This

means that the major part of the height differences in figure 9.5 come from the first

line of the right-hand side of equation (9.60), which are essentially ideal solution

terms.

Figure 9.5. The height difference as a function of the temperature difference

for fixed TB = 0.65 (circles) and for fixed TA = 0.50 (triangles) for Lennard-

Jones 4He, for which the temperature in K is 10.22T . From Attard (2022b).

It is noticeable in the figure that for the same temperature difference, 

TB − TA = 0.05, the higher temperature TB = 0.65 has a height difference 

hB − hA = 159.2 m, which is about 50% larger than that at the lower temperature 



TA = 0.50, which has a height difference hB − hA = 104.7 m. This shows that

there is a significant decrease in the ratio of height difference to temperature

difference with decreasing temperature. This is because the fraction of excited state

bosons decreases with decreasing temperature, and to leading order the height

difference is proportional to the difference in the excited fraction.

The experimentally measured value at TA = 1.143 K is 46.8 m for 

TB − TA = 0.6 K (Hammel and Keller 1961). The calculated height difference in

figure 9.5 is 104.7 m for TB − TA = 0.05 ≈ 0.51 K, which is about a factor of 2 too

large. The main reason for the disagreement between the calculated and the

measured height difference appears to be the use of the incompressible liquid, ideal

solution approximation for the calculations.

Figure 9.6 compares the incompressible fluid osmotic pressure result, the first

line of equation (9.60), with the measured fountain pressure. This uses the

measured (Donnelly and Barenghi 1998) rather than calculated excited state

fraction. Equating the measured fraction of He I to the excited momentum state

fraction of the present analysis makes sense within the context of the binary

division approximation. More generally it is not so clear what this measured

quantity actually means. The calculations used for the data in figure 9.6 neglect the

loop contributions, which as discussed for the previous figure are expected to be

small. From the fact that the measured curves are nearly parallel, one can conclude

that the fountain pressure is approximately a function of the temperature

difference, TB − TA, rather than of TB and TA individually. In any case it can be

seen that the incompressible, ideal solution result for the osmotic pressure performs

quite badly.

Figure 9.6. Measured and calculated fountain pressure for TA = 1.502 K

(left), 1.724 K (middle), and 1.875 K (right). The symbols are measured data

(Hammel and Keller 1961), the full curve is the saturation line integral form of

the H London (1939) expression, equation (9.39), and the dotted curve uses

the incompressible fluid osmotic pressure result, the first line of equation

(9.60), using the measured fraction of He I (Donnelly and Barenghi 1998). The

calculated curves use measured saturation data (Donnelly and Barenghi 1998).

From Attard (2022b).



Figure 9.7 shows the dimensionless parameter f*ρΛ3 using measured data for

the fraction of He I (Donnelly and Barenghi 1998). Again this only makes sense

within the binary division approximation. As discussed following equation (9.59),

equilibrium between ground and excited state bosons implies that this must be

greater than unity, which the figure shows is violated for T ⩽ 1.5 K. The tests of the

osmotic pressure prediction for the fountain pressure in figure 9.6 are for T ⩾ 1.5 K.

Nevertheless that f*ρΛ3 < 1 for T ⩽ 1.5 K is presumably an indication of the

failure of the incompressible liquid, ideal solution, and no mixing approximations in

the low temperature regime.

Figure 9.7. Measured (Donnelly and Barenghi 1998) fraction of He I times the

measured (Donnelly and Barenghi 1998) number density and thermal

wavelength cubed (solid curve). The dotted line is a guide to the eye. From

Attard (2022b).

9.5.9.4 Discussion of the osmotic pressure mechanism

The osmotic pressure mechanism offered by Tisza (1938) as an explanation for the

fountain pressure is problematic on physical grounds. In the usual realization of

osmotic pressure for two chambers separated by a semi-permeable membrane, the

solute and the solvent have distinct identities. Hence the only way to equalize the

solvent chemical potential is to increase the pressure of the high concentration

chamber. However, in the case of 4He, the ground state bosons can become excited

state bosons, and vice versa. Hence if the different fractions in each chamber

somehow corresponded to a chemical potential difference due to mixing entropy,

they could equalize chemical potential simply by changing their state without

changing the pressure.

Also, and probably more damming, is the known experimental fact that He I

passes through the capillary in the form of Poiseuille flow driven by the pressure



gradient from the high temperature chamber (F London and Zilsel 1948, Keller and

Hammel 1960). In order to conserve number in this steady-state closed system, an

equal and opposite superfluid flow of He II must occur in the same capillary. This is

quite contrary to the usual osmotic pressure, which only arises because a semi-

permeable membrane excludes at least one of the components of the mixture. In

this non-equilibrium system, the occupied momentum states of the condensed

bosons must be distributed about a peak in such a way that their flux exactly

cancels the Poiseuille flow.

The present calculations show that the osmotic pressure mechanism can be an

order of magnitude or more too large for the fountain pressure. Admittedly this is

using the incompressible fluid, ideal solution approximation. But since the common

understanding of osmotic pressure is that it is due to mixing entropy, and since the

latter can be calculated exactly by ideal combinatorics, the failure of the present

ideal solution calculations for the fountain pressure argue against osmotic pressure

as the physical basis of the fountain effect.

Summary

Condensation at the λ-transition signifies multiple, highly occupied, low-lying

momentum states. The majority of low-lying momentum states are

instantaneously empty or few-occupied. The permutation entropy makes it

unlikely for collisions to occur that would change a boson’s momentum from a

highly occupied state into an unoccupied state. Superfluid flow is flow without

momentum-changing collisions.

The permutation entropy gives rise to a critical velocity equal to the spacing

between transverse momentum states divided by the boson mass. The non-

locality of momentum loop permutation entropy is essential for inviscid

superfluid flow, as can be seen from its role in forming plug flow down a

channel.

Superfluid flow can be described by quantum adiabatic equations of motion in

which the entropy is a constant of the motion. Collisions with uncondensed

bosons do not change the momentum state of the condensed bosons, and

hence the latter have zero shear viscosity.

The measured fountain pressure due to a temperature difference is consistent

with the H London (1939) expression, which is thermodynamically equivalent to

equality of chemical potential, which minimizes the energy at constant entropy.

The experimental data appears inconsistent with the principle of entropy

maximization.

The principle of energy minimization at constant subsystem entropy is a direct

consequence of dissipationless superfluid flow: the momentum state of each

condensed boson is preserved, and hence so is the permutation entropy of the

state. Reducing the subsystems’ energy increases the thermal reservoirs’

energy and hence their entropy.
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Chapter 10

High temperature superconductivity: electrons paired

by entropy

‘He wrapped himself in quotations as a beggar would enfold himself in the purple of
emperors’

R Kipling (1918)

10.1 Introduction

Superconductivity has long been described by the Bardeen–Cooper–Schrieffer (BCS) theory

(Bardeen et al 1957). This invokes the general notion of Cooper pairs: electrons with equal

and opposite momentum, and equal and opposite spin, bound by an attractive potential

(Cooper 1956). This is combined with a specific proposal for the binding potential: the

attraction is due to the dynamic interaction of the electron pair with the vibrations of the

solid lattice (Bardeen et al 1957). This explains the dependence of the transition

temperature on the isotopic masses of the solid (Maxwell 1950, Reynolds et al 1950). The

discovery of high temperature superconductors (Bednorz and Möller 1986, Wu et al 1987),

which show no dependence on the isotopic mass, rules out the specific phonon exchange

mechanism in these cases, although it leaves open the possibility for Cooper pairing if

another mechanism for a binding potential could be found. Despite many proposals

(Anderson 1987, Bickers et al 1987, Inui et al 1988, Gros et al 1988, Kotliar and Liu 1988,

Mann 2011, Monthoux et al 1991), no consensus for such a potential has emerged, and so

to date high temperature superconductivity remains unexplained.

Perhaps the clue is in the name. In reviewing the field one cannot help but be struck by

the fact that existing treatments of superconductivity are exclusively quantum mechanical.

And yet the name ‘high temperature’ surely implies that entropy is essential to the

phenomenon. At low temperatures mechanical treatments suffice, and the low mass of

electrons means that below 30 K or so the BCS quantum mechanical theory is applicable.

But quantum mechanics is not quantum statistical mechanics, and the significantly higher

temperatures that occur for the transition to superconductivity in the more recently

discovered materials surely demands a qualitatively different, statistical approach.

In section 10.2 is developed the quantum statistical approach to superconductivity. Or,

more accurately, it gives a theory for the condensation transition for fermions. This is

entirely analogous to the approach to the λ-transition for interacting bosons given in

chapter 8, including that it invokes the binary division approximation, and the no mixing

approximation. Where it is specific to superconductivity is in the invocation of fermion

pairs, section 10.2.2, which are more or less the same as Cooper pairs (Cooper 1956), to

create effective bosons that undergo Bose–Einstein condensation. The significant difference

with BCS theory is that the present theory is statistical mechanical, and here the fermion

pairs are bound by an appropriate potential of mean force, which is temperature

dependent and thus entropic in nature. This is what makes the present analysis applicable

to high temperature superconductors.

In section 10.5 an explicit and rather attractive mechanism for the electron–electron

pair potential of mean force is offered, which appears to be of the correct magnitude to

account for the measured data for high temperature superconductivity. The bound fermion

pairs invoked here appear qualitatively different to the Cooper pairs in BCS theory, at least
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for their size and binding mechanism, which suggests that the present statistical

thermodynamic theory may be the one applicable to high temperature superconductors.

10.2 General formulation and analysis

10.2.1 Symmetrization function for particles with spin

10.2.1.1 Symmetrized wave function

Consider a system of N particles. The set of commuting dynamical variables for one

particle j may be taken to be xj = {qj,σj}, where qj = {qjx, qjy, qjz} is the position of

particle j, and σj ∈ {−S, −S + 1, … ,S} is the z-component of its spin (see Messiah

(1961 section 14.1), or Merzbacher (1970 section 20.5)). For electrons, S = 1/2 and

σj = ±1/2; for fermions more generally S is half an odd integer. Note that here σ is not a

spin operator or a Pauli spin matrix. Label the 2S + 1 spin eigenstates of particle j by 

sj ∈ {−S, −S + 1, … ,S}, and the spin basis function by αsj(σj) = δsj,σj
. Note that this

is not a spinor. For N particles, σ ≡ {σ1,σ2, … ,σN}, and similarly for s and q, and the

basis functions for spin space are αs(σ) = δs,σ = ∏N
j=1 δsj,σj

.

