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Introduction

Many of the exciting and, yes, practical accomplishments of early humans 
were performed using trigonometry. Even before it was formalized into 
a particular topic to study or used to solve problems, trigonometry 

helped people to sail across large bodies of water, build gigantic structures, plot 
out land, and measure heights and distances — even to the stars.

We still use trigonometry for all these reasons and more. For example, if you’re 
going to get your pilot’s license, you’ll need trigonometry. Trigonometry is also 
the basis for many courses in mathematics — starting in grade school with geo-
metric shapes and map reading, and moving on through calculus. Trig is all over 
the place.

You can get as deeply into this topic or as little into it as you want, and you’ll still 
come out of it thinking, “Gee, I didn’t realize that trigonometry was used to do 
this! Wasn’t that just loads of fun!” Well, maybe I’m pushing it a bit — loads may 
be a slight exaggeration.

Whether you’re pursuing trigonometry so that you can go on to calculus or pre-
pare for architecture or drafting or do that piloting thing, or you’re just curious, 
you’ll find what you need here. You can get as technical as you want. You can skip 
through the stuff you don’t need. Just know that you’ll be on the same adventure 
as those early humans — you’ll just have the advantage of a few more tools.

About This Book
So, what’s in it for you? What’s in a book on trigonometry that’ll ring your bell or 
strike your fancy or just make you pretty happy? Where do I begin?

You can start anywhere in the book, jump around, and just go any direction you 
please. If you’re really excited about triangles or circles and how they can be used to 
your advantage, check them out. Everything you’d want to know about them is here.

What if you’ve got another angle? Or, maybe you didn’t have one to begin with  
but wish you did. If you’re looking for angles, you’ve come to the right place. 
There are big angles and little angles, all named depending on their situation. 
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They’re measured in degrees or radians. “What’s a radian?” you ask. You can find 
out in this book, that’s for sure.

You may be very analytical. If so, you’ll find that your favorite spot is among all 
the identities and equation-solving procedures. Hop right to it. They’re waiting 
for you.

And if drawing pictures is your bag, go to the chapters on graphing to see what can 
be done with simple trig graphs, complicated trig graphs, and everything in 
between. There are even explanations on what the function equations mean, why 
they’re used in an application, and how they’re related to the graphs.

You’ll find many sidebars throughout this book. Sidebars are those fun, little 
anecdotes that don’t necessarily contain a lot of math content but present interest-
ing little tidbits — fun things to read. Neither the sidebars nor the items marked 
with the Technical Stuff icon are necessary for your understanding of the mate-
rial. Think of them as little diversions for your reading pleasure.

Within this book, you may note that some web addresses break across two lines of 
text. If you’re reading this book in print and want to visit one of these web pages, 
simply key in the web address exactly as it’s noted in the book, pretending as 
though the line break doesn’t exist. If you’re reading this as an e-book, you’ve got 
it easy — just click the web address to be taken directly to the web page.

Foolish Assumptions
How foolish of me to assume that you’re reading Trigonometry For Dummies because 
it looks more interesting than the latest bestseller! I’m really not that foolish! To 
be honest, trig wouldn’t be my first choice for a fun read. I’m just going to assume 
that you really want to do this. While writing this book, I made a few other 
assumptions about you as well:

 » You have a goal in mind. You want to conquer some of the topics in this book 
so you’re prepared for a course of study.

 » You have a pretty solid grasp on algebra and can solve a simple algebraic 
equation without falling completely apart.

 » You’re planning on being on Jeopardy, and you need to bone up on the 
possible trig questions.
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Icons Used in This Book
Icons are easy to spot. They could be called eye-cons, because they catch your eye. 
Here are the ones I use in this book:

This icon points out handy hints and shortcuts that make your life easier when it 
comes to solving trig problems.

Of course, trig rules — it’s fun! But taken another way, this icon is used to point 
out to you when particular equations or expressions or formulas are used in trigo-
nometry that you should be paying attention to. They’re important. This icon 
helps you find them again, if you need them.

This icon refers back to information that I think you may already know. It needs 
to be pointed out or repeated so that the current explanation makes sense.

What about trigonometry isn’t technical? Actually, there’s quite a bit, but this icon 
points out the rules or absolutely unchangeable stuff that you may need in order 
to understand the situation.

There are always things that are tricky or confusing, or problems that just ask for 
an error to happen. This icon is there to alert you, hoping to help you avoid a 
mathematical pitfall.

Beyond the Book
In addition to the material in the print or e-book you’re reading right now, this 
product also comes with some access-anywhere goodies on the web. No matter 
how diligent you are about reading through this material, you’ll likely come across 
a few questions where you don’t have a clue. Check out the free online Cheat Sheet 
for helpful information, all provided in a concise, quick-access format. Simply go 
to www.dummies.com and type Trigonometry For Dummies Cheat Sheet in the 
search box.

http://www.dummies.com
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Where to Go from Here
Back when I was in college, my friend, Judy Christopher, once consoled me with, 
“Life is like a sine curve. It has its ups and downs. If you’re feeling like you’re 
really down, then just remember that you’ll be going up that same amount some-
day soon.” So, if you’re in the dumps, maybe you want to start with the graphs of 
the sine curves and other trig curves. Make of them what you will.

Or maybe, like me, you’re a puzzle buff. I can’t wait to tackle a crossword or other 
fun type of puzzle in the Sunday paper or online. You have to call up bits and 
pieces of information and make them all fit into something logical. If that’s what 
you’re interested in today, then go to proving identities and solving equations. 
That’s a great challenge for a rainy Sunday afternoon’s pleasure.

Are you into angles and directions and plans? You may want to start with the ways 
that angles are measured and how they all fit together in the big picture. The 
basics are always a good place to start when you’re investigating a topic.

No matter where you start with this book, be ready to flip the pages front to back 
or back to front. Think of it as an adventure that can take you many interesting 
places. Enjoy!
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IN THIS PART . . .

Become acquainted with angle measures and how they 
relate to trig functions.

Discover formulas that provide lengths of segments, 
midpoints, and slopes of lines.

Become familiar with circles and the relationships 
between radii, diameters, centers, and arcs.

Find a simple conversion method for changing from 
degrees to radians and vice versa.

Observe the properties of special right triangles and use 
the Pythagorean Theorem to formulate the relationships 
between the sides of these right triangles.
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Chapter 1
Taking On Trig 
Technicalities

How did Columbus find his way across the Atlantic Ocean? How did the 
Egyptians build the pyramids? How did early astronomers measure the 
distance to the moon? No, Columbus didn’t follow a yellow brick road. No, 

the Egyptians didn’t have LEGO instructions. And, no, there isn’t a tape measure 
long enough to get to the moon. The common answer to all these questions is 
trigonometry.

Trigonometry is the study of angles and triangles and the wonderful things about 
them and that you can do with them. For centuries, humans have been able to 
measure distances that they can’t reach because of the power of this mathematical 
subject.

Taking Trig for a Ride: What Trig Is
“What’s your angle?” That question isn’t a come-on such as, “What’s your astro-
logical sign?” In trigonometry, you can measure angles in both degrees and radi-
ans. You can position the angles into triangles and circles and make them do 
special things. Actually, angles drive trigonometry. Sure, you have to consider 

IN THIS CHAPTER

 » Identifying angles and their names

 » Understanding trig speak

 » Finding trig applications in the basics
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algebra and other math to make it all work. But you can’t have trigonometry with-
out angles. Put an angle measure into a trig function, and out pops a special, 
unique number. What do you do with that number? Read on, because that’s what 
trig is all about.

Sizing up the basic figures
Segments, rays, and lines are some of the basic forms found in geometry, and 
they’re just as important in trigonometry. As I explain in the following sections, 
you use those segments, rays, and lines to form angles and triangles and other 
geometric and trig forms.

Drawing segments, rays, and lines
A segment is a straight figure drawn between two endpoints. You usually name it 
by its endpoints, which you indicate by capital letters. Sometimes, a single letter 
names a segment; this single letter is positioned at about the middle of the seg-
ment. For example, in a triangle, a lowercase letter may refer to a segment oppo-
site the angle labeled with the corresponding uppercase letter.

A ray is another straight figure that has an endpoint on one end, and then it just 
keeps going forever in some specified direction. You name rays by their endpoint 
first and then by any other point that lies on the ray. You indicate that the other 
end goes on forever by using an arrow point.

A line is a straight figure that goes forever and ever in either direction. You only 
need two points to determine a particular line — and only one line can go through 
both of those points. You can name a line by any two points that lie on it.

Figure 1-1 shows a segment, ray, and line and the different ways you can name 
them using points.

FIGURE 1-1: 
Segment AB, ray 
CD, and line EF.
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Intersecting lines
When two lines intersect — if they do intersect — they can only do so at one point. 
They can’t double back and cross one another again. And some curious things 
happen when two lines intersect. The angles that form between those two lines 
are related to one another. Any two angles that are next to one another and share 
a side are called adjacent angles. In Figure 1-2, you see several sets of intersecting 
lines and marked angles. The top two figures indicate two pairs of adjacent angles. 
Can you spot the other two pairs? The angles that are opposite one another when 
two lines intersect also have a special name. Mathematicians call these angles 
vertical angles. They don’t have a side in common. The two middle pairs in  
Figure 1-2 are vertical angles. Vertical angles are always equal in measure.

Why are these different angles so special? They’re different because of how they 
interact with one another. The adjacent angles here are called supplementary angles. 
The sides that they don’t share form a straight line, which has a measure of  
180 degrees. The bottom two figures show supplementary angles. Note that these 
are also adjacent.

FIGURE 1-2: 
Intersecting lines 

form adjacent, 
vertical, and 

supplementary 
angles.
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Identifying angles and their names
When two lines, segments, or rays touch or cross one another, they form an angle 
or angles. In the case of two intersecting lines, the result is four different angles. 
When two segments intersect, they can form one, two, or four angles; the same 
goes for two rays.

These examples are just some of the ways that you can form angles. Geometry, for 
example, describes an angle as being created when two rays have a common end-
point. In practical terms, you can form an angle in many ways, from many figures. 
The business with the two rays means that you can extend the two sides of an 
angle out farther to help with measurements, calculations, and practical problems.

Describing the parts of an angle is pretty standard. The place where the lines, seg-
ments, or rays cross is called the vertex of the angle. From the vertex, two sides 
extend.

Naming angles by size
You can name or categorize angles based on their size or measurement in degrees 
and radians. For more on radian measures, go to Chapter  4. Figure  1-3 shows 
examples of each of the following angles.

 » Acute: An angle with a positive measure less than 90 degrees (less than 

2
 radians).

 » Obtuse: An angle measuring more than 90 degrees but less than 180 degrees 
(between 

2
 and  radians).

 » Right: An angle measuring exactly 90 degrees (or 
2

 radians).

 » Straight: An angle measuring exactly 180 degrees (a straight line or  radians).

 » Oblique: An angle measuring more than 180 degrees (more than  radians).

Naming angles by letters
How do you name an angle? Why does it even need a name? In most cases, you 
want to be able to distinguish a particular angle from all the others in a picture. 
When you look at a photo in a newspaper, you want to know the names of the dif-
ferent people and be able to point them out. With angles, you should feel the 
same way.
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You can name an angle in one of three different ways.

 » By its vertex alone: Often, you name an angle by its vertex alone because 
such a label is efficient, neat, and easy to read. In Figure 1-4, you can call the 
angle A. You only use this type of name if there aren’t any angles adjacent at 
the vertex A. It has to stand alone.

 » By a point on one side, followed by the vertex, and then a point on the 
other side: For example, you can call the angle in Figure 1-4 angle BAC or 
angle CAB. This naming method is helpful if someone may be confused as to 
which angle you’re referring to in a picture. Remember: Make sure you always 
name the vertex in the middle.

 » By a letter or number written inside the angle: Usually, that letter is Greek; 
in Figure 1-4, however, the angle has the letter w. Often, you use a number for 
simplicity if you’re not into Greek letters or if you’re going to compare different 
angles later.

FIGURE 1-3: 
Types of 

angles — acute, 
obtuse, right, 
straight, and 

oblique.

FIGURE 1-4: 
Naming an angle.
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Taking on triangles and their angles
All on their own, angles are certainly very exciting. But put them into a triangle, 
and you’ve got icing on the cake. Triangles are one of the most frequently studied 
geometric figures. When angles are part of a triangle, they have many 
characteristics.

Angles in triangles
A triangle always has three angles. The angles in a triangle have measures that 
always add up to 180 degrees — no more, no less. A triangle named ABC (often 
written ABC ) has angles A, B, and C, and you can name the sides AB, BC , and  
AC , depending on which two angles the side is between. The angles themselves 
can be acute, obtuse, or right. If the triangle has either an obtuse or right angle, 
then the other two angles have to be acute.

Naming triangles by their shape
Triangles can have special names based on their angles and sides. They can also 
have more than one name — a triangle can be both acute and isosceles, for exam-
ple. Here are their descriptions, and check out Figure 1-5 for the pictures.

 » Acute triangle: A triangle where all three angles are acute.

 » Right triangle: A triangle with a right angle (the other two angles must 
be acute).

FIGURE 1-5: 
Triangles can 

have more than 
one name, based 

on their 
characteristics.
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 » Obtuse triangle: A triangle with an obtuse angle (the other two angles must 
be acute).

 » Isosceles triangle: A triangle with two equal sides; the angles opposite those 
sides are equal, too. The equal angles have to be acute.

 » Equilateral triangle: A triangle where all three side lengths are equal, and all 
the angles measure 60 degrees.

 » Scalene triangle: A triangle with no angles or sides of the same measure.

Going outside the triangle
Another angle that comes up frequently in trigonometry is an exterior angle. 
When one side of a triangle is extended on both sides of its vertex, an exterior 
angle is formed. An angle and its exterior angle share the vertex, and the measure 
of the exterior angle is quickly deduced (as shown in Figure 1-6)! Here are some 
characteristics of an exterior angle:

 » An exterior angle to a triangle is always supplementary to the angle it’s 
adjacent to in the triangle. This means that the sum of the angle and its 
exterior angle is always 180 degrees.

 » An exterior angle to a triangle has a measure that is equal to the sum of the 
two non-adjacent angles in the triangle.

Making a circle work from every angle
A circle is a geometric figure that needs only two parts to identify it and classify it: 
its center (or middle) and its radius (the distance from the center to any point on 
the circle). Technically, the center isn’t a part of the circle; it’s just a sort of anchor 
or reference point. The circle consists only of all those points that are the same 
distance from the center.

FIGURE 1-6: 
Angle BCD is 
adjacent to 
angle BCA.
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Radius, diameter, circumference, and area
After you’ve chosen a point to be the center of a circle and you know how far that 
point is from all the points that lie on the circle, you can draw a fairly decent pic-
ture. With the measure of the radius, you can tell a lot about the circle: its diameter 
(the distance from one side to the other, passing through the center), its circum-
ference (how far around it is), and its area (how many square inches, feet, yards, 
meters — what have you — fit into it). Figure 1-7 shows these features. A chord of 
a circle is a segment that joins any two points on the circle. A chord can be a 
diameter.

Ancient mathematicians figured out that the circumference of a circle is always a 
little more than three times the diameter of the circle. Since then, they narrowed 
that “little more than three times” to a value called pi (pronounced “pie”), desig-
nated by the Greek letter . The decimal value of  isn’t exact; in fact, it goes on 
forever and ever. However, most of the time, people refer to it as being approxi-

mately 3.14 or 22
7

, whichever form works best in specific computations.

The formula for figuring out the circumference of a circle is tied to  and the 
diameter:

Circumference of a circle C d r2

The d represents the measure of the diameter, and r represents the measure of the 
radius. The diameter is always twice the radius, so either form of the equation 
works.

Similarly, the formula for the area of a circle is tied to  and the radius:

Area of a circle A r 2

This formula reads, “Area equals pi are squared.” (And here I thought that pies are 
round.)

Example: Find the radius, circumference, and area of a circle if its diameter is 
equal to 10 feet in length.

FIGURE 1-7: 
The different 

features  
of a circle.
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If the diameter (d) is equal to 10, you write this value as d 10. The radius is  
half the diameter, so the radius is 5 feet, or r 5. You can find the circumference 
by using the formula C d 10 3 14 10 31 4. . . So, the circumference is  

about 311
2

 feet around. You find the area by using the formula 

A r 2 25 25 3 14 25 78 5. . , so the area is about 78 1
2

 square feet.

Chord versus tangent
You show the diameter and radius of a circle by drawing segments from a point on 
the circle either to or through the center of the circle. But two other straight fig-
ures have a place on a circle. One of these figures is called a chord, and the other 
is a tangent.

DON’T GIVE ME THAT JIVA
The ancient Greek mathematician Ptolemy was born some time at the end of the first 
century. Ptolemy based his version of trigonometry on the relationships between the 
chords of circles and the corresponding central angles of those chords. Ptolemy came 
up with a theorem involving four-sided figures that you can construct with the chords. 
(See the section, “Finding Trig Applications in the Basics,” later in this chapter.) In the 
meantime, mathematicians in India decided to use the measure of half a chord and half 
the angle to try to figure out these relationships. Drawing a radius from the center of a 
circle through the middle of a chord (halving it) forms a right angle, which is important 
in the definitions of the trig functions. These half-measures were the beginning of the 
sine function in trigonometry. In fact, the word sine actually comes from the Hindu  
word jiva.
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 » A chord of a circle is a segment that you draw from one point on the circle to 
another point on the circle (see Figure 1-8). A chord always stays inside the 
circle. The largest chord possible is the diameter — you can’t get any longer 
than that segment.

 » A tangent to a circle is a line, ray, or segment that touches the outside of the 
circle at exactly one point, as shown in Figure 1-8. It never crosses into the 
circle. A tangent can’t be a chord, because a chord touches a circle in two 
points, crossing through the inside of the circle. Any radius drawn to a tangent 
is perpendicular to that tangent.

Looking at angles in a circle
There are several ways of drawing an angle in a circle, and each has a special way 
of computing the size of that angle. The four different types of angles are central, 
inscribed, interior, and exterior. In Figure 1-9, you see examples of these different 
types of angles.

Central angle
A central angle has its vertex at the center of the circle, and the sides of the angle 
are two radii of the circle. The measure of the central angle is the same as the 
measure of the arc that the two sides cut out of the circle.

Inscribed angle
An inscribed angle has its vertex on the circle, and the sides of the angle are two 
chords of the circle. The measure of the inscribed angle is half that of the arc that 
the two sides cut out of the circle.

FIGURE 1-8: 
Chords and  

a tangent  
of a circle.
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Example: Find the measure of the arc formed by the two rays of an inscribed angle 
if the measure of the angle is 60 degrees (see Figure 1-9).

If the measure of the inscribed angle is 60 degrees, then the arc is twice that mea-
sure, or 120 degrees.

Interior angle
An interior angle has its vertex at the intersection of two lines that intersect inside 
a circle or of two chords of the circle. The sides of the angle lie on the intersecting 
lines. The measure of an interior angle is the average of the measures of the two 
arcs that are cut out of the circle by those intersecting lines.

FIGURE 1-9: 
Measuring angles 

in a circle.
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Exterior angle
An exterior angle has its vertex where two rays share an endpoint outside a circle. 
The sides of the angle are those two rays. The measure of an exterior angle is 
found by dividing the difference between the measures of the intercepted  
arcs by two.

Example: Find the measure of angle EXT, given that the exterior angle cuts off arcs 
of 20 degrees and 108 degrees (see Figure 1-10).

Find the difference between the measures of the two intercepted arcs and  
divide by 2:

108 20
2

88
2

44

The measure of angle EXT is 44 degrees.

Sectioning sectors
A sector of a circle is a section of the circle between two radii (plural for radius). 
You can consider this part like a piece of pie cut from a circular pie plate (see 
Figure 1-11).

You can find the area of a sector of a circle if you know the angle between the two 
radii. A circle has a total of 360 degrees all the way around the center, so if that 
central angle determining a sector has an angle measure of 60 degrees, then the 

sector takes up 60
360

, or 1
6

, of the degrees all the way around. In that case, the  

sector has 1
6

 the area of the whole circle.

FIGURE 1-10: 
Calculating the 
measure of an 
exterior angle.
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Example: Find the area of a sector of a circle if the angle between the two radii 
forming the sector is 80 degrees and the diameter of the circle is 9 inches.

1. Find the area of the circle.

The area of the whole circle is A r 2 24 5 3 14 20 25 63 585( . ) . ( . ) . , or 

about 63 1
2

 square inches.

2. Find the portion of the circle that the sector represents.

The sector takes up only 80 degrees of the circle. Divide 80 by 360 to 

get 80
360

2
9

0 222. .

3. Calculate the area of the sector.

Multiply the fraction or decimal from Step 2 by the total area to get the area  
of the sector: 0.222(63.585) ≈ 14.116. The whole circle has an area of almost  
64 square inches, and the sector has an area of just over 14 square inches.

Understanding Trig Speak
Any math or science topic has its own unique vocabulary. Some very nice everyday 
words have new and special meanings when used in the context of that subject. 
Trigonometry is no exception.

Making the words fit the triangle
Every triangle has six measurable parts: three sides and three angles. If you mea-
sure the sides and then pair up those measurements (taking two at a time), you 
have three different pairings. Do division problems with the pairings — changing 
the order in each pair — and you have six different answers. These six different 

FIGURE 1-11: 
A sector  

of a circle.
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answers represent the six trig functions. For example, if your triangle has sides 

measuring 3, 4, and 5, then the six divisions are 3
4

, 4
3

, 3
5

, 5
3

, 4
5

, and 5
4

.

In Chapter 6, you find out how all these fractions work in the world of trig func-
tions by using the different sides of a right triangle. And then, in Chapter 7, you 
take a whole different approach as you discover how to define the trig functions 
with a circle.

The six trig functions are named sine, cosine, tangent, cotangent, secant, and cosecant. 
Many people confuse the spoken word sine with sign — you can’t really tell the 
difference when you hear it unless you’re careful with the context. You can “go off 
on a tangent” in some personal dealings, but that phrase has a whole different 
meaning in trig. Cosigning a loan isn’t what trig has in mind, either. The other 
three ratios are special to trig speak — you can’t confuse them with anything else.

Interpreting trig abbreviations
Even though the word sine isn’t all that long, you have a three-letter abbreviation 
for this trig function and all the others. Mathematicians find using abbreviations 
easier, and those versions fit better on calculator keys. The functions and their 
abbreviations are

sine: sin cosine: cos

tangent: tan cotangent: cot

secant: sec cosecant: csc

As you can see, the first three letters in the full name make up the abbreviations, 
except for cosecant’s.

Noting notation
Angles are the main focus in trigonometry, and you can work with them even if 
you don’t know their measure. Many angles and their angle measures have gen-
eral rules that apply to them. You can name angles by one letter, three letters, or 
a number, but to do trig problems and computations, mathematicians commonly 
refer to the angle names and their measures with Greek letters.

The most commonly used letters for angle measures are  (alpha),  (beta),  
(gamma), and  (theta). Also, many equations use the variable x to represent an 
angle measure.
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Algebra has conventional notation involving superscripts, such as the 2 in x 2. In 
trigonometry, superscripts have most of the same rules and characteristics as in 
other mathematics. But trig superscripts often look very different. Table 1-1 pres-
ents a listing of some of the ways that trig uses superscripts.

The first entry in Table 1-1 shows how you can save having to write parentheses 
every time you want to raise a trig function to a power. This notation is neat and 
efficient, but it can be confusing if you don’t know the “code.” The second entry 
shows you how to write the reciprocal of a trig function. It means you should take 
the value of the function and divide it into the number 1. The last entry in Table 1-1 
shows how you write the inverse sine function. Using the 1 superscript between 
sine and the angle means that you’re talking about inverse sine (or arcsin), not the 
reciprocal of the function. In Chapter 14, I cover the inverse trig functions in great 
detail, making this business about the notation for an inverse trig function even 
more clear.

Functioning with angles
The functions in algebra use many operations and symbols that are different from 
the common add, subtract, multiply, and divide signs in arithmetic. For example, 
take a look at the square-root operation, 25 5. Putting 25 under the radical 
(square-root symbol) produces an answer of 5. Other operations in algebra, such 
as absolute value, factorial, and step-function, are used in trigonometry, too. But 
the world of trig expands the horizon, introducing even more exciting processes.

When working with trig functions, you have a whole new set of values to learn or 
find. For instance, putting 25 into the sine function looks like this: sin 25. The 
answer that pops out is either 0.423 or 0 132. , depending on whether you’re using 
degrees or radians (for more on those two important trig concepts, head on over 
to Chapters 3 and 4). You can’t usually determine or memorize all the values that 
you get by putting angle measures into trig functions. Fortunately, you can use 
scientific calculators or computers or even cell phones to study trigonometry.

TABLE 1-1	 How You Use Superscripts in Trig
How to Write in Trig Notation Alternate Notation What the Superscript Means

sin2 ( )sin 2 Square the sine of the angle theta.

( )sin 1 1
sin

Find the reciprocal of the sine of theta.

sin 1 arcsin Find the angle theta given its sine.
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In general, when you apply a trig function to an angle measure, you get some real 
number (if that angle is in its domain). Some angles and trig functions have nice 
values, but most don’t. Table 1-2 shows the trig functions for a 30-degree angle.

Some characteristics that the entries in Table 1-2 confirm are that the sine and 
cosine functions always have values that are between and include 1 and 1. Also, 
the secant and cosecant functions always have values that are equal to or greater 
than 1 or equal to or less than 1. (I discuss these properties in more detail in 
Chapter 6.) And you’ll find a complete listing of the values of the most commonly 
used functions in the Appendix.

How about trying this out? Do you have your cell phone handy? Or, just go to a 
calculator and type in sin (45). Did you get 0.7071 (or maybe a few more digits)? 
That’s the sine of 45 degrees! You’ll better understand how this wonderful rela-
tionship works in later chapters.

Making triangles less radical
A radical is a mathematical symbol that means, “Find the number that multiplies 
itself by itself one or more times to give you the number under the radical.” You 
can see why you use a symbol such as  rather than all those words. Radicals  
represent values of functions that are used a lot in trigonometry. In Chapter 6, 
I define the trig functions by using a right triangle. To solve for the lengths of a 

TABLE 1-2	 The Trig Functions for a 30-Degree Angle
Trig Function Exact Value Value Rounded to Three Decimal Places

sin 30° 1
2

0.500

cos 30° 3
2

0.866

tan 30° 3
3

0.577

cot 30° 3 1.732

sec 30° 2 3
3

1.155

csc 30° 2 2.000
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right triangle’s sides by using the Pythagorean Theorem, you have to compute 
some square roots, which use radicals. Some basic answers to radical expressions 
are 16 4, 121 11, 8 23 , and 81 34 .

These examples are all perfect squares, perfect cubes, or perfect fourth roots, which 
means that the answer is a number that ends — the decimal doesn’t go on forever. 
The following section discusses a way to simplify radicals that aren’t perfect roots.

Simplifying radical forms
Simplifying a radical form means to rewrite it with a smaller number under the 
radical — if possible. You can simplify this form only if the number under the 
radical has a perfect square or perfect cube (or perfect whatever factor) that you 
can factor out.

Example: Simplify 80 .

The number 80 isn’t a perfect square, but one of its factors, 16, is. You can  
write the number 80 as the product of 16 and 5, write the two radicals separately, 
and then evaluate each radical. The resulting product is the simplified form:

80 16 5 16 5 4 5

Example: Simplify 2503 .

The number 250 isn’t a perfect cube, but one of its factors, 125, is. Write 250 as  
the product of 125 and 2; separate, evaluate, and write the simplified  
product: 250 125 2 125 2 5 23 3 3 3 3 .

Approximating answers
As wonderful as a simplified radical is, and as useful as it is when you’re doing 
further computations in math, sometimes you just need to know approximately 
how much the value’s worth.

Approximating an answer means to shorten the actual value in terms of the num-
ber of decimal places. You may find approximating especially useful when the 
decimal value of a number goes on forever without ending or repeating. When you 
approximate an answer, you round it to a certain number of decimal places, letting 
the rest of the decimal values drop off. Before doing that, though, you need to 
consider how big a value you’re dropping off. If the numbers that you’re dropping 
off start with a 5 or greater, then bump up the last digit that you leave on by 1. If 
what you’re dropping off begins with a 4 or less, then just leave the last remaining 
digit alone.
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Example: Round the number 3.141592654 to four decimal places, three decimal 
places, and two decimal places.

 » Four decimal places. Look at the first five decimal places: 3.14159.  
The 5 in the fourth place either stays as is or gets rounded up to the  
next digit. Because the next digit is 9, and 9 is greater than 5, you round  
the 5 up to a 6. Rounded to four places, 3.141592654 rounds to 3.1416.

 » Three decimal places. Look at the first four decimal places: 3.1415. The 1 in 
the third place either stays as is or gets rounded up to the next digit. Because 
the next digit is 5, and anything 5 or greater gives a “bump up,” you round the 
1 to a 2. Rounded to three places, 3.141592654 rounds to 3.142.

 » Two decimal places. Look at the first three decimal places: 3.141. The 4 in the 
second place either stays as is or gets rounded up to the next digit. Because 
the next digit is 1, and 1 is smaller than 5, you leave the 4 as is. Rounded to 
two places, 3.141592654 rounds to 3.14.

Use this technique when approximating radical values. Using a calculator, the 
decimal value of 80  is about 8.94427191. Depending on what you’re using this 
value for, you may want to round it to two, three, four, or more decimal places. 
Rounded to three decimal places, this number is 8.944.

Equating and Identifying
Trigonometry has the answers to so many questions in engineering, navigation, 
and medicine. The ancient astronomers, engineers, farmers, and sailors didn’t 
have the current systems of symbolic algebra and trigonometry to solve their 
problems, but they did well and set the scene for later mathematical develop-
ments. People today benefit big-time by having ways to solve equations in trigo-
nometry that are quick and efficient; trig now includes special techniques and 

THEY CALLED THIS SIMPLER?
Some ancient mathematicians didn’t like to write fractions unless they had a numerator 

of 1. They only liked the fractions 1
2

, 1
3

, 1
4

, 1
5

, and so on. So what did they do when they 

needed to write the fraction 5
6

? They wrote 1
2

1
3

 instead (because 1
2

1
3

5
6

). What a 

pain to have to write 1
2

1
4

1
10

 rather than 17
20

. Or maybe you prefer this approach, too?
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identities that you can play with — all thanks to the mathematicians of old who 
created the systems that we use today.

The methods that you use for solving equations in algebra take a completely dif-
ferent turn from usual solutions when you use trig identities (in short, equiva-
lences that you can substitute into equations in order to simplify them). To make 
matters easier (or, some say, to complicate them), the different trig functions can 
be written many different ways. They almost have split personalities. When you’re 
solving trig equations and trig identities, you’re sort of like a detective working 
your way through to substitute, simplify, and solve. What answers should you 
expect when solving the equations? Why, angles, of course!

Take, for example, one trigonometric equation: sin cos2 1.

The point of the problem is to figure out what angle or angles should replace  
the  to make the equation true. In this case, if  is 0 degrees, 90 degrees, or  
180 degrees, the equation is true.

If you replace  with 0 degrees in the equation, you get

sin cos0 0

0 1

1

1

1 1

2

2

If you replace  with 90 degrees in the equation, you get

sin cos90 90

1 0

1

1

1 1

2

2

Something similar happens with 180 degrees and all the other angle measures 
that work in this equation (there are an infinite number of solutions). But remem-
ber that not just any angle will work here. I carefully chose the angles that are 
solutions, which are the angles that make the equation true. In order to solve trig 
equations like this one, you have to use inverse trig functions, trig identities, and 
various algebraic techniques. You can find all the details on how to use these pro-
cesses in Chapters 10 through 15. And when you’ve got those parts figured out, 
dive into Chapter 16, where the equation-solving comes in.

In this particular case, you need to use an identity to solve the equation for all its 
answers. You replace the cos2  with 1 2sin  so that all the terms have a sine in 
them — or just a number. You actually have several other choices for changing the 

identity of cos2 . I chose 1 2sin , but some other choices include 1
2sec

 and 
1 2

2
cos . You can discover how to actually solve equations like this one in 

Chapter 16.
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This example just shows you that the identity of the trig functions can change an 
expression significantly — but according to some very strict rules.

Finding Trig Applications in the Basics
The basics of trigonometry helped the ancients with everyday problems, and 
they’re here now to give you some insights and help with occasional challenges.

Measuring fencing
You have a circular corral that you’ve divided into four equal portions so you can 
keep your cow, pony, pig, and rooster separate from one another, as shown in 
Figure 1-12.

You need some fencing to keep the animals in and apart. You know that the corral 
has a radius of exactly 40 feet. What is the total number of feet needed to create 
the corral?

FIGURE 1-12: 
Dividing the  

circle into four 
equal parts.
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Because the radius of the corral is 40 feet, and you need four of these lengths for 
the crisscross portion of the fencing, you need a total of 160 feet. To find the cir-
cular portion, you need the circumference of the circle. You can use either the 
radius or diameter in the formula C d r2  to find that circumference: 
C r2 2 40 80 251 33( ) .  feet. Add this to the crisscross portion and you 
have 251 33 160 411 33. .  total feet of fencing.

Ptolemy’s Theorem
Earlier in this chapter, I made reference to the Greek mathematician Ptolemy and 
his work with circles and chords. Ptolemy’s Theorem says that, “When you have a 
quadrilateral (four-sided figure) circumscribed by a circle, the product of the 
measures of the two diagonals in that figure is equal to the sum of the products of 
the opposite sides of the figure.” Take a look at Figure 1-13, where AD and BC are 
the diagonals, and AB and CD are one pair of opposite sides and AC and BD are the 
other pair.

You are able to measure each segment in the figure except BD. Given the other 
measures, determine that missing measure.

Here are the measures you know: AC = 5, AB = 8, CD = 6, AD = 10, and BC = 10.5.

So you know the product of the diagonals: 10 10 5 105. .

The product of the diagonals is equal to the sum of the products of the opposite 
sides, so: 105 8 6 10 48 10( )( ) ( )( ) ( )( ) ( )( ) ( )( )AB CD AD BC BC BC .

FIGURE 1-13: 
The product of 

the diagonals 
equals the sum of 

the products of 
the opposite 

sides.
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Solving the equation for BC:

105 48 10

57 10
57
10

( )( )

( )

BC

BC

BC

So BC is 5.7 units in length.

Dealing with radicals
One of my favorite special right triangles is the triangle with acute angles mea-
suring 30 degrees and 60 degrees. And a great feature of this special triangle is 
that there’s a wonderful relationship between the lengths of the sides of the tri-
angle. In Figure 1-14, you see that the hypotenuse of the right triangle is always 
twice as long as the shortest side, and the middle-length side is always 3  or 
about 1.7 times as long as the shortest side.

Example: You know that the hypotenuse of one of these triangles measures  
20 inches. How long are the other two sides? (Give the radical answer correct to  
3 decimal places.)

The shortest side is half the hypotenuse, so it measures 10 inches.

The middle-length side (opposite the 60-degree angle) is 10 times 3 . Using your 
calculator, you have 10 3 10 1 732050808 17 32050808( . ) . . Rounded to three 
places, that’s 17.321 inches.

FIGURE 1-14: 
The special 

30-60-90 degree 
right triangle.
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Skateboarding
You’re going to build a skateboard ramp that has an angle of 130 degrees as you 
approach and an angle of 130 degrees as you descend. This requires an isosceles 
triangle, as shown in Figure 1-15. What is the measure of the top angle, where you 
switch from going up to going down?

The 130-degree angle in the approach is an exterior angle of the triangle. Subtract 
130 from 180, and you find that the interior angle in the triangle is 50 degrees.

The other exterior angle is also 130 degrees, so you have another angle in the  
triangle of 50 degrees. Add those two interior angles together, and you have  
100 degrees, leaving 80 degrees for the top angle measure. Seems a bit steep  
to me!!!!

FIGURE 1-15: 
Skateboarding 
over a triangle.
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Chapter 2
Cooperating with 
Cartesian Coordinates

A picture is worth a thousand words. Drawing pictures or graphs of func-
tions and equations in math helps you understand what’s going on with 
them. In trigonometry, you often draw angles and triangles, in addition to 

the curves that represent the trig functions (sine, cosine, tangent, cotangent, 
secant, and cosecant). The standard Cartesian coordinate system, which you use 
when drawing graphs in algebra and other math topics, works best here. If you’re 
looking for a refresher on this point-plotting system, you will find it in this chap-
ter. In short, with the Cartesian coordinate system, everything reads from left to 
right and from bottom to top, running through the negative to the positive 
numbers.

Starting Out Simple: Plotting Points
Plotting points on a mathematical graph means finding the correct position for a 
dot that represents an ordered pair of numbers, such as (2,3), ( , )1 4 , or (0,0). This 
ordered pair (x,y) is called the Cartesian coordinates of the point. You start with two 
perpendicular intersecting lines called axes.

IN THIS CHAPTER

 » Marking points on a graph

 » Finding the distance between two 
points

 » Locating midpoints

 » Defining the slope of a line

 » Determining equations of circles
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Axes, axes, we all fall down
Plotting points and drawing graphs requires two axes and a defined distance or 
scale on them. The two intersecting, perpendicular lines that make up a graph are 
called the horizontal and vertical axes (or coordinate axes).

These lines extend left and right, up and down, without end. The horizontal axis 
is traditionally known as the x-axis, although in trigonometry the horizontal axis 
is sometimes labeled the θ axis. The vertical axis is the y-axis. The two axes inter-
sect at the origin, labeled O. The part of the x-axis going to the right represents 
positive numerical values, and you use it as the starting place or initial side when 
drawing angles in the standard position. An angle in standard position has its ver-
tex at the origin, its initial side along the positive x-axis, and its terminal side a 
ray rotated in a counterclockwise direction for positive measures.

Determining the origin of it all
The point where the two axes cross is called the origin. You label it with an O or 
with its ordered pair (0,0). The origin is the starting point for counting off the 
coordinates when graphing all other points. It’s also the endpoint of the rays (lines 
that extend infinitely in one direction) that you use when drawing angles in the 
standard position on the coordinate axes.

Plotting x versus y
Plotting points in a coordinate system involves counting distances to the right or 
left and up or down from the origin. The axes serve as a starting place. The points 
are represented or named by the ordered pair of numbers, (x,y), called the x- 
coordinate and the y-coordinate. The designation ordered pair means that the 
order does matter. The x-coordinate always comes first, and the y-coordinate 
comes last so that this whole graphing system is universal.

PUTTING DA CART BEFORE DA HORSE
René Descartes was considered to be a mover and shaker in the 17th-century scientific 
community. He was responsible for many innovations in algebra and geometry. He’s 
also credited with creating our coordinate system used for graphing mathematical 
objects. The x- and y-coordinates (the values that specify a location on a graph) are 
called Cartesian coordinates in honor of Descartes.
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The x-coordinate is the distance to the left or right of the origin that the point lies. 
If the x-coordinate is positive, you move to the right of the origin. If it’s negative, 
you move to the left. The second number, the y-coordinate, is the distance up or 
down from the origin. Positive numbers mean the point is up, and negatives mean 
you move south of the x-axis.

The point (2,4) is two units to the right and four units up from the origin; ( , )3 2  
is three units to the left and two units up; ( , )4 3  is four units to the left and three 
units down; and ( , )5 1  is five units to the right and one unit down. Points can lie 
on one of the axes, too. Those points always have a 0 for the x- or y-coordinate. 
The point (0,3) lies on the y-axis, and (1,0) lies on the x-axis. See how to graph all 
these points in Figure 2-1.

Cutting the graph into four parts
The intersecting x- and y-axes divide the whole picture, or coordinate plane, into 
four separate regions called quadrants. The quadrants are numbered, starting in 
the upper-right quadrant and going counterclockwise, as shown in Figure 2-2. 
Traditionally, you number the quadrants with Roman numerals.

These quadrant number designations are useful when referring to certain types  
of angles, groupings of points, and trig function properties. The points in Quad-
rant I all have both x- and y-coordinates that are positive. In Quadrant II, the 
x-coordinate is negative, and the y-coordinate is positive. The points in Quadrant 
III have both x- and y-coordinates that are negative. In Quadrant IV, the  
x-coordinate is positive, and the y-coordinate is negative.

FIGURE 2-1: 
Six points, 

graphed and 
labeled.
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From Here to There: Calculating Distances
The lengths of segments and distances between points play a major part in  
establishing the trig functions, relationships, and identities (which I cover in 
Chapters 6 and  13). You can compute these lengths and distances fairly easily, 
because the coordinate system is just so darned convenient.

Counting on vertical and  
horizontal distances
When the distance that you’re measuring is either vertical or horizontal, the com-
putation is a simple subtraction problem. One coordinate in each ordered pair is 
the same. Just find the difference between the other two coordinates.

For instance, to find the distance between the points (5,2) and (5,6), subtract 2 
from 6 to get the distance of 4 units between them. This distance is vertical, 
because the two points have the same x-coordinate, and the second point is 
directly above the first. To find the distance between the two points (5,6) and 
( , )5 3 , subtract 3 from 6, which gives you 6 3 6 3 9( )  or a distance of  
9 units. Always subtract the smaller number from the larger number, so that the 
distance you get is a positive number. (Negative distances don’t make sense; after 
all, you can’t travel 5 miles to Aunt Myrtle’s house!)

FIGURE 2-2: 
The four 

quadrants of the 
coordinate plane.
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Another way to deal with the different signs of the answers that occur is to use 
absolute value — then it doesn’t matter in what order you subtract the numbers. 
Take, for instance, the preceding example, where I subtracted 3 from 6. The 3 
is smaller, so subtracting in that order gave a positive answer. The alternative is 
to subtract in the opposite order and take the absolute value of the result. If you 
do ( )3 6 , you get 9. The absolute value of 9, written | |9 , equals 9.

Horizontal distances work the same way. In Figure 2-3, you can see the horizontal 
distance between two points. To find the distance between the points ( , )8 2  and 
(5,2), just calculate the difference between 8 and 5, because the y-coordinates 
are the same. The smaller number is 8, so subtracting 5 8( ), the answer is 13 
units. Subtracting in the other order and using absolute value, you get 8 5 13,  
and | |13 13. You can also see the vertical distance between two points, (5,6)  
and (5,2), in Figure  2-3. This problem uses simple arithmetic. The difference 
between 6 and 2 is 4.

You can easily compute the distance between pairs of vertical or horizontal points, 
x y1 1,  and x y2 2, , using absolute value:

 » Vertical distance (the x-coordinates are the same) is y y1 2 .

 » Horizontal distance (the y-coordinates are the same) is x x1 2 .

Another slant: Diagonal distances
Quite often, the distances or lengths you want to determine are on a slant — they 
go diagonally from one point to another. The formula for determining these dis-
tances is based on the Pythagorean Theorem.

FIGURE 2-3: 
Vertical and 

horizontal 
distances 

between points.
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The Pythagorean Theorem
Way back when, Pythagoras discovered a relationship between the sides of any 
right triangle (where one angle is 90 degrees), as Figure 2-4 shows.

Pythagoras found that if a and b are the lengths of the shorter sides of the right 
triangle, and if c is the length of the hypotenuse (the side opposite the right angle), 
then a b c2 2 2. You can use this formula to find the diagonal distances between 
two points on a graph, because the horizontal and vertical distances, which are the 
sides of the triangle, are easy to find in a coordinate system.

Determining diagonal distances
Using the Pythagorean Theorem, and solving for c, the length of the hypotenuse of 
a right triangle, you get

c a b2 2

If length a is the horizontal distance, then you calculate that distance by subtract-
ing the x-coordinates; if length b is the vertical distance, you get it by subtracting 
the y-coordinates.

To get the general distance formula, simply substitute the difference between the 
x- and y-values for a and b in the Pythagorean Theorem, and use the variable d 
(meaning distance) in place of c.

The distance, d, between two points ( ),x y1 1  and ( , )x y2 2  is

d x x y y1 2
2

1 2
2

For example, follow these steps to find the distance between the points ( ),3 4  
and ( ),2 5 :

1. Replace x1 and x2 with 3 and –2. Replace the y1 and y2 with 4 and 5.

d 3 2 4 52 2

FIGURE 2-4: 
A right triangle.
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2. Subtract the coordinates.

5 92 2

3. Square the differences, add the results, and then find the square root of 
the sum, if possible. (It can also be simplified or estimated.)

25 81 106

In the preceding example, the number under the radical isn’t a perfect square.  
You can leave the answer with the square-root symbol, simplify it, or give a  
decimal approximation. To three decimal places, the distance in this example is 
10.296 units.

When you’re calculating the distance between two points, it doesn’t matter in 
what order you subtract the points, as long as you subtract x from x and y from y. 
Squaring the differences always results in a positive answer, anyway.

Using exact values or estimating distances
Calculating the distance between two points often leaves you with the square root 
of a number that isn’t a perfect square; this type of answer is called an irrational 
number. Writing the number with the square-root symbol, for example, 47 , is 
considered to be writing the exact value of the distance. Using a calculator to find a 
decimal approximation doesn’t give an exact answer, because the decimal values 
of irrational numbers go on forever and ever and never repeat in a pattern. Because 
the decimals are always estimates, mathematicians often insist on leaving the 
answers as exact values, complete with the square-root symbol, rather than 
decimals.

Although exact values are more precise, using decimal estimates of radical values 
is more helpful in practical situations. If you’re solving for the height of a building 
and get 183 , you get a better understanding of the height by finding a decimal 
estimate. A scientific calculator tells you that 183  is approximately 13.52774926. . . . 
Different calculators may give you fewer or more decimal values than I show you 
here. Usually, just two or three decimal places will do. Rounding this to two places, 
you get 13.53. Rounding it to three places, you get 13.528.

Getting to the Center of It All
One way to describe the middle of a triangle is to identify the centroid. This  
middle-point is the center of gravity, where you could balance the triangle and 
spin it around. And the middle of a line segment is its midpoint. When you graph a 
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circle, triangle, or line segment by using coordinate axes, you can name these 
middle points with a pair of x- and y-coordinates. All you need to find these  
middles are the coordinates of some other crucial points on the respective figures.

Finding the midpoint of a line segment
To find the midpoint of a line segment, you just calculate the averages of the  
coordinates — easy as pie.

The midpoint, M, of a segment with endpoints ( ),x y1 1  and ( ),x y2 2  is

M
x x y y1 2 1 2

2 2
,

If you want to know the midpoint of the segment with endpoints ( ),4 1  and (2,5), 
then plug the numbers into the midpoint formula, and you get a midpoint of ( ),1 2 :

M
4 2
2

1 5
2

2
2

4
2

1 2, , ,

See how this segment looks in graph form in Figure 2-5.

Locating the center of a circle
If the endpoints of one diameter of a circle are ( ),x y1 1  and ( ),x y2 2 , then the center 

of the circle has the coordinates x x y y1 2 1 2

2 2
, . You probably noticed that the 

center of a circle is the same as the diameter’s midpoint.

FIGURE 2-5: 
The midpoint of 

this line segment 
is ( ),1 2 .
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The center of the circle separates the diameter into two equal segments called radii 
(plural for radius).

Figure 2-6 shows a circle with a diameter whose endpoints are (7,4) and ( ),1 2 . 
The center of the circle is at (3,1). I got the coordinates for the center by using the 
formula for the midpoint of a segment (see the preceding section):

M
7 1

2
4 2

2
6
2

2
2

3 1
( )

,
( )

, ,

You find the length of the diameter by using the distance formula (see the section, 
“Another slant: Diagonal distances,” earlier in this chapter):

d 7 1 4 2 8 6 64 36 100 102 2 2 2

For the circle shown in Figure 2-6, the diameter is 10 units long.

Next, I show you how to find the length of one of the radii. Either will do  — 
they’re all the same length. In this example, I figure the radius length from the 
center of the circle (3,1) to the endpoint of the diameter (7,4):

d 7 3 4 1 4 3 16 9 25 52 2 2 2

FIGURE 2-6: 
The center of a 

circle is also the 
midpoint of one 
of its diameters.
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The radius is 5 units long. But, of course, you expected this answer, because by 
definition, the radius is half the length of the diameter.

Partitioning line segments further
If you can find the midpoint of a segment, you can divide it into two equal parts. 
Finding the middle of each of the two equal parts allows you to find the points 
needed to divide the entire segment into four equal parts. Finding the middle of 
each of these segments gives you eight equal parts, and so on.

For example, to divide the segment with endpoints ( ),15 10  and (9,2) into eight 
equal parts, find the various midpoints like so:

 » The midpoint of the main segment from ( ),15 10  to (9,2) is ( ),3 6 .

 » The midpoint of half of the main segment, from ( ),15 10  to ( ),3 6 , is ( ),9 8 , 
and the midpoint of the other half of the main segment, from ( ),3 6  to  
(9,2), is (3,4).

 » The midpoints of the four segments determined here are ( ),12 9 , ( ),6 7 , 
(0,5), and (6,3).

Figure 2-7 shows the coordinates of the points that divide this line segment into 
eight equal parts.

Using the midpoint method is fine, as long as you just want to divide a segment 
into an even number of equal segments. But your job isn’t always so easy. For 
instance, you may need to divide a segment into three equal parts, five equal 
parts, or some other odd number of equal parts.

FIGURE 2-7: 
A line segment 

divided into eight 
equal parts using 

the midpoint 
method.
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To find a point that isn’t equidistant from the endpoints of a segment, just use 
this formula:

x y x k x x y k y y, ,1 2 1 1 2 1

In this formula, ( ),x y1 1  is the endpoint where you’re starting, ( ),x y2 2  is the other 
endpoint, and k is the fractional part of the segment you want.

So, to find the coordinates that divide the segment with endpoints ( ),4 1  and (8,7) 
into three equal parts, first find the point that’s one-third of the distance from 
( ),4 1  to the other endpoint, and then find the point that’s two-thirds of the dis-
tance from ( ),4 1  to the other endpoint. The following steps show you how.

To find the point that’s one-third of the distance from ( ),4 1  to the other end-
point, (8,7):

1. Replace x1 with 4, x2 with 8, y1 with 1, y2 with 7, and k with 1
3

.

x y, ,4 1
3

8 4 1 1
3

7 1

2. Subtract the values in the inner parentheses.

4 1
3

12 1 1
3

6,

3. Do the multiplication and then add the results to get the coordinates.
( , ) ( , )4 4 1 2 0 3

To find the point that’s two-thirds of the distance from ( ),4 1  to the other end-
point, (8,7):

1. Replace x1 with 4, x2 with 8, y1 with 1, y2 with 7, and k with 2
3

.

x y, ,4 2
3

8 4 1 2
3

7 1

2. Subtract the values in the inner parentheses.

4 2
3

12 1 2
3

6,

3. Do the multiplication and then add the results to get the coordinates.

( ), ,4 8 1 4 4 5

Figure 2-8 shows the graph of this line segment and the points that divide it into 
three equal parts.
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Pinpointing the center of a triangle
If you draw lines from each corner (or vertex) of a triangle to the midpoint of the 
opposite sides, then those three lines meet at a center, or centroid, of the triangle. 
The centroid is the triangle’s center of gravity, where the triangle balances evenly. 
The coordinates of the centroid are also two-thirds of the way from each vertex 
along that segment. Figure 2-9 shows how the three lines drawn in the triangle 
all meet at the center.

To find the centroid of a triangle, use the formula from the preceding section that 
locates a point two-thirds of the distance from the vertex to the midpoint of the 
opposite side.

FIGURE 2-8: 
A line segment 

divided into three 
equal parts.

FIGURE 2-9: 
The lines that 

intersect at the 
centroid of a 

triangle.
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For example, to find the centroid of a triangle with vertices at (0,0), (12,0), and 
(3,9), first find the midpoint of one of the sides. The most convenient side is the 
bottom, because it lies along the x-axis. The coordinates of that midpoint are 
(6,0). Then find the point that sits two-thirds of the way from the opposite vertex, 
(3,9):

1. Replace x x y1 2 1,   , , and y2 with their respective values. Replace k with 2
3

.

x y, ,3 2
3

6 3 9 2
3

0 9

2. Simplify the computation to get the point.

3 2
3

3 9 2
3

9 3 2 9 6 5 3, , ,

In this example, the centroid is the point (5,3), as shown in Figure 2-10.

CIRCUMSCRIBING A TRIANGLE
Every triangle can be circumscribed by a circle, meaning that one circle — and only 
one — goes through all three vertices (corners) of any triangle. In laymen’s terms, any tri-
angle can fit into some circle with all its corners touching the circle. To circumscribe a tri-
angle, all you need to do is find the circumcenter of the circle (at the intersection of the 
perpendicular bisectors of the triangle’s sides). You can then find the radius of the circle, 
because the distance from the center of the circle to one of the triangle’s vertices is the 
radius. This exercise is a nice one to try your hand at with a compass and straightedge 
or with some geometry software.
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Racing Down the Slope
In mathematics, a slope is a particular number or value that tells you something 
about the nature of a line or line segment. Just by looking at the number corre-
sponding to the slope of a line, you can tell if the line rises or falls as you read from 
left to right. You can also tell if the slope of the line is steep or rather flat (like the 
slopes in Colorado versus those in Illinois).

Slaloming slope formula
One way to find the slope of a line or segment is to choose any two points, ( ),x y1 1  
and ( ),x y2 2 , on the figure and use the formula that gives you the slope, repre-
sented by the letter m:

m
y y
x x

2 1

2 1

For example, the slope of the line through the points ( ),2 2  and (1,8) is

m
8 2

1 2
6
3

2
( )

This line moves upward from left to right, which is why the slope is a positive 
number. Any slope greater than 1 is also considered to be steep.

FIGURE 2-10: 
The graph of a 
triangle with a 

centroid at (5,3).
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On the other hand, the slope of the line through the points ( ),5 2  and ( ),5 1  is

m
1 2

5 5
3

10
3

10

This segment moves downward from left to right, so the slope is negative. The 
unsigned value (absolute value) of the slope is a number between 0 and 1 — so it 
isn’t considered steep.

Figure 2-11 shows both lines, one with a slope of 2 and the other with a slope 

of 3
10

.

Recognizing parallel and  
perpendicular lines
Two lines are parallel if they have the same slope. Two lines are perpendicular if 
their slopes are negative reciprocals of one another. Numbers that are negative 
reciprocals have a product of 1.

FIGURE 2-11: 
One line has a 
positive slope; 

the other has a 
negative slope.
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Consider the following slopes of some lines or line segments:

m1
1
2

m2 2 m3
6
3

m4
5

10 m5
14
7

Here are the slopes of the lines that are parallel:

 » m1
1
2

 and m4
5

10
 have the same slope.

 » m2 2 and m5
14
7

 also have the same slope.

Here are the slopes of the lines that are perpendicular:

 » m1
1
2

 and m2 2 have slopes that are negative reciprocals.

 » m4
5

10
 and m5

14
7

 also have slopes whose product is 1.

As a matter of fact, because the lines with slopes of 1
2

 and 5
10

 are equal to one 

another, they’re both perpendicular to the lines with slopes of 2 and 14
7

, which 
are also equal in slope. It’s one big, happy family.

Defining Circles with Numbers
The circle that you use the most in trigonometry has its center at the origin and 
has a radius of 1 unit (called the unit circle). The radius of 1 in a circle makes com-
putations so much easier when that 1 ends up in the denominator of a fraction. 
Fractions and circles sort of intermingle in trigonometry  — in good ways, of 
course. But you also have many other useful circles to consider. The other circles 
will have different radii and different centers, but each has its place when needed. 
When possible, though, the unit circle is the circle of choice.

Centering circles at the origin
The two characteristics that define a circle are its center and its radius. The center 
tells where on a graph the circle is located; the radius tells how big the circle is. 
The location is in terms of coordinates in the coordinate plane, and those numbers 
end up in the equation of the circle. The x and y variables represent the coordinates 
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of all the points that lie on the actual circle. The standard form for the equation of 
a circle at the origin is x y r2 2 2, where r represents the radius of the circle. So 
the equations for circles centered at the origin with radii of 2, 3, 4, and 5 are 
x y x y2 2 2 24 9, , x y2 2 16, and x y2 2 25, respectively.

Likewise, a circle with a radius of 1 unit has the equation x y2 2 1. This unit circle 
is used extensively in mathematics: The radius of 1 lends itself to the formula for 
changing from degrees to radians, is nice and neat when finding arc length, and 
makes the unit circle the easiest to use when proving properties or theorems  
in math.

Wandering centers
Circles don’t have to have their centers at the origin. The standard form for a circle 
with a radius of r and its center at (h,k) is ( ) ( )x h y k r2 2 2, where x and y 
represent the coordinates of all the points on that circle. So, the equation for a 
circle with its center at ( ),3 2  and with a radius of 9 is ( ) ( )x y3 2 812 2 .

Notice that if you let the center of a circle be (0,0) in this formula, you get 
( ) ( )x y r0 02 2 2 or x y2 2 1, which goes back to a circle with its center at 
the origin. The form works for all circles!

Circling Around with Applications
Circles are one of the most useful and versatile structures. They’ve been recog-
nized since the beginning of mankind and exist in all sorts of situations nowa-
days. I’m beginning to see more and more traffic circles constructed to make 
drivers’ lives easier. (But I have to admit that my first experience with a traffic 
circle — called a rotary or a roundabout — in Boston had me going around in 
circles, and not just figuratively.) Here are a couple of examples of useful circles.

Spinning a wheel
You have created a new game that involves a circle that spins around its center and 
a pointer that shows what prize you will win with a spin. Your triangular pointer 
stays in one place and has to be poised so the center of the triangle is directly over 
the center of the circle. The pointer is an isosceles triangle that has a base of  
2 inches and a height of 6 inches. Where is the center of the triangle? Refer to 
Figure 2-12.
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First, draw your isosceles triangle pointer on graph paper and assign coordinates 
to the vertices. You want to find the centroid of the triangle — which is at the 
intersection of the segments drawn from each vertex to the midpoint of the oppo-
site side.

Find the midpoint of the two long sides. The midpoint of the base is sitting at the 
origin. Then construct segments from the two bottom corners to the midpoints of 
their opposites. Check this out in Figure 2-13! The intersections cross on the verti-
cal axis at the point (0,2).

Another way to find the centroid of a triangle is to use the formula from the earlier 
section, “Pinpointing the center of a triangle.” This formula has you locate the points 
two-thirds of the distance from each vertex to the midpoint of the opposite side.

FIGURE 2-12: 
Place the center 

of the triangle 
over the center of 

the circle.

FIGURE 2-13: 
The centroid of 

the triangle is 
found.
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Containing the cattle
A farmer has a barn in the shape of a right triangle. (I’m sure there was a good 
reason to construct it this way; he is probably related to Pythagoras.) The farmer 
wants to construct a circular fence all the way around the barn and not have the 
fence be any closer than 20 feet at any point. The barn is 60 feet by 80 feet on the 
sides forming the right angle, and the third side measures 100 feet. Figure 2-14a 
shows a graph of the barn (just multiply each axis number in the figure by 10). 
How many feet of fencing are needed to construct the smallest possible circle?

To circumscribe a triangle, you find the intersection of the perpendicular bisectors 
of the three sides. In Figure 2-14b, you see where the perpendicular bisectors from 
the left side and the bottom intersect — right on the hypotenuse. This is the cir-
cumcenter of the triangle. A circle drawn with the circumcenter as center goes 
through all three vertices of the triangle.

But the farmer doesn’t want the fencing that close. He needs at least 20 feet of 
clearance around any side of the barn.

