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Preface
he pervasive presence of electronic devices and instrumentation in all
aspects of engineering design and analysis is one of the
manifestations of the electronic revolution that has characterized the
last 60 years. Every aspect of engineering practice, and of everyday

life, has been affected in some way or another by electrical and electronic
devices and instruments. Laptop and tablet computers along with so-called
“smart” phones and touchscreen interfaces are perhaps the most obvious
manifestations. These devices, and their underlying technology, have
brought about a revolution in computing, communication, and
entertainment. They allow us to store, process, and share professional and
personal data and to access audio (most notably, music) and video of every
variety. These advances in electrical engineering technology have had
enormous impacts on all other fields of engineering, including mechanical,
industrial, computer, civil, aeronautical, aerospace, chemical, nuclear,
materials, and biological engineering. This rapidly expanding electrical and
electronic technology has been adopted, leveraged, and incorporated in
engineering designs across all fields. As a result, engineers work on projects
requiring effective communication across multiple disciplines, one of which
is nearly always electrical engineering.

0.1 OBJECTIVES
Engineering education and professional practice continue to undergo
profound changes in an attempt to best utilize relevant advances in
electronic technology. The need for textbooks and other learning resources
that relate these advances to engineering disciplines beyond electrical and
computer engineering continues to grow. This fact is evident in the ever-
expanding application and integration of electronics and computer
technologies in commercial products and processes. This textbook and its
associated learning resources represent one effort to make the principles of



electrical and computer engineering accessible to students in various
engineering disciplines.

The principal objective of the book is to present the principles of
electrical, electronic, and electromechanical engineering to an audience of
engineering majors enrolled in introductory and more advanced or
specialized electrical engineering courses.

A second objective is to present these principles with a focus on
important results and common yet effective analytical and computational
tools to solve practical problems.

Finally, a third objective of the book is to illustrate, by way of concrete,
fully worked examples, a number of relevant applications of electrical
engineering. These examples are drawn from the authors’ industrial
research experience and from ideas contributed by practicing engineers and
industrial partners.

These three objectives are met through the use of various pedagogical
features and methods.

0.2 ORGANIZATION
The basic organizational structure of a generic chapter remains essentially
unchanged from the previous edition. Example problems and associated
methods and procedures of problem solving remain organized so that
students are able to easily and efficiently locate them when doing
homework and preparing for exams. Page xAdditional unguided exercises
are provided to test student understanding. Relevant and stimulating
applications to practical measurement challenges are included in nearly
every chapter.

A continued and enhanced emphasis on problem solving can be found
in this edition. All the highlighted Focus on Problem Solving boxes have
been reviewed and revised to clarify and add additional detail to the steps
needed by students to successfully complete end-of-chapter homework
problems.

An effort was also made to reduce the aesthetic complexity of the book,
without sacrificing technical content or overall aesthetic appeal. Effective
reading is promoted by less clutter and visual “noise.” A thorough,



I.
II.
III.
IV.
V.

exhaustive, page-by-page search was made to locate errors in the text,
equations, figures, references to equations and figures, examples, and
homework problems.

The book is now divided into five major parts:
Circuit Analysis
Systems and Instrumentation
Analog Electronics
Digital Electronics
Electric Power and Machines

The pedagogical enhancements made within each part are discussed
below.

0.3 PEDAGOGY AND CONTENT



Part I: Circuit Analysis
Once again, the first part of the book has undergone a significant revision
from the previous edition.

Chapter 1 begins with an emphasis on developing a student’s ability to
recognize structure within a circuit diagram. It is the authors’ experience
that this ability is key to student success. Yet, many books contain little
content on developing this ability. The result is that many students wander
into more difficult topics still viewing a circuit as simply an unruly
collection of wires and elements.

The approach taken in this book is to encourage students to initially
focus on nodes, rather than elements, in a circuit. For example, some of the
earliest exercises in this book ask students to count the number of nodes in
a circuit diagram. One immediate advantage of this patient approach is that
students learn to disregard the particular aesthetic structure of a circuit
diagram and instead focus on the technical structure and content. Chapter 1
also immediately engages students in the terminology, laws, and methods
needed to solve basic DC problems and introduces the first of many
electromechanical analogies.

Chapter 2 introduces students to more sophisticated analytic methods
with a focus on appreciating the implications and utility of equivalent
networks. The students’ skill at recognizing circuit structure is further
developed by the introduction of elements in series and parallel, applied to
the more general concept of equivalent resistance between two nodes. The
principle of superposition and the source-load perspective followed by
Thévenin and Norton equivalent networks complete Chapter 2. The section
on the source-load perspective revisits the concepts of voltage and current
division to develop their graphical solution as the intersection of a Page
xisource’s load line with the load’s v-i relation. This section is not essential
but it can be very helpful to students when introduced prior to the usually
difficult topic of Thévenin equivalent networks.

Methods of Problem Solving were enhanced and clarified. Throughout
these chapters students are encouraged to think of problem solving in two
steps: first simplify; then solve. In addition to being an effective problem-
solving method, this method provides context for the power and importance



of equivalent networks in general, and Thévenin’s theorem, in particular.
Chapter 3 continues the emphasis on equivalent networks applied to AC
circuit analysis. In the following chapters on transient analysis and
frequency response, foundational first- and second-order circuit archetypes
are identified. Students are encouraged to continue to use Thévenin and
Norton equivalent networks to simplify, when possible, transient circuit
problems to these archetypes, which, in effect, become targets for students.

Finally, emphasis continues to be placed on visualizing phasors in the
complex plane and understanding the key role of the unit phasor and Euler’s
theorem. Throughout the chapter on AC circuits students are encouraged to
focus on the concepts of impedance and power triangles, and their
similarity. Single-phase AC power concepts are now addressed in the
chapter on AC circuits, whereas material related to transformers and three-
phase power were moved to Part V.



Part II: Systems and Instrumentation
This part of the textbook brings together all of the material related to
measurement and instrumentation found in the sixth edition and represents
a significant change. The chapter on operational amplifiers continues to
emphasize three amplifier archetypes (the unity-gain buffer, the inverting
amplifier, and the noninverting amplifier) before introducing variations and
applications, which are now more readily related to issues and challenges
commonly encountered when conducting measurements using electronic
instrumentation. The discussion of instrumentation amplifiers, in particular,
was expanded and clarified. It is hoped that the reorganization of this
material will bring greater relevance and practicality to students at an early
stage of their study and allow instructors to complete this material and that
in Part I in a one-semester course.



Part III: Analog Electronics
While much of the content on electronics is unchanged from the sixth
edition, the problem-solving strategies and techniques for transistor circuits
were further enhanced and clarified. The focus on simple but useful circuit
examples was not changed.

The emphasis on large-signal models of BJTs and FETs and their
applications was retained; however, an appropriate, but limited, presentation
of small-signal models was included to support the discussion of AC
amplifiers. These chapters present an uncomplicated and practical treatment
of the analysis and design of simple amplifiers and switching circuits.

The chapter on power electronics is no longer included in the textbook
but can be found in the online resources that support the book.

Page xii



Part IV: Digital Electronics
The chapters on digital electronics remain largely unchanged except for a
needed update of the material on encoders, gate arrays, and programmable
logic devices. A greater number of end-of-chapter problems are now
included in the chapter on digital systems.

It should be noted that the chapters on communication systems have
been removed from the textbook but can be found in the online resources
that support it.



Part V: Electric Power and Machines
Part V reflects a change in the organization of the book that brings together
those aspects of electrical engineering that are related to electric power
systems. Every instructor understands that there is no unique way of
presenting introductory electrical engineering material, and the positioning
of Part V in the book is somewhat arbitrary, as the section could really be
placed anywhere after Section I. Chapter 13 covers the fundamentals of
electric power systems, largely unchanged from previous editions,
introducing AC power, complex power, and elements of three-phase power
systems. Chapters 14 and 15 offer an introductory treatment of electrical
machines, with focus on DC, and AC synchronous and induction machines.
Two ancillary chapters are available online for instructors who wish to have
a more in-depth treatment of electromechanical systems: one on power
electronics, which introduces devices and systems for electric power
conversion; the other on special-purpose electric machines, which presents
a survey of electric machines commonly used in industrial systems and
consumer products, such as step motors, brushless DC machines, switched
reluctance machines, and single-phase AC machines. The content of
Chapters 14 and 15 and of the ancillary chapters was developed by the first
author for use in a required junior-year system dynamics course for
mechanical engineers, and in a technical elective on mechatronics systems.

0.4 NOTATION
The notation used in this book for various symbols (variables, parameters,
and units) has been updated but still follows generally accepted
conventions. Distinctions in notation can be subtle. Luckily, very often the
context in which a symbol appears makes its meaning clear. When the
meaning of a symbol is not clear from its context a correct reading of the
notation is important. A reasonably complete listing of the symbols used in
this book and their notation is presented below.

For example, an uppercase roman font is used for units such as volts (V)
and amperes (A). An uppercase italics math font is used for real parameters
and variables such as resistance (R) and DC voltage (V). Notice the
difference between the variable V and the unit V. Further, an uppercase bold



math font is used for complex quantities such as voltage and current
phasors (V and I) as well as impedance (Z), conductance (Y), and
frequency response functions (H and G). Lowercase italic symbols are, in
general, time dependent variables, such as voltage (υ or υ(t)) and current (i
or i(t)), where (t) is an explicit indication of time Page xiiidependence.
Lowercase italic variables may represent constants in specific cases.
Uppercase italic variables are reserved for constant (time-invariant) values
exclusively.

Various subscripts are also used to denote particular instances or
multiple occurrences of parameters and variables. Exponents are italicized
superscripts.

Finally, in electrical engineering the imaginary unit  is always
represented by j rather than i, which is used by mathematicians. The reason
for the use of j instead of i should be obvious!

0.5 SYSTEM OF UNITS



This book employs the International System of Units (also called SI, from
the French Système International des Unitès). SI units are adhered to by
virtually all professional engineering societies and are based upon the seven
fundamental quantities listed in Table 0.1. All other units are derived from
these base units. An example of a derived unit is the radian, which is a
measure of plane angles. In this book, angles are in units of radians unless
explicitly given otherwise as degrees.

Since quantities often need to be described in large multiples or small
fractions of a unit, the standard prefixes listed in Table 0.2 are used to
denote SI units in powers of 10. In general, engineering units are expressed
in powers of 10 that are multiples of 3. For example, 10−4 s would be
expressed as 100 × 10−6 s, or 100 μs.

Page xiv

Tables 0.1 and 0.2 are useful references when reading this book.

Table 0.1 SI units

Table 0.2 Standard prefixes
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0.6 ADDITIONAL FEATURES OF THE
SEVENTH EDITION

Pedagogy
The seventh edition continues to offer all the time-tested pedagogical
features available in the earlier editions.

Learning Objectives offer an overview of key chapter ideas. Each
chapter opens with a list of major objectives, and throughout the
chapter the learning objective icon indicates targeted references to
each objective.
Focus on Problem Solving sections summarize important methods
and procedures for the solution of common problems and assist the
student in developing a methodical approach to problem solving.
Clearly Illustrated Examples illustrate relevant applications of
electrical engineering principles. The examples are fully integrated
with the Focus on Problem Solving material, and each one is
organized according to a prescribed set of logical steps.
Check Your Understanding exercises follow each set of examples
and allow students to confirm their mastery of concepts.
Make the Connection sidebars present analogies that illuminate
electrical engineering concepts using other concepts from engineering
disciplines.
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•
•

Focus on Measurements boxes emphasize the great relevance of
electrical engineering to the science and practice of measurement.

Instructor Resources on Connect:
Instructors have access to these files, which are housed in Connect.

PowerPoint presentation slides of important figures from the text
Instructor’s Solutions Manual with complete solutions

Page xv

Remote Proctoring & Browser-Locking
Capabilities

New remote proctoring and browser-locking capabilities, hosted by
Proctorio within Connect, provide control of the assessment environment
by enabling security options and verifying the identity of the student.

Seamlessly integrated within Connect, these services allow instructors
to control students’ assessment experience by restricting browser activity,
recording students’ activity, and verifying students are doing their own
work.

Instant and detailed reporting gives instructors an at-a-glance view of
potential academic integrity concerns, thereby avoiding personal bias and
supporting evidence-based claims.

Writing Assignment
Available within McGraw Hill Connect®, the Writing Assignment tool
delivers a learning experience to help students improve their written
communication skills and conceptual understanding. As an instructor you
can assign, monitor, grade, and provide feedback on writing more
efficiently and effectively.
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C H A P T E R
1

FUNDAMENTALS OF ELECTRIC
CIRCUITS

hapter 1 is the foundation for the entire book and presents the fundamental
laws that govern the behavior of electric circuits. Basic features and
terminology of electric circuits, such as nodes, branches, meshes, and loops,
are defined, and the three fundamental laws of circuit analysis, Kirchhoff’s

current and voltage laws and Ohm’s law, are introduced. The concept of electric
power and the passive sign convention are introduced along with basic circuit
elements—sources and resistors. Basic analytic techniques of node voltage and mesh
current analyses are introduced along with some engineering applications.
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 Learning Objectives
Students will learn to...

Identify the principal features of electric circuits or networks: nodes, loops,
meshes, and branches. Section 1.1.



2.
3.
4.

5.
6.

7.

8.

9.

Apply definitions of charge, current and voltage. Section 1.2.
Identify sources and their i-υ characteristics. Section 1.3.
Apply the passive sign convention to compute the power consumed or supplied
by circuit elements. Section 1.4.
Apply Kirchhoff’s laws to simple electric circuits. Section 1.5.
Apply Ohm’s law to calculate unknown voltages and currents in simple circuits
Section 1.6.
Apply the Node Voltage method to solve for unknown voltages and currents in
resistive networks. Section 1.7.
Apply the Mesh Current method to solve for unknown voltages and currents in
resistive networks. Section 1.8.
Apply the Node Voltage and Mesh Current methods to solve for unknown
voltages and currents in resistive networks with dependent sources. Section 1.9.

1.1 FEATURES OF NETWORKS AND CIRCUITS
“A network can be defined as a collection of interconnected objects. In an electric
network, elements, such as resistors, are connected by wires. An electric circuit can
be defined as an electric network within which at least one closed path exists and
around which electric charge may flow. All electric circuits are networks but not all
electric networks contain a circuit. In this book, a circuit is any network that contains
at least one complete and closed path.

There are two principal quantities within a circuit: current and voltage. The
primary objective of circuit analysis is to determine one or more unknown currents
and voltages. Once these currents and voltages are determined, any other aspect of
the circuit, such as its power requirements, efficiency, and speed of response, can be
computed.

Two useful concepts for circuit analysis are those of a source and of a load. In
general, the load is the circuit element or segment of interest to the designer or user
of the circuit. By default, the source is everything else not included in the load.
Typically, the source provides energy and the load consumes it for some purpose,
such as the lifting of a weight. For example, consider the simple physical circuit of a
headlight attached to a car battery as shown in Figure 1.1(a). For the driver of the car,
the headlight may be the circuit element of interest since it enables the driver to see
the road at night. From this perspective, the headlight is the load and the battery is
the source as shown in Figure 1.1(b), which is intuitively appealing because power
flows from the source (the battery) to the load (the headlight). However, in general, it
is not required nor necessarily true that power flows in this manner. Electric power is
discussed later in this chapter.



Figure 1.1 (a) Physical model and (b) generalized conceptual
representation of an electrical system. See the notation rules for V, I, υ, and
i listed in the preface.

The use of the term source can be confusing at times because, as will be
discussed later in this chapter, there are circuit elements known as ideal voltage and
current sources, which have well-defined attributes and circuit symbols. These Page
5ideal sources, along with other circuit elements, are often the constituents of the
source portion of a circuit, as well as the load portion. In this book, ideal sources are
referred to as either voltage or current sources, explicitly, to avoid confusion.

Other key conceptual features of electric circuits are the ideal wire, node, branch,
loop, and mesh. The concept of a node (see below) is particularly useful for correctly
interpreting circuit diagrams and constructing circuit prototypes on breadboards.

Many students struggle with circuit analysis simply because they lack an
organizing perspective with which to interpret circuit diagrams. One particularly
helpful perspective is to see electric circuits as comprised of elements situated
between nodes. This perspective enables students to see beyond the particular
aesthetic presentation of a circuit diagram, to see its substance and not be fooled by
its appearance. Once the concept of a node is well understood circuits that previously
appeared complicated often become meaningful and clear.

Ideal Wire
Electric circuit and network diagrams are used to model actual electric circuits and
networks. These diagrams contain elements connected by ideal wires. An ideal wire
is able to conduct electric charge without any loss of electric potential. In other
words, no work is required to move an electric charge along an ideal wire. Luckily, in
many applications, actual wires are well approximated by ideal wires. However, there
are applications where wiring accounts for significant losses of potential (e.g., long-
distance transmission lines and microscopic integrated circuits). In these
applications, the ideal wire approximation must be used with care. In this book, all
wires in circuit and network diagrams are ideal, unless indicated otherwise.



Node
A node consists of one or more ideal wires connected together such that an electric
charge can travel between any two points on the node without traversing a circuit
element, such as a resistor. Thus, every point on a node has the same electric
potential, which is known as the node voltage and its value is relative to a reference
potential.

A junction is a point where two or more wires are joined together. A node may
contain one or more junctions or none at all, such as when a single wire directly
connects two elements. A junction is part of a node but is not a node itself.
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It is crucial to correctly identify and count nodes in the analysis of electric
circuits. Figure 1.2 illustrates a helpful way to mark nodes. There are three nodes in
Figure 1.2(a) and two nodes in Figure 1.2(b). It is sometimes convenient to use the
concept of a supernode, which is simply a closed boundary enclosing two or more
nodes, as shown in Figure 1.2(c).

Figure 1.2 Illustrating nodes and supernodes in circuit diagrams

It is also important to realize that since no work is required to move an electric
charge along an ideal wire, the length and shape of an ideal wire has no impact on the
behavior of a circuit. Likewise, since nodes are comprised of ideal wires, the extent
and shape of a node has no impact on the behavior of a circuit. As a result, a node
may be redrawn in any manner as long as the newly drawn node is attached to the
same elements as the original node. Circuit diagrams are typically drawn, by
convention, in a rectangular manner, with all wires drawn either side to side or up
and down. However, many students find it helpful to redraw circuits so as to clarify
the number and location of nodes in a circuit. Figure 1.3 shows two identical circuits
drawn in two different ways. Can you tell that these circuits have the same number of
nodes?



Figure 1.3 (a) A typical rectangular circuit diagram and (b) an equivalent
redrawn diagram. A circuit can be redrawn to have almost any appearance;
however, the behavior of the circuit is unchanged as long as the number of
nodes and the elements between those nodes remain unchanged.

Keep in mind that all forms of potential, including voltage, are relative quantities.
For this reason, it is important to refer to the voltage across an element. In circuit
diagrams, the voltage across an element is indicated by the paired symbols + and −.
Taken together as a single symbol they indicate the assumed polarity of the voltage.

Sometimes it is convenient to establish a reference node. Any one node in a
network can be designated as the reference node. Then, all other node voltages are
Page 7determined relative to that reference node. The value of the reference node can
be chosen freely, although a value of zero is usually chosen, for simplicity. It is often
true that a smart choice of reference node will simplify the analysis that follows. A
good rule of thumb is to select a node that is connected to a large number of
elements.

A reference node is designated by the symbol shown in Figure 1.4(a). This
symbol is also used to designate earth ground in applications. To reduce the apparent
complexity of some circuits, multiple reference symbols are used to minimize the
amount of displayed reference node wiring. It is simply understood that all nodes to
which these symbols are attached are, in fact, connected by ideal wires and therefore
part of one large reference node. Figure 1.4(b) and (c) illustrate this practice.



Figure 1.4 There can be one and only one reference node in a network
although the reference node symbol may appear more than once in order to
reduce the amount of displayed reference node wiring. The reference node
symbol is also used to designate a connection to earth ground in practical
circuits.

Elements that sit between the same two nodes are said to be in parallel.

Branch
A branch is defined in this book as a single electrical pathway, consisting of wires
and elements. A branch may contain one or more circuit elements as shown in Figure
1.5. By definition, the current through any one element in a branch is the Page 8same
as the current through every other element in that branch; that is, there is one current
in a branch, the branch current.

Figure 1.5 Examples of circuit branches

Elements that sit along the same branch are said to be in series.

Loop
A loop is any closed pathway. Figure 1.6(a) shows that different loops in the same
circuit may share common elements and branches. It is interesting, and perhaps
initially confusing, to note that a loop does not necessarily have to correspond to a
closed electrical pathway, consisting of wires and elements. Figure 1.6(b) shows one
example in which a loop passes directly from node a to node c.



Figure 1.6 A skydiver understands all too well that her fate is unchanged
by the choice of reference potential.

Mesh
A mesh is a closed electrical pathway that does not contain other closed electrical
pathways. In Figure 1.6(a), loops 1 and 2 are meshes, but loop 3 is not a mesh
because it contains loops 1 and 2. The circuit in Figure 1.6(b) has one mesh. Figure
1.7 illustrates how simple it is to visualize meshes.

Figure 1.7 Circuit with four meshes. How many different closed electrical
pathways are in this circuit? [Answer: 14]
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EXAMPLE 1.1
Problem

Identify the branch and node voltages and the loop and mesh currents in the circuit of
Figure 1.8.



Figure 1.8

Solution
The following node and branch voltages may be identified:

Comments: Currents ia and ib are mesh currents.

EXAMPLE 1.2 Counting Nodes in a Network
Problem
Count the total number of nodes in each of the four networks.

Solution
Known Quantities: Wires and elements.
Find: The number of nodes in each network diagram.
Schematics, Diagrams, Circuits, and Given Data: Figure 1.9 contains four elements:
two resistors and two ideal voltage sources, one independent and one dependent.
Figure 1.10 contains five elements: four resistors and one independent ideal voltage
source. Figure 1.11 contains five elements: four resistors and one operational
amplifier. Figure 1.12 contains three elements: two headlamps and one 12-V battery.



Figure 1.9

Figure 1.10

Figure 1.11

Figure 1.12
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Assumptions: All wires are ideal.
Analysis:
In Figure 1.9, all four elements are in a single electrical loop. There is one node
between each pair of elements. Thus, there are four nodes in this network.

In Figure 1.10, the voltage source and the 2K and 6K resistors sit between two
large nodes, one along the top of the network and the other along the bottom of the
network. Each of these nodes contains two wire junctions. Another node is between
the two 3K resistors. Thus, there are three nodes in this network.

In Figure 1.11, there is one node to the left of R1 and one node to the right of the
operational amplifier and RF. A third node is located between R1, R2, and the +



(noninverting) terminal of the operational amplifier. A fourth node is located between
R3, RF, and the − (inverting) terminal of the operational amplifier. A fifth, and final,
node is the reference node, which is between R2 and R3. Thus, there are five nodes in
this network.

In Figure 1.12, there is one node between the positive + battery terminal and one
terminal on each headlamp. There is another node between the negative − battery
terminal and the second terminal on each headlamp. Thus, there are two nodes in this
network.
Comments: The notation K is short for kΩ. The placement of K indicates the
location of a decimal point. For example, 4K7 is 4.7 kΩ.

1.2 CHARGE, CURRENT AND VOLTAGE
The earliest accounts of electricity date from about 2,500 years ago, when it was
discovered that a piece of amber was capable of attracting very light objects, such as
feathers. The word electricity originated about 600 B.C.; it comes from elektron,
which was the ancient Greek word for amber. Following the work of Alessandro
Volta and his invention of the copper-zinc battery, it was determined that static
electric effects and the current in metal wires connected to a battery were both due to
the same fundamental nature of matter, namely, the atomic structure of matter,
consisting of a nucleus—neutrons and protons—surrounded by electrons.

Charles Coulomb (1736–1806).
(INTERFOTO/Personalities/Alamy Stock Photo)

The unit of charge, the coulomb (C), is named after Charles Coulomb. The unit
of current, the ampere (A), is named after the French scientist André-Marie Ampère.

The fundamental electric quantity is charge. The unit of charge is the coulomb
(C). The electron and proton each carry one unit of charge but of opposite sign. By
convention, the electron is deemed to be negatively charged.



(1.1)

(1.2)

(1.3)

Electrons and protons are often referred to as elementary charges. The amount of
charge associated with an electron may seem rather small. However, typical currents
involve the flow of large numbers of charged particles.

Current
Electric current is defined as the rate at which charge passes through an area, such as
the cross-sectional area of a wire. Figure 1.13 depicts a macroscopic view of Page
11current i in a wire, where Δq units of charge flow through the cross-sectional area
A in a period Δt. The resulting current i is

Figure 1.13 Current in an electric conductor is defined as the net flow rate
of charge through the cross-sectional area A.

The arrow symbol associated with the current i is its assumed direction through the
wire segment. A negative value for i would indicate a direction opposite to the
assumed direction. When large numbers of discrete charges cross A in a very small
period, the current i can be written in differential form.

The unit of current is the ampere, where 1 ampere (A) = 1 coulomb/second (C/s). By
convention, in electrical engineering positive current is the direction of positive
charge flow. This convention can be confusing since the mobile charge carriers in
metal wires and many other conductors are electrons from the conduction band of the
material. However, when an electron travels in one direction the effect on the
distribution of net charge is the same as if a proton had travelled in the opposite
direction. In other words, positive current represents the relative flow of positive
charges.

Voltage
Typically, work is required to move charge between two nodes in a circuit. The total
work per unit charge is called voltage, and the unit of voltage is the volt in honor of



Alessandro Volta.

The voltage, or potential difference, across two nodes in a circuit is the energy (in
joules) per unit charge (1 coulomb) needed to move charge from one node to the
other. The direction, or polarity, of the voltage is related to whether energy is being
gained or lost by the charge in the process.

Note that the word potential is quite appropriate as a synonym of voltage, in that
voltage is the potential energy per unit charge across two nodes in a circuit. If the
lightbulb is disconnected from the circuit, a voltage υab still exists across the battery
terminals, as illustrated in Figure 1.14. This voltage represents work done on the
battery to separate positive ions from negative ions. The potential energy associated
with the separated ions is available to do work on an external element attached to the
battery terminals. That work is expressed as positive charge flowing (current)
through the element from high to low potential. Thus, the battery is able to supply
energy to the attached element and, likewise, the attached element is able to consume
or dissipate energy from the battery.

Figure 1.14 The voltage υab across the open terminals of the battery
represents the potential energy available to move charge from a to b once a
closed circuit is established.

The Reference Node and Ground
Earth ground represents a specific, and usually clearly marked, node in many
circuits. Residential electric circuits are connected to earth ground through a large
conductor, such as a copper spike or water pipe, that is buried in the earth. When
present in a circuit diagram, earth ground is always chosen as the reference node
Page 12because the earth’s potential is relatively stable and uniform due to its ability
to store and distribute large quantities of charge. In circuits where earth ground is not
present, some other relatively large conductor can serve as a stable ground node, such
as a metal enclosure or chassis of an instrument.



In practice, the voltage value assigned to a reference node, such as earth ground,
while typically zero, is not consequential. A simple analogy with fluid flow
illustrates this rule. Consider a tank of water, as shown in Figure 1.15, located at a
certain height above the ground. The potential energy difference per unit mass due to
gravity  is completely analogous to the potential energy difference per
unit charge . Now assume that the height h3 at ground level is chosen to be the
zero potential energy reference. Is the flow of water in the pipe changed due to this
choice? Of course not. Is the flow of water in the pipe dependent upon the height 

 of the support structure? Again, the answer is no. The truth of these statements
is demonstrated by rewriting the head of the water tank  as  such
that

Figure 1.15 An analogy between water flow and electric current illustrates
the relation between potential differences and a ground reference potential.

Even though the values of u13 and u23 depend upon h3, the difference between them
u12 does not depend upon h3. It is the change in potential energy that matters in the
water tank problem. So it is with electric circuits. The voltage across an element does
not depend upon the selection of a reference node nor upon the arbitrary voltage
value assigned to the reference node.

Another familiar scenario is that of a skydiver leaping from an airplane and
parachuting to the surface below (see Figure 1.16). To quantify the potential energy
U of the skydiver it is first necessary to choose a reference height h0 such that 

, where h represents the height of the skydiver. One possible
choice for a reference height is the height of the airplane such that the potential
energy of the skydiver is negative (U < 0)? However, such a choice would be strange
and perhaps misleading. The surface of the earth is a more meaningful reference to
the skydiver, who knows that a soft landing depends upon dissipating most of the
initial potential energy through collisions with air molecules rather than through a
collision with the surface. The skydiver knows that her fate is unchanged by her



choice of reference; however, some choices are more meaningful than others. So it
often is with electric circuits.

Figure 1.16 A skydiver understands all too well that her fate is unchanged
by the choice of reference potential
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EXAMPLE 1.3 Charge and Current in a Conductor
Problem
Find the total charge in a cylindrical conductor (solid wire) and compute the current
through the wire.

Solution
Known Quantities: Conductor geometry, charge density, charge carrier velocity.
Find: Total charge of carriers Q; current in the wire I.
Schematics, Diagrams, Circuits, and Given Data:

Conductor length: L = 1 m.
Conductor diameter: 2r = 2 × 10−3 m.
Charge density: n = 1029 carriers/m3.
Charge of one electron: qe = −1.602 × 10−19.

Charge carrier average net speed: u = 19.9 × 10−6 m/s.
Assumptions: None.
Analysis: To compute the total charge in the conductor, first determine the volume of
the conductor:



Next, compute the number of carriers (electrons) in the conductor and the total
charge:

To compute the current, consider the average net speed of the charge carriers and the
charge density per unit length of the conductor:

Comments: Charge carrier density is a function of material properties. Carrier
average net speed is a function of the applied electric field.
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1.3 i-υ CHARACTERISTICS AND SOURCES
It is possible to create an i-υ plot for any circuit element. The functional relationship
between i and υ may be quite complex and not easily expressed in a closed
mathematical form, such as i = f(υ) However, the plot of the i-υ characteristic (or
volt-ampere characteristic) for most circuit elements is either known or can be
determined experimentally.

For example, consider the incandescent (tungsten filament) lightbulb shown in
Figure 1.17(a). The i-υ characteristic of the lightbulb can be determined by varying
the voltage over some predetermined range and recording the resulting current for
each particular voltage in that range. The plot of the i-υ data will be similar to that
shown in Figure 1.17(b). A positive voltage across the bulb results in a positive
current through it, and conversely, a negative voltage across the bulb results in a
negative current through it. In both cases charge flows from high to low potential,
releasing energy that is dissipated by the bulb as light and heat.



Figure 1.17 (a) Depiction of how to measure the i-υ characteristic of an
incandescent (tungsten filament) lightbulb; (b) typical i-υ plot of such a
lightbulb

The i-υ characteristics of ideal voltage and current sources are simple yet helpful
visual aids. An ideal source is one that can provide any amount of energy without
affecting the behavior of the source itself. Ideal sources are divided into two types:
voltage sources and current sources.

Ideal Voltage Sources
An ideal voltage source generates a prescribed voltage across its terminals
independent of the current through its terminals. The circuit symbol for an ideal
voltage source is shown in Figure 1.18(a). Notice that the current is defined as being
directed from low to high potential. In other words, the voltage source is supplying
energy to the flowing charge.



Figure 1.18 (a) An ideal voltage source; and (b) a typical i-υ characteristic,
which indicates energy is supplied by the source to the flowing charge
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A typical i-υ characteristic is shown in Figure 1.18(b). The current supplied by
the source is determined by the circuit connected to it. It is important to recognize
that an ideal voltage source guarantees a particular change in voltage from the node
attached to its − terminal to the node attached to its + terminal. (Note: The + and −
polarity markers do not indicate positive and negative voltage values relative to some
zero reference. Do not make this mistake when solving problems!)

An ideal voltage source provides a prescribed voltage across its terminals
independent of the current through those terminals. The amount of current
through the source is determined by the circuit connected to it.

MAKE THE CONNECTION



Hydraulic Analog of a Voltage Source
The role played by a voltage source in an electric circuit is very similar to that played
by a velocity pump in a hydraulic circuit. In a velocity or roto-dynamic pump, such
as a centrifugal pump, impeller vanes add kinetic energy (velocity) to the fluid flow.
This increase in kinetic energy is translated to an increase in pressure across the
pump. The pressure difference across the pump is analogous to the voltage, or
potential difference, across the voltage source.

A centrifugal pump (Giorgio Rizzoni).

Various types of batteries, electronic power supplies, and function generators
approximate ideal voltage sources when used in proper circumstances. However, all
such real devices have limits on the amount of current that can be supplied without
impacting the voltage across the source. This behavior can be seen in a typical 12-V
car battery. A digital voltmeter can be used to observe the voltage across a car battery
as various electrical devices in the car are turned on and off. Very little change in the
battery voltage will be observed, even when power windows are engaged. However,
when the car is started, the battery voltage will drop significantly during the short
period needed for the engine to start.



Figure 1.19 depicts various symbols for voltage sources. The output voltage of an
ideal source can be a function of time. In this book, unless otherwise noted, a generic
voltage source is denoted by a lowercase υ. If it is necessary to emphasize that the
source produces a time-varying voltage, then the notation υ(t) is employed. Finally, a
constant, or dc voltage source is denoted by the uppercase character V.

Figure 1.19 Three common ideal voltage sources

Ideal Current Sources
An ideal current source generates a prescribed current through its terminals
independent of the voltage across its terminals. The circuit symbol for an ideal
current source is shown in Figure 1.20(a). Notice that the current is defined as being
Page 16directed from low to high potential. In other words, the current source is
supplying energy to the flowing charge.

MAKE THE CONNECTION

Hydraulic Analog of a Current Source
The role played by a current source in an electric circuit is very similar to that of a
positive displacement pump in a hydraulic circuit. In a positive displacement pump,
such as a peristaltic or reciprocating pump, an internal mechanism, such as a roller,



piston, or diaphragm, forces a particular volume of fluid to be pumped through a
hydraulic line. The volume flow rate through the pump is analogous to the charge
flow rate through the current source.

A typical i-υ characteristic is shown in Figure 1.20(b). The voltage across the
current source is determined by the circuit connected to it. It is important to
recognize that an ideal current source guarantees a particular current through its
terminals, such that the current entering the − terminal is the same as the current
exiting the + terminal. (Again, the + and − polarity markers do not indicate positive
and negative voltage values relative to some zero reference. Do not make this
mistake when solving problems!)

Figure 1.20 (a) An ideal current source; and (b) a typical i-υ characteristic,
which indicates energy is supplied by the source to the flowing charge

An ideal current source provides a prescribed current through its terminals
independent of the voltage across those terminals. The amount of voltage



across the source is determined by the circuit connected to it.

Practical approximations to ideal current sources are not as common nor
numerous as those for ideal voltage sources. However, in general, an ideal voltage
source in series with an output resistance that is large in comparison to the input
resistance of the circuit attached to its terminals provides a nearly constant current
and thus approximates an ideal current source. A battery charger is a common and
approximate example of an ideal current source.

Dependent (Controlled) Sources
The ideal independent sources described above are able to generate a prescribed
voltage or current independent of the circuit attached to its terminals. Another
category of sources, whose output (current or voltage) depends on some other
voltage or current in a circuit, is known as dependent (or controlled) sources. As
shown in Figure 1.21, the circuit symbols for these sources are diamonds to
distinguish them from independent sources. The table illustrates the relationship
between the source voltage υS or source current iS and the circuit voltage υx or circuit
current ix, which they depend upon and which can be any voltage or current
elsewhere in the overall circuit.
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Figure 1.21 Symbols for dependent sources

Dependent sources are very useful in describing the behavior of transistors and
other electronic devices.

1.4 POWER AND THE PASSIVE SIGN
CONVENTION
The power supplied or dissipated by a circuit element can be represented by the
following relationship:



(1.4)

(1.5)

Thus,

Electric power, P, is the product of voltage across an element and current
through it.

The unit of voltage (joules per coulomb) multiplied by that of current (coulombs per
second) equals the unit of power (joules per second, or watts).

The power associated with a circuit element can be positive or negative. Positive
power is, by convention, the rate at which energy is transferred from the flowing
charge to an element. Negative power implies energy is transferred by an element to
the flowing charge. Consider Figure 1.22(a), in which electric charge flows from low
to high potential. Clearly, work has been done by element A on the flowing charge as
its potential is raised. The rate at which this work is done by element A is its power.
In this case, power is considered negative when energy is supplied or released by the
element. In Figure 1.22(b), charge flows from high to low potential. Here, work has
been done on element B by the flowing charge as its potential is lowered. The rate at
which this work is done on element B is its power. In this case, power is considered
positive when energy is dissipated or stored by the element.



Figure 1.22 Assuming positive values for i and υ, the active sign
convention shown in (a) implies energy is supplied or released by element
A while the passive sign convention shown in (b) implies energy is
consumed or stored by element B.

In the passive sign convention, current is directed from high to low potential. In
this convention, energy is released by the flowing charge and consumed or
stored by the element. The rate at which energy is transferred from the flowing
charge to the element is considered positive power.
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Figure 1.23 shows the four quadrants of a generic i-υ plot, where i and υ are
assumed to observe the passive sign convention. Power is positive in the first and
third quadrants; negative in the second and fourth quadrants. The i-υ plot of a typical
incandescent lightbulb shown in Figure 1.17(b) reveals that its power is always
positive. In other words, the lightbulb always dissipates energy.

Figure 1.23 The four quadrants of a generic i-υ plot, where i and υ are
assumed to observe the passive sign convention

Passive elements are defined as those that do not require an external source of
energy to enable them. Common passive elements are resistors, capacitors, inductors,
diodes, and electric motors. Passive elements can dissipate energy (e.g., resistors)
and/or store and release energy (e.g., capacitors and inductors).

Active elements, on the other hand, are defined as those that do require an
external source of energy to be enabled. Common active elements are transistors,
amplifiers, and voltage and current sources. There are electronic devices that can
operate either as passive or active elements. For example, a photodiode can act either
as a light sensor (passive element) or as a solar cell (active element).



1.

2.

3.

The electrical engineering community has uniformly adopted the passive sign
convention. All the constitutive laws (e.g., Ohm’s law) introduced in this book
assume that convention. It is often necessary to assume directions for unknown
currents and/or assume polarities for unknown voltages when solving circuit
problems. It is important that these assumptions be made in accord with the passive
sign convention. As long as the passive sign convention is observed it is not
necessary to foresee actual current directions nor actual voltage polarities. Instead,
when a current direction or voltage polarity is assumed incorrectly, the solution will
yield a negative result, indicating that the assumed direction or polarity is opposite
the actual.

F O C U S  O N  P R O B L E M  S O LV I N G

THE PASSIVE SIGN CONVENTION
Assign a current through each passive element. The direction of each current
be assumed arbitrarily.
For each passive element, assign a voltage across the element such that
assigned current through the element is directed from high to low poten
Other valid descriptions are that current enters the + terminal or exits th
terminal of the element.
The power associated with each passive element is equal to υi. Positive po
indicates that the element is either dissipating or storing energy.

EXAMPLE 1.4 Use of the Passive Sign Convention
Problem
Apply the passive sign convention to solve for the voltages and mesh current in the
circuit of Figure 1.24.
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Figure 1.24

Solution
Known Quantities: Voltage of the battery and the power dissipated by elements 1
and 2.
Find: Mesh current and the voltage across each load.
Schematics, Diagrams, Circuits, and Given Data: Figure 1.25(a) and (b). The
voltage of the battery is . The power dissipated by element 1 is  and
by element 2 is .
Assumptions: None.
Analysis: This problem can be solved using the passive sign convention in two
different approaches. The first approach assumes a clockwise mesh current, while the
second approach assumes a counterclockwise current. For either approach, the
passive sign convention is used to label the change in voltage across each load.
Figure 1.25(a) and (b) show the result of these two approaches. Notice that the
change in voltage across each element was chosen so that the assumed current is
directed from high to low potential.

Figure 1.25



1.
2.

3.

4.

1.
2.

The polarity of the battery is indicated by the alternating sequence of long and
short bars. The positive and negative terminals of the battery are connected to a long
and short bar, respectively.

A four-step solution using the first approach, as depicted in Figure 1.25(a), is
given below.

Assume a clockwise direction for the current.
Label the change in voltage across each (passive) element so that the current is
directed from high to low potential.
Express the power dissipated by each element using the relation P = υi, which is
valid when the passive sign convention is observed.

The power associated with the battery is expressed as  which requires a
negative sign −υi because the current through the battery is directed from low to
high potential, opposite of the passive sign convention.
Conservation of energy requires that the total power associated with the circuit
be zero. Thus,

It is now possible to use the three υi equations to solve for the three unknown
variables i, υ1, and υ2. Since VB = 12 V, the current i is:

As a result, the change in voltage across each element is:

A four-step solution using the second approach, as depicted in Figure 1.25(b), is
given below.

Assume a counterclockwise direction for the current.
Label the change in voltage across each (passive) element so that the current is
directed from high to low potential.
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3.

4.

Express the power dissipated by each element using the relation P = υi, which is
valid when the passive sign convention is observed.

The power associated with the battery is expressed here as  which now
requires a positive sign +υi because the current through the battery is directed
from high to low potential.
Conservation of energy requires that the total power associated with the circuit
be zero. Thus,

It is now possible to use the three υi equations to solve for the three unknown
variables i, υ1, and υ2. Since VB = 12 V, the current i is:

As a result, the change in voltage across each element is:

Comments: Notice that the actual current present in the circuit and the actual change
in voltage across each element is the same for each solution approach. For instance,
using the first approach the current was found to be 0.1 A clockwise, while using the
second approach the current was found to be −0.1 A counterclockwise. The negative
sign found for the current in the second approach indicates that the actual current is
directed clockwise, not counterclockwise. This example provides a good
demonstration of the fact that it is not necessary to foresee the actual direction of
unknown currents and voltages when solving a circuit problem. The important point
is to observe the passive sign convention.

Also note that conservation of energy is required for electric circuits, just as it is
for any other physical system. For electric circuits: Power supplied always equals
power consumed.



•

•

•

•

EXAMPLE 1.5 Power Calculations
Problem
For the circuit shown in Figure 1.26, determine which components are consuming
power and which are supplying power. Is conservation of power satisfied? Explain
your answer.

Figure 1.26

Solution
Known Quantities: All currents and voltages.
Find: Which components are consuming power, and which are supplying power?
Verify conservation of power.
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Analysis: The power associated with each element can be computed using P = υi
when the passive sign convention is observed or P = −υi when it is not observed.

Notice that the total power sums to zero. The same results can be expressed more
literally as:

A supplies 60 W

B supplies 15 W

C dissipates (consumes) 25 W

D dissipates (consumes) 30 W



•

•

•

•

E dissipates (consumes) 20 W

Total power supplied equals 75 W

Total power dissipated (consumed) equals 75 W

Total power supplied = total power dissipated
Comments: Notice that whether power is calculated using P = υi or P = −υi depends
entirely upon whether the passive sign convention is observed for any particular
element.

CHECK YOUR UNDERSTANDING
Compute the current through each of the headlamps shown in Figure 1.12 assuming
each headlamp consumes 50 W. How much power is the battery providing?

CHECK YOUR UNDERSTANDING
Determine which circuit element, A or B, in the figure on the left is supplying power
and which is dissipating power. Also determine how much power is dissipated and
supplied.

If the voltage source in the figure on the right supplies a total of 10 mW and i1 = 2
mA and i2 = 1.5 mA, what is the current i3? If i1 = 1 mA and i3 = 1.5 mA, what is i2?

Answer: I1 = I2 = 4.17 A; 100 W.

Answer: A supplies 30.8 W; B dissipates 30.8 W. i3 = −1 mA; i2 = 0 mA.
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1.5 KIRCHHOFF’S LAWS
Earlier in this chapter, a circuit was defined as an electric network within which at
least one closed path exists and around which electric charge may flow. In fact,
conservation of electric charge requires a closed path for any non-zero current.

To have a non-zero current, there must be a closed electrical path (i.e., a
circuit).

Gustav Robert Kirchhoff (1824–1887) (bilwissedition Ltd. & Co.
KG/Alamy Stock Photo)

For example, Figure 1.27 depicts a simple circuit, composed of a battery (e.g., a
1.5-V lithium battery) and a lightbulb. Conservation of charge requires that the
current i from the battery to the lightbulb is equal to the current from the lightbulb to
the battery. No current (nor charge) is “lost” around the closed circuit. This principle
was observed by the German scientist G. R. Kirchhoff1 and is known as Kirchhoff’s
current law (KCL). This law states that the net sum of the currents crossing any
closed boundary must equal zero.



(1.6)

(1.7)

Figure 1.27 A simple electric circuit composed of a battery, a lightbulb,
and two nodes

where the sign of currents entering the region surrounded by the closed boundary
must be opposite to the sign of currents exiting the same region. In other words, the
sum of currents “in” must equal the sum of currents “out.”

An application of Kirchhoff’s current law is illustrated in Figure 1.28, where the
simple circuit of Figure 1.27 has been augmented by the addition of two lightbulbs.
The relationship between the currents is found by applying either version of KCL. To
express the net sum of currents it is necessary to select a sign convention for currents
entering and exiting a node. One possibility is to consider all currents entering a node
as positive and all currents exiting a node as negative. (This particular sign
convention is completely arbitrary.) The result of using this sign convention and
applying the first version of KCL to node 1 is



(1.8)

Figure 1.28 KCL applied at node 1 results in , or equivalently 
.

Note that the latter expression is exactly what would have been found if the alternate
version of KCL had been applied. Also note that the result is the same if the opposite
sign convention (i.e., currents entering and exiting the node are negative and positive,
respectively) is used.
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Consider again the simple circuit of a battery and a lightbulb shown in Figure
1.29. Kirchhoff’s voltage law (KVL) states that the net change in electric potential
around a closed loop is zero. In mathematical terms:

Figure 1.29 KVL applied clockwise from node b around the single loop
circuit results in , or equivalently .

Here, υn are the changes in voltage from one node to another around a closed loop.

When summing these changes in voltage, it is necessary to account for the
polarity of the change. Changes in voltage from the minus sign − to the plus sign +



(1.9)

are considered positive (i.e., a rise in voltage), while those from plus to minus are
considered negative (i.e., a drop in voltage). These two symbols act together to
indicate the assumed direction of the change in voltage from one node to another.

An alternate but equivalent expression for KVL is that the sum of all voltage rises
around a loop must equal the sum of all voltage drops around the same loop.

In Figure 1.29, the voltage across the lightbulb is the change in electric potential
from node a to node b. This change can also be expressed as the difference between
two node voltages, υa and υb. The values of node voltages are relative to a reference
node. Any single node may be chosen as the reference with its value set to zero, for
simplicity. For the circuit in Figure 1.29 select node b as the reference and set its
value as υb = 0. Observe that the battery’s positive terminal is 1.5 V above the
reference, so that υa = 1.5 V. In general, the battery guarantees that node a will
always be 1.5 V above node b.

The notation used to express the change in voltage across the lightbulb, from node b
to node a, is , where

EXAMPLE 1.6 Kirchhoff’s Current Law Applied to an Automotive
Electrical Harness
Problem
Figure 1.30 shows an automotive battery connected to a variety of elements in an
automobile. The elements include headlights, taillights, starter motor, fan, power
locks, and dashboard panel. The battery must supply enough current to satisfy each
of the elements. Apply KCL to a model of the electrical system to find a relationship
between the currents in the circuit.
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Figure 1.30 (a) Automotive electrical harness; (b) model electric circuit
diagram

Solution
Known Quantities: Components of electrical harness: headlights, taillights, starter
motor, fan, power locks, and dashboard panel.
Find: Expression relating battery current to harness currents.
Schematics, Diagrams, Circuits, and Given Data: Figure 1.30.
Assumptions: None.
Analysis: Figure 1.30(b) depicts the model electric circuit, illustrating that the
current supplied by the battery is divided among the various elements. The
application of KCL to the upper node yields



or
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EXAMPLE 1.7 Application of KCL
Problem
Determine the unknown currents in the circuit of Figure 1.31.

Figure 1.31 KCL yields  at node a and  at node b.

Solution
Known Quantities:

Find: I0 and I24.

Analysis: Two nodes are clearly shown in Figure 1.31 as node a and node b; the third
node in the circuit is the reference node. Apply KCL at each of the three nodes.

At node a:



Note that the assumed direction of all three currents is away from the node. However,
I2 has a negative value, which means that its actual direction is toward the node. The
magnitude of I2 is 3A.

At node b:

At the reference node: Assume that currents entering a node are positive and
currents exiting a node are negative.

Comments: The result obtained at the reference node is exactly the same as that
calculated at node b. Applying KCL to every node in a circuit will result in a
redundant equation.

EXAMPLE 1.8 Application of KCL
Problem
Apply KCL to the circuit of Figure 1.32, using the concept of a supernode to
determine the source current is1.
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Figure 1.32 KCL applied at the boundary of the supernode yields .



Solution
Known Quantities:

Find: iS1.

Analysis: Apply KCL at the closed boundary of the so-called supernode to obtain

Comments: Notice that the same result for iS1 is obtained by applying KCL at the
bottom node. This result is another example of a redundant equation that is
sometimes obtained by applying KCL at two different closed boundaries or nodes.

EXAMPLE 1.9 Kirchhoff’s Voltage Law—Electric Vehicle Battery
Pack
Problem
Figure 1.33(a) depicts the battery pack in the Smokin’ Buckeye electric race car,
which consists of thirty-one 12-V batteries in series.

Figure 1.33 Electric vehicle battery pack illustrates KVL. (Courtesy:
David H. Koether Photography)

Solution
Known Quantities: Nominal characteristics of OptimaTM lead-acid batteries.



Find: Expression relating battery and electric motor drive voltages.
Schematics, Diagrams, Circuits, and Given Data: Vbatt = 12 V; Figure 1.33(a), (b),
and (c).
Assumptions: None.
Analysis: Figure 1.33(b) models the electric circuit, illustrating the batteries in series
with the electric drive that powers the vehicle’s 150-kW three-phase induction motor.
Apply KVL around the circuit of Figure 1.33(c):
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Thus, the electric drive is nominally supplied by a  battery pack. In
practice, the voltage across a lead-acid battery depends upon the state of charge of
the battery. When fully charged, the battery pack of Figure 1.33(a) supplies closer to
400 V (i.e., roughly 13 V per battery).

EXAMPLE 1.10 Application of KVL
Problem
Determine the unknown voltage υ2 by applying KVL to the circuit of Figure 1.34.

Figure 1.34 A circuit with four generic elements and one ideal voltage
source

Solution
Known Quantities:

Find: υ2.



Analysis: Apply KVL starting at the reference node and proceeding clockwise
around the large outer loop (the outer perimeter) of the circuit:

Comments: Note that υ2 is the voltage across elements 2 and 4. These two elements
are in parallel because they are located between the same two nodes. One can also
say that the two branches that contain these elements are in parallel.

EXAMPLE 1.11 Application of KVL
Problem
Use KVL to determine the unknown voltages υ1 and υ4 in the circuit of Figure 1.35.

Figure 1.35 Circuit for Example 1.11

Solution
Known Quantities:

Find: υ1, υ4.

Analysis: To determine the unknown voltages, apply KVL clockwise around the left
and upper-right meshes:
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After substituting numerical values, the equations become:

It is possible to solve for υ1 and υ4 using other loops in the circuit. For instance,
apply KVL clockwise around the lower-right mesh to find υ4:

Or apply KVL clockwise around the outer most loop to find υ1:

Comments: Notice that there are seven closed wire loops in the circuit. KVL could
be applied around any of these loops to find an equation. The key is to find two
linearly independent equations that involve the two unknowns.

CHECK YOUR UNDERSTANDING
Apply KVL to each of the other three closed wire loops in Figure 1.35 that were not
explored in Example 1.11. Compare the results to those found in the example. Are
the results consistent?

CHECK YOUR UNDERSTANDING
Repeat the exercise of Example 1.7 when I 0 = 0.5 A, I 2 = 2 A, I 3 = 7 A, and I 4 =
− 1 A. Find I 1 and I S.

Answer: 



(1.10)

(1.11)

CHECK YOUR UNDERSTANDING
Use the result of Example 1.8 and the following data to compute the current iS2 in
the circuit of Figure 1.32.
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1.6 RESISTANCE AND OHM’S LAW
When charge flows through a wire or circuit element, it encounters resistance, the
magnitude of which depends on the resistivity of the material and the geometry of the
wire or element. In practice, all circuit elements exhibit some resistance, which leads
to energy dissipation in the form of heat. Whether this loss of electrical energy as
heat is detrimental depends upon the purpose of the circuit element. For example, a
typical electric toaster relies on the conversion of electrical energy to heat within its
resistive coils to accomplish its purpose, the making of toast. All electric heaters rely
upon this process, in one form or another. On the other hand, heat loss due to
resistance in residential wiring is costly, and potentially dangerous. Resistance in
microcircuitry generates heat that effectively limits the speed of microprocessors and
the number and scale of transistors that can be packed into a given volume.

The resistance of a cylindrical wire segment, as shown in Figure 1.36(a), is given
by

where ρ and σ are the material properties resistivity and conductivity, respectively,
and l and A are the segment length and cross-sectional area, respectively. As evident
in the above equation, conductivity is simply the inverse of resistivity. The unit of
resistance R is ohms (Ω), where

Answer: 



(1.12)

(1.13)

(1.14)

The resistance of an actual wire or circuit element is usually accounted for in a
circuit diagram by an ideal resistor, which lumps the entire distributed resistance R
of the wire or element into one single element. Ideal resistors exhibit a linear i-υ
relationship known as Ohm’s law, which is

In other words, the voltage across an ideal resistor is directly proportional to the
current through it. The constant of proportionality is the resistance R. The circuit
symbol and i-υ characteristic for an ideal resistor are shown in Figure 1.36(b) and (c),
respectively. Notice the passive sign convention used in the circuit symbol diagram,
as appropriate, since a resistor is a passive element.

Figure 1.36 (a) Resistive wire segment; (b) ideal resistor circuit symbol;
(c) the i-υ relationship (Ohm’s law) for an ideal resistor
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It is often convenient to define the conductance, G (unit is siemens, S), of a
circuit element as the inverse of its resistance.

In terms of conductance, Ohm’s law is

Ohm’s law is an empirical relationship that finds widespread application in
electrical engineering. It is a simple yet powerful approximation of the physics of



electrical conductors. However, the linear i-υ relationship usually does not apply over
very large ranges of voltage or current. For some conductors, Ohm’s law does not
approximate the i-υ relationship even over modest ranges of voltage or current.
Nonetheless, most conductors exhibit piecewise linear i-υ characteristics for one or
more ranges of voltage and current, as shown in Figure 1.37 for an incandescent
lightbulb and a semiconductor diode.

Figure 1.37 Piecewise linear segments within non-linear i-υ characteristics

Short- and Open-Circuits
Two convenient idealizations, the short-circuit and the open-circuit, are limiting
cases of Ohm’s law as the resistance approaches zero or infinity, respectively.
Formally, a short-circuit is an element across which the voltage is zero, regardless of
the current through it. Figure 1.38 depicts the circuit symbol for an ideal short-
circuit.

Figure 1.38 The short-circuit

In practice, any conductor will exhibit some resistance. For practical purposes,
however, many elements approximate a short-circuit under certain conditions. For



example, a large-diameter copper pipe is effectively a short-circuit in the context of a
residential electric power supply, while in a low-power microelectronic circuit (e.g.,
an iPhone®) a typical ground plane is  thick, which is adequate for a short-
circuit in that context. A typical solderless breadboard is designed to accept 22-gauge
solid jumper wires, which act effectively as short-circuits between elements on the
breadboard. Table 1.1 lists the resistance per 1,000 ft of some commonly used wire,
as specified by the American Wire Gauge Standards.

Table 1.1 Resistance of copper wire
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The limiting case for Ohm’s law when R → ∞ is called an open-circuit.
Formally, an open-circuit is an element through which the current is zero, regardless
of the voltage across it. Figure 1.39 depicts the circuit symbol for an ideal open-
circuit.

Figure 1.39 The open-circuit

In practice, it is easy to approximate an open-circuit. For moderate voltage levels,
any gap or break in a conducting path amounts to an open-circuit. However, at
sufficiently high voltages such a gap will become ionized and its resistance will



decrease suddenly and dramatically, effectively producing a short-circuit across the
gap. If sufficient charge is available, the result will be arcing in which a pulse of
charge jumps the gap. Subsequently, the pulse discharge results in a decrease in the
voltage across the gap and the ionized path collapses. The result is that the gap has
returned to its open-circuit approximation. This phenomenon is employed in spark
plugs to ignite the air-fuel mixture in a spark-ignition internal combustion engine.
Any insulating material will break down when a sufficiently high voltage is applied
across it.

The dielectric strength is a measure of the maximum electric field (voltage per
unit distance) that an insulating material can sustain without breaking down and
allowing charge to flow. This measure is somewhat dependent upon temperature,
pressure, and the material thickness; however, typical values are 3 kV/mm for air at
sea level and room temperature, 10 kV/mm for window glass, 20 kV/mm for
neoprene rubber, 30 kV/mm for pure water, and 60 kV/mm for PTFE, commonly
known as Teflon.

MAKE THE CONNECTION

Hydraulic Analog of Electrical Resistance
A useful analogy can be made between the electric current through electric
components and the flow of incompressible fluids (e.g., water, oil) through hydraulic
components. The fluid flow rate through a pipe is analogous to current through a
conductor. Similarly, pressure drop across a pipe is analogous to voltage across a
resistor. The resistance of the pipe to fluid flow is analogous to electrical resistance:
The pressure difference across the pipe causes fluid flow, much as a potential
difference across a resistor causes charge to flow. The figure below depicts how pipe
flow is often modeled as current through a resistance.



Analogy between electrical and fluid resistance

Discrete Resistors
Various types of discrete resistors are used in laboratory experiments, tinkering
projects, and commercial hardware, and are available in a wide range of nominal
values, tolerances, and power ratings. Each type has a particular temperature range
within which it is designed to operate. In fact, some discrete resistors (known as
thermistors) are designed to be highly sensitive to temperature and to be used as
temperature transducers.

The majority of discrete resistors have a cylindrical shape and are color coded for
their nominal value and tolerance. Several common types of resistors are: carbon
composites, in which the resistance is set by a mixture of carbon and ceramic powder
(Figure 1.40); carbon film, in which the resistance is set by the length and width of a
thin strip of carbon wrapped around an insulating core; and thin metal film, in which
the resistance is set by the characteristics of a thin metal film also wrapped around an
insulating core (Figure 1.41).

Figure 1.40 Carbon composite resistor

Figure 1.41 Thin-film resistor

Page 32



Discrete resistors are available with various power ratings, where the power
rating scales with the size of the resistor itself. Figures 1.42 and 1.43 show (to scale)
typical  and  resistors, respectively. Notice the bands along the length of each
resistor. Discrete resistors are also available with typical power ratings of 1, 2, 5, 10
W, and larger. Many industrial power resistors are manufactured by winding wire,
such as Nichrome, around a non-conducting core, such as ceramic, plastic, or
fiberglass. Others are made of cylindrical sections of carbon. Power resistors are
available in a variety of packages, such as cement or molded plastic, aluminum
encasements with fins for wicking away heat, and enamel coatings. Typical power
resistors are shown in Figure 1.44.

Figure 1.42 Typical  resistors (Jim Kearns)

Figure 1.43 Typical  resistors (Jim Kearns)



Figure 1.44 (a) 25-W, 20-W, and 5-W, and (b) two 5-W resistors sitting
atop one 100-W resistor (Jim Kearns)

The value of a discrete resistor is determined by the resistivity, shape, and size of
the conducting element. Table 1.2 lists the resistivity of many common materials.

Table 1.2 Resistivity of common materials at room temperature

The nominal value and tolerance are often color-coded on a discrete resistor.
Typically, discrete resistors have four color bands, where the first two designate a
two-digit integer, the third designates a multiplier of 10, and the fourth designates the
tolerance. Occasionally, discrete resistors have five bands, where the first three
designate a three-digit integer, and the remaining two designate the multiplier and the
tolerance. The value of each color band is decoded using the system displayed in
Figure 1.45 and Table 1.3.

Figure 1.45 Resistor color code
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Table 1.13 b1b2 indicates the two-digit significand; b3 indicates the
multiplier



For example, a resistor with four bands (yellow, violet, red, gold) has a nominal
value of:

and a “gold” tolerance of ±5 percent 4.7 kΩ is often shortened in practice to 4K7,
where the letter K indicates the placement of the decimal point as well as the unit of
kΩ. Likewise, 3.3MΩ is often shortened to 3M3. Table 1.3 lists the standard nominal
values established by the Electronic Industries Association (EIA) for a tolerance of
10 percent, commonly referred to as the E12 series. The number 12 indicates the
number of logarithmic steps per decade of resistor values. Notice that the values in
adjacent decades (columns) are different by a factor of 10.

Due to imperfect manufacturing the actual value of a discrete resistor is only
approximately equal to its nominal value. The tolerance is a measure of the likely
variation between the actual value and the nominal value. Other EIA series are E6,
E24, E48, E96, and E192 for tolerances of 20%, 5%, 2%, 1%, and even finer
tolerances, respectively.

Variable Resistors
The resistance of a variable resistor is not fixed but can vary with some other
quantity. Examples of variable resistors are a photoresistor and a thermistor, in which
the resistance varies with light intensity and temperature, respectively. Many useful
sensors are based upon variable resistors.

Figure 1.46 shows a simple loop with a voltage source, a variable resistor R, and
a fixed resistor R0. Apply KVL around the loop:



Figure 1.46 A variable resistor R in a series loop

Solve for i and substitute for it in the above equation:
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Now assume that the variable resistor has a range from 0Ω to some value Rmax that is
much larger than R0. When R = 0:

When :

Thus, as R varies from 0 to , υ0 varies from υS to 0. The changes in R can be
observed as changes in υ0. Imagine that the variable resistor in Figure 1.46 is a
photoresistor, such as a cadmium sulfide (CdS) cell shown in Figure 1.47(a), that has
a very small resistance when the incident light intensity is bright and has a very large
resistance when the incident light intensity is dim or dark. The result is that under
bright conditions, , while under dark conditions, . A nightlight, such as
that shown in Figure 1.47(b), is a device that turns on when  and turns off
when , where  is some appropriate reference voltage, such as υS/2.



Figure 1.47 (a) A typical cadmium sulfide (CdS) cell. (b) A nightlight
relies on a CdS cell to detect dark conditions. (Jim Kearns)

Figure 1.48 shows a typical thermistor, which can be used in exactly the same
manner as a CdS cell but which responds to changes in temperature.

Figure 1.48 A typical negative temperature coefficient (NTC) thermistor
(Jim Kearns)

Potentiometers
A potentiometer is a three-terminal device. Figure 1.49 depicts a potentiometer and
its circuit symbol. A potentiometer has a fixed resistance R0, typically formed by a
tightly wound coil of wire, between terminals A and C. Terminal B is connected to a
wiper that slides along the coil as the knob is turned. The arrow in the circuit symbol
represents the position of the slider along the length of the coil R0. The resistance
from terminal B to the other two terminals is determined by the wiper position. As



RBA increases, RBC decreases, and vice versa, such that the sum RBA + RBC always
equals R0.

Figure 1.49 A potentiometer is a three-terminal resistive device with a
fixed resistance R0 between terminals A and C. The resistances between
terminal B (the “wiper”) and the other two terminals is set by the knob.

Figure 1.50(a) illustrates the use of a potentiometer symbol in a simple circuit.
Figure 1.50(b) is an equivalent representation of the circuit, where the resistance
between terminals A and B and that between terminals B and C are depicted as
discrete resistors.

Figure 1.50 (a) A potentiometer in a simple circuit; (b) an equivalent
circuit of (a), where 

The ideal voltmeter reading υbc can be calculated in a manner similar to that used
in the preceding section on variable resistors. Apply KVL around the loop Page
35containing the voltage source and the two discrete resistors, using Ohm’s law to
express the change in voltage across each resistor. The result is



(1.15)

This important result for two resistors in series is an example of voltage division.
When the wiper is turned all the way to terminal C, RBC = 0 and so υBC = 0. When
the wiper is turned all the way to terminal A, RAB = 0 and so υBC = υS. In general, as
the wiper is turned from terminal A to terminal C, the voltage across terminals B and
C falls continuously from υS to 0.

Power Dissipation in Resistors
All discrete resistors have a power rating, which is not designated by a color band,
but which tends to scale with the size of the resistor itself. Larger resistors typically
have a larger power rating. The power consumed or dissipated by a resistor R is

Figure 1.51 A typical  potentiometer and its internal construction (Jim
Kearns)

Remember that the voltage υ and the current i are defined and linked by the passive
sign convention and that power consumed by an element is positive. In the case of
resistors, power is always positive and energy is dissipated as heat. The implication is
that if the current through (or the voltage across) a resistor is too large, the power will
exceed the resistor’s rating and result in a smoking and/or burning resistor! The smell
of an overheating resistor is well known to technicians and hobbyists alike.

Positive power is power dissipated (i.e., consumed) by an element.



EXAMPLE 1.12 Using Resistor Power Ratings
Problem
For a given voltage across a resistor, determine the minimum allowed resistance for a

 power rating.

Solution
Known Quantities: Resistor power rating 0.25 W. Voltages due to a battery across
the resistor: 1.5 V and 3 V.
Find: The minimum allowed resistance for a  resistor.
Schematics, Diagrams, Circuits, and Given Data: Figures 1.52 and 1.53.

Figure 1.52

Figure 1.53

Analysis: The power dissipated by a resistor is
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Setting PR equal to the resistor power rating yields , or . For a
1.5-V battery, the minimum size resistor will be R = 1.52/0.25 = 9Ω. For a 3-V
battery, the minimum size resistor will be R = 32/0.25 = 36 Ω.



1.

2.

Comments: Sizing resistors on the basis of power rating is very important since, in
practice, resistors eventually fail when the power rating is exceeded. Notice that the
minimum resistor size was quadrupled when the voltage was doubled. This result
reflects the fact that power increases with the square of the voltage. Also notice that
the power dissipated for the 3 -V battery is four times the power dissipated for the
1.5 -V battery. In other words, the power dissipated by R in Figure 1.53 cannot be
computed by assuming that each of the two 1.5 -V batteries supplies the same
amount of power as the single 1.5 -V battery in Figure 1.52. In fact, each battery in
Figure 1.53 supplies twice as much power as the single battery in Figure 1.52. In
mathematical terms, power is not linear.

CHECK YOUR UNDERSTANDING
A typical three-terminal electronic power supply (see the first illustration) provides
±12 V, such that the change in voltage from terminal C to B is +12 V and that from
terminals B to A is also +12 V. What is the minimum size (value) of a  resistor
placed across terminals A and C? (Hint: The voltage from terminal C to A is +24 V.)

The single loop circuit in the illustration on the right contains a battery, a resistor,
and an unknown circuit element.

If the voltage Vbatter is 1.45 V and i = 5 mA, find the power supplied to or by the
battery.
Repeat part 1 if i = −2 mA.



The battery in the triple mesh circuit shown below supplies power to resistors R1, R2,
and R3. Use KCL to determine the current iB, and find the power supplied by the
battery if .

Page 37

MAKE THE CONNECTION

Thermal Systems
An analogy between electric circuits and thermal systems is often helpful for
understanding both subjects. For example, the heat transfer that occurs when a heat-
treated engine crankshaft is rapidly cooled (“quenched”) in water has a useful
“lumped parameter” model that is analogous to an electric circuit. This analogy
includes the representation of two modes of heat transfer, conduction and convection,
as electrical resistances, and the representation of the high-temperature crankshaft
conducting heat to the surrounding water bath as a one-port network attached to a
load. In this model, the temperature difference between the crankshaft and the



ambient water bath is analogous to a voltage difference (i.e., voltage source). Further,
the heat transfer from crankshaft to water bath is analogous to an electric current
from one terminal of a voltage source to the other. Finally, the lumped thermal
conductivity of the crankshaft is analogous to the inverse of a Thevenin resistance
while the convective heat transfer per degree of temperature difference at the surface
of the crankshaft (h A) is analogous to an inverse load resistance.

The table below illustrates the analogy between various parameters and variables
involved in this cooling process. As mentioned above, the difference in electrical
potential across two nodes is analogous to the temperature difference between two
bodies or surfaces. The second law of thermodynamics requires thermal energy to
flow from high to low temperatures, unless external work is done to reverse the flow.
Likewise, charge must flow from high to low electric potential, unless external work
is done to reverse the flow. Heat is the rate at which thermal energy flows, just as
current is the rate at which charge flows. Thus, heat transfer is analogous to current.

In general, heat transfer occurs in three different modes: conduction, convection,
and radiation. For simplicity, only the first two are considered below.

Thermal Resistance
Again, consider a heat-treated engine crankshaft that is to be quenched in a water
bath at ambient temperature (see the figure below). Thermal energy at high
temperatures flows from within the shaft to its surface, and then from the shaft
surface to the water. This process continues until the shaft temperature approaches
the water temperature.

The heat-transfer mechanism within the crankshaft itself is known as conduction,
which occurs whenever there is a temperature gradient within a material body. Recall
that temperature is the macroscopic expression of microscopic thermal vibrations. In
conducting materials, such as metals, thermal energy is conveyed through the
material by lattice vibrations and by conduction band electrons that are free to roam
within the material matrix. These are the same electrons that account for the electric
current in conductors. Their mobility is the principal contributor to the heat-transfer
conduction coefficient k and the analogous electrical property of resistivity ρ.



The heat-transfer mechanism at the surface of the crankshaft is known as
convection, which occurs whenever there is fluid present to sweep away thermal
energy at the surface of a body. Convection can be either forced (bulk fluid flow
driven by some external means) or free (bulk fluid flow due to density gradients
brought about by temperature gradients). In general, heat transfer to the fluid
increases with fluid flow although the details of the fluid mechanics is often quite
complicated. In a quenching process with large temperature gradients between a
body and a fluid, free convection due to boiling can dominate the heat-transfer load
seen by the body. The convective heat transfer between the shaft and the water bath
is dependent on the product of the shared surface area between the shaft and the
water bath A and the convective heat transfer coefficient h.
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Thermal Circuit Model
The conduction resistance of the shaft is described by the following equation:



where A1 is a cross sectional area and L is the distance from the inner core to the
surface. The convection resistance is described by a similar equation, in which heat
flow is described by the convective heat-transfer coefficient, h:

where A2 is the surface area of the shaft in contact with the water. The equivalent
thermal resistance and the overall circuit model of the crankshaft quenching process
are shown in the figures below.

The following two figures represent the thermal resistance of the quenching
process as the series summation of two analogous electrical resistances, Rcond and
Rconv, and an analogous equivalent electric circuit representation of the quenching
process itself.

1.7 THE NODE VOLTAGE METHOD
The node voltage method and the mesh current method are powerful
computational tools for calculating voltages and currents in electrical circuits.
Although relatively straightforward, these methods require practice to apply
correctly. When applied to linear networks, both methods yield a system of linearly
independent equations that can be solved easily by a computer. However, the
methods themselves offer little insight to the fundamental nature and characteristics
of an electrical network. Such insight, which is essential when attempting to modify
or design a network, must be acquired through a careful and thoughtful examination
of the data generated by these methods. Little learning of any importance will occur
simply by applying these methods. The following quote by R.W. Hamming is well
worth keeping in mind.



R.W. Hamming (IEEE, Inc.)

“The purpose of computation is insight, not numbers.”
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The node voltage method (also known as nodal analysis) is based on defining
the voltage at each node as an independent variable. One of the nodes is freely
chosen as a reference node. Ohm’s law is used to express resistor currents in terms
of node voltages, such that each branch current is expressed in terms of one or more
node voltages. Finally, KCL is applied to each non-reference node. Figures 1.54 and
1.55 illustrate how to apply Ohm’s law and KCL in this method.

Figure 1.54 Branch current formulation in node analysis

Figure 1.55 Use of KCL in node analysis



(1.16)

(1.17)

(1.18)

(1.19)

(1.20)

Once each branch current is defined in terms of the node voltages, Kirchhoff’s
current law is applied at each node:

Consider the circuit shown in Figure 1.56. The directions of currents i1, i2, and
i3may be selected arbitrarily; however, it is often helpful to select directions that
conform with one’s expectations. In this case, iS is directed into node a and so one
might guess that i1 and i2 should be directed out of that same node. Application of
KCL at node a yields

Figure 1.56 Illustration of node analysis
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whereas at node b

It is not necessary nor appropriate to apply KCL at the reference node since the
resulting equation is dependent on the other two.

The branch currents in equations 1.17 and 1.18 can be expressed in terms of the
node voltages using Ohm’s law. For example:

Similarly, for the other two branch currents



(1.21)

(1.22)

(1.23)

1.

2.
•

where υc is the reference node voltage, freely chosen to be zero. These expressions
for i1, i2, and i3 can be substituted into equations 1.17 and 1.18 to obtain:

With a little practice, equations 1.21 and 1.22 can be obtained directly without
introducing branch current variables. These equations can be reorganized and solved
for υa and υb, assuming that iS, R1, R2, and R3 are known.

Occasionally, it is helpful to redraw circuits in an equivalent but non-rectangular
manner by viewing the circuit as a collection of circuit elements located between
nodes. The right-hand portion of Figure 1.56 is constructed by drawing three node
circles and then adding in the elements that sit between each pair of nodes. To
successfully redraw a circuit it is imperative that the correct number of nodes is
known. Thus, it is worthwhile to practice recognizing and counting nodes!
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F O C U S  O N  P R O B L E M  S O LV I N G

THE NODE VOLTAGE METHOD
Select a reference node. If the circuit has one or more voltage sources choose
node that is attached to the largest number of voltage sources as the refere
The voltage associated with each non-reference node will be relative to
reference node, which is (for simplicity) assigned a value of 0 V.
Define voltage variables  for the remaining n − 1 nodes.

If the circuit contains m voltage sources, each of which is adjacent to a n
with a known voltage (e.g., the reference node), the voltages at the o



•

3.
•

•

•

4.

adjacent nodes are known. Mark them as known.

If the circuit contains ℓ  additional voltage sources not adjacent to a n
with a known voltage, create a “supernode” to enclose the nodes on b
sides of those voltage sources.

To generate n − m − 1 equations in the n − m − 1 unknown node voltages . . .

Apply KCL to each of the  nodes that are not part o
supernode.

Apply KCL to each of the ℓ supernodes.

Use the ℓ  supernode voltage sources to write ℓ  equations relating the
unknown supernode voltages.

Collect coefficients for each of the n − m − 1 variables and solve the li
system of n − m − 1 equations.

This procedure can be used to find a solution for any circuit. A good approach i
first practice solving circuits without any voltage sources and then learn to deal w
the added complexity of circuits with voltage sources.

EXAMPLE 1.13 Node Voltage Method: Solving for Branch Currents
Problem
Solve for the node voltages and the branch currents in the circuit of Figure 1.57.

Figure 1.57

Solution
Given: Source currents, resistor values.
Find: All node voltages and branch currents.



1.

2.

3.

4.
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Schematics, Diagrams, Circuits, and Given Data: i1 = 10 mA; i2 = 50 mA; R1 = 1
kΩ; R2 = 2 kΩ; R3 = 10 kΩ; R4 = 2 kΩ.

Analysis: Follow the steps outlined in the Focus on Problem Solving box “Node
Voltage Method.”

The node at the bottom of the circuit is chosen as the reference. There are no
voltage sources in the circuit and each node is attached to four elements so any
node would serve equally well as the reference.
The circuit of Figure 1.57 is shown again in Figure 1.58, with two non-reference
nodes and the associated node voltage variables υ1 and υ2.
Apply KCL at each node and use Ohm’s law to express branch currents in terms
of node voltages to obtain:

Collect coefficients and reorganize the equations. Note that each resistance is
given as kΩ and each current is given as mA so each voltage has the unit V.

With some manipulation, the equations can be expressed as follows:

These equations may be solved simultaneously to obtain

Knowing the node voltages, each branch current can be determined. For
example, the current through R3 (the 10-kΩ resistor) is given by



The positive value for iR3 indicates that the initial (arbitrary) choice of direction
for this current is the same as its actual direction. Consider the current through
R1:

Here, the value is negative, which indicates that the actual direction of this
current is from ground to node 1, opposite of what was assumed, but as it must
be, since the voltage at node 1 is negative with respect to ground. The branch-
by-branch analysis may be continued to verify that  and .

Figure 1.58
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EXAMPLE 1.14 Node Analysis: Solving for Node Voltages
Problem
Write the node equations and solve for the node voltages in the circuit of Figure 1.59.



1.

2.

3.

4.

Figure 1.59

Solution
Given: Source currents, resistor values.
Find: All node voltages.
Schematics, Diagrams, Circuits, and Given Data: 

Analysis: Follow the steps outlined in the Focus on Problem Solving box “Node
Voltage Method.”

The bottom node is connected to more elements than either of the other two
nodes so it is chosen as the reference node.
See Figure 1.60. There are two non-reference nodes, labeled υa and υb, in the
circuit. There are no voltage sources in the circuit.

Figure 1.60

Apply KCL at each node and use Ohm’s law to express branch currents in terms
of node voltages to obtain:

Collect coefficients and reorganize the equations. Note that each resistance is
given as kΩ and each current is given as mA so each voltage has the unit V.



Numerical values can be plugged into these equations to find:

Multiply the second equation by  and add the result to the first equation to find 
. Plug υb into either equation to find .

EXAMPLE 1.15 Using MatLab® to Solve a 3 × 3 System of Linear
Equations
Problem
Use the node voltage analysis to determine the voltage υ in the circuit of Figure 1.61.
Assume that R1 = 2Ω, R2 = 1Ω, R3 = 4Ω, R4 = 3Ω, i1 = 2 A, and i2 = 3 A.
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Figure 1.61 Circuit for Example 1.15

Solution
Given: Values of the resistors and the current sources.
Find: Voltage across R3.

Analysis: Refer to Figure 1.61 and the steps in the Focus on Problem Solving box
“Node Voltage Method.”



1.

2.
3.

4.

Select one node as the reference and label it. There are no voltage sources in the
circuit and each node is attached to three elements so any node would serve
equally well as the reference.
Define node voltages υ1, υ2, υ3 for the three non-reference nodes.
Apply KCL at each of the n − 1 nodes, using Ohm’s law to express the current
through a resistor as the difference between the two adjacent node voltages
divided by the resistance.

Collect the coefficients of each node voltage and reorganize the equations.

Multiply both sides of each equation by the common denominator on the left
side. The common denominators are R1R2 for node 1, R2R3 for node 2, and R1R4
for node 3. Plug in values for the resistors and current sources.

By including zero coefficients explicitly, all three voltage variables are now
present in each equation. The resulting system of three equations in three
unknowns can be solved by many handheld calculators. An alternative is Matlab.
To solve using Matlab it is necessary to write the equations in matrix form.

In general, these equations can be written using compact notation as
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where x is a 3 × 1 column vector whose elements are the node voltages υ1, υ2, and υ3.
In Matlab the 3 × 3 A matrix and the 3 × 1 b column vector are entered as shown in
Figure 1.62.

Figure 1.62 Typical Matlab command window. User-entered data follows
the ≫ prompt. Note that Matlab is case sensitive, as shown at the fourth
prompt. (The MathWorks, Inc.)

The apostrophe at the far right of the above equation is the Matlab transpose
operator. It is used here to change a 1 × 3 row matrix into a 3 × 1 column vector. The
solution for x is computed in Matlab by writing x = A\b to yield



which are the three node voltages . The solution for the voltage drop υ
across R3 is
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CHECK YOUR UNDERSTANDING
Find io and υx in the circuits on the left and right, respectively, using the node voltage
method.

CHECK YOUR UNDERSTANDING
In Example 1.14, use the two node voltages to verify that KCL is indeed satisfied at
each node.

CHECK YOUR UNDERSTANDING
Repeat Example 1.15 when the directions of the current sources are opposite those
shown in Figure 1.61. Find υ.

Answer: 0.2857 A; −18 V

Answer: υ = 0.4 V



(1.24a)

(1.24b)

(1.25)

The Node Voltage Method with Voltage Sources
The circuits in the preceding examples did not contain voltage sources. However, in
practice, they are quite common. To illustrate how the node voltage method is
applied to such circuits, consider the circuit in Figure 1.63. Verify that this circuit has
n = 4 total nodes.

Figure 1.63 Node analysis with voltage sources

When voltage sources are present, it is advantageous to pick the reference node
so that at least one of those voltage sources is attached to it. In Figure 1.63, the
reference node, denoted by the ground symbol, is assumed to have a value of 0 V.

The remaining three (4 − 1 = 3) node voltages are labeled υa, υb, and υC as shown
Figure 1.63. Since node υa is adjacent to the voltage source its value υa = VS is known
relative to the reference node. The only two unknown node voltages are υb and υc.
Apply KCL at those two nodes.

At node b:
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At node c:

Substitute for υa in equation 1.24a.



(1.26)

1.

2.

Finally, collect the coefficients of the two unknown node voltages.

The resulting system of two equations in two unknowns can now be solved.

EXAMPLE 1.16 Solution when a Voltage Source Is Not Adjacent to the
Reference Node
Problem
Use the Node Voltage Method to determine the node voltages and the current i
through the voltage source υS2 in the circuit of Figure 1.64. Assume that R1 = 2Ω,R2
= 2Ω,R3 = 4Ω,R4 = 3Ω, υS1 = 2 V, and υS2 = 3 V.

Figure 1.64 Circuit for Example 1.16

Solution
Given: Resistance values; current and voltage source values.
Find: The current i through the voltage source.
Analysis: Refer to Figure 1.64 and the steps in the Focus on Problem Solving box
“Node Voltage Method.”

Select a reference node and label it. There are two (m = 2) voltage sources in the
circuit. Each node is attached to one voltage source and two resistors so any
node would serve equally well as the reference.
Define three non-reference node voltages υ1, υ2, and υ3. The voltage source  is
adjacent to a node with a known voltage. (The reference node voltage is freely
chosen to be zero.) Node υ1 is the other node adjacent to that voltage source.



3.

4.

Thus, υ1 = υS1 + 0 = υS1 is known relative to the reference node. The only two
unknown node voltages are υ2 and υ3.
The voltage source υS2 is not adjacent to a node with a known voltage. Create a
“supernode” enclosing υS2 and the nodes υ2 and υ3 as shown in Figure 1.65.

Figure 1.65 Circuit for Example 1.16 with “supernode”

Assume all currents are entering the supernode and apply KCL.

Use the voltage source υS2 to relate the two unknown node voltages υ2 and υ3.
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Collect coefficients of the unknown node voltages and substitute values for the
known parameters.

This system of two equations in two unknowns can be solved analytically by
multiplying the second equation by 9 and adding the result to the first equation
to eliminate υ2. The result is

Use this result to find υ2.

Apply KCL at node υ3 to find current i through the voltage source υS2.



Comments: Knowing all three node voltages, the current through each resistor can be
computed as follows:  (to left),  (to right), 
(upward), and  (downward).

CHECK YOUR UNDERSTANDING
Repeat the exercise of Example 1.16 when the direction of the voltage source υS1 is
opposite that shown in Figure 1.64. Find the node voltages and i.

1.8 THE MESH CURRENT METHOD
Another method of circuit analysis employs mesh currents. The objective, similar to
that of the node voltage method, is to generate a system of n linearly independent
equations in n unknown mesh currents. In this method, each mesh in a circuit is
assigned a mesh current and Kirchhoff’s voltage law (KVL) is applied around each
mesh.

It is important to recall that mesh currents are not the same as branch currents.
The perspective taken in the mesh current method is that there is one current
circulating within each mesh and that branch currents in the circuit are comprised of
these mesh currents. Specifically, when a branch is part of only one mesh, the branch
current is the same as that mesh current. However, when a branch is shared by two
meshes, the branch current is the sum or difference of the two mesh currents.

In the mesh current method it is necessary to assume a direction for the
circulation of each mesh current. A helpful convention is to assume that all mesh
currents circulate in the clockwise (CW) direction. With this convention, when a
branch is shared by two meshes, the branch current is equal to the difference of two
mesh currents. This result is illustrated in Figure 1.66 where Page 49the current
through resistor R2 is the difference of i1 and i2 since i1 and i2 are oppositely directed
through R2.

Answer: υ1 = −2 V, υ2 ≈ −2.84 V, υ3 ≈ 0.16 V, and i ≈ 1.13 A



(1.27)

(1.28)

(1.29)

Figure 1.66 Two meshes and two mesh currents

It is helpful to apply KVL around a mesh in the same direction (e.g., CW) used to
define the mesh current. Ohm’s law implies that the net current through a resistor is
directed from high to low voltage, as shown in Figure 1.67. Thus, when KVL is
applied to mesh i1 in Figure 1.68 the resulting Ohm’s law expressions are

and

Figure 1.67 Ohm’s law implies that current is directed from high (+) to
low (−) potential

Figure 1.68 Assignment of currents and voltages around mesh 1

Notice that the net current through R2 in the direction of mesh current i1 is (i1 − i2).

Thus, the KVL equation for mesh i1 is



(1.30)

(1.31)

(1.32)

When KVL is applied to mesh i2, the result (see Figure 1.69) is

Figure 1.69 Assignment of voltages around mesh 2

Multiply both sides of the mesh 2 equation by −1. Then, collect coefficients of i1
and i2 in each equation to yield the following system of equations:

These two equations can be solved simultaneously for the two independent mesh
current variables i1 and i2. The branch current through R2 can then be found as well.
If the resulting numerical answer for a mesh current is negative, then the actual
direction for that mesh current is opposite of the defined direction. A careful
determination of the voltage drops around each mesh, one mesh at a time, and in
accord with the passive sign convention for Ohm’s law, is necessary for success.

F O C U S  O N  P R O B L E M  S O LV I N G

THE MESH CURRENT METHOD



1.

2.

•

•

3.

4.

5.

6.

7.

•

8.

Choose a circulation convention (either CW or CCW) for the mesh currents 
KVL.
Define mesh current variables i1, i2, …, in for each of the n meshes.

If the circuit contains no current sources, apply KVL around each mes
generate n independent KVL equations in the n mesh current variab
Jump ahead to step 7.

If the circuit contains m current sources, there will be n − m KVL equat
and m current source equations. Proceed to step 3.
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If there are ℓ  meshes that contain no current source, apply KVL around e
such mesh to generate ℓ KVL equations. Use Ohm’s law to express each res
voltage drop in terms of the mesh currents.
Generate one current source equation ij = ±iS for each current source iS 
borders only one mesh, where ij is the mesh current.
Generate one current source equation ij − ik = ±iS for each current source iS 
borders two meshes, where ij and ik are the two mesh currents.
Define n − m − ℓ  “supermeshes” such that each current source is conta
within a supermesh but is not on the boundary of a supermesh. Apply K
around each supermesh to generate n − m − ℓ  additional KVL equations. 
Ohm’s law to express each resistor voltage drop in terms of the adjacent m
currents.
Collect coefficients for each of the n variables and solve the linear system 
equations.

Each current source equation ij = ±iS can be used to reduce the total num
of equations and variables by direct substitution.

Use the known mesh currents to solve for any or all branch currents in
circuit. Any voltage drop can be found by applying Ohm’s law and, w
necessary, KVL.

EXAMPLE 1.17 The Mesh Current Method: Solving for Mesh
Currents in a Circuit with Two Meshes
Problem



1.
2.

3.

4.

Find the mesh currents in the circuit of Figure 1.70.

Figure 1.70

Solution
Given: Source voltages; resistor values.
Find: The Mesh currents.
Schematics, Diagrams, Circuits, and Given Data: 

Page 51

Analysis: Refer to Figures 1.70 and 1.71 and the steps in the Focus on Problem
Solving box “The Mesh Current Method.”

Select a clockwise circulation convention.
Note that there are two meshes in the circuit and define clockwise mesh current
variables i1 and i2. There are no current sources in the circuit.
Apply KVL to each mesh and use Ohm’s law to express each resistor voltage
drop in terms of the mesh currents to generate two equations.

Collect coefficients and enter parameter values to yield the following system of
linear equations:

Multiply the mesh 1 equation by 2 and add the result to the mesh 2 equation to
find i1. Substitute for i1 in either equation to find i2. The results are



Figure 1.71

EXAMPLE 1.18 The Mesh Current Method: Using MatLab to Solve
for Mesh Currents in a Circuit with Three Meshes
Problem
The circuit of Figure 1.72 is a simplified DC circuit model of a three-wire electrical
distribution service to residential and commercial buildings. The two ideal sources
and the resistances R4 and R5 represent the equivalent network of the distribution
system; R1 and R2 represent 110-V lighting and utility loads rated at 800 and 300 W,
respectively. Resistance R3 represents a 220-V heating load rated at 3 kW. Determine
the voltages across the three loads.