Because the spin basis functions are Kronecker deltas, it is easy to show that when

symmetrizing the wave functions, only permutations amongst particles with the same spin

give a nonzero result. In other words, spin is one characteristic that identifies identical

particles. This is the reason why two electrons with different spin can occupy the same

single-particle state. That only permutations amongst same-spin particles are required is

now demonstrated explicitly.

Let the number of particles with spin s be Ns, and N = ∑sNs. For reasons that will

become clear shortly two cases will be dealt with simultaneously. The most general case

allows permutations P̂ amongst all N particles irrespective of spin. There are M = N! such

permutations. The more specialized case only allows permutations amongst particles with

the same spin P̂ = ∏s P̂s, the factors of which commute. There are M = ∏sNs! such

permutations.

An unsymmetrized wave function ψ(x) in general has symmetrized, normalized form (cf

equation (7.65), or Attard (2021 section 6.4.1)),

ψ±(x) ≡
1

√χ±M
∑

P̂

(±1)
p

ψ(P̂x).

Normalization gives the symmetrization or overlap factor as

χ± ≡ ∑
P̂

(±1)p⟨ψ(P̂x) ∣ ψ(x)⟩.

The upper sign is for bosons and the lower sign is for fermions. Henceforth in this

chapter only the latter is considered.

Using momentum eigenfunctions with discrete momenta, the single-particle wave

function for fermion j is

Φpj,sj(qj,σj) =
1

V 1/2
e−pj⋅qj/iℏδsj,σj

,
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with pj = njΔp, nj being a three-dimensional integer, and Δp = 2πℏ/L being the

spacing between momentum states, with V = L3
 being the volume of the cube to

which the particles are confined (Messiah 1961, Merzbacher 1970).

The symmetrized, normalized, full system wave function is

The prime signifies the permuted list, p′
j = {P̂p}j, and identically for the spin.

The Kronecker-delta δs′,σ that appears here indicates that only permutations amongst

particles with the same spin need be considered. Henceforth (until the introduction of

pairs) take P̂ = ∏s P̂s and M = ∏sNs!.

10.2.1.2 Grand partition function

The grand partition function for fermions is given by equation (7.71),

The symmetrization factor counts each state with the correct weight, which is

equivalent to ensuring that each unique allowed state is counted once only with unit

weight (see section 7.4, or Attard (2018, 2021)). Inserting the above definitions gives

Here H(q, p) = K(p) + U(q) is the Hamiltonian function of classical phase space,

which at present is taken to be independent of spin.

The second equality neglects the commutation function (section 7.4.2). This is a short-

ranged function and the approximation is valid when the system is dominated by long-

ranged effects, which appears to be the case for Bose–Einstein condensation. The utility of

Φ−
p,s(q, σ) =

V −N/2

√χ−
p,sM

∑
P̂

(−1)p ∏N
j=1 e−p′

j⋅qj/iℏδs′
j,σj

=
V −N/2

√χ−
p,sM

∑
P̂

(−1)pe−p′⋅q/iℏδs′,σ.

Ξ−(z,V ,T ) = TR′ e−βĤ

= ∑
N

zN

M
∑

p

∑
s

χ−
p,s⟨Φ−

p,s∣e−βĤ∣Φ−
p,s⟩.

Ξ−(z,V ,T ) = ∑
N

zN

∏sNs!
∑

P̂

(−1)p∑
p

∑
s

⟨ΦP̂p,P̂s
∣e−βĤ∣Φp,s⟩

≈ ∑
N

zN

∏sNs!V N
∑

P̂

(−1)p∑
p,s

∑
σ

∫ dq e−βH(q,p)ep′⋅q/iℏe−p⋅q/iℏδs,σ

= ∑
N

zN

∏sNs!V N
∑

P̂

(−1)p∑
p,s

∫ dq e−βH(q,p)e−[p−p′]⋅q/iℏ

= ∑
N

zN

∏sNs!V N
∑
p,s

∫ dq e−βH(q,p)η−(q, p, s).



(10.

7)

(10.

8)

this approximation has been demonstrated for the λ-transition and for superfluidity

(chapters 8 and 9). As will be discussed in section 10.4, the fermion pairs in the present

theory require a short-ranged binding potential of mean force. The neglect of the

commutation function may therefore have more serious consequences for the

condensation of fermions than for bosons.

The symmetrization function is

Because only permutations between same spin fermions contribute, one can factorize

the permutation operator, and hence also the symmetrization function.

10.2.2 Fermion pairs

10.2.2.1 Effective bosons

The usual definition of a Cooper pair is that the momenta must be equal and opposite, 

p1 = −p2, and also the spins, s1 = −s2 (Cooper 1956). This is widely accepted to act as a

zero momentum, zero spin effective boson. The more general definition that will be used

here likewise insists that the two fermions have equal and opposite momenta, p1 = −p2.

But for the spins it is only necessary that s1 ≠ s2 in order to prevent internal permutations

within the Cooper pair, which would cancel the bosonic ones. For the case of electrons,

which are spin-half fermions, the condition s1 ≠ s2 is equivalent to s1 = −s2. Electrons of

course are the main focus in superconductivity, in which case there is no difference in the

two formulations of Cooper pairs. The more general pair may be called an effective spin-

s1s2 boson, with the convention s1 < s2. The total spin s1 + s2 is not sufficient to label the

pair. There are (2S + 1)S distinct species of pairs.

Consider four fermions in two pairs: {1, 2} and {3, 4} (figure 10.1). That is, p1 = −p2
and p3 = −p4. Suppose that s1 = s3 and s2 = s4. Then the only permutations permitted

are between 1 and 3 and between 2 and 4. Hence the symmetrization function (see section

7.4, or Attard (2018, 2021)) for these four fermions is

The prime indicates the permuted eigenvalues. The two single transposition fermionic

terms have been neglected in the final equality because of their rapid fluctuation compared

to the two retained bosonic terms. This is because the fermionic exponents depend upon

the separation between the pair, which for most pairs is macroscopic, whereas the bosonic

exponents depend upon the internal size of each pair, which is molecular. The latter

assertion follows by analyzing the exponent for the double transposition, which,

suppressing the factor of −iℏ, is

η−(p, q, s) ≡ ∏s η
−
s (pNs , qNs)

= ∏s∑
P̂s

(−1)pse−[pNs−p′Ns ]⋅qNs/iℏ.

∑
P̂

(−1)pe−q⋅[p−p′]/iℏδs′,s = 1 − e−q13⋅p13/iℏ − e−q24⋅p24/iℏ + e−q13⋅p13/iℏe−q24⋅p24/iℏ

≈ 1 + e−q12⋅p13/iℏe−q34⋅p31/iℏ.
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9)The first two equalities hold in general; the final equality holds for the Cooper pairs.

The center of mass separation is Q13 = Q1 − Q3 = (q1 + q2)/2 − (q3 + q4)/2, the total

momentum difference is P13 = (p1 + p2) − (p3 + p4), and the ‘locations’ of the effective

bosons are q12 = q1 − q2 and q34 = q3 − q4. For a Cooper pair the total momentum of

each pair is identically zero, as is the difference, which gives the final equality.

Figure 10.1. Paired fermions 1 and 2 (left), and 3 and 4 (right).

In the form of the final equality of the penultimate equation, the permutation weight is

exactly the dimer symmetrization weight written in momentum permutation loop form for

two boson molecules located at q12 and q34 with momenta p1 and p3, respectively (see

section 7.4, or Attard (2018, 2021)). This is a non-local expression since it does not depend

upon the distance between the pairs. Since the result depends on the size (i.e. internal

separation) of the two Cooper pairs, each pair is like a bosonic dipolar molecule rather than

an atom. If there exists an attractive potential so that the size of a pair is small, then the

fluctuations in this term due to the range of momentum differences are also small. There

are infinitely more pairs of fermions with macroscopic separations Q13 than there are with

microscopic separations, and for these the fermionic terms fluctuate infinitely more rapidly

than the bosonic terms. The former average to zero; the latter average close to unity. The

Cooper pair formulation removes the macroscopic separation between the center of

masses, Q13. This is what makes the permutation of Cooper pairs non-local and creates the

analogy with Bose–Einstein condensation and superfluidity (chapters 8 and 9).

10.2.2.2 Generalised fermion pairs with nonzero momentum

In section 9.2, which is concerned with the nature of Bose–Einstein condensation in liquid

helium and superfluidity, it was argued that there is nothing particularly special about the

momentum ground state, and that condensation actually occurred into multiple low-lying

momentum states. In so far as the understanding of superconductivity is largely based on

an analogy with superfluidity, it would appear that a similar situation arises here. That is,

the definition of a Cooper pair should be generalised to two fermions with different spin

q13 ⋅ p13 + q24 ⋅ p24 =
1

2
[(q1 + q2) − (q3 + q4)] ⋅ p13 +

1

2
[(q1 − q2) − (q3 − q4)] ⋅ p

+
1

2
[(q1 + q2) − (q3 + q4)] ⋅ p24 −

1

2
[(q1 − q2) − (q3 − q4)]

= Q13 ⋅ P13 +
1

2
(q12 − q34) ⋅ (p13 − p24)

= q12 ⋅ p13 + q34 ⋅ p31.
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and nonzero total momentum. It appears neither necessary nor likely that the bosonic

entities that condense to give superconductivity are restricted to the ground momentum

state.

In practice consider the following arrangement of momenta for the two pairs above:

p1 =
1

2
P + δ1 and p2 =

1

2
P − δ1,

and

p3 =
1

2
P + δ3 and p4 =

1

2
P − δ3.

Recall that s1 = s3 and s2 = s4. The two pairs have the same total momentum P, which

need not be zero, so that the total momentum difference remains zero P13 = 0. However,

the fermions with the same spin should have different momenta, δ13 ≠ 0, so that they do

not occupy the same momentum state. The non-trivial part of the bosonic exponent in this

more general case is

This is a non-local expression in position that involves only the sizes of the bound pairs.

It also involves the difference in the momentum excess of the two pairs, which cannot be

zero because that would mean fermions occupying the same momentum state. Presumably

one could integrate these over the momentum continuum. In any case the permutation

entropy associated with non-locality can be very large; in the case of 4He it is what drives

the λ-transition and superfluidity.