A circle drawn through the corners of the barn would have a radius of 50 feet. 
That’s the length of the 30-40-50 triangle’s hypotenuse. But the circular fence 
must have a radius of 70 feet (see Figure 2-15a). Using the same center and a 
radius of 70 feet, a circle can be drawn leaving at least 20 feet between the barn 
and the fencing. This closeness just occurs at the corners of the barn. Figure 2-15b 
shows you what the fencing looks like.

To compute the length of the fencing, you find the circumference of the circle.  
Using C d r2 , just replace the radius, r, with 70 and you have  
C 2 70 140 439 6( ) .  feet.

FIGURE 2-14: 
Finding the 

center of the 
fence.
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FIGURE 2-15: 
Fencing in the 

cattle.
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Chapter 3
Finding Degrees in 
Triangles and Planes

The main concept that distinguishes trigonometry from other mathematical 
topics is its attention to and dependence on angle measures. The trig func-
tions (sine, cosine, tangent, cotangent, secant, and cosecant) are ratios 

based on the measures of an angle. What good are degrees (no, not the kind that 
tell you how hot or cold it is) in the real world? Navigators, carpenters, and astro-
nauts can’t do without them. How do you measure the degrees? You have many 
ways, dear reader, and I show you all you need to know in this chapter.

Angles, Angles Everywhere:  
Measuring in Degrees

What’s a degree? When you graduate from college, you get your degree. The tem-
perature outside went up a degree. When questioned, you get the third degree. All 
these scenarios use the word degree, but in trigonometry, a degree is a tiny slice of 
a circle. Imagine a pizza cut into 360 equal pieces (what a mess). Each little slice 
represents one degree. Look at Figure 3-1a to see what a degree looks like.

IN THIS CHAPTER

 » Measuring angles in degrees

 » Putting angles in standard position

 » Finding many measures for the same 
angles

 » Getting angles to work for you
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Slicing a coordinate plane
The first quadrant is the upper right-hand corner of the coordinate plane. (See 
Chapter 2 for the lowdown on quadrants and coordinate planes.) That first quad-

rant is 1
4

 of the entire plane. So, if a full circle with its center at the origin has a 

total of 360 degrees, then 1
4

 of it has 90 degrees, which is the measure of the angle 

that the first quadrant forms. Actually, each quadrant measures exactly 90 degrees, 
as you see in Figure 3-1b. You can divide each of these 90-degree measures evenly 
by many numbers, and you use those equal divisions frequently in trig, because 
they’re nice, neat divisions. The most frequently used angle measures include 
90
2

45, 90
3

30, and 90
6

15. And then, twice the 30-degree angle is 60 degrees 

(another common angle in trig).

This elite group of angle measures is 0, 15, 30, 45, 60, and 90 degrees. These 
angles and their multiples occupy much of the discussion in trigonometry because 
of their convenience in computations. Figure 3-2 shows sketches of some of the 
angles.

Looking elsewhere for degree measures
Your first introduction to the idea of measuring angles in degrees probably didn’t 
come from a course in geometry or trigonometry. Most of us are exposed to this 

FIGURE 3-1: 
One degree is 
1

360
 of a circle.

FIGURE 3-2: 
Some of the  

most commonly 
used angles:  

90, 60, 45, 30, and 
15 degrees.
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idea through television or movies. A popular situation in such shows involves a 
plane flying through a storm or at night or with no one but a flight attendant at the 
controls. A radio transmission from the control tower comes crackling through all 
the static, with an air traffic controller saying, “Turn to a heading of 40 degrees.” 
And because the flight attendant remembers their trigonometry, they save the day. 
Hurray for degrees!

Another type of situation that you find on television is on This Old House, where the 
stars, in all their woodworking grandeur, are able to cut boards at exact 50-degree 
angles so they fit perfectly in a carefully crafted wooden truss.

Navigating with degrees
In navigation and surveying, the bearing or heading is the direction that a plane, 
boat, or line takes. In math-speak, this bearing is the angle measured in degrees 
that a ray (a line with one endpoint that extends infinitely in the other direction) 
makes with a second ray that points north. The angle is measured in a clockwise 
direction. (Note, however, that in the standard position in geometry and trigonom-
etry, you measure angles in a counterclockwise direction.) Figure 3-3 shows some 
bearings used in navigation. Notice that the direction of the arrow is always clock-
wise. Even though the angles in bearings are measured differently from those in 
trigonometry, the angle measures are still the same size — just rotated a bit. An 
angle of 120 degrees is still bigger than a right angle. When you’re familiar with 
the angle sizes, translating into this bearing business is easy.

Now, take a look at Figure 3-4 to see the path of a helicopter pilot who flew for 
10.5 minutes at a bearing of 36 degrees (which is northeast), then for 13.6 minutes 
at a bearing of 144 degrees (which is southeast), and then got back to where they 
started by flying for 14.4 minutes at a bearing of 280 degrees (which is 
west-northwest).

FIGURE 3-3: 
Bearings of  
20 degrees,  

100 degrees, and 
250 degrees.
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Understanding Norm’s workshop
If you weren’t a follower of public television’s The New Yankee Workshop starring 
Norm Abram, let me fill you in: Norm is a New Englander who did woodworking 
projects with very expensive tools and invited his audience to do the same (with 
not-so-expensive tools). He set his table saw so it could cut a board straight 
across at a 90-degree angle, or he changed it to cut at any other angle. If Norm 
wanted two perpendicular pieces of wood to meet and form a right angle, he set 
his saw at 45 degrees. He also cut one piece at 30 degrees and the other at 60 
degrees; or how about 20 and 70? Figure 3-5 shows how the two pieces of wood fit 
together.

If Norm wanted to create an octagonal (eight-sided) table from a single piece of 
wood that he cut into eight pieces, then what angles did he cut? More on that in a 
minute. In Figure  3-6, you see an octagonal table constructed of eight equal 
triangles.

COLUMBUS THE WIZARD
It’s a given that trigonometry played a big part in navigation and allowed Christopher 
Columbus to find the New World. But trigonometry also helped him in another way. On 
his voyages, Columbus carried a copy of an almanac created by a mathematician/
astronomer by the name of Johannes Müller von Königsberg. In the almanac were 
tables giving the relative positions of the sun and moon and which determined when 
and where eclipses would occur. Columbus read that a total eclipse of the moon would 
occur on February 29, 1504. He took advantage of this information and used it to 
frighten the natives in the New World into supplying provisions for his ships.

FIGURE 3-4: 
A helicopter 

pilot’s course.
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To make his octagonal table, Norm needed eight isosceles triangles (where the two 
long sides of each triangle are the same length). What are the measures of the 
angles he had to cut? All the way around a circle (and around the middle of  
the table) is 360 degrees, so each triangle has a top angle (the angle at the center 

of the table) that measures 360
8

, which is 45 degrees. The two base angles (those at 

the outer edge of the table) are equal in measure. The sum of the measures of the 
angles of a triangle is 180 degrees, so after subtracting the top angle’s 45 degrees, 
you get 135 degrees for the other two angles together. Dividing the 135 by 2, you 

find that the base angles are each 67 1
2

 degrees. Norm cut all eight triangles from 

a single piece of wood, because two base angles plus a top angle form a straight 
line. He just put the triangles together differently after cutting them out. And as 
you can see from Figure 3-7, he didn’t have much waste.

FIGURE 3-5: 
Two pieces of 

wood cut at 
various angles 

together form a 
90-degree angle.

FIGURE 3-6: 
An octagonal 

table and one of 
the pieces that 

comprises it.

FIGURE 3-7: 
Cutting eight 

identical triangles 
out of a board.
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Graphing Angles in Standard Position
Navigators, surveyors, and carpenters all use the same angle measures, but the 
angles start out in different positions or places. In trigonometry and most other 
mathematical disciplines, you draw angles in a standard, universal position, so that 
mathematicians around the world are drawing and talking about the same thing.

Positioning initial and terminal sides
An angle in standard position has its vertex at the origin of the coordinate plane, as 
shown in Figure 3-8a. Its initial ray (starting side) lies along the positive x-axis. 
Its terminal ray (ending side) moves counterclockwise from the initial side.

If the terminal ray moves clockwise instead of counterclockwise, then the mea-
sure is a negative value. You often name angles in standard position with a Greek 
letter.

The lengths of the rays that create the angle have nothing to do with the angle 
size. You can extend rays as long as you need them to be, and the angle measure 
doesn’t change. Only the position of the terminal ray determines the angle.

Measuring by quadrants
Angles in the standard position are used in calculus, geometry, trigonometry, and 
other math subjects as a basis for discussion. Being able to recognize a particular 
angle by the quadrant its terminal side lies in and, conversely, to know which 
angles have their terminal sides in a particular quadrant is helpful when working 
in these areas.

FIGURE 3-8: 
An angle in 

standard position 
and angles by 

quadrant.
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Check out Figure 3-8b. Angles in standard position that measure between 0 and 
90 degrees have their terminal sides in Quadrant I. The angles measuring between 
90 and 180 degrees have their terminal sides in Quadrant II. Angles measuring 
between 180 and 270 degrees have their terminal sides in Quadrant III, and those 
measuring between 270 and 360 degrees have their terminal sides in Quadrant 
IV. Angles measuring exactly 90, 180, 270, and 360 degrees do not have a terminal 
side that lies in a quadrant, and they’re referred to as quadrant angles.

What’s Your Angle? Labeling in 
Various Ways

The terminal side of an angle determines its angle measure. But more than one 
angle has the same terminal side — in fact, an infinite number of angles share a 
particular terminal side.

Using negative angle measures
If you want your angle measurement to be positive, you measure the angle in 
standard position in a counterclockwise direction. However, angles can have nega-
tive values, too, as you see in Figure 3-9. You get a negative value when you mea-
sure an angle in a clockwise direction. Therefore, an angle of 300 degrees has the 
same terminal side as an angle measuring –60 degrees. If they have the same 
terminal side, then why don’t they have the same name/size? And which name is 
better? Sometimes you may want to keep the numerical part of the measure 
smaller. For example, picturing an angle of –30 degrees is easier than picturing 
one of 330 degrees. Also, pilots don’t always have the choice as to which direction 
they can turn in, but going 10 degrees in the negative direction makes more sense 
than going 350 degrees — all the way around, practically — in the positive direc-
tion. One common practice is to name all angles with a number that has an abso-
lute value less than 180 degrees. So –60 degrees is often preferable to 300 degrees.

Comingling with coterminal angles
Two angles are coterminal if they have the same terminal side. You have an infinite 
number of ways to give an angle measure for a particular terminal ray. Some-
times, using a negative angle rather than a positive angle is more convenient, or 
the answer to an application may involve more than one revolution (spinning 
around and around). Angles can have terminal sides that involve one or more  
full revolutions around the origin or terminal sides that go clockwise instead of  
counterclockwise — or both of these situations can happen.
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More than one revolution
An angle measuring 70 degrees is coterminal with an angle measuring 430 degrees 
(see Figure 3-10). The angle measuring 430 degrees is actually 360 70 (one full 
revolution plus the original 70). These two angles are also coterminal with an 
angle of 790 degrees ( )360 360 70 790 . This pattern could go on and on, with 
the addition of another 360 degrees each time.

FIGURE 3-9: 
Angles with both 

positive and 
negative 

measures.

FIGURE 3-10: 
Three coterminal 

angles.
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Negative coterminal angles
An angle of 70 degrees is coterminal with an angle of 290 degrees. Two rotations 
in the negative (clockwise) direction give you an angle of 650 degrees  
( )290 360 650 .

Renaming angles: So many aliases
Any angle can have many, many descriptions in terms of angle measures, because an 
angle is equivalent to its coterminal angles. The most frequently used positive angle 
measures are those that measure between 0 and 360 degrees. Rules for coterminal 
angles involve adding or subtracting rotations (or multiples of 360 degrees). The first 
equation that follows shows what happens when you add a full rotation over and 
over. The second shows what happens when you subtract a full rotation many times. 
The results are all coterminal angles.

360 720 1 080 360

360 720 1 080

,

,

k

360 k

So an angle measuring 100 degrees is coterminal with the following.

Adding : 100 100 360 100 720 100 1 080 100 360

1

, k

000 460 820 1 180

100 100 360 100 720

,

Subtracting : 1100 1 080 100 360

100 260 620 980

, k

Here’s an example: Suppose you want to give new measures for angles of 800 
degrees and 1 040,  degrees by finding an equivalent angle measure between 0 and 
360 degrees.

1. Subtract 360 degrees from 800 until the result is less than 360.

800 800 360 440

440 440 360 80

An angle measuring 800 degrees is coterminal with an angle of 80 degrees.

2. Add 360 degrees to –1,040 until the result is positive.

1 040 1 040 360 680, ,

680 680 360 320

320 320 360 40

An angle measuring 1 040,  degrees is coterminal with an angle of 40 degrees.
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Making Degrees Work for You
Giving someone the third degree, having six degrees of separation, and freezing at 
32-degrees Fahrenheit are all situations involving the same wording that also refers 
to angle measures. You find degree measures in many decent applications — as you 
find here.

Moon shining
You are out doing some International Space Station gazing one night and take two 
measures of your sightings. In your first measure, you see the Station to the east 
at a 45-degree angle from the horizon. Then, after it crosses above you and moves 
to the west, you measure a 65-degree angle from the western horizon. Figure 3-11 
shows what happens.

If the Space Station moves at a height of about 220 miles above the Earth and the 
radius of the Earth averages about 4,000 miles, then how far does the Station 
travel during the time you make those measurements?

You need to determine how much of a complete circle the Station makes during 
the time you make the measurements and then compute that proportion of the 
circumference that is used. The circle I’m using is the one with a radius of 4,000 
miles plus the 220-mile height of the Station. Because the two angle measures use 
different initial sides, just add the 45 degrees and 65 degrees together and sub-
tract from 180 degrees. You have 180 45 65 180 110 70( ) . The Station travels 

70 out of the total 360 degrees of a complete circle or 7
36

 of the circumference — 
about one-sixth.

FIGURE 3-11: 
Tracking the 

International 
Space Station.
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The circumference of a circle with a radius of 4,000 + 220 miles is found with:  
C r2 2 4 220 26 515( , ) ,  miles.

You only want 7
36

 of this, and 26 515 7
36

5 156, ,  miles.

Games people play
At the latest gathering of college sorority sisters, one of the group announced that 
they had come up with a new game called “Twist Her.” This is played by blind-
folding the player and then giving her four different commands in terms of how 
far and in which direction to turn. If she’s facing in the same direction in which 
she started after all the turns, then she scores ten points!

Helen was told to first turn 780 degrees clockwise. “That’s silly,” she thought. 
“780 degrees is coterminal with 60 degrees,” so she turned clockwise 60 degrees.

She was then told to turn 480 degrees counterclockwise. “Golly, why don’t they 
just say the angle, 120 degrees?” So she turned 120 degrees counterclockwise.

The next command was to turn 870 degrees clockwise. Helen was getting annoyed, 
but she knew that 870 degrees is coterminal with 150 degrees and turned  
150 degrees clockwise.

Her final turn was to be 810 degrees counterclockwise. Happy that this was almost 
over, she turned 90 degrees counterclockwise.

Taking off her blindfold, Helen found herself facing in the same direction in which 
she started. She scored 10 points!

Had she been given all the original numbers at once, she could have saved a lot of 
hassle. Letting clockwise be positive angle measures and counterclockwise be nega-
tive measures and adding them together she gets 780 480 870 810 360( ) ( ) ,  
which is coterminal with 0 degrees. Using her calculations and making the turns 
smaller, she had 60 120 150 90 0( ) ( ) . In both cases, she ended up in the 
same direction. But using her method, she wasn’t quite as dizzy.
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Chapter 4
Dishing Out the Pi: 
Radians

A person’s first introduction to angles is usually in terms of degrees. You 
probably have an idea of what a 30-degree angle looks like. (If not, review 
Chapter 3.) And even most middle-school students know that a triangle 

consists of 180 degrees. But most of the scientific community uses radians to 
measure angles and solve trig equations. Why change to radians? Why fix what 
ain’t broke? Read on.

What’s in a Radian?
A radian is much bigger than a degree. Early mathematicians decided on the  
size of a degree based on divisions of a full circle. A degree is the same as a slice 

that’s 1
360

 of a circle. No one knows for sure how the choice of 360 degrees in a 

circle came to be adopted. In any case, 360 is a wonderful number, because you 
can divide it evenly by so many other numbers: 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 
24, 30, 36, 40, 45, 60, 72, 90, 120, 180, and 360. The early measures of time and 
distance relied on having convenient numbers to work with. A radian, on the other 
hand, isn’t quite as nice. It isn’t even a rational number. Radians probably were 
developed because mathematicians wanted to relate the angle measure more to 

IN THIS CHAPTER

 » Defining a radian

 » Converting degrees to radians and 
vice versa

 » Seeing situations where using radians 
is best
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the radius or size of the circle rather than picking an arbitrary dividing number 
like 360. A circle has 2  radians (a little more than six radians). A radian is almost 
1
6

 of a circle — it’s a little more than 57 degrees. Figure 4-1 compares a degree 

with a radian.

Relating to a circle
The big advantage of using radians is that they’re the natural measure for dividing 
up circles. Imagine taking the radius of a circle and bending it into an arc that lies 
along the circle. Now draw radii from the center to both ends of that arc formed by 
the radius. The angle formed from the radii measures one radian. Look at the 
right-hand drawing in Figure 4-1. There you see two radii and the arc lying on the 
circle starting and ending at their endpoints. You would need a little more than six 
of those arcs to go all the way around the circle. This fact is true of all circles. The 
circumference of any circle is always a little more than three times the diameter 
of that circle —  times the diameter, to be exact. Another way of saying this is 2  
times the radius. That number may seem nicer and more civilized than the big 
number 360, but the disadvantage is that  doesn’t have an exact decimal value. 
Saying 2  radians (which is equal to 360 degrees) means that each circle has about 
6.28 radians. Even though radians are the natural measure and always relate to 
the radius and diameter, the decimal values get a bit messy.

Each of these measures has its own place. Measuring angles in degrees is easier, 
but measuring angles in radians is preferable when doing computations and 
applications. The radian is more exact because the radius, circumference, or area 
of the circle is involved. Even though  doesn’t have an exact decimal value, when 
you use multiples of  in answers, they’re exactly right. I show you an example of 
using  as part of an answer in the section, “Making a Clone of Arc,” later in this 
chapter.

FIGURE 4-1: 
A degree is  

a 1
360

 slice.  

A radian is more 

than a 1
6

 slice.
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Converting degrees and radians
Many math problems require changing from degrees to radian measures or vice 
versa. You often perform mathematical computations in radians, but then convert 
the final answers to degrees so the answers are easier to visualize and compre-
hend. You can use a nifty little proportion to change from degrees to radians or 
radians to degrees. In this proportion, the Greek letter theta, , represents the 
name of the angle. Putting the superscripts  and R on  makes the angle stand for 
the measure in degrees and radians, respectively.



180

R

This proportion reads: “The measure of angle  in degrees divided by 180 is equal 
to the measure of angle  in radians divided by .” (Remember that  is about 
3.141592654.)

The computation required for changing degrees to radians and radians to degrees 
isn’t difficult. This computation involves a few tricks, though, and the format is 
important. You don’t usually write the radian measures with decimal values unless 
you’ve multiplied through by the decimal equivalent for .

Changing degrees to radians
To change a measure in degrees to radians, start with the basic proportion for the 

equivalent angle measures: 


180

R

.

For example, here’s how you change a measure of 40 degrees to radians:

1. Put the 40 in place of the  in the proportion.
40

180

R

2. Reduce the fraction on the left.
2

9

40

80

2
91

R

3. Multiply each side of the proportion by .
2
9

R

4. Simplify the work.

2
9

2
9

R

R
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This example shows that 40 degrees is equivalent to 2
9

 radians. You leave the 
radian measure as a fraction reduced to lowest terms.

Check out another example: Change a measure of 36 degrees to radians.

1. Put the –36 in place of the  in the proportion.
36

180

R

2. Reduce the fraction on the left.
1

5
36

180
1
5

R

3. Multiply each side of the proportion by .
1
5

R

4. Simplify the work.

1
5

5

R

R

So you see, 36 degrees is equivalent to 
5

 radians. Having a negative angle is 

fine (see Chapter 3 for more on negative angles). You leave the expression as a 
fraction; don’t change it to a decimal form.

Changing radians to degrees
You use the same basic proportion to change radians to degrees as you do for 
changing degrees to radians.

For example, to change 
12

 radians to a degree measure:

1. Put the radian measure in place of the R  in the proportion.

180
12

2. Simplify the complex fraction on the right by multiplying the numerator 
by the reciprocal of the denominator.





180 12
1

180
1

12
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3. Multiply each side of the proportion by 180.

180
180

1
12

180


4. Reduce and simplify the fraction on the right.

180
180

1
12

180

15

1
15





So, 
12

 radians is equivalent to 15 degrees.

Here’s another example: Change 1.309 radians to degrees.

I changed this radian measure to a decimal by multiplying through by a decimal 
equivalent of , which is approximately 3.1416. You use this same decimal equiva-
lent to solve the problem.

1. Put the radian measure in place of the R  in the proportion.


180
1 309.

2. Change the  to a decimal approximation. In this case, I used four decimal 
places.



180
1 309
3 1416

.
.

3. Multiply each side of the proportion by 180.

180
180

1 309
3 1416

180
 .

.

JUST A MINUTE
A full circle contains 360 degrees. If you want just a part of a degree — and a degree is 

already pretty small — you can say you have 1
2

 of a degree or 0.5 of a degree, or you 

can use another division. You can divide one degree into 60 minutes, and you can divide 
each minute into 60 seconds. So, mathematically, a degree has 3,600 subdivisions — you 
can break it down into 3,600 seconds. The way you denote the number of minutes and 
seconds is with one tick mark (‘) for minutes and two tick marks (“) for seconds. So you 
read the degree measure 15°45’27” like this: “Fifteen degrees, 45 minutes, and 27 sec-
onds.” Ever since the advent of hand-held calculators, people don’t use this measure 
much. The decimal breakdown of a degree is more universally accepted.
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4. Reduce the fractions, and simplify the value on the right.

180
180

1 309
3 1416

180

235 62
3 1416

75





.
.

.
.

This result came out to be a nice number. Sometimes, however, you have a deci-
mal answer for the degrees. Actually, you get a decimal more than sometimes — 
you usually get one.

Highlighting favorites
The favorite or most-used angles are those that are multiples of 15 degrees, such 
as 30, 45, 60, and 90 degrees. Putting these angles into the proportion for chang-
ing degrees to radians gives a nice set of angles in radian measure.

First, look at what happens when you replace  with 30:

30
180

1
6
1
6

6

R

R

R

R

An angle of 30 degrees is equivalent to 
6

 radians. You get a simple fraction with  

a  on the top and a nice, small 6 on the bottom.

You get similar results with the other angles:

45
4

 60
3

 90
2



Radian measures with denominators of 2, 3, 4, and 6 are used most frequently.

Making a Clone of Arc
The biggest advantage of using radians instead of degrees is that a radian is 
directly tied to a length — the length or distance around a circle, which is called 
its circumference. Using radians is very helpful when doing applications involving 
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the length of an arc of a circle, which is part of its circumference; measuring the 
sweep of a hand on a clock; and finding distance in navigation problems.

The problems in this section give you a good sampling of situations where using 
radians is your best bet. Of course, all these problems presume that you can make 
accurate measurements of the variables you can measure. But trigonometry does 
open the door to solving practical problems that aren’t doable any other way.

Taking chunks out of circles
The examples in this section use features of circles. A part of a circle may be an 
arc, a diameter (not really a physical part, but a measure), a sector (a piece of the 
inside), or the center. The measures usually start out in degrees, and I change 
them to radians, when necessary, to complete the problem.

Scanning with a radar
A radar system scans a circular area that has a radius of 40 miles. In one second, 
it sweeps an arc of 60 degrees. What area does the radar cover in one second? In 
five seconds? Look at Figure 4-2, which shows a sweep of 60 degrees.

Here’s how you solve this problem:

1. Find the area of the circle.

Use the formula for the area of a circle, A r 2. Putting the 40 in for the 
radius, r, you get r 2 240 1 600 5 026 548, , .  square miles.

FIGURE 4-2: 
A radar sweep  
of 60 degrees.
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2. Divide by the portion of the circle that the sweep covers.

The sweep of 60 degrees is only 1
6

 of the entire circle, so you figure the area 

that the sweep covers by dividing the entire area by 6. The resulting area is 
5 026 548

6
837 758, . .  square miles, which is the area the radar scans in one 

second. To get the area covered in five seconds, multiply that result by 5 to  
get 4,188.790 square miles.

The preceding problem works out nicely, because the number of degrees is a con-
venient value — it’s a fraction of the circle. But what if the number doesn’t divide 
evenly into 360? For example, what if the radar sweeps an angle of 76 degrees in 
one second?

In general, if the angle is given in degrees, then the part of a circle that the angle 

sweeps is angle in degrees
360

. Take the fraction for that part of the circle and multi-

ply it by the area, r 2. A fancy name for this part of a circle is sector.

Keep the following formulas in mind when you’re trying to find the area of a 
sector.

 » Using degrees: Area of sector


360
2r

 » Using radians: Area of sector
R r 2

2

The second formula comes from the following computation. That’s why there’s  
no  in the result:

R R R

r r
r

2 2 2
2 2

2

For example, to find the area of the radar sweep in the preceding example when 
the radar sweeps 76 degrees per second:

1. Put 76 in for the  and 40 for the radius in the formula for the area of a 
sector.

Area of sweep 76
360

40 2

2. Multiply and divide to simplify the answer.
121 600

360
382 017 667

360
1 061 160, , . , .  square miles



CHAPTER 4  Dishing Out the Pi: Radians      71

To demonstrate this radar-sweep calculation if you’re given measurements in 
radians, find the area of the radar sweep if the sweep is 

3
 radians (which is 60 

degrees).

1. Put 
3

 in for the R  and 40 in for the radius.

Area of sweep
R r 2

2

2
3

40

2

2. Multiply and divide to simplify the answer.

3
1 600

2
1 675 516

2
837 758

, , . . square miles

Compare this result with the computation for the sweep of 60 degrees, shown 
earlier in this section.

Sharing pizza
Some fraternity brothers want to order pizza — and you know how hungry college 
men can be. The big question is, which has bigger slices of pizza: a 12-inch pizza 
cut into six slices, or a 15-inch pizza cut into eight slices? Figure 4-3 shows a 
12-inch pizza and a 15-inch pizza, both of which are sliced. Can you tell by looking 
at them which slices are bigger — that is, have more area?

The 12-inch pizza is cut into six pieces. Each piece represents an angle of  

60 degrees, which is 
3

 radians, so you find the area of each sector (slice) by using the  

formula for the area of a sector using radians and putting the 6 in for the radius of  

the pizza with a 12-inch diameter. The answer is 
R r 2

2

2
3

6

2
3

36

2
12

2
6  

FIGURE 4-3: 
Sliced pizzas — 
which slices are 

bigger?
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square inches. (I leave the answer with the multiplier of π just so you can compare 
the sizes between the two pizzas — they’ll both have a multiplier of π in them.)

The 15-inch pizza is cut into eight pieces. Each piece represents an angle of  

45 degrees, which is 
4

 radians, so, letting the radius be 7.5 this time, the area of 

each sector is 
R r 2

2

2
4

7 5

2
4

56 25

2
56 25

8
7 03125

. . . .  square inches.

This result doesn’t tell you exactly how many square inches are in each slice, but 
you can see that a slice of this 15-inch pizza has an area of 7.03125π square inches, 
and a slice of the 12-inch pizza has an area of 6π square inches. The 15-inch pizza 
has bigger pieces, even though you cut it into more pieces than the 12-inch pizza. 
And, by the way, the difference is slightly over three square inches per slice.

Sweeping hands
I discuss two scenarios in this section: the minute hand of a clock sweeping across 
the clock’s face, and the hand of a rider on a Ferris wheel as it whooshes through 
the air. These examples use the formula for arc length, which is the distance 
around part of a circle.

You find the length of an arc of a circle, s, by using the following formula, where 
the measure of the angle is in radians, and r stands for the radius of the 
 circle: s rR .

Riding the minute hand
Suppose a ladybug settled onto the tip of a tower clock’s minute hand. The minute 
hand is 12 feet long. How far does the ladybug travel from 3:00 until 3:20?

1. Calculate how many degrees the minute hand swings in 20 minutes.

Twenty minutes is 20
60

 or 1
3

 of an hour. Translate that fraction into degrees, and 

you get 1
3

 of 360, or 120 degrees.

2. Convert degrees to radians.

The formula for arc length uses angles in terms of radians, so you first need to 
change 120 degrees to radians. Using the proportion for changing from 

degrees to radians and reducing the fraction on the left, 120
180

R

 or 2
3

R

. 

Multiply each side of the equation by π. The final result for the angle measure 

is R 2
3

.
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3. Calculate the answer by using the formula for the length of the arc.

Enter the angle in radians, and enter 12 (feet), which is the length of the minute 

hand, for the radius. Your computations should look like s rR 2
3

12 8 , 

which is the distance the ladybug traveled, about 25.13 feet.

Riding the Ferris wheel
I don’t usually care for Ferris wheels and heights, but on the rare occasions when 
someone does talk me into riding one, I have to face my least favorite part of the 
whole event: coming down the front of the wheel (I call this part the front of the 
wheel because you can’t see the ground below you). Take a look at Figure 4-4. 
Imagine that this is the London Eye, a giant Ferris wheel in London, England. The 
diameter of this wheel is 394 feet. If I’m in a car on the wheel and travel from the 
top of the wheel, halfway down to the bottom, then how far have I traveled (hyper-
ventilating the whole way)?

A circle with a 394-foot diameter has a 197-foot radius. From the top to the front 

of the wheel is 1
4

 of the circle, which is 90 degrees. In radians, 90 degrees is 
2

  

(see the section, “Highlighting favorites,” earlier in this chapter). Using the formula 

FIGURE 4-4: 
Riding down the 
front of a Ferris 

wheel.



74      PART 1  Getting Started with Trigonometry

for arc length and putting in the radian measure and the radius of 197 feet, the dis-

tance is s rR

2
197 98 5. , which is about 309.45 feet. Egad!

Going out and about
One of trigonometry’s great qualities is that it lets you measure things that you 
can’t get at or, in the case of the racetrack example in this section, things that you 
don’t want to get close to. A circle and its angles have all sorts of applications both 
on earth and above.

Measuring the distance to the moon
One of the earliest applications of trigonometry was in measuring distances that 
you couldn’t reach, such as distances to planets or the moon or to places on the 
other side of the world. Consider the following example.

The diameter of the moon is about 2,160 miles. When the moon is full, a person 
sighting the moon from the earth measures an angle of about 0.526 degrees from 
one side of the moon to the other (see Figure 4-5).

To figure out how far away the moon is from the earth, consider a circle with the 
earth at the center and the circumference running right through the center of the 
moon, along one of the moon’s diameters. The moon is so far away that the 
straight diameter and slight curve of this big circle’s circumference are essentially 
the same measure. The arc that runs through the moon’s diameter has an angle of 
0.56 degree and an arc length of 2,160 miles (the diameter). Using the arc-length 
formula, solve for the radius of the large circle, because the radius is the distance 
to the moon. To solve for the radius:

1. First, change 0.56 degree to radians.
0 56
180

0 56
180

0 00977. . .
R

R

2. Input the numbers into the arc-length formula, s rR .

Enter 0.00977 radian for the radian measure and 2,160 for the arc 
length: 2 160 0 00977, . r .

FIGURE 4-5: 
A person on the 
earth sights the 
top and bottom 

of the moon.
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3. Divide each side by 0.00977.

The distance to the moon is r 2 160
0 00977

221 085,
.

,  miles.

Racing around the track
A race car is going around a circular track. A photographer standing at the center 
of the track takes a picture, turns 80 degrees, and then takes another picture 10 

seconds later. If the track has a diameter of 1
2

 mile, how fast is the race car going? 

Figure 4-6 shows the photographer in the middle and the car in the two different 
positions.

How fast is the car going? Where does the problem make any mention of speed? 
Actually, in this situation, the car travels partway around the track in 10 seconds. 
By computing the arc length, you can determine how fast the car is traveling.

A formula that you’ll find mighty helpful is the one that says distance equals rate 
multiplied by time, where rate is miles per hour (or feet per second or some such 
measure), and time is the same measure as in the rate: d r t .

1. First, change the 80 degrees to radians.

You end up with 4
9

 radians.

2. Input the numbers in the arc-length formula.

Putting in the radian measure and the radius of the track, 1
4

 mile, you get 

arc length 4
9

1
4 9

0 349.  mile, which is the distance the car traveled in 

10 seconds.

FIGURE 4-6: 
A car races 
around the  

track.
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3. Multiply this result by 6 (because 10 seconds is 1
6

 of a minute) to get miles 
traveled in a minute.

This calculation gives you 2.094 miles per minute.

4. Then multiply that number by 60 to get miles traveled in one hour.

This calculation gives you 125.64 miles. So the car is traveling about 126 mph.
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Chapter 5
Tackling Right Triangles

Triangles are classified in many ways; one way of distinguishing one triangle 
from another is to use angle measurements. Because a 90-degree angle is 
called a right angle, you use the same terminology to describe a triangle with 

a right angle in it. This type of triangle is called a right triangle. And that’s all right.

The measures of the sides of right triangles are used to determine the values of the 
trig functions. And those trig functions (along with the right triangles) are really 
handy when it comes to solving problems such as, “Just how high is that tree?” 
The special properties of a right triangle — some credited with Pythagoras — 
make them very useful in trigonometry and other math areas.

Sizing Up Right Triangles
If you’re looking at their angles, triangles can be right, acute, or obtuse. Right 
triangles contain a right angle; acute triangles only have acute angles; and obtuse 
triangles have that one obtuse angle — makes sense! Right triangles have been of 
great interest to humankind for centuries. They’re the basis for applications in 
navigation, astronomy, surveying, military engineering, and much more.

IN THIS CHAPTER

 » Examining right triangles

 » Solving for lengths with Pythagoras’s 
Theorem

 » Defining special right triangles that 
make life easier
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What’s so right about them?
A right triangle has a right angle in it. But it can only have one right angle, because 
the total number of degrees in a triangle is 180. If it had two right angles, then 
those two angles would take up all 180 degrees; no degrees would be left for a third 
angle. So in a right triangle, the other two angles share the remaining 90 degrees.

Right triangles can come in all sorts of shapes, but they all have that corner, where 
the right angle sits. In Figure 5-1, you see that in all the triangles, the right angle 
has the two sides that are perpendicular to one another. The other two angles are 
acute angles (meaning they’re less than 90 degrees).

The anatomy of a right triangle
Right triangles are a familiar sight — and not just in geometry classes. Carpenters 
have tools for measurement that are right triangles. Architects who design by 
hand (rather than on a computer) draw with right-triangle templates. Even 
though the focus in a right triangle is the right angle, a right triangle actually has 
six different parts: three angles and three sides. Now, this fact is true of any tri-
angle, but right triangles have special names for these parts. Having special names 
is necessary because so many properties, theorems, and applications using right 
triangles are out there, and the names make talking about and explaining the tri-
angles more understandable.

Figure 5-2 shows a general right triangle labeled with capital letters and lower-
case letters. Since the time of Leonhard Euler, the famous Swiss mathematician, 
this type of labeling has been the tradition. You use capital letters to mark each 
vertex (angle), and lowercase letters to mark the sides of the triangle opposite each 
angle with the corresponding capital letter. This is much easier than using the 
geometry standard of naming sides with two letters: side AB, side BC, and side CA.

FIGURE 5-1: 
Right triangles 
come in many 

shapes.
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The little square at the vertex C shows that the two sides meeting there are per-
pendicular at that vertex — that’s where the right angle is. The side c, opposite the 
right angle, is called the hypotenuse. The other two sides, a and b, are called the 
legs. The hypotenuse is always the longest side, because it’s opposite the largest 
angle.

In Figure 5-2, the angle at vertex C is the right angle, and the other two angles, A 
and B, are acute angles. If the measures of the angles at A and B are the same, then 
they’re each 45 degrees, and the triangle is isosceles. If that’s the case, then the 
lengths of the sides a and b are the same also.

FIGURE 5-2: 
Parts of a right 

triangle.

SQUARING THE CORNERS
Over 40 years ago, my spouse and I selected house plans that we liked and started all 
the processes needed to build our new home. We didn’t have all that much money, so 
we did as much as we could by ourselves. After the lot was cleared of bushes and 
weeds, we went there with pegs and string to lay out the foundation. The backhoe was 
due the next day to dig the hole for the basement. With blueprints in hand, we had all 
the measurements — how long each side of the house was to be. A tape measure gave 
us accurate measures for lengths, but what about the right angles? A school protractor 
isn’t big enough to make those long sides exactly perpendicular. We used a method 
called squaring the corners. We knew that some nice measures for the three sides of a 
right triangle are 3-4-5 or 6-8-10. At a corner in question, we would pick a point on one 
string that was 4 feet from the peg and a point on the other string that was 3 feet from 
the peg. Then we’d measure diagonally from each of those points. If the diagonal mea-
sure didn’t come out to be exactly 5 feet, then we didn’t have a right angle — the corner 
wasn’t square. It took a lot of peg moving, but we got the foundation laid out accurately. 
The house is still standing — in fact, we still live in it — so I guess we did a good job!
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If the angle at vertex A is bigger than that at vertex B, then side a is longer than 
side b. The measures of a triangle’s angles have a direct relationship to the lengths 
of the sides opposite them.

Demystifying the Pythagorean Theorem
Pythagoras was a Greek philosopher and mathematician who lived around 570 b.c. 
Even with the relatively primitive tools at his disposal, he was able to discover and 
formulate a theorem, or rule, that became one of the most well known in all of 
mathematics: the Pythagorean Theorem.

The Pythagorean Theorem says that if a, b, and c are the sides of a right triangle, as 
shown in Figure 5-3, and if c is the side opposite the right angle, then their lengths 
have the following property: a b c2 2 2.

Hitting a Pythagorean triple
A Pythagorean triple is a list of three numbers that works in the Pythagorean  
Theorem — the square of the largest number is equal to the sum of the squares of 
the two smaller numbers. The multiple of any Pythagorean triple (multiply each 
of the numbers in the triple by the same number) is also a Pythagorean triple. 
They seem to reinvent themselves.

Familiarizing yourself with the more frequently used Pythagorean triples is very 
helpful. If you recognize that you have a triple, then working with applications is 
much easier.

Table 5-1 shows some of the most common Pythagorean triples and some of their 
multiples.

FIGURE 5-3: 
Traditional labels 
for the sides of a 

right triangle.
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Here’s how to check out a triple and its multiple by using the Pythagorean Theo-
rem. Try out the triple 9-40-41:

1. Replace a, b, and c with 9, 40, and 41, respectively.
9 40 41

81 1 600 1 681

2 2 2

, ,

2. Then replace a, b, and c with the 9-40-41 triple multiplied by 3 (which is 
27-120-123).

27 120 123

729 14 400 15 129

2 2 2

, ,

Solving for a missing length
One of the nice qualities of right triangles is the fact that you can find the length 
of one side if you know the lengths of the other two sides. You don’t have this 
luxury with just any triangle, so count your blessings now.

Practicing on triangles
The Pythagorean Theorem states that a b c2 2 2 in a right triangle where c is the 
longest side. You can use this equation to figure out the length of one side if you 
have the lengths of the other two. Figure 5-4 shows two right triangles that are 
each missing one side’s measure.

In the left triangle in Figure 5-4, the measure of the hypotenuse is missing. Use 
the Pythagorean Theorem to solve for the missing length.

1. Replace the variables in the theorem with the values of the known sides.

48 142 2 2c

TABLE 5-1	 Common Pythagorean Triples
Triple Triple × 2 Triple × 3 Triple × 4

3-4-5 6-8-10 9-12-15 12-16-20

5-12-13 10-24-26 15-36-39 20-48-52

7-24-25 14-48-50 21-72-75 28-96-100

9-40-41 18-80-82 27-120-123 36-160-164

11-60-61 22-120-122 33-180-183 44-240-244
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2. Square the measures and add them together.

2 304 196

2 500

2 500

50

2

2

2

,

,

,

c

c

c

c

The length of the missing side, c, which is the hypotenuse, is 50.

The triangle on the right in Figure 5-4 is missing the bottom length, but you do 
have the length of the hypotenuse. It doesn’t matter whether you call the missing 
length a or b.

1. Replace the variables in the theorem with the values of the known sides.

33 1832 2 2b

2. Square the measures, and subtract 1,089 from each side.
1 089 33 489

32 400

2

2

, ,

,

b

b

3. Find the square root of each side.

b

b

2 32 400

180

,

The length of the missing side is 180 units. That’s not much shorter than the 
hypotenuse, but it still shows that the hypotenuse has the longest measure.

FIGURE 5-4: 
Solving for the 
missing sides.
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Finding the distance across a pond
Trigonometry is very handy for finding distances that you can’t reach to actually 
measure. Imagine that you want to string a cable diagonally across a pond (so you 
can attach a bunch of fishing line and hooks). The diagonal distance is the hypot-
enuse of a right triangle. You can measure the other two sides along the shore. 
Figure 5-5 shows the pond and the imaginary right triangle you use to figure out 
how long your cable needs to be.

CREATING COOPERATIVE TRIPLES
Some of the more popular Pythagorean triples keep cropping up in discussions of the 
Pythagorean Theorem, and you may be asking the question: “Is that all he wrote?” The 
wonderful answer to that question is: “Absolutely not.” The triples go on forever and 
ever. And a very nice way of creating your own set of triples is to follow these steps:

1. Choose two odd numbers, x and y, where x is bigger than y.

2. Multiply the two numbers together to get the first number in your triple.

3. Square the two numbers, subtract the smaller square from the larger, then 
divide the difference by 2. That’s your second number.

4. Square the two numbers, add the two squares together, then divide the sum 
by 2. That’s your third number.

For example, if you choose the odd numbers 9 and 5, your first number in the triple is 

9 5 45. Your second number is 81 25
2

56
2

28. And your last number in the triple 

is 81 25
2

106
2

53. Need to check? Is 45 28 532 2 2?

Last time I looked, 2 025 784 2 809, , . Go ahead. Use your calculator. And, because 
you can choose from an infinite number of odd numbers, you can create an infinite 
number of “nice” triples.

FIGURE 5-5: 
Finding  

the distance 
across a pond.
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The two sides of the triangle that you can measure, the length and the width of the 
pond, are 40 feet and 96 feet. These are the two legs of a right triangle. Use the 
Pythagorean Theorem to solve for the hypotenuse, which is the diagonal distance 
across the pond.

1. Replace the variables in the theorem with the values of the known sides.

40 962 2 2c

2. Square the measures, and add them together.
1 600 9 216

10 816

2

2

, ,

,

c

c

3. Find the square root of the sum.

10 816

104

2, c

c

The diagonal across the pond is 104 feet. String up your cable, and go fishing!

In a League of Their Own:  
Special Right Triangles

Right triangles are handy little structures. The relationship between the lengths of 
the sides helps you measure lengths that you can’t reach. And just when you think 
that math can’t get any better, along come two triangles that are the cat’s meow 
(see Figure 5-6). One of them is an isosceles right triangle. The two legs are the 
same, and the hypotenuse is always a multiple of the length of a leg. The other 
special right triangle, called 30-60-90, has one side half as long as the other. 
These two triangles are very useful, because the angle measures in them are some 
of the most popular, and the side measures are used in trig functions.

30-60-90 right triangles
A 30-60-90 right triangle has angles measuring just what the name says. The two 
acute, complementary angles are 30 and 60 degrees. These triangles are great to 
work with because the angle measures, all being multiples of 30, have a pattern, 
and so do the measures of the sides. Oh, yes, the Pythagorean Theorem still 
holds — you have that relationship between the squares of the sides. But a, b, and 
c are related in another way, too. In a 30-60-90 right triangle, if a is the shortest 
side, then the hypotenuse, the longest side, measures twice that, or 2a. You can 
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use 2a instead of the letter c. And the middle length is 3a, or about 1.7 times as 
long as the shortest side; this number replaces the letter b. The particularly nice 
part about this triangle is that you can write all three sides in terms of one vari-
able, a. Look at how these lengths fit into the Pythagorean Theorem:

a a a

a a a

2 2 2

2 2 2

3 2

3 4

Here’s a sample problem you can solve by taking advantage of the special rela-
tionships within a 30-60-90 right triangle: If the hypotenuse of a 30-60-90 right 
triangle is 8 units long, then how long are the other two sides?

1. Find the length of the shorter leg.

The hypotenuse is twice as long as the shorter leg, a. So 8 = 2a. Divide by 2, and 
you get a 4.

2. Find the length of the longer leg.

The longer leg is 3a, so multiply 3  times 4 to get 4 3 , or about 6.9 units.

Isosceles right triangles
The other special right triangle is the isosceles right triangle, or the 45-45-90 right 
triangle. The two acute angles are equal, making the two legs opposite them equal, 
too. What’s more, the lengths of those two legs have a special relationship with 
the hypotenuse (in addition to the one in the Pythagorean Theorem, of course).  
In an isosceles right triangle, if the legs are each a units in length, then the  

hypotenuse is 2a, or about 1.4 times as long as a leg.

FIGURE 5-6: 
A 30-60-90 right 
triangle and an 
isosceles right 

triangle.
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Now that you know how isosceles right triangles work, try your hand at this sam-
ple problem: If an isosceles right triangle has a hypotenuse that’s 16 units long, 
then how long are the legs?

1. Create an equation to solve.

The hypotenuse is 2a, where a is the length of the legs. You know that the 
hypotenuse is 16, so you can solve the equation 2 16a  for the length of a.

2. Solve for a.

Divide each side by the radical to get

2
2

16
2

16
2

16
2

2
2

16 2
2

8 2

a

a

Each leg is about 11.3 units.

Getting the Applications Right
Using right triangles to solve everyday problems is something that you probably 
don’t do all that frequently. But here are some examples to encourage your use of 
these wonderful structures.

How tall is your house?
You and a friend have a contest going. You say that your house is taller than your 
friend’s. And, of course, there’s a disagreement. The winner will be treated to an 
ice cream sundae!

How do you measure the height of your houses if you don’t have a ladder or any 
measuring device that will go high enough? Here’s how. Get out your handy 
30-60-90 triangle. Lie on the ground far enough from your house so you can sight 
along the hypotenuse to the top of the house. Measure the distance from your 
triangle to the house and do the math! Look at Figure 5-7a.

Your 30-60-90 triangle has a measure of 6 inches, or 0.5 feet, along the side 
opposite the 30-degree angle. This means that the longer leg, lying along the 
ground, measures 0 5 3.  feet. You find the distance between the triangle and the 
base of the house directly below the peak of the roof; it’s 77 feet to the house.



CHAPTER 5  Tackling Right Triangles      87

Now to compute the height of the house. Using Figure 5-7b and the proportion:

triangle side 
triangle side 

height of house
 feet + tr

a
b 77 iiangle side b

Fill in the numbers and solve for the height of the house. Multiplying each side of 
the equation by the denominator under the h (for height), you get a wonderful 
problem to stick into your calculator!

0.5 feet
0.5  feet

height of house
 feet + 0.5  feet

0.5

3 77 3
0 5.

33 77 3
0 5

3 77 3
1
3 77 3

77 3
3

h

h

h

h

 + 0.5

0.5  + 0.5

 + 0.5

 + 0.5

.

Solving for h, you get h 44 96. , or your house is about 45 feet tall. Now, on to your 
friend’s house! 

Beachfront measure
You are considering purchasing a vacation home that sits right on the shore of a 
lake. The cost of the property depends a lot on how much beachfront you have. 
The realtor isn’t sure about that length yet, and you want to determine, right now, 
if this is going to be in your price range.

How do you measure this beachfront length if you can’t get onto the beach right 
now? It’s pretty wavy and you only have your good shoes on. But you do have tape 
measures and you can create a right triangle using the carpenter’s square in your 
trunk. Take a look at Figure 5-8.

FIGURE 5-7: 
Measuring  
the height  

of the house.
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You are able to determine the two endpoints of the property along the beach (and 
not get soaked). Then, with your carpenter’s square, you create a right triangle 
with its hypotenuse along the beachfront. The lengths of the two legs of the right 
triangle are 67 feet and 163 feet. How long is the beachfront?

Using the Pythagorean Theorem,

67 163

4 489 26 569

31 058

31 058

176 23

2 2 2

2

2

c

c

c

c

c

, ,

,

,

.

176 feet of beachfront is a lot of beachfront. Have fun!

FIGURE 5-8: 
Measuring the 

length of the 
beachfront 

property.
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IN THIS PART . . .

Define the basic trig functions using the lengths of the 
sides of a right triangle.

Determine the relationships between the trig 
cofunctions and their shared sides.

Extend your scope to angles greater than 90 degrees 
using the unit circle.

Investigate the ins and outs of the domains and ranges 
of the six trig functions.

Use reference angles to compute trig functions.

Apply trig functions to real-world problems.
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Chapter 6
Describing Trig Functions

By taking the lengths of the sides of right triangles or the chords of circles 
and creating ratios with those numbers and variables, our ancestors initi-
ated the birth of trigonometric functions. These functions are of infinite 

value, because they allow you to use the stars to navigate and to build bridges that 
won’t fall. If you’re not into navigating a boat or engineering, then you can use the 
trig functions at home to plan that new addition. And they’re a staple for students 
going into calculus.

You may be asking, “What is a function? What does it have to do with trigonom-
etry?” In mathematics, a function is a mechanism that takes a value you input 
into it and churns out an answer, called the output. A function is connected to 
rules involving mathematical operations or processes.

The six trig functions require one thing of you — inputting an angle measure — 
and then they output a number. These outputs are always real numbers, from 
infinitely small to infinitely large and everything in between. The results you get 
depend on which function you use. Although in earlier times, some of the function 
computations were rather tedious, today’s hand-held calculators, and even 
phones, make everything much easier.

IN THIS CHAPTER

 » Understanding the three basic trig 
functions

 » Building on the basics: The reciprocal 
functions

 » Recognizing the angles that give the 
cleanest trig results

 » Determining the exact values of 
functions
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Discovering How Trig Functions Work
The six trig functions are named sine, cosine, tangent, cosecant, secant, and 
cotangent. You more frequently see the names abbreviated to save time and space: 
sin, cos, tan, csc, sec, cot. Each function has a different working mechanism, but 
they all take the measure of an angle and output an answer.

A trig function is a rule that takes in the measure of an angle and puts out a real 
number. These output numbers come from the relationships between the mea-
sures of the sides of triangles. Each of the basic trig functions use those measures 
in different ways.

The name game: A right  
triangle’s three sides
A right triangle has two shorter sides, or legs, and the longest side, opposite the 
right angle, which is always called the hypotenuse. The two shorter sides have 
some other special designations, too, based on which acute angle of the triangle 
you happen to be working with at a particular time.

In reference to acute angle  (see Figure 6-1), the leg on the other side of the  
triangle from  is called the opposite side. That opposite side is never along one of 
the rays making up the angle. The other leg in the right triangle is then called the 
adjacent side. Adjacent means “next to,” and in the case of right triangles, the adja-
cent side helps form the acute angle along with the hypotenuse because it lies 
along one of the angle’s rays.

The six ratios: Relating the three sides
Each of the three sides of a right triangle — hypotenuse, opposite, and adjacent — 
has a respective length or measure. And those three lengths or measures form six 
different ratios. Each length is used four times — all getting equal credit — in the 
six functions. Check out Figure 6-2, which has sides of lengths 3, 4, and 5.

FIGURE 6-1: 
The acute angle  

determines the 
names of the 

right sides.
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The six different ratios that you can form with the numbers 3, 4, and 5 are 3
4

, 4
5

, 
3
5

, 4
3

, 5
4

, and 5
3

. These six fractions are the only ones you can make by using the 

three lengths of the sides. The ratios are special because they represent all the 
possible output values of the trig functions for the acute angles in that triangle. 
And even better, you can figure out the value of an unknown angle in a right tri-
angle just by creating one of these ratios and figuring out which angle has that trig 
function.

The sine function: Opposite  
over hypotenuse
When you’re using right triangles to define trig functions, the trig function sine, 
abbreviated sin, has input values that are angle measures and output values that 

you obtain from the ratio, opposite
hypotenuse

. Figure  6-2 (in the preceding section) 

FIGURE 6-2: 
A right triangle 

with sides  
of lengths 3, 4, 

and 5.

HOW FAR TO THE MOON?
Hipparchus was a Greek astronomer and mathematician who lived from about 190 to 
120 b.c. Also known as Hipparchus of Nicaea, he did his celestial observations from 
Rhodes between 146 and 127 b.c. He was the first astronomer to compile a catalog of 
850 stars, well before telescopes were available, and his computations were remarkably 
accurate. He obtained measurements of the length of the year and the distance to the 
Moon. To measure the distance to the Moon, Hipparchus and a colleague each 
observed a solar eclipse — a total eclipse at Syene and a partial eclipse at Alexandria, 
where four-fifths of the Sun was blocked. Using angles and the distance between the 
two cities, thus creating an imaginary triangle with the lines of sight from those two cit-
ies to the Moon, he was able to make his calculations. The trig ratios he used were on a 
big scale, but it doesn’t matter how large the triangle is, because the trig functions for 
the angles don’t change with the triangle’s size. Hipparchus is commemorated by having 
a Moon crater, a Mars crater, and an asteroid named after him.
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shows two different acute angles, and each has a different value for the function 

sine. The two values are sin 3
5

 and sin 4
5

.

The sine is always the measure of the opposite side divided by the measure of the 
hypotenuse. Because the hypotenuse is always the longest side, the number on the 
bottom of the ratio will always be larger than that on the top. For this reason,  
the output of the sine function will always be a proper fraction — it’ll never be a 
number equal to or greater than 1 unless the opposite side is equal in length to the 
hypotenuse (which only happens when your triangle is a single segment or you’re 
working with circles — see Chapter 7).

Even if you don’t know both lengths required for the sine function, you can calcu-
late the sine if you know any two of the three lengths of a triangle’s sides. For 
example, to find the sine of angle  in a right triangle whose hypotenuse is 10 
inches long and adjacent side is 8 inches long, follow these steps:

1. Find the length of the side opposite .

Use the Pythagorean Theorem, a b c2 2 2 (see Chapter 5), letting a be 8 and c 
be 10. When you input the numbers and solve for b, you get

8 10

64 100

36

6

2 2 2

2

2

b

b

b

b

So, the opposite side is 6 inches long.

2. Use the ratio for sine, opposite over hypotenuse.

sin opposite
hypotenuse

6
10

3
5

The cosine function: Adjacent  
over hypotenuse
The trig function cosine, abbreviated cos, works by forming this ratio: adjacent

hypotenuse
.  

Take another look at Figure 6-2, and you see that the cosines of the two angles are 

cos 4
5

 and cos 3
5

. The situation with the ratios is the same as with the sine 

function — the values are going to be less than or equal to 1 (the latter only when 
your triangle is a single segment or when dealing with circles), never greater  
than 1, because the hypotenuse is the denominator.
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The two ratios for the sine and cosine of an acute angle in a right triangle are the 
same as those for the cosine and sine of the other acute angle in the triangle; the 
function values are just reversed. This property is true of the sines and cosines of 
complementary angles in any right triangle (meaning those angles that add up to 90 
degrees).

If  and  are the two acute angles of a right triangle, then sin cos  and  
cos sin .

Now for an example. To find the cosine of angle  in a right triangle if the two legs 
are each 6  feet in length, follow these steps:

1. Find the length of the hypotenuse.

Using the Pythagorean Theorem, a b c2 2 2 (see Chapter 5), and replacing 
both a and b with the given measure, solve for c.

6 6

6 6

12

12

2 3

2 2 2

2

2

c

c

c

c

c

The hypotenuse is 2 3  feet long.

2. Use the ratio for cosine, adjacent over hypotenuse, to find the answer.

cos adjacent
hypotenuse

6
2 3

2 3
2 3

2
2

The tangent function: Opposite  
over adjacent
A third trig function, tangent, is abbreviated tan. This function uses just the mea-
sures of the two legs and doesn’t use the hypotenuse at all. The tangent is described 

with this ratio: opposite
adjacent

. No restriction or rule on the respective sizes of these 

sides exists — the opposite side can be larger, or the adjacent side can be larger. 
So, the tangent ratio produces numbers that are very large, very small, and every-
thing in between. If you hike on back to Figure 6-2, you see that the tangents are 

tan 3
4

 and tan 4
3

. And in case you’re wondering whether the two tangents  

of the acute angles are always reciprocals (flips) of one another, the answer is yes. 
The trig identities in Chapter 10 explain this phenomenon.
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The following example shows you how to find the values of the tangent for each 
of the acute angles in a right triangle where the hypotenuse is 25 inches and one 
leg is 7 inches.

1. Find the measure of the missing leg.

Using the Pythagorean Theorem, a b c2 2 2 (see Chapter 5), putting in 7 for a 
and 25 for c, and solving for the missing value, b, you find that the unknown 
length is 24 inches:

7 25

25 7

625 49

576

24

2 2 2

2 2 2

2

2

b

b

b

b

b

2. Select names for the acute angles in order to determine the opposite and 
adjacent designations.

The easiest way to do this is to draw a picture and label it — take a look at 
Figure 6-3.

The two acute angles are named with the Greek letters  and . The side 
opposite  measures 7 inches, and the side adjacent to it measures 24 inches. 
For angle , the opposite side measures 24 inches, and the adjacent side 
measures 7 inches.

3. Form the two tangent ratios by using the values 7, 24, and 25.

tan

tan

opposite
adjacent
opposite
adjacent

7
24
24
7

FIGURE 6-3: 
Labeling a right 

triangle and 
naming the  

acute angles.
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All together, now: Using one function  
to solve for another
Sometimes you have to solve for a trig function in terms of another function.

In the following example, the cosine of angle  is 12
13

. What are the values of the 
sine and tangent of ?

1. Identify the sides given by the cosine function.

The cosine ratio is adjacent
hypotenuse

. Using the given ratio, the adjacent side 

measures 12 units, and the hypotenuse measures 13 units.

2. Find the measure of the missing side.

Using the Pythagorean Theorem, you find that the missing side (the opposite 
side) measures 5 units.

12 13

13 12

169 144

25

5

2 2 3

2 2 2

2

2

b

b

b

b

b

3. Determine the values of the sine and tangent.

The sine is opposite
hypotenuse

 and the tangent is opposite
adjacent

, so sin 5
13

 

and tan 5
12

.

Similar right triangles within  
a right triangle
Take a right triangle and draw an altitude to the hypotenuse. What do you get? You 
are the proud recipient of three similar triangles — three triangles in decreasing 
sizes, all with the same three angle measures. Take a look at Figure 6-4a for an 
example of this situation. The acute angles are labeled  and  to help you find the 
similar features.

The angles  and  are complementary and appear in each of the three triangles. 
Triangle ABC is similar to triangle CBG, and both are similar to triangle ACG. I was 
careful to give these names with the first letter at the vertex with angle , the 
second letter at the vertex with angle , and the last letter at the right angle.
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Carefully naming the triangles allows you to write the trig functions of the three 
different triangles in equations that compare their values. Refer to Figure 6-4b. 
For example, because ABC  ~ CBG ~ ACG, you can write equations involving 
ratios of the corresponding sides in the triangles. If you write the ratios of the 
longer legs divided by the shorter legs, you have:

a
b

f
d

d
e

Now look at the tangents of the angle  in each triangle. In ABC , tan a
b

. In 

CBG, tan f
d

. In ACG, tan d
e

. These and other relationships allow for sev-

eral equations such as the means and extremes rules.