Figure 1.72

Solution



1.
2.

3.

4.

Given: The values of the voltage sources and resistors in the circuit of Figure 1.72
are .
Find: i1, i2, i3, υa and υb.

Analysis: Refer to Figure 1.72 and the steps in the Focus on Problem Solving box
“The Mesh Current Method.”

Select a clockwise circulation convention.
Note that there are three meshes in the circuit and define clockwise mesh current
variables i1, i2, and i3 as shown in Figure 1.72. There are no current sources in
the circuit.
Apply KVL to each mesh and use Ohm’s law to represent the voltage drop
across each resistor in terms of the mesh currents directly.
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Collect coefficients to obtain the following system of three equations in three
unknown mesh currents.

Enter numerical values for the parameters and express the equations in matrix
form.

This form can be more simply represented as the product of a resistance matrix
[R] and a mesh current vector [I] set equal to a voltage source vector [V].

with a solution of

The solution for the mesh current vector can be found using an analytic or
numerical technique. In this problem, Matlab was used to compute the inverse



[R]−1 of the 3 × 3 [R] matrix.

The value of each mesh current is now determined.

Therefore, we find

The two unknown node voltages Va and Vb are easily calculated using Ohm’s
law and the mesh currents. Notice the passive sign convention used in the
following calculations!

The values of the node voltages υa and υb are relative to the reference node.
Verify that KVL holds for each mesh to check your understanding.

Comments: The inverse matrix computation is numerically inefficient compared to
the Matlab left division computation used in Example 1.15.
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CHECK YOUR UNDERSTANDING
Use the mesh current method to find the unknown voltage υx in the circuit on the left.



•

•

•

(1.33)

Use the mesh current method to find the unknown current ix in the circuit on the
right.

CHECK YOUR UNDERSTANDING
Repeat the exercise of Example 1.18, using the Node Voltage Method instead of the
Mesh Current Method.

The Mesh Current Method with Current Sources
The circuits in the preceding examples contained no current sources. However, it is
common, in practice, to encounter current sources in circuits. The relevant steps
found in the Focus on Problem Solving section are listed below with added
comments.

Step 1: Choose a circulation convention (either CW or CCW) for the mesh currents
and KVL.

In this book all mesh currents are chosen to have a clockwise orientation.

Step 2: Define mesh current variables i1i2,…,in for each of the n meshes. If the circuit
contains m current sources, there will be n   −   m KVL equations and m current
source equations.

There are two meshes in the circuit shown in Figure 1.73. Notice that n = 2
and m = 1 such that there will be 1 KVL equation and 1 current source
equation. Two mesh currents are defined as i1 and i2.

Step 3: If there are ℓ meshes that contain no current source, apply KVL around each
such mesh to generate ℓ  KVL equations. Use Ohm’s law to express each resistor
voltage drop in terms of the mesh currents.

In Figure 1.73 only the i1 mesh does not contain a current source, so ℓ = 1.
Apply KVL around that mesh.

Answer: 5 V; 2 A



•

(1.34)

•

•

•

(1.35)
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Figure 1.73 Mesh analysis with current sources

Step 4: Generate one current source equation  for each current source iS that
borders only one mesh, where ij is the mesh current.

In Figure 1.73, the i2 mesh contains a current source that does not also
border mesh i1. Thus:

Step 5: Generate one current source equation  for each current source iS
that borders two meshes, where ij and ik are the two mesh currents.

There are no current sources in Figure 1.73 that border two meshes.

Step 6: Define n − m − ℓ independent “supermeshes” such that each current source
is contained within a supermesh but is not on the boundary of a supermesh. Apply
KVL around each supermesh to generate n − m − ℓ  additional independent KVL
equations. Use Ohm’s law to express each resistor voltage drop in terms of the
adjacent mesh currents.

There is no need for a supermesh in the circuit shown in Figure 1.73 since n
− m − ℓ  = 0. In other words, there are already two linearly independent
equations for the two mesh currents i1 and i2.

Step 7: Collect coefficients for each of the n variables and solve the linear system of
n equations. Each current source equation  can be used to reduce the total
number of equations and variables by direct substitution.

Use equation 1.34 to substitute for i2 in equation 1.33. The result is



•

Step 8: Use the known mesh currents to solve for any or all branch currents in the
circuit. Any voltage drop can be found by applying Ohm’s law and, when necessary,
KVL.

For the circuit in Figure 1.73, the current through R1 is i1 and the current
through R3 is iS. The current through R2 is i1 − i2. The change in voltage
across the current source is given by KVL as:

EXAMPLE 1.19 Mesh Analysis: Three Meshes and One Current
Source
Problem
Find the mesh currents in the circuit of Figure 1.74.

Solution
Given: Source and resistor values.
Find: Mesh currents.

Page 55

Schematics, Diagrams, Circuits, and Given Data: iS = 0.5 A; υS = 6 V; R1 = 3Ω; R2
= 8Ω; R3 = 6Ω; R4 = 4Ω.

Analysis: Refer to Figure 1.74 and the steps in the Focus on Problem Solving box
“The Mesh Current Method.”

Figure 1.74

Step 1: Choose a circulation convention (either CW or CCW) for the mesh currents
and KVL.



•

•

•

•

•

•

In this book all mesh currents are chosen to have a clockwise orientation.

Step 2: Define mesh current variables i1,i2,…,in for each of the n meshes. If the
circuit contains m current sources, there will be n − m KVL equations and m current
source equations.

There are three meshes and one current source in the circuit shown in Figure
1.74. Thus, n = 3 and m = 1 such that there will be two KVL equations and
one current source equation. Three mesh currents are defined as i1, i2, and i3.

Step 3: If there are ℓ meshes that contain no current source, apply KVL around each
such mesh to generate ℓ  KVL equations. Use Ohm’s law to express each resistor
voltage drop in terms of the adjacent mesh currents.

In Figure 1.74 the i2 and i3 meshes do not contain a current source, so ℓ = 2.
Apply KVL around each of those meshes.

Step 4: Generate one current source equation  for each current source iS that
borders only one mesh, where ij is the mesh current.

In Figure 1.74, the i1 mesh contains a current source that does not also
border the other meshes. Thus:

Step 5: Generate one current source equation  for each current source iS
that borders two meshes, where ij and ik are the two mesh currents.

There are no current sources in Figure 1.74 that border two meshes.

Step 6: Define n − m − ℓ independent “supermeshes” such that each current source
is contained within a supermesh but is not on the boundary of a supermesh. Apply
KVL around each supermesh to generate n − m − ℓ  additional independent KVL
equations. Use Ohm’s law to express each resistor voltage drop in terms of the
adjacent mesh currents.

There is no need for a supermesh in the circuit shown in Figure 1.74 since n
− m − ℓ  = 0. In other words, there are already three linearly independent
equations for the three mesh currents i1, i2, and i3.



•

•

Step 7: Collect coefficients for each of the n variables and solve the linear system of
n equations. Each current source equation ij = ± iS can be used to reduce the total
number of equations and variables by direct substitution.

Use the mesh 1 equation to substitute for i1 in the mesh 2 and 3 equations.
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Step 8: Use the known mesh currents to solve for any or all branch currents in the
circuit. Any voltage drop can be found by applying Ohm’s law and, when necessary,
KVL.

For the circuit in Figure 1.74, the current through R1 is i1 − i3 and the current
through R2 is i1 − i2. The current through R3 is i2 − i3 and the current through
R4 is i3. The change in voltage across the current source is given by KVL as:

CHECK YOUR UNDERSTANDING
Use the mesh currents to find the branch currents in Example 1.19. Apply KCL at
each node to validate.

1.9 THE NODE VOLTAGE AND MESH CURRENT
METHODS WITH DEPENDENT SOURCES
When a dependent source is present in a circuit, node or mesh equations can be
written by treating it in the same manner as an independent source. The value of the
dependent source may appear in circuit diagrams as an additional unknown variable.
In this case, the dependence upon another current or voltage in the circuit is
expressed by a constraint equation. Typically, the constraint equation is simple and
can be directly substituted into the node or mesh equations to eliminate the unknown
source variable.

Consider, for example, the circuit of Figure 1.75, which is a simplified model of
an amplifier based upon a bipolar junction transistor. This circuit has three meshes



(1.36)

(1.37)

(1.38)

(1.39)

(1.40)

and three nodes, including the reference node. Therefore, node analysis will yield
two equations for two unknown node voltages. Mesh analysis will also yield only
two equations for two unknown mesh currents because the left-most mesh current is
determined by iS. Furthermore, notice that the right-most mesh current is determined
by βib. Let’s try both approaches.

Figure 1.75 Circuit with dependent source

Apply the Mesh Current method and label each mesh i1, i2, and i3 from left to
right, such that
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KVL around mesh 2 yields:

which can be solved directly for i2.

This equation is simply the result given by current division at node 1. Finally,

The value of the dependent current source βib is explicit in the circuit diagram. Thus,
there is no need for a separate constraint equation.

The Node Voltage method can also be used to solve this problem. Apply KCL at
node υ1.



(1.41)

(1.42)

(1.43)

Apply KCL at node υ2.

where, by current division,

Finally, the result is:

EXAMPLE 1.20 The Node Voltage Method with Dependent Sources
Problem
Find the node voltages in the circuit of Figure 1.76.

Figure 1.76

Solution
Given: Source current; resistor values; dependent voltage source constraint equation.
Find: Unknown node voltage υ2.

Schematics, Diagrams, Circuits, and Given Data: iS = 0.5 A; R1 = 5Ω; R2 = 2Ω; R3
= 4Ω. Dependent source constraint equation: υ1 = 2υ3.
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1.

2.

3.

4.

Analysis: Refer to Figure 1.76 and the steps in the Focus on Problem Solving box
“The Node Voltage Method.”

There are four nodes in the circuit. Select the bottom node of the circuit as the
reference node.
Label the three non-reference nodes with node voltages υ1, υ2 and υ3. The
dependent voltage source sets the node voltage υ1 equal to 2υ3. As a result,
consider υ1 determined (known) and so do not apply KCL at that node.
Apply KCL at nodes υ2 and υ3. Use Ohm’s law to represent branch currents in
terms of node voltages.

The constraint equation υ1 = 2υ3 can be used to substitute for υ1 in the node υ2
equation.
Collect coefficients of υ2 and υ3.

Enter numerical values to obtain

Multiply the second equation by 7/5 and subtract the result from the first
equation to find υ3 = 10/3 = 3.33 V. Substitute this value into either of the
previous equations to find υ2 = 5. Finally, υ1 = 2υ3 = 6.66 V.

EXAMPLE 1.21 The Mesh Current Method with a Dependent Source
Problem
Determine the voltage gain Gυ = υ2/υ1 in the circuit of Figure 1.77.



•

•

•

Figure 1.77 Circuit containing dependent voltage source
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Solution
Given: The values of the resistors are R1 = 1Ω; R2 = 0.5Ω; R3 = 0.25Ω; R4 = 0.25Ω;
R5 = 0.25Ω.

Find: Gυ = υ2/υ1.

Analysis: Refer to Figure 1.77 and the steps in the Focus on Problem Solving box
“The Mesh Current Method” to find υ2 in terms of υ1.

Step 1: Choose a circulation convention (either CW or CCW) for the mesh currents
and KVL.

In this book all mesh currents are chosen to have a clockwise orientation.

Step 2: Define mesh current variables i1,i2,…,in for each of the n meshes. If the
circuit contains m current sources, there will be n − m KVL equations and m current
source equations.

There are three meshes in the circuit shown in Figure 1.77. Notice that n = 3
and m = 0 such that there will be 3 KVL equations and no current source
equation. Three mesh currents are defined as i1, i2, and i3.

Step 3: If there are ℓ meshes that contain no current source, apply KVL around each
such mesh to generate ℓ  KVL equations. Use Ohm’s law to express each resistor
voltage drop in terms of the adjacent mesh currents.

Since there are no current sources in the circuit of Figure 1.77, ℓ = 3. Apply
KVL around each mesh. Note that Ohm’s law is used to express the voltage
drop across each resistor.



•

•

•

•

•

Step 4: Generate one current source equation ij = ±iS for each current source iS that
borders only one mesh, where ij is the mesh current. It is important to correctly
account for the direction of the mesh current relative to the current source.

There are no current sources in the circuit shown in Figure 1.77.

Step 5: Generate one current source equation ij − ik = ±iS for each current source iS
that borders two meshes, where ij and ik are the two mesh currents. It is important to
correctly account for the direction of the mesh currents relative to the current source.

There are no current sources in the circuit shown in Figure 1.77.

Step 6: Define n − m − ℓ independent “supermeshes” such that each current source
is contained within a supermesh but is not on the boundary of a supermesh. Apply
KVL around each supermesh to generate n − m − ℓ  additional independent KVL
equations. Use Ohm’s law to express each resistor voltage drop in terms of the
adjacent mesh currents.

There is no need for a supermesh in the circuit shown in Figure 1.77 since n
− m − ℓ  = 0. In other words, there are already three linearly independent
equations for the three mesh currents i1, i2, and i3.
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Step 7: Collect coefficients for each of the n variables and solve the linear system of
n equations. Each current source equation ij = ±iS can be used to reduce the total
number of equations and variables by direct substitution.

The constraint equation for the dependent voltage source is .
Plug in for 2υ in the mesh 2 and 3 equations to rewrite the system of
equations.

This system of equations can be written in matrix form.



•

•

•

•

Enter numerical values for the resistors.

This system can be written in compact linear algebra notation as shown
below, where the indices represent the number of rows and columns. The
solution for i can be computed using the “left division” operator in Matlab

The results are

Step 8: Use the known mesh currents to solve for any or all branch currents in the
circuit. Any voltage drop can be found by applying Ohm’s law and, when necessary,
KVL.

υ2 can be found from i3 by applying Ohm’s law at R5.

Comments: The Matlab commands required to solve this problem are listed below.

Notice that υ1 was set to 1 in the Matlab computation so that G = υ2/υ1 = υ2 = i3R5.
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Remarks on Node Voltage and Mesh Current Methods



The methods of node and mesh analysis find applications beyond resistive circuits
and should be viewed as general techniques for the analysis of any linear circuit.
These methods provide systematic and effective means of obtaining the minimum
number of equations necessary to solve a network problem. Since they are based on
the fundamental laws of circuit analysis, KVL and KCL, they also apply to electric
circuits containing non-linear circuit elements. You should master both methods as
early as possible. Proficiency in these methods will enhance the learning process for
more advanced concepts.

However, proficiency in these methods is not enough to understand and master
circuit behavior. Except in the simplest examples, these methods do not produce
solutions amenable to interpretation, generalization, and abstraction. They do provide
an excellent means of generating useful numerical data. As such, they lend more
insight when used to generate data, for a range of parameter (e.g., a resistor) values,
that can be plotted and interpreted.

CHECK YOUR UNDERSTANDING
Solve Example 1.20 when υ1 = 2iS.

CHECK YOUR UNDERSTANDING
For the figure on the left, assume υx = 3ix and find the voltage υ across the 8-Ω
resistor by node analysis.

For the figure on the right assume υx = 2i12 and find the unknown current ix using the
mesh current method.

Answer: 



1.

2.
3.
4.

5.
6.

7.

8.

9.

1.1

CHECK YOUR UNDERSTANDING
Determine the number of independent equations required to solve Example 1.21
using node analysis. Compare its efficiency in this problem to that of mesh analysis.
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Conclusion
This chapter introduced the fundamentals students need in later chapters in the book
to successfully analyze electric circuits. Upon successful completion of this chapter,
a student will have learned to:

Identify the principal features of electric circuits or networks: nodes, loops,
meshes, and branches. Section 1.1.
Apply definitions of charge, current and voltage. Section 1.2.
Identify sources and their i-υ characteristics. Section 1.3.
Apply the passive sign convention to compute the power consumed or supplied
by circuit elements. Section 1.4.
Apply Kirchhoff’s laws to simple electric circuits. Section 1.5.
Apply Ohm’s law to calculate unknown voltages and currents in simple circuits.
Section 1.6.
Apply the Node Voltage method to solve for unknown voltages and currents in
resistive networks. Section 1.7.
Apply the Mesh Current method to solve for unknown voltages and currents in
resistive networks. Section 1.8.
Apply the Node Voltage and Mesh Current methods to solve for unknown
voltages and currents in resistive networks with dependent sources. Section 1.9.

HOMEWORK PROBLEMS
Section 1.2: Charge, Current and Voltage

A free electron has an initial potential energy per unit charge (voltage) of 17
kJ/C and a velocity of 93 Mm/s. Later, its potential energy per unit charge is 6

Answer: 12 V; 1.39 A



1.2

1.3

a.

b.

1.4

a.

b.

1.5

a.

kJ/C. Determine the change in velocity of the electron.

The units for voltage, current, and resistance are the volt (V), the ampere (A),
and the ohm (Ω), respectively. Express each unit in fundamental MKS units.

A particular fully charged battery can deliver 2.7 ⋅ 106 coulombs of charge.

What is the capacity of the battery in ampere-hours?

How many electrons can be delivered?

The charge cycle shown in Figure P1.4 is an example of a three-rate charge. The
current is held constant at 30 mA for 6 h. Then it is switched to 20 mA for the
next 3 h. Find:

The total charge transferred to the battery.

The energy transferred to the battery.

Hint: Energy 𝑤 is the integral of power, or P = d𝑤/dt.

Figure P1.4

Batteries (e.g., lead-acid batteries) store and release chemical potential energy.
Batteries do not store electric charge. During discharge, electrons exit the
cathode terminal and reenter the battery at the anode terminal having done work
on some external device (e.g., a lightbulb). The chemical energy stored in the
battery is used to replenish the potential energy of those same electrons. It is
convenient to think of positive carriers flowing in the opposite direction, that is,
conventional current, and exiting at a higher voltage. (Benjamin Franklin caused
this mess!) For a battery rated at 12 V and 350 A-h, determine:
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The rated chemical energy stored in the battery.



b.

1.6
a.

b.

1.7

a.

b.

1.8

The total charge that can be supplied at the rated voltage.

What determines:

The current through an ideal voltage source?

The voltage across an ideal current source?

An automotive battery is rated at 120 A-h. This means that under certain test
conditions it can output 1 A at 12 V for 120 h (under other test conditions, the
battery may have other ratings).

How much total energy is stored in the battery?

If the headlights are left on overnight (8 h), how much energy will still be
stored in the battery in the morning? (Assume a 150-W total power rating
for both headlights together.)

A car battery kept in storage in the basement needs recharging. Assume the
voltage and the current provided by the charger during a charge cycle are shown
in Figure P1.8.

Figure P1.8



a.

b.

1.9
a.

b.

c.

1.10

a.

b.

Find the total charge transferred to the battery.

Find the total energy transferred to the battery.

Suppose the current through a wire is given by the curve shown in Figure P1.9.

Find the amount of charge q that flows through the wire between t1 = 0
and t2 = 1 s.

Repeat part a for t2 = 2, 3, 4, 5, 6, 7, 8, 9, and 10 s.

Sketch q (t) for 0 ≤ t ≤ 10s.

Figure P1.9

The charge cycle shown in Figure P1.10 is an example of a two-rate charge. The
current is held constant at 70 mA for 1 h. Then it is switched to 60 mA for the
next 1 h. Find:

The total charge transferred to the battery.

The total energy transferred to the battery.

Hint: Energy 𝑤 is the integral of power, or P = d𝑤/dt. Let



1.11

a.

b.

Figure P1.10
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The charging scheme used in Figure P1.11 is an example of a constant-current
charge cycle. The charger voltage is controlled such that the current into the
battery is held constant at 40 mA, as shown in Figure P1.11. The battery is
charged for 6 h. Find:

The total charge delivered to the battery.

The energy transferred to the battery during the charging cycle.

Hint: Recall that the energy 𝑤 is the integral of power, or P = d𝑤/dt.



1.12

a.

b.

Figure P1.11

The charging scheme used in Figure P1.12 is called a tapered-current charge
cycle. The current starts at the highest level and then decreases with time for the
entire charge cycle, as shown. The battery is charged for 12 h. Find:

The total charge delivered to the battery.

The energy transferred to the battery during the charging cycle.

Hint: Recall that the energy 𝑤 is the integral of power, or P = d𝑤/dt.



1.13

1.14

Figure P1.12

Section 1.4: Power and the Passive Sign Convention
Find the power delivered by the source in Figure P1.13.

Figure P1.13

Find the power delivered by the source in Figure P1.14.
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1.15

1.16

1.17
a.

b.

Figure P1.14

Determine whether each element in Figure P1.15 is supplying or dissipating
power, and how much.

Figure P1.15

In the circuit of Figure P1.16, determine the power absorbed by the resistor R4
and the power delivered by the current source.

Figure P1.16

For the circuit shown in Figure P1.17:

Determine whether each component is absorbing or delivering power.

Is conservation of power satisfied? Explain your answer.



1.18

1.19

Figure P1.17

For the circuit shown in Figure P1.18, determine which components are
supplying power and which are dissipating power. Also determine the amount of
power dissipated and supplied.

Figure P1.18

For the circuit shown in Figure P1.19, determine which components are
supplying power and which are dissipating power. Also determine the amount of
power dissipated and supplied.



1.20
a.

b.

c.

1.21

1.22

Figure P1.19

If an electric heater requires 23 A at 110 V, determine

The power it dissipates as heat or other losses.

The energy dissipated by the heater in a 24-h period.

The cost of the energy if the power company charges at the rate 6
cents/kWh.
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Section 1.5: Kirchhoff’s Laws
For the circuit shown in Figure P1.21, determine the power absorbed by the 5-Ω
resistor. Hint: The voltage across the 5-Ω resistor is 5 V.

Figure P1.21

Use KCL to determine the unknown currents in the circuit of Figure P1.22.
Assume i0 = 2 A and i2 = −7 A.



1.23

1.24

1.25

1.26

Figure P1.22

Use KCL to find the currents i1 and i2 in Figure P1.23. Assume that 
, and .

Figure P1.23

Use KCL to find the currents i1, i2, and i3 in the circuit of Figure P1.24. Assume
that ia = 2 mA, ib = 7 mA, and ic = 4 mA.

Figure P1.24

Use KVL to find the voltages υ1, υ2, and υ3 in Figure P1.25. Assume that υa = 2
V, υb = 4 V, and υc = 5 V.

Figure P1.25

Use KCL to determine the currents i1, i2, i3, and i4 in the circuit of Figure P1.26.
Assume that ia = −2 A, ib = 6 A, ic = 1 A, and id = −A.



1.27

1.28

1.29

1.30

Figure P1.26

Section 1.6: Resistance and Ohm’s Law
In the circuit shown in Figure P1.27, determine the terminal voltage υT of the
source, the power absorbed by Ro, and the efficiency of the circuit. Efficiency is
defined as the ratio of load power to source power.

Figure P1.27

A 24-V automotive battery is connected to two headlights that are in parallel,
similar to that shown in Figure 1.12. Each headlight is intended to be a 75-W
Page 67load; however, one 100-W headlight is mistakenly installed. What is the
resistance of each headlight? What is the total current supplied by the battery?

What is the total current supplied by the battery of Problem 1.28 if two 15-W
tail lights are added (in parallel) to two 75-W headlights?

For the circuit shown in Figure P1.30, determine the power absorbed by the
variable resistor R, ranging from 0 to 30 Ω. Plot the power absorption as a
function of R. Assume that υS = 15V, RS = 10Ω. (Hint: Apply KVL around the
circuit, using Ohm’s law to express the voltage drop across each resistance.)



1.31

a.

b.

c.

d.

1.32

1.33

Figure P1.30

Refer to Figure P1.27 and assume that υS = 15 V and RS = 100Ω. For iT = 0, 10,
20, 30, 80, and 100 mA:

Find the total power supplied by the ideal source.

Find the power dissipated within the non-ideal source.

How much power is supplied to the load resistor?

Plot the terminal voltage υT and power supplied to the load resistor as a
function of terminal current iT.

In the circuit of Figure P1.32, assume υ2 = υS/6 and the power delivered by the
source is 150 mW. Also assume that R1 = 8 kΩ, R2 = 10 kΩ, R3 = 12 kΩ. Find
R, υS, υ2, and i. (Hint: Apply KVL around the circuit, using Ohm’s law to
express the voltage drop across each resistance.)

Figure P1.32

A GE SoftWhite Longlife lightbulb is rated as follows:



a.

b.

1.34

1.35

1.36

a.

b.

1.37

a.

b.

The resistance of the filament of the bulb at room temperature, measured
with a standard multimeter, is 16.7 Ω. When the bulb is operating at the
rated values, determine:

The resistance of the filament.

The efficiency of the bulb.

An incandescent lightbulb rated at 100 W is designed to dissipate 100 W as heat
and light when connected across a 110-V ideal voltage source. Determine the
resistance of the lightbulb when operated as designed.

An incandescent lightbulb rated at 60 W is designed to dissipate 60 W as heat
and light when connected across a 110-V ideal voltage source. A 100-W bulb is
designed to dissipate 100 W when connected across the same source. Determine
the resistance of each lightbulb when operated as designed.

Refer to Figure P1.36, and assume that υS = 12 V, R1 = 5Ω, R2 = 3Ω, R3 = 4Ω,
and R4 = 5Ω. Apply KVL and Ohm’s law as often as necessary to find:

The voltage υab.

The power dissipated in R2.

Figure P1.36
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Refer to Figure P1.37, and assume that υS = 7 V, iS = 3 A, R1 = 20Ω, R2 = 12Ω,
and R3 = 10Ω. Apply Kirchhoff’s laws and Ohm’s law to find:

The currents i1 and i2.

The power supplied by the source υS.



1.38

a.

b.

1.39
a.

b.

Figure P1.37

Refer to Figure P1.38, and assume υ1 = 15 V, υ2 = 6 V, R1 = 18Ω, R2 = 10Ω.
Apply Kirchhoff’s laws and Ohm’s law to find:

The currents i1, i2.

The power delivered by the sources υ1 and υ2.

Figure P1.38

Consider NiMH hobbyist batteries depicted in Figure P1.39.

If V1 = 12.0 V, R1 = 0.15Ω, and Ro = 2.55Ω, find the current Io and the
power dissipated by Ro.

If battery 2 with V2 = 12.0 V and R2 = 0.28Ω is placed in parallel with
battery 1, will the current Io increase or decrease? Will the power
dissipated by Ro increase or decrease? By how much?



1.40

a.

b.

c.

1.41

1.42

Figure P1.39

The open-circuit voltage across the terminals of a particular power supply is
50.8 V. When a 10-W lightbulb is attached, the voltage drops to 49 V. This
result is explained by modeling the power supply as a non-ideal source, such as
that shown in Figure P1.27.

Determine υs and Rs for this non-ideal source.

What voltage would be measured across the terminals when a 15-Ω
resistor is attached?

How much current could be drawn from this power supply under short-
circuit conditions?

A 220-V electric heater has two heating coils that can be switched such that
either coil can be used independently or the two can be connected in series or
parallel, for a total of four possible configurations. If the warmest setting
corresponds to 2,000-W power dissipation and the coolest corresponds to 300
W, determine the resistance of each coil.

For the circuits of Figure P1.42, determine the resistor values (including the
power rating) necessary to achieve the indicated voltages. Resistors are
available in , and 1-W ratings.



1.43

Figure P1.42

At an engineering site, a 1-hp motor is placed a distance d from a portable
generator, as depicted in Figure P1.43. The generator can be modeled as an ideal
DC source VG = 110V. The nameplate on the Page 69motor gives the following
rated voltages and full-load currents:



1.44

1.45

If d = 150 m and the motor must deliver its full-rated power, determine the
minimum AWG conductors that must be used in a rubber-insulated cable. Assume
that losses occur only in the wires.

Figure P1.43

Cheap resistors are fabricated by depositing a thin layer of carbon onto a non-
conducting cylindrical substrate (see Figure P1.44). If such a cylinder has radius
a and length d, determine the thickness of the film required for a resistance R if:

Neglect the end surfaces of the cylinder and assume that the thickness is much
smaller than the radius.

Figure P1.44

The resistive elements of fuses, lightbulbs, heaters, etc., are non-linear (i.e., the
resistance is dependent on the current through the element). Assume the
resistance of a fuse (Figure P1.45) is given by Page 70 R = R0[1 + A(T − T0)]



1.46

1.47

a.

b.

1.48

a.

b.

1.49

where: T − T0 = kP; T0 = 25°C; A = 0.7[°C]−1; k = 0.35°C/W; R0 = 0.11Ω; and P
is the power dissipated in the resistive element of the fuse. Determine the rated
current at which the fuse will melt (that is, “blow”) and thus act as an open-
circuit. (Hint: The fuse blows when R becomes infinite.)

Figure P1.45

Refer to Figure P1.22. Assume R0 = 1Ω, R1 = 2Ω, R2 = 3Ω, R3 = 4Ω, and υS =
10 V. Use KCL and Ohm’s law to find the unknown currents.

Refer to Figure P1.47 and assume , and VS = 12 V.
Use KVL and Ohm’s law to find:

The mesh currents ia, ib, and ic. (Mesh currents circulate within meshes
and are an alternative to branch currents. For example, the branch current
through R1 is the difference between ia and ib.)

The current through each resistor.

Figure P1.47

Refer to Figure P1.47 and assume R0 = 2Ω, R1 = 2Ω, R2 = 5Ω, R3 = 4Ω, and VS
= 24 V. Use KVL and Ohm’s law to find:

The mesh currents ia, ib, and ic.

The voltage across each resistor.

Assume that the voltage source in Figure P1.47 is now replaced by a DC current
source IS, and R0 = 1Ω, R1 = 3Ω, R2 = 2Ω, R3 = 4Ω, and IS = 12 A, directed



1.50

a.

b.

1.51

1.52

positively upward. Use KVL and Ohm’s law to determine the voltage across
each resistor.

The voltage divider network of Figure P1.50 is designed to provide .
However, in practice, the resistors may not be perfectly matched; that is, their
tolerances are such that the resistances are unlikely to be identical. Assume υS =
10 V and nominal resistance values of R1 = R2 = 5 k Ω.

If the resistors have ±10 percent tolerance, find the expected range of
possible output voltages.

Find the expected output voltage range for a tolerance of ±5 percent.

Figure P1.50

Section 1.7: The Node Voltage Method
Use the node voltage method to find the voltages V1 and V2 for the circuit of
Figure P1.51.

Figure P1.51

Using the node voltage method find the voltages V1 and V2 for the circuit of
Figure P1.52.



1.53

1.54

1.55

Figure P1.52
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Using the node voltage method in the circuit of Figure P1.53, find the voltage υ
across the 0.25-Ω resistance.

Figure P1.53

Using the node voltage method in the circuit of Figure P1.54, find the current i
through the voltage source.

Figure P1.54

Use the node voltage method in the circuit of Figure P1.55 to find Va. Let R1 =
12Ω, R2 = 6Ω, R3 = 10Ω, V1 = 4 V, V2 = 1 V.

Figure P1.55



1.56

1.57

1.58

Use the node voltage method in the circuit of Figure P1.56 to find υ1, υ2, and υ3.
Let R1 = 10Ω, R2 = 8Ω, R3 = 10Ω, R4 = 5Ω, iS = 2 A, υS = 1 V.

Figure P1.56

Use the node voltage method in the circuit of Figure P1.57 to find the voltages
at nodes A, B, and C. Let V1 = 12 V, V2 = 10 V, R1 = 2Ω, R2 = 8Ω, R3 = 12Ω, R4
= 8Ω.

Figure P1.57

Use the node voltage method in the circuit of Figure P1.58 to find Va and Vb.
Let R1 = 10Ω, R2 = 4Ω, R3 = 6Ω, R4 = 6Ω, V1 = 2 V, V2 = 4 V, i1 = 2 A.



1.59

1.60

Figure P1.58
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Find the power delivered to the resistor R0 for the circuit of Figure P1.59, using
the node voltage method, given that R1 = 2Ω, RV = R2 = R0 = 4Ω, VS = 4 V, and
IS = 0.5 A.

Figure P1.59

For the circuit of Figure P1.60, write the node equations necessary to find
voltages V1, V2, and V3. Note that G = 1/R = conductance. From the results, note
the interesting form that the matrices [G] and [I] have taken in the equation [G]
[V] = [I] where

Write the matrix form of the node voltage equations again, using the following
formulas:



1.61

a.

b.

1.62
a.

b.

Figure P1.60

In the circuit in Figure P1.61, assume the source voltage and source current and
all resistances are known.

Write the node equations required to determine the node voltages.

Write the matrix solution for each node voltage in terms of the known
parameters.

Figure P1.61

For the circuit of Figure P1.62 determine:

The voltage across R1 using the node voltage method.

The voltage across R3 using the node voltage method.



1.63

1.64

Figure P1.62

Figure P1.63 represents a temperature measurement system, where temperature
T is linearly related to the voltage source VS2 by a transduction constant k. Use
the node voltage method to determine the temperature.
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In practice, Vab is used as the measure of temperature, which is introduced to the
circuit through a temperature sensor modeled by the voltage source VS2 in series
with RS.

Figure P1.63

Use the node voltage method to find node voltages V1, V2, and V3 in Figure
P1.64. Let R1 = 10Ω, R2 = 6Ω, R3 = 7Ω, R4 = 4Ω, i1 = 2 A, i2 = 1 A.



1.65

1.66

a.

b.

c.

Figure P1.64

Use the node voltage method to find the current through R4 in Figure P1.65. Let
R1 = 10Ω, R2 = 6Ω, R3 = 4Ω, R4 = 3Ω, R5 = 2Ω, R6 = 2Ω, i1 = 2 A, i2 = 3 A, i3 =
5 A.

Figure P1.65

The circuit shown in Figure P1.66 is a simplified DC version of an AC three-
phase wye-wye (Y-Y) electrical distribution system commonly used to supply
industrial loads, particularly rotating machines.

Determine the number of non-reference nodes.

Determine the number of unknown node voltages.

Compute , and .



1.67

1.68

a.

Figure P1.66

Apply the node voltage method to the circuit of Figure P1.67 to find the three
indicated node voltages and the current i. Assume: R1 = 10Ω, R2 = 20Ω, R3 =
20Ω, R4 = 10Ω, R5 = 10Ω, R6 = 10Ω, R7 = 5Ω, V1 = 20 V, V2 = 20 V.

Figure P1.67
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Section 1.8: The Mesh Current Method
In the circuit shown in Figure P1.68, the mesh currents are

Determine the branch currents through:

R1. b. R2. c. R3.



1.69

1.70

1.71

1.72

Figure P1.68

In the circuit shown in Figure P1.68, the source and node voltages are

Use the mesh current method to determine the voltage across each of the five
resistors.

Use the mesh current method in the circuit of Figure P1.55 to find Va. Let R1 =
12Ω, R2 = 6Ω, R3 = 10Ω, V1 = 4 V, V2 = 1 V.

Using the mesh current method, find the currents i1 and i2 for the circuit of
Figure P1.71.

Figure P1.71

Using the mesh current method, find the currents i1 and i2 and the magnitude
and polarity of the voltage across the upper 10-Ω resistor in the circuit of Figure
P1.72.



1.73

1.74

Figure P1.72

Using the mesh current method, find the voltage υ across the 3-Ω resistor in the
circuit of Figure P1.73.

Figure P1.73
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Using the mesh current method, find the currents i1, i2, and i3 in the circuit of
Figure P1.74.



1.75

1.76

Figure P1.74

For the circuit of Figure P1.75, write the mesh equations in matrix form. Notice
the form of the [R] and [V ] matrices in [R][I] = [V], where

Write the matrix form of the mesh equations again by using the following
formulas:

Figure P1.75

For the circuit of Figure P1.76, use the mesh current method to find four
equations in the four mesh currents. Collect coefficients and solve for the mesh
currents.



1.77

1.78

1.79

Figure P1.76

Use the mesh current method to find the mesh currents in Figure P1.77. Let R1 =
10Ω, R2 = 5Ω, V1 = 2 V, V2 = 1 V, Is = 2 A.

Figure P1.77

Use the mesh current method to find the mesh currents in Figure P1.78. Let R1 =
6Ω, R2 = 3Ω, R3 = 3Ω V1 = 4 V, V2 = 1 V, V3 = 2 V.

Figure P1.78
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Use the mesh current method to find V4 in Figure P1.79. Let R2 = 6Ω, R3 = 3Ω,
R4 = 3Ω, R5 = 3Ω, υS = 4 V, iS = 2 A.



1.80

1.81

1.82

Figure P1.79

Use the mesh current method to find mesh currents in Figure P1.80. Let R1 =
8Ω, R2 = 3Ω, R3 = 5Ω, R4 = 2Ω, R5 = 4Ω, R6 = 3Ω, V1 = 4 V, V2 = 2 V, V3 = 1 V,
V4 = 2 V, V5 = 3 V, V6 = 2 V.

Figure P1.80

Use the mesh current method to find the current i in Figure P1.81. Assume iS =
2 A.

Figure P1.81

Use the mesh current method to find the currents through every branch in Figure
P1.82. Let R1 = 10Ω, R2 = 5Ω, R3 = 4Ω, R4 = 1Ω, V1 = 5 V, V2 = 2 V.



1.83
a.

b.

c.

1.84

1.85

Figure P1.82

Using the data of Problem 1.66 and Figure P1.66,

Determine the number of meshes.

Compute the mesh currents.

Use the mesh currents to determine .

Section 1.9: The Node Voltage and Mesh Current Methods
with Dependent Sources

Use the node voltage method on the circuit in Figure P1.84 to determine the
voltage V4. Note that one source is a dependent (controlled) voltage source! Let
VS = 5V; AV = 70; R1 = 2.2kΩ; R2 = 1.8kΩ; R3 = 6.8kΩ; R4 = 220Ω.

Figure P1.84

Use the mesh current method to find the current i in Figure P1.85. Let υS = 5.6
V; R1 = 50Ω; R2 = 1.2kΩ; R3 = 330Ω; gm = 0.2 S; R4 = 440Ω.



1.86

1.87

Figure P1.85
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Use the mesh current method to find the voltage gain Gυ = υ2/υs in Figure P1.86.

Figure P1.86

Apply the mesh current method to find the power supplied by the voltage source
in Figure P1.87. Assume k = 0.25 A/A2.

Figure P1.87

Design Credits: Mini DVI cable adapter isolated on white background: Robert Lehmann/Alamy Stock Photo;
Balance scale: Alex Slobodkin/E+/Getty Images; Icon for “Focus on measurements” weighing scales: Media
Bakery.

1Gustav Robert Kirchhoff (1824–1887), a German scientist, published the first
systematic description of the laws of circuit analysis. His contribution—though not
original in terms of its scientific content—forms the basis of all circuit analysis.
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C H A P T E R
2

EQUIVALENT NETWORKS

hapter 2 begins by introducing the critically important concepts of equivalent
resistance, voltage division, and current division. A thorough understanding
of these basic concepts is essential to the successful development of network
analysis and design skills. Next, the principle of superposition is introduced to

decompose a network into multiple, simpler perspectives. Both the principle of
superposition and the concept of equivalent resistance represent network
simplification techniques.

The chapter then expands upon the concept of equivalent resistance to introduce
the more general concept of equivalent one-port networks. A one-port network is a
network that can be accessed through two terminals. In the context of electrical
networks, the term equivalent does not mean identical. Instead, two one-port
networks are equivalent when the i-v characteristics of each pair of terminals are the
same such that the impact of either network on a third one-port network is the same
when connected. The implication is that any one-port network may be replaced by a
simpler one-port network as long as the two networks are equivalent. Thus, it may be
possible (as it often is) to simplify an electrical network by dividing it into two
connected one-port networks and replacing one or both of them with simpler
equivalent networks. This process is introduced generally as the source-load
perspective followed by network simplification methods known as source
transformations and Thévenin and Norton equivalent networks.



1.

2.

3.

4.

6.

7.

8.

9.
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The chapter concludes with the concept of maximum power transfer and
applications of equivalent networks to practical sources and meters as well as
nonlinear elements.

Throughout this chapter students are encouraged to apply a simple two-step
method to problem solving, with the first step being network simplification followed
by the second step of solving the problem.

 Learning Objectives
Students will learn to...

Apply voltage and current division to calculate unknown voltages and currents
in simple series, parallel, and series-parallel circuits. Sections 2.1–2.2.
Correctly redraw a resistive network, as necessary, and compute the equivalent
resistance between two nodes. Section 2.3.
Apply the principle of superposition to linear circuits containing independent
and dependent sources. Section 2.4.
Apply the source-load perspective to find graphical solutions to circuit problems
Section 2.5.

5. Apply source transformations to simplify and solve linear circuits containing
independent and dependent sources. Section 2.6.

Determine Thévenin and Norton equivalent circuits for networks containing
linear resistors and independent and dependent sources. Section 2.7.
Use equivalent-circuit ideas to compute the maximum power transfer between a
source and a load. Section 2.8.
Understand the impact of internal resistance in practical models of voltage and
current sources as well as of voltmeters, ammeters, and wattmeters. Sections
2.9–2.10.
Use the concept of equivalent circuits to determine voltage, current, and power
for nonlinear loads by using load-line analysis and analytical methods. Section
2.11.

2.1 RESISTORS IN SERIES AND VOLTAGE
DIVISION



(2.1)

It is common to find two or more circuit elements situated along a single current path
or branch; that is, the elements are in series. When elements are in series, the voltage
across the entire branch is divided among the elements in the branch. This important
observation is known as voltage division.

The most fundamental instance of voltage division occurs when two resistors are
in series, as shown in Figure 2.1. KVL applied around the series loop requires the
voltage drop υS across the source to be equal to the sum of the voltage drops υ1 and
υ2 across the two resistors.

Figure 2.1 The current i flows through each of the three elements in the
series loop. KVL requires .

Ohm’s law can be applied to each resistor to find expressions for υ1 and υ2. (Notice
the passive sign convention.)
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Plug in for υ1 and υ2 to find:

This expression defines the equivalent resistance REQ of two resistors in series,
where:

When three or more resistors are connected in series, the equivalent resistance is
equal to the sum of all the resistances.



(2.2)

Clearly, REQ is greater than any of the individual resistances in the series. It is often
useful to replace a series of two or more resistances with a single equivalent
resistance, as indicated in Figure 2.2. To do so correctly, remove the selected
resistances in series along the branch and replace them with a single equivalent
resistance along the same branch. This simple procedure illustrates a very important
principle: From the perspective of whatever else is eventually attached to that branch
(e.g., the voltage source in Figure 2.1), the resistances in series are seen as a single
resistance REQ.

Figure 2.2 The equivalent resistance of three or more resistances in series
equals the sum of those resistances.

An expression for how the voltage across the entire branch is divided among the
individual resistances along that branch can be found by using Ohm’s law and noting
that the current is the same through each resistance. Consider the series loop in
Figure 2.1:

which yields the following relationships:

These results, known as voltage division, indicate that for resistors in series the ratio
of voltages equals the ratio of the corresponding resistances. The voltage drops υ1
and υ2 are fractions of the total voltage υS because R1 and R2 are both less than REQ.



The ratio of the voltages across any two resistances in series equals the ratio of
those resistances.

When series connections are encountered in circuit diagrams, one should
immediately think of voltage division.

It is important to realize that the voltage division rule applies to any two resistances
in series, not just any two discrete resistors. For example, consider the series of Page
82resistors shown in Figure 2.2. The ratio of the voltage across R1 + R2 to the voltage
across R1 + R2 + R3 equals the ratio of R1 + R2 to R1 + R2 + R3. That is:

EXAMPLE 2.1 Voltage Division
Problem
Determine the voltage υ3 in the circuit of Figure 2.3.

Figure 2.3

Solution
Known Quantities: Source voltage, resistance values.
Find: Unknown voltage υ3.

Schematics, Diagrams, Circuits, and Given Data: R1 = 10Ω; R2 = 6Ω; R3 = 8Ω; υS =
3 V. Figure 2.3.
Analysis: The circuit is a simple series loop; that is, all the elements are along the
same (the only) current pathway. Apply voltage division directly to solve for υ3:



1.

2.

Thus: υ3 = υS/3 = 1 V.

Comments: The application of voltage division to a series of elements along a branch
is fairly straightforward. However, one has to be careful to correctly determine the
sign of the polarity. For example, note that the voltage source in Figure 2.3
guarantees that the upper left node is at a higher voltage than the upper right node.
Consequently, the voltage drops υ1, υ2 and υ3 are all positive.

EXAMPLE 2.2 The Wheatstone Bridge
Problem
The Wheatstone bridge is a resistive circuit that is frequently encountered in a
variety of measurement circuits. The general form of the bridge circuit is shown in
Figure 2.4(a), where R1, R2, and R3 are known and Rx is to be determined. The circuit
can be redrawn, as shown in Figure 2.4(b), to clarify that R1 and R2 are in series, as
are R3 and Rx. The two branches from node c to the reference node are in parallel.

In the figures, υa and υb are node voltages relative to the common reference node.
The value of the reference node can be chosen arbitrarily; however, it may be helpful
to consider its value to be zero.

Find an expression for the voltage υab = υa − υb in terms of the four resistances
and the source voltage υS.
Find the value of Rx when R1 = R2 = R3 = 1 kΩ, υS = 12 V, and υab = 12 mV.
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Solution
Known Quantities: Source voltage, resistance values, bridge voltage.
Find: Unknown resistance Rx.

Schematics, Diagrams, Circuits, and Given Data: See Figure 2.4.



1.

Figure 2.4 A Wheatstone bridge is a mixed series-parallel circuit.

Analysis:
The circuit consists of three parallel branches: the voltage source υS branch, the
R1 + R2 branch, and the R3 + Rx branch. All three branches sit between node c
and the reference node, with the same voltage υS across each branch.
In the analysis that follows it is important to keep in mind that all node voltages
are understood to be relative to the reference node. That is, υa is the voltage
across R2, υb is the voltage across Rx, and υc = υS.
Since R1 and R2 are in series, voltage division can be applied to find υa in terms
of υc. Likewise, since R3 and Rx are in series, voltage division can also be
applied to find υb in terms of υc.

Plug in υc = υS to find that υab = υa − υb is given by:

This result is very useful and quite general.



2. Plug in numerical values for υab, υS, R1, R2, and R3 in the preceding equation to
find:

Divide both sides by −12 and add 0.5 to both sides to find:

Multiply both sides by 1kΩ + Rx to find:

Comment: The Wheatstone bridge finds application in many measuring instruments.

CHECK YOUR UNDERSTANDING
Use the result of part 1 of Example 2.2 to find the relationship between Rx and the
other three resistors such that υab = 0. Using the data in Example 2.2, what is the
value of Rx that satisfies υab = 0, the so-called balanced condition for the bridge?
Does the balanced bridge condition require that all four resistors be identical?
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Answer: R1Rx = R2R3; 1 kΩ; No



Resistive Throttle Position Sensor
Problem:
A typical automotive resistive throttle position sensor is shown in Figure 2.5(a).
Figure 2.5(b) and (c) depict the geometry of the throttle plate and the equivalent
circuit of the throttle sensor. A typical throttle plate has a useful measurement range
of just under 90°, from closed throttle to wide-open throttle. The possible mechanical
range of rotation of the sensor is usually somewhat greater. It is always necessary to
calibrate any sensor to determine the actual relationship between the input variable
(e.g., the throttle position) and the output variable (e.g., the sensor voltage). The
following example illustrates such a procedure.

Figure 2.5(a) Typical throttle position sensor
(Courtesy: CTS Corporation)



Figure 2.5(b) Throttle blade geometry

Solution:
Known Quantities: Functional specifications of throttle position sensor.

Figure 2.5(c) Throttle position sensor equivalent circuit

Find: Calibration of sensor in volts per degree of throttle plate opening.
Schematics, Diagrams, Circuits, and Given Data:
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Assumptions: Assume a nominal supply voltage of 5 V and total throttle plate travel
of 88°, with a closed-throttle angle of 2° and a wide-open throttle angle of 90°.
Analysis: The equivalent circuit of the sensor is a series loop with a battery, a fixed
resistor, and a potentiometer, as shown in Figure 2.5(c). The sensor output voltage is
determined by the position of the wiper arm, whose actual displacement is angular;
however, it is convention to depict all potentiometers in circuit diagrams as having
straight line displacement, as shown in the figure. The range of the potentiometer



(see specifications above) is 2° to 112° for a resistance of 3 to 12 kΩ; thus, assuming
a linear sensor response, the calibration constant of the potentiometer is:

Voltage division requires that the sensor voltage be proportional to the ratio of the
series resistances.

The calibration curve for the sensor is shown in Figure 2.5(d).

Figure 2.5(d) Calibration curve for throttle position sensor

When the throttle is closed,

and when the throttle is wide open,

Comments: The fixed resistor R0 prevents the wiper arm from inadvertently
connecting the + terminal of the battery directly to its − terminal, which would occur
if the wiper were shorted to the lower node and θ = 112°. Note that the intended
operational range of the sensor is from 2° to 90°, specifically to avoid a harmful
short-circuit scenario.
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Resistance Strain Gauges
A strain gauge is a resistive element that has many applications in engineering
measurements. A strain gauge contains one or more thin conductive strips, usually
encased in an epoxy matrix. These strips shrink or stretch with the surface to which
the strain gauge is bonded. Since the resistance of a thin conducting strip is
dependent upon its geometry, it is possible to calibrate a strain gauge to relate
changes in resistance to material strain along the surface. Surface strain can then be
related to stress, force, torque, and pressure through various constitutive relations,
such as Hooke’s law. A variety of strain gauges are available to transduce the
principal strains (extensional and shear) along a surface. The most versatile and
popular strain gauge is a planar rosette, with which all three planar strains can be
deduced simultaneously.

Recall that the resistance of a cylindrical conductor of cross-sectional area A,
length L, and resistivity ρ is given by the expression

When the conductor is compressed or elongated, both the length L and (due to the
Poisson effect) cross-sectional area A will change, and with them the resistance of the
conductor. In particular, when the length of the conductor is increased, its cross-
sectional area will decrease, with both changes causing its resistance to increase.

Likewise, when the length of the conductor is decreased, its cross-sectional area
will increase, with both changes causing its resistance to decrease. The empirical



relationship between change in resistance and change in length is defined as the
gauge factor GF:

The fractional change in length of an object is defined as the strain ε:

Using these definitions, the change in resistance due to an applied strain ε is given by

where R0 is the zero strain resistance. The value of GF for metal foil resistance strain
gauges is usually about 2.

Figure 2.6 depicts a typical foil strain gauge. The maximum strain that can be
measured by a foil gauge is , which corresponds to a maximum change
in resistance of approximately 1.2Ω for a 120-Ω gauge. Because of the small scale of
the change in resistance, strain gauges are usually incorporated in a Wheatstone
bridge, which increases the sensitivity of the resistance measurement.

Figure 2.6 Metal-foil resistance strain gauge

Comments: Resistance strain gauges are used in many measurement applications.
One such application is the measurement of a force on a cantilever beam, which is
discussed in the next example.
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The Wheatstone Bridge and Force Measurements
One of the simplest applications of a strain gauge is the measurement of a force
applied to a cantilever beam, as illustrated in Figure 2.7.

Figure 2.7 A force-measuring instrument

Four strain gauges are employed in this case, of which two are bonded to the
upper surface of the beam at a distance L from the point where the external force F0
is applied, and two are bonded on the lower surface, also at a distance L. Under the
influence of the external force, the beam deforms and causes the upper gauges to
extend and the lower gauges to compress. Thus, the resistance of the upper gauges
will increase by an amount ΔR, and that of the lower gauges will decrease by an
equal amount, assuming that the gauges are symmetrically placed. Let R1 and R4 be
the upper gauges and R2 and R3 the lower gauges. Thus, under the influence of the
external force, we have

R1 = R4 = R0+ΔR



R2 = R3 = R0−ΔR

where R0 is the zero strain resistance of the gauges. It can be shown from elementary
strength of materials and statics that the relationship between the strain ε and a force
F0 applied at a distance L for a cantilever beam is

where h and w are as defined in Figure 2.7 and Y is Young’s modulus for the beam.
In the circuit of Figure 2.7, the voltages υa and υb are given by voltage division.

The bridge output voltage is defined as  such that:

Plug in R1 = R4 = R0 + ΔR and R2 = R3 = R0 − ΔR to find:
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where GF is the gauge factor and ΔR/R0 = (GF)ε was obtained in the previous
example “Focus on Measurements: Resistance Strain Gauges.” Thus, the relationship
between the bridge output voltage and the force F0 is

where 6VS(GF)L/wh2Y is the calibration constant for this force transducer.

Comments: Strain gauge bridges are commonly used in mechanical, chemical,
aerospace, biomedical, and civil engineering applications to make measurements of
force, pressure, torque, stress, or strain.

CHECK YOUR UNDERSTANDING



Compute the full-scale (i.e., largest) output voltage for the force-measuring apparatus
of “Focus on Measurements: The Wheatstone Bridge and Force Measurements.”
Assume that the strain gauge bridge is to measure forces ranging from 0 to 500
newtons (N), L = 0.3 m, 𝑤 = 0.05 m, h = 0.01 m, GF = 2, and Young’s modulus for
the beam is 69 × 109 N/m2 (aluminum). The source voltage is 12 V. What is the
calibration constant of this force transducer?

2.2 RESISTORS IN PARALLEL AND CURRENT
DIVISION
It is common to find two or more circuit elements situated between the same two
nodes; that is, the elements are in parallel. When elements are in parallel, the current
entering either of the two nodes is divided among the parallel elements. This
important observation is known as current division.

The most fundamental instance of current division occurs when two resistors are
in parallel, as shown in Figure 2.8. KCL applied at the upper node requires the
current iS through the source to be equal to the sum of the currents i1 and i2 through
the two resistors.

Figure 2.8 The voltage υ is across each of the three elements in parallel.
KCL requires IS = i1 + i2.

Ohm’s law can be applied to each resistor to find expressions for i1 and i2. (Notice
the passive sign convention.)

Plug in for i1 and i2 to find:

Answer: υo (full scale) = 62.6 mV; k = 0.125 mV/N



(2.3)

(2.4)

Page 89

This expression defines the equivalent resistance REQ of two resistors in parallel,
where:

However, this inverted expression for the equivalent resistance is awkward and
nonintuitive. Often, a more useful form is

It is easy to show that REQ is smaller than either R1 or R2. To do so, simply write REQ
as:

Both fractions in the above equation are less than 1; thus,  The
notation R1 ∥ R2 indicates a parallel combination of R1 and R2. The same notation
can be used to indicate a parallel combination of three or more resistors by writing:

When three or more resistors are connected in parallel, as shown in Figure 2.9,
the inverse of the equivalent resistance is equal to the sum of the inverses of all the
resistances.

or



Figure 2.9 The inverse of the equivalent resistance of three or more
resistances in parallel equals the sum of the inverses of those resistances.

The equivalent parallel resistance REQ is always smaller than any of the individual
resistances in parallel. It is often useful to replace two or more resistances in parallel
with a single equivalent resistance, as indicated in Figure 2.9. To do so correctly,
remove all the resistances between nodes a and b and replace them with a single
equivalent resistance attached between these same two nodes. This simple procedure
illustrates a very important principle: From the perspective of whatever else is
eventually attached to nodes a and b (e.g., a current source such as that Page
90shown in Figure 2.8), the parallel resistances are seen as a single resistance of
value REQ.

An expression for how the current entering either of the two nodes is divided
among the individual resistances in parallel can be found by using Ohm’s law and
noting that the voltage is the same across each resistance. Consider the parallel
circuit in Figure 2.8:

which yields the following relationships:

These results, known as current division, indicate that for resistors in parallel the
ratio of currents equals the inverse ratio of the corresponding resistances. The
currents i1 and i2 are fractions of the total current iS because R1 and R2 are both
greater than REQ.

The ratio of the currents through any two resistances in parallel equals the
inverse ratio of those resistances.

The current division results shown in the previous equation can be rewritten by
plugging in for REQ to find:



(2.5)

(2.6)

In these forms, current division for two resistances in parallel is that the ratio of i1 to
iS equals the ratio of the “other” resistance R2 to the sum of the two resistances R1 +
R2. Likewise, the ratio of i2 to iS equals the ratio of the “other” resistance R1 to the
sum of the two resistances R1 + R2. These forms may be appealing since they
resemble the expressions used to compute voltage division for two resistances in
series.

When parallel connections are encountered in circuit diagrams, one should
immediately think of current division.

It is important to realize that the current division rule applies to any two resistances
in parallel, not just any two discrete resistors. For example, consider the parallel
resistors shown in Figure 2.9. The ratio of the combined current through R1 and R2 to
the current through R3 equals the ratio of R3 to (R12)EQ. That is:

where
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Likewise:

where

These last two expressions can be combined to yield:



Many practical circuits contain resistors in parallel and in series. The concepts of
equivalent resistance, voltage division, and current division are useful even in very
complicated circuits.

EXAMPLE 2.3 Current Division
Problem
Determine the current i1 in the circuit of Figure 2.10.

Figure 2.10

Solution
Known Quantities: Source current, resistance values.
Find: Unknown current i1.

Schematics, Diagrams, Circuits, and Given Data: R1 = 10Ω; R2 = 2Ω; R3 = 20Ω; iS
= 4 A. Figure 2.10.
Analysis: Apply current division directly to find:

Thus:

An alternative approach is to find the equivalent resistance of R2 ∥ R3 and then
apply one of the simpler expressions for current division between two resistances in
parallel.

(Notice that R2 ∥ R3 is less than both R2 and R3.)



The result is the same as that found by applying current division directly:

Comments: The application of current division to elements in parallel between two
nodes is fairly straightforward. Occasionally, it may be difficult to determine which
elements are, in fact, in parallel. This issue is explored in Example 2.4.
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EXAMPLE 2.4 Resistors in Series and Parallel
Problem
Determine the voltage υ in the circuit of Figure 2.11.

Solution
Known Quantities: Source voltage, resistance values.
Find: Unknown voltage υ.
Schematics, Diagrams, Circuits, and Given Data: See Figures 2.11, 2.12.

Figure 2.11

Figure 2.12
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2.

Analysis: The circuit of Figure 2.11 contains three resistors that are not completely in
series nor in parallel with each other. This fact may not be apparent at first glance,
but consider whether the conditions for series and parallel are met for all three
resistors.

Are all three resistors in series? Are all three resistors situated along the same
branch? Is there one common current through all three resistors? Clearly, the
current i entering node b will be divided on its way to node c. Some of it will
pass through R2 while the rest will pass through R3. Thus, there is not one
common current through all three resistors; that is, they are not in series.
Are all three resistors in parallel? Are all three resistors situated between the
same two nodes? R1 sits between nodes a and b, while R2 and R3 sit between
nodes b and c. Thus, the three resistors do not sit between the same two nodes;
that is, they are not in parallel.

However, it is possible to simplify the circuit by noting, as mentioned above and
depicted in Figure 2.12, that R2 and R3 sit between the same two nodes and are,
therefore, in parallel. These two resistors can be removed from the circuit and
replaced by the equivalent resistance between nodes b and c, which is:

An equivalent circuit can now be drawn as shown in Figure 2.12. The result is a
simple series loop. Voltage division can be applied directly to solve for υ:

The current can also be found:
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CHECK YOUR UNDERSTANDING
For the circuit in Figure 2.10, apply current division to find i2 and i3 and verify that
KCL at either node is satisfied by the results. Also, verify that the ratio of any two
branch currents equals the inverse ratio of their associated resistances. Finally, verify
that i2 = 5 × i1 because R1 = 5 × R2 and that i1 = 2 × i3 because R3 = 2 × R1. (These



1.

2.

results should not be a surprise since larger currents are expected through the smaller
resistances.)

CHECK YOUR UNDERSTANDING
Consider the circuit of Figure 2.11, with resistor R3 replaced by an open-circuit.
Calculate the voltage υ when the source voltage is υS = 5 V and R1 = R2 = 1 kΩ.

Repeat when resistor R3 is in the circuit and its value is R3 = 1 kΩ.

Repeat when resistor R3 is in the circuit and its value is R3 = 0.1 kΩ.

2.3 EQUIVALENT RESISTANCE BETWEEN TWO
NODES
The concept of equivalent resistance was introduced earlier as part of the discussions
of resistors in series and resistors in parallel. In those discussions the following
results were established:

For two resistors R1 and R2 in series between nodes a and b (see Figure 2.13) the
equivalent resistance between those two nodes is

For two resistors R1 and R2 in parallel between nodes a and b (see Figure 2.14)
the equivalent resistance between those two nodes is

Figure 2.13 Two resistors in series between nodes a and b

Answer: υ = 2.50 V; υ = 1.67 V; υ = 0.4167 V



Figure 2.14 Two resistors in parallel between nodes a and b

In general, the equivalent resistance of multiple resistors in series is larger than
the largest of the resistors; also, the equivalent resistance of multiple resistors in
parallel is smaller than the smallest of the resistors.

The central idea in both cases is that two resistors in series or parallel between
two nodes can be replaced by a single resistor whose value is the equivalent
resistance between those same two nodes. In problem solving one can literally
remove the pair of resistors and insert a single resistor in their place. Complicated
resistor networks can often be simplified by repeated application of this process of
substituting equivalent resistances for series and parallel connections.

Any two nodes or terminals have an equivalent resistance between them.
Equivalent resistance is not a characteristic of a circuit, but of two nodes.
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In general, the equivalent resistance between two terminals (nodes) is defined by

where υs is a voltage applied across the two terminals and is is the resulting current
into and out of those same terminals. This definition yields the correct equivalent
resistance when applied to two resistors in series (see Figure 2.13) and to two
resistors in parallel (see Figure 2.14). However, in many cases, it is not necessary to
resort to the definition of equivalent resistance in order to calculate it. Instead, the
series and parallel resistance results can be used to reduce a complicated network of
resistors to a single equivalent resistance.

Redrawing a Resistive Network
By convention, electric circuits and networks are drawn in a rectilinear fashion,
consisting of straight line segments drawn along the horizontal, the vertical, and
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3.

4.

5.

6.

occasionally the diagonal. With practice, these networks can be interpreted correctly.
However, some networks can appear complicated and even misleading, particularly
to an analyst with little experience. In such cases it is often helpful to redraw the
circuit with a focus on discerning which elements sit between the same two nodes
and which sit along the same branch. Consider finding the equivalent resistance
between the two open terminals shown in the resistive network of Figure 2.15(a). In
the figures, K is shorthand for kilo-ohms.

Carefully count the number of nodes in the network. Mark each node with a
boundary and a letter from the sequence A, B, C, . . .. The two open terminals
should be labeled with the first and last letter in the sequence. Label adjacent
nodes with adjacent letters. For instance, make sure node B is adjacent to nodes
A and C when labeling the network. See Figure 2.15(b).
Begin the redrawn network by drawing, for each node, one small circle ○
equally spaced along a straight line, either horizontal or vertical. Be sure to
allow adequate space between each circle to draw a resistor.
Label each circle in order using the sequence of letters A, B, C, . . .. These circles
represent the nodes in the network.
One at a time, place each resistor present in the original network between the
same two nodes (circles) in the redrawn network. See Figure 2.15(c), (d), and
(e).

Page 95

Use the redrawn network and the definitions of series and parallel connections to
identify resistors in series and resistors in parallel. Replace those resistors in
series and those resistors in parallel with their equivalent resistance. See Figure
2.15(f).
Repeat step 5 as often as necessary until a single resistance sits between the first
and last node in the sequence. This resistance is the equivalent resistance
between those two nodes. See Figure 2.15(g), (h), and (i).

Figure 2.15(a)



Figure 2.15(b)

Figure 2.15(c)

Figure 2.15(d)

Figure 2.15(e)

Figure 2.15(f)



Figure 2.15(g)

Figure 2.15(h)

Figure 2.15(i)

An alternative layout for a network with three total nodes is to place the circles to
form the three vertices of an equilateral triangle. Likewise, for a network with four
total nodes, place the circles to form the four vertices of a square or diamond. These
layouts may also work well. For networks with more than four nodes, the straight
line layout is usually best.

Calculation and Approximation Tips
It is tempting to rely solely on an electronic calculator to produce quick equivalent
resistance values, particularly for resistors in parallel. However, there are a few easy
techniques that allow for quick calculation of equivalent resistance values by
observation. Learning these techniques is valuable for inspecting resistive networks,
particularly when someone else is working an example on a classroom board or
discussing a resistive network that is part of a larger project one is working on. These
techniques allow one to follow along with confidence and comfort and without being
distracted by a calculator.

To begin, it is important to remember that the equivalent resistance of two or
more resistors in series is greater than the largest individual resistor. Also, the
equivalent resistance of two or more resistors in parallel is less than the smallest
individual resistor. These two facts provide quick lower and upper bounds on the
value of the equivalent resistance for series and parallel arrangements, respectively.

Of course, calculating the equivalent resistance of two or more resistors in series
is easy since it is simply the sum of the individual resistors. On the other hand,
calculating the equivalent resistance of two or more resistors in parallel is not quite
so easy, at first glance. However, consider the formula for the equivalent resistance of
two resistors in parallel:



(2.7)

(2.8)

(2.9)

(2.10)

Assume that R2 is N times larger than R1 such that
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Plug in for R2:

For example, when N is an integer:

In words, for two resistors in parallel, when R2 equals R1, the equivalent resistance is
one-half of R2; when R2 is twice R1, the equivalent resistance is one-third of R2;
when R2 is thrice R1, the equivalent resistance is one-fourth of R2; when R2 is four
times R1, the equivalent resistance is one-fifth of R2; and so on with the same pattern.

This relationship REQ = R2/(1 + N) (where R2 is the larger of the two resistors in
parallel) holds for noninteger values of N as well, although the calculation is
somewhat more difficult.

In practice, when N ≤ 10, it is often acceptable to approximate the equivalent
resistance of two resistors in parallel by the smaller of the two resistors. This practice
is known as the 10:1 (ten-to-one) rule. It is easy to see from the above formula that
the error associated with this approximation is less than 10 percent. One should be
careful not to apply this approximation repeatedly to the same network because of
the potential for the errors to accumulate.

The Wye-Delta Transformation
Occasionally, a circuit will contain resistors that are neither in series nor parallel with
any other resistors. For example, consider the Wheatstone bridge networks shown in
Figure 2.4(a) and (b) when a resistor R5 is attached to terminals υa and υb. After a bit



of inspection, it becomes clear that none of the five resistors are in series or parallel.
In such cases, the so-called wye-delta (or Y-Δ) transformation can be used to produce
series or parallel connections that can then be simplified, as needed.

Figure 2.16(a) and (b) depict generic wye and delta resistor networks,
respectively. Notice that each network has three exterior nodes A, B, and C. These
two networks are interchangeable if the equivalent resistance between any pair of
nodes in one network equals the equivalent resistance between the same pair of
nodes in the other network. In general, to evaluate the equivalent resistance between
a pair of nodes it is sufficient to attach an ideal source across those nodes and
compute the following ratio:

Figure 2.16(a)

Figure 2.16(b)
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This approach was used earlier to determine the equivalent resistance of two
resistors in series (Figure 2.1) and two resistors in parallel (Figure 2.8) when it was
asserted that υ = iREQ. To avoid unnecessary details, notice that when an ideal source
is placed across two of the three nodes in either Figure 2.16(a) or (b), the third node
is not affected. The result is that the equivalent resistance seen by the ideal source is
found easily by inspection. For example, when an ideal source is placed across nodes
A-B, the equivalent resistance seen by the source is simply:



(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

Likewise, when an ideal source is placed across nodes A-C and across nodes B-C, the
equivalent resistance seen by the source is simply:

The above three equations for RAB, RAC, and RBC relate the wye resistances Rx, Ry,
and Rz to the delta resistances R1, R2, and R3. These equations can be solved to yield
the following results:

or

These two sets of equations can be used to transform a delta network into a wye
network, or vice versa. The key to using the transformation correctly is to detach the
one network at the three nodes A, B, and C and attach the other network at exactly
the same three nodes, as indicated in Figure 2.16(a) and (b).
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EXAMPLE 2.5 Equivalent Resistance Between Two Nodes
Problem
Determine the equivalent resistance between nodes a ↔ b and a ↔ c in the resistive
network shown in Figure 2.17(a).

Figure 2.17(a)

Solution
Known Quantities: Resistance values in the network.
Find: Equivalent resistance between nodes a ↔ b and a ↔ c.
Schematics, Diagrams, Circuits, and Given Data: Figure 2.17(a) to (e).
Analysis: Apply the equivalent resistance formulas for series and parallel resistors to
reduce the network to a single equivalent resistance.

To find the equivalent resistance between nodes a and b note that there are two
pathways from a to b: one pathway is directly through the 6K resistor; the other
pathway is through the 12K and 18K resistors. Therefore, the latter two resistors
are in series, as “seen” from a to b, and can be replaced with a single 30K
resistor as shown in Figure 2.17(b). Also, the two pathways from a to b are in
parallel; that is, the 6K and 30K resistances sit between the same two nodes, a
and b. Their parallel equivalent resistance is (6 ⋅ 30)/(6 + 30) or 5K, which could
also be calculated as (30/6)K because 30 is five times larger than 6. See Figure
2.17(c).



2.

Figure 2.17(b)

Figure 2.17(c)

To find the equivalent resistance between nodes a and c note that there are two
pathways from a to c: one pathway is directly through the 12K resistor; the other
pathway is through the 6K and 18K resistors. Therefore, the latter two resistors
are in series, as “seen” from a to c, and can be replaced with a single 24K
resistor as shown in Figure 2.17(d). Also, the two pathways from a to c are in
parallel; that is, the 12K and 24K Page 99resistances sit between the same two
nodes, a and c. Their parallel equivalent resistance is (12 ⋅ 24)/(12 + 24) or 8K,
which could also be calculated as (24/3)K because 24 is two times larger than
12. See Figure 2.17(e).

Figure 2.17(d)

Figure 2.17(e)

Comments: Notice that the equivalent resistance between nodes a ↔ b is not the
same as that between nodes a ↔ c. This result demonstrates that networks do not
have an equivalent resistance, but two nodes do have an equivalent resistance
between them. For two different pairs of nodes in the same network it is quite
possible to get two different values for the equivalent resistance between them.

EXAMPLE 2.6 Equivalent Resistance Between Two Nodes
Problem



Determine the equivalent resistance between nodes A ↔ E in the resistive network
shown in Figure 2.18(a).

Figure 2.18(a)

Figure 2.18(b)

Solution
Known Quantities: Resistance values in the network.
Find: Equivalent resistance between nodes A ↔ E.
Schematics, Diagrams, Circuits, and Given Data: Figure 2.18(a)-(g).
Analysis: Follow the procedure for redrawing a resistive network in a rectilinear
fashion.

Figure 2.18(c)

Figure 2.18(d)
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Figure 2.18(e)

Figure 2.18(f)

Figure 2.18(g)

Begin by noting that there are five nodes (A . . . E) in the original network. To
the extent possible, adjacent nodes are marked with adjacent labels.
Lay out five circles along a straight line and label each circle with the A . . . E
sequence.
For each pair of adjacent nodes, insert a resistor as appropriate. As shown in
Figure 2.18(a), there is a 9K resistor between nodes A and B and there is a 2K
resistor between each pair of nodes BC, CD, and DE. Figure 2.18(b) shows these
resistors placed in the redrawn rectilinear network.
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Two other resistors remain to be placed. The 4K and 12K resistors sit between
nodes CE and BE, respectively. Figure 2.18(c) shows the completed redrawn
rectilinear network with these two resistors in place.
One step at a time, simplify the network by replacing resistors in series and
resistors in parallel with their equivalent resistance. In Figure 2.18(c) notice that
the pair of 2K resistors between nodes CD and DE are in series. Replace them
with their equivalent 4K resistance as shown in Figure 2.18(d).
Next, notice that there are now two 4K resistances between nodes C and E.
Replace them with their 2K parallel equivalent resistance as shown in Figure
2.18(e).
Now there are two 2K resistors in series between nodes B and E. Replace them
with their 4K series equivalent resistance. Immediately notice that this 4K
resistance is in parallel with the 12K resistance that is also between nodes B and



8.

E. Replace both resistances with their 3K parallel equivalent resistance as shown
in Figure 2.18(f).
Finally, the 9K resistance is in series with the 3K resistance and can be replaced
with its 12K equivalent resistance as shown in Figure 2.18(g).

Comments: This rather long and detailed procedure will become shorter and more
efficient with practice. Try it out on the following Check Your Understanding
problems.

CHECK YOUR UNDERSTANDING
Find the equivalent resistance between nodes b and c in Figure 2.17(a).

CHECK YOUR UNDERSTANDING
Find the equivalent resistance between nodes A and C in Figure 2.18(a).

2.4 LINEAR NETWORKS AND THE PRINCIPLE OF
SUPERPOSITION
In general, the criteria for a linear function are

where x is the function input and y is the function output.

Answer: 9K

Answer: 10.75K



Linear networks obey the same rules. Superposition implies that each source
(e.g., x1 and x2) makes its own independent contribution (e.g., y1 and y2) to each
current and voltage in a network, and that the total value of each current and voltage
is the sum (e.g., y1 + y2) of these contributions.
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Homogeneity implies that the contribution due to any one source scales linearly
with the value of the source. For example, if the contribution due to source x1 is y1,
then the contribution due to the same source doubled 2x1 is also doubled 2y1, where α
= 2 is an example scaling factor.

In general, to determine if a network is linear, it is necessary to verify that these
two criteria are satisfied for all possible inputs, or at least to verify a range of inputs
within which the network is linear. Luckily, it is not always necessary to verify
superposition and homogeneity directly. A sufficient, but not necessary, alternative
condition is

Any network composed of linear elements only is itself linear. Common linear
elements are ideal sources, resistors, capacitors, and inductors.

The principle of superposition is a valid, and frequently used, analytic tool for
any linear circuit. It is also a powerful conceptual aid for understanding the behavior
of circuits with multiple sources.

For any linear circuit, the principle of superposition states that each
independent source contributes to each voltage and current present in the
circuit. Moreover, the contributions of one source are independent of those
from the other sources. In this way, each voltage and each current in a circuit of
N independent sources is the sum of N component voltages and N component
currents, respectively.

As a problem-solving tool, the principle of superposition permits a problem to be
decomposed into two or more simpler problems. The efficiency of this “divide and



conquer” tactic depends upon the particular problem being solved. However,
solutions generated using the principle of superposition reveal the contribution of
each independent source in the overall circuit.

The method is to turn off (set to zero) all independent sources but one, and then
solve for voltages and currents due to the lone remaining independent source. This
procedure may be repeated successively for each source until the contributions due to
all the sources have been computed. The components for a particular voltage or
current can be summed to find its value in the original complete circuit.

A zero voltage source is equivalent to a short-circuit, and a zero current source is
equivalent to an open-circuit. When using the principle of superposition, it is
necessary, and helpful, to replace each zero source with its equivalent short- or open-
circuit and thus simplify the circuit. These substitutions are summarized in Figure
2.19.

Figure 2.19 Zeroing voltage and current sources

In general, if a circuit is decomposed into multiple simpler circuits, each
independent source must contribute once and only once to the components of any
voltage or current. In other words, it is not necessary that only one independent
source be on at a time. However, it is necessary that each independent source be on
only once throughout the entire procedure.

Superposition may be applied to circuits containing dependent sources; however,
the dependent sources must not be set to zero. They are not independent sources and
must not be treated as such.
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(2.23)

F O C U S  O N  P R O B L E M  S O LV I N G

SUPERPOSITION
Define the voltage υ or current i to be solved in the circuit.
For each of the N sources, define a component voltage υk or current ik such th

Turn off all sources except source Sk and solve for the component voltage υ
current ik. Find components for all k where k = 1,2,. . .,N.
Find the complete solution for the voltage υ or current i by summing all of
components as defined in step 2.

Details and Examples
An elementary application of the principle is to find the current in a single loop with
two sources connected in series, as shown in Figure 2.20.

Figure 2.20 The principle of superposition

The current in the far left circuit of Figure 2.20 is easily found by a direct
application of KVL and Ohm’s law.
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Figure 2.20 depicts the far left circuit as being equivalent to the combined effects of
two component circuits, each containing a single source. In each of these two



(2.24)

(2.25)

1.
2.

circuits, one battery (which is a DC voltage source) has been set to zero and replaced
with a short-circuit.

KVL and Ohm’s law can be applied directly to each of these component circuits.

According to the principle of superposition

Voila! The complete solution is found, as expected. This simple example illustrates
the essential method; however, more challenging examples are needed to reinforce it.

EXAMPLE 2.7 Principle of Superposition
Problem
Determine the current i2 in the circuit of Figure 2.21a), using the principle of
superposition.

Figure 2.21(a) Circuit for the illustration of the principle of superposition

Solution
Known Quantities: Voltage and current values of each source; resistor values.
Find: Unknown current i2.

Given Data: .
Analysis: Refer to Figure 2.21(a) and the steps in the Focus on Problem Solving box
“Superposition.”

The objective is to find current i2.
There are two independent sources in the circuit, so there will be two
components of i2.



3.

4.

Part 1: Turn off the current source and replace it with an open-circuit. The
resulting circuit is a simple series loop shown in Figure 2.21(b). Here,  is the
same as the loop current because of the open-circuit. The total series resistance
is 5 + 2 + 4 = 11Ω, such that .
Part 2: Turn off the voltage source and replace it with a short-circuit. The
resulting circuit consists of three parallel branches, as shown in Figure 2.21(c):
iS, R1, and R2 + R3. Apply current division.

The complete i2 is found to be

Figure 2.21(b) Circuit with current source set to zero

Figure 2.21(c) Circuit with voltage source set to zero

Comments: Superposition is not always a very efficient tool. Beginners may find it
preferable to rely on more systematic methods, such as the node voltage method, to
solve circuits. However, the importance of the principle of superposition is the
insight it lends to the behavior of a circuit.
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EXAMPLE 2.8 Principle of Superposition
Problem
Determine the voltage υR across resistor R in the circuit of Figure 2.22(a).

Figure 2.22(a) Circuit used to demonstrate the principle of superposition

Solution
Known Quantities: The values of the sources and resistors in the circuit of Figure
2.22(a) are iB = 12 A; υG = 12 V; RB = 1Ω; RG = 0.3Ω; R = 0.23Ω.

Find: υR.

Analysis: Refer to Figure 2.22(a) and the steps in the Focus on Problem Solving box
“Superposition.”

The objective is to find voltage υR.
There are two independent sources in the circuit, so there will be two
components of υR.

Part 1: Turn off the voltage source and replace it with a short-circuit. Redraw
the circuit as shown in Figure 2.22(b), find the equivalent resistance of all three
resistors in parallel, and apply Ohm’s law to find .
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Figure 2.22(b) Circuit obtained by suppressing the voltage source

Part 2: Turn off the current source and replace it with an open-circuit. Redraw
the circuit, as shown in Figure 2.22(c), and apply KCL at the upper node:

Figure 2.22(c) Circuit obtained by suppressing the current source

This same result can be found by finding the equivalent resistance of RB in
parallel with R and applying voltage division.

Compute the voltage across R as the sum of the two component voltages:

Comments: The advantage offered by the principle of superposition in this problem
is that it clearly reveals the contributions to υR from each source. However, the work
required to solve this problem using this method is extensive compared to other
methods. For example, the voltage across R can easily be determined by applying
KCL at the upper node.
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CHECK YOUR UNDERSTANDING
Find the voltages υa and υb for the circuits of Example 1.14 by superposition.

CHECK YOUR UNDERSTANDING
Solve Example 1.17, using superposition.

CHECK YOUR UNDERSTANDING
Solve Example 1.19, using superposition.

2.5 THE SOURCE-LOAD PERSPECTIVE
An important analytic approach used throughout this book is to divide a circuit into
two parts that are connected to each other at only two terminals. These two parts are
known as the source and the load, as shown in Figure 2.23. In general, the load is the
circuit element or segment of interest. By default, the source is everything not
included in the load. Typically, the source provides energy and the load consumes it
for some purpose. For example, consider a headlight attached to a car battery as
shown in Figure 2.24. For the driver of the car, the headlight is the circuit element of
interest since it enables the driver to see the road at night. From this perspective, the
headlight is the load and the battery is the source, which is appealing because, in this
example, power is transferred from the source (the battery) to the load (the
headlight). (Note: It is not generally required nor necessarily true in all cases that
power is transferred from source to load.)

Figure 2.23 A circuit may be partitioned at two terminals. One part is the
source; the other part is the load.



(2.26)

(2.27)

Figure 2.24 A headlight-battery system is a simple physical representation
of a source-load perspective.

It is important not to confuse ideal independent and dependent voltage and
current sources with the generalized source concept introduced here. Ideal sources,
along with other circuit elements, are the constituents of a generalized source. In this
book, ideal sources are referred to as either voltage or current sources, explicitly, to
avoid confusion.

This source-load perspective leads to graphical solutions, which often lend
insights to circuit behavior, and which can be essential in nonlinear problems Page
106involving diodes and transistors. Consider the two circuits shown in Figure
2.25(a) and (b). Each circuit is partitioned into a source and a load at terminals A and
B. It is possible to analyze separately a source and its load and gain insight into the
behavior of the complete circuit.

Figure 2.25 (a) A simple voltage divider partitioned into source and load.
(b) A simple current divider partitioned into source and load.

The Source Networks
The source networks are shown in Figure 2.26(a) and (b) separate from their loads.
These particular source networks are referred to in this book as Thévenin and Norton
sources. KVL can be applied around a loop in Figure 2.26(a) and KCL can be
applied at the upper node in Figure 2.26(b) to yield:

These equations can be rearranged to yield:



(2.28)

(2.29)

Figure 2.26 (a) Thévenin source, (b) Norton source.

Aside: As implied by the ellipses, these networks are parts of larger circuits and not
stand-alone circuits themselves. Terminals A and B do not necessarily form an open-
circuit, and so the current i is not assumed to be zero.

The i-υ plots for each of these equations are shown in Figure 2.27(a) and (b).

Figure 2.27 (a) The i-υ plot for a Thévenin source; (b) the i-υ plot for a
Norton source

Notice that each plot is a straight line, known as the load line, with a (negative)
slope of −1/R1. Also, notice that when the terminals of the Thévenin Page 107and
Norton source networks are connected by ideal wires (i.e., short-circuited) the
resulting short-circuit currents iSC through the wires are:

Furthermore, when the terminals of the Thévenin and Norton sources are left open
(i.e., open-circuited), the resulting open-circuit voltages υOC across the terminals are:

Interestingly, the short-circuit current and the open-circuit voltage are the two
intercepts on the i-υ plots and represent the source solution when the resistance
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between terminals A and B is zero and infinity, respectively. All the other (i, υ) points
on the load line are solutions when the resistance between terminals A and B is
nonzero but finite. As this resistance increases from zero the (i, υ) solution moves
along the load line from upper left to lower right.

The line representing all possible (i, υ) solutions for the source network is
known as the load line. The name implies that the solution for any resistive
load from 0Ω → ∞ is a point on the line.

It is important to note that if υS = iSR1 the two load lines are identical and therefore
the Thévenin and Norton source networks are equivalent from the perspective of the
load. This result is a generalization of the concept of equivalent resistance.

The Load Network
The load for each of the two complete circuits can be represented by a simple resistor
R2, as shown in Figure 2.28. Its i-υ relationship is simply Ohm’s law.

Figure 2.28 A generic load is represented by R2.

The i-υ plot is a simple straight line with a (positive) slope of 1/R2 and intercept
at the origin. This line can be superimposed upon each of the source network plots.
The result is shown in Figure 2.29(a) and (b).



(2.31)

(2.32)

(2.33)

Figure 2.29 (a) For a Thévenin source, the intersection yields the voltage
division result . (b) For a Norton source, the intersection yields the
current division result .
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The intersection of the load line, which is comprised of the solutions for all
possible resistive loads, with the line for a specific load yields the solution for that
load. These plots allow one to envision the effect of either increasing or decreasing
the load R2 on the resulting voltage υ across and current i through terminals A and B.

The algebraic solution for the intersection point is found by setting equal the
source and load network solutions. (See equations 2.27 and 2.30.) The results are
shown below on the left and right for the Thévenin and Norton sources, respectively,
attached to a resistive load:

These equations can be rearranged to find:

Voila! These are the voltage and current division expressions found earlier in this
chapter for the same circuits as shown in Figure 2.25(a) and (b). This graphical
method is particularly useful when the load is nonlinear, as is the case for a diode or
transistor.

2.6 SOURCE TRANSFORMATIONS



(2.34)

It was stated in the previous section that the Thévenin and Norton sources shown in
Figure 2.26 are equivalent if υS = iSR1. In that case, the two load lines shown in
Figure 2.27 are identical. This fact is the basis of an analytic tool known as source
transformations.

Consider the Thévenin and Norton source networks shown in Figure 2.30, where
the Thévenin source voltage is defined as υT, the Norton source current is defined as
iN, and each source network has the same resistance RT = RN. Then, the two source
networks are equivalent and can be interchanged if

Figure 2.30 Simplified equivalent representations of a linear one-port
network

Consider the upper network shown in Figure 2.31. The Thévenin source in the
shaded box may be replaced by its equivalent Norton source as shown in the lower
network. This replacement of a Thévenin source with a Norton source is a source
transformation. Likewise, a Norton source may also be replaced by a Page
109Thévenin source. The computation of iSC is now a straightforward application of
current division.



(2.35)

Figure 2.31 Result of source transformation

Source transformations can simplify a network, if employed correctly. To do so,
identify the terminals of either a Thévenin or Norton source, as shown in Figure 2.32.
Next, remove the source network between those terminals and reattach the equivalent
source network to those same terminals. In general, a source transformation
simplifies a circuit by creating either a series or parallel connection between two
resistors that was not previously present in the circuit.

Figure 2.32 Networks amenable to source transformation

EXAMPLE 2.9 Source Transformations
Problem
Use source transformations to simplify the network shown in Figure 2.33 to a single
Norton source seen by the load Ro.

Figure 2.33

Solution
Known Quantities: Source voltages and current; resistor values.



Find: Thévenin equivalent resistance RT; Norton current iN = iSC.

Schematics, Diagrams, Circuits, and Given Data: υ1 = 50 V; iS = 0.5 A; υ2 = 5 V; R1
= 100Ω; R2 = 100Ω; R3 = 200Ω; R4 = 160Ω.

Assumptions: Assume the reference node is at the bottom of the circuit.
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Analysis: Highlight key terminals in the circuit to emphasize the Thévenin and
Norton sources present in the circuit, as shown in Figures 2.33 and 2.34. The
Thévenin source consisting of υ1 and R1, which appears between terminals c″ and b″,
can be replaced with a Norton source consisting of a current source υ1/R1 in parallel
with R1. Similarly, the Thévenin source between terminals c′ and b′ can be replaced
with a Norton source consisting of a current source υ2/R3 in parallel with R3. Both of
these transformations are shown in Figure 2.35. Notice that the direction of the
current source υ2/R3 is in accord with the polarity of the voltage source υ2. The order
of elements in parallel can be interchanged without changing the behavior of the
overall circuit, as is shown in Figure 2.36(a) with numerical values inserted for each
element.

Figure 2.34

Figure 2.35

In Figure 2.36(a), the three current sources in parallel contribute a total current of
25 mA leaving the upper left node and so can be replaced with a single 25 mA
current source directed downward as shown in Figure 2.36(b). Likewise, resistors R1,



R2 and R3 are in parallel and have a 40Ω equivalent resistance between the upper left
node and the bottom node.

Figure 2.36(a) Transformed, but not yet simplified, circuit

Figure 2.36(b) Simplified circuit
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The Norton source on the left can be transformed into a Thévenin source such
that the 40-Ω resistor is in series with the 160-Ω resistor and the current source is
transformed into a 0.025A×40Ω = 1-V voltage source. Finally, combine the two
series resistors to form a single equivalent RN = 200 Ω resistor and transform the
resulting Thévenin source into an equivalent Norton source with a iN = 5 mA current
source directed downward, as shown in Figure 2.37.

Figure 2.37

2.7 THÉVENIN AND NORTON EQUIVALENT
NETWORKS



Recall that a network that has two, and only two, terminals at which it can attach to
other networks, as in Figure 2.38, is a one-port network. Such a network is
characterized by the relationship between the current i through and voltage υ across
its terminals for various loads (e.g., open-circuit, short-circuit). The key concepts are

The impact of a one-port source on a one-port load is completely represented by
the i-υ characteristic of the source.
Two one-port networks are electrically equivalent if their i-υ characteristics are
equivalent.
Equivalent networks are those for which the voltage across and current through
their terminals are the same for any load.