A similar result holds for an l-loop composed of fermion pairs all with the same total

momentum. For l pairs of fermions {2j − 1, 2j}, j = 1, … , l, let the center of mass of a

pair be Q2j−1 = [q2j−1 + q2j]/2, and the momenta be p2j−1 = P/2 + δ2j−1, and 

p2j = P/2 − δ2j−1. In position loop form, the essence of the bosonic exponent is (mod l)

This is a non-local expression that involves only the internal size and momentum

departure of each pair.

q13 ⋅ p13 + q24 ⋅ p24 = Q13 ⋅ P13 +
1

2
(q12 − q34) ⋅ (p13 − p24)

=
1

2
(q12 − q34) ⋅ (δ13 + δ13)

= q12 ⋅ p13 + q34 ⋅ p31.

l

∑
j=1

{q2j−1,2j+1 ⋅ p2j−1 + q2j,2j+2 ⋅ p2j} =
l

∑
j=1

{(2Q2j−1 − q2j − 2Q2j+1 + q2j+2) ⋅ (P/2

+ (2Q2j−1 − q2j−1 − 2Q2j+1 + q2j+1) ⋅ (P/2

=
l

∑
j=1

{(−q2j + q2j+2) ⋅ δ2j−1 − (−q2j−1 + q2j+

=
1

2

l

∑
j=1

(q2j−1,2j − q2j+1,2j+2) ⋅ p2j−1,2j.



Although ultimately an accurate description of the system on the far-side of the

superconducting transition will demand these generalized fermion pairs with nonzero total

momentum, in the present chapter the focus is on the approach to, and the location of, the

transition. In this case, as a first approximation, defining a Cooper pair to be fermions with

equal and opposite momentum, should be as adequate, just as it was in chapter 8 for 4He

approaching the λ-transition. Therefore, the analysis in this chapter is restricted to this first

approximation with the conventional definition of a Cooper pair having zero total

momentum.

10.2.2.3 Rotation of bound fermion pair

There is a need for a correlation between fluid structure and a bound fermion pair in order

for the latter to be long-lived and therefore statistically relevant. This holds in both the

binary division approximation and more generally.

In the BCS mechanical theory of superconductivity, the binding potentials are the lattice

vibrations, which have a characteristic frequency. It is sometimes pictured as one electron

distorting the solid lattice ions leaving an excess positive charge as it passes through,

which attracts a second electron. Since the two fermions travel in opposite directions along

the lattice wave, their lifetime as a pair is limited.

A different idea is to suppose that the bound fermions orbit about their center of mass,

as sketched in figure 10.2. Like moths attracted to a flame the fermions circle, bound by

their mutual attraction and the cavity field. In a dense fluid it is likely that such rotational

motion can only take place in a cavity, which, as a collective fluctuation, likely has a

relatively long lifetime. In the binary division approximation the center of mass would have

zero momentum. The commutation function contribution reduces the relative momentum

parallel to the pair axis (section 8.6.3), which is consistent with the orbital motion.

Figure 10.2. Bound fermion pair rotating in a fluid cavity.

It might seem unlikely that such a relatively large cavity would spontaneously form, that

it would have a significant lifetime, and that two fermions would find themselves bound in

orbit within it. (A specific mechanism for the binding of electrons is discussed in section

10.5.) However, the large entropy available from the non-local permutations of the

effective bosons formed from such bound orbiting fermion pairs suggests that such

configurations are much more probable than classical considerations imply.

One can crudely estimate the cavity probability, and incorporate the cost of the cavity

into the fugacity per fermion for the bound pair, z0. (The fugacity weight for N0,s′s′′ s′s′′-

pairs is z
2N0,s′s′′

0 .) For an incompressible fluid one has approximately
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z2
0 ≡ z2(zex

0 )2 ≈ z2e−βpvex
0 .

The excess cavity volume  is the additional volume required to accommodate the

rotating bound pair over the volume that they would occupy as unpaired fermions. Roughly

speaking  undoubtedly more refined estimates are possible. The excess

fugacity goes alongside the bound pair internal weight (see below).

Obviously this rotational mechanism for bound fermion pairs is a little speculative. Also,

it is challenging to obtain a more reliable quantitative estimate of the fugacity of the bound

pair. For these reasons results will be presented below with z0 = z as well as with 

z0 = zzex
0  using the above excess cavity volume .

10.2.2.4 Pair weight for bound Cooper pairs

One can demonstrate the idea that a Cooper pair is an effective boson molecule by

performing the classical momentum integral for the four fermions comprising the above

pair dimer. The momentum integral is

Notice that the third equality would give zero weight if the sizes (internal separations)

of the Cooper pairs were large and different (in size or orientation). Since the permutations

of Cooper pairs are non-local, the vast majority are at macroscopic separations and are

therefore uncorrelated. The final equality follows by averaging the coupling exponential

over the alignment angle of the bosonic ‘dipole’,

The second equality is valid if q12 ≈ q34, which is the case when the pairs are bound at

the minimum in the pair potential of mean force q̄ .

In this formulation the weight of the pair dimer factorizes into the product of weights of

each pair. A mean field approximation (fix the neighbors in the most likely parallel

I4 ≡ Δ−6
p ∫ dp4 δ(p1 + p2) δ(p3 + p4) e−βK(p4)e−q12⋅p13/iℏe−q34⋅p31/iℏ

= Δ−6
p ∫ dp1 dp3 e−2βp2

1/2me−2βp2
3/2me−[q12−q34]⋅p1/iℏe−[q34−q12]⋅p3/iℏ

= {2−3/2VΛ−3e−π[q12−q34]2/2Λ2
}

2

≈ 2−3/2VΛ−3 Λe−πq2
12/Λ2

q12√2π
sinh1/2(2πq2

12/Λ2)

× 2−3/2VΛ−3 Λe−πq2
34/Λ2

q34√2π
sinh1/2(2πq2

34/Λ2).

1

2
∫

1

−1
dx e2πq12q34x/Λ2

=
Λ2

2πq12q34
sinh(

2πq12q34

Λ2
)

≈
Λ

q12√2π
sinh1/2(2πq2

12/Λ2)

×
Λ

q34√2π
sinh1/2(2πq2

34/Λ2).
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configuration and average the intervening pair successively around the permutation loop)

shows that a similar factorization holds for the pair trimer, etc. Therefore, each Cooper pair

is a boson molecule with average internal weight due to the transposition

This holds for a bound Cooper pair in which the pair potential of mean force has a

relatively narrow minimum at q̄ . This expression for the internal weight for the bound

Cooper pair effective boson is less than unity; the expression itself is likely an overestimate

due to the mean field approximation, as is shown shortly. The internal weight goes to zero

as the size of Cooper pair goes to infinity. The remaining factor of 2−3/2Λ−3V  from the

momentum integral holds for all Cooper pairs and will be included explicitly below.

The factorization is valid if the sizes of the bound Cooper pairs are all at the minimum of

the pair potential of mean force q̄ . This means that the departure Δq from the position of

the minimum must be small,

Δq ≪ q̄/2 and Δq q̄ ≪ Λ2/2π.

The width Δq defines bound Cooper pairs: the smaller it is, the fewer bound Copper

pairs exist for condensation, but if it exceeds these criteria, then the calculated mean field

internal weight is not valid. In fact the internal weight goes to zero exponentially with

increasing size (internal separation) of the Cooper pair. If the curvature of the pair potential

of mean force is large enough such that βw̄′′Δ2
q/2 ≫ 1, then one has a natural upper

bound for the bound Cooper pairs.

Figure 10.3 shows that the exact internal weight for a bound Cooper pair of size q̄
decreases slowly with increasing loop size from the mean field result, equation (10.17),

which is the exact result at l = 2. It appears to reach a plateau for large loop size, which

value would dominate the symmetrization function. This plateau is confirmed by the exact

asymptotic expression,

ν = e−ζ 2

{1 +
l + 2

6l
ζ 4 +O(ζ 8)}, ζ → 0,

where ζ ≡ √π q̄/Λ. Small ζ is the relevant regime for Cooper pair condensation and

superconductivity.

νmf ≡ ⟨e−πq2
12/Λ2 Λ

q12√2π
sinh1/2(2πq2

12/Λ2)⟩
bnd

≈
Λe−πq̄ 2/Λ2

q̄√2π
sinh1/2(2πq̄ 2/Λ2).
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Figure 10.3. Internal weight per bound Cooper pair of size q̄  as a function of

permutation loop length for ζ ≡ √π q̄/Λ = 0.5 (top), 1.0 (middle) and 2.0 (bottom).

The solid curves are the exact numerical result, and the dashed curves are the small z

asymptote. The mean field value is the exact value at l = 2.

The internal weight of a Cooper pair reflects the formation of bosonic position

permutation loops, which is only effective when the members of the pair are bound closer

than about the thermal wavelength. This weight represents a correction to the bosonic

position permutation loop entropy that will eventually be included in the partition function.

10.2.2.5 Bound Cooper pairs

Only bound Cooper pairs will be considered here. In these the fermions must be separated

by less than q̄ + Δq. At any instant other fermions might form a non-local s′s′′-pair, but

these do not count. It is assumed that no fermion may belong to more than one s′s′′-pair

at a time. Let there be N0,s′s′′ bound Cooper s′s′′-pairs.

For future use, the radial distribution function may be used to define the bound volume,

The second equality assumes that the radial distribution function, g(q) = e−βw(q), is

sufficiently sharply peaked about the minimum in the pair potential of mean force to

enable a second order expansion and evaluation of the Gaussian integral. It is not essential

to make the Gaussian approximation to the integral, since it can be evaluated numerically

by fixing Δq to satisfy the internal weight criterion given above. The Gaussian results do

enable a transparent analysis and a physical interpretation of the nature of the bound

Cooper pairs.

The symmetrization function for Cooper pairs is

η+
0,s′s′′ ≈ νN0,s′s′′(N0,s′s′′!).

vbnd ≡ 4π∫
q̄+Δq

0
dq q2g(q)

≈ 4πq̄ 2e−βw̄√2π/βw̄′′.
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The superscript + indicates that these are treated as effective bosons. The result follows

because the permutations of the bound Cooper pairs are non-local and each carries the

internal weight of the effective boson, ν.

10.2.3 Grand potential with paired fermions

10.2.3.1 Continuum momentum limit

In the treatment of Bose–Einstein condensation in chapter 8, the continuum momentum

limit was taken and the discrete momentum ground state was added explicitly to the

continuum integral over the excited momentum states. This is the binary division

approximation originally introduced by F London (1938) in his ideal boson analysis of the λ-

transition. As discussed in sections 8.6.6 and 9.2, this binary division is qualitatively useful,

particularly on the high temperature side of the transition, and for locating the transition,

even though more sophisticated analysis recognizes that condensation actually occurs into

multiple muliply-occupied low-lying momentum states, not just the ground momentum

state.

One can perform a similar trick for Cooper pairs. For fermions 1 and 2 write the discrete

sum over momentum states as

In transforming to the continuum integral, it is assumed that the point p2 = −p1 is a

set of measure zero and so this formulation it is not really double counting. In this form the

integral covers the possible states of the two fermions as both paired and unpaired. A

similar procedure for the product of momentum sums for N fermions leads to a binomial

expansion, the terms of which consist of a certain number of paired and a certain number

of unpaired fermions, as is now derived.