 » d e f2 : The square of the altitude is equal to the product of the two parts 
of the hypotenuse.

 » b e c2 : The square of a leg is equal to the product of the part of the 
hypotenuse adjacent to the leg and the hypotenuse.

Taking It a Step Further:  
Reciprocal Functions

The three most basic trig functions (sine, cosine, and tangent) use the three sides 
of a triangle, taking two at a time and making ratios/fractions of them. But three 
more trig functions exist, and these are called the reciprocal functions because they 
use the reciprocals, or flips, of the original three functions. If these last three func-
tions are just reciprocals of the first three, why are they even necessary? You could 

FIGURE 6-4: 
A right triangle 

with similar  
right triangles.
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probably live without them, but you’d eventually miss them when doing calcula-
tions and solving equations. Having an unknown variable in the numerator of a 
fraction when solving an equation is just nicer and more convenient than having 
one in the denominator, and these reciprocal functions make that situation pos-
sible. It’s nothing more than convenience, but I’m all for such luxury.

The cosecant function: Sine  
flipped upside down
The cosecant function, abbreviated csc, is the reciprocal of the sine function and 

thus uses this ratio: hypotenuse
opposite

. The hypotenuse of a right triangle is always the 

longest side, so the numerator of this fraction is always larger than the denomi-
nator. As a result, the cosecant function always produces values bigger than 1.

You can use the values in Figure 6-5 to determine the cosecants of the two acute 

angles: csc 13
12

 and csc 13
5

.

Suppose someone asks you to find the cosecant of angle  if you know that the 
hypotenuse is 1 unit long and that the right triangle is isosceles. Remember that 
an isosceles triangle has two congruent sides (flip back to Chapter 5 for a refresher). 

FIGURE 6-5: 
A right triangle 

with sides 5, 12, 
and 13.
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These two sides have to be the two legs, because the hypotenuse has to have the 
longest side. So, to find the cosecant:

1. Find the lengths of the two legs.

The Pythagorean Theorem says that a b c2 2 2, but because two sides are 
congruent, you can take out one variable and write the equation as 
a a c2 2 2. Put in 1 for c and solve for a.

2 1

1
2

1
2
1
2

2

2

a

a

a

a

The legs are both 1
2

 units long. You can leave the radical in the denominator 

and not worry about rationalizing, because you’re going to input the whole 
thing into the cosecant ratio, anyway, and things can change.

2. Use the length of the opposite side in the ratio for cosecant.

csc
hypotenuse

opposite
1
1
2

2

The secant function: Cosine on its head
The secant function, abbreviated sec, is the reciprocal of the cosine. So, its ratio is 
hypotenuse

adjacent
. Just as with the cosecant, the ratio of the sides is greater than 1. 

Using the triangle in Figure 6-5, the two secants are sec 13
5

 and sec 13
12

.

The cotangent function:  
Tangent, tails side up
The last reciprocal function is the cotangent, abbreviated cot. This function is the 
reciprocal of the tangent (hence, the co-). The ratio of the sides for the cotangent 

is adjacent
opposite

. So, if you look back at Figure 6-5, you see that the two cotangents are 

cot 5
12

 and cot 12
5

.
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The ratio for the cotangent is just that ratio, not necessarily the lengths of the 
sides. You could reduce the fraction made by the lengths by dividing the numera-
tor and denominator by the same number.

Sometimes you know the value of the cotangent along with other information and 
have to solve for one or both of the sides. Try this example: What are the lengths 

of the legs of a right triangle if cot 11
60

 and the hypotenuse is 183 inches long?

1. Write the adjacent and opposite sides as multiples of the same number, 
m, and put them in the Pythagorean Theorem with the hypotenuse.

11 60 1832 2 2m m

2. Simplify the equation and solve for m.

( ) ( )

, ,

, ,

,

11 60 183

121 3 600 33 489

3 721 33 489

33

2 2 2

2 2

2

2

m m

m m

m

m
4489

3721
9

3

2m

m

3. Use the value of m to find the lengths of the two legs.

Because you know that m = 3, you know that the adjacent side is 11m = 11(3) = 33, 
and the opposite side is 60m = 60(3) = 180. The three sides of the right triangle are 
33, 180, and 183. You can double-check your results by plugging these three num-
bers into the Pythagorean Theorem and making sure the theorem holds true.

Angling In on Your Favorites
You may have a favorite television show, dessert, or color. Usually, however, a 
favorite angle isn’t near the top of anyone’s list. But a favorite angle isn’t really 
out of line in the scheme of things. My favorite angle is a 30-degree angle — 
there’s just something so acute about it.

Identifying the most popular angles
The most common or popular angles are those with measures that are multiples 
of 15 degrees. Topping the list are 30, 60, and 90 degrees. Another favorite is  
45 degrees. The reason that these angles are favorites is because they all divide 
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360 degrees evenly. These exact divisions result in nicer-than-usual values for 
the different trig functions of the angles.

One way to capitalize even more on the four main angles — 30, 45, 60, and 90 — 
is to look at their multiples that go up to 360 degrees. The trig functions of the 
first four basic angles and the trig functions of their multiples are related (see 
Chapter 8). The list of all-time favorites includes multiples of 30 degrees (30, 60, 
90, 120, 150, 180, 210, 240, 270, 300, and 330) and some multiples of 15 degrees 
that are between them: 45, 135, 225, and 315. All these multiples split the four 
quadrants the first time around. A 0-degree angle is also highly favored. A mea-
sure of 0 degrees is technically a multiple of any of these measures, and you need 
it because it’s the starting point.

Determining the exact values of functions
Even though a scientific calculator gives you the values of the trig functions of any 
angle, not just your favorite angles, the values it shows you for most of those 
angles are just estimates. For example, the exact value of the sine of 60 degrees  

is 3
2

. However, because radicals of numbers that aren’t perfect squares are 

 irrational and have an endless decimal value, a calculator carries that value out to 
a certain number of decimal places and then rounds it off. In this case, 

3
2

0 8660254038. . This decimal has many more places than you usually need — 

normally, three or four decimal places is enough.

In trig, you frequently use the exact values of the most favorite angles because 
they give better results in computations and applications, so memorizing those 
exact values is a good idea.

The process for constructing a table of trig function values, which I explain in this 
section, is easy to remember, so you can create one quickly when you need to — 
either on paper or in your head.

A quick table for the three basic trig functions
The angles used most often in trig have trig functions with convenient exact val-
ues. Other angles don’t cooperate anywhere near as nicely as these popular 
ones do.

A quick, easy way to memorize the exact trig-function values of the most common 
angles is to construct a table, starting with the sine function and working with a 
pattern of fractions and radicals. Create a table with the top row listing the angles, 
as shown in Figure 6-6. The first function, in the next row, is sine.
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The entries following sin  in the second row are the fractions and radicals with 
the following pattern:

 » Each fraction has a denominator of 2.

 » The numerators of the fractions are radicals with 0, 1, 2, 3, and 4 under them, 
in that order, as shown in Figure 6-7.

Next, simplify the fractions that can be simplified so the table becomes what you 
see in Figure 6-8:

0
2

0 1
2

1
2

2
2

2
2

3
2

3
2

4
2

1, , , ,

The next row, for the cosine, is just the sine’s row in reverse order, as Figure 6-9 
shows. This happens because you have the angles and their complements in 
reverse order, too.

FIGURE 6-6: 
Constructing a 
table of exact 

values.

FIGURE 6-7: 
Creating entries 

for the second 
row of the table 
of exact values.

FIGURE 6-8: 
The first row of 

the table with 
simplified values.

FIGURE 6-9: 
Adding the 
cosine row.
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The next row is for the tangent. In a right triangle, you find the tangent of an 

acute angle with the ratio opposite
adjacent

 (refer to the section, “The tangent function: 

Opposite over adjacent,” earlier in this chapter). You get the same ratio when you 
divide sine by cosine. Here’s how it works:

sine
cosine

opposite
hypotenuse

adjacent
hypotenuse

opposite
hyppotenuse

hypotenuse
adjacent

opposite
adjacent

·

Because you already know the values for sine and cosine, you can use this property 
(tangent equals sine divided by cosine) to get the tangent values for the table:

 » For the tangent of 0 degrees, 0
1

0.

 » The tangent of 30 degrees is 

1
2
3
2

1
2

2
3

1
3

3
3

.

 » The tangent of 45 degrees is 

2
2
2
2

1.

 » The tangent of 60 degrees is 

3
2
1
2

3
2

2
1

3
1

3 .

 » The tangent of 90 degrees is 1
0

, which is undefined. So, the tangent of 

90 degrees doesn’t have a value — it simply doesn’t exist.

See Figure 6-10 for the completed table with the tangent row.

FIGURE 6-10: 
The tangent row 

comes next.
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A quick table for the three  
reciprocal trig functions
If you read the section, “Taking It a Step Further: Reciprocal Functions,” earlier 
in this chapter, you know that the reciprocal functions have values that are recip-
rocals, or flips, of the values for their respective functions. The reciprocal of sine is 
cosecant, so each function value for cosecant is the reciprocal of sine’s. The same 
goes for the other two reciprocal functions. The table in Figure 6-11 shows the 
reciprocal in each case, in their simplified forms. Whenever you see undefined, it’s 
because the original function value was 0, and the reciprocal of 0 has no value.

Refer to Chapter 7 for the trig values of angles measuring more than 90 degrees. 
These values are developed using the chart created here.

Building a Shorter Route
You live in the town of Appleton, which is at the corner of two perpendicular 
roads. North of you by 21 miles is Berryville, and east of you by 72 miles is Cherry 
Creek. And, wonder of wonders, the distance from Berryville to Cherry Creek is  
75 miles, forming a right triangle! Take a look at Figure 6-12.

FIGURE 6-11: 
The reciprocal 

functions.

FIGURE 6-12: 
Driving to the 

restaurant.
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Your favorite restaurant is located 6 miles east of Berryville, along that main road. 
So you drive 21 miles north plus 6 miles, equaling 27 miles, to have their wonderful 
food. But there are now plans to build a new road from Appleton to the road 
between Berryville and Cherry Creek. It will be the shortest distance possible, 
which, as you already know, will be a road perpendicular to that hypotenuse. Once 
the road is built, how many miles will you have to travel to get to that restaurant?

By drawing that perpendicular to the hypotenuse, you find that three similar tri-
angles are created, so you can write proportions using the corresponding sides.

First, find the distance from Appleton to the hypotenuse. Use the sides of the 
smallest triangle and the largest triangle formed by the current roads.

longer leg
hypotenuse

AD
AB

AC
BC

AD
21

72
75

Simplifying and solving for AD:

AD AD AD AD
AD

21
72
75 21

72

75 21
21 24

25
21

21
21 24

25
21

24

25 20 16.

The perpendicular road is 20.16 miles long. Now to find the distance from  
Berryville to the new intersection — the length of road you don’t need to travel 
anymore. Using the sides of the smallest triangle and the largest triangle formed 
by the current roads:

shortest side
hypotenuse

BD
AB

AB
BC

BD
21

21
75

Simplifying and solving for BD:

BD BD BD BD
BD

21
21
75 21

21

75 21
21 7

25
21

21
21 7

25
21 5

7

25 .888

Because the distance from BD is 5.88 miles, that just leaves the original 6 miles 
minus that distance: 6 5 88 0 12. .  mile. Add that onto the length of the new road, 
and you now have to travel just 20 16 0 12. .  = 20.28 miles to get to your favorite 
eating place. This saves you almost 7 miles!
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Chapter 7
Relating Triangles to 
Circular Functions

One of the ways that mathematicians first defined the trig functions was by 
using ratios formed from the measures of the sides of right triangles (see 
Chapter 6). Right triangles and the measures of their sides are convenient 

and easy to construct. This fact led to a sort of natural development of the trig 
functions, and it proved to be most useful because it allowed engineers, astrono-
mers, and mathematicians to make accurate calculations of the heights of tall 
objects, areas of large expanses, and predictions of eclipses and other astronomi-
cal phenomena. But, of course, they couldn’t stop there. The world of trigonom-
etry and its applications opened up even more when they expanded the trig 
functions and properties to angles of any measure — positive and negative — not 
just those limited to a right triangle. This extension of the angles allowed them to 
calculate the areas of triangles containing obtuse angles and to conduct naviga-
tional plots. The best place to begin describing these new function values and 
comparing them with the old is with the most basic of all circles — the unit circle.

IN THIS CHAPTER

 » Tracing the unit circle

 » Determining coordinates of special 
angles

 » Labeling angles with degrees and 
radians
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Getting Acquainted with the Unit Circle
The unit circle is a circle with its center at the origin of the coordinate plane and 
with a radius of 1 unit. Any circle with its center at the origin has the equation 
x y r2 2 2, where r is the radius of the circle. In the case of a unit circle, the equa-
tion is x y2 2 1. This equation shows that the points lying on the unit circle have 
to have coordinates (x- and y-values) that, when you square each of them and 
then add those values together, equal 1. The coordinates for the points lying on the 
unit circle and also on the axes are (1,0), ( ),1 0 , (0,1), and ( ),0 1 . These four points 
(called intercepts) are shown in Figure 7-1.

Placing points on the unit circle
The coordinates of the rest of the points on the unit circle aren’t as nice and neat 
as those you see in Figure  7-1. The others all have fractions or radicals  — or 

both — in them. For instance, the point 1
2

3
2

,  lies on the unit circle. Look at 

how these coordinates work in the equation of the unit circle:

1
2

3
2

1
4

3
4

1
2 2

When you square each coordinate and add those values together, you get 1.

FIGURE 7-1: 
The four 

intercepts of the 
unit circle.
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Any combination of these two coordinates, whether the coordinates are positive or 
negative, gives you a different point on the unit circle. They all work because 
whether a number is positive or negative, its square is the same positive number. 
Here are some combinations of those two coordinates that satisfy the unit-circle 
equation:

1
2

3
2

,
1
2

3
2

,
1
2

3
2

,

3
2

1
2

,
3
2

1
2

,

Another pair of coordinates that works on the unit circle is 2
2

2
2

, , because the 
sum of the squares is equal to 1:

2
2

2
2

2
4

2
4

4
4

1
2 2

The numbers that continually crop up as coordinates of points on the unit circle 

are 0, 1
2

, 2
2

, 3
2

, and 1. If you read Chapter 6, they should look familiar — they’re 

the sine and cosine values of the most common acute-angle measures. Figure 7-2 
shows the locations of those points on the unit circle.

FIGURE 7-2: 
Points on the  

unit circle.
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The points on the unit circle shown in Figure 7-2 are frequently used in trigo-
nometry and other math applications, but they aren’t the only points on that  
circle. Every circle has an infinite number of points with all sorts of interesting 
coordinates — even more interesting than those already shown. If you’re looking 
for the coordinates of some other point on the unit circle, you can just pick some 
number between 1 and 1 to be the x- or the y-value and then solve for the other 
value. I describe this method for finding the other part of a coordinate in the next 
section. All these other coordinates come into play when you’re drawing a ray that 
starts at the unit circle’s center and want to find the trig functions of the angle 
formed by that ray and the positive x-axis.

BABYLONIAN MATHEMATICS
The Babylonians were of an ancient culture that had a good deal of influence on the 
development of mathematics in many areas:

• They developed a system of written symbols. Way back in the day, the 
Babylonians developed a form of writing that was based on wedge-shaped symbols 
called cuneiform. Their work has been preserved in the clay tablets that they wrote 
on, but this way of writing was really cumbersome, so they couldn’t write very fast 
or for very long.

• They gave us the time of day. The Babylonians divided the day into 24 hours, 
each hour into 60 minutes, and each minute into 60 seconds. This division resulted 
in their base-60 counting system — called the hexasegimal system — which means 
that their number system was base 60 and had different characters for 1; 10; 60; 
600; 3,600; 36,000; and 216,000. Their system allowed them to easily write 
fractions.

• They beat Pythagoras to the punch. These ancients had a knowledge of trigo-
nometry and the Pythagorean Theorem 1,000 years before Pythagoras did; they 
just didn’t get the credit he did.

• They were neat freaks. Their methods for solving problems were very logical and 
systematic. They preferred orderly procedures based on tables and facts, which is 
probably why they knew about  and could approximate its value.

The Babylonians thought in terms of algebra and trigonometry, but you probably 
wouldn’t recognize their notes if you were to pick up a tablet or two to read what they 
discovered. You’ll find this book much more readable!
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Finding a missing coordinate
If you have the value of one of a point’s coordinates on the unit circle and need to 
find the other, you can substitute the known value into the unit-circle equation 
and solve for the missing value.

You can choose any number between 1 and 1, because that’s how far the unit 

circle extends along the x- and y-axes. For example, say 2
5

 is the x-coordinate of a 

point on the unit circle. You can find the y-coordinate like so:

1. Substitute the x-coordinate value into the unit-circle equation.

2
5

1
2

2y

2. Square the x-coordinate and subtract that value from each side.
4
25

1 4
25

21
25

12

2

y

y

3. Take the square root of each side.

y

y

2 21
25
21
5

Note that the y-coordinate can have two values, because the unit circle has two 
different points for every particular x-coordinate except those on the axes. Look at 
Figure 7-3a, and you can see how that happens. Figure 7-3b shows two points on 
the unit circle with the same y-coordinate. Given a particular y-coordinate, all but 
those special values have two x-coordinates.

Another example: Find the x-coordinate (or coordinates) if the y-coordinate 

is 7
25

.

1. Substitute the y-coordinate value into the unit-circle equation.

x 2
27

25
1
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2. Square the y-coordinate and subtract that value from each side.

x

x

2

2

49
625

1

1 49
625

576
625

3. Take the square root of each side.

x

x

2 576
625

24
25

As you can see, the x-coordinate here has two values, and the two points are 
24
25

7
25

,  and 24
25

7
25

, .

Sticking to rational coordinates
You may have noticed, in the last section, that one problem resulted in a coordi-
nate with a radical in it and the other didn’t. Radicals can’t be avoided (as you read 
in the news) when doing trig problems, but sometimes you just need to keep 
things rational. A rational number is a real number that can be written as a frac-
tion. And rational numbers have decimal values that behave — unlike the decimal 
values of radicals (irrational numbers). What I have for you here is a way of assur-
ing yourself that you’ll get only rational coordinates for a point on the unit circle. 
To do this, use the following formula, letting m be any rational number:

x y
m
m

m
m

, ,1
1

2
1

2

2 2

FIGURE 7-3: 
Two points on the 

unit circle for a 
particular 

x-coordinate and 
y-coordinate.
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Want to see the formula at work? First, I show you the formula starting with a 
nice, civilized rational number; let m 4.

1. Replace each m in the formula with 4.

1
1

2
1

1 4
1 4

2 4
1 4

2

2 2

2

2 2
m
m

m
m

, ,

2. Simplify.

1 16
1 16

8
1 16

15
17

8
17

, ,

Skeptical? Just check the coordinates in the equation for the unit circle.

15
17

8
17

225
289

64
289

289
289

1
2 2

And now, to really convince even the biggest skeptics, I choose m 2
3

.

1. Replace each m in the formula with 2
3

.

1
1

2
1

1 2
3

1 2
3

2 2
3

1 2
3

2

2 2

2

2 2
m
m

m
m

, ,

2. Simplify.

1 4
9

1 4
9

4
3

1 4
9

5
9

13
9

4
3

13
9

5
13

12, , ,
113

And, of course, this point checks, too.

I’m going to let you in on a little secret: This formula is based on using Pythago-
rean triples in the numerators and denominators of the fractions. There’s a bit 
more to it — creating the formula using a slope of a line through an intercept of 
the unit circle — but you don’t need all that to take advantage of the convenience 
of the numbers produced by the formula.
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Going Full Circle with the Angles
The unit circle is a platform for describing all the possible angle measures from 0 
to 360 degrees, plus all the negatives of those angles, plus all the multiples of  
the positive and negative angles from negative infinity to positive infinity.  
In Chapter  3, I discuss these co-terminal angles. Here, you’re taking on their 
measures in terms of the unit circle. In other words, the unit circle shows you all 
the angles that exist. Because a right triangle can only measure angles of  
90 degrees or less, the circle allows for a much broader range.

Staying positive
The positive angles on the unit circle are measured with the initial side on the 
positive x-axis and the terminal side moving counterclockwise around the origin 
(to figure out which side is which, see Chapter 3). Figure 7-4 shows some positive 
angles labeled in both degrees and radians.

In Figure 7-4, notice that the terminal sides of the pairs of angles — measuring 
30 degrees and 210 degrees, measuring 60 degrees and 240 degrees, and so on — 
form straight lines. This is to be expected because the angle measures are  
180 degrees apart, and a straight angle measures 180 degrees. You see the signifi-
cance of this fact when you deal with the trig functions for these angles in 
Chapter 8.

FIGURE 7-4: 
Several positive 

angles on the  
unit circle.



CHAPTER 7  Relating Triangles to Circular Functions      115

Being negative or multiplying your angles
Just when you thought that angles measuring up to 360 degrees or 2π radians was 
enough for anyone, you’re confronted with the reality that the basic angles can be 
written as negative values and even multiples of themselves. If you measure 
angles clockwise instead of counterclockwise, then the angles have negative mea-
sures: A 30-degree angle is the same as an angle measuring 330 degrees, because 

they have the same terminal side. Likewise, an angle of 5
3

 is the same as an angle 

of 
3

. For rules on how to change degree measure to radian measure, refer to 

Chapter 1.

But wait — you have even more ways to name an angle. By doing two (or more) 
complete rotations and adding or subtracting 360 degrees or a multiple of it before 
settling on the angle’s terminal side, you can get an infinite number of angle 
measures, both positive and negative, for the same basic angle. For example, an 
angle of 60 degrees has the same terminal side as that of a 420-degree angle and 
a 300-degree angle. Figure 7-5 shows many names for the same 60-degree angle 
in both degrees and radians.

Although this name-calling of angles may seem pointless at first, there’s more to 
it than arbitrarily using negatives or multiples of angles just to be difficult. The 
angles that are related to one another have trig functions that are also related, if 
not the same (more on that in Chapter 8).

FIGURE 7-5: 
You have many 

ways to name the 
same angle.
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Locating and computing reference angles
Each of the angles in a unit circle has a reference angle, which is always a positive 
acute angle (except for the angles that are already positive and acute). By identify-
ing the reference angle, you can determine the function values for that reference 
angle and, ultimately, the original angle. Usually, solving for the reference angle 
first is much easier than trying to determine a trig function for the original angle. 
The trig functions have values that repeat over and over; sometimes those values 
are positive, and sometimes they’re negative. Using a reference angle helps keep 
the number of different values to a minimum. You just assign the positive or neg-
ative sign after determining a numerical value for the function from the reference 
angle.

You determine a reference angle by looking at the terminal side of the angle you’re 
working with and its relation with the positive or negative x-axis (depending on 
which quadrant the terminal side is in). The following guidelines tell you how to 
measure the reference angle when you’re given the terminal side of the angle.

 » Quadrant I (QI): The reference angle is the same as the original angle.

 » Quadrant II (QII): The reference angle is the measure from the terminal side 
down to the negative x-axis.

 » Quadrant III (QIII): The reference angle is the measure from the negative 
x-axis down to the terminal side.

 » Quadrant IV (QIV): The reference angle is the measure from the terminal side 
up to the positive x-axis.

Figure 7-6a shows the positions of the reference angles in the four quadrants. And 
Figure 7-6b introduces you to some examples of angles and their corresponding 
reference angles.

As with all angles, you measure reference angles in degrees or radians. I have to 
admit that I sometimes prefer to work in degrees and will convert a radian mea-
sure to do these computations. Whichever method you choose is fine — it’s all a 
matter of taste.
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Figuring the angle measure in degrees
To compute the measure (in degrees) of the reference angle for any given angle , 
use the rules in Table 7-1.

Using Table 7-1, find the reference angle for 200 degrees:

1. Determine the quadrant in which the terminal side lies.

A 200-degree angle is between 180 and 270 degrees, so the terminal side is  
in QIII.

2. Do the operation indicated for that quadrant.

Subtract 180 degrees from the angle, which is 200 degrees. You find that 
200 180 20, so the reference angle is 20 degrees.

FIGURE 7-6: 
You measure 

reference angles 
by using the 

x-axis.

TABLE 7-1	 Finding Reference Angles in Degrees
Quadrant Measure of Angle Measure of Reference Angle

I 0 90

II 90 180 180

III 180 270 180

IV 270 360 360
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Sometimes angle measures don’t fit neatly in the ranges shown in Table 7-1. For 
example, you may need to find the reference angle for a negative angle or a mul-
tiple of an angle.

To find the reference angle for 340 degrees, follow these steps:

1. Determine the quadrant in which the terminal side lies.

A 340-degree angle is equivalent to a 20-degree angle. (You get the positive 
angle measure by adding 360, or one full revolution around the origin, to the 
negative measure.) A 20-degree angle has its terminal side in QI.

2. Do the operation indicated for that quadrant.

Angles in the first quadrant are their own reference angle, so the reference 
angle is 20 degrees.

Figuring the angle measure in radians
To compute the measure (in radians) of the reference angle for any given angle , 
use the rules in Table 7-2.

For example, to find the reference angle for 15
16

, follow these steps:

1. Determine the quadrant in which the terminal side lies.

An angle measuring 15
16

 has its terminal side in QII, which you know because 
15
16

 is slightly less than 1, making the angle slightly less than .

2. Do the operation indicated for that quadrant.

Subtract 15
16

 from . When you do so, you get 15
16

16
16

15
16 16

,  

so the reference angle is 
16

.

TABLE 7-2	 Finding Reference Angles in Radians
Quadrant Measure of Angle Measure of Reference Angle

I 0
2

to 

II
2

 to

III  to
3
2

IV 3
2

2 to 2
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Navigating with Circular Measures
Circles are found here, there, and everywhere. Circles are one of our more useful 
structures. Silos and fuel storage containers are circular in shape. Traffic round-
abouts are circular. Many artistic renderings contain circular figures. They have 
been and continue to be valuable to our daily lives.

Introducing the compass
Compasses have been around for a long time. The first compasses were probably 
developed about 2,000 years ago. It’s also thought that Chinese scientists came up 
with the magnetized needles in compasses in the 11th or 12th centuries. Nowadays 
compasses are rather sophisticated, but the basics from those earliest users are 
still there: a circle, degree measures, and a needle pointing north.

Figure  7-7 shows a compass with its magnetic north-south needle pointing 
upward and a directional needle pointing to the left. The directional needle in this 
figure provides you with the bearing of 285 degrees. If you’re going to head in that 
direction, though, you’ll be turning to the northwest by 75 degrees.

When using a modern compass, that ring of angle measures around the outside of 
the circle is called the bezel. It can be rotated as you face in different directions.

FIGURE 7-7: 
Using a compass 

to navigate.
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For example, if you’re currently heading southeast with a bearing of 150 degrees 
and plan on turning to the left by 90 degrees, what will your new bearing be?

Just subtract 90 from 150, and your new bearing will be 60 degrees.

Cycling with a cyclic quadrilateral
A cyclic quadrilateral is a four-sided polygon that has each of its vertices on a single 
circle. Or, another way of saying it is that the quadrilateral has been circumscribed 
by a circle. Not all quadrilaterals can have circles going through all their vertices, 
but those that behave and cooperate mathematically do qualify. In Figure 7-8a, 
you see such a cooperative quadrilateral, named ABCD.

Say you want to measure the interior angles of a quadrilateral, but the figure 
you’re working from is too large to use a protractor. Fortunately, you do have 
access to the degree measures around the circle, starting on the right with  
0 degrees and winding counterclockwise around the circle. In Figure 7-8a, those 
measures are indicated.

So how does this help with the angle measures? In Chapter 1, I show you that an 
inscribed angle (an angle with its vertex on a circle and rays intersecting the cir-
cle) has a measure that’s half the measure of the arc of the circle that it intercepts. 
So all you need to do is find the lengths of the arcs, divide them by 2, and you’ve 
found the angle measures!

FIGURE 7-8: 
A circle goes 

through all the 
vertices of a 

quadrilateral.
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Angle BAD has its rays intersecting arc BD. That arc goes from 230 degrees to  
353 degrees. Find the difference between the two measures and divide by 2:

353 230
2

123
2

61 5.

Angle ADC has its rays intersecting arc AC (which includes the point B). This arc 
goes from 101 degrees to 311 degrees. Find the difference and divide by 2:

311 101
2

210
2

105

Angle DCB has its rays intersecting arc DB (which includes the point A). This arc 
goes from point D through point A to 0 degrees. Then it goes from 0 to 353 degrees. 
It would be easier just to find the length of the arc BD (which I did earlier) and 
subtract that length (which is 123) from 360 degrees. Then divide by 2:

360 123
2

237
2

118 5.

Angle CBA has its rays intersecting the arc AC (which includes the point D). Again, 
it’s easier to just find the length of the arc AC (which is 210) and subtract from  
360 degrees. Then divide by 2:

360 210
2

150
2

75

See Figure 7-8b for the inserted angle measures. And please note that they add up 
to 360 degrees minus the number of degrees in a quadrilateral!

61 5 105 118 5 75 360. .
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Chapter 8
Taking Trig Functions 
Global

The six basic trig functions all had humble beginnings with the right triangle 
and its angles. The unit circle opens up a whole new world for the input 
values into those functions. Because of the nature of trig functions — they 

repeat the same patterns over and over — the output values show up regularly. 
This repetition is a good thing; you recognize where in the pattern a particular 
input belongs and then assign the output. Life is good.

Defining Trig Functions for All Angles
So many angles are used in trigonometry and other math areas, and the majority 
of those angles are multiples of 30 and 45 degrees. So, having a trick up your 
sleeve that lets you quickly access the function values of this frequent-flier list of 
angles makes perfect sense. All you need to know are the values of the trig func-
tions for 0-, 30-, 45-, 60-, and 90-degree angles in order to determine all the trig 
functions of all the angles, positive or negative, that are multiples of 30 or  
45 degrees (these are the two basic, foundational angles). Determining the 

IN THIS CHAPTER

 » Assigning trig function values from 
the unit circle

 » Using reference angles and terminal 
sides

 » Using coordinates to calculate trig 
functions

 » Defining trig-function domains and 
ranges
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function values for a particular angle that is a multiple of 30 or 45 degrees is a 
three-step process: (1) Find the measure of the angle’s reference angle; (2) Assign 
the correct numerical value; and (3) Determine whether the function value is pos-
itive or negative.

Putting reference angles to use
The first step to finding the function value of one of the angles that’s a multiple of 
30 or 45 degrees is to determine which is the reference angle. You want to know 
which of the angles from the first quadrant — 0, 30, 45, 60, or 90 degrees —  
created your angle (it’s a multiple of one of these angles). You can use the function 
value of that angle and then figure out the sign (see the next section). Use Table 7-1 
or Table 7-2 (in Chapter 7) to find the reference angle.

All angles with a 30-degree reference angle have trig functions whose absolute 
values are the same as those of the 30-degree angle. The sines of 30, 150, 210, and 

330 degrees, for example, are all either 1
2

 or 1
2

. Likewise, using a 45-degree angle 

as a reference angle, the cosines of 45, 135, 225, and 315 degrees, for example, are 

all 2
2

 or 2
2

.

Labeling the optimists and pessimists
The function values for the sines of 30, 150, 210, and 330 degrees are 1

2
, 1

2
, 1

2
, and 

1
2

, respectively. All these multiples of 30 degrees have an absolute value of 1
2

 (as 

I explain in the preceding section). The following rule and Figure 8-1 help you 
determine whether a trig-function value is positive or negative. First, note that 
each quadrant in the figure is labeled with a letter. The letters aren’t random; they 
stand for trig functions.

Reading around the quadrants, starting with QI and going counterclockwise, the 
rule goes like this: If the terminal side of the angle is in the quadrant with letter

 » A — All functions are positive.

 » S — Sine and its reciprocal, cosecant, are positive. Tangent, cotangent, cosine, 
and secant are negative.

 » T — Tangent and its reciprocal, cotangent, are positive. Sine, cosecant, cosine, 
and secant are negative.

 » C — Cosine and its reciprocal, secant, are positive. Sine, cosecant, tangent, and 
cotangent are negative.
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My trig teacher, Dr. Johnson, shared with the class a great way to remember the 
rule involving the signs of the functions using the A, S, T, C lettering: “All Stu-
dents Take Calculus.” (And so I did!) But if math is already giving you nightmares, 
maybe you’d prefer “Any Snake Teases Chickens” or “Apple Sauce Turns Colors.” 
Make up your own! Have at it!

Combining all the rules
Using the rules for reference angles, the values of the functions of certain acute 
angles (see Chapter 6), and the rule for the signs of the functions, you can deter-
mine the trig functions for any angles found on the unit circle — any that are 
graphed in standard position (meaning the vertex of the angle is at the origin, and 
the initial side lies along the positive x-axis). Figure 8-2 combines information 
from this chapter and Chapter 7 to give you the tools you need to determine trig 
functions.

Now, armed with all the necessary information, find the tangent of 300 degrees.

1. Find the reference angle.

Using the top chart in Figure 8-2, you can see that a 300-degree angle has 
its terminal side in the fourth quadrant, so you find the reference angle by 
subtracting 300 from 360. Therefore, the measure of the reference angle 
is 60 degrees.

2. Find the numerical value of the tangent.

Using the bottom chart in Figure 8-2, you see that the numerical value of the 
tangent of 60 degrees is 3 .

FIGURE 8-1: 
Assigning positive 

and negative 
functions by 

quadrant.
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3. Find the sign of the tangent.

Because a 300-degree angle is in the fourth quadrant, and angles in that 
quadrant have negative tangents (refer to Figure 8-1 in the preceding section), 
the tangent of 300 degrees is 3.

To try your hand at working with radians, find the cosecant of 7
6

.

1. Find the reference angle.

To use the top chart in Figure 8-2, you need to determine the degree equiva-

lence for an angle measuring 7
6

. In Chapter 4, you find the formula for 

converting from radians to degrees. Using the formula in this case, you get that 
7
6

 is equivalent to 210 degrees. This angle is in the third quadrant, so, going 

back to radians, you find the reference angle by subtracting  from 7
6

, 

resulting in 7
6 6

.

2. Find the numerical value of the cosecant.

In the bottom chart of Figure 8-2, the cosecant doesn’t appear. However, 
the reciprocal of the cosecant is sine. So find the value of the sine, and use 

its reciprocal. The sine of 
6

 is 1
2

, which means that the cosecant of 
6

 is 2 

(the reciprocal).

3. Find the sign of the cosecant.

In the third quadrant, the cosecant of an angle is negative (refer to Figure 8-1 in 

the preceding section), so the cosecant of 7
6

 is –2.

FIGURE 8-2: 
Use these tables 
to find function 
values by using 

reference angles.
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Using Coordinates of Circles to  
Solve for Trig Functions

Another way to find the values of the trig functions for angles is to use the coor-
dinates of points on a circle that has its center at the origin. Letting the positive 
x-axis be the initial side of an angle, you can use the coordinates of the point 
where the terminal side intersects with the circle to determine the trig functions. 
Figure 8-3a shows a circle with a radius of r that has an angle drawn in standard 
position.

The equation of a circle is x y r2 2 2 (flip back to Chapter 2 for a refresher). Based 
on this equation and the coordinates of the point (x,y), where the terminal side of 
the angle intersects the circle, the six trig functions for angle  are defined as 
follows:

sin
y
r

csc r
y

cos x
r

sec r
x

tan
y
x

cot x
y

You can see where these definitions come from if you picture a right triangle 
formed by dropping a perpendicular segment from the point (x,y) to the x-axis. 
Figure 8-3b shows such a right triangle. Remember that the x-value is to the right 
(or left) of the origin, and the y-value is above (or below) the x-axis — and use 
those values as lengths of the triangle’s sides. Therefore, the side opposite angle 

 is y, the value of the y-coordinate. The adjacent side is x, the value of the 
x-coordinate.

Take note that for angles in the second quadrant, for example, the x-values are 
negative, and the y-values are positive. The radius, however, is always a positive 
number. With the x-values negative and the y-values positive, using the defini-
tions for the functions listed earlier in this section, you see that the sine and cose-
cant are positive, but the other functions are all negative, because they all have an 
x in their ratios. The signs of the trig functions all fall into line when you use this 
coordinate system, so there’s no need to worry about remembering the ASTC rule 
here. (For more on that rule and when to use it, see the section, “Labeling the 
optimists and pessimists,” earlier in this chapter.)
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Calculating with coordinates  
on the unit circle
Calculating trig functions of angles within a unit circle is easy as pie. Figure 8-4 
shows a unit circle, which has the equation x y2 2 1, along with some points on 
the circle and their coordinates.

FIGURE 8-4: 
Some points on 

the unit circle.

FIGURE 8-3: 
An angle drawn in 
standard position 

on a circle with 
radius r and 
coordinates 

indicated.
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Using the angles in Figure 8-4, find the tangent of .

1. Find the x- and y-coordinates of the point where the angle’s terminal side 
intersects with the circle.

The coordinates are x 3
2

 and y 1
2

. The radius is r 1.

2. Determine the ratio for the function and substitute in the values.

The ratio for the tangent is y
x

, so you find that

y
x

1
2
3
2

1
2

2
3

1
3

3
3

3
3

Next, using the angles in Figure 8-4, find the cosine of .

1. Find the x- and y-coordinates of the point where the terminal side of the 
angle intersects with the circle.

The coordinates are x 2
2

 and y 2
2

; the radius is r 1.

2. Determine the ratio for the function and substitute in the values.

The ratio for the cosine is x
r

, which means that you need only the x-coordinate, 

so x
r

2
2

1
2
2

.

Now, using the angles in Figure 8-4, find the cosecant of .

1. Find the x- and y-coordinates of the point where the terminal side of the 
angle intersects with the circle.

The coordinates are x 0 and y 1; the radius is r 1.

2. Determine the ratio for the function and substitute in the values.

The ratio for cosecant is r
y

, which means that you need only the y-coordinate, 

so r
y

1
1

1.

Calculating with coordinates  
on any circle at the origin
You don’t need a unit circle to use this coordinate business when determining the 
function values of angles graphed in standard position on a circle. You can use a 
circle with any radius, as long as the center is at the origin. The standard equation 
for a circle centered at the origin is x y r2 2 2.



130      PART 2  Trigonometric Functions

Using the angles in Figure 8-5, find the sine of .

1. Find the x- and y-coordinates of the point where the terminal side of the 
angle intersects with the circle.

The coordinates are x 5 and y 12.

2. Determine the radius of the circle.

The equation of the circle is x y r2 2 2. Replacing the x and y in this equation 
with 5 and 12, respectively, you get 5 12 25 144 1692 2 2r . The 
square root of 169 is 13, so the radius is 13.

3. Determine the ratio for the function, and substitute in the values.

The ratio for sine is y
r

, which means that you need only the y-coordinate and 

radius, so y
r

12
13

.

Next, using the angles in Figure 8-5, find the cotangent of .

1. Find the x- and y-coordinates of the point where the terminal side of the 
angle intersects with the circle.

The coordinates are x 12 and y 5.

The cotangent function uses only the x- and y-coordinates, so you don’t need to 
solve for the radius.

FIGURE 8-5: 
Angles in 

standard position 
on a circle.
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2. Determine the ratio for the function, and substitute in the values.

The ratio of cotangent is x
y

, so x
y

12
5

12
5

.

Now, using the angles in Figure 8-5, find the secant of .

1. Find the x- and y-coordinates of the point where the terminal side of the 
angle intersects with the circle.

The coordinates are x 0 and y 13.

2. Determine the radius of the circle.

Per the first example in this section, the radius is 13.

3. Determine the ratio for the function, and substitute in the values.

The ratio for secant is r
x

, so you need only the x-coordinate; substituting in, 

you get r
x

13
0

. This answer is undefined, which means that angle  has no 

secant. For the reason that  has no secant, refer to the next section.

Defining Domains and Ranges of  
Trig Functions

The domain of a function consists of all the input values that a function can  
handle — the way the function is defined. Of course, you want to get output values 
(which make up the range) when you enter input values. But sometimes, when you 
input something that doesn’t belong in the function, you end up with some 
impossible situations. In these cases, you need to limit what you put into the 

ANCIENT MATH CONTEST
Even in the late 1500s, mathematicians around the world found themselves compet-
ing with one another. The Belgian mathematician Adriaan van Roomen challenged 
other mathematicians to solve a polynomial equation of the 45th degree. It looked 
something like this (with variables and numbers in place of the ellipsis, of course): 
x x x x k45 43 4145 945 45. . .  , where k is some constant. At that time, the 
mathematicians in Belgium and France found themselves in quite a competition, 
because van Roomen suggested that no one in France would be able to solve the 
equation. But French mathematician François Viète put him to shame: He used trigo-
nometry to solve the puzzle. (He let k be equal to the sine of 45 degrees and applied 
trig identities to find the positive solutions.)
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function — the domain has to be restricted. For example, the cosecant is defined 
as the hypotenuse divided by the opposite side (see Chapter 6). If the terminal side 
of the angle is on the x-axis, then the opposite side is 0, and you’re asked to divide 
by 0. Impossible!

Trig functions have domains that are angle measures (the inputs are all angles), 
in either degrees or radians. The outputs of the trig functions are real numbers. 
The hitch here is that the different trig functions have different domains and 
ranges. You can’t put just any angle into some of the functions. Sine and cosine 
are very cooperative and have the same domain and range. The tangent function 
and the reciprocal functions, however, all differ. The best way to describe these 
different domains and ranges is visually: Refer to the coordinate plane with a 
circle centered at the origin and a right triangle inside it, formed by dropping a 
line from any point (x,y) on the circle to the x-axis (see Figure 8-6). Remember 
that r stands for the radius of the circle (and also the hypotenuse of the right tri-
angle in this figure). When that hypotenuse lies along one of the axes, one of the 
sides of the triangle is equal to 0, which is a no-no in the denominator of a 
fraction.

Consider the values of the variables in Figure 8-6 in relation to one another. The 
radius, r, is always positive. And the absolute values of x and y (the lengths of the 
segments they represent) are always smaller than r, unless the point (x,y) is on 
one of the axes — then one of the values is equal to r and the other is equal to 0.

FIGURE 8-6: 
Using coordinates 

on a circle to 
form a right 

triangle.
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Friendly functions: Sine and cosine
The sine and cosine functions are unique in the world of trig functions, because 
their ratios always have a value. No matter what angle you input, you get a result-
ing output. The value you get may be 0, but that’s a number, too. In reference to 
the coordinate plane, sine is y

r
, and cosine is x

r
.

The radius, r, is always some positive number (which is why these functions 
always have a value, because they don’t ask you to divide by 0), and r is always a 
number greater than (or equal to) the absolute value of x or y.

Domains of sine and cosine
The domains of sine and cosine are infinite. In trig speak, you say something like 
this: If  represents all the angles in the domain of the two functions f ( ) sin  
and g( ) cos , then   , which means that  can be any angle in degrees 
or radians — any real number.

Ranges of sine and cosine
The output values for sine and cosine are always between (and including) 1 and 1. 
In trig speak, it goes something like this: If f ( ) and g( ) represent the  
output values of the functions f ( ) sin  and g( ) cos , then 1 1f ( )  and  

1 1g( ) .

The ratios y
r

 and x
r

 will never be improper fractions — the numerator can never 

be greater than the denominator — because the value of r, the radius, is always 
the biggest number. At best, if the angle  has a terminal side on an axis (meaning 
that one of the sides is equal to r), then the value of those ratios is 1 or 1.

Close cousins of their reciprocals:  
Cosecant and secant
The cosecant and secant functions are closely tied to sine and cosine, because 
they’re the respective reciprocals. In reference to the coordinate plane, cosecant  

is r
y

, and secant is r
x

. The value of r is the length of the hypotenuse of a right 

 triangle — which, as you find at the beginning of this section, is always positive 
and always greater than x and y. The only problem that arises when computing 
these functions is when either x or y is 0 — when the terminal side of the angle is 
on an axis. A function with a 0 in the denominator creates a number or value that 
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doesn’t exist (in math speak, the result is undefined), so anytime x or y is 0, you 
don’t get any output from the cosecant or secant functions. The x is 0 when the 
terminal side is on the y-axis, and the y is 0 when the terminal side is on the x-axis.

Domains of cosecant and secant
The domains of cosecant and secant are restricted — you can only use the func-
tions for angle measures with output numbers that exist.

Any time the terminal side of an angle lies along the x-axis (where y 0), you 
can’t perform the cosecant function on that angle. In trig speak, the rule looks like 
this: If h( ) csc , then 0 180 360 540, , , ,   , or any multiple of 180 degrees. In 
radians, 0 2 3, , , ,   , or any multiple of .

Anytime the terminal side of an angle lies along the y-axis (where x 0), you can’t 
perform the secant function on that angle. So, in trig speak, you’d say this: If 
k( ) sec , then 90 270 450 630, , , ,   , or any odd multiple of 90 degrees. In 

radians, 
2

3
2

5
2

7
2

, , , , , or any odd multiple of 
2

.

Ranges of cosecant and secant
The ratios of the cosecant and secant functions on the coordinate plane, r

y
 and r

x
,  

have the hypotenuse, r, in the numerator. Because r is always positive and greater 
than or equal to x and y, these fractions are always improper (greater than 1) or 
equal to 1. The ranges of these two functions never include proper fractions (num-
bers between –1 and 1).

If h( ) and k( ) are the output values of the functions h( ) csc  and k( ) sec ,  
then h( ) 1 or h( ) 1 and k( ) 1 or k( ) 1.

Brothers out on their own:  
Tangent and cotangent
The tangent and cotangent are related not only by the fact that they’re reciprocals, 
but also by the behavior of their ranges. In reference to the coordinate plane, tan-

gent is y
x

, and cotangent is x
y

. The domains of both functions are restricted, 

because sometimes their ratios could have zeros in the denominator, but their 
ranges are infinite.
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Domains of tangent and cotangent
Because x can’t equal 0 for the tangent function to work, this rule holds true: If 
m( ) tan , then 90 270 450 630, , , ,   , or any odd multiple of 90 degrees. In 

radians, 
2

3
2

5
2

7
2

, , , , , or any odd multiple of 
2

. Both the tangent and 

secant functions have ratios with x in the denominator, making their domains the 
same.

In order for the cotangent function to work, y can’t equal 0. If n( ) cot , then 
0 180 360 540, , , ,   , or any multiple of 180 degrees. In radians, 0 2 3, , , ,   ,  

or any multiple of .

Ranges of tangent and cotangent
The ranges of both tangent and cotangent are infinite, which, when expressed in 
mathematical notation, looks like this:  m( )  and n( ) .

The range values for these functions get very small (toward negative infinity) or 
very large (toward positive infinity) whenever the denominator of the respective 
ratio gets close to 0. When you divide some number by a very small value, such as 
0.0001, the result is large. The smaller the denominator, the larger the result.

Applying the Trig Functions
When you work with triangles, you can find all sorts of applications in the real 
world. Circles also lend themselves to applications and discoveries. Who would 
have thought that the trig functions, themselves, would provide some interesting 
adventures?

Flying around on a Ferris wheel
The latest version of the Centennial Wheel on Navy Pier in Chicago, Illinois, has a 
height of about 200 feet. There’s an awesome 360-degree view of the city and 
Lake Michigan as you ride the Ferris wheel. Refer to Figure 8-7 for a perspective.

A ride on the Centennial Wheel takes 13 minutes and involves three complete rota-
tions. How fast are you traveling in miles per hour?
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Using the height of 200 feet for the diameter of the circular wheel, you find the 
circumference by multiplying by : C d 3 14 200 628.  feet. If you make three 
complete rotations (assuming they’re not including the unloading of passengers), 
then that’s 628 3 1 884,  feet that are traveled during the ride. So you travel 1,884 
feet in 13 minutes. Changing that to miles per hour, you multiply using 5,280 feet 
in a mile and 60 minutes in an hour:

   feet
 minutes

 mile
 feet

 minutes
 hour

1 884
13

1
5 280

60
1

1

,
,

,,
,

,

884
13

1
5 280

60
1

1 8

 feet
 minutes

 mile
 feet

 minutes
 hour

884
13

1
5 280

60
1

1 884
13

1

 
 minutes

 mile
 

 minutes
 hour

 
 

 m

,

, iile
 

 
 hour

 miles
 hours

 miles 
5 280

60
1

113 040
68 640

1 65
,

,
,

. pper hour

Well, moving that slowly, you shouldn’t be having any motion sickness!

Trying out some new trig functions
The standard, most popular, and currently used trig functions of sine, cosine, 
tangent, cotangent, secant, and cosecant aren’t the only trig functions out there! 
Have you ever heard of the versine, coversine, haversine, exsecant, or excosecant? 
No, they aren’t all that well known. The basic six functions will serve you just fine.

But, for some history: the versine and the others have been found in some of the 
earliest trig tables. The versine is sometimes called the sagitta, which is a Latin 

FIGURE 8-7: 
Viewing the city 

from the 
Centennial 

Wheel.
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word meaning “arrow.” You’ve undoubtedly heard of the constellation Sagittarius 
(which is Latin for “archer”). But back to the versine.

The versine is part of a horizontal radius drawn in a circle. When an angle is cre-
ated using the horizontal radius and a ray is drawn from the center to where the 
angle intercepts the circle, you then drop a segment perpendicular to the horizon-
tal from the intersection. The versine is the part of the horizontal to the right of 
the perpendicular. Take a look at Figure 8-8. You see the versines of a 60-degree 
angle, a 30-degree angle, and a 45-degree angle. For convenience, they’re all 
drawn in a unit circle; this makes the numbers nicer.

So, what is the value of versine of an angle measuring 60 degrees? Or 30 degrees? 
Or 45 degrees?

You’ve probably noticed that I’ve picked very special angle measures. These are 
from the special right triangles covered in Chapter 5. The 30-60-90 right triangle 
and the 45-45-90 right triangle (isosceles right triangle) have very cooperative 
measures of their sides.

Starting with the versine of a 60-degree angle, refer to the left-most circle in 
Figure 8-8. The shorter leg is always half the measure of the hypotenuse, and the 
longer leg is 3  times the measure of the shorter leg. This is a unit circle, so the 

measures of the sides are 1
2

3
2

1, ,  and . The shorter leg, measuring 1
2

, shares the 

horizontal radius with the versine. Subtracting 1
2

 from 1, you’re left with 1
2

, so you 

can say: versin 60 1
2

.

Next, onto the versine of a 30-degree angle. Refer to the middle circle in Figure 8-
8. You have the same three measures of the sides as described previously. But this 

time, it’s the longer side that shares the radius with the versine. Subtracting 3
2

 

from 1, you have 1 3
2

2
2

3
2

2 3
2

, so you can say: versin 30 2 3
2

.

FIGURE 8-8: 
The versines  

of angles.
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And, finally, you find the versine of a 45-degree angle. Referring to the right-
most circle in Figure 8-8, you see that the versine shares the radius with a triangle 

side measuring 2
2

. Subtracting 2
2

 from 1, you have 1 2
2

2
2

2
2

2 2
2

, so 

you can say: versin 45 2 2
2

.

And you can have just as much fun finding function values for the coversine, 
haversine, and all the others!



CHAPTER 9  Applying Yourself to Trig Functions      139

Chapter 9
Applying Yourself to 
Trig Functions

Back when trig functions were first developed or recognized  — centuries 
ago  — the motivation for creating the functions wasn’t so people could  
sit around and say, “Hey, Caesar, did you know that the sine of 45 degrees 

is 2
2

?” Instead, the math gurus of the past worked out the principles of trigo-

nometry because they needed some order or consistency to the numbers that they 
were applying to astronomy, agriculture, and architecture. They figured out the 
relationships among all these numbers and shared them with the rest of  
the known, civilized world.

First Things First: Elevating and Depressing
Mathematical problems that require the use of trig functions often have one of 
two related angles: the angle of elevation or the angle of depression. The scenarios 
that use these angles usually involve calculating distances that can’t be physically 
measured. For example, these angles are used when finding the distance from an 

IN THIS CHAPTER

 » Recognizing angles of elevation and 
depression

 » Determining heights of buildings

 » Calculating the slope of a hill

 » Measuring when objects are really 
high up

 » Dealing with odd shapes and 
distances
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airplane in the air down to a point on the ground or the distance up to a balloon or 
another object above you. Use the trig functions to solve for the missing part of the 
ratio or the side of the imaginary right triangle.

An angle of elevation is measured from the horizontal going upward. The horizon-
tal is usually the ground, street, floor, or any other flat object. Even though the 
ground isn’t perfectly flat or horizontal, you determine the measurements with 
the assumption that it is. In trig, you have to consider the optimal situation — 
focus on the big picture, rather than on the imperfections. Figure 9-1 shows an 
angle of elevation.

PTOLEMY: PART RIGHT AND PART WRONG
Ptolemy, also known as Claudius Ptolemaeus, was a Greek citizen who lived in 
Alexandria, Egypt, from about a.d. 87 to 150. He was an astronomer, mathematician, 
and geographer. Ptolemy believed that the Sun and other planets revolved around 
Earth. At that time, only five planets were known, and he believed that they revolved 
around Earth in this order: Mercury, Venus, the Sun, Mars, Jupiter, and Saturn. This  
theory was known as the Ptolemaic system. It predicted the positions of the planets 
with reasonable accuracy, considering that they were naked-eye observations, not 
enhanced with telescopes. But Ptolemy may not have really believed in this system of 
the planets — perhaps he used it only as a method of calculating their relative positions. 
This man did get it right, though, in determining that Earth is a sphere, not flat — this 
theory affected much of his important work in geography and cartography. His works, 
including an error that had Asia extending too far to the east, probably influenced 
Columbus’s decision to sail west for the Indies.

FIGURE 9-1: 
Angles of 

elevation and 
depression.
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An angle of depression is measured from the horizontal going downward. For these 
angles, the horizontal is, for example, an airplane’s flight path or a person’s line 
of sight while standing on a mountaintop. The angle is formed when a person on 
that plane or mountaintop looks at an object on the ground (or on a path parallel 
to the ground). Refer to Figure 9-1 for a sample angle of depression.

Measuring Tall Buildings  
with a Single Bound

Every day, people use trigonometry to measure things that they can’t reach. How 
high is that building? Will this ladder reach to the top of that tree? By using the 
appropriate trig functions, you can find answers to such questions. Two major 
considerations to keep in mind when working out problems by using trig are as 
follows: Which trig function should you use, and what are the units or measures 
in the answer?

The missing values in the ratios of the trig functions represent the missing  
parts in the problems. You assign the known values appropriately and solve for 
what’s left.

Rescuing a child from a burning building
Consider a day in the life of one of your city firefighters: A child is trapped in a 
burning building and leans out the window calling for help. The firefighter is on 
the ground below with a ladder. He needs to know whether it’ll reach the child or 
whether he needs a longer ladder.

When the firefighter stands 15 feet from the base of the building under the win-
dow and looks up at the child, the angle of elevation to the window is 60 degrees. 
How long does the ladder have to be to reach the window? Figure 9-2 shows the 
situation using a right triangle.

1. Identify the parts of the right triangle that you can use to solve the 
problem.

You know that the acute angle is 60 degrees, and the adjacent side of the 
triangle is along the ground; the distance from the vertex of the angle (where 
the firefighter is standing) to the base of the building is 15 feet (the adjacent 
side). The hypotenuse is the length needed for the ladder — call it x. Figure 9-2b 
shows you the triangle.
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2. Determine which trig function to use.

The adjacent side and hypotenuse are parts of the cosine ratio. Those sides are 
also parts of the secant ratio, but if at all possible, you should use the three 
main functions, not their reciprocals.

3. Write an equation with the trig function; then insert the values that you 
know.

For a refresher on those values, look at the charts in Chapter 6. The cosine of 

60 degrees is 1
2

, the adjacent side is 15 feet, and the hypotenuse is unknown.

cos60

1
2

15

adjacent
hypotenuse

x

4. Solve the equation.

Cross-multiplying, you get

FIGURE 9-2: 
The hypotenuse 

of the triangle 
represents the 

ladder.
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1
2

15

1 15 2

30

x
x

x

The ladder needs to be 30 feet long. (That firefighter had better be pretty 
strong!)

Determining the height of a tree
Suppose you’re flying a kite, and it gets caught at the top of a tree. You’ve let out 
all 100 feet of string for the kite, and the angle that the string makes with the 
ground (the angle of elevation) is 75 degrees. Instead of worrying about how to get 
your kite back, you wonder, “How tall is that tree?”

Figure 9-3 shows the scenario.

To find a solution to your quandary, follow these steps:

1. Identify the parts of the right triangle that you can use to solve the 
problem.

The hypotenuse of the right triangle is the length of the string. The side 
opposite the 75-degree angle is what you’re solving for; call it x.

2. Determine which trig function to use.

The hypotenuse and opposite side are part of the sine ratio.

FIGURE 9-3: 
A kite is caught at 
the top of a tree.
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3. Write an equation with the trig function; then insert the values that  
you know.

The 75-degree angle isn’t one of the more-common angles, so use a scientific 
calculator or your computer to obtain a value for the sine, correct to three 
decimal places. The sine of 75 degrees is about 0.966, the hypotenuse is 
100 feet, and the opposite side is what is unknown.

sin

.

75

0 966
100

opposite
hypotenuse
x

4. Solve the equation.

Cross-multiplying, you get

0 966

0 966 100

96 6

.

.

.

x

x

x

100

The tree is over 96 feet tall. Lots of luck retrieving the kite.

Measuring the distance between buildings
Weevil Upheaval makes his living by jumping, on his motorcycle, from building to 
building, cliff to bluff, or any place he can get attention for doing it. His record 
jump is a distance of 260 feet, from one building to another. Upheaval is on to his 
next feat and needs to determine the distance from one building to another. His 
assistant, Steady Eddie, holds a 6-foot pole perpendicular to the roof he’s stand-
ing on. When Upheaval, standing on top of the first building, sights straight across 
to a point at the base of the pole and then sights a point halfway up the pole, the 
angle of elevation is 1 degree. Will he be able to make the jump? See Figure 9-4 for 
a visual of Upheaval’s calculation.

1. Identify the parts of the right triangle that you can use to solve the 
problem.

You know the length of the side opposite the 1-degree angle, which is half the 
pole length (half is 3 feet), and the adjacent side is the unknown distance. Call 
that distance x.

2. Determine which trig function to use.

The tangent of an angle uses opposite divided by adjacent.
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3. Write an equation with the trig function; then insert the values that 
you know.

The length of half the pole is 3 feet, so the equation looks like this:

tan1 3opposite
adjacent x

4. Solve for the value of x.

Use your calculator to find the value of the tangent of 1 degree. Round the 
value to four decimal places. Then just one decimal place is enough for your 
final answer.

tan

.

.
.

1 3

0 0175 3

3
0 0175
171 4

x

x

x

You find that the distance between the buildings is a little less than 172 feet across. 
Upheaval should be able to make the jump easily, because his record is 260 feet.

Measuring Slope
Have you ever noticed a surveyor along the road, peering through an instrument, 
looking at a fellow worker holding up a sign or a flag? Haven’t you ever wondered 
what they’re doing? Have you wanted to get out and look through the instrument, 

FIGURE 9-4: 
Upheaval’s 
precarious 

situation.
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too? With trigonometry, you can do just what those workers do — measure dis-
tances and angles. Land surveyors use trigonometry and their fancy equipment to 
measure things like the slope of a piece of land (how far it drops over a certain 
distance).