Figure 2.38 One-port network

This concept of equivalence was introduced earlier for a network of resistors. The
central idea was that an entire network of resistors can be replaced by a single
equivalent resistance without impacting whatever else is attached to the original
network. Here, the concept of equivalence is generalized to networks that include
resistors, ideal sources, and other linear circuit elements. Recall the following
statement from earlier in this chapter.

Any network composed of linear elements only is itself linear. Common linear
elements are ideal sources, resistors, capacitors, and inductors.

The essence of this section is captured in the statement of two very important
theorems about linear networks.

Thévenin’s Theorem



When viewed from its terminals, any linear one-port network may be
represented by an equivalent circuit consisting of an ideal voltage source υT in
series with an equivalent resistance RT.

Norton’s Theorem
When viewed from its terminals, any linear one-port network may be
represented by an equivalent circuit consisting of an ideal current source iN in
parallel with an equivalent resistance RN.
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The Thévenin and Norton equivalent resistances (RT and RN) are the same for
any particular linear one-port network.

Any one-port linear network, no matter how complicated, can always be represented
by either of two simple equivalent networks, and the transformations leading to these
equivalent representations are easily managed, with a little practice. In this section,
techniques are presented for computing these equivalent networks, which reveal
some simple—yet general—results for linear networks, and are useful for analyzing
basic nonlinear circuits.

F O C U S  O N  P R O B L E M  S O LV I N G

THÉVENIN AND NORTON THEOREMS
Any one-port linear network can be simplified to either of two equivalent netw
forms. They are:



A Thévenin source, comprised of an independent voltage source υT in se
with a resistor RT, as shown in Figure 2.39.
A Norton source, comprised of an independent current source iN in parallel w
a resistor RN, as shown in Figure 2.40.

Figure 2.39 Illustration of Thévenin’s theorem

Figure 2.40 Illustration of Norton’s theorem

Moreover, since these equivalent network forms are equivalent to the original li
network, the forms themselves are equivalent. For example, a Thévenin source 
be interchanged with its equivalent Norton source, which is known as a so
transformation.

The equivalent network of any specific one-port linear network is comprise
specific values for υT and RT, or iN and RN, which are known as the:

Thévenin voltage υT and Thévenin equivalent resistance RT.
Norton current iN and the Norton equivalent resistance RN.

In addition, for any specific linear one-port network RT = RN and υT = iNRT. 
values of υT and iN are the open-circuit voltage υOC across and the short-cir
current iSC through, respectively, the source network terminals.
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Computation of RT or RN: Networks Without Dependent
Sources
The first step to calculate the Thévenin (or Norton) equivalent resistance of a one-
port linear source network with no dependent sources is to identify the two terminals



(2.36)

(e.g., a and b) of the source network. Sometimes just the one-port source network is
given in a problem, in which case the network terminals should be readily apparent.
Other times a complete circuit is given such that it is necessary to define and/or
identify the load and, by default, the source network. In Figure 2.41, the resistor Ro is
chosen as the load such that terminals a and b define the one-port (two terminal)
connection between the load and the source network.

Figure 2.41 Computation of Thévenin resistance

The second step is to remove the load and set all independent sources in the
source network to zero; that is, replace all independent voltage sources with short-
circuits and all independent current sources with open-circuits. The source network
of Figure 2.41 is shown with the voltage source replaced by a short-circuit.

Finally, apply series and parallel equivalent resistance substitutions to find the
effective equivalent resistance “seen” by the load Ro across terminals a and b. For
example, in the circuit of Figure 2.42, R1 and R2 are in parallel since they are
connected between the same two nodes, b and c. The total resistance between
terminals a and b is simply:



(2.37)

Figure 2.42 Equivalent resistance seen by the load

When series and parallel equivalent resistance substitutions are not sufficient,
find RT by once again turning off (i.e., setting to zero) all independent sources in the
one-port network and attaching an arbitrary independent voltage source υ to the
network terminals. Next, the current i through those terminals can be computed.
Then, RT is simply:

For example, assume that the independent sources in a one-port network have been
turned off and the resulting network is that shown in the top portion of Figure 2.43.
That resistor network, seen by terminals a and b, cannot be simplified by series and
parallel equivalent resistance substitutions. However, the Thévenin equivalent
resistance to the left of terminals a and b can be computed by applying an arbitrary
independent voltage source υ as shown in the bottom portion of Figure 2.43 and
applying Equation 2.37. This method is described by a simple four-step algorithm.

Figure 2.43 A general method of determining the Thévenin resistance
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Step 1: Set all independent voltage and current sources in the one-port network to
zero. Replace them with short- and open-circuits, respectively.
Step 2: Attach an arbitrary independent voltage source υS across the one-port
network terminals.
Step 3: Compute the current iS through the voltage source.

Step 4: Compute RT = υS/iS.

Computation of RT or RN: Networks With Dependent
Sources
There are two methods available to calculate the Thévenin equivalent resistance RT
when a dependent source is present in a linear one-port network. The first method is
the same as that described by the four-step algorithm at the end of the previous
section. That method will always work.
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A second method can be applied when the network also contains at least one
independent source. Without turning off any of the network’s independent sources
compute the open-circuit voltage υoc across the network terminals and then the short-
circuit current isc through the same terminals. Then, the Thévenin equivalent
resistance RT of the network is

For either of these two methods to be valid the following rule must be obeyed.

Each dependent source and its associated dependent variable must be
collocated in either the source network or the load when applying Thévenin’s
or Norton’s theorem.

For any particular one-port network the Thévenin and Norton equivalent
resistances are always equivalent to each other.
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1.
2.

(a)

(b)

(c)

3.

(a)
(b)
(c)
(d)

As a result, often only the RT notation is used.

F O C U S  O N  P R O B L E M  S O LV I N G

THÉVENIN RESISTANCE
Use the following steps to compute the Thévenin equivalent resistance across
terminals of a linear linear one-port network.

Identify the one-port network and label its terminals a and b.
Two methods exist for one-port networks without dependent sources. Both b
with the same first step.

Turn off all independent voltage and current sources in the network 
replace them with short- and open-circuits, respectively.
When possible, use series and parallel equivalent resistance substitution
simplify the network and eventually find RT.
When series and parallel equivalent resistance substitutions are not suffic
attach an arbitrary voltage source υs to the terminals and compute the resul
current is through those terminals. The Thévenin equivalent resistance is R
υs/is.

Two methods also exist for one-port networks with dependent sources. The 
method is to follow steps 2(a) and 2(c). The second method is

Leave all independent sources in the network turned on.
Compute the open-circuit voltage υoc across the network terminals.
Compute the short-circuit current isc through the network terminals.
Compute RT = υoc/isc.



1.
2.

3.
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When a dependent source is present in a one-port network, its associated dependent
variable must also be part of that network.

EXAMPLE 2.10 Computing RT for a Network Without a Dependent
Source
Problem
Compute the Thévenin equivalent resistance seen by the load Ro in Figure 2.44.

Figure 2.44

Solution
Known Quantities: Resistor values.
Find: The Thévenin equivalent resistance RT.

Schematics, Diagrams, Circuits, and Given Data: υS = 5 V; R1 = 2Ω; R2 = 2Ω; R3 =
1Ω; iS = 1 A; R4 = 2Ω.

Analysis: Refer to Figure 2.44 and the steps in the Focus on Problem Solving box
“Thévenin Resistance.”

The source network is everything to the left of terminals a and b.
Turn off the voltage and current sources and replace them with short- and open-
circuits, respectively. The result is shown in Figure 2.45.
There are three nodes remaining in the source network and no dependent source.
Clearly, R1 and R2 are in parallel since they sit between nodes c and b. Their
parallel equivalent resistance is in series with R3. Thus, there are two parallel
resistances from a →b: R3 + (R1 ∥ R2) and R4. Finally, the equivalent resistance
from a →b is



Figure 2.45

Comments: The network in this example is drawn in a fairly uncomplicated manner.
However, sometimes a network may be drawn in a more confusing manner. In any
case, it is easy to correctly calculate the equivalent resistance between the network
terminals by seeing the network as a collection of nodes, between which sit various
elements.
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EXAMPLE 2.11 Computing RT for a Network With a Dependent
Source
Problem
Compute the Thévenin equivalent resistance seen by the load Ro in Figure 2.46.

Figure 2.46

Solution
Known Quantities: Source and resistor values.
Find: The Thévenin equivalent resistance RT seen by the load Ro.

Schematics, Diagrams, Circuits, and Given Data: R1 = 24 kΩ; R2 = 8 kΩ; R3 = 9
kΩ; R4 = 18 kΩ.



1.
2.

3.

Analysis: Refer to Figure 2.46 and the steps in the Focus on Problem Solving box
“Thévenin Resistance.”

The source network is everything between terminals a and b.
Turn off the independent voltage source in Figure 2.46 and replace it with a
short-circuit. As a result, R1 and R2 are in parallel and can be replaced by a
single equivalent resistance.
The source network contains a dependent source. Attach an arbitrary
independent voltage source υS across terminals a and b and label its current iS as
shown in Figure 2.47. Included in this figure are two mesh currents i1 and i2 that
can be used to solve the circuit using mesh analysis.

Figure 2.47

The counterclockwise circulation was chosen so that i1 = iS. Apply KVL around each
mesh:

Note that υ2 = i1(R1 ∥ R2) such that the equations can be rewritten as:
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Collect coefficients of i1 and i2 and substitute values for the resistors.

Divide both sides of the mesh 2 equation by 3 and subtract the result from the mesh 1
equation.



(2.40)

Comments: This result can be computed by an alternate method where the 12-V
source is left on. First, remove the load and compute the open-circuit voltage υoc
across terminals a and b. Second, connect terminals a and b with a wire and compute
the short-circuit current iSC through that wire. Last, compute RT from its definition:

Try it. Does it work?

Computing the Thévenin Voltage
This section describes the computation of the Thévenin voltage υT for an arbitrary
linear one-port network that may contain sources, both independent and dependent,
and linear resistors. Thévenin’s theorem states that any linear one-port network may
be simplified to an equivalent network consisting of an independent voltage source
υT in series with a resistor RT, as shown in Figure 2.48. When the network terminals
are open the current i is necessarily zero such that the voltage drop across RT is also
zero. In this open-circuit case, KVL requires

Figure 2.48 Equivalence of open-circuit and Thévenin voltage

The Thévenin voltage υT is equal to the open-circuit voltage υoc across the
terminals of a linear one-port network.

The following simple algorithm can be used to solve for the Thévenin voltage.



1.
2.
3.

•

4.

F O C U S  O N  P R O B L E M  S O LV I N G

THÉVENIN VOLTAGE
Follow these steps to compute the Thévenin voltage for a linear one-port network

Identify the network and label its terminals (e.g., a and b).
Define the open-circuit voltage υoc across those terminals.
Apply any preferred method (e.g., the node voltage method) to solve for υoc.

For a network without an independent source, the open-circuit voltage υ
simply zero, even when a dependent source is present.

The Thévenin voltage υT of the network is, by definition, υoc.
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Computation of the open-circuit voltage is best illustrated by examples. For
instance, assume that everything to the left of terminals a and b in Figure 2.49 is
considered the one-port source network attached to a load Ro. The Thévenin
equivalent resistance from a →c →b of the source network is RT = R3 + R1 ∥ R2.

Figure 2.49

To compute υoc, remove the load Ro, as shown in Figure 2.50, and observe that
the current through R3 must then be zero. Thus, R1 and R2 are in a virtual series
connection and, as illustrated in Figure 2.51, υoc is equal to the voltage across R2,
which can be found by voltage division in the virtual series loop υS →R1 →R2 →υS.
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Figure 2.50

Figure 2.51

Now, consider, side by side, the original circuit and the circuit with the source
network replaced by its Thévenin equivalent, as shown in Figure 2.52. The current io
through the load Ro must be the same in both circuits.

Figure 2.52 Two circuits with equivalent source networks for the load Ro

Notice that the latter portion of this expression is rather complicated. However, if you
focus on the source network alone, it is often possible, with some practice, to readily
determine RT and υT, by observation, and then apply Ohm’s law or voltage division
to the simplified circuit to find the current through or voltage across Ro. Practice!
Practice!! Practice!!!

It is possible for υT to be zero. In such a case, RT may still be nonzero even
though RT is defined by υT = iNRT. The implication is that when υT is zero, iN may
also be zero, and vice versa, allowing finite, nonzero values for RT. In this case the
Thévenin equivalent of the source network is a simple resistor RT. There are two
other exceptional cases:



1.

2.

1.

2.
3.

When υT and RT are both zero, iN can be any value. Such a source network is
trivial, being equivalent to a short-circuit.
When iN is zero and RT is infinitely large, υT can be any value. Such a source
network is also trivial, being equivalent to an open-circuit.
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EXAMPLE 2.12 Computing υT for a Network With One Independent
Source
Problem
Compute the open-circuit voltage υoc in the network shown in Figure 2.53.

Figure 2.53

Solution
Known Quantities: Source voltage, resistor values.
Find: Open-circuit voltage υoc.

Schematics, Diagrams, Circuits, and Given Data: υS = 12 V; R1 = 1Ω;R2 = 10Ω; R3
= 10Ω; R4 = 20Ω.

Analysis: Refer to Figure 2.53 and the steps in the Focus on Problem Solving box
“Thévenin Voltage.”

In this problem, the one-port network is everything to the left of terminals a and
b.
The open-circuit voltage υoc is across terminals a and b, as shown in the figure.
There are four nodes in the network. Node b is selected as the reference with a
voltage υb = 0. Another node is fixed at υS by the voltage source. For the other
two nodes, the node voltage method will yield two KCL equations in the two



unknown node voltages, υ and υa. Apply KCL to obtain the following two
equations:

Collect terms to find:

Substitute numerical values and write the equations in matrix form as:

Solving yields υ = 10.6 V and υa = 7.1 V. Thus, υOC = υa − 0 = 7.1 V.

Comments: A common mistake in problems like this one is to assume that R4 is the
load (even though there is no mention of a load) and not part of the one-port source
network. The fact that the voltage drop across R4 is given as the open-circuit voltage
υoc suggests that the entire network to the left of terminals a and b is to be treated as
the source network.
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EXAMPLE 2.13 Computing υT and RT for a Network With Two
Independent Sources
Problem
Find the Thévenin equivalent of the source network and use it to compute the load
current i in the circuit of Figure 2.54.



1.
2.

•

•

•

Figure 2.54

Solution
Known Quantities: Source and resistor values.
Find: υT and RT for the source network and the load current i.

Schematics, Diagrams, Circuits, and Given Data: υS = 24 V; iS = 3 A; R1 = 4Ω; R2 =
12Ω; R3 = 6Ω.

Analysis: Refer to Figure 2.54 and the steps in the Focus on Problem Solving boxes
“Thévenin Resistance” and “Thévenin Voltage.”

R3 is the load. Everything else is the one-port source network.
Remove the load R3 and solve for RT and υT of the source network, and use them
to find the load current i.

Find RT: Set both voltage and current sources to zero and replace them with
short- and open-circuits, respectively, as shown in Figure 2.55. The resulting
equivalent resistance between terminals a and b is simply RT = R1 ∥R2 = 4 ∥
12 = 3Ω.
Find υT: The circuit shown in Figure 2.56 has only three nodes. Node b is
selected as the reference with a voltage υb = 0. Of the remaining two nodes,
one is fixed at a voltage υS by the voltage source. Thus, only a single KCL
equation at node υa is needed for a solution:

Substitute numerical values to find: υa − υb = υOC = 27V. The Thévenin
voltage υT is the open-circuit voltage υOC across terminals a and b. (Note that
the principle of superposition also readily yields a solution.)
Find i: Construct the Thévenin equivalent of the source network and reattach
the load R3, as shown in Figure 2.57. The load current is easily computed
using Ohm’s law.



•
•

•
•

Figure 2.55

Figure 2.56

Figure 2.57 Simplified circuit

Comments: Equivalent circuit analysis has several key advantages. By reducing any
complicated linear source network to a simple structure, one can more quickly
determine:

The voltage across and current through any load.
The maximum possible load current υT/RT (for loads approaching short-
circuits).
The maximum possible load voltage υT (for loads approaching open-circuits).
The value of the load that gives maximum power transfer to the load (see
Section 2.8).
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1.

2.
3.

EXAMPLE 2.14 Computing υT for a Network With a Dependent
Source
Problem
Find the Thévenin voltage υT of the one-port source network seen by the load Ro in
Figure 2.58.

Figure 2.58

Solution
Known Quantities: Source and resistor values.
Find: υT for the source network.

Schematics, Diagrams, Circuits, and Given Data: R1 = 24 kΩ; R2 = 8 kΩ; R3 = 9
kΩ; R4 = 18 kΩ.

Analysis: Refer to Figure 2.58 and the steps in the Focus on Problem Solving box
“Thévenin Voltage.” This circuit is identical to the one from Example 2.11, where the
Thévenin equivalent resistance RT seen by Ro was found to be 8 kΩ. In this example,
the Thévenin voltage υT seen by Ro is found.

The source network is everything except the load Ro. Remove the load from the
source network as shown in Figure 2.59.
Define the open-circuit voltage υOC as in Figure 2.59.
The resulting circuit has two series loops sharing one common node c. Define
the voltage υ3 across R3. Then KVL around the middle portion of the circuit
yields:

Voltage division can be applied to the series loop on the left to solve for υ2.



4.

Voltage division can also be applied to the series loop on the right to find υ3 in
terms of υ2.

Plug these values into the KVL equation to find:
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The Thévenin voltage is υT = υOC = 1 V.

Figure 2.59

Computing the Norton Current

The Norton current iN is equal to the short-circuit current iSC through the
source network terminals.

Consider an arbitrary linear one-port network and its Norton equivalent, each
attached to a short-circuit, as shown in Figure 2.60. The voltage across RN is zero so
there is no current through it. Thus, the current iSC through the short-circuit is exactly
the Norton current iN.

Figure 2.60 Illustration of Norton equivalent circuit



1.
2.
3.

•

4.

F O C U S  O N  P R O B L E M  S O LV I N G

NORTON CURRENT
Follow these steps to compute the Norton current for a linear one-port network.

Identify the one-port network and label its terminals (e.g., a and b).
Define the short-circuit current iSC through those terminals.
Apply any preferred method (e.g., the mesh current method) to solve for iSC.

For source networks without an independent source the short-circuit cur
iSC is simply zero, even when a dependent source is present.

The Norton current iN of the network is, by definition, iSC.

This simple observation suggests the basic method for finding the Norton current
for any arbitrary linear one-port network. Attach a short-circuit wire to its terminals
to determine the Norton current through the wire.

Consider the circuit of Figure 2.61, shown with a short-circuit attached to a one-
port source network (i.e., in place of the load). The short-circuit current iSC can be
found easily using the mesh current method.

Figure 2.61 Computation of Norton current

In terms of the mesh currents i1 and i2, the KVL mesh equations are

Collect terms to find:
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Multiply the mesh 2 equation by (R1 + R2)/R2 and add the result to the mesh 1
equation to find:

Finally, multiply both sides of the equation by R2 to obtain:

Alternatively, the node voltage method requires only one KCL node equation.

Multiply both sides of the equation by R1R2R3 and collect terms to find:

or

Finally, the short-current current is:

Of course, the results are the same for both methods. Great! Thus, the Norton current
iN is:

Why solve for iSC twice, using two separate methods? When time allows, it is always
a good idea to validate your results!



•

(a)

(b)
(c)

EXAMPLE 2.15 Computing iN for a Network With Two Independent
Sources
Problem
Determine the Norton current iN and the Norton equivalent for the network in Figure
2.62.

Figure 2.62

Solution
Known Quantities: Voltage source υS and current source iS; resistor values.

Find: Norton current iN = iSC; Equivalent resistance RT.

Schematics, Diagrams, Circuits, and Given Data: υS = 6 V; iS = 2 A; R1 = 6Ω; R2 =
3Ω; R3 = 2Ω.

Assumptions: Assume the reference node is at the bottom of the circuit.
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Analysis: Refer to Figure 2.62 and the steps in the Focus on Problem Solving box
“Norton Current.”

Find iN: In Figure 2.63, the source network terminals a and b are defined and a
short-circuit wire is attached to them. The mesh current method would work
very well in this problem (do you see why?), but the node voltage method will
also work, and this circuit provides a good opportunity to practice the use of a
“supernode.”

There are three nodes in this circuit. The reference node is labeled in the
figure.
There are two nonreference nodes labeled υ1 and υ2.
The two-node voltage variables are related to each other by the voltage source
υS.



(d)

(e)

(f)

•

Apply KCL at the boundaries of the supernode shown in the figure to find:

υ2 is the primary objective since υ2 − 0 = iSCR3. Use the constraint equation to
substitute for υ1 in the supernode equation.

Form the common denominator R1R2R3 for the bracketed term and find:

Finally, the short-circuit current is given by:

Find RT: To compute the Thévenin equivalent resistance, set the independent
voltage and current sources to zero and replace them with short- and open-
circuits, respectively. The resulting resistor network is shown in Figure 2.64. It is
easy to see that RT = R1 ∥ R2 + R3 = 6 ∥ 3 + 2 = 4Ω.

Figure 2.63



Figure 2.64

The Norton equivalent of the original one-port network is shown in Figure 2.65.
Notice the polarity of the current source, which is dictated by the polarity defined for
the short-circuit current iSC.

Figure 2.65 Norton equivalent network

Comments: Superposition is a reasonable alternative method for solving for iSC. Take
another look at Figure 2.63 and note that current division will quickly yield the
component of iSC due to the current source iS. Also note that voltage division will
quickly yield the component υ2 due to the voltage source υS. Ohm’s law can then be
applied to find iSC.
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EXAMPLE 2.16 Computing iN for a Network With a Dependent
Source
Problem
Find the Norton current iN of the one-port source network seen by the load Ro in
Figure 2.66.



1.

2.
3.

Figure 2.66

Solution
Known Quantities: Voltage source and resistor values.
Find: iN for the source network.

Schematics, Diagrams, Circuits, and Given Data: R1 = 24 kΩ; R2 = 8 kΩ; R3 = 9
kΩ; R4 = 18 kΩ.

Assumptions: Assume the reference node is at the bottom of the circuit.

Figure 2.67

Analysis: Refer to Figure 2.66 and the steps in the Focus on Problem Solving box
“Norton Current.” This circuit is identical to the one from Example 2.14, where the
Thévenin voltage seen by Ro was found to be 1 V. In this example, the Norton current
iN seen by Ro is found.

The one-port source network is everything except the load Ro. Remove the load
from the source network and replace it with a short-circuit (i.e., a wire), as
shown in Figure 2.67.
Define the short-circuit current iSC as in Figure 2.67.
The resulting circuit has three nonreference nodes; however, the voltage of one
is known while the voltages of the other two are both determined by υ2. Thus,
there is only one unknown node voltage υ2, which can be found by applying
KCL at node υ2.

Plug in values for the resistors and multiply both sides of the equation by the
common denominator to get:



4.

or
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To find iSC apply KCL at the wire junction directly above R2.

Plug in for υ2 to find

Comments: Note that the circuit in this example is identical to the one used in
Examples 2.11 and 2.14. In these three example problems, the Thévenin equivalent
resistance RT, the Thévenin voltage υT, and the Norton current iN were found to be 8
kΩ, 1 V, and 0.125 mA, respectively, for the same linear one-port network. Although
all three values were found by independent means, the result is that υT = iN ⋅ RT.
Check it out! Amazing!!

CHECK YOUR UNDERSTANDING
Find the Thévenin equivalent resistance seen by the load resistor Ro.

Find the Thévenin equivalent resistance seen by the load resistor Ro.



CHECK YOUR UNDERSTANDING
For each circuit below, find the Thévenin equivalent resistance seen by the load
resistor Ro.
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CHECK YOUR UNDERSTANDING

Answer: RT = 2.5 kΩ; RT = 7Ω

Answer: RT = 4.23 kΩ; RT = 7.06Ω



Find the open-circuit voltage υOC for the circuit of Figure 2.53 if R1 = 5Ω.

CHECK YOUR UNDERSTANDING
Find the Thévenin equivalent network seen by the load resistor Ro.

CHECK YOUR UNDERSTANDING
Find the Thévenin equivalent network seen by the load resistor Ro. Source
transformations are very useful in this problem.

Answer: 4.8 V

Answer: RT = 30Ω; υOC = υT = 5 V

Answer: RT = 10Ω; υOC = υT = 0.704 V



(2.42)
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Experimental Determination of Thévenin and Norton
Equivalents
Thévenin and Norton equivalent networks are often used as linear models of practical
devices, such as batteries, power supplies, voltmeters, and ammeters, over a limited
range of operation. While it is usually not possible nor feasible, because of the
internal complexity of the devices, to determine those models analytically, simple
experimental methods can be used instead. In practice, it is very useful to measure,
for example, the equivalent internal (Thévenin) resistance of an instrument, so as to
understand its operating limits and power requirements. Essentially, the linear model
of a device is completely determined by its Thévenin (open-circuit) voltage υT and its
Norton (short-circuit) current iN. The equivalent internal (Thévenin) resistance RT is

Figure 2.68 illustrates the measurement of the short-circuit current and the open-
circuit voltage. In practice, it is generally not a good idea to measure the short-circuit
current directly with an ammeter since the input resistance of Page 129an ammeter is,
by design, typically quite small. If these direct measurements are made the finite
meter resistances rA and rV must be accounted for in the computation of the short-
circuit current iSC and the open-circuit voltage υOC, respectively.



(2.43)

Figure 2.68 Measurement of open-circuit voltage and short-circuit current

Current and voltage division can be applied, respectively, to obtain the following
expressions for the Norton current iN and the Thévenin voltage υT,

where RT is the Thévenin equivalent resistance across terminals a and b of the
unknown linear network. For an ideal ammeter, the internal resistance rA is zero (a
short-circuit). For an ideal voltmeter, the internal resistance rV is infinite (an open-
circuit). The two expressions in Equation 2.43 determine the “true” Thévenin and
Norton equivalent networks using imperfect measurements of the short-circuit
current and the open-circuit voltage, provided that the internal meter resistances are
known. In practice, when the equivalent resistance seen by a voltmeter is much
smaller than rV, the measured υOC will closely approximate the “true” υOC. Likewise,
when the equivalent resistance seen by an ammeter is much larger than rA, the
measured iSC will closely approximate the “true” iSC.



It is often not advisable to measure iSC directly with an ammeter since its
magnitude is not known. An ammeter is designed to approximate a short-
circuit when inserted in a network, such that a large current may result and
destroy an over-current protection fuse and perhaps damage the ammeter itself.

An alternative to measuring iSC directly is to collect data along the load line of the
unknown linear network and extrapolate iSC from that data. Figure 2.27 depicts a
typical load line associated with a linear network. Experimental load line data can be
acquired by inserting resistive loads between the device terminals. The first load
should be an open-circuit to determine directly the open-circuit voltage. The second
load should be very large and followed by successively smaller loads. The load
voltage can be measured by a voltmeter and the load current deduced by applying
Ohm’s law to the resistive load. For an ideal linear device, these data points will trace
a straight line from the intersection with the voltage axis (υOC) to the intersection
with the current axis, which is the short-circuit current iSC. In practice, experimental
errors should be accounted for by using the load line data to compute a “best fit”
trendline.
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FOCUS ON MEASUREMENTS



Experimental Determination of Thévenin Equivalent
Networks
Problem:
Determine the Thévenin equivalent of an unknown source network from
measurements of open-circuit voltage and short-circuit current.

Solution:
Known Quantities — Short-circuit current iSC, open-circuit voltage υOC, ammeter
internal resistance rA, and voltmeter internal resistance rV.

Find — Equivalent resistance RT; Thévenin voltage υT = υOC.

Schematics, Diagrams, Circuits, and Given Data — Measured υOC = 6.5 V;
measured iSC = 3.25 mA; rA = 25Ω; rV = 10 MΩ.

Assumptions — The unknown network is linear containing ideal sources and
resistors only. The short-circuit current was able to be measured directly using an
ammeter without damaging the instrument or its fuse.
Analysis — The unknown circuit shown in Figure 2.69 is replaced by its Thévenin
equivalent and is connected to an ammeter to measure the short-circuit current and to
a voltmeter to measure the open-circuit voltage. Ohm’s law can be applied to the
current measurement to find:

Voltage division can be applied to the voltage measurement to find:

These expressions can be solved for υT to yield:

Or



Since rV is typically on the order of 106 times larger than rA, one or both of the
fractions in the previous expression will be negligible for a given RT. Under the
assumption that RT ≪ rV the above expression is approximated by:

Under the assumption that RT ≫ rA the above expression is instead approximated by:

If both assumptions are true, the Thévenin equivalent resistance is approximated by:

which is the calculation that many inexperienced users make for every measurement,
regardless of the relative values of RT, rA, and rV. Of course, RT is not known a priori
so it is important to consider whether either or both of the limiting assumptions is
reasonable.

Page 131

Consider the example measurement data listed above. The measured values of the
short-circuit current and open-circuit voltage are:

If both limiting assumptions are made, then the Thévenin equivalent resistance RT
between terminals a and b of the unknown network is approximately:

This value is 80 times larger than rA but 5000 times smaller than rV. Thus, one might
expect that the impact of rA is more significant than the impact of rV for this
particular network.

If only RT ≪ rV is assumed, then using the appropriate expression above yields:



which is a 1.25% change from 2.0kΩ. If only RT ≫ rA is assumed, then using the
appropriate expression above yields:

which is a negligibly small 0.02% change from 2.0 kΩ. If neither limiting
assumption is made, then RT is:

As expected it is important in this example to include the impact of rA when
calculating the “true” value of RT. The impact of rV on the calculation is negligible.

Figure 2.69
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2.8 MAXIMUM POWER TRANSFER
The reduction of any linear resistive circuit to its Thévenin or Norton equivalent
form is a very convenient conceptualization, as far as the computation of load-related
quantities is concerned. One such computation is that of the power absorbed by the
load. The Thévenin and Norton models imply that some of the power generated by



(2.44)

(2.45)

(2.46)

(2.47)

the source will necessarily be dissipated by the internal circuits within the source.
Given this unavoidable power loss, a logical question to ask is, How much power can
be transferred to the load from the source under the most ideal conditions? Or,
alternatively, what is the value of the load resistance that will absorb maximum
power from the source? The answer to these questions is contained in the maximum
power transfer theorem.

The model employed in the discussion of power transfer is illustrated in Figure
2.70, where a one-port linear network is represented by means of its Thévenin
equivalent network. The power absorbed by the load Po is

and the load current is

Figure 2.70 Power transfer between source and load

Combining the two expressions, the load power can be computed as

The expression for Po can be differentiated with respect to Ro and set to zero to find
the value of Ro that gives the maximum power absorbed by the load. (Here, υT and RT
are assumed constant.)

Plug in for Po and solve to obtain:



(2.48)

(2.49)

(2.50)

Thus, at the maximum value of Po the following expression must be satisfied.

The solution of this equation is

Thus, to transfer maximum power to a load, the load resistance must matchthe
Thévenin equivalent resistance. Figure 2.71 depicts a plot of the load power divided
by  versus the ratio of Ro to RT. Note that load power is maximized when Ro = RT.
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Figure 2.71 Graphical representation of maximum power transfer

An phenomenon related to power transfer is source loading, which is illustrated
in Figure 2.72. When a one-port linear network is connected to a load, the voltage
across the load will be somewhat lower than the open-circuit voltage (the Thévenin
voltage) of the source. The extent of the decrease in voltage depends on the amount
of current drawn by the load. With reference to Figure 2.72, the voltage decrease is
equal to iRT, and therefore the load voltage will be



(2.51)

(2.52)

Figure 2.72 Loading

It should be apparent that it is desirable to have as small an internal resistance as
possible in a practical voltage source.

In the case of a current source, the current through the load will be somewhat
lower than the short-circuit current (the Norton current) of the source:

It is therefore desirable to have a very large internal resistance in a practical current
source. Refer to the discussion of practical sources later in this chapter to see that
they are often represented by Thévenin and Norton equivalent networks.

EXAMPLE 2.17 Maximum Power Transfer
Problem
Use the maximum power transfer theorem to determine the increase in power
delivered to a loudspeaker resulting from matching the speaker resistance to the
amplifier output resistance RT, as depicted in the simplified model of Figure 2.73.
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Figure 2.73 A simplified model of an audio system

Solution
Known Quantities: Source equivalent resistance RT; unmatched speaker load
resistance RU; matched loudspeaker load resistance RM.

Find: Difference between power delivered to loudspeaker with unmatched and
matched loads, and corresponding percentage increase.
Schematics, Diagrams, Circuits, and Given Data: RT = 8Ω; RU = 16Ω; RM = 8Ω.

Assumptions: The amplifier can be modeled as a one-port linear network.
Analysis: Consider connecting (unwittingly) an 8-Ω amplifier to a 16-Ω speaker. The
power delivered to the speaker can be computed using voltage division as follows:

and the load power is then computed to be

Repeat the calculation for the case of a matched 8-Ω speaker resistance RM. The new
load voltage υM and the corresponding load power PM are calculated as follows:

and



The increase in load power is therefore

Comments: In practice, an audio amplifier and a speaker are not well represented by
the simple resistive models used in this example. Circuits that are appropriate to
model amplifiers and loudspeakers are presented in later chapters.
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CHECK YOUR UNDERSTANDING
A practical voltage source has an internal resistance of 1.2 Ω and generates a 30-V
output under open-circuit conditions. What is the smallest load resistance that can be
connected to the source if the decrease in load voltage is to be no more than 2 percent
with respect to the source open-circuit voltage?

A practical current source has an internal resistance of 12 kΩ and generates a
200-mA output under short-circuit conditions. What percentage drop in load current
will be experienced (with respect to the short-circuit condition) if a 200-Ω load is
connected to the current source?

2.9 PRACTICAL VOLTAGE AND CURRENT
SOURCES
Ideal independent sources are defined such that their prescribed output, a voltage or
current, is completely independent of other factors. An ideal independent voltage
source maintains a prescribed voltage across its terminals independent of the current
through those terminals; likewise, an ideal independent current source maintains a
prescribed current through its terminals independent of the voltage across those
terminals. Neither of these ideal sources account for the effective internal resistance
of practical voltage and current sources, which makes the output of a practical source
dependent on the load that is seen by the source.

Answer: 58.8 Ω; 1.64%



Consider, for example, a conventional car battery rated at 12 V, 450 ampere-
hours (A-h). The latter rating implies that there is a limit (albeit a large one) to the
amount of current the battery can deliver to a load and that, to some extent, the
voltage output of the battery is dependent on the current drawn from it. This
dependency can be observed as a drop in battery voltage when starting an
automobile. Fortunately, a detailed understanding and analysis of the battery’s
physics are not necessary to model its behavior. Instead, the concept of internal
resistance allows practical sources to be approximated by either of two different yet
simple and effective models.

A practical voltage source can be approximated by a Thévenin model, which is
composed of an ideal voltage source υS in series with an internal resistance rS.
In practice, rS is designed to be small compared to a typical equivalent
resistance seen by the source.

A practical current source can be approximated by a Norton model, which is
composed of an ideal current source iS in parallel with an internal resistance rS.
In practice, rS is designed to be large compared to a typical equivalent
resistance seen by the source.
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The shaded portion of Figure 2.74 depicts the so-called Thévenin model. The
source output current io depends upon the ideal voltage source υS, the internal
resistance rS, and the load Ro. The maximum current is found in the limit that the
load Ro →0 (i.e., a short-circuit load). The equivalent resistance “seen” by the ideal
voltage source is rS + Ro. The source output current io is given by Ohm’s law.

Figure 2.74 The Thévenin model of a real voltage source



The load voltage υo can be found by direct application of voltage division.

In practice, the internal resistance rS of a real voltage source is designed to be
small compared to a typical load resistance Ro. In such cases, the load voltage υo is
approximately equal to the ideal source voltage υS and the current requirements of a
broad range of loads may be satisfied. Often, the effective internal resistance of a real
voltage source is listed in its technical specifications. In cases where Ro is
comparable to or smaller than rS, the load voltage υo will be significantly less than υS.
This result is known as a loading effect, such as when an automotive battery is
required to start its engine.

The shaded portion of Figure 2.75 depicts the so-called Norton model. With this
model, the source output voltage υo depends upon the ideal current source io, the
internal resistance rS, and the load Ro. The maximum voltage is found in the limit
that the load Ro → ∞ (i.e., an open-circuit load). The equivalent resistance “seen” by
the ideal current source is rS ∥ Ro. The source output voltage υo is given by Ohm’s
law.

Figure 2.75 The Norton model of a real current source

The load current can be found by direct application of current division.

In practice, the internal resistance rS of a real current source is designed to be
large compared to a typical load resistance Ro. In such cases, the load current io is
approximately equal to the ideal source current iS and the voltage requirements of a
broad range of loads may be satisfied. Often, the effective internal resistance of a real



current source is listed in its technical specifications. In cases where Ro is
comparable to or larger than rS, the load current io will be significantly less than iS.
This result is also known as a loading effect.

2.10 MEASUREMENT DEVICES
In practice, the most commonly required measurements are of resistance, current,
voltage, and power. An ideal measurement device would have no effect upon the
quantity being measured. Of course, when a real measurement device is attached to a
network, the network itself is changed (it now includes the measurement device) and
it is quite possible that the quantity being measured is changed from what it was
before the device was attached. At first glance, this problem may seem like a Page
137classic catch-22 scenario. That is, a quantity needs to be measured, so a
measurement device must be used; but when the measurement device is used, the
quantity is no longer what is was. To restore the quantity to its original state, the
measurement device must be removed, but then … and so on and so on, around and
around.

Luckily, if the characteristics of the measurement device are known, it is often
possible to estimate the qualitative and quantitative impacts of a device on the
measured quantity. In this section, simple models of real measurement devices are
introduced that allow reasonable estimates of both.

The Ohmmeter
An ohmmeter measures the equivalent resistance across two nodes. In particular, an
ohmmeter measures the resistance across an element when connected in parallel with
it. Figure 2.76 depicts an ohmmeter connected across a resistor. One important rule
needs to be remembered when using an ohmmeter:

When using an ohmmeter to measure the resistance between two terminals of a
circuit element it is important that the element and ohmmeter not be in parallel
with any other resistive pathway.

Figure 2.76 An ideal ohmmeter connected across a resistor



1.

2.

If the element is not disconnected from its network, the ohmmeter will measure
the effective resistance of the element in parallel with the rest of its network. A
common mistake made by inexperienced users of an ohmmeter is to attempt to
measure the value of a discrete resistor by using fingers to clamp each end of the
resistor to the ohmmeter probes. The user of the ohmmeter may be completely
unaware that the measurement represents the equivalent resistance of the discrete
resistor in parallel with the resistance from one hand to the other.

The Ammeter
An ammeter measures the current through an element when connected in series with
it. Figure 2.77(a) shows an ideal ammeter inserted into a simple series loop to
measure its current. An ideal ammeter has zero resistance and therefore is able to
measure the current without alteration due to the presence of the ammeter. A more
realistic model of an actual ammeter has an internal resistance in series with an ideal
ammeter, as shown in Figure 2.77(b). To obtain an accurate measurement the internal
resistance of the ammeter must be significantly smaller than the total equivalent Page
138resistance of the branch to which it is attached in series. For example, the internal
resistance rm of the ammeter must be significantly smaller than R1 + R2 in the series
loop of Figure 2.77(a). In practice, it is necessary to observe two rules when using an
ammeter:

When using an ammeter to measure the current through an element, the
ammeter must be in series with the element.
When using an ammeter, its internal resistance should be much smaller
than the total equivalent resistance in series with the ammeter.

Figure 2.77 (a) An ideal ammeter in series with R1 and R2. (b) A practical
model for an actual ammeter. rm is the meter’s internal resistance.

The Voltmeter



1.

2.

A voltmeter measures the voltage across an element when connected in parallel
with it. Figure 2.78(a) shows an ideal voltmeter attached across resistor R2, which is
otherwise in a simple series loop. An ideal voltmeter has infinite resistance and
therefore is able to measure the voltage without alteration due to the presence of the
voltmeter. A more realistic model of an actual voltmeter has an internal resistance in
parallel with an ideal voltmeter, as shown in Figure 2.78(b). To obtain an accurate
measurement the internal resistance of the voltmeter must be significantly larger than
the total equivalent resistance between the two nodes to which it is attached in
parallel. For example, the internal resistance rm of the voltmeter must be significantly
larger than R2 in the series loop of Figure 2.78(a). In practice, it is necessary to
observe two rules when using a voltmeter:

When using a voltmeter to measure the voltage across an element, the
voltmeter must be in parallel with the element.
When using a voltmeter, its internal resistance should be much larger than
the total equivalent resistance in parallel with the voltmeter.

Figure 2.78 (a) An ideal voltmeter in parallel with R2. (b) A practical
model for an actual voltmeter. rm is the meter’s internal resistance.

The Wattmeter
A wattmeter is a three-terminal device [see Figure 2.79(a)] that measures the power
dissipated by a circuit element. A wattmeter is essentially a combination of an Page
139ammeter and a voltmeter, as shown in Figure 2.79(b). Thus, it should be no
surprise that an actual wattmeter is modeled with internal resistances at its terminals
similar to those found in the practical ammeter and voltmeter models. A wattmeter
simultaneously measures the current through and the voltage across an element and
computes the product of these two quantities to determine the power dissipated.



Figure 2.79 (a) An ideal wattmeter in series and parallel with R2. (b) A
model of an ideal wattmeter as a combination of an ideal ammeter and an
ideal voltmeter. A practical model would replace the ideal meters with their
own practical models.

EXAMPLE 2.18 Impact of a Practical Voltmeter
Problem
Use the tabulated data below to determine the effective internal resistance of the
voltmeter shown in Figure 2.78(a), where the voltmeter is modeled as shown in
Figure 2.78(b).

Solution
Known Quantities: υS = 5.0 V; various values of R1 = R2; voltmeter data.

Find: The effective internal resistance rm of the voltmeter.

Schematics, Diagrams, Circuits, and Given Data: Figure 2.78(a) and (b) and Table
2.1.

Table 2.1 Voltmeter data for determining internal resistance

Analysis: Substitute the practical model of a voltmeter shown in Figure 2.78(b) for
the ideal voltmeter shown in Figure 2.78(a). Notice that the internal resistance rm of
the voltmeter is in parallel with R2. Their parallel equivalent resistance is:



(2.53)

(2.54)

(2.55)

(2.56)

(2.57)

The voltage across R2 and the voltmeter can be found directly by voltage division:

Divide the numerator and denominator by R1 and gather coefficients of rm.
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Multiply both sides by the denominator on the right and gather coefficients of rm to
find:

When R2 = R1:

Notice that rm = R2 when:

Solve for υ2/υS to find:

Since υS = 5.0 V, the previous condition is satisfied when υ2 = 5.0/3 = 1.67V. This
value for υ2 is found in Table 2.1 for R1 = R2 = 10MΩ. Thus, the internal resistance
of the voltmeter is

This value is typical of many handheld digital multimeters in voltmeter mode.



Comments: It is possible to acquire a separate estimate of rm for each pair of values
R1 = R2 and υ2 found in Table 2.1 by simply plugging in for υ2, υS, R1, and R2, and
solving for rm. However, in practice, the calculated estimates for rm will not be the
same because they are particularly sensitive to experimental error when R2 ≪ rm, as
is the case for the first few pairs of data in the table. The least sensitivity to
experimental error occurs when R2 = rm.

CHECK YOUR UNDERSTANDING
Find a separate estimate of rm for each pair of values R1 = R2 and υ2 found in Table
2.1. Make a plot of rm versus R2.

Page 141

2.11 NONLINEAR CIRCUIT ELEMENTS
The focus of this chapter so far has been on solving linear circuits. The example
problems have had simple closed-form algebraic solutions that were readily
interpreted with respect to their circuit diagrams. One reason for this result is that the
loads have all been ideal resistors with a simple, linear i-υ characteristic, namely
Ohm’s law. However, in practice, engineers are often faced with nonlinear i-υ
characteristics from elements such as diodes and transistors. This section explores
two methods for analyzing nonlinear circuit elements.

Description of Nonlinear Elements

Answer: Estimates for rm are: 1.25M; 9.56M; 9.92M; 9.89M; 10.06M



(2.58)

(2.59)

(2.60)

(2.61)

There are a number of useful cases in which a simple functional relationship exists
between voltage and current in a nonlinear circuit element. Figure 2.80 depicts an
element with an exponential i-υ characteristic, described by the following equations:

Figure 2.80 The i-υ characteristic of an exponential resistor

In fact, this relationship approximates the nonlinear i-υ characteristic of a
semiconductor diode. The difficulty in dealing with circuits containing nonlinear
elements is that it is not possible, in general, to obtain a closed-form analytic solution
even for simple circuits.

One approach to analyzing a circuit containing a nonlinear element is to treat it as
a load and to compute the Thévenin equivalent of the source network, as shown in
Figure 2.81. Apply KVL to obtain the following equation:

The second equation needed to solve for the unknown voltage υx and the
unknown current ix is the i-υ characteristic of the nonlinear load element. Assume the
load is a semiconductor diode and consider, for the moment, only positive voltages.
Since the reverse saturation current I0 is typically very small, the circuit equations are
well approximated by the following system:

Although this system has two equations in two unknowns, one of the equations is
nonlinear. By substituting the expression for ix into the linear equation, the following
expression is obtained:

or



(2.62)

(2.63)

This transcendental equation does not have a closed-form solution. How can υx be
found? One possibility is to generate a solution numerically, by guessing an initial
value (for example, υx = 0) and iterating until a sufficiently precise solution is found.
This method is explored further in the homework problems. Another method is based
on a graphical analysis.
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Graphical (Load-Line) Analysis of Nonlinear Circuits
A nonlinear system of equations may be analyzed graphically. KVL can be applied to
Figure 2.81 to write:

Figure 2.81 Representation of a nonlinear load in an otherwise linear
circuit

This equation, which is referred to as the load-line equation and is valid for any
load, linear or nonlinear, is a line in the (ix, υx) plane, with slope −1/RT and ix
intercept υT/RT. Its graphical representation is very useful and is shown in Figure
2.82.



Figure 2.82 Load line

The other i-υ characteristic is that of the nonlinear element. The intersection of
the load line with the nonlinear i-υ characteristic yields the solution, as depicted in
Figure 2.83.

Figure 2.83 Graphical solution

It is important to emphasize that the methods introduced in this chapter for
simplifying a linear source network can always be employed to solve circuits
containing a single nonlinear load, as illustrated in Figure 2.84.

Figure 2.84 Transformation of a linear network to a Thévenin source

EXAMPLE 2.19 Nonlinear Load Power Dissipation
Problem
A linear generator is connected to a nonlinear load. Determine the power dissipated
by the load.
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[

Solution



Known Quantities: Generator Thévenin equivalent circuit; load i-υ characteristic and
load line.
Find: Power dissipated by load Px.

Schematics, Diagrams, Circuits, and Given Data: RT = 30Ω; υT = 15 V; Figure 2.84;
nonlinear load i-υ characteristic.
Assumptions: None.
Analysis: Use the circuit model shown in Figure 2.84 to determine the voltage υx and
the current ix, using graphical methods. The load-line equation for the circuit is given
by:

This equation is a line in the ixυx plane, with ix intercept at 0.5 A and υx intercept at
15 V. To determine the operating point of the circuit, superimpose the load line on the
i-υ characteristic of the device, as shown in Figure 2.85. The intersection of the load
line with the device curve is the solution.

Figure 2.85 Graphical solution for circuit with nonlinear load

Thus, the power dissipated by the nonlinear load is:

The approach taken in this example is also, in essence, an experimental procedure.
Many of the analytic methods presented in this chapter also apply to practical
measurements.



EXAMPLE 2.20 Load-Line Analysis
Problem
A temperature sensor has a nonlinear i-υ characteristic, shown in the figure on the
left below. The load is connected to a linear network represented by a Thévenin
source, as shown in Figure 2.84. Determine the current through the temperature
sensor.
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Solution
Known Quantities: .
Find: ix.

Analysis: The figure on the left depicts the device i-υ characteristic. The figure on
the right depicts a plot of both the device i-υ characteristic and the load line obtained
from

The solution for υx and ix occurs at the intersection of the device and load-line
characteristics: .



1.

2.

CHECK YOUR UNDERSTANDING
Example 2.19 demonstrates a graphical solution method. Sometimes it is possible to
determine the solution for a nonlinear load by analytical methods. Imagine that the
same generator of Example 2.19 is now connected to a “square law” load, that is, one
for which , with β = 15.0. Determine the load current ix. [Hint: Assume that
only positive solutions are possible, given the polarity of the generator.]

CHECK YOUR UNDERSTANDING
Imagine that the same generator of Example 2.19 is connected to a nonlinear load i-υ
characteristic given by . Determine the load current ix. [Hint: Assume
that only positive solutions are possible, given the polarity of the generator.]
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Conclusion
This chapter introduced fundamental concepts needed to see meaningful structure
and to successfully analyze electric circuits. The chapter also introduced methods
that enable circuit problems to be simplified before finally being solved. The act of
simplifying an electric circuit provides powerful insight into the essential nature of
an electric circuit and how it could be modified to achieve a desired result. Such
insight is a key aspect of any design methodology. Upon successful completion of
this chapter, a student will have learned to:

Apply voltage and current division to calculate unknown voltages and currents
in simple series, parallel, and series-parallel circuits. Sections 2.1–2.2.
Correctly redraw a resistive network, as necessary, and compute the equivalent
resistance between two nodes. Section 2.3.

Answer: ix = 0.414 A

Answer: ix = 0.40A



3.

4.

5.

6.

7.

8.

9.

2.1

2.2

Apply the principle of superposition to linear circuits containing independent
and dependent sources. Section 2.4.
Apply the source-load perspective to find graphical solutions to circuit problems.
Section 2.5.
Apply source transformations to simplify and solve linear circuits containing
independent and dependent sources. Section 2.6.
Determine Thévenin and Norton equivalents of linear one-port networks
containing resistors and independent and dependent sources. Section 2.7.
Use equivalent circuit ideas to compute the maximum power transfer between a
source and a load. Section 2.8.
Understand the impact of internal resistance in practical models of voltage and
current sources as well as of voltmeters, ammeters, and wattmeters. Sections
2.9–2.10.
Use the concept of equivalent circuit to determine voltage, current, and power
for nonlinear loads by using load-line analysis and analytical methods. Section
2.11.

The material covered in this chapter is essential to the development of more
advanced techniques throughout the remainder of the book.

HOMEWORK PROBLEMS
Sections 2.1–2.2: Voltage and Current Division

Apply voltage division to the circuit of Figure P2.1. Assume that υS = 9V, R1 = 8
kΩ, R2 = R3 = 10kΩ, R4 = 12 kΩ. Find υ2.

Figure P2.1

Refer to Figure P2.2, and assume that υS = 12 V, R1 = 5Ω, R2 = 3Ω, R3 = 4Ω,
and R4 = 5Ω. Apply voltage division to each resistive branch and KVL to find



2.3

the voltage υab.

Figure P2.2
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Apply voltage division to each circuit in Figure P2.3 to find the value of Ro.



2.4

Figure P2.3

Apply the concepts of equivalent parallel resistance, voltage division, and
current division to determine the current through each of the resistors R4, R5,
and R6 in Figure P2.4. υS = 10 V, R1 = 20Ω, R2 = 40Ω, R3 = 10Ω, R4 = R5 = R6 =
15Ω.



2.5

a.

b.

2.6

Figure P2.4

The voltage divider network of Figure P2.5 is designed to provide υout = υS/>2.
However, in practice, the resistors may not be perfectly matched; that is, their
tolerances are such that the resistances are unlikely to be identical. Apply
voltage division to relate υout to υS and take the derivative of υout to find an
expression for dυout in terms of the tolerances dR1/R1 and dR2/R2. Assume υS =
10 V and nominal resistance values of R1 = R2 = 5 kΩ.

If the resistors have ±5 percent tolerance, find the expected range of
possible output voltages.

Find the expected output voltage range for a tolerance of ±1 percent.

Figure P2.5

Apply voltage division to the circuit in Figure P2.6 to find an expression for the
voltage across the variable resistor R. Use that expression to determine and plot
the power absorbed by R, ranging from 0 to 30 Ω. Plot the power absorption as
a function of R. Assume that υS = 15 V, RS = 10Ω.

Figure P2.6
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2.7

2.8

a.

b.

c.

2.9

2.10

a.

Apply voltage division to the circuit shown in Figure P2.7 to determine the
terminal voltage υo of the voltage source and the power absorbed by Ro.

Figure P2.7

With no load Ro attached to the terminals of the nonideal source in Figure P2.7,
the voltage drop υo is 50.8 V. When a Ro = 10Ω load is attached, that voltage
drop is 49 V. Apply voltage division to find an expression for υo in terms of υS,
RS and Ro.

Determine υS and RS for this nonideal source.

What voltage would be measured at the terminals in the presence of a 15-
Ω load resistor?

How much current could be drawn from the nonideal source under short-
circuit conditions?

Apply voltage division and KVL to determine the voltage υo across terminals A
and B in Figure P2.9.

Figure P2.9

Refer to Figure P2.10 and assume υS = 15V, R1 = 12Ω, R2 = 5Ω, R3 = 8Ω, R4 =
2Ω, R5 = 4Ω, R6 = 2Ω, and R7 = 1Ω. Apply voltage division to find:

The voltage υac across nodes a and c.



b.

2.11

a.

b.

2.12

The voltage υbd across nodes b and d.

Figure P2.10

The circuit of Figure P2.11 is used to measure the internal resistance rB of a
battery.

A fresh battery is being tested, and it is found that the voltage υout is 2.28
V with the switch open and 2.27 V with the switch closed. Apply voltage
division to find the internal resistance of the battery.

The same battery is tested one year later. υout is found to be 2.28 V with
the switch open but 0.31 V with the switch closed. Apply voltage division
to find the one-year-old internal resistance of the battery.

Figure P2.11

For the circuit shown in Figure P2.12, assume iS = 5 A, R1 = 10Ω, R2 = 7Ω, R3 =
8Ω, R4 = 4Ω, and R5 = 2Ω. How many nodes are in the circuit? Use series and
parallel equivalent resistance concepts to simply the network to the left of the
current source into a single equivalent resistance. Apply current division to find
the magnitude of the current through the branch containing R4 and R5.



2.13

2.14

Figure P2.12
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Consider the practical ammeter, depicted in Figure P2.13, consisting of an ideal
ammeter in series with a 1-kΩ resistor. (An ideal ammeter acts like a short-
circuit.) The meter sees a full-scale deflection when the current through it is 30
μA. Depending on the setting of the rotary switch, the ammeter will read full
scale when the current I equals 10 mA, 100 mA and 1 A. Apply current division
to determine the appropriate values of R1, R2, and R3.

Figure P2.13

How many nodes are in the circuit shown in Figure P2.14? Use series and
parallel equivalent resistance concepts to simplify the network to the right of
node V1 into a single equivalent resistance. Apply current division to find the
magnitude of the current through the 3Ω resistor.

Figure P2.14



2.15

2.16

2.17

How many nodes are in the circuit shown in Figure P2.15? Use series and
parallel equivalent resistance concepts to simplify the network to the right of the
current source into a single equivalent resistance. Apply current division to find
the magnitude of the current through R1. Assume R1 = 10Ω, R2 = 9Ω, R3 = 4Ω,
R4 = 4Ω, iS = 2 A.

Figure P2.15

How many nodes are in the circuit shown in Figure P2.16? Apply current
division to find the current through each resistive branch. Apply KVL and
Ohm’s law to find the magnitude of the voltage across nodes a and b. Assume
R1 = 12Ω, R2 = 10Ω, R3 = 5Ω, R4 = 2Ω, IS = 3 A.

Figure P2.16

Section 2.3: Equivalent Resistance between Two Nodes
Find the equivalent resistance seen by the voltage source in Figure P2.17. Use
that result and voltage division to find υ2.

Figure P2.17



2.18

2.19

2.20

Find the equivalent resistance seen by the voltage source and the current i in the
circuit of Figure P2.18.

Figure P2.18
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In the circuit of Figure P2.19, the power absorbed by the 15-Ω resistor is 15 W.
Find R.

Figure P2.19

Find the equivalent resistance between terminals a and b in the circuit of Figure
P2.20.



2.21

2.22

2.23

a.

Figure P2.20

For the circuit shown in Figure P2.21, find the equivalent resistance seen by the
voltage source. How much power is delivered by it?

Figure P2.21

For the circuit shown in Figure P2.22, find the equivalent resistance seen by the
current source. How many nodes are in the circuit? Assume R1 = 2Ω, R2 = 3Ω,
R3 = 85Ω, R4 = 2Ω, and R5 = 4Ω.

Figure P2.22

Refer to Figure P2.23. Assume υS = 20 V, R1 = 10Ω, R2 = 5Ω, R3 = 8Ω, R4 =
2Ω, R5 = 4Ω, R6 = 2Ω, R7 = 1Ω, and R8 = 10Ω. How many nodes are in the
circuit?

Determine the equivalent resistance seen by the voltage source υS.



b.

2.24

2.25

a.

b.

Apply voltage division to find the voltage across R7 and R8.

Figure P2.23

Find the equivalent resistance seen by the voltage source in Figure P2.24. How
many nodes are in the circuit? Assume R1 = 12Ω, R2 = 5Ω, R3 = 8Ω, R4 = 2Ω,
R5 = 4Ω, R6 = 2Ω, R7 = 1Ω, R8 = 10Ω, and R9 = 10Ω.

Figure P2.24
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For the circuit shown in Figure P2.25, assume υS = 10 V, R1 = 9Ω, R2 = 4Ω, R3
= 4Ω, R4 = 5Ω, and R5 = 4Ω. Find:

The number of nodes in the circuit.

The equivalent resistance seen by the voltage source υS.

Figure P2.25



2.26

2.27

2.28

2.29

2.30

Determine the equivalent resistance of the infinite network of resistors in the
circuit of Figure P2.26.

Figure P2.26

In the circuit of Figure P2.27, find the equivalent resistance between terminals a
and b if terminals c and d are open and again if terminals c and d are shorted
together. Also, find the equivalent resistance between terminals c and d if
terminals a and b are open and again if terminals a and b are shorted together.

Figure P2.27

Refer to Figure P2.27 and determine the equivalent resistance between terminals
a and b if terminal c is wired (shorted) to terminal a and terminal d is wired
(shorted) to terminal b.

Apply the node voltage method to find the magnitude of the current through the
voltage source. Use it and the definition of equivalent resistance between two
nodes to find the equivalent resistance seen by the voltage source in Figure
P2.29. How many nodes are in the circuit? Assume: R1 = 12Ω, R2 = 5Ω, R3 =
8Ω, R4 = 2Ω, and R5 = 4Ω.

Figure P2.29

Refer to Figure P2.30 and assume υS = 15 V, R1 = 12Ω, R2 = 5Ω, R3 = 8Ω, R4 =
2Ω, R5 = 4Ω, R6 = 2Ω, R7 = 1Ω, and R8 = R9 = 10Ω. Find:



a.

b.

2.31

a.

b.

2.32

The number of nodes in the circuit.

The equivalent resistance seen by the voltage source υS.

Figure P2.30

Section 2.4: The Principle of Superposition
Refer to Figure P2.31, and assume that υS = 7 V, iS = 3 A, R1 = 20Ω, R2 = 12Ω,
and R3 = 10Ω. Apply the principle of superposition to find:

The component of i1 due to υS.

The component of i2 due to iS.

Figure P2.31

With reference to Figure P2.32, determine the current i through R1 due only to
the source VS2.
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2.33

2.34

2.35

Figure P2.32

Refer to Figure P2.33 and use the principle of superposition to find the voltages
at nodes A, B, and C. Assume V1 = 12 V, V2 = 10 V, R1 = 2Ω, R2 = 8Ω, R3 =
12Ω, R4 = 8Ω.

Figure P2.33

Use the principle of superposition to determine the voltage υ across R2 in Figure
P2.34.

Figure P2.34

Refer to Figure P2.35 and use the principle of superposition to determine the
component of the current i through R3 that is due to VS2.



2.36

2.37

2.38

Figure P2.35

Refer to Figure P2.36 and use the principle of superposition to determine the
current i through R4 due to the current source iS. Assume: R1 = 12Ω, R2 = 8Ω,
R3 = 5Ω, R4 = 3Ω, υS = 3 V, and iS = 2 A.

Figure P2.36

Refer to Figure P2.36 and use the principle of superposition to determine the
current i through R4 due to the voltage source υS. Assume: R1 = 12Ω, R2 = 8Ω,
R3 = 5Ω, R4 = 3Ω, υS = 3 V, and iS = 2 A.

Use the principle of superposition node to determine the voltages Va and Vb in
Figure P2.38. Let R1 = 10Ω, R2 = 4Ω, R3 = 6Ω, R4 = 6Ω, V1 = 2 V, V2 = 4 V, I1
= 2 A.



2.39

2.40

Figure P2.38
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Use the principle of superposition to determine the current i through R3 in
Figure P2.39. Let R1 = 10Ω, R2 = 4Ω, R3 = 2Ω, R4 = 2Ω, R5 = 2Ω, VS = 10 V, iS
= 2 A.

Figure P2.39

Figure P2.40 represents a temperature measurement system, where temperature
T is linearly related to the voltage source VS2 by a transduction constant k. Use
the principle of superposition to determine the components of Vab due to VS1
and VS2 and then to determine the temperature.

In practice, the voltage across R3 is used as the measure of temperature, which is
introduced to the circuit through a temperature sensor modeled by the voltage
source VS2 in series with Rs.



2.41

2.42

Figure P2.40

In Figure P2.41, use the principle of superposition to determine the components
of the current through the voltage source υS due to υS and iS, respectively. Use
those results to determine the total current through υS and the power supplied by
it. Let R1 = 12Ω, R2 = 10Ω, R3 = 5Ω, R4 = 5Ω, υS = 10 V, iS = 5 A. (Note: Power
is not a linear function of voltage or current and so power cannot be computed
using the component currents separately.)

Figure P2.41

Use the principle of superposition to determine components of the current io
through R1 due to each independent source in Figure P2.42. Let R1 = 8Ω, R2 =
2Ω, R3 = 3Ω, R4 = 4Ω, R5 = 2Ω, V1 = 15 V, I1 = 2 A, I2 = 3 A.

Figure P2.42

Section 2.6: Source Transformations



2.43

2.44

2.45

2.46

Apply two source transformations and current division in the circuit of Figure
P2.43 to find I2. Let R1 = 12Ω, R2 = 6Ω, R3 = 10Ω, V1 = 4 V, V2 = 1 V.

Figure P2.43

Apply source transformations to find the voltage Vo across R0 for the circuit of
Figure P2.44. Assume that R1 = 2Ω, RV = R2 = R0 = 4Ω, VS = 4V, and iS = 0.5
A.

Figure P2.44
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Apply source transformations to find the mesh current I3 for the circuit shown in
Figure P2.45.

Figure P2.45

Apply source transformations to find the voltage V across the current source in
Figure P2.46.



2.47

2.48

2.49

Figure P2.46

Apply a single source transformation and then voltage division to find the
magnitude of the voltage across R1 in Figure P2.47. Let R1 = 10Ω, R2 = 5Ω, V1
= 2 V, V2 = 1 V, iS = 2 A.

Figure P2.47

Transform each of the three Thévenin sources to Norton sources and apply
current division to find the current through R1 in Figure P2.48. Let R1 = 6Ω, R2
= 3Ω, R3 = 3Ω, V1 = 4 V, V2 = 1 V, V3 = 2 V.

Figure P2.48

Simplify the circuit in Figure P2.49 by applying source transformations to the
right half of the circuit. Solve for the node voltage υ1. (Note: Dependent sources
can also be part of a source transformation as long as its reference variable is
not obscured by the transformation.)



2.50

a.

b.

c.

2.51

2.52

Figure P2.49

The circuit shown in Figure P2.50 is a simplified DC version of an AC three-
phase wye-wye (Y-Y) electrical distribution system commonly used to supply
industrial loads, particularly rotating machines.

Determine the number of nonreference nodes.

Determine the number of unknown node voltages.

Apply source transformations to find .

Notice that once  is known the other unknown node voltages can be computed
directly by voltage division.

Figure P2.50

Apply source transformations to simplify the circuit in Figure P2.21. Solve for
the magnitude of the current through the 1Ω resistor.

Apply source transformations to reduce the one-port network on the left side of
Figure P2.82 to a Thévenin source. Apply voltage division to solve for the
magnitude of the measured voltage when the voltmeter is attached.



2.53

2.54

2.55

Page 154

Section 2.7: Thévenin and Norton Equivalent Networks
Find the Thévenin equivalent of the network seen by the 3-Ω resistor in Figure
P2.53.

Figure P2.53

Find the Thévenin equivalent of the network seen by the 3-Ω resistor in Figure
P2.54. Use it and voltage division to find the voltage υ across the 3-Ω resistor.

Figure P2.54

Find the Norton equivalent of the network seen by R2 in Figure P2.55. Use it
and current division to compute the current i through R2. Assume I1 = 10 A, I2 =
2 A, V1 = 6 V, R1 = 3Ω, and R2 = 4Ω.



2.56

2.57

2.58

Figure P2.55

Find the Norton equivalent of the network between nodes a and b in Figure
P2.56.

Figure P2.56

Find the Thévenin equivalent of the network seen by R in Figure P2.57, and use
the result to compute the current iR. Assume Vo = 10 V, Io = 5 A, R1 = 2Ω, R2 =
2Ω, R3 = 4Ω, and R = 3Ω.

Figure P2.57

Find the Thévenin equivalent resistance seen by the load Ro in Figure P2.58.



2.59

2.60

2.61

Figure P2.58

Find the Thévenin equivalent of the network seen by the load Ro in Figure
P2.59.
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Figure P2.59

Find the Thévenin equivalent network seen by the load Ro in Figure P2.60,
where R1 = 10Ω, R2 = 20Ω, Rg = 0.1Ω, and Rp = 1Ω.

Figure P2.60

A Wheatstone bridge such as that shown in Figure P2.61 is used in numerous
practical applications, such as determining the value of an unknown resistor RX.

Find the Thévenin equivalent network seen by terminals a and b in terms of R,
RX, and VS. Use it to find the value of Rx when R = 1 kΩ, VS = 12 V, and Vab =
12 mV.



2.62

a.

b.

c.

Figure P2.61

Thévenin’s theorem can be useful when dealing with a Wheatstone bridge. For
the circuit of Figure P2.62:

Express the Thévenin equivalent resistance seen by the load resistor Ro in
terms of R1, R2, R3, and RX.

Determine the Thévenin equivalent network seen by Ro. Apply voltage
division and use the result to compute the power dissipated by Ro. Assume
Ro = 500Ω, VS = 12 V, R1 = R2 = R3 = 1 kΩ, and RX = 996Ω.

When Ro is replaced by an open-circuit, the Thévenin equivalent network
supplies no power. What is the net power supplied by the entire
Wheatstone bridge circuit when Ro is replaced by an open-circuit? Are the
results the same? What do you conclude?

Figure P2.62



2.63

2.64

2.65

2.66

The circuit shown in Figure P2.63 is one form of a differential amplifier. Find
an expression for the voltage drop υba from terminal b to terminal a in terms of
υ1 and υ2 using Thévenin’s or Norton’s theorem. Notice that the figure implies
zero current through sources υ1 and υ2.

Figure P2.63
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Use source transformations to find the Thévenin equivalent network seen by
resistor R3 in the circuit of Figure P2.38. Assume R1 = 10Ω, R2 = 4Ω, R3 = R4 =
6Ω, V1 = 2 V, V2 = 4 V and I1 = 2 A.

Find the Thévenin equivalent network seen by resistor R4 in the circuit of Figure
P2.33. Assume R1 = 2Ω, R2 = 8Ω, R3 = 12Ω, R4 = 8Ω, V1 = 12 V and V2 = 10 V.

Find the Thévenin equivalent network seen from node a to node b in Figure
P2.66. Let R1 = 10Ω, R2 = 8Ω, R3 = 5Ω, R4 = 4Ω, R5 = 1Ω, VS = 10 V, iS = 2 A.

Figure P2.66



2.67

2.68

2.69

2.70

Find the Thévenin equivalent network seen by R3 in Figure P2.40. Compute the
Thévenin (open-circuit) voltage VT in terms of the temperature T. Use that result
to determine the temperature when R3 is attached to that network.

Find the Norton equivalent network seen by R5 in Figure P2.68. Use it and
current division to compute the current through R5. Assume R1 = 15Ω, R2 = 8Ω,
R3 = 4Ω, R4 = 4Ω, R5 = 2Ω, I1 = 2 A, I2 = 3 A.

Figure P2.68

Find the Thévenin equivalent network seen by R in Figure P2.69. Use it and
voltage division to compute the magnitude of the voltage across R. Assume:

Figure P2.69

Find the Norton equivalent network between terminals a and b in Figure P2.70.
Let R1 = 6Ω, R2 = 3Ω, R3 = 2Ω, R4 = 2Ω, Vs = 10 V, iS = 3 A.

Figure P2.70



2.71

2.72

a.

b.

2.73

a.

b.

2.74

Find the Norton equivalent network seen by R4 in Figure P2.71. Use it and
current division to determine the current through R4. Assume R1 = 8Ω, R2 = 5Ω,
R3 = 4Ω, R4 = 3Ω, Vo = 10 V, and Io = 2 A.

Figure P2.71

Section 2.8: Maximum Power Transfer
The Thévenin equivalent network seen by a load Ro is depicted in Figure P2.72.
Assume VT = 10 V, RT = 2Ω, and that the value of Ro is such that maximum
power is transferred to it. Determine:

The value of Ro.

The power Po dissipated by Ro.

Figure P2.72
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The Thévenin equivalent network seen by a load Ro is depicted in Figure P2.72.
Assume VT = 25 V, RT = 100Ω, and that the value of Ro is such that maximum
power is transferred to it. Determine:

The value of Ro.

The power Po dissipated by Ro.

Section 2.9: Practical Voltage and Current Sources
A practical voltage source is modeled in Figure P2.74 as an ideal source VS in
series with a resistance RS. This model accounts for internal power losses found
in a real voltage source. The following data characterizes the real (nonideal)
source:



2.75

2.76
a.

b.

Determine the internal resistance RS and the ideal voltage VS.

Figure P2.74

A practical voltage source is modeled in Figure P2.74 as an ideal source VS in
series with a resistance RS. This model accounts for internal power losses found
in a real voltage source. A load R is connected across the terminals of the
model. Assume:

Plot the power dissipated in the load as a function of the load resistance. What
can you conclude?

Consider NiMH hobbyist batteries depicted in Figure P2.76.

If V1 = 12.0 V, R1 = 0.15Ω, and Ro = 2.55Ω, find the load current Io and
the power dissipated by the load.

If battery 2 with V2 = 12 V and R2 = 0.28Ω is placed in parallel with
battery 1, apply source transformations to determine whether the load
current Io will increase or decrease. Will the power dissipated by the load
increase or decrease? By how much?



2.77

a.

b.

2.78

a.

Figure P2.76

Section 2.10: Measurement Devices
A thermistor is a nonlinear device that changes its terminal resistance value as
its surrounding temperature changes. The resistance and temperature generally
have a relation in the form of:

If R0 = 300Ω and β = −0.01K−1, plot Rth(T) as a function of the
surrounding temperature T for 350 ≤ T ≤ 750.

If the thermistor is in parallel with a 250-Ω resistor, find the expression for
the equivalent resistance and plot Rth(T) on the same graph for part a.

A moving-coil meter movement has a meter resistance rM = 200 Ω, and full-
scale deflection is caused by a meter current im = 10μA. The meter is to be used
to display pressure, as measured by a sensor, up to a maximum of 100 kPa.
Models of the meter and pressure sensor are shown in Figure P2.78 Page
158along with the relationship between measured pressure and the sensor output
υo.

Devise a circuit that will produce the desired behavior of the meter,
showing all appropriate connections between the terminals of the sensor



b.

c.

2.79

a.

b.

2.80

and the meter.

Determine the value of each component in the circuit.

What is the linear range, that is, the minimum and maximum pressure that
can accurately be measured?

Figure P2.78

A circuit that measures the internal resistance of a practical ammeter is shown in
Figure P2.79, where RS = 50,000Ω, υS = 12 V, and Rp is a variable resistor that
can be adjusted at will.

Assume that ra ≪ 50,000Ω. Estimate the current i.

If the meter displays a current of 150 μA when Rp = 15Ω, find the internal
resistance of the meter ra.

Figure P2.79

A practical voltmeter has an internal resistance rm. What is the value of rm if the
meter reads 11.81 V when connected as shown in Figure P2.80? Assume VS =



2.81

2.82

a.

b.

c.

d.

2.83

12 V and RS = 25 kΩ.

Figure P2.80

Using the circuit of Figure P2.80, find the voltage that the meter reads if VS = 24
V and RS has the following values: RS = 0.2rm, 0.4 rm,0.6 rm, 1.2 rm, 4 rm, 6 rm,
and 10 rm. How large (or small) should the internal resistance of the meter be
relative to RS?

A voltmeter is used to determine the voltage across a resistive element in the
circuit of Figure P2.82. The instrument is modeled by an ideal voltmeter in
parallel with a 120-kΩ resistor, as shown. The meter is placed to measure the
voltage across R4. Assume R1 = 8 kΩ, R2 = 22 kΩ, R3 = 50 kΩ, RS = 125 kΩ,
and iS = 120 mA. Find the voltage across R4 with and without the voltmeter in
the circuit for the following values:

R4 = 100Ω

R4 = 1 kΩ

R4 = 10 kΩ

R4 = 100 kΩ

Figure P2.82

An ammeter is used as shown in Figure P2.83. The ammeter model consists of
an ideal ammeter in series with a resistance. The ammeter model is placed in the
branch as shown in the figure. Find the current through R5 both with and



a.

b.

c.

c.

2.84

without the ammeter in the circuit for the following values, assuming that Page
159RS = 20Ω, R1 = 800Ω,R2 = 600 Ω, R3 = 1.2 kΩ, R4 = 150Ω, and υS = 24 V.

R5 = 1kΩ

R5 = 100Ω

R5 = 10Ω

R5 = 1Ω

Figure P2.83

Figure P2.84 shows an aluminum cantilevered beam loaded by the force F.
Strain gauges R1, R2, R3, and R4 are attached to the beam as shown in Figure
P2.84 and connected into the circuit shown. The force causes a tension stress on
the top of the beam that causes the length (and therefore the resistance) of R1
and R4 to increase and a compression stress on the bottom of the beam that
causes the length (and therefore the resistance) of R2 and R3 to decrease. The
result is a voltage of 50 mV at node B with respect to node A. Determine the
force if

(See Focus on Measurements: The Wheatstone Bridge and Force
Measurements.)



2.85

2.86

2.87

Figure P2.84

Refer to Figure P2.84 but assume that the cantilevered beam loaded by a force F
is made of steel. Strain gauges R1, R2, R3, and R4 are attached to the beam and
connected in the circuit shown. The force causes a tension stress on the top of
the beam that causes the length (and therefore the resistance) of R1 and R4 to
increase and a compression stress on the bottom of the beam that causes the
length (and therefore the resistance) of R2 and R3 to decrease. The result is a
voltage υBA across nodes B and A. Determine this voltage if F = 1.3 MN and

(See Focus on Measurements: The Wheatstone Bridge and Force
Measurements.)

Section 2.11: Nonlinear Circuit Elements
Apply nodal analysis to find two equations in terms of the node voltages υ1 and
υ2 shown in Figure P2.86. The two nonlinear resistors Ra and Rb are
characterized by:

The resulting nonlinear (but not transcendental) equations cannot be solved by the
methods used for simultaneous linear equations. While the equations can be solved
analytically, consult your instructor before attempting to solve these equations.

Figure P2.86

Many practical circuit elements are nonlinear; however, it is usually possible to
linearize the V-I relationship near any specific point on the nonlinear V-I curve.
Such a point is often referred to as an operating point. In other words, in the
vicinity of an operating point [V0, I0] the V-I relationship can be linearly
approximated by:



a.

b.

c.

2.88

The inverse of the slope m at the operating point is defined as incremental
resistance Rinc:
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Refer to Figure P2.87 and find the operating point of the nonlinear
element.

Find the incremental resistance of the nonlinear element at the operating
point.

If VT is increased to 20 V, what is the new operating point and the new
incremental resistance?

Figure P2.87

The device D in the circuit in Figure P2.88 is an induction motor with a
nonlinear i-υ characteristic. Determine the current through and the voltage
across the motor.



2.89

2.90

Figure P2.88

The nonlinear diode in Figure P2.89 has the i-υ characteristic shown. Assume:

Determine the voltage across and the current through the diode.

Figure P2.89

The resistance of the device D in Figure P2.90 is a nonlinear function of
pressure P. The i-υ characteristics of D are shown for various pressures.
Assume:



a.

b.

c.

2.91

Plot the DC load line.

Plot the voltage across D as a function of pressure.

Determine the current through D when P = 30 psig.
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Figure P2.90

The nonlinear device D in Figure P2.91 has the following transcendental i-υ
characteristic:

Assume that VS = 2 V and R = 40Ω. Determine an expression for the DC load
line. Then use an iterative technique to determine the voltage across and current
through D.



2.92

2.93

Figure P2.91

The resistance of the device D in Figure P2.90 is a nonlinear function of
pressure P. The i-υ characteristics of D are shown for various pressures.
Assume:

Construct the DC load line and determine the current through D when P = 40
psig.

The so-called forward-bias i-υ relationship for a silicon diode is:

where ISAT and Vthermal are known as the saturation current and thermal voltage,
respectively. At room temperature (20°C):

where k is Boltzmann’s constant, T is absolute temperature in kelvins, and q is
the charge of an electron.

Consider the circuit shown in Figure P2.93. KVL applied around the loop
results in a transcendental equation for the loop current i = iD. Such equations
cannot be solved in terms of a closed-form expression i = …. Instead, graphical
or iterative procedures must be used.



a.

b.

Figure P2.93
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Use graphical analysis to estimate the current through and the voltage
across the diode. Assume RT = 22Ω and VT = 12 V.

Use the iterative algorithm depicted in the flowchart of Figure P2.93 to
construct a computer program that solves for V and i. The algorithm relies
upon the fact that 0 < V < VT to make an initial guess VD1 = VT/2 for the
voltage across the diode. The algorithm then determines whether the
current iD1 through RT is greater than, less than, or equal to the diode
current iD2 for the guessed diode voltage. In the first case, a new guess for
VD1 is set equal to the average value of VD1 and VD2, which stores the
most recent value of VD1 that resulted in iD2 > iD1. The initial value VD2 =
VT guarantees that iD1 = 0 and, thus, iD2 > iD1 for the first pass through the
iterative algorithm. The result is that VD1 and VD2 bracket the actual value
of V. Each pass through the algorithm narrows the bracket until the
difference , where ε is some sufficiently small error term.



Design Credits: Mini DVI cable adapter isolated on white background: Robert Lehmann/Alamy Stock Photo;
Balance scale: Alex Slobodkin/E+/Getty Images; Icon for “Focus on measurements” weighing scales: Media
Bakery.
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C H A P T E R
3

AC NETWORK ANALYSIS

hapter 3 introduces capacitors and inductors, which are energy storage
elements, and methods for solving circuits that contain them. This chapter
also introduces AC circuits, which contain time-dependent sinusoidal voltage
and current sources, as opposed to DC circuits, which contain constant

sources only. Solutions of AC circuits containing capacitors and/or inductors result in
differential equations because the i-υ relationships for capacitors and inductors
involve time derivatives. Luckily, the method of phasor analysis can be used to
convert differential equations into algebraic equations, which are much easier to
solve. However, the price (“there is no such thing as a free lunch”) of using phasor
analysis is that the algebraic equations contain complex quantities, which must be
added, subtracted, multiplied, and divided. (Most calculators can perform these
operations.) More importantly, it is necessary to understand the meaning of and
relationships among complex quantities. With some practice and patience even those
students with no prior experience using complex numbers can become proficient
with phasor analysis.

Sinusoids are an especially important class of signals for two reasons. First,
nearly all residential and industrial electric power is generated, transmitted, and
distributed as a sinusoidal waveform. All turbine-based power systems (e.g., coal-
fired power stations, solar power arrays, hydroelectric dams, wind turbines) produce
periodic rotating motion, which is represented mathematically by a sinusoid. Second,



1.

all periodic waveforms (e.g., sawtooth, triangle, square) can be reconstructed as the
sum of component sinusoidal waves (Fourier’s theorem).
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Sinusoidal signals (voltages and currents) have three basic characteristics:
amplitude (or magnitude), frequency, and phase (or phase angle). In this book, an AC
circuit has one frequency shared by all voltages and currents that is equal to the
frequency of an independent voltage or current source. As a result, it is not necessary
to compute frequency in phasor analysis. On the other hand, while the amplitude and
phase of voltages and currents in an AC circuit are constant, they are not uniform and
are determined not only by an independent source but also by the elements present in
the circuit. Consequently, AC circuit analysis is concerned with the computation of
the amplitude and phase of one or more voltages and currents. (DC circuit analysis
was only concerned with amplitude.) Phasor analysis is well suited for AC circuit
analysis because a phasor bundles together amplitude and phase into a single
quantity.

In phasor analysis, resistors, capacitors, and inductors are represented as
impedance elements, which allows Ohm’s law to be generalized. Kirchhoff’s laws
can also be generalized as phasor relationships. Consequently, AC circuits can be
solved using the same DC methods (e.g., node voltage, mesh current, voltage
division, current division, superposition, Thévenin’s and Norton’s theorem, and
source transformations) discussed in Chapters 1 and 2. The only difference is that
these relationships now involve phasors, that is, complex quantities.

The average and effective (root-mean-square) amplitude of a waveform are
introduced in this chapter. An effective value represents the equivalent DC value
required to supply or dissipate the same power as the AC waveform and thus
provides a means of comparing different waveforms. This rather extensive chapter
concludes with an introduction to single-phase AC power and the concepts of power
factor, apparent, real and reactive power, power triangles and power factor
correction.

In this chapter and throughout the book, angles are given in units of radians,
unless indicated otherwise.

 Learning Objectives
Students will learn to...

Compute current, voltage, and energy of capacitors and inductors. Section 3.2.



2.

3.

4.
5.

6.

7.

Calculate the average and effective (root-mean-square) value of an arbitrary
periodic waveform. Section 3.3.
Convert time-domain sinusoidal voltages and currents to phasor notation, and
vice versa; and represent circuits using impedances. Sections 3.4 and 3.5.
Apply DC circuit analysis methods to AC circuits in phasor form. Section 3.6.
Compute average AC power and the power factor of a complex load. Section
3.7.
Compute apparent, real and reactive power for complex loads and draw a power
triangle. Section 3.8.
Compute the capacitance required to correct the power factor of a complex load
Section 3.9.

3.1 CIRCUITS CONTAINING ENERGY STORAGE
ELEMENTS
The resistive circuits studied in Chapters 1 and 2 had no dependence on time. The
sources had constant (DC) values and the i-υ relationship for resistors (Ohm’s law)
had no time dependence. As a result, all the equations obtained in those chapters
Page 165were algebraic and the voltages and currents were all constants. If a
sinusoidal source is present in a resistive circuit, the voltages and currents in the
circuit will no longer be constant but instead will vary sinusoidally in time with the
same frequency as the source. A circuit with a sinusoidal source is known as an AC
circuit.

Purely resistive AC circuits offer no new challenges compared to DC circuits.
However, when capacitors and/or inductors are introduced into an AC circuit, such as
that shown in Figure 3.1, the resulting behavior is significantly more interesting and
challenging. The reason is that capacitors and inductors require time to charge (store
energy) and discharge (release energy). The result, in general, is that time delays are
present in an AC circuit, as shown in Figure 3.2. These time delays are expressed as
angles known as phase shifts. Consequently, in the solution of AC circuits it is
necessary to keep track of two variables (amplitude and phase) for each voltage and
current. By contrast, when solving DC circuits, it was only necessary to keep track of
one variable (amplitude).



(3.1)

(3.2)

(3.3)

(3.4)

Figure 3.1 A simple RC series loop with a sinusoidal voltage source. The
resulting voltages υR and υC and currents iR and iC are also sinusoidal and
shifted in time with respect to the voltage source.

Figure 3.2 Waveforms for the AC circuit of Figure 3.1

To clarify this discussion, consider the simple series loop shown in Figure 3.1,
which consists of a sinusoidal voltage source, a resistor, and a capacitor. Apply KVL
around the loop to obtain:

The so-called state variable for this circuit is the voltage υC across the capacitor. The
state variables in a circuit are the voltages across capacitors and the currents through
inductors.

The constitutive i-υ relationships for the resistor and capacitor are

The resistor and capacitor currents are the same for this simple loop. Thus:

Plug this result into Equation 3.1 to obtain:

Divide both sides of Equation 3.4 by RC to find the standard form:



(3.5)

(3.6)

•

•

The result is a first-order, linear, ordinary differential equation. The solution for υC
has two parts: (1) a transient solution, and (2) a steady-state solution. The complete
solution of the differential equation is the sum of these two parts.

The differential equation for υR has a similar form.

Notice that the left-hand side of this equation is identical to that found in equation
3.5. Only the right-hand side is different. The constant RC has units of time and is
known as a time constant.
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For more complicated circuits, the process is largely the same except that KVL
and KCL may have to be applied multiple times and the circuit may contain multiple
resistors, capacitors, and inductors. The result is multiple first- and perhaps second-
order linear, ordinary differential equations. It is not difficult to imagine that for even
modest circuits the procedure and results may become quite complicated and
cumbersome.

To avoid these complications, an alternative approach is to dispense with time
derivatives and solve for the steady-state (particular) and transient (homogeneous)
solutions separately using the following two methods:

Steady-state solution. To solve for the steady-state solution, Euler’s formula
is employed to represent sinusoids as complex exponentials and to eliminate
the time derivatives in the constitutive i-υ relations for capacitors and
inductors. The result is algebraic equations with complex constants and
variables. These equations can be solved using standard algebra techniques.
The only complication is that the arithmetic involves complex numbers
rather than real numbers.

Transient solution. Whenever possible, Thévenin’s and Norton’s theorems
are used to simplify complicated circuits and to focus on solving for the
state variables. Solutions of the simplified first- and second-order circuits
are found through well-established methods that require only a modest
understanding of differential equations. These transient solutions are
covered in chapter 4.



In a linear circuit with a sinusoidal source, all voltages and currents are
sinusoids at the same frequency as the source. These voltages and currents are
scaled versions of the source and may be shifted in time (i.e., phase shifted).

3.2 CAPACITORS AND INDUCTORS
The ideal resistor was introduced in Chapter 1. In addition to resistance, which
always dissipates energy, an electric circuit may also exhibit capacitance and
inductance, which act to store and release energy, in the same way that an expansion
tank and flywheel, respectively, act in a mechanical system. These two distinct
energy storage mechanisms are represented in electric circuits by two ideal circuit
elements: the ideal capacitor and the ideal inductor, which approximate the behavior
of actual discrete capacitors and inductors. They also approximate the bulk properties
of capacitance and inductance that are present in any physical system. In practice,
any element of an electric circuit will exhibit some resistance, some inductance, and
some capacitance, that is, some ability to dissipate and store energy.

The energy of a capacitor is stored within the electric field between two
conducting plates while the energy of an inductor is stored within the magnetic field
of a conducting coil. Both elements can be charged (i.e., stored energy is increased)
or discharged (i.e., stored energy is decreased). Ideal capacitors and inductors can
store energy indefinitely; however, in practice, discrete capacitors and Page
167inductors exhibit “leakage,” which typically results in a gradual reduction in the
stored energy over time.

All of the relationships for capacitors and inductors exhibit duality, which means
that the capacitor relations mirror the inductor relations. Examples of duality are
apparent in Table 3.1, where C is capacitance and L is inductance.