10.2.3.2 Numbers of paired and unpaired fermions

Let Ns be the total number of spin-s fermions, and let N1,s be the number of unpaired spin-

s fermions. Let N0,ss′ be the number of bound paired fermions with spin pair ss′. To count

pairs uniquely, s < s′; for convenience define N0,ss′ = N0,s′s and N0,ss = 0. Obviously

Ns = N1,s +
S

∑
s′=−S

N0,ss′.

Also, N = ∑S
s=−S Ns. Recall that a fermion may not belong to more than one bound

pair at a time, and that unbound fermion pairs (i.e. those separated by more than q̄ + Δq)

are counted as unpaired.

In the first instance take the Hamiltonian to be independent of spin, in which case 

N̄ s = N/(2S + 1). This requirement is relaxed when a spin-dependent potential is

∑
p1,p2

= ∑
p1

{δp2,−p1 + ∑
p2

(p2≠−p1)}

= ∑
p1

{δp2,−p1
+ Δ−3

p ∫ dp2}

=
1

Δ6
p

∫ dp1 dp2{Δ3
pδ(p2 + p1) + 1}.
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included.

Treat the paired and unpaired fermions as (S + 1)(2S + 1) different species, and only

allow permutations within each species. This is similar to the no mixing approximation that

has been used in the treatment of the λ-transition, section 8.4.2. For the occupancy 

{N_ 0,N_ 1} ≡ {N0,ss′,N1,s} the total number of permutations restricted to each species is

The second equality defines the abbreviated notation that will be used. This

permutation number M goes directly into the denominator in conjunction with the

symmetrization factor formalism for the partition function that treats the paired and

unpaired fermions as different species.

One can also see this from the binomial expansion that arises from the transformation

to the continuum mentioned above. The usual multinomial factor that arises in the

expansion is

∏
s, s′< s′′

Ns!

N1,s! N0,s′s′′!
.

Inserting this into the grand partition function, equation (10.6), the numerator here

cancels with the denominator there, leaving M as the denominator in that equation.

10.2.3.3 Grand partition function

In view of either of these two results, the grand partition function for paired and unpaired

fermions is

The commutation function has been neglected in the final equality. The discrete

momentum sums can be replaced directly by continuum momentum integrals since the

paired and unpaired fermions have been explicitly identified. The phase space point of the 

ss′ paired fermions is denoted Γ2N0,ss′ ≡ {q2N0,ss′ , p2N0,ss′}, and the phase space point of

unpaired s fermions is denoted ΓN1,s ≡ {qN1,s , pN1,s}. The total permutator is 

P̂ = ∏s,s′<s′′ P̂0,s′s′′P̂1,s, which factors commute.

Because permutations are confined to amongst fermions with the same spin, and

because of the no mixing approximation (i.e. permutations between paired and unpaired

fermions may be neglected), the symmetrization function fully factorizes

M = ∏S
s=−S N1,s! ∏S

s′=−S ∏S
s′′=s′+1 N0,s′s′′!

= ∏s,s′<s′′ N1,s! N0,s′s′′!.

Ξ− = ∑
N_ 0,N_ 1

zN(zex
0 )2N0

∏s,s′<s′′ N1,s! N0,s′s′′!

× ∑
p

∑
P̂

(−1)p1,s⟨ϕp(q)∣e−βĤ∣ϕp(P̂q)⟩

≈ ∑
N_ 0,N_ 1

zN(zex
0 )2N0V −N

∏s,s′<s′′ N1,s! N0,s′s′′!
∑

p

∫ dq e−βH(q,p)η−(q, p, s).
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η−(q, p, s) = ∏
s,s′<s′′

η+
0,s′s′′(Γ2N0,s′s′′) η−

1,s(ΓN1,s).

The symmetrization function for paired fermions, η+
0,s′s′′, was expressed above in terms

of the number of bound Cooper pairs, equation (10.21). It is independent of the point in

phase space and can be taken outside of the integrals for the partition function.

The symmetrization function for unpaired fermions is

η−
1,s(ΓN1,s) =

N1,s!

∑
P̂1,s

(−1)p1,se−[pN1,s−p′N1,s ]⋅qN1,s/iℏ.

Here p′N1,s ≡ P̂1,sp
N1,s , and p1,s is the parity of the permutation P̂1,s.

In the general classical phase space formulation of quantum statistical mechanics, the

permutation loop expansion, which consists of products of loops, can be written as the

exponential of a series of single loops, sections 7.5 and 7.7 (Attard 2018, 2021). It follows

that the grand potential is the sum of loop potentials, each of which is the classical average

of a sum over single permutation loops of a given size. This holds only for the unpaired

fermions, whose symmetrization function has (2S + 1) factors. Each factor gives a

corresponding loop grand potential; for l ⩾ 2 these can all be treated independently.

10.2.3.4 Configuration integral containing bound fermion pairs

Shortly the monomer or classical grand potential will be given, and this depends upon the

classical configurational integral containing N0 = ∑s′<s′′ N0,s′s′′ bound fermion pairs. This

is different to the classical configurational integral Q(N ,V ,T ) unconstrained by such

pairing, where N = N1 + 2N0. The two are related as

Here j′ is the fermion bound to j, Θ(q) is the Heaviside step function, and  is the

bound volume, equation (10.20).

10.2.3.5 Monomer grand potential

Using this result, the monomer or classical grand potential is

Q(N ,V ,T ∣ N_ 0) = ∫
V

dqN1dqN0 ∫
ΔV

dq′N0 e−βU(qN)

= Q(N ,V ,T )⟨∏N0

j=1 Θ(q̄ + Δq − qjj′)⟩
N ,V ,T

= Q(N ,V ,T ){
4π

V
∫

q̄+Δq

0
dq q2g(q)}

N0

≡ Q(N ,V ,T ) ∏s′<s′′ (
vbnd

V
)
N0,s′s′′

.

( )



(10.

30)

(10.

31)

Here the continuum momentum limit has been taken. The classical configuration

integral, Q(N ,V ,T ), is independent of the spin state of the fermions (unless a spin-

dependent potential is added). As above, N = N1 + 2N0 = ∑sN1,s + 2 ∑s′<s′′ N0,s′s′′.

10.2.3.6 Unpaired grand potential

For paired fermions, the symmetrization function was given above as equation (10.21). This

is independent of the point in phase space. It was taken outside of the phase space

integrals for the partition function and appears above in the monomer grand potential as

the factors involving N0,s′s′′.

For unpaired fermions the loop grand potential is straightforward to derive as, apart

from a factor of (−1)l−1
, it is identical to that for bosons (see sections 7.5, 7.7, and 8.4.2)

(Attard 2018, 2021).

The unpaired loop grand potentials l ⩾ 2 are classical averages (Attard 2021 section

5.3), which can be taken canonically

The fermionic anti-symmetrization factor (−1)l−1
 appears explicitly. Apart from it, all

factors are positive. The average has been transformed from the mixed {N_ 0,N_ 1} system

to the classical configurational system of N fermions that does not distinguish their state

(Attard 2021). The factor of (Ns,1/N)l is the uncorrelated probability that l fermions

e−βΩ(1)(z,V ,T ) = Ξcl(z,V ,T )

= ∑
N_ 0,N_ 1

zN(zex
0 )2N0 ∏s′<s′′ ν

N0,s′s′′N0,s′s′′!

V N ∏s,s′<s′′ N1,s!N0,s′s′′!

× ∏s,s′<s′′

Δ
−3N1,s
p

Δ3N0,s′s′′
p

∫ dpN0,s′s′′ dpN1,se−βK(pN)

× ∫
V

dqN1dqN0 ∫
ΔV

dq′N0 e−βU(qN)

= ∑
N_ 0,N_ 1

zN ∏s′<s′′ (zex 2
0 ν)

N0,s′s′′

V N ∏sN1,s!
∏s,s′<s′′

(V /Λ3)
N1,s

(23/2Λ3/V )N0,s′s′′
Q(N ,V ,T ∣ N_ 0

= ∑
N_ 0,N_ 1

zN

V N
Q(N ,V ,T ) ∏s′<s′′ (

zex 2
0 νvbnd

23/2Λ3
)

N0,s′s′′

∏s

V N1,s

Λ3N1,sN1,s!
.

− βΩ
−,(l)
1,s = ⟨η−,(l)

1,s (pNs , qNs)⟩
cl

N_ 0,N_ 1

= (−1)l−1⟨G(l)(qN1,s)⟩
cl

N_ 0,N_ 1

= (−1)l−1(
N1,s

N
)

l

⟨G(l)(qN)⟩
cl

N

≡ N1,s(−1)l−1(
N1,s

N
)

l−1

g(l).
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chosen at random in the original mixed system are all unpaired and in the same state. The

Gaussian position loop function is

G(l)(qN) =
N

∑
j1,…,jl

′′ e−πq2
jl,j1

/Λ2
l−1

∏
k=1

e−πq2
jk,jk+1

/Λ2

.

The double prime indicates that no two indeces may be equal and that distinct loops

must be counted once only. There are N!/(N − l)!l distinct l-loops here, the overwhelming

number of which are negligible upon averaging. Since the pure excited momentum state

permutation loops are compact in configuration space, one can define an intensive form of

the average loop Gaussian, g(l) ≡ ⟨G(l)(qN)⟩
cl

N
/N . This is convenient because it does not

depend upon N1,s.

10.2.4 Maximum entropy for paired fermions

The constrained grand potential is given by

−βΩ−(N_ 0,N_ 1 ∣ z,V ,T ) = −βΩ(1)(N_ 0,N_ 1 ∣ z,V ,T ) − β
S

∑
s=−S

∞

∑
l=2

Ω−,(l)
1,s (N_ 0,N_ 1).

The monomer and paired loop potentials on the right-hand side are given above.

This is the constrained total entropy and the optimum number of paired and unpaired

fermions is determined by maximizing it. It is most convenient to take the derivatives at

constant number N.

In the absence of a spin-dependent potential, all spins are equal, Ns = N/(2S + 1).

Similarly the pair number is independent of the spin pair s′s′′, N0,s′s′′ = [1 − δs′,s′′]Ñ 0, so

that Ns = N1,s + ∑s′ N0,ss′ = N1,s + 2SÑ 0. One can ensure the derivative at constant N

by taking dN1,s′ = dN1,s′′ = −dN0,s′s′′. Setting N1,s′ = N1,s′′ after the differentiation one

has

The fraction of unpaired spin-s fermions is f1,s = N1,s/N ⩽ 1/(2S + 1). If the right-

hand side is positive, then N1,s′ should be increased. Setting the derivative to zero

determines N̄ 1,s′ for fixed N and V.