If you read the first section in this chapter, you may recognize that the slope of 
land downward is sort of like an angle of depression. Slopes, angles of depression, 
and angles of elevation are all interrelated because they use the same trig func-
tions. It’s just that in slope applications, you’re solving for the angle rather than 
a length or distance.

To solve one of these surveying problems involving slope, you can use the trig 
ratios and right triangles. One side of the triangle is the distance from one worker 
to the other; the other side is the vertical distance from the ground to a point on a 
pole. You form a ratio with those measures and determine the angle — voilà!

Suppose that Elliott and Fred are making measurements for the road-paving crew. 
They need to know how much the land slopes downward along a particular stretch 
of road to be sure there’s proper drainage. Elliott walks 80 feet from Fred and 
holds up a long pole, perpendicular to the ground, that has markings every inch 
along it. Fred looks at the pole through a sighting instrument. Looking straight 
across, parallel to the horizon, Fred sights a point on the pole 50 inches above the 
ground — call it point A. Then Fred looks through the instrument at the bottom of 
the pole, creating an angle of depression. See Figure 9-5 for a diagram of this 
situation. What is the angle of depression, or slope of the road, to where Elliott is 
standing?

1. Identify the parts of the right triangle that you can use to solve the 
problem.

The values you know are for the sides adjacent to and opposite the angle of 
depression. Call the angle measure x.

2. Determine which trig function to use.

The tangent of the angle with measure x uses opposite divided by adjacent.

3. Write an equation with the trig function; then insert the values that you 
know.

tanx opposite
adjacent

In this problem, you need to write the equation with a common unit of 
measurement — either feet or inches. Changing 80 feet to inches makes  
for a big number; changing 50 inches to feet involves a fraction or decimal. 
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Whichever unit you choose is up to you. In this example, I choose the big 
number, so I convert feet to inches.

80 80 12 960     feet inches inches·

Substituting in the values, you get the tangent of some angle with a measure of 
x degrees:

tan .x
opposite
adjacent

50
960

0 05208333

4. Solve for the value of x.

Using a calculator, you plug in some angle values for the tangent (tan) function 
and determine that an angle of 2.9 degrees has a tangent of 0.0507, and a 
3-degree angle has a tangent of 0.0524. The 3-degree angle has a tangent 
that’s closer to 0.05208333, so you can estimate that the road slopes at a 
3-degree angle between Elliott and Fred.

Another way to solve for that angle measure is to use the inverse tangent function. 
I explain about inverse functions in Chapter 14, but you can jump ahead and take 
advantage of technology. You can find an explanation of the inverse function but-
tons on a calculator in the Appendix. My calculator says that the angle whose tan-
gent is 0.05208333 is an angle of 2.98146 degrees. So, the estimate of 3 degrees is 
right on.

The Sky’s (Not) the Limit
Early trigonometry had many earthbound applications  — surveyors and engi-
neers have used it for centuries. Over time, astronomers and navigators on jour-
neys around the world began using trig to solve many mysteries here on Earth and 

FIGURE 9-5: 
Sighting along a 

downward slope.



148      PART 2  Trigonometric Functions

in outer space. They estimated or measured angles by sighting objects in the 
heavens and charting their movements. Then they used the angle between one 
sighting and another to solve for the distances that are unreachable.

Spotting a balloon
Cindy and Mindy, standing a mile apart, spot a hot-air balloon directly above a 
particular point on the ground somewhere between them. The angle of elevation 
from Cindy to the balloon is 60 degrees; the angle of elevation from Mindy to the 
balloon is 70 degrees. Figure 9-6 shows a visual representation. How high is the 
balloon?

If you look at Figure 9-6a, you see that two right triangles are formed. The two 
triangles share a side — the one opposite the measured acute angle in each. Call 
the length of that shared side y. The two adjacent sides add up to 1 mile, so you can 
keep the variables to a minimum by naming one side x and the other 1 x.  
Figure 9-6b shows the triangles with the variables.

FIGURE 9-6: 
Two friends spot 
a hot-air balloon 

and use a right 
triangle to solve 

the problem.
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To figure out how high the balloon is, follow these steps:

1. Identify the parts of the triangles that you can use to solve the problem.

In both triangles, you have variables for the adjacent and opposite sides of the 
acute angles of elevation.

2. Determine which trig function to use.

The tangent ratio uses the opposite and adjacent sides.

3. Write equations with the trig functions.

tan60 70
1

opposite
adjacent

and  tan opposite
adjacent

y
x

y
xx

y
x

y
x

tan tan60 70
1

4. Solve for x by setting the equations equal to one another.

First, solve each of the equations for y.

       and  

       

tan tan

tan ( )tan

60 70
1

60 1 70

y
x

y
x

x y x y  

Set those two equations equal to one another and solve for x.

x x

x x

x x

tan ( )tan

tan tan tan

tan tan

60 1 70

60 70 70

60 700 70

60 70 70

70
60 70

tan

(tan tan ) tan

tan
tan tan

x

x

5. Solve for the value of x.

You find the value of x by finding the values of the functions with a calculator 
or computer. Upon doing so, you find that x is approximately 0.613 mile. Put 
that value into one of the equations to solve for y:

x

y

y

y

y

tan

( . )tan

( . )( . )

.

60

0 613 60

0 613 1 732

1 062

The balloon is 1.062 miles high — sounds a tad high to me!
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Tracking a rocket
In this example, a rocket is shot off and travels vertically, as a scientist watches 
its flight from a mile away. One second into the flight, the angle of elevation of the 
rocket is 30 degrees. Two seconds later, the angle of elevation is 60 degrees. How 
far did the rocket travel in those two seconds? Figure 9-7 shows the rocket rising 
vertically.

1. Identify the parts of the triangles that you can use to solve the problem.

In Figure 9-7, you see two right triangles. One is superimposed on the other 
and shares a side — the adjacent side. In both triangles, the relevant sides are 
those that are adjacent and opposite the angles of elevation.

2. Determine which trig function to use.

The ratio of the tangent uses the adjacent and opposite sides.

3. Write equations with the trig functions.

tan30
1

opposite
adjacent

x
x

tan60
1

opposite
adjacent

x y
x y

FIGURE 9-7: 
A rocket, 1 mile 

from a scientist, 
rises vertically.
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4. Solve for the values of x and y.

The tangents of 30-degree and 60-degree angles are convenient values.  
You can refer back to Chapter 6, find the function values, and write that 

tan30 3
3

 x and tan60 3 x y.

The value of y is the distance that the rocket traveled between the first and 
second sightings, so, solving for y, you get

y x y x 3 3
3

3 3
3

3
3

2 3
3

1 155.

The rocket rose about 1.155 miles in two seconds.

Measuring the view of satellite cameras
Consider a satellite that orbits Earth at an altitude of 750 miles. Earth has a radius 
of about 3,950 miles. How far in any direction can the satellite’s cameras see? 

SINE AND COSINE WITH ALGEBRA
You can approximate, fairly accurately, the sine and cosine of angles with an infinite series, 
which is the sum of the terms of some sequence, or list, of numbers. Take note, however, 
that the series for sine and cosine are accurate only for angles from about 90 degrees to 

90 degrees. The series for the sine of an angle is sin
! ! ! !

x x
x x x x3 5 7 9

3 5 7 9
  and 

the series for the cosine of an angle is cos
! ! ! !

x
x x x x1
2 4 6 8

2 4 6 8

 
. To use these 

formulas, you have to write the angle measure, x, in radians and carry out the computa-
tions to several places. The exclamation points in the formulas don’t mean, “Oh, goodness! 
It’s a 3!” The exclamation points are mathematical operations called factorials. Factorial 
means to multiply that number times every positive integer smaller than it. Going back to 
the series for the sine, an angle of 30 degrees is about 0.5236 radian. To find sin 0.5236, 

use the formula to get sin . .
( . )

!
( . )

!
( . )

!
.

0 5236 0 5236
0 5236

3
0 5236

5
0 5236

7
0 523

3 5 7

66 0 0239 0 000328 0 000002

0 500026

. . .

.

The result is pretty close to the sine of 30 degrees, which is 1
2

. Carrying out the compu-

tations using a few more terms will make the result even closer to the actual answer. 
And the closer the angle measure is to 0, the more quickly the value of the sine or the 
cosine meets the exact value (and the fewer the terms needed for the answer).
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Figure 9-8 shows the satellite and the length of the camera’s scope due to the 
curvature of Earth.

1. Identify the parts of the triangle that you can use to solve the problem.

Because a satellite’s line of sight is tangent to the curvature of Earth, and 
tangents to a circle form 90-degree angles with radii of the circle, you can see 
two right triangles in Figure 9-8. The two sides of angle  are the radius 
touching the tangent to the circle and the segment extending from the center 
of the circle up to the satellite. These sides are the hypotenuse and adjacent 
side of the right triangle with acute angle .

2. Determine which trig function to use.

The adjacent side and hypotenuse are part of the ratio for the cosine of .

3. Write the equation with the trig function; then input the measures that 
you know and solve for cos .

The adjacent side measures 3,950 miles, and the hypotenuse is the sum of the 
radius and height of the satellite: 3 950 750 4 700, ,  miles.

cos ,
,

.adjacent
hypotenuse

3 950
4 700

0 8404

4. Determine the value of .

Use your calculator to find the angle whose cosine is closest to 0.8404. To the 
nearest degree, an angle of 33 degrees has this cosine. You can use the inverse 
cosine function to do this. In the Appendix, you see how to do the computa-
tion. You can find more on inverse functions in Chapter 14.

FIGURE 9-8: 
A satellite has its 

cameras set to 
view Earth.



CHAPTER 9  Applying Yourself to Trig Functions      153

5. Determine how much of Earth’s circumference is covered in either 
direction from the satellite.

The satellite’s line of sight goes 33 degrees in either direction, or 66 degrees 

total, which is 66
360

 of the entire circumference (because all the way around 

would be 360 degrees). If the radius of Earth is 3,950 miles, then you can 
substitute that number into the equation for a circle’s circumference: 
C r2 2 3 14 3 950 24 819. , , . That’s Earth’s circumference. The distance 

that the satellite scans, then, is 66
360

24 819 4 550, , , or about 4,550 total miles 
or 2,275 miles in any direction.

Calculating Odd Shapes and  
Maneuvering Corners

Sometimes, finding a measure isn’t so easy. You may have to deal with an irregu-
lar shape or even calculate your way around a fixed object. Whatever the case, you 
can use trigonometry to find the answers you’ve been searching for.

Finding the area of a triangular  
piece of land
The most commonly used formula for the area of a triangle is A bh

1
2

, where A is 

the area, b is the length of the triangle’s base, and h is the height of the triangle 
drawn perpendicular to that base. Figure 9-9a illustrates the different compo-
nents of this formula.

This area formula works fine if you can get the measure of the base and the height, 
and if you can be sure that you’ve measured a height that’s perpendicular to the 
side of the triangle. But what if you have a triangular yard — a big triangular 
yard — and have no way of measuring some perpendicular segment to one of the 

FIGURE 9-9: 
A triangle’s base 
and height used 

to find an area 
formula.
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sides? One alternative is to use Heron’s Formula, which uses the measures of all 
three sides. (I show you that one in the next section.) The other alternative, of 
course, is to use trigonometry — or, at least, a formula with an angle measure in 
it. To measure that angle, you can be very sophisticated and get a surveying appa-
ratus, or if you’ve got a protractor handy, you can do a decent estimate by extend-
ing the sides at an angle for a bit and eyeballing the angle size.

The trig formula for finding the area of a triangle is A ab
1
2

sin , where a and b 

are two sides of the triangle and  is the angle formed between those two sides. 
You don’t need the measure of the third side at all, and you certainly don’t need a 
perpendicular side.

Using trigonometry, I can show you where this formula comes from. Take a look 
at the triangle in Figure 9-9b, with sides a and b and the angle between them.

Start with the traditional formula for the area of this triangle, A bh
1
2

. Then look 

at the smaller triangle to the left. (Because the height is drawn perpendicular to 
the base, the sides and height form a right triangle.) The acute angle  has a sine 

equivalent to the following: sin opposite
hypotenuse

h
a

. If you solve that equation for 

h by multiplying each side by a, you get

sin

sin

h
a

a h

Replace the h in the traditional formula with its equivalent from this equation, and 
you get

A bh b a ab
1
2

1
2

1
2

sin sin

Check out how this formula works in an actual problem. The triangle in Figure 9-10 
shows the measures of two of its sides and the angle between them.

FIGURE 9-10: 
Finding the area 

of a triangle.
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To find the area of the triangle in Figure 9-10:

1. Use the formula A ab
1
2

sin , inserting the values that you know.

A
1
2

100 200 60sin 

2. Solve for the value of the area.
1
2

100 200 3
2

10 000 3
2

8 660, ,

The area is about 8,660 square units.

Using Heron’s Formula
As promised, in this section, I show you how to find the area of a triangle using 
Heron’s Formula. Heron’s Formula is especially helpful when you have access to 
the measures of the three sides of a triangle but can’t draw a perpendicular height 
or don’t have a protractor for measuring an angle.

Consider the situation where you have a large ball of string that’s 100 yards long 
and you’re told to mark off a triangular area — with the string as the marker for 
the border of the area. You walk 40 yards in one direction, take a turn, and walk 
another 25 yards; then you head back to where you started and use up that last  
35 yards of string. How large an area have you created?

Heron’s Formula reads: A s s a s b s c  where a, b, and c are the lengths 
of the sides of the triangle and s is the semi-perimeter (half the perimeter).

In the case of your triangle and the string, the perimeter is 40 25 35 100 yards. 
Half that is 50, so the formula now reads:

A 50 50 40 50 25 50 35

50 10 25 15 187 500 433,

You’ve marked off an area of approximately 433 square yards.

Moving an object around a corner
Here’s an application of trigonometry that you may very well be able to relate to: 
Have you ever tried to get a large piece of furniture around a corner in a house? You 
twist and turn and put it up on end, but to no avail. In this example, pretend that 
you’re trying to get a 15-foot ladder around a corner where two 4-foot-wide hall-
ways meet at a 90-degree angle. Figure 9-11a shows a picture of the situation.
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The tightest part comes when the ladder is halfway through the hallway, or when 
the angles where it touches the outer walls are the same. When the ladder is at the 
tightest point, it forms a right triangle with equal sides — half the ladder to each 
side of the corner. Because the sides of the right triangle are equal at this point, 
you’ve got an isosceles right triangle, which has two 45-degree angles (see  
Figure 9-11b, which shows the longest a ladder can be to fit around the corner). 
How long are the sides of the right triangle, then? When you know the dimensions 
of this isosceles right triangle, you can look at the hypotenuse — the ladder — and 
determine if it’s short enough or too long to fit around the tightest part of this 
corner. And, of course, you don’t want to scrape or punch holes in the wall!

1. Determine the trig function that you can use with the measures 
available.

The hypotenuse is the length of the ladder — 15 feet. The opposite and 
adjacent sides are the same in an isosceles right triangle, and in this case, 
those two lengths are each 8 feet. You know this measure because all the 
triangles are isosceles right triangles, which means they have 45-degree  
angles and equal leg measures (see Figure 9-12).

2. Determine which trig function to use.

Both sine and cosine include the length of the hypotenuse, which is what 
you’re solving for, so you can use either function.

3. Write the equation with the trig function; then insert the measures that 
you know.

sin45 8opposite
hypotenuse hypotenuse

FIGURE 9-11: 
Moving a  

ladder around a 
hallway corner.
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4. Solve for the value of the hypotenuse.

2
2

8

2 8 2

16
2

11 314

hypotenuse

hypotenuse

hypotenuse

.

You find that at the tightest point around the corner, the hypotenuse is only 
slightly more than 11 feet. That 15-foot ladder will never fit around the corner.

FIGURE 9-12: 
All the triangles 
have the same 

angle measures.
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IN THIS PART . . .

Develop a working list of the relationships between the 
trig functions.

Use the trig identities to make statements more 
user-friendly.

Determine the easiest way to solve a trig identity.

Avoid going in endless loops with identities.
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Chapter 10
Introducing Basic 
Identities

I’m sure a thousand questions are running through your mind: What’s a trig 
identity? Is it possible to have a mistaken trig identity? Does anyone commit 
trig-identity theft? Can you have an identity crisis with trig? The answer: No — 

probably not.

Trig identities aren’t nearly as sinister as you may think. They’re actually very 
helpful tools in simplifying trig expressions and solving equations. These identi-
ties are special to trigonometry. Basically, they’re equivalences — they give you 
options to substitute into equations in order to simplify. For example, wouldn’t 

you rather use the number 1 than 1 623
1 623
,
,

? Of course! In most cases, the number 1 is 

simpler. That’s how trig identities work — they replace something with some-
thing simpler or more useful.

Identities are divided into different types, or categories, in order to help you 
remember them more easily and figure out when to use them more efficiently. In 
this chapter, I cover the gamut.

IN THIS CHAPTER

 » Recognizing reciprocal identities

 » Putting functions head-over-tails by 
using ratio identities

 » Performing attitude adjustments on 
negative angles

 » Relating functions to Pythagoras’s 
way of thinking

 » Using multiple identities to simplify 
matters
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Flipping Functions on Their Backs: 
Reciprocal Identities

The simplest and most basic trig identities are those involving the reciprocals of 
the trig functions. To jog your memory, a reciprocal of a number is 1 divided by that 

number — for example, the reciprocal of 2 is 1
2

. Another way to describe recipro-

cals is to point out that the product of a number and its reciprocal is 1. In the case 

of 2 and its reciprocal, 1
2

, 2 1
2

1. The same principle goes for the trig 
reciprocals.

Here’s how the reciprocal identities are defined.

 » The reciprocal of sine is cosecant: 1
sin

csc

 » The reciprocal of cosine is secant: 1
cos

sec

 » The reciprocal of tangent is cotangent: 1
tan

cot

 » The reciprocal of cotangent is tangent: 1
cot

tan

 » The reciprocal of secant is cosine: 1
sec

cos

 » The reciprocal of cosecant is sine: 1
csc

sin

In true fashion, when you multiply the reciprocals together, you get 1:

sin csc

cos sec

tan cot

1

1

1

The reciprocal identity is a very useful one when you’re solving trig equations — 
especially those involving fractions. If you find a way to multiply each side of an 
equation by a function’s reciprocal, you may be able to reduce some part of the 
equation to 1 — and simplifying is always a good thing.

The following expression has two fractions added together — and a total of four 

trig identities: sin
csc

cos
sec

. This can be simplified using the reciprocal 
identities.

1. Replace the csc  with its identity and sec  with its identity.

sin
csc

cos
sec

sin

sin

cos

cos
1 1
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2. Multiply each numerator by the reciprocal of its denominator.

sin

sin

cos

cos

sin sin cos cos sin cos
1 1 1 1

2 2

This simplification is almost finished. You’ll see what comes next after reviewing 
the upcoming section on Pythagorean identities.

Function to Function: Ratio Identities
Trig has two identities called ratio identities. This label can be confusing, because 
all the trig functions are defined by ratios. Somewhere along the line, however, 
mathematicians thought this description was perfect for these two identities, 
because they’re basically fractions made up of two trig functions, one above the 
other. The ratio identities create ways to write tangent and cotangent by using the 
other two basic functions, sine and cosine.

The ratio identities are tan sin
cos

 and cot cos
sin

.

These two identities come from the simplification of a couple of complex  

fractions. If you use the basic definitions for sine, cosine, and tangent — sine opp
hyp

,  

A WOMAN AHEAD OF HER TIME: HYPATIA
One of the earliest recognized female mathematicians was Hypatia, who lived in 
Alexandria, Egypt, and is thought to have been born around a.d. 370. People of her day 
considered Hypatia to be not only a mathematician, but also a scientist and philoso-
pher. Her father, Theon, was a professor of mathematics at the University of Alexandria. 
He taught Hypatia himself and shared with her his passion for knowledge and the 
search for answers. Hypatia developed a great enthusiasm for mathematics, as well as 
astronomy and astrology. Her father also believed in a strong and healthy body as well 
as mind, so he insisted on a regular physical routine to achieve this standard of excel-
lence. Hypatia is well known for her work on the ideas of conic sections, which are the 
curves that are formed by slicing a cone in various ways. The conic sections are called 
parabola, circle, ellipse, and hyperbola. She edited the work of Apollonius, making the 
concepts easier to understand. For this, she is considered to be the first woman to 
make a contribution resulting in the survival of some of the earlier mathematical ideas.
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cosine adj
hyp

, and tangent opp
adj

  — then you can use them to get  

sine
cosine

opp
hyp
adj
hyp

opp
hyp

hyp
adj

opp
adj

tangent

Likewise, because cotangent is the reciprocal of tangent,

cotangent
tangent sine

cosine

cosine
sine

1 1

One little trick I’ve used over the years, to keep track of which ratio identity has 
sine over cosine and which is cosine over sine, is to use the alphabet. Cotangent 
starts with the letter c, so I use this to determine that cosine over sine also starts 
with c (on the top). The ratio identity for tangent isn’t quite as nice, but I know that 
tangent and sine are close together in the alphabet, so, since tangent starts with t, 
and s is pretty close to t, the ratio identity must start with s. Well, it works for me!

Now to the task of simplifying an expression involving a ratio identity: cot sec .  
Your goal is to write the product in terms of just one trig function.

1. Start by replacing the cot  with its ratio identity and sec  with its 
identity.

cot sec cos
sin cos

1

2. Reduce the fraction and multiply.
cos
sin cos sin

1 1

3. This may be the format you want, or you may prefer to not have a 
fraction. Just use the reciprocal identity.

1
sin

csc

Opposites Attract: Opposite-Angle 
Identities

The opposite-angle identities change expressions with negative angles into equiva-
lences with positive angles. Negative angles are great for describing a situation, 
but they aren’t really handy when it comes to sticking them in a trig function and 
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calculating that value. So, for example, you can rewrite the sine of –30 degrees as 
the sine of 30 degrees by putting a negative sign in front of the function:

sin 30 = sin 30 

This identity works for other angles, too. The angle measure doesn’t have to  
be –30 degrees; any negative angle works. This negative-angle business works 
differently for different functions, though. First, consider the identities, and then 
see how they came to be.

The opposite-angle identities for the three most basic functions are

sin sin

cos cos

tan tan

The rule for the sine and tangent of a negative angle almost seems intuitive. But 
what’s with the cosine? How can the cosine of a negative angle be the same as the 
cosine of the corresponding positive angle? Here’s how it works.

If you refer back to Chapter 7, you find that the function values of angles with 
their terminal sides in the different quadrants have varying signs. Sine, for exam-
ple, is positive when the angle’s terminal side lies in the first and second quad-
rants, whereas cosine is positive in the first and fourth quadrants. In addition, 
Chapter 3 shows you how to draw angles on a coordinate plane: Positive angles go 
counterclockwise from the positive x-axis, and negative angles go clockwise.

With those points in mind, take a look at Figure 10-1, which shows a –45-degree 
angle and a 45-degree angle.

First, consider the –45-degree angle. This angle has its terminal side in the fourth 
quadrant, so its sine is negative. A 45-degree angle, on the other hand, has its 
terminal side in the first quadrant, so it has a positive sine. What about a negative 
angle whose terminal side ends up in the second quadrant, like –200 degrees? A 
+200-degree angle has a negative sine, because its terminal side is in the third 

FIGURE 10-1: 
Angles of  

–45 degrees and 
45 degrees.
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quadrant, but a –200-degree angle has a positive sine, because its terminal side is 
in the second quadrant. The values of the sines are opposites — further convinc-
ing you of the rule that the sine of a negative angle is the opposite value of that of 
the positive angle with the same measure.

Now on to the cosine function. In light of the cosine’s sign with respect to the 
coordinate plane, you know that an angle of –45 degrees has a positive cosine. So 

does its counterpart, the angle of 45 degrees, which is why cos cos45 45 2
2

.

So, you see, the cosine of a negative angle is the same as that of the positive angle 
with the same measure.

Next, try the identity on another angle, a negative angle with its terminal side in 
the third quadrant. Figure 10-2 shows a negative angle with the measure of –120 
degrees and its corresponding positive angle, 120 degrees.

A NEW WAY TO SLICE PI(E)
Two of the best-known symbols used for two of the constants in mathematics are the 
Greek letter pi, , and the lowercase letter e. The value of , approximately 3.14159,  
is a decimal that goes on forever. The value of e, approximately 2.71828, goes on  
forever, too.

The symbol for pi was first introduced in the early 1700s by William Jones, an obscure 
English writer who was composing a book for math beginners. Common belief is that he 
chose this letter because p is the first letter in perimetron, meaning perimeter. He didn’t 
realize that what he was doing would have such a long-lasting effect on the world of 
mathematics. A few years later, the famous mathematician Leonhard Euler used the  
letter p instead of the Greek letter , but he eventually adopted the Greek notation, too, 
making it even more popular with the rest of the world.

The letter e represents the base for natural logarithms. Like π, this value occurs  
naturally — in other words, the value e occurs as a multiplier or base of the equations 
that represent many natural phenomena. Euler also had a hand in popularizing this 
symbol sometime in the early to mid-1700s. The question comes to mind as to why he 
chose that particular letter. Using  or p seems natural for a concept linked to the 
perimeter of a circle, but the letter e isn’t such an obvious choice. Here are a few possi-
ble reasons why he chose this letter: First, e is the first letter in exponential, which is 
closely tied to logarithms; or perhaps he used e because it’s near the beginning of the 
alphabet and hadn’t been used as a symbol for anything else. Could it be, instead, that 
Euler chose the letter e because it’s the first letter in his name? Whatever the reason, it 
appears that  and e are here to stay.
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The angle of –120 degrees has its terminal side in the third quadrant, so both its 
sine and cosine are negative. Its counterpart, the angle measuring 120 degrees, 
has its terminal side in the second quadrant, where the sine is positive and the 
cosine is negative. So, the sine of –120 degrees is the opposite of the sine of 120 
degrees, and the cosine of –120 degrees is the same as the cosine of 120 degrees. 
In trig notation, it looks like this:

sin sin cos cos120 120 3
2

120 120 1
2

 and 

When you apply the opposite-angle identity to the tangent of a 120-degree angle 
(which comes out to be negative), you get that the opposite of a negative is a posi-
tive. Surprise, surprise. So, applying the identity, the opposite makes the tangent 
positive, which is what you get when you take the tangent of 120 degrees, where 
the terminal side is in the third quadrant and is, therefore, positive.

But look at the opposite-angle identity for the tangent in another way: Use the 
ratio identity to prove that it works.

tan
sin
cos

sin
cos

sin
cos

tan

Revisiting the Classic Theorem: 
Pythagorean Identities

Good old Pythagoras is at work everywhere — his theorem keeps cropping up in 
the strangest places. (Not that a chapter in this book is really a strange place, of 
course.) This section takes you past the basics and expands on them with the three 
identities called Pythagorean identities. (For more on the Pythagorean Theorem, 
refer to Chapters 2 and 5.)

FIGURE 10-2: 
Angles of  

–120 degrees and 
120 degrees.
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The Pythagorean identities are building blocks for many of the manipulations of 
equations and expressions. They provide a generous number of methods for solv-
ing problems more efficiently, because they allow you to write complicated 
expressions in a much simpler form.

The Pythagorean identities are

sin cos

tan sec

cot csc

2 2

2 2

2 2

1

1

1

The exponential notation used in these identities is peculiar to trigonometry. The 
expression sin2 θ actually means (sin θ)2, which says, “Find the sine of angle θ and 
then square that number.” But mathematicians hate to waste, and having to put 
those big, cumbersome parentheses around “sin θ” all the time seemed wasteful. 
So they agreed on a condensed version: The superscript 2 right after “sin” means 
that you square the whole expression. The same type of notation also goes for the 
other trig functions (cos2 θ, tan2 θ, cot2 θ, and so on).

The mother of all Pythagorean identities
The Pythagorean identity that birthed the other two is sin cos2 2 1. But, you 
may wonder, where did this identity come from, and why is it so important? Last 
things first: The primary Pythagorean identity is important because it sets a com-
bination of functions equal to 1, and this simplification is very helpful for solving 
trig equations. As such, it’s probably one of the most frequently used identities. 
This identity comes from putting a right triangle inside the unit circle and substi-
tuting values and equations to come up with a whole new equation (see 
Figure 10-3).

In Chapter 8, you discover that in a circle, sin
y
r

 and cos x
r

, where (x,y) are 

the coordinates of the point and r is the radius of the circle. The value of x is also 
the length of the adjacent side of the triangle (horizontal length), and y is the 
length of the opposite side (vertical length). In a unit circle, the radius is equal to 1.  
This is shown in Figure 10-3a. When you substitute the 1 for r in the equation, you 

find that sin
y
r

y and cos x
x

1
; so replace the x and y coordinates with 

cos  and sin , as shown in Figure  10-3b. The Pythagorean Theorem says that 
when you square the value of a right triangle’s two legs and add the results 
together, you get the square of the hypotenuse. In mathematical notation, it looks 
like this: a b c2 2 2. In the case of the right triangle on the unit circle, because 
the radius (which is also the hypotenuse) is 1, you can say that x y2 2 21 . Now 
replace the x with cos θ and the y with sin θ, switch the two terms around, and you 
get sin cos2 2 1.



CHAPTER 10  Introducing Basic Identities      169

If all the finagling just seems like a lot of hocus-pocus to you, check out this iden-
tity in action. Suppose the angle in question is 30 degrees. Using the values for the 

functions of a 30-degree angle (see the Appendix), sin30 1
2

 and cos30 3
2

, 
and putting them into the identity, you get

sin cos2 2

2 2

1

1
2

3
2

1
4

3
4

1

Extending to tangent and secant
The other two Pythagorean identities stem from the first one involving sine and 
cosine. All you do is throw in a little algebra, apply the reciprocal and ratio identi-
ties (see those sections earlier in this chapter), simplify, and — poof! — you get 
two new identities.

1. Starting with the first Pythagorean identity, sin cos 12 2 , divide 
each term by cos2 .

sin
cos

cos
cos cos

2

2

2

2 2
1

2. Rewrite each term by using the exponential rule a
b

a
b

2

2

2

.

Note how the exponent 2 is pulled out of the parentheses:

sin
cos

cos
cos cos

2 2 21

FIGURE 10-3: 
Finding the 

Pythagorean 
identity on a  

unit circle.
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3. Replace each of the terms with an equivalent expression.

• Use a ratio identity, sin
cos

tan , to replace the first term with tan θ.

• Replace the second term with 1: cos
cos

1.

• Use a reciprocal identity, 1
cos

sec , to replace the third term with sec θ.

Substituting these expressions into the equation and simplifying, you get

tan sec

tan sec

2 2 2

2 2

1

1

This is the second Pythagorean identity.

Finishing up with cotangent and cosecant
If you read the preceding section, you can simply do a repeat performance with 
cotangent and cosecant. Here’s how:

1. Starting with the first Pythagorean identity, sin cos 12 2 , divide 
each term by sin2 .
sin
sin

cos
sin sin

2

2

2

2 2
1

2. Rewrite each term by using the exponential rule a
b

a
b

2

2

2

.

sin
sin

cos
sin sin

2 2 21

3. Replace each of the terms with an equivalent expression.

• Replace the first term with 1: sin
sin

1.

• Use a ratio identity, sin
sin

1, to replace the second term with cot θ.

• Use a reciprocal identity, 1
sin

csc , to replace the third term with csc θ.

Substituting these expressions into the equation and simplifying, you find that 
the result is

1

1

2 2 2

2 2

cot csc

cot csc

This gives you the last Pythagorean identity.
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Rearranging the Pythagorean identities
The preceding sections show the original definitions of the Pythagorean identi-
ties, but as you probably suspect, the forms don’t end there. Familiarizing your-
self with the other versions of these identities is helpful so that you can easily 
recognize them when solving equations or simplifying expressions.

All these different versions have their places in trigonometric applications, calcu-
lus, or other math topics. You don’t have to memorize them, because if you just 
remember the three basic Pythagorean identities, you can solve for what you need.

Changing sin cos2 2 1
You can alter the original Pythagorean identity in myriad ways. For starters, you 
can isolate either sin2 θ or cos2 θ on one side of the equation by subtracting the 
other term:

sin cos

cos sin

2 2

2 2

1

1

Continuing on, you can factor the right side of either of these equations because 
that side is the difference of two perfect squares:

sin cos cos cos 

cos sin sin s

2 2

2 2

1 1 1

1 1 1 iin 

Sometimes, however, having an expression for sin θ or cos θ, where the functions 
aren’t squared, is helpful. Beginning with the earlier version of the basic Pythago-
rean identities, where one function is by itself, you can take the square root of 
each side to get

sin cos cos sin1 12 2 or 

Adjusting tan sec2 21
You can also adapt this second Pythagorean identity in various ways. Solving for 
tan2 θ by subtracting 1 from each side of the equation, you get

tan =sec 12 2

Then, factoring the difference of the squares on the right (because that side is the 
difference of two perfect squares), you have

tan2 sec sec sec2 1 1 1
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Lastly, beginning with the earlier version and taking the square root of each side, 
you get

tan sec2 1

Taking another approach to this Pythagorean identity, you can subtract tan2 θ 
from each side and factor the result to get

1 = sec tan = sec tan sec +tan2 2

The choice of restructuring always just depends on what you want to do with the 
terms — what other functions they’ll be interacting with in a problem.

Reconfiguring 1 2 2cot csc
You can rearrange the last Pythagorean identity, too, by subtracting 1 from each 
side or by subtracting cot2 θ from each side. The two new versions are

cot csc 1

1 csc cot

2 2

2 2

Each of the preceding equations has the difference of two perfect squares, which 
you can factor:

cot csc 1 csc 1 csc 12 2

1 = csc cot =2 2 csc cot csc cot

JOHN NAPIER, INVENTOR OF  
LOGS AND BONES
John Napier was a 16th-century Scottish mathematician and inventor credited with 
inventing logarithms (for which he is best known), the decimal point, and Napier’s 
Bones — an early calculating instrument. Napier’s Bones were actually strips of wood or 
bone with multiplication tables inscribed on them. People used them for multiplying, 
dividing, taking square and cube roots, determining decimal values of fractions, and 
doing computations with exponential and trig functions.

As an inventor, Napier created a hydraulic screw, which was used in coal pits to lower 
the water levels. He invented, or at least proposed, several military inventions as well. 
He proposed special artillery; bulletproof clothing; a submarine-like vehicle; and huge, 
burning mirrors to set enemy ships on fire.



CHAPTER 10  Introducing Basic Identities      173

And last, the square root of each side yields an identity involving just cot θ:

cot csc2 1

Combining the Identities
Even though each function is perfectly wonderful, being able to express each of 
them in terms of all the other five trig functions is frequently to your advantage. 
For example, you may have an equation or expression with a lot of sines, but not 
all the terms are sines. Having them all match — all be in terms of sine — would 
help you solve the equation.

Armed with the reciprocal identities, ratio identities, and Pythagorean identities, 
you can do just that — write any trig function in terms of the others. In this sec-
tion, I show you the many variations of sine; by applying some of the same identi-
ties and following similar steps, you can form a multitude of variations of the 
other trig functions. These five ways of writing sine in terms of the other five 
functions show you how powerful, versatile, and useful all these identities are. A 
word of warning: Some of these equations aren’t very pretty. But then, beauty is 
in the eye of the beholder. And you may think these are just dandy.

The many faces of sine
Here are the five ways of expressing the sine function in terms of the other 
functions.

 » Sine in terms of cosine: sin cos1 2

 » Sine in terms of tangent: sin tan

tan2 1

 » Sine in terms of cotangent: sin
cot

1

1 2

 » Sine in terms of secant: sin sec
sec

2 1

 » Sine in terms of cosecant: sin
csc

1
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Working out the versions
Choosing a good starting point helps — and makes for a nicer result. You don’t 
want any expression that’s too messy or hard to remember. Take advantage of 
identities that have your target function isolated in a single term. This section 
shows you the most typical methods for changing one trig function to another.

Changing sine to cosine
You can express the sine function in terms of cosine without doing much work.

1. Starting with the Pythagorean identity involving sin θθ and cos θθ, subtract 
cos2 θθ from each side.

sin =1 cos2 2

2. Take the square root of both sides.

sin cos

sin cos

2 2

2

1

1

You can use either the positive root or the negative root, depending on your 
application.

Changing sine to tangent
To rewrite the sine function in terms of tangent:

1. Start with the ratio identity involving sine, cosine, and tangent, and 
multiply each side by cosine to get the sine alone on the left.

cos sin
cos

tan cos

sin tan cos

2. Replace cosine with its reciprocal function.

sin tan
sec

1

3. Solve the Pythagorean identity tan 1 sec2 2  for secant.

This equation gives you tan sec2 1 .

4. Replace the secant in the sine equation (from Step 2).

You end up with sin tan
tan

tan

tan

1

1 12 2
.
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Not very pretty, but, if your equation has terms with tangents in them, you have a 
better chance of combining terms or reducing fractions.

Changing sine to cotangent
To write the sine function in terms of cotangent, begin with the equation you end 
up with in the preceding section,

sin tan
tan

tan

tan
.1

1 12 2

1. Replace all the tangents with 1 over the reciprocal for tangent (which is 
cotangent) and simplify the expression.

sin cot

cot

1

1 12

The result is a complex fraction — it has fractions in both the numerator and 
denominator — so it’ll look a lot better if you simplify it.

2. Rewrite the part under the radical as a single fraction and simplify it by 
using the law of exponents/radicals, taking the square root of each part.

sin cot

cot
cot
cot

cot
cot

cot

cot
co

1

1

1

1

1

1

2

2

2

2

2

tt

cot

cot
cot

cot

2

2

2

1

1

3. Multiply the numerator by the reciprocal of the denominator.
1

1

1

1

1

12 2 2
cot

cot
cot

cot
cot

cot cot

That’s it. And it even turned out simpler-looking than the sine written with 
tangents.
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Changing sine to secant
The next function to define sine is the secant function. You see more radicals on 
the horizon, but radicals can be “tamed.”

1. Start with the sine in terms of the cosine (refer to the first change-up in 
this section).

sin cos1 2

2. Now replace the cosine with 1 over its reciprocal.

sin cos

sec

1

1 1

2

2

The radical has a fraction in it. A better form is to simplify that fraction, so find a 
common denominator and split the fraction into two radicals — the bottom one 
of which you can further simplify:

sin sec
sec sec

sec
sec

sec
sec

2

2 2

2

2

21 1 1

Changing sine to cosecant
The last function to write sine in terms of is the cosecant  — I saved the best  
(easiest) for last. The reciprocal of cosecant is sine, so this equation is just one of 

the basic reciprocal identities: sin
csc

1 .
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Chapter 11
Operating on Identities

The basic building-block identities are the reciprocal, ratio, opposite angle, 
and Pythagorean identities, which I discuss in detail in Chapter 10. In this 
chapter, you take those identities a step further and develop new identities, 

discovering how to add, subtract, multiply, and divide the trig functions  — in 
particular, the nice values for angles of 0, 30, 45, 60, and 90 degrees. (Those 
angles aren’t the only ones that you can perform operations on; they’re just the 
most convenient to use when showing how the trig identities work.) By perform-
ing such operations, you can determine the function values of even more angles 
than before. Whole new worlds will open up to you!

Summing It Up
The sums of angles are covered by three basic identities; these identities involve 
sine, cosine, and tangent. After you recognize these three identities, you can adapt 
them for the other three functions (cosecant, secant, and cotangent) by using the 
reciprocal identities (detailed in Chapter 10). All you do is start with a basic sum 
identity, use a reciprocal identity to change the expression to the one you want, do 
the necessary simplifying, and then use the new sum identity as needed. You 
won’t have to do this very often; you can usually get by with one of the three 
basics.

IN THIS CHAPTER

 » Adding sums of angles to your 
identity list

 » Subtracting angles with the 
difference identities

 » Doubling angle values

 » Taking half an angle
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You use the angle-sum identities to find the function values of many, many angles, 
but the examples in this section just show the most convenient combinations — 
ones with exact values that you can fill into the formulas. Suppose, for example, 
that you want to find the exact value of the sine of 75 degrees. To minimize fuss, 
you can use the sum of 30 degrees and 45 degrees and the appropriate identity.

The angle-sum identities find the function value for the sum of angle α and 
angle β:

sin sin cos cos sin

cos cos cos sin sin

tan tan tan
tan tan1

Now for an example using a sum-of-angles identity.

Using the identity for the sine of a sum, find the sine of 75 degrees:

1. Determine two angles whose sum is 75 for which you know the values for 
both sine and cosine.

Choose 30 45, not 50 25 or 70 5, because sticking to the more-common 
angles that have nice, exact values to use in the formula is your best bet.

2. Input the angle measures into the identity.
sin sin cos cos sin

sin sin cos cos sin30 45 30 45 30 45

3. Replace the functions of the angles with their values and simplify.
sin sin cos cos sin

si

30 45 30 45 30 45

1
2

2
2

3
2

2
2

2
4

6
4

2 6
4

nn 75

Sometimes, you have more than one choice for the sum. In this next example, find 
the cosine of 120 degrees by using the identity for the cosine of a sum.

1. Determine two angles whose sum is 120.

Choosing among the most convenient angles, you can use either 90 30 or 
60 60. For this example, I use 90 30, because the sine of a 90-degree angle is 
1, and the cosine is equal to 0. Both of those numbers are very nice to have in 
a computation because they keep it simple.
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2. Input the values into the identity.
cos cos cos sin sin

cos cos cos sin sin90 30 90 30 90 30

3. Replace the functions with their values and simplify.
cos cos cos sin sin

cos

90 30 90 30 90 30

0 3
2

1 1
2

0 1
2

1
2

120

But what if you want to use a different set of angles to find the cosine of 120 
degrees?

1. Determine two angles whose sum is 120.

The only other combination that comes quickly to mind is to use 60 60.

2. Input the values into the identity.
cos cos cos sin sin

cos cos cos sin sin60 60 60 60 60 60

3. Replace the functions with their values and simplify.
cos cos cos sin sin60 60 60 60 60 60

1
2

1
2

3
2

3
2

1
4

3
4

2
4

1
2

cos 120

It really doesn’t matter which pair you use — you get the same answer.

These identities work with radian measures, too, such as finding tan 7
12

 by using 
the identity for the tangent of the sum of angles.

1. Determine two angles whose sum is 7
12

.

It may be easier to think of finding two numbers that add up to 7
12

 and leave 
the π off for a moment.

The two fractions that come to mind are 1
3

 and 1
4

. Because 1
3

1
4

4
12

3
12

7
12

, 

you have 7
12 3 4

.

2. Input the values into the identity.

tan tan tan
tan tan

tan
tan tan

tan t

1

3 4
3 4

1
3

aan
4



180      PART 3  Identities

3. Replace the functions with their values and simplify.

tan tan
3 4

3 1
1 3 1

3 1
1 3

7
12

The result in the last step doesn’t leave the answer in the nicest form. The denom-
inator has two terms, and one of them is a radical. One way to make the answer 
look a bit better and more intelligible is to use a technique called rationalization.

To rationalize the numerator or denominator of a fraction, multiply both the 
numerator and denominator by the conjugate (same terms, opposite sign) of the 
part that you’re rationalizing. When you do so, you end up with the difference of 
two squares, which lets you get rid of the offending portion.

For the last example, you rationalize to get the radical out of the denominator:

3 1
1 3

1 3
1 3

3 3 1 3
1 3

4 2 3
2

2 3

The final answer is a bit nicer to understand and estimate. Because 3  is about 1.7, 
you can estimate that 2 3 2 1 7 3 7. . .

Next, I come at these angle-sum identities from a different direction. Sometimes, 
you may not know what the angle measure is, but you know something about the 
angle’s function values. For example, suppose you have two angles, α in QII and β 

in QI.  You know that sin 3
5

 and cos 24
25

. With that information, what are 

sin( ) and cos( )?

1. Find all the necessary function values for the sums.

Both the sine and cosine angle-sum identities use the sine and cosine of each 
angle involved. You already know the sine of one angle and the cosine of the 
other angle, so you have to determine the unknown cosine and sine — you can 
do so by using a Pythagorean identity.

• First, use the value for sin α to solve for cos α:

sin cos

cos

cos

cos

2 2

2
2

2

1

3
5

1

1 9
25

16
25

16
25

4
5
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You end up with two results. Because the terminal side of angle α is in the 
second quadrant, the cosine of α, in this case, is negative:

cos 4
5

• Now use the value for cos β to solve for sin β:

sin cos

sin

sin

sin

2 2

2
2

2

1

24
25

1

1 576
625

49
625

49
6255

7
25

Again, there are two different signs to choose from for the sin of β.  
The terminal side of angle β is in the first quadrant, where the sine is 

 positive: sin 7
25

.

2. Insert the function values into the identities for the sine and cosine of 
the sum of angles.
sin sin cos cos sin

sin 3
5

24
25

4
5

7
25

cos cos cos sin sin

cos 4
5

24
25

3
5

7
25

3. Simplify the identities and solve for the answers.

 

sin 3
5

24
25

4
5

7
25

72
125

28
125

44
125

cos 4
5

24
25

3
5

7
25

96
125

21
125

117
125

By looking at the angle measures, you can predict whether the function value  
will be positive or negative. In the preceding example, the smaller angles, when 
added together, create an angle with its terminal side in the second quadrant. In 
Chapter 8, you find out that the sine of an angle in the second quadrant is positive. 
So, it’s no surprise that the sine comes out to be a positive value and, likewise, 
that the cosine is a negative value (because cosine is negative in the second 
quadrant).
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Overcoming the Differences
By adding angles together, you enlarge your repertoire. You have a longer list of 
exact function values — not just the basic function values, but also all the possible 
sums of these more-common angles. In like fashion, you have even more possi-
bilities for finding the function values of angles when you use subtraction. For 
example, you can determine the sine of 15 degrees by using 45 degrees and 30 
degrees and the appropriate identity.

The subtraction, or difference, identities find the function for the difference 
between angles α and β:

sin sin cos cos sin

cos cos cos sin sin

tan tan tan
tan tan1

Notice how each of the subtraction identities resembles its corresponding angle-
sum identity. For the sine rule, the sign between the two products changes from + 
to –, which seems to make sense. The opposite is true for cosine. The addition rule 
for cosine has – in it, and the subtraction (or difference) rule has + in it. The tan-
gent rule has both + and – in it; the operation in the numerator mirrors the type 
of identity.

Only the original three trig functions have truly usable difference identities — the 
identities for the reciprocal functions are pretty darned complicated. If you want 
the difference of a reciprocal function, your best bet is to use the corresponding 
basic identity and find the reciprocal of the numerical answer after you’re all 
finished.

To see one of the subtraction identities in action, check out the following example, 
which shows how you can find the sine of 15 degrees.

1. Determine two angles with a difference of 15 degrees.

To keep things simple, use 45 and 30.

2. Substitute the angles into the identity for the sine of a difference.
sin sin cos cos sin

sin sin( ) sin cos cos15 45 30 45 30 455 30sin

3. Replace the terms with the function values and simplify the answer.

sin

sin

45 30 2
2

3
2

2
2

1
2

6
4

2
4

6 2
4

15
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Using radians introduces even more fractions into the picture, such as finding 

tan
12

 by using the identity for the tangent of a difference. Note that the radian 

measure of 
12

 and the degree measure of 15  are the same angle. You’re working 

with the same angle in these two examples.

1. Determine which angles you need to get the difference.

The two angles are 
3

 and 
4

, giving you 
3 4

4
12

3
12 12

.

2. Substitute the angles into the identity for the tangent of a difference.

tan tan tan
tan tan

tan tan
tan tan

1

12 3 4
3 44

1
3 4

tan tan

3. Replace the terms with the function values and simplify the answer.

tan tan
3 4

3 1
1 3 1

3 1
1 3 12

The result is rather messy. You can simplify it even more by multiplying the 
numerator and denominator by the conjugate (same terms, different sign) of 
the denominator and simplifying the result:

3 1
1 3

1 3
1 3

3 3 1 3
1 3

2 3 4
2

3 2

In Chapter 10, I explain the opposite-angle identities. This next example uses the 
identity for the cosine of a difference along with the angle measuring 0 degrees to 
create an opposite-angle identity. You may like this explanation better than those 
in Chapter 10, and it just goes to show you how versatile and user-friendly trig 
identities are — and how they all get along so well together. In this example, find 

cos
3

 by using the identity for the difference between angles.

1. Determine which angles you need to get the difference.

Using 0 and 
3

 and subtracting with the 0 first gives a negative result: 0
3 3

.

2. Substitute the angles into the identity for the cosine of the difference.
cos cos cos sin sin

cos cos cos sin sin0
3

0
3

0
3
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3. Replace the angles with the function values and simplify the answer.

cos cos cos sin sin

cos

3
0

3
0

3

1 1
2

0 3
2

1
2 3

This answer is exactly what you get if you use the opposite-angle identity for 

cosine: cos cos  or cos cos
3 3

1
2

.

In the following example, two negatives make a positive. The angles are positive, 
but their function values are negative. The two angles in question are α, which is 
in the fourth quadrant, and β, which is in the third quadrant. The known function 

values are sin 4
5

 and cos 5
13

. Find cos )( .

1. Find the necessary function values to calculate the difference.

The cosine of the difference of two angles uses both the sine and cosine of 
each angle involved. You already know the sine of α and cosine of β, so you 
must determine the cosine of α and the sine of β. Using a Pythagorean identity, 
you can solve for the missing values.

First, use the value for sin α to solve for cos α:

sin cos

cos

cos

cos

2 2

2
2

2

1

4
5

1

1 16
25

9
25

9
25

3
5

You have to choose between the positive and negative values. Because 
angle α is in the fourth quadrant, you know that the cosine of α is posi-

tive: cos 3
5

.

Now use the value for cos β to find sin β:

sin cos

sin

sin

sin

2 2

2
2

2

2

1

5
13

1

1 25
169

144
169

1 25
1169

12
13



CHAPTER 11  Operating on Identities      185

Again, you choose the correct sign. Angle β is in the third quadrant, where 

sine is negative, so sin 12
13

.

2. Insert the function values into the identity for the cosine of a difference.
cos cos cos sin sin

3
5

5
13

4
5

12
13

3. Simplify the identity and solve for the answer.

cos 15
65

48
65

33
65

In the preceding example, the first angle is in the fourth quadrant, so its measure 
is between 270 and 360 degrees. The other angle, which is in the third quadrant, 
is between 180 and 270 degrees. The difference between them could be anywhere 
between 0 and 180 degrees, meaning that the new angle is in either the first or 
second quadrant. The answer for the cosine of the difference came out positive. 
Chapter 8 tells you that the cosine is positive in the first quadrant and negative in 
the second quadrant, so the difference between the two angles must be some-
where between 0 and 90 degrees, which means that the new angle is in the first 
quadrant.

Doubling Your Money
Identities for angles that are twice as large as one of the common angles are used 
a lot in calculus and various math, physics, and science disciplines. These identi-
ties allow you to deal with a larger angle in terms of a smaller and more manage-
able one. A double-angle function is written, for example, as sin 2θ, cos 2α, or tan 
2x, where 2θ, 2α, and 2x are the angle measures and the assumption is that you 
mean sin (2θ), cos (2α), or tan (2x). In this section, I show you how the double-
angle formulas for sine and cosine came to be. I don’t go off on a tangent here, but 
all you need to know is that because tangent is equal to the ratio of sine and 
cosine, its identity comes from their double-angle identities.
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The double-angle identities find the function for twice the angle θ. Note that the 
cosine function has three different versions of its double-angle identity.

sin sin cos

cos cos sin

cos

sin

tan t

2 2

2

2 1

1 2

2 2

2 2

2

2

aan
tan1 2

One plus one equals two sines
To show you where the double-angle formula for sine comes from, I start with the 
identity for the sine of a sum, sin sin cos cos sin . If , then 

 becomes  or 2(α).

You can replace β with α in the formula, giving you

sin sin cos cos sin

sin sin cos2 2

For example, you can use this double-angle identity to find the function value for 
the sine of 180 degrees.

1. Determine twice which angle is 180 degrees.

Twice 90 is 180, so the choice is 90 degrees.

2. Substitute the measure into the double-angle identity for sine.
sin sin sin cos180 2 90 2 90 90

3. Replace the angles with the function values and simplify the answer.
sin180 2 1 0 0

But that angle measure is found pretty easily because the terminal side of the 
angle is on an axis. How about something a bit more challenging? This time, use 
a double-angle formula to find the sine of 150 degrees.

1. Determine twice which angle is 150 degrees.

Twice 75 is 150, so the choice is 75 degrees. A 75-degree angle isn’t one of the 
basic angles, but you find the value of the sine of 75 degrees earlier in this 
chapter, in the section, “Summing It Up.”

2. Substitute the measure into the double-angle identity for sine.
sin sin sin cos150 2 75 2 75 75
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3. Replace the angles with the function values and simplify the answer.

You have sin75 2 6
4

 and also need the cosine of the angle. A 

Pythagorean identity comes to the rescue.

sin cos

cos

cos

2 2

2
2

2

75 75 1

2 6
4

75 1

75 1 8 2 12
16

1 88 4 3
16

4
4

2 3
4

2 3
4

75 2 3
4

2 3
2

cos

Whew! Now you see why it’s nice to have other options in the form of different 
types of trig identities.

So, you now have

sin sin cos150 2 75 75

2 2 6
4

2 3
2

2 6 2 3
4

This can be simplified a bit by multiplying the numerator and denominator by the 
conjugate of the numerator.

2 6 2 3
4

2 6
2 6

2 6 2 3
4 2 6

2 3
6 2

Still not a pretty sight, and it can be simplified by multiplying the numerator and 
denominator by a conjugate, but using your calculator to compute the value of 

that fraction, you get exactly 1
2

. This is not the most efficient way to find the sine 

of 150 degrees, but you see an example of applying a double-angle formula to 
solve for the value of a trig function.
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Three’s a crowd
Finding the cosine of twice an angle is easier than finding the other function val-
ues, because the cosine offers you three choices. You make your choice depending 
on what information is available and what looks easiest. To show you where the 
first of the double-angle identities for cosine comes from, I use the angle-sum 
identity for cosine. Because the two angles are equal, you can replace β with α, so 
cos cos cos sin sin  becomes

cos cos cos sin sin

cos cos sin

cos si

2 2 2

2 nn2

UNLIKELY MATHEMATICIAN
Napoleon Bonaparte is best known for his triumphs and trials in French history. But  
did you know that he was a closet mathematician? He even has a rule named for him. 
Napoleon is credited with discovering that when you construct equilateral triangles on 
the sides of any other triangle and then connect the centers of those triangles with seg-
ments, those segments form another equilateral triangle. Here is a figure illustrating 
Napoleon’ s theorem:
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To get the second version, use the first Pythagorean identity, sin cos2 2 1. 
Solving for sin2 α, you get sin cos2 21 . Putting this result back into the  
double-angle identity for cosine and simplifying, you get

cos cos cos

cos cos

cos

2 1

1

2 1

2 2

2 2

2

To find the last version of the double-angle identity for cosine, solve the first 
Pythagorean identity for cos2 α, which gives you cos sin2 21 . Then substitute 
this result into the first angle-sum identity for cosine:

cos sin sin

sin sin

sin

2 1

1

1 2

2 2

2 2

2

The biggest advantage to having three different identities for the cosine of a dou-
ble angle is that you can solve for the cosine with just one other function value. 
The sum and difference identities for sine and cosine, on the other hand, as well 
as the double-angle identity for sine, all involve both the sine and cosine of the 
angles.

Here’s an example showing off that advantage. Find cos 2α; the angle α is in the 
fourth quadrant, and sin .0 45.

1. Choose the appropriate double-angle identity.

Because you know the value of the sine, use cos sin2 1 2 2 .

2. Insert the given value in the formula and simplify.

cos sin .

. . .

2 1 2 1 2 0 45

1 2 0 2025 1 0 4050 0 5950

2 2

The resulting cosine is positive. The cosine is positive in the first and fourth quad-
rants, so how do you know which of those two quadrants the terminal side of this 
double angle lies in? Go back to the beginning of the problem — you know that the 
original angle is in the fourth quadrant. An angle in the fourth quadrant measures 
between 270 degrees and 360 degrees. If you double those numbers (because 
you’re working with a double angle), you get 540 degrees and 720 degrees. The 
angles between those two values lie in the third and fourth quadrants. The cosine 
is positive in the fourth quadrant, so this double angle lies in the fourth quadrant.
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Halving Fun Yet?
The trig identities come in sums, differences, multiples, and halves. With these 
identities, you can get the value of a sine for a 15-degree angle by using a formula 

involving half of 30 degrees. You can also get the value of the tangent of a 22 1
2

 

degree angle by using half of 45 degrees. These identities just create more and 
more ways to establish an exact value for many of the more commonly used trig 
functions.

The half-angle identities find the function value for half the measure of angle θ:

sin cos

cos cos

tan sin
cos

cos
sin

2
1

2

2
1

2

2 1
1

Notice that the tangent has two versions of its half-angle formula. “Oh, goody!” 
you say. Just as with the three versions of the cosine’s double-angle identities, 
you get to choose which version is more convenient.

The half-angle identities are a result of taking the double-angle identities and 
scrunching them around. A more-technical term for scrunching is solving for the 
single angle in a double-angle identity. Here’s how the half-angle identity for 
sine came to be:

1. Write the double-angle identity for cosine that has just a sine in it.

cos sin2 1 2 2

Using the double-angle identity for cosine works better than the double-angle 
identity for sine, because the sine formula has both functions on the right side 
of the equation, and you can’t easily get rid of one or the other.

2. Solve for sin θθ. First, get the sin2 θθ term by itself on the left.

cos sin

sin cos

2 1 2

2 1 2

2

2

3. Divide each side by 2, and then take the square root of each side.

sin cos

sin cos

sin cos

2

2

1 2
2

1 2
2

1 2
2
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4. Replace 2θθ with αα and θθ with 
2

.

sin cos
2

1
2

By switching the letters, you can more easily see the relationship between the 
two angles, that one is half as big as the other.

You can find the half-angle formula for cosine by using the appropriate choice of 
cosine’s double-angle identity and following similar steps to the preceding ones. 
With tangent, you use both the sine and cosine identities. But first, what’s this 
business of + or – in the sine and cosine half-angle identities?

Explaining the ±±
Trig identities are numerous. Some people say there are too many identities, and 
others say there just aren’t enough. (Like Baby Bear, I think they’re just right.) I 
list the most frequently used identities both in this chapter and in Chapter 10. You 
may be wondering, however, why these half-angle identities are in a league of 
their own — some of them have ± in front of them; other identities don’t have that 
lead-in. Continue on, dear reader, for the answer to that nagging question.

What’s unique about the half-angle identities for sine and cosine is the fact that 
the sign attached depends on what quadrant the angle that you’re cutting in half 
is in or how big that angle is. If you want to know the sine of half a 30-degree 
angle, you look at what quadrant that half is in. Both 30 degrees and its half,  
15 degrees, are in the first quadrant, so their sines are both positive. Not so with 
the sine of 300 degrees and its half, 150 degrees, though. The sine is negative in 
the fourth quadrant, where the 300-degree angle is located (in standard position), 
but the sine of 150 degrees is positive, because its terminal side is in the second 
quadrant. When you apply the half-angle formulas, you have to consider which 
quadrant each angle is in and apply the appropriate signs.