Table 3.1 Properties of capacitors and inductors



MAKE THE CONNECTION

Hydraulic Analog of a Capacitor
If the walls of a vessel have some elasticity, energy is stored in the walls when the
vessel is filled by a fluid or gas (e.g., an inflated balloon). The ratio of the mass of
the fluid or gas to the potential energy stored in the walls per unit mass is the fluid
capacitance of the vessel, a property similar to electrical capacitance. Figure 3.3
depicts a gas bag accumulator, such as an expansion tank attached to the hot water
line in many residential homes. The two-chamber arrangement permits fluid to
displace a membrane separating an incompressible fluid (e.g., water) from a
compressible fluid (e.g., air). The analogy shown in Figure 3.3 assumes that the
reference pressure p0 and the reference voltage υ2 are both zero.



Figure 3.3 Analogy between electrical and fluid capacitance

The Ideal Capacitor
A capacitor is a device that can store energy due to a charge separation. In general, a
capacitor (and thus, capacitance) is present when any two conducting surfaces are
separated by a distance. A simple example is two parallel plates of shared cross-
sectional area A separated by a distance d. The gap between the plates may be a
vacuum or filled with some dielectric material, such as air, mica, or Teflon. The
impact of the dielectric material on the capacitance is represented by the dielectric
constant κ.1 Figure 3.4 depicts a typical configuration and the circuit symbol for a
capacitor.

Figure 3.4 Structure of parallel-plate capacitor

The capacitance C of an ideal parallel-plate capacitor such as the one described
above is:



(3.7)

(3.8)

(3.9)

(3.10)

where  is the permittivity constant of a vacuum.
The presence of a dielectric or vacuum between the conducting plates does not

permit charge to pass directly from one plate to the other. However, although no
charge can literally pass from one plate of an ideal capacitor directly through to the
other, charge can exit one plate and enter the other through pathways in the circuit to
which the capacitor is attached. The result is the equivalent effect of a current
through the capacitor.

At all times the charge separation qC is proportional to the applied voltage VC,
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where the capacitance C is a measure of the ability of the device to accumulate
charge. The unit of capacitance is coulomb per volt, or farad (F). The farad is an
impractically large unit for many common electronic applications; units of
microfarads (1 μ F = 10−6 F) and picofarads (1 pF = 10−12 F) are more common in
practice.

The current through a capacitor is defined as the time rate of change of its stored
charge.

The i-υ relationship for a capacitor is obtained by differentiating both sides of
equation 3.8 and plugging the result into equation 3.9.

One immediate implication of equation 3.10 is that the current through a
capacitor in a DC circuit is zero. Why? Since the voltage across a capacitor in a DC
circuit must, by definition, be constant, the time derivative of the voltage must be
zero. Thus, equation 3.10 requires the current through the capacitor to also be zero.



(3.11)

(3.12)

(3.13)

A capacitor in a DC circuit is equivalent to an open-circuit.

Equation 3.10 can be integrated to yield an expression for the change in voltage
across a capacitor due to the current through it.

Equation 3.11 indicates that the change in voltage across a capacitor depends
upon the accumulation of charge over time, which is represented as the time integral
of the capacitor current. To calculate the voltage at a specific time it is necessary to
know the voltage V0 across the capacitor at some previous time t0.

Equivalent Capacitance
Just as resistors in series or parallel can be represented by an equivalent resistance, so
capacitors in series or parallel can be represented by an equivalent capacitance. For
two capacitors in series and parallel, the equivalent capacitances are, respectively:

Notice that the rule for the equivalent capacitance of two capacitors in series is the
product divided by the sum, which is the same rule used for two resistors in parallel.
Page 169Likewise, the equivalent capacitance of two capacitors in parallel is simply
the sum of the two, which is the same rule used for two resistors in series. More
general rules are illustrated in Figure 3.5.



Figure 3.5 Equivalent capacitance in a circuit

When calculating equivalent capacitance, capacitors in series combine like
resistors in parallel and capacitors in parallel combine like resistors in series.

Discrete Capacitors
Actual capacitors are rarely constructed of two parallel plates separated by air
because this configuration either yields very low values of capacitance or requires
very large plate areas. To increase capacitance, physical capacitors are often made of
tightly rolled sheets of metal film, with a dielectric (e.g., paper or Mylar) sandwiched
in between. Table 3.2 illustrates typical values, materials, maximum voltage ratings,
and useful frequency ranges for various types of capacitors.

Table 3.2 Capacitors



(3.14)

(3.15)

In practice, actual capacitors exhibit some leakage between the plates. Imperfect
construction techniques invariably provide some capability for charge to pass from
one plate to the other. This imperfection is often represented by an equivalent
resistance in parallel with an ideal capacitor.

Energy Storage in Capacitors
The energy stored in a capacitor WC(t) is derived from the definition of energy as the
time integral of power, which is the product of voltage and current:

The total energy stored in the capacitor is found by integrating the power.
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FOCUS ON MEASUREMENTS



Capacitive Displacement Transducer and Microphone
As shown in Figure 3.4, the capacitance of a flat parallel-plate capacitor is

where ε is the permittivity of the dielectric material, κ is the dielectric constant, ε0 =
8.854 × 10−12 F/m is the permittivity of a vacuum, A is the area of each of the plates,
and d is their separation. The dielectric constant for air is κair ≈ 1. Thus, the
capacitance of two flat parallel plates of area 1 m2, separated by a 1-mm air gap is
8.854 nF, a very small value for such large plates. As a result, flat parallel-plate
capacitors are impractical for use in most electronic devices. On the other hand,
parallel-plate capacitors find application as motion transducers, that is, as devices
that can measure the motion or displacement of an object. In a capacitive motion
transducer, the plates are designed to allow relative motion when subjected to an
external force. Using the capacitance value just derived for a parallel-plate capacitor,
one can obtain the expression

where C is the capacitance in picofarads, A is the area of the plates in square
millimeters, and x is the variable separation distance in millimeters. Note that the
change in C due to a change in x is nonlinear, since C ∝1/x. However, for small
changes in x, the change in C is approximately linear.

The sensitivity S of the transducer is defined as the rate of change in capacitance
C with respect to a change in separation distance x.

Thus, the sensitivity is itself a function of the separation distance, as shown in Figure
3.6. Note that as x → 0, the slope of C(x) increases and so the sensitivity S increases
as well. Figure 3.6 depicts this behavior for a transducer with area equal to 10 mm2.
This type of capacitive displacement transducer is used in the popular condenser
microphone, in which sound pressure waves act to deflect a thin metallic foil. The
Page 171change in capacitance can then be converted to a change in voltage or
current by means of a suitable circuit. An extension of this concept that permits
measurement of differential pressures is shown in Figure 3.7. A three-terminal
variable capacitor is made of two rigid surfaces and one thin, flexible plate, often
made of steel, between them. Typically, the rigid surfaces are spherical depressions
ground into glass disks and coated with a conducting material. Inlet orifices expose



the deflecting plate to the outside fluid or gas. When the pressure on both sides of the
deflecting plate is the same, the capacitance between terminals b and d, denoted by
Cdb, will be equal to that between terminals b and c, denoted by Cbc. A pressure
differential will cause the thin, flexible plate to deflect toward one of the rigid
surfaces and away from the other. As a result, the two capacitances will change, with
an increase on the side where the deflecting plate has come closer to the rigid surface
and a corresponding decrease on the other side.

Figure 3.6 Response of a capacitive displacement transducer

Figure 3.7 Capacitive pressure transducer and related bridge circuit

A Wheatstone bridge circuit, such as that shown in Figure 3.7, is ideally suited to
set the output voltage υout to zero when the differential pressure across the transducer
is also zero.

EXAMPLE 3.1 Charge Separation in Ultracapacitors
Problem



Ultracapacitors are finding application in a variety of fields, including as a
replacement or supplement for batteries in hybrid-electric vehicles. These
“supercapacitors” store energy electrostatically by polarizing an electrolytic solution.
Although it is an electrochemical device (also known as an electrochemical double-
layer capacitor), there are no chemical reactions involved in its energy storage
mechanism. This mechanism is highly reversible, allowing the ultracapacitor to be
charged and discharged hundreds of thousands of times. An ultracapacitor can be
viewed as two nonreactive porous plates suspended within an electrolyte, with a
voltage applied across the plates. The applied potential on the positive plate attracts
the negative ions in the electrolyte while the potential on the negative plate attracts
the positive ions. This effectively creates two layers of capacitive storage, one where
the charges are separated at the positive plate and another at the negative plate.
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Recall that capacitors store energy in the form of separated electric charge. The
greater the area for storing charge and the closer the separated charges, the greater
the capacitance. A conventional capacitor gets its area from plates of a flat,
conductive material. To achieve high capacitance, this material can be wound in great
lengths, and sometimes a texture is imprinted on it to increase its surface area. A
conventional capacitor separates its charged plates with a dielectric material,
sometimes a plastic or paper film, or a ceramic. These dielectrics can be made only
as thin as the available films or applied materials.

An ultracapacitor gets its area from a porous carbon-based electrode material, as
shown in Figure 3.8. The porous structure of this material allows its surface area to
approach 2,000 square meters per gram (m2/g), much greater than can be
accomplished using flat or textured films and plates. An ultracapacitor’s charge
separation distance is determined by the size of the ions in the electrolyte, which are
attracted to the charged electrode. This charge separation [less than 10 angstroms
(Å)] is much smaller than can be achieved using conventional dielectric materials.
The combination of enormous surface area and extremely small charge separation
gives the ultracapacitor its outstanding capacitance relative to conventional
capacitors.

Figure 3.8 Ultracapacitor structure



Use the data provided to calculate the charge stored in an ultracapacitor and
calculate how long it will take to discharge the capacitor at the maximum current
rate.

Solution
Known Quantities: Technical specifications are as follows:

Find: Charge separation at nominal voltage and time to complete discharge at
maximum current rate.
Analysis: Based on the definition of charge storage in a capacitor, calculate

To calculate how long it would take to discharge the ultracapacitor, approximate the
current as:

Since the available charge is 250 C, the time to completely discharge the capacitor,
assuming a constant 25-A discharge, is

To calculate the energy, use equation 3.15:
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EXAMPLE 3.2 Calculating Capacitor Current From Voltage



Problem
Calculate the current through a capacitor from knowledge of its terminal voltage.

Solution
Known Quantities: Capacitor terminal voltage for t > 0; capacitance value.
Find: Capacitor current t > 0.
Assumptions: None.
Schematics, Diagrams, Circuits, and Given Data: .
The terminal voltage is plotted in Figure 3.9.

Figure 3.9

Assumptions: The capacitor is initially discharged: υ(t = 0) = 0.
Analysis: Differentiate the voltage across the capacitor to find the current through it.

A plot of the capacitor current is shown in Figure 3.10. Note how the current jumps
to 0.5 A just after t = 0. The ability of the current through a capacitor to change
instantaneously is an important property.
Comments: As the voltage approaches the constant value 5 V, the charge stored in
the capacitor approaches its maximum value and the current through the capacitor
approaches zero. The total charge stored is Q = 0.5 × 10−6 C. This is a fairly small
amount of charge, but it can produce a significant current for a brief period. For
example, when fully charged the capacitor could provide 100 mA for 5 μs:



Figure 3.10
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There are many practical applications of the energy storage property of capacitors.

EXAMPLE 3.3 Calculating Capacitor Voltage From Current and an
Initial Condition
Problem
Solve for the voltage across a capacitor from knowledge of its current and initial
charge.

Solution
Known Quantities: Capacitor current; initial capacitor voltage; capacitance value.
Find: Capacitor voltage as a function of time.
Schematics, Diagrams, Circuits, and Given Data:



The capacitor current is plotted in Figure 3.11(a).
Assumptions: The capacitor is initially charged such that V0 = υC(t = 0) = 2 V.

Analysis: The integral relationship between voltage and current for a capacitor can
be used to find voltage when current is known.
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Figure 3.11

Comments: Once the current stops, at t = 1 s, the capacitor voltage remains constant
because the charge remains constant. That is, V = Q/C = constant = 12 V at t = 1 s.
Remember, the final value of the capacitor voltage depends on two factors: (1) the
initial value of the capacitor voltage and (2) the history of the capacitor current.
Figure 3.11(a) and (b) depict the current through and voltage across the capacitor as
functions of time.

CHECK YOUR UNDERSTANDING
Compare the energy stored in the ultracapacitor of Example 3.1 with a (similarly
sized) electrolytic capacitor used in power electronics applications. Calculate the
energy stored for a 2,000-μF electrolytic capacitor rated at 400 V.



CHECK YOUR UNDERSTANDING
Compare the charge separation achieved in the ultracapacitor of Example 3.1 with a
(similarly sized) electrolytic capacitor used in power electronics applications, by
calculating the charge separation for a 2,000-μF electrolytic capacitor rated at 400 V.

CHECK YOUR UNDERSTANDING
Find the maximum current through the capacitor of Example 3.3 if the capacitor
voltage is described by υC(t) = 5t + 3 V for 0 ≤ t ≤ 5 s.
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CHECK YOUR UNDERSTANDING
The voltage waveform shown below appears across a 1,000-μF capacitor. Plot the
capacitor current iC(t).

Answer: 160 J

Answer: 0.8 C

Answer: 5 mA



The Ideal Inductor
An inductor is an element that can store energy in a magnetic field within and around
a conducting coil. In general, inductance is present whenever a conducting wire
forms a loop. A simple example is a solenoid, which is a narrow and tightly wound
coil of length ℓ, cross-sectional area A, and N turns. Inductors are typically made by
winding wire around a core, which can be an insulator or a ferromagnetic material,
as shown in Figure 3.12. A current through the coil establishes a magnetic field
through and around the core. In an ideal inductor, the resistance of the wire is zero.

The inductance L is defined by the following ratio:

where Φ is the magnetic flux through the inductor core and iL is the current through
the inductor coil. The inductance of an ideal solenoid is:

where μ is the permeability of the core. Another inductor found in many applications
is the toroid, which is also depicted in Figure 3.12.



(3.16)

(3.17)

Figure 3.12 Inductance and practical inductors

The inductance of a coil is measured in henrys (H) where
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Henrys are reasonable units for practical inductors although millihenrys (mH) are
very common and microhenrys (μH) are occasionally found.

The i-υ relationship for an inductor is derived directly from Faraday’s law of
induction but with the total flux NΦ replaced by Li from the definition of inductance
L. The result is:



(3.18)

(3.19)

(3.20)

One immediate implication of equation 3.17 is that the voltage across an inductor
in a DC circuit is zero. Why? Since the current through an inductor in a DC circuit
must, by definition, be constant, the time derivative of the current must be zero.
Thus, equation 3.17 requires the voltage across an inductor to also be zero.

An inductor in a DC circuit is equivalent to a short-circuit.
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Equation 3.17 can be integrated to yield an expression for the change in current
through an inductor due to the voltage across it.

Equation 3.18 indicates that the change in current through an inductor depends on the
history of the voltage across it. To calculate the current at a specific time it is
necessary to know the current I0 through the inductor at some previous time t0.

Equivalent Inductance
Just as resistors in series or parallel can be represented by an equivalent resistance, so
inductors in series or parallel can be represented by an equivalent inductance. For
two inductors in series and parallel, the equivalent inductances are, respectively,

Notice that the equivalent inductance of two inductors in series is simply the sum of
the two, which is the same rule used for two resistors in series. Likewise, the rule for
the equivalent inductance of two inductors in parallel is the product divided by the
sum, which is the same rule used for two resistors in parallel. The more general rules
are illustrated in Figure 3.13.



Figure 3.13 Equivalent inductance in a circuit

When calculating equivalent inductance, inductors in series combine like
resistors in series and inductors in parallel combine like resistors in parallel.

Duality
All the relationships for capacitors and inductors exhibit duality, which means that
the capacitor relations are mirror images of the inductor relations. Specifically, the
Page 179roles played by voltage and current in a capacitor relation are reversed in
the analogous inductor relation. For example, the i-υ relationships for capacitors and
inductors, respectively, are:

Notice that the inductor relation is obtained from the capacitor relation by replacing i
with υ and υ with i. It is also necessary, of course, to replace the capacitance C with
the inductance L. Another example of duality is found in the energy storage relations
for capacitors and inductors.

Duality is also at work in other relations not involving voltage and current
explicitly. For example, consider the rules for calculating equivalent capacitance and
equivalent inductance. Capacitors in series combine like inductors in parallel while
capacitors in parallel combine like inductors in series. Another example of duality is
seen in the DC behavior of capacitors and inductors. In a DC circuit, a capacitor acts
like an open-circuit while an inductor acts like a short-circuit.

MAKE THE CONNECTION



Hydraulic Analog of an Inductor
Fluid inertance, which is caused by the inertial properties (i.e., the mass) of a fluid
in motion, is analogous to inductance in an electric circuit. It is well known that a
particle in motion possesses kinetic energy; likewise, a fluid in motion, which
consists of a collection of particles, also possesses (i.e., stores) kinetic energy. Think
of the water flowing out of a fire hose! The equations that define the analogy are:

The figure below depicts the analogy. These analogies and the energy equations that
apply to electric and fluid circuit elements are summarized in Table 3.3.

Table 3.3 Analogy between electric and fluid circuits

Analogy between fluid inertance and electrical inductance



(3.21)

(3.22)

Energy Storage in Inductors
The energy stored in an inductor WL(t) is derived from the definition of energy as the
time integral of power, which is the product of voltage and current:

The total energy stored in the inductor is the integral of power over time.

Note, once again, the duality with the expression for the energy stored in a capacitor,
in equation 3.15.
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EXAMPLE 3.4 Calculating Inductor Voltage From Current
Problem
Calculate the voltage across an inductor from knowledge of its current.

Solution
Known Quantities: Inductor current; inductance value.
Find: Inductor voltage.
Schematics, Diagrams, Circuits, and Given Data:



where time t is in milliseconds. The inductor current is plotted in Figure 3.14.

Figure 3.14

Assumptions: iL(t = 0) ≤ 0.

Analysis: The voltage across the inductor is obtained by differentiating the current
and multiplying by the inductance L.

Piecewise differentiating the expression for the inductor current, we obtain

The inductor voltage is plotted in Figure 3.15.



Figure 3.15

Comments: The inductor voltage can change instantaneously and thus be
discontinuous!
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EXAMPLE 3.5 Calculating Inductor Current From Voltage
Problem
Use a time plot of the voltage across an inductor and its initial current to calculate the
current through it as a function of time.

Solution
Known Quantities: Inductor voltage; initial condition (current at t = 0); inductance
value.
Find: Inductor current.
Schematics, Diagrams, Circuits, and Given Data:

The voltage across the inductor is plotted in Figure 3.16(a).
Analysis: Use the integral i-υ relationship for an inductor to obtain the current
through it:

The inductor current is plotted in Figure 3.16b.



Comments: The inductor voltage can change instantaneously and thus be
discontinuous!

Figure 3.16

EXAMPLE 3.6 Energy Storage in an Ignition Coil
Problem
Determine the energy stored in an automotive ignition coil.
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Solution
Known Quantities: Inductor current; inductance value.
Find: Energy stored in inductor.
Schematics, Diagrams, Circuits, and Given Data: L = 10 mH; iL = 8 A.

Analysis:

Comments: A more detailed analysis of an automotive ignition coil is presented in
Chapter 4 to accompany the discussion of transient voltages and currents.



CHECK YOUR UNDERSTANDING
The waveform below shows the current through a 50-mH inductor. Plot the inductor
voltage υL(t).

CHECK YOUR UNDERSTANDING
Find the maximum voltage across a 10-mH inductor when the inductor current is iL(t)
= −2t(t − 2) A for 0 ≤ t ≤ 2 s and zero otherwise.
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CHECK YOUR UNDERSTANDING
Calculate and plot the inductor energy and power for a 50-mH inductor subject to the
current waveform shown below. What is the energy stored at t = 3 ms?

Answer: 40 mV



(3.23)

3.3 TIME-DEPENDENT WAVEFORMS
Time-dependent periodic waveforms appear frequently in practical applications and
are a useful approximation of many physical phenomena. For example, electric
power worldwide is generated and delivered to industrial and household users in the
form of periodic (i.e., 50- or 60-Hz sinusoidal) voltages and currents. In general, a
periodic waveform x(t) satisfies the equation

where T is the period of x(t). Figure 3.17 illustrates a number of periodic waveforms
that are typically encountered in the study of electric circuits. Waveforms such as the
sine, triangle, square, pulse, and sawtooth waves are provided in the form of voltages
(or, less frequently, currents) by commercially available signal generators.

Answer: 



(3.24)

Figure 3.17 Periodic waveforms

In this chapter, time-varying voltages and currents and, in particular, sinusoidal
(AC) waveforms are introduced. Figure 3.18 illustrates the convention employed to
denote time-dependent sources.

Figure 3.18 Time-dependent sources
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Sinusoids constitute the most important class of time-dependent waveforms. A
generalized sinusoid is defined as

where A is the peak amplitude, ω the angular frequency, and ϕ the phase angle.
Figure 3.19 summarizes the definitions of A, ω, and ϕ for the waveforms



(3.25)

(3.26)

(3.27)

where

Figure 3.19 Sinusoidal waveforms have three characteristics: angular
frequency ω, amplitude A, and phase angle ϕ. In general, ωT = 2π and ϕ =
2π Δt/t, where T is the period and Δt is the time delay (positive or negative)
relative to a reference waveform.

The value of the phase shift ϕ is a measure of the time delay of one sinusoid
relative to a reference sinusoid, typically a cosine waveform. For example, a sine
wave can be represented in terms of a cosine wave by introducing a phase shift of π/2
radians:

Notice that a negative phase angle represents a time shift to the right.
Although angular frequency ω, in units of radians per second, is commonly used

to denote sinusoidal frequency, it is also common to employ the cyclical frequency f
in units of cycles per second, or hertz (Hz). In music theory, a sinusoid is a pure tone;
an A-440, for example, is a tone at a frequency of 440 Hz. The cyclical frequency is
related to the angular frequency by the factor 2π.



(3.28)

(3.29)

(3.30)

Average (Mean) Value
Various measures exist for quantifying the amplitude of a time-varying electric
signal. One of these measures is the average or mean value (also called the DC
value). The average value of a waveform is computed by integrating it over a
suitably chosen period, as shown in equation 3.28.

where T is the period of integration. Figure 3.20 illustrates the average amplitude of
x(t) over a period of T seconds. It can be shown that the average or mean value of a
sinusoid is zero.

Figure 3.20 Average of a waveform
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This result might be surprising at first: If the average voltage across or current
through an element is zero, is its average power also equal to zero? Clearly, the
answer must be no. Otherwise, it would be impossible to illuminate households and
streets and power industrial machinery with a 60-Hz sinusoidal voltage waveform!

Effective or RMS Value
A more useful measure of the amplitude of an AC waveform x(t) is the effective or
root-mean-square (rms) value, which takes into account fluctuations of a waveform
about its mean, and which is defined as:



(3.31)

MAKE THE CONNECTION

Why Do We Use Units of Radians for the Phase Angle
ϕ?
Engineers often find it more intuitive to express phase angle in units of degrees;
however, to use consistent units in the argument (the quantity in the parentheses) of
the expression x(t) = A sin(ωt + ϕ), we must express ϕ in units of radians, since the
units of ωt are [ω] · [t] = (rad/s) · s = rad. Thus, we will consistently use units of
radians for the phase angle ϕ in all expressions of the form x(t) = A sin(ωt + ϕ). To
be consistent is especially important when one is performing numerical calculations;
if one used units of degrees for ϕ in calculating the value of x(t) = A sin(ωt + ϕ) at a
given t, the answer would be incorrect.

Notice that the argument of the square root is the mean value of x2(t). Thus, the
rms value is literally the square root of the mean of the square. Also note that the unit
of the “mean of the square” is the unit of x2(t). Thus, the unit of the “root of the mean
of the square” xrms is the unit of x(t).

Why are effective (rms) values useful? Consider two similar circuits, each with a
resistor R connected to a source: one with a DC source, and one with an AC source,
as shown in Figure 3.21. The effective value of the AC source is the value of a DC
source such that the average power dissipated by the resistor R is the same in both
circuits. Thus, the effective value of an AC source provides a comparable measure of
the power associated with an element in an AC circuit. The AC power dissipated by a
resistor can now be simply expressed as:

In terms of AC current and voltage waveforms, the effective (rms) values are
calculated as:



(3.32)

The rms, or effective, value of an AC source is the DC value that produces the
same average power dissipated by a resistive load.

Figure 3.21 AC and DC circuits used to illustrate the concept of effective
and rms values

The effective (or rms) value of a voltage or current is indicated by the notation Vrms,
or , and Irms, or . The ratio of the rms value of a sinusoid to its peak value is 

. Table 3.4 lists the value of this ratio for other typical waveforms. The
table also lists a Fourier sine series for each waveform to demonstrate that each is a
summation of sine waves.
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Table 3.4 Ratio of RMS value to Peak value



EXAMPLE 3.7 Average Value of Sinusoidal Waveform
Problem
Compute the average value of the signal x(t) = 10 cos(100t).

Solution
Known Quantities: Functional form of the periodic signal x(t).
Find: Average value of x(t).
Analysis: The signal is periodic with period T = 2π/ω = 2π/100. Integrate over one
period to compute the average value:

Comments: The mean value of a sinusoidal is zero, independent of its amplitude and
frequency.

EXAMPLE 3.8 RMS Value of Sinusoidal Waveform
Problem
Compute the rms value of the sinusoidal current i(t) = I cos(ωt).
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Solution
Known Quantities: Peak amplitude I and angular frequency ω of the periodic signal
i(t).
Find: rms value of i(t).
Analysis: Applying the definition of rms value in equation 3.32, we compute



Since the integral of a sinusoid over one period is equal to zero (see Example 3.7),
the integral over two periods is also zero. (Notice that the argument of cosine
function is 2ωτ, which indicates that T = 2π/(2ω) = π/ω such that 2π/ω = 2T.) Thus:

Comments: The rms value of a sinusoidal signal is independent of its frequency.

CHECK YOUR UNDERSTANDING
Express the voltage υ(t) = 155.6 sin(377t + π/6) in cosine form. Note that the angular
frequency ω = 377 rad/s is equivalent to the cyclical frequency 60 Hz, which is the
frequency of the electric power generated in North America.

CHECK YOUR UNDERSTANDING
Compute the mean (average) and rms values of the sawtooth waveform shown
below.

Answer: υ(t) = 155.6 cos(377t – π/3)

Answer: υavg = 2.5 V; υrms = 2.89 V
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CHECK YOUR UNDERSTANDING
Compute the mean (average) and rms values of the triangle waveform shown below.

CHECK YOUR UNDERSTANDING
Compute the mean (average) and rms values of the clipped cosine waveform shown
below.

3.4 PHASOR SOLUTION OF CIRCUITS WITH
SINUSOIDAL SOURCES
Any sinusoidal signal may be represented as a real function in the time domain:

Answer: 

Answer: xavg = 1/π; xrms = 0.5



(3.33)

or as a complex function in the frequency domain:

where A is the peak amplitude and ϕ is the phase shift relative to a reference
sinusoid. It is important to keep in mind that phase shift in the frequency domain is
equivalent to a delay in the time domain.

Since the sinusoidal frequencyω of each independent voltage or current source is
common to all variables in an AC circuit, the complex exponential ejωt is usually not
expressed explicitly in AC circuit analysis. However, the frequencyω of each
sinusoidal source is an important parameter for characterizing the impact of
capacitors and inductors in an AC circuit.
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Euler’s Formula
Named after the famous Swiss mathematician Leonhard Euler, this formula is the
basis of phasor notation. A phasor is similar to a vector in that it has an amplitude A
and direction θ in the complex plane. Also, just as a vector can be decomposed into x
and y components, a phasor can be decomposed into real and imaginary components.
Euler’s formula defines a complex exponential ejθ as a unit phasor in the complex
plane, with real and imaginary components given by:

where  is the imaginary unit. The symbol θ is simply a place holder in Euler’s
formula. Any dimensionless quantity or expression can be substituted for θ in the
formula. However, in AC circuit analysis, θ takes on the physical meaning of the
phase shift of a sinusoid.



(3.44)

(3.55)

(3.36)

(3.37)

Leonhard Euler (1707–1783) (Oxford Science Archive/ Heritage
Images/The Print Collector/Alamy Stock Photo)

The dark black arrow in Figure 3.22 represents a complex exponential in the
complex plane. The real and imaginary components are cos θ and sin θ, respectively.
These two components and the complex exponential itself form the three legs of a
right triangle. The Pythagorean theorem requires:

Figure 3.22 Euler’s formula

Thus, the magnitude of ejθ is unity, which is why it is also known as a unit phasor.
The angle of inclination of the unit phasor is θ. As θ increases or decreases the unit
phasor rotates counterclockwise or clockwise, respectively, about the origin of the
complex plane.

It is difficult to overstate the power of the visualization presented in Figure 3.22.
For example, when θ = π/2, the unit phasor points straight up along the imaginary
axis. Thus:

where the notation  indicates a magnitude of 1 and a phase angle θ = π/2. When θ
= π, the unit phasor points to the left along the negative real axis. Thus:

Likewise:

Each of these expressions equates the two polar forms on the left to the rectangular
form on the far right side. In polar form, a phasor is represented by a magnitude (or



(3.38)

(3.39)

(3.40)

amplitude) and a phase angle, whether as Aejθ or A∠θ. In rectangular form, a phasor
is represented by real and imaginary components. Table 3.5 lists a few other
commonly encountered phasors in polar and rectangular forms.

Table 3.5 Polar and rectangular forms of common phasors

In general, the polar and rectangular forms are related by:

In effect, Euler’s identity is simply a trigonometric relationship in the complex plane.
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Phasors
To see how complex numbers can be used to represent sinusoidal waveforms, rewrite
the expression for a generalized sinusoid in light of Euler’s equation:

Notice that it is possible to express any sinusoid as the real part of a complex
exponential with an argument ofωt + θ and a magnitude or amplitude of A. The
expression can be further simplified by remembering that the angular frequencyω is
common to all voltages and currents. Thus, the ejωt portion of the complex
exponential is understood to be present in every phasor, but not written explicitly.
The same perspective is taken with regard to the real part operator Re so that the
complex exponential is simplified as shown in equation 3.40.

In this expression, the relational operator ⇒ indicates equality with the real part
operator Re and the sinusoidal portion ejωt of the complex exponential hidden but
understood implicitly. In general, this simplification will be used to express a phasor
in polar and rectangular form as:



(3.41)

1.

2.

3.

4.

5.

(3.42)

There are five key rules of complex arithmetic that will be used to resolve
complex multiplication and division:

The magnitude of the ratio of two phasors is the ratio of the individual
magnitudes.

The phase angle of the ratio of two phasors is the difference of the individual
phase angles.

The complex conjugate  of a phasor A is found by changing the sign of the
imaginary number, j, everywhere in the phasor. The magnitude of the complex
conjugate equals the magnitude of the phasor itself. The angle of the complex
conjugate equals the negative of the angle of the phasor itself.
The product of a phasor and its complex conjugate is a real number equal to the
square of the magnitude of the phasor, which is equal to the sum of the squares
of the real and imaginary parts of the phasor.
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The angle of a phasor is the inverse tangent of the ratio of the imaginary part to
the real part. That is, ∠A = arctan [Im(A)/Re(A)].

A bold uppercase font indicates a phasor quantity.

Superposition of AC Signals
Consider the circuit depicted in Figure 3.23 with a load excited by two current
sources in parallel.

Figure 3.23 Superposition



(3.43)

(3.44)

(3.45)

By KCL, the load current is equal to the sum of the two source currents; that is,

So far, so good. However, the expression in equation 3.43 cannot be expressed in
phasor form without masking the fact that i1 has a different frequency than that of i2.
In mathematical form:

It is imperative to remember that the  and  terms are present implicitly in I1
and I2, respectively, as shown in equation 3.45.

The two phasors of equation 3.44 cannot be added, but must be kept separate; the
only unambiguous expression for the load current is equation 3.43. In general,
sinusoidal waveforms of different frequencies must be analyzed separately.

3.5 IMPEDANCE
As phasors, the i-υ relationships of resistors, capacitors and inductors take the form
of a generalized Ohm’s law:

where the quantity Z is known as impedance.
Series and parallel combinations of resistors, inductors, and capacitance can be

represented by a single equivalent impedance of the form:

where R(jω) and X(jω) are known as the “resistance” and “reactance”, respectively,
of the equivalent impedance Z.

In general, all the DC circuit relations and techniques introduced in Chapters 1
and 2 can be extended to AC circuits. Thus, it is not necessary to learn new methods
to solve AC circuits; it is only necessary to apply the same methods with phasors.
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(3.46)

Generalized Ohm’s Law
The impedance concept reflects the fact that capacitors and inductors act as
frequency-dependent resistors. Figure 3.24 depicts a generic AC circuit element with
a sinusoidal voltage VZ and an impedance load Z, which is also a phasor and
represents the effect of a generic network of resistors, capacitors, and inductors. The
resulting current IZ is a phasor determined by:

Figure 3.24 The impedance concept

The impedance Z for a specific network of resistors, capacitors, and inductors is
determined by the definition of impedance:



(3.47)

(3.48)

(3.49)

(3.50)

Once the impedances of the resistors, capacitors and inductors in a network are
known, they can be combined in series and parallel (using the usual rules for
resistors) to form equivalent impedances “seen” between nodes within the network.

Impedance of a Resistor
The i-υ relationship for a resistor is, of course, Ohm’s law, which in the case of
sinusoidal sources is written as (see Figure 3.25):

or, in phasor form,

Figure 3.25 For a resistor, υR(t) = iR(t) R

where  and  are phasors.

Both sides of equation 3.48 can be divided by ejωt to yield:

The impedance of a resistor is then determined from the definition of impedance:

Thus:



(3.51)

(3.52)

The impedance of a resistor is a real number; that is, it has a magnitude R and a zero
phase, as shown in Figure 3.26. The phase of the impedance is equal to the phase
difference between the voltage across an element and the current through the same
element. In the case of a resistor, the voltage is completely in phase with the current,
which means that there is no time delay between the voltage waveform and the
current waveform in the time domain.
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Figure 3.26 Phasor diagram of the impedance of a resistor. Remember that
Z = V/I.

Impedance of an Inductor
The i-υ relationship for an inductor is (see Figure 3.27):

Figure 3.27 For an inductor, 

At this point, it is important to proceed carefully. The time-domain expression for the
current through the inductor is

such that



(3.53)

(3.54)

(3.55)

(3.56)

The net effect of the time derivative is to produce an extra ( jω) term along with the
complex exponential expression of iL(t).

Therefore, the phasor equivalent of the i-υ relationship for an inductor is:

The impedance of an inductor is then determined from the definition of impedance:

Thus:

The impedance of an inductor is a positive, purely imaginary number; that is, it has a
magnitude ofωL and a phase of π/2 radians or 90°, as shown in Figure 3.28. As
before, the phase of the impedance is equal to the phase difference between the
voltage across an element and the current through the same element. In the case of an
inductor, the voltage leads the current by π/2 radians, which means that a feature
(e.g., a zero crossing point) of the voltage waveform occurs earlier than the same
feature of the current waveform.



(3.57)

Figure 3.28 Phasor diagram of the impedance of an inductor. Remember
that Z = V/I.

Note that the inductor behaves as a complex frequency-dependent resistor and
that its magnitude ωL is proportional to the angular frequency ω. Thus, an inductor
will “impede” current in proportion to the frequency of the source signal.
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At low frequencies, an inductor acts like a short-circuit; at high frequencies, it
acts like an open-circuit.

Impedance of a Capacitor
The principle of duality suggests that the procedure to derive the impedance of a
capacitor should mirror the procedure for an inductor. The i-υ relationship for a
capacitor is (see Figure 3.29):

Figure 3.29 For a capacitor, 

The time-domain expression for the voltage across the capacitor is

suchthat



(3.58)

(3.59)

(3.60)

(3.61)

The net effect of the time derivative is to produce an extra (jω) term along with the
complex exponential expression of υC(t). Therefore, the phasor equivalent of the i-υ
relationship for a capacitor is

The impedance of an inductor is then determined from the definition of impedance:

Thus:

The impedance of a capacitor is a negative, purely imaginary number; that is, it has a
magnitude of 1/ωC and a phase of –π/2 radians or –90°, as shown in Figure 3.30. As
before, the phase of the impedance is equal to the phase difference between the
voltage across an element and the current through the same element. In the case of a
capacitor, the voltage lags the current by π/2 radians, which means that a feature
(e.g., a zero crossing point) of the voltage waveform occurs later than the same
feature of the current waveform.

Figure 3.30 Phasor diagram of the impedance of a capacitor. Remember
that Z = V/I.



(3.62)

Note that the capacitor also behaves as a complex frequency-dependent resistor,
except that its magnitude 1/ωC is inversely proportional to the angular frequencyω.
Thus, a capacitor will “impede” current in inverse proportion to the frequency of the
source.
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At low frequencies, a capacitor acts like an open-circuit; at high frequencies, it
acts like a short-circuit.

Generalized Impedance
The impedance concept is very useful in solving AC circuit analysis problems. It
allows network theorems developed for DC circuits to be applied to AC circuits. The
only difference is that complex arithmetic, rather than scalar arithmetic, must be
employed to find equivalent impedance and solve equations.

Figure 3.31 depicts ZR( jω), ZL( jω), and ZC( jω) in the complex plane. It is
important to emphasize that although the impedance of resistors is purely real and the
impedance of capacitors and inductors is purely imaginary, the equivalent impedance
between two terminals in an arbitrary circuit can be complex.

Figure 3.31 The impedances of R, L, and C are shown in the complex
plane. Impedances in the upper right quadrant are inductive while those in
the lower right quadrant are capacitive.



(3.63)

(3.64)

(3.65)

(3.66)

(3.67)

Here, R is resistance and X is reactance. The unit of R, X, and Z is the ohm.

Admittance
The solution of certain circuit analysis problems is handled more easily in terms of
conductances than resistances. This is true, for example, in circuits with many
parallel elements, since conductances in parallel add as resistors in series do. In AC
circuit analysis, an analogous quantity may be defined—the reciprocal of complex
impedance. Just as conductance G was defined as the inverse of resistance,
admittance Y is defined as the inverse of impedance.

Whenever the impedance Z is purely real, the admittance Y is identical to the
conductance G. In general, however, Y is complex.

where G is the AC conductance and B is the susceptance, which is analogous to
reactance. Clearly, G and B are related to R and X; however, the relationship is not a
simple inverse. If Z = R + jX, then the admittance is:

Multiply the numerator and denominator by the complex conjugate :

and conclude that

Notice in particular that G is not the reciprocal of R in the general case!
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EXAMPLE 3.9 Addition of Two Sinusoidal Sources Using Phasor
Notation
Problem
Compute the phasor voltage across a series connection of two sinusoidal voltage
sources (Figure 3.32).

Figure 3.32

Solution
Known Quantities:

Find: Equivalent phasor voltage υS(t).

Analysis: Write the two voltages in phasor form:

The phasor diagram of Figure 3.33 shows V1 and V2 in the complex plane. Convert
the phasor voltages from polar to rectangular form:



Then, by KVL:

Finally, convert VS(jω) to its time-domain form:

Figure 3.33 Phasor diagram showing the addition of two voltage phasors.

Comments: The same result could have been obtained by adding the two sinusoids in
the time domain, using trigonometric identities:

Page 197

Combine like terms to obtain:

The above expression is, of course, identical to the one obtained using phasor
notation, but it required more computation. Phasor analysis often simplifies
calculations.



EXAMPLE 3.10 Impedance of a Practical Capacitor
Problem
A practical capacitor is often modeled as an ideal capacitor in parallel with a resistor
as shown in Figure 3.34. The parallel resistance represents leakage losses in the
capacitor that can be quite significant. Find the impedance of a practical capacitor at
the radian frequency ω = 377 rad/s (60 Hz). How will the impedance change if the
capacitor is used at a much higher frequency, say, 800 kHz?

Figure 3.34

Solution
Known Quantities: Figure 3.34; C1 = 1.0 nF; R1 = 1 MΩ; ω = 377 rad/s.

Find: The equivalent impedance Z1 across the parallel elements.

Analysis: Combine the two impedances in parallel to determine the equivalent
impedance.

Substitute numerical values to find:



The impedance of the capacitor alone at ω = 377 rad/s is

When the frequency is increased to 800 kHz, or 1600π × 103 rad/s—a radio
frequency in the AM range—the impedance changes to:
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The impedance of the capacitor alone at ω = 1600π × 103 rad/s is

Now, the impedances Z1 and ZC1 are virtually identical. Thus, the effect of the
parallel resistance is negligible at high frequencies.
Comments: For elements in parallel, the element with the smallest impedance tends
to dominate the equivalent impedance across two nodes. At the lower frequency
(corresponding to the well-known 60-Hz AC power frequency) the impedance of the
resistor is roughly 38 percent smaller than that of the ideal capacitor. Thus, the
resistor tends to dominate the equivalent impedance at 60-Hz; in fact, at that
frequency the equivalent impedance is only 6.5 percent smaller than the resistance
and so the practical and ideal capacitors are substantially different. At the higher
frequency, the impedance of the ideal capacitor is much smaller than the resistance.
The equivalent impedance is dominated by the ideal capacitor. At frequencies above
and below ω = 1/RC, the network is capacitive and resistive, respectively. This
example suggests that the behavior of a network may depend heavily on frequency.

EXAMPLE 3.11 Impedance of a Practical Inductor
Problem



Figure 3.35 shows a toroidal (doughnut-shaped) inductor. A practical inductor is
often modeled as an ideal inductor in series with a resistor, as shown in Figure 3.36.
The series resistance represents the resistance of the wire. Find the range of
frequencies over which the impedance of the practical inductor is largely inductive.
Consider the impedance to be inductive if it is at least 10 times larger than the
resistance.

Figure 3.35 A practical inductor

Figure 3.36

Solution
Known Quantities: L = 0.098 H; lead length = 2 × 10 cm; n = 250 turns; wire is 30
gauge. Resistance of 30-gauge wire = 0.344 Ω/m.
Find: The range of frequencies over which the practical inductor acts nearly as an
ideal inductor.
Analysis: To determine the equivalent resistance of the wire, use the cross section of
the toroid to estimate its length l𝑤:

Thus, the total resistance is



To determine the range of frequencies, ω, over which the impedance jωL of the ideal
inductor is 10× greater than 1.36 Ω:

In terms of cyclical frequency, the range is f = ω/2π > 22 Hz.

Page 199

Comments: For elements in series, the element with the largest impedance tends to
dominate the equivalent impedance across two nodes. At frequencies above 139 rad/s
the impedance of the inductor is at least 10× greater than the resistance and the
resistance is insignificant. (Remember the 10:1 rule.) At lower frequencies, the
resistance is significant; at very low frequencies (ωL << R), the impedance of the
ideal inductor effectively acts as a short-circuit and is negligible. At high frequencies,
the separation between the insulated coil wires begins to exhibit significant
capacitance and so the model should be modified accordingly.

EXAMPLE 3.12 Impedance of a Series-Parallel Network
Problem
Find the equivalent impedance of the circuit shown in Figure 3.37.

Figure 3.37



Solution
Known Quantities: ω = 104 rad/s; R1 = 100 Ω; L = 10 mH; R2 = 50 Ω; C = 10 μF.

Find: The equivalent impedance of the series-parallel circuit.
Analysis: The equivalent impedance of R2 in parallel with C is

To determine the equivalent impedance Zeq across the entire network:

Comment: At ω = 104 rad/s, the impedance across the network is inductive since the
reactance is positive (or, equivalently, the phase angle is positive). (See Figure 3.31.)

EXAMPLE 3.13 Admittance
Problem
Find the equivalent admittance across each of the two networks shown in Figure
3.38.



Figure 3.38

Solution
Known Quantities: ω = 2π × 103 rad/s; R1 = 50 Ω; L = 16 mH; R2 = 100 Ω; C = 3 μF.

Find: The equivalent admittance across each of the two networks.
Analysis: Network (a): First, determine the equivalent impedance across the network
ab:
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To obtain the admittance, compute the inverse of Zab by multiplying the numerator
and denominator by the complex conjugate of the denominator:

Substitute numerical values to find:

Network (b): First, determine the equivalent impedance across the network ab:



Multiply the numerator and denominator by jωC to find:

The inverse of Zab is the admittance:

Comment: The units of admittance and conductance are the same, siemens (S).

CHECK YOUR UNDERSTANDING
Add the sinusoidal voltages  using phasor
notation, and then convert back to time-domain form.

CHECK YOUR UNDERSTANDING
Add the sinusoidal currents i1(t) = A cos(ωt + ϕ) and i2(t) = B cos(ωt + θ) for

Answer: (a) υ1 + υ2 = 4.67 cos(ωt + 0.353 rad); (b) υ1 + υ2 = 60.8 cos(ωt –
0.656 rad)

Answer: (a) i1 + i2 = 0.19 cos(ωt + 0.733); (b) i1 + i2 = 1.32 cos(ωt –
0.5633)
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CHECK YOUR UNDERSTANDING
Compute the equivalent impedance across the network of Example 3.12 for ω =
1,000 and 100,000 rad/s.

Find the reactance across the parallel R2C network of Example 3.12 at the
frequency ω = 10 rad/s and calculate its equivalent capacitance.

CHECK YOUR UNDERSTANDING
Compute the equivalent admittance across the network of Example 3.12.

3.6 AC CIRCUIT ANALYSIS
Phasors and the concept of impedance, in particular, facilitate the solution of AC
circuits by making it possible to use the same solution methods developed in Chapter
2 for DC circuits. Those methods are explored for AC circuits containing linear
passive circuit elements (R, L, C) excited by a sinusoidal source. Figure 3.39 depicts
one such circuit, represented in both conventional time-domain and phasor-
impedance forms. Notice the differences in notation.

Answer: Z(1,000) = 140 – j10; Z(100,000) = 100 + j999; X∣∣ = 0.25; C =
0.4 F

Answer: Yeq = 5.492 × 10–3 – j4.871 × 10–3



Figure 3.39 An AC circuit

The first step in AC circuit analysis is to convert all sources to phasor form and
use the frequency of excitation to determine the impedance of each passive element.
Each passive impedance element will have an amplitude and a phase, both of which
may depend upon the excitation frequencyω.

The second step is to apply the same solution methods previously explored in
Chapters 1 and 2, treating each impedance element in the same manner as resistors
were treated in those chapters. The only difference is that AC circuit phasor analysis
involves complex arithmetic whereas DC circuit analysis involves scalar Page
202arithmetic. For example, voltage division for two impedance elements in series
will have the form:

Similarly, current division for two impedance elements in parallel will have the form:

Compare these expressions to those found in Chapter 2 for resistors in series and
parallel. The applications of KVL, KCL, Ohm’s law, the node voltage and mesh
current methods, Thévenin’s and Norton’s theorems, superposition, and source
transformations to AC circuits are all identical to their applications in DC circuits,
except that impedance Z and source phasors take the place of resistance and source
scalars.

The solution of an AC circuit problem will be a phasor, in general. Thus, the third
and last step is to convert the solution to its time-domain form. In effect, the use of
phasor notation is but an intermediate step that facilitates the computation of the final
answer.

It is worth noting that although it is possible to extend the node voltage and mesh
current methods to AC circuits, the resulting simultaneous complex equations will
usually be difficult to solve without the aid of a scientific calculator or computer,



1.
2.
3.

4.

5.

even for relatively simple circuits. In addition, these methods lend relatively little
insight into the nature of the circuit. On the other hand, it is very useful to extend the
concept of equivalent networks to the AC case and to make use of complex Thévenin
and Norton equivalent impedances.

F O C U S  O N  P R O B L E M  S O LV I N G

AC CIRCUIT ANALYSIS
Identify the sinusoidal sources in a circuit and note the excitation frequencies
Convert the sources to phasor form.
Use the excitation frequency to determine the impedance of each pas
element.
Solve the resulting phasor circuit, using an appropriate solution method, suc
Thévenin’s theorem, Norton’s theorem, superposition, source transformat
and the node voltage and mesh current methods. Take care to execute 
complex arithmetic properly. Represent the solution as a phasor.
Convert the phasor solution to its time-domain form.
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AC Equivalent Circuits
The concept of an equivalent circuit is equally useful in AC and DC circuit analyses.
Figure 3.40(a) depicts the one-port source-load perspective first introduced in
Chapter 2. In the figure, the overall circuit is divided into two parts: a load and a
source. Typically, the load is the element or circuit segment of interest to the analyst.
The source is everything else not included in the load. The source and load are
connected at two terminals a and b.



Figure 3.40 AC circuit simplification using Thévenin’s theorem

Thévenin’s or Norton’s theorem can be used to simplify the source network as
shown in Figure 3.40(b). Notice that the Thévenin equivalent source is composed of
two phasors: an independent voltage source VT(jω) in series with an equivalent
impedance ZT(jω). The voltage Vo across the load Zo(jω) can be found by voltage
division.

Notice that the approach and form of this solution is exactly the same as that
previously presented in Chapter 2 for DC circuits. The only difference is the use of
impedance instead of resistance. The independent Thévenin voltage source VT is the
open-circuit voltage VOC across the terminals a and b of the source network. The
Thévenin equivalent impedance ZT is found by setting to zero all independent
voltage and current sources in the source network and then finding the equivalent
impedance Zab between the source network terminals. Once again, a zero voltage
source acts as a short-circuit and a zero current source acts as an open-circuit. The
rules for finding the equivalent impedance and admittance of series and parallel
networks are shown in Figure 3.41.



Figure 3.41 Rules for impedance and admittance reduction

The Norton equivalent source is also composed of two phasors: an independent
current source IN in parallel with the same equivalent impedance ZN(jω) = ZT(jω).
Figure 3.42 depicts a somewhat complicated AC circuit partitioned into source and
load networks, and how VT, IN, and ZT are found. The example problems that follow
clarify some of the finer points in the calculation of such equivalent circuits. The
details of the complex arithmetic are also explored.
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Figure 3.42 Reduction of AC circuit to equivalent form



FOCUS ON MEASUREMENTS

Capacitive Displacement Transducer
As introduced in the previous Focus on Measurements section, a displacement
transducer consists of a parallel-plate capacitor with a variable separation distance x.
The capacitance was shown to be:

where C is in picofarads, the area of the plates A is in square millimeters, and x is in
millimeters. The impedance of the capacitor is

Thus, at a given frequency ω, the impedance of the capacitor varies linearly with the
separation distance. This result can be exploited in a bridge circuit, as shown in
Figure 3.7 where half of the bridge is a differential pressure transducer in which a
thin diaphragm (plate) is situated between two fixed plates and subject to variations
in pressure across the diaphragm. The result is that when the capacitance of one leg
of the bridge, shown here again as Figure 3.43, increases, the capacitance of the other
leg decreases. Assume the bridge is excited by a sinusoidal source.
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Figure 3.43 Bridge circuit for capacitive displacement transducer

Apply voltage division and KVL to express the output voltage in phasor notation
as:

When the diaphragm is not displaced from its center position, the nominal
capacitance of each half of the transducer is given by:

where d is the nominal separation distance between the diaphragm and the fixed
surfaces (in millimeters). Thus, when the diaphragm is displaced an effective
distance Δx, the capacitance of each leg of the bridge is given by:

Therefore, the corresponding impedance of each leg is:

such that the phasor output voltage is:



Thus, the output voltage will vary as a scaled version of the input voltage in
proportion to the displacement. A typical υout(t) is displayed in Figure 3.44 for a
0.05-mm “triangular” diaphragm displacement, with d = 0.5 mm and VS a 25-Hz
sinusoid with 1-V amplitude.
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Figure 3.44 Displacement input and bridge output voltage for capacitive
displacement transducer

EXAMPLE 3.14 Phasor Analysis of an AC Circuit
Problem
Apply the phasor analysis method to the circuit of Figure 3.45 to determine the
source current.



Figure 3.45

Solution
Known Quantities: Figures 3.45, 3.46, υS(t) = 10 cos ωt V; ω = 377 rad/s; R1 = 50 Ω;
R2 = 200 Ω; C = 100 μF.

Figure 3.46

Find: The source current iS(t).

Analysis: Define the voltage υ at the top right node, and use the node voltage method
to determine υ. Then observe that
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Next, we follow the steps of the Focus on Problem Solving box “AC Circuit
Analysis.”

Step 1: 
Step 2: 

Step 3: 

The resulting phasor circuit is shown in Figure 3.46.

Step 4: Solve for the source current using the node voltage method. Apply KCL at
the upper right node to find:



Thus:

Then, compute IS:

Step 4: Finally, convert the solution to its time-domain form:

EXAMPLE 3.15 An AC Circuit With an Arbitrary Sinusoidal Input
Problem
Determine the general solution of Example 3.14 for any sinusoidal source, A cos(ωt
+ ϕ).

Solution
Known Quantities: R1 = 50 Ω; R2 = 200 Ω, C = 100 μF.

Find: The phasor source current IS(jω).

Analysis: Since the radian frequency is arbitrary, it will be impossible to determine a
numerical answer. The answer will be a function of ω. The source phasor is: VS( jω)
= A∠ϕ. The impedances will be . Note that the
impedance of the capacitor is a function of ω.

Observe that the source current is given by:
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The parallel impedance  is given by:

Thus, the total series impedance is:

and the phasor source current is:

Comment: The expression obtained in this example can be evaluated for a specific
sinusoidal excitation, by substituting numerical values for A, ϕ, and ω. Use the
values from Example 3.14 (A = 10 V, ϕ = 0 rad, ω = 377 rad/s) and verify that the
same answer is obtained.

EXAMPLE 13.16 Solving an AC Circuit by the Node Voltage Method
Problem
The fundamental electrical characteristics of electric motors can be approximated by
a series RL circuit. In this problem, a voltage source provides current to two different
motors (Figure 3.47).

Figure 3.47 AC circuit used to demonstrate node analysis



Solution
Known Quantities: RS = 0.5 Ω; R1 = 2 Ω; R2 = 0.2 Ω; L1 = 0.1 H; L2 = 20 mH; υS(t)
= 155 cos(377t) V.
Find: The motor load currents i1(t) and i2(t).

Analysis: First, calculate the impedances of the source and of each motor:

The source voltage is VS = 155∠0 V.

Page 209

Next, apply KCL at the top right node, with the aim of solving for the node
voltage V:

It is now easy to find the phasor motor currents, I1 and I2, from the phasor node
voltage V.

Finally, write the time-domain expressions for the currents:

Figure 3.48 depicts the source voltage (scaled down by a factor of 10) and the two
motor currents.
Comment: Note the phase shift between the source voltage and the two motor
currents.



Figure 3.48 Source voltage and motor currents for Example 3.16
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EXAMPLE 3.17 AC Superposition
Problem
Compute the voltages υ1(t) and υ2(t) in the circuit of Figure 3.49.

Figure 3.49



Solution
Known Quantities:

Find: υ1(t) and υ2(t).

Analysis: Since the two sources are at different frequencies, compute a separate
solution for each. Consider the current source first, with the voltage source set to zero
(short-circuit) as shown in Figure 3.50. The resulting circuit is a simple current
divider. Write the source current in phasor notation:

Figure 3.50

Then

Next, consider the voltage source, with the current source set to zero (equivalent to
an open-circuit), as shown in Figure 3.51. First, write the source voltage in phasor
notation:

Figure 3.51

Then, apply the voltage divider law, to obtain:



The voltage across each resistor is obtained by adding the contributions from each
source and converting the equivalent phasor to the time domain:

and

Comment: It is impossible to further simplify the final expression because the two
components are at different frequencies.
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EXAMPLE 3.18 Using Thévenin’s Theorem to Solve an AC Circuit
Problem
Compute the Thévenin equivalent network seen by the load Zo in Figure 3.52.

Figure 3.52

Solution



Known Quantities: Z1 = 5 Ω; Z2 = j20 Ω, υS(t) = 110 cos(377t) V.

Find: Thévenin equivalent network seen by the load Zo.

Analysis: Find the Thévenin equivalent impedance seen by the load Zo. Remove the
load, replace the independent voltage source with a short-circuit, and compute the
equivalent impedance between terminals a and b shown in Figure 3.53.

Figure 3.53

Next, apply voltage division to find the open-circuit (Thévenin) voltage across
terminals a and b:

The complete simplified circuit is shown in Figure 3.54.

Figure 3.54

Comments: The procedure to simplify the circuit is identical to that used for resistive
circuits, the only difference being the use of complex impedances in place of
resistances.



a.

EXAMPLE 3.19 Thévenin’s Theorem Applied to an AC Circuit
Problem
Determine the Thévenin equivalent network seen by the load Ro in the circuit of
Figure 3.55 when the input sinusoidal voltage is (a) at a frequency of 103 Hz and (b)
at a frequency of 106 Hz.

Figure 3.55 (a) Circuit for Example 3.19; (b) same circuit ready for phasor
analysis

Solution
Known Quantities: RS = Ro = 50 Ω, C = 0.1 μF; L = 10 mH.
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Analysis: First, convert the circuit to phasor form, as shown in Figure 3.55(b). Next,
compute the Thévenin equivalent impedance with the load removed:

Observe that the Thévenin equivalent voltage is equal to the source voltage, since
once the load is removed, the current is zero in the resulting network and the voltage
drop across the remaining impedances is zero. Thus:

Next, evaluate the Thévenin equivalent at each of the two frequencies.
Let f = 103 Hz. Then ω = 2π × 103 rad/s. At this frequency,



b. Let f = 106 Hz. Then ω = 2π × 106 rad/s. At this frequency,

Comments: Note that at the higher frequency the equivalent impedance is very close
to that of the resistor RS. This result is due to the action of the capacitor and inductor,
which behave like short- and open-circuits, respectively, at high frequency. The very
small impedance of the capacitor at high frequency dominates the parallel equivalent
impedance.

EXAMPLE 3.20 Solution of an AC Circuit by the Mesh Current
Method
Problem
Determine the currents i1(t) and i2(t) in the circuit of Figure 3.56, using the mesh
current method.

Solution
Known Quantities: R1 = 100 Ω; R2 = 75 Ω; C = 1 μF; L = 0.5 H; υS(t) = 15
cos(1,500t) V.
Analysis: Follow the steps of the Focus on Problem Solving box “AC Circuit
Analysis.”

Step 1: 
Step 2: 

Step 3: 

The resulting phasor circuit is shown in Figure 3.56(b).
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Figure 3.56 (a) Circuit for Example 3.20; (b) same circuit ready for phasor
analysis

Step 4: The mesh equations are:

Multiply both sides of the mesh 2 equation by −1 and express the equations in matrix
form.

Cramer’s rule can be used to solve for the two currents:

Step 5: Substitute the impedance values in the previous expressions to find:

Plug in numerical values to obtain:



Step 6: Finally, express the resulting phasor currents in time-domain form:
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Comments: Note that the derivation of the symbolic equations for a circuit in phasor-
impedance form using matrix techniques is no more involved than it would be for a
resistive circuit. The only difference is the complex algebra manipulations. Complex
matrix equations can be solved numerically using MatLab.

CHECK YOUR UNDERSTANDING
Compute the magnitude of the current IS of Example 3.15 if A = 10 and ϕ = 0, for ω
= 10, 102, 103, 104, and 105 rad/s. Are these results intuitively satisfying?

CHECK YOUR UNDERSTANDING
In the circuit of Example 3.16, assume that the branch R2 in series with L2 is the load.
Find the Norton equivalent of the network seen by the load.

Answer: ∣IS∣ = 0.041 A; 0.083 A; 0.194 A; 0.2 A; 0.2 A. As the
frequency increases, the impedance of the capacitor decreases. In the limit
ω → ∞ the capacitor acts as a short-circuit. Thus, at sufficiently high
frequency, ∣IS∣ ≈ ∣VS∣/R1 = 0.2 A.

Answer: Short-circuit current is 310ej0 A. Norton equivalent impedance is
≈ 0.5ej0.013 Ω.
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CHECK YOUR UNDERSTANDING
In Example 3.19, determine the value of the capacitor and inductor impedance at the
two given frequencies. Compare these values to RS. Do the results confirm what is
stated in the Comments section?

CHECK YOUR UNDERSTANDING
In Example 3.20, find the equivalent impedance “seen” by the independent voltage
source to calculate its current. Show that the result is equal to the mesh current i1(t).

3.7 INSTANTANEOUS AND AVERAGE POWER
The fundamental concepts of single-phase AC power are average power, power
factor, and the power triangle, which are extensions of concepts developed earlier in
this chapter. An understanding of single-phase AC power is essential to the study of
more complex topics, such as three-phase power, electric power generation and
distribution, and electric machines.

When a linear electric circuit is excited by a sinusoidal source, all voltages and
currents in the circuit are also sinusoids of the same frequency as the source. Page
215Figure 3.57 depicts a simple linear AC circuit. The most general expressions for
the voltage and current delivered to an arbitrary load are as follows:

where V and I are the peak amplitudes of the sinusoidal voltage and current,
respectively, and θV and θI are their phase angles. Two such waveforms are plotted in
Figure 3.58, with unit amplitude, angular frequency 150 rad/s, and phase angles θV =
0 and θI = π/3. Notice that a positive phase shift moves the time waveform to the left
such that the current leads the voltage; or equivalently, the voltage lags the current.
Keep in mind that all phase angles are relative to some reference. The reference

Answer: At ω = 2π × 103, ZL = j62.832 Ω, ZC = –j1.5915 × 103 Ω. At ω =
2π × 106, ZL = j6.2832 × 104 Ω, ZC = –j1.5915 Ω.



(3.69)

phase angle is freely chosen and therefore usually set to zero for simplicity. Also
keep in mind that a phase angle represents a time delay of one sinusoid relative to its
reference sinusoid.

Figure 3.57 Time and frequency domain representations of an AC circuit.
The phase angle of the load is θZ = θV – θI.

Figure 3.58 Current and voltage waveforms with unit amplitude and a
phase shift of 60°

The instantaneous power dissipated by any element is the product of its
instantaneous voltage and current.

This expression is further simplified with the aid of the trigonometric identity:



(3.70)

(3.71)

(3.72)

(3.73)

(3.74)

(3.75)

Let x = ωt + θV and y = ωt + θI to yield:

The time average of the instantaneous power is defined by:
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where T is one period of p(t). Use equation 3.71 to substitute for p(t) to yield:

The integral of the first part cos(2ωt + θV + θI) is zero while the integral of the
second part (a constant) is T cos(θZ). Thus, the time averaged power Pavg is:

where

Figure 3.59 shows the instantaneous and average power corresponding to the voltage
and current signals of Figure 3.58.
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(3.77)

(3.78)

Figure 3.59 Instantaneous and average power corresponding to the signals
in Figure 3.58

Effective Values
In North America, AC power systems operate at a fixed frequency of 60 cycles per
second, or hertz (Hz), which corresponds to an angular (radian) frequency ω given
by:

In Europe and many other parts of the world, the AC power frequency is 50 Hz.
It is customary in AC power analysis to employ the effective or root-mean-square

(rms) amplitude rather than the peak amplitude for AC voltages and currents. In the
case of a sinusoidal waveform, the effective voltage  is related to the peak
voltage V by:
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Likewise, the effective current  is related to the peak current I by:

The rms, or effective, value of an AC source is the DC value that produces the
same average power dissipated by a resistive load.



(3.79)

(3.80)

(3.81)

(3.82)

(3.83)

(3.84)

(3.85)

The average power can be expressed in terms of effective voltage and current by
plugging  and  into equation 3.74 to find:

Voltage and current phasors are also represented with effective amplitudes by the
notation:

and

It is critical to pay close attention to the mathematical notation, namely that
complex quantities, such as V, I, and Z are boldface. On the other hand, scalar
quantities, such as , and  are italicized. The relationship between these
quantities is V = ∣V∣ and .

Power Factor
The phase angle θZ of the load impedance plays a very important role in AC power
circuits. As shown in equation 3.79, the average power dissipated by an AC load is
proportional to cos(θZ). For this reason, cos(θZ) is known as the power factor (pf).
For purely resistive loads:

For purely inductive or capacitive loads:

For loads with nonzero resistive (real) and reactive (imaginary) parts:



(3.86)

(3.87)

(3.88)

Using the definition  the average power can be expressed as:

Thus, the average power dissipated by an ideal resistor is
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because pfR = 1. By contrast, the average power dissipated by an ideal capacitor or
inductor is

because pfX = 0, where the subscript X indicates a reactive element (i.e., either a
capacitor or inductor). It is important to note that although ideal capacitors and
inductors are lossless (i.e., they store and release energy but do not dissipate energy),
they do influence power dissipation in a circuit by affecting the voltage across and
the current through resistors in the circuit.

When θZ is positive, the load is inductive and the power factor is said to be
lagging; when θZ is negative, the load is capacitive and the power factor is said to be
leading. It is important to keep in mind that pf = cos(θZ) = cos(–θZ) because the
cosine is an even function. Thus, while it may be important to know whether a load is
inductive or capacitive, the value of the power factor only indicates the extent to
which a load is inductive or capacitive. To know whether a load is inductive or
capacitive, one must know whether the power factor is leading or lagging.

EXAMPLE 3.21 Computing Average and Instantaneous AC Power
Problem
Compute the average and instantaneous power dissipated by the load of Figure 3.60.



1.

Figure 3.60

Solution
Known Quantities: Source voltage and frequency, load resistance and inductance
values.
Find: Pavg and p(t) for the RL load.

Schematics, Diagrams, Circuits, and Given Data: υ(t) = 14.1 sin(377t) V; R = 4 Ω;
L = 8 mH.
Assumptions: None.
Analysis: The source voltage is expressed in terms of sin(377t). By convention, all
time- domain sinusoids are expressed as cosines. To convert sin(377t) to cos(377t +
θV) recall that a sine equals a cosine shifted forward in time (to the right) by π/2 rad;
that is, sin(377t) = cos(377t – π/2). Thus, at the angular frequency ω = 377 rad/s the
source effective voltage is

where 14.1 V ≈ 10 V rms.
The equivalent impedance of the load is
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The current in the loop is

It is instructive to compute the average power dissipated in the circuit in two
ways:

The most straightforward approach is to compute:



2. Another approach is to realize that the average power dissipated by the inductor
is zero. Thus, the total average power dissipated equals the average power
dissipated by the resistor. Thus:

The instantaneous power supplied by the voltage source and dissipated by the
complex load is given by:

The instantaneous voltage and current waveforms and the instantaneous and average
power are plotted in Figure 3.61.

Figure 3.61

Comment: It is standard procedure in electrical engineering practice to use rms
values in power calculations. Also, note that the instantaneous power can be negative
at times even though the average power is positive. This result reflects the fact that
although the average power of an inductor is identically zero, the instantaneous
power of an inductor can be positive or negative as the inductor charges or discharges
with the sinusoidal source.
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EXAMPLE 3.22 Computing Average AC Power
Problem
Compute the average power dissipated by the load of Figure 3.62.

Figure 3.62

Solution
Known Quantities: Source voltage, internal resistance, load resistance, capacitance,
and frequency.

Find: Pavg for the Ro∥C load.

Schematics, Diagrams, Circuits, and Given Data: 
.

Assumptions: None.
Analysis: First, compute the impedance of the load at the angular frequency ω = 377
rad/s:

where the angle is given in radians. Next, apply voltage division to compute the load
voltage:



Finally, compute the average power using equation 3.79:

Alternatively, compute the source current  and then use equation 3.79 to compute
the average power:

EXAMPLE 3.23 Computing Average AC Power
Problem
Compute the average power dissipated by the load of Figure 3.63.

Solution
Known Quantities: Source voltage, internal resistance, load resistance, capacitance
and inductance values, and frequency.
Find: Pavg for the complex load.
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Schematics, Diagrams, Circuits, and Given Data: 
. Figure 3.63.



Figure 3.63

Assumptions: None.
Analysis: Compute the impedance of the load Zo at the angular frequency ω = 377
rad/s:

Note that the equivalent load impedance at ω = 377 rad/s has a negative imaginary
part, which is a feature of a capacitive load, as shown in Figure 3.64. The average
power is

Comment: At ω = 377 rad/s, the capacitance has a larger impact on the total
equivalent impedance than the inductance. At lower frequencies, where the
impedance of the capacitor is large compared to R + jωL, the parallel equivalent
impedance will be inductive. It is instructive to determine the frequency when the
parallel equivalent impedance has a zero imaginary part.



Figure 3.64

CHECK YOUR UNDERSTANDING
Consider the circuit shown in Figure 3.65. Find the impedance of the load “seen” by
the voltage source and compute the average power dissipated by the load. The
constant 155.6 multiplying the cosine function is the peak amplitude, not the rms
amplitude.

Figure 3.65

CHECK YOUR UNDERSTANDING
For Example 3.22, compute the average power dissipated by the internal source
resistance RS. Also compute the expression .

3.8 APPARENT POWER AND THE POWER
TRIANGLE
Average power was previously derived as

Answer: Z = 4.8e−j33.5°Ω; Pavg = 2,103.4 W

Answer: 101.46 W; 595 W



(3.89)

(3.90)

(3.91)

(3.92)

(3.93)

(3.94)
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This notation can be simplified by defining the apparent power S and the real power
P = Pavg such that

and

The trigonometric relationship shown in Equation 3.91 suggests a right triangle with
an interior angle θZ , a hypotenuse of length S and one leg of length P as shown in
Figure 3.66. The third leg of the triangle is defined as the reactive power Q, which is
due to the presence of capacitance and/or inductance.

Figure 3.66 shows a power triangle, which is a compact representation of the three
elements of AC power and is a very useful visual aid in problem solving.

Figure 3.66 Power triangle

The apparent power can also be represented as the magnitude of a complex
exponential  in the complex plane with a real part P and an imaginary part Q.
This representation results in the concept of complex power S where

Recall from the generalized Ohm’s law that θV = θI + θZ such that



(3.95)

(3.96)

(3.97)

(3.98)

(3.99)

where  and  are the effective voltage and current phasors, respectively, and the
asterisk indicates the complex conjugate.

The generalized Ohm’s law can be used to represent the expressions for real and
reactive power in Equations 3.91 and 3.92 in forms similar to those introduced in
chapter 1 for the power dissipated by a resistor.

Likewise

The practice of using a triangle to represent the elements of AC power can be
extended to also represent the elements of impedance Z as an impedance triangle as
shown in Figure 3.67.

Figure 3.67 Impedance triangle

The resistance  and the reactance  were introduced earlier in
this chapter.

It is important to realize that the impedance and power triangles are similar; that
is, the two triangles have the same shape. This fact is often very helpful in problem
solving.

The definitions of resistance and reactance can be used in the expressions for real
and reactive power in Equations 3.95 and 3.96 to write:

and
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Table 3.6 summarizes these expressions for real and reactive power.



(3.100)

(3.101)

(3.102)

Table 3.6 Real and reactive power

Similar expressions involving the effective voltage  are found by substituting 
 in Equations 3.98 and 3.99 to write:

and

Finally, since  and  the complex power can be expressed in a similar
fashion.

It is also important to keep in mind that capacitors and inductors (reactive loads)
do not dissipate energy themselves; they are lossless elements. However, they do
influence power dissipation in a circuit by affecting the voltage across and current
through resistors, which do dissipate energy. It is worth noting that in purely resistive
networks Q = 0, pf =1 and P = S, where P represents the real work done (per unit
time) by a circuit. For example, P of an electric motor is the work done (per unit
time) by the motor to perform a task. From the perspective of the utility company
that provides the electric power for the motor and of the owner of the motor who has
to pay the utility bill, it would be best if all of the apparent power S provided by the
utility company was converted to real work. However, electric motors have
inductance (e.g., coils of wire) such that Q ≠ 0, pf < 1, and P < S. It is possible to
correct the effect of a motor’s inductance by adding capacitance in parallel with the
motor so as to decrease Q and thereby decrease the apparent power S that must be
provided for a given P required by the task.

F O C U S  O N  P R O B L E M  S O LV I N G



1.

2.

3.

4.

5.

AC POWER COMPUTATION
Use AC circuit analysis methods to compute (if necessary) the voltage ac
and current through the load. Convert peak amplitudes to effective (rms) valu

Compute θZ = θV – θI and the power factor pf = cos(θZ). Draw the impeda
triangle, as shown in Figure 3.67.
Compute the apparent power  such that P = Pavg = S pf and Q 
sin(θZ).

Draw the power triangle, as shown in Figure 3.66, and confirm that S2 = P2 +
and that tan(θZ) = Q/P.
If Q is negative, the load is capacitive and the power factor is leading; if 
positive, the load is inductive and the power factor is lagging.
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EXAMPLE 3.24 AC Power Calculations
Problem
Compute the complex power for the load Zo of Figure 3.68.

Figure 3.68

Solution



Known Quantities: Source, load voltage, and current.
Find: S = P + jQ for the complex load.
Schematics, Diagrams, Circuits, and Given Data: υ(t) = 100 cos(ωt + 0.262) V; i(t)
= 2 cos(ωt − 0.262) A; ω = 377 rad/s.
Assumptions: All angles are given in units of radians unless indicated otherwise.
Analysis: The constants multiplying the cosine functions are always peak, not rms,
values. These functions can be converted to phasors with rms amplitudes as follows:

Compute the phase angle of the load, and the real and reactive power, using
equations 3.95 and 3.96.

Apply the definition of complex power (equation 3.94) to repeat the same
calculation:

Therefore

EXAMPLE 3.25 Real and Reactive Power Calculations
Problem
Compute the complex power for the load of Figure 3.69.



Figure 3.69

Solution
Known Quantities: Source voltage and resistance; load impedance.
Find: S = P + jQ for the complex load.
Schematics, Diagrams, Circuits, and Given Data:

.
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Assumptions: All amplitudes are effective (rms) values. All angles are given in units
of radians unless indicated otherwise.
Analysis: The load impedance is:

Apply voltage division and the generalized Ohm’s law to compute the load voltage
and current:

Finally, compute the complex power, as defined in equation 3.94:

Therefore:



1.
2.
3.

1.

Comment: Is the reactive power capacitive or inductive? Since Q < 0, the reactive
power is capacitive!

EXAMPLE 3.26 Real Power Transfer for Complex Loads
Problem
Compute the complex power for the load between terminals a and b of Figure 3.70.
Repeat the computation with the inductor removed from the load, and compare the
real power for the two cases.

Figure 3.70

Solution
Known Quantities: Source voltage and resistance; load impedance.
Find:

S1 = P1 + jQ1 for the complex load.
S2 = P2 + jQ2 for the real load.
For each case, compute the ratio of the real power dissipated by the load to the
overall real power dissipated by the circuit.

Schematics, Diagrams, Circuits, and Given Data: 
.

Assumptions: All amplitudes are effective (rms) values. All angles are given in units
of radians unless indicated otherwise.
Analysis:

With the inductor included in the load, its impedance Zo is:



2.
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Apply voltage division to compute the load voltage  and the generalized
Ohm’s law to compute the current .

Finally, compute the complex power, as defined in equation 3.94:

Therefore:

With the inductor excluded from the load (Figure 3.71), its impedance is

Figure 3.71

Compute the load voltage and current:

Finally, compute the complex power, as defined in equation 3.94:



3.

Therefore:

To compute the overall real power Ptotal dissipated by the circuit, it is necessary
to include the impact of the line resistance RS and compute for each case:

For case 1:

The percent real power transfer is

For case 2:
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The percent real power transfer is

Comments: If it were possible to eliminate the reactive part of the impedance, the
percentage of real power transferred from the source to the load would be increased
significantly. The procedure to accomplish this task is called power factor correction.



EXAMPLE 3.27 Complex Power and Power Triangle
Problem
Find the reactive and real power for the load of Figure 3.72. Draw the associated
power triangle.

Figure 3.72

Solution
Known Quantities: Source voltage; load impedance.
Find: S = P + jQ for the complex load.
Schematics, Diagrams, Circuits, and Given Data:

.
Assumptions: All amplitudes are effective (rms) values. All angles are given in units
of radians.
Analysis: First, compute the load current:

Next, compute the complex power, as defined in equation 3.94:

Therefore:

The total reactive power must be the sum of the reactive powers in each of the
elements, such that Q = QC + QL. Compute these two quantities as follows:



and

Comments: The power triangle corresponding to this circuit is drawn in Figure 3.73.
The complex power S results from the vector addition of the three components P,
QC, and QL.

Figure 3.73
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CHECK YOUR UNDERSTANDING
Compute the real and reactive power for the load of Example 3.22.

CHECK YOUR UNDERSTANDING
Compute the real and reactive power for the load of Figure 3.65.

Answer: Pavg = 595 W; Q = –359 VAR



CHECK YOUR UNDERSTANDING
Refer to Example 3.26, and compute the percent of real power transfer for the case
where the inductance of the load is one-half of the original value.

CHECK YOUR UNDERSTANDING
Compute the power factor for the load of Example 3.27 with and without the
inductor in the circuit.

3.9 POWER FACTOR CORRECTION
A power factor close to unity signifies an efficient transfer of energy from the AC
source to the load while a small power factor corresponds to inefficient use of energy,
as illustrated in Example 3.26. If a load requires a given real power P, the current
required by the load will be minimized when the power factor is maximized, that is,
when pf = cos(θZ) → 1. When pf < 1, it is possible to increase it (i.e., correct it) by
adding, as appropriate, reactance (e.g., capacitance) to the load. When pf is leading,
inductance must be added; when pf is lagging, capacitance must be added.

Answer: Pavg = 2.1 kW; Q = 1.39 kVAR

Answer: 29.3 %

Answer: pf = 0.6, lagging (with L in circuit); pf = 0.5145, leading (without
L)



If θZ > 0, then Q > 0, the load is inductive, the load current lags the load
voltage, and the power factor pf is lagging. Alternatively, if θZ < 0, then Q < 0,
the load is capacitive, the load current leads the load voltage, and the power
factor pf is leading.

Table 3.7 illustrates and summarizes these concepts. For simplicity, the phase angle
of the voltage phasor  shown in the table is zero and acts as a reference angle for
the current phasor.
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Table 3.7 Important facts related to complex power

In practice, the load designed for a useful industrial task is often inductive
because of the presence of electric motors. The power factor of an inductive load can
be corrected by adding capacitance in parallel with the load. This procedure is called
power factor correction.

The measurement and correction of the power factor for the load are an
extremely important aspect of any industrial engineering application that requires the
use of substantial quantities of electric power. In particular, industrial plants,
construction sites, heavy machinery, and other heavy users of electric power must be



1.

2.

3.

4.

5.

aware of the power factor that their loads present to the electric utility company. As
was already observed, a low power factor results in greater current draw from the
electric utility and greater line losses. Thus, computations related to the power factor
of complex loads are of great utility to any practicing engineer.

F O C U S  O N  P R O B L E M  S O LV I N G

POWER FACTOR CORRECTION
Follow the steps outlined in the Focus on Problem Solving box “AC Po
Computation” to find the initial phase angle of the load θZi, power factor
real power Pi, and reactive power Qi. An initial power triangle is helpful
visualizing this information.
Assume an inductive load attached to a voltage source, such as that show
Figures 3.68 and 3.74. Augment the load with a parallel capacitor such that:

Express the final reactive power Qf as:
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Since the voltage across the original load is unchanged by the addition of
capacitor in parallel, the total real power of the augmented load is 
unchanged. Thus, Pf = Pi and the final (corrected) phase angle of the augme
load is:

It is helpful to draw a final power triangle to visualize the effect of the par
capacitor.
The final corrected power factor is:



1.
2.

Comments: Often, the objective is to calculate the capacitance needed to produ
given power factor. In those cases, use the initial and final power factors to com
the initial and final reactive powers. Use those results to calculate the chang
reactive power ΔQ and then the capacitance C.

EXAMPLE 3.28 Power Factor Correction
Problem
Calculate the power factor for the load of Figure 3.74. Correct it to unity by adding a
capacitor in parallel with the load.

Figure 3.74

Solution
Known Quantities: Source voltage; load impedance.
Find:

S = P + jQ for the complex load.
Value of parallel capacitance that results in pf = 1.

Schematics, Diagrams, Circuits, and Given Data: 
.

Assumptions: All amplitudes are effective (rms) values. All angles are given in units
of radians unless indicated otherwise.
Analysis:



1.

2.

First, compute the load impedance:

Next, compute the load current :

The complex power, as defined in equation 3.94, is
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Therefore:

The power triangle corresponding to this circuit is drawn in Figure 3.75. The
vector diagram shows how the complex power S results from the vector addition
of the two components P and Q.

Figure 3.75

To correct the power factor to unity it is necessary to reduce the reactive power
Q by adding in parallel a capacitor with QC = –118.5 VAR as shown in Figure
3.76. The required capacitance is found by:

The reactance XC is related to the capacitance by:

Thus, the result is



3. The total current required of the source is , where:

Notice that . The total current is computed by phasor
addition to be:

The corrected power factor pf = 1 implies that the impedance of the load is now
purely real; that is, θZ = 0. Thus, the source current must now be in phase with
the source voltage; and it is.

Comments: Notice that the magnitude of the source current is reduced by increasing
the power factor. The power factor correction, which is a very common procedure in
electric power systems, is illustrated in Figure 3.76.

Figure 3.76 Power factor correction
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EXAMPLE 3.29 Can a Series Capacitor Be Used for Power Factor
Correction?



Problem
The circuit of Figure 3.77 suggests the use of a series capacitor for power factor
correction. Why is this approach not a feasible alternative to the parallel capacitor
approach demonstrated in Example 3.28?

Figure 3.77

Solution
Known Quantities: Source voltage; load impedance.
Find: Load (source) current.
Schematics, Diagrams, Circuits, and Given Data: 

.
Assumptions: All amplitudes are effective (rms) values. All angles are given in units
of radians unless indicated otherwise.
Analysis: First, compute the impedance of the load between terminals a and b:

Notice that the reactance of the capacitor was chosen so as to make the total load
purely resistive. Thus, θZ = 0 and the corrected power factor is pf = 1. So far, so
good.

Next, compute the current through the series load:

The corrected power factor pf = 1 implies that the impedance of the load is now
purely real; that is, θZ = 0 and the source current is in phase with the source voltage.

The problem with this approach to power factor correction is revealed by
computing the initial current through the load, prior to the addition of the capacitor.



1.
2.

Comments: Notice the increase in the source current as a result of the additional
capacitor in series. Consequently, the power required of the source increased as well.
In practice, adding capacitance in parallel can be accomplished relatively easily with
one large bank located somewhere on an industrial site and away from the production
motors themselves. Electric utilities motivate industries to raise power factors by
offering discounted rates ($/kWh).

EXAMPLE 3.30 Power Factor Correction
Problem
A capacitor is used to correct the power factor of the 100 kW and lagging pf = 0.7
load of Figure 3.78. Determine the reactive power of the load alone, and compute the
capacitance required for a corrected power factor pf = 1.
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Figure 3.78

Solution
Known Quantities: Source voltage; load power and power factor.
Find:

The reactive power Q of the load alone.
The capacitance C required for a corrected power factor pf = 1.

Schematics, Diagrams, Circuits, and Given Data: 
lagging for the load; ω = 377 rad/s.



1.

2.

Assumptions: All amplitudes are effective (rms) values. All angles are given in units
of radians unless indicated otherwise.
Analysis:

For the load alone, pf = 0.7 lagging or cos(θZ) = 7/10, and the power triangle has
the shape shown in Figure 3.79. The real power is given as P = 100 kW, so the
reactive power of the load can be computed using trigonometry.

Since the power factor is lagging, the reactive power is positive as indicated in
Table 3.7 and shown in the power triangle of Figure 3.80.

Figure 3.79 Relative dimensions of power triangle

Figure 3.80 Power triangle

To set the corrected power factor to pf = 1 the capacitance must contribute –102
kVAR of reactive power.

 Since the voltage across capacitor  equals the source voltage , the reactive
power of the capacitor is

 Thus, to correct the power factor to pf = 1 (zero total reactive power), the
capacitor must satisfy:



 or

Use trigonometry and/or the Pythagorean theorem to show that the apparent
power ∣S∣ = 143 kVA, as indicated in Figure 3.80.
Comments: Note that it is not necessary to know the load impedance explicitly to
perform power factor correction; however, it is a useful exercise to compute the
equivalent impedance seen by  and check that cos(θZ) = 0.7.

EXAMPLE 3.31 Power Factor Correction
Problem
Figure 3.81 shows a second load added to the circuit of Figure 3.78. Determine the
capacitance required for an overall corrected power factor pf = 1. Draw the phasor
diagram showing the relationship between , and .
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Figure 3.81

Solution
Known Quantities: Source voltage; load power and power factor.
Find:



1.
2.
3.

1.

The total reactive power of loads 1 and 2.
The capacitance C required for an overall power factor pf = 1.

, and , and construct a phasor diagram of these currents.
Schematics, Diagrams, Circuits, and Given Data: 
lagging; P2 = 50 kW; pf2 = 0.95 leading; ω = 377 rad/s.

Assumptions: All amplitudes are effective (rms) values. All angles are given in units
of radians unless indicated otherwise.
Analysis:

Compute  and  using the relation .

and

It is important to keep in mind that although inverse trigonometric functions are
double-valued [e.g., cos–1(0.7) ≈ ±0.795 rad], the power factor for load 1 is
lagging such that  rad is the correct choice.
 Similarly, for load 2:

and

The power factor for load 2 is leading such that θZ2 = −0.318 rad is the correct
choice.
 Now use the given data and the relation Q = P tan(θZ) to compute the reactive
power for each load.

and



2.

3.

The power triangles for the two loads are shown in Figures 3.82 and 3.83. The
total reactive power is therefore Q = Q1 + Q2 ≈ 85.6 kVAR.
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Figure 3.82 Power triangle for load 1

Figure 3.83 Power triangle for load 2

To set the corrected power factor to pf = 1 the capacitance must contribute –85.6
kVAR of reactive power.

For a capacitor alone its reactive power is

Thus, to correct the power factor to pf = 1 (zero total reactive power), the
capacitor must satisfy:

or

To compute the capacitor current it is not possible to use  because P = 0
and pf = 0 for a capacitor. Instead, the generalized Ohm’s law provides an
alternative approach.



a.
b.

where . The phase angle of  is

The current phasor diagram can now be drawn as shown in Figure 3.84.

Figure 3.84

Comment: The power triangle suggests that the capacitor current can also be
calculated using the relation , where θC = –π/2 and 

. Try it!

CHECK YOUR UNDERSTANDING
Compute the magnitude of  after the power factor correction in Example 3.28.

CHECK YOUR UNDERSTANDING
Two cases of the voltage across and the current through a load are given below.
Determine the power factor of the load, and whether it is leading or lagging, for each
case.

Answer: 0.585 A



a.
b.
c.
d.
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CHECK YOUR UNDERSTANDING
Determine if a load is capacitive or inductive, given the following facts:

pf = 0.87, leading
pf = 0.42, leading

CHECK YOUR UNDERSTANDING
Compute the power factor for an inductive load with L = 100 mH in series with R =
0.4 Ω. Assume ω = 377 rad/s.

FOCUS ON MEASUREMENTS

Answer: a. 0.848, leading; b. 0.9925, lagging

Answer: a. Capacitive; b. capacitive; c. inductive; d. neither (resistive)

Answer: pf = 0.0106, lagging



The Wattmeter
The instrument used to measure power is called a wattmeter. The external part of a
wattmeter consists of four connections and a metering mechanism that displays the
amount of real power dissipated by a circuit. The external and internal appearance of
a wattmeter is depicted in Figure 3.85. Inside the wattmeter are two coils: a
currentsensing coil and a voltage-sensing coil. In this example, assume for simplicity
that the impedance of the current-sensing coil ZI is zero and that the impedance of
the voltagesensing coil ZV is infinite. In practice, this will not necessarily be true;
some correction mechanism will be required to account for the impedance of the
sensing coils.

Figure 3.85

A wattmeter should be connected as shown in Figure 3.86 to provide both current
and voltage measurements. The current-sensing coil is placed in series with the Page
237load and that the voltage-sensing coil is placed in parallel with the load. In this
manner, the wattmeter is seeing the current through and the voltage across the load.



1.

2.

1.

Remember that the power dissipated by a circuit element is related to these two
quantities. The wattmeter, then, is constructed to provide a readout of the real power
absorbed by the load: .

Figure 3.86

Problem
For the circuit shown in Figure 3.87, show the connections of a wattmeter
between the ideal voltage source and the load and find the power dissipated by
the load.
Show the connections that will determine the power dissipated by R2. What
should the meter read?

Figure 3.87

Solution
To measure the power dissipated by the load, the current through and the voltage
across the entire load circuit must be measured. This means that the wattmeter
must be connected as shown in Figure 3.88. The wattmeter should read



2.