At high temperatures, the intensive Gaussian loop integrals are negligible, g(l) ≈ 0.

Neglecting them and focussing only on the logarithmic terms, the derivative vanishes when

ρ̄ 1,s′Λ
3 = √

23/2Λ3

zex 2
0 νvbnd

.

d(−βΩ)

dN1,s′
= − 2 ln

Λ3N1,s′

V
− ln

zex 2
0 νvbnd

23/2Λ3

+ 2
∞

∑
l=2

(−1)l−1
l
N l−1

1,s′

N l−1
g(l).
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Of course one must have ρ̄ 1,s′ ⩽ ρ/(2S + 1). At high temperatures one expects the

binding volume to be small, , as it is proportional to the number of neighbors within

q̄ + Δq of a fermion. In this case the right-hand side is larger than ρΛ3/(2S + 1), which is

the upper limit on the density of fermions with a given spin. As the temperature is

decreased, the binding volume increases as the depth of the minimum in the potential of

mean force generally increases. So the right-hand side decreases, and the left-hand side

increases with decreasing temperature. At some temperature this will give a solution 

ρ̄ 1,s′ ⩽ ρ/(2S + 1). This is the point at which bound fermion pairs first form. Of course this

result may be perturbed by the contribution from the intensive gaussian loop integrals.

This argument sets the excess fugacity for the pair to unity, zex 2
0 = 1. It will be shown

below that for 3He the excess fugacity decreases with decreasing temperature. If in

consequence the right-hand side grows faster than the left-hand side with decreasing

temperature, then condensation will not occur (unless the loop contributions become

significant and have the right sign).

10.2.4.1 Spin-dependent external potential

Add an external spin-dependent one-body potential, U(σ) = −B∑j σj. The parameter B

will be called the magnetic field strength. Assume that there is no pair or many-body

potential that depends upon the spins. The classical configuration integral becomes

To the monomer grand potential −βΩ(1) should be added

βB∑
s

sN1,s + βB ∑
s′<s′′

(s′+s′′)N0,s′s′′.

 

In general the derivatives are messy because the N1,s and N0,s′s′′ vary with spin. But for

electrons, S = 1/2, one can carry out the derivatives at constant N in two ways to give two

equations for two unknowns. The first way is to take dN1,↑ = dN1,↓ = −dN0,↑↓. This gives

The second way is to take dN1,↑ = −dN1,↓ and dN0,↑↓ = 0, which gives

 

Q(N ,V ,T ,B) = ∏s,s′<s′′ esβBN1,se(s′+s′′)βBN0,s′s′′Q(N ,V ,T ).

d(−βΩ)

dN1,↑
= ln

V

Λ3N1,↑
+ ln

V

Λ3N1,↓
− ln

zex 2
0 νvbnd

23/2Λ3

+
∞

∑
l=2

(−1)l−1
l
N l−1

1,↑ + N l−1
1,↓

N l−1
g(l).

d(−βΩ)

dN1,↑
= ln

V

Λ3N1,↑
− ln

V

Λ3N1,↓
+ βB

+
∞

∑
l=2

(−1)l−1
l
N l−1

1,↑ − N l−1
1,↓

N l−1
g(l).
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Adding these together one has for the optimum fraction of up-spins, f1,↑ = N1,↑/N ,

0 = βB − ln
zex 2

0 νvbnd

23/2Λ3
− 2 ln[ρΛ3f̄ 1,↑] + 2

∞

∑
l=2

(−1)l−1
lf̄

l−1
1,↑ g

(l),

and subtracting the second from the first one has for down-spins,

0 = −βB − ln
zex 2

0 νvbnd

23/2Λ3
− 2 ln[ρΛ3f̄ 1,↓] + 2

∞

∑
l=2

(−1)l−1
lf̄

l−1
1,↓ g

(l).

 

Neglecting the intensive Gaussian loop contributions, these give

f̄ 1,↑ ≈
23/4eβB/2

ρΛ3√zex 2
0 νvbndΛ−3

and f̄ 1,↓ ≈
23/4e−βB/2

ρΛ3√zex 2
0 νvbndΛ−3

.

Since f̄ 1,↑ + f̄ 1,↓ ⩽ 1, this gives an upper limit on the external field beyond which the

condensation into fermion pairs is disrupted,

cosh
βBcrit

2
≈ 2−7/4ρΛ3√zex 2

0 νvbndΛ−3.

Of course this is qualitatively rather than quantitatively accurate because the loop

Gaussians are likely to make a significant contribution in any regime in which condensation

occurs.

10.3 Results for 3He

Table 10.1 gives the intensive loop Gaussians for Lennard-Jones helium-3. The Lennard-

Jones parameters model helium, εHe = 10.22kB J and σHe = 0.255 6 nm (van Sciver

2012). The relation between the Lennard-Jones dimensionless temperature and the actual

temperature is T [K] = 10.22T *. The 3He atom is a spin-half fermion because it comprises

a pair of protons and a pair of electrons, each with opposite spin and occupying the same

single-particle state, and a single spin-half neutron. The Monte Carlo simulation algorithm

used to obtain the results is detailed in Attard (2021 section 5.3.2). In general, the loop

Gaussians increase with decreasing temperature. They also decrease with increasing loop

size, except at the lowest temperatures studied. This suggests that terminating the loop

series with lmax = 5 at these temperatures will give reliable results since each term is

weighted by the corresponding power of N1,s/N ⩽ 1/(2S + 1) (in the absence of an

external magnetic field).

Table 10.1. Intensive loop Gaussian for saturated liquid Lennard-Jones He
3
 at various temperatures, T * ≡ kBT/ε

.

T *
g(2) g(3) g(4) g(5) g(6)

1.2 5.43E−03 2.22E−04 1.67E−05 1.77E−06
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T *
g(2) g(3) g(4) g(5) g(6)1.1 1.11E−02 7.84E−04 9.69E−05 1.60E−05

1.0 2.09E−02 2.40E−03 4.58E−04 1.14E−04

0.9 3.80E−02 6.85E−03 1.92E−03 6.93E−04

0.8 6.84E−02 1.93E−02 8.05E−03 4.32E−03 2.57E−03

0.7 1.25E−01 5.54E−02 3.49E−02 2.80E−02 2.46E−02

0.6 2.31E−01 1.64E−01 1.59E−01 1.94E−01

0.5 4.23E−01 4.80E−01 7.32E−01 1.39E+00

Figure 10.4 compares the intensive loop Gaussians g(l) for Lennard-Jones 3He and for

ideal fermions by plotting their ratio for three temperatures. The intensive loop Gaussian

for ideal particles is (cf equation (7.119), or section 7.6, or Attard (2021 section 4.1))

Figure 10.4. Ratio of intensive loop Gaussian g(l) for Lennard-Jones 3He to that

for ideal fermions at Lennard-Jones helium saturation liquid densities. The

triangles are for ρΛ3 = 1.4 (T * = 0.6), the squares are for ρΛ3 = 1.2 (T * = 0.7),

and the crosses are for ρΛ3 = 1.1 (T * = 0.8). Note T [K] = 10.22T *.

It can be seen that at the lowest temperature, the intensive loop Gaussians for the

Lennard-Jones model is larger than for ideal fermions, increasingly so as the order of the

g
(l)
id =

1

N
⟨G(l)(qN)⟩

N ,cl,id

=
1

N

N!

(N − l)!l

1

V l
∫ dql e−πq2

l,1/Λ2

∏l−1
k=1 e−πq2

k,k+1/Λ2

=
ρl−1

l
Λ3(l−1)l−3/2.



loop increases. The presence of an attractive potential of mean force strongly affects the

particle correlation functions and hence the values of the intensive loop Gaussians that

determine the number of Cooper pairs.

Figure 10.5 compares the simulated heat capacity for Lennard-Jones 3He with that for

Lennard-Jones 4He. It can be seen that the heat capacity for the fermions is less than that

for the bosons. This is due of course to the alternating signs of the terms in the former

series. The divergence in the 4He heat capacity that is becoming apparent at the lowest

temperatures shown is a manifestation of the λ-transition. Compared to 4He, 3He has a

smaller mass giving a larger thermal wavelength, and therefore the loop series with a fixed

number of terms becomes unreliable at a higher temperature. It is noticeable that

terminating the loop series for the fermion 3He at an even number of terms (equal number

of positive and negative coefficients) gives a lower heat capacity than that terminated at

an odd number of terms. The growth in heat capacity that marks the λ-transition in

Lennard-Jones 4He at these temperatures does not occur in Lennard-Jones 3He. The

decrease in heat capacity with decreasing temperature in the latter, which is apparent at

the lowest temperatures shown, is likely a manifestation of the well-known fact that only

fermions near the Fermi surface contribute. The loop series is probably rather inefficient for

fermions at low temperatures as in essence it requires an infinite number of terms to

ensure rigorously that no two fermions with the same spin occupy the same momentum

state.

Figure 10.5. The heat capacity per particle for Lennard-Jones 3He with lmax = 5
(circles on solid curve), lmax = 4 (dotted curve), and lmax = 6 (squares), and for 4He

with lmax = 5 (triangles on dashed curve) along the saturation curve (canonical Monte

Carlo, homogeneous, N* = N = 5000). Each arm of an error bar is twice the standard

error.

The results for both 3He and 4He in figure 10.5 were obtained with no condensed

particles, N* = N . Hence in the case of fermions the results are independent of Cooper

pairing and the effective boson approximation.

Table 10.2 gives the values of various parameters obtained by classical canonical

simulations of 5000 Lennard-Jones helium-3 atoms in a homogeneous system with periodic

boundary conditions. The density is the liquid saturation density, which was obtained along

the saturation curve for a liquid drop. It can be seen that the minimum in the pair potential

of mean force gets deeper, and its curvature increases, with decreasing temperature. The



internal weight ν and the bound volume  are surprisingly insensitive to temperature.

The excess fugacity zex
0  for paired fermions, equation (10.14), decreases with decreasing

temperature at lower temperatures, primarily due to the increase in βp along the liquid–

vapor saturation curve. (The value greater than unity for T * = 0.9 arises from a small

negative pressure, βp/ρ = −0.024 3(98), which may be due to a minor inaccuracy in the

liquid density.) The parameter √8 q̄/Λ2√βw̄′′ should be less than about unity in order for

the present numerical approximations to be valid (cf equation (10.18)). It is derived from

the requirement that √2/βw̄′′ ≪ Δq ≪ Λ2/2q̄ , with the left-hand bound being necessary

for the validity of the Gaussian approximation, and the right-hand bound being necessary

for the validity of the mean field internal weight. The relation between the Lennard-Jones

dimensionless temperature and the actual temperature is T [K] = 10.22T *.