Half a tangent is double the fun
The half-angle identity for tangent has two versions. Rather than being a nui-
sance, having more than one option is really rather nice, because you can choose 
the version that works best for your situation. The half-angle formulas for the 
tangent involve both sine and cosine, but those functions switch places in the 
numerator and denominator of the fraction. Sometimes the sine of a function 
doesn’t have a radical in its exact value when the cosine does (or vice versa). 
Depending on the sine and cosine values, you choose the version of the half-angle 
tangent identity that’ll be easiest to work with after you input the values. The 
math is easier when you don’t have to worry about those radicals in the 
denominator.
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First, where do these half-angle tangent identities come from?

1. Use the ratio identity for tangent and fill in the half-angle identities for 
sine and cosine.

tan
sin

cos

cos

cos2
2

2

1
2

1
2

You can leave off the ± sign because you won’t have to choose which sign to 
use with the tangent identity.

2. Put the numerator and denominator under the same radical and then 
simplify the complex fraction.

1
2

1
2

1
2

2
1

1
1

cos

cos
cos

cos
cos
cos

3. Multiply the numerator and denominator by the conjugate (same terms, 
different sign) of the denominator.

1
1

1
1

1
1

2

2
cos
cos

cos
cos

cos
cos

4. Replace the denominator by using the Pythagorean identity and then 
simplify by putting the radical over the numerator and denominator, 
individually.

1
1

1

1 1

2

2

2

2

2

2

cos
cos

cos
sin

cos

sin

cos
sin

To find the other form of this half-angle tangent identity, change Step 3 by 
multiplying the numerator and denominator of the fraction by the conjugate  
of the numerator instead of the denominator.

Using half-angle identities
By adding, subtracting, or doubling angle measures, you can find lots of exact 
values of trig functions. This section provides some examples of the types of 
angles and their functions that you can find with the half-angle identities.
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Even though you can use a difference identity to find the sine of 15 degrees, you 
can also use the half-angle identity.

1. Determine which angle is double the angle you’re working with.

Half of 30 is 15, so the choice is 30 degrees. Stick to the more-common 
angles — the ones that have exact values (see Chapter 6) or are multiples  
of 30 and 45.

2. Substitute that angle into the half-angle identity for sine.

sin cos

sin sin cos
2

1
2

15 30
2

1 30
2

Because the sine of 15 degrees is a positive value, the sign in front of the 
radical becomes +.

3. Fill in the function values and simplify the answer.

sin cos15 1 30
2

1 3
2

2

2
2

3
2

2
2 3

4
2 3

2

The result isn’t a particularly pretty value, although beauty is in the eye of the 
beholder. Some would consider this answer to be wonderful, because it’s the 
exact value and not a decimal approximation.

Now try using the half-angle identity with radians. Find tan
8

.

1. Determine which angle is double the angle you’re working with.

The angle 
4

 is twice 
8

.

PI GONE WRONG
In 1853, William Shanks published his calculation of the decimal value of  to 707 deci-
mal places, which he computed all by hand. Not until 1945 did someone discover that 
the last 180 digits of this computation were wrong. But an even greater error occurred in 
1897. That year, the General Assembly of the State of Indiana enacted Bill Number 246, 
stating that  was legally equal to 3.2.
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2. Substitute the angle measure into one of the half-angle tangent 
identities.

tan cos
sin

tan tan
cos

sin

2
1

8
4
2

1
4

4

3. Fill in the function values and simplify the answer.

tan
8

1 2
2

2
2

2
2

2
2

2
2

2 2
2

2
2

2 2
2

4. To get the radical out of the denominator, rationalize it by multiplying 
both parts of the fraction by the conjugate of the denominator.

2 2
2

2 2 2
2

2 2 1
2

2 12
2

The other identity for the tangent of a half-angle gives you exactly the same 
answer. That form isn’t any easier, though, because both the sine and cosine of 
this angle have a radical in them. If the problem involved an angle of 60 degrees, 

though, the story would be different. The sine of 60 degrees is 3
2

, and the cosine 

is 1
2

, which practically begs you to use the form with the cosine in the denomina-

tor so you don’t have to mess with a radical in the denominator. Both identities 
work — the one you use is just a matter of personal preference.

Comparing Exact Values and Estimations
In both this chapter and Chapter 10, you are given identities to find the exact val-

ues of trig functions. Some exact values are very nice, such as 0, 1, –1, 1
2

, and so 

on. But the values that are full of radicals and fractions aren’t quite as pretty.

For example, when using the difference identity and the angles 
3

 and 
4

 to find 

tan
12

, you end up with tan
12

3 2. What is the decimal equivalence? Well, 

there is no exact equivalence, because the decimal value goes on forever and ever. 
Using a calculator, you may get 0.2679491924, which is a rounded-off version of 
the exact answer. Using Excel, you get 0.267949192431123, which adds four more 
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decimal places. But how many decimal places do you need? It all depends on how 
the value is being used. If you’re determining how large to make your garden, you 
probably need only one or two decimal places: 0.3 or 0.27. If you’re sending a 
shuttle out into space, you want a lot more accuracy and may go to eight or nine 
decimal places: 0.26794919 or 0.267949192.

When using a sum identity to find tan 7
12

, you determine that tan
3 4

3 1
1 3 1

3 1
1 3

. This can be simplified further by multiplying the numerator and 

denominator by the conjugate 1 3 : 3 1
1 3

1 3
1 3

4 2 3
2

2 3 . Again, 

with your calculator, you can get 3 732050808. . But how does that compare to your 

using 3 1
1 3

 and not bothering to simplify? You get the exact same result. You 

would have to carry the decimal out to many, many more places before having 
that radical in the denominator would make a difference.

One more thing that may have concerned you: When finding sin15  using the dif-

ference identity, you get sin15 6 2
4

, but when using the half-angle identity, 

you get sin15 2 3
2

. These really look different, so are they the same? Using 

a calculator, you get the exact same value: sin .15 0 2588190451. It just takes a bit 
of algebraic simplification to show how to get from one format to the other.
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Chapter 12
Proving Identities: 
The Basics

One major aspect that people remember about trigonometry, if they studied 
it in school, is the time they spent proving identities — making one side 
of an equation match the other. Some people find proving identities to be 

the best thing ever — they can’t get enough of them. Others, though, find this 
task of proving identities to be less than exciting — a rite of passage that is best 
passed by. What you find in this chapter are a game plan and suggestions so that 
if you aren’t so fond of solving such puzzles, then you may actually begin to enjoy 
the process. For your reading pleasure, I divide this chapter into the methods that 
work best to prove the different types of identities.

Why do you need to prove identities? Don’t you already know that they’re correct 
if they’re called identities? Sure you do, but proving them is still helpful down the 
road when you’re solving complex trig problems, because the process for solving 
them is all in the preparation. Many of the trig expressions that you use to solve 
practical problems have rather complicated and nasty-looking terms. By doing 
substitutions and manipulations with the trig identities, you can make those 
expressions more usable. All this practice with proving identities prepares you and 
gives you a heads-up as to what’s possible.

IN THIS CHAPTER

 » Brushing up on the major identities

 » Working on one or both sides

 » Changing everything to sine and 
cosine

 » Dealing with fractions
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Lining Up the Players
Before starting to prove (or solve) identities, you need to look over the different 
equivalences that you use to solve them.

Here’s a quick list for your reference:

Reciprocal Identities

1
sin

csc 1
cos

sec 1
tan

cot

1
cot

tan 1
sec

cos 1
csc

sin

Ratio Identities

tan sin
cos

cot cos
sin

Opposite-Angle Identities

sin sin

cos cos

tan tan

Pythagorean Identities

sin cos2 2 1 or sin  or sin2 21 12 2cos cos

tan sec2 21  or tan2 sec2 1

1 2 2cot csc  or cot2 csc2 1

Sum and Difference Identities

sin sin cos cos sin

sin sin cos cos sin

cos cos cos sin sin

cos cos cos sin sin

tan tann tan
tan tan

tan tan tan
tan tan

1

1
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Double-Angle Identities

sin sin cos

cos cos sin cos sin

tan t

2 2

2 2 1 1 2

2 2

2 2 2 2

aan
tan1 2

Half-Angle Identities

sin cos
2

1
2

cos cos
2

1
2

tan sin
cos

cos
sin2 1

1

Picking Sides
When you prove identities, you usually work on only one side of the equation or the 
other — not both at the same time — and for good reason. When you’re working 
in other math areas, such as solving anti-derivatives in calculus, you need to 
change from one trig expression to another so you can do the problem; such a situ-
ation doesn’t have any sides, so you need to work on just the one term or expres-
sion. Solving trig identities working on just one side or the other is good practice. 
The good news is that in these problems, you usually get to pick which side.

Here are the guidelines for choosing the side to work on in an identity. (Just as in 
a debate, you go for the side you can defend or work with.) You may take your pick 
based on any one of these options:

 » Choose the side with the greater number of terms. Why? Combining terms 
into one is easier than breaking them apart.

 » Choose the side with factors that need to be multiplied together. The 
reason? Trig functions have a way of merging together because of similar 
factors in their ratios.

 » Choose the side with terms other than sine or cosine. Why? Because 
all the functions can be written in terms of sine and cosine, so this creates 
commonalities.
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 » Choose the side with fractions that need to added together or sub-
tracted from one another. The thinking here? Finding common denomina-
tors and combining introduces opportunities to apply identities — and you 
reduce the number of terms.

Of course, these guidelines don’t include all the possibilities, but they give you a 
good start. Enter the puzzle part of identities. You get to look for clues in each 
identity to help you decide which side to work on, as in the following examples.

Prove the identity cot sin tan cot cosx x x x x 1.

1. Choose the side to work on.

The left side has more terms, the first term is a product, and the second term is 
the product of two reciprocal functions, so this is the best choice.

2. Use the ratio identity to replace the first cot x and the reciprocal identity 
to replace the second cot x.
cos
sin

sin tan
tan

cosx
x

x x
x

x
1 1

3. Multiply the two factors together in the two terms.
cos
sin

sin tan
tan

cos

cos cos

x
x

x x
x

x

x x

1 1

1 1

The identity is proven, because the two sides are exactly the same. This one went 
pretty quickly, because the ratio and reciprocal identities were chosen. Another 
way to approach the problem would be to factor out cot x from the terms on the 
left and then do some identity-replacing in the terms in the parentheses. This 
approach isn’t as easy, but it can still get the job done.

The next example shows you more techniques.

Prove the identity sec sin tan cosx x x x.

1. Choose the side to work on.

The left side has more terms, and two of the functions aren’t sine or cosine,  
so you use two of the guidelines in making this choice.

2. Use the reciprocal identity to replace sec x and the ratio identity to 
replace tan x. This is from the guideline suggesting you change all terms to 
those involving sine and cosine.

1
cos

sin sin
cos

cos
x

x
x
x

x
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3. Multiply the two factors together in the second term. Then combine the 
two fractions, because they have a common denominator.

1
1

1

1

2

2

cos
sin sin

cos
cos

cos
sin
cos

cos

sin
cos

c

x
x x

x
x

x
x
x

x

x
x

oosx

4. Replace the numerator by using the Pythagorean identity sin cos 12 2x x , 
which is also written cos 1 sin2 2x x– .

cos
cos

cos
2 x
x

x

5. Reduce the fraction on the left.

cos
cos

cos

cos cos

2 x
x

x

x x

The identity is proven, because the two sides are exactly the same.

Next, prove the identity,

1
1

2cos
sin

sin
cos

cscx
x

x
x

x.

1. Choose the side to work on.

The left side has fractions that you need to add together.

2. Find the common denominator.

The fractions have two different denominators, so multiply each by a fraction 
that equals 1 — the fraction with the other term’s denominator in both the 
numerator and denominator.

1 1
1 1

2cos
sin

cos
cos

sin
cos

sin
sin

cscx
x

x
x

x
x

x
x

x

3. Simplify the two fractions. Then add them together, because they have 
the same denominators.

1
1 1

2

1

2 2

2

cos
sin cos

sin
sin cos

csc

cos sin

x
x x

x
x x

x

x 22

1
2

x
x x

x
sin cos

csc
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4. Multiply out the squared binomial in the far-left term of the numerator.
1 2

1
2

2 2cos cos sin
sin cos

cscx x x
x x

x

5. Replace the last two terms in the numerator with 1, using the 
Pythagorean identity sin cos2 2 1x .

1 2 1
1

2cos
sin cos

cscx
x x

x

6. Combine the two 1s in the numerator, and then factor out the 2 from 
each of the terms.

2 2
1

2

2 1
1

2

cos
sin cos

csc

cos
sin cos

csc

x
x x

x

x
x x

x

7. Factor out the common multiplier in the numerator and denominator.
2 1

1
2

2 2

cos
sin cos

csc

sin
csc

x
x x

x

x
x

8. To finish up, use the reciprocal identity 1
sin

csc
x

x .

2 1 2

2 2

sin
csc

csc csc

x
x

x x

The next example uses the multiplying-out guideline and the Pythagorean iden-
tity to make for a pretty result.

Prove the identity that cos sec cos sinx x x x2 .

1. Decide which side you’ll work on.

The left side just begs to be multiplied out by distributing cos x over the two 
terms in the parentheses.

2. Distribute on the left.

cos sec cos sinx x x x2 2

3. Cosine and secant are reciprocals, so their product is 1. Replace the term 
“cos x sec x” with 1.

cos
cos

cos sin

cos sin

x
x

x x

x x

1

1

2 2

2 2
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4. Use the Pythagorean identity to replace the terms on the left.

sin sin2 2x x

Working on Both Sides
As much fun as it is to work on just one side of an identity, sometimes working on 
both sides at the same time is advantageous and permissible. Working on both 
sides of an identity is often necessary when you don’t have a clear-cut way to 
change one side to match the other. I’ve even had to resort to working on both 
sides when it wasn’t permissible; working backward from one side to the result on 
the other side can give some valuable clues on how to solve the equation.

With a trig identity, working on both sides isn’t really the same as working on 
both sides of an algebraic equation. In algebra, you can multiply each side by the 
same number, square both sides, add or subtract the same thing to each side, and 
so on. When you solve trig identities and equations (see Chapter 16), you can use 
all those algebra rules plus you can do substitutions with the various trig identities 
when you need them. You can even insert a different identity on each side — the 
one big advantage of working on both sides of a trig identity.

This first example is rather basic, but it gets the idea across. Solve the identity 
sin
csc

cos
sec

tan cot  by working on both sides.

1. Replace the two denominators of the fractions with their reciprocal 
identities. Also replace the cotangent on the right with its reciprocal.
sin

sin

cos

cos

tan
tan1 1

1

2. Simplify the two fractions on the left by flipping the denominators and 
multiplying them by their numerators. Then multiply the two factors on 
the right together.

sin sin cos cos

sin sin cos cos

sin cos

1 1
1

1 1 1 1
1

2 2 1

3. Replace the sum on the left using the Pythagorean identity.

You end up with 1 1.
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In the next example, you change everything to sines and cosines. Prove the iden-

tity csc
cos

cot tanx
x

x x.

1. Change the functions to their equivalences by using the reciprocal and 
ratio identities.

1
sin
cos

cos
sin

sin
cosx

x

x
x

x
x

2. On the left, write the denominator as a fraction and then flip it and 
multiply it by the numerator. On the right, multiply each fraction by a 
fraction equal to 1 (by using the other fraction’s denominator) to get 
common denominators for all the fractions.

1

1
1 1

sin
cos

cos
sin

sin
cos

sin cos
cos
sin

cos
cos

x
x

x
x

x
x

x x
x
x

x
x

ssin
cos

sin
sin

x
x

x
x

3. Simplify the multiplied fractions. Add the two fractions on the right 
together.

1 2 2

2 2

sin cos
cos

sin cos
sin

sin cos

cos sin
sin cos

x x
x

x x
x

x x

x x
x x

4. Replace the numerator on the right with the value from the Pythagorean 
identity.

1 1
sin cos sin cosx x x x

When working on both sides, you’re done when the two sides read the same. It’s 
different from working on one side, where you keep something from the original 
equation.

This last example requires a little creativity to get the job done. But working on 

both sides still works best when solving 1 2 2cot
cot

tan csc cot .

1. Split up the fraction on the left by writing each term in the numerator 
over the denominator.

1 2 2

cos
cot
cot

tan csc cot
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2. Reduce the second fraction to 1.
1 1 2 2

cot
tan csc cot

3. Replace the csc2 αα on the right with its equivalent by using the 
Pythagorean identity.

1 1 1 2 2

cot
tan cot cot

4. Simplify the terms on the right after dropping the parentheses — two of 
the terms are opposites of one another.

1 1 1

1

2 2

cot
tan cot cot

tan

5. Replace the fraction on the left by using the reciprocal identity.
tan tan1 1

Going Back to Square One
With some identities, which side you should work on or what you should do with 
either or both sides isn’t clear. And in some instances, you’re faced with such a 
conglomeration of functions that figuring out what’s going on is darn near impos-
sible. Other times, the different terms have different powers of the same function. 
In such cases, simplifying matters either by changing everything to sines and 
cosines or by factoring out some function may be your best bet.

THE MUSIC OF THE SPHERES
Pythagoras is best known for his theorem, which defines the relationships among the 
lengths of a right triangle’s sides, but his second most well-known contribution to 
humanity is his discovery of the mathematical basis of the musical scale. He found that 
a connection exists between musical harmony — the stuff that sounds good — and 
whole numbers. If you pluck a taut string, listen to the note, and then pluck a string 
twice as long and equally taut, you hear a note one octave below the first note. You can 
also go down the scale by increasing the length of the taut string in smaller increments.

Pythagoras believed that whole-number relationships represent all harmony, all beauty, 
and all nature. He extended this theory to the orbits of the planets and believed that as 
the planets move through space, they must give off a heavenly whole-number har-
mony. Hence the term the music of the spheres (in one of my favorite songs from Les 
Misérables).
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Changing to sines and cosines
In this first example, you can use either reciprocal or ratio identities, depending 
on which side you’re going to work on, to change everything to sines and cosines. 
Here’s how I’d solve the identity tan cot csc sec :

1. Going with the guideline to work on the side with the greatest number of 
terms, replace the two terms on the left by using ratio identities.
sin
cos

cos
sin

csc sec

2. To get a common denominator, multiply both terms on the left by 
fractions equal to 1 (by using the other term’s denominator).
sin
cos

sin
sin

cos
sin

cos
cos

csc sec

3. Simplify the fractions and then add them together, because now they 
have a common denominator.

sin
cos sin

cos
sin cos

csc sec

sin cos
cos sin

cs

2 2

2 2

cc sec

4. Replace the numerator on the left with its equivalent by using the 
Pythagorean identity.

1
cos sin

csc sec

5. Use the reciprocal identities on the terms in the denominator and then 
flip each fraction and multiply.

1
1 1

1 1

sec csc

csc sec

sec csc csc sec

sec csc sec csc

In the next example, only two terms aren’t already written as sines, so replacing 
those two with terms in sines just seems natural when solving.

sin csc
sin csc

sin
sin

x x
x x

x
x

8
4

8
4

2

2
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1. Change the two cosecants on the left by using the reciprocal identity.

sin
sin

sin
sin

sin
sin

sin
sin

sin
s

x
x

x
x

x
x

x
x

x

8 1

4 1
8
4

8

4

2

2

iin

sin
sin

x

x
x

2

2
8
4

2. Multiply each term in the numerator and denominator of the left-hand 
side by sin x. This action amounts to multiplying by sine over sine, or by 1.

sin
sin

sin
sin

sin
sin

sin
sin

sin sin
sin

x
x

x
x

x
x

x
x

x x
x

8

4
8
4

8

2

2

sin sin
sin

sin
sin

sin sin sin
sin

sin

x x
x

x
x

x x x
x

x

4
8
4

8

2

2

sin sin
sin

sin
sinx x

x

x
x4

8
4

2

2

3. Simplify the numerator and denominator.

sin sin
sin

sin sin
sin

sin
sin

sin
sin

2

2

2

2

2

2

8

4
8
4

8

x x
x

x x
x

x
x

x
xx

x
x4

8
4

2

2
sin
sin

This next example has so many different functions and terms that figuring out 
where to start almost seems impossible. Although you have other ways to approach 
it, I change the fraction on the left to all sines and cosines. If you want to see 
another way to solve an identity like this one, refer to Chapter 13.

Solve the identity 1 1sec
tan

tan
sec

cot cosx
x

x
x

x x .

1. On the left side, change the secants by using the reciprocal identity and 
the tangents by using the ratio identity.

1 1

1
1cos

sin
cos

sin
cos

cos

cot cosx
x
x

x
x

x

x x
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2. On the left, multiply each term in the numerator and denominator by cos 
x and simplify all the terms.

cos
cos

cos
sin
cos

cos
cos

sin
cos

cos

cot cosx
x

x
x
x

x
x

x
x

x

x x
1 1

1
1

cos
cos

cos sin
cos

cos sin
cos

cos
cos

c
x

x

x x
x

x x
x

x
x

1 1

1
oot cos

cos cos
cos

cos sin
cos

cos sin
cos

x x

x x
x

x x
x

x x
x

1

1 1

ccos
cos

cot cos

cos cos
cos

cos sin
cos

cos

x
x

x x

x x
x

x x
x

1
1

1 xx x
x

x
x

x x

sin
cos

cos
cos

cot cos
1

1

From that mess, you get cos
sin

sin cot cosx
x

x
x x

1
1

1 .

3. Find a common denominator for the two fractions on the left, add the 
fractions together, and simplify the result.
cos

sin
sin
sin

sin cot cos

cos
sin

sin
sin

x
x

x
x

x
x x

x
x

x
x

1
1

1

1 2

cot cos

cos sin
sin

cot cos

x x

x x
x

x x

1

1 1
2

4. Replace the sin2 x in the numerator with its equivalent by using the 
Pythagorean identity, and simplify.
cos cos

sin
cot cos

cos cos
sin

cot

x x
x

x x

x x
x

x

1 1
1

1 1 1

2

2

ccos

cos cos
sin

cot cos

x

x x
x

x x
2

1

5. Factor a cos x from each term in the numerator.
cos cos

sin
cot cos

x x
x

x x
1

1
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6. Split the two factors in the numerator into two fractions that are 

multiplied by each other. Then replace cos
sin

x
x

 by using the ratio identity.
cos
sin

cos
cot cos

cot cos cot cos

x
x

x
x x

x x x x

1
1

1

1 1

Factoring
The clue you’ll get that suggests you should factor an identity is when powers of 
a particular function or repeats of that same function are in all the terms on one 
side of the identity.

For example, the identity sin  sin cos cos4 2 2 42 1 has three terms on the 
left that you can factor, because they’re the result of squaring a binomial. The 
pattern you need is the algebraic equation for the square of a binomial:  
a ab b a b2 2 22 ( ) .

1. Factor the expression on the left as the square of a binomial.

sin cos2 2 2
1

2. Replace the expression in the parentheses with its equivalent by using 
the Pythagorean identity.

1 12

The preceding example was really simple — as long as you recognized the pattern 
of the square of a binomial. It’d be another thing altogether if you went off on 
some tangent (pardon the pun).

In the next example, the factoring occurs in the numerator of the fraction, where 

powers of sin x appear. Solve the identity sin sin
cos

tan cosx x
x

x x
3

2 .

1. Factor sin x out of each term in the numerator.
sin sin

cos
tan cos

x x
x

x x
1 2

2

2. Replace the expression in the parentheses with its equivalent by using 
the Pythagorean identity.
sin cos

cos
tan cos

x x
x

x x
2

2
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3. Split up the fraction into a product of two fractions, carefully arranging 
the factors in the numerator and denominator.

sin
cos

cos
tan cosx

x
x

x x
2

2

1

4. Replace the first fraction with tan x by using the ratio identity.

tan  cos tan  cosx x x x2 2

This next example requires factoring by using the difference between two  
squares. The pattern here is the algebraic equation a b a b a b2 2  or 

a b a b a b4 4 2 2 2 2 . Solve the identity csc cot csc cot2 2 4 4– .

1. Factor the two terms on the right by using the difference-of-squares 
pattern.

csc cot csc cot csc cot2 2 2 2 2 2

2. In the left set of parentheses only, replace csc2 θθ with its equivalent in the 
Pythagorean identity.

You want to keep the two terms in the right parentheses as written.

csc cot cot cot csc cot2 2 2 2 2 21 –

3. Simplify the expression, getting rid of the two opposites.

csc cot cot cot csc cot

csc cot

2 2 2 2 2 2

2 2

1

1

Using a little bit of both
Just when you thought that proving identities couldn’t be much more fun than 
what you’ve seen, you now find that the examples in this section involve both 
changing the terms to sines and cosines as well as factoring. The hardest part is 
deciding what to do first.

In this first example, your work goes more smoothly if you change everything to 
sines and cosines first. (Plus, you may not recognize right away that the expres-
sion on the left is the result of squaring a binomial.) Solve the identity:

csc csc cot cot cos
cos

2 22 1
1
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1. Change the terms on the left to sines and cosines by using reciprocal and 
ratio identities, and then simplify the fractions.

1 2 1
1

1 2

2

2

2

2

sin sin
cos
sin

cos
sin

cos
cos

sin
cos

siin
cos
sin

cos
cos2

2

2
1
1

2. Add the three fractions on the left together, because they have the same 
denominator.
1 2 1

1

2

2
cos cos

sin
cos
cos

3. Replace the denominator of the fraction by using the Pythagorean 
identity.

You usually don’t go from a simple one term to two terms, but, looking  
ahead, you see that you need 1 cos  in the denominator, so this seems  
like a good idea.

1 2
1

1
1

2

2
cos cos

cos
cos
cos

4. Factor the numerator as the square of a binomial; factor the denomina-
tor as the difference of two squares.

1
1 1

1
1

2cos
cos cos

cos
cos

5. Factor out the common binomial in the numerator and denominator.

1
1 1

1
1

1
1

1
1

2cos
cos cos

cos
cos

cos
cos

cos
cos

You find a lot of algebra in trigonometry!

In the next example, you see how to first do the factoring and then go to the 

basics. Solve the identity sin
cot cot cos

sec2 0.

1. Factor cot θθ out of each term in the denominator of the fraction.
sin

cot cos
sec

1
02

2. Replace the value in the parentheses with its equivalent by using the 
Pythagorean identity.

sin
cot sin

sec2 0



212      PART 3  Identities

3. Write everything in terms of sine and cosine by using reciprocal and ratio 
identities.

sin
cos
sin

sin cos2

1 0

4. Reduce the fractions in the denominator and simplify.
sin

cos
sin

sin cos

sin
cos sin cos

2

1

1 0

1 0

5. Divide out sin θθ from the first fraction and simplify.
sin

cos sin cos

cos cos

1 0

1 1 0

0 0
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Chapter 13
Sleuthing Out Identity 
Solutions

Proving a trig identity can be a simple chore, or it can be a challenge. The nice 
thing about an identity is that you know that it can be proved — it’s an iden-
tity, for goodness sake. Some identities seem to just call out with the meth-

ods needed to prove them: “Look at me! Look at the three terms on the right that 
are begging to be combined!” Other identities just sit there — daring you to do 
anything about them.

In this chapter, you find more techniques and suggestions for handling identities. 
You always want to find the simplest way, first. . . if there is a simplest way. If the 
easy road fails you, then get on this super highway of trigonometric maneuvers.

Fracturing Fractions
The ratio and reciprocal identities involve fractions. The half-angle identities also 
use fractions. These are no big surprise since a ratio involves a fraction and a half is 
a fraction. Actually, an identity with fractions can work to your advantage. You can 
work toward getting rid of the fraction and, in the process, solve the problem. Some 
of the main techniques for working with fractions in identities are either to break 

IN THIS CHAPTER

 » Handling fractions with care

 » Maneuvering with handy algebraic 
tricks

 » Getting creative with math 
operations to prove identities
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them up into separate terms or to go in the other direction and find a common 
denominator. You can find some examples of using a common denominator in 
Chapter 12 — and even more in this chapter.

Breaking up is hard to do
This section’s heading is very misleading. Although breaking up with that special 
someone is indeed difficult, breaking up fractions really isn’t all that hard to do.  
In fact, when you can do it, breaking up fractions is one of the most productive 
ways to solve identities. The trick is to break them up correctly. You can break up 
a fraction with several terms in the numerator and one term in the denominator — 
but not the other way around.

Correct: 1
7

1
7 7 7

a b a b

Incorrect: 3
2

3
2

a z
b c

a
b

z
c

Now apply this breaking up of fractions to a trig identity. In this first example, the 
fraction on the left has just one term in the denominator. Solve the identity 
sin cot

cos
tan cscx x

x
x x. You have the hint that breaking up fractions will work, 

because you see two terms on the right. You also want to have two terms on  
the left.

1. Break up the fraction by writing each term in the numerator on the left 
over the denominator.
sin
cos

cot
cos

tan cscx
x

x
x

x x

2. Rewrite cot x by using the ratio identity.

sin
cos

cos
sin
cos

tan cscx
x

x
x
x

x x

3. Simplify the complex fraction by flipping the denominator and multiply-
ing it times the numerator. Then reduce the result.
sin
cos

cos
sin cos

tan csc

sin
cos sin

tan csc

x
x

x
x x

x x

x
x x

x x

1

1
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4. Replace the first fraction by using the ratio identity for tangent and the 
second fraction by using the reciprocal identity for cosecant.
tan csc tan cscx x x x

The next example doesn’t give you the hint about matching the number of terms 
on each side. Both sides have the same number of terms already. What catches 
your eye is the factoring possibilities if the left side is written as two fractions. 
You can break up fractions that have more than one factor (but only one term) in 
the denominator by carrying them both along. For example, solve the identity  
cot cos
cot cos

sin
cos

x x
x x

x
x

1 .

1. Break up the fraction on the left by writing each term in the numerator 
over the entire denominator.

cot
cot cos

cos
cot cos

sin
cos

x
x x

x
x x

x
x

1

2. Reduce each fraction on the left side.
cot

cot cos
cos

cot cos
sin

cos

cos cot
sin

cos

x
x x

x
x x

x
x

x x
x
x

1

1 1 1

3. Rewrite cot x in the second denominator by using the ratio identity. 
Then simplify the complex fraction by flipping the denominator and 
multiplying.

1 1 1

1 1 1

cos cos
sin

sin
cos

cos
sin
cos

sin
cos

x x
x

x
x

x
x
x

x
x

4. The two fractions on the left now have the same denominator. Rewrite 
the left side as all one fraction. (What was fractured will now be rejoined.)
1 1sin

cos
sin

cos
x
x

x
x

The next example shows you a proof by breaking a fraction after involving Pythag-

oras. Prove the identity 
1 cos sin cos

sin
sin cos

x x x
x

x x .

1. First, distribute cos x in the numerator over the two terms in the binomial.
1 2cos sin cos

sin
sin cosx x x

x
x x
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2. Regroup so that the terms 1 – cos2 x appear together, suggesting a 
substitution using a Pythagorean triple.

1 2

2

cos cos sin
sin

sin cos

sin cos sin
sin

sin cos

x x x
x

x x

x x x
x

x x

3. Break up the fraction on the left, writing each term over the 
denominator.
sin
sin

cos sin
sin

sin cos
2 x
x

x x
x

x x

4. Reduce the fractions.

sin
sin

cos sin
sin

sin cos

sin cos sin cos

2 x
x

x x
x

x x

x x x x

You could also have gone in another direction in this last example with Step 3, 
factoring sin x from each term in the numerator and reducing the fraction. I prob-
ably would have gone with creating the two fractions, since I wanted two terms on 
the left. But, as I show you next, either method works. Starting from Step 3:

1. Factor sin x from each term in the numerator on the left.
sin sin cos

sin
sin cos

x x x
x

x x

2. Reduce the fraction on the left.
sin sin cos

sin
sin cos

sin cos sin cos

x x x
x

x x

x x x x

Finding a common denominator
Fractions are your friends. You may find this unbelievable, but the more you work 
with trig functions, the more you’ll be swayed to my way of thinking. Finding a 
common denominator to combine fractions often paves the way to solving an 
identity.

In the identity 1
1

0sin
cos

cos
sin

, the two denominators on the left have noth-

ing in common, so you multiply each fraction by the other’s denominator — or, 
rather, by that denominator over itself, which equals 1.
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1. Multiply each fraction on the left by an equivalent of 1 to create a 
common denominator.
1 1

1 1
0sin

cos
sin
sin

cos
sin

cos
cos

2. Multiply the fractions together and simplify the numerators. Leave the 
denominator alone.
1 1

1 1
0

1 2

sin sin
cos sin

cos cos
cos sin

sin
ccos sin

cos
cos sin1 1

0
2

3. Replace the first numerator with its equivalent by using the Pythagorean 
identity.

The fractions are opposites of one another.

cos
cos sin

cos
cos sin

2 2

1 1
0

0 0

In Chapter  12, I do a problem using that method and mention that you have 
another option — finding a common denominator. You have to decide which way 
you think is better. You may even be able to find an easier way to do this proof. 

Here you go: Prove the identity 1 1sec
tan

tan
sec

cot cosx
x

x
x

x x  by finding a 
common denominator.

1. Multiply each fraction on the left by the equivalent of 1, creating a 
common denominator.
1 1sec

tan
sec
sec

tan
sec

tan
tan

cot cosx
x

x
x

x
x

x
x

x x

2. Simplify the numerators by multiplying out the fractions.
sec sec

tan sec
tan

tan sec
cot cosx x

x x
x

x x
x x

2 2

1

3. Replace tan2 x in the second fraction with its equivalent by using the 
Pythagorean identity; then combine the two numerators.

sec sec
tan sec

sec
tan sec

cot cos

sec sec

x x
x x

x
x x

x x

x x

2 2

2

1 1

ssec
tan sec

cot cos
2 1 1x

x x
x x
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4. Simplify the numerator; then rewrite the left side as the product of two 
fractions.

sec sec sec
tan sec

cot cos

sec
tan sec

cot

x x x
x x

x x

x
x x

x

2 2 1 1

1
11

1 1 1

cos

tan
sec

sec
cot cos

x

x
x
x

x x

Note that this rewriting as the product of two fractions isn’t breaking up the 
fraction — you still have just one term.

5. Multiply the fraction by cos x divided by cos x, which is equivalent to 1.

You only need to multiply one factor in the numerator and one in the denomi-
nator by cos x. You cleverly choose the factors with sec x in them.

1 1 1

1 1
tan

sec
sec

cos
cos

cot cos

tan
sec

sec
cos

x
x
x

x
x

x x

x
x
x

x
ccos

cot cos
x

x x1

6. Multiply out the second fraction, distributing through the numerator.
1 1 1

tan
sec cos cos

sec cos
cot cos

x
x x x

x x
x x

7. Because cos x and sec x are reciprocals, their product is 1; substitute 1 for 
sec x cos x in both the numerator and the denominator.

1 1
1

1
tan

cos cot cos
x

x
x x

8. Replace the reciprocal of tan x with cot x.
cot cot cosx x x x1 1cos 

ARCHIMEDES
Considered to be one of the creative geniuses of the ancient world, Archimedes was an 
Alexandrian mathematician who lived from about 287 to 212 b.c. One of his discoveries 
in which he took the most pride was a method for calculating the volume of a sphere. 
He found that the volume is two-thirds the volume of the smallest cylinder that the 
sphere can fit into. He even requested that a diagram with the cylinder and sphere be 
engraved on his tombstone.
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Although it might be tempting to solve this identity by changing everything to 
sines and cosines, as it turns out, that’s not a good idea. I tried it and it didn’t save 
any steps. Also, the different necessary moves weren’t very intuitive.

Using Tricks of the Trig Trade
When proving identities, sometimes the best way to handle them just leaps out at 
you — and sometimes the best way just stays in hiding. Usually, you can solve an 
identity in more than one way — the best way, the almost-as-good way, the rea-
sonable way, and the absolutely dreadful way. The best way is the quickest and 
most efficient. But sometimes you have to pull something out of your hat to 
accomplish the task of solving a particular identity. You’ve already seen one little 
trick: multiplying a term by 1. Well, you multiply by sine over sine or some such 
arrangement, but it’s still just multiplying by 1. Some additional little tricks 
amount to nothing more than multiplying a fraction by 1 in the form of a conju-
gate or squaring both sides of the identity.

Multiplying by a conjugate
First, what in the world is a conjugate? In mathematics, a conjugate consists of the 
same two terms as the first expression, separated by the opposite sign.

For instance, the conjugate of x y  is x y . In trig, especially, multiplying the 
numerator and denominator of a fraction by a conjugate can create some really 
nice results.

Multiplying by a conjugate is a quick, easy way of solving the identity  
1

sec tan
tan sec

x x
x x .

1. Multiply the numerator and denominator of the fraction on the left by 
the conjugate of the denominator.

1
sec tan

sec tan
sec tan

tan sec
x x

x x
x x

x x

2. The two denominators multiplied together are the difference of two 
squares.

tan sec
sec tan

tan secx x
x x

x x2 2
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3. Replace sec2 x in the denominator with its equivalent by using the 
Pythagorean identity.

tan sec
tan tan

tan secx x
x x

x x2 21

4. Simplify the denominator by canceling out the two opposites.
tan sec

tan tan
tan sec

tan sec tan sec

x x

x x
x x

x x x x

2 21

In the next example, you have to decide which fraction to multiply the conjugate 
by. I choose the fraction on the right, because I see the conjugate of the numerator 

on the right in the denominator on the left. Solve the identity tan
cos

cos
sin cos

x
x

x
x x1

1 .

1. Multiply the numerator and denominator of the fraction on the right by 
the conjugate of the numerator.

tan
cos

cos
sin cos

cos
cos

x
x

x
x x

x
x1

1 1
1

2. Multiply the fractions together, keeping the parentheses in the 
denominator.

tan
cos

cos
sin cos cos

x
x

x
x x x1

1
1

2

3. Substitute the equivalent from the Pythagorean identity in the numera-
tor of the fraction on the right. Then reduce that fraction.

tan
cos

sin
sin cos cos

tan
cos

sin
sin cos

x
x

x
x x x

x
x

x
x x

1 1

1 1

2

2

ccos

tan
cos

sin
cos cos

x

x
x

x
x x1 1

4. Rewrite the fraction on the right as a product of two fractions, carefully 
arranging the factors.

tan
cos

sin
cos cos

x
x

x
x x1

1
1

5. Replace the first fraction on the right with its ratio-identity equivalent. 
Rewrite the expression as one fraction.

tan
cos

tan
cos

tan
cos

tan
cos

x
x

x
x

x
x

x
x

1
1

1

1 1
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The half-angle identity for the tangent function has two different forms. Multi-
plying by the conjugate is a good method for showing that these two forms are 

equivalent. Take this example: sin
cos

cos
sin1

1 . Here, I prove that the two half-

angle identities are equivalent.

1. Multiply the numerator and denominator of the fraction on the left by 
the conjugate of the denominator.

sin
cos

cos
cos

cos
sin1

1
1

1

2. Multiply the two denominators together, but leave the numerator in 
factored form.
sin cos

cos
cos

sin
1

1
1

2

3. Replace the denominator on the left with its equivalent by using the 
Pythagorean identity.
sin cos

sin
cos

sin
1 1

2

4. Reduce the fraction on the left.
sin cos

sin
cos

sin

cos
sin

cos
sin

1 1

1 1

2

Squaring both sides
One special case of working on both sides of an identity at the same time is to 
square both sides. Your biggest clue as to when to use this technique is usually 
when one side or the other has a radical. This method is also good to use when 
you’re solving some types of trig equations. Squaring both sides has two benefits: 
It gets rid of radicals, and it often creates terms that can be part of one of the 
Pythagorean identities. The Pythagorean identities have wonderful substitutions.

This first example has only one radical, and it’s on the right side. Solve the  

identity 1 1 2cot
csc

sin cosx
x

x x .

1. Square both sides of the identity.

Be sure to expand the squared binomial on the left correctly.
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1 1 2

1
1 2

1 2

2
2

2

2

cot
csc

sin cos

cot
csc

sin cos

c

x
x

x x

x
x

x x

oot cot
csc

sin cosx x
x

x x
2

2 1 2

2. Rearrange the terms in the numerator.
1 2 1 2

2

2
cot cot

csc
sin cosx x

x
x x

3. Replace 1 cot2x with its equivalent by using the Pythagorean identity.
csc cot

csc
sin cos

2

2
2 1 2x x
x

x x

4. Split up the fraction by writing each term in the numerator over the 
denominator.
csc
csc

cot
csc

sin cos
2

2 2
2 1 2x

x
x
x

x x

5. Simplify the first term. Rewrite the numerator and denominator in the 
second term by using the ratio and reciprocal identities.

1
2

1
1 2

2

cos
sin

sin

sin cos

x
x

x

x x

6. Simplify the complex fraction by flipping the denominator and multiply-
ing it by the numerator.

1 2
1

1 2

1 2 1 2

2cos
sin

sin sin cos

cos sin sin cos

x
x

x
x x

x x x x

Identifying with the Operations
Identities that have sums, differences, multiple angles, and half-angles have a 
suggested procedure just staring at you, because having all the functions in terms 
of the same angle — not twice one or the sum of the other two — is best. You just 
decide which angle form you want everything to be in and then apply whatever 
identity the terms in the equation are equal to — substitute in the equivalence of 
the identity — and proceed from there.
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Adding it up
Sum and difference identities usually involve two different angles and then a  
third combined angle. To prove the identity, you need to get rid of that third angle. 
The first example involves a sum of two different angles.

The equation 
cos
cos cos

tan tan
x y
x y

x y1  uses the angles x and y. Get rid of the angle 

sum, x y , by applying the appropriate identity, which contains just angle x and 
angle y.

1. Replace the cosine of the sum of the two angles with its identity.
cos cos sin sin

cos cos
tan tan

x y x y
x y

x y1

2. Break up the fraction by putting each term in the numerator over the 
denominator.
cos cos
cos cos

sin sin
cos cos

tan tan
x y
x y

x y
x y

x y1

3. Reduce the first fraction. Rewrite the second fraction as the product of 
two fractions. Then replace the two fractions in that product by using the 
ratio identity.

1 1

1 1

sin
cos

sin
cos

tan tan

tan tan tan tan

x
x

y
y

x y

x y x y

The next example shows an identity for three times an angle: sin sin sin3 3 4 3 .

1. Replace the sine of 3θθ with the sine of the sum of θθ and 2θθ to create the 
identity for the sum of two angles using the right side of this equation.

sin sin

sin sin sin

3 2

2 3 4 3

2. Apply the angle-sum identity for sine on the left.

sin cos cos sin sin sin2 2 3 4 3

3. Now replace cos 2θθ and sin 2θθ by using the double-angle identities.

You have two double-angle identities to choose from for cos 2θ. You choose 
the one involving the square of sine, because you see that same term on the 
right side of the equation.

sin sin cos sin cos sin sin1 2 2 3 42 3
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4. Multiply through on the left side.

sin sin sin cos sin sin2 2 3 43 2 3

5. Replace cos2 θθ with its equivalent by using the Pythagorean identity. Then 
simplify the terms.

sin sin sin sin sin sin

sin sin sin

2 2 1 3 4

2 2 2

3 2 3

3 ssin sin sin

sin sin sin sin

3 3

3 3

3 4

3 4 3 4

What difference does it make?
Using functions involving the difference between two angle measures has many of 
the same features as those with sums, so I added a couple of twists to the exam-
ples in this section. The first identity uses the tangent of the difference of 

angles, tan tan tan
tan tan1

.

Now, solve the identity cot tan
tan

x
x

x
45 1

1
, which uses the tangent difference 

identity and incorporates some function values for a 45-degree angle.

1. Rewrite the cotangent of the difference by using the reciprocal identity, 
because the cotangent doesn’t have a standard difference identity.

cot
tan

x
x

45 1
45

2. Replace the tangent of the difference with its identity.
1

45
1

45
1 45

tan tan tan
tan tan

x x
x

3. To simplify the complex fraction on the right, flip the denominator and 
multiply it by the numerator, which is 1.

1
45

1 45
45tan

tan tan
tan tanx

x
x

4. The value of the tangent of 45 degrees is 1, so replace all those terms 
with 1.

1
45

1 1
1

1
45

1
1

tan
tan

tan

tan
tan

tan

x
x

x

x
x

x
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5. Rewrite the left side in its original form.

cot tan
tan

x
x

x
45 1

1

The next example proves that tan x is equal to itself. Yes, I know that seems a bit 
bizarre — obviously, it must be true. Discovering the technique involved is what 
makes going through the steps of this identity worth the effort. The trick here is 
to write tan x as the tangent of the difference of the angles 2x and x.

1. Write the difference identity for tangent.
tan tan

tan tan

tan tan
tan tan

x x

x x x

x x
x x

2

2
1 2

2. Replace the two terms tan 2x with the double-angle identity.

tan

tan
tan

tan

tan
tan

tan
x

x
x

x

x
x

x

2
1

1 2
1

2

2

3. Get rid of the complex fraction by multiplying every term in the numera-
tor and denominator by 1 – tan2 x.

tan

tan
tan

tan tan

tan
tan

tan ta
x

x
x

x x

x
x

x

2
1

1

1 2
1

1

2
2

2 nn

tan

tan
tan

tan tan tan

tan

2

2
2 2

2

2
1

1 1

1 1

x

x

x
x

x x x

x 2
1

12
2tan

tan
tan tanx

x
x x

4. Simplify the fractions.

tan

tan
tan

tan tan tan

tan
x

x
x

x x x

x

2
1

1 1

1 1 2

2
2 2

2 ttan
tan

tan tan

tan tan tan

tan

x
x

x x

x x x

1
1

2 1

1 1

2
2

2

22 2x x xtan tan

5. Multiply through the parentheses.

tan tan tan tan
tan tan

x
x x x

x x
2

1 2

3

2 2
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6. Combine the like terms in the numerator and denominator.

tan tan tan
tan

x
x x

x

3

21

7. Factor the numerator. Then reduce the fraction.

tan
tan tan

tan
tanx

x x

x
x

1

1

2

2

Multiplying your fun
The only special challenge involved in dealing with identities when using the 
multiple-angle formulas is in deciding which version of cos 2θ to use or whether 
to incorporate sums of angles or double angles. Here are some examples that 
illustrate these situations.

Solve the identity sin cos
sin cos

cot tan2 2 2 . You have to make a decision  

as to whether to use double-angle identities or sum identities, sin  
and cos .

1. In this case, the choice is double angle: apply the double-angle identities 
for sin 2θθ and cos 2θθ.
2 2

2 2sin cos cos sin
sin cos

cot tan

Choosing the formula for the sine isn’t a problem, because you have only one 
to choose from. The cosine, however, requires some observation. Because you 
have both sine and cosine in the denominator, you don’t want to use the 
double-angle identities for cosine that have a 1 in them.

2. Split up the fraction, writing each term in the numerator over the 
denominator.
2 2

2 2sin cos
sin cos

cos
sin cos

sin
sin cos

cot tan

3. Reduce the fractions.

2 2

2

2 2sin cos
sin cos

cos
sin cos

sin
sin cos

cot tan

cos
sin

sin
cos

cot tan2

4. Replace the fractions with their equivalents by using the ratio identities.
2 2cot tan cot tan
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Finding an identity for an angle with a multiple greater than 2 requires that you 
decide whether to use a sum identity or a double-angle identity. The best approach 
isn’t always clear. Sometimes the other terms in the equation give you a hint. 
Often, you just flip a coin. Solve the identity sin sin cos sin cos4 4 43 3x x x x x .

1. Rewrite sin 4x as sin (2·2x).

sin sin cos sin cos2 2 4 43 3x x x x x

2. Insert this new angle into the double-angle identity.

2 2 2 4 43 3sin cos sin cos sin cosx x x x x x

3. Replace sin 2x and cos 2x with the double-angle identities, choosing the 
best cosine identity for the situation.

In this case, because you have a difference of terms involving third-degree 
powers of sine and cosine, the cosine identity involving second-degree powers 
of sine and cosine seems to be a good choice.

2 2 4 42 2 3 3sin cos cos sin sin cos sin cosx x x x x x x x

4. Multiply through.

2 2 4 4

4

2 2 3 3sin cos cos sin sin cos sin cos

sin cos co

x x x x x x x x

x x ss sin sin cos sin cos

sin cos sin cos s

2 2 3 3

3 3

4 4

4 4 4

x x x x x x

x x x x iin cos sin cosx x x x3 34

Halving fun, wish you were here
The last type of identity that you can incorporate into solving an identity or doing 
identity problems is the half-angle identity. This identity actually comes in very 
handy in calculus — not by changing from a half-angle identity to angles that are 
larger, but by changing from larger angles to half-angle identities. The examples 
in this section show some of the possibilities.

Solve the identity tan csc cot
2

 by using the half-angle identity for tangent. 

Neither side looks very promising for solving the identity until you notice that you 
have two different angles — one half the size of the other. You need to apply the 
half-angle identity to get everything in terms of the same angle.

1. Substitute in the identity for the half-angle of tangent.

You have two different versions to choose between: tan sin
cos

cos
sin2 1

1 . 

The easier one to work with is the one with two terms in the numerator:  
1 cos

sin
csc cot .
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2. Split up the fraction on the left by putting each term in the numerator 
over the denominator.

1
sin

cos
sin

csc cot

3. Replace the two terms on the left with their reciprocal and ratio 
identities.
csc cot csc cot

This last example incorporates the half-angle of the tangent, as well as the half-

angle of a reciprocal function. Solve the identity sin sec tan2

2
2

2
. You see here 

that working on both sides of the equation is necessary.

1. Use the reciprocal of the half-angle identity for cosine to replace the 
half-angle of secant.

Hold off on deciding which version of the tangent’s half-angle formula to use 
until you see what you need.

sin
cos

tan

sin
cos

tan

1

2

2
2

1
1

2

2
2

2

2

2. Flip the fraction in the parentheses and square the radical, leaving the 
terms with no radical.

sin
cos

tan2
1

2
2

3. Choose the half-angle tangent identity that matches what you have on 
the left, and simplify.

sin
cos

sin
cos

sin
cos

sin
cos

2
1

2
1

2
1

2
1
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Applying the Magic of Trigonometry
Trigonometry has been around for quite a long time, and it has kept growing and 
growing in topics and capabilities and applications over those many centuries. 
Some procedures in trig have changed with the advent of all the technological 
advances, but the basics are still there. Here are some off-the-beaten-path 
applications.

Making some given information work
You are on a popular quiz show and are told that the sine of a particular angle is 3

5
 

and that the tangent of that same angle is a negative number. What is the secant 
of the angle in question?

What identity or identities do you need to help you? There aren’t any with sine and 
secant in them, so you have to work on at least two different identities. Since  
the secant is the reciprocal of cosine, and sine and cosine go together so well, you 
start with an identity using sine and cosine. How about: sin cos2 2 1 or 
cos cos sin sin2 1 22 2 2  or sin( ) sin cos cos sin ? They all 
have sines and cosines, but your choice is the all-time favorite, sin cos2 2 1. 
Just solve for cosine and you have cos sin2 21 , which becomes 
cos sin1 2  when you take the square root of each side. You get to choose 
the sign.

But first, solving for the cosine, you replace the sine with 3
5

 and work from there.

cos 1 3
5

1 9
25

16
25

4
5

2

You are told that the sine of the angle is positive and the tangent is negative, and 
that happens in the second quadrant — where the cosine is also negative. So you 

know that cos 4
5

. Now just apply the reciprocal identity: sec
cos

1 , find the 

reciprocal, and you have sec 5
4

. You press the buzzer first and shout out the 

correct answer! Good work!

Off on a tangent
You need the exact value of the tangent of 285 . You put this into your calculator 
and get the number 3 73205080757. . But this is only rounded to the nearest  
ten-trillionth. Not good enough! It has to be exact.
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So, rather than play around with some possible radicals to figure out what this 
decimal comes from, you decide to go the route of identities. What can help you 
with the tangent of this angle?

tan tan
tan

2 2
1 2  or tan sin

cos
cos

sin2 1
1  or tan tan tan

tan tan1
?

The problem is that 285  isn’t one of the multiples of 15 degrees, so you don’t have 
an exact radical value available. But twice 285  is 570 , which is coterminal with 
570 360 210 , which is the angle in the third quadrant that has a correspond-
ing angle of 30 . Now you’re in business!

Using tan sin
cos2 1

, you can say that

tan sin
cos

sin
cos

570
2

570
1 570

210
1 210

1
2

1 3
2

1
2

2 3
2

1
2

2
2 3

1
2 3

1
3 2

1
3 2

3 2
3 2

3 2
3 4

3 2
1

3 2

That’s the exact value! Did you check your calculator? Try putting that fraction in, 
and you get: 3 73205080757. . But you weren’t surprised!
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Applications
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Become acquainted with inverse trig functions.

Identify the domains and ranges of the inverse trig 
functions.

Recognize the pairings of the quadrants used by each 
inverse function.

Solve trig equations using identities and inverse 
functions.

Write expressions to include infinitely many answers.

Find the areas of triangles using trig functions in the 
formulas.
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Chapter 14
Investigating Inverse 
Trig Functions

As thrilling and fulfilling as the original six trig functions are, they just 
aren’t complete without their inverses. An inverse trig function behaves like 
the inverse of any other type of function — it undoes what the original 

function did. In mathematics, functions can have inverses if they’re one-to-one, 
meaning each output value occurs only once. This whole inverse idea is going to 
take some fast talking when it comes to trig functions, because they keep repeat-
ing values over and over as angles are formed with every full rotation of the  
circle — so you’re going to wonder how these functions and inverses can be one- 
to-one. If you need a refresher on basic inverse functions, just refer to the section 
on inverses in the Appendix for the lowdown on them and how you determine one.

Writing It Right
You use inverse trig functions when you want to know what angle is involved in 

equations such as sinx 1
2

 or sec 2x , or tan 2 1x . In typical algebra equations, 

you can solve for the value of x by dividing each side of the equation by the coef-
ficient or by adding the same thing to each side, and so on. But you can’t do that 

with the function sinx 1
2

.

IN THIS CHAPTER

 » Acquainting yourself with inverse 
notation

 » Setting limits on inverse trig 
functions

 » Determining domain and range of 
inverse trig functions
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Would it make sense to divide each side by sine? “Out, out thou sine!” Here’s what 

you’d get: sin
sin sin

,
sin

x
x

1
2

1
2 . Goodness, no! That’s silly.

Using the notation
Using inverses allows you to determine the value of x in a trig equation. To find the 

inverse of an equation such as sinx 1
2

, means to complete the following state-

ment: “x is equal to the angle whose sine is equal to 1
2

.” In trig speak, you write 

this statement as x sin 1 1
2

. This standard notation involves putting a 1 in the 

superscript position immediately following the function name. Table 14-1 shows 
some more examples of trig equations with their corresponding inverses and the 
translation.

You may have noticed in Table 14-1 that the same numbers and angles are show-
ing up, but in different positions. This occurs because you’re really just solving for 
the angle (x or ϴ or . . .) by applying the inverse trig functions to both sides of the 
equation.

Interpreting the exponent
You’ve undoubtedly seen and used the exponent 1 in math expressions before 
now. But that exponent does a different kind of job for inverse trig functions and 
relations. The notation for an inverse trig relation such as tan 1x means that you 
want an inverse for the expression, not the reciprocal. If you really want the recip-

rocal of tangent 1
tanx

, then you have to use parentheses: tanx 1. Of course, the 

reciprocal of tangent is cotangent. The 1 exponent is where the exponential 
notation for trig functions makes a big exception.

TABLE 14-1	 Interpreting Trig-Speak
Function Inverse What It Means

sec x 2 x sec 1 2 x is the angle whose secant is 2.

tan  2 1x 2 11x tan 2x is the angle whose tangent is 1.

cos 0 cos 1 0  is the angle whose cosine is 0.

csc 1 csc 1 1  is the angle whose cosecant is 1.
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When raising trig functions to a power, sin sin2 2x x  and cos cos4 4x x , but 
tan 1 x means the inverse function, not raising tan x to the 1 power.

Alternating the notation
Inverses of trig functions have an alternate notation that avoids the confusion 
over what the 1 superscript means: the arc name. Another way of saying sin 1 x  
is arcsin x. The inverse cosine is cos 1 x, or arccos x. The other inverse functions 
are arctan x, arccsc x, arcsec x, and arccot x. This notation is longer and is  sometimes 
awkward to write out, so the original superscript notation is often preferable. 
You’ll see inverse functions written both ways, though. Just be on the lookout.

Distinguishing between the  
few and the many
Technically, an inverse function is supposed to have only one answer. (Part of the 
definition of an inverse is that the function and inverse are one-to-one.) Each 
input has one output, and each output has one input. To accommodate all the 
practical uses of trig inverses, you have a way around this rule. You can designate 
whether you want one answer or many answers by using either the inverse  
function or the inverse relation. A relation is a bit looser than a function; it allows 
more than one input to have the same output. To differentiate between these two 
entities, I use a capital letter for the name of a function and a lowercase letter for 
the corresponding relation. See Table 14-2.

If you evaluate the function Sin 1 1
2

, the result is 30 degrees (or 
6

 radians).  

Just one answer exists, which is called the principal value of the inverse. But if 

TABLE 14-2	 Trig Functions versus Trig Relations
Trig Functions Trig Relations

Sin 1 x or Arcsin x sin 1 x  or arcsin x

Cos 1x  or Arccos x cos 1 x or arccos x

Tan 1x or Arctan x tan 1 x  or arctan x

Cot 1x or Arccot x cot 1 x  or arccot x

Sec 1 x  or Arcsec x sec 1 x or arcsec x

Csc 1 x or Arccsc x csc 1 x or arccsc x
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you write sin 1 1
2

, then the result can be 30 degrees, 150 degrees, 390 degrees, 

510 degrees, and so on (or 
6

5
6

13
6

17
6

25
6

29
6

, , , , , , ). It all depends on the  

situation — what you want at the time. Do you want just the principal value, or  
do you want multiple values? Or you may want a bunch of values within one full 
rotation — from 0 to 360 degrees.

When you want lots and lots of angles or answers, listing them all can be tedious. 
In fact, listing every possible solution may not even be doable. Rather than  
making a list, you can give a rule, which allows you to define an angle with all its 
full-rotation multiples — the angles with the same terminal side.

Let n represent any integer in the set: {. . ., 3 2 1, , , 0, 1, 2, 3,. . .}. Using the n 
as a multiplier, you can write a long list of angles more efficiently. Instead of  
writing x ..., , , , , , , , ,...135 90 45 0 45 90 135 180 , you can write x n45 .

Instead of x 30 150 390 510 750 870, , , , , ,     , divide the list into two groups — 
x 30 390 750 1110, , , ,...     and x 150 510 870 1230, , , ,...    — and then use the 
two rules that follow:

x n x n30 360 150 360or

Also, in radians, instead of saying x
6

13
6

25
6

, , ,   or x 5
6

17
6

29
6

, , ,  , 

use these two rules: x n
6

2  or x n
5
6

2 .

Here’s an example showing how to write all the positive angles that have a cosine 

equal to 1
2

. The steps involve solving the inverse relation, not just finding the 

principal value for the function. Solve for the values that satisfy x cos 1 1
2

.