Figure 3.88
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To measure the power dissipated by R2 alone, measure the current through R2
and the voltage across R2 alone. The connection is shown in Figure 3.89. The
meter will read

Figure 3.89

FOCUS ON MEASUREMENTS



Power Factor
Problem:
A capacitor is being used to correct the power factor of a load to unity, as shown in
Figure 3.90. The capacitor value is varied, and measurements of the total current are
taken. Explain how it is possible to zero in on the capacitance value necessary to
bring the power factor to unity just by monitoring the current .

Figure 3.90
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Solution:
The current through the load is



1.

The current through the capacitor is

The source current to be measured is

The magnitude of the source current is

When the load is a pure resistance, then the current and voltage are in phase, the
power factor is 1, and all the power delivered by the source is dissipated by the load
as real power. This corresponds to equating the imaginary part of the expression for
the source current to zero or, equivalently, to the following expression:

in the expression for ∣ĨS∣. Thus, the magnitude of the source current is actually a
minimum when the power factor is unity! It is therefore possible to “tune” a load to a
unity pf by observing the readout of the ammeter while changing the value of the
capacitor and selecting the capacitor value that corresponds to the lowest source
current value.

Conclusion
This chapter introduced concepts and tools useful in the analysis of AC circuits. The
importance of AC circuit analysis cannot be overemphasized, for a number of
reasons. First, circuits made up of resistors, inductors, and capacitors constitute
reasonable models for more complex devices, such as transformers, electric motors
and electronic amplifiers. Second, sinusoidal signals are ever-present in the analysis
of many physical systems, not just circuits. Third, AC power is essential to all
industrial activities and to the conveniences of residential life. Virtually all engineers
will be exposed to AC power systems in their careers and the material presented in
this chapter provides the tools needed to understand them. Upon completion of this
chapter a student will have learned to:

Compute currents, voltages and energy stored in capacitors and inductors.



2.

3.

4.
5.
6.

7.

3.1

3.2

a.

b.

c.

d.

3.3

a.

b.

c.

d.

3.4

Calculate the average and root-mean-square value of an arbitrary (periodic)
signal.
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Convert time-domain sinusoidal voltages and currents to phasor notation, and
vice versa, and represent circuits using impedances.
Apply the circuit analysis methods of Chapter 2 to AC circuits in phasor form.
Compute average AC power and the power factor of a complex load.
Compute apparent, real and reactive power for complex loads and draw a power
triangle.
Compute the capacitance required to perform power factor correction on a load.

HOMEWORK PROBLEMS
Section 3.2: Capacitors and Inductors

The current through a 0.8-H inductor is given by . Write the
expression for the voltage across the inductor.

For each case shown below, derive the expression for the current through a 200-
μF capacitor. υC(t) is the voltage across the capacitor.

Derive the expression for the voltage across a 200-mH inductor when its current
is:

In the circuit shown in Figure P3.4, assume R = 1 Ω and L = 2 H. Also, let:



3.5
3.6

a.

b.

3.7

3.8
3.9

Find the energy stored in the inductor for all time.

Figure P3.4

Refer to Problem 3.4 and find the energy delivered by the source for all time.

In the circuit shown in Figure P3.4, assume R = 2 Ω and L = 4 H. Also, let:

Find:

The energy stored in the inductor for all time.

The energy delivered by the source for all time.

In the circuit shown in Figure P3.7, assume R = 2 Ω and C = 0.1 F. Also, let:

Find the energy stored in the capacitor for all time.

Figure P3.7

Refer to Problem 3.7 and find the energy delivered by the source for all time.

In the circuit shown in Figure P3.7, assume R = 4 Ω and C = 0.2 F. Also, let:

Find:



a.

b.

3.10

3.11

3.12

3.13

The energy stored in the capacitor for all time.

The energy delivered by the source for all time.
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The voltage waveform shown in Figure P3.10 is piecewise linear and
continuous across a 20-mH inductor. Determine the current iL(t) through the
inductor, assuming iL(0) = 50 mA.

Figure P3.10

The voltage waveform shown in Figure P3.10 is piecewise linear and
continuous across a 100-μF capacitor. Determine the current iC(t) through the
capacitor. Explain the concept of current through a capacitor even when the
space between the capacitor plates is a perfect insulator. How is current through
a capacitor different from leakage current?

The voltage across a 0.5-mH inductor, plotted as a function of time, is shown in
Figure P3.12. Determine the current through the inductor at t = 6 ms. Assume
iL(0) = 0A.

Figure P3.12

Figure P3.13 shows the voltage across a capacitor plotted as a function of time
where:



3.14

3.15

a.

b.

c.

Determine and plot the waveform for the current through the capacitor as a
function of time. How is the current affected by the discontinuities in slope in
the voltage waveform?

Figure P3.13

The current through a 16-μH inductor is zero at t = 0, and the voltage across the
inductor (shown in Figure P3.14) is:

Determine the current through the inductor at t = 30 μs.

Figure P3.14

The voltage across a generic element X has the waveform shown in Figure
P3.15. For 0 < t < 10 ms, determine and plot the current through X when it is a:

7-Ω resistor.

0.5-μF capacitor.

7-mH inductor. Assume iL (0) = 0A.

Figure P3.15



3.16

3.17

3.18

3.19

The plots shown in Figure P3.16 are the voltage across and the current through
an ideal capacitor. Determine its capacitance.

Figure P3.16
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The plots shown in Figure P3.17 are the voltage across and the current through
an ideal inductor. Determine its inductance.

Figure P3.17

The plots shown in Figure P3.18 are the voltage across and the current through
an ideal capacitor. Determine its capacitance.

Figure P3.18

The plots shown in Figure P3.19 are the voltage across and the current through
an ideal capacitor. Determine its capacitance.



3.20

3.21

Figure P3.19

The voltage υL(t) across a 10-mH inductor is shown in Figure P3.20. Find the
current iL(t) through the inductor. Assume iL(0) = 0 A.

Figure P3.20

The current through a 2-H inductor is plotted in Figure P3.21. Plot the inductor
voltage υL(t). (Assume iL(0) = 0A.).

Figure P3.21



3.22

3.23

3.24

3.25

The voltage across a 100-mH inductor and a 500-μF capacitor is shown in
Figure P3.22. Plot the inductor and capacitor currents, iL(t) and iC(t), for 0 < t <
6 s, assuming iL(0) = 0 A.

Figure P3.22

In the circuit shown in Figure P3.4, assume R = 1 Ω and L = 2 H. Also, let:

Find the energy stored in the inductor for all time.
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In the circuit shown in Figure P3.7, assume R = 2 Ω and C = 0.1 F. Also, let:

Find the energy stored in the capacitor for all time.

The voltage υC(t) across a capacitor is shown in Figure P3.25. Determine and
sketch the current iC(t) through the capacitor.



3.26

3.27

3.28

Figure P3.25

The voltage υL(t) across an inductor is shown in Figure P3.26. Determine and
sketch the current iL(t) through the inductor. Assume iL(0) = 0 A.

Figure P3.26

Assume dc steady-state conditions and find the energy stored in each capacitor
and inductor shown in Figure P3.27.

Figure P3.27

Assume dc steady-state conditions and find the energy stored in each capacitor
and inductor shown in Figure P3.28.



3.29

3.30

3.31

3.32

Figure P3.28

Section 3.3: Time-Dependent Waveforms
Find the average and rms values of x(t) when:

The output voltage waveform of a controlled rectifier is shown in Figure P3.30.
The input voltage waveform was a sinusoid of amplitude 110 V rms. Find the
average and rms voltages of the output waveform in terms of the firing angle θ.

Figure P3.30

Refer to Problem 3.30 and find the angle θ that would cause the rectified
waveform to deliver to a resistive load exactly one-half of the total power
delivered to the same load by the input waveform.

Find the ratio between the average and rms value of the waveform shown in
Figure P3.32.
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3.33

3.34

3.35

3.36

3.37

Figure P3.32

The current through a 1-Ω resistor is shown in Figure P3.33. Find the power
dissipated by the resistor.

Figure P3.33

Derive the ratio between the average and r\ms value of the voltage waveform of
Figure P3.34.

Figure P3.34

Find the rms value of the current waveform shown in Figure P3.35.

Figure P3.35

Determine the rms (or effective) value of υ(t) = VDC + υac = 35 + 63 sin(215t) V

Section 3.4: Phasor Solution of Circuits With Sinusoidal
Sources

Find the phasor form of the following functions:



a.

b.

c.

d.

3.38
a.

b.

c.

3.39

a.

b.

3.40
a.

b.

c.

3.41

3.42

a.

Convert the following complex numbers to polar form:

7 + j9
–2 + j7

Convert the rectangular forms to polar form and compute the product. Also
compute the product directly using the rectangular forms. Compare the results.

(50 + j10) (4 + j8)

(j2 – 2) (4 + j5) (2 + j7)

Complete the following exercises in complex arithmetic.

Find the complex conjugate of (4 + j4), (2 – j8), (–5 + j2).

Multiply the numerator and denominator of each ratio by the complex
conjugate of the denominator. Use the result to express each ratio in polar
form.

Convert the numerator and denominator of each ratio in part b to polar
form. Use the result to express each ratio in polar form.

Convert the following expressions to rectangular form:

Find υ(t) = υ1(t) + υ2(t) where

using:
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Trigonometric identities.



b.

3.43

a.

b.

3.44

3.45

3.46

Phasors.

The current through and the voltage across a circuit element are, respectively,

where ω = 600 rad/s. Determine:

Whether the element is a resistor, capacitor, or inductor.

The value of the element in ohms, farads, or henrys.

Express the sinusoidal waveform shown in Figure P3.44 using time-dependent
and phasor notation.

Figure P3.44

Express the sinusoidal waveform shown in Figure P3.45 using time-dependent
and phasor notation.

Figure P3.45

Section 3.5: Impedance
Convert the following pairs of voltage and current waveforms to phasor form.
Each pair of waveforms corresponds to an unknown element. Determine
whether each element is a resistor, a capacitor, or an inductor, and compute the
value of the corresponding parameter R, C, or L.



a.

b.

c.

3.47

3.48

3.49

a.

b.

c.

Determine the equivalent impedance seen by the voltage source υS in Figure
P3.47 when:

Figure P3.47

Determine the equivalent impedance seen by the voltage source υS in Figure
P3.47 when:

The generalized version of Ohm’s law for impedance elements is

Assume the current through a 0.5-μF capacitor is given by:

Io = 13 mA ω = 1,000 rad/s

Express the current in phasor notation.

Determine the impedance of the capacitor.

Determine the voltage across the capacitor, in phasor notation.



3.50

3.51

3.52

3.53

3.54
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Determine i2(t) in the circuit shown in Figure P3.50. Assume:

Figure P3.50

Use phasor techniques to solve for the current i(t) shown in Figure P3.51.

Figure P3.51

Use phasor techniques to solve for the voltage υ(t) shown in Figure P3.52.

Figure P3.52

With reference to Problem 3.52, find the value of ω for which the current
through the resistor is maximum.

Find υout(t) shown in Figure P3.54.



3.55

3.56

Figure P3.54

Find the impedance Z shown in Figure P3.55, assuming ω = 2 rad/s, R1 = R2 = 2
Ω, C = 0.25 F, and L = 1 H.

Figure P3.55

Find the sinusoidal steady-state output υout(t) for each circuit shown in Figure
P3.56.

Figure P3.56



3.57

a.

b.

c.

3.58

Find the frequency that causes the equivalent impedance Zeq in Figure P3.57 to
be purely resistive.

Figure P3.57
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Find the equivalent impedance Zo seen by the voltage source in Figure
P3.58(a). Assume the frequency is 377 rad/s.

What capacitance should be placed between terminals a and b, as shown
in Figure P3.58(b), to make the equivalent impedance Zo purely resistive?
[Hint: Find C so that the phase angle of Zo is zero.]

What is the amplitude of Zo when the capacitor is included?



3.59

a.

b.

Figure P3.58

A common model for a practical capacitor has a “leakage” resistance, RC, in
parallel with an ideal capacitor, as shown in Figure P3.59. The effects of lead
wires are also represented by resistances R1 and R2 and inductances L1 and L2.

Assume C = 1 μF, RC = 100 MΩ, R1 = R2 = 1 μΩ, and L1 = L2 = 0.1 μΗ,
and find the equivalent impedance Zab seen across terminals a and b as a
function of frequency ω.

Find the range of frequencies for which Zab is capacitive.

[Hint: Assume that RC is much greater than 1/ωC such that RC can be ignored in
part b.]



3.60

3.61

Figure P3.59

Section 3.6: AC Circuit Analysis
Determine the voltage υ2(t) across R2 in the circuit of Figure P3.60.

Figure P3.60
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Determine the frequency so that the current Ii and the voltage Vo in Figure
P3.61 are in phase.



3.62

3.63

3.64

Figure P3.61

A common model for a practical inductor is a coil resistance in series with an
inductance L. The coil resistance accounts for the internal losses of an inductor.
Figure P3.62 shows an ideal capacitor in parallel with a practical inductor.
Determine the current supplied by the voltage source υS. Assume:

Figure P3.62

Solve for I1 in the circuit shown in Figure P3.63.

Figure P3.63

Solve for VR shown in Figure P3.64. Assume:



3.65

3.66

3.67

Figure P3.64

Find the current iR(t) through the resistor shown in Figure P3.65.

Figure P3.65

Determine the voltage υL(t) across the inductor shown in Figure P3.66.

Figure P3.66

Determine the current iR(t) through the resistor shown in Figure P3.67. Assume
iS(t) is given in amperes.

Figure P3.67



3.68

3.69

3.70

a.

b.

Using phasor techniques, solve for υR2 shown in Figure P3.68.
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Figure P3.68

Use phasor techniques to solve for iL in the circuit shown in Figure P3.69.

Figure P3.69

Determine the Thévenin equivalent network seen by the load Ro in Figure
P3.70. Assume:

and:

υS(t) = 10 cos(1,000t)

υS(t) = 10 cos(1,000,000t)



3.71

3.72

3.73

Figure P3.70

Determine the Norton equivalent network seen by the capacitor in Figure P3.71.
Use the result and current division to find iC(t). Assume:

Figure P3.71

Use phasor techniques to solve for iL(t) in Figure P3.72. Assume υS(t) = 2 cos 2t
V, R1 = R2 = 4 Ω, L = 2 H, and C = 0.25 F.

Figure P3.72

Use the mesh current method to determine the currents i1(t) and i2(t) in Figure
P3.73. Assume V1 = 10e–j40 V, V2 = 12ej40 V, R1 = 8 Ω, R2 = 4 Ω, R3 = 6 Ω, XL
= 10 Ω, XC = –14 Ω.



3.74

3.75

a.

b.

c.

Figure P3.73
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Use the node voltage method to determine the node voltages υa(t) and υb(t)
shown in Figure P3.74. Assume:

Figure P3.74

The circuit shown in Figure P3.75 is a Wheatstone bridge, which can be used to
determine the reactance X4 of an inductor or capacitor. R1 and R2 are adjusted
until υab is zero.

Assume a balanced bridge (υab = 0) and determine X4 in terms of the other
circuit elements.

Assume a balanced bridge and let C3 = 4.7 μF, L3 = 0.098 H, R1 = 100 Ω,
R2 = 1 Ω, and υS(t) = 24 sin(2,000t). What is the reactance of the unknown
circuit element? Is it a capacitor or an inductor? What is its value?

What frequency should be avoided in this circuit, and why?



3.76

3.77

3.78

Figure P3.75

Find the Thévenin equivalent network seen by the capacitor C in Figure P3.76.
Use the result and voltage division to determine υC(t). Assume:

Figure P3.76

Determine the Thévenin equivalent network seen by the load Zo shown in
Figure P3.77. Assume: VS = 10∠0° V, RS = 40 Ω, XL = 40 Ω, and XC = –2,000
Ω.

Figure P3.77

Find the Thévenin equivalent network seen across terminals a and b in Figure
P3.78.



3.79

3.80

3.81

Figure P3.78

Determine the Norton equivalent network seen by the capacitor in Figure P3.79.
Use the result and current division to find iC(t). Assume:
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Figure P3.79

Find the Thévenin equivalent network seen by R2 in Figure P3.80. Use the result
and voltage division to determine the voltage υ2(t) across R2. Assume:

Figure P3.80

Use the mesh current method to find the phasor mesh current equations of
Figure P3.81.



3.82

3.83

3.84

3.85

3.86

a.

b.

c.

d.

3.87
a.

Figure P3.81

Write the node equations required to solve for all voltages and currents in the
circuit of Figure P3.81. Assume all impedances and the source voltage are
known.

Determine Vo in the circuit of Figure P3.83. Assume:

Figure P3.83

Section 3.7: Instantaneous and Average Power
The heating element in a soldering iron has a resistance of 20 Ω. Find the
average power dissipated in the soldering iron if it is connected to a voltage
source of 90 V rms.

A coffeemaker has a rated power of 1,000 W at 240 V rms. Find the resistance
of the heating element.

A current source i(t) is connected to a 50-Ω resistor. Find the average power
delivered to the resistor, given that i(t) is

Find the rms value of each of the following periodic currents:

cos 200t + 3 cos 200t



b.

c.

d.

3.88

3.89

3.90

3.91
a.

b.

c.

cos 10t + 2 sin 10t
cos 50t + 1

cos 30t + cos(30t + π/6)

A current of 2.5 A through a neon light advertisement is supplied by a 115 V
rms voltage source. The current lags the voltage by 30°. Find the impedance of
the light, the real power dissipated by it, and its power factor.

Compute the average power dissipated by the load seen by the voltage source in
Figure P3.89. Let ω = 377 rad/s, , R = 10 Ω, L = 0.08 H, and C = 200
μF.

Figure P3.89
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A drilling machine is driven by a single-phase induction machine connected to a
110 V rms supply. Assume that the machining operation requires 1 kW, that the
tool machine has 90 percent efficiency, and that the supply current is 14 A rms
with a power factor of 0.8. Find the AC machine efficiency.

Given the waveform of a voltage source shown in Figure P3.91, find:

The steady DC voltage that would cause the same heating effect across a
resistance.

The average current supplied to a 10-Ω resistor connected across the
voltage source.

The average power supplied to a 1-Ω resistor connected across the voltage
source.

Figure P3.91



3.92

a.

b.

c.

d.

3.93

3.94

3.95

a.

b.

c.

d.

3.96

a.

b.

c.

A current source i(t) is connected to a 100-Ω resistor. Find the average power
delivered to the resistor, given that i(t) is:

Find the rms value of each of the following periodic currents:

Section 3.8: Apparent Power and the Power Triangle
A current of 10 A rms results when a single-phase circuit is placed across a 220
V rms source. The current lags the voltage by 60°. Find the power dissipated by
the circuit and the power factor.

An inductive network is supplied by a 120 V rms, 60-Hz voltage source. An
ammeter and a wattmeter indicate that 12 A rms is drawn from the source and
800 W are consumed by the network. Determine:

The network power factor.

The network phase angle.

The network impedance.

The equivalent resistance and reactance of the network.

For the following numeric values, determine the average power, P, the reactive
power, Q, and the complex power, S, of the circuit shown in Figure P3.96. Note:
Phasor quantities are rms.



d.

3.97

a.

b.

c.

d.

3.98

a.

b.

c.

d.

3.99

a.

Figure P3.96

For the circuit of Figure P3.96, determine the power factor for the load Zo and
determine whether it is leading or lagging for the following conditions:

For the circuit of Figure P3.96, determine whether the load is capacitive or
inductive, assuming:

pf = 0.87 (leading)

pf = 0.42 (leading)
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υS(t) = 42 cos(ωt) V

iL(t) = 4.2 sin(ωt) A

υS(t) = 10.4 cos(ωt – 12°) V

iL(t) = 0.4 cos(ωt – 12°) A

For the circuit shown in Figure P3.99, assume C = 265 μF, L = 25.55 mH, and R
= 10 Ω. Find the real and reactive power if:

υS(t) = 120 cos (377t) V (i.e., the frequency is 60 Hz)



b.

3.100

a.

b.

c.

d.

e.

3.101
a.

b.

υS(t) = 650 cos (314t) V (i.e., the frequency is 50 Hz)

Figure P3.99

A load impedance, Zo = 10 + j3 Ω, is connected to a source with line
resistance equal to 1 Ω, as shown in Figure P3.100. Calculate the following
values:

The average power delivered to the load.

The average power absorbed by the line.

The apparent power supplied by the generator.

The power factor of the load.

The power factor of line plus load.

Figure P3.100

For the circuit shown in Figure P3.101, find:

The Thévenin equivalent network seen by the load.

The power dissipated by the load resistor.



3.102

a.

b.

c.

d.

3.103

a.

b.

c.

d.

3.104

Figure P3.101

For the circuit of Figure P3.96, determine the power factor of the load for
each case listed below. Is it leading or lagging?

Zo = (20 + j5) Ω

Zo = (20 – j5) Ω

For the circuit of Figure P3.96, determine whether the load Zo is capacitive or
inductive, if:

its power factor is pf = 0.76 lagging.

its power factor is pf = 0.5 (leading).

υs(t) = 10 cos(ωt) V, io(t) = cos(ωt) A.

υs(t) = 100 cos(ωt) V, io(t) = 12 cos(ωt + π/4) A.

Find the real and reactive power supplied by the voltage source shown in
Figure P3.104 for ω = 5 rad/s and ω = 15 rad/s. Let υS = 15 cos (ωt) V, R = 5
Ω, C = 0.1 F, L1 = 1 H, L2 = 2 H.



3.105

a.

b.

3.106

a.

b.

c.

3.107

Figure P3.104
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In Figure P3.105, assume 
, and XC = –4 Ω. Find:

The amplitude of the current supplied by each source.

The total real power supplied by each source.

Figure P3.105

The load Zo shown in Figure P3.106 consists of a 20-Ω resistor in series with
a 0.01-H inductor. Assuming . Calculate:

The apparent power supplied by the voltage source.

The apparent power delivered to the load.

The power factor of the load.

Figure P3.106

Calculate the real and reactive power of the load between terminals a and b in
Figure P3.107. Assume , and XL = 5 Ω.



3.108

3.109

3.110

a.

b.

c.

Figure P3.107

Calculate the apparent power, real power, and reactive power supplied by the
voltage source shown in Figure P3.108. Draw the power triangle. Assume 

, and L = 0.001 H.

Figure P3.108

Suppose that the electricity in your home has gone out on a hot, humid
summer day and the power company will not be able to fix the problem for
several days. The freezer in the basement contains $300 worth of food that
you cannot afford to let spoil. You would also like to keep one window air
conditioner running, as well as run the refrigerator in your kitchen. When
these appliances are on, they draw the following currents (all values are rms):

 In the worst-case scenario, how much power must an emergency generator
supply?

The French TGV high-speed train absorbs 11 MW at 300 km/h (186 mi/h).
The power supply module shown in Figure P3.110 consists of two 25-kV rms
single-phase AC power stations connected at the same overhead line, one at
each end of the module. For the return circuits, the rail is used. The train is
also designed to operate at a low speed with 1.5-kV DC in railway stations or
under the old electrification lines. The natural (average) power factor in the
AC operation is 0.8. Assume that the equivalent specific resistance of the
overhead line is 0.2 Ω/km and that the rail resistance can be neglected. Find:

A simple circuit model for the system.

The locomotive’s current in the condition of a 10 percent voltage drop.

The reactive power supplied by the power stations.



d.

e.

f.

3.111

a.

b.

c.

3.112

The supplied real power, overhead line losses, and maximum distance
between two power stations supplied in the condition of a 10 percent
voltage drop when the train is located at the half-distance between the
stations.

Overhead line losses in the condition of a 10 percent voltage drop when
the train is located at the half-distance between the stations, assuming pf =
1. (The French TGV is designed with a state-of-the-art power
compensation system.)
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The maximum distance between the two power stations supplied in the
condition of a 10 percent voltage drop when the train is located at the half-
distance between the stations, assuming the DC (1.5-kV) operation at one-
quarter power.

Figure P3.110

The voltage and current supplied by a source to a load are

Determine:

The real power consumed as work and dissipated as heat in the load.

The reactive power stored in the load.

The impedance angle of the load and its power factor.

Determine the real power dissipated and the reactive power stored in each of
the impedances shown in Figure P3.112. Assume:



3.113

a.

b.

c.

3.114

3.115

Figure P3.112

The following are supplied by a source to a load:

Determine:

The real power consumed as work and dissipated as heat in the load.

The reactive power stored in the load.

The impedance angle of the load and its power factor.

Section 3.9: Power Factor Correction
A single-phase motor draws 220 W at a power factor of 0.8 lagging when
connected across a 240 V rms, 60-Hz source. A capacitor is connected in
parallel with the load to produce a unity power factor. Determine the required
capacitance.

The networks seen by the voltage sources in Figure P3.115 have unity power
factor. Determine CP and CS.

Figure P3.115



3.116

3.117

a.

b.

c.

d.

3.118

a.

b.

c.

A 1,000-W electric motor is connected to a 120 Vrms, 60-Hz source. The
power factor seen by the source is 0.8, lagging. To correct the pf to 0.95
lagging, a capacitor is placed in parallel with the motor. Calculate the current
drawn from the source with and without the capacitor connected. Determine
the value of the capacitor required to make the correction.

The motor inside a blender can be modeled as a resistance in series with an
inductance, as shown in Figure P3.117. The wall socket source is modeled as
an ideal 120 V rms voltage source in series with a 2-Ω output resistance.
Assume the source frequency is ω = 377 rad/s.

What is the power factor of the motor?

What is the power factor seen by the voltage source?

What is the average power, PAV, consumed by the motor?

What value of capacitor when placed in parallel with the motor will
change the power factor seen by the voltage source to 0.9 lagging?
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Figure P3.117

For the following numerical values, determine the capacitance to be placed in
parallel with the load Zo shown in Figure P3.96 that will result in a unity
power factor seen by the voltage source. Assume ω = 377 rad/s.



3.119

a.

b.

c.

3.120

3.221

3.122

For the circuit shown in Figure P3.119, assume 
, and XC = –8 Ω. Calculate:

The capacitance C and the inductance L.

The power factor seen by the voltage source.

The new capacitance required to correct that power factor to unity.

Figure P3.119

Refer to problem 3.108 and determine the capacitance needed in parallel with
the voltage source to correct the power factor seen by the source to 0.95.
Draw the power triangle.

A single-phase motor is modeled as a resistor R in series with an inductor L
as shown in Figure P3.121. The capacitor corrects the power factor between
terminals a and b to unity. Assume the meters shown are ideal and f = 50 Hz,
V = 220 V rms, I = 20 A rms, and I1 = 25 A rms. Find the capacitor value.

Figure P3.121

An industrial assembly hall is continuously lit by one hundred 40-W mercury
vapor lamps in parallel and supplied by a 120 V rms, 60-Hz source. The
power factor seen by the source is 0.65, which is so low that a 25 percent
penalty is applied at billing. If the average price of 1 kWh is $0.05 and the
average cost of a capacitor is $50 per mF, compute how long it will take
before the billing penalty equals the cost of the capacitor needed to correct
the power factor to 0.85.



3.123

a.

b.

Refer to Problem 3.122 and assume that each lamp is now available with a
compensating capacitor in parallel with the original lamp. Find:

The compensating capacitor value for unity power factor seen by the
source.

The maximum number of additional lamps that can be installed without
exceeding the original current supplied by the source when using
uncompensated lamps.

Design Credits: Mini DVI cable adapter isolated on white background: Robert Lehmann/Alamy Stock Photo;
Balance scale: Alex Slobodkin/E+/Getty Images; Icon for “Focus on measurements” weighing scales: Media
Bakery.

1A dielectric material is a material that is not an electrical conductor but contains a
large number of electric dipoles, which become polarized in the presence of an
electric field.
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C H A P T E R
4

TRANSIENT ANALYSIS

hapter 4 focuses on the transient portion of the complete response of a time-
dependent circuit. Recall from Chapter 3 that the complete response is
composed of two parts: (1) the transient response and (2) the steady-state
response. (These parts can also be arranged as natural and forced responses,

respectively.) Chapter 3 explored the latter part for circuits with AC sources; Chapter
4 explores the former for circuits that experience a transient event, such as the
throwing of a switch. The general qualities of a transient response are independent of
the type of event.

The fundamental quality of any transient response is that it eventually vanishes to
zero. Once this occurs, only a steady-state solution remains. The role of the transient
solution is to provide a transition over time from one state (i.e., an “old” or “initial”
steady state) to another (i.e., a “new” or “final” steady state). The Latin root of the
adjective transient is trans, meaning “across.” Literally, the transient solution is a
bridge across time from one steady state to another. In most of the examples
presented in this chapter, both the “old” and the “new” are, for simplicity, DC steady-
states. However, transient analysis is applicable to a transition between two AC
steady states or any other pair of states, which need not be steady.

When a switch opens or closes in an electric circuit, the voltages and currents in
that circuit will, in general, transition to a new state. The throwing of a switch is a
transient event because it causes a short-circuit (a closed switch) to be replaced Page
258by an open-circuit (an open switch), or vice versa. These two switch positions



1.

2.

3.

4.
5.

produce two distinctly different circuits. The abrupt change from one to the other
provokes a transient response.

The transition from the “old” state to the “new” state does not happen
instantaneously because capacitors and inductors store energy. Some finite time is
required to charge and discharge the energy storage elements to reach the “new”
steady state. The transition may take place quickly, but it cannot take place
instantaneously. The energy stored in capacitors and inductors is a function of the
capacitor voltage and inductor current, respectively. Thus, those two quantities are
known as state variables.

The objectives of transient analysis can be expressed by the following questions:
What are the initial conditions on the state variables at the moment of the
transient event?
How are the initial conditions on the state variables related to the initial
conditions on other variables?
What is the manner of the transition from the initial conditions to the final steady
state of any variable?
How fast or slow is that transition?
What is the final steady state of any variable?

Two types of circuits are examined in this chapter: first-order RC and RL circuits,
which contain a single storage element, and second-order circuits, which contain two
irreducible storage elements. The simplest of the second-order circuits to analyze are
the series LC and parallel LC circuits. All of the fundamental aspects of transient
responses are revealed in these circuits, which is why they are the focus of this
chapter. However, other more complicated circuits are also explored and analyzed.

A first-order circuit contains a single storage element. A second-order circuit
contains two irreducible storage elements.

Throughout this chapter, practical applications of first- and second-order circuits
are introduced. Numerous analogies are presented to emphasize the general nature of
the solution methods and their applicability to a wide range of physical systems,
including hydraulics, mechanical systems, and thermal systems.

 Learning Objectives



1.

2.

3.

4.

•

•

•

Students will learn to...
Write differential equations in standard form for circuits containing inductors
and capacitors. Section 4.2
Determine the steady state of DC circuits containing inductors and capacitors
Section 4.2
Determine the complete solution of first-order circuits excited by switched DC
sources. Section 4.3
Determine the complete solution of second-order circuits excited by switched
DC sources. Section 4.4
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4.1 TRANSIENT ANALYSIS
Figure 4.1 shows two typical results due to a transient event at t = 0.2 s in a DC
circuit [Figure 4.1(a)] and an AC circuit [Figure 4.1(b)], respectively. Each waveform
has three parts:

The initial steady state for 0 ≤ t ≤ 0.2 s.

The transient response for 0.2 ≤ t ≤ 1.8 s (approximately).

The final steady state for t > 1.8 s.



Figure 4.1 First- and second-order transient responses

The objective of transient analysis is to determine the manner and speed with which
voltages and currents transition from one steady state to another.

Figure 4.2 shows a typical parallel LC circuit used to explore transient responses.
The single-pole, single-throw (SPST) switch connects the battery to the RLC network
suddenly at t = 0 initiating a transient response. The complexity of transient analysis
increases with the number of irreducible energy storage elements in the circuit.
Luckily, first- and second-order circuits exhibit all of the fundamental aspects of
transient behavior.

Figure 4.2 Circuit with switched DC excitation

The discussion and analysis in this chapter is focused on circuits that conform to
the general circuit models shown in Figure 4.3, where the network in the box acts as
the load and consists of either one or two storage elements and possibly various
resistors. In Figure 4.3(a), RT is the Thévenin equivalent resistance seen by the load
and VT is the open-circuit voltage across terminals a and b. In Figure 4.3(b), RN is the



Norton equivalent resistance RN seen by the load and IN is the short-circuit current
from terminal a to terminal b.

Figure 4.3 General models of the transient analysis problem. The load may
contain RLC combinations while the source is either a (a) Thévenin or (b)
Norton equivalent network.

Page 260

When the load is first order, containing either an inductor or capacitor, the
transient response will be either a rising or falling exponential waveform, such as
those shown in Figure 4.4. Both of these waveforms decay over time; that is, the
transient response goes to zero leaving only the new steady-state response.

Figure 4.4 Falling and rising exponential responses

In the case of two storage elements, series and parallel LC networks are
considered in detail although a method for solving more complicated arrangements is



also presented. The analysis of second-order circuits is complicated because there are
three distinctly different transient responses possible, depending upon the magnitude
of a dimensionless damping ratio ζ. When ζ > 1, the transient response is
overdamped and is represented by the sum of two exponentially decaying
waveforms, either rising or falling. When ζ < 1, the transient response is
underdamped and is represented by a decaying sinusoid. When ζ = 1, the transient
response is critically damped and is represented by a waveform that has aspects of
both the overdamped and underdamped waveforms. The impact of ζ (“zeta”) is
exemplified in the transient response to the sudden switching of a DC source, as
shown in Figure 4.5.

Figure 4.5 Typical second-order transient responses for various values of
the dimensionless damping ratio ζ (zeta)
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4.2 ELEMENTS OF TRANSIENT PROBLEM
SOLVING
The key elements involved in the solution of a first- or second-order transient
problem are outlined below. The discussion in this section and the remainder of the
chapter is limited to circuits containing DC sources only. The mathematics for
circuits containing AC sources is somewhat more complicated; however, the
fundamental ideas are the same.

Time Intervals



The moment of a transient event is defined as t = 0. The moments immediately
before and after the event are denoted as t = 0− and t = 0+, respectively. The initial
steady state is determined by the behavior of the circuit for the time interval t < 0.
The final steady state is the behavior of the circuit as t → ∞, which should be
understood to mean “t gets very large.” In between the initial and final steady states
is the transient response.

In practice, the final steady state is reached when t ≤ t∞, where t∞ marks the
effective end of the transient response. The most common choice for t∞ is 5τ, where τ
is a time constant associated with the circuit.

Initial Steady State (t < 0)
For simplicity, the circuits examined in this chapter often assume a DC steady-state
prior to the transient event. The implication is that capacitors and inductors act as
open- and closed-circuits, respectively, and the DC circuit analysis methods
discussed in Chapters 1 and 2 can be applied.

In a DC steady-state, a capacitor acts as an open-circuit and an inductor acts as
a short-circuit.

State Variables
The state variables in electric circuits are the currents through inductors and the
voltages across capacitors. The number of state variables equals the number of
irreducible storage elements. Thus, first- and second-order circuits have one and two
state variables, respectively. It is usually best to first solve for the transient response
of the state variables and then solve for other variables through their relationships to
the state variables. Regardless of the solution method employed, it is always
necessary to know the values of the state variables at t = 0−.

Initial Conditions
The initial conditions on the transient response of a circuit are determined by its
stored energy at the instant of the transient event. Recall that energy is stored in
capacitors, as expressed by their voltages, and in inductors, as expressed by their
currents. Since the energy stored in a capacitor or inductor cannot change
instantaneously, the voltage across a capacitor and the current through an inductor



(4.1)

(4.2)

(4.3)

also cannot change instantaneously. In other words, the state variables are continuous
functions of time.

Page 262

The continuity requirement on the state variables is evident in the υ-i
relationships for capacitors and inductors.

A discontinuity in υC or iL would require iC or υL, respectively, to be infinite. Since it
is not physically possible to achieve an infinite current or voltage, υC and iL must
always be continuous.

The same is not guaranteed for other nonstate variables in a circuit. The current
through a resistor or capacitor, and the voltage across a resistor or inductor, may be
discontinuous. An important implication of these results is that only the state
variables are guaranteed to be continuous across a transient event.

Only the current through an inductor and the voltage across a capacitor are
guaranteed to be continuous. Consequently, these two state variables are also
continuous across a transient event. In mathematical terms:

Other variables may or may not be continuous across a transient event. Only
state variables should be used to express initial conditions due to a transient
event.

Energy and the Transient Response
During a transient response, energy is, in general, continually stored and released,
supplied and dissipated within a circuit until a new steady state is reached.
Independent voltage and current sources, if present, will supply energy; storage
elements will store and/or release energy; and resistors will dissipate energy. These



(4.4)

(4.5)

processes will continue until a new steady state is reached, in which the energy
supplied continually equals the energy dissipated.

Consider the circuit shown in Figure 4.6. For t < 0, assume that the capacitor has
been connected to the battery for a long time so that the capacitor voltage υC equals
the battery voltage VB. Notice that the current through each resistor is zero for t < 0.

Figure 4.6 Energy stored in a capacitor is dissipated by a resistor.

At t = 0 the two switches are thrown such that the capacitor is disconnected from
the battery loop but simultaneously connected to R2 in a simple series loop. Since the
voltage across the capacitor must be continuous with time, υC = VB at t = 0+. At the
same moment, the voltage across R2 has changed from zero to υC and, therefore, the
current through R2 has also changed from zero to some finite nonzero value. Since
KCL requires  for the series loop, the capacitor current is:
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where the expression for  is simply Ohm’s law. Use equation 4.1 to substitute for iC
to find:

Divide both sides of the equation by C to find:



(4.6)

Equation 4.6 indicates that the rate of change of the voltage across the capacitor is
proportional to the voltage across the capacitor itself. That is, at t = 0+ the capacitor
is discharging at its maximum rate because υC itself and, thus,  are both maximums
at that moment. As the capacitor continues to discharge, υC and  continue to
decrease such that the rate of decrease in υC decreases as well.

MAKE THE CONNECTION

Thermal Capacitance
A hydraulic capacitor can store energy in its fluid in much the same way an electric
capacitor stores energy in its charge. (See the Make the Connection sidebar, “Fluid
Capacitance” in Chapter 3.) The thermal capacitance Ct of an object is related to two
physical properties: mass and specific heat:

Physically, thermal capacitance is related to the ability of a mass to store heat and
describes how much the temperature of the mass will rise for a given addition of
heat. If we add heat at the rate q for time Δt and the resulting temperature rise is ΔT,
then we can define the thermal capacitance to be



(4.7)

If the temperature rises from value T0 at time t0 to T1 at time t1, then we can write

or, in differential form,

The graph of Figure 4.6 shows the normalized transient response of . One can
easily check that the slope at any point on the curve is proportional to the value at the
same point. This type of relationship wherein the rate of change of a variable is
proportional to the value of the variable itself is the fundamental quality of the
exponential function. Thus, the transient response of the R2C series loop shown in
Figure 4.6 is characterized by:

The parameter τ is known as a time constant. Such decaying exponentials, whether
rising or falling, are ubiquitous in the mathematical representations of transient
responses of physical systems.

Notice that the normalized transient response of  is shown in Figure 4.6 up to t
= 5τ, at which time υC and  have undergone over 99 percent of their change from
the old to the new steady states. For most practical purposes, the capacitor can be
considered fully discharged for t ≤ 5τ.

Now consider what happens if the switches in the circuit of Figure 4.6 are
returned to their original positions at some moment after t = 5τ. The capacitor will
then be disconnected from R2 and reconnected in a series loop with the battery VB
and the resistor R1. At that moment, the capacitor is now charging at its maximum
rate because the voltage (VB – υC) across R1 and, thus,  are maximums. As the
capacitor continues to charge, (VB – υC) and  continue to decrease such that the rate
of increase in υC decreases as well. The result is another decaying, but rising,
exponential, such as that shown on the right in Figure 4.4. The time constant τ for the
VBR1C series loop is R1C.

These fundamental behaviors also occur for first-order circuits containing an
inductor and one or more resistors and independent sources.

It is also worth noting that the currents  and  in this illustrative example were
discontinuous across the transient events. As emphasized earlier in this section, only



(4.8)

state variables (e.g., υC) are guaranteed to be continuous across a transient event.

Finally, for circuits with two storage elements it is possible that those elements
will exchange energy back and forth with each other during the transient response.
When this phenomenon occurs, the result is oscillating voltages and currents in the
circuit even as the magnitudes of the oscillations decay exponentially over time.
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Time Constants
First-order circuits have one time constant τ, which is a measure of the speed of
response of the circuit to a transient event. A small or large time constant indicates a
fast or slow response, respectively. The time constant τ of a first-order circuit is
either:

depending upon whether the storage element is a capacitor or an inductor. Here, RT
and RN are the Thévenin and Norton equivalent resistances seen by the capacitor and
inductor, respectively.

Figure 4.7 shows a typical first-order decaying exponential. The time constant τ
can be found graphically by two methods. The simplest and most common method is
to determine τ as the time required for the exponential curve to decay (e – 1)/e (or
approximately 63 percent) of the difference between its initial value x(0) and its long-
term steady state x(∞). An alternate method is to determine τ as the time marked by
the intersection of the tangent to the exponential curve at t = 0 and the horizontal
asymptote x(∞).

Figure 4.7 Generic first-order response x(t) suggesting two graphical
methods for finding a time constant



Second-order circuits essentially have two time constants, which are commonly
related to and expressed as two parameters known as the dimensionless damping
ratio ζ and the natural frequency ωn.

MAKE THE CONNECTION

Thermal System Dynamics
To describe the dynamics of a thermal system, we write a differential equation based
on energy balance. The difference between the heat added to the mass by an external
source and the heat leaving the same mass (by convection or conduction) must be
equal to the heat stored in the mass:

An object is internally heated at the rate qin in ambient temperature T = Ta; the
thermal capacitance and thermal resistance are Ct and Rt. From energy balance:

This first-order system is identical in its form to an electric RC circuit, as shown
below.



Long-Term Steady State
The long-term steady state is that which remains after the transient response has
decayed completely. For the first-order decaying exponential shown in Figure 4.7 the
long-term steady state is x(∞). The long-term steady state typically depends upon the
independent sources present in the t > 0 circuit. If all of those sources are DC the
long term steady-state will also be DC, where capacitors act as open-circuits and
inductors act as short-circuits.

Complete Response
The complete response is simply the sum of the transient response and the long-term
steady state. In general, the transient response will contain one unknown constant for
each state variable in the circuit. Thus, the complete Page 265response will also
contain the same number of unknown constants. The values of these unknown
constants are determined by the initial conditions on the circuit at t = 0+.

A common mistake when learning to solve transient circuit problems is to apply
the initial conditions to the transient response alone rather than to the complete
solution. Forewarned, forearmed; don’t make this mistake!

Natural and Forced Responses
Often, it is useful to express the complete response as the sum of natural and forced
responses instead of the sum of a transient response and long-term steady state.
Either way the complete response is unchanged. The natural response is that part of
the complete system response due to the initial energy stored in the system at t = 0.
The forced response is that part due to independent sources present in the t > 0
circuit.

Equation 4.9 expresses the complete response x(t) of an arbitrary first-order
circuit variable as the sum of a transient response, with its characteristic exponential
decay, and a long-term steady state x(∞).



(4.9)

(4.10)

The transient response portion includes the difference between the initial condition
x(0+) and the long-term steady state. This expression can be reconstructed as:

The first and second terms in equation 4.10 are known as the natural and forced
responses, xN(t) and xF(t), respectively. A similar construction can be made for the
complete response of a second-order circuit.

EXAMPLE 4.1 Initial Conditions
Problem
For the circuit shown in Figure 4.8(a), determine the current through the inductor just
before the switch is opened.

Figure 4.8 (a) Circuit for Example 4.1; (b) the same circuit just before the
switch is opened
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Solution
Known Quantities: R1 = 1 kΩ; R2 = 5 kΩ; R3 = 3.33 kΩ; L = 0.1 H; V1 = 12 V; V3 =
4 V.
Find: The current iL through the inductor.



Assumptions: Assume the switch has been closed for a long time prior to t = 0 such
that the circuit is in a DC steady-state.
Analysis: For t < 0, the circuit is in a DC steady-state condition, and the inductor acts
as a short-circuit, as shown in Figure 4.8(b). The current iL through the inductor can
be found quickly by applying KCL at node V2:

Collect the coefficients of V1, V2, and V3 to find:

Finally, rearrange the terms to find:

To determine the current through the inductor, observe that

Comments: The current iL(0) is the initial condition for the t > 0 circuit behavior.
Only the state variables (i.e., the current through an inductor and the voltage across a
capacitor) are guaranteed to be continuous across a transient event, such as the
opening or closing of a switch.

EXAMPLE 4.2 Continuity of Inductor Current and Capacitor Voltage
Problem
Find the initial conditions at t = 0 on the current through the inductor and the voltage
across the capacitor in the circuit in Figure 4.9.



Figure 4.9

Solution
Known Quantities: υS; R1; R2; L; C

Find: The current through the inductor and the voltage across the capacitor at t = 0+.
Assumptions: The switch has been closed for a very long time prior to t = 0.
Analysis: In a DC steady-state, the inductor acts as a short-circuit and the capacitor
acts as an open-circuit. Then, the circuit is effectively a single loop with a current i
equal to the inductor short-circuit current and given by:
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The voltage across the capacitor open-circuit is given by voltage division.

Since neither the current through an inductor nor the voltage across a capacitor
can change instantaneously, the initial conditions on the inductor current and
capacitor voltage are

EXAMPLE 4.3 Continuity of Inductor Current



Problem
Find the initial condition and final value of the inductor current in the circuit in
Figure 4.10.

Figure 4.10

Solution
Known Quantities: Source current IS; inductor and resistor values.

Find: Inductor current at t = 0+ and as t → ∞.
Schematics, Diagrams, Circuits, and Given Data: IS = 10 mA.

Assumptions: The current source has been connected to the circuit for a very long
time.
Analysis: For t < 0, the inductor acts as a short-circuit. Thus, the voltage across and
the current through resistor R are zero such that all of the current IS is passing
through the inductor. At t = 0+, the switch opens and since the inductor current must
be continuous

For t > 0, the current source is in its own isolated loop, cut off from the inductor and
resistor. The inductor and resistor are in series in a separate isolated loop. Since this
loop has no source, the loop current will eventually decay to zero (the long-term
steady state) due to the energy dissipation of the resistor. A qualitative sketch of the
current as a function of time is shown in Figure 4.11.

Figure 4.11



Comments: The direction of the current through R for t > 0 is determined by the
initial condition on the inductor current.

EXAMPLE 4.4 Long-Term DC Steady-State
Problem
Determine the capacitor voltage in the circuit in Figure 4.12(a) a long time after the
switch has been closed.
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Figure 4.12 (a) Circuit for Example 4.4; (b) same circuit a long time after
the switch is closed

Solution
Known Quantities: The values of the circuit elements are R1 = 100 Ω; R2 = 75 Ω; R3
= 250 Ω; C = 1 μF; VB = 12 V.

Analysis: After the switch has been closed for a long time (t → ∞), any transient
response has decayed away and the circuit has reached a new DC steady-state. In a
DC state the capacitor acts as an open-circuit, as shown in Figure 4.12(b). As a
result, no current is through resistor R2, and so resistors R1 and R3 are in a virtual
series connection. Apply voltage division to find:



Since the current through R2 is zero, the voltage across R2 is also zero. Then, υC
equals the voltage drop from the upper right node to the bottom node, which is, of
course, also equal to υ3. Thus:

Comments: The voltage υC(∞) is the DC long-term steady-state voltage across the
capacitor.

EXAMPLE 4.5 Writing the Differential Equation of an RC Circuit
Problem
Derive a differential equation for the voltage across the capacitor shown in Figure
4.13.

Figure 4.13

Solution
Known Quantities: R; C; υS(t).

Find: The differential equations in υC(t) and i(t).

Assumptions: None.
Analysis: Apply KVL around the loop to obtain:

Use KCL and the i-υ relationship for a capacitor
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to substitute for iR.

Rearranging terms, the result is

Since all of the terms in the sum must have the same dimensions, we can infer that
the dimension of RC is time! It is worth mentioning that for more complicated
circuits the R in RC is the Thévenin equivalent resistance “seen” by the capacitor.

A differential equation in the current iR can also be found by differentiating both
sides of the KVL equation above to obtain:

Again, use the i-υ relationship for a capacitor to substitute for the derivative of υC to
obtain:

Recall that iR = iC and multiply both sides of the equation by C and rearrange to
obtain:

Keep in mind that both the current iR and the voltage υC are functions of time as they
transition from the old to the new steady state.

Notice that the left hand sides of the differential equations for υC and iR are
identical. In general, the left hand side of the differential equation for any variable in
a circuit is characteristic of every variable in that circuit.
Comments: First-order RC circuits have one state variable, υC, the voltage across the
capacitor.



EXAMPLE 4.6 Writing the Differential Equation of an RL Circuit
Problem
Derive differential equations from the circuit shown in Figure 4.14.

Figure 4.14

Solution
Known Quantities: R1 = 10 Ω; R2 = 5 Ω; L = 0.4 H.

Find: The differential equations for iL and υL.

Assumptions: None.
Analysis: Apply KCL at the top right node to obtain:
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Apply KVL around the left mesh to obtain:

Apply Ohm’s law to R2 to obtain:

Use these expressions to substitute for i1 and i2 in the KCL equation to find:



Finally, use the differential i-υ relationship for an inductor

to substitute for υL. The result is

Collect terms to find:

Notice that the coefficient of the first derivative term is

such that

where RN is the Norton equivalent resistance seen by the inductor. Notice that the
first term in the differential equation has dimensions of current per time. Since all of
the terms in the sum must have the same dimensions, we can infer that the dimension
of L/RN is time!

Substitute numerical values to obtain:

To obtain a differential equation for υL use the KCL equation iL = i1 − i2 and the
expressions for i1 and i2 to substitute for iL in the differential i-υ relationship to
obtain:

Rearrange terms to find:
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Notice that the left side of the differential equation is the same as that for iL. This
result is true for every variable in the circuit. The left side of the differential equation
is characteristic of the entire circuit rather than just any one variable.
Comments: First-order RL circuits have one state variable, iL, the current through the
inductor.

CHECK YOUR UNDERSTANDING
The single-pole, single-throw (SPST) switch in part (a) of Example 4.1 is opened at t
= 0. What is the inductor current after a long time has passed?

CHECK YOUR UNDERSTANDING
Use the principle of superposition to find the initial condition  in Example 4.1.

CHECK YOUR UNDERSTANDING
The single-pole, double-throw (SPDT) switch in the circuit of Example 4.3 is thrown
at t = 0. Suppose that after a long time t = t∞ the switch is thrown again, back to its
original position. What is the initial current through the inductor at t = t∞? What is
the eventual long-term steady state current through the inductor for t > t∞?

Answer: 

Answer: 



CHECK YOUR UNDERSTANDING
Suppose that the single-pole, single-throw (SPST) switch in part (b) of Example 4.4
is eventually opened again. What is the capacitor voltage after an additional long
time has passed?
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CHECK YOUR UNDERSTANDING
Use the differential i-υ relations for capacitors and inductors along with KVL or KCL
to write the differential equation for each of the circuits shown below.

Answer: iL(t∞) = 0; iLt t∞) = IS = 10 mA

Answer: υC(t → ∞) = 0 V. The capacitor will discharge through R2 and R3.



1.

CHECK YOUR UNDERSTANDING
Apply KVL twice to derive a differential equation for υC for t > 0 in the circuit of
Example 4.5.

MAKE THE CONNECTION

First-Order Thermal System
An automotive transmission generates heat, when engaged, at the rate qin = 2,125 W.
The thermal capacitance of the transmission is Ct = mc = 12 kJ/°C. The effective
convection resistance through which heat is dissipated is Rt = 0.04°C/W.

What is the steady-state temperature the transmission will reach when the initial
(ambient) temperature is 5°C?

With reference to the Make the Connection sidebar “Thermal Capacitance,” we write
the differential equation based on energy balance:

At steady state, the rate of change of temperature is zero; hence, T(∞) = Rtqin. Using
the numbers given, T(∞) = 0.04 × 2,125 = 85°C

Answer: 



2. How long will it take the transmission to reach 90 percent of the final
temperature?

The general form of the solution is

Thus, the transmission temperature starts out at 5°C and increases to its final value of
85°C, as shown in the plot in Figure 4.18.

Figure 4.18 Temperature response of automotive transmission

Given the final value of 85°C, we calculate 90 percent of the final temperature to
be 76.5°C. To determine the time required to reach this temperature, we solve the
following equation for the argument t:

4.3 FIRST-ORDER TRANSIENT ANALYSIS
First-order systems are important in all engineering disciplines and occur frequently
in nature. Such systems are characterized by a single energy storage element and one
associated state variable, where the energy of the state variable is dissipated such that
the rate of change of the state variable is proportional to the state variable itself. The
fundamental result is that the transient response of a first-order system is a decaying
exponential function of time.

Ideal first-order electrical systems possess either capacitance or inductance (but
not both) along with resistance and (perhaps) energy sources. Ideal first-order



mechanical systems possess mass and damping (e.g., sliding or viscous friction) but
no elasticity or compliance. An ideal first-order fluid system possesses fluid
capacitance and viscous dissipation, such as a hydraulic system with a liquid-filled
tank and a variable orifice. Many conductive and convective thermal systems also
exhibit first-order behavior.

In general, when solving transient circuit problems it is necessary to determine
three elements: (1) the Page 273steady-state response prior to a transient event, (2)
the transient response immediately following the transient event, and (3) the long-
term steady-state response remaining after the transient response has decayed away.
The steps involved in computing the complete response of a first-order circuit with
constant sources are outlined below.

Circuit Simplification for t > 0
The first step to solve for the response after the transient event (t > 0) is to partition
the circuit into a source network and load, with the energy storage element as the
load, as shown in Figure 4.15. If the source network is linear, it can be replaced by its
Thévenin or Norton equivalent network.

Figure 4.15 Generalized first-order circuit seen as a source network
attached to an energy storage element as the load

Consider the case when the load is a capacitor and the source network is replaced
by its Thévenin equivalent network, as shown in Figure 4.16. KVL can be applied
around the loop to yield:

Figure 4.16 Generalized firstorder circuit with a capacitor load and a
Thévenin source



(4.11)

(4.12)

Of course, i = iC and for a capacitor iC = C dυC/dt. After substituting and rearranging
the terms, the result is

For a DC source network, the long-term steady-state solution is simply υC = VT.

Likewise, consider the case when the load is an inductor and the source network
is replaced by its Norton equivalent network, as shown in Figure 4.17. KCL can be
applied at either node to yield:

Figure 4.17 Generalized firstorder circuit with an inductor load and a
Norton source
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Of course, υ = υL and for an inductor υL = L diL/dt. After substituting and rearranging
the terms, the result is:

For a DC source network, the long-term steady-state solution is simply iL = IN.

It is important to keep in mind that these equations are for t > 0, that is, the
transient response. In general, the equivalent source network seen by the load after
the transient event will be different from that seen by the load before the event.
Equivalent network methods can be used for both domains but do not assume that the
equivalent network seen by the load is unchanged by the event.

First-Order Differential Equation
Both equations 4.11 and 4.12 have the same general form:



(4.13)

(4.14)

where the constants τ and KS are the time constant and the DC gain, respectively. In
this chapter, f (t) is assumed equal to a constant F, which represents the contribution
of one or more DC sources. With that assumption in mind, the general first-order
differential equation is

The solution for x(t) has two parts: the transient response and the long-term
steady-state response. These two parts can also be rearranged in terms of natural and
forced responses. Either way, the sum of both parts is known as the complete
response. One initial condition x(0+) is needed to specify the complete response.

MAKE THE CONNECTION

Hydraulic Tank
The analogy between electric and hydraulic circuits illustrated in earlier chapters can
be applied to the hydraulic tank shown in Figure 4.20. The tank is cylindrical with
cross-sectional area A, and the liquid contained in the tank exits the tank through a
valve, which is modeled by a fluid resistance R. Initially, the level, or head, of the
liquid is h0. The principle of conservation of mass can be applied to the liquid in the
tank to determine the rate at which the tank will empty. For mass to be conserved, the
following equation must apply:



Figure 4.20 Analogy between electrical and fluid capacitance

In this equation, the variable q represents a volumetric flow rate in cubic meters per
second. The flow rate into the tank is zero in this particular case, and the flow rate
out is given by the pressure difference across the valve, divided by the resistance:

The expression Δp = ρgh is obtained from basic fluid mechanics: ρgh is the static
pressure at the bottom of the tank, where ρ is the density of the liquid, g is the
acceleration of gravity, and h is the (changing) liquid level.

The flow rate stored is related to the rate of change of the fluid volume contained
in the tank (the tank stores energy in the mass of the fluid):

Thus, we can describe the emptying of the tank by means of the first-order linear
ordinary differential equation

We know from the content of the present section that the solution of the first-order
equation with zero input and initial condition h0 is

Thus, the tank will empty exponentially, with the time constant determined by the
fluid properties, that is, by the resistance of the valve and by the area of the tank.

First-Order Transient Response
The transient response xtr is found by setting F = 0 in equation 4.14 such that:



(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

The solution for x is found by assuming a solution of the form:

Substitution of this assumed solution into equation 4.15 results in a characteristic
equation.

The solution for s is simply:
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which is known as the root of the characteristic equation. Plugging in for s in
equation 4.16 yields a decaying exponential.

The constant α in equation 4.19 cannot be evaluated until the complete response has
been found.

The amplitude of xtr(t) at t = n τ for n = 0, 1, . . . , 5 is shown in Figure 4.19. The
data show that xtr has decayed by roughly 95 percent at three time constants and by
over 99 percent at five time constants.

Figure 4.19 Normalized firstorder exponential decay

Long-Term Steady-State Response



(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

Still assuming that the first-order circuit contains only DC sources, such that f(t) is a
constant F, the long-term steady-state response of a first-order system is the solution
to:

For constant F, xss = KSF is the solution. Thus:

Complete First-Order Response
The complete response is the sum of the transient and long-term steady-state
responses:

Apply the one initial condition x(0+) to solve for the unknown constant α:

Substitute for α in equation 4.22 to find the complete response:
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F O C U S  O N  P R O B L E M  S O LV I N G

FIRST-ORDER TRANSIENT CIRCUIT ANALYSIS



1.

2.

3.

•

•

4.
•

•

5.

•

•

Find the value of the state variable just before the transient event at t = 0−. T
is, find υC(0−) or iL(0−).
Set the value of the state variable just after the transient event equal to the v
just before it. That is, set υC (0+) = υC (0−) or iL(0+) = iL(0−) as the in
condition on the transient response.
Note: Only the state variable is guaranteed to be continuous across the trans
event. The initial condition on an arbitrary variable x(t) must be found from
initial condition on the state variable.
For t > 0, treat the storage element as the load and simplify the remaining so
network. Assuming the source network is linear, when the storage element is

a capacitor, replace the source network with its Thévenin equivalent (VT 
RT), as shown in Figure 4.16.
an inductor, replace the source network with its Norton equivalent (IN 
RN), as shown in Figure 4.17.

For t > 0, find the governing differential equation for the state variable.
When the load is a capacitor, apply KVL and KCL to find:

When the load is an inductor, apply KCL and KVL to find:

For t > 0, the complete solution for the state variable is found by solving
governing differential equation and applying its initial condition.

When the load is a capacitor, the complete solution for the state variable is

For an arbitrary variable x(t) the complete solution is

When the load is an inductor, the complete solution for the state variable is

For an arbitrary variable x(t) the complete solution is



Note: The left side of the governing differential equation for an arbitrary variable
is the same as that for the state variable. The right side of the governing differen
equation for an arbitrary variable x(t) is simply the long-term DC steady-state v
for x(t). It is important to observe that the time constant is the same for all varia
in a network; that is, it is a network characteristic.
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EXAMPLE 4.7 Charging a Camera Flash—Capacitor Energy and
Time Constants
Problem
A capacitor is used to store energy in a camera flash light. The camera operates on a
6-V battery as depicted in Figure 4.21. Determine the time required for the energy
stored to reach 90 percent of its maximum. Compute the time in seconds and as a
multiple of the time constant.

Figure 4.21 Equivalent circuit of camera flash charging circuit

Solution
Known Quantities: VB; R; C.

Find: Time required to reach 90 percent of the total energy storage.
Schematics, Diagrams, Circuits, and Given Data: Figure 4.21; VB = 6 V; C = 1,000
μF; R = 1 kΩ.
Assumptions: The capacitor is completely discharged prior to t = 0.



Analysis: In the long-term steady state (t → ∞) the voltage across the capacitor
equals V and the maximum possible energy stored in the capacitor is

Thus, 90 percent of the maximum possible energy is

The corresponding capacitor voltage is calculated as follows:

The Thévenin equivalent resistance seen by the capacitor for t > 0 is simply R, and,
thus, the time constant of the circuit is τ = RTC = 103 × 10−3 = 1 s. The Thévenin
(open-circuit)voltage is VT = VB = 6 V and the initial condition on the capacitor
voltage is υC(0+) = 0 V. Refer to the Focus on Problem Solving box “First-Order
Transient Circuit Analysis” to find that the complete solution for υC is

The time required to reach 90 percent of the energy is found by solving for time t
when υC = 5.692 V. Thus,

which is approximately 3τ.
Comments: The fact that the capacitor charges to 90 percent of its total energy in a
period of roughly 3τ is not limited to this example. All first-order systems have the
same functional form and, therefore, have the same result. What percentage of the
voltage change has occurred in this same 3τ period? How many time constants are
required for the voltage to reach 99 percent of its ultimate value? (See Figure 4.19.)
Answers: 95 percent and 4.6τ
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EXAMPLE 4.8 Simplifying a First-Order Transient Circuit
Problem
Determine a symbolic solution for the first-order circuit shown in Figure 4.22.

Figure 4.22

Solution
Known Quantities: V1; V2; R1; R2; R3; C.

Find: The state variable υC(t) as a function of time for all t.

Schematics, Diagrams, Circuits, and Given Data: Figure 4.22.
Assumptions: Assume the switch was open for a very long time prior to closing,
such that the circuit is in a DC steady-state prior to the transient event at t = 0.
Analysis:
Step 1: Find υC for t < 0. For t < 0, the switch is open and the circuit is in a DC
steady-state such that the capacitor acts as an open-circuit. Thus, there is no current
through R2 and its voltage drop is zero. Consequently, the voltage across the
capacitor is V2, as required by KVL.

Remember that it is always necessary to solve for the value of the state variable prior
to the transient event even if the state variable is not the variable of ultimate interest.
Step 2: Find the initial condition on υC. Since the voltage across a capacitor is
always continuous, the initial condition on υC at t = 0 is V2.



Step 3: Simplify the circuit for t > 0. After the switch is closed, the resulting circuit
is as shown in Figure 4.23, which was redrawn to emphasize the two Thévenin
sources (V1, R1) and (V2, R2) present. The approach is to select the capacitor as the
load and simplify the rest of the network to its Thévenin equivalent network.

Figure 4.23 The circuit in Figure 4.22 for t > 0

Each Thévenin source in Figure 4.23 can be transformed to its equivalent Norton
source as shown in Figure 4.24. The result is a network of resistors and independent
current sources all in parallel. The current sources are combined (summed) to a
single equivalent current source, and the resistors are replaced by a single equivalent
resistance RT. The resulting Norton source is then transformed to a Thévenin source.
The final result is shown in Figure 4.25, where



Figure 4.24 Simplification of the source network in Figure 4.23 to its
Thévenin equivalent
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Step 4: Find the differential equation. Apply KVL around the loop in Figure 4.25
to yield the differential equation for t > 0:

Figure 4.25 The circuit in Figure 4.23 simplified using Thévenin’s theorem
for t > 0

Step 5: Find the transient solution. The transient solution is found by setting the
right side of the differential equation to zero and solving for υC. The solution is
always

The time constant associated with this first-order differential equation is τ = RTC. It is
important to note that the unknown constant α is found by applying the initial
condition to the complete solution, not to the transient solution alone.
Step 6: Find the long-term steady-state solution. The long-term DC steady-state
solution for υC is found after the switch has been closed for a very long time
(practically t ≤ 5τ). The capacitor acts like an open-circuit such that .
Step 7: Complete solution. The complete solution is the sum of the transient and
long-term steady-state solutions.



The unknown constant α is found by applying the initial condition υC(0+) = V2. The
result is

Finally, the complete solution is

EXAMPLE 4.9 Starting Transient of DC Motor
Problem
A DC motor can be modeled approximately as an equivalent first-order series RL
circuit, as shown in Figure 4.26. Find the complete solution for iL.

Figure 4.26 Circuit for Example 4.9

Solution
Known Quantities: Battery voltage VB: resistance R: and inductance L.

Find: The state variable iL(t).

Schematics, Diagrams, Circuits, and Given Data: R = 4 Ω; L = 0.1 H; VB = 50 V.
Figure 4.26.
Assumptions: None.
Analysis:
Step 1: Find υC for t < 0. The current through the inductor prior to the closing of the
switch must be zero because the switch is open; thus,
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Step 2: Find the initial condition on iL. Since the current through an inductor is
always continuous, the initial condition on iL at t = 0 is 0.

Step 3: Simplify the circuit for t> 0. For t > 0, the network attached to the inductor
is already in the form of a Thévenin source, so no further simplification is possible.
Step 4: Find the differential equation. Apply KVL around the loop in Figure 4.26
to find the differential equation for t > 0:

Divide both sides of the equation by R to find:

The time constant τ is the coefficient of the first-derivative term:

Step 5: Find the transient solution. The transient solution is found by setting the
right side of the differential equation to zero and solving for iL. The solution is
always of the form:

It is important to note that the unknown constant α is found by applying the initial
condition to the complete solution, not to the transient solution alone.
Step 6: Find the long-term steady-state solution. The long-term DC steady-state
solution for iL is found after the switch has been closed for a very long time
(practically t ≤ 5τ). In this state, the inductor acts like a short-circuit such that 

.
Step 7: Complete solution. The complete solution is the sum of the transient and
long-term steady-state solutions.



The unknown constant α is found by applying the initial condition iL(0+) = 0. The
result is:

Finally, the complete solution is

The complete solution can also be expressed in terms of natural and forced
responses:
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The complete response and its decomposition into (a) transient plus steady-state
responses, and (b) natural plus forced responses are shown in Figure 4.27.

Figure 4.27 Complete response iL(t) of electric motor: (a) steady-state
iLSS(t) plus transient iLTR(t) responses; (b) forced iLF(t) plus natural iLN(t)
responses

Comments: As the switch opens, the inductor current is forced to change suddenly,
with the result that diL/dt, and therefore υL(t), gets very large. The large voltage
transient resulting from this inductive kick can damage circuit components. A so-
called freewheeling diode is used to solve this problem.



EXAMPLE 4.10 Turnoff Transient of DC Motor
Problem
Determine the motor voltage for all time in the simplified electric motor circuit
model shown in Figure 4.28. The motor is represented by the series RL circuit in the
shaded box. RS is known as a shunt resistor.

Figure 4.28

Solution
Known Quantities: VB; RB; RS; Rm; L.

Find: The voltage across the motor as a function of time.
Schematics, Diagrams, Circuits, and Given Data: RB = 2 Ω; RS = 20 Ω; Rm = 0.8 Ω;
L = 3.0 H; VB = 100.0 V.

Assumptions: The switch has been closed for a long time prior to t = 0.
Analysis: With the switch closed for t < 0, the inductor in the circuit in Figure 4.28
behaves as a short-circuit. The current through the motor can then be calculated by
current division in the modified circuit of Figure 4.29, where the inductor has been
replaced Page 283with a short-circuit and the Thévenin circuit on the left has been
replaced by its Norton equivalent:



Figure 4.29

This current is the initial condition for the inductor current: .
Since the motor inductance is effectively a short-circuit, the motor voltage for t < 0 is
equal to

For t > 0 the switch is open and the motor sees only the shunt (parallel) resistance RS,
as depicted in Figure 4.30. The motor current will decay exponentially with time
constant τ = L/(RS + Rm) = 0.144 s:

Figure 4.30

The motor voltage is then computed by adding the voltage drop across the motor
resistance and inductance:

The motor voltage is plotted in Figure 4.31.



Figure 4.31 Motor voltage transient response

Comments: Notice how the motor voltage rapidly changes from the DC steady-state
value of 27.8 V for t < 0 to a large negative value. This inductive kick is typical of RL
circuits and results from the fact that although the inductor current cannot change
instantaneously, the inductor voltage can and does, as it is proportional to the
derivative of iL. This example is based on a simplified representation of an electric
motor but illustrates effectively the need for special starting and stopping circuits in
electric motors.
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EXAMPLE 4.11 Transient Response of Ultracapacitors
Problem
An industrial, uninterruptible power supply (UPS) is intended to provide continuous
power during unexpected power outages. Ultracapacitors can store a significant
amount of energy and release it during transient power outages to ensure delicate or
critical electrical/electronic systems. Assume that a UPS is designed to make up for a
temporary power glitch for 5 s. The system that is supported by this UPS operates at
a nominal voltage of 50 V and has a maximum nominal voltage of 60 V, but it can
function with a supply voltage as low as 25 V. Design a suitable UPS.

Solution
Known Quantities: Maximum, nominal, and minimum voltage; power rating and
time requirements; ultracapacitor data (see Example 3.1).



Find: Number of series and parallel ultracapacitor cells needed to satisfy the
specifications.
Schematics, Diagrams, Circuits, and Given Data: Figure 4.32. Capacitance of one
cell: Ccell = 100 F; resistance of one cell: Rcell = 15 mΩ; nominal cell voltage Vcell =
2.5 V. (See Example 3.1.)

Figure 4.32

Assumptions: The load can be modeled as a 0.5-Ω resistance.
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Analysis: The total capacitance of the “stack” required to satisfy the specifications is
obtained by combining capacitors in series and parallel, as illustrated in Figure
4.32(a). Figure 4.32(b) depicts the electric circuit model of a single cell.

The allowable voltage drop in the supply is ΔV = 25 V since the load can operate
with a supply as low as 25 V and nominally operates at 50 V.

The time interval over which the voltage will drop (but not below the allowable
minimum of 25 V) is 5 s.



The ultracapacitor consists of n parallel stacks of m cells in series. Thus, the
equivalent resistance of the ultracapacitor is

Note that m identical capacitors C in series produce an equivalent capacitance equal
to C/m and that n such capacitances in parallel produce an overall equivalent
capacitance equal to nC/m. Thus:

The total number of series capacitors can be calculated from the maximum required
voltage:

Define iC = −iload and apply KVL to the overall equivalent circuit of Figure
4.32(c) to obtain an expression for υC.

Note that the time constant is . Also, assume that the ultracapacitor
is fully charged prior to the power outage at t = 0 such that . Since
there are no independent sources in the t > 0 circuit the long-term DC steady-state is
υC(∞) = 0. Thus, the complete solution is

Apply voltage division to find the load voltage:

This relationship can be used to calculate the appropriate number of parallel
strings n such that the load voltage is above 25 V (the minimum allowable load
voltage) at t = 5 s. The solution could be obtained analytically, by substituting the
known values m = 24, Rload = 0.5, Ccell = 100 F, Rcell = 15 mΩ, t = 5 s, and υload(t = 5)



= 25 V and solving for n. Figure 4.33 plots the transient response of the overall
equivalent circuit for n = 1 to 5. For n = 3 the requirement that υload = 25 V for at
least 5 s is satisfied.
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Figure 4.33 Transient response of ultracapacitor circuit

EXAMPLE 4.12 First-Order Response Due to a Pulsed Source
Problem
The circuit in Figure 4.34 includes a switch that can be used to connect and
disconnect a battery. The switch has been open for a very long time. At t = 0 the
switch closes, and then at t = 50 ms the switch opens again. Determine the capacitor
voltage υC(t) as a function of time.

Figure 4.34



Solution
Known Quantities: VB; R1; R2; R3; C.

Find: The state variable υC(t) as a function of time for all t.

Schematics, Diagrams, Circuits, and Given Data: VB = 15 V, R1 = R2 = 1,000 Ω, R3
= 500 Ω, and C = 25 μF. Figure 4.34.
Assumptions: The switch has been open for a very long time for t < 0.
Analysis:
Part 1 (0 ≤ t < 50 ms) The switch is closed.
Step 1: DC steady-state responses. For t < 0 assume that the capacitor has been
completely discharged through resistors R3 and R2 such that

To determine the capacitor voltage υC(t) when the switch is closed it is necessary to
calculate its long-term DC steady-state value υC(∞) assuming that the switch will
remain closed indefinitely. With the capacitor acting as a DC open-circuit apply
voltage division to find:

Step 2: Initial condition. The initial condition on υC(t) in this interval is
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Step 3: Differential equation. The Thévenin equivalent resistance seen by the
capacitor is . The Thévenin open-circuit voltage seen by the
capacitor is . Thus, the differential equation for υC(t) in this interval is

Step 4: Time constant. By definition, the time constant is τ = RTC = 25msec.
Step 5: Complete solution. The complete solution is



1.

2.
3.

Part 2 (t ≤ 50 ms) The switch is open.

At t = 50 ms the switch opens again, and the capacitor discharges through the series
combination of resistors R3 and R2. The independent voltage source is disconnected
from the capacitor circuit so that now RT = R2 + R3, VT = 0 and the long-term DC
steady-state is υC(∞) = 0. The transient for this interval begins at t = 50 ms and so the
complete solution must be written in the form , where t1 = 50 ms.

The voltage υC across the capacitor (a state variable) is continuous at t = 50 ms
when the switch is opened.
The constant α is the initial condition on υC at t = 50 ms.
The time constant for t ≤ 50 ms is τ = (R2 + R3)C = 37.5 ms.

Use the solution for 0 ≤ t ≤ 50 ms to calculate υC(t = t1 = 50 ms) and determine α.

Thus, the capacitor voltage for t ≤ 50 ms is:

The overall composite response is plotted below.

Comments: Note that the two parts of the response are based on two different time
constants and that the rising portion of the response changes faster (shorter time
constant) than the falling part. Also notice that the transient solution of part 2 was
expressed in terms of a time shift (t – 0.05) ms, which accounts for the fact that the
switch opened at t = 50 ms.
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EXAMPLE 4.13 First-Order Natural and Forced Responses
Problem
Determine an expression for the capacitor voltage in the circuit of Figure 4.35.

Figure 4.35

Solution
Known Quantities: υC(t = 0−); VB; R; C.

Find: The state variable υC(t) as a function of time for all t.

Schematics, Diagrams, Circuits, and Given Data: υC(t = 0−) = 5 V; R = 1 kΩ; C =
470 μF; VB = 12 V. Figure 4.35.

Assumptions: None.
Analysis:
Step 1: Find υC for t < 0. For t < 0, the capacitor is not part of a closed loop;
therefore, the current through the capacitor must be zero for t < 0. In other words, its
charge (and consequently, its energy) are constant prior to the switch closing. In this
example, it is assumed that the capacitor has an initial charge q = CυC(0−) = C(5 V).
Thus:

Step 2: Find the initial condition on υC. Since the voltage across the capacitor is
always continuous the initial condition is



Step 3: Simplify the circuit for t > 0. For t > 0, the network attached to the capacitor
is already in the form of a Thévenin source, so no further simplification is possible.
Step 4: Find the differential equation. Apply KVL around the loop in Figure 4.35
to yield the differential equation for t > 0:

The time constant τ is the coefficient of the first-derivative term:

Step 5: Find the transient solution. The transient solution is found by setting the
right side of the differential equation to zero and solving for υC. The solution is
always of the form:

It is important to note that the unknown constant α is found by applying the initial
condition to the complete solution, not to the transient solution alone.
Step 6: Find the long-term steady-state solution. The long-term DC steady-state
solution for υC is found after the switch has been closed for a very long time
(practically t ≤ 5τ). In this state, the capacitor acts like an open-circuit such that (υC)ss
≡ υC(∞) = 12 V.
Step 7: Complete solution. The complete solution is the sum of the transient and
long-term steady-state solutions.
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The unknown constant α is found by applying the initial condition υC(0+) = 5 V. The
result is

Finally, the complete solution is



The complete solution can also be expressed in terms of natural and forced
responses:

The complete response and its decomposition into (a) transient plus steady-state
responses, and (b) natural plus forced responses are shown in Figure 4.36.

Figure 4.36 (a) Complete, transient, and steady-state responses of the
circuit in Figure 4.35; (b) complete, natural, and forced responses of the
same circuit

Comments: Note how in Figure 4.36(a) the long-term steady-state response (υC)ss
equals the battery voltage while the transient response (υC)tr rises from –7 to 0 V
exponentially. In Figure 4.36(b), on the other hand, the energy initially stored in the



capacitor decays to zero via its natural response υC N while the battery causes the
capacitor voltage to rise exponentially to 12 V, as shown in the forced response υC F.
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FOCUS ON MEASUREMENTS

Coaxial Cable Pulse Response
Problem:
A problem of great practical importance is the transmission of pulses along cables.
Short voltage pulses are used to represent the two-level binary signals that are
characteristic of digital computers; it is often necessary to transmit such voltage
pulses over long distances through coaxial cables, which are characterized by a finite
resistance per unit length and by a certain capacitance per unit length, usually
expressed in picofarads per meter. A simplified model of a long coaxial cable is
shown in Figure 4.37. If a 10-m cable has a capacitance of 1,000 pF/m and a series
resistance of 0.2 Ω/m, what will the output of the pulse look like after traveling the
length of the cable?



Figure 4.37 Pulse transmission in a coaxial cable

Solution:

Known Quantities—Cable length, resistance, and capacitance; voltage pulse
amplitude and time duration.
Find—The cable voltage as a function of time.
Schematics, Diagrams, Circuits, and Given Data—r1 = 0.2 Ω/m; Ro = 150 Ω; c =
1,000 pF/m; l = 10 m; pulse duration = 1 μs.
Assumptions—The short voltage pulse is applied to the cable at t = 0. Assume zero
initial conditions.
Analysis—The voltage pulse can be modeled by a 5-V battery connected to a switch;
the switch will then close at t = 0 and open again at t = 1 μs. The solution strategy
will therefore proceed as follows. First, determine the initial condition; next, solve
the transient problem for t > 0; finally, compute the value of the capacitor voltage at t
= 1 μs—that is, when the switch opens again—and solve a different transient
problem. The equivalent capacitor will charge for 1 μs, and the voltage will reach a
certain value. This value will be the initial condition for the capacitor voltage when
the switch is opened; the capacitor voltage will then decay to zero since the voltage
source has been disconnected. Note that the circuit will be characterized by two
different time constants during the two transient stages of the problem. The initial
condition for this problem is zero, assuming that the switch has been open for a long
time.
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The differential equation for 0 < t < 1 μs is obtained by computing the Thévenin
equivalent circuit relative to the capacitor when the switch is closed:



The differential equation is given by the expression

and the solution is of the form

Numerical values can be assigned to the solution by calculating the effective
resistance and capacitance of the cable:

so that

At the time when the switch opens again, t = 1 μs, the capacitor voltage can be found
to be υC(t = 1 μs) ≈ 4.93 V.

When the switch opens again, the capacitor will discharge through the load
resistor Ro; this discharge is described by the natural response of the circuit
consisting of C and Ro and is governed by the following values: υC(t = 1 μs) = 4.93 V,
τoff = RoC = 1.5 μs. The natural response can be written directly as:

Figure 4.38 shows a plot of the solution for t > 0, along with the voltage pulse.



Figure 4.38 Coaxial cable pulse response
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Comments—Note that the voltage response shown in Figure 4.38 rapidly reaches the
desired value, near 5 V, thanks to the very short charging time constant τon. As the
length of the cable is increased, however, τon will increase, to the point that the
voltage pulse may not rise sufficiently close to the desired 5-V value in the desired
time. Cable length limitations exist in some applications because of intrinsic
capacitance and resistance. In general, long cables such as electric transmission lines
and very high-frequency circuits cannot be analyzed by way of the lumped-parameter
methods presented here and require distributed circuit analysis techniques.

CHECK YOUR UNDERSTANDING
If another identical capacitor is placed in parallel with the capacitor in Example 4.7,
how would the charging time change? How would the total stored energy change?

CHECK YOUR UNDERSTANDING
Derive the result obtained in Example 4.11 analytically, by solving the transient
response for the unknown value n.

Answer: Both would double, as Ceq would be twice as large, thus doubling
τ and Etotal.



CHECK YOUR UNDERSTANDING
In Example 4.12, what will be the initial condition for the falling exponential decay if
the switch opens at t = 100 ms?

CHECK YOUR UNDERSTANDING
What is the complete solution for υC(t) in Example 4.13 when the initial charge on
the capacitor is zero?
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4.4 SECOND-ORDER TRANSIENT ANALYSIS
In general, a second-order circuit has two irreducible storage elements: two
capacitors, two inductors, or one capacitor and one inductor. The latter case is the
most important in terms of new fundamentals; however, the important aspects of all
second-order system responses are discussed in this section. Since second-order
circuits have two irreducible storage elements, such circuits have two-state variables
and their behavior is described by a second-order differential equation.

The simplest, yet arguably the most crucial, second-order circuits are those in
which the capacitor and inductor are either in parallel or in series, as shown in

Answer: The solution yields 2.9, which rounds up to n = 3.

Answer: 7.363 V

Answer: The complete solution is equal to the forced solution. υC(t) = υC

F(t) = 12(1 – e–t/0.47) V



(4.25)

Figures 4.39 and 4.40. The circuits in these figures are drawn to suggest that the
capacitor and inductor should be treated as a unified load. The rest of each circuit is
either the Thévenin or Norton equivalent of the source network. The analysis of these
circuits is somewhat less complicated than for other second-order circuits, which is
appealing for anyone learning to analyze such circuits for the first time. The analysis
of more complicated second-order circuits is treated in an example later in this
section.

It is important to adopt a patient but determined attitude toward the material in
this section, as it is notoriously challenging to students. Every effort has been made
to walk through the material in a systematic and progressive manner. Hold on to your
hat! And don’t give up!

General Characteristics
Before diving into the analysis of particular second-order circuits it is worthwhile to
introduce the generalized standard form of the differential equation for any second-
order circuit.

The constants ωn and ζ are the natural frequency and the dimensionless damping
ratio, respectively. These parameters are characteristics of a second-order circuit and
determine its response. Their values will be determined by direct comparison of
equation 4.25 with the differential equation for a specific RLC circuit. As will be
shown, second-order circuits have three distinct possible responses: overdamped,
critically damped, and underdamped. The type of response for any particular second-
order circuit is determined entirely by ζ.

In equation 4.25, f (t) is a forcing function. KS is the DC gain of a particular
variable x (t). Different variables in the same circuit may have different DC gains.
However, all variables share the same natural frequency ωn, the same dimensionless
damping ratio ζ, and therefore also the same type of response. This fact can be an
important time saver when problem solving.

Parallel LC Circuits
Consider the circuit shown in Figure 4.39. The two state variables are iL and υC. In
general, at the moment (t = 0) of a transient event the energy of the storage elements
may be nonzero; that is, the voltage υC(0) across the capacitor and the Page



(4.26)

294current iL(0) through the inductor may be nonzero. As always, the two-state
variables are continuous such that:

Figure 4.39 Second-order circuit with the inductor and capacitor in parallel
acting as a unified load attached to a Norton source

Apply KCL to either node to find an equation in terms of both state variables.

Here, RN is the Norton equivalent resistance seen by the LC load. KVL around the
right mesh yields the simple result υC = υL. The constitutive i-υ relationships for the
capacitor and inductor enable the nonstate variables iC and υL to be replaced by
derivatives of the state variables υC and iL, respectively.

Substitute for υC and iC in the KCL equation to find:

Rearrange the order of terms to yield the following second-order differential equation
in standard form:

Alternatively, one can differentiate both sides of the KCL equation and substitute:

The result is



(4.27)

Multiply both sides of the equation by L. If the source IN is a constant, the resulting
second-order differential equation in standard form is
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MAKE THE CONNECTION

Automotive Suspension
The mechanical model shown below can be analyzed using Newton’s second law, ma
= ∑ F, to obtain the equation

This equation can be written in the standard form:

The analogous LC series circuit shown below can be analyzed using KVL:



Notice the similar structure of these two second-order differential equations.

Analogy between electrical and mechanical systems

Compare both second-order differential equations to the standard form of equation
4.25 to make the following observations:

The following analogies are apparent after comparing the expressions for the natural
frequency and damping ratio in the two differential equations:

In general, the coefficient of the first-order derivative in equations such as 4.26
and 4.27 is the sum (RTC + L/RN). Here, RT is the Thévenin equivalent resistance



(4.28)

seen by the capacitor when the inductor is treated as a short-circuit and RN is the
Norton equivalent resistance seen by the inductor when the capacitor is treated as an
open-circuit. In the case of a parallel LC network, RT = 0.

To solve equations 4.26 and 4.27 it is first necessary to identify the dimensionless
damping ratio ζ and the natural frequency ωn. Notice that the left sides of both
equations are identical, as they are for any variable in the circuit. Thus, ωn and ζ can
be found from either differential equation by comparing it to equation 4.25. The
result is

These two equations can be solved to yield:

The type of transient response for iL and υC depends upon ζ only. When ζ is
greater than, equal to, or less than 1, the transient responses (iL)tr and (υC)tr are
overdamped, critically damped, or underdamped, respectively. These three types of
responses are described in detail later in this section. The complete solutions are

and

Note that when IN is a constant, (υC)ss = 0 and υC(t) = (υC)tr.

Series LC Circuits
The development of the general solution for series LC circuits follows the same basic
steps used above for parallel LC circuits. Consider the circuit in Figure 4.40 and note
the duality between what follows and what was done above for the parallel LC
circuit. In fact, the equations that follow can be found simply by starting with the
equations developed above and swapping L with C, iL with υC, RN with 1/RT, and IN
with VT. That result is known as duality.



(4.29)

Figure 4.40 Secondorder circuit with the inductor and capacitor in series
acting as a unified load attached to a Thévenin source
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Again, the two state variables are iL and υC. At the moment (t = 0) of a transient
event the energy of the storage elements may be nonzero; that is, the voltage υC(0)
across the capacitor and the current iL(0) through the inductor may be nonzero. As
always, the two-state variables are continuous such that:

Apply KVL around the series loop to find an equation in terms of both state
variables.

Here, RT is the Thévenin equivalent resistance seen by the LC load. KCL at the upper
right node yields the simple result iC = iL. The constitutive i-υ relationships for the
capacitor and inductor enable the nonstate variables iC and υL to be replaced by
derivatives of the state variables υC and iL, respectively.

Substitute for υL and iL in the KVL equation to find:

Rearrange the order of terms to yield the following second-order differential equation
in standard form:



(4.30)

(4.31)

Alternatively, one can differentiate both sides of the KVL equation and
substitute:

The result is

Multiply both sides of the equation by C, and if the source VT is a constant such that
its time derivative is zero, the resulting second-order differential equation in standard
form is

In general, the coefficient of the first-order derivative in equations such as 4.29 and
4.30 is the sum (RTC + L/RN). Here, RN is the Norton equivalent resistance seen by
the inductor when the capacitor is treated as an open-circuit and RT is the Thévenin
equivalent resistance seen by the capacitor when the inductor is treated as a short-
circuit. In the case of a series LC network, RN → ∞ such that L/RN → 0.

To solve equations 4.29 and 4.30 it is first necessary to identify the dimensionless
damping ratio ζ and the natural frequency ωn. Notice that the left sides Page 297of
both equations are identical, as they are for any variable in the circuit. Thus, ωn and ζ
can be found from either differential equation by comparing it to equation 4.25. The
result is

These two equations can be solved to yield:

The type of transient response for iL and υC depends upon ζ only. As always,
when ζ is greater than, equal to, or less than 1, the transient responses (iL)tr and (υC)tr



(4.32)

(4.33)

(4.34)

(4.35)

are overdamped, critically damped, or underdamped, respectively. These three types
of responses are described in detail later in this section. The complete solutions are

and

Note that when VT is a constant, (iL)ss = 0 and iL(t) = (iL)tr.

Transient Response
The transient response xtr(t) is found by setting the right side of the governing
differential equation equal to zero. That is

Just as in first-order systems, the solution of this equation has an exponential form:

Substitution into the differential equation yields the characteristic equation:

which, in turn, yields two characteristic roots s1 and s2. Specific values of s1 and s2
are found from the quadratic formula applied to the characteristic equation.

The roots s1 and s2 are associated with the three distinct possible responses:
overdamped (ζ > 1), critically damped (ζ = 1), and underdamped (ζ < 1).