Table 10.2. Parameters for saturated liquid Lennard-Jones He
3
 at various temperatures, T * ≡ kBT/ε. The

Lennard-Jones diameter σ is the unit of length.

T *
1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5

ρ 0.53 0.63 0.70 0.75 0.80 0.85 0.89 0.93

Λ 1.13 1.18 1.23 1.30 1.38 1.47 1.59 1.74

ρΛ3 0.75 1.03 1.32 1.65 2.10 2.71 3.58 4.92

q̄ 1.100 1.097 1.093 1.091 1.090 1.089 1.088 1.086

βw̄ −0.74 −0.81 −0.88 −0.95 −1.03 −1.12 −1.20 −1.32

βw̄′′ 64.49 87.17 87.39 100.78 135.60 151.93 176.07 209.80

ν 0.32 0.33 0.35 0.37 0.39 0.42 0.45 0.49

z2
0,ex 0.95 0.96 0.95 1.05 0.89 0.77 0.72 0.18

9.92 9.12 9.68 9.63 9.03 9.25 9.38 9.58

√8q̄/Λ2

√βw̄′′

0.31 0.24 0.22 0.18 0.14 0.11 0.09 0.07

The bound volume in table 10.2 was calculated using the Gaussian approximation, the

second equality in equation (10.20). For T * = 0.5 this is . Evaluating the actual

integral instead, using Δq = Λ2/2πq̄ = 0.44 gives , Δq = Λ2/5πq̄ = 0.18
gives , and Δq = Λ2/10πq̄ = 0.089 gives . (These expressions

ensure the validity of the internal weight ν.) The expression Δq = √2/βw̄′′ = 0.098 gives 

. These are all reasonably close to the value estimated with the Gaussian

approximation. All of the results below use the value of  given in the table.

Figure 10.6 shows the thermodynamic force acting on the fraction of unpaired spin-half

fermions, with positive values driving an increase. The curves that don’t pass thorough

zero have a positive derivative for the whole domain, which means that the system in its



optimum thermodynamic state is composed entirely of unpaired fermions, 

f̄ 1,s = 1/(2S + 1).

Figure 10.6. Entropy derivative as a function of fraction of unpaired fermions for

Lennard-Jones 3He, S = 1/2, at various temperatures along the Lennard-Jones

saturation liquid curve at B = 0. The curves are T * = 0.5 (solid), 0.6 (long dashed),

0.7 (short dashed), and 0.8 (dotted). The bare curves correspond to zex
0 = 1, and the

curves with symbols to zex
0  given in table 10.2. The dotted line is a guide to the eye.

Intensive loop Gaussians up to lmax = 5 were used.

First the case zex
0 = 1, which neglects the cost of forming the cavity to accommodate

the rotating bound fermion pair. For T * ≲ 0.7 the derivative passes through zero, which

corresponds to a maximum in the total entropy. It can be seen that the zero is a stable

solution, because positive values of the derivative to the left of the zero give a

thermodynamic force that increases the number of unpaired fermions, and negative values

to the right of the zero give a thermodynamic force that decreases their number. It can be

seen that the optimum fraction of unpaired fermions decreases with decreasing

temperature below the transition, which is the same as saying that the fraction of paired

fermions increases.

Including the excess pair fugacity, equation (10.14), with the values in table 10.2, it can

be seen that at all temperatures shown the force is more positive than the corresponding

result with zex
0 = 1. This means that the cost of the accommodating cavity suppresses the

formation of the rotating bound fermion pair. For most temperatures the force does not

pass through zero, which means that there is no condensation transition. For T * = 0.6 the

force becomes slightly negative, and gives an optimum fraction of unpaired fermions of 

N̄ 1,s/N ≈ 0.47, which is practically the maximum value. The uncertainty in the value of

the excess fugacity makes it reasonable to say that even in this case there is no

condensation transition. The increase in force for T * = 0.5 in going from zex
0 = 1 to 

zex
0 = 0.18 is noticeably larger than for the other temperatures. For T * = 0.5 the pressure

is given by βp/ρ = 0.567(33), and for T * = 0.6 it is βp/ρ = 0.115(10). Presumably at

lower temperatures the excess fugacity is even smaller, with the Lennard-Jones 3He turning

solid.



The results in figure 10.6 were obtained along the line f1,s = f1,s′′, as follows by taking 

dN1,s′ = dN1,s′′ = −dN0,s′s′′. For zex
0 = 1, there is a second zero of the thermodynamic

force that occurs for f̄ 1,s ≠ f̄ 1,s′′, which can be obtained by taking dN1,s′ = −dN1,s′′.

(One can see the beginning of a parabola at the extremity of the range for the curve 

T * = 0.5 in figure 10.6.) This second zero corresponds to an entropy minimum and is

therefore unstable. In practice this does not represent a thermodynamic barrier to

condensation because the system can follow the first path starting from the fully unpaired

state, f1,s = f1,s′′ = 1/(2S + 1), which symmetry arguments demand in the absence of a

magnetic field.

If one accepts that condensation implies individual bound fermion pairs are long-lived,

and that these necessarily rotate, and that these therefore require an accommodating

cavity, then the calculations with the excess fugacity being less than unity are the more

realistic, even if the quantitative values are derived from a rather simple expression. If so,

then the results suggest that there is no condensation transition in Lennard-Jones 3He down

to T * = 0.5 (T = 5.1 K). By extrapolation, the excess fugacity only gets smaller with

decreasing temperature. This suggests that condensation will never occur in Lennard-Jones

3He, at least not by this mechanism. The measured condensation transition in real 3He

occurs at about 2.5 mK.

For Lennard-Jones 4He in the unmixed approximation, section 8.4.2, the condensation

transition, as measured by the first nonzero occupancy of the momentum ground state,

occurred at about T * = 0.9 and ρΛ3 = 1.04 (table 8.2). In the present calculations for

Lennard-Jones 3He with zex
0 = 1, it occurs at about T * = 0.7 and ρΛ3 = 2.71. Comparing

these two models with identical interaction potential and identical level of approximation

(but different masses) shows that condensation is more difficult for fermions than for

bosons. And of course this does not take into account the cost of the putative cavity

required to accommodate the paired fermions.

Figure 10.7 plots against temperature the dimensionless parameter that combines the

arguments of the logarithms in the entropy derivative, equation (10.34). Taking 

ρ1,s = ρ/(2S + 1) is equivalent to setting the fraction of paired fermions to zero. If the

series of loop Gaussians were negligible, then the point at which this curve passes through

unity would be the condensation transition. It can be seen that for zex
0 = 1 this occurs at

about T * ≈ 0.63, which is somewhat less than the value T * ≈ 0.7 estimated from the

previous figure that includes the loop series. One can conclude from this that the

permutation loops have a small influence on the condensation transition. Including the

excess fugacity zex
0 ≲ 1, table 10.2, shows that the argument of the logarithm never

reaches unity.



Figure 10.7. The argument of the logarithms in the entropy derivative, equation

(10.34) with f1,s = ρ/(2S + 1), for saturated liquid Lennard-Jones 3He, S = 1/2, as a

function of temperature. The solid curve uses zex
0 = 1, and the dashed curve uses zex

0
from table 10.2. The dotted line is a guide to the eye.

Figure 10.8 shows the effect of an applied magnetic field on the optimum fractions of

spin-half fermions at T * = 0.5. The excess fugacity has been neglected, zex
0 = 1. With

increasing field strength, the number of aligned spins increases and the number of anti-

aligned spins decreases, which are to be expected. The number of Cooper pairs decreases,

albeit quite slowly, which is no doubt a non-linear affect due to the Boltzmann exponential

weight of the magnetic energy. A critical field strength is reached at this temperature at 

βBcrit = 0.62. At this point the Cooper pairing is disrupted and the condensation is

destroyed.

Figure 10.8. Optimum fraction of spin-up, unpaired (solid curve), spin-down unpaired

(dashed curve), and paired (dotted curve) spin-1/2 fermions (saturated liquid Lennard-

Jones 3He) as a function of magnetic field strength at T * = 0.5 with zex
0 = 1. The



dotted line indicates the critical magnetic field strength, βBcrit = 0.62, at this

temperature.

Figure 10.9 shows the sum of the entropy derivatives as a function of the fraction of

unpaired spin-up fermions, equation (10.40). Again the excess fugacity has been

neglected, zex
0 = 1. The full equation gives a parabolic curve that crosses zero in two

places. The lower fraction is the stable solution and corresponds to the entropy maximum.

As the magnetic field is increased, the parabola moves upward (results not shown). Its tip

touches zero when the critical magnetic field is reached. For higher fields than this there is

no entropy maximum for a physical value of the fraction of unpaired spin-up fermions. This

the same as saying condensation into bound fermion pairs does not occur.

Figure 10.9. Sum of entropy derivatives as a function of the non-optimum fraction of

unpaired spin-up fermions (saturated liquid Lennard-Jones 3He, S = 1/2) at

temperature T * = 0.5 and magnetic field strength βB = 0.5, with zex
0 = 1. The solid

curve is the full equation (10.40), whereas the dashed curve neglects the loop series

contribution. The dotted line is a guide to the eye.

The figure also shows the entropy derivative neglecting the contribution from the

permutation loop series. The point at which this curve crosses zero is reasonably close to

the stable solution predicted by the full equation. However, the simpler equation predicts a

monotonic curve, which appears to have a zero for all magnetic field strengths. Hence the

criterion for the critical magnetic field neglecting the loop series, equation (10.43), which is

based upon f̄ 1,↑ + f̄ 1,↓ > 1, is qualitatively different from the criterion used for the full

equation, namely the vanishing of the entropy maximum.

This point is confirmed by the data in the penultimate figure, which includes the loop

series, where the critical field strength at T * = 0.5 was βBcrit = 0.62. This compares to

the estimate βBcrit = 1.69 from equation (10.43), which neglects the loop series. The large

difference between these two estimates appears to be due to the qualitatively different

criterion used rather than to the contribution of the loop series itself.
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10.4 Comparison of fermion pairs in BCS and the present

theory

10.4.1 Lennard-Jones helium-3

The present calculations for 3He have several quantitative limitations. Obviously the

Lennard-Jones pair potential is a crude approximation to the actual interactions in helium. It

has limited accuracy for low temperature, high density states because it neglects the exact

short-range interactions and many-body contributions. Also, the present analysis neglected

the short-ranged commutation function on the grounds that Bose–Einstein condensation is

dominated by non-local permutations. Although this works well for bosons, the present

results for fermions show the essential role played by the potential of mean force in binding

the Cooper pair. Since the minimum in this occurs at short ranges, where the function is

rapidly varying, neglecting the commutation function in this case is questionable. The

discussion in section 8.6.3 concluded that the commutation function will reduce the

curvature of the potential of mean force at its minimum, and reduce the component of

momentum parallel to the axis of the pair. The present analysis also suggested that a

cavity was necessary to accommodate a long-lived rotating bound fermion pair, but only a

simple expression for the excess fugacity associated with this was used, equation (10.14).