1. List several solutions in both degrees and radians.

cos , , , , , ,

cos

1

1

1
2

60 300 420 660 780 1020

1
2 3

     

,, , , , , ,     5
3

7
3

11
3

13
3

17
3

2. Write the answers in degrees by using just the first two angles plus 
multiples of 360.

cos cos1 11
2

60 360 1
2

300 360n n  or  

3. Write the answers in radians by using the first two angles plus 
multiples of 2  .

cos cos1 11
2 3

2 1
2

5
3

2n n  or  
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Writing all the possible angles for inverse tangent is a bit easier than for sine or 
cosine. The tangent is positive in the first and third quadrants, which are at oppo-
site corners from one another (half a full rotation). Because of this fact, the angles 
that have the same function values are 180 degrees apart, and you can use nice 
multiples of 180 degrees or  to name all the answers. This isn’t the case with sine 
and cosine, though. The angles with the same function values are in quadrants 
that are adjacent to one another, so you have to use two separate rules — both 
with multiples of 360 degrees — to name all the answers.

Here’s how to write all the angles that have a tangent equal to 3
3

. Solve for val-

ues that satisfy x tan 1 3
3

.

1. List several answers in both degrees and radians.

tan , , , ,

tan ,

1

1

3
3

150 330 510 690

3
3

5
6

   

    11
6

17
6

23
6

, , ,

2. Write the answers in degrees by using multiples of 180.

tan 1 3
3

150 180 n

3. Write the answers in radians by using multiples of .

tan 1 3
3

5
6

n

Determining Domain and Range of  
Inverse Trig Functions

A function that has an inverse has exactly one output (belonging to the range) for 
every input (belonging to the domain), and vice versa. To keep inverse trig func-
tions consistent with this definition, you have to designate ranges for them that 
will take care of all the possible input values and not have any duplication. The 
output values of the inverse trig functions are all angles — in either degrees or 
radians — and they’re the answer to the question, “Which angle gives me this 
number?” In general, the output angles for the individual inverse functions are 
paired up as angles in Quadrants I and II or angles in Quadrants I and IV. The 
quadrants are selected this way for the inverse trig functions because the pairs are 
adjacent quadrants, allowing for both positive and negative entries. The notation 
for these inverse functions uses capital letters (see the preceding section).
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Inverse sine function
The domain for Sin 1 x , or Arcsin x, is from 1 to 1. In mathematical notation, the 
domain or input values, the x’s, fit into the expression 1 1x , because no mat-
ter what angle measure you put into the sine function, the output of the function 
lies between 1 and 1, including those two numbers. The range, or output, for 

Sin 1 x  is all angles from 90 to 90 degrees or, in radians, 
2

 to 
2

. Because the 

output of the inverse sine function is some angle , you write this range as 

90 90  or 
2 2

. The outputs of the inverse sine function are angles in 

the adjacent Quadrants I and IV, because the sine is positive in the first quadrant 
and negative in the second quadrant. Those angles cover all the possible input 
values — their function values represent all the numbers from 1 to 1.

Inverse cosine function
The domain for Cos 1 x, or Arccos x, is from 1 to 1, just like the inverse sine func-
tion. So the x (or input) values are 1 1x . The range for Cos 1 x consists of all 
angles from 0 to 180 degrees or, in radians, 0 to . Because the output of the 
inverse cosine is some angle , you write these expressions for the range as 
0 180 0  or  . The outputs are angles in the adjacent Quadrants I and 
II, because the cosine is positive in the first quadrant and negative in the second 
quadrant. Those angles cover all the possible input values for the function.

Inverse tangent function
The domain for Tan 1 x , or Arctan x, is all real numbers — numbers from  to .  
This is because the output of the tangent function, this function’s inverse, includes 
all numbers. The range, or output, of Tan 1 x  is angles between 90 and 90 degrees 

or, in radians, between 
2

 and 
2

. One important note is that the range doesn’t 

include those beginning and ending angles; the tangent function isn’t defined  
for 90 or 90 degrees. The range of Tan 1 x  includes all the angles in the adjacent 
Quadrants I and IV, except for the two angles with terminal sides on the y-axis.

Inverse cotangent function
The domain of Cot 1 x , or Arccot x, is the same as that of the inverse tangent func-
tion. The domain includes all real numbers. The range, though, is different — it 
includes all angles between 0 and 180 degrees (between 0 and ). So any angle in 
Quadrants I and II is included in the range, except for those with terminal sides  
on the x-axis. Those two angles aren’t in the domain of the cotangent function 
(see Chapter 7), so they aren’t in the range of the inverse.
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Inverse secant function
The domain of Sec 1 x, or Arcsec x, consists of all the numbers from 1 on up, plus 
all the numbers from 1 on down. Letting x be the input, you write this expression 
for the domain as x 1 or x 1. In other words, the domain includes all the num-
bers from  to , except for the numbers between 1 and 1. The range of Sec 1 x 
is all the angles from 0 to 180 degrees (from 0 to ) — meaning all angles in 

Quadrants I and II, with the exception of 90 degrees, or 
2

.

Inverse cosecant function
The domain of Csc 1 x, or Arccsc x, is the same as that for the inverse secant func-
tion, all the numbers from 1 on up plus all the numbers from 1 on down. The 
range is different, though — it includes all angles from 90 to 90 degrees or, in 

radians, from 
2

 to 
2

. In short, the range is all the angles in Quadrants I and IV, 

with the exception of 0 degrees, or 0 radians.

Summarizing domain and range
Sometimes, looking at a chart or summary of the domains and ranges of the 
inverse trig functions is more informative than reading about them. Take a look at 
Table 14-3. You should notice some patterns — some similarities and differences. 
The ranges of three of the functions are in Quadrants I and II, and the other three 
are in Quadrants I and IV. The reciprocals sine and cosecant use the same quad-
rants. So do the reciprocals cosine and secant. The tangent and cotangent don’t 
use the same quadrants, though.

TABLE 14-3	 Domains and Ranges of the Inverse Trig Functions

Inverse Trig Function Domain Range
Quadrants in  
Range

Sin 1 x 1 1x 90 90 I and IV

Cos 1 x 1 1x 0 180 I and II

Tan 1 x x 90 90 I and IV

Cot 1x x 0 180 I and II

Sec 1 x x x1 1 or 0 180 90, I and II

Csc 1 x x x1 1 or 90 90 0, I and IV
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TRIANGLE DISSECTION PARADOX
Look at the two triangles in the following figure, made up of the same four pieces. The 
pieces are the same size in each triangle. They’re sitting on the same grid, appearing to 
take up the same space, but one has a hole or gap. How can that be?

This situation happens because the hypotenuse of the main outer triangle isn’t really a 
straight line. The slopes of the sides of the two triangles (the hypotenuses) making up 
that larger hypotenuse aren’t the same; the hypotenuse of the top triangle is slightly 
bent in, and the hypotenuse of the bottom triangle is slightly bent out. Of course, you’re 
not supposed to be able to notice this bend, but you can check it by laying a ruler or 
straightedge along the hypotenuse. You might call this figure an optical illusion.
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Chapter 15
Making Inverse Trig 
Work for You

In Chapter 14, I introduce you to the six inverse trig functions. As with many 
introductions to something new, it may take a while to place the name with the 
face (or in this case, properties). This chapter, on the other hand, takes you 

deeper into the world of inverses and shows how the inverses of trig functions 
work. You also see why you’d even want to bother learning the names with their 
good or bad traits.

Working with Inverses
One of the easiest ways to work with inverse trig functions is to have a chart handy 
with the exact values of the most frequently used functions, which you find in 
Tables 15-1 and 15-2 and in the Appendix. When angles other than the most com-
mon or popular ones are involved, you can resort to your handy-dandy calculator, 
the computer, or even your phone.

Now, on to making good use of the functions and their values. This first example 
on evaluating an inverse relation uses a value from the chart.

IN THIS CHAPTER

 » Solving inverse functions

 » Dealing with multiple-angle inverse 
functions

 » Using identities to calculate inverses
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Find cos 1 2
2

. This asks for the angles whose cosine is equal to 2
2

.

The value 2
2

 is the cosine of 135 degrees (3
4

 radians) and 225 degrees  

(5
4

 radians).

The angles  for which the cosine is 2
2

 are: 135 360n  and 225 360n . 

(Refer to Chapter 7 for more on reference and coterminal angles.)

The next example involves inverse cotangent function. Find cot 1 3 . This time, 
you have only one angle to find. The cotangent function is defined in only two 
quadrants.

According to the table, the value 3  is the cotangent of 150 degrees (5
6

 radians) 

or 330 degrees (11
6

 radians).

Because the cotangent function is defined in Quadrant I and Quadrant II, the 
answer is the angle in Quadrant II or 150 degrees.

TABLE 15-1	 Trig Values of the Most Commonly Used Functions
Degrees 0 30 45 60 90 120 135 150 180

Radians 0
6 4 3 2

2
3

3
4

5
6

sin x 0 1
2

2
2

3
2

1 3
2

2
2

1
2

0

cos x 1 3
2

2
2

1
2

0 1
2

2
2

3
2

1

tan x 0 3
3

1 3 Und. 3 1 3
3

0

cot x Und. 3 1 3
3

0 3
3

1 3 Und.

sec x 1 2 3
3

2 2 Und. 2 2 2 3
3

1

csc x Und. 2 2 2 3
3

1 2 3
3

2 2 Und.

Note: Und. is short for “undefined.”
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And this last example asks you to find Arcsin 3
2

. This is the inverse function 
for sine.

The sine function is defined in the first and fourth quadrants. So, from Table 15-2, 

the measure of 300  has a sine of 3
2

, meaning Arcsin 3
2

300  (5
3

 radians).

Getting Friendly with Your Calculator
Scientific calculators are wonderful tools — they make life easier and improve the 
quality (correctness) of the results. You can also find these calculators online or on 
your phone. In most instances, computing inverse trig functions with a calculator 
is quick and easy. You need to be aware of a couple of pitfalls, though.

TABLE 15-2	 Trig Values of the Most Commonly Used  
Functions (continued)

Degrees 180 210 225 240 270 300 315 330 360

Radians 7
6

5
4

4
3

3
2

5
3

7
4

11
6

2

sin x 0 1
2

2
2

3
2

1 3
2

2
2

1
2

0

cos x 1 3
2

2
2

1
2

0 1
2

2
2

3
2

1

tan x 0 3
3

1 3 Und. 3 1 3
3

0

cot x Und. 3 1 3
3

0 3
3

1 3 Und.

sec x 1 2 3
3

2 2 Und. 2 2 2 3
3

1

csc x Und. 2 2 2 3
3

1 2 3
3

2 2 Und.

Note: Und. is short for “undefined.”
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Changing the mode
Scientific calculators, graphing calculators, and online calculators are very  
accommodating — they give you results in either degrees or radians, depending 
on which mode you set them in. This feature is great, but it trips up even the best 
mathematicians from time to time. Each calculator is different, but they always 
have either a single button or a multiple-button sequence that switches from 
radians to degrees and back again — sort of like a toggle switch. Some calculators 
even have a legend at the top or bottom of the screen that tells you whether you’re 
in degree or radian mode, perhaps as obvious as an R or D. Problems tend to arise 
when you use your calculator for more than one task. Perhaps you’re studying 
both trigonometry and physics, and one calls for degree mode while the other calls 
for radian mode. Just be aware, and you won’t get caught.

Interpreting notation on  
the calculator screen
Calculator notation, or the mumbo jumbo on the buttons, is somewhat tricky. Even 
though the 1 superscript indicates an inverse trig function when written in a 
book or on your paper, you can’t use the 1 button to find the value of an inverse 
trig function on a calculator. On calculator screens, the 1 or x 1 button means to 
find the reciprocal of a number. Look under the 2nd functions, which are different 
functions or operations written above the buttons, for the inverse trig functions. 
They’re usually above the original sine, cosine, and tangent buttons. Some calcu-
lators have a button labeled “2nd.” Others use alternative colors — usually yel-
low, red, or green — to denote the second use of the button.

Even when you find the inverse functions, you’ll notice that they’re only for the 
three primary trig functions. The calculator doesn’t show any for cosecant, secant, 
or cotangent. So, where are they? First, I discuss how to use the three buttons that 
are available; then I tell you how to calculate the other inverses.

Using the inverse function button
To explain this button, I use an example. Here’s how you find sin 1 1

2
 in degrees 

using a calculator.

1. Decide whether you want your answer in radians or degrees.

For this example, use the mode menu or whatever method your calculator 
uses to change the mode to Degrees.

2. Enter the problem as given.

The following are the typical keystrokes: 2 5nd Entersin . . The result is 30, 
meaning 30 degrees.
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Now look at what happens when you decide to find sin 1 1
2

 in radians using that 
same calculator.

1. Specify that you want your answer in radians.

Use the mode menu or whatever method your calculator uses to change the 
mode to Radians.

2. Enter the problem as given.

The following are the same keystrokes: 2 5nd Entersin . . The result is 
0.5235987756 on my calculator. This is in radians. If a radian is about 
57 degrees, and this decimal is over half, then the answer is somewhere 
near 30 degrees — which you know from the previous problem. But what 
do you do if you haven’t done a previous problem?

3. Divide  by the decimal value.

Don’t skimp on the decimal places. Use your calculator and enter: 
.5235987756 Enter . (On my calculator, I use: Ans Enter ,  

because I have the decimal sitting there from the previous computation.)

The result is 6; the 6 is the denominator under , which represents the radian 

measure equivalent to 0.5235987756. So, the radian answer in terms of  is 
6

.

Calculating the inverse of a reciprocal function
To determine the inverse of a reciprocal function, such as Cot 1 2  or Sec ( )1 1 , 
you have to change the problem back to the function’s reciprocal — one of the 
three basic functions — and then use the appropriate inverse button.

When changing to the function’s reciprocal, you flip the input with that function, 

too. For example, Cot 1 2  becomes tan 1 1
2

. You change sec 1 2
3

 to cos 1 3
2

,  

Csc 1 1  to Sin 1 1 , and so on.

For example, find the value of Sec .1 1 1547 . This time find the answer in 
degrees.

1. Rewrite the function in terms of its reciprocal.

Find the reciprocal of 1 1547.  using your calculator.

1 1547 1. x Enter

The result is 0 8660258076. . Just use the first four decimal places in your work.

Sec 1 1 1547 0 8660. Arccos .
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2. Enter the problem.

2 8660nd Entercos .

The calculator give you 149.9970891. This is essentially an angle of 150 degrees. 
All the rounding of decimals inserts a bit of an error. You can check by finding 
the cosine of a 150-degree angle using your calculator and then finding the 
reciprocal, to see if you have the correct answer. Also, the exact value of 

cos 150  is 3
2

, which has a decimal value of 0.8660254038. Look familiar?

Working around the inverse cotangent
The other big pitfall you encounter when using a calculator involves the inverse 
cotangent function. The inverse tangent function, Tan 1 x , has its range in Quad-
rant I and Quadrant IV, but Cot 1x  has its range in Quadrant I and Quadrant II. If 

you want cot 1 3 , for example, and you use tan 1 1
3

 and your calculator, 

you get an answer in the fourth quadrant. You have to be aware that this quadrant 
isn’t correct; you got it because you changed functions from cotangent to tangent 
so you could use the calculator. This is still the best way to do the problem.  
Just use the answer from the calculator and determine the corresponding angle in 
Quadrant II. Here’s an example:

Find cot 1 3  in degrees.

1. Set the mode to Degrees.

2. Change the function and value to their reciprocals.

cot 1 3  becomes tan 1 1
3

.

3. Find the value of the inverse function by using a calculator.

Enter 2 1 3nd tan Enter( ) / . On some calculators, parentheses automati-
cally pop up for you to enter the tangent value inside them. If they don’t,  
then you should insert parentheses around the fraction yourself. The result is 

30 degrees. Note that this angle is in Quadrant IV, and you want Quadrant II 
for the inverse cotangent.

4. Find the angle in Quadrant II that has the same reference angle.

The angle in Quadrant II with a 30-degree reference angle is an angle of  
150 degrees. So cot 1 3 150.
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Multiplying the Input
Multiple-angle functions are those such as sin  2 , cos 3x, tan  6 , and so on. When 
considering inverse relations (which give multiple answers) for these angles, the 
multiplier usually indicates how many more answers that problem has (it’s how 
many more times) as compared to a similar problem without a multiplier. For 

example, the equation sin 3
2

 has two different answers if you consider all the 

angles between 0 and 360 degrees:  equals 60 and 120 degrees. But if you change 

the equation to sin2 3
2

, you get twice as many, or four, answers between 0 and 

360 degrees:  equals 30, 60, 210, and 240 degrees. These angles are all within one 
rotation, but putting them into the original equation and multiplying by 2 gives 
angles with the same terminal side as the angles within one rotation.

Here are some examples to show you how this multiplication works and how to 

find the answers. First, I show how I got the answers for sin2 3
2

.

1. Write the inverse equation.

2 3
2

1sin

2. List all the angles in two rotations, 0 720 , that have that sine, and 
set them equal to 2 .
2 60 120 420 480, , ,   

The second two angles are each 360 more than the first two.

3. Divide each of the terms on both sides of the equation by 2 to solve for .
2
2

60
2

120
2

420
2

480
2

30 60 210 240

, , ,

, , ,   

Notice how all the solutions for  are between 0 and 360 degrees — just as 
asked.

Now solve cos3 2
2

x  for any x such that 0 2x . Note that this interval indi-

cates radian measures.

1. Write the inverse equation.

3 2
2

1x cos
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2. List all the angles in three rotations, 0 6x , that have that cosine, 
and set them equal to 3x.

3 3
4

5
4

11
4

13
4

19
4

21
4

x , , , , ,

The second two angles are just 2  greater than the first two, and the last  

two are 2  greater than the second two. Just change 2  to 8
4

 and add  
the fractions.

3. Multiply all the terms on both sides by 1
3

 to solve for x.

1
3

3 1
3

3
4

1
3

5
4

1
3

11
4

1
3

13
4

1
3

19
4

1
3

21
4

7

x

x

, , , , ,     

4
5
12

11
12

13
12

19
12

7
4

, , , , ,     

This result shows the big advantage of radians — the numbers don’t get as big 
as they do with degrees. The disadvantage may be having so many fractions.

Solving Some Mixed Problems
When working with inverse trig functions, it’s always more convenient when the 
numbers you’re working with are the results of applying one of the trig functions 
to a common angle measure. The exact values of the functions of those more 
popular angles are easy to remember and work with in problems. When the angle 
isn’t a common one, though, you need a calculator or table. Not a big deal, just not 
as pleasant.

By using inverse trig functions, you can solve some interesting problems, where 
you never even need to know what the angle measure actually is. You just need to 
know a function value, a quadrant, and a few trig identities.

For example, you can find cos sin 1 12
13

, which says to “find the cosine of an 

angle whose sine is equal to 12
13

.” You don’t need to know the angle measure to 

solve this problem, but you do need to know the quadrant that the terminal side 
lies in, because otherwise, two different angles can be correct answers. The sine is 
negative in Quadrant III and Quadrant IV, so this problem could involve an angle 
in either of those quadrants, but the cosine is negative in Quadrant III and positive 
in Quadrant IV.  Consider the following example, where the target quadrant is 
given.
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Find cos sin 1 12
13

 if the terminal side of the angle is in Quadrant IV.

1. Use the Pythagorean identity to find the numerical value of the cosine of 
the angle.

Put the value in for sin , get the cosine term alone, and then take the square 
root of both sides:

sin cos

cos

cos

cos

2 2

2
2

2

1

12
13

1

1 144
169

25
169

25
1669

5
13

2. Choose the sign of the answer.

Because the angle’s terminal side is in Quadrant IV, and the cosine is positive 

there, the answer is cos sin 1 12
13

5
13

.

The quadrant isn’t a mystery in a problem that uses the inverse trig function. The 
previous example includes information on the terminal side of the angle — in 
which quadrant it lies. When an inverse function is involved, the quadrant is 
spelled out for you by the range of the function involved. You just use the assigned 
quadrants.

For example, to find tan cos 1 11
61

, you can assume that the angle involved has 

its terminal side in Quadrant II, because the inverse cosine function is negative in 
that quadrant.

1. Use the reciprocal identity and reciprocal of the number to find the 
secant.

The problem involves the angle whose cosine is 11
61

. I call that unknown  
angle  and rewrite the expression in terms of the cosine of  with that 
measure. I write the expression this way in order to change from an  
inverse trig function to a trig function so I can use the identity.

If cos 11
61

, then sec 61
11

.
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2. Use the Pythagorean identity to solve for the tangent.

tan sec ,

tan , ,

ta

2 2
2

2

1 61
11

3 721
121

3 721
121

1 3 600
121

nn ,2 3 600
121

60
11

3. Choose the sign of the answer.

Because the terminal side is in Quadrant II and the tangent is negative in that 

quadrant, tan cos 1 11
61

60
61

.

Finding an Unknown Angle
Trigonometry comes in handy again! You can use trig to find the distances between 
points when given an angle, and you can compute the measure of an angle when 
given distances. This is dependent on having nice, cooperative right triangles, of 
course, but they are usually part of the picture.

Suppose you have a 25-foot ladder and want to lean it against a building so that it 
reaches just under the second-floor window. Refer to Figure 15-1a.

The distance from the ground to the bottom of the window is 24 feet. What angle 
does that require of the ladder? And is it safe?

FIGURE 15-1: 
Determining the 
angle measure.
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Let the angle be represented by . And, with the hypotenuse and opposite side 

measures of a right triangle available, you can write sin 24
25

. Using the inverse, 

you have sin 1 24
25

. Getting out your calculator, you determine that 73 74. . 

That’s sorta steep. But does it qualify as safe? To determine that, you go to the 
“4-to-1 Rule.”

The 4-to-1 Rule says that the base of a ladder should be positioned such that it is 
one foot away from the building for every four feet of height to where the ladder 
rests against the building.

What angle measure are we talking about here? Take a look at Figure 15-1b.

The angle  represents the safe measure for leaning the ladder against the  

wall. The opposite and adjacent measures are given, so tan 4
1

4 and 

tan .1 4 75 96 . That’s pretty close — just 2 degrees under the rule’s limit — 
but we’re probably safe here.
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Chapter 16
Solving Trig Equations

Solving equations involving trigonometric expressions takes a pinch of this, 
a dab of that, a gentle stirring, and just the right temperature. No, this book 
isn’t for a cooking class, but solving these equations requires the proper 

preparation and some skill — just like a successful dish.

Trig equations aren’t identities. An identity is true for any angle in the domain  
of the function involved. A trig equation is true for some specific angles or input — 
if the equation has a solution at all. It’s just like solving algebraic equations for the 
variable x, which can have one solution, several solutions, or no solution at all.

Some trig equations require factoring skills that you learned from algebra; some 
even require the quadratic formula. Successfully solving most trig equations 
involves incorporating trig identities at the proper time. All the equations require 
knowledge of the function values and how inverse trig functions work (so head on 
back to Chapters  8,  14, and  15 if you need a refresher). For equation-solving 
enthusiasts, this chapter is where all the concepts come together for maximum 
fun and challenge.

The methods and techniques that you see in this chapter are those that people use 
most frequently to solve trig equations. A few more ways exist, but they don’t 
come up as often. Also, you usually have more than one way of solving a particular 

IN THIS CHAPTER

 » Solving equations within limits

 » Expanding the pool of answers for 
equations

 » Incorporating algebra techniques

 » Getting creative with identities

 » Solving multiple-angle equations

 » Letting a graphing calculator do the 
dirty work
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trig equation. Your goal should always be to do it as quickly and efficiently as pos-
sible, but don’t be alarmed if you seem to take the long way around. Sometimes 
the more circuitous route just seems to make more sense. If a particular method 
works for you — in other words, you get the right answer — go for it!

Generating Simple Solutions
The simplest type of trig equation is the one where you can immediately rewrite 
the equation using an inverse in order to determine the solutions. Some examples 
of these types of equations include solving for x: cos , sin ,x x1 2 1 0  and 
cot x 3 0. Here’s how to solve them.

To solve cos x 1 for all angles x between 0 and 360 degrees (including 0) and then 
all angles in general, follow these steps:

1. Rewrite the equation as an inverse function equation.

x cos 1 1

2. List the solutions for values of x when 0 360x .
x 0

The only time that the cosine is equal to 1 in this interval is when the angle, or 
input, is 0 degrees.

3. List all the solutions in general.
x n0 360

Steps 2 and 3 illustrate the different ways that you can write the answers: either 
as a few within a certain interval, or as all that are possible, with a rule to describe 
them.

Now solve 2 1 0 sinx  only for values of x such that 0 2x :

1. Rewrite the equation as an inverse function equation.

First, subtract 1 from each side; then divide each side by 2 before applying the 
inverse.

2 1

1
2

1
2

1

sin

sin

sin

x

x

x
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2. List the solutions.

You can use the table in Chapter 15 to find the angles that work.

x
7
6

11
6

, 

This last example involves a reciprocal function. Your best bet is to begin by using 
a reciprocal identity and changing the problem.

Solve the equation cot x 3 0 for all the values of x, in radians, that satisfy it:

1. Solve for the trig function by adding the radical value to each side.

cot x 3

2. Use the reciprocal identity and the reciprocal of the number to change to 
the tangent function, and then multiply both parts of the fraction by the 
radical in the denominator to rationalize the fraction.

cot tan tanx x x3 1
3

3
3

3. Rewrite the equation as an inverse function equation.

x tan 1 3
3

4. Write the general statements that give all the solutions. (Refer to the 
table in Chapter 15.)

x n

x

6

6
7
6

13
6

19
6

, , , , ...    

These statements mean that all the angles you find by adding or subtracting 
multiples of  will provide solutions for this equation. For the tangent function, 
you use multiples of  rather than 2 , which are used with sine and cosine. The 
tangent’s period is only  radians, while sine and cosine have periods of 2 .

Factoring In the Solutions
The same type of factoring that algebra uses is a great help in solving trig equa-
tions. The only trick is to recognize that instead of just xs, ys, or other single-
letter variables, trig variables such as sin x or sec y exist. You need the whole sin x 
or sec y when working with the variables; you can’t factor out an x or a sec alone. 
Look for the patterns and apply the factoring techniques.
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Here are a few of the most basic patterns for factoring binomials and trinomials.

 » Greatest common factor: ab cb b a c

 » Difference of squares: a b a b a b2 2

 » Sum or difference of cubes: a b a b a ab b3 3 2 2 ,  
a b a b a ab b3 3 2 2

 » Perfect square trinomial: x ax a x a2 2 22 , x ax a x a2 2 22

Finding a greatest common factor
The trig equations that require finding a greatest common factor (GCF), factoring 
it out, and then solving the equation could look like these two equations: 
2 0sin cos sinx x x  or cos tan cosx x x3 . I solve both of these equations in 
this section.

Solve 2 0sin cos sinx x x  for all the values of x such that 0 x 360 .

1. Factor out sin x from each of the two terms.
sin cosx x2 1 0

2. Set the two different factors equal to 0.

sinx 0 or 2 1 0cosx

3. Solve for the values of x that satisfy each equation. Use the table in 
Chapter 15.

If sinx 0, then x sin ,1 0 0 180 .

If 2 1 0 2 1 1
2

cos , cos , cos ,x x x  then x cos ,1 1
2

60 300 .

All these values are solutions for the original equation. The complete list 
is x 0 60 180 300, , , .

Now solve cos tan cosx x x3  for all the possible values in degrees.

You don’t want to divide each side by cos x, because you’ll lose a solution if you do.

1. Move the term on the right to the left by subtracting it from each side.

cos tan cosx x x3 0

2. Factor out the cos x from each term.

cos tanx x 3 0
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3. Set the two different factors equal to 0.

cosx 0 or tanx 3 0

4. Solve for the values of x that satisfy both equations.

If cos ,x 0  then x cos   1 0 90 270, ,  or 90 180 n

If tan , tanx x3 0 3 , then x tan ,1 3 60 240 , or 60 180 n

So the solutions are all of the form x n90 180  or x n60 180

Factoring quadratics
Quadratic equations are nice to work with because, when they don’t factor, you 
can solve them by using the quadratic formula (see the section, “Using the Qua-
dratic Formula,” later in this chapter). The types of quadratic trig equations that 
you can factor include tan tan , cos , sin sin ,2 2 24 3 0 2 5 3 0x x x x x   or 
csc csc2 2 0x x . Notice that each equation has the telltale trig function raised 
to the second degree. I show you how to handle them in the following examples.

The first two examples have just two terms. The first has two variable terms, and 
the second has just one variable term. In the first example, you put both terms  
on the left and then factor out the variable or trig term.

Solve tan tan2 x x  for the values of x such that 0 2x .

1. Move the term tan x on the right to the left by subtracting it from  
both sides.

tan tan2 0x x

Don’t divide through by tan x. You’ll lose solutions.

2. Factor out tan x.
tan tanx x 1 0

3. Set each of the two factors equal to 0.

tanx 0 or tanx 1 0

4. Solve for the values of x that satisfy both equations.

If tan ,x 0  then x tan ,1 0 0

If tan , ,x x1 0 1 tan  then x tan ,1 1
4

5
4

The four solutions are x 0
4

, , ,   and 5
4

.
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In this next example, the binomial doesn’t factor easily as the difference of two 
squares, because the 3 isn’t a perfect square, and you have to use a radical in the 
factorization. A nice, efficient way to solve this equation is to move the 3 to the 
right and take the square root of each side.

Solve for all the possible solutions of 4 3 02cos x  in degrees.

1. Move the number to the right by adding 3 to each side.

4 32cos x

2. Take the square root of each side. Then solve for cos x by dividing each 
side by 2.

4 3

2 3

3
2

2cos

cos

cos

x

x

x

3. Solve the two equations for the values of x.

If cos ,x
3
2

 then x cos ,1 3
2

30 330 , with all the possible solutions 

being x n30 360  or 330 360 n.

If cosx 3
2

, then x cos ,1 3
2

150 210 , with all the possible 

solutions being x n150 360  or 210 360 n.

You may have noticed that the solutions are always 30 degrees away  
from 180 degrees and 360 (or 0) degrees. A simpler way to describe the 
solutions is to just use multiples of 180 degrees and say: x n30 180  
and x n150 180 .

The next two examples involve using un-FOIL  — a technique for determining 
which two binomials give you a particular quadratic trinomial. When the pattern 
in the trinomial is obscured, you may want to first substitute some other variable 
for the trig function to help figure out how you factor it. I use this particular 
method in the next example.

Solve 2 5 3 02sin sinx x  for all the values of x between 0 and 360 degrees.

1. Replace each sin x with y.

2 5 3 02y y

2. Factor the trinomial as the product of two binomials.
2 1 3 0y y
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3. Replace each y with sin x.
2 1 3 0sin sinx x

4. Set each factor equal to 0.

2 1 0sinx  or sin x 3 0

5. Solve the two equations for the values of x that satisfy them.

If 2 1 0 2 1 2 1
2

sin , sin , sinx x x  , then  sin  x 1 1
2

30 150, .

If sin  sin x x3 0 3, , then x sin 1 3 . This result is nonsense, because 
the sine function only produces values between 1 and 1 — so this factor 
doesn’t produce any solutions. Go to Chapter 8 for information on the range of 
the sine function.

The only two solutions are 30 and 150 degrees.

This next example factors fairly easily, but it involves a reciprocal function. Solve 
csc csc 2 2 0x x  for any angles between 0 and 2  radians.

1. Factor the quadratic trinomial into the product of two binomials.
csc csc x x2 1 0

2. Set each factor equal to 0.

csc x 2 0 or csc x 1 0

3. Solve the two equations for the values of x that satisfy them.

If csc  csc x x2 0 2, , then x csc ,1 2 7
6

11
6

 .

If csc  csc x x1 0 1, , then x csc 1 1
2

.

An alternate way of dealing with these two binomial equations is to change them by 
using the reciprocal identity and writing the reciprocal of the number. For the first 

equation, you change from cosecant to sine: csc , csc , sinx x x2 0 2 1
2

  . 

Do the same for the second equation: csc , csc , sinx x x1 0 1 1  . You then 
solve the inverse equations (and get the same answers).

Increasing the degrees in factoring
Factoring quadratics is a breeze — well, I guess it gets a bit windy at times. Fac-
toring equations with higher degrees can get a bit challenging if you don’t have a 
nice situation such as just two terms or a quadratic-like equation. You may have 
the possibility of factoring by grouping, and I cover that method in the next sec-
tion. In this section, the problems that I have in mind are those like 2 3sin x xsin  
or 2 9 4 04 2cos cosx x .
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The first equation has just two terms, so you can factor it by finding a greatest 
common factor.

Solve 2 3sin x xsin  for all the possible angles in degrees.

1. Move the term on the right to the left by subtracting it from each side.

2 03sin x xsin 

2. Factor out sin x.

sin sinx x2 1 02

3. Set each factor equal to 0.

sin x 0 or 2 1 02sin x

4. Solve the two equations for the values of x that satisfy them.

If sin x 0, then x nsin    or 1 0 0 180 0 180, , .

If 2 1 0 2 1 1
2

2 2 2sin , sin , sinx x x  , then you end up with a quadratic 

equation.

5. Take the square root of both sides of the quadratic equation and  
solve for x.

You need to consider both a positive and negative root. Then multiply both 
parts of the fraction by the denominator to rationalize the denominator.

sin

sin

2 1
2
2
2

x

x

Now, considering both solutions:

If sinx 2
2

, then x n nsin , , ,1 2
2

45 135 45 360 135 360 or   .

If sinx 2
2

, then x nsin , , ,1 2
2

225 315 225 360 315  or     

360 n.

This third-degree trig equation has a whole slew of answers:

x n

x n

x n

x n

x n

180

45 360

135 360

225 360

315 360
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You can combine these last four equations that are describing the solution for x. 
The equations all begin with multiples of 45 degrees and can be combined to read 
x n45 90 . This single equation generates all the same angles as the last four 
statements combined. How do you know you can simplify this way? Because the 
angles of 45, 135, 225, and 315 degrees are all 90 degrees apart in value. By starting 
with 45 and adding 90 over and over, you get all the listed angles, as well as the 
infinite number of their multiples.

The next example is a fourth-degree equation, but this one is quadratic-like, 
meaning that it factors like a quadratic trinomial with two binomial factors. This 
problem has the possibility of having a great number of solutions — or none.

Solve 2 9 4 04 2cos cosx x  for the solutions that are between 0 and 2 .

1. Factor the trinomial as the product of two binomials.

2 1 4 02 2cos x xcos

2. Set each factor equal to 0.

2 1 0 4 02 2cos x x or cos

3. Solve for the function in each equation by getting the cosine terms alone 
on one side of the equation.

2 1 0

2 1

1
2

4 0
4

2

2

2

2

2

cos

cos

cos

cos
cos

x

x

x

x
x

and

4. Take the square root of each side of each equation.

cos

cos

cos

cos

2

2

1
2
2
2

4

2

x

x

x

x

and

5. Solve for the values of x that satisfy the equations.

If cosx 2
2

, then x cos ,1 2
2 4

7
4

.

If cosx 2
2

, then x cos ,1 2
2

3
4

5
4

.

If cosx 2, then you have a problem — that equation doesn’t compute!  
The cosine function results in values between 1 and 1. (Find out more 
about the range of cosine in Chapter 8.) This factor doesn’t give any new 
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solutions to the original problem. So the solutions of the equation are 

4
3
4

5
4

7
4

, , , , all between 0 and 2 .

Factoring by grouping
The process of factoring by grouping works in very special cases; one case is when 
the original equation is the result of multiplying two binomials together that have 
some unrelated terms in them. You usually can apply this type of factoring when 
you’re facing an even number of terms and can find common factors in different 
groups of them. The types of equations that you can solve by using grouping may 
look like 4 2 2 1 0sin cos sin cosx x x x  or sin sec sin sec2 22 2x x x x . In 
the first equation, the first two terms have an obvious common factor, 2sinx .  
The second two have no common factor other than 1, but to make grouping work, 
factor out 1.

Solve 4 2 2 1 0sin cos sin cosx x x x  for all the possible answers between 0 
and 2 .

1. Factor 2 sin x out of the first two terms and 1 out of the second two.
2 2 1 1 2 1 0sin cos cosx x x

Now you have two terms on the left, each with a factor of 2 1cosx .

2. Factor that common factor out of the two terms.
2 1 2 1 0cos sin  x x

3. Set the two factors equal to 0.
2 1 0 2 1 0

2 1 2 1

1
2

1
2

cos sin

cos sin

cos sin

x x

x x

x x

or

4. Solve for the values of x that satisfy the equation.

If cosx 1
2

, then x cos ,1 1
2 3

5
3

 .

If sinx 1
2

, then x sin ,1 1
2 6

5
6

 .

So the solutions are: x
6 3

5
6

5
3

, , , 

This next example of grouping requires that you begin by moving the two terms 
on the right to the left. Another twist is that one of the resulting factors turns out 
to be a quadratic. How can math be much more fun than this?
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Solve sin sec sin sec2 22 2x x x x  for all the angles between 0 and 360 degrees.

1. Move the terms on the right to the left by subtracting them from both sides.

sin sec sin sec2 22 2 0x x x x

2. Factor sin2x out of the first two terms and 1 out of the second two.

sin sec sec2 2 1 2 0x x x

3. Factor sec x 2 out of the two terms.

sec sinx x2 1 02

4. Set the two factors equal to 0.
sec  sec 

sin  sin  2 2

x x

x x x

2 0 2

1 0 1 1

,

, , sin

when you take the square root of both sides.

5. Solve for the values of x that satisfy the equations.

If sec x 2, then x sec  1 2 120 240, .

If sinx 1, then x sin 1 1 90 .

If sinx 1, then x sin 1 1 270 .

So the solutions are x 90 120 240 270, , , .  

Using the Quadratic Formula
When quadratic equations factor, life is good. When they don’t, you can still sur-
vive, thanks to that wonderful quadratic formula. In case you’ve forgotten the 
exact formula, here it is.

The quadratic formula says that if you have a quadratic equation in the form 

ax bx c2 0, then its solutions are x b b ac
a

2 4
2

.

In trig, a trig function replaces the x or variable part of the quadratic formula.  
For example, find the solution of sin2 4 1 0x xsin  for all angles between 0 and 
360 degrees. Instead of just xs, the variable terms are sin xs.

1. Identify the values of the a, b, and c in the formula.

The values are a b1 4, , and c 1.
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2. Fill in the quadratic formula with these values and simplify.

sinx
4 4 4 1 1

2 1

4 16 4
2

4 20
2

4 2 5
2

2 5

2

3. Find approximate values for sin x from the solved form.

Using a calculator, 2 5 2 2 236. . So, sin x is either about 4.236 or 0 236. .

4. Use the calculator to find approximate angles with these sines.

If sin x 4 236. , you get an impossible result. The value of the sine ranges from 
1 to 1, so sin x can’t have this value.

If sin x 0 236. , then x sin 1 0 236 14. . You need to determine which 
angles between 0 degrees and 360 degrees have this sine.

The sine is negative in Quadrant III and Quadrant IV. Using the reference angle 
of 14 degrees, you have 180 14 194  and 360 14 346 . (Refer to 
Chapter 8 for more on reference angles.) The two solutions are 194 346 and .

Incorporating Identities
Some trig equations contain more than one trig function. Others have mixtures of 
multiple angles and single angles with the same variable. Some examples of such 
equations include 3 22 2cos sin , sec tan cotx x x x x , and cos cos2 1 0x x . 
To get these equations into a more-manageable form so that you can use factoring 
or one of the other methods in this chapter to solve them, you call upon identities 
to substitute some or all of the terms (for more on basic trig identities, see 
Chapter 10).

For example, to solve 3 2 2cos sinx x  for all the angles between 0 and 2 , apply 
the Pythagorean identity.

1. Replace sin2x with its equivalent from the Pythagorean identity, 
sin cos 1 cos2 2 2x x x  or sin 1 cos2 2x x .

3 12 2cos cosx x
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2. Add cos2x to each side and simplify by dividing.
4 1

1
4

2

2

cos

cos

x

x

3. Take the square root of each side.

cos

cos

2 1
4

1
2

x

x

4. Solve for the values of x that satisfy the equation.

If cosx 1
2

, then x cos ,1 1
2 3

5
3

 .

If cosx 1
2

, then x cos ,1 1
2

2
3

4
3

 .

In this next example, you begin with three different trig functions. A good tactic 
is to replace each function by using either a ratio identity or a reciprocal identity. 
This usually results in having just sines and cosines in your new version of the 
equation. Using these identities creates fractions, and fractions require common 
denominators. By the way, having fractions in trig equations is good, because the 
products that result from multiplying and making equivalent fractions are usually 
parts of identities that you can then substitute in to make the expression much 
simpler.

Solve 2sec tan cotx x x for all the possible solutions in degrees.

1. Replace each term with its respective reciprocal or ratio identity.

2 1

2
cos

sin
cos

cos
sin

cos
sin
cos

cos
sin

x
x
x

x
x

x
x
x

x
x

2. Rewrite the fractions with the common denominator sin cosx x.

Multiply each term by a fraction that equals 1, with either sine or cosine in both 
the numerator and denominator.

2

2

cos
sin
sin

sin
cos

sin
sin

cos
sin

cos
cos

sin
sin

x
x
x

x
x

x
x

x
x

x
x

x
xx x

x
x x

x
x xcos

sin
sin cos

cos
sin cos

2 2
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3. Add the two fractions on the right. Then, using the Pythagorean identity, 
replace the new numerator with 1.

2

2 1

2 2sin
sin cos

sin cos
sin cos

sin
sin cos sin cos

x
x x

x x
x x

x
x x x x

4. Set the equation equal to 0 by subtracting the right term from each side.

Perform the subtraction to create a single fraction.

2 1 0sin
sin cos

x
x x

5. Set the numerator equal to 0.

2 1 0sinx  or 2 1 1
2

sin , sinx x 

If the numerator is equal to 0, then the whole fraction is equal to 0. The 
denominator can’t equal 0 — such a number doesn’t exist.

6. Solve for the values of x that satisfy the original equation.

x

x n x n

sin , ,1 1
2

30 150

30 360 50 360

 

 or  = 1



In the next example, two different angles are in play. One angle is twice the size 
of the other, so you use a double-angle identity to reduce the terms to only one 
angle. The trick is to choose the correct version of the cosine double-angle identity.

Solve cos cos2 1 0x x  for x between 0 and 2 .

1. Replace cos 2x with 2cos 12x .

2 1 1 02cos cosx x

This version of the cosine double-angle identity is preferable because the other 
trig function in the equation already has a cosine in it.

2. Simplify the equation. Then factor out cos x.

2 0

2 1 0

2cos cos

cos cos

x x

x x

3. Set each factor equal to 0.

cos cos , cos , cosx x x x0 2 1 0 2 1 1
2

  or    
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4. Solve for the values of x that satisfy the original equation.

If cosx 0, then x cos ,1 0
2

3
2

 .

If cosx 1
2

, then x cos ,1 1
2

2
3

4
3

 .

This last example looks deceptively simple. The catch is that you have to recognize 
a double-angle identity upfront and make a quick switch. This example is also a 
nice segue into the next section on equations with multiple-angle solutions.

Solve sin cosx x
1
2

 for all the solutions between 0 and 360 degrees.

1. Use the sine double-angle identity to create a substitution for the 
expression on the left.

Starting out with the double-angle identity and multiplying each side by 1
2

, 
you get:

sin sin cos

sin sin cos

2 2

1
2

2

x x x

x x x

2. Replace the expression on the left of the original equation with its 
equivalent from the double-angle identity.

sin cos

sin

x x

x

1
2

1
2

2 1
2

3. Multiply each side of the equation by 2.

2 1
2

2 1
2

2

2 1

sin

sin

x

x

4. Rewrite the expression as an inverse function.

2 11x sin

See Chapters 14 and 15 for more on inverse functions.

5. Determine which angles within two rotations satisfy the expression.

2 1 90 4501x sin ,  

You use two rotations because the coefficient of x is 2.

6. Divide each term by 2.
2
2

90
2

450
2

45 225

x

x

,

,

 

 

Notice that the resulting angles are between 0 and 360 degrees.
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You can generalize the double-angle technique from the preceding example for 
other multiple-angle expressions.

Finding Multiple-Angle Solutions
Multiple-angle expressions are those where the angle measure is some multiple 
of a variable — for example, 2x or 3y. In this section, I show you how to take these 
expressions apart and solve for all the additional solutions that are possible. 
Because the trig functions are periodic (meaning they repeat their patterns infi-
nitely), the number of possibilities for solutions increases tremendously. The 
larger the multiplier, the more the possible solutions.

When solving a trig equation of the form ax f x1( ) where you want the solution 
to be all the angles within one complete rotation, write out all the solutions within 
the number of complete rotations that a represents. Then divide each angle mea-
sure by a.

Problems that lend themselves to this technique include 2 5 12sin x  and 

cos 1
2

3
2

x . In the first example, I solve 2 5 12sin x  for all the angles between 0 

and 2 .

1. Divide each side by 2; then take the square root of each side.

sin

sin

sin

2

2

5 1
2

5 1
2

2
2

5 2
2

x

x

x

2. Solve for 5x, which represents the angles that satisfy the equation within 
one rotation.

If sin5 2
2

x , then 5 2
2 4

3
4

1x sin , .

If sin5 2
2

x , then 5 2
2

5
4

7
4

1x sin , .

3. Extend the solutions to five rotations by adding 2  to each of the original 
angles four times.

5
4

3
4

9
4

11
4

17
4

19
4

25
4

27
4

33
4

35
4

x , , , , , , , , ,
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and

5 5
20

7
20

13
20

15
20

21
20

23
20

29
20

31
20

37
20

39
x , , , , , , , , ,

220

4. Divide all the terms by 5 and simplify.

x

x

20
3
20

9
20

11
20

17
20

19
20

25
20

27
20

33
20

35
20

, , , , , , , , ,

20
3
20

9
20

11
20

17
20

19
20

5
4

27
20

33
20

7
4

, , , , , , , , ,

and

x
5
20

7
20

13
20

15
20

21
20

23
20

29
20

31
20

37
20

39
2

, , , , , , , , ,
00

4
7
20

13
20

3
4

21
20

23
20

29
20

31
20

37
20

39
20

x , , , , , , , , ,

Notice that all 16 solutions are angles with measures less than 2 .

This next example has a proper-fraction multiplier rather than a multiplier 
greater than 1.

Solve cos 1
2

3
2

x  for all the solutions between 0 and 360 degrees.

1. Rewrite the equation as an inverse trig equation.
1
2

3
2

1x cos

2. Determine which angles satisfy the inverse equation within one full 
rotation.
1
2

3
2

150 2101x cos , 

3. Multiply all the terms by 2.
x 300 420, 

4. Throw out the second angle, because its measure is greater than 360 
degrees.

The only solution is 300 degrees. When you replace the x in the original 
equation with this angle measure, you get a true statement.
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Squaring Both Sides
When solving trig equations, you have so many choices of techniques to use for 
the solution. Many times, more than one method will work  — although one 
method is usually quicker or easier than another. And then you’ll come across a 
trig equation that defies your finest attempts. Two last-ditch efforts that you can 
use when solving trig equations are to square both sides of the equation or to 
multiply each term through by a trig function that you’ve carefully selected. 
I show you the first of these two methods here, and I show you the second method 
in the next section. Examples of equations that respond well to squaring both 
sides include sin cosx x 2  and cos sinx x3 1. Note the radicals in the 
equations.

Solve sin cosx x 2  for all the possible angles in degrees.

1. Square both sides of the equation.

When squaring a binomial, be sure not to forget the middle term.

sin cos

sin sin cos cos

x x

x x x x

2 2

2 2

2

2 2

2. Use the Pythagorean identity to replace sin cos2 2x x with the num-
ber 1.

sin cos sin cos

sin cos

2 2 2 2

1 2 2

x x x x

x x

3. Subtract 1 from each side. Then replace the expression on the left using 
the sine double-angle formula.
2 1

2 1

sin cos

sin

x x

x

4. Solve for the value of 2x by using the inverse function. Then write a few 
angle solutions to determine a pattern.

2 1 90 450 8101x sin   , , ,

Because you’re supposed to find all the possible solutions, you’re not bound by 
only two rotations.

5. Divide every term by 2.
2 90 450 810

45 225 405

x

x

, , ,

, , ,
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6. Check for extraneous solutions.

Because squaring both sides of the equation loses information about the signs, 
you may have introduced extraneous solutions. Plug in the values of x that you 
found to check:

sin cos45 45 2 , so 45  is a solution.

sin cos225 225 2 , so 225  is not a solution.

7. Write an expression for all the solutions.
x n45 360

In the next example, you need to do a little shifting at first. To solve cos sinx x3 1,  
get the term with the radical in it to one side of the equation by itself. Otherwise, 
when you square both sides, you end up with a radical factor in one of the terms. 
That situation isn’t always bad, but dealing with it is usually a little more  awkward 
than not.

Solve the equation cos sinx x3 1 for all the possible angles from 0 to  
360 degrees.

1. Add the radical term to both sides and subtract 1 from both sides.

You get cos sinx x1 3 .

2. Square both sides.

cos sin

cos cos sin

x x

x x x

1 3

2 1 3

2 2

2 2

3. Replace sin2 x  with 1 cos2x from the Pythagorean identity.

Doing so creates an equation with terms that have all the same functions, 
cos x, in them.

cos cos cos2 22 1 3 1x x x

4. Simplify the equation by distributing the 3 on the right and then bringing 
all the terms to the left to set the equation equal to 0.

cos cos cos

cos cos

2 2

2

2 1 3 3

4 2 2 0

x x x

x x

5. Divide every term by 2.

2 1 02cos cosx x

6. Factor the quadratic equation.
2 1 1 0cos cosx x
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7. Set each factor equal to 0.
2 1 0

2 1

1
2

1 0

1

cos

cos

cos

cos

cos

x

x

x

x

xor

8. Solve each equation for the value of x.

If cosx 1
2

, then x cos ,1 1
2

120 240 .

When you check for extraneous solutions, you find out that plugging in 120  
makes the original equation false. Only 240  is a solution.

If cosx 1, then x cos ,1 1 0 360 .

The angles 0 and 360 degrees have the same terminal side. You usually list just 
one of them: 0 degrees.

Multiplying Through
The technique of multiplying through a trig equation by a carefully selected func-
tion shouldn’t be your first choice — or your second, third, or fourth choice. This 
method is usually a last resort. Not that the method is terribly hard; it just requires 
sitting back and looking at the equation, and magically coming up with the best 
function to multiply through by. You can find the best function by guess or by 
golly, but then, that would take all the fun out of it — you want to guess right the 
first time. Here’s an example of an equation that this technique works well on.

Solve 2 1sin cscx x  for all the solutions between 0 and 2 .

1. Multiply each term by sin x.

Why sin x? I chose that function because I could see that the products of the 
individual terms would be either different powers of sine or just a number. 
Notice that the product of csc x and its reciprocal, sin x, is 1.

2 1

2 12

sin sin csc sin sin

sin sin

x x x x x

x x

2. Subtract sin x from each side to set the equation equal to 0.

2 1 02sin sinx x
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3. Factor the quadratic equation.
2 1 1 0sin sinx x

4. Set each factor equal to 0.
2 1 0

1
2

1 0

1

sin

sin

sin

sin

x

x

x

x
or

5. Solve for the values that satisfy the equations.

If sinx 1
2

, then x sin ,1 1
2

7
6

11
6

 .

If sinx 1, then x sin 1 1
2

.

Solving with a Graphing Calculator
Some of the more-advanced graphing calculators can make short work of solving 
trig equations. A graphing calculator comes in very handy when the equation is 
complicated, has several different functions or angle multiples, or has fractional 
or decimal values that don’t lend themselves to the traditional solving methods 
that I discuss throughout this chapter. For example, I prefer to use a graphing 
calculator to solve equations like cos cos2 2x x  and cos . sin .2 0 4 0 6x x .

First, here’s how to solve cos cos2 2x x  for all solutions between 2  and 2 .

1. Put the cos 2x in the y menu (the graphing menu) of your calculator. Put 
the 2cos x on the right as a second entry.
y x

y x
1

2

2

2

cos

cos

2. Set the window of your calculator to show the graphs.

Set the x values from 2  to 2 . (Be sure that your calculator is set in the 
radian mode.) In decimal form, let x 6 5.  to 6.5 to give a little room on either 
side of the left and right ends.

Set the y values to go from 3 to 3. Doing so gives room above and below the 
graph. If you have an auto-fit capability, use it to make the graph fit automati-
cally after you choose the x values you want the graph to encompass.

3. Graph the two functions and see where they intersect (see Figure 16-1).

4. Use the intersect feature on the calculator to determine the solutions.
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The x-coordinates of the intersection points are the solutions (rounded to four 
decimal places): 1.9455 and 4.3377. These solutions are in radians — the  value 
is already multiplied through.

You can also find the solutions to the preceding example with a graphing calcula-
tor solver feature, but, usually, you still need to look at the graph anyway so you 
know how many solutions you’re trying to find. The solver feature usually finds 
only one solution at a time, and you need to give it a hint to know where to find 
them.

This next example has decimals built in, so you probably can’t factor it. You can 
solve it by using identities and writing it as a quadratic, and then using the qua-
dratic formula. This calculator method gives you another option.

Solve cos . sin .2 0 4 0 6x x  for all angles between  and .

1. Put cos . sin2 0 4x x  in the graphing y menu of your calculator. Put 0.6 as 
a second entry.

y x x

y
1

2

2

0 4

0 6

cos . sin

.

2. Set the window of your calculator to show the graphs.

Set the horizontal, x values from  to . In decimal form, use x 3 2.  to 3.2 to 
give a little room on either side of the ends.

Set the vertical, y values to go from 3 to 3. Doing so gives room above and 
below the graph. If you have an auto-fit capability, use it to make the graph fit 
automatically.

3. Graph the two functions and see where they intersect (see Figure 16-2).

FIGURE 16-1: 
The graphs of 

y xcos2  
and y x2cos .
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4. Use the intersect feature on the calculator to determine the solutions.

The x-coordinates of the intersection points are the solutions (rounded to four 
decimal places): x 2 0998 1 0418 0 4817. , . , . , .   and 2.6598  These solutions 

are in radians — the  value is already multiplied through.

FIGURE 16-2: 
The graphs of  
y x

x

cos

. sin

2

0 4 

  

and y = 0.6.
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Chapter 17
Obeying the Laws and 
Applying Them

Triangles are very useful figures. Since humankind figured out how to keep 
records, people have documented the applications of triangles in mathe-
matics and many other sciences and the arts. The right triangle gets the 

most use; Pythagoras saw to it that others recognized right triangles for the pow-
erful polygons that they are. But oblique triangles (those that aren’t acute triangles 
or right triangles) have their place, too. You can’t always arrange to have a nice 
right triangle when you want it. Here’s where oblique triangles and the laws of 
sines and cosines come into play.

The law of sines uses — believe it or not — the sines of a triangle’s angles. With 
three carefully selected parts of the triangle (there are six to choose from), you can 
solve for the sizes of all the other parts. Of course, you have to obey the law, and 
the choices you can make are limited. That’s where the law of cosines comes in to 
save the day. This law isn’t as user-friendly, but it picks up where the law of sines 
falls short.

Trigonometry opens up all sorts of possibilities for solving area problems. By 
using the tools in this chapter, you won’t find a triangle that you can’t lick.

IN THIS CHAPTER

 » Finding missing parts in triangles

 » Understanding the laws of sines and 
cosines

 » Computing the areas of triangles
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Describing the Parts of Triangles
When it comes to triangles, you’ll find right triangles and bigger-than-right tri-
angles, called obtuse triangles. Other classifications exist too, such as acute, equi-
lateral, isosceles, and so on. But no matter what you call it, any triangle has exactly 
six parts: three angles and three sides. After you have information about the parts 
of a triangle, you can perform all sorts of computations and manipulations, using 
triangles to model situations and solve problems.

Standardizing the parts
Usually, when you name the parts of a triangle, you follow a system or pattern. 
Having this system helps you sort out the information, even when you don’t have 
a picture of the triangle to help you. The most common system is to name the 
angles of the triangle with capital letters, usually A, B, and C, and name the sides 
opposite each of the angles with the lowercase letter that matches. Figure 17-1a 
shows an example.

Another common practice is to name the angles with Greek letters, such as , , 
and , and put those labels inside the triangle between the two sides forming the 
angle. Refer to Figure 17-1b. But in this chapter, I stick with the capital and low-
ercase letters, because it coordinates the angles and the sides.

Determining a triangle
Even though every triangle has six parts, you only need to have information about 
or know the measures of three particular parts to determine the others. For exam-
ple, if you know the measures of the three sides, then you know that the three 
angles are uniquely determined. You can’t construct more than one shape and size 
of triangle from those three sides.

After you know the values for three carefully chosen pieces of a triangle, you can 
use any of the three different rules or laws that allow you to find the other three 

FIGURE 17-1: 
Naming the parts 

of a triangle.
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parts of the triangle. I discuss all three laws in their own sections later in this 
chapter.

Finding the one and only
Several combinations of parts uniquely determine a triangle. You’ll probably rec-
ognize these rules from geometry, when you did proofs. Here’s a list of all of the 
combinations you can use here.

To uniquely determine a triangle (find only one possible shape and size), you need

 » SSS: The measures of the three sides

 » SAS: The measures of two sides and the angle between them

 » ASA: The measures of two angles and the side between them

 » AAS: The measures of two angles and a side that does not lie between the 
angles

The last rule is actually just another version of the one directly before it. When you 
have two angles, you can determine the third, so the side lies between two known 
angles. Figure 17-2 shows these situations.

You may have noticed that I didn’t mention one combination — AAA, where all 
three angles are known. I left it out on purpose because, in such a case, all you can 
be sure of is that the two triangles are similar — they’re the same shape but not 
necessarily the same size.

FIGURE 17-2: 
Ways of 

determining the 
one and only 

triangle.
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Dealing with the ambiguous case
Four situations allow you to uniquely determine a triangle, and I list them in the 
preceding section. One additional case can be helpful, even though you may end 
up with two different triangles instead of one unique triangle: SSA, the measures 
of two sides and an angle that isn’t between them. This situation is a little tricky, 
because often, two different triangles are possible — which is why it’s known as 
the ambiguous case. Sometimes, this case is still better than nothing, as long as 
you’re aware that more than one triangle can exist. Figure 17-3 illustrates such a 
situation. In the two triangles, sides a and c and angle A are the same measure in 
each triangle. The angle measure B and the length of side b, however, aren’t the 
same in both triangles.

Following the Law of Sines
When you already have two angles, as in the case of ASA or AAS (see the preceding 
section), you can use the law of sines to find the measures of the other parts of the 
triangle. This law uses the ratios of the sides of a triangle and the sines of their 
opposite angles. The bigger a side, the bigger its opposite angle (and its sine). The 
longest side is always opposite the largest angle. Here’s how it goes.

The law of sines for triangle ABC with sides a, b, and c opposite those angles, 
respectively, says

sin sin sin
sin sin sin

A
a

B
b

C
c

a
A

b
B

c
C

and

FIGURE 17-3: 
The ambiguous 

case.
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So, the law of sines says that in a single triangle, the ratio of each side to the sine 
of its angle is equal to the ratio of any other side to the sine of its angle. When 
working with the law of sines, you use two of the ratios at a time, setting them 
equal to one another to form a proportion.

For example, consider a triangle where side a is 86 inches long and angles A and 
B are 84 and 58 degrees, respectively. Figure 17-4 shows a picture of the triangle, 
and the following steps show you how to find the missing three parts.

1. Find the measure of angle C.

The sum of the measures of a triangle’s angles is 180 degrees. So, find the sum 
of angles A and B, and subtract that sum from 180.

180 84 58 180 142 38

Angle C measures 38 degrees.