1. Overdamped Response (ζ > 1)



(4.36)

(4.37)

Two distinct, negative, and real roots: (s1, s2). The transient response is
overdamped when ζ > 1 and the roots are . The general form of
the solution is
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Thus, an overdamped response is the sum of two decaying exponentials, as shown in
Figure 4.41.

Figure 4.41 Transient response of underdamped second-order system α1 =
α2 = 1; ζ = 1.5; ωn = 1

2. Critically Damped Response (ζ = 1)
Two identical, negative, and real roots: (s1, s2). The transient response is critically
damped when ζ = 1. The argument of the square root in equation 4.35 is zero, such
that s1,2 = –ζωn = –ωn. The general form of the solution is

Note that a critically damped response is the sum of two decaying exponentials,
where one is multiplied by t. These two components and the complete response are
shown in Figure 4.42.



(4.38)

(4.39)

Figure 4.42 Transient response of a critically damped second-order system
for α1 = α2 = 1; ζ = 1; ωn = 1

3. Underdamped Response (ζ < 1)
Two complex conjugate roots: (s1, s2). The transient response is underdamped when
ζ < 1. The argument of the square root in equation 4.35 is negative, such Page
299that . The following complex exponentials appear in the
general form of the response:

Euler’s formula can be used to express the complex exponentials in terms of
sinusoids. The result is

where  is the damped natural frequency. Note that ωd is the
frequency of oscillation and is related to the period T of oscillation by ωdΤ = 2π. Also
note that ωd approaches the natural frequency ωn as ζ approaches zero. The
oscillation is damped by the decaying exponential e−ζωnt, which has a time constant τ
= 1/ζωn, as shown in Figure 4.43. As ζ increases toward 1 (more damping), τ
decreases and the oscillations decay more quickly. In the limit ζ → 0, the response is
a pure sinusoid.



Figure 4.43 Transient response of an underdamped second-order system
for α1 = α2 = 1; ζ = 0.2; ωn = 1

MAKE THE CONNECTION

Automotive Suspension
The mechanical model described in the previous sidebar can represent an automotive
suspension system. The mass m, spring k, and damper b model the vehicle mass, the
suspension struts (or coils), and the shock absorbers, respectively. The differential
equation is



(4.40)

The input to the suspension system is the road surface profile, which generates
both displacement and velocity inputs xroad and . One objective of the suspension
is to isolate the body of the car (i.e., the passengers) from any vibration caused by
unevenness in the road surface. Automotive suspension systems are also very
important in guaranteeing vehicle stability and in providing acceptable handling. In
this illustration consider the response of the vehicle to a sharp step of amplitude 10
cm for two cases, corresponding to new and worn-out shock absorbers, respectively.
Which ride is more comfortable?

“Step” response of automotive suspension

Long-Term Steady-State Response
For switched DC sources, the forcing function F in equation 4.40 is a constant. The
result is a constant long-term (t → ∞) steady-state response xSS.

Since xss must also be a constant the solution is



(4.41)

Complete Response
As with first-order systems, the complete response is the sum of the transient and
long-term steady-state responses. The complete mathematical solutions for the
overdamped, critically damped, and underdamped cases are shown in the highlighted
Focus on Problem Solving section. In each of these cases, the initial conditions on
the state variables must be used to solve for the unknown constants α1 and α2. The
required procedure uses the two initial conditions to evaluate x(t) and Page 300dx/dt
at t = 0+. The details of the procedure vary slightly in each of the three cases and are
illustrated in the example problems.

One particularly useful complete solution is the unit-step response brought about
by letting KS f (t) (see equation 4.25) be a unit step, which equals 0 for t < 0 and 1 for
t > 0. To illustrate, assume a dimensionless damping coefficient ζ = 0.1 and an
underdamped period of oscillation T = 2π, such that the damped natural frequency is
ωd = 1. The corresponding unit-step response, shown in Figure 4.44, asymptotically
approaches the long-term DC steady-state value of 1 dictated by the unit-step input.

Also, as seen in the underdamped transient response, the magnitude of the
oscillation decays exponentially over time. The time constant for the surrounding
envelope (see dashed lines in Figure 4.44) is , such that by t = 5τ
the oscillations are within 1 percent of the long-term DC steady-state value.

Figure 4.44 Second-order transient response with KS = 1, ωd = 1, and ζ =
0.1

Note that the rate of decay of the oscillations is governed by ζ. Figure 4.45 shows
that as ζ increases the overshoot of the long-term DC steady-state response decreases
until, when ζ = 1 (critically damped), the response no longer oscillates and the



1.

•

•

2.
•

overshoot is zero. The response for ζ > 1 (overdamped) has no oscillations and zero
overshoot.

Figure 4.45 Second-order unit-step response with KS = 1, ωd = 1, and ζ
ranging from 0.2 to 4.0
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F O C U S  O N  P R O B L E M  S O LV I N G

SECOND-ORDER TRANSIENT RESPONSE
The following steps determine the response of a generic second-order RLC circu
a transient event, such as the throwing of a switch, at t = 0. Here, x(t) is a s
variable, either the capacitor voltage υC(t) or the inductor current iL(t).

DC steady-state responses: Assume all independent sources are DC and a
steady-state prior to the transient event.

Apply DC analysis to solve for υC(0−) and iL(0−) just prior to the event.
Apply DC analysis to solve for the long-term steady-state values υC( ∞) 
iL( ∞) after the event.

Differential equation for t > 0:
Identify the simplest one-port load network that contains both sto
elements. Simplify the remaining one-port source network into eithe
Thévenin or Norton source.



•

•

•

•
3.

•

•
•

4.

5.

6.

Apply KVL, KCL and the i-υ relations for capacitors and inductors to 
two first-order ordinary differential equations involving the state varia
only.
Use the first-order ODEs to find a second-order ODE in standard form in
state variable.
Check that the coefficient of the first derivative term is RTC+L/RN. Here, R
the Thévenin equivalent resistance seen by capacitor with the inductor ac
as a short-circuit and RN is the Norton equivalent resistance seen by
inductor with the capacitor acting as an open-circuit.
Check that the right side of the second-order ODE is υC( ∞) or iL( ∞).

Solve for ωn and ζ for t > 0:
Compare the second-order ODE in standard form to its generalized f
(equation 4.25).
Set the coefficient of the second derivative term equal to . Solve for ωn
Set the coefficient of the first derivative term equal to . Solve for ζ.

The transient response xtr(t):
Overdamped case (ζ > 1):

Critically damped case (ζ = 1):

Underdamped case (ζ < 1):
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The complete solution x(t):

Solve for unknown constants α1 and α2:



•

•

•

•
•

Case 1:

Case 2:

Case 3:

Apply continuity of the state variables to set the initial conditions υC(0
υC(0−) and iL(0+) = iL(0−).

Express x(0+) in terms of α1 and α2. Plug in the initial condition for x(0+).
Differentiate x(t) found in step 5. Then, use the first-order ODEs from st
to find another expression for dx/dt. Set these expressions equal to each o
at t = 0+.
Solve the system of two equations in the two unknowns α1 and α2.
Whew! Voila!! Done!!!

Comments: It is important to keep in mind that ωn and ζ are the same for
variables in the circuit. Thus, the form of the transient response is also the same
all such variables. However, the values of α1, α2, and the long-term DC steady-s
are specific to each variable. A good problem-solving method is to use the in
conditions to determine α1 and α2 for each state variable. Then, the response of o
variables in the circuit can be found by applying simple circuit analysis method
relate those variables to the state variables. This approach avoids errors 
commonly occur when attempting to find the response of nonstate variables direc

F O C U S  O N  P R O B L E M  S O LV I N G

ROOTS OF SECOND-ORDER SYSTEMS
The general form of the roots s1 and s2 is .
The nature of these roots depends upon the argument of the square root.
Distinct, negative, real roots. This case occurs when ζ > 1 since the t

under the square root sign is positive. The result is  an
second-order overdamped response.

Identical, negative, real roots. This case occurs when ζ = 1 since the t
under the square root is zero. The result is a repeated root  an
second-order critically damped response.

Complex conjugate roots. This case holds when ζ < 1 since the term un
the square root is negative. The result is a pair of complex conjugate r

 and a second-order underdamped response.



EXAMPLE 4.14 Complete Response of an Underdamped Parallel LC
Circuit
Problem
Find the natural frequency, ωn, the dimensionless damping coefficient, ζ, and the
form of the transient response of iL(t) in the circuit shown in Figure 4.46.

Figure 4.46

Solution
Known Quantities: υS; R1; R2; C; L.

Find: The transient response of iL(t) for the circuit in Figure 4.46.

Schematics, Diagrams, Circuits, and Given Data: R1 = 8 k Ω; R2 = 8 k Ω; C = 10
µF; L = 1 H.
Assumptions: None
Analysis: Refer to the Focus on Problem Solving box “Second-Order Transient
Response” and the subsection on parallel LC circuits. The load is L in parallel with
C.
Step 1: DC steady-state responses: There is no information about a transient event,
such as the throwing of a switch, so it is not possible to describe a DC steady-state
prior to such an event. However, it is still possible to describe how the circuit in
Figure 4.46 would respond to such an event. For example, the inductor and capacitor
will act as short- and open-circuits as t → ∞ such that the long-term DC steady-states
for each state variable are iL( ∞) = υS/R1and υC( ∞) = 0.



Step 2: Differential equation: Treat everything to the left of the inductor as a one-
port source network for the parallel LC load. Basic DC analysis yields the Norton
equivalent network IN = υS/R1 and RN = R1 ∥ R2 = 4 kΩ. Replace the source network
with its Norton equivalent so that the circuit now has the same form as Figure 4.39.

Apply KCL at the upper node and use the i-υ relationship for a capacitor to write:

Apply KVL around the right mesh and use the i-υ relationship for an inductor to
write:

Use the KVL equation to plug in for υC in the KCL equation to find:

or

Step 3: Solve for ωn and ζ:

Solve these two equations to find ωn ≈ 316 rad/sec and ζ ≈ 0.04 < 1. The transient
response is underdamped. The damped natural frequency is .
Note that when ζ ≪ 1, ωd ≈ ωn.
Step 4: The transient response xtr(t): Plug in for ωn and ζ to write:
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Step 5: The complete solution x(t): From step 1 iL( ∞) = IN = υS/R1such that the
complete solution for iL(t) is



Step 6: Solve for the unknown constants α1 and α2: The constants α1 and α2 can be
determined once the initial conditions on υC and iL are known.

Note that the roots of the characteristic equation associated with the second-order
ODE are

Substitute numerical values to find s1,2 = −12.5 ± j316.0 rad/sec. Both parts of these
roots are observed in the transient response.

EXAMPLE 4.15 Complete Response of an Overdamped Series LC
Circuit
Problem
Determine the complete response for the inductor current iL shown in Figure 4.47.

Figure 4.47

Solution
Known Quantities: VS; R; C; L.

Find: The complete response for the inductor current iL in the circuit of Figure 4.47.

Schematics, Diagrams, Circuits, and Given Data: VS = 25 V; R = 5 kΩ; C = 1 µ F; L
= 1 H.



Assumptions: The capacitor has been charged prior to the switch closing, such that
υC (0) = 5 V.

Analysis: Refer to the Focus on Problem Solving box “Second-Order Transient
Response” and the subsection on series LC circuits. The load is L in series with C.
Step 1: DC steady-state responses: For t < 0 the switch is open such that iC = iL = 0
A. For t → ∞ the switch is closed and the capacitor acts as a DC open-circuit while
the inductor acts as a DC short-circuit. Thus, iC = iL = 0 A, υL = 0 V and the voltage
across the resistor must also be zero due to Ohm’s law. By KVL, υC( ∞) = VS = 25 V.
Step 2: Differential equation for t > 0: With the switch closed the circuit is already
in the series LC form shown in Figure 4.40. No further simplification is possible.
Thus, the Thévenin equivalent network seen by the LC load is VT = VS = 25 V and RT
= R = 5 kΩ. Refer to Figure 4.40, apply KVL around the loop, and use the i-υ
relationship for an inductor to find:

Also apply KCL at a closed boundary surrounding the resistor and use the i-υ
relationship for the capacitor to find:

Use the KCL equation to plug in for iL in the KVL equation to find:
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or

Notice that the Norton equivalent resistance seen by the inductor with the capacitor
acting as an open-circuit is RN → ∞ such that L/RN →0. Thus, the coefficient of the
first derivative term is RTC + L/RN = RTC. Also note that the right side of the
differential equation is υC( ∞) = VS = VT.
Step 3: Solve for ωn and ζ for t > 0: Compare the second-order ODE in standard
form to its generalized form (see equation 4.25) to find:



Solve these two equations to find ωn = 103 rad/sec and ζ = 2.5 > 1. The transient
response is overdamped.
Step 4: The transient response xtr(t): The differential equation in step 2 was found
for υC because it was the easiest variable for which to find a second-order ODE.
However, since the transient response for υC is overdamped, the same is true for
every other variable in the circuit. Thus, for the overdamped case:

Step 5: The complete solution x(t): From step 1 iL(∞) = 0 A such that the complete
solution for iL(t) is

Step 6: Solve for the unknown constants α1 and α2: The initial conditions are
υC(0+) = υC(0−) = 5 V and iL(0+) = iL(0−) = 0 A. From step 5:

Differentiate iL(t) and set t = 0+ to find:

Also, from the first-order KVL equation found in step 2:

Thus:

Solve this system of two equations in two unknowns to find:

Finally, plug in to find:
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A plot of the complete solution and of its components is given in Figure 4.48.

Figure 4.48 Complete response of overdamped second-order circuit

EXAMPLE 4.16 Complete Response of Critically Damped Parallel LC
Circuit
Problem
Determine the complete response for the voltage υC shown in Figure 4.49.

Figure 4.49



Solution
Known Quantities: IS; R; RS; C; L.

Find: The complete response of the differential equation in υC describing the circuit
in Figure 4.49.
Schematics, Diagrams, Circuits, and Given Data: IS = 5 A; R = RS = 500 Ω; C = 2
µF; L = 500 mH.
Assumptions: The network is in a DC steady-state prior to t = 0.
Analysis: Refer to the Focus on Problem Solving box “Second-Order Transient
Response” and the subsection on parallel LC circuits. The load is L in parallel with
C.
Step 1: DC steady-state responses. For t < 0, the switch is open such that the current
source is separated from the parallel RLC network, which is in a DC steady-state
such that the inductor acts as a short-circuit and the capacitor acts as an open-circuit.
The result is that υC(0−) = 0 V and iL(0−) = 0 A. For t → ∞ the switch is closed and
the capacitor acts as a DC open-circuit while the inductor acts as a DC short-circuit.
Thus, all of the current IS is through the inductor such that iL(∞) = IS. Likewise, since
no current is through either resistor the voltage across the two nodes is zero such that
υC(∞) = 0.
Step 2: Differential equation for t > 0: With the switch closed the Norton equivalent
network seen by the parallel LC load is RN = R∥RS = 250Ω and IN = IS = 5 A such
that Page 306the network is simplified to the form shown in Figure 4.39. Apply KCL
at the upper node and use the i-υ relationship for a capacitor to write:

Apply KVL around the right mesh in Figure 4.39 and use the i-υ relationship for an
inductor to write:

Use the KVL equation to plug in for υC in the KCL equation to find:

or



Notice that the Thévenin equivalent resistance seen by the capacitor with the inductor
acting as a short-circuit is RT = 0 such that RTC = 0. Thus, the coefficient of the first
derivative term is RTC+L/RN = L/RN. Also note that the right side of the differential
equation is iL(∞) = IS = IN.

Since the left side of the differential equation is the same for every variable it is a
simple matter to substitute υC for iL and replace the right side with υC(∞) to find:

The differential equation for iL was found first because it was the easier to do!
Step 3: Solve for ωn and ζ for t > 0: Compare the second-order ODE in standard
form to its generalized form (see equation 4.25) to find:

Solve these two equations to find ωn = 103 rad/sec and ζ = 1. The transient response
is critically damped.
Step 4: The transient response xtr(t): For the critically damped case:

Step 5: The complete solution x(t): From step 1, υC(∞) = 0 V such that the complete
solution for υC(t) is

Step 6: Solve for the unknown constants α1 and α2: The initial conditions are
υC(0+) = υC(0−) = 0 V and iL(0+) = iL(0−) = 5 A. From step 5:

Differentiate υC(t) and set t = 0+ to find:

Also, from the first-order KCL equation found in step 2:



Thus:
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Finally, plug in to find:

A plot of the complete solution and of its components is given in Figure 4.50. Note
that the maximum value occurs when ωnt = 1.

Figure 4.50 Complete response of critically damped second-order circuit

EXAMPLE 4.17 Complete Response of Underdamped Series LC
Circuit
Problem
Determine the complete response for the current iL shown in Figure 4.51.



Figure 4.51

Solution
Known Quantities: VS; R; C; L.

Find: The complete response for the current iL shown in Figure 4.51.

Schematics, Diagrams, Circuits, and Given Data: VS = 12 V; R = 200 Ω; C = 10 µF;
L = 0.5 H.
Assumptions: The capacitor has an initial charge such that υC(0–) = υC(0+) = 2 V.

Analysis: Refer to the Focus on Problem Solving box “Second-Order Transient
Response” and the subsection on series LC circuits. The load is L in series with C.
Step 1: DC steady-state responses. For t < 0 the switch is open such that iC = iL = 0
A. The capacitor has an initial charge such that its voltage is υC = 2 V for t < 0. For t
→ ∞ the switch is closed and the capacitor acts as a DC open-circuit while the
inductor acts as a DC short-circuit. Thus, iC = iL = 0, υL = 0 and the voltage across
the resistor must also be zero due to Ohm’s law. By KVL, υC(∞) = VS = 12 V.
Step 2: Differential equation for t > 0: With the switch closed the circuit is already
in the series LC form shown in Figure 4.40. No further simplification is possible.
Thus, the Thévenin equivalent network seen by the LC load is VT = VS = 12 V and RT
= R = 200Ω. Refer to Figure 4.40, apply KVL around the loop and use the i-υ
relationship for an inductor to find:
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Also apply KCL at a closed boundary surrounding the resistor and use the i-υ
relationship for the capacitor to find:

Use the KCL equation to plug in for iL in the KVL equation to find:



or

Notice that the Norton equivalent resistance seen by the inductor with the capacitor
acting as an open-circuit is RN → ∞ such that L/RN → 0. Thus, the coefficient of the
first derivative term is RTC + L/RN = RTC. Also note that the right side of the
differential equation is υC(∞) = VS = VT.

Since the left side of the differential equation is the same for every variable it is a
simple matter to substitute iL for υC and replace the right side with iL(∞) to find:

The differential equation for υC was found first because it was the easier to do!
Step 3: Solve for ωn and ζ for t > 0: Compare the second-order ODE in standard
form to its generalized form (see equation 4.25) to find:

Solve these two equations to find  and . The transient
response is underdamped.
Step 4: The transient response xtr (t): The transient response is underdamped, thus:

or

Step 5: The complete solution x(t): From step 1 iL(∞) = 0 such that the complete
solution for iL(t) is the same as the transient solution.



Step 6: Solve for the unknown constants α1 and α2: The initial conditions are
υC(0+) = υC(0−) = 2 V and iL(0+) = iL(0−) = 0 A. From step 5:

Differentiate iL(t) and set t = 0+ to find:

Also, from the first-order KVL equation found in step 2:
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Thus:

Finally, plug in to find:

A plot of the complete solution and of its components is given in Figure 4.52.

Figure 4.52 Complete response of underdamped second-order circuit



EXAMPLE 4.18 Analysis of Nonseries, Nonparallel LC Circuit
Problem
Assume the circuit shown in Figure 4.53 is in DC steady-state for t < 0. The switch
closes at t = 0. Find the differential equations for the voltage υC across the capacitor
and the current iL through the inductor for t > 0.

Figure 4.53

Solution
Known Quantities: VS1; RS1; VS2; RS2; R1; R2; L; C.

Find: For t > 0, find the differential equations for the voltage υC across the capacitor
and the current iL through the inductor shown in Figure 4.53.

Assumptions: DC steady-state for t < 0.
Analysis: The critical difference between the circuit in this example and those in the
previous examples is that the capacitor and inductor are neither in series nor in
parallel. It is necessary to find two first-order differential equations in the state
variables υC and iL to find the second-order differential equation in either state
variable. Refer to the Focus on Problem Solving box “Second-Order Transient
Response.”
Step 1: DC steady-state responses: For t < 0 the switch is open, and VS1 and RS1 are
disconnected from the rest of the circuit. Assuming a DC steady-state the inductor
acts as a short-circuit and the capacitor acts as an open-circuit such that the voltage
across R1 is Page 310zero and the current through R2 is zero. Thus, KVL requires
that the voltage across RS2 is VS2 and all of the current through RS2 is also through the
inductor to complete a circuit. Ohm’s law requires that the voltage across R2 is zero



such that KVL around a loop containing the inductor and capacitor results in υC = 0.
Therefore, the values of the state variables just prior to the switch event are

For t > 0 the switch is closed and the circuit can be redrawn in the source-load
perspective as shown in Figure 4.54. The two Thévenin sources can be transformed
into Norton sources as shown in Figure 4.55. The two parallel current sources can be
summed to produce IN = IS1 + I2, and the three parallel resistors can be replaced with
an equivalent resistance RN = RS1∥RS2∥R1 as shown in Figure 4.56. As t → ∞ the
inductor and capacitor again act as short- and open-circuits, respectively, such that:

Figure 4.54

Figure 4.55

Figure 4.56

Step 2: Differential equation for t > 0: Refer to Figure 4.56. The source network is
already in the form of a Norton source so no further simplification is possible. Apply
KCL at the top node and the i-υ relationships for the inductor and capacitor to find:



Also apply KVL around the right-most mesh and the i-υ relationships for the inductor
and capacitor to find:

These two first-order differential equations in the two state variables iL and υC can be
combined to find a second-order differential equation in one state variable. One way
to accomplish this task is to multiply the KCL equation by R2 and subtract the result
from the KVL equation to yield:

Differentiate both sides of this equation to find:

Substitute this result into the KCL equation to yield a second-order differential
equation in standard form.

Notice that the coefficient of iL is unity (standard form) and the coefficient of the
first-order derivative is the sum of the time constants RTC+L/RN associated with the
capacitor and inductor. Here, RT is the Thévenin equivalent resistance seen by
capacitor Page 311with the inductor acting as a short-circuit and RN is the Norton
equivalent resistance seen by the inductor with the capacitor acting as an open-
circuit. (Confirm that RT seen by the capacitor is R2.) Also, the right-hand side is
iL(∞) = IN.

Likewise, the second-order differential equation in υC must be

Step 3: Solve for ωn and ζ for t > 0: Compare the second-order ODE in standard
form to its generalized form (see equation 4.25) to find:



These two equations can be reexpressed as:

Step 4: The transient response xtr (t): The form (overdamped, critically damped,
underdamped) of the transient solution depends upon the value of ζ, which itself
depends upon the values of the various circuit elements.
Step 5: The complete solution x(t): The complete solution is the sum of the transient
solution and the long-term DC steady-state value.

Regardless of the form of the transient solution, the complete solution will contain
two unknown constants α1 and α2.
Step 6: Solve for the unknown constants α1 and α2: The initial conditions are

In general, to solve for the unknown constants it is necessary to find two linearly
independent algebraic equations in them. The first such equation is found by simply
setting t = 0+ in the complete solution and setting the result equal to the initial
condition for the variable. To find a second equation take the derivative of the
complete solution and evaluate it at t = 0+. Then, use the first-order KCL and KVL
differential equations found in step 2 to find another expression of υC or iL. Evaluate
it at t = 0+ to find an expression in terms of iL(0+) and υC(0+).

In this particular example, one of the results found in step 2 is

This equation can be rearranged and evaluated at t = 0+ to find:

Comments: Recall that the values of the unknown constants and the long-term steady
state are, in general, different for different variables. However, all variables in a
circuit share the same natural frequency ωn and dimensionless damping coefficient ζ.



That is, the left side of the second-order differential equation is the same for all
variables. Also, keep in mind that the initial conditions for any variable and its
derivative must be related to the initial conditions on the state variables since only
the state variables are guaranteed to be continuous across the transient event.
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EXAMPLE 4.19 Transient Response of Automotive Ignition Circuit
Problem
The circuit shown in Figure 4.57 is a simplified but realistic representation of an
automotive ignition system. The circuit includes an automotive battery, a
transformer (ignition coil), a capacitor (known as a condenser in old-fashioned
automotive parlance), and a switch. The switch is usually an electronic switch (e.g., a
transistor—see Chapter 9) and can be treated as an ideal switch. The circuit on the
left represents the ignition circuit immediately after the electronic switch has closed,
following a spark discharge. Thus, one can assume that no energy is stored in the
inductor prior to the switch closing, say at t = 0. Furthermore, no energy is stored in
the capacitor, as the short-circuit (closed switch) across it would have dissipated any
charge in the capacitor. The primary winding of the ignition coil (left-hand side
inductor) is then given a suitable length of time to build up stored energy, and then
the switch opens, say at t = Δt, leading to a rapid voltage buildup across the
secondary winding of the coil (right-hand side inductor). The voltage rises to a very
high value because of two effects: an inductive voltage kick due to the fact that a
large change in the rate of current through the coil requires a large voltage (see the
constitutive i-υ relation for an inductor) and the voltage multiplying effect of the
transformer. The result is a very short high-voltage transient (reaching thousands of
volts), which causes a spark to be generated across the spark plug.



Figure 4.57

Solution
Known Quantities: VB; N2/N1; Lp; Rp; C.

Find: The ignition coil current i(t) and the open-circuit voltage across the spark plug
υOC(t).

Schematics, Diagrams, Circuits, and Given Data: VB = 12 V; N2/N1 = 100; Lp = 5
mH; Rp = 2 Ω; C = 10 µF.

Assumptions: The switch has been open for a long time before it closes at t = 0. The
switch opens again at t = Δt.
Analysis: Initially, the switch is open and no energy is stored in either the inductor or
the capacitor. Then, the switch is closed, as shown in Figure 4.58. When the switch is
closed, a first-order RL circuit is formed by the primary coil inductance LP and
resistance RP. Page 313The solution of this circuit gives the initial condition that will
be in effect when the switch is opened again.

where



Figure 4.58 When the switch is opened at t = Δt, the capacitor is no longer
bypassed, resulting in a second-order transient.

The switch remains closed until t = Δt = 12.5 ms = 5τ. At time Δt, the value of the
inductor current will be

that is, the current reaches roughly 99 percent of its long term steady-state value in
five time constants.

Now, when the switch opens at t = Δt, the result is a series LC circuit.
Step 1: Steady-state response for t > Δt. After the switch has been open for a long
time, the capacitor acts as an open-circuit and the inductor acts as a short-circuit. In
this case, all the source voltage will appear across the capacitor, and, of course, the
inductor current is zero: iL(∞) = 0 A, υC(∞) = VS = 12 V.
Step 2: Differential equation. The differential equation for the series circuit can be
obtained by KCL:

Step 3: Solve for ωn and ζ.

Thus, the ignition circuit is underdamped.
Step 4: The complete solution. The long term steady-state inductor current is zero
so the transient solution is also the complete solution for t > Δt.



Step 5: Solve for the constants α1 and α2. Finally, solve for the initial conditions to
evaluate the constants α1 and α2. At t = Δt = 12.5 ms, iL(Δt–) = 5.96 A and υC(Δt–) =
0 V. Since the differential equation is in the variable iL, the two needed initial
conditions are iL(Δt+) and diL(Δt+)/dt. The first initial condition is found directly
from the solution iL(Δt+) = iL(Δt–) = 5.96 A. The second initial condition is found by
applying KVL at t = Δt+:

The first initial condition at t = Δt+ yields
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The second initial condition at t = Δt+ is evaluated as follows:

Substituting α1 = 5.96 – α2, obtain:

The final complete solution is:



A plot of the inductor current for −10 ≤ t ≤ 50 ms is shown in Figure 4.59. Notice the
initial first-order transient at t = 0 followed by a second-order transient at t = 12.5
ms.

Figure 4.59 Transient current response of ignition current

To compute the primary voltage, differentiate the inductor current and multiply
by L; to determine the secondary voltage, which is that applied to the spark plug, the
1:100 transformer Page 315increases the secondary voltage by a factor of 100
relative to the primary voltage.1 Thus, the expression for the secondary voltage is:

The voltage near t = Δt will generate the spark. Evaluating at t = Δt:



It is important to note that υspark plug oscillates rapidly and that its first peak voltage
occurs near 0.32 ms at an approximate value of –12,550 V. A plot of the inductor
voltage starting at the time when the switch is opened is shown in Figure 4.60. The
result of the switching is a succession of large (negative) voltage spikes, capable of
generating a series of sparks across the plug gap. However, once a single spark is
generated, the entire dynamics of the spark plug changes since the spark itself acts as
a low-resistance ionized path to ground.

Figure 4.60 Secondary ignition voltage response

CHECK YOUR UNDERSTANDING
For what value of RN in Example 4.14 will the circuit response become critically
damped?
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CHECK YOUR UNDERSTANDING

Answer: R = 158.1 Ω



1.

2.

3.

4.

If the inductance in Example 4.17 is reduced to one-half of its original value (from
0.5 to 0.25 H), for what range of values of R will the circuit be underdamped?

Conclusion
Chapter 4 has focused on the solution of first- and second-order differential equations
for the case of DC switched transients, and it has presented a number of analogies
between electric circuits and other physical systems, such as thermal, hydraulic and
mechanical.

While many other forms of excitation exist, turning a DC supply on and off is a
very common occurrence in electrical, electronic, and electromechanical systems.
Further, the methods discussed in this chapter can be readily extended to the solution
of more general problems.

A thorough study of this chapter should result in the acquisition of the following
learning objectives:

Write differential equations for circuits containing inductors and capacitors.
This process involves the application of KVL and/or KCL to produce first-order
differential equations and the use of constitutive i-υ relationships for inductors
and capacitors to produce differential equations in the state variables.
Determine the DC steady-state solution of circuits containing inductors and
capacitors. The DC steady-state solution of any differential equation can be
easily obtained by setting the derivative terms equal to zero. Alternatively, the
DC steady-state response for any circuit variable can be acquired directly from
the circuit since an inductor acts as a short-circuit and a capacitor acts as an
open-circuit under DC conditions.
Write the differential equation of first-order circuits in standard form, and
determine the complete solution of first-order circuits excited by switched DC
sources. First-order systems are most commonly described by way of two
constants: the DC gain and the time constant. You have learned how to recognize
these constants, how to compute the initial and final conditions, and how to write
the complete solution of all first-order circuits almost by inspection.
Write the differential equation of second-order circuits in standard form, and
determine the complete solution of second-order circuits excited by switched DC
sources. Second-order circuits are described by three constants: the DC gain, the
natural frequency, and the dimensionless damping coefficient. While the method

Answer: R ≤ 316 Ω
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4.2
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4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

for obtaining the complete solution for a second-order circuit is logically the
same as that used for a first-order circuit, the details are more involved.

HOMEWORK PROBLEMS
Section 4.2: Elements of Transient Problem Solving

Write the differential equations for t > 0 for iL and υ3 in Figure P4.21. How are
they related?

Write the differential equation for t > 0 for υC in Figure P4.23.

Write the differential equation for t > 0 for iC in Figure P4.27.

Write the differential equation for t > 0 for iL in Figure P4.29.

Write the differential equation for t > 0 for υC in Figure P4.32.
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Write the differential equations for t > 0 for iC and υ3 in Figure P4.34. How are
they related?

Write the differential equation for t > 0 for υC in Figure P4.41. Assume S1 is
open, S2 is closed and that R1 = 5 Ω, R2 = 4 Ω, R3 = 3 Ω, R4 = 6 Ω, and C1 = C2
= 4 F.

Write the differential equation for t > 0 for iC in Figure P4.47. Assume VS = 9 V,
C = 1 µF, RS = 5 kΩ, R1 = 10 kΩ, and R2 = R3 = 20 kΩ.

Write the differential equation for t > 0 for iL in Figure P4.49.

Write the differential equations for t > 0 for iL and υ1 in Figure P4.52. How are
they related? Assume L1 = 1 H and L2 = 5 H.

Determine the initial and final conditions on iL and υ3 in Figure P4.21.

Determine the initial and final conditions on υC in Figure P4.23.

Determine the initial and final conditions on iC in Figure P4.27.

Determine the initial and final conditions on iL in Figure P4.29.

Determine the initial and final conditions on υC in Figure P4.32.

Determine the initial and final conditions on iC and υ3 in Figure P4.34.



4.17

4.18

4.19

4.20

4.21

4.22

Determine the initial and final conditions on υC in Figure P4.41. Assume S1 is
always open and S2 is closed at t = 0.

Determine the initial and final conditions on iC in Figure P4.47. Assume VS = 9
V, C = 1 µF, RS = 5 kΩ, R1 = 10 kΩ, and R2 = R3 = 20 kΩ.

Determine the initial and final conditions on iL in Figure P4.49.

Determine the initial and final conditions on iL and υ1 in Figure P4.52. Assume
L1 = 1 H and L2 = 5 H.

At t = 0–, just before the switch is opened, the current through the inductor in
Figure P4.21 is iL = 140 mA. Is this value the same as that for DC steady-state?
Was the circuit in steady state just before the switch was opened? Assume VS =
10 V, R1 = 1 kΩ, R2 = 5 kΩ, R3 = 2 kΩ, and L = 1 mH.

Figure P4.21

For t < 0, the circuit shown in Figure P4.22 is at DC steady-state. The switch is
thrown at t = 0.

VS1 = 35 VVS2 = 130 V

Determine the current through R3 just after the switch is thrown at t = 0+.

Figure P4.22



4.23

4.24

4.25

4.26

4.27

Determine the current iC through the capacitor just before and just after the
switch is closed in Figure P4.23. Assume steady-state conditions for t < 0. V1 =
15 V, R1 = 0.5 kΩ, R2 = 2 kΩ, and C = 0.4 µF.

Figure P4.23

Assume the switch in Figure P4.23 has been closed for a very long time and
then is opened. Determine the current iC through the capacitor immediately after
the switch is opened. V1 = 10 V, R1 = 200 mΩ, R2 = 5 kΩ, and C = 300 µF.

Just before the switch is opened at t = 0 in Figure P4.21, assume the current
through the inductor Page 318is iL = 1.5 mA. Determine the voltage υ3 across R3
immediately after the switch is opened. Assume VS = 12 V, R1 = 6 kΩ, R2 = 6
kΩ, R3 = 3 kΩ, and L = 0.9 mH.

Assume that steady-state conditions exist in the circuit shown in Figure P4.26
for t < 0. Determine the current through the inductor immediately after the
switch is thrown. Assume L = 0.5 H, R1 = 100 kΩ, RS = 5 Ω, and VS = 24 V.

Figure P4.26

Assume that steady-state conditions exist in the circuit shown in Figure P4.27
for t < 0 and that V1 = 15 V, R1 = 100 Ω, R2 = 1.2 kΩ, R3 = 400 Ω, C = 4.0 µF.
Determine the current iC through the capacitor at t = 0+, just after the switch is
closed.



4.28

4.29

4.30

Figure P4.27

For t > 0, find the Norton equivalent network seen by the inductor in Figure
P4.28. Use that result to determine the associated time constant. Assume:

Figure P4.28

For t > 0, find the Norton equivalent network seen by the inductor in Figure
P4.29. Use that result to determine the associated time constant. Assume:

Figure P4.29

For t > 0, find the Thévenin equivalent network seen by the capacitor in Figure
P4.30. Use that result to determine the associated time constant. Assume: R1 = 3
Ω,R2 = 1 Ω,R3 = 4 Ω,C = 0.2F,IS = 3A.



4.31

4.32

4.33

Figure P4.30

For t > 0, find the Thévenin equivalent network seen by the capacitor in Figure
P4.31. Use that result to determine the associated time constant. Assume: RS = 8
kΩ, VS = 40 V, C = 350 µF, and R = 24 kΩ.

Figure P4.31

Section 4.3: First-Order Transient Analysis
Determine the voltage υC across the capacitor shown in Figure P4.32 for t > 0.
Assume a DC steady-state for t < 0 and:
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Figure P4.32

For t < 0, the circuit shown in Figure P4.29 is at steady state. The switch is
thrown at t = 0. Determine the current iL through the inductor for t > 0. Assume:



4.34

a.

b.

c.

4.35

For t < 0, the circuit shown in Figure P4.34 is at steady state. The switch is
thrown at t = 0. Assume:

Determine the

Current iC through the capacitor for t > 0.

Voltage υ3 across R3 for t > 0.

Time required for iC and υ3 to change by 98 percent of their initial values
at t = 0+.

Figure P4.34

The circuit in Figure P4.35 is a simple model of an automotive ignition system.
The switch models the “points” that switch electric power to the cylinder when
the fuel-air mixture is compressed. R is the resistance across the gap between
the electrodes of the spark plug.

Determine the value of L and R1 so that the voltage across the spark plug gap
just after the switch is changed is 23 kV and so that this voltage will change
exponentially with a time constant τ = 13 ms.

Figure P4.35



4.36

4.37

4.38

The inductor L in the circuit shown in Figure P4.36 is the coil of a relay. When
the current iL through the coil is equal to or greater than 2 mA, the relay is
activated. Assume DC steady-state conditions at t < 0 and the following values:

Determine R2 so that the relay activates 2.3 seconds after the switch is thrown.

Figure P4.36

Determine the current iC through the capacitor in Figure P4.37 for all time.
Assume DC steady-state conditions for t < 0. Also assume: V1 = 10 V, C = 200
μF, R1 = 300 mΩ, and R2 = R3 = 1.2 kΩ.

Figure P4.37

Determine the voltage υL across the inductor in Figure P4.38 for all time.
Assume DC steady-state conditions for t < 0. Also assume: VS = 15 V, L = 200
mH, RS = 1 Ω, and R1 = 20 kΩ.

Page 320



4.39

4.40

4.41

a.

b.

c.

d.

Figure P4.38

For t < 0, the circuit shown in Figure P4.39 is at DC steady-state. The switch is
closed at t = 0. Determine the voltage υC for all time. Assume: R1 = R3 = 3 Ω, R2
= 6 Ω, V1 = 15 V, and C = 0.5 F.

Figure P4.39

For t < 0, the circuit shown in Figure P4.21 is at DC steady-state. The switch is
opened at t = 0. Determine the current iL through the inductor for all time.
Assume:

For the circuit shown in Figure P4.41, assume that switch S1 is always held open
and that switch S2 is open until being closed at t = 0. Assume DC steady-state
conditions for t < 0. Also assume R1 = 5 Ω, R2 = 4 Ω, R3 = 3 Ω, R4 = 6 Ω, and
C1 = C2 = 4 F.

Find the capacitor voltage υC at t = 0+.

Find the time constant τ for t > 0.

Find υC for all time and sketch the function.

Evaluate the ratio υC to υC(∞) at each of the following times: t = 0, τ, 2τ,
5τ, 10τ.

Figure P4.41



4.42

a.

b.

c.

d.

4.43

a.

b.

c.

d.

e.

4.44

a.

b.

c.

d.

4.45

For the circuit shown in Figure P4.41, assume that switches S1 and S2 have been
held open and closed, respectively, for a long time prior to t = 0. Then,
simultaneously at t = 0, S1 closes and S2 opens. Also assume R1 = 5 Ω, R2 = 4 Ω,
R3 = 3 Ω, R4 = 6 Ω, and C1 = C2 = 4 F.

Find the capacitor voltage υC at t = 0+.

Find the time constant τ for t > 0.

Find υC for all time and sketch the function.

Evaluate the ratio υC to υC(∞) at each of the following times: t = 0, τ, 2τ,
5τ, 10τ.

For the circuit shown in Figure P4.41, assume that switch S2 is always held open
and that switch S1 is closed until being opened at t = 0. Subsequently, S1 closes
at t = 3 τ and remains closed. Also assume DC steady-state conditions for t < 0
and R1 = 5 Ω, R2 = 4 Ω, R3 = 3 Ω, R4 = 6 Ω, C1 = C2 = 4 F.

Find the capacitor voltage υC at t = 0.

Find υC for 0 < t < 3τ.

Use part b to find the capacitor voltage υC at t = 3τ, and use it to find υC
for t > 3τ.
Compare the two time constants for 0 < t < 3τ and t > 3τ.
Sketch υC for all time.

For the circuit shown in Figure P4.41, assume that switches S1 and S2 have been
held open for a long time prior to t = 0 but then close at t = 0. Also assume R1 =
5 Ω, R2 = 4 Ω, R3 = 3 Ω, R4 = 6 Ω, and C1 = C2 = 4 F.

Find the capacitor voltage υC at t = 0.

Find the time constant τ for t > 0.

Find υC and sketch the function.

Evaluate the ratio υC to υC(∞) at each of the following times: t = 0, τ, 2τ,
5τ, 10τ.

For the circuit shown in Figure P4.41, assume that switches S1 and S2 have been
held closed for a long time prior to t = 0. S1 then opens at t = 0; however, S2
does not open until t = 48 s. Also assume R1 = 5 Ω, R2 = 4 Ω, R3 = 3 Ω, R4 = 6
Ω, and C1 = C2 = 4 F.



a.

b.

c.

d.

e.

f.

4.46

a.

b.

c.

d.

e.

f.

4.47

4.48

Find the capacitor voltage υC at t = 0.

Find the time constant τ for 0 < t < 48 s.

Find υC for 0 < t < 48 s.

Find τ for t > 48 s.

Find υC for t > 48 s.

Sketch υC for all time.
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For the circuit shown in Figure P4.41, assume that switches S1 and S2 have been
held closed for a long time prior to t = 0. S2 then opens at t = 0; however, S1
does not open until t = 96 s. Also assume R1 = 5 Ω, R2 = 4 Ω, R3 = 3 Ω, R4 = 6
Ω, and C1 = C2 = 4 F.

Find the capacitor voltage υC at t = 0.

Find the time constant for 0 < t < 96 s.

Find υC for 0 < t < 96 s.

Find the time constant for t > 96 s.

Use part c to find the capacitor voltage υC at t = 96 s, and use it to find υC
for t > 96 s

Sketch υC for all time.

For the circuit in Figure P4.47, determine the value of resistors R1 and R2,
knowing that the time constant before the switch opens is 1.5 ms, and it is 10 ms
after the switch opens. Assume: RS = 15 kΩ, R3 = 30 kΩ, and C = 1 µF.

Figure P4.47

For the circuit in Figure P4.47, assume VS = 100 V, RS = 4 kΩ, R1 = 2 kΩ, R2 =
R3 = 6 kΩ, C = 1 µF, and the circuit is in a steady-state condition before the
switch opens. Find the value of υC at t = 8/3 ms after the switch opens.



4.49

4.50

a.

b.

4.51

4.52

In the circuit in Figure P4.49, how long after the switch is thrown at t = 0 will iL
= 5 A? Assume a DC steady-state for t < 0. Plot iL(t).

Figure P4.49

Refer to Figure P4.49 and assume that the switch takes 5 ms to move from one
contact to the other. Also assume that during this time neither switch position
has electrical contact. Find:

iL(t) for 0 < t < 5 ms.

The maximum voltage between the contacts during the 5-ms duration of
the switching.

The circuit in Figure P4.51 includes a voltage-controlled switch. The switch
closes or opens when the voltage across the capacitor reaches the value  or ,
respectively. If  and the period of the capacitor voltage waveform is 200
ms, find .

Figure P4.51

At t = 0 the switch in the circuit in Figure P4.52 closes. Assume that L1 = 1 H,
L2 = 5 H, and that the circuit is in DC steady-state for t < 0. Find iL(t) for all
time.



4.53

4.54

4.55

a.

b.

Figure P4.52

Repeat Problem P4.52 to find υ1(t) for all time.

The analogy between electrical and thermal systems can be used to analyze the
behavior of a pot heating on an electric stove. The heating element is modeled
as shown in Figure P4.54. Find the “heat capacity” of the burner, CS, if the
burner reaches 90 percent of the desired temperature in 10 s. Assume RS = 1.5
Ω.
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Figure P4.54

The burner and pot of Problem 4.54 can be modeled as shown in Figure P4.55.
R0 models the thermal loss between the burner and the pot. The pot is modeled
by a thermal capacitance CP in parallel with a thermal resistance RP.

Find the final temperature of the water in the pot— that is, find υo as t →
∞ if IS = 75 A, CP = 80 F, R0 = 0.8 Ω, RP = 2.5 Ω, and the burner is the
same as in Problem 4.54.

How long will it take for the water to reach 80 percent of its final
temperature?

Hint: Assume CS ≪ CP such that CS effectively acts an open-circuit.



4.56

4.57

4.58

Figure P4.55

The circuit in Figure P4.56 is used as a variable delay in a burglar alarm. The
alarm is a siren with an internal resistance of 1 kΩ. The alarm will not sound
until the current i0 exceeds 100 µA. Use a graphical solution or a computer
simulation to find the range of the variable resistor R for which the delay is
between 1 and 2 s. Assume the capacitor is initially uncharged.

Figure P4.56

For t > 0, find the voltage υ1 across C1 shown in Figure P4.57. Let C1 = 5 µF
and C2 = 10 µF. Assume the capacitors are initially uncharged.

Figure P4.57

For the circuit shown in Figure P4.58 determine the time constants when the
switch is open and when it is closed.



4.59

a.

b.

c.

4.60

Figure P4.58

The circuit in Figure P4.59 models the charging circuit of an electronic camera
flash. The flash should be charged to υC ≤ 7.425 V for each use. Assume C = 1.5
mF, R1 = 1 kΩ, and R2 = 1 Ω.

How long does it take the flash to recharge after taking a picture?

The shutter button stays closed for 1/30 s. How much energy is delivered
to the flash bulb R2 in that interval? Assume the capacitor is fully charged.

If the shutter button is pressed 3 s after a flash, how much energy is
delivered to the bulb R2?
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Figure P4.59

The ideal current source is(t) in Figure P4.60 switches levels as shown.
Determine and sketch the voltage υo(t) across the inductor for 0 < t < 2 s.
Assume the inductor current is zero before t = 0, RS = 500 Ω, and L = 50 H.



4.61

4.62

Figure P4.60

Section 4.4: Second-Order Transient Analysis
In the circuit shown in Figure P4.61:

Determine the voltage υC across the capacitor and the current iL through the
inductor as t → ∞.

Figure P4.61

For t > 0, determine the current iL through the inductor and the voltage υC across
the capacitor in Figure P4.62. Assume υS = –1 V for t < 0 but is reversed to υS =
1 V for t > 0. Also assume R = 10 Ω, L = 5 mH, C = 100 µF, and that the circuit
was in DC steady-state prior to when the source was reversed.



4.63

4.64

4.65

Figure P4.62

The switch shown in Figure P4.63 closes at t = 0. Assume a DC steady-state for
t < 0 and:

Determine the current iL through the inductor and the voltage υC across the
capacitor for t > 0.

Figure P4.63

The switch in the circuit shown in Figure P4.64 closes at t = 0. Assume a DC
steady-state for t < 0 and:

Determine the current iL through the inductor and the voltage υC across the
capacitor for t > 0.

Figure P4.64

Page 324

The switch shown in Figure P4.65 is thrown at t = 0. Assume a DC steady-state
for t < 0 and:



4.66

4.67

Determine the current i1 through R1 and the voltage υ2 across R2 for t > 0.

Figure P4.65

For t < 0, the circuit shown in Figure P4.66 is at DC steady-state and the voltage
across the capacitor is +7 V. The switch is thrown at t = 0. Assume:

Determine the current iL through the inductor, the voltage υC across the
capacitor, and the current i2 through R2 for t > 0.

Figure P4.66

For t < 0, the circuit shown in Figure P4.67 is in DC steady-state. Determine the
current iL through the inductor and the voltage υC across the capacitor for t > 0.

Figure P4.67



4.68

4.69

4.70

For t < 0, the circuit shown in Figure P4.68 is in DC steady-state. The switch is
closed at t = 0. Determine the current iL through the inductor and the voltage υC
across the capacitor for t > 0. Assume R = 3 kΩ, RS = 600 Ω, VS = 2 V, C = 2
mF, and L = 1 mH.

Figure P4.68

Assume the switch in the circuit in Figure P4.69 has been closed for a very long
time. It is suddenly opened at t = 0 and then reclosed at t = 5 s. Determine the
current iL through the inductor, the voltage υC across the capacitor, and the
voltage υ across the 2-Ω resistor for t > 0.

Figure P4.69

Determine whether the circuit in Figure P4.70 is overdamped or underdamped
for t > 0. Assume VS = 15 V, R = 200 Ω, L = 20 mH, and C = 0.1 µF. Determine
the capacitance that results in critical damping.
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Figure P4.70



4.71

a.

b.

c.

d.

4.72

4.73

4.74

4.75

4.76

For t < 0, assume the circuit in Figure P4.70 is in DC steady-state. Assume VS =
15 V, R = 200 Ω, L = 20 mH and C = 0.1 µF. If the switch is thrown at t = 0, find
the:

Initial capacitor voltage υC at t = 0+.

Capacitor voltage υC at t = 20 µs.

Capacitor voltage υC as t → ∞.

Maximum capacitor voltage.

Assume the switch in the circuit in Figure P4.69 has been open for a very long
time. It is suddenly closed at t = 0 and then reopened at t = 5 s. Determine the
current iL through the inductor, the voltage υC across the capacitor, and the
voltage υ across the 2-Ω resistor for t > 0.

Assume that the circuit shown in Figure P4.70 is underdamped, and for t < 0,
the circuit is in DC steady-state with υC = VS. After the switch is thrown at t = 0,
the first two zero crossings of the capacitor voltage υC occur at t = 5π/3 µs and t
= 5π µs. At t = 20π/3 µs, the capacitor voltage υC peaks at 0.6 VS. If C = 1.6 µF,
what are the values of R and L?

Given the information provided in Problem 4.73, what are the values of R and L
so that the peak at 20π/3 µs is υC = 0.7 VS? Assume C = 1.6 µF.

Determine iL for t > 0 in Figure P4.75, assuming iL(0) = 2.5 A and υC(0) = 10 V.

Figure P4.75

Find the maximum value of υC for t > 0 in Figure P4.76, assuming DC steady-
state for t < 0.

Figure P4.76



4.77

4.78

4.79

4.80

For t > 0, determine the time t at which i = 2.5 A in Figure P4.77, assuming DC
steady-state for t < 0.

Figure P4.77

For t > 0, determine the time t at which i = 6 A in Figure P4.78, assuming DC
steady-state for t < 0.

Figure P4.78

For t > 0, determine the time t at which υ = 7.5 V in Figure P4.79, assuming DC
steady-state for t < 0.

Figure P4.79
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Assume the circuit in Figure P4.80 is in DC steady-state for t < 0 and L = 3 H.
Find the maximum value of υC for t > 0.

Figure P4.80



4.81

4.82

Assume the circuit in Figure P4.80 is in DC steady-state for t < 0. Find the value
of the inductance L that makes the circuit critically damped for t > 0. Find the
maximum value of υC for t > 0.

For t > 0, determine υ in Figure P4.82, assuming DC steady-state for t < 0.

Figure P4.82

Design Credits: Mini DVI cable adapter isolated on white background: Robert Lehmann/Alamy Stock Photo;
Balance scale: Alex Slobodkin/E+/Getty Images; Icon for “Focus on measurements” weighing scales: Media
Bakery.

1The secondary current will decrease by a factor of 100 so that power is conserved.
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C H A P T E R
5

FREQUENCY RESPONSE AND
SYSTEM CONCEPTS

requency-dependent phenomena are commonly encountered in engineering
problems. For example, structures vibrate at a characteristic frequency when
excited by wind forces (some high-rise buildings experience perceptible
oscillation!). The propeller on a ship excites the shaft at a vibration frequency

related to the engine’s speed of rotation and to the number of blades on the propeller.
An internal combustion engine is excited periodically by the combustion events in
the individual cylinder, at a frequency determined by the firing of the cylinders. Wind
blowing across a pipe excites a resonant vibration that is perceived as sound (wind
instruments operate on this principle). Filters of all types depend upon frequency. In
this respect, electric circuits are no different from other dynamic systems. A large
body of knowledge has been developed related to the frequency response of electric
circuits, most of it based on the ideas of phasors and impedance. The ideas developed
in this chapter are applied, by analogy, to the analysis of other physical systems to
illustrate the generality of the concepts.

In this chapter, quantities often involve angles. Unless indicated otherwise, angles
are given in units of radians.
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1.

2.

3.

4.

 Learning Objectives
Students will learn to...

Understand the physical significance of frequency domain analysis, and compute
the frequency response of circuits using AC circuit analysis tools. Section 5.1.
Compute the Fourier spectrum of periodic signals by using the Fourier series
representation, and use this representation in connection with frequency
response ideas to compute the response of circuits to periodic inputs. Section 5.2.
Analyze simple first- and second-order electrical filters, and determine their
frequency response and filtering properties. Sections 5.3–5.4.
Compute the frequency response of a circuit and its graphical representation in
the form of a Bode plot. Section 5.5.

5.1 SINUSOIDAL FREQUENCY RESPONSE
The sinusoidal frequency response (or, simply, frequency response) of a circuit
provides a measure of how the circuit responds to sinusoidal inputs of arbitrary
frequency. In other words, for a given input signal with a particular amplitude, phase,
and frequency, the frequency response of a circuit permits the computation of a
particular output signal. For example, suppose you wanted to determine how the load
voltage Vo or current Io varied in response to different frequencies in the circuit of
Figure 5.1. An analogy could be made, for example, with how an earbud (the load)
responds to the audio signal generated by a smartphone (the source) when an
amplifier (the circuit) is placed between the two.1 In the circuit of Figure 5.1, the
signal source circuitry is represented by a Thévenin source. The impedances are, in
general, functions of frequency. The amplifier circuit is represented by the idealized
connection of two impedances Z1 and Z2, and the load is represented by an
additional impedance Zo. The following statement provides a general definition of
the frequency response of such a system:

Figure 5.1 A circuit model



(5.1)

(5.2)

(5.3)

The frequency response of a circuit is a measure of the variation of a load-
related voltage or current as a function of the frequency of the excitation signal.

Frequency Response Functions
A frequency response function is the ratio of a chosen output to a chosen input. In
circuit analysis, the chosen input is often an independent voltage or current source.
The chosen output can be any voltage or current elsewhere in the circuit. Page 329By
convention, frequency response functions are represented by either G or H, where G
is a dimensionless gain and H can represent a gain, an impedance, or a conductance.
Four distinct versions of frequency response function follow:

In many cases the inputs Vin and Iin are chosen to be independent voltage and current
sources, respectively. The outputs Vo and Io are freely chosen and, as such, represent
the load in a circuit.

The above frequency response functions are related by the impedance Zo of the
load. For example, if GV(jω) and GI(jω) are known, the other two can be derived
directly:

Circuit Simplification



(5.4)

(5.5)

In general, the first step in determining the details of a chosen frequency response
function is to divide the circuit into a load (in accord with the chosen output) and a
source. Consider again the circuit shown in Figure 5.1. The network attached to the
load can be replaced by its Thévenin equivalent as shown in Figure 5.2. Once Page
330the load is reattached as in Figure 5.3, voltage division can be applied to express
Vo in terms of VT, and then eventually in terms of Vin.

Figure 5.2 Thévenin equivalent source network

Figure 5.3 Equivalent circuit from the perspective of the load

The gain, GV(jω), is a dimensionless complex quantity, given by:

Thus, the gain is known if the circuit element impedances are known.

Vo (jω) is a phase-shifted and amplitude-scaled version of Vin(jω).



(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

If the phasor source voltage and the frequency response of the circuit are known, the
phasor load voltage can be computed as follows:

such that

and

At any given angular frequency ω, the load voltage is a sinusoid with the same
frequency as the source voltage.

First- and Second-Order Archetypes
Whenever possible, the first step toward deriving a frequency response function is to
use Thévenin’s or Norton’s theorem to simplify the circuit. If the circuit is first order,
or second order with the storage elements in series or parallel, it can be simplified to
one of the four archetypes shown in Figures 5.4 to 5.7.

Figure 5.4 Simplified first-order circuit with one capacitor

In the first-order circuit of Figure 5.4, the loop current IC is related to the
Thévenin source voltage VT by the generalized Ohm’s law:

Multiply the numerator and denominator by(jω)C and divide both sides by VT to find
the frequency response function:



(5.12)

(5.13)

(5.14)

(5.15)

where τC = RTC.
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It is now a simple matter to find the frequency response function relating VC to
VT:

Notice that the denominator is the same as in HY. This is a common result because
the denominator expresses the characteristic dynamics of the circuit. The numerator
expresses differences in the circuit variables. It is a useful exercise to derive GV
directly from voltage division. Try it!

A similar approach can be taken to find the frequency response relating the
voltage VL to the Norton source current IN in the first-order circuit of Figure 5.5.
Apply the generalized Ohm’s law to write:

Figure 5.5 Simplified first-order circuit with one inductor

The frequency response function is found by dividing both sides by IN and then
dividing the numerator and denominator by RN.

where, in this case, τL = L/RN.

Again, it is a simple matter to find the frequency response function relating IL to
IN:



(5.16)

(5.17)

(5.18)

(5.19)

Notice that the denominator is the same as in HZ. It is a useful exercise to derive GI
directly from current division. Try it!

Second-order circuits are handled in much the same way. Consider the series LC
circuit of Figure 5.6. The common loop current IL is related to the Thévenin source
voltage VT by the generalized Ohm’s law:

Figure 5.6 Simplified second-order circuit with one capacitor and one
inductor in series

Divide both sides by IL, invert both sides, and multiply the resulting numerator and
denominator by jωC to find:

where  is the natural frequency always found in second-order series and
parallel LC circuits.

The voltage gain GV for the second-order series LC circuit can be found using the
result for HY.

Of course, IC = IL for the series loop, so:
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Finally, Figure 5.7 shows a second-order parallel LC circuit. The common
voltage VC is related to the Norton source current IN by the generalized Ohm’s law:



(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

1.

Divide both sides by IN to obtain:

Multiply the numerator and denominator by jωL to obtain:

where  is the natural frequency always found in second-order series and
parallel LC circuits.

Figure 5.7 Simplified second-order circuit with one capacitor and one
inductor in parallel

The current gain GI for the second-order parallel LC circuit can be found using
the result for HZ.

Of course, VL = VC, so:

Poles and Zeros
By definition, a frequency response function is the ratio of an output to an input.
Consequently, the development of any specific frequency response function will, in
general, also result in a ratio. The numerator and denominator can always be
expressed as the product of four distinct types of standard terms. One of these terms
is simply a constant. The other three terms are known as zeros or poles, depending
upon whether they appear in the numerator or denominator, respectively.

K A constant



2.
3.
4.

(jω) Pole or zero at the origin
(1 + jωτ) Simple pole or zero
[1 + jωτ + (jω/ωn)2] Quadratic (complex) pole or zero

A simple pole or zero may also take the form (1 + jω/ω0), where ω0 = 1/τ. In this
context, τ and ωn are a generic time constant and a generic natural frequency,
respectively, each of which may differ from one zero/pole to another. A frequency
response function may have multiples of each type of term listed above.
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The first- and second-order frequency response functions developed in the
previous section are good examples of the standard form in which the numerator and
denominator are expressed as products of these four terms. These same terms will
appear repeatedly when filters and Bode plots are discussed.

EXAMPLE 5.1 Computing the Frequency Response Using Thévenin’s
Theorem
Problem
Compute the frequency response GV( jω) = Vo/VS for Figure 5.8.

Figure 5.8

Solution
Known Quantities: R1 = 1 kΩ; C = 10 μF; Ro = 10 kΩ.

Find: The frequency response GV( jω) = Vo/VS.

Assumptions: None.



Analysis: With Ro as the load resistance, the approach is to use Thévenin’s theorem
to determine the equivalent network of the source network; that is, the equivalent
network of everything to the left of terminals a and b. The Thévenin equivalent
impedance ZT of the source network is

The Thévenin (open-circuit) voltage VT across terminals a and b is found from
voltage division:

After reattaching the load to the terminals shown in Figure 5.9, the voltage Vo across
the load can be found by applying voltage division once more:

Figure 5.9

Thus:

where Ro/(Ro + R1) is the DC gain when ω → 0 and the capacitor acts as an open-
circuit. RT = R1‖Ro is the Thévenin equivalent resistance seen by the capacitor with
the load attached. The impedances of the circuit elements are R1 = 103 Ω, ZC = 1/(jω
× 10−5) Ω, and Ro = 104 Ω. The resulting frequency response is



Page 334

Comments: The use of equivalent circuit ideas is often helpful in deriving frequency
response functions. However, it is certainly not the only method of solution. For
example, node analysis would have yielded the same results just as easily, by
recognizing that the top node voltage is equal to the load voltage and by solving
directly for Vo as a function of VS, without going through the intermediate step of
computing the Thévenin equivalent source circuit.

EXAMPLE 5.2 Computing the Frequency Response
Problem
Compute the frequency response HZ(jω) = Vo/IS for Figure 5.10.

Figure 5.10

Solution
Known Quantities: R1 = 1 kΩ; L = 2 mH; Ro = 4 kΩ.

Find: The frequency response HZ(jω) = Vo/IS.

Assumptions: None.



Analysis: While it is possible to find the Thévenin or Norton equivalent network of
everything attached to Ro and proceed as in the previous example to find the
frequency response function, it is also possible to apply current division to find Io
and then apply Ohm’s law to find Vo and thus the frequency response function.

Apply current division to write:

Factor out R1 + Ro in the denominator to find:

Then:

where R1Ro/(R1 + Ro) is the DC gain when ω → 0 and the inductor acts as a short-
circuit. RN = R1 + Ro is the Norton equivalent resistance seen by the inductor.
Substitute numerical values to obtain:

Comments: The units of HZ(jω) should be ohms. Verify that they are!
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CHECK YOUR UNDERSTANDING
Refer to Example 5.1 and compute the magnitude and phase of GV at the frequencies
ω = 10, 100, and 1,000 rad/s.



(5.25)

CHECK YOUR UNDERSTANDING
Refer to Example 5.2 and compute the magnitude and phase of HZ at the frequencies
ω = 1, 10, and 100 Mrad/s.

5.2 FOURIER ANALYSIS
It is possible to represent periodic signals by means of the superposition of various
sinusoidal signals of different amplitude, phase, and frequency. Let the signal x (t) be
periodic with period T, that is,

An example of a periodic signal is shown in Figure 5.11.

Figure 5.11 A periodic signal

The signal x (t) can be expressed as an infinite summation of sinusoidal
components, known as a Fourier series, using either of the following two
representations.

Answer: Magnitude = 0.9054, 0.6727, and 0.0994; phase (degrees) =
−5.1944, −42.2737, and −83.7227

Answer: Magnitude = 742.78 Ω, 194.03 Ω, and 19.99 Ω; phase (degrees) =
−21.8°, −75.96°, and −88.57°



1.

(5.26)

2.

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

Fourier Series
Sine-cosine (quadrature) representation

Magnitude and phase form

In each of these expressions, the period T is related to the fundamental
frequency of the signal ω0 by

The frequencies 2ω0, 3ω0, 4ω0, etc., are called harmonics.
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It is straightforward to show that equations 5.26 and 5.27 are equivalent when the
parameters an, bn, cn, and θn are related by:

Similarly, one can show that equations 5.26 and 5.28 are equivalent when the
parameters an, bn, cn, and ψn are related by:

Figure 5.12 is a graphical representation of the equivalence of the {an, bn} and {cn,
θn} forms of the Fourier series.



(5.32)

(5.33)

Figure 5.12 Relationship between {an, bn} and {cn, θn} forms

Each form of the Fourier series has its distinct advantages. The sine-cosine
representation uses odd and even functions of the independent variable. Odd
functions are antisymmetric about the origin and satisfy the condition:

Sine functions are odd. Even functions are symmetric about the origin and satisfy the
condition:

Cosine functions are even, as is any constant, such as a0. Figure 5.13 shows even and
odd function examples.

Figure 5.13 Definition of even and odd functions

The advantage of the representation in equation 5.26 is that if x (t) is known to be
odd (even), it can be represented as the sum of only odd (even) functions [i.e., using
only the sine (cosine) terms], thus resulting in easier evaluation of the Fourier series
coefficients.



(5.34)

(5.35)

(5.36)

The magnitude and phase forms, equations 5.27 and 5.28, separate out the
magnitude information cn from the phase information θn or ψn. In this form, Fourier
series may be combined readily with magnitude and phase responses of linear
systems to periodic inputs. The magnitude and phase components are often
represented as a discrete frequency spectrum, as shown in Figure 5.14.

Figure 5.14 Discrete frequency spectrum

Computation of Fourier Series Coefficients
The computation of the {an, bn} or {cn, θn} coefficients for the periodic function x (t)
is based on the following formulas:
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The integral limits are written in two different forms to illustrate that it does not
matter where the integration starts, provided that it is carried out over one entire
period. The cn and θn (or ψn) values can be derived from the an and bn coefficients by
using equations 5.30 and 5.31.



To illustrate the significance of the Fourier series decomposition, consider the
square wave of Figure 5.15(a), which is an even function. Only even function
(cosine) terms are nonzero. The first six nonzero Fourier series terms are shown in
Figure 5.15(b). Note that the first term corresponds to a0, which is the average value
A/2 of the function. The other five terms correspond to n odd (1, 3, 5, 7, and 9). Note
also that the coefficients for n = 1, 5, and 9 are positive, and those for n = 3 and 7 are
negative. This result is apparent when comparing the peaks of the cosine waveforms.
This alternation of positive and negative cosines is required so that each term can add
or subtract from the previous terms as needed to “flatten” the waveform into a square
wave. Figure 5.15(c) compares the original square wave with this six-term Fourier
series approximation. It is evident that this approximation does not reproduce the
sharp edges of the square wave. As more terms are added, the resulting
approximation improves.

Figure 5.15 Square wave and its representation by a Fourier series. (a)
Square wave (even function); (b) first six Fourier series terms of square
ware; (c) sum of first six Fourier series terms superimposed upon a square
wave

The complete Fourier series for the square wave shown in Figure 5.15(a) is



(5.37)
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It is interesting to note that if the square wave shown in Figure 5.15(a) were
shifted to the right by T/4 the resulting waveform would be an odd function. The
complete Fourier series now contains only odd functions (sines) and is

The Fourier series for two other common waveforms are listed below. In each
case the peak-to-trough amplitude is A, the period is T, and the average value is A/2.

These Fourier series converge everywhere that the function itself is differentiable.
For example, the Fourier series for the square wave in Figure 5.15 (a) does not
converge at t = −T/4, T/4, 3T/4, . . . while the Fourier series for the sawtooth wave
does not converge at t = 0, T, 2T, . . ..

Response of Linear Systems to Periodic Inputs
The frequency response concept is particularly useful when one deals with a system
excited by a periodic input, which can be modeled by a Fourier series of sinusoids of
known amplitude and phase, but different frequencies. Assume that the Fourier series
has a finite number of terms:

Each of the N sinusoids is characterized by amplitude cn, phase θn, and frequency
ωn = nω0, where ω0 = 2π/T and T is the period of the input signal. For example, the
periodic input could be a sawtooth waveform.

Figure 5.16 illustrates the input-output representation of a system, making use of
the frequency response concept. The figure shows that if the input qin(t) to a linear
system can be represented by the phasor Qin(jω), then the output can be computed by
multiplying the phasor input by the frequency response function of the linear system.
This product is a complex number that can be computed by multiplying the
magnitude of the input phasor by the magnitude of the frequency response function
and by adding the phase angle of the input phasor to the phase angle of the frequency
response.



(5.38)

Figure 5.16 Response of a linear system to a phasor input

It is important to recognize that each of the input sinusoidal components
propagates through the system according to the frequency response. Thus, the
discrete magnitude spectrum of the periodic output signal in the steady state is equal
Page 339to the discrete magnitude spectrum of the input signal multiplied by the
amplitude ratio of the frequency response of the system at each discrete frequency.
The phase spectrum of the output signal in the steady state is equal to the phase
spectrum of the input signal added to the phase angle frequency response of the
system at each discrete frequency. If x (t) is the input to a linear system in the form
given by equation 5.37, and if the linear system has a frequency response function
H(jω), then the time-dependent output of the system y (t) is given by

where ∣H(jωn)∣ and ∠H(jωn) are the magnitude and phase, respectively, at the
frequency corresponding to the nth harmonic nω0 of the input.

EXAMPLE 5.3 Computation of Fourier Series Coefficients
Problem
Compute the complete Fourier spectrum of the sawtooth function shown in Figure
5.17; that is, find a general expression for the coefficients an and bn as a function of
n, and then compute the spectrum of x (t), that is, the coefficients cn and θn. Plot the
spectrum of the signal.



Figure 5.17 (a) Periodic (sawtooth) function

Solution
Known Quantities: Amplitude and period of sawtooth waveform.
Find: Fourier series coefficients an and bn.

Schematics, Diagrams, Circuits, and Given Data: The function is periodic, with
period T = 1 s and peak amplitude A = 1.
Assumptions: None.
Analysis: The function in Figure 5.17(a) is odd since it is antisymmetric about the
vertical axis. Thus, only the bn coefficients are nonzero. First, express x (t) over one
period:

Then evaluate the integral in equation 5.36:
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Figure 5.17 (b) Spectrum of sawtooth waveform; (c) approximation of
sawtooth waveform for N = 5

To compute the spectrum of the signal, apply equation 5.30:

The individual components of the spectrum of x (t) are shown in Figure 5.17(b).
Comments: A computer program, such as MatLab®, can be used to visualize the
result of a Fourier series approximation. Figure 5.17(c) shows one such
approximation.

EXAMPLE 5.4 Computation of Fourier Series Coefficients
Problem
Compute the complete Fourier series expansion of the pulse waveform shown in
Figure 5.18(a) for τ/T = 0.2. Plot the spectrum of the signal.



Figure 5.18 (a) Pulse train

Solution
Known Quantities: Amplitude and period of pulse train waveform.
Find: Fourier series coefficients an and bn; Fourier spectrum.

Schematics, Diagrams, Circuits, and Given Data: The function is periodic, with
period T = 1 s, peak amplitude A = 1.
Assumptions: None.
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Analysis: The function in Figure 5.18(a) is neither odd nor even. Thus, all the an and
bn coefficients are needed. First, express x (t) over one period:

Then evaluate the integrals of equations 5.34 through 5.36:

To compute the spectrum of the signal, apply equation 5.30:



The frequency spectrum of x (t) (magnitude and phase) is shown in Figure 5.18(b).
Table 5.1 lists the first seven coefficients in both forms.

Figure 5.18 (b) Signal spectrum; (c) approximation obtained using 11
Fourier coefficients
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Table 5.1 Fourier coefficients of pulse train

Comments: A Fourier series approximation with the first 10 frequency components
included can be generated and visualized with MatLab. Figure 5.18(c) shows the
result.



EXAMPLE 5.5 Response of Linear System to a Periodic Input
Problem
A linear system with H(jω) = 2/(0.2jω + 1) is excited by the sawtooth waveform of
Example 5.3 with T = 0.25 s and A = 2.

Solution
Known Quantities: T = 0.25 s; A = 2.
Find: Output y (t) in response to input x (t).
Assumptions: The waveform is well approximated by the first two terms of its
Fourier series.
Analysis: The Fourier approximation of the sawtooth waveform of Example 5.3 is

Then:

and

The frequency response of the system can then be expressed in magnitude and
phase form:

The magnitude and phase of the frequency response are shown in Figure 5.19(a).
Observe that the system is excited only at the frequencies ω1 = 8π = 25.1 rad/s and
ω2 = 16π = 50.2 rad/s. Page 343The frequency response of the system can be
evaluated at these frequencies either graphically, as in Figure 5.19(a), or analytically,
as shown here.



Figure 5.19 (a) Frequency response of linear system; (b) input and output
waveforms

Finally, compute the steady-state periodic output of the system:

The input and output signals for the system are plotted in Figure 5.19(b). Note how
the first two components of the Fourier series of the sawtooth waveform of Example
5.3 provide a coarse approximation of the waveform. Given the frequency response
of the system used in this example, would the accuracy of the computed response
increase if higher-frequency components (n > 2) were included in the Fourier series
approximation?
Comments: MatLab has built-in functions to perform calculations of linear systems.
It can also be used to approximate any input as a Fourier series.
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CHECK YOUR UNDERSTANDING
How would the spectrum plot of Figure 5.17(b) change if the period of the waveform
changed from 1 to 0.1 s?

CHECK YOUR UNDERSTANDING
If the duty cycle of the pulse train in Figure 5.18(a) is changed to τ/T = 0.25, which of
the Fourier coefficients are now zero?

CHECK YOUR UNDERSTANDING
Determine the an and bn Fourier coefficients of the signal y (t) = 1.5 cos (100t + π/4).
(Hint: Use trigonometric identities to expand the cosine function.)

CHECK YOUR UNDERSTANDING
Extend the result of Example 5.5 to include three frequency components. What are
the amplitude and phase of the components of y (t) at the frequency 3ω0?

Answer: The fundamental frequency and all harmonics would increase
tenfold; the shape is unchanged.

Answer: n = 4, 8

Answer: a0 = 0, a1 = 1.0607, b1 = 1.0607. All other coefficients are zero.



(5.39)

(5.40)

5.3 LOW- AND HIGH-PASS FILTERS
There are many practical applications that involve filters of one kind or another.
Modern sunglasses filter out eye-damaging ultraviolet radiation and reduce the
intensity of sunlight reaching the eyes. The suspension system of an automobile
filters out road noise and reduces the impact of potholes on passengers. An analogous
concept applies to electric circuits: It is possible to attenuate (i.e., reduce in
amplitude) or altogether eliminate signals of unwanted frequencies, such as those that
may be caused by electromagnetic interference (EMI).

Low-Pass Filters
Figure 5.20 depicts a simple RC filter and denotes its input and output voltages,
respectively, by Vi and Vo. The frequency response for the filter may be obtained by
considering the function

Figure 5.20 A simple RC filter
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and noting that the output voltage may be expressed as a function of the input voltage
by means of a voltage divider, as follows:

Answer: magnitude = 0.0562, phase = −1.505 rad = −86.2°



(5.41)

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)

(5.47)

Thus, the frequency response of the RC filter is

An immediate observation upon studying this frequency response is that if the
signal frequency ω is zero, the value of the frequency response function is 1. That is,
the filter is passing all the input. Why? To answer this question, note that at ω = 0,
the impedance of the capacitor, 1/jωC, becomes infinite. Thus, the capacitor acts as a
DC open-circuit, and the output voltage equals the input:

As the signal frequency increases, the magnitude of the frequency response decreases
since the magnitude and phase angle of the denominator increase with ω.

or

with

and

with

The simplest way to envision the effect of the filter is to think of the phasor voltage
Vi = Viejϕi scaled by a factor of ∣H∣ and shifted by a phase angle ∠H by the filter



(5.48)

at each frequency, so that the resultant output is given by the phasor Voejϕo, with

and where ∣H∣ and ∠H are functions of frequency. The frequency ω0 is called the
cutoff or critical or break frequency of the filter.
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It is customary to represent H(jω) in two separate plots, representing ∣H∣ and
∠H as functions of ω. These are shown in Figure 5.21 in normalized form, that is,
with ∣H∣ and ∠H plotted versus ω/ω0, corresponding to a cutoff frequency ω/ω0
= 1 rad/s. Note that, in the plot, the frequency axis has been scaled logarithmically.
Frequency response plots similar to those shown in Figure 5.21 are commonly
employed in engineering. For example, the RC filter of Figure 5.20 has the property
of “passing” signals at low frequencies (ω ≪ 1/RC) and of filtering out signals at
high frequencies (ω ≫ 1/RC). This type of filter is called a low-pass filter. The
cutoff frequency ω = 1/RC has a special significance in that it represents—
approximately—the boundary between low- and high-frequencies. The value of
∣H(jω)∣ at the cutoff frequency is . Note how the cutoff frequency
depends exclusively on the values of R and C. Therefore, one can adjust the filter
response as desired simply by selecting appropriate values for C and R.



Figure 5.21 Magnitude and phase response plots for RC filter

Practical low-pass filters are often much more complex than simple RC
combinations. The synthesis of such advanced filter networks is beyond the scope of
this book; however, the implementation of some commonly used filters is discussed
in Chapters 6 and 7, in connection with the operational amplifier.

High-Pass Filters
Just as a low-pass filter preserves low-frequency signals and attenuates those at
higher frequencies, a high-pass filter attenuates low-frequency signals and preserves
Page 347those at frequencies above its cutoff frequency. Consider the high-pass filter
circuit shown in Figure 5.22. The frequency response is defined as:



(5.49)

(5.50)

(5.51)

(5.52)

Figure 5.22 High-pass filter

Voltage division yields:

Thus, the frequency response of the filter is

which can be expressed in magnitude-and-phase form by

or

with

You can verify by inspection that the amplitude response of the high-pass filter will
be zero at ω = 0 and will asymptotically approach 1 as ω approaches infinity while
the phase shift is π/2 at ω = 0 and tends to zero for increasing ω. Amplitude-and-
phase response curves for the high-pass filter are shown in Figure 5.23. These plots
have been normalized to have the filter cutoff frequency ω/ω0 = 1 rad/s. Note that,
once again, it is possible to define a cutoff frequency at ω0 = 1/RC in the same way
as was done for the low-pass filter.



Figure 5.23 Frequency response of a high-pass filter
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EXAMPLE 5.6 Frequency Response of RC Low-Pass Filter
Problem
Compute the response of the RC filter of Figure 5.20 to sinusoidal inputs at the
frequencies of 60 and 10,000 Hz. Assume R = 1 kΩ, C = 0.47 μF and Vi = 5∠0° V.

Solution
Known Quantities: R = 1 kΩ; C = 0.47 μF; υi (t) = 5 cos (ωt) V.

Find: The output voltage υo (t) at each frequency.

Assumptions: None.
Analysis: In this problem, the input signal voltage and the frequency response of the
circuit (equation 5.43) are known, and the output voltage must be found at two
different frequencies. If the voltages are represented in phasor form, the frequency
response can be used for calculation:

The cutoff frequency of the filter is ω0 = 1/RC = 2,128 rad/s such that the expressions
for the frequency response in the form of equations 5.45 and 5.46 are

Next, recognize that at ω = 60 Hz = 120π rad/s, the ratio ω/ω0 = 0.177. At ω =
10,000 Hz = 20,000π rad/s, ω/ω0 = 29.5. Thus, the output voltage at each frequency
can be computed as follows:



Finally, write the time-domain response for each frequency:

The magnitude and phase responses of the filter are plotted in Figure 5.24. It should
be evident from these plots that only the low-frequency components of the signal are
passed by the filter. This low-pass filter would pass only the bass range of the audio
spectrum.
Comments: Approximate answers can be obtained quickly from the magnitude and
phase plots of Figure 5.24. Simply multiply the input voltage amplitude (5 V) by the
amplitude response at each frequency, and read off the phase shift at each frequency.
The results should be close to the ones computed above.
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Figure 5.24 Response of RC low-pass filter of Example 5.6



EXAMPLE 5.7 A Realistic RC Low-Pass Filter Application
Problem
Determine the frequency response function Vo/VS and its frequency response from
the network shown in Figure 5.25.

Figure 5.25 RC filter inserted in a circuit

Solution
Known Quantities: RS = 50 Ω; R1 = 200 Ω; Ro = 500 Ω; C = 10 μF.

Find: The frequency response function Vo/VS, its frequency response, and the output
voltage υo(t) at given frequencies.

Assumptions: None.
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Analysis: Figure 5.25 represents a more realistic filtering circuit, in that an RC low-
pass filter is inserted between the source and load circuits. The Thévenin equivalent
impedance seen by the load is

Multiply the numerator and denominator by jωC to obtain:



Apply voltage division to find the Thévenin (open-circuit) voltage VT across
terminals a and b.

Again, multiply the numerator and denominator by jωC to obtain:

Next, apply voltage division to find Vo.

Substitute for VT and ZT, and multiply the numerator and denominator by [1 +(jω)
(R1 + RS)C] to obtain:

Finally, divide both sides by VS and factor (Ro + R1 + RS) out of the denominator to
find:

where

and

Again, K is the DC gain as ω → 0 and the capacitor acts as an open-circuit. RT is the
Thévenin equivalent resistance seen by the capacitor. Plug in values for the
resistances and capacitance to find:



Comments: The effect of placing the RC low-pass filter in the midst of the circuit is
to shift the cutoff frequency from 1/R1C to 1/RT C.

Figure 5.26 Equivalent circuit representation of Figure 5.25

EXAMPLE 5.8 Low-Pass Filter Attenuation
Problem
The frequency response of a particular 2nd-order low-pass filter is described by the
following function. At what frequency has the magnitude of the response fallen to 10
percent of its maximum?
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Solution
Known Quantities: Frequency response function of a filter.
Find: Frequency ω10% at which the response amplitude equals 10 percent of its
maximum.
Schematics, Diagrams, Circuits, and Given Data: ω1 = 100; ω2 = 1,000.

Assumptions: None.
Analysis: Notice that the magnitude of each term in the denominator increases with
frequency ω. Thus, the maximum amplitude of the frequency response function is K,
which is the DC gain as ω → 0. As frequency increases, the magnitude of the
frequency response function decreases monotonically, which explains why the
frequency response function describes a “low-pass” filter. At low frequencies, the



input is “passed” to the output; however, at higher frequencies the output is a filtered
(reduced) version of the input. To solve this problem, set the amplitude of the
frequency response function equal to 0.1 K and solve for ω, as follows:

To simplify this expression introduce the dummy variable Ω = ω2, and then invert
and square both sides to obtain a quadratic equation in Ω:

Plug in values for ω1 and ω2 and use the quadratic formula to solve for the two roots
Ω = −1.6208 × 106 and Ω = 0.6108 × 106. Only the positive root has a physical
meaning; thus, the solution is . Figure 5.27(a) depicts the magnitude
response of the filter. At a frequency roughly equal to 800 rad/s, the magnitude
response is approximately 0.1. At that frequency, the two poles of the frequency
response function contribute roughly −82.7° and −38.0° to the overall phase angle for
a total of −120.7°, as shown in Figure 5.27(b).

Figure 5.27 Frequency response of filter of Example 5.8. (a) Magnitude
response; (b) phase response
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EXAMPLE 5.9 Frequency Response of RC High-Pass Filter
Problem
Compute the response of the RC high-pass filter depicted in Figure 5.28. Evaluate the
response of the filter at ω1 = 2π × 100 and ω2 = 2π × 10,000 rad/s.

Figure 5.28 High-pass RC filter

Solution
Known Quantities: R = 200 Ω; C = 0.199 μF.
Find: The frequency response GV(jω).

Assumptions: None.
Analysis: The cutoff frequency of the high-pass filter is ω0 = 1/RC ≈ 2π × 4,000
rad/s. The frequency response function for the circuit is given by equation 5.50:

The frequency response function can now be evaluated at ω1 and ω2:

These results indicate that the output at ω1 ≪ ω0 is very small (2.5 percent)
compared to the input while at ω2 ≫ ω0 the output is comparable (92.9 percent) to



the input. In general, the input is “passed” to the output at high frequencies (ω ≫ ω0)
while at low frequencies (ω ≪ ω0) the output is a filtered (reduced) version of the
input. The complete frequency response (amplitude and phase) is shown in Figure
5.29.

Figure 5.29 Response of high-pass RC filter of Example 5.10

Comments: With ω0 = 2π × 4,000 (that is, 4,000 Hz), this filter would pass only the
treble range of the audio frequency spectrum.

Page 353

CHECK YOUR UNDERSTANDING
A simple RC low-pass filter is constructed using a 10-μF capacitor and a 2.2-kΩ
resistor. Over what range of frequencies will the output of the filter be within 1
percent of the input signal amplitude (i.e., when will Vo ≤ 0.99 VS)?

CHECK YOUR UNDERSTANDING
In Figure 5.25, let ∣VS∣ = 1 V with an internal resistance RS = 50 Ω. Assume R1 =
1 kΩ and C = 0.47 μF. Determine the cutoff frequency ω0 for a load resistance Ro =
470 Ω.

Answer: 0 ≤ ω ≤ 6.48 rad/s



CHECK YOUR UNDERSTANDING
Use the phase response plot of Figure 5.27(b) to determine at which frequency the
phase shift in the output signal (relative to the input signal) is equal to −90°.

FOCUS ON MEASUREMENTS

Wheatstone Bridge Filter
Problem:
The Wheatstone bridge circuit of Example 2.2 and Focus on Measurements box,
“Wheatstone Bridge and Force Measurements” in Chapter 2 is used in a number of
instrumentation applications, including the measurement of force. Figure 5.30 depicts

Answer: ω0 = 6,553.3 rad/s

Answer: ω = 300 rad/s (approximately)



the bridge circuit. When undesired noise and interference are present in a
measurement, it is often appropriate to use a low-pass filter to reduce the effect of the
noise. The capacitor that is connected to the output terminals of the bridge in Figure
5.30 constitutes an effective and simple low-pass filter, in conjunction with the
bridge resistance. Assume that the average resistance of each leg of the bridge is 350
Ω (a standard value for strain gauges) and that a sinusoidal force is to be measured at
a frequency of 30 Hz. From prior measurements, it has been determined that a filter
with a cutoff frequency of 300 Hz is sufficient to reduce the effects of noise. Choose
a capacitor that matches this filtering requirement.
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Figure 5.30 Wheatstone bridge with equivalent circuit and simple
capacitive filter

Solution:
The Thévenin equivalent network seen by the capacitor can be determined, as
illustrated on the right side of Figure 5.30. The Thévenin resistance seen by the
capacitor is computed by turning off the two voltage sources and replacing them with
short-circuits:

Since the required cutoff frequency is 300 Hz, the capacitor value can be computed
from the expression

or



The frequency response of the bridge circuit is of the same form as equation 5.41:

This response can be evaluated at the frequency of 30 Hz to verify that the
attenuation and phase shift at the desired signal frequency are minimal:
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Figure 5.31 depicts the appearance of a 30-Hz sinusoidal signal before and after the
addition of the capacitor to the circuit.

Figure 5.31 Unfiltered and filtered bridge output

5.4 BANDPASS FILTERS, RESONANCE AND
QUALITY FACTOR
Using the same principles and procedures as before, it is possible to derive a
bandpass filter response for particular types of circuits. Such a filter passes the input
to the output at frequencies within a certain range. The analysis of a simple second-
order (i.e., two energy storage elements) bandpass filter is similar to that of low- and



(5.53)

(5.54)

(5.55)

high-pass filters. Consider the circuit shown in Figure 5.32 (similar to Figure 5.6)
and the designated frequency response function:

Figure 5.32 RLC bandpass filter.

Apply voltage division to find:

Thus, the frequency response function is

where τ = RTC + L/RN = RC and .
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Equation 5.54 contains a constant K = τ, a zero at the origin (jω) and a quadratic
pole [1 + jωτ + (jω/ωn)2], which is similar to those present in Equations 5.19 and
5.24. Equation 5.54 can also be expressed in terms of the dimensionless damping
coefficient ζ by substituting 2ζ/ωn for τ. When ζ > 1, equation 5.54 can be factored to
yield the following form:

where  and  are the two half-power frequencies
that determine the passband (or bandwidth) of the filter—that is, the frequency
range over which the filter “passes” the input signal through to the output. When ζ <
1, the frequency response function of Equation 5.54 still has two well-defined half-
power frequencies and an associated bandwidth. However, they must be calculated as
described in the following section on resonance and bandwidth.



(5.56)

(5.57)

Notice that as ω → 0 the filter response approaches zero since the impedance of
the capacitor 1/jωC approaches infinity (i.e., gets very large.) That is, the capacitor
acts as an open-circuit and the output voltage equals zero. Further, as ω → ∞, the
filter response again approaches zero since the impedance of the inductor jωL
approaches infinity. That is, the inductor acts as an open-circuit. Thus, the filter does
not pass signals at very low or very high frequencies.

In an intermediate band of frequencies, the filter will, to some degree, pass the
input signal to the output, the extent of which depends upon the frequency of the
input signal. In fact, at ω = ωn, Vo = Vi! At this frequency, ZC = −ZL such that the
impedance seen by Vi is minimized and equal to R.

The frequency response function shown in Equation 5.55 is a dimensionless gain
GV, where

This gain can be expressed in terms of a magnitude and phase angle ,
where

and

The magnitude and phase plots for the frequency response of the bandpass filter of
Figure 5.32 are shown in Figure 5.33. These plots have been normalized to have the
filter passband centered at the frequency ω = 1 rad/s.