Finally, the present results are dependent on the binary division approximation, the no-

mixing approximation, and retaining only five terms in the loop series for the grand

potential.

The simple transition criterion, equation (10.35), which neglects permutation loop series

contribution to the grand potential, is

zex 2
0 νρ2vbndΛ3

23/2(2S + 1)2
= 1.

Here the unpaired density has been set equal to the total density for that spin, which is

correct on the high temperature side of the transition. Of the various parameters that

appear, the thermal wavelength and the excess fugacity are generally the most sensitive

to temperature. At high temperatures the left-hand side is smaller than unity. At low

temperatures the excess fugacity appears to decrease faster with decreasing temperature

than the thermal wavelength increases. Of course there is a deal of extrapolation here, but

it does suggest that either the condensation transition is non-existent in Lennard-Jones

3He, or else that it occurs at temperatures much lower than those studied here. The

measured superfluid transition in real 3He occurs below 3 mK.

10.4.2 Fermion condensation

The present theory for condensation of fermions has generic similarities and differences

with BCS theory. What it has in common with BCS theory is the notion of paired fermions

with different spin and with net zero momentum. The present theory does go a little

beyond this in pointing out the possibility that bosonic permutations can also occur

between pairs with the same nonzero net momentum.

In the BCS theory of superconductivity the size of the Cooper pairs is hundreds or

thousands of times larger than in the present theory. Since ν, the internal weight of the

fermion pair given by equation (10.17), goes to zero for large separations, the above

criterion cannot be satisfied by BCS theory. The two theories appear qualitatively different

and likely apply in different regimes. The fact that BCS theory is a quantum mechanical

rather than a quantum statistical mechanical theory is consistent with it applying

quantitatively to low temperature superconductors.



Another significant difference is the mechanism for binding the fermion pair. In BCS

theory it is lattice vibrations, and there is a correlation between the frequency and

wavelength of the vibration and the speed of the fermions in the pair. In the present theory

the pair are bound by a short-ranged minimum in the static pair potential of mean force. In

addition it was suggested in section 10.2.2.3, that to satisfy the requirement for the net

momentum of the pair, it likely rotates about its center of mass in a cavity in the fluid. The

potentials from the fermions that surround the rotating pair help bind them. The cost of

forming the cavity, which is reflected in the excess fugacity zex
0 , is unfavorable to pair

formation. The cost will be lower for a compressible fluid than is calculated here for

incompressible Lennard-Jones 3He.

The present quantum statistical theory arguably applies to high temperature

superconductors. As will be shown in the following section 10.5, the pair potential of mean

force following the monotonic-oscillatory transition in a highly coupled charged system fits

this condensation criterion of possessing a small separation minimum.

There are many similarities between the present treatment of the fermionic

superconducting transition and the treatment of the superfluid λ-transition in chapter 8.

Ultimately both phenomena are a manifestation of Bose–Einstein condensation, with the

paired fermions in the present case being effective bosons. For bosons, condensation into

the low-lying momentum states and the consequent superfluidity is driven by the increase

in permutation entropy due to the non-local correlations of pure momentum permutation

loops. For paired fermions, the permutations between the zero-momentum pairs are

similarly non-local. Superfluidity in a bosonic fluid persists because momentum changing

collisions can only occur for the state as a whole, and hence they have to be of

macroscopic, not of molecular, size (chapter 9). Similarly for superconductivity, because

the zero-momentum pairs (or the more general nonzero momentum pairs, section 10.2.2.2)

occupy a single state. In both cases it is the permutation entropy that ensures flow without

dissipation.

10.5 Monotonic-oscillatory transition in charge fluids

As mentioned in the introduction to this chapter, the long standing BCS (Bardeen et al

1957) theory of superconductivity invokes an attractive potential due to lattice vibrations

to form the Cooper pairs. This quantum mechanical approach works well for ordinary low

temperature superconductivity, but is known to fail for the more recently discovered high

temperature superconductors. None of the suggestions for an alternative physical origin for

an attractive potential have proved convincing, which tends to suggest that the problem

lies with the conventional quantum mechanical formulation of the BCS approach to the

superconducting transition. As also pointed out in the introduction, the very name ‘high

temperature superconductor’ suggests that entropy is essential, and that the theory should

be formulated in quantum statistical mechanical terms rather than quantum mechanical

terms. This in fact is the motivation for, and goal of, the statistical analysis of Bose–Einstein

condensation for fermions in the preceding sections in this chapter.

The aim of the present section is to analyse a possible physical mechanism for the

attractive potential of mean force that must exist to bind the electrons in the quantum

statistical mechanical theory of fermionic condensation developed above. The mechanism

was originally suggested by Attard (2022), and the following analysis closely follows that

paper.

It is suggested that the attraction between electrons responsible for Cooper pairs in high

temperature superconductors is due to the oscillatory pair static correlation function that

occurs at high coupling. This has long been established for like-charged particles in the

one-component plasma and in primitive model electrolytes (Brush et al 1966, Stillinger and

Lovett 1968, Fisher and Widom 1969, Stell et al 1976, Outhwaite 1978, Parrinello and Tosi

1979, Attard 1993, Ennis et al 1995). In the present section the high temperature
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superconductor is modeled as a one-component plasma in media, with the relatively few

electrons in the Fermi mist comprising the fluid charges, and the fixed nuclei and majority

immobile electrons in the Fermi sea forming the neutralizing background and static relative

permittivity (dielectric constant). The predicted temperatures for the monotonic-oscillatory

transition in this model encompass the measured transition temperatures for high

temperature superconductors for physically reasonable values of the total electron density

and static relative permittivity.

10.5.1 Model and analysis

The solid conductor is modeled as a one-component plasma (mobile electrons in a uniform

counter-charge background), together with a finite relative permittivity ϵr = O(102) that

results from the remaining immobile but polarizable electrons (i.e. those deep in the Fermi

sea). The mobile electrons in the Fermi mist have number density ρm(T ) derived below.

Arguments for and against this model are canvassed in section 10.5.3.

The analysis and specific examples begin with the restricted primitive model electrolyte

for three reasons: First, there are a wealth of analytic, numeric, and experimental results

known for electrolytes. Second, it shows the generality of the monotonic-oscillatory

transition in charge systems. And third, it gives a specific value for the width of the

accessible energy states, which is required to determine the electron density of the Fermi

mist.

In the restricted primitive model electrolyte (ions of equal hard-sphere diameter in a

dielectric continuum), the pair distribution function undergoes an oscillatory transition

when (Attard 1993)

κDd ⩾ √2,

where d is the hard core diameter of the ions. The inverse Debye screening length for

the binary symmetric electrolyte is κD = √(4πβ/ϵ)2ρFq2, where q is the ionic charge (in

this case the electron charge), and ρF is the number density of each type of ion. Here 

β = 1/kBT  is the inverse temperature, and ϵ = 4πϵ0ϵr is the total permittivity of the

medium, ϵ0 being the permittivity of free space (SI units). This result is based on the

Debye–Hückel form for the pair distribution function combined with the exact Stillinger–

Lovett second moment condition. More accurate analytic and numeric approximations exist

(Attard 1993), but this is sufficient for the present purposes.

To make the connection with the one-component plasma, which does not impose a hard

core diameter, the distance of closest approach of the electrons can be set as the point at

which the Coulomb potential in media reaches several times the thermal energy, 

u(d) = αkBT , or d = βe2/ϵα. With these the oscillatory transition in the symmetric

electrolyte occurs when

2 ⩽
4πβ2ρFe2

ϵ

β2e4

ϵ2α2
=

6

α2
Γ3.

Here the plasma coupling parameter with finite relative permittivity is 

Γ ≡ βe2/[ϵ(3/4πρF)1/3].
As mentioned, the parameter α is the multiple of the thermal energy which bounds the

accessible states. Choosing α = √24 ≈ 4.9, the transition criterion becomes

Γ ⩾ 2.
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With this value of α, the value of the coupling constant at the transition given for the

restricted primitive model electrolyte agrees with that found by Monte Carlo simulations of

the one-component plasma (Brush et al 1966).

Now estimate the density of the electrons in the Fermi mist by modeling them as a non-

interacting ideal gas, also known as the free electron model. The Fermi momentum and the

Fermi energy for ideal fermions are (Pathria 1972 section 8.1)

pF = 2πℏ(
3ρ

8π
)

1/3

, and ϵF =
(2πℏ)2

2m
(

3ρ

8π
)

2/3

,

where ρ = N/V  is the total electron number density. The thermal wavelength is 

Λ = √2πβℏ2/m, and βϵF = 2π(3ρΛ3/8π)
2/3

/2, which is much larger than unity.

With momentum state spacing being Δp = 2πℏ/L (Messiah 1961, Merzbacher 1970),

where the volume is V = L3, the number in the Fermi mist is

An expansion to leading order for large βϵF has been made to obtain the final equality.

That is

ρmΛ3 = 4α(
3ρΛ3

8π
)

1/3

.

The total excitable electron density, ρm, is significantly less than the total electron

density, ρ. It is proportional to the number of accessible energy states about the Fermi

energy, which is fixed by equating the results of the restricted primitive model to those of

the one-component plasma, α = √24.

The idea that only the electrons at the Fermi surface contribute to screening also

underlies the Thomas–Fermi model of the electron gas (Kittel 1976). This idea is taken a

little further here by modeling the remaining immobile electrons as being polarisable and

contributing to the residual dielectric constant.

10.5.2 Numerical results

The predicted oscillatory-monotonic transition temperature is now explored for a range of

the two free parameters: the total electron density ρ and the residual static relative

permittivity ϵr. For these a guide is provided by values for ceramic materials. The total

electron density of zirconia ZrO2 is ρ = 1.65 × 1030
 m−3. The relative permittivity of typical

ceramic insulators is on the order of ϵr = 101–102 (www.ceramtec.com/ceramic-

materials/dielectric/).