2. Find the measure of side b.

Using the law of sines and the proportion a
A

b
Bsin sin

, fill in the values that 
you know.

86
84 58sin sin

b

Use the given values when writing a proportion, not those that you’ve deter-
mined yourself. That way, if you make an error, you can spot it more easily 
later.

Use a calculator or computer to determine the values of the sines. Rounding to 
four places is sufficient.

86
0 9945 0 8480. .

b

FIGURE 17-4: 
Finding the  

three missing 
parts of a 

triangle.
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Multiply each side by 0.8480 to solve for the length b. Because the original 
measures are whole numbers, round this answer to the nearer whole number.

0 8480 86
0 9945 0 8480

0 8480

73 3331

.
. .

.

.

b

b

Side b measures about 73 inches.

3. Find the measure of side c.

Using the law of sines and the proportion a
A

c
Csin sin

, fill in the values that 
you know.

86
84 38sin sin

c

Again, it’s best to use the given values, not those that you determined. In this 
case, however, you have to use a computed value, the angle C.

Use a calculator to determine the values of the sines.

86
0 9945 0 6157. .

c

Multiply each side by 0.6157 to solve for the length c. Because the original 
measures were given as whole numbers, round this answer to the nearer 
whole number.

0 6157 86
0 9945 0 6157

0 6157

53 2430

.
. .

.

.

c

c

Side c measures about 53 inches.

Although knowing how to find the missing measures in an oblique triangle seems 
wonderful, you may wonder, “What’s the point?” One major reason for solving 
triangles is so you can apply them to practical problems. For example, the ques-
tion, “How tall is it?” seems to be a reasonable request.

Suppose a tree is growing on a hillside. The tree is completely vertical, but the 
hillside inclines at a 10-degree angle from the horizontal. Josh is standing 100 feet 
downhill from the tree. The angle of inclination from Josh’s feet to the top of the 
tree is 32 degrees. How tall is the tree? First, take a look at a visual of the situation 
in Figure 17-5 and then review the steps that follow.

1. Determine the triangle that you can use to solve the problem.

You know that one side is 100 feet long, and you can determine two angles, so 
use the triangle that Figure 17-6 (a) shows.
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2. Determine the two angles on either side of the base of the triangle.

You determine the angle on the right of the 100-foot base by subtracting the 
hill’s 10-degree inclination from the tree’s 32-degree inclination: 32 10 22 
degrees. (These angles are also known as angles of elevation, which you can find 
out more about in Chapter 9.)

You extend the side representing the tree downward to form a right triangle 
with the hill as the hypotenuse. You then determine an angle of 80 degrees for 
the third angle in the right triangle. Subtracting the measures of the other two 
angles from 180, you get the 80-degree angle. This 80-degree angle is supple-
mentary to the angle above it — see Figure 17-7 (b). Supplementary angles add 
up to 180, so the angle supplementary to the 80-degree angle is 100 degrees. 
Another way to find this 100-degree angle is to use the exterior-angle rule  
that follows.

The measure of an exterior angle of a triangle is equal to the sum of the  
two nonadjacent interior angles.

3. Calculate the measure of the third angle in the upper triangle.

Adding the two base angles together and subtracting their sum from  
180 degrees, you get 180 22 100 180 122 58( )  degrees.

FIGURE 17-5: 
How tall is  

the tree?

FIGURE 17-6: 
The triangle 

needed to 
calculate the 

height of the tree, 
and extending 

the triangle to do 
calculations.
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4. Determine the height of the tree.

The tree is the side opposite the angle measuring 22 degrees. Using the law of 
sines, you can write the following proportion:

a
A

b
Bsin sin

sin sin
tree height

22
100

58

Solve for the height of the tree.

tree height

tree height

sin sin

. .

.

22
100

58

0 3746
100

0 8480

0 37446
0 3746

100
0 8480

0 3746

44 174

tree height

tree height

. .
.

. 55

The tree is about 44 feet tall.

Continuing with the Law of Cosines
The law of cosines comes in handy when you have two or more sides — as in situ-
ations involving SSS and SAS — and need the measures of the other three parts. 
When you have two sides, you need the angle between them. If the angle isn’t 
between the two sides, then you have the ambiguous case, SSA. Although such a 
situation isn’t impossible, you must deal with it carefully. (See the section, 
“Determining a triangle,” earlier in this chapter, for more on these cryptic 
notations.)

Defining the law of cosines
The law of cosines has three different versions that you can use depending on 
which parts of the triangle you have measures for. Notice the pattern: The squares 
of the three sides appear in the equations, along with the cosine of the angle 
opposite one of the sides — the side set equal to the rest of the stuff.

The law of cosines for triangle ABC with sides a, b, and c opposite those angles, 
respectively, says
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a b c bc A

b a c ac B

c a b ab C

2 2 2

2 2 2

2 2 2

2

2

2

– cos

– cos

– cos

In plain English, these equations say that the square of one side is equal to the 
squares of the other two sides, added together, minus twice the product of those 
two sides times the cosine of the angle opposite the side you’re solving for. Whew!

Law of cosines for SAS
When you have two sides of a triangle and the angle between them, you can use 
the law of cosines to solve for the other three parts. Consider the triangle ABC 
where a is 15, c is 20, and angle B is 124 degrees. Figure 17-7 shows what this tri-
angle looks like.

Now, to solve for the measure of the missing side and angles:

1. Find the measure of the missing side by using the law of cosines.

Use the law that solves for side b.

b a c ac B2 2 2

2 2

2

15 20 2 15 20 124

225 400 600 0 55

cos

cos

. 992

960 52.

You end up with the value for b 2. Take the square root of each side and just 
use the positive value (because a negative length won’t work here).

b

b

2 960 52

30 992

.

.

The length of side b is about 31.

FIGURE 17-7: 
A sample triangle 

that allows for 
the law of 

cosines.
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2. Find the measure of one of the missing angles by using the law of cosines.

Using the law that solves for a, fill in the values that you know.

a b c bc A

A

2 2 2

2 2 2

2

15 31 20 2 31 20

cos

cos

Solve for cos A by simplifying, moving the other two terms to the left, and 
dividing by the coefficient.

225 961 400 1 240

1 136 1 240

1 136
1 240

0 9

, cos

, , cos

,
,

cos

.

A

A

A

1161 cosA

Using your calculator or computer to find angle A, you determine that 
A cos . .1 0 9161 23 6375, or about 24 degrees.

You can also switch to the law of sines to solve for this angle. Don’t be afraid to 
mix and match when solving these triangles.

3. Find the measure of the last angle.

Determine angle B by adding the other two angle measures together and 
subtracting that sum from 180.

180 124 24 180 148 32

Angle B measures 32 degrees.

How about an application that uses this SAS portion of the law of cosines?  
Consider this situation: A friend wants to build a stadium in the shape of a regular 
pentagon (five sides, all the same length) that measures 920 feet on each side. 
How far is the center of the stadium from the corners? The left part of Figure 17-8 
shows a picture of the stadium and the segment you’re solving for.

You can divide the pentagon into five isosceles triangles. The base of each triangle 
is 920 feet, and the two sides are equal, so call them both a. (Refer to the right-
hand picture in Figure 17-8.) Use the law of cosines to solve for a, because you can 
get the angle between those two congruent sides, plus you already know the 
length of the side opposite that angle.

1. Determine the measure of the angle at the center of the pentagon.

A circle has a total of 360 degrees. Divide that number by 5, and you find that 
the angle of each triangle at the center of the pentagon is 72 degrees.
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2. Use the law of cosines, with the side measuring 920 feet being the side 
solved for.

c a a aa C

a a

2 2 2

2 2 2

2

920 2 2 72

cos

cos

Because the other two sides are the same measure, write them both as a in 
the equation.

3. Solve for the value of a.

920 2 2 72

846 400 2 1 72

846 400
1 72

2

2 2 2

2

2

a a

a

a

cos

, cos

,
cos

8846 400
1 0 3090

846 400
0 6910

1 224 891 462

612 445 731

,
.

,
.

, , .

, . a22

782 5891. a

The distance from the center to a corner is between 782 and 783 feet. Now 
your friend knows how much fencing it’ll take to divide the stadium into five 
equal triangles.

Law of cosines for SSS
When you know the values for two or more sides of a triangle, you can use the law 
of cosines. In the following case, you know all three sides but none of the angles. 
Solve for the measures of the three angles in triangle ABC, which has sides where 
a is 7, b is 8, and c is 2.

FIGURE 17-8: 
Pentagonal 

stadium and an 
inner triangle.
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As you can see in Figure 17-9, the triangle appears to have two acute angles and 
one obtuse angle, the obtuse angle being opposite the longest side.

1. Solve for the measure of angle A.

Using the law of cosines where side a is on the left of the equation, substitute 
the values that you know and simplify the equation.

a b c bc A

A

A

2 2 2

2 2 2

2

7 8 2 2 8 2

64 4 32

19 32

49

cos

cos

cos

coos

cos

. cos

A

A

A

19
32

0 5938

Now use your calculator to find the measure of A.

A cos 1 0 5938 53 5729. .

Angle A measures about 54 degrees.

2. Solve for the measure of angle B.

Using the law of cosines where side b is on the left of the equation, input the 
values that you know and simplify the equation.

FIGURE 17-9: 
A sample SSS 

triangle.
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b a c ac B

B

B

2 2 2

2 2 2

2

8 7 2 2 7 2

64 49 4 28

11 28

cos

cos

cos

coss

cos

. cos

B

B

B

11
28

0 3929

The negative cosine means that the angle is obtuse — its terminal side is in the 
second quadrant. When you use a calculator to find the measure of B, be sure 
you enter the negative sign.

B cos 1 0 3929 113 1351. .

Angle B measures about 113 degrees.

3. Determine the measure of angle C.

Because angle A measures 54 degrees and angle B measures 113 degrees, add 
them together and subtract the sum from 180 to get the measure of angle C.

180 54 113 180 167 13

Angle C measures only 13 degrees.

Being ambiguous
Many people are visual learners, and they solve problems better when using a 
picture. This characteristic will serve them well when it comes to solving triangles 
that are SSA, meaning that they know the measures of two sides and an angle that 
isn’t between those sides. Drawing a picture helps explain why the situation may 
have more than one answer. When you use this setup in an actual application, the 
correct answer is usually pretty clear. First, I show you how to do one of these 
problems in general; then I show how it may actually play out in real life.

Find the missing parts of the triangle ABC that has sides a and b measuring  
85 units and 93 units, respectively, and angle A measuring 61 degrees. Figure 17-10 
presents the situation.

1. Find the length of side c by using the law of cosines with a on the left-hand 
side of the equation.

Use this form because after you input the known values, it’s the only one  
that will have just one variable to solve for — even though that variable has 
two powers.
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Enter the values into the law of cosines.

a b c bc A

c c

2 2 2

2 2 2

2

85 93 2 93 61

cos

cos

Simplify the equation by performing all the operations and getting the 
variables alone on the right side.

7 225 8 649 186 0 4848

1 424 90 1728

2

2

, , .

, .

c c

c c

You end up with a quadratic equation.

Use the quadratic formula and a calculator to determine the solutions.

0 90 1728 1 424

69 7599 20 4129

2c c

c

. ,

. .  or  

So c measures either 70 or 20.

2. Let c measure 70, and find the measures of the other two angles.

This time, take a departure from the law of cosines and use, instead, the law of 
sines.

Use angle A and side a, and pair the ratio with angle C and side c to get the 
following:

sin sin

sin sin

A
a

C
c
C61

85 70

FIGURE 17-10: 
The ambiguous 

case — two 
possible triangles.
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Now multiply each side by 70, and solve for the sine of C.

70 61
85 70

70

70 0 8746
85

0 7203

sin sin

. sin

. sin

C

C

C

Solve for the angle with that sine.

C sin 1 0 7203 46 0793. .

The measure of angle C is about 46 degrees.

If angle A is 61 degrees and angle C is 46 degrees, then angle B is 180 degrees 
minus the sum of A and C: 180 61 46 180 107 73( )  degrees.

3. Now let c measure 20, and find the measures of the other two angles.

Go back to the law of cosines to do this part. You can compare the two 
methods — the one in this step and the one in Step 2 — to see which one 
you like better.

Use the law with c on the left-hand side of the equation to solve for the cosine 
of angle C:

c a b ab C

C

2 2 2

2 2 2

2

20 85 93 2 85 93

400 7 225 8 649 1

cos

cos

, , 55 810

15 474 15 810

15 474
15 810
0 9787

, cos

, , cos

,
,

cos

. cos

C

C

C

CC

Use your calculator to find the measure of angle C.

C cos 1 0 9787 11 8468. .

Angle C measures about 12 degrees, which means that angle B is 
180 61 12 180 73 107( )  degrees.

The ambiguous case might cause a bit of confusion. Why would you want two 
answers? The following example may help clear up this mystery. You really don’t 
want two answers. You just want the one that answers your question.
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Slim and Jim are both sitting at the intersection of two roads, which forms a 
50-degree angle. They leave the intersection at the same time — Slim in his old, 
slow, beat-up pickup truck, and Jim in his nifty-swifty Jeep. When Jim is  
400 yards down the road, the two of them are 320 yards apart. How far has Slim 
driven at that point?

You definitely need a picture for this problem (see Figure 17-11).

TWO WRONGS MAKE A RIGHT
When students are first introduced to fractions, they’re often tempted to take some  
liberties with the rules that can get them into trouble. Imagine the frustration to the 
teacher and student alike when the student stumbles on one of the four fractions, with 
two digits in the numerator and denominator, where incorrect cancellation results in a 

correct answer. The four fractions where such a situation can occur are 64
16

, 98
49

, 95
19

, 

and 65
26

.

When a student mistakenly crosses out the two like digits, the result is actually the  

correct answer: 64
16

4
1

4, 98
49

8
4

2, 95
19

5
1

5, and 65
26

5
2

. Thank goodness 

only four such fractions exist.

FIGURE 17-11: 
Slim (S) and  

Jim ( J) travel on 
two roads that 

make a 50-degree 
angle at their 

intersection (I).



CHAPTER 17  Obeying the Laws and Applying Them      293

You can safely assume that Slim couldn’t have gone farther than Jim in his old 
clunker — unless his truck had hidden powers. Figure out how far Slim drove, the 
distance from I to S (in this example, the distance is labelled j to be consistent with 
the triangle labels), by using the law of cosines. The side s is 400 yards, and angle 
I is 50 degrees.

1. Write the law of cosines, and replace the letters with the values.

i s j s j I

j j

2 2 2

2 2 2

2

320 400 2 400 50

102 400 16

cos

cos

, 00 000 800 0 6428

57 600 514 240

2

2

, .

, .

j j

j j

This equation simplifies to a quadratic equation with the variable j.

2. Solve the quadratic equation.

0 514 24 57 6002j j. ,

Use a calculator and the quadratic formula, and you get two solutions: 
x 349 3734.  and x 164 8666. . Either answer gives you a distance smaller 
than the distance that Jim traveled. Refer to Figure 17-12, and choose the 
answer that appears to be correct.

Finding the Areas of Triangles
Finding the area of a triangle sounds relatively easy. Most grade-school children 
get plenty of chances to do just that. They’re given a triangle and the length of the 
base and the height, or altitude, drawn to that base. Simple! Just plug those values 
into the formula, and you have it. But think about it: How many times do you have 
a triangular plot of land or a triangular sail for a boat and also the measure of the 
altitude?

What you find in this section is a formula for every occasion. Give me a triangle, 
and I can find the area. Although the base and altitude would be nice, I can also do 
the problem with the measures of the three sides. You have two sides and an 
included angle? Sure, I can do that. How about two angles and an included side?  
I have a formula for that, too.

Of course, if you don’t have the measurements for one of these exact situations, 
you can go to the law of sines, cosines, or tangents to fill in the blanks and find 
the sides or angles that you need.
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Finding area with base and height
The most basic formula for finding the area of a triangle occurs when you know 
the base and the height. The height is drawn perpendicular to the base up to the 
vertex opposite that base. Figure 17-12 shows you what I mean.

The equation for the area, A, of a triangle with base b and height h is A bh
1
2

.

For example, to find the area of a triangle with a base measuring 12 inches and a 
height measuring 5 inches, input the values into the equation. You find that 

A
1
2

12 5 30, or 30 square inches.

If the triangle happens to be a right triangle, then you’re really in business. The 
base and height are the legs, or the two sides that are perpendicular to one another. 
Just find half of the base times the height. Here’s an example.

Kirsten has a corner lot and wants to make a triangular garden where the two 
sidewalks meet. She has a 20-foot piece of border to go along the diagonal, or 
hypotenuse, of the triangle. She wants one side along the sidewalk to be 12 feet. 
How many square feet of garden will she have? Figure  17-13 illustrates the 
situation.

1. Find the length of the other leg of the right triangle.

Using the Pythagorean Theorem, and calling the missing length x, you get

x

x

x

x

2 2 2

2

2

12 20

144 400

400 144 256

256 16

The other side is 16 feet long.

FIGURE 17-12: 
A triangle with a 
base and height 

drawn.
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2. Find the area of the triangle.

The base is 12 feet, and the height is 16 feet. Using the formula, you get

A bh
1
2

1
2

12 16 96

The area is 96 square feet, which is a lot of garden to weed!

Finding area with three sides
Suppose that you have 240 yards of fencing, and you decide to build a triangular 
corral for your llama. Why triangular? You heard that llamas favor the shape, of 
course. You want the llama to have enough room to run around, so you need to 
know the area. What should the lengths of the triangle’s sides be? You can solve 
this little problem by using Heron’s formula for the area of a triangle.

Heron’s formula says that if a triangle ABC has sides of lengths a, b, and c opposite 
the respective angles, and the semi-perimeter, s, is half of the triangle’s perim-
eter, then the area of the triangle is A s s a s b s c .

In the problem of the fencing and the llama, you have many ways to make a tri-
angular corral from 240 yards of fencing. Figure 17-14 shows a few of the possi-
bilities. Notice that in each case, the lengths of the sides add up to 240. For the 
sake of this problem, don’t worry about a gate.

FIGURE 17-13: 
Kirsten’s 

triangular garden.
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Which triangle has the greatest area? Obviously, one of them is a bit on the 
scrawny side, even though it uses up 240 yards of fencing, like the others. Here’s 
how to compute the areas for the three triangles.

1. Find the semi-perimeter, s, for each triangle.

Referring to Figure 17-14,

• Left triangle: 1
2

62 100 78 1
2

240 120

• Center triangle: 1
2

117 80 43 1
2

240 120

• Right triangle: 1
2

80 80 80 1
2

240 120

Not surprisingly, all the semi-perimeters are the same, because all the 
perimeters are 240.

2. Use Heron’s formula to find each area.

Again, referring to Figure 17-14,

• Left triangle: 
A 120 120 62 120 100 120 78

120 58 20 42 2 417 933, .

• Center triangle: 
A 120 120 117 120 80 120 43

120 3 40 77 1 052 996, .

• Right triangle: 
A 120 120 80 120 80 120 80

120 40 40 40 2 771 281, .

The triangle on the right has the greatest area. Of the shapes in Figure 17-14, that 
triangle is the best. But you may be wondering whether another shape gives more 
area than that one. The answer: no. With calculus, you can prove that an equilat-
eral triangle gives you the greatest possible area with any amount of fencing. 
Without calculus, you just have to try a bunch of shapes to convince yourself (or 
trust me).

FIGURE 17-14: 
Triangular corrals 

made from  
240 yards of 

fencing.
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Finding area with SAS
When you know the lengths of two of a triangle’s sides plus the measure of the 
angle between those sides, you can find the area of the triangle. This method 
requires a little trigonometry — you have to find the sine of the angle involved. 
But the formula is really straightforward.

If triangle ABC has sides measuring a, b, and c opposite the respective angles, you 
can find the area with one of these formulas:

A ab C
1
2

sin A bc A
1
2

sin A ac B
1
2

sin

For example, look at the 30-60-90 right triangle in Figure 17-15. I use this par-
ticular example because the numbers come out so nicely.

First, find the area by using angle B and the two sides forming it.

1. Choose the correct version of the formula.

The formula that uses angle B is A ac B
1
2

sin .

2. Find the sine of the angle.

sin60 3
2

3. Substitute the values into the formula and simplify.

A
1
2

18 9
2

81 3
2

39

FIGURE 17-15: 
Finding the  
area of the 

30-60-90 triangle.
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Now find the area by using angle C and the two sides forming it.

1. Choose the correct version of the formula.

The formula that uses angle C is A ab C
1
2

sin .

2. Find the sine of the angle.

sin30 1
2

3. Substitute the values into the formula and simplify.

A
1
2

18 9 3 1
2

81 3
2

9

Using the method involving angle A gives you the same result, of course. For a 
quick comparison, just use the formula to find the area, because you’re dealing 

with a right triangle: A bh
1
2

. These methods all produce the same result.

Finding area with ASA
As you probably suspected, when you have two angles and the side between them, 
you can find the area of a triangle. The formulas go as follows.

In triangle ABC, if the measures of the sides are a, b, and c opposite the respective 
angles, you can determine the area by using one of the following equations:

Area a B C
A

2

2
sin sin

sin
Area b A C

B

2

2
sin sin

sin
Area c A B

C

2

2
sin sin

sin

These formulas are actually built from the formula for finding the area with SAS, 
with a little help from the law of sines. Here’s how one of the formulas came to be.

1. Start with the SAS rule for area.

A ab C
1
2

sin

2. Write the law of sines involving angles A and B.
a
A

b
Bsin sin

3. Solve for b in the proportion.

sin
sin sin

sin

sin
sin

B
a
A

b
B

B

B a
A

b
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4. Substitute the equivalent for b into the area formula in Step 1.

A a
B a
A

C

a B C
A

1
2

2

2

sin
sin

sin

sin sin
sin

That’s the first formula. Feel free to create the others yourself.

Now consider an example. Say you have a triangle with angle A, which is  
45 degrees, and angle B, which is 55 degrees, and the side between them, c, equal 
to 10. Find the area.

1. Choose the correct formula — the one with c2 in it.

A
c A B

C

2

2
sin sin

sin

2. Find the sines of the two given angles.

The sine of 45 degrees equals 0.7071, and the sine of 55 degrees equals 
0.8192.

3. Find the sine of the third angle.

Angle C measures 180 45 55( ), or 180 100, which equals 80 degrees.

The sine of 80 degrees equals 0.9848.

4. Substitute the values into the formula and solve.

A
10 0 7071 0 8192

2 0 9848
29 4098

2 . .
.

.

The area is a little over 29 square units.





5The Graphs of 
Trig Functions



IN THIS PART . . .

Create the basic graphs of the six trig functions.

Use the basic graphs of sine and cosine to more easily 
graph cosecant and secant.

Perform transformations on graphs of trig functions to 
make them fit a particular situation.

Use trig functions to model periodic applications — 
things occurring over and over as time goes by.
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Chapter 18
Graphing Sine 
and Cosine

The graphs of the sine and cosine functions are very similar. If you look at 
them without a coordinate axis for reference, you can’t tell them apart. 
They keep repeating the same values over and over — and the values, or 

outputs, are the same for the two functions. These two graphs are the most rec-
ognizable and useful for modeling real-life situations. The sine and cosine curves 
can represent anything tied to seasons — the weather, shopping, hunting, and 
daylight. The equations and graphs of the curves are helpful in describing what 
happens during those seasons. You also find the curves used in predator-prey 
scenarios and physical cycles.

The ABCs of Graphing
You can graph trig functions in a snap — well, maybe not that fast — but you can 
do it quickly and efficiently with just a few pointers. If you set up the axes properly 
and have a general understanding of the different functions’ shapes, then you’re 
in business.

Different kinds of values represent the two axes in trig graphs. The x-axis is in 
angle measures, and the y-axis is in plain old numbers. The x-axis is labeled in 

IN THIS CHAPTER

 » Looking at the basic graphs of sine 
and cosine

 » Working with variations of the graphs

 » Using sine and cosine curves to make 
predictions
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either degrees or radians. Often, a graph represents the values from 2  to 2  to 
accommodate two complete cycles of the sine, cosine, secant, or cosecant func-
tions (or four complete cycles of the tangent or cotangent functions). If the x-axis 
is labeled in degrees, it typically ranges from 360  to 360 , which is a wide num-
ber range. That range is in sharp contrast to the y-axis, which often just goes from 

5  to 5. You’ll find that radians — which are real numbers — are preferable when 
graphing trig functions. The y-axis is labeled in real numbers; how high and low 
the range extends depends on the particular function or variation of a function 
that you’re graphing.

If you’re using a graphing calculator, you need to be aware of what mode you’re 
in when creating graphs. Otherwise, you’ll get completely baffling results or none 
at all. For more on changing your calculator’s mode, head back to Chapter  15. 
It  just takes the press of a button or two, and you’re in the right mood  —  
oops, mode.

Waving at the Sine
The graph of the sine function is a nice, continuous wave that rolls along gently 
and keeps repeating itself. The domain, or x-values, of the sine function includes 
all angles in degrees or all real numbers in radians, so the curve has no breaks or 
holes. The range, or y-values, of the sine function consists of all the numbers 
between 1  and 1, including those two values. Figure 18-1 shows a graph of the 
sine function from about 360  to 360  (or 2  to 2 ).

Figure 18-1 shows two complete cycles of the sine curve — the curve goes through 
its routine twice on the graph. The x-axis is labeled in degrees, and the y-axis is 
labeled in integers. If you could see the sine curve forever in either direction, it 
wouldn’t look any different. The curve repeats the same pattern over and over 
again, to infinity and beyond.

FIGURE 18-1: 
The graph 

of y xsin .
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Describing amplitude and period
The sine function and any of its variations have two important characteristics: the 
amplitude and period of the curve. You can determine these characteristics by 
looking at either the graph of the function or its equation.

Gaining height with the amplitude
The amplitude of the sine function is the vertical distance from the middle value 
or line running horizontally through the graph up to the highest point. In other 
words, the amplitude is half the distance from the lowest value to the highest 
value. In the sine and cosine equations, the amplitude is the coefficient (multiplier) 
of the sine or cosine. For example, the amplitude of y xsin  is 1. To change the 
amplitude, multiply the sine function by a number. Take a look at Figure 18-2, 

which shows the graphs of y x3sin  and y x
1
2

sin .

FIGURE 18-2: 
The graphs of 

y x3 sin  
and y x

1
2

sin .

THE SOUND OF MUSIC
Sounds are created by vibrations. Tuning forks can produce pure tones when 
they vibrate, and sine waves can model those tones. A formula for a pure tone is 
y A ftsin 2 , where A stands for amplitude (loudness), f stands for frequency 
(vibrations per second), and t is a unit of time. If a string, tuning fork, or something 
similar vibrates at the rate of 256 times per second, then you hear middle C. When 
you double the frequency of any pure tone, you go up one octave, so 512 vibrations 
per second gives you the C above middle C.

If you add waves of different frequencies and loudness together, you get more- 
interesting and complex tones. The string of a violin or the inside of an oboe, 
for example, can vibrate with more than one frequency at the same time.
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As you can see, multiplying by a number greater than 1 makes the graph extend 
higher and lower. The amplitude of y x3sin  is 3. Conversely, multiplying by a 
number smaller than 1 (but bigger than 0) makes the graph shrink in value — it 

doesn’t go up or down as far. The amplitude of y x
1
2

sin  is 1
2

.

Punctuating with the period
The period of a function is the extent of input values it takes for the function to 
run through all the possible values and start all over again in the same place 
to  repeat the process. In the case of the sine function, the period is 2 , or 
360 degrees. Pick any place on the sine curve, follow the curve to the right or left, 
and 2  or 360 units from your starting point along the x-axis, the curve starts the 
same pattern over again.

Multiplying the angle variable, x, by a number changes the period of the sine 
function. If you multiply the angle variable by 3, such as in y xsin3 , then the 
curve will make three times as many completions in the usual amount of space. 
So, multiplying by 3 actually reduces the length of the period. In the case of 

y xsin 1
2

, only half the curve fits in the same space. So, a coefficient less than 1 

increases the number of inputs that the function needs to complete a cycle. 
Figure 18-3 shows pictures of these two graphs. On the left, you have y xsin3 , 
making six complete cycles of the function where you usually find two. On the 

right, you have y xsin 1
2

, making only one complete cycle where you usually 
see two.

The location of the multiplier makes a big difference. Multiplying the sine function 
by 4 and its angle variable by 4 results in two completely different graphs. The 
graph of y x4sin  is much higher than usual — the amplitude is greater than 
that of the standard sine function. The graph of y xsin4  has an amplitude of 1, 
but the period is smaller and the curve is more scrunched together — it repeats 
over and over more quickly.

FIGURE 18-3: 
Graphs of 
y xsin3  

and y xsin
1
2

.
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Formalizing the sine equation
A general equation for the sine function is y A B x C Dsin . The A and B are 
numbers that determine the amplitude and period of the basic sine function, 
respectively. The C and D create shifts in the starting and ending places and can 
even move the curve off the x-axis. (See the next section, “Translating the sine,” 
for more on those movements.) When C and D are both equal to zero, you have the 
basic sine function y A Bxsin .

The graph of the function y A Bxsin  has an amplitude of A and a period of 2
B

 

(or, in degrees, 360
B

). The amplitude, A, is the distance measured from the y-value 

of a horizontal line drawn through the middle of the graph (or the average value) 
to the y-value of the highest point of the sine curve, and B is the number of times 
the sine curve repeats itself within 2 , or 360 degrees.

By keeping these two values in mind, you can quickly sketch the graph of this 
basic sine curve  — or picture it in your head. For example, when graphing 
y x4 2sin , you follow these steps:

1. Adjust for the amplitude.

The amplitude is 4, so the curve will extend up 4 units and down 4 units from 
the middle. To allow for some space above and below, set the y-axis to go 
from –5  to 5.

2. Take into account the period.

The coefficient 2 on the x means that two complete graphs of the sine are 
within the space that usually houses only one.

3. Graph the curve from 2  to 2  (see Figure 18-4).

You can see that the height of the graph goes from 4  to 4 and that four 
complete cycles are in the space that usually houses only two.

Translating the sine
Playing around with the amplitude and period of the sine curve can result in some 
interesting changes to the basic curve. That curve is still recognizable, though. 
You can see the rolling, smooth curve crossing back and forth over a middle 
line.  In addition to those changes, you have two other options for altering the 
sine curve — shifting the curve up, down, or sideways. These shifts are called 
translations of the curve. These translations are accounted for in the more general 
equation for the sine: y A B x C Dsin .
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Sliding up or down
You can move a sine curve up or down by simply adding or subtracting a number 
from the equation of the curve. In terms of the equation, if D is positive, you move 
the curve upward that amount; if D is negative, it goes down. For example, the 
graph of y xsin 8  moves the whole curve up 8 units, with the sine curve cross-
ing back and forth over the line y 8. On the other hand, the graph of y xsin 2  
slides everything down 2 units, with the curve crossing back and forth over the 
line y 2. Figure 18-5 shows what the two graphs look like.

As you can see, the basic shape of the sine curve is still recognizable — the curves 
are just shifted up or down on the coordinate plane.

FIGURE 18-5: 
The graphs of 
y xsin 8  

and y xsin 2.

FIGURE 18-4: 
The graph 

of y x4 2sin .
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Shifting left or right
By adding or subtracting a number from the angle (the variable) in a sine equa-
tion, you can move the curve to the left or right of its usual position. This is the 
C part of the general equation. This shift, or translation, relates the sine curve to 
the cosine curve. But the translation of the sine itself is important: Shifting the 
curve left or right can change the places that the curve crosses the x-axis or some 

other horizontal line. For example, the graph of y xsin
4

 is the usual 

sine curve slid 
4

 units to the left, and the graph of y xsin  slid  units to 

the right. The graph of y xsin 3  shifts the curve 3 units to the left. Note that 
this is an integer, not an angle measure. Figure  18-6 shows the graphs of the 
original sine equation and these three shifted equations.

Take a look at the point marked on each graph in Figure 18-6. This point illus-
trates how an intercept (where the curve crosses an axis) shifts on the graph when 
you add or subtract a number from the angle variable.

Note the difference between adding or subtracting a number to the function and 
adding or subtracting a number to the angle measure. These operations affect the 
curve differently, as you can see by comparing the curves in Figure  18-5 and 
Figure 18-6.

FIGURE 18-6: 
Comparing the 

graphs 
of y xsin ,  

y xsin
4

,  

y xsin ,  
and  

y xsin 3 .
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Graphing Cosine
The graph of the cosine function looks very much like that of the sine function. 
This quality is due to the fact that they’re related by domain and range, as well as 
by several identities. An identity involving a shift explains the relationship best, 
because that shift can make the graph of the sine function look like the cosine 
function.

Comparing cosine to sine
The relationship between the sine and cosine graphs is that the cosine is the same 

as the sine shifted to the left by 90 degrees, or 
2

. The equation that represents 

this relationship is cos sinx x
2

. Look at the graphs of the sine and cosine 

functions on the same coordinate axes, as shown in Figure 18-7. Each tick mark 

on the x-axis represents a multiple of 
2

. The graph of the cosine is the darker 

curve; note how it’s shifted to the left of the sine curve.

The graphs of the sine and cosine functions illustrate a property that exists for 
several pairings of the functions. This property is based on the right triangle and 
the two acute or complementary angles in a right triangle. The identities that arise 
from the triangle are called the co-function identities.

The co-function identities are

sin cos 90 csc sec 90

cos sin 90 sec csc 90

tan cot 90 cot tan 90

FIGURE 18-7: 
The graphs of 
y xsin  and 

y xcos   on the 
same axes.



CHAPTER 18  Graphing Sine and Cosine      311

These identities show how the function values of the complementary angles in a 
right triangle are related. For example, cos sin 90  means that if  is equal 
to 25 degrees, then cos sin sin25 90 25 65 . This equation is a roundabout 
way of explaining why the graphs of sine and cosine are different by just a slide. 
You probably noticed that these co-function identities all use the difference of 
angles, but the slide of the sine function to the left was a sum. The shifted sine 
graph and the cosine graph are really equivalent — they become graphs of the 
same set of points.

Using properties to graph cosine
The cosine function has the same amplitude and period as the sine function: The 
amplitude is 1, and the period is 2 , or 360 degrees. The variations on the cosine 
work the same way as on the sine. If you want to change the amplitude, multiply 
the cosine function by a number. If you want to change the period, multiply or 
divide the angle variable by a number. To slide the whole curve up, down, right, or 
left, add or subtract a number from the whole function or the angle variable.

For the equation y x3cos , the amplitude is 3, meaning the graph stretches up 
and down to 3 units. The graph of y xcos 3  is shifted 3 units to the right. 
Notice how the intercept (0,1) has shifted to (3,1). Figure  18-8 shows you the 
graphs.

The graphs of sine and cosine are difficult to tell apart when they’re shifted about. 
But that fact just shows how much those functions have in common, which can 
work to your advantage when you’re applying them.

Applying the Sines of the Times
The sine curve and its co-function, cosine, are great for modeling situations that 
happen over and over again in a predictable fashion. Some examples include the 
weather, seasonal sales of goods, body temperature, the tide’s height in a harbor, 

FIGURE 18-8: 
The graph of 

y x3cos  and  
y xcos 3 .
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average temperatures, and so on. In this section, I show you a few examples of 
how you can use these functions in practical situations. In each case, I point out 
how the graph and formula illustrate the amplitude, period, and any shifts (for 
more on those concepts, check out the section, “Waving at the Sine,” earlier in 
this chapter).

Sunning yourself
San Diego, California, is a gorgeous part of the world. Whether it’s summer or 
winter, you want to be there. But what if you’re someone who likes long, sunny 
days? When is the best time to go there? Assume that the following formula gives 
you the number of hours of daylight in San Diego when you input any day of 
the year. Letting t be the day of the year (from 1 to 365), you can figure the num-
ber of hours of sunlight, H, with the equation H t t2 4 0 017 1 377 12. sin . . . 
Figure 18-9 shows the graph of this equation.

The amplitude of the sine curve is 2.4, which means that the number of daylight 
hours extends 2.4 hours above and below the average number of daylight hours. 
The average number of daylight hours is 12, which is the translation upward. You 
see the average daylight hours represented by the horizontal line. When you add 
or subtract the 2.4, you find that the hours of sunlight range from 14.4 to 9.6, 
depending on the time of year.

FIGURE 18-9: 
The number of 

hours of sunlight, 
H, in San Diego 

on Day t.
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The period is 2
0 017

370
.

, which is a little longer than a year because of the 

rounding in the formula (and that helps when there’s a leap year). The coefficient 
(multiplier) on the t in the function H t t2 4 0 017 1 377 12. sin . .  means that 
0.017 of the curve takes up the usual amount of space for one curve, 2  units. As 
you can see on the graph, the day with the most sunlight is June 27. You can deter-
mine that high point by using a graphing calculator that finds it for you — as well 
as the y-value of when t equals 14.4, or you can use calculus to solve it! Do you 
know, now, when you want to go to San Diego?

Averaging temperature
A relatively reasonable model for the average daily temperature in Peoria, Illinois, 
is T x x50 42 0 017 0 534– cos . . , where x is the day of the year starting with 
January 1 as Day 1. The T(x) represents the temperatures in degrees Fahrenheit. 
The graph is in radian measure, because radians are real numbers, as opposed to 
degrees — you need numbers to count off the days. Figure 18-10 shows what the 
graph of the function looks like for the whole year.

The multiplier on the cosine function is 42, so the amplitude of the curve is 42. 
Don’t worry about the negative sign in front of the 42. The curve goes upward and 
downward anyway, so the negative sign just makes it go downward and then 
upward, instead of the reverse.

The period is affected by the multiplier 0.017. The result of that multiplication is 
that only 0.017 of a cosine curve takes up the usual amount of space for an entire 
curve, which is 2 , or a little over 6 units. Because this graph is for a whole year, 
the curve has to spread out over 365 units, so that each of the horizontal units has 
just a little part of it.

TRUSTY OLD PROTRACTORS
A protractor is a familiar instrument to grade-school and high-school students. They use 
this flat, semicircular instrument, which is marked with degrees from 0 to 180 degrees, 
to construct and measure angles.

The protractor has been around for a very long time. The first protractors were 
used in navigation to plot the positions of ships on navigational charts. In 1801, 
Joseph Huddart, a U.S. Navy captain, invented an instrument called a three-arm 
protractor or station pointer.
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The shift upward of 50 units is the middle or average temperature for the year. 
This is shown with the horizontal line at a height of 50. Add the amplitude of 
42 to this number, and the average temperature gets up to 92 degrees; subtract 
the amplitude, and the average gets down to 8 degrees. Note that the curve starts 
a little to the right of the y-axis to account for when the seasons change. If you 
want more details on curve translations to the left, right, up, and down, go to 
Chapter 21.

What do you do with the graph? You can estimate when the highest and lowest 
temperatures occur and get an idea of the types of temperatures to expect if you 
move to Peoria, Illinois. Figure 18-11 shows the graph of the average temperatures 
with points for some days of the year and the average temperatures on those days. 
A graphing calculator is indispensable when graphing these figures and calculat-
ing values. You can either input x-values to find out what the y-values are at those 
points, or you can trace along the curve to get the measures.

Taking your temperature
The temperature of a person’s body fluctuates during the day instead of staying at 
a normal 98.6 degrees. And actually, not everyone has a “normal” temperature. 
Lots of people run either hot or cold.

If you’re one of the special people with a normal temperature, then your 
temperature goes up and down by about 1 degree each day. The formula 
T x xsin . .0 262 98 6  may be a model of your temperature during a 24-hour 

FIGURE 18-10: 
The average daily 

temperature in 
Peoria, Illinois, 

on Day x.
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period. The variable x is the number of hours since midnight, so this equation uses 
a 24-hour clock. The temperatures are given in degrees Fahrenheit. The graph is 
in radians, so you can enter the numbers for the hours. Figure 18-12 shows what 
a graph of the temperatures may look like, noting a few times and temperatures. 
Now you see why your feet get cold in the wee hours of the morning.

FIGURE 18-11: 
Dates and 

average 
temperatures in 

Peoria, Illinois.

FIGURE 18-12: 
The body 

temperatures of 
a certain person 

over a 24-hour 
period.
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Making a goal
Even though people in many parts of the world play soccer year-round, certain 
times of the year show an increase in the sales of outdoor soccer shoes. Here’s a 
model for the sales of pairs of shoes where N is in millions of pairs and m is the 
month of the year: N m m44 0 524 70sin . . From the equation, you can tell 
that the average number of pairs sold is 70 million, which is the vertical shift 
upward. That number fluctuates between 26 million and 114 million, which you 
find by adding and subtracting the amplitude, 44, to and from the average. The 

period of this model is 2
0 524

11 99
.

. , or 12 months.

Figure  18-13 shows a graph of this function. A graph like this one can help 
distributors and retailers with their plans for sales.

Theorizing with biorhythms
Many years ago, the public showed great interest in a person’s biorhythms, which 
are the physical, emotional, and intellectual cycles that a person experiences in 
life. Many people even wrote books about them. Some believe that these cycles 
affect how a person reacts to situations in their life. They even go so far as to say 
that the positions of these curves have influenced major decisions of famous 
movie stars and politicians.

FIGURE 18-13: 
The sales of 

soccer shoes in 
millions of pairs 

of shoes.
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What do biorhythms have to do with trigonometry? Everything! This biorhythm 
theory uses the sine curve. Supposedly, our life cycles start at birth and fluctuate 
like sine curves. The physical cycle is 23 days long, the emotional cycle is 28 days 
long, and the intellectual cycle is 33 days long. If you plot all these cycles on a 
graph, starting on the day you were born, you can see where these cycles are right 
now and what they’ll look like in the future. Figure 18-14 shows a graph of the 
three biorhythm cycles starting on the day a person is born.

In Figure  18-14, you can see how the different cycles have different periods. 
Imagine these sine curves going on for years and years, crossing over the x-axis 
and over one another. Figure 18-15 shows some biorhythm cycles plotted for some 
imaginary person for some year in the month of March.

FIGURE 18-14: 
The three 

biorhythm cycles, 
starting at birth.

FIGURE 18-15: 
John Doe’s 

biorhythm cycles 
for March.
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If you believe in the biorhythm theory that says these curves exist, you can see 
that on about the 13th of the month, all the cycles are above the x-axis, and after 
about the 25th, they’re all below the x-axis. Supposedly, when a curve is above the 
x-axis, everything is bright and sunny — a person is in good health, emotionally 
fine, and very smart and with it. When the curve is below the x-axis, the person 
tends to be sick, depressed, and dull. In addition, the theory says that when the 
cycles cross from above to below the axis, or vice versa, those days are critical. 
A critical day is when upheaval and crises are possible. Such a day is a good time 
to stay in bed — if that’s even safe. I guess there’s no way to prove or disprove this 
theory, but it sure makes interesting use of the sine curve!
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Chapter 19
Graphing Tangent 
and Cotangent

The tangent and cotangent functions have lots of similarities. You can write 
both functions in terms of sine and cosine, so they share the same function 
values in their ratios. One difference between tangent and cotangent is that 

they don’t have function values in the same places for the x-values in their 
domain — they shift over by 90 degrees. Even though their domains (or x-values) 
are restricted, tangent and cotangent are the only trig functions with ranges (or 
y-values) that go all the way from negative infinity to positive infinity. The 
challenges in graphing tangent and cotangent are in dealing with the domain 
restrictions and asymptotes (dotted vertical lines used to determine the shape of a 
curve), as you see in this chapter.

Checking Out Tangent
The tangent function can be written as the ratio of the sine divided by the cosine: 

tan sin
cos

. (For more information on the tangent function, see Chapters  6 

and 7.) The sine and cosine functions have values for every x-value, so no matter 
what number you put in for x, you’ll get an answer. The only problem occurs 
when the cosine function is equal to 0, because a fraction can’t have a 0 in the 

IN THIS CHAPTER

 » Comparing tangent and cotangent

 » Indicating lines where one curve ends 
and another begins

 » Moving a graph up, down, and all 
around
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denominator. So, wherever the cosine function is equal to 0, the graph of the 
tangent curve doesn’t exist, and this is indicated with asymptotes. Another inter-
esting property comes into play with the fact that the sine and cosine are both 
positive in the first quadrant and negative in the third quadrant. As a result, the 
tangent is positive in those two quadrants and negative in the other two, because 
either the sine or cosine is negative, but not both.

Determining the period
The sine and cosine functions have a period of 2 , or 360 degrees, which means 
that after every 2 , the function pattern starts all over again. In the case of the 
tangent function, though, the length of the period is only  — half as long as that 
of sine or cosine. The tangent function repeats its pattern over and over with twice 
the frequency as sine and cosine.

Assigning the asymptotes
An asymptote is a line that helps give direction and shape to a graph. This line isn’t 
part of the function’s graph; instead, it helps determine the shape of the curve by 
having the curve hug or get very close to the asymptote. Asymptotes are usually 
indicated with dashed lines. However, if you use your graphing calculator to graph 
a tangent curve, the asymptotes might appear as solid lines. Some calculators 
seemingly want to keep everything connected. And with other calculators, the 
asymptotes won’t be shown at all. Just remember that the asymptote is just there 
for form.

The asymptotes for the graph of the tangent function occur regularly, each of 
them , or 180 degrees, apart. They separate each piece of the tangent curve, or 
each complete cycle, from the next.

The equations of the tangent’s asymptotes are all of the form x n
2

2 1 , where 

n is an integer. Under that stipulation for n, the expression 2 1n  always 
results in an odd number. By replacing n with various integers, you get lines such 

as x
2

, x 3
2

, x 5
2

, x 7
2

, x
2

, x 3
2

, x 5
2

, and x 7
2

.

The reason that asymptotes always occur at these odd multiples of 
2

 is because 

those points are where the cosine function is equal to 0. As such, the domain  
of the tangent function includes all real numbers except the numbers that occur at 
these asymptotes.

Figure  19-1 shows what the tangent function looks like when graphed. The 
tangent values go infinitely high as the angle measure approaches 90 degrees, 
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270 degrees, and so on (as you move from left to right on the graph). The values 
go infinitely low as the angle measure approaches 90 degrees, 270 degrees, and 
so on (as you move from right to left on the graph).

As you can see, the tangent function repeats its values over and over. One main 
difference between this function and the sine and cosine functions is that the 
tangent has all these breaks between the cycles. As you move from left to right, 
the tangent appears to go up to positive infinity. It actually disappears at the top 
of the graph and then picks up again at the bottom, where the values come from 
negative infinity. Graphing calculators and other graphing utilities may not show 
the graph disappearing at the top, so it’s up to you to know what’s actually 
happening, even though the picture may not look exactly that way.

Because some graphing calculators try to connect the tangent function to make it 
continuous across the screen, you could get a false impression of any curve with 
vertical asymptotes. One way to get rid of those extra lines is to change your cal-
culator to the dot mode (as opposed to the connected mode). Most calculators have 
ways to change the settings (or mode) for things such as degrees and radians, 
dotted graphs and connected graphs, and floating and fixed decimals. These 
changes are usually easy to make — just see your calculator’s manual for specific 
instructions. The hard part is remembering what setting you’re in.

Fiddling with the tangent
You can alter the tangent function with multiplication, addition, and subtraction. 
In some cases, the effects are similar to those that occur when you alter the sine 
and cosine functions. Because these results aren’t similar all the time, you should 
consider the alterations on a case-by-case basis.

FIGURE 19-1: 
The graph of the 
tangent function 

between 360  
and 360  (or 2  

and 2 ).
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Multiplying the tangent
You can multiply the tangent function by a number, but doing so doesn’t affect the 
tangent function the way that it affects the sine function. Multiplying the sine by 
a number changes its amplitude, making the function include larger and smaller 
values. The tangent values, however, already go from negative infinity to positive 
infinity.

When you multiply the entire tangent function by a number, here’s what happens:

 » If you multiply by a number bigger than 1, the graph of the function gets 
steeper more quickly.

 » If you multiply by a fraction between 0 and 1, the graph of the function 
gets flatter.

 » If you multiply by a negative number, the curve flips over the x-axis.

Figure  19-2 shows graphs of the basic tangent function (y xtan ) and three 
multiples of the function to illustrate this property. Notice how the multiple of 
3 makes the tangent curve steeper, whereas the multiple of 0.2 makes it flatten 
out. Both functions still have values that go from negative infinity to positive 
infinity, but the rate at which they get there changes. And a negative multiple flips 
the curve over the x-axis.

FIGURE 19-2: 
The graphs of the 
tangent function 

and three 
multiples.
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Multiplying the angle
Multiplying the angle variable in the tangent function has the same effect as it 
does with the sine and cosine functions. If the multiple is 2, as in y xtan2 , then 
the tangent function makes twice as many cycles in the usual amount of space. In 

other words, the period is 
2

, which is one-half the tangent’s usual period, . 

Because multiplying the angle variable of the tangent function mirrors the results 
of doing the same with the sine and cosine functions, I don’t go into detail here — 
for more information, refer to Chapter 18.

Figure 19-3 shows a few graphs to illustrate the effect of multiplying the angle 
variable by a number greater than 1 and then by a number between 0 and 1.

The graph of y xtan3  has three times as many tangent curves as usual. The 

graph of y xtan 1
2

 has only half as many cycles — or it takes twice as long to 

complete one cycle.

Adding to tangent
Adding a number to the tangent function results in raising the curve on the graph 
by that amount. Likewise, subtracting a number drops the curve. Because the 
tangent function has values from negative infinity to positive infinity, adding to 
or subtracting from the function doesn’t change what values the tangent has — it 
just changes where they happen. When you add or subtract, the point of inflection 
in the tangent curve (where the curve appears to flatten out a bit) shifts up or 
down. Figure 19-4 shows some graphs to illustrate this shift.

Adding or subtracting a number from the angle variable of the tangent function 
has the same effect as with the sine and cosine — it moves the curve to the left 
or  right. The graph of y xtan 1  shifts one unit to the left, including the 

asymptotes, and the graph of y xtan
4

 moves everything to the right by 
4

. 

Figure 19-4 shows these shifted curves.

FIGURE 19-3: 
The graph of two 

multiples of the 
tangent’s angle 

variable.
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If you have a tough time telling one graph of the tangent function from another, 
just look for the point of inflection of the tangent curve. The point of inflection is 
a good reference mark when looking at all these variations.

Confronting the Cotangent
The graphs of the tangent function lay the groundwork for the graphs of the 
cotangent. After all, they’re cofunctions and reciprocals, and have all sorts of con-
nections. The two graphs are similar in so many ways: They both have asymptotes 
crossing the graph at regular intervals, go from negative infinity to positive 

FIGURE 19-4: 
The tangent 

function raised, 
lowered, and 

shifted left 
and right.

FROM WHERE DIDST THOU COME, RADIAN?
In 1873, a man named James Thomson defined and named the radian, the angle 
measure equivalent to about 57 degrees. Thomson was a mathematics professor at 
Queens College in Belfast, Northern Ireland. He was the brother of the famous physicist 
William Thomson, also known as Lord Kelvin. Although James’s work seems to affect 
more people directly — everyone who studies or uses radian measure — his brother 
gained more recognition. William, Lord Kelvin, was also a mathematician who used 
mathematics to connect physics and electrostatics. He was the target of T. H. Huxley, 
an evolutionist who had some issues with mathematics and claimed that Kelvin 
underestimated the age of the Earth.
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infinity in value, and are affected by multiplying and adding. The biggest differ-
ence is in the direction the graphs are drawn. The values of the tangent function 
appear to rise as you read from left to right. The function goes upward, disappears 
off the graph, and then reappears down below to start all over again. The cotan-
gent function does the opposite  — it appears to fall when you read from left 
to right.

The asymptotes of the cotangent curve occur where the sine function equals 0, 

because cot cos
sin

. Equations of the asymptotes are of the form x n , where 

n is an integer. Some examples of the asymptotes are x x x3 2, , ,  
x x x0 2, , ,   and x 3 . (For an explanation of asymptotes, refer to the 
section, “Assigning the asymptotes,” earlier in this chapter.) Figure 19-5 shows 
the cotangent function graphed between 2  and 2 .

Like the other functions, cotangent repeats the same values over and over. You can 
apply the same types of variations to cotangent that you can to tangent (refer to 
the section, “Fiddling with the tangent,” for the details). Figure  19-6 provides 
four examples of variations: multiplying the angle variable, adding to the func-
tion, adding to the angle variable, and a combination of subtracting from the 
function and subtracting from the angle variable.

FIGURE 19-5: 
The graph of the 

cotangent 
function.
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FIGURE 19-6: 
Variations on the 

graph of the 
cotangent 

function.
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Chapter 20
Graphing Two More 
Trig Functions

The functions cosecant and secant have similarities to one another not only 
because they’re the reciprocals of sine and cosine, but also because their 
graphs look very much alike. As you see in this chapter, the easiest way to 

sketch the graphs of these two functions is to relate them to the graphs of their 
reciprocals. Doing so helps determine the asymptotes (where the curve approaches 
infinity or negative infinity), turning points, and general shape of the curves.

Seeing the Cosecant for What It Is
The cosecant function is the reciprocal of the sine function (meaning, the cosecant 
equals the number 1 divided by the sine). Even though the sine function has a 
domain that includes every possible number, that characteristic can’t be true of its 
reciprocal. Whenever the sine function is equal to 0, the cosecant function doesn’t 
exist. That fact helps determine the asymptotes you use to graph the cosecant 
function.

IN THIS CHAPTER

 » Using sine and cosine to graph 
cosecant and secant

 » Describing and graphing inverse 
functions
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Identifying the asymptotes
The domain of the cosecant function is any number except multiples of , because 
those measures are where the sine function is equal to 0. You can use this 
situation  to identify the asymptotes by simply writing equations that use 
multiples of . The asymptotes of the cosecant function are of the form x n , 
where  n is  some  integer. Some examples of the asymptote equations are  
x x x x x x x x3 2 0 2 3 4, , , , , , ,  and .

Using the sine graph
One really efficient way of graphing the cosecant function is to first make a quick 
sketch of the sine function. With that sketch in place, you can draw the asymp-
totes through the x-intercepts (where the curve crosses the x-axis). These are the 
places where sinx 0. You can also use the maximum and minimum values on the 
sine function to locate the minimum and maximum points (known as turning 
points) of the cosecant function.

To graph y xcsc :

1. Sketch the graph of y xsin  from 360  to 360  ( 2  to 2 ), as shown in 
Figure 20-1 (a).

2. Draw the vertical asymptotes through the x-intercepts, as Figure 20-1 (b) 
shows.

3. Draw y xcsc  between the asymptotes and down to (and up to) the 
sine curve, as shown in Figure 20-2 (a).

The cosecant goes down to the top of the sine curve and up to the bottom of 
the sine curve. The sine and cosecant share those points where the y-values 
are 1 and 1.

After using the asymptotes and reciprocal as guides to sketch the cosecant 
curve, you can erase those extra lines, leaving just y xcsc . Figure 20-2 (b) 
shows what this function looks like all on its own.

The range of the cosecant function includes all values equal to or greater than 1 
and all values equal to or less than 1. In Figure 20-2 (b), you can see that a gap 
in function values lies between 1 and 1. The cosecant curve, just like all the other 
trig functions, keeps repeating its pattern over and over.
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Varying the cosecant
How can you make changes to the cosecant function? This function is affected by 
the same multiplication, addition, and subtraction principles that affect the other 
functions (check out Chapter 18 for more-detailed info).

Adding or subtracting a number to or from the cosecant function results in slides of 
the graph up or down. Adding or subtracting numbers to the angle variable slides 
the graph left or right. And now I get right to it and do two slides for the price of 

one, sliding the graph to the left by 
2

 units and up by 1 unit. The equation of that 

graph is y xcsc
2

1. To find out why adding to the angle, x, moves the 

graph left, head on back to Chapter 18. Meanwhile, Figure 20-3 shows the graph 
of this equation.

You can see how the asymptotes have the same shifts as the curve — to the left 
and up. And I’ve drawn in the horizontal line to show you the vertical shift. The 
shape of the graph is pretty clear. And you can see the shift of the tops and 
bottoms of the curve — to the left and upward.

FIGURE 20-1: 
Sketches of the 

sine function and 
the cosecant’s 

asymptotes.
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FIGURE 20-2: 
Drawing the 

cosecant curve by 
using the sine as 

a guide.

FIGURE 20-3: 
The graph of  

y xcsc
2

1.
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Multiplying by a number changes the steepness and period of the cosecant func-

tion. If you multiply the function by 1
4

, the curve drops down from above and 

moves up from below to be 1
4

 unit from the x-axis. If you multiply the angle vari-

able by 2, twice as much of the curve fits in the usual amount of horizontal space. 

Figure 20-4 shows both changes in the graph of y x
1
4

2csc .

Unveiling the Secant
The techniques that you use to graph the secant curve parallel those that you use 
to graph the cosecant. First, identify the asymptotes by determining where the 
reciprocal of secant — cosine — is equal to 0. Then, sketch in that reciprocal, and 
you can determine the turning points and general shape of the secant graph.

Determining the asymptotes
Because the secant equals 1 divided by the cosine, the secant function is undefined, 
or doesn’t exist, whenever the cosine function is equal to 0. You can write the 
equations of the asymptotes by setting y equal to those values where the cosine is 

equal to 0, so the asymptotes are x 7
2

, x 5
2

, x 3
2

, x
2

, x
2

, 

x
3
2

, x 5
2

, x 7
2

, and so on. Another way to express the equations of all the 

asymptotes is to write x
n2 1

2
, where n is some integer.

FIGURE 20-4: 
The graph 

of y x
1
4

2csc .
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Sketching the graph of secant
To sketch the graph of the secant function, the easiest method is to use the graph 
of the cosine. Graph the cosine very lightly or with a dotted curve — the same as 
with the asymptotes. A lot of busywork is associated with this graph, but you just 
have to ignore all the extra stuff and zoom in on the graph that you want. To 
sketch the graph of the secant function:

1. Sketch the graph of y xcos  from 360  to 360  ( 2  to 2 ), as shown in 
Figure 20-5 (a).

2. Draw the vertical asymptotes through the x-intercepts (where the curve 
crosses the x-axis), as Figure 20-5 (b) shows.

3. Draw y xsec  between the asymptotes and down to (and up to) the 
cosine curve, as shown in Figure 20-6 (a).

The secant goes down to the top of the cosine curve and up to the bottom of 
the cosine curve — where the cosine has a value of 1 and 1, respectively.

FIGURE 20-5: 
A sketch of the 
cosine function 

and vertical 
asymptotes 

of secant.
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Figure 20-6 (b) shows you your secant curve.

Fooling around with secant
The secant graph is different from the cosecant in several ways, but one of the 
most obvious ways is that the secant graph is symmetric about the y-axis. The 
secant is a mirror reflection over that axis. You can use this property to do some-
thing interesting to the graph.

The usual translations and multiplications affect the secant graph. If you multiply 
the function by 1 and add 2 to the function, as in the equation y x1 2sec , 
Figure 20-7 shows you how it’s flipped over the x-axis and lifted by 2 units.

FIGURE 20-6: 
Drawing the 

secant curve by 
using the cosine 

as a guide.
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You probably noticed that the asymptotes don’t seem to be different. They 
aren’t — and they shouldn’t be. By adding 2 to the function, you shift the graph 
2 units upward. And the negative multiplier just reflects the curve over the x-axis.

FIGURE 20-7: 
The graph of  

y x1 2sec .