(5.58)

Figure 5.33 Frequency response of RLC bandpass filter

The frequency response plots of Figure 5.33 suggest that, in some sense, the
bandpass filter acts as a combination of a high-pass and a low-pass filter. As
illustrated in the previous cases, it should be evident that one can adjust the filter
response as desired simply by selecting appropriate values for L, C, and R.

Resonance and Bandwidth
The response of second-order filters can be explained more generally by way of the
series LC bandpass filter of Figure 5.32 in the following forms:
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where τ = RTC + L/RN, RT is the Thévenin equivalent resistance seen by the capacitor,
RN is the Norton equivalent resistance seen by the inductor, ζ is the dimensionless



(5.59)

damping coefficient, ωn is the natural frequency and Q is the quality factor defined
by:2
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Figure 5.34 (a) Normalized magnitude response of second-order bandpass
filter; (b) normalized phase response of second-order bandpass filter

Figure 5.34 depicts the normalized frequency response (magnitude and phase) of
the second-order bandpass filter for various values of Q. The peak displayed in the
frequency response around the frequency ωn is called a resonant peak, and ωn is the
resonant frequency. Note that as the quality factor Q increases, the sharpness of
the resonance increases and the filter becomes increasingly selective (i.e., it has the
ability to filter out most frequency components of the input signals Page 359except
for a narrow band around the resonant frequency). One measure of the selectivity of



(5.60)

a.
b.

a bandpass filter is its bandwidth. The concept of bandwidth can be easily visualized
in the plot of Figure 5.34(a) by drawing a horizontal line across the plot at the 0.707
amplitude ratio. The frequency range between (magnitude) frequency response points
intersecting this horizontal line is defined as the half-power bandwidth of the filter.
The name half-power stems from the fact that when the voltage or current amplitude
ratio is equal to 0.707 (or ), the power has been reduced by a factor of . The
frequencies at which the 0.707 line intersects the frequency response are the half-
power frequencies ω1 and ω2. For the bandpass filter shown in Figure 5.32, when 

. For ζ < 1, . These
expressions have useful approximations for large and small values of ζ. As ζ → ∞,
ω2 →2ζ and ω1 → (1/2ζ). As ζ → 0, ω2,1 → (1 ± ζ).

A useful expression relating the bandwidth BW to the natural frequency ωn and
the quality factor Q is shown below. Note that a high-Q filter has a narrow bandwidth
and a low-Q filter has a wide bandwidth.

EXAMPLE 5.10 Frequency Response of Bandpass Filter
Problem
Compute the frequency response of the bandpass filter of Figure 5.32 for two sets of
component values.

Solution
Known Quantities:

R = 1 kΩ; C = 10 μF; L = 5 mH.
R = 10 Ω; C = 10 μF; L = 5 mH.

Find: The frequency response HV(jω).

Assumptions: None.



Analysis: The frequency response of the bandpass filter is expressed by equation
5.54.

Here, τ = RTC + L/RN = RC and . For case a. τ = 10−2 seconds while for
case b. τ = 10−4 seconds. For both cases, ωn ≈ 4472 rad/sec. Thus, the dimensionless
damping coefficients are ζ ≈ 22.4 and ζ ≈ 0.224 for cases a. and b., respectively. The
frequency response plots for case a. (large series resistance) are shown in Figure
5.35. Those for case b. (small series resistance) are shown in Figure 5.36. (See
section 5.5 to learn how to construct, Page 360by hand, straight line asymptotic
approximations of these Bode plots.) Since L and C are the same in both cases, the
natural frequency of the two circuits is the same:

Figure 5.35 Frequency response of broadband (overdamped) bandpass
filter of Example 5.10

On the other hand, the quality factor Q is substantially different:



The approximate bandwidths of the two filters are

For case a., the two half-power frequencies are ω1 ≈ 0.1 krad/sec and ω2 ≈ 199.9
krad/sec. It is worth noting that for ζ → ∞, ω1 → ωn/2ζ and ω2 → 2ζωn. For case a.,
ωn/2ζ = 100.0 rad/sec and 2ωnζ = 2.0 krad/sec, which are very close to the calculated
values for ω1 and ω2.

For case b., the two half-power frequencies are ω1 ≈ 3.6 krad/sec and ω2 ≈ 5.6
krad/sec. It is worth noting that for ζ → 0, ω1 → ωn(1 − ζ) and ω2 → ωn(1 + ζ). For
case b., ωn(1 − ζ) ≈ 3.47 krad/sec and ωn(1 − ζ) ≈ 5.47 krad/sec, which are very close
to the calculated values for ω1 and ω2.
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Figure 5.36 Frequency response of narrowband (underdamped) bandpass
filter of Example 5.10

Comments: It should be apparent that while at the higher and lower frequencies most
of the amplitude of the input signal is filtered from the output, at the midband
frequency most of the input signal amplitude passes through the filter. The first
bandpass filter analyzed in this example would “pass” the midband range of the
audio spectrum while the second would pass only a very narrow band of frequencies
around the center frequency. Such narrowband filters find application in tuning
circuits, such as those employed in conventional AM radios. In a tuning circuit, a
narrowband filter is used to tune in a frequency associated with the carrier wave of a
radio station (e.g., for a station found at a setting of AM 820, the carrier wave
transmitted by the radio station is at a frequency of 820 kHz). By using a variable
capacitor, it is possible to tune in a range of carrier frequencies and therefore select
the preferred station. Other circuits are then used to decode the actual speech or
music signal modulated on the carrier wave.

CHECK YOUR UNDERSTANDING
Compute the half-power frequencies ω1 and ω2 for the bandpass filter of Example
5.10 (with R = 1 kΩ) by equating the magnitude of the bandpass filter frequency
response to . The result is a quadratic equation in ω.
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FOCUS ON MEASUREMENTS

Answer: ω1 = 99.95 rad/s; ω2 = 200.1 krad/s



AC Line Interference Filter
Problem:
One application of narrowband filters is seen in rejecting interference due to AC line
power. Any undesired 60-Hz signal originating in the AC line can cause serious
interference in sensitive instruments. In medical instruments such as the
electrocardiograph, 60-Hz notch filters are often provided to reduce the effect of this
interference1 on cardiac measurements. Figure 5.37 depicts a circuit in which the
effect of 60-Hz noise is represented by way of a 60-Hz sinusoidal generator
connected in series with a signal source (VS), representing the desired signal. In this
example we design a 60-Hz narrowband (or notch) filter to remove the unwanted 60-
Hz noise.

Figure 5.37 60-Hz notch filter

Solution:
Known Quantities—RS = 50 Ω.



Find—Appropriate values of L and C for the notch filter.

Assumptions—None.

Analysis—To determine the appropriate capacitor and inductor values, write the
expression for the notch filter impedance:

Note that when ω2LC = 1, the impedance of the circuit is infinite! The frequency

is the resonant frequency of the LC circuit. If this resonant frequency were selected
to be equal to 60 Hz, then the series circuit would show an infinite impedance to 60-
Hz currents and would therefore block the interference signal, while passing most of
the other frequency components. Select values of L and C that result in ω0 = 2π × 60.
Let L = 100 mH. Then
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The frequency response of the complete circuit is given below:

where τ = L/(RS + Ro). This response is plotted in Figure 5.38.



Figure 5.38 Frequency response of 60-Hz notch filter

Comments—It is instructive to calculate the response of the notch filter at
frequencies in the immediate neighborhood of 60 Hz, to verify the attenuation effect
of the notch filter. See section 5.5 to learn how to construct, by hand, straight line
asymptotic approximations of Bode magnitude and phase plots.

FOCUS ON MEASUREMENTS



Seismic Transducer
The configuration of a seismic displacement transducer is shown in Figure 5.39. The
transducer is housed in a case rigidly affixed to the surface of a body whose motion
is to be measured. Thus, the case will experience the same displacement as the body,
xi. Inside the case, a small mass M rests on a spring characterized by stiffness K,
placed in parallel with a damper B. The wiper arm of a potentiometer is connected to
the floating mass M; the potentiometer is attached to the transducer case, so that the
voltage Vo is proportional to the relative displacement of the mass with respect to the
case xo.
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Figure 5.39 Seismic displacement transducer

The equation of motion for the mass-spring-damper system may be obtained by
summing all the forces acting on mass M:

where the motion of the mass is equal to the difference between the motion of the
case and the motion of the mass relative to the case itself; that is,

Assume the relative motion of the mass is periodic such that Fourier analysis can be
used to decompose it into a summation of sinusoids. Each of these sinusoids can be
expressed in phasor form.

Recall from Chapter 3 that taking the derivative of a phasor corresponds to
multiplying the phasor by jω such that the second-order differential equation can be



expressed in phasor form.

and we can write an expression for the frequency response:

The frequency response of the transducer is plotted in Figure 5.40 for the component
values M = 0.005 kg and K = 1,000 N/m and for three values of B:

Notice that as the damping B decreases the quality factor Q of the system response
increases.

The transducer clearly displays a high-pass response, indicating that for a
sufficiently high input signal frequency, the measured displacement xo (proportional
to the voltage Vo) is equal to the input displacement xi, which is the desired quantity.
Note how sensitive the frequency response of the transducer is to changes in
damping: as B changes from 2 to 1, a sharp resonant peak appears around the
frequency ω = 316 rad/s (approximately 50 Hz). As B increases to a value of 10, the
amplitude response curve Page 365shifts to the right. Thus, this transducer, with the
preferred damping given by B = 2, would be capable of correctly measuring
displacements at frequencies above a minimum value, about 1,000 rad/s (or 159 Hz).
The choice of B = 2 as the preferred design may be explained by observing that,
ideally, we would like to obtain a constant amplitude response at all frequencies. The
magnitude response that most closely approximates the ideal case in Figure 5.40
corresponds to B = 2. This concept is commonly applied to a variety of vibration
measurements. See section 5.5 to learn how to construct, by hand, straight line
asymptotic approximations of these Bode magnitude and phase plots.



Figure 5.40 Frequency response of seismic transducer

A second-order circuit such as that shown in Figure 5.41 can exhibit the same
type of response as the seismic transducer.

Figure 5.41 Electric circuit analog of the seismic transducer
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Compare this expression with the frequency response of the seismic transducer. Note
that the mass M plays a role analogous to that of the inductance L. The damper B acts
in analogy with the resistor R; and the spring K is analogous to the inverse of the
capacitance, C. This analogy between the mechanical and electric systems derives
from the fact that the equations describing the two systems have the same form.



(5.61)

1.

a.
b.
c.
d.

2.

(5.62)

Engineers often use such analogies to construct electrical models, or analogs, of
mechanical systems. For example, to study the behavior of a large mechanical
system, it might be easier and less costly to start by modeling the mechanical system
with an inexpensive electric circuit and testing the model, rather than the full-scale
mechanical system.

5.5 BODE PLOTS
Frequency response plots of linear systems are often displayed in the form of
logarithmic plots, called Bode plots after the mathematician Hendrik W. Bode,
where the horizontal axis represents frequency on a logarithmic scale (base 10) and
the vertical axis represents either the amplitude or phase of the frequency response
function. In Bode plots the amplitude is expressed in units of decibels (dB), where

In general, the argument of the common logarithm shown in Equation 5.61 is a ratio
of standard terms, which are known as zeros and poles when present in the numerator
and denominator, respectively. While logarithmic plots may at first seem a daunting
complication, they have two significant advantages:

The product of terms in a frequency response function becomes a sum of terms
because log (ab/c) = log(a) + log(b) − log(c). The advantage here is that Bode
(logarithmic) plots can be constructed by summing the plots of individual terms.
Moreover, as was discussed in section 5.1, there are only four distinct types of
standard terms present in any frequency response function:

A constant K.
Poles or zeros “at the origin”(jω).
Simple poles or zeros (1 + jωτ) or (1 + jω/ω0).

Quadratic poles or zeros [1 + jωτ +(jω/ωn)2].
The individual Bode plots of these four distinct terms are all well approximated
by linear segments, which are readily summed to form the overall Bode plot of
more complicated frequency response functions.

RC Low-Pass Filter Bode Plots
Consider, for example, the RC low-pass filter of Example 5.6 (Figure 5.20). The
frequency response function is



(5.63)

(5.64)

with a time constant τ = RC = 1/ω0 , where ω0 is the break, or half-power, frequency
of the filter. This frequency response function contains a constant K = 1 and a simple
pole with cutoff frequency ω0 = 1/τ = 1/RC.
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Figure 5.42 shows the Bode magnitude and phase plots for the filter. The
normalized frequency on the horizontal axis is ωτ. The magnitude plot is obtained
from the logarithmic form of the absolute value of the frequency response function:

Figure 5.42 Bode plots for a low-pass RC filter; the frequency variable is
normalized to ω/ω0. (a) Magnitude response; (b) phase angle response

a

When ω ≪ ω0, the imaginary part of the simple pole is much smaller than its real
part, such that ∣1 + jω/ω0∣ ≈ 1. Then:

Thus, at very low frequencies (ω ≪ ω0), equation 5.63 is well approximated by a
straight line of zero slope, which is the low-frequency asymptote of the Bode
magnitude plot.



(5.65)

(5.66)

1.

2.

3.

When ω ≫ ω0, the imaginary part of the simple pole is much larger than its real
part, such that ∣1 + jω/ω0∣ ≈ ∣jω/ω0∣ = (ω/ω0). Then:

Thus, at very high frequencies (ω ≫ ω0), equation 5.63 is well approximated by a
straight line of −20 dB per decade slope that intersects the frequency axis at ω = ω0.
This line is the high-frequency asymptote of the Bode magnitude plot. A decade
represents a factor of 10 change in frequency. Thus, a one decade increase in ω is
equivalent to a unity change in log ω.

Finally, when ω = ω0, the real and imaginary parts of the simple pole are equal,
such that . Then equation 5.63 becomes:
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Thus, the Bode magnitude plot of a first-order low-pass filter is approximated by
two straight lines intersecting at ω0. Figure 5.42(a) clearly shows the approximation.
The actual Bode magnitude plot is 3 dB lower than the approximate plot at ω = ω0,
the cutoff frequency.

The phase angle of the frequency response function  has the
following properties:

As a first approximation, the phase angle can be represented by three straight lines:
For ω < 0.1ω0, ∠(Vo/Vi) ≈ 0.

For 0.1ω0 and 10ω0, ∠(Vo/Vi) ≈ −(π/4)  log(10ω/ω0).

For ω > 10ω0, ∠ (Vo/Vi) ≈ −π/2.

These straight line approximations are illustrated in Figure 5.42(b).



(5.67)

1.

2.

Table 5.2 lists the differences between the actual and approximate Bode
magnitude and phase plots. Note that the maximum difference in magnitude is 3 dB
at the cutoff frequency; thus, the cutoff is often called the 3-dB frequency or the
half-power frequency.

Table 5.2 Correction factors for asymptotic approximation of first-order
filter

RC High-Pass Filter Bode Plots
The case of an RC high-pass filter (see Example 5.9 and Figure 5.28) is analyzed in
the same manner as was done for the RC low-pass filter. It can be shown that the
frequency response function contains a constant K = RC, a zero “at the origin” and a
simple pole with a 3-dB break frequency ω0 = 1/RC, which is the same simple pole
found previously for the RC low-pass filter.

Page 369

Figure 5.43 depicts the Bode plots for equation 5.67, where the horizontal axis
indicates the normalized frequency ω/ω0. Straight line asymptotic approximations
may again be determined easily at low and high frequencies. For ω ≪ ω0, the Bode
magnitude approximation intercepts the origin (ω/ω0 = 1) with a slope of +20
dB/decade. For ω ≫ ω0, the Bode magnitude approximation is 0 dB with zero slope.
The straight line approximations of the Bode phase plot are

For ω < 0.1ω0, ∠(Vo/Vi) ≈ π/2.

For 0.1ω0 < ω < 10ω0, ∠(Vo/Vi) ≈ π/4 − (π/4) log10(ω/ω0)



3.

(5.68)

(5.69)

(5.70)

(5.71)

For ω > 10ω0, ∠(Vo/Vi) ≈ 0.

These straight line approximations are illustrated in Figure 5.43(b).

Figure 5.42 Bode plots for RC high-pass filter; (a) Magnitude response; (b)
phase response

Bode Plots of Higher-Order Filters
Bode plots of high-order systems may be obtained by summing Bode plots of factors
of the higher-order frequency response function. Assume, for example,

which can be expressed, in logarithmic form, as

and

Consider as an example the frequency response function
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The first step in computing the asymptotic approximation consists of factoring each
term in the expression so that it appears in the form ai(jω/ωi + 1), where the



(5.72)

(5.73)

frequency ωi corresponds to the appropriate 3-dB frequency, ω1, ω2, or ω3. For
example, the function of equation 5.71 is rewritten as:

Equation 5.72 contains a constant K, one simple zero and two simple poles, which
can be expressed in logarithmic form:

Each of the terms in the logarithmic magnitude expression can be plotted
individually. The constant corresponds to the value −46 dB, plotted in Figure 5.44(a)
as a line of zero slope. The simple zero, with a 3-dB frequency ω1 = 5, departs the
zero axis at ω1 = 5 with a slope of +20 dB/decade; the high-frequency portions of the
two simple poles in the denominator are lines of slope −20 dB/decade, departing the
zero axis at ω2 = 10 and ω3 = 100. With practice, these individual factors are easy to
plot by inspection once the frequency response function is expressed in standard
form, such as shown in equation 5.72.

Figure 5.44 Typical Bode plot approximation for a second-order frequency
response function; (a) straight line approximation of magnitude response;
(b) straight line approximation of phase angle response



Now consider the phase response portion of equation 5.73. First, recognize that
the phase angle of the constant is always zero. The phase angle of the simple Page
371zero is approximated as zero for ω < 0.1ω1, as a straight line of slope +π/4
rad/decade for 0.1ω1 < ω < 10ω1, and as π/2 radians for ω > 10ω1. The two simple
poles have similar approximations, except that the slopes are −π/4 radians/decade for
0.1ω2 < ω < 10ω2 and 0.1ω3 < ω < 10ω3 and their high-frequency asymptotes are
−π/2 for ω > 10ω2 and ω > 10ω3, respectively.

Figure 5.44 depicts the asymptotic approximations of the individual factors in
equation 5.73, with the magnitude response shown in Figure 5.44(a) and the phase
response shown in Figure 5.44(b). When all the asymptotic approximations are
summed, the complete frequency response approximation is obtained. Figure 5.45
depicts the results of the asymptotic Bode approximation when compared with the
actual frequency response functions.

Figure 5.45 Comparison of Bode plot approximation with the actual
frequency response function; (a) magnitude response of second-order
frequency response function; (b) phase angle response of second-order
frequency response function.

F O C U S  O N  P R O B L E M  S O LV I N G

BODE PLOTS
This box illustrates the procedure for constructing the straight line asympt
approximations of a Bode plot, such as those shown in Figure 5.45. A zero 
numerator term; a pole is a denominator term. The method assumes that 



1.
2.
3.

1.

2.

3.

frequency response function is in standard form, comprised of one or more of
three distinct standard terms shown below.

K Constant
(jω) Zero/pole “at the origin”
(1 + jωτ) = (1 + jω/ω0) Simple zero/pole
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First, construct the straight line asymptotic approximations of the Bode magni
and phase plots at the low-frequency end. These straight lines are determined enti
by the constant K and any zero/pole “at the origin.” Then, as frequency increa
adjust the slopes of these lines to account for the presence of simple zeros/po
Refer to Figure 5.44 for examples of how the various terms listed above contribu
the overall Bode magnitude and phase plots. Examples 5.11 and 5.12 illustrate
details of the method.

Constant Contributes 20 log(K) dB and ∠K = 0° at all frequencies.
Zero/pole “at the origin”

Zero “at the origin”: Contributes a slope of 20 dB/decade to the B
magnitude plot and 90° to the Bode phase plot at all frequencies. The l
frequency approximations of the magnitude and phase of the entire freque
response function are

This straight line asymptotic approximation of the magnitude plot has a slop
20 dB/decade and intersects the frequency axis at ω = 1/K. See the l
frequency portions of Figure 5.43 (a) and (b) for typical examples.

Pole “at the origin”: Contributes a slope of −20 dB/decade to the B
magnitude plot and −90° to the Bode phase plot at all frequencies. The l
frequency approximations of the magnitude and phase of the frequency respo
function are

This straight line asymptotic approximation of the magnitude plot has a slop
−20 dB/decade and intersects the frequency axis at ω = K.

Simple zero



4.

1.
2.
3.

4.

5.

6.

Magnitude plot: At its cutoff frequency ω0, a simple zero, produces a
dB/decade change in slope.

Phase plot: One decade below its cutoff frequency a simple zero produc
45°/decade change in slope. One decade above its cutoff frequency a sim
zero produces a −45°/decade change in slope. The overall effect is that the ph
plot increases by 90° over the span of two decades centered about ω0.

Simple pole

Magnitude plot: At its cutoff frequency ω0, a simple pole, produces a 
dB/decade change in slope. See the changes in slope in Figures 5.42 (a) 
5.43 (a) for typical examples.Page 373

Phase plot: One decade below its cutoff frequency a simple pole produc
−45°/decade change in slope. One decade above its cutoff frequency a sim
pole produces a 45°/decade change in slope. The overall effect is that the ph
plot decreases by 90° over the span of two decades centered about ω0. See
changes in slope in Figures 5.42 (b) and 5.43 (b) for typical examples.

Comments:

Simple zeros/poles contribute 0 dB, no slope, and 0° at the low- frequency en
A zero slope at the low-frequency end indicates no zero/pole “at the origin.”
A frequency response function can contain zeros/poles raised to a power, suc
(1 + jω/ω0)2 or(jω)3. Since x2 = x · x the exponent indicates the numbe
repetitions of the zero/pole.
Since 20 log ∣(jω)3∣ = 20 log ∣(jω)∣3 = 60 log (ω) the exponent multip
the slope of a zero/pole “at the origin” in a Bode magnitude plot. Likewise,
exponent multiplies the phase angle of a zero/pole “at the origin” in a B
phase plot.
Since 20 log ∣ (1 + jω/ω0)2∣ = 20 log ∣ (1 + jω/ω0)∣2 = 40 log ∣ (1 +
ω0)∣ the exponent multiplies the change of slope at the cutoff frequency 
simple zero/pole in a Bode magnitude plot. Likewise, the exponent multip
the change of slope one decade below and above the cutoff frequency 
simple zero/pole in a Bode phase plot.
The correction factors shown in Table 5.2 can be used to improve the ph
angle approximation plot.



EXAMPLE 5.11 Bode Plot Approximation
Problem
Sketch the asymptotic approximation of the Bode plot for the frequency response
function

Solution
Known Quantities: Frequency response function of a circuit.
Find: Bode plot approximation of given frequency response function.
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Assumptions: None
Analysis: Following the Focus on Problem Solving box “Bode Plots,” factor the
function into the standard form. Notice that the quadratic pole can be factored into
two simple poles. It is important to realize that not all quadratic terms can be so
factored, but in this example it is possible. The result is

Notice the constant 20 and the jω term in the denominator, which is a pole “at the
origin.” The low end of the frequency response is determined by these two terms. At
low frequencies:

That is, the magnitude of the denominator factor jω is represented by a line with
slope of −20 dB/decade intersecting the frequency (horizontal) axis at ω = 1. Its
phase response is a constant equal to −π/2 radians or −90 degrees.



The asymptotic straight line approximations of the magnitude and phase
responses of the constant, the pole “at the origin,” the simple zero, and the two
simple poles are shown in Figure 5.46. In Figure 5.46(a), notice the changes in slope
at the cutoff frequencies of the simple zero (ω = 200 rad/sec) and the two simple
poles (ω = 10 rad/sec and ω = 5000 rad/sec). Also notice in Figure 5.46(b) the
changes in slope one decade below and one decade above the same cutoff
frequencies. These straight line approximations are summed to produce the
approximate overall frequency response plots, which are shown in Figure 5.47.

Figure 5.46 Approximate (asymptotic) frequency responses of individual
first-order terms; (a) straight line approximation of magnitude response; (b)
straight line approximation of phase angle response.

Comments: A computer program such as MatLab can be used to generate the Bode
plot approximation shown in Figures 5.46 and 5.47. However, the process of creating
approximate Bode plots is a necessary practice when learning to understand and
interpret actual Bode plots.
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Figure 5.47 Comparison of approximate and exact frequency response; (a)
magnitude of frequency response function; (b) phase angle of frequency
response function.

EXAMPLE 5.12 Bode Plot Approximation
Problem
Sketch the asymptotic approximation of the Bode plot for the frequency response
function

Solution
Known Quantities: Frequency response function of a circuit.
Find: Bode plot approximation of given frequency response function.
Assumptions: None
Analysis: Following the Focus on Problem Solving box “Bode Plots,” factor the
function into standard form. Notice that the quadratic pole can be factored into two



simple poles. It is important to realize that not all quadratic terms can be so factored,
but in this example it is possible. The result is

Notice the constant 0.1 and the jω term in the numerator, which is a zero “at the
origin.” The low end of the frequency response is determined by these two terms. At
low frequencies:
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That is, the magnitude of jω is represented by a line with slope +20 dB/decade
intersecting the frequency (horizontal) axis at ω = 1. The phase of the factor jω is a
constant and equal to π/2 radians or 90 degrees.

The asymptotic straight line approximations of the magnitude and phase
responses of the constant, the zero “at the origin,” the simple zero, and the two
simple poles are shown in Figure 5.48. In Figure 5.48(a), notice the changes in slope
at the cutoff frequencies of the simple zero (ω = 100 rad/sec) and the two simple
poles (ω = 30 rad/sec and ω = 3000 rad/sec). Also notice in Figure 5.48(b) the
changes in slope one decade below and one decade above the same cutoff
frequencies. These straight line approximations are summed to produce the
approximate overall frequency response plots, which are shown in Figure 5.49.

Figure 5.48 Approximate (asymptotic) frequency responses of individual
first-order terms; (a) straight line approximation of magnitude response; (b)
straight line approximation of phase angle response.



1.

Figure 5.49 Comparison of approximate and exact frequency responses;
(a) magnitude of frequency response function; (b) phase angle of frequency
response function.
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Comments: Bode plots can be generated using MatLab. Circuit simulation programs,
such as TINA®, can also generate Bode plots.

F O C U S  O N  P R O B L E M  S O LV I N G

QUADRATIC ZEROS/POLES
This box illustrates how quadratic zeros/poles impact the straight line asympt
approximations of Bode magnitude and phase plots. A quadratic zero/
contributes to the overall frequency response at frequencies near and above
natural frequency ωn. When possible, factor a quadratic zero/pole into two sim
zeros/poles and refer to the previous Focus on Problem Solving box.

Quadratic zero

Magnitude plot: A quadratic zero produces a 40 dB/decade change in slop
frequency increases across the natural frequency ωn.



2.

Phase plot: A quadratic zero produces a 90° increase in phase angle
frequency approaches the natural frequency ωn and another 90° increas
phase angle as frequency increases beyond the natural frequency. In tota
quadratic zero produces a 180° increase in phase angle as frequency incre
across the natural frequency.

When Q ≫ 1: Contributes approximately −20 log (Q) dB at ω = ωn such 
the magnitude plot traverses a local minimum. The bandwidth of this l
minimum decreases as Q increases.

Quadratic pole

Magnitude plot: A quadratic pole produces a −40 dB/decade change in slop
frequency increases across the natural frequency ωn.

Phase plot: A quadratic pole produces a 90° decrease in phase angle
frequency approaches the natural frequency ωn and another 90° decreas
phase angle as frequency increases beyond the natural frequency. In tota
quadratic pole produces a 180° decrease in phase angle as frequency incre
across the natural frequency.

When Q ≫ 1: Contributes approximately 20 log (Q) dB at ω = ωn such that
magnitude plot traverses a local maximum. This effect is known as a resona
The bandwidth of this local maximum decreases as Q increases. See Fig
5.34 and 5.50.
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Comment: The impact of a quadratic pole at its natural frequency depe
significantly upon the quality factor Q = 1/(2ζ) as suggested by Figures 5.34 
5.50.



Figure 5.50 Quadratic pole with Q ≈ 0.22, 1.1, 2.2.

CHECK YOUR UNDERSTANDING
Use the information in the Focus on Measurements box, “Seismic Transducer,” to
create the Bode magnitude plot of the frequency response of the seismic
displacement transducer. Compare the Bode magnitude plot to the linear magnitude
plot shown in Figure 5.40. Is the slope at the low-frequency end as expected? Is the
change in slope across the natural frequency as expected? Is the resonant peak at the
natural frequency for B = 1 as expected? The resonant peak estimate for Q ≫ 1 is 20
log (Q).
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1.

2.

Conclusion
Chapter 5 focuses on the frequency response of linear circuits, and it is a natural
extension of the material covered in Chapter 3. The concepts of the spectrum of a
signal, obtained through the Fourier series representation for periodic signals, and of
the frequency response of a filter are very useful ideas that extend well beyond
electrical engineering. For example, civil, mechanical, and aeronautical engineering
students who study the vibrations of structures and machinery will find that the same
methods are employed in those fields.

Upon completing this chapter, you should have mastered the following learning
objectives:

Understand the physical significance of frequency domain analysis, and compute
the frequency response of circuits by using AC circuit analysis tools. You had
already acquired the necessary tools (phasor analysis and impedance) to
compute the frequency response of circuits in Chapter 3; in the material
presented in section 5.1, these tools are put to use to determine the frequency
response functions of linear circuits.
Compute the Fourier spectrum of periodic signals by using the Fourier series
representation, and use this representation in connection with frequency
response ideas to compute the response of circuits to periodic inputs. The
concept of spectrum is very important in many engineering applications; in
section 5.2 you learned to compute the Fourier spectrum of an important class of
functions: those that repeat periodically. The frequency spectrum of signals
makes frequency domain analysis (i.e., computing the response of circuits using
the phasor domain representation of signals) very easy, even for relatively
complex signals because it allows you to decompose the signals into a
summation of sinusoidal components, which can then be easily handled one at a
time.



3.

4.

5.1

5.2

5.3

5.4

Analyze simple first- and second-order electrical filters, and determine their
frequency response and filtering properties. With the concept of frequency
response firmly in hand, now you can analyze the behavior of electrical filters
and study the frequency response characteristics of the most common types, that
is, low-pass, high-pass, and bandpass filters. Filters are very useful devices and
are explored in greater depth in Chapters 6 and 7.
Compute the frequency response of a circuit and its graphical representation in
the form of a Bode plot. Graphical approximations of Bode plots can be very
useful to develop a quick understanding of the frequency response
characteristics of a linear system, almost by inspection. Bode plots find use in
the discipline of automatic control systems, a subject that is likely to be
encountered by most engineering majors.
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HOMEWORK PROBLEMS
Section 5.2: Fourier Analysis

Use trigonometric identities to show that the equalities in equations 5.27 and
5.28 hold.

Derive a general expression for the Fourier series coefficients of the square
wave of Figure 5.15(a) in the text.

Compute the Fourier series coefficient of the periodic function shown in Figure
P5.3 and defined as:

Figure P5.3

Compute the Fourier series coefficient of the periodic function shown in Figure
P5.4 and defined as



5.5

5.6

5.7

Figure P5.4

Compute the Fourier series expansion of the function shown in Figure P5.5, and
express it in sine-cosine (an, bn coefficients) form.

Figure P5.5

Compute the Fourier series expansion of the function shown in Figure P5.6, and
express it in sine-cosine (an, bn coefficients) form.

Figure P5.6

Write an expression for the signal shown in Figure P5.7, and derive a complete
expression for its Fourier series.



5.8

5.9

5.10

Figure P5.7

Write an expression for the signal shown in Figure P5.8 and derive its Fourier
series.

Figure P5.8

Find the Fourier series for the periodic function shown in Figure P5.9.
Determine integral expressions for the Fourier coefficients.
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Figure P5.9

Find the Fourier series for the periodic function shown in Figure P5.10.
Determine integral expressions for the Fourier coefficients.



a.

b.

c.

d.

5.12

5.13

5.11

Figure P5.10

Section 5.3: Low- and High-Pass Filters
Determine the frequency response Vout(jω)/Vin(jω) for the circuit of Figure
P5.11. Assume L = 0.5 H and R = 200 kΩ.

Plot the magnitude and phase of the circuit for frequencies between 10 and
107 rad/s on graph paper, with a linear scale for frequency.

Repeat part b, using semilog paper. (Place the frequency on the
logarithmic axis.)

Plot the magnitude response on semilog paper with magnitude in decibels.

Figure P5.11

Repeat the instructions of Problem 5.11 for the circuit of Figure P5.12.

Figure P5.12

Repeat the instructions of Problem 5.11 for the circuit of Figure 5.13.



5.14
a.

b.

c.

d.

e.

5.15
a.

b.

c.

d.

e.

Figure P5.13

In the circuit shown in Figure P5.14, where C = 0.5 μF and R = 2 kΩ,

Determine how the input impedance Z(jω) = Vi(jω)/Ii(jω) behaves at
extremely high and low frequencies.

Find an expression for that impedance.

Show that this expression can be manipulated into the form Z(jω) = R[1 −
j(1/ωRC)].

Determine the frequency ω = ωC for which the imaginary part of the
expression in part c is equal to 1.

Estimate (without computing it) the magnitude and phase angle of Z(j ω)
at ω = 10 rad/s and ω = 105 rad/s.

Figure P5.14

In the circuit shown in Figure P5.15, where L = 2 mH and R = 2 kΩ,

Determine how the input impedance Z(jω) = Vi(jω)/Ii(jω) behaves at
extremely high and low frequencies.
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Find an expression for the impedance.

Show that this expression can be manipulated into the form Z(jω) = R[1 +
j (ωL/R)].

Determine the frequency ω = ωC for which the imaginary part of the
expression in part c is equal to 1.

Estimate (without computing it) the magnitude and phase angle of Z(jω)
at ω = 105 rad/s, 106 rad/s, and 107 rad/s.



5.16

a.

b.

c.

5.17

Figure P5.15

In the circuit of Figure P5.16:

Determine:

How the voltage frequency response function

behaves at extremes of high and low frequencies.

An expression for the voltage frequency response function and show that
it can be manipulated into the form

where

The frequency at which f(ω) = 1 and the value of Ho in decibels.

Figure P5.16

In the circuit shown in Figure P5.17, determine the frequency response function
in the form:



5.18

a.

b.

c.

d.

5.19

Figure P5.17

The circuit shown in Figure P5.18 has

Determine the frequency response Vo(jω)/Vin(jω).

Figure P5.18

Determine the frequency response Vout(jω)/Vin(jω) for the circuit of
Figure P5.19.

Plot the magnitude and phase of the circuit for frequencies between 1 and
100 rad/s on graph paper, with a linear scale for frequency.

Repeat part b, using semilog paper. (Place the frequency on the
logarithmic axis.)

Plot the magnitude response on semilog paper with magnitude in dB.

Figure P5.19
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5.20

a.

b.

c.

5.21

5.22

5.23

5.24

5.25

5.26
5.27
5.28

5.29
5.30
5.31

Consider the circuit shown in Figure P5.20. Use the values for R and L given in
Problem 5.15.

Sketch the amplitude response of Y = I/VS.

Sketch the amplitude response of V1/VS.

Sketch the amplitude response of V2/VS.

Figure P5.20

Using a 15-kΩ resistance, design an RC high-pass filter with a breakpoint at 200
kHz.

Using a 500-Ω resistance, design an RC low-pass filter that would attenuate a
120-Hz sinusoidal voltage by 20 dB with respect to the DC gain.

At what frequency is the phase shift introduced by the circuit of Example 5.6
equal to −10°?

At what frequency is the output of the circuit of Example 5.6 attenuated by 10
percent (that is, Vo = 0.9 Vi)?

Assume the filter shown in Figure 5.11 is excited by the first two Fourier
components of the sawtooth waveform in Example 5.3. Determine the output of
the filter, and plot the input and output waveforms on the same graph. Assume
the period T = 10 μs and the peak amplitude A = 1 for the sawtooth waveform.

Repeat Problem 5.25 with the square wave of Figure 5.15(a) as the input.

Repeat Problem 5.25 for the pulse train of Example 5.4 as the input.

Assume the circuit shown in Figure P5.12 is excited by the first three Fourier
components of the sawtooth waveform in Example 5.3. Determine the output of
the filter, and plot the input and output waveforms on the same graph. Assume T
= 0.5 s and A = 2 for the sawtooth waveform.

Repeat Problem 5.28 with the square wave of Figure 5.15(a) as the input.

Repeat Problem 5.28 with the pulse train of Example 5.4 as the input.

Assume the filter shown in Figure P5.13 is excited by the first four Fourier
components of the sawtooth waveform in Example 5.3. Determine the output of



5.32
5.33

5.34

5.35

5.36

the filter, and plot the input and output waveforms on the same graph. Assume T
= 0.1 s and A = 1 for the sawtooth waveform.

Repeat Problem 5.31 with the square wave of Figure 5.15(a) as the input.

Repeat Problem 5.31 with the pulse train of Example 5.4 as the input.

Section 5.4: Bandpass Filters, Resonance and Quality
Factor

Repeat Problem 5.11 for the circuit of Figure P5.34. R1 = 300 Ω, R2 = R3 = 500
Ω, L = 4 H, C1 = 40 μF, C2 = 160 μF.

Figure P5.34

Determine the frequency response of the circuit of Figure P5.35, and generate
frequency response plots. R1 = 20 kΩ, R2 = 100 kΩ, L = 1 H, C = 100 μF.

Figure P5.35
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In the circuit shown in Figure P5.36, if



a.

b.

c.

d.

5.37

a.

b.

c.

d.

Determine how the input impedance behaves at extremely high or low
frequencies.

Find an expression for the input impedance in the form

Determine the four frequencies at which f1 (ω) = +1 or −1 and f2 (ω) = +1
or −1.

Plot the impedance (magnitude and phase) versus frequency.

Figure P5.36

The circuit shown in Figure P5.37 is a second-order circuit because it has two
reactive components (L and C). A complete solution will not be attempted.
However, determine:

The behavior of the voltage frequency response at extremely high and low
frequencies.

The output voltage Vo if the input voltage has a frequency where:

The output voltage if the frequency of the input voltage doubles so that

The output voltage if the frequency of the input voltage again doubles so
that



5.38

5.39
a.

b.

5.40

5.41

5.42

5.43

5.44
5.45
5.46

Figure P5.37

In an RLC circuit, assume ω1 and ω2 such that  and Δω
such that Δω = ω2 − ω1. In other words, Δω is the bandwidth of the current
curve where the current has fallen to  of its maximum value at the
resonance frequency. At these frequencies, the power dissipated in a resistance
becomes one-half of the dissipated power at the resonance frequency. In an RLC
circuit with a high-quality factor, show that Q = ω0/Δω.

In an RLC circuit with a high quality factor:

Show that the impedance at the resonance frequency becomes a value of Q
times the inductive resistance at the resonance frequency.

Determine the impedance at the resonance frequency, assuming L = 280
mH, C = 0.1 μF, R = 25 Ω.

At what frequencies is the output of the circuit of Example 5.10 attenuated by
10 percent (that is, Vo = 0.9 Vi)?

At what frequencies is the phase shift introduced by the circuit of Example 5.10
equal to 20°?

Assume the filter shown in Figure P5.34 is excited by the first two Fourier
components of the sawtooth waveform in Example 5.3. Determine the output of
the filter, and plot the input and output waveforms on the same graph. Assume T
= 50 ms and A = 2 for the sawtooth waveform.

Repeat Problem 5.42 for T = 0.5 s and 5 ms, and compare the results with T =
50 ms.

Repeat Problem 5.42 for the square wave of Figure 5.15(a).

Repeat Problem 5.42 with the pulse train of Example 5.4 as the input.

Assume the filter shown in Figure P5.35 is excited by the first three Fourier
components of the sawtooth waveform in Example 5.3. Determine the output of
the filter, and plot the input and output waveforms on the same graph. Assume T
= 5 s and A = 1 for the sawtooth waveform.
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5.47
5.48
5.49
5.50

5.51

5.52

Repeat Problem 5.46 for T = 50 s, and compare the results.

Repeat Problem 5.46 with the square wave of Figure 5.15(a) as the input.

Repeat Problem 5.46 with the pulse train of Example 5.4 as the input.

Consider the circuit shown in Figure P5.50. Determine the resonant frequency
and the bandwidth for the circuit.

Figure P5.50

Are the filters shown in Figure P5.51 low-pass, high-pass, bandpass, or
bandstop (notch) filters?

Figure P5.51

Determine if each of the circuits shown in Figure P5.52 is a low-pass, high-pass,
bandpass, or bandstop (notch) filter.



5.53
a.

b.

5.54

Figure P5.52

For the filter circuit shown in Figure P5.53:

Determine if this is a low-pass, high-pass, bandpass, or bandstop filter.

Determine the frequency response Vo(jω)/Vi(jω)assuming L = 10 mH, C =
1 nF, R1 = 50 Ω, R2 = 2.5 kΩ

Figure P5.53
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In the filter circuit shown in Figure P5.54: L = 10 H, C = 1 nF, RS = 20 Ω, RC =
100 Ω, Ro = 5 kΩ Determine the frequency response Vo(jω)/Vi(jω). What type



5.55

5.56

a.

b.

c.

d.

5.57

a.

of filter does this frequency response represent?

Figure P5.54

In the filter circuit shown in Figure P5.54: L = 0.1 mH, C = 8 nF, RS = 300 Ω,
RC = 10 Ω, Ro = 500 Ω. Determine the frequency response Vo(jω)/Vi(jω). What
type of filter does this frequency response represent?

In the filter circuit shown in Figure P5.56:

Determine:

The voltage frequency response

The resonant frequency.

The half-power frequencies.

The bandwidth and Q.

Figure P5.56

In the filter circuit shown in Figure P5.56:

Determine:

The voltage frequency response



b.

c.

d.

5.58

5.59

The resonant frequency.

The half-power frequencies.

The bandwidth and Q.

In the filter circuit shown in Figure P5.58:

Determine the frequency response GV(jω), where:

What type of filter does this frequency response represent?

Figure P5.58

In the notch filter circuit shown in Figure P5.59, derive the voltage frequency
response GV(jω) in standard form, where:

Assume:



5.60

5.61

5.62

a.

b.

c.

Figure P5.59

In the notch filter circuit shown in Figure P5.59, derive the voltage frequency
response GV(jω) in standard form, where:
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Assume:

Also, determine the half-power frequencies, bandwidth, and Q.

In the notch filter circuit shown in Figure P5.59, derive the voltage frequency
response GV(jω) in standard form, where:

Assume:

Also, determine the half-power frequencies, bandwidth, and Q.

In the bandstop (notch) filter shown in Figure P5.62:

Determine:

An expression for the voltage frequency response:

The magnitude of the frequency response at very high and very low
frequencies and at the resonant frequency.

The magnitude of the frequency response at the resonant frequency.



d.

5.63

a.

b.

c.

d.

5.64

The resonant and half-power frequencies.

Figure P5.62

In the filter circuit shown in Figure P5.56, assume:

Determine:

An expression for the voltage frequency response function

The resonant frequency.

The half-power frequencies.

The bandwidth and Q.

Many stereo speakers are two-way speaker systems; that is, they have a woofer
for low-frequency sounds and a tweeter for high-frequency sounds. To get the
proper separation of frequencies going to the woofer and to the tweeter,
crossover circuitry is used. A crossover circuit is effectively a bandpass, high-
pass, or low-pass filter. The system model is shown in Figure P5.64. The
function of the crossover circuitry is to channel frequencies below a given
crossover frequency, fc, into the woofer and frequencies higher than fc into the
tweeter. Assume an ideal amplifier such that RS = 0 and that the desired
crossover frequency is 1,200 Hz. Find C and L when R1 = R2 = 8 Ω. [Hint: Set
the break frequency of the network seen by the amplifier equal to the desired
crossover frequency.]



5.65

5.66

a.

b.

Figure P5.64

Section 5.5: Bode Plots
Determine the frequency response Vout (ω)/VS (ω) for the network in Figure
P5.65. Generate the Bode magnitude and phase plots when RS = Ro = 5 kΩ, L =
10 μH, and C = 0.1 μF.
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Figure P5.65

Refer to Problem 5.64 but assume that L = 2 mH, C = 125 μF, and RS = R1 = R2
= 4 Ω in Figure P5.64.

Determine the impedance seen by the amplifier as a function of frequency.
At what frequency is maximum power transferred by the amplifier?

Generate the Bode magnitude and phase plots of the currents through the
woofer and tweeter.



5.67

a.

b.

5.68

a.

b.

c.

d.

e.

For the notch filter shown in Figure P5.67 assume that RS = R0 = 500 Ω, L = 10
mH, and C = 0.1 μF.

Determine the frequency response Vout(jω)/VS(jω).

Generate the associated Bode magnitude and phase plots.

Figure P5.67

It is very common to see interference caused by power lines, at a frequency of
60 Hz. This problem outlines the design of the notch filter shown in Figure
P5.68 to reject a band of frequencies around 60 Hz.

Determine the impedance Zab(jω) between nodes a and b for the filter of
Figure P5.68. rL represents the resistance of a practical inductor.

For what value of C will the center frequency of Zab(jω) equal 60 Hz
when L = 100 mH and rL = 5 Ω?

Would the “sharpness,” or selectivity, of the filter increase or decrease if rL
were increased?

Assume that the filter is used to eliminate the 60-Hz noise from a 1-kHz
sine wave. Evaluate the frequency response Vo/Vin(jω) at both frequencies
when:

Assume L = 100 mH and rL = 5 Ω. Use the value of C found in part b.

Generate the Bode magnitude and phase plots for Vo/Vin. Mark the plots at
60 Hz and 1,000 Hz.



5.69

a.

b.

5.70
a.

Figure P5.68

The circuit of Figure P5.69 is representative of an amplifier-speaker connection.
The crossover filter allows low-frequency signals to pass to the woofer. The
filter’s topography is known as a π network.

Find the frequency response Vo(jω)/VS(jω).

If C1 = C2 = C, RS = Ro = 600 Ω, and , generate the
Bode magnitude and phase plots in the range 100 Hz ≤ f ≤ 10 kHz.
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Figure P5.69

For the circuit shown in Figure P5.70:

Determine the frequency response:



b.

c.

5.71

5.72

5.73

Sketch, by hand, the associated Bode magnitude and phase plots. List all
the steps in constructing the plot. Clearly show the break frequencies on
the frequency axis. (Hint: Use the MatLab command “roots” or a
calculator to quickly determine the polynomial roots.)

Use the MatLab command “Bode” to generate the same plots. Verify your
sketch. Assume R1 = R2 = 2kΩ, L = 2 H, C1 = C2 = 2 mF.

Figure P5.70

Repeat all parts of Problem 5.70 for the frequency response:

Use the same component values as in Problem 5.70.

Repeat all parts of Problem 5.70 for the circuit of Figure P5.72 and the
frequency response:

Let R1 = R2 = 1 kΩ, C = 1 μF, L = 1 H.

Figure P5.72

Repeat all parts of Problem 5.70 for the circuit of Figure P5.72 and the
frequency response:

Use the same values as in Problem 5.72.



5.74

5.75

5.76

a.

b.

c.

5.77
a.

b.

For the circuit of Figure P5.74 determine the frequency response H(jω) =
Vout/Iin. Repeat all parts of Problem 5.70. Assume R1 = R2 = 2 kΩ, C1 = C2 = 1
mF.

Figure P5.74

Repeat all parts of Problem 5.70 for the circuit of Figure P5.74 and the
frequency response:

Use the same component values as in Problem 5.74.

Refer to Figure P5.34 and assume R1 = 300 Ω, R2 = R3 = 500 Ω, L = 4H, C1 =
40 μF, C2 = 160 μF.

Determine the frequency response:

Sketch, by hand, the associated Bode magnitude and phase plots. List all
the steps in constructing the plot. Clearly show the break frequencies on
the frequency axis. (Hint: Use the MatLab command “roots” or a
calculator to quickly determine the polynomial roots.)

Use the MatLab command “Bode” to generate the same plots. Verify your
sketch.
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Refer to Figure P5.34 and the parameter values listed in Problem 5.76.

Determine for the frequency response:

Repeat parts b and c of Problem 5.76 for this frequency response.



5.78

5.79

5.80

a.

b.

c.

5.81

Refer to Figure P5.35 and repeat the instructions of parts b and c of Problem
5.76. Assume R1 = 20 kΩ, R2 = 100 kΩ, L = 1 H, C = 100 μF.

Assume in a certain frequency range that the ratio of output amplitude to input
amplitude is proportional to 1/ω3. What is the slope of the Bode magnitude plot
in this frequency range, expressed in dB/decade?

Assume that the amplitude of an output voltage depends on frequency according
to:

Find:

Each break frequency in terms of A, B, C and D.

The slope (in dB/decade) of the Bode magnitude plot at the high-
frequency end.

The slope (in dB/decade) of the Bode plot at the low-frequency end.

Determine the equivalent impedance Zeq in standard form as defined in Figure
P5.81(a). Choose the Bode plot from Figure P5.81(b) that best describes the
behavior of the impedance as a function of frequency. Describe how to find the
resonant and cutoff frequencies, and the magnitude of the impedance for those
ranges where it is constant. Label the Bode plot to indicate which feature you
are discussing.



Figure P5.81

Design Credits: Mini DVI cable adapter isolated on white background: Robert Lehmann/Alamy Stock Photo;
Balance scale: Alex Slobodkin/E+/Getty Images; Icon for “Focus on measurements” weighing scales: Media
Bakery.

1The circuitry in a high-fidelity audio system is far more complex than the circuits
discussed in this chapter. However, from the standpoint of intuition and everyday
experience, the audio analogy provides a useful example. The audio spectrum terms
bass, midrange, and treble are well known, but not well understood. The material
presented in this chapter provides a technical basis for understanding these concepts.

2These definitions are the same as those introduced in the section on second-order
transient response in Chapter 4.

3See the Focus on Measurements box: “Electrocardiogram Amplifier” in Chapter 6
and section 7.2 for further information on electrocardiograms and line noise,
respectively.
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C H A P T E R
6

OPERATIONAL AMPLIFIERS

mplification and switching are the two fundamental operations carried out
by diodes and transistors, which are themselves the two fundamental
electronic components. Of course, many specialized electronic devices
have been developed from diodes and transistors. One of these is the

operational amplifier, or op-amp, the mastery of which is essential to any
practical application of electronics. This chapter presents the general features of
an ideal amplifier and the specific features of the operational amplifier and
various popular and powerful circuits based upon it. The effects of feedback in
amplifier circuits is discussed as well as the gain and frequency response of the
operational amplifier. The models presented in this chapter are based on concepts
that have already been explored at length in earlier chapters, namely, Thévenin
and Norton equivalent networks, impedance, transient response and frequency
response. The chapter is designed to provide both a thorough analytical and
practical understanding of the operational amplifier so that a student can
successfully use it in practical amplifier circuits found in many engineering
applications.



1.

2.

3.

4.
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 Learning Objectives
Students will learn to...

Understand the properties of ideal amplifiers and the concepts of gain, input
impedance, output impedance, and feedback. Section 6.1.
Understand the difference between open-loop and closed-loop op-amp
configurations; and compute the gain of (or complete the design of) simple
inverting, non-inverting, summing, and differential amplifiers using ideal op-
amp analysis. Analyze more advanced op-amp circuits, using ideal op-amp
analysis; and identify important performance parameters in op-amp data
sheets. Section 6.2.
Analyze and design simple active filters. Analyze and design ideal integrator
and differentiator circuits. Sections 6.3–6.5.
Understand the principal physical limitations of an op-amp. Section 6.6.

6.1 IDEAL AMPLIFIERS
Amplifiers are an essential aspect of many electronic applications. Perhaps the
most familiar use of an amplifier is to convert the low-voltage, low-power signal
from a digital audio player (e.g., iPhone) to a level suitable for driving a pair of
earbuds or headphones, as shown in Figure 6.1. Amplifiers have important
applications in practically every field of engineering because the vast majority of
transducers and sensors used for measurement produce electrical signals, which
are then amplified, filtered, sampled, and processed by analog and digital
electronic instrumentation. For example, mechanical engineers use thermistors,
accelerometers, and strain gauges to convert temperature, acceleration, and strain
into electrical signals. These signals must be amplified prior to transmission and
then filtered (a function carried out by amplifiers) prior to sampling the data in
preparation for producing a digital version of the original analog signal. Other,
less obvious, functions such as impedance isolation are also performed by
amplifiers. It should now be clear that amplifiers do more than simply produce an
enlarged replica of a signal although that function is certainly very important.
This chapter explores the general features of amplifiers and focuses on the
characteristics and applications of a particularly important integrated-circuit, the
operational amplifier.



(6.1)

Figure 6.1 Typical digital audio player (fad82/Shutterstock)

Ideal Amplifier Characteristics
The simplest model for an amplifier is depicted in Figure 6.2, where a signal υS is
amplified by a factor G, called the voltage gain of the amplifier. Ideally, the input
impedance of the amplifier is infinite such that υin = υS; if its output impedance is
zero, υo will be determined by the amplifier independent of R such that:

Note that the input seen by the amplifier is a Thévenin source (υS in series with
RS), while the output seen by the amplifier is a single equivalent resistance R.

Figure 6.2 Amplifier between source and load

A more realistic (but still quite simple) amplifier model is shown in Figure
6.3. In this figure the concepts of input and output impedance of the amplifier are
incorporated as single resistances Rin and Rout, respectively. That is, from the
perspective Page 395of the load R the amplifier acts as a Thévenin source (Aυin in
series with Rout), while from the perspective of the external source (υS in series
with RS) the amplifier acts as an equivalent resistance Rin. The constant A is the



(6.2)

(6.3)

(6.4)

(6.5)

multiplier associated with the dependent (controlled) voltage source and is known
as the open-loop gain.1

Using the amplifier model of Figure 6.3 and applying voltage division, the
input voltage to the amplifier is now:

Figure 6.3 Simple voltage amplifier model

The output voltage of the amplifier can also be found by applying voltage
division, where:

Substitute for υin and divide both sides by υS to obtain:

which is the overall voltage gain from υS to υo. The voltage gain G of the
amplifier itself is

For this model, the voltage gain G is dependent upon the external resistance
R, which means that the amplifier performs differently for different loads.
Moreover, the input voltage υin to the amplifier is a modified version of υS.
Neither of these results seem desirable. Rather, it stands to reason that the gain of
a “quality” amplifier would be independent of its load and would not impact its
source signal. These attributes are achieved when Rout ≪ R and Rin ≫ RS. In the
limit that Rout → 0:



(6.6)

(6.7)

(6.8)

(6.9)

(6.10)

such that:

Also, in the limit that Rin → ∞:

such that

In general, a “quality” voltage amplifier will have a very small output impedance
and a very large input impedance.
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Input and Output Impedance
In general, the input impedance Rin and the output impedance Rout of an amplifier
are defined as:

where υOC is the open-circuit voltage and iSC is the short-circuit current at the
output of the amplifier. An ideal voltage amplifier has zero output impedance and
infinite input impedance so that the amplifier does not suffer from loading effects
at its input or output terminals. In practice, voltage amplifiers are designed to
have large input impedance and small output impedance.

It is a worthwhile exercise to show that an ideal current amplifier has zero
input impedance and infinite output impedance. Also, an ideal power amplifier is
designed so that its input impedance matches its source network and its output
impedance matches its load impedance.

Feedback



1.

2.
3.
4.

(6.11)

Feedback, which is the process of using the output of an amplifier to reinforce or
inhibit its input, plays a critical role in many amplifier applications. Without
feedback an amplifier is said to be in open-loop mode; with feedback an amplifier
is said to be in closed-loop mode. The output of the amplifier model shown in
Figure 6.3 does not affect its input (because there is no path from output to input),
so feedback is not present, and the model is open loop. As suggested earlier, the
most basic characteristic of an amplifier is its gain, which is simply the ratio of
the output to the input. The open-loop gain A of a practical amplifier (e.g., an
operational amplifier) is usually very large, whereas the closed-loop gain G is a
reduced version of the open-loop gain. The relationship between A and G is
developed and explored in the rest of this chapter.

There are two types of feedback possible in closed-loop mode: positive
feedback, which tends to reinforce the amplifier input, and negative feedback,
which tends to inhibit the amplifier input. Both positive and negative feedback
have useful applications; however, negative feedback is by far the most common
type of feedback found in applications. In general, negative feedback causes the
large open-loop gain A of an amplifier to be exchanged for a smaller closed-loop
gain G. While this exchange may seem undesirable at first glance, several key
benefits accompany the exchange. These benefits to the amplifier are

Decreased sensitivity to variations in circuit and environmental parameters,
most notably temperature.
Increased bandwidth.
Increased linearity.
Increased signal-to-noise ratio.

Negative feedback is implemented by establishing one or more paths from the
output to the input of the amplifier. The impedance of each feedback path can be
adjusted to produce improved input and output impedances of the overall
amplifier circuit. These input and output impedances are key characteristics for
understanding the loading effects of other circuits attached to an amplifier.
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Figure 6.4 shows a signal-flow diagram of an amplifier situated between a
source and a load. The arrows indicate the direction of signal flow. The signals
shown are us , uf , e, and y. The output signal of each rectangle is a multiple of its
input signal, where the two constants, A and β, are both positive such that:



(6.12)

(6.13)

(6.14)

1.

2.

(6.15)

Figure 6.4 Signal-flow diagram of generic amplifier

The circle sums its inputs, us and uf , to produce one output, e. The polarity signs
(±) indicate that us and uf make positive and negative contributions to the sum,
respectively. That is

Because the feedback signal uf makes a negative contribution to the sum, the
signal flow diagram of Figure 6.4 is said to employ negative feedback.

Equations 6.11 and 6.12 can be combined to yield:

which can be rearranged to solve for y. Then, the closed-loop gain of the
amplifier is

The quantity Aβ is known as the loop gain. Implicit in the derivation of equation
6.14 is that the behavior of each block within the amplifier is not affected by the
other blocks nor by the external source and load. In other words, the blocks are
ideal such that loading effects are zero.

Two important observations can be made at this point:
The closed-loop gain G depends upon β, which is known as the feedback
factor.
Since Aβ is positive, the closed-loop gain G is smaller than the open-loop
gain A.

Furthermore, for most practical amplifiers, Aβ is quite large such that:



(6.16)

(6.17)

(6.18)

This result is particularly important (and probably surprising!) because it
indicates that the closed-loop gain G of the amplifier is largely independent of the
open-loop gain A, as long as Aβ ≫ 1, and that G is, in turn, determined largely by
the feedback factor, β.
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When Aβ ≫ 1, the closed-loop gain G of an amplifier is determined largely
by the feedback factor, β.

Furthermore, equation 6.14 can be used to find the ratio of the two inputs, us
and uf.

Thus, when Aβ ≫ 1, another important result is

This result indicates that when the loop gain Aβ is large, the difference between
the input signal us and the feedback signal uf is driven toward zero.

When Aβ ≫ 1, the difference between the input signal us and the feedback
signal uf is driven toward zero.

Both of the results of equations 6.15 and 6.17 will show up repeatedly in the
analysis of operational amplifier circuits in closed-loop mode.

Benefits of Negative Feedback
As mentioned in the previous section, negative feedback provides several benefits
in exchange for a reduced gain. For example, take the derivative of both sides of
equation 6.14 to find:



(6.19)

(6.20)

(6.21)

Divide the left side by G and the right side by A/(1 + Aβ) to obtain:

When Aβ ≫ 1, this result indicates that the percentage change in G due to a
percentage change in A is relatively small. In other words, the closed-loop gain G
is relatively insensitive to changes in the open-loop gain A.

When Aβ ≫ 1, the closed-loop gain G is relatively insensitive to changes in
the open-loop gain A.

For any amplifier, the open-loop gain A is a function of frequency. For
example, the open-loop gain A(ω) of an op-amp is characterized by a simple pole
such that:
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where ωo is its 3-dB break frequency. The Bode magnitude characteristic plot is
shown in Figure 6.5. Equation 6.20 can be substituted into equation 6.14 to
obtain:

Figure 6.5 Typical amplifier Bode magnitude characteristic

Multiply the numerator and denominator on the right side of equation 6.21 by 1 +
jω/ωo and then factor out 1 + A0β from the denominator to obtain:



(6.22)

where ωg = ωo(1 + A0β ). Thus, the closed-loop 3-dB break frequency is (1 + A0β
) larger than the open-loop 3-dB break frequency.

The closed-loop 3-dB break frequency is (1 + A0β) larger than the open-
loop 3-dB break frequency.

Likewise, if the amplifier is characterized by a simple zero, its 3-dB break
frequency will be (1 + A0β) smaller than the open-loop 3-dB break frequency. It
is a worthwhile exercise to derive this result.

Similar analyses can be performed to show the increased linearity and
increased signal-to-noise ratio resulting from negative feedback. All these
benefits are acquired at the expense of amplifier gain.

6.2 THE OPERATIONAL AMPLIFIER
An operational amplifier (op-amp) is an integrated circuit (IC) that contains a
large number of microscopic electrical and electronic components integrated on a
single silicon wafer. An op-amp can be used in conjunction with other common
components to create circuits that perform amplification and filtering, as well as
mathematical operations, such as addition, subtraction, multiplication,
differentiation, and integration, on electrical signals. Op-amps are found in most
measurement and instrumentation systems, serving as a versatile building block
for many applications.

The behavior of an op-amp is well described by fairly simple models, which
permit an understanding of its effects and applications without delving into its
internal details. Its simplicity and versatility make the op-amp an appealing
electronic device with which to begin understanding electronics and integrated
circuits. Figure 6.6(d) shows a standard single op-amp IC chip pin layout. It has
two input pins (2 and 3) and one output pin (6). Also notice the two DC power
supply pins (4 and 7) that provide external power to the chip and thus enable the
op-amp. Operational amplifiers are active devices; that is, they need an external
power source to function. Pin 4 is held at a low DC voltage , while pin 7 is held
at a high DC voltage . These two DC voltages are well below and above,
respectively, the op-amp’s reference voltage and bound the output of the op-amp.
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Figure 6.6(a) shows the so-called small-signal, low-frequency model of an op-
amp, which is exactly the same amplifier model shown in Figure 6.3. For this
model, the input impedance is Rin and the output impedance is Rout. The op-amp
itself is a difference amplifier because its output is a function of the difference
between two input voltages, υ+ and υ−, which are known as the noninverting and
inverting inputs, respectively. Notice that the value of the internal dependent
voltage source is A(υ+ − υ−), where A is the open-loop gain of the op-amp. In a
practical op-amp, A is quite large by design, typically on the order of 105 to 107.
As discussed in the previous section, this large open-loop gain can be exchanged,
by design, for a smaller closed-loop gain G to acquire various beneficial
characteristics for an amplifier circuit, of which the op-amp is just one
component.2

Figure 6.6 (a) Small-signal op-amp model; (b) simplified op-amp
circuit symbol; (c) generic op-amp IC schematic; (d) single op-amp IC



(6.23)

1.

2.

chip pin layout
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The Ideal Op-Amp
Practical op-amps have a large open-loop gain A, as noted previously. The input
impedance Rin is also large, typically on the order of 106 to 1012 Ω, while the
output impedance Rout is small, typically on the order of 100 or 101 Ω. In the ideal
case, the open-loop gain and the input impedance would be infinite, while the
output impedance would be zero. When the output impedance is zero, the output
voltage of an ideal op-amp is simply

The implication for a practical op-amp with a very large open-loop gain A is that
one of the two following possibilities will hold:

In the case that Δυ ≠ 0, the output voltage saturates near either the positive or
negative DC power supply value, VS+ or VS−, as shown in Figure 6.7. These
external DC power supply rails enable a practical op-amp but also bound the
op-amp output voltage υout. This case applies to all practical applications of
an op-amp where there is no feedback from υout to υ−. Open-loop mode
applications such as a simple comparator operate in this fashion. Other
circuits that employ positive feedback only, such as a Schmitt trigger, are
also included in this class of applications.
In the case that Δυ = 0, the product AΔυ is finite and the output voltage is
determined by the external circuitry attached to the op-amp. Recall from
Section 6.1 that when Aβ ≫ 1 the closed-loop gain of an amplifier is
approximately equal to 1/β and largely independent of A itself. Thus, this
case applies to all practical applications of an op-amp in closed-loop mode;
that is, when negative feedback is present from υout to υ−.



(6.24)

(6.25)

1.
2.

Figure 6.7 The absence of the open-loop gain symbol A in the triangle
indicates an ideal operational amplifier. When Δυ ≠ 0 the output voltage
saturates near one of the two power supply rails,  or .

The infinite impedances of the input terminals of an ideal op-amp imply that the
current into or out of those terminals is zero. This result is known as the first
golden rule of ideal op-amps:

Also recall from the discussion of negative feedback in Section 6.1 that when Aβ
≫ 1 the difference between the two amplifier inputs, us and uf , approaches zero.
In the context of ideal op-amps, where A → ∞, the difference between the two
amplifier inputs, υ+ and υ−, will be zero as long as there is a feedback path from
υout to υ−.

The Golden Rules of Ideal Op-Amps:
i+ = i− = 0.
υ+ = υ− (when negative feedback is present).
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Amplifier Archetypes
There are three fundamental amplifiers that utilize the operational amplifier and
employ negative feedback. They are:

The inverting amplifier.
The noninverting amplifier.
The unity-gain isolation buffer (or voltage follower).

These archetypes have many important applications and are the building blocks
for other important amplifiers. Understanding and recognizing these archetypes is



(6.26)

(6.27)

(6.28)

an essential first step in the study of amplifiers based upon the op-amp. It is worth
emphasizing that the op-amp is rarely used as a stand-alone amplifier; rather it is
used along with other components to form specialized amplifiers.

The Inverting Amplifier

Figure 6.8 shows a basic inverting amplifier circuit. The name derives from the
fact that the input signal υS “sees” the inverting terminal (−) and that, as is shown
below, the output signal υo is an inverted (negative) version of the input signal. To
determine the relationship between the output and the input signals, assume the
op-amp is ideal and apply KCL at the inverting node marked υ−.

Figure 6.8 Inverting amplifier

However, the first golden rule of ideal op-amps requires that iin = 0. Thus, iS = iF
such that RS and RF form a virtual series connection. Ohm’s law can be applied to
each resistor to yield:

These expressions can be simplified by noting that υ+ = 0 and thus by the second
golden rule of ideal op-amps υ− = υ+ = 0. Thus:

Cross-multiply to find the closed-loop gain G:



(6.29)

(6.30)

(6.31)

Note that the magnitude of G can be greater or less than 1.
An alternate approach is to apply voltage division across the virtual series

connection of RS and RF.

or

Subtract 1 from each side of this expression to find the same result as equation
6.29.
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Notice that the closed-loop gain G of an inverting amplifier is determined
solely by the choice of resistors. This result was derived for an ideal op-amp. For
a practical op-amp the result is only slightly different as long as the open-loop
gain A is large. It is important to remember that this result depends upon both
golden rules of ideal op-amps and that, in particular, the second golden rule is
valid only when negative feedback is present.

As long as the open-loop gain A is large, the presence of negative feedback
from the output to the inverting input drives the voltage difference between
the two input terminals to zero.

The input impedance of the inverting amplifier is simply:



(6.32)

(6.33)

Notice the important role played by the virtual ground at the inverting terminal in
making this calculation so easy. This result also reveals a shortcoming of the
inverting amplifier. In general, an ideal amplifier would have an infinite input
impedance so as to not load the source network. It is tempting to correct this
problem by choosing RS to be very large; however, in so doing, the closed-loop
gain (equation 6.29) will be reduced. Thus, it is not possible to design an
inverting amplifier to have a large gain and also a large input impedance. Alas,
there is no such thing as a free lunch!

The Noninverting Amplifier

Figure 6.9 shows a basic noninverting amplifier circuit. The name derives from
the fact that the input signal υS “sees” the noninverting terminal (+) and that, as is
shown below, the output signal υo is a noninverted (positive) version of the input
signal. To determine the relationship between the output and the input signals
assume the op-amp is ideal and apply KCL at the inverting node marked υ−.

Figure 6.9 Noninverting amplifier

However, the first golden rule of ideal op-amps states that iin = i− = i+ = 0. Thus,
iF = i1 such that RF and R1 form a virtual series connection. Ohm’s law can be
applied to each resistor to yield:

or



(6.34)

(6.35)

(6.36)

Since there is negative feedback present, the second golden rule of ideal op-amps
can be applied such that υ− = υ+. Notice that because iin = 0, the voltage drop Page
404across RS is zero with the result that υ− = υ+ = υS. Substitute this result into
equation 6.33 and rearrange terms to yield the closed-loop gain G:

Note that G ≤ 1.
An alternate approach is to apply voltage division across the virtual series

connection of R1 and RF.

Since υ− = υ+ = υS:

which is the same result as that found in equation 6.34.
Notice that the closed-loop gain G of a noninverting amplifier is determined

solely by the choice of resistors. This result was derived for an ideal op-amp. For
a practical op-amp the result is only slightly different as long as the open-loop
gain A is large. It is important to remember that this result depended upon both
golden rules of ideal op-amps and that, in particular, the second golden rule is
valid only when negative feedback is present.

As long as the open-loop gain A is large, the presence of negative feedback
from the output to the inverting input drives the voltage difference between
the two input terminals to zero.



(6.37)

(6.38)

The input impedance of the noninverting amplifier is simply

In practice, the input impedance of a noninverting amplifier is very large due to
the very large input impedance at the noninverting terminal, which limits iin to
very small values. Notice that the closed-loop gain of the noninverting amplifier
is independent of its input impedance. Thus, the noninverting amplifier does not
suffer from a trade-off between gain and input impedance, as does the inverting
amplifier. However, the gain of a noninverting amplifier is limited to values
greater than one, whereas the gain of the inverting amplifier can take on any
value. Alas, again there is no such thing as a free lunch!

Unity-Gain Isolation Buffer or Voltage Follower

Figure 6.10 shows a unity-gain isolation buffer, which is also known as a voltage
follower. Notice that the input signal υS “sees” the noninverting terminal (+) such
that the output signal υo should be a noninverted (positive) version of υS. Page
405The analysis of this circuit is as simple as the circuit itself. Assume that the
op-amp is ideal. Since negative feedback is present, both golden rules are valid.
That is

Figure 6.10 Unity-gain isolation buffer or voltage follower

By observation, υ+ = υS and υ− = υo with the result that the closed-loop gain G is



(6.39)

(6.40)

The reason this circuit is called a voltage follower should now be obvious: The
output voltage υo “follows” (equals) the input voltage υS. The reason this circuit is
also known as a unity-gain isolation buffer is due to the infinite input impedance
of the ideal op-amp, such that the voltage source υS experiences no loading effect.
In general, the output of the op-amp itself will be attached to a load. However, the
output terminal will supply whatever current is necessary to maintain the output
voltage at υS . Thus, the source υS is isolated or buffered from the output.

The input impedance of an isolation buffer is simply

In practice, the input impedance of an isolation buffer is very large due to the
very large input impedance of the op-amp, which limits iin to very small values.
The closed-loop gain is fixed at unity as long as the open-loop gain A is large
such that υ− will be driven to υ+ by negative feedback.

Application of Thévenin’s theorem
Notice in Figures 6.8 and 6.9 that the input is represented as a Thévenin source.
The implication is that the previous results for inverting and noninverting
amplifiers can be applied to any case where the input of the amplifier circuit is
linear and can be simplified to an equivalent Thévenin source. In other words, RS
and υS are the Thévenin equivalent resistance and the open-circuit voltage,
respectively, of any arbitrary linear input circuit.

For example, consider the inverting amplifier circuit shown in Figure 6.11. It
does not have the same form as the archetype of Figure 6.8. However, the voltage
source υin “sees” the inverting terminal; therefore, the output voltage υo will be an
inverted version of υin. The circuit is an inverting amplifier. To solve for υo
replace the entire linear network to the left of terminals a and b with its Thévenin
equivalent.



(6.41)

(6.42)

(6.43)

Figure 6.11 Inverting amplifier before simplification to archetype
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Figure 6.12 shows the source network detached at terminals a and b. To find
the Thévenin equivalent resistance between those terminals turn off the
independent voltage source (set υin = 0) and replace it with a short-circuit. Then:

Figure 6.12 Source network detached at terminals a and b

The Thévenin (open-circuit) voltage across terminals a and b can be found from
voltage division:

The Thévenin equivalent source network attached to the rest of the amplifier
circuit is shown in Figure 6.13. Notice that the simplified amplifier is now
identical in form to the inverting amplifier archetype of Figure 6.8. Thus, using
equation 6.29:



(6.44)

(6.45)

Figure 6.13 Inverting amplifier after simplification to archetype

The closed-loop gain G of the original amplifier circuit shown in Figure 6.11 is

Figure 6.13 generalizes Figure 6.8 by representing explicitly the source
network as the Thévenin equivalent network of any linear input source network.
The same approach can be taken to generalize the noninverting amplifier and
isolation buffer circuits shown in Figures 6.9 and 6.10, respectively, where υS and
RS are now the Thévenin (open-circuit) voltage and the Thévenin equivalent
resistance, respectively, of the input source network.

Multiple Sources and the Principle of Superposition
There are many situations that call for an amplifier to accommodate multiple
input source networks. The analysis of these amplifiers can be accomplished
using basic principles, such as KCL, KVL, and Ohm’s law. However, it is often
useful to apply the principle of superposition to simplify the overall amplifier
circuit into multiple component amplifiers, each with only one independent
source still turned on. Page 407Thévenin’s theorem can often be used to
transform these component amplifiers into one of the amplifier archetypes: the
inverting amplifier, the noninverting amplifier, or the isolation buffer. Two
important examples of amplifiers with multiple input sources are the summing
amplifier and the difference amplifier.

The Summing Amplifier

A useful op-amp circuit that is based on the inverting amplifier is the op-amp
summer, or summing amplifier, shown in Figure 6.14. Assume the op-amp is
ideal. The first golden rule of op-amps states that i+ = i− = 0. Thus, when KCL is
applied at the inverting node, the result is



(6.46)

(6.47)

Figure 6.14 Summing amplifier

Since negative feedback is present, the second golden rule is also valid such that
υ− = υ+ = 0. Ohm’s law can then be applied at each resistor to obtain:

and

The results of equations 6.46 can be plugged into equation 6.45 to find:

or

The output of the summing amplifier is the weighted sum of N input sources,
where the weighting factor for each source  is the ratio of the feedback
resistance RF to the source resistance . Notice that if ,
then:



(6.48)

(6.49)

(6.50)

(6.51)

The summing amplifier can also be analyzed using the principle of
superposition. Consider the case where all the voltage sources except 
are turned off. Then the voltage drops across the resistors R2 , . . . , RN are all zero
since υ− = 0 and a zero voltage source is equivalent to a short-circuit. Thus, for
this Page 408case, i2 = i3 = · · · = iN = 0 as shown in Figure 6.15. Since i+ = i− = 0
for an ideal op-amp, KCL applied at the inverting terminal node yields simply:

Figure 6.15 Summing amplifier with only one source turned on

Again, because negative feedback is present, the second golden rule is valid
such that υ− = υ+ = 0. Ohm’s law can then be applied to  and RF to obtain:

Plug these two results into equation 6.49 and rearrange to yield:

where  is the component of υo due to the voltage source . It is worth noting
that this result is equivalent to what would be obtained for the inverting amplifier
archetype shown in Figure 6.16. This equivalence is due to the fact that the
currents i2 , i3 , . . . , iN are all zero such that  and RF are in a virtual series
connection as in the inverting amplifier archetype.



(6.52)

(6.53)

Figure 6.16 Equivalent inverting amplifier circuit for summing
amplifier with only one source turned on

Since the Thévenin source pairs  and  in Figure 6.14 are all in parallel,
the component of υo due to  is:

Summing all these component contributions yields:

which is the same result as that found in equation 6.47.

The Difference Amplifier

A useful op-amp circuit that is based on the inverting and noninverting amplifier
archetypes is the difference or differential amplifier shown in Figure 6.17. This
amplifier is frequently used to subtract one signal from another and perhaps
amplify that difference as well, as is done in the example discussed in the Focus
on Measurements box, “Electrocardiogram (EKG) Amplifier.”

Figure 6.17 Amplifier with input sources at the inverting and
noninverting terminals



(6.54)

(6.55)

(6.56)

(6.57)

(6.58)

The analysis of the difference amplifier can be accomplished by applying
basic principles (e.g., KCL, Ohm’s law) or by applying the principle of
superposition. Both Page 409approaches will assume an ideal op-amp, and since
negative feedback is present, both golden rules are valid. The former approach
begins by noting that i+ = i− = 0 such that R1 and RF are in a virtual series
connection as are R2 and R3 . Thus, the voltage at the noninverting terminal υ+

can be computed from voltage division.

Likewise, voltage division along the other virtual series connection yields:

Solving for υ− yields:

The second golden rule is υ+ = υ− such that:

or

In this form the expression for υo is too complicated to leave much of an
impression. However, it is greatly simplified by choosing the resistor values to
satisfy:

such that:



(6.59)

(6.60)

Figure 6.18 shows one particular version of a difference amplifier where equation
6.58 is satisfied by setting R3 = RF and R2 = R1.

Figure 6.18 Difference amplifier

The circuit in Figure 6.17 can also be analyzed using the principle of
superposition. The op-amp is still assumed to be ideal, and since negative
feedback is present, both golden rules are valid. To begin, set υ2 = 0 and find the
component of υo due to υ1 as shown in Figure 6.19. Since i+ = 0 the voltage drops
across R2 and R3 are zero such that . Thus, the circuit is equivalent to the
inverting amplifier shown in Figure 6.20 with the output given by:

Figure 6.19 Amplifier of Figure 6.17 when υ2 = 0



(6.61)

(6.22)

(6.63)

(6.64)

Figure 6.20 An inverting amplifier results when υ2 = 0, where VT = υ1
and RT = R1.

Now set υ1 = 0 in Figure 6.17 and find the component of υo due to υ2 as
shown in Figure 6.21. Since i+ = 0, R2 and R3 are in a virtual series connection.
Apply voltage division to yield:
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Thus, the circuit is equivalent to the noninverting amplifier shown in Figure 6.22
with the output given by:

Finally, apply the principle of superposition to obtain:

As before, this expression is greatly simplified by choosing the resistor values
such that:

The result of this choice when applied to equation 6.63 is (of course!) equation
6.59.

Both of the solution methods shown above are completely valid. However, the
principle of superposition has the added appeal of determining the individual
contributions of each input source and therefore allows for a quick recalculation
of the solution when only one of the input sources is changed.

When the linear source networks seen by the input terminals are more
complicated than those shown in Figure 6.17 it is possible to simplify those
networks using Thévenin’s theorem. For example, the source network seen by the
noninverting terminal in Figure 6.21 can be replaced with that shown in Figure
6.22, where:



(6.65)

(6.66)

(6.67)

(6.68)

Figure 6.21 A noninverting amplifier results when υ1 = 0.

Figure 6.22 A noninverting amplifier results when υ1 = 0, where υT and
RT are computed as shown in equation 6.65.
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Common and Difference Modes
It is often necessary to amplify the difference between two signals that may both
be corrupted by noise or interference. The two input signals υ1 and υ2 can be
decomposed into two parts: the common mode (CM) and the difference or
differential mode (DM). These two modes are defined mathematically as:

where the common mode υCM is the average value of υ1 and υ2.

With these definitions, the output of an ideal difference amplifier is



(6.69)

(6.70)

In other words, the common mode of the two input signals is rejected by the
difference amplifier. In many situations, the noise and interference of one input is
identical to (or nearly the same as) that of the other input. Thus, a difference
amplifier can be used to eliminate noise and interference that is common to both
inputs. In practice, the output of a difference amplifier is given by:

where ADM and ACM are the difference-mode and common-mode gains,
respectively. Ideally, ACM = 0, such as for the ideal op-amp circuit of Figure 6.18.
In practice, the extent to which a practical difference amplifier rejects the
common mode is known as the common-mode rejection ratio (CMRR):

For example, op-amps themselves are difference amplifiers. A particular op-amp
known as the 741 has a typical CMRR of 90 dB. The Focus on Measurements
box, “Electrocardiogram (EKG) Amplifier,” examines a typical application of a
difference amplifier.

Table 6.1 summarizes the basic op-amp circuits presented in this section.

Table 6.1 Summary of basic amplifiers
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FOCUS ON MEASUREMENTS



Electrocardiogram (EKG) Amplifier
This example illustrates the principle behind a two-lead electrocardiogram
(EKG) measurement. The desired cardiac waveform is given by the difference
between the potentials measured by two electrodes suitably placed on the
patient’s chest, as shown in Figure 6.23. A healthy, noise-free EKG waveform υ1
− υ2 is shown in Figure 6.24.

Figure 6.23 Two-lead electrocardiogram



Figure 6.24 EKG waveform

Unfortunately, noise present on the 60-Hz, 110-V AC line used to power the
equipment may appear in the EKG itself, due to capacitive coupling. Ambient
electromagnetic interference can also interact with the closed-loop formed by the
lead wires to generate another source of noise. Other sources of noise include
changes at the electrode-skin interface due to respiration, muscle contractions,
and other displacements. In addition, different DC offsets due to the electrodes
complicate the signals. The signal processing associated with an actual EKG
involves instrumentation amplifiers (see Example 6.2) and active filters (see
Section 6.3). In this example, the focus is limited to the role of a difference
amplifier in rejecting common-mode 60-Hz noise found in a typical EKG. That
noise can be represented as a cosine function with angular frequency 377 rad/sec
(which is equivalent to 60 Hz) as shown here.

Lead 1:

Lead 2:

As shown in Figure 6.25, the interference signal Vn cos(377t + ϕn) is
approximately the same at both leads because the electrodes are designed to be
identical and are used in close proximity to each other. If the resistors of the
difference amplifier are properly matched, the voltage output will be:

Figure 6.25 EKG amplifier



Thus, common-mode 60-Hz noise is eliminated, or greatly reduced, while the
desired EKG waveform is amplified. Great! In practice, the common-mode
rejection ratio is not infinite but can be made quite large to satisfy the design
specifications required for a proper diagnosis.
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Sensor Calibration Circuit
In many practical instances, the output of a sensor is related to the physical
variable we wish to measure in a form that requires some signal conditioning. The
most desirable form of a sensor output is one in which the electrical output of the
sensor (e.g., voltage) is related to the physical variable by a constant factor. Such
a relationship is depicted in Figure 6.26(a), where k is the calibration constant
relating voltage to temperature. Note that k is a positive number, and that the
calibration curve passes through the (0, 0) point. On the other hand, the sensor
characteristic of Figure 6.26(b) is described by:



Figure 6.26 Sensor calibration curves

It is possible to modify the sensor calibration curve of Figure 6.26(b) to the
more desirable one of Figure 6.26(a) by means of the simple circuit displayed in
Figure 6.27. The inverting gain RF/RS of this circuit is used to convert the
negative temperature coefficient (NTC) β to the desired positive calibration
constant k. The zero (or bias) offset is adjusted by means of a potentiometer
connected to the voltage supplies to produce a constant reference voltage Vref at
the noninverting terminal.
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Figure 6.27 Sensor calibration circuit

When Vref = 0, the sensor sees an inverting amplifier such that:

Likewise, when υsensor = 0, the battery sees a noninverting amplifier such that:



The total output is given by the principle of superposition.

The requirement for a linear response such as that shown in Figure 6.26(a) is υo =
kT, which is satisfied by suitable choices of RF, RS, and Vref such that:

For this equation to hold, the coefficients of T on both sides must be equal and
the sum of the constant terms on the right side must equal zero. That is

and

or
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It is worth noting that Vref ≈ V0 when RF ≫ RS. Thus, when this condition
holds, the appropriate battery voltage for the sensor calibration circuit can be
determined directly from the sensor calibration curve of Figure 6.26(b). To avoid
loading the sensor output pick RS large enough that the amplifier input resistance
seen by the sensor is much larger than the output resistance of the sensor.

It is also worth noting that the effect of the battery voltage is to raise or lower
the calibration curve. For this reason, this circuit is known more generally as a
level shifter. See Example 6.3 for further discussion.



EXAMPLE 6.1 Inverting Amplifier Circuit
Problem
Determine the voltage gain and output voltage for the inverting amplifier circuit
of Figure 6.8. What will the uncertainty in the gain be if 5 and 10 percent
tolerance resistors are used, respectively?

Solution
Known Quantities: Feedback and source resistances, source voltage.
Find: G = υo/υS; maximum percent change in G for 5 and 10 percent tolerance
resistors.
Schematics, Diagrams, Circuits, and Given Data: RS = 1 k Ω; RF = 10 k Ω; υS(t)
= A cos(ωt); A = 0.015 V; ω = 50 rad/s.
Assumptions: The amplifier behaves ideally; that is, the input current into the op-
amp is zero, and negative feedback forces υ+ = υ−.
Analysis: Using equation 6.29, the output voltage is

The input and output waveforms are sketched in Figure 6.28.

Figure 6.28
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The nominal gain of the amplifier is Gnom = −10. If 5 percent tolerance
resistors are employed, the worst-case error will occur at the extremes:

The percentage error is therefore computed as

Thus, the amplifier gain could vary by as much as ±10 percent (approximately)
when 5 percent resistors are used. If 10 percent resistors were used, calculate a
percent error of approximately ±20 percent, as shown below.

Comments: Note that the worst-case percent error in the closed-loop gain G is
approximately double the resistor tolerance. This result can be calculated by
assuming a resistor tolerance x and noting that the worst case is

EXAMPLE 6.2 Instrumentation Amplifier



Problem
Determine the closed-loop voltage gain of the instrumentation amplifier circuit of
Figure 6.29.

Solution
Known Quantities: Feedback and source resistances.
Find:

Assumptions: Assume ideal op-amps.
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Analysis: Separate high impedance input stages are often used to isolate the
sensor input signals υ1 and υ2 from the finite input impedance of a difference
amplifier stage. This technique is present in the instrumentation amplifier (IA)
circuit shown in Figure 6.29.

Figure 6.29 Instrumentation amplifier

Because the instrumentation amplifier has widespread application—and to
ensure the best possible match between resistors—the entire circuit of Figure 6.29
is often packaged as a single integrated circuit. The advantage is that resistors R,
RF and R2 can be matched much more precisely in an integrated circuit than
would be possible using discrete components.

The principle of superposition can be applied to solve for the output voltage
of the instrumentation amplifier. First, turn off the voltage source υ1 (set υ1 = 0)



such that the upper and lower parts of the left-half of Figure 6.29 are equivalent to
the circuits shown in Figure 6.30(a) and (b), respectively.

Figure 6.30 The principle of superposition can be applied to the upper
(a) and lower (b) input stages of the instrumentation amplifier. The
output stage of the instrumentation amplifier (c) is a difference
amplifier
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From the perspective of υ2, the circuit in Figure 6.30(a) is an inverting amplifier
(see Figure 6.8) and the circuit in Figure 6.30(b) is a noninverting amplifier (see
Figure 6.9). The result is that the output voltages  and  are

Second, turn off the voltage source υ2 (set υ2 = 0) and turn υ1 back on. Due to the
symmetry of the left-half of the instrumentation amplifier the result is that the
output voltages  and  are

The results of summing the component voltages are



and

These voltages are the inputs to the right-half of the instrumentation amplifier as
shown in Figure 6.30(c). That circuit is a difference amplifier (see Figure 6.18).
The output of a difference amplifier is given by equation 6.59. Thus, the overall
output of the instrumentation amplifier is

The closed-loop voltage gain of the instrumentation amplifier is shown below.
The overall gain is the product of the gain of the input and difference stages,
which are 1+(2R2/R1) and RF/R, respectively.

EXAMPLE 6.3 Level Shifter
Problem
The level shifter of Figure 6.31 has the ability to add or subtract a DC offset to or
from a signal. Analyze the circuit, and design it so that it can remove a 1.8-V DC
offset from a sensor signal.



Figure 6.31 Level shifter

Solution
Known Quantities: Sensor (input) voltage; feedback and source resistors.
Find: Value of Vref required to remove DC bias.