Figure 10.10 shows the coion pair potential of mean force above and below the

oscillatory transition close to contact. The results were obtained with the hypernetted chain

approximation for the restricted primitive model binary electrolyte (Attard 1993). The

qualitative difference that the transition makes is apparent. Increasing coupling

corresponds to decreasing temperature at constant concentration, or increasing

concentration at constant temperature. The latter is the case shown in the figure.

Nm = 2Δ−3
p ∫

ϵF+α/β

ϵF−α/β
dϵ 4πm√2mϵ

e−β(ϵ−ϵF)

1 + e−β(ϵ−ϵF)

≈ 4αVΛ−3(3ρΛ3/8π)
1/3

.

https://www.ceramtec.com/ceramic-materials/dielectric/


Figure 10.10. Coion pair potential of mean force as a function of separation in the

symmetric binary monovalent electrolyte (d = 3.41 Å, ϵr = 100, T = 100 K,

hypernetted chain approximation). The solid curve is 0.5 M, (κ2
Dd

2 = 1.5, Γ = 1.8),

the short-dash curve is 1.0 M, (κ2
Dd

2 = 2.9, Γ = 2.3), the long-dash curve is for 2.0 M

(κ2
Dd

2 = 5.9, Γ = 2.9). The solid line is an eye guide.

At the lowest concentration shown 0.5 M, the potential of mean force is monotonic

repulsive and exponentially decaying. In this case the coupling is below the transition value

predicted for the restricted primitive model and also below that predicted for the one-

component plasma. At the intermediate concentration in the figure, 1.0 M, a shallow

primary minimum appears with width on the order of 103 Å. At the highest concentration

shown, 2.0 M, the primary minimum has become relatively deep and narrow, and the

potential of mean force is clearly oscillatory with a noticeable barrier to the primary

minimum. For the present parameters, the location of the transition predicted by the

Debye–Hückel–Stillinger–Lovett approximation for the primitive model electrolyte, equation

(10.45), is more or less equal to that observed in the one-component plasma, equation

(10.47).

The molecular interpretation of the attraction is that it arises at high coupling from over-

charging by counterions combined with packing constraints (Attard 1993). In the one-

component plasma, where charge oscillations were first found (Brush et al 1966), the

oscillation and primary minimum arise from a type of hard-sphere packing effect due to the

combination of high density and short-range repulsion.

Figure 10.11 shows the value of the plasma coupling parameter as a function of the

relative permittivity for fixed total electron density. Values Γ > 2 mark oscillatory pair

correlation functions. One sees that this occurs for low temperatures. For the lowest

relative permittivities shown, ϵr = 100 and 75, the transition temperatures are greater

than those measured for high temperature superconductors (Bednorz and Möller 1986, Wu

et al 1987).



Figure 10.11. Plasma coupling parameter in media using electron density ρF(T ),

equation (10.51), and, from bottom to top, relative permittivity ϵr = 200, 150, 100, and

75. The dotted line marks the transition to oscillatory behavior. In all cases α = √24
and ρ = 1030

 m−3.

It is arguable that the appearance of the first minimum in the oscillatory pair potential of

mean force following the transition is necessary to form bound Cooper pairs (cf the internal

weight, equation (10.17)). Whether it is also sufficient is unclear. This raises the question of

whether the monotonic-oscillatory transition signifies the actual superconducting transition,

or whether it represents an lower bound for the coupling necessary for the superconducting

transition (i.e. is it necessary and sufficient?, or is it only necessary?). In addition, one

should be aware that the monotonic-oscillatory transition in a layered dielectric material

where the coupling is enhanced may occur at higher temperatures than in a uniform

dielectric continuum. Figure 10.12 shows the transition temperature as a function of

relative permittivity for several values of the electron density. The transition temperature

increases with decreasing relative permittivity and with increasing electron density. It is

more sensitive to changes in the permittivity than the electron density. The range of

calculated transition temperatures encompasses those measured for high temperature

superconductors. From the figure one can conclude that a high superconducting transition

temperature requires both a high electron density and a low static relative permittivity.

Since the latter can be expected to increase with increasing electron density, there is an

obvious competition between these two requirements. This undoubtedly restricts the

structure and composition of suitable candidate materials for high temperature

superconductivity.



Figure 10.12. Transition temperature as a function of the relative permittivity. From

left to right the curves are for a total electron density of ρ = 0.1, 1, and 10 ×1030

m−3.

10.5.3 Discussion of the statistical binding of electron pairs

One unusual aspect of the proposed model is the invocation of a finite relative permittivity

for the solid. The perceived wisdom is that a conductor has infinite permittivity. Conversely,

the one-component plasma is usually modeled in vacuo, ϵr = 1. Using a relative

permittivity in between these two extremes has several justifications. First, one has to

distinguish between an experimental challenge and a fundamental limitation of nature.

There is no doubt that a macroscopic measurement of the dielectric constant of a

conductor yields an infinite dielectric constant in the zero frequency limit. Arguably,

however, all this says is that the conductivity dominates the measurement; it does not say

that the residual relative permittivity is either unity or infinity. Second, fixed atoms

surrounded by the electrons deep in the Fermi sea, which include the immobile inner shell

electrons, remain polarizable, and therefore they must contribute to a finite relative

permittivity. Third, if the relative permittivity were truly infinite at the molecular level, then

the immobile electrons could not interact via the Coulomb repulsion, and they would be

utterly transparent to each other, which is obvious nonsense. Fourth, and finally, insulators

that are close in chemical composition and physical structure to specific high temperature

superconductors, have a measured finite relative permittivity greater than unity. For

example, cuprate superconductors are insulators if the doping fraction is less than 0.1

holes per CuO2 (http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/hitc.html). It seems

plausible that the small changes in composition that turn these into conductors do not

much change the residual static relative permittivity. Instead, the simpler interpretation is

that the infinite conduction permittivity swamps any attempt to measure macroscopically

the finite residual static relative permittivity.

The most reliable way to measure the residual static dielectric permittivity of a high

temperature superconductor may turn out to be by extrapolation from an insulator of

similar chemical and structural composition.

As mentioned in connection with figure 10.12, a high monotonic-oscillatory transition

temperature relies upon the competing requirements of high electron density and low

relative permittivity. One might speculate that one of the reasons for the prevalence of

layered structures amongst high temperature superconductors is that they combine a high

electron density within the conducting planes together with a low electron density and

hence low polarisability in the interlayer space. At the level of dielectric continuua, the

http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/hitc.html


consequent image charges increase the coupling between the electrons in the dense layer

(Attard 1988) and increase the temperature of the oscillatory transition compared to a

uniform dielectric medium.

The quantitative accuracy of modeling a crystalline layered conductor as a

homogeneous charge fluid is a little unclear. On the one hand the universality of the

monotonic-oscillatory transition for the like-charge pair potential of mean force at high

coupling is robust and undeniable. On the other hand, the quantitative prediction of the

transition temperature and the depth of the primary minimum cannot be taken too literally

for electrons in the layered crystalline solids that are of interest in high temperature

superconductivity.

In the preceding sections on 3He, it was suggested that long-lived bound fermion pairs

rotate in cavities spontaneously formed in the fluid, section 10.2.2.3. The cost of cavity

formation was calculated for an incompressible fluid, equation (10.14), and it appears to be

directly responsible for suppressing condensation in Lennard-Jones 3He, figure 10.6.

In the present case of high temperature superconductors, the density of excitable

electrons in the Fermi mist, ρm, is relatively low, and so the charge fluid that they comprise

may be more compressible than 3He. Hence the cost of cavity formation may not be

prohibitive to condensation in this case. It is unclear whether a cavity is essential at low

densities, or, if so, whether it would inhibit superconducting flow of the contained paired

fermions. In the one-component plasma model with uniform background charge, a

fluctuation that locally depletes the electron density provides an excess positive charge

center about which a binary pair of electrons might orbit.

Alternatively, one might consider that the continuum model of the atoms and immobile

electrons is reasonably accurate, with the layers of the crystal being modeled as a net

uniform positive charge density. Such an infinite plane of uniform positive charge gives rise

to a linearly decreasing electrostatic potential beyond it. Driven by entropy some or most

of the fluid electrons spill over into the interlayer space, creating a one-component plasma

in a region of low relative permittivity, and a diffuse electric double layer at the interface.

These are the conditions for the oscillatory transition to occur. As argued here, this leads to

the subsequent formation of electron pairs bound by the primary minimum in the potential

of mean force. Since the interlayer space is dilute or devoid of atoms and fixed electrons,

the rotation of the pair is relatively unimpeded and there is no need to invoke a cavity.

On the basis of the results in this section it is plausible that the oscillatory potential of

mean force that occurs at high coupling is responsible for Cooper pair formation in high

temperature superconductors. The BCS theory is predicated upon an attractive potential,

not an attractive potential of mean force. The difference between the pair potential and the

pair potential of mean force is fundamentally the difference between quantum mechanics

and quantum statistical mechanics. Whereas the minimum in the binding potential occurs

at hundreds of nanometers separation in BCS theory, the minimum in the potential of mean

force must occur at separations on the order of a nanometer in the present statistical

theory. Quantum statistical mechanics, not quantum mechanics, is the appropriate theory

for condensed matter. In the preceding sections of this chapter the quantum statistical

mechanical theory for superconductivity was developed. It shows explicitly how the

potential of mean force creates Cooper pairs and how they subsequently condense. On the

basis of those and the present results one can rationally argue that the first minimum in an

oscillatory electron–electron potential of mean force is sufficient to form bound fermion

pairs. It follows that the monotonic-oscillatory transition that occurs generally in charge

fluids signifies the superconducting transition in high temperature superconductors.

Summary

Fermions may form Cooper pairs, the members of which have different spin and equal

and opposite momentum, making an effective boson in the ground momentum state.



More general nonzero momentum pairs may be considered that lead to condensation

into multiple low-lying momentum states.

In quantum statistical mechanics, the effective boson has an internal weight that is

close to unity if the pair potential of mean force has a highly curved minimum at small

separations. The bound fermion pair rotates about it center of mass, with each fermion

having equal and opposite momentum in the binary division picture, in a spontaneously

formed cavity that helps to stabilize the pair. Bose–Einstein condensation is determined

by the balance between the cost of cavity formation and the gain in non-local

permutation entropy.

The loop expansion for quantum statistical mechanics in classical phase space appears

less efficient for fermions than for bosons.

High temperature superconductors should be treated with quantum statistical

mechanics rather than with quantum mechanics. The monotonic-oscillatory transition

in highly coupled charge fluids provides an attractive candidate for the binding

potential of mean force for Cooper pair formation. For realistic values of the electron

density and relative permittivity the predicted temperature for the transition is similar

to the measured superconducting transition temperature.
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