NOW YOU SEE IT; NOW YOU DON’T
One optical illusion, called the Kanizsa triangle, causes the eye to perceive a white 
equilateral triangle where none is actually drawn. Here it is:
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Laying Out the Inverse Functions
The six basic trig functions all have inverses. In Chapter 14, you find information 
on the notation used to indicate inverse functions, what their respective domains 
are, and how to use them.

The inverse trig functions — y x y x y x y xsin , cos , tan , cot ,1 1 1 1  
y xsec ,1  and y xcsc 1  — are useful when solving trigonometric equations or 
doing applications involving trigonometry. The graphs of the inverse trig func-
tions are rather unique; inverse sine and inverse cosine are rather abrupt and 
disjointed, but inverse tangent and inverse cotangent seem to go on forever, 
within narrow confines. The reason you find these big differences is because of 
the range or outputs of the original functions. The range of sine and cosine is 
between 1 and 1, so the inverse function has inputs of just those values. The tan-
gent and cotangent have infinite ranges — which is why their inverses have infi-
nite domains.

Why in the world are the graphs of inverse functions of any importance? For the 
same reason that all pictures are important — for their visual impact. Especially 
in the world of trig functions, remembering the general shape of a function’s 
graph goes a long way toward helping you remember more about the function 
values and using them effectively.

Graphing inverse sine and cosine
The first two graphs sort of go together — they have a common characteristic. The 
input values for both y xsin 1  and y xcos 1  are all the numbers from 1 to 1, 
including those numbers. The inputs are restricted to those values because they’re 
the output values of the sine and cosine.

The output, or range, values for these two inverse functions are different. The 
range of y xsin 1  consists of angles in the first and fourth quadrants.

In radians, the range is 
2

 to 
2

. The range of y xcos 1 , on the other hand, 

consists of angles in the first and second quadrants, or angles from 0 to .

Figure 20-8 shows what the graphs of inverse sine and cosine look like.

The points indicated on the graphs are at x 1  and x 1. These points are the 
extreme values of the inputs. The y-values represent the angle measures. If you 
want to find a point on either graph, just find some number between 1  and 1, 
and find the place on the graph corresponding to that x-value.
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Taking on inverse tangent and cotangent
The tangent and cotangent functions have restricted inputs  — certain angles 
don’t jibe with them. But their outputs go through all the real numbers. If you 
switch those two groups of numbers to fit the inverses of tangent and cotangent, 
you can say that the inputs go through all the real numbers, and the outputs are 
restricted. The graphs of these two inverse functions are quite interesting because 
they both involve two horizontal asymptotes. The asymptotes help with the shapes 
of the curves and emphasize the fact that some angles won’t work with the 
functions.

The two horizontal asymptotes for the inverse tangent function are y
2

 and 

y
2

, because the tangent function doesn’t exist for those two angle measures. 

The tangent function isn’t defined wherever the cosine is equal to 0. If you need 
to review the tangent function, go to Chapters 6 and 7. The graph of the inverse 
tangent has x-values from negative infinity to positive infinity, with all y-values 
between those two asymptotes.

The two horizontal asymptotes for the inverse cotangent function are y 0  and 
y . As with the inverse tangent, the inverse cotangent function goes from nega-
tive infinity to positive infinity between the asymptotes. Check out both graphs in 
Figure 20-9.

The main differences between these two graphs is that the inverse tangent curve 
rises as you go from left to right, and the inverse cotangent curve falls as you go 
from left to right. Also, the horizontal asymptotes for inverse tangent capture the 
angle measures for the first and fourth quadrants; the horizontal asymptotes for 
inverse cotangent capture the first and second quadrants. The measures between 
these asymptotes are, of course, consistent with the ranges of the two inverse 
functions.

FIGURE 20-8: 
The graphs of 

y xsin 1  
and y xcos 1 .
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Crafting inverse secant and cosecant
The graphs of the inverse secant and inverse cosecant will take a little explaining. 
First, keep in mind that the secant and cosecant functions don’t have any output 
values (y-values) between 1  and 1, so a wide-open space plops itself in the mid-
dle of their graphs. This idea translates into a wide-open space between the 
x-values 1  and 1 in the graphs of their inverses. Also, the graphs of secant and 
cosecant go infinitely high and infinitely low along the y-axis. So, the graphs 
of  the inverses have a horizontal asymptote. All this talk probably seems like 
nonsense, so take a look at Figure 20-10, which shows the graphs.

The graph of y xsec 1  lies between 0 and  on the y-axis. All the output values 
are in the first and second quadrants. But a horizontal asymptote runs through the 

graph: the line y
2

. The secant isn’t defined at 
2

, so its inverse won’t have an 

output value there. The graph of the inverse secant goes from the point (1,0) and 
moves upward, staying below the horizontal asymptote as the x-values go to 
positive infinity. It also comes from negative infinity along the x-axis above the 
horizontal asymptote, moving upward to the point 1, .

FIGURE 20-9: 
The graphs of 

y xtan 1  
and y xcot 1 .

FIGURE 20-10: 
The graphs of 

y xsec 1  
and y xcsc 1 .
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The graph of y xcsc 1  lies between 
2

 and 
2

, with a horizontal asymptote of 

y 0. (The cosecant isn’t defined at x 0, so its inverse doesn’t have an output 
value there.) The graph of inverse cosecant covers angle measures from the first 

and fourth quadrants. On the right, the graph goes from the point 1
2

,  down 

toward the horizontal asymptote as the x-values go to positive infinity. On the 
left, the graph’s x-values come from negative infinity, where they’re just below 

the asymptote, and move down to the point 1
2

, .
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Chapter 21
Topping Off Trig Graphs

The graphs of the trigonometric functions can take on many variations in 
their shapes and sizes. As wonderful as these graphs are just by themselves, 
they’re even better and more useful when you adjust them to fit a particular 

situation. In Chapters 18, 19, and 20, I show you how to make the trig functions 
slide about by moving them up, down, left, and right. I also show you how to make 
them steeper and flatter. In this chapter, I complete the trig story with additional 
transformations, as well as the even-more-exciting possibilities that occur when 
you combine graphs. I start off with a basic template for a trig function and prog-
ress from that point.

The Basics of Trig Equations
You can identify all the different transformations that can be performed on a trig 
function from a certain form of the function’s equation. First, check out the gen-
eral equation and then consider some examples of what the specific equations 
may look like.

The general form for a trig equation is y Af B x C D, where

 » f represents the trig function.

 » A represents the amplitude, or steepness.

IN THIS CHAPTER

 » Identifying the graph from the trig 
equation

 » Combining functions to fit real-life 
applications

 » Comparing graphs to everyday 
scenarios



340      PART 5  The Graphs of Trig Functions

• A positive A means that the graph is oriented as usual.

• A negative A means that the graph is flipped over a horizontal line.

 » B determines the period of the graph (the length of the interval needed for 

the graph of the function to start repeating itself) using the formula 2
B

 or 
B

360 180
B B

 or , depending on the function’s usual period.

 » C determines a shift to the left or right.

 » D determines a shift up or down.

Here are some examples of trig functions using this format:

y x

y x

y x

2 6
4

3

1
2

1
6

1

4 1
2

sin

cos

cot

Each of the numbers changes the basic graph in a particular way.

In the graph of y x2 6
4

3sin , you have a graph that has six complete 

cycles of the sine curve in the space where you would usually find one. The graph 
has a highest value of 5 (adding the 2 to the 3), is shifted to the left slightly, and 
goes downward where the sine curve usually goes upward. Does this seem a bit 
mysterious? If so, refer back to Chapter 18 for more details on sleuthing out the 
particulars.

Ready for another? In the graph of y x
1
2

1
6

1cos , the graph seems a bit 

stunted, if you just look between 2  and 2 . That’s because there’s only 1
6

 of 
the usual cosine curve in the space where you usually find the whole curve.

This curve is also only half the usual height, and it’s slid up by 1 unit and to the 
right by about 3. It would be very difficult to try to create the function equation if 
you had just the graph to go by.

The last one is quick and easy. The graph of y xcot4 1
2

 has four complete 

cotangent cycles where you’d usually find one. It’s also “flipped” over a horizon-

tal axis, and it’s raised by 1
2

 unit.

In the following sections, I give you some tools to work with when figuring out the 
graphs of these types of trig functions.
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Flipping over a horizontal line
When you multiply a trig function by a negative number, all the output values 
are  opposites. The positive values become negative, and the negative values 
become positive. The effect that this operation has on the graph is that it appears to 
have a reflection or flip over a horizontal line. For example, Figure 21-1 shows the 
graph of y xsin  compared to y xsin .

See how the two graphs compare? The original graph appears to be flipped over 
the x-axis.

Interpreting the equation
Each of the different letters of the general equation for a trig function has a 
purpose. Here’s a more-detailed explanation of each part.

A is for amplitude
The letter A represents the amplitude of the sine or cosine function, and it affects 
the steepness or flatness of the graphs of any of the trig functions. If the absolute 
value (ignore the + or – sign) of A is some number greater than 1, then the graph 
is steeper than usual. If the absolute value of A is between 0 and 1, then the graph 
is flatter. The higher the number, the steeper the curve. The closer the number is 
to 0, the flatter the curve.

B is for becoming (the period)
The multiplier B affects the length of the graph’s period, or how far it goes along 
the x-axis. The sine, cosine, cosecant, and secant all normally have a period of 
2  (360 ). The tangent and cotangent have a period of  (180 ). If you divide the 
normal period of the function by the value of B, you get the length of the new, 
adjusted period. Another way to put it: B tells you how many complete cycles the 
curve will make in the space that usually has only one. If B is 2, the graph has two 
complete cycles where there’s usually one.

FIGURE 21-1: 
The graph of 

y xsin  is the 
mirror image 

of y xsin .
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C is for cruisin’ left or right
The value of C changes the graph by moving the whole curve to the left or right of 
where it usually is. If you subtract C, the graph moves C units to the right. If you 
add C, it moves C units to the left.

D is for distancing yourself up or down
The value of D tells how far up or down the graph moves from its original position. 
A positive D moves the graph up, and a negative D moves it down. The value of D 
also represents the average or middle value of the sine and cosine curves and the 
middle of the open space of the secant and cosecant curves.

Graphing with the General Form
Now is the time to put all your knowledge to work and do some serious graphing. 
In the general equation for a trig function, y Af B x C D, the letters A, B, C, 
and D all represent values, but they have to be in those exact places, and the equa-
tion has to be in that exact form. You need to factor, multiply, or manipulate the 
equation in other ways to get it in the general form if you want to use these values 
to figure out what the graph looks like.

More likely than not, you’d draw the graphs in this section with the help of a 
graphing calculator. The only problem with graphing calculators is that entering 
these complicated functions correctly is often a real challenge. You can’t use 
brackets or braces to help keep the groupings straight. You’re stuck with paren-
theses, which can get messy when you’re dealing with a lot of them. And when 
you have to enter a fraction, you need the divide sign; just be sure to put the 
numerator in parentheses if it’s negative or has more than one term. The main 
reason I provide the examples in this section is so you know what to expect. When 
you know how all these variations work, you’re able to recognize when you have 
an error in your graphing calculator work, and so you can avoid that age-old 
saying, “Garbage in, garbage out.”

The first example involves graphing y x3 2
4

1sin .

1. Determine the amplitude of the curve.

The 3 represents the A, which is the amplitude of a sine curve. The function 
stretches 3 units above and below the middle. The 3 is positive, so the curve 
doesn’t flip or reflect over a horizontal line.
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2. Find the period of the function.

The 2 represents the B, which means that the curve makes two complete cycles 
in the amount of space where it usually has only one. Because the normal 

period of the sine function is 2  units, in this function the period is 2
2

, or  
units long.

3. Determine the shift left or right.

The 
4

 represents the value of C. Because C is negative, the shift is 
4

 units 

to the right.

4. Find the shift up or down.

The last number, 1, is the value of D, which is a shift upward by 1 unit.

5. Input all the values to graph the equation, as shown in Figure 21-2.

In Figure 21-2, I drew the line y 1  to show the middle, so you can see the result 
of the vertical shift. The graph shown goes from about 2  to 2  on the x-axis, 
where you’d normally expect to find two complete cycles. Instead, the graph 
has four.

The next graph has a flip over a horizontal line. The curve doesn’t flip over the 
x-axis because the graph is dropped down by 3 units. Instead, the flip is over the 
horizontal line y 3 . Without further ado, here’s how to sketch the graph 

of y x2 1
3

3cos .

FIGURE 21-2: 
The graph of  

y

x

3

2
4

1

sin

.
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1. Determine the amplitude.

The 2  in front tells you two things. First, the amplitude is 2, or the curve is 
twice as high as usual. Second, the negative sign tells you that the whole cosine 
curve is flipped over a horizontal line. Where the curve usually goes up, it goes 
down, and vice versa.

2. Find the period.

The multiplier of 1
3

 spreads the curve out quite a bit — only one-third as 

much curve is in the same amount of space that a 2  period (the period of the 

basic cosine function) usually has. In fact, the new period is 2 1
3

2 3 6 .

3. Determine the shift left or right.

The value of C is , which is a little more than 3 units. The graph moves 3 units 
to the left, because C is positive.

4. Find the vertical shift.

D represents the number 3, so the whole graph shifts down 3 units.

5. Now use all these values to graph the curve from 4  to 4 , as 
Figure 21-3 shows.

As you can see, the graph in Figure 21-3 goes from 4  to 4 , which is much more 
than is usually displayed. Going from 2 2 to  doesn’t show a complete cycle. 
The period is 6 , so the graph needs more space. The dotted line is y 3, which 
is the middle or average of the graph.

The graph in Figure 21-4 shows that you don’t always have to have a value for one 
of the letters in the general form. Well, actually, each of the letters always has a 
value, but when that value is 1 or 0, it doesn’t show up. Just know that the part of 
the equation with the value of 1 or 0 doesn’t change the basic graph. In the graph 
of y xtan2 , you find two situations where the original graph doesn’t change.

FIGURE 21-3: 
The graph of  

y

x

2

1
3

3

cos

.
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1. Determine the steepness.

With the tangent function, I don’t refer to the multiplier as amplitude because 
the tangent curve doesn’t have a highest or lowest point, as the sine and cosine 
curves do. Any multiplier A affects the steepness. In this case, that steepness 
doesn’t change, because the A is essentially a 1. Because the 1 is negative in 
this equation, the graph flips over a horizontal line.

2. Find the period of the function.

The multiplier of 2 on the angle measure makes the period of this tangent 

curve equal to 
2

, because the normal period of the tangent function is , 

and you have to divide by 2 here. The graph makes twice as many cycles in the 
usual amount of space.

THE SEED OF LIFE
A compass is an instrument that you can use to draw a circle. All you do is place the 
sharp, pointed end at the center of the circle and drag the pencil end around. One of 
the basic constructions that students can produce is a set of circles that intersect with 
one another in an interesting pattern. This pattern is formed by marking six equidistant 
points on the original circle, using the radius set on the compass from that circle. 
Then six new circles are formed using the six points as centers. When constructed 
correctly, those circles form what’s called the seed of life, an arrangement that has 
ancient Egyptian beginnings. This pattern is also a part of 13th-century Italian art. 
Here’s what it looks like:
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3. Determine the shift left or right.

Here’s another case where the graph doesn’t change. The equation has no 
number in place of C — that value is actually 0. So, the graph doesn’t shift left 
or right.

4. Find the vertical shift.

The number  is the D value. That number is positive, so the graph shifts up 
 units, which is about 3 units.

5. Graph the function from 2  to 2 , as Figure 21-4 shows.

You can see that the graph in Figure  21-4 shows eight complete cycles of the 
tangent function. The reason it shows so many cycles is because the graph goes 

from 2  to 2 , and each cycle is only 
2

 in length. The dotted line shows the hori-
zontal shift of .

Adding and Subtracting Functions
Just when you thought this book couldn’t get any better, I add yet another twist to 
the trigonometry picture. You can model many applications in physics and the 
cycles of nature with curves that you create by adding two trig functions together, 
subtracting one from another, or adding a trig function and some algebraic 

FIGURE 21-4: 
The graph of  

y xtan2 .
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function. When you add functions together, you can obtain the graph of this sum 
by taking each x-value from each function and finding the sum of the y-values 
that correspond to those x-values. Then you can plot the points with the x-values 
that you used and the y-values that you found. I show you a couple of examples, 
and because they get too messy very quickly, I bail and use a graphing calculator.

The function y x xsin  is the sum of the sine function y xsin  and the alge-
braic function y x. The algebraic function y x  is a line that cuts diagonally 
through the third and first quadrants. The sine has y-values that go from 1 to 1, 
over and over again. Table 21-1 shows some of the separate functions’ values and 
then the sum of those values.

You can get a better idea of how this addition works by looking at the graph. I used 
a graphing calculator to graph y x xsin  from 2  to 2  (see the left side of 
Figure 21-5). And then, to give you an even better picture of what’s going on, and 
because I think this curve is neat, I graphed it from 4  to 4  in Figure 21-5, on 
the right side.

TABLE 21-1	 The y-Values of y x xsin .

x 2 2 1
2

0
2

1 2 2

y xsin 0 0 0 909. 0 841. 1 0 1 0.841 0.909 0 0

y x xsin 2 2 909. 1 841. 2 571. 0 2.571 1.841 2.909 2

FIGURE 21-5: 
The graph 

of y x xsin .
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The next example shows what can happen when you subtract one trig function 
from another. Of course, I had to experiment with all sorts of different combina-
tions of functions to make this graph come out especially interesting. You should 
try your hand at it, too. Here’s my contribution, the graph of y x x2 3sin cos . 
I subtracted the function values of each, one from the other, to produce the very 
nice curve in Figure 21-6, which I drew from 4  to 4 . Is it a heartbeat or a pretty 
design?

Applying Yourself to the Task
The graphs of some of the trig functions that you can create by altering the func-
tions or combining them are fun to look at. They may even be useful when you’re 
preparing a special border or other artwork. But the practical uses of these graphs 
are what you consider in this section. A cardiologist looks at a graph of the heart’s 
function and detects whether it’s beating properly. The graphs of earthquake 
activity are of special interest to those hoping to predict the next one — with 
enough time to warn everyone.

Measuring the tide
Along the coast, the tides are of particular interest. The tides are affected by 
the  gravitational pull of both the moon and the sun. The high tides and low 
tides follow a periodic pattern that you can model with the sine function. On a 
particular winter day, the high tide in Boston, Massachusetts, occurred at 
midnight. To determine the height of the water in the harbor, use the equation 

H t t4 8
6

3 5 1. sin . , where t represents the number of hours since 

midnight.

FIGURE 21-6: 
The graph of  

y x x2 3sin cos .
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1. Input the value of t into the equation.

At midnight, the value of t is 0. Putting 0 in for t in the equation gives you

H 0 4 8
6

3 5 1

4 8
2

5 1

4 8 1 5 1 9 9

. sin .

. sin .

. . .

The greatest value of sine occurs at 
2

, so it makes sense that high tide would 

be when the formula uses the sine of that value.

2. Determine the altitude.

The multiplier of 4.8 is the amplitude — how far above and below the middle 
value the graph goes. The tides go 4.8 feet above and below the average 
amount on this particular day. The number added on at the end, 5.1, is the 
average height for the tides. So, the tide goes up to 9.9 feet and down to 
0.3 foot — wading depth.

3. Find the period of the function.

The multiplier of 
6

 affects the period. The period of the sine function is usually 

2π. Divide 2π by 
6

, and you get 2
6

2 6 12. The period is 12 hours, so 

you know that the tides go through their entire cycle in 12 hours. The 3 added 
to the t represents a horizontal shift; that number determines what times of 
day the high tide and low tide occur. Figure 21-7 shows a graph of this function 
and the different stages of the tide at different times. By looking at the graph, 
you can plan your sailing and clam-digging activities.

Tracking the deer population
The graph in this section shows the population of a herd of deer, starting at the 
first of April and ending at the next April. New deer are born in the spring, so an 
increase in the herd size is expected. Predators take care of the weak deer — both 
young and old. And then you have to consider the weather; winter can be very hard 
on the population. Look at the graph in Figure 21-8 and see if it demonstrates 
what you’d expect. This cycle is the result of finding the sum of two different sine 
functions: D m m m400 40 0 524 20 1 047sin . sin .  represents the population 
of the herd, where m is the number of months since April.

The herd experiences a high of about 450 deer in June and a low of about 350 deer 
in February. This model shows a herd that stays pretty close to being the same size 
year after year.
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FIGURE 21-8: 
The population of 

a herd of deer 
from one April to 

the next.

FIGURE 21-7: 
The tides in 

Boston on one 
wintry day.
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Measuring the movement 
of an object on a spring
In this section, a trig function proves useful in a model for an object attached to a 
spring. The same pattern doesn’t occur over and over, as it does in the previous 
sections, but this is a great example of a trig function at work.

The equation H t tt( ) . cos3 0 7 5 4 represents the height of an object attached to 
a spring, where t is the amount of time that has passed — usually in seconds. The 
equation has a trig function multiplied by an exponential function. When you first 
release the spring, the object hits a height of about 7 feet. It jumps up and down, 
finally settling in at about 4 feet high, as shown in Figure 21-9.

You can probably come up with a similar model to show how a bungee jumper 
goes up and down. So, you see, the trig functions have all sorts of applications — 
many of them very useful.

FIGURE 21-9: 
The height of a 

bouncing object 
attached to 

a spring.
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Create alternate versions of the basic trig identities.

Look at some not-so-simple identities that can be useful 
in science applications.
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Chapter 22
Ten Basic Identities . . . 
Plus Some Bonuses

Abig advantage of trig expressions and equations is that you can adjust 
them in so many ways to suit your needs. The basic identities that I list in 
this chapter are the ones people use most frequently (and remember most 

often). Secant, cosecant, and cotangent are technically the three reciprocal func-
tions, but you can write identities to show their reciprocals, too. You’ll see other 
ratios and some extensions of the Pythagorean Theorem. And you’ll also find 
some alternate notation and optional formats.

Reciprocal Identities
A reciprocal identity is just what the name implies: putting a 1  in the numerator 
of  a  fraction and then inserting what it takes to create a reciprocal in the 
denominator.

IN THIS CHAPTER

 » Lining up the reciprocal, ratio, 
Pythagorean, and opposite-angle 
identities

 » Tweaking the basic identities

 » Using building blocks to manipulate 
trig expressions
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Reciprocating the sine
Take a look at the first reciprocal identity and its counterpart:

sin
csc

1  and csc
sin

1

An alternate way of writing these identities uses an exponent of 1  rather than a 
fraction:

sin csc 1  and csc sin 1

Note that the exponents apply to the entire function. These are not the inverse 

functions: csc 1  and sin 1 .

Checking in with the cosine
Next comes the second reciprocal identity and its counterpart.

cos
sec

1  and sec
cos

1

Again, another way of writing these is to use an exponent of 1 . The parentheses 
are used to be sure you recognize that this is the reciprocal, not the inverse.

cos sec 1  and sec cos 1

Off on a tangent with its reciprocal
The tangent and its reciprocal at least have names that sound alike. The other two 
basic functions and their reciprocals (see the preceding equations) also seem to 
have names that are nicely related.

tan
cot

1  and cot
tan

1

And, to finish off the alternate notation:

tan cot 1  and cot tan 1
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Ratio Identities
The ratio identities also involve fractions  — just like the reciprocal identities.  
But the ratio identities have functions in both the numerator and denominator. 
The two ratio identities use the same two functions: sine and cosine. To avoid 
confusion, here’s a helpful way to remember which ratio identity has the sine in 
the numerator. Tangent and sine have beginning letters that are very close in the 
alphabet, and cotangent and cosine have the same beginning letters. This train of 
thought helped me out in high school when I first saw these identities. See if it 
helps you here.

Creating the ratio identity for tangent
The ratio identity for the tangent has the sine in the numerator and cosine in the 
denominator.

tan sin
cos

And, if you want to take the identity even further and have only the sine function 
appearing, you can use a version of the Pythagorean identity and write it as

tan sin

sin1 2

For more on Pythagorean identities, see the next section.

Making the cotangent a ratio identity
The cotangent ratio identity has cosine over sine.

cot cos
sin

And, just as with the tangent, you can revise the original ratio identity to contain 
just the cosine.

cot cos

cos1 2
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Pythagorean Identity Plus
One of the most frequently used identities is the Pythagorean identity involving 
both the sine and the cosine. And two other Pythagorean identities can be created 
from the original — with a little substitution and algebra.

You find this basic Pythagorean identity and its full description in Chapter 10.

sin cos2 2 1

This can also be written as sin cos2 21  or cos sin2 21  when you want 
to perform a useful substitution.

You can create a second basic Pythagorean identity by dividing each term in the 
original identity by the square of the cosine function and simplifying.

tan sec2 21

This also has an alternate version: tan sec2 2 1

And last but certainly not least, you get the third Pythagorean identity from the 
first one by dividing each of the terms in that identity by the square of the sine.

1 2 2cot csc

Finishing up, you can also say that cot csc2 2 1 .

Opposite-Angle Identities
Opposite-angle identities allow you to change a function involving a negative angle 
into an equivalent involving a positive angle. The identities for sine and tangent 
seem to make the most sense. The identity involving cosine may look weird, but 
it’s right!

sin sin

cos cos

tan tan

( )

( )

( )
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Multiple-Angle Identities
And now for some more bonus identities. If you need an identity for the function 
sin3x  or cos4x, you can always create them yourself by applying an addition or 
double-angle formula. For example, sin3x  can be written as sin 2x x  and 
cos4x  can be cos 2 2x . Just to save you the trouble, I’m providing you a few of 
these special identities.

Going multiple with sine
These two identities were created by using sin 2x x , sin2x, and sin 2 2x .

sin sin sin3 3 4 3

sin cos sin cos sin4 8 43

Cosine cooperates
The identities involving the cosine of 3x and 4x have some similarities to those 
with the sine.

cos cos cos3 4 33

cos cos cos4 8 8 14 2

Tangent keeps its fractional origin
The multiple-angle formulas for tangent get rather involved.

tan tan tan
tan

3 3
1 3

3

2

tan tan tan
tan tan

4 4 4
1 6

3

2 4
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Chapter 23
Ten Not-So-Basic 
Identities

In Chapters 10 and 11, I cover the most frequently used identities at great length. 
Here are ten identities that don’t appear in those chapters, because you won’t 
use them all that often. A few are rather obscure. These identities don’t lend 

themselves to memorization very well — you’ll be better off just looking them up 
if you need them.

Product-to-Sum Identities
The product-to-sum identities look very much alike. You have to pay close 
attention to the subtle differences so that you can apply them correctly. Even 
though the product looks nice and compact, it’s not always as easy to deal with 
in  calculus computations  — the sum or difference of two different angles is 
preferred.

IN THIS CHAPTER

 » Using products to find sums

 » Going vice versa: Finding products 
from sums

 » Reducing from two functions to one

 » Equating parts of triangles to trig 
functions
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The first identity has two angles, A and B. When you multiply the sine of one angle 
times the cosine of the other angle, you end up with one-half the sum of a sum 
identity and a difference identity. Whew!

sin cos sin sinA B A B A B
1
2

This time, multiply the sines of both angles together, and the result equals one-
half the difference between a sum identity and a difference identity:

sin sin cos cosA B A B A B
1
2

This identity has a mix-and-match feel to it. Two different angles and two differ-
ent functions are used. There seems to be something for everyone.

cos sin sin sinA B A B A B
1
2

The last product-to-sum identity uses the cosines of two angles:

cos cos cos cosA B A B A B
1
2

Just in case you think this is hocus-pocus or that I’m making these up, let me 
show you an example of one of these new identities. Using A 45  degrees and 

B 30  degrees and the identity cos sin sin sinA B A B A B
1
2

,

cos sin sin sin

cos sin [

45 30 1
2

45 30 45 30

45 30 1
2

ssin sin ]75 15

2
2

1
2

1
2

6 2
4

6 2
4

Where did I get those values for the sine of 75 and 15 degrees? I found the sine of 
75 degrees back in Chapter  11. For 15 degrees, I used the sine of the difference 
between 45 degrees and 30 degrees. Now, simplifying,

2
4

1
2

6 2 6 2
4

1
2

2 2
4

2
4
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Sum-to-Product Identities
The sum-to-product identities are useful for modeling what happens with sound 
frequencies. Think of two different tones represented by sine curves. Add them 
together, and they beat against each other with a warble — how much depends 
on  their individual frequencies. The identities give a function modeling what’s 
happening.

The first identity takes two different angles, A and B, and adds their sines together. 
The result: twice the product of the sine and cosine of two new angles that are 
created by halving the sum and difference of the angles. See for yourself:

sin sin sin cosA B
A B A B2

2 2

You can technically call this next identity a difference-to-product identity, 
although math gurus usually classify it with the sum-to-product identities.  
Of course, you can consider the difference to be a sum if you call it the sum of a 
sine and the opposite of another sine.

sin sin cos sinA B
A B A B2

2 2

This next identity involves the sum of the cosines of two angles.

cos cos cos cosA B
A B A B2

2 2

As you probably expect, the last sum-to-product identity has the difference of the 
cosines of two angles.

cos cos sin sinA B
A B A B2

2 2

For a look at how you use these identities, I show you the difference of the cosines 
of angles A 60  degrees and B 30  degrees.

cos cos sin sin

cos cos sin

A B
A B A B2

2 2

60 30 2 60 30
2

sin

cos cos sin sin

60 30
2

60 30 2 45 15

1
2

3
2

2 2
2

6 2
4
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I picked up the sine of 15 degrees from the previous section. Simplifying,

1 3
2

2 2
2

6 2
4

2 6 2
4

12 4
4

2 3 2
4

2 3 1

4 2

1 3
2

Reduction Formula
The reduction formula reduces two trig functions into one. It’s useful when study-
ing the force of a spring, the position of a swinging pendulum, or the current in 
an electrical circuit. This formula takes the sum of two different functions with 
the common input x and changes the sum to a single function where the multiplier 
of the sine is the amplitude and the phase shift is . The a and b are the coordi-
nates of some point on the terminal side of  when it’s in standard position:

a x b x a b xsin cos sin2 2

To get the sine and cosine of x, you can use simplified versions:

sin cosx
b

a b
x

a

a b2 2 2 2
  and 

Mollweide’s Equations
Karl Mollweide was an astronomy teacher. His work in astronomy and mathemat-
ics led to his discovery of identities that can take the measures of the sides of a 
triangle and relate them to an expression involving trig functions. Mollweide’s 
equations involve all six parts of a triangle: the three angles, A, B, and C, and the 
three corresponding sides opposite those angles, a, b, and c.

a b
c

A B

C
a b
c

A B

C

cos

sin

sin

cos

2

2

2

2

  or   
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Showing an example of one of these proportions, I use a 30-60-90 right triangle, 
with sides 1, 3 , and 2, because the numbers are so nice. The side opposite angle 
A 30 degrees measures 1. The side opposite angle B 60  degrees measures 3 . 
And the side opposite the right angle measures 2. Using the left-hand equation,

a b
c

A B

C

cos

sin

cos

sin

cos
sin

2

2

30 60
2

90
2

15
455

15
45

1 3
2

6 2
4
2
2

6 2

4

2
2

6 2
2 2

2
2

12 4
2 4

2

cos
sin

2 3 2
4

2 3 1

4

1 3
22
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Appendix

Graphs and Function 
Values
The Six Basic Trigonometric 
Functions and Their Graphs

The six trig functions have reciprocals and inverses. You find here a quick refer-
ence to the different notation and where the functions occur. 

Function Abbrev. Domain Period Reciprocal Inverse

sine sin All reals 2 360 or csc sin arcsin1 x  or 

cosine cos All reals 2 360 or sec cos arccos1 x  or 

tangent tan
x n

2
2 1

x n2 1 90

 or 180 cot tan arctan1 x  or 

cotangent cot x n

x n 90

 or 180 tan cot arccot1 x  or 

secant sec
x n

2
2 1

x n2 1 90

2 360 or cos sec arcsec1 x  or 

cosecant csc x n

x n 90

2 360 or sin csc arccsc1 x  or 
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Figure A-1 shows you the graphs of the basic functions.

Trig Values of the Most Commonly 
Used Functions

Your calculator or computer can quickly give you the value of a particular trig 
function for a particular angle, but having the actual, unrounded version of the 
most commonly used functions is helpful and gives you exact values.

FIGURE A-1: 
Graphs of the six 

basic trig 
functions.
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Deg. 0 30 45 60 90 120 135 150 180

Rad.
0 6 4 3 2

2
3

3
4

5
6

sin x 0
1
2

2
2

3
2

1 3
2

2
2

1
2 0

cos x 1 3
2

2
2

1
2 0

1
2

2
2

3
2

1

tan x 0 3
3

1 3 Und. 3 1 3
3

0

cot x Und. 3 1 3
3

0 3
3

1 3 Und.

sec x 1 2 3
3 2 2 Und. 2 2

2 3
3

1

csc x Und. 2 2
2 3

3
1 2 3

3 2 2 Und.

Trig Values of the Most Commonly 
Used Functions (Continued)

This table is a continuation of the exact values of the trig function. These are the 
values found in the third and fourth quadrants.

Deg. 180 210 225 240 270 300 315 330 360

Rad. 7
6

5
4

4
3

3
2

5
3

7
4

11
6

2

sin x 0
1
2

2
2

3
2

1 3
2

2
2

1
2 0

cos x 1 3
2

2
2

1
2 0

1
2

2
2

3
2

1

tan x 0 3
3

1 3 Und. 3 1 3
3

0
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cot x Und. 3 1 3
3

0 3
3

1 3 Und.

sec x 1 2 3
3 2 2 Und. 2 2

2 3
3

1

csc x Und. 2 2
2 3

3
1 2 3

3 2 2 Und.

Calculator Usage
Calculators, computers, and even watches can provide the values of trig functions. 
But the trick is to enter the trig expression correctly. Here are some standard for-
mats you can use.

The 1 exponents on the function names indicate the inverse function button.

Be sure your calculator is set in the correct mode: degree or radian.

The following entries give you the function values of the six basic trig functions. 
Enter the function and angle in question.

Function Calculator Entry

sine x sin x

cosine x cos x

tangent x tan x

cotangent x tan      1x

secant x cos x     1

cosecant x sin x     1

You are needing to determine the angle that has a particular value. The arcsine is 
interpreted as “the angle whose sin is” and the same for the other entries.
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Function Calculator Entry

arcsine x sin 1 x

arccosine x cos 1 x

arctangent x tan 1 x

arccotangent x tan 1 1
x

arcsecant x
cos 1 1

x

arccosecant x
sin 1 1

x
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Index
Symbols and Numbers
± sign, 191
π (pi)

circles, 14
origin of term, 165

30-60-90 right triangles, 84–85

A
Abram, Norm, 54–55
acute angles, 10–11
acute triangles, 12
adjacent angles, 9
adjacent side, 92
ambiguous case, 280
angles, 9–11

acute, 10–11
adjacent, 9
of circles

central, 15–17
exterior, 17–18
inscribed, 16–17
interior, 16–17

commonly used, 52, 68, 101–105, 242–243, 
385–386

coterminal, 57–59
defined, 57
multiple rotations, 58
negative coterminal angles, 59
renaming, 59

defining function values for all, 123–126
positive vs. negative values, 124–125
reference angles, 124–126

degrees, 51–61
of depression, 140–141
of elevation, 140
forming, 10

graphing in standard position, 55
initial and terminal sides, 56
measuring by quadrants, 56–57

naming
by letters, 10–11
by size, 10

negative, 57–59, 114
oblique, 10–11
obtuse, 10–11
positive, 114
quadrants, 52, 57
reference, 116–118

defining function values for all angles, 124–125
in degrees, 117–118
in radians, 118

right, 10–11
straight, 10–11
sums of, 177–181
supplementary, 9
of triangles

base, 55
exterior, 13
interior, 12
top, 55

vertical, 9
angle-sum identities, 177–181, 223–224, 226–227

cosine, 178–181, 198
equivalences, 198
sine, 178, 180–181, 198
tangent, 178–180, 198

Apollonius, 163
approximating answers, defined, 23
arccos. See inverse cosine
arccot. See inverse cotangent
arccsc. See inverse cosecant
Archimedes, 218
arcsec. See inverse secant
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arcsin. See inverse sine
arctan. See inverse tangent
area

of circles, 14
of triangles, 293–299

commonly-used formula, 153–154
finding with ASA, 298–299
finding with base and height, 294–295
finding with SAS, 297–298
finding with three sides, 295–296
Heron’s Formula, 155
trig formula, 154–155

ASTC rule, 124–125
asymptotes

defined, 319
graphing cosecant, 328
graphing secant, 331
graphing tangent, 320–321

axes (coordinate axes), 31–32

B
Babylonian mathematics, 110
base angles, 55
bearing, 53

C
calculators, 243–246

changing mode, 244
entries, 386–387
interpreting notation on screen, 244–246

inverse cotangent function, 246
inverse function button, 244–245
inverse of reciprocal functions, 245–246

trig equations, 273–275
Cartesian coordinates, 31–50

applications of, 47–50
fencing, 49–50
game spinners, 47–48

axes, 31–32
center of circles, 38–40, 46–47
centroid, 42–44

coordinate plane, 33
defined, 31
distance calculation, 34–37

diagonal, 35–37
exact values vs. estimating, 37
horizontal, 35
vertical, 34–35

dividing line segments, 40–42
midpoint, 37–38
ordered pairs, 32
origin, 32, 46–47, 129–131
parallel and perpendicular lines, 45–46
plotting points, 32–33
quadrants, 33–34
slope, 44–45
standard position, 32

center of circles
centering circles at origin, 46–47
defined, 13
locating, 38–40
standard form, 47

central angles, 15–17
centroid, 37, 42–44
chords, 14–16
Christopher, Judy, 4
circles, 13–19. See also unit circle

angles, 15–18
central, 15–17
exterior, 17–18
inscribed, 16–17
interior, 16–17

area of, 14
center of

centering circles at origin, 46–47
defined, 13
locating, 38–40
standard form, 47

chords, 14–16
circumference of, 14–15
circumscribing triangles, 43
defined, 13
diameter, 14–15
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pi, 14
radius, 13–15
sectors, 18–19, 69
tangent, 16

circumference, 14–15
circumscribing triangles, 43
co-function identities, 310–311
Columbus, Christopher, 54, 140
compasses, 119–120
conic sections, 163
conjugates, 180
coordinate axes (axes), 31–32
cosecant (csc), 20

calculator entries, 386
changing sine to, 176
domains, 133–134, 383
exact values, 105
function values, 124–125, 242–243, 383–384
graphing, 327–331, 383–384

asymptotes, 328
using sine graph, 328–330
varying, 329–331

identities
Pythagorean, 198
reciprocal, 162, 198, 356

overview, 99–100
period, 383
Pythagorean identities, 170, 172–173
ranges, 133–134

cosine (cos), 20, 22, 188–189
calculator entries, 386
changing sine to, 174
domains, 133, 383
exact values, 103–104
function values, 124–125, 242–243, 383
graphing, 310–311, 383–384

amplitude, 311
period, 311
sine vs., 310–311

identities
angle-sum, 178–181, 198
difference (subtraction), 183–185

double-angle, 186, 199
half-angle, 190, 199
multiple-angle, 359
opposite-angle, 165, 198, 358
product-to-sum, 362
proving, 206–211
Pythagorean, 168–169, 171,  

198, 358
ratio, 163, 198, 357
reciprocal, 162, 198, 356
sum-to-product, 363–364

infinite series, 151
law of cosines, 284–293

for SAS, 285–287
for SSA, 289–293
for SSS, 287–289

Mollweide’s equations, 364–365
overview, 94–95
period, 383
ranges, 133
reduction formula, 364

cosine curves, 310–311
amplitude, 311
applications of, 313–314
period, 311
sine vs., 310–311

cotangent (cot), 20, 22
calculator entries, 386
changing sine to, 175
domains, 134–135, 383
exact values, 105
function values, 124–125, 242–243,  

383–384
graphing, 324–326, 383–384
identities

Pythagorean, 170, 172–173, 198
ratio, 163, 198, 357
reciprocal, 162, 198, 356

overview, 100–101
period, 383
ranges, 134–135

cotangent curves, 324–326
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coterminal angles, 57–59
applications of, 61
defined, 57
multiple rotations, 58
negative coterminal angles, 59
renaming, 59

cuneiform, 110
cyclic quadrilaterals, 120–121

D
degrees, 51–61

applications of, 52–55, 60–61
celestial objects, 60–61
navigation, 53–54
spinning game, 61
woodworking, 54–55

converting radians to, 66–68
converting to radians, 65–66
coterminal angles, 57–59

defined, 57
multiple rotations, 58
negative coterminal angles, 59
renaming, 59

defined, 51–52
graphing angles in standard position,  

55–57
initial and terminal sides, 56
measuring by quadrants, 56–57

minutes, 67
negative angles, 57–58
quadrants, 52
radians vs., 63–64
reference angles, 117–118
seconds, 67

diagonal distance calculation, 35–37
diameter, 14–15
difference (subtraction) identities, 182–185, 

224–226
cosine, 183–185
equivalences, 198
sine, 182–185
tangent, 182

distance calculation, 34–37
diagonal, 35–37
exact values vs. estimating, 37
horizontal, 35
vertical, 34–35

domains, 131–135
cosecant, 133–134, 383
cosine, 133, 383
cotangent, 134–135, 383
defined, 131
inverse trig functions, 237–239

inverse cosecant, 239
inverse cosine, 238–239
inverse cotangent, 238–239
inverse secant, 239
inverse sine, 238–239
inverse tangent, 238–239

secant, 133–134, 383
sine, 133, 383
tangent, 134–135, 383

double-angle identities, 185–189,  
226–227

cosine, 186, 199
equivalences, 199
sine, 186–187, 199
tangent, 186, 199

E
e, 165
equilateral triangles, 12–13
estimating, exact values vs., 37, 194–195
Euler, Leonhard, 78
exact values, estimating vs., 37, 194–195
exterior angles

of circles, 17–18
of triangles, 13

F
factoring

identities, 209–212
trig equations, 255–263
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greatest common factor, 256–257
grouping, 262–263
higher degrees, 259–262
quadratic equations, 257–259

fractions
ancient way of writing, 24
breaking up, 214–216
incorrect cancellation resulting in correct 

answer, 292

G
GCF (greatest common factor),  

256–257
graphing, 303–351

adding trig functions, 346–348
angles in standard position, 55–57

initial and terminal sides, 56
measuring by quadrants, 56–57

applications of, 348–351
deer population tracking, 349–350
movement of springs, 351
tide measurement, 348–349

cosecant, 327–331, 383–384
asymptotes, 328
using sine graph, 328–330
varying, 329–331

cosine, 310–311, 383–384
amplitude, 311
period, 311
sine vs., 310–311

cotangent, 324–326, 383–384
general form for trig equations,  

342–346
inverse functions, 335–338

inverse cosecant, 337–338
inverse cosine, 335–336
inverse cotangent, 336–337
inverse secant, 337–338
inverse sine, 335–336
inverse tangent, 336–337

multiplying trig functions by negative 
numbers, 341

overview, 303–304
secant, 331–334, 383–384

asymptotes, 331
using cosine graph, 332–333
varying, 333–334

sine, 304, 383–384
amplitude, 305–306
applications of, 311–318
formalizing, 307
period, 306
translating, 307–309

subtracting trig functions,  
346–348

tangent, 319–324, 383–384
adding to, 323–324
asymptotes, 320–321
multiplying, 322
multiplying the angle, 323
period, 320

greatest common factor (GCF),  
256–257

H
half-angle identities, 190–194,  

227–228
± sign, 191
cosine, 190, 199
equivalences, 199
sine, 190–191, 199
tangent, 190–194, 199
types of angles and functions found with, 

192–194
heading, 53
Heron’s Formula, 155
hexasegimal system, 110
Hipparchus, 93
horizontal distance calculation, 35
Huxley, T. H., 324
Hypatia, 163
hypotenuse

Pythagorean Theorem, 36
right triangles, 79, 92
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I
identities, 24–26, 161–195, 355–359

angle-sum identities, 177–181, 198, 223–224, 
226–227

applications of, 229–230
co-function, 310–311
combining, 172–176

changing sine to cosecant, 176
changing sine to cosine, 174
changing sine to cotangent, 175
changing sine to secant, 176
changing sine to tangent, 174–175
expressing sine in terms of other 

functions, 173
defined, 161
difference (subtraction) identities, 182–185, 198, 

224–226
double-angle identities, 185–189, 199, 226–227
exact values vs. estimating, 194–195
half-angle identities, 190–194, 199, 227–228
Mollweide’s equations, 364–365
multiple-angle identities, 185–189, 199, 359
opposite-angle identities, 164–167, 198, 358
product-to-sum identities, 361–362
proving, 197–212

angle-sum identities, 223–224, 226–227
breaking up fractions, 214–216
changing to sines and cosines, 206–211
choosing the side to work on, 199–203
difference (subtraction) identities, 224–226
double-angle identities, 226–227
equivalences, 198–199
factoring, 209–212
finding common denominators, 216–219
half-angle identities, 227–228
multiplying by conjugates, 219–221
squaring both sides, 221–222
working on both sides, 203–205

Pythagorean identities, 167–173, 358
cosecant, 170, 172–173
cosine, 168–169, 171
cotangent, 170, 172–173
equivalences, 198

rearranging, 171–173
secant, 169–172
sine, 168–169, 171
tangent, 169–172

ratio identities, 163–164, 198, 206–209, 357
reciprocal identities, 162–163, 198, 207–209, 

355–356
reduction formula, 364
sum-to-product identities,  

363–364
trig equations, 264–268

infinite series, 151
inscribed angles, 16–17
interior angles

of circles, 16–17
of triangles, 12

inverse cosecant (arccsc), 383
alternate notation, 235
calculator entries, 387
domains, 239
graphing, 337–338
inverse trig relations vs., 235
ranges, 239
standard notation, 234–235

inverse cosine (arccos), 383
alternate notation, 235
calculator entries, 387
domains, 238–239
graphing, 335–336
inverse trig relations vs., 235
ranges, 238–239
standard notation, 234–235

inverse cotangent (arccot), 383
calculator entries, 387
domains, 238–239
graphing, 336–337
inverse trig relations vs., 235
ranges, 238–239

inverse secant (arcsec), 383
calculator entries, 387
domains, 239
graphing, 337–338
ranges, 239
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inverse sine (arcsin), 21, 383
alternate notation, 235
calculator entries, 387
domains, 238–239
graphing, 335–336
inverse trig relations vs., 235
ranges, 238–239
standard notation, 234–235

inverse tangent (arctan), 383
alternate notation, 235
calculator entries, 387
domains, 238–239
graphing, 336–337
inverse trig relations vs., 235
ranges, 238–239
standard notation, 234–235
working with calculators, 246

inverse trig functions, 233–251, 383–384
calculator entries, 387
domains, 237–239

inverse cosecant, 239
inverse cosine, 238–239
inverse cotangent, 238–239
inverse secant, 239
inverse sine, 238–239
inverse tangent, 238–239

finding unknown angles, 250–251
graphing, 335–338

inverse cosecant, 337–338
inverse cosine, 335–336
inverse cotangent, 336–337
inverse secant, 337–338
inverse sine, 335–336
inverse tangent, 336–337

inverse trig relations vs., 235–237
mixed problems, 248–250
multiple-angle functions, 247–248
ranges, 237–239

inverse cosecant, 239
inverse cosine, 238–239
inverse cotangent, 238–239
inverse secant, 239

inverse sine, 238–239
inverse tangent, 238–239

standard notation, 234–235
alternate notation, 235
exponents, 234–235

working from tables, 241–243
working with calculators, 243–246

irrational numbers, 37
isosceles right triangles, 85–86
isosceles triangles, 12–13, 55, 79

J
Johnson, Dr., 125
Jones, William, 165

K
Kelvin, Lord (William Thomson), 324
Königsberg, Johannes Müller von, 54

L
law of cosines, 284–293

for SAS, 285–287
for SSA, 289–293
for SSS, 287–289

law of sines, 280–284
legs, 79, 92
lines

defined, 8
intersecting, 9
naming, 8
parallel and perpendicular, 45–46

M
midpoint

defined, 37
finding, 38

minutes, 67
Mollweide, Karl, 364
Mollweide’s equations, 364–365
multiple-angle expressions, 268–269
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multiple-angle identities, 185–189, 199,  
226–227, 359

music of the spheres, 205

N
Napier, John, 172
Napier’s Bones, 172
Napoleon Bonaparte, 188
navigation, 53–54
negative angles, 57–59, 114
New Yankee Workshop, The (TV program), 54

O
oblique angles, 10–11
oblique triangles, 277–278
obtuse angles, 10–11
obtuse triangles, 12–13
opposite side, 92
opposite-angle identities, 164–167, 358

cosine, 165, 198, 358
equivalences, 198
sine, 165, 198, 358
tangent, 165, 198, 358

ordered pairs, 32
origin, 32, 46–47, 129–131

P
parallel lines, 45–46
perfect cubes, 23
perfect fourth roots, 23
perfect squares, 23
perpendicular lines, 45–46
pi (π)

circles, 14
origin of term, 165

positive angles, 114
product-to-sum identities, 361–362
protractors, 312
Ptolemy, 15, 27, 140
Ptolemy’s Theorem, 27–28

Pythagoras, 205
Pythagorean identities, 167–173, 358

cosecant, 170, 172–173, 198
cosine, 168–169, 171, 198, 358
cotangent, 170, 172–173, 198
equivalences, 198
rearranging, 171–173
secant, 169–172, 198
sine, 168–169, 171, 198, 358
tangent, 169–172, 198, 358

Pythagorean Theorem, 23, 80–84
defined, 36
diagonal distance calculation, 36–37
Pythagorean triples, 80–81
solving for a missing length, 81–84

distance across a pond, 83–84
triangles, 81–82

Pythagorean triples, 80–81
common, 81
creating, 83
defined, 80

Q
quadrant angles, 57
quadrants, 52, 57, 124–125
quadratic equations, 257–259
quadratic formula, 263–264

R
radians, 63–76

applications of, 68–76
clock hands, 72–73
distance to Moon, 74–75
Ferris wheels, 73–74
pizza sharing, 71–72
radar sweeps, 69–71
track racing, 75–76

commonly-used angles, 68
converting degrees to, 65–66
converting to degrees, 66–68
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defined, 63–64
degrees vs., 63–64
origin of term, 324
radius and, 64
reference angles, 118

radicals, 21–24
approximating answers, 23–24
defined, 22
simplifying radical forms, 23

radius, 13–15
defined, 13
radians and, 64

ranges, 131–135
cosecant, 133–134
cosine, 133
cotangent, 134–135
defined, 131
inverse trig functions, 237–239

inverse cosecant, 239
inverse cosine, 238–239
inverse cotangent, 238–239
inverse secant, 239
inverse sine, 238–239
inverse tangent, 238–239

secant, 133–134
sine, 133
tangent, 134–135

ratio identities, 163–164, 206–209, 357
cosine, 163, 198, 357
cotangent, 163, 198, 357
defined, 357
equivalences, 198
sine, 163, 198, 357
tangent, 163, 198, 357

rational numbers, defined, 112
rationalization, 180
rays

defined, 8
initial, 56
naming, 8
navigation, 53

terminal, 56
reciprocal functions, 383. See also cosecant; 

cotangent; secant
calculating inverse of, 245–246
defined, 98
exact values, 105

reciprocal identities, 162–163, 207–209, 355–356
cosecant, 162, 198, 356
cosine, 162, 198, 356
cotangent, 162, 198, 356
defined, 355
equivalences, 198
secant, 162, 198, 356
sine, 162, 198, 356
tangent, 162, 198, 356

reduction formula, 364
reference angles, 116–118

defining function values for all angles, 124–125
in degrees, 117–118
in radians, 118

right angles, 10–11
right triangles, 77–88

applications of, 86–88
beachfront length, 87–88
house height, 86–87

defined, 12, 77–78
hypotenuse, 79, 92
labeling, 78–80
legs, 79, 92
Pythagorean Theorem, 80–84

Pythagorean triples, 80–81
solving for a missing length, 81–84

ratios, 92–93
sides of, 92
similar right triangles within, 97–98
special, 84–86

isosceles right triangles, 85–86
30-60-90, 84–85

squaring the corners, 79
vertices, 78–80

Roomen, Adriaan van, 131



382      Trigonometry For Dummies

S
sagitta, 136–137
scalene triangles, 12–13
secant (sec), 20, 22

calculator entries, 386
changing sine to, 176
domains, 133–134, 383
exact values, 105
function values, 124–125, 242–243, 383–384
graphing, 331–334, 383–384

asymptotes, 331
using cosine graph, 332–333
varying, 333–334

identities
Pythagorean, 169–172, 198
reciprocal, 162, 198, 356

overview, 100
period, 383
ranges, 133–134

seconds, 67
sectors, 18–19, 69
segments

defined, 8
dividing, 40–42
midpoint, 37–38
naming, 8

sine (sin), 15, 20, 22
calculator entries, 386
combining identities, 172–176

changing sine to cosecant, 176
changing sine to cosine, 174
changing sine to cotangent, 175
changing sine to secant, 176
changing sine to tangent, 174–175
expressing in terms of other functions, 173

domains, 133, 383
exact values, 103–104
function values, 124–125, 242–243, 383
graphing, 304, 383–384

amplitude, 305–306
formalizing, 307

period, 306
translating, 307–309

identities
angle-sum, 178, 180–181, 198
difference (subtraction), 182–185
double-angle, 186–187, 199
half-angle, 190–191, 199
multiple-angle, 359
opposite-angle, 165, 198, 358
product-to-sum, 362
proving, 206–211
Pythagorean, 168–169, 171, 198, 358
ratio, 163, 198, 357
reciprocal, 162, 198, 356
sum-to-product, 363–364

infinite series, 151
law of sines, 280–284
Mollweide’s equations, 364–365
overview, 93–94
period, 383
ranges, 133
reduction formula, 364

sine curves, 304
amplitude, 305–306
applications of, 311–318

average daily temperature, 313–314
biorhythms, 316–318
body temperature, 314–315
hours of daylight, 311–312
sales fluctuations, 316

cosine vs., 310–311
formalizing, 307
music, 305
period, 306
translating, 307–309

left or right, 309
up or down, 308

slope, 44–46
finding, 44–45
measuring, 145–147
parallel and perpendicular lines, 45–46
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squaring both sides
identities, 221–222
trig equations, 270–272

squaring the corners, 79
standard position, 32, 53, 56–57
straight angles, 10–11
subtraction identities. See difference identities
sum-of-angles identities. See angle-sum identities
sum-to-product identities, 363–364
supplementary angles, 9

T
tangent (tan), 20

calculator entries, 386
changing sine to, 174–175
domains, 134–135, 383
exact values, 104
function values, 124–125, 242–243, 383
graphing, 319–324, 383–384

adding to, 323–324
asymptotes, 320–321
multiplying, 322
multiplying the angle, 323
period, 320

identities
angle-sum, 178–180, 198
difference (subtraction), 182
double-angle, 186, 199
half-angle, 190–194, 199
multiple-angle, 359
opposite-angle, 165, 198, 358
Pythagorean, 169–172, 198, 358
ratio, 163, 198, 357
reciprocal, 162, 198, 356

overview, 95–96
period, 383
ranges, 134–135

tangent curves, 319–324
adding to, 323–324
asymptotes, 320–321

multiplying, 322
multiplying the angle, 323
period, 320

tangents (of circles), 16
Theon, 163
30-60-90 right triangles, 84–85
Thomson, James, 324
Thomson, William (Lord Kelvin), 324
top angles, 55
triangles, 12–13

acute, 12
angles

base, 55
exterior, 13
interior, 12
top, 55

area of, 293–299
commonly-used formula, 153–154
finding with ASA, 298–299
finding with base and height, 294–295
finding with SAS, 297–298
finding with three sides, 295–296
Heron’s Formula, 155
trig formula, 154–155

centroid, 37, 42–44
circumscribing, 43
determining, 278–280

ambiguous case, 280
uniquely determining, 279

dissection paradox, 240
equilateral, 12–13
isosceles, 12–13, 55, 79
law of cosines, 284–293

for SAS, 285–287
for SSA, 289–293
for SSS, 287–289

law of sines, 280–284
naming by shape, 12–13
naming parts of, 278
naming segments of, 8
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triangles (continued)
Napoleon’ s theorem, 188
oblique, 277–278
obtuse, 12–13
right, 77–88

applications of, 86–88
defined, 12, 77–78
hypotenuse, 79, 92
labeling, 78–80
legs, 79, 92
Pythagorean Theorem, 80–84
ratios, 92–93
sides of, 92
similar right triangles within,  

97–98
special, 84–86
squaring the corners, 79
vertices, 78–80

scalene, 12–13
trig equations, 253–275

defined, 253
factoring, 255–263

greatest common factor,  
256–257

grouping, 262–263
higher degrees, 259–262
quadratic equations, 257–259

general form for, 339–340, 342–346
identities, 264–268
interpreting letters, 341

amplitude, 339–341
period, 340–341
shift left or right, 340, 342
shift up or down, 340, 342

multiple-angle expressions, 268–269
multiplying through, 272–273
multiplying trig functions by negative 

numbers, 341
quadratic formula, 263–264
simple solutions, 254–255
squaring both sides, 270–272
working with calculators, 273–275

trig functions, 19–22, 91–121, 123–157. See also 
cosecant; cosine; cotangent; secant; sine; 
tangent

abbreviations, 20
adding, 346–348
angles of elevation and depression, 139–141
applications of, 105–106, 119–121, 135–136, 141

area of triangle, 153–155
balloon elevation, 148–149
compasses, 119–120
cyclic quadrilaterals, 120–121
distance between buildings, 144–145
Ferris wheels, 135–136
ladder height, 141–143
moving objects around corners, 155–157
rocket travel, 150–151
satellite camera view, 151–153
shorter route between two points, 105–106
slope of land, 145–147
tree height, 143–144

commonly-used angles, 101–105
coordinates of circles, 127–131

any circle at the origin, 129–131
unit circle, 127–131

defined, 92
defining function values for all angles, 123–126

positive vs. negative values, 124–125
reference angles, 124–126

domains, 131–135, 383
exact values of, 102–105
identities, 24–26
infinite series, 151
inverse, 233–251
multiplying by negative numbers, 341
notation, 20–21
periodic nature of, 268
radicals, 22–24
ranges, 131–135
right triangles

ratios, 92–93
sides of, 92
similar right triangles within, 97–98
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slope, 145–147
subtracting, 346–348
unit circle, 108–113

defined, 108
finding missing coordinates, 111–112
multiple rotations, 115
negative angles, 115
placing points on, 108–110
positive angles, 114
rational coordinates, 112–113
reference angles, 116–118

using one to solve for another, 97
versine, 136–138

trigonometry
abbreviations, 20
angles, 9–11
applications of, 26–29

fencing, 26–27
Ptolemy’s Theorem, 27–28
radicals, 28
skateboarding, 29

basic forms in, 8
circles, 13–19
defined, 7
identities, 24–26
notation, 20–21
radicals, 22–24
triangles, 12–13
trig functions, 19–22

U
uniquely determining triangles, 279
unit circle, 46, 108–113

calculating trig functions of angles,  
127–131

defined, 108
finding missing coordinates,  

111–112
multiple rotations, 115
negative angles, 115
placing points on, 108–110
positive angles, 114
rational coordinates, 112–113
reference angles, 116–118

in degrees, 117–118
in radians, 118

V
versine, 136–138
vertical angles, 9
vertical distance calculation,  

34–35
vertices

naming angles, 11
of triangles, 42–44

Viète, François, 131
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