Schematics, Diagrams, Circuits, and Given Data: υsensor(t) = 1.8 + 0.1 cos(ωt);
RF = 220 k Ω; RS = 10 k Ω.
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Assumptions: Assume an ideal op-amp.
Analysis: The output voltage can be computed quite easily using the principle of
superposition. When the reference voltage source Vref is set to zero and replaced
by a short-circuit, the sensor input voltage υsensor sees an inverting amplifier such
that:

When the sensor input voltage source is set to zero and replaced by a short-
circuit, the reference voltage source (the battery) sees a noninverting amplifier
such that:

Thus, the total output voltage is the sum of contributions from the two sources:



Substitute the expression for υsensor into the previous equation to find:

To remove the DC offset, require:

or

Comments: The presence of a precision voltage source in the circuit is
undesirable because it may add considerable expense to the circuit design and, in
the case of a battery, it is not adjustable. The circuit of Figure 6.32 illustrates how
an adjustable voltage reference can be produced from the DC supplies already
used by the op-amp, two fixed resistors R, and a potentiometer Rp. The fixed
resistors are included to guarantee a minimum resistance R from the wiper to
either power supply at all times and thus prevent possible overheating of the
potentiometer. An expression for Vref is obtained from voltage division:

Figure 6.32

If the voltage supplies are symmetric, as is usually the case,  such that:
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Rearrange terms to find:

The value of Vref is determined by the position of the wiper ΔR. Also, when Rp ≫
R, the range of Vref is approximately .

EXAMPLE 6.4 Temperature Control Using Op-Amps
Problem
Op-amps often serve as building blocks in analog control systems. The objective
of this example is to illustrate the use of op-amps in a temperature control circuit.
Figure 6.33(a) depicts a system for which the temperature is to be maintained
constant at 20°C in a variable temperature environment. The system temperature
is measured via a thermocouple (see the “Temperature Measurement” section in
Chapter 7). Heat is added to the system by a coil of resistance Rcoil. The heat flux
is qin = i2Rcoil, where i is the current provided by a power amplifier. The system is
insulated on three sides. The fourth side is not insulated such that heat is
transferred across the boundary by convection, which is represented by an
equivalent thermal resistance Rt. The system has mass m, specific heat c, and
thermal capacitance Ct = mc (see the Make the Connection boxes “Thermal
Capacitance” and “Thermal System Dynamics” in Chapter 4).

Solution
Known Quantities: Sensor (input) voltage; feedback and source resistors, thermal
system component values.
Find: Select desired value of proportional gain KP to achieve automatic
temperature control.



Schematics, Diagrams, Circuits, and Given Data: Rcoil = 5 Ω; Rt = 2°C/W; Ct =
50 J/°C; α = 1 V/°C. Figure 6.33(a) to (e).

Figure 6.33(a) Thermal system

Assumptions: Assume ideal op-amps.
Analysis: Conservation of energy requires that:
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where qin represents the heat added to the system by the electrical heater, qout
represents the heat lost from the system through convection to the surrounding
air, and Estored represents the energy stored in the system due to its thermal
capacitance. The system temperature T is measured by a thermocouple whose
output voltage is proportional to temperature: υtemp = αT. Further, assume that the
power amplifier is modeled by a voltage-controlled current source (VCCS) such
that:

where υe is the error or difference between the reference voltage and the
measured voltage. The negative feedback system shown in Figure 6.33(b) tends
to drive υe to zero. When υe is positive, υref > υtemp and the system calls for
heating; on the other hand, when υe is negative, υref < υtemp and the system calls
for cooling. The power amplifier outputs a positive current for a positive υe. Thus,
the block diagram shown in Figure 6.33(b) corresponds to an automatic control
system that increases or decreases the heating coil current to maintain the system
temperature at the desired (reference) value. The proportional gains Kυ of the



voltage amplifier and Kp of the power amplifier determine the increase in coil
current and can be used to optimize the response of the system for a specific
design requirement. For example, a system specification could require that the
automatic temperature control system be designed so as to maintain the
temperature to within 1 degree of the reference temperature for external
temperature disturbances as large as 10 degrees. The response of the system can
be adjusted by varying the proportional gain.

Figure 6.33(b) Block diagram of control system

The voltage amplifier can be realized by a two-stage amplifier using two op-
amps as shown in Figure 6.33(c). The first stage is an inverting amplifier with
closed-loop gain G1 = −1 such that the voltage at node a is −υref. The second
stage is a summing amplifier with a closed-loop gain of G2 = −R2/R1 for each
input. Thus, the output voltage at node b is

The coefficient R2/R1 is the voltage gain Kυ. In other words, selecting the
feedback resistor R2 is equivalent to choosing Kυ.

Figure 6.33(c) Circuit for generating proportional gain of error voltage



The thermal system itself is described by the conservation of energy equation
given above. The rate of energy added to the system by the heating coil is simply
i2Rcoil. The rate of energy subtracted from the system by convective heat transfer
is defined as (T − Ta)/Rt, where Rt is a lumped parameter called the thermal
resistance. Small values of Rt correspond Page 422to large values of the
convective heat transfer coefficient, and vice versa. Finally, the net rate at which
energy is stored in the system is proportional to the rate at which the system
temperature T is changing, where the constant of proportionality Ct is known as
the thermal capacitance. With these definitions in place, the conservation of
energy equation can be rewritten as:

or

where . This first-order ordinary differential equation is
nonlinear. The time constant is τ = RtCt = 2°C/W × 50 J/°C = 100 s.

When Kp = 0, no current is supplied to the heating coil and the thermal system
response is simply its own natural response; that is, no automatic control is active
when Kp = 0 and the system response is the open-loop response. In that case, the
governing differential equation is

The solution is (see Chapter 4)

where T0 is the initial value of the system temperature. For the case when T0 =
20°C and Ta = 10°C, the solution is

When the gain Kp is increased to 1, υe increases as soon as the temperature drops
below the reference value. The transduction constant of the thermocouple was
given as α = 1 such that the voltage υtemp is numerically equal to the system



temperature. Figure 6.33(d) shows the temperature response for values of Kp
ranging from 1 to 10. As the gain increases, the error between the desired and
actual temperatures decreases very quickly. Observe that the error is less than 1
degree (recall the design specification) for Kp = 5. To better understand the
workings of the complete control system, it is helpful to observe the heater
current, which is an amplified version of the error voltage. Figure 6.33(e) shows
that when Kp = 1 the current increases to a final value of roughly 2.7 A; when Kp
= 5 and 10, the current increases more rapidly, and eventually settles to values of
3 and 3.1 A, respectively. The steady-state value of the current is reached in about
17 s for Kp = 5, and in about 8 s for Kp = 10.
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Figure 6.33(d) Response of thermal system for various values of
proportional gain Kp



Figure 6.33(e) Power amplifier output current for various proportional
gain Kp
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Comments: As Kp increases, the system’s speed of response increases; however,
the system’s steady-state error also increases. The design specifications anticipate
this effect by setting a tolerance of 1°C.

CHECK YOUR UNDERSTANDING
Consider an ideal inverting amplifier (see Figure 6.8) with a nominal closed-loop
gain of −1,000. The impact of a nonideal op-amp with a finite, but large, open-
loop gain A on the closed-loop gain can be derived by assuming that the voltage
υ− at the inverting terminal is only approximately equal to the voltage υ+ = 0 at
the noninverting terminal. Under this assumption, υout = −Aυ−. The first golden
rule still applies such that iin = 0 and RS is virtually in series with RF. Use this
information to find an expression for the closed-loop gain as a function of the
open-loop gain A. Compute the closed-loop gain when A equals 107, 106, 105,



104. How large is the open-loop gain when the closed-loop gain is less than 0.1
percent away from its nominal value?

CHECK YOUR UNDERSTANDING
For Example 6.1, calculate the uncertainty in the gain when 1 percent “precision”
resistors are used.

CHECK YOUR UNDERSTANDING
Derive an expression for the closed-loop gain of an isolation buffer when the
open-loop gain A is finite. How large is the open-loop gain when the closed-loop
gain is only 0.1 percent away from unity?
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CHECK YOUR UNDERSTANDING
For Example 6.3, find the value ΔR that removes the DC bias from the sensor
signal. Assume the supply voltages are symmetric at ±15 V and a 10-kΩ

Answer: 999.1; 999.0; 990.1; 909.1. For 0.1 percent accuracy, A = 106.

Answer: +1.98 to −2.02 percent

Answer: The expression for the closed-loop gain is υout/υin = 1 + 1/A;
thus A should equal 104 for 0.1 percent accuracy.



potentiometer is tied to two 10-kΩ fixed resistors as in Figure 6.32. What is the
range of Vref when a 1-kΩ potentiometer is tied to two 10-kΩ fixed resistors?

CHECK YOUR UNDERSTANDING
How much steady-state power, in watts, will be input to the thermal system of
Example 6.4 to maintain its temperature in the face of a 10°C ambient
temperature drop for values of KP of 1, 5, and 10?

CHECK YOUR UNDERSTANDING
With reference to the Focus on Measurements box, “Sensor Calibration Circuit,”
find numerical values of RF/RS and Vref if the temperature sensor has β = 0.235
and V0 = 0.7 V and the desired relationship is υo = 10 T.

6.3 ACTIVE FILTERS
The range of useful applications of an operational amplifier is greatly expanded if
energy storage elements are introduced into the design; the frequency-dependent
properties of these elements, studied in Chapters 3 and 5, will prove useful in the
design of various types of op-amp circuits. In particular, it will be shown that it is

Answer: ΔR = 6.722 kΩ; Vref is between ±0.714 V

Answer: KP = 1: 36.5 W; KP = 5: 45 W; KP = 10: 48 W

Answer: RF/RS = 42.55; Vref = 0.684 V



(6.71)

(6.72)

possible to shape the frequency response of an amplifier by appropriate use of
complex impedances in the input and feedback paths. The class of filters one can
obtain by means of op-amp designs is called active filters because op-amps can
provide amplification (gain) in addition to the filtering effects already studied in
Chapter 5 for passive circuits (i.e., circuits comprised of only resistors, capacitors,
and inductors).

The easiest way to see how the frequency response of an op-amp can be
shaped (almost) arbitrarily is to replace the resistors RF and RS in Figures 6.8 and
6.9 with impedances ZF and ZS, as shown in Figure 6.34. It is a straightforward
Page 426matter to show that in the case of the inverting amplifier, the expression
for the closed-loop gain is given by

whereas for the noninverting case, the gain is

where ZF and ZS can be arbitrarily complex impedance functions and where VS,
Vo, IF, and IS are all phasors. Thus, it is possible to shape the frequency response
of an active filter simply by selecting suitable ratios of feedback impedance to
input impedance. By connecting a circuit similar to the low-pass filters studied in
Chapter 5 in the feedback loop of an op-amp, the same filtering effect can be
achieved and, in addition, the signal can be amplified.
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Figure 6.34 Op-amp circuits employing complex impedances

The simplest active low-pass filter is shown in Figure 6.35. The closed-loop
gain, as a function of frequency, is given by

Figure 6.35 Active low-pass filter

where

and
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(6.76)

(6.77)

Note the similarity between ZF and the low-pass characteristic of a passive RC
low-pass filter. The closed-loop gain GLP(jω) is then computed to be

This expression can be factored into two terms. The first is an amplification factor
equivalent to the amplification that would be obtained with a simple inverting
amplifier (i.e., the same circuit as that of Figure 6.35 with the capacitor removed);
the second is a low-pass filter, with a cutoff frequency dictated by the parallel
combination of RF and CF in the feedback loop. The filtering effect is equivalent
to what would be attained by the passive circuit shown in Figure 6.36.

Figure 6.36 Passive low-pass filter

The response of this op-amp filter is an amplified version of that of a passive
low-pass RC filter. Figure 6.37 depicts the amplitude response of the active low-
pass filter (in the figure, RF/RS = 10 and RFCF = 1) in two different graphs: The
first plots the amplitude ratio while the second plots the Bode magnitude (in dB),
both versus ω on a logarithmic scale. The cutoff frequency ω0 is
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Figure 6.37 Normalized response of active low-pass filter (a) amplitude
ratio response; (b) Bode magnitude (dB) response

and the slope of the Bode magnitude response is −20 dB/decade when ω ≫ ω0.
The magnitude (in dB) at the cutoff frequency is

where

Thus, ω0 is also called the 3-dB frequency. It is also known as the break frequency
or cutoff frequency.

Among the advantages of such active low-pass filters is the ease with which
the gain and the bandwidth are dictated by choosing RF, RS and CF.

It is also possible to arrange resistors and capacitors to produce other types of
filters. For example, the circuit shown in Figure 6.38 is an active high-pass filter.
The input impedance is

Figure 6.38 Active high-pass filter



(6.81)
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The impedance of the feedback path is

The closed-loop gain for this inverting amplifier is

Note that G → 0 as ω → 0. Also note that as ω → ∞, the closed-loop gain G
approaches a constant.

That is, above a certain frequency range, the circuit acts as a linear amplifier. This
is exactly the behavior one would expect of a high-pass filter. The high-pass
response is depicted in Figure 6.39, in both amplitude and Bode magnitude plots
(in the figure, RF/RS = 10 and RSCS = 1). The slope of the Bode magnitude plot is
+20 dB/decade when ω ≪ ω0, where ω0=1/RSCS is the 3-dB break frequency.
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Figure 6.39 Normalized response of active high-pass filter (a)
amplitude ratio response; (b) dB response

As a final example of active filters, a basic active bandpass filter
configuration can be realized by combining the elements of active high- and low-
pass filters. The circuit is shown in Figure 6.40.
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Figure 6.40 Active bandpass filter

The analysis of the bandpass circuit follows the same approach used in
previous examples. The feedback and input impedances are

The closed-loop frequency response is

The form of the response is the same as that of the series LC bandpass filter
shown in Figure 5.32 when ζ > 1. See equation 5.55. This response is similar
(although not identical) to the product of the low-pass and high-pass responses of
equations 6.76 and 6.82. In particular, the denominator of GBP(jω) is exactly the
product of the denominators of GLP(jω) and GHP(jω). It is particularly
enlightening to rewrite GLP(jω) in a slightly different form, after making the
observation that each RC product corresponds to one of the following critical
frequencies.

It is easy to verify that for the case where



the response of the filter will be similarly shaped to that shown in Figure 6.41 in
both amplitude and Bode magnitude plots. (In the figures, ω0 = 1, ωHP = 1,000,
and ωLP = 10 radians/second.) Compare Figure 6.41 (a) to Figure 5.33 for the
overdamped series LC bandpass filter. The Bode magnitude plot shows that, in
effect, the bandpass response is the superposition of active low- and high-pass
responses. The two 3-dB (or cutoff) frequencies are the same as in GLP( jω),
1/RFCF; and in GHP( jω), 1/RSCS. The third frequency, ω0 = 1/RFCS, represents
the point where the response of the filter crosses the 0-dB axis (rising slope).
Since 0 dB corresponds to a gain of 1, this frequency is called the unity-gain
frequency.

Figure 6.41 Normalized amplitude response of active bandpass filter
(a) amplitude ratio response; (b) dB response
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The ideas developed thus far can be employed to construct more complex
functions of frequency. In fact, most practical active filters are based on circuits
of at least two capacitors. By constructing suitable functions for ZF and ZS, it is
possible to realize filters with greater frequency selectivity (i.e., sharpness of
cutoff), as well as flatter bandpass or band-rejection functions (i.e., filters that
either allow or reject signals in a limited band of frequencies). A few simple
applications are investigated in the homework problems; advanced applications
are explored in Section 6.4.

One of the advantages of these active filters is that it is possible to produce
any frequency response using only capacitors. No inductors are needed. This
seemingly minor fact is of great importance in practice because inductors are
expensive to mass-produce to small tolerances and exact specifications and are
often bulkier than capacitors with equivalent energy storage capabilities. On the
other hand, capacitors are easy to manufacture in a wide variety of tolerances and



(a)

(b)

(c)

values, and in relatively compact packages, including in integrated-circuit form.
Inductors are, in general, also much more prone to noise.

CHECK YOUR UNDERSTANDING
Design a low-pass filter with a closed-loop gain of 100 and cutoff (3-dB)
frequency equal to 800 Hz. Assume that only 0.01-μF capacitors are
available. Find RF and RS.
Repeat the design of the exercise in part a for a high-pass filter with a cutoff
frequency of 2,000 Hz. This time, however, assume that only standard values
of resistors are available (see Table 1.3 in Chapter 1). Select the nearest
component values, and calculate the percent error in cutoff frequency.
Find the frequencies corresponding to 1-dB attenuation from the low-
frequency gains of the filters of parts a and b.

6.4 DESIGN OF ACTIVE FILTERS
The need to filter sensor signals that may be corrupted by noise or other
interfering or undesired inputs has already been approached in an earlier chapter.
In Chapter 5, passive filters made of resistors, capacitors, and inductors were
Page 430analyzed. It was shown that three types of filter frequency response
characteristics can be achieved with these simple circuits: low pass, high pass,
and bandpass. The properties of operational amplifiers can be exploited to
simplify filter design, to more easily match source and load impedances, and to
eliminate the need for inductors.

Figure 6.42 depicts the general characteristics of a low-pass active filter,
indicating that within the passband of the filter, a certain deviation from the
nominal filter gain A is accepted, as indicated by the minimum and maximum
passband gains A + ε and A − ε. The width of the passband is indicated by the
cutoff frequency ωC. On the other hand, the stopband, starting at the frequency
ωS, does not allow a gain greater than Amin. Different types of filter designs

Answer: Part a: RF = 19.9 kΩ, RS = 199 Ω; part b: RF = 8.2 kΩ, RS =
82 Ω, error: gain = 0 percent, ω3dB = 2.95 percent; part c: 407 Hz and
3.8 kHz
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achieve different types of frequency responses, which are typically characterized
by having a particularly flat passband frequency response (Butterworth filters)
or by a very rapid transition between passband and stopband (Chebyshev filters,
and Cauer, or elliptical, filters), or by some other characteristic, such as a linear
phase response (Bessel filters). Achieving each of these properties usually
involves tradeoffs; for example, a very flat passband response will usually result
in a relatively slow transition from passband to stopband.

Figure 6.42 Prototype low-pass filter response

In addition to selecting a filter from a certain family, it is possible to select the
order of the filter. In general, the higher the order, the faster the transition from
passband to stopband (at the cost of greater phase shifts and amplitude distortion,
however). Although the frequency response of Figure 6.42 pertains to a low-pass
filter, similar definitions also apply to the other types of filters.

Butterworth filters are characterized by a maximally flat passband frequency
response characteristic; their response is defined by a magnitude-squared function
of frequency

where ε = 1 for maximally flat response and n is the order of the filter. Figure
6.43 depicts the frequency response (normalized to ωC = 1) of first-, second-,
third-, and fourth-order Butterworth low-pass filters. The Butterworth
polynomials, given in Table 6.2 in factored form, permit the design of the filter
by specifying the denominator as a polynomial in s. For s = jω, one obtains the
frequency response of the filter. Examples 6.5 and 6.6 illustrate filter design
procedures that make use of these tables.
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Figure 6.43 Butterworth low-pass filter frequency response

Table 6.2 Butterworth polynomials in quadratic form

Figure 6.44 depicts the normalized frequency response of first- to fourth-order
low-pass Chebyshev filters (n = 1 to 4), for ε = 1.06. Note that a certain amount
of ripple is allowed in the passband; the amplitude of the ripple is defined by the
parameter ε and is constant throughout the passband. Thus, these filters are also
called equiripple filters. Cauer, or elliptical, filters are similar to Chebyshev
filters, except for being characterized by equiripple both in the passband and in
the stopband. Design tables are available to select the appropriate order of
Butterworth, Chebyshev, or Cauer filter for various applications.

Figure 6.44 Chebyshev low-pass filter frequency response

Three common configurations of second-order active filters, which can be
used to implement second-order (or quadratic) filter sections using a single op-
amp, are shown in Figure 6.45. These filters are called constant-K, or Sallen and
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Key, filters (after the names of the inventors). The analysis of these active filters
is based on the properties of the ideal operational amplifier.
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Figure 6.45 Sallen and Key active filters

Consider, for example, the low-pass filter of Figure 6.45, which is a non-
inverting amplifier with positive feedback; that is, feedback paths are provided
from the output to both the inverting and the noninverting terminals of the op-
amp. The input-output relationship for the filter can be found from expressions
for the input terminal voltages of the op-amp υ+ and υ−. The frequency response
of this filter is

This frequency response can be expressed in either of two more general low-
pass filter forms:

or

These two forms are related by the identity 2ζ Q = 1, where ζ is the
dimensionless damping coefficient, ωC is the cutoff frequency, and Q is the
quality factor, which represents the sharpness of the filter’s resonance. A high-
Q filter is underdamped, while a low-Q filter will be overdamped. A critically



(6.92)

damped circuit has Q = 0.5. Compare equation 6.91 to equations 5.19 and 5.24
for the voltage and current gains of series and parallel LC circuits, respectively.
Apparently, it is possible to produce the same response found for those circuits
but without using an inductor!

The relationships between the three parameters of the second-order filter (ωC,
ζ, and K) and the resistors and capacitors are defined below for the low-pass
Sallen and Key filter. A very desirable property of this filter is the fact that its
low-frequency gain K is independent of the cutoff frequency and is determined
simply by the ratio of resistors RA and RB. The other four components define the
cutoff frequency and damping coefficient as shown in equations 6.92.
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The quadratic filters shown in Figure 6.45 can be staged to implement filters of
higher order and of different characteristics. For example, a fourth-order Butter-
worth filter can be realized by cascading two second-order Sallen and Key
quadratic filters and by observing that the component values of each filter can be
specified given the desired gain, cutoff frequency, and damping coefficient.

EXAMPLE 6.5 Determining the Order of a Butterworth Filter
Problem
Determine the required order of a filter, given the filter specifications.

Solution
Known Quantities: Filter gain at cutoff frequencies (passband and stopband).
Find: Order n of filter.



Schematics, Diagrams, Circuits, and Given Data: Passband gain: −3 dB at ωC =
1 rad/s; stopband gain: −40 dB at ωS = 4ωC.

Assumptions: Use a Butterworth filter response. Assume a low-frequency gain
H0 = 1.

Analysis: Using the magnitude-squared response for the Butterworth filter
(equation 6.89),

With ε = 1, the magnitude of the transfer function at the passband cutoff
frequency ωC is

This result satisfies the requirement for the passband gain (3 dB below the low-
frequency gain) since

This result is a feature of Butterworth filters.
The stopband gain requirement is that the gain at frequencies above ωS be less

than −40 dB:

Thus,

or
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Solving the above inequality yields n ≤ 3.32. Since n must be an integer, choose n
= 4 such that the gain at the stopband frequency is

which is lower than the minimum desired gain of −40 dB.
Comment: Note that the −3-dB gain at the passband cutoff frequency is always
satisfied in a Butterworth filter when ε = 1.

EXAMPLE 6.6 Design of Sallen and Key Filter
Problem
Determine the cutoff frequency, DC gain, and quality factor for the low-pass
Sallen and Key filter of Figure 6.45.

Solution
Known Quantities: Filter resistor and capacitor values.
Find: K; ωC; Q.

Schematics, Diagrams, Circuits, and Given Data: All resistors are 500 Ω; all
capacitors are 2 μF.
Assumptions: None.
Analysis: Using the definitions given in equation 6.92, compute
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Comments: The filter response can be compared to that of a quadratic
Butterworth filter (or other filter family) by determining the Q of the filter. Once
the gain and cutoff frequency have been defined, Q is the parameter that
distinguishes, say, a Butterworth from a Chebyshev filter. The Butterworth
polynomial of order 2 is given in Table 6.2 as . Compare this expression
to the denominator of equation 6.91, to obtain

Since the expressions for the quadratic polynomials of Table 6.2 are normalized
to unity gain and cutoff frequency, K = 1 and ωC = 1, and therefore the value of Q
in a Butterworth filter can be found by setting

Thus, every second-order Butterworth filter is characterized by a Q of 0.707,
which corresponds to a damping coefficient ζ = 0.5Q−1 = 0.707, that is, to a
lightly underdamped response.
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6.5 INTEGRATORS AND DIFFERENTIATORS
The time domain responses of certain op-amp circuits containing energy storage
elements reveal useful and familiar properties. Among these circuits are the
integrator and differentiator.

The Ideal Integrator
Consider the circuit of Figure 6.46, where υS(t) is an arbitrary function of time
(e.g., a pulse train, a triangular wave, or a square wave). The op-amp circuit
shown provides an output that is proportional to the integral of υS (t). The analysis
of the integrator circuit is, as always, based on the observation that

where
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Figure 6.46 Op-amp integrator

It is also known that

from the i-υ relationship for a capacitor. The source voltage can then be expressed
as a function of the derivative of the output voltage:

Integrate both sides of equation 6.96 to obtain:

There are numerous applications for integrators. Example 6.7 illustrates the
operation of the op-amp integrator.

The Ideal Differentiator
Using an argument similar to that employed for the integrator, we can derive a
result for the ideal differentiator circuit of Figure 6.47. The relationship between
input and output is obtained by observing that
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(6.100)

Figure 6.47 Op-amp differentiator

and

so that the output of the differentiator circuit is proportional to the derivative of
the input:
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Although mathematically attractive, the differentiation property of this op-
amp circuit is seldom used in practice because differentiation tends to amplify
any noise that may be present in a signal.

FOCUS ON MEASUREMENTS



Charge Amplifiers
One of the most common families of transducers for the measurement of force,
pressure, and acceleration is that of piezoelectric transducers. These transducers
contain a piezoelectric crystal that produces a net electric charge separation in
response to deformation. If an external force generates a displacement xi, then the
transducer will generate a charge separation q according to the expression:

Figure 6.48 depicts the basic structure of the piezoelectric transducer, and a
simple circuit model. The model consists of a current source in parallel with a
capacitor, where the current source represents the rate of change of the charge in
response to an external force; and the capacitance is a consequence of the
structure of the transducer, which consists of a piezoelectric crystal (e.g., quartz
or Rochelle salt) sandwiched between conducting electrodes (in effect, this is a
parallel-plate capacitor).

Figure 6.48 Piezoelectric transducer



Although it is possible, in principle, to employ a conventional voltage
amplifier to amplify the transducer output voltage υt, given by

it is often advantageous to use a charge amplifier. The charge amplifier is
essentially an integrator circuit, as shown in Figure 6.49, characterized by an
extremely high input impedance.3 The high impedance is essential; otherwise, the
charge generated by the transducer would leak to ground through the input
impedance of the amplifier.

Figure 6.49 Charge amplifier
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Because of the high input impedance, the input current to the op-amp is
negligible; further, because of the high open-loop gain of the op-amp, the
inverting-terminal voltage is essentially at ground potential. Thus, the voltage
across the transducer is effectively zero. As a consequence, to satisfy KCL, the
feedback current iF(t) must be equal and opposite to the transducer current i:

It follows that the output voltage is proportional to the charge generated by the
transducer, and therefore to the displacement as shown here:

Since the displacement is caused by an external force or pressure, this sensing
principle is widely adopted in the measurement of force and pressure.



EXAMPLE 6.7 Integrating a Square Wave
Problem
Determine the output voltage for the integrator circuit of Figure 6.46 if the input
is a square wave of amplitude ± A and period T, as shown in Figure 6.50.

Figure 6.50

Solution
Known Quantities: Feedback and source impedances; input waveform
characteristics.
Find: υo(t).

Schematics, Diagrams, Circuits, and Given Data: T = 10 ms; CF = 1 μF; RS = 10
k Ω.
Assumptions: The op-amp is ideal and υo = 0 at t = 0.

Analysis: Equation 6.97 expresses the output of an integrator as:

The square wave can be integrated in a piecewise fashion by observing that υS(t)
= A for 0 ≤ t < T/2 and υS(t) = −A for T/2 ≤ t < T. Thus, for the two half periods of
Page 438the waveform:



Since the waveform is periodic, the above result will repeat with period T, as
shown in Figure 6.51. Note also that the average value of the output voltage is not
zero.

Figure 6.51

Comments: The integral of a square wave is a triangle wave. Note that the effect
of the initial condition is very important since it determines the starting point of
the triangular wave. The two line segments are expressed in terms of the slope
and t-intercept, which is often a very friendly but neglected form.

EXAMPLE 6.8 Proportional-Integral Control with Op-Amps
Problem
The aim of this example is to illustrate the very common practice of proportional-
integral, or PI, control. Consider the temperature control circuit of Example 6.4,
shown again in Figure 6.52(a), where it was discovered that the proportional
control implemented with the proportional gains KV and KP could still give rise to
a steady-state error in the final temperature of the system. This error can be



eliminated by using an automatic control system that feeds back a component that
is proportional to the integral of the error voltage, in addition to the proportional
term. Figure 6.52(b) depicts the block diagram of such a PI controller. Now, the
design of the control system requires selecting three gains, the proportional gains
KV and KP , and the integral gain KI.

Figure 6.52 (a) Thermal system and (b) block diagram of control
system
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Solution
Known Quantities: Sensor (input) voltage; feedback and source resistors, thermal
system component values.
Find: Select desired value of proportional gain KV and integral gain KI to achieve
automatic temperature control with zero steady-state error. Assume KP = 1, for
simplicity.
Schematics, Diagrams, Circuits and Given Data: Rcoil = 5 Ω; Rt = 2°C/W; Ct =
50 J/°C; α = 1 V/°C.
Assumptions: Assume ideal op-amps.
Analysis: The circuit of Figure 6.52(c) shows two op-amp circuits—the top
circuit generates the error voltage υe = υref − υtemp but does not provide any gain.
The bottom circuit amplifies υe by the proportional gain −KV = −R2/R1 and also
computes the integral of υe times the integral gain −KI = −1/R3C. These two
quantities are then summed through another inverting summer circuit, which
takes care of the sign change as well.



Figure 6.52(c) Circuit for generating error voltage and proportional
gain

Figure 6.52(d) depicts the temperature response of the system for KV = 5 and
different values of KI. Note that the steady-state error is now zero! This result is a
property of integral controllers. Figure 6.52(e) shows the current supplied to the
heater coil. Note the speed and shape of each response and the negligible long-
term steady-state temperature error.
Comments: At sufficiently high values of KI the system temperature oscillates in
response to the −10°C temperature disturbance described in Example 6.4. This
oscillation is a characteristic of an underdamped second-order system (see
Chapter 4)—but the original Page 440thermal system is first order! The addition
of the integral term has increased the order of the system such that it is possible
for the system to oscillate. To those familiar with thermal systems, this behavior
should cause a raised eyebrow! It is well known that thermal systems cannot
display underdamped behavior (that is, there is no thermal system property
analogous to inductance). The introduction of the integral gain can, in fact, cause
temperature oscillations as if an artificial “thermal inductor” were introduced in
the system.



Figure 6.52(d) Response of thermal system for various values of
integral gain, KI(KV = 5)



Figure 6.52(e) Power amplifier current for various values of integral
gain KI(KV = 5)
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EXAMPLE 6.9 Using Cascaded Amplifiers to Simulate a
Differential Equation
Problem
Derive the differential equation corresponding to the circuit shown in Figure 6.53.



Figure 6.53 Analog computer simulation of unknown system

Solution
Known Quantities: Resistor and capacitor values.
Find: Differential equation in x(t).
Schematics, Diagrams, Circuits, and Given Data: R1 = 0.4 MΩ; R2 = R3 = R5 =
1 MΩ; R4 = 2.5 kΩ; C1 = C2 = 1 μF.

Assumptions: Assume ideal op-amps.
Analysis: Begin the analysis from the right-hand side of the circuit to determine
the intermediate variable z as a function of x:

Moving to the left, next determine the relationship between y and z:

Finally, determine y as a function of x and f:

or
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Substitute the expressions into one another and eliminate y and z to obtain:



Thus:

Comments: Note that the summing and integrating functions have been combined
into a single block in the first amplifier.

CHECK YOUR UNDERSTANDING
Plot the frequency response of an ideal integrator in the form of a Bode plot.
Determine its slope in dB/decade. Assume RSCF = 10 s.

CHECK YOUR UNDERSTANDING
Plot the frequency response of an ideal differentiator in the form of a Bode plot.
Determine its slope in dB/decade. Assume RFCS = 100 s.

Verify that, if the triangular wave of Example 6.7 is the input to the ideal
differentiator of Figure 6.47, the resulting output is a square wave.

CHECK YOUR UNDERSTANDING

Answer: −20 dB/decade

Answer: +20 dB/decade



Derive the differential equation corresponding to the circuit shown in the figure.

Page 443

6.6 PHYSICAL LIMITATIONS OF OPERATIONAL
AMPLIFIERS
In nearly all the discussion and examples so far, the op-amp has been treated as
an ideal device, characterized by infinite input impedance, zero output resistance,
and infinite open-loop voltage gain. Although this model is adequate to represent
its behavior in a large number of applications, practical op-amps are not ideal but
exhibit limitations that should be considered in the design of instrumentation. In
particular, in dealing with relatively large voltages and currents, and in the
presence of high-frequency signals, it is important to be aware of the nonideal
properties of the op-amp.

Voltage Supply Limits
As indicated in Figure 6.6, operational amplifiers (and all amplifiers, in general)
are powered by external DC voltage supplies  and , which are usually
symmetric and on the order of ±10 to ±20 V. Some op-amps are especially
designed to operate from a single voltage supply. Amplifiers are capable of
amplifying signals only within the range of their supply voltages; it is not
possible for an amplifier to generate a voltage greater than  or less than .

Answer: d2x/dt2 + 2x = −10f (t)



(6.101)

(6.102)

For most op-amps, the limit is approximately 1.4 V less than the supply voltages.
Example 6.10 shows how the voltage supply limit can cause the peaks of the

sine wave to be clipped in an abrupt fashion. This type of hard nonlinearity
changes the characteristics of the signal quite radically. For example, a rock guitar
has a characteristic sound that is very different from the sound of a classical or
jazz guitar. The reason is that the “rock sound” is obtained by overamplifying the
signal, attempting to exceed the voltage supply limits, and causing clipping
similar in quality to the distortion introduced by voltage supply limits in an op-
amp. This clipping broadens the spectral content of each tone and causes the
sound to be distorted.

One of the circuits most directly affected by supply voltage limitations is the
op-amp integrator.

Frequency Response Limits
Another property of all amplifiers that may pose severe limitations to the op-amp
is their finite bandwidth. In the ideal op-amp model the open-loop gain is a very
large constant. In reality, A is a function of frequency and is characterized by a
low-pass response. For a typical op-amp,
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The cutoff frequency of the op-amp open-loop gain ω0 represents approximately
the point where the amplifier response starts to drop off as a function of
frequency and is analogous to the cutoff frequencies of the RC and RL circuits of
Chapter 5. Figure 6.54 depicts A(jω) in both linear and decibel plots for the fairly
typical values A0 = 106 and ω0 = 10π. It should be apparent from Figure 6.54 that
the assumption of a very large open-loop gain becomes less and less accurate for
increasing frequency. Recall the initial derivation of the closed-loop gain for the



(6.103)

inverting amplifier: In obtaining the final result Vo/VS = −RF/RS , it was assumed
that A → ∞. This assumption is clearly inadequate at the higher frequencies.

Figure 6.54 Open-loop gain of practical op-amp (a) amplitude ratio
response; (b) dB response

The finite bandwidth of the practical op-amp results in a constant gain-
bandwidth product for any given amplifier. The effect is that as the closed-loop
gain of the amplifier is increased, its 3-dB bandwidth is proportionally reduced
until, in the limit, if the amplifier were used in the open-loop mode, its gain
would be equal to A0 and its 3-dB bandwidth would be equal to ω0. The constant
gain-bandwidth product is therefore equal to the product of the open-loop gain
and the open-loop bandwidth of the amplifier: A0ω0 = K. When the amplifier is
connected in a closed-loop configuration (e.g., as an inverting amplifier), its gain
is typically much less than the open-loop gain and the 3-dB bandwidth of the
amplifier is proportionally increased. To explain this further, Figure 6.55 depicts
the case in which two different linear amplifiers (achieved through any two
different negative feedback configurations) have been designed for the same op-
amp. The first has closed-loop gain G1 = A1, and the second has closed-loop gain
G2 = A2. The bold line in the figure indicates the open-loop frequency response,
with gain A0 and cutoff frequency ω0. As the gain decreases from A0 to A1, the
cutoff frequency increases from ω0 to ω1. As the gain decreases to A2, the
bandwidth increases to ω2. Thus:



Figure 6.55

Input Offset Voltage
Another limitation of practical op-amps results because even in the absence of
any external inputs, it is possible that an offset voltage will be present at the input
of an op-amp. This voltage is usually denoted by ±Vos , and it is caused by
mismatches Page 445in the internal circuitry of the op-amp. The offset voltage
appears as a differential input voltage between the inverting and noninverting
input terminals. The presence of an additional input voltage will cause a DC bias
error in the amplifier output. Typical and maximum values of Vos are quoted in
manufacturers’ data sheets. The worst-case effects due to the presence of offset
voltages can therefore be predicted for any given application.

Input Bias Currents
Another nonideal characteristic of op-amps results from the presence of small
input bias currents at the inverting and noninverting terminals. Once again, these
are due to the internal construction of the input stage of an operational amplifier.
Figure 6.56 illustrates the presence of nonzero input bias currents IB going into an
op-amp.

Figure 6.56



(6.104)

Typical values of  and  depend on the semiconductor technology
employed in the construction of the op-amp. Op-amps with bipolar transistor
input stages may see input bias currents as large as 1 µA, while for FET input
devices, the input bias currents are less than 1 nA.

Output Offset Adjustment
Both the offset voltage and the input offset current contribute to an output offset
voltage Vo,os. Some op-amps provide a means for minimizing Vo,os. For example,
the µA741 op-amp provides a connection for this procedure. Figure 6.57 shows a
typical pin configuration for an op-amp in an eight-pin dual-in-line package (DIP)
and the circuit used for nulling the output offset voltage. The variable resistor is
adjusted until υo reaches a minimum (ideally, 0 V). Nulling the output voltage in
this manner removes the effect of both input offset voltage and current on the
output.



(6.105)

(6.106)

Figure 6.57 Output offset voltage adjustment

Slew Rate Limit
Another important restriction in the performance of a practical op-amp is
associated with rapid changes in voltage. The op-amp can produce only a finite
rate of change at its output. This limit rate is called the slew rate. Consider an
ideal step input, where at t = 0 the input voltage is switched from 0 to V volts.
The output may be expected to switch from 0 to AV volts, where A is the
amplifier gain. However, υo can change at only a finite rate; thus,

Figure 6.58 shows the response of an op-amp to an ideal step change in input
voltage. Here, S0, the slope of υo, represents the slew rate.

Figure 6.58 Slew rate limit in op-amps
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The slew rate limitation can affect sinusoidal signals, as well as signals that
display abrupt changes, as does the step voltage of Figure 6.58. This may not be
obvious until we examine the sinusoidal response more closely. It should be
apparent that the maximum rate of change for a sinusoid occurs at the zero
crossing, as shown by Figure 6.59. To evaluate the slope of the waveform at the
zero crossing, let

Then:



(6.107)

(6.108)

(6.109)

The maximum slope of the sinusoidal signal will therefore occur at ωt = 0, π, 2π, .
. . , so that

Thus, the maximum slope of a sinusoid is proportional to both the signal
frequency and the amplitude. The curve shown by a dashed line in Figure 6.59
indicates that as ω increases, so does the slope of υ(t) at the zero crossings. What
is the direct consequence of this result, then?

Figure 6.59 The maximum slope of a sinusoidal signal varies with the
signal frequency

Short-Circuit Output Current
Recall the model for the op-amp shown in Figure 6.3, which depicted the internal
circuit of the op-amp as an equivalent input impedance Rin and a controlled
voltage source Aυin. In practice, the internal source is not ideal because it cannot
provide an infinite amount of current (to the load, to the feedback connection, or
to both). The immediate consequence of this nonideal op-amp characteristic is
that the maximum output current of the amplifier is limited by the so-called short-
circuit output current ISC:



To further explain this point, consider that the op-amp needs to provide current to
the feedback path (to “zero” the voltage differential at the input) and to whatever
load resistance, Ro, may be connected to the output. Figure 6.60 illustrates this
idea for the case of an inverting amplifier, where ISC is the load current that would
be provided to a short-circuit load (Ro → 0). Clearly, as Ro → 0 the output
voltage υo → 0 unless io → ∞. However, in practice io is limited to a finite value.
Thus, Page 447eventually, as Ro → 0 the magnitude of the output voltage υo will
decrease from (RF/RS) υS and approach zero. At this point, the circuit is no longer
acting as one would expect for an ideal op-amp with negative feedback.

Figure 6.60

Common-Mode Rejection Ratio
The concepts of common-mode and differential-mode voltages as well as the
common-mode rejection ratio (CMRR) were introduced in Section 6.2 and
expressed mathematically by equations 6.66 to 6.70. The CMRR is an amplifier
characteristic that can be found in the data sheet for any particular amplifier, such
as a 741 operational amplifier.



1.

2.

3.

4.

Practical Op-Amp Considerations
The results presented in the preceding pages suggest that operational
amplifiers permit the design of rather sophisticated circuits in a few simple
steps, by selecting appropriate resistor values. This is certainly true, provided
that the circuit component selection satisfies certain criteria. A few important
practical criteria for selecting op-amp circuit component values are
summarized here.

Use standard resistor values. While any arbitrary value of gain can, in
principle, be achieved by selecting the appropriate combination of
resistors, the designer is often constrained to the use of standard 5 percent
resistor values. For example, if a design requires a gain of 25, it might be
tempting to select, say, 100- and 4-kΩ resistors to achieve RF/RS = 25 for
the inverting amplifier shown in Figure 6.56. However, 4 kΩ is not a
standard value; the closest 5 percent tolerance resistor value is 3.9 kΩ,
leading to a gain of 25.64. Can you find a combination of standard 5
percent resistors whose ratio is closer to 25?
Ensure that the load current is reasonable. Assume the maximum output
voltage in the step 1 example is 10 V. The feedback current required by
your design with RF = 100 k Ω and RS = 4 k Ω would be IF = 10/100,000
= 0.1 mA. This is a very reasonable value for an op-amp. If you tried to
achieve the same gain by using, say, a 10-Ω feedback resistor and a 0.39-
Ω source resistor, the feedback current would become as large as 1 A.
This value is generally beyond the capabilities of a general-purpose op-
amp, so very low resistor values are generally not acceptable. On the other
hand, 10-kΩ and 390-Ω resistors would still lead to acceptable currents.
As a general rule of thumb, avoid resistor values lower than 100 Ω in
practical designs.
Avoid stray capacitance by avoiding excessively large resistances, which
can cause unwanted signals to couple into the circuit through a
mechanism known as capacitive coupling. This phenomenon is discussed
in Chapter 7. Large resistances can also cause other problems. As a
general rule of thumb, avoid resistor values higher than 1 MΩ in practical
designs.
Precision designs may be warranted. If a certain design requires that the
amplifier gain be set to a very accurate value, it may be appropriate to use
the (more expensive) option of precision resistors: for example, 1 percent
tolerance resistors are commonly available, at a premium cost. Some of



the examples and homework problems explore the variability in gain due
to the use of higher- and lower-tolerance resistors.
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EXAMPLE 6.10 Voltage Supply Limits in an Inverting Amplifier
Problem
Compute and sketch the output voltage of the inverting amplifier of Figure 6.61.

Figure 6.61

Solution
Known Quantities: Resistor and supply voltage values; input voltage.
Find: υo(t).

Schematics, Diagrams, Circuits, and Given Data: RS = 1 k Ω; RF = 10 k Ω; Ro =
1 k Ω; .
Assumptions: Assume a supply voltage–limited op-amp.
Analysis: For an ideal op-amp the output would be

However, the supply voltage is limited to ±15 V, and the op-amp output voltage
will therefore saturate before reaching the theoretical peak output value of ±20 V.



Figure 6.62 depicts the output voltage waveform.

Figure 6.62 Op-amp output with voltage supply limit

Comments: In a practical op-amp, saturation would be reached at 1.4 V from the
supply voltages, or at approximately ±13.6 V.

EXAMPLE 6.11 Voltage Supply Limits in an Op-Amp Integrator
Problem
Compute and sketch the output voltage of the integrator of Figure 6.46.

Solution
Known Quantities: Resistor, capacitor, and supply voltage values; input voltage.
Find: υo(t).
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Schematics, Diagrams, Circuits, and Given Data: ; 
.

Assumptions: Assume a supply voltage–limited op-amp. The initial condition is
υo(0) = 0.

Analysis: For an ideal op-amp integrator the output would be



However, the supply voltage is limited to ±15 V, and the integrator output voltage
will therefore saturate at the upper supply voltage value of 15 V as the term 2.5t
increases with time. Figure 6.63 depicts the output voltage waveform.

Figure 6.63 Effect of DC offset on integrator

Comments: Note that the DC offset in the waveform causes the integrator output
voltage to increase linearly with time. The presence of even a very small DC
offset will always cause integrator saturation.

EXAMPLE 6.12 Gain-Bandwidth Product Limit in an Op-Amp
Problem
Determine the maximum allowable closed-loop voltage gain of an op-amp if the
amplifier is required to have an audio-range bandwidth of 20 kHz.

Solution
Known Quantities: Gain-bandwidth product.
Find: Gmax.

Schematics, Diagrams, Circuits, and Given Data: A0 = 106; ω0 = 2π × 5 rad/s.

Assumptions: Assume a gain-bandwidth product limited op-amp.
Analysis: The gain-bandwidth product of the op-amp is



The desired bandwidth is ωmax = 2π × 20,000 rad/s, and the maximum allowable
gain will therefore be

For any closed-loop voltage gain greater than 250, the amplifier would have
reduced bandwidth.
Comments: To achieve gains greater than 250 and maintain the same bandwidth,
two options are available: (1) Use a different op-amp with greater gain-bandwidth
product, or (2) connect two amplifiers in cascade, each with lower gain and
greater bandwidth, such that the product of the gains would be greater than 250.
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EXAMPLE 6.13 Increasing the Gain-Bandwidth Product by Means
of Amplifiers in Cascade
Problem
Determine the overall 3-dB bandwidth of the cascade amplifier of Figure 6.64.

Figure 6.64 Cascade amplifier



Solution
Known Quantities: Gain-bandwidth product and gain of each amplifier.
Find: ω3 dB of cascade amplifier.

Schematics, Diagrams, Circuits, and Given Data: A0ω0 = K = 4π × 106 for each
amplifier. RF/RS = 100 for each amplifier.

Assumptions: Assume gain-bandwidth product limited (otherwise ideal) op-
amps.
Analysis: Let G1 and ω1 denote the gain and the 3-dB bandwidth of the first
amplifier, respectively, and G2 and ω2 those of the second amplifier.

The 3-dB bandwidth of the first amplifier is

The second amplifier will also have

Thus, the approximate bandwidth of the cascade amplifier is 4π × 104, and the
gain of the cascade amplifier is G1G2 = 100 × 100 = 104 or 80 dB.

For a single-stage amplifier having the same K the bandwidth is 100 times
smaller.

Comments: In practice, the actual 3-dB bandwidth of the cascade amplifier is not
quite as large as that of each of the two stages because the gain of each amplifier
starts decreasing at frequencies somewhat lower than the nominal cutoff
frequency. A more detailed analysis shows that the actual 3-dB bandwidth is
roughly .
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EXAMPLE 6.14 Effect of Input Offset Voltage on an Amplifier
Problem
Determine the effect of the input offset voltage Vos on the output of the amplifier
shown in Figure 6.65.

Figure 6.65 Op-amp input offset voltage

Solution
Known Quantities: Nominal closed-loop voltage gain; input offset voltage.
Find: The offset voltage component in the output voltage Vo, os.

Schematics, Diagrams, Circuits, and Given Data: Anom = 100; Vos = 1.5 mV.

Assumptions: Assume an input offset voltage–limited (otherwise ideal) op-amp.
Analysis: The amplifier is connected in a noninverting configuration; thus its
nominal closed-loop gain is

The DC offset voltage, represented by an ideal voltage source, is directly applied
to the noninverting input. Thus



Thus, we should expect the output of the amplifier to be shifted upward by 150
mV.
Comments: The input offset voltage is not, of course, an external source, but is a
voltage offset between the inputs of the op-amp. Figure 6.57 depicts how such an
offset can be zeroed. The worst-case offset voltage is usually listed in the device
data sheets. Typical values are 2 mV for the 741c general-purpose op-amp and 5
mV for the FET-input TLO81.

EXAMPLE 6.15 Effect of Input Offset Current on an Amplifier
Problem
Determine the effect of the input offset current Ios on the output of the amplifier
of Figure 6.66.

Figure 6.66

Solution
Known Quantities: Resistor values; input offset current.
Find: The offset voltage component in the output voltage υout, os.

Schematics, Diagrams, Circuits, and Given Data: Ios = 1 µ A; R2 = 10 k Ω.

Assumptions: Assume an input offset current–limited (otherwise ideal) op-amp.
Analysis: Calculate the inverting and noninverting terminal voltages caused by
the offset current in the absence of an external input:
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With these values apply KCL at the inverting node and write

Thus, we should expect the output of the amplifier to be shifted downward by
R2Ios, or 104 × 10−6 = 10 mV for the data given in this example.

Comments: Usually, the worst-case input offset currents (or input bias currents)
are listed in the device data sheets. Values can range from 100 pA (for CMOS op-
amps, for example, LMC6061) to around 200 nA for a low-cost general-purpose
amplifier (for example, µA741c).

EXAMPLE 6.16 Effect of Slew Rate Limit on an Amplifier
Problem
Determine the effect of the slew rate limit S0 on the output of an inverting
amplifier for a sinusoidal input voltage of known amplitude and frequency.

Solution
Known Quantities: Slew rate limit S0; amplitude and frequency of sinusoidal
input voltage; amplifier closed-loop gain.
Find: Sketch the theoretically correct output and the actual output of the
amplifier in the same graph.



Schematics, Diagrams, Circuits, and Given Data: S0 = 1 V/µ s; υS = sin(2 π ×
105t); G = 10.
Assumptions: Assume the op-amp is slew rate limited, but otherwise ideal.
Analysis: Given the closed-loop voltage gain of 10, compute the theoretical
output voltage to be:

The maximum slope of the output voltage is then computed as follows:

Clearly, the value calculated above far exceeds the slew rate limit. Figure 6.67
depicts the approximate appearance of the waveforms that one would measure in
an experiment.

Figure 6.67 Distortion introduced by slew rate limit

Comments: Note that in this example the slew rate limit has been exceeded
severely, and the output waveform is visibly distorted, to the point that it has
effectively become a triangular wave. The effect of the slew rate limit is not
always necessarily so dramatic and visible; thus one needs to pay attention to the
specifications of a given op-amp. The slew Page 453rate limit is listed in the
device data sheets. Typical values can range from 13 V/µ s, for the TLO81, to
around 0.5 V/µ s for a low-cost general-purpose amplifier (for example, µ
A741c).



EXAMPLE 6.17 Effect of Short-Circuit Current Limit on an
Amplifier
Problem
Determine the effect of the short-circuit limit ISC on the output of an inverting
amplifier for a sinusoidal input voltage of known amplitude.

Solution
Known Quantities: Short-circuit current limit ISC; amplitude of sinusoidal input
voltage; amplifier closed-loop gain.
Find: Compute the minimum allowable load resistance value , and sketch the
theoretical and actual output voltage waveforms for resistances smaller than .
Schematics, Diagrams, Circuits, and Given Data: ISC = 50 mA; υS = 0.05
sin(ωt); G = 100.
Assumptions: Assume the op-amp is short-circuit current limited, but otherwise
ideal.
Analysis: Given the closed-loop voltage gain of 100, compute the theoretical
output voltage to be:

To assess the effect of the short-circuit current limit, calculate the peak value of
the output voltage since this is the condition that will require the maximum output
current from the op-amp:

For any load resistance less than 100 Ω, the required load current will be greater
than ISC. For a 75-Ω load resistor:



That is, the output voltage cannot reach the theoretically correct 5-V peak and
would be “compressed” to reach a peak voltage of only 3.75 V. This effect is
depicted in Figure 6.68.

Figure 6.68 Distortion introduced by short-circuit current limit
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Comments: The short-circuit current limit is listed in the device data sheets.
Typical values for a low-cost general-purpose amplifier (say, the 741c) are in the
tens of milliamperes.

CHECK YOUR UNDERSTANDING
How long will it take (approximately) for the integrator of Example 6.11 to
saturate if the input signal has a 0.1-VDC bias [that is, υS (t) = 0.1 + 0.3
cos(10t)]?

CHECK YOUR UNDERSTANDING
What is the maximum gain that could be achieved by the op-amp of Example
6.12 if the desired bandwidth is 100 kHz?

Answer: Approximately 30 s



CHECK YOUR UNDERSTANDING
In Example 6.13, the closed-loop gain of each amplifier was assumed constant at
frequencies below the cutoff frequency. In practice, the open-loop gain A of each
op-amp decreases slowly with frequency at frequencies lower than the closed-
loop gain cutoff frequency. The frequency response for the open-loop gain of an
op-amp is well approximated by:

Use this expression to find an expression for the closed-loop gain of the cascade
amplifier. (Hint: The combined gain is equal to the product of the individual
closed-loop gains.) What is the actual gain in decibels at the cutoff frequency ω0
for the cascade amplifier?

What is the 3-dB bandwidth of the cascade amplifier of Example 6.13? [Hint:
The gain of the cascade amplifier is the product of the individual op-amp
frequency responses. Compute the magnitude of this product, set it equal to 

, and solve for ω.]
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CHECK YOUR UNDERSTANDING
What is the maximum gain that can be accepted in the op-amp circuit of Example
6.14 if the offset is not to exceed 50 mV?

Answer: Amax = 50

Answer: 74 dB; ω3 dB = 2π × 12,800 rad/s



1.

2.

CHECK YOUR UNDERSTANDING
Given the desired peak output amplitude (10 V), what is the maximum frequency
that will not result in violating the slew rate limit for the op-amp of Example
6.16?

Conclusion
Operational amplifiers are the single most important integrated circuit in analog
electronics. Upon completing this chapter, the following learning objectives
should have been achieved:

Understand the properties of ideal amplifiers and the concepts of gain, input
impedance, output impedance, and feedback. Ideal amplifiers represent
fundamental building blocks of electronic instrumentation. With the concept
of an ideal amplifier clearly established, one can design practical amplifiers,
filters, integrators, and many other signal processing circuits. An ideal op-
amp closely approximates a practical op-amp in many respects.
Understand the difference between open-loop and closed-loop op-amp
configuration; and compute the gain (or complete the design of) simple
inverting, noninverting, summing, and difference amplifiers using ideal op-
amp analysis. Analyze more advanced op-amp circuits, using ideal op-amp
analysis, and identify important performance parameters in op-amp data
sheets. Analysis of op-amp circuits is made easy by a few simplifying
assumptions, which are based on the op-amp having a very large input
impedance, a very small output impedance, and a large open-loop gain. The
inverting and noninverting amplifier configurations permit the design of
useful circuits by appropriately selecting and placing a few resistors.
Answer: AVmax = 33.3

Answer: fmax = 159 kHz



3.

4.

5.

6.1

6.2

Analyze and design simple active filters. Analyze and design ideal integrator
and differentiator circuits. The use of capacitors in op-amp circuits extends
their applications to include filtering, integration, and differentiation.
Understand the structure and behavior of analog computers, and design
analog computer circuits to solve differential equations. The properties of
op-amp summing amplifiers and integrators make it possible to construct
analog computers that solve differential equations and simulate dynamic
systems. While digital computer-based numerical simulations are readily
available, there is still a role for analog computers in specialized applications.
Understand the principal physical limitations of an op-amp. It is important to
understand that there are limitations in the performance of practical op-amp
circuits that are not included in many simple op-amp models. It is important
to consider issues related to voltage supply limits, bandwidth limits, offsets,
slew rate limits, and output current limits in the design of an op-amp circuit.
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HOMEWORK PROBLEMS
Section 6.1: Ideal Amplifiers

The circuit shown in Figure P6.1 has a DC signal source, two stages of
amplification, and a load. Determine, in decibels, the power gain G = P0/PS
= Vo Io/VS IS, where:

Figure P6.1

A temperature sensor in a production line under normal operating conditions
produces a no-load (i.e., sensor current = 0) voltage:



6.3

6.4

The temperature is monitored on a display (the load) with a vertical line of
light-emitting diodes. Normal conditions are indicated when a string of the
bottommost diodes 2 cm in length is on. This requires that a voltage be
supplied to the display input terminals where

The signal from the sensor must be amplified.

Therefore, a voltage amplifier, shown in Figure P6.2, is connected between
the sensor and CRT with

Determine the required no-load gain of the amplifier.

Figure P6.2

What are the golden rules of an ideal operational amplifier? What conditions
do these rules rely upon?

What approximations are usually made about the circuit components and
parameters of the amplifier model shown in Figure P6.4?

Figure P6.4

Section 6.2: The Operational Amplifier



6.5

6.6

6.7

Find υ1 in the circuits of Figure P6.5(a) and (b). In Figure P6.5(a) the 3-k Ω
resistor “loads” the output; that is, υ1 is changed by attaching the 3-k Ω
resistor in parallel with the lower 6-k Ω resistor. However, in Figure P6.5(b)
the isolation buffer holds υ1 to υg/2, regardless of the presence of the 3-k Ω
resistor and its value!

Figure P6.5

Find the current i in the circuit of Figure P6.6.

Figure P6.6
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Find the voltage υo in Figure P6.7 by finding the Thévenin equivalent
network seen to the left of nodes a and b to form an archetypical inverting
amplifier.



6.8

6.9

Figure P6.7

Find the Thévenin equivalent network seen between the noninverting
terminal node and the reference node in Figure P6.8. Use it to find υ3 in
terms of υ1 and υ2.

Figure P6.8

Determine an expression for the closed-loop voltage gain G = υo/υ1 for the
circuit of Figure P6.9. Find the input resistance υ1/i1 seen by the voltage
source.



6.10

6.11

a.
b.

Figure P6.9

Difference amplifiers are often used in conjunction with a Wheatstone
bridge, such as that shown in Figure P6.10, where each resistor is a
temperature sensing element, and their change in resistance ΔR is directly
proportional to their change in temperature ΔT. The constant of
proportionality is the temperature coefficient ±α, which can be positive
(PTC) or negative (NTC). Find the Thévenin equivalent network seen by the
amplifier to the left of nodes a and b. Assume that ΔR = ±ΔT and ∣ΔR∣ ≪
R0.

Figure P6.10

The circuit shown in Figure P6.11 is a negative impedance converter. Find
the input impedance Zin:

when:
Zo = R



6.12

6.13

a.

b.

Figure P6.11

The circuit of Figure P6.12 demonstrates that op-amp feedback can create a
resonant circuit without Page 458the use of an inductor. Assume R1 = R2 = 1
Ω, C1 = 2Q F, and C2 = 1/2Q F, where Q is the quality factor introduced in
Chapter 5. Notice that υ2 = υo and use it and KCL to find the voltage gain υo/
υin.

Figure P6.12

Inductors are difficult to use as components of integrated circuits due to the
need for large coils of wire, which require significant space and tend to act
as excellent antennas for ambient noise. As an alternative, a “solid-state
inductor” can be constructed as shown in Figure P6.13.

Determine the input impedance Zin = V1/I1.

What is Zin when R = 1.0 k Ω and C = 0.02 µF?



6.14

Figure P6.13

In the circuit of Figure P6.14, determine the input impedance Zin = V1/I1.
Note the difference between this circuit and that shown in Figure P6.13.



6.15

Figure P6.14

It is easy to construct a current source using an inverting amplifier
configuration as shown in Figure P6.15. Verify that the current I through Ro
is independent of the value of Ro , assuming that the op-amp stays in its
linear operating region, and find the value of I.



6.16

6.17

Figure P6.15
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A “super diode” or “precision diode” circuit is shown in Figure P6.16. The
diode permits current from anode to cathode when the anode voltage is VD
higher than the cathode voltage, where VD is the diode offset voltage.
Current is not permitted from cathode to anode. Determine the output
voltage υo(t) for the given input voltage υin(t). Show that the entire circuit
behaves like a diode but without the offset voltage.

Figure P6.16

Determine the response function V2/V1 for the circuit of Figure P6.17.



6.18

6.19

6.20

6.21

Figure P6.17

Time delays are often encountered in engineering systems. They can be
approximated using Euler’s definition as

With the addition of a unity gain inverting amplifier show that the transfer
function of the circuit shown in Figure P6.17 equals the argument of the
limit given above when s = jω.

Use the circuit shown in Figure P6.17 and the result of Problem 6.18 to
design a circuit whose transfer function equals the argument of the limit
when T = 1 and N = 4 and thus is an approximation of a time delay.

For the circuit of Figure P6.20, apply the principle of superposition to find υo
.

Figure P6.20

Difference amplifiers are often used in conjunction with a Wheatstone
bridge, such as that shown in Figure P6.10, where each resistor is a



6.22
a.

b.

6.23

6.24

temperature sensing element, and their change in resistance ΔR is directly
proportional to their change in temperature ΔT. The constant of
proportionality is the temperature coefficient ±α, which can be positive
(PTC) or negative (NTC). Assume ∣ΔR∣ = KΔT, where K = constant. Find
an expression for υo (ΔT).

Consider the circuit of Figure P6.22. Assume ω = 1000 Rad/s:

If V1−V2 = 1∠ 0V, use phasor analysis to find ∣Vo∣.

Use phasor analysis to find ∠Vo.

Figure P6.22
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Find an expression for the voltage gain Vo/Vin of the circuit of Figure P6.12.
Assume R1 = 3 Ω, R2 = 2 Ω, and .

In the circuit of Figure P6.24, assume RF = 12 k Ω and that it is critical that
the voltage gain υo/υS remain within ±2 percent of the nominal gain of 20.
What value of RS is needed for the nominal gain? What are the allowed
maximum and minimum values of RS? Will a standard 5 percent tolerance
resistor be adequate to satisfy this requirement? (See Table 1.3 of standard
resistor values in Chapter 1.)
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a.

b.

c.

6.26

a.

b.

6.27

Figure P6.24

The two 5 percent tolerance resistors of an inverting amplifier (see Figure
6.8) have nominal values RF = 33 k Ω and RS = 1.5 k Ω.

What is the nominal voltage gain G = υo/υS of the amplifier?

What is the maximum value of G if the resistor values can swing ±5
percent?

What is the minimum value of G if the resistor values can swing ±5
percent?

The circuit of Figure P6.26 is another form of a level shifter, which adjusts
the DC portion of the input voltage υ1(t) while also amplifying the AC
portion. Let:

υ1 (t) = 10 + 10−3 sin ω t V, RF = 10 k Ω, and Vbatt = 20 V.

Find RS such that no DC voltage appears at the output.

What is υo(t), using RS from part a?

Figure P6.26

Figure P6.27 shows a simple practical amplifier that uses a 741 op-amp chip.
Pin numbers are as indicated. Assume the op amp has a 2-M Ω input



6.28

6.29

a.

b.

resistance, an open-loop gain A = 200,000, and an output impedance Ro = 50
Ω. Find the closed-loop gain G = υo/υi.

Figure P6.27

Design an inverting summing amplifier to obtain the following weighted
sum of four different signal sources:

Assume that RF = 5 k Ω, and determine the required source resistors.

The amplifier shown in Figure P6.29 has a signal source (υs in series with
Rs) and load Ro separated by an amplification stage built upon the Motorola
MC1741C op-amp. Assume:

The op-amp itself has a 2-M Ω input resistance, a 75-Ω output resistance,
and a 200K open-loop gain. To a first approximation, the op-amp would be
modeled as ideal. A better model would include the effects of the parameters
listed above. See Figure 6.6 and equation 6.23.

Assume the op-amp is not ideal, and derive an expression for the input
resistance ri = υi/ii of the overall amplifier, where υi = υs − ii Rs .

Determine the value of that input resistance, and compare it to the
input resistance derived for an ideal op-amp.



6.30

6.31

6.32

Figure P6.29

Page 461

In the circuit shown in Figure P6.30, assume R1 = 40 k Ω, R2 = 2 k Ω, RF =
150 k Ω, Ro = 75 Ω and υs = 0.01 + 0.005 cos (ωt) V. Determine an
expression for the output voltage υo and its value.

Figure P6.30

For the circuit shown in Figure P6.31, assume υS = 0.3 + 0.2 cos (ωt), Rs = 4
Ω, and Ro = 15 Ω. Determine the output voltage υo for an ideal op-amp and
also for a Motorola MC1741C op-amp with characteristics as given in
Problem 6.29.

Figure P6.31

For the circuit shown in Figure P6.32, assume:



6.33

6.34

a.

b.

6.35

Determine an expression and value for the output voltage υo .

Figure P6.32

For the circuit shown in Figure P6.33, assume υS1 = −2 V, υS2 = 2 sin (2 π ·
2,000 t) V, R1 = 100 k Ω, R2 = 50 k Ω, Ro = 50Ω and RF = 150 k Ω.
Determine the output voltage υo .

Figure P6.33

For the circuit shown in Figure P6.33, assume: υS1 = υS2 = 5 mV, Ro = 75 Ω,
R1 = 50 Ω, R2 = 2 k Ω, and RF = 2 k Ω. The nonideal MC1741C op-amp has
a 2-m Ω input resistance, a 75-Ω output resistance, and an open-loop gain of
200K. (See Figure 6.6 and equation 6.23.) Determine:

An expression for the output voltage υo .

The voltage gain for each of the two input signals.

In the circuit shown in Figure P6.35, determine the output voltage Vo. All
resistances are equal and Vin = 4 ∠ 0 V.



6.36

6.37

a.

b.

c.

6.38

Figure P6.35

In the circuit shown in Figure P6.36, assume V2 = 8 ∠ 0 V and find the
input voltage Vin such that Vo = 0.

Figure P6.36
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In the circuit shown in Figure P6.32, assume:

Determine:

The output voltage υo .

The common-mode component of υo .

The difference-mode component of υo .

In the circuit shown in Figure P6.38, determine the output voltage Vo . Let
R1 = R2 = 10k Ω, R3 = 15 k Ω, R4 = 10 k Ω, RF = 50 k Ω, and Vin = 6 V.



6.39

a.

b.

6.40

Figure P6.38

A linear potentiometer RP is used to sense and generate a voltage υy
proportional to the y-coordinate of an xy inkjet printer head. A reference
signal υR is supplied by the software controlling the printer. The difference
between these voltages is amplified to drive a motor. The motor changes the
position of the printer head until that difference equals zero. For proper
operation, the motor voltage must be 10 times the difference between the
signal and reference voltage. For rotation in the proper direction, the motor
voltage must be negative with respect to υy . In addition, iP must be
negligibly small to avoid loading the pot and causing an erroneous signal
voltage.

Design an op-amp circuit that satisfies these specifications. Redraw
Figure P6.39, replacing the dotted line box with your amplifier circuit.
Be sure to indicate component values.

Mark the pin numbers on your redrawn figure for an eight-pin single
µA741C op-amp chip.

Figure P6.39

Compute the current Ibatt delivered by the battery in Figure P6.40. Assume:
RS1 = RS2 = 30k Ω, RF1 = 100 k Ω, RF2 = 60 k Ω, R1 = 5 k Ω, R2 = 7 k Ω, and



6.41

6.42

Vbatt = 3 V.

Figure P6.40

Figure P6.41 shows a simple voltage-to-current converter. Show that the
current Io through the light-emitting diode (LED), and therefore its
brightness, is proportional to the source voltage Vs as long as Vs > 0. The
LED permits current in the direction shown only.

Figure P6.41

Figure P6.42 shows a simple current-to-voltage converter. Show that the
voltage Vo is proportional to the current generated by the cadmium sulfide
(CdS) solar cell. Also show that the transimpedance of the circuit Vo/Is is
−R!

Figure P6.42



6.43

6.44

6.45

6.46

6.47

A nonideal op-amp voltmeter circuit as in Figure P6.43 is required to
measure a maximum input of VS = 15 mV. The op-amp input current is IB =
0.25 µ A. The ammeter is designed for full-scale deflection when Im = 80 µ
A and rm = 8 k Ω. Determine Page 463suitable values for R3 and R4 so that
the full-scale deflection of the ammeter corresponds to VS = 15 mV.

Figure P6.43

Find an expression for the voltage gain υo/υs in Figure P6.44. Assume RS1 =
RS2 = 2.5 k Ω and RF1 = RF2 = 9.0 k Ω.

Figure P6.44

Select appropriate components using standard 5 percent resistors to obtain a
voltage gain υo/υs as close to −80 as possible for the circuit of Figure P6.44.

For the circuit in Figure P6.44 compute the maximum and minimum
possible voltage gains if the resistor values are allowed to swing ±5 percent.

The circuit shown in Figure P6.47 can function as a precision ammeter.
Assume that the voltmeter has a range of 0 to 10 V and an internal resistance
of 20 k Ω. The full-scale reading of the ammeter is intended to be 1 mA.
Find the resistance R such that the voltmeter reading is 10 V when iin = 1
mA.



6.48

6.49

6.50

6.51

6.52

a.

b.

Figure P6.47

Select appropriate components using standard 5 percent resistors to obtain a
voltage gain υo/υs as close to 20 as possible for the circuit of Figure P6.30.

For the circuit in Figure P6.30 compute the maximum and minimum
possible voltage gains if the resistor values are allowed to swing ±5 percent.
Use the component values listed in problem 6.30.

Select appropriate components using standard 1 percent resistors to obtain a
difference gain as close to 15 as possible in the circuit of Figure P6.32.
Assume that R3 = R4 and R1 = R2 .

For the circuit in Figure P6.32 compute the maximum and minimum
possible voltage gains if the resistor values are allowed to swing ±1 percent.
Also compute the maximum common-mode output for the same allowed ±1
percent swing. Pick the nominal resistor values so that R3 = R4 and R1 = R2 .
Use the component values listed in problem 6.32.

Section 6.3: Active Filters
The circuit shown in Figure P6.52 with input Vs and output Vo is an active
high-pass filter. Assume:

Determine:

The voltage gain | Vo/Vs | (in dB) in the passband.

The cutoff frequency.



6.53

a.

b.

6.54

a.

b.

6.55

Figure P6.52

The op-amp circuit shown in Figure P6.53 is used as a high-pass filter.
Assume:

Determine:

The voltage gain |Vo/Vs|, (in dB), in the passband.

The cutoff frequency.

Figure P6.53
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The op-amp circuit shown in Figure P6.53 is used as a high-pass filter.
Assume:

Determine:

The voltage gain | Vo/Vs | , (in dB), in the passband.

The cutoff frequency.

The circuit shown in Figure P6.55 is an active filter. Assume:

Determine the break frequencies and | Vo/Vi | (in dB) at very low and at very
high frequencies.



6.56

a.

b.

c.

d.

6.57

Figure P6.55

The circuit shown in Figure P6.56 is an active filter. Assume:

Determine:

An expression for the voltage gain in standard form:

The break frequencies.

The passband gain.

The Bode magnitude and phase plots of Vo/Vi .

Figure P6.56

The op-amp circuit shown in Figure P6.57 is used as a low-pass filter.
Assume:



a.

b.

6.58

a.

b.

6.59

a.

b.

c.

d.

e.

Determine:

An expression in standard form for the voltage gain Vo/Vs .

The gain, in dB, in the passband and at the cutoff frequency.

Figure P6.57

The op-amp circuit shown in Figure P6.57 is used as a low-pass filter.
Assume:

Determine:

An expression in standard form for the voltage gain Vo/Vs .

The gain, in dB, in the passband and at the cutoff frequency.

The circuit shown in Figure P6.59 is a bandpass filter. Assume:

Determine:

The voltage gain | Vo/Vi | in the passband.

The resonant frequency.

The break frequencies.

The quality factor Q.
The Bode magnitude and phase plots of Vo/Vi .
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6.60

a.

b.

6.61

6.62

6.63
a.

Figure P6.59

The op-amp circuit shown in Figure P6.57 is used as a low-pass filter.
Assume:

Determine:

An expression in standard form for the voltage gain Vo/Vs .

The gain, in dB, in the passband and at the cutoff frequency.

The circuit shown in Figure P6.59 is used as a bandpass filter. Assume:

Determine the passband voltage gain.

Derive the frequency response function Vo/Vin for the circuit shown in
Figure P6.62.

Figure P6.62

The circuit shown in Figure P6.63 can be used as a low-pass filter.

Derive the frequency response Vo/Vin of the circuit.



b.

c.

d.

6.64

6.65

If R1 = R2 = 100 k Ω and C = 0.1 µ F, compute the attenuation, in dB,
of Vo/Vin at ω = 1,000 rad/s.

Compute the amplitude and phase of Vo/Vin at ω = 2,500 rad/s.

Find the range of frequencies over which the attenuation of Vo/Vin is
less than 1 dB.

Figure P6.63

Determine a symbolic expression in standard form for the voltage gain
Vo/Vin in Figure P6.64. What kind of a filter does the voltage gain represent?

Figure P6.64

For the circuit of Figure P6.65, sketch the amplitude response of V2/V1,
indicating the half-power frequencies.

Figure P6.65



6.66

6.67

6.68

6.69
a.

b.

Determine a symbolic expression for the voltage gain Vo/VS1 of Figure
P6.66. What kind of a filter does the gain represent?

Figure P6.66
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Determine a symbolic expression for the voltage gain Vo/VS of Figure P6.67.
What kind of a filter does the gain represent?

Figure P6.67

Replace the passband specification of Example 6.5 with ωC = 10 rad/s, and
determine the order of the filter required to achieve 40-dB attenuation at ωS
= 24 rad/s.

The circuit of Figure P6.69 acts as an active low-pass filter.

Derive the relationship between output amplitude and input amplitude.

Derive the relationship between output phase angle and input phase
angle.



6.70

6.71
6.72
6.73
6.74

6.75

6.76

6.77

Figure P6.69

Consider the circuit of Figure P6.69. Let Rin = 20 k Ω, RF = 100 k Ω, and CF
= 100 pF. Determine an expression for υo(t) if υin(t) = 2 sin(2,000 π t) V.

Derive the frequency response of the low-pass filter of Figure 6.45.

Derive the frequency response of the high-pass filter of Figure 6.45.

Derive the frequency response of the bandpass filter of Figure 6.45.

Consider the circuit of Figure P6.69. Let CF = 100 pF. Determine
appropriate values for Rin and RF to produce a cutoff frequency of 20 kHz
and a gain magnitude of 5.

Section 6.4: Design of Active Filters
Design a second-order Butterworth high-pass filter with a 10-kHz cutoff
frequency, a DC gain of 10, Q = 5, and VS = ±15 V.

Design a second-order Butterworth high-pass filter with a 25-kHz cutoff
frequency, a DC gain of 15, Q = 10, and Vs = ±15 V.

The circuit shown in Figure P6.77 is claimed to exhibit a second-order
Butterworth low-pass voltage gain characteristic. Derive the characteristic
and verify the claim.

Figure P6.77
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6.79

6.80

6.81

6.82

Design a second-order Butterworth low-pass filter with a 15-kHz cutoff
frequency, a DC gain of 15, Q = 5, and VS = ±15 V.

Design a bandpass filter with a low cutoff frequency of 200 Hz, a high cutoff
frequency of 1 kHz, and a passband gain of 4. Calculate the value of Q for
the filter. Also draw the approximate frequency response of this filter.

Using the circuit of Figure P6.77, design a second-order low-pass
Butterworth filter with a cutoff frequency of 10 Hz.

A low-pass Sallen and Key filter is shown in Figure P6.81. Find the voltage
gain Vo/Vin as a function of frequency and generate its Bode magnitude plot.
Show and observe that the cutoff frequency is 1/2πRC and that the low-
frequency gain is R4/R3.

Figure P6.81
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The circuit shown in Figure P6.82 exhibits low-pass, high-pass, and
bandpass voltage gain characteristics, depending on whether the output is
taken at node 1, node 2, or node 3. Find the transfer functions relating each
of these outputs to Vin, and determine which is which.



6.83

6.84

Figure P6.82

The filter shown in Figure P6.83 is called an infinite-gain multiple-feedback
filter. Derive the following expression for the filter’s frequency response
Vo/Vi.

Figure P6.83

The filter shown in Figure P6.84 is a Sallen and Key bandpass filter circuit,
where K is the DC gain of the filter. Derive the following expression for the
filter’s frequency response Vo/Vi.



6.85

6.86

Figure P6.84

Show that the expression for Q in the filter of Problem 6.83 is given by

Section 6.5: Integrators and Differentiators
The circuit shown in Figure P6.86(a) produces an output voltage υo which is
the derivative of the source voltage υs shown in Figure P6.86(b) multiplied
by some gain. Assume:

Determine the output voltage as a function of time and plot it.

Figure P6.86



6.87

6.88

a.

b.

The circuit shown in Figure P6.87(a) produces an output voltage υo which is
either the integral or the derivative of the source voltage υs shown in Figure
P6.87(b) multiplied by some gain. Assume:
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For the given source voltage, determine the output voltage as a function of
time and plot it.

Figure P6.87

The circuit shown in Figure P6.88 is an integrator. The capacitor is initially
uncharged, and the source voltage is

At t = 0, the switch S1 is closed. How long does it take before clipping
occurs at the output if Rs = 10 k Ω and CF = 0.008 µ F?

At what times does the integration of the DC input cause the op-amp to
saturate fully?



6.89

a.

b.

c.

6.90

a.

b.

6.91

6.92

Figure P6.88

A practical integrator is shown in Figure 6.35. Note that the resistor in
parallel with the feedback capacitor provides a path for the capacitor to
discharge DC voltage. Usually, the time constant RF CF is chosen to be large
enough not to interfere with the integration.

If RS = 10 k Ω, RF = 2 M Ω, CF = 0.008 µ F, and υS(t) = 10 V +
sin(2,000 π t) V, find υo(t), using phasor analysis.

Repeat part a if RF = 200 k Ω and if RF = 20 k Ω.

Compare the time constants RF CF with the period of the waveform for
parts a and b. What can you say about the time constant and the ability
of the circuit to integrate?

The circuit of Figure 6.40 is a practical differentiator. Assume an ideal op-
amp, and υS (t) = 104 sin(2,000πt) mV, CS = 100 µ F, CF = 0.008 µ F, RF = 2
M Ω, and RS = 10 k Ω.

Determine the voltage gain Vo/VS .

Sum the DC and AC components of υo(t) to find the total output
voltage.

Derive the differential equation in x(t) for the circuit of Figure P6.91.

Figure P6.91

Construct a circuit corresponding to the following differential equation:



6.93

6.94

6.95

Section 6.6: Physical Limitations of Operational
Amplifiers

Consider the noninverting amplifier of Figure 6.65. Find Vo when the op-
amp has an input offset voltage of 2 mV. Assume the input bias currents are
zero and R1 = RF = 4.7 k Ω.

In the circuit shown in Figure P6.94, sketch the output voltage υo(t) for the
two input voltages υ1(t) and υ2(t). Assume R1 = 120 k Ω, R2 = 150 k Ω, and
C = 2 nF. Also assume the op-amp slew rate limit is S0 = 1.0 V/µs and the
capacitor is initially uncharged.

Page 469

Figure P6.94

Consider a standard inverting amplifier, as shown in Figure P6.95. Assume
that the offset voltage can be neglected and that the two input bias currents
are equal. Find the relationship between >R30, R1 and R30 that eliminates the
error in the output voltage due to the bias currents.



6.96

a.

b.

c.

6.97

6.98

a.

b.

Figure P6.95

Determine the effect of the slew rate limit S0 = 0.5 V/µs on the output of the
unity-gain isolation buffer shown in Figure 6.10 for each of the following
sinusoidal input voltages:

υS = 0.8 sin (2 π⋅6,000 t)V

υS = 0.9 sin (2 π⋅7,500 t)V

υS = 0.9 sin (2 π⋅15,000 t)V

In the circuit shown in Figure P6.97, derive the output voltage υo(t) as a
function of υin(t). Assume the data given for S0 and υin in Problem 6.96. Also
assume that R30 = 15 kΩ and C = 0.8 μF. For each of the three expressions of
υin, determine the maximum value of the low frequency gain R30/R30 such
that the slew rate limit is not exceeded.

Figure P6.97

Determine the effect of the slew rate limit S0 = 0.5 V/µ s on the output of a
noninverting amplifier with closed-loop voltage gain G = 10 for a symmetric
square wave υin . Sketch the output waveform for each following case:

υin switches between ±0.5 V and f = 500 Hz.

υin switches between ±1.25 V and f = 5 kHz.



c.

6.99

6.100

6.101

υin switches between ±0.5 V and f = 25 kHz.

Consider a difference amplifier with a desired common-mode output of less
than 1 percent of the difference-mode output. See Figure 6.18, equation 6.59
and the discussion on common and difference modes. Find the minimum
decibel common-mode rejection ratio to fulfill this requirement if the
differential-mode gain Adm = 1,000. Let

Square wave testing can be used with operational amplifiers to estimate
the slew rate, which is defined as the maximum rate at which the output
can change (in volts per microsecond). Input and output waveforms for a
noninverting op-amp circuit are shown in Figure P6.100. As indicated, the
rise time tR of the output waveform is defined as the time it takes for that
waveform to increase from 10 percent to 90 percent of its final value, or

where τ is the circuit time constant. Derive this expression and estimate
the slew rate for the op-amp.
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Figure P6.100

The nonideal op-amp used in the inverting amplifier of Figure 6.8 has an
open-loop voltage gain A = 250 × 103. Assume that υ− is small but



a.

b.

c.

d.

6.102

a.

b.

6.103

6.104

nonzero. The input terminal currents iin can still be assumed zero. Apply
equation 6.23 to find:

If RS = 10 k Ω and RF = 1 M Ω, find the closed-loop voltage gain G =
υo/υS .

Repeat part a for RF = 10 M Ω.

Repeat part a for RF = 100 M Ω.

Evaluate G as A → ∞ for parts a to c.

A nonideal op-amp used in the noninverting amplifier of Figure P6.102
has an open-loop voltage gain A = 250 × 103. Assume υin = υ− + Δυ,
where Δυ is small but nonzero, as suggested in equation 6.23. The input
terminal currents iin can still be assumed zero. Find:

The closed-loop gain υo/υin for RF = RS = 7.5 k Ω;

The closed-loop gain υo/υin for RF = RS = 7.5 k Ω.

Figure P6.102

Given the unity-gain bandwidth for an ideal op-amp equal to 5.0 MHz,
find the voltage gain at a frequency of f = 500 kHz.

The open-loop gain A of real (nonideal) op-amps is very large at low
frequencies but decreases markedly as frequency increases. As a result,
the closed-loop gain of op-amp circuits can be strongly dependent on
frequency. Determine the frequency dependent relationship between the
finite and frequency-dependent open-loop gain A(jω) expressed in
equation 6.102 and the closed-loop gain G(ω) of the inverting amplifier
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6.106

a.

b.

c.

d.

e.

6.107

shown in Figure 6.8. Plot G versus ω. Notice that −RF/RS is the low-
frequency closed-loop gain.

A sinusoidal sound (pressure) wave p(t) impinges upon a condenser
microphone of sensitivity S. The voltage output of the microphone υs is
amplified by two cascaded inverting amplifiers to produce an amplified
signal υ0. Determine the peak amplitude of the sound wave (in dB) if υ0 =
5 VRMS. Estimate the maximum peak magnitude of the sound wave in
order that υ0 not contain any saturation effects of the op-amps. Assume S
= 10.0 mV/Pa, G = 5 for each amplifier and V+ = −V− = 12 V.

For the circuit shown in Figure P6.106, assume a nonideal op-amp and:

Refer to equations 6.23 and 6.66–6.70 to determine for each of the
following op-amp open-loop gains of 106, 104 and 102 the:

Common- and difference-mode input signals.

Common- and difference-mode gains ACM and ADM, respectively.

Common- and difference-mode components of the output voltage.

Total output voltage.

Common-mode rejection ratio (CMRR), in dB.

Figure P6.106

For the circuit shown in Figure P6.106, assume a nonideal op-amp and:



a.

b.

c.

d.

e.

6.108

a.

b.

c.

d.

e.

where ACM and ADM are the common- and difference-mode open-loop
voltage gains, respectively. Refer to Page 471equations 6.23 and 6.66–
6.70 to determine for each of the following op-amp open-loop gains of
106, 104 and 102 the:

Common- and difference-mode input voltages.

The individual voltage gains for υS1 and υS2.

The common- and difference-mode components of the output voltage.

The common-mode rejection ratio (CMRR), in dB.

The individual closed-loop voltage gains for υS1 and υS2.

In the circuit shown in Figure P6.108, the two voltage sources are
temperature sensors with T = temperature (Kelvin) and

where

If

determine

The voltage gains for the two input voltages.

The common-mode and difference-mode input voltages.

The common-mode and difference-mode gains.

The common-mode component and the difference-mode component of
the output voltage.

The common-mode rejection ratio (CMRR), in dB.
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a.

b.

c.

6.110

Figure P6.108

In the difference amplifier shown in Figure P6.108,

Determine

The common-mode gain.

The difference-mode gain.

The common-mode rejection ratio, in dB.

The ideal charge amplifier discussed in the Focus on Measurements box,
“Charge Amplifiers,” will saturate in the presence of any DC offsets.
Figure P6.110 presents a practical charge amplifier in which the user is
provided with a choice of three time constants—RCF , 10RCF , and
100RCF —which can be selected by means of a switch. Assume that R =
0.1 MΩ, and CF = 0.1 µ F. Analyze the frequency response of the practical
charge amplifier for each time constant, and determine the lowest input
signal frequency that can be amplified without excessive distortion for
each case. Can this circuit amplify a DC signal?



Figure P6.10

Design Credits: Mini DVI cable adapter isolated on white background: Robert Lehmann/Alamy Stock
Photo; Balance scale: Alex Slobodkin/E+/Getty Images; Icon for “Focus on measurements” weighing scales:
Media Bakery.

1The voltage gain G and the open-loop gain A may also be designated as AV and
AVOL, respectively. Electrical conductance is also designated as G; as always, it
is important to correctly interpret a symbol from the context in which it is used.
Happily, conductance G is rarely used in engineering work. Its inverse, resistance
R, is preferred instead.

2The operational amplifier of Figure 6.6 is a voltage amplifier; another type of
operational amplifier, called a current or transconductance amplifier, is described
in the homework problems.

3Special op-amps are employed to achieve extremely high input impedance,
through FET input circuits. See Chapter 10.
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C H A P T E R
7

ELECTRONIC
INSTRUMENTATION AND

MEASUREMENTS

easurement and instrumentation systems are indispensable to engineers
and scientists. While these systems are often packaged and sold as plug-
and-play devices, many times it is necessary to understand their detailed
specifications to properly interpret the generated data and to detect and

correct errors in that data. This chapter follows a logical thread, starting with
physical sensors, proceeding (in order) through wiring, grounding, signal
conditioning, analog-to-digital conversion, and digital data transmission.

Section 7.1 presents an overview of sensors commonly used in engineering
measurements. Some sensing devices have already been covered in earlier
chapters, and others will be discussed in later chapters; the main emphasis in this
chapter is on classifying physical sensors and on providing additional details not
presented elsewhere in this book—most notably, temperature transducers. Section
7.2 describes the common signal connections and proper wiring and grounding
techniques, with emphasis on noise sources and techniques for reducing
undesired interference. Section 7.3 provides an essential introduction to analog
signal conditioning, namely, a discussion of instrumentation amplifiers and active



1.
2.

3.
4.

5.

filters. Sections 7.4 through 7.6 introduce analog-to-digital conversion, other
integrated circuits used in instrumentation systems, and digital data transmission,
respectively.
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 Learning Objectives
Students will learn to...

Review the major classes of sensors. Section 7.1.
Learn how to properly ground circuits, and learn methods for noise shielding
and reduction. Section 7.2.
Design signal conditioning amplifiers. Section 7.3.
Understand A/D and D/A conversion and select the specifications of the
appropriate conversion system for a given application. Section 7.4.
Analyze and design simple comparator and timing circuits using integrated
circuits. Review other common instrumentation integrated circuits. Sections
7.5 and 7.6. (Section 7.6> may be found on the book website.)

7.1 MEASUREMENT SYSTEMS AND
TRANSDUCERS

Measurement Systems
In virtually every engineering application there is a need to measure physical
quantities, such as forces, stresses, temperatures, pressures, flows, or
displacements. These measurements are performed by sensors or transducers,
which are capable of converting one type of quantity into another. Most sensors
convert the quantity to be measured (e.g., humidity, temperature) to a
corresponding electrical quantity (e.g., voltage or current). Often the electrical
output of the sensor requires additional manipulation before it is in a useful form.
For example, the change in resistance resulting from a change in the surface
stresses of a material—the quantity measured by the resistance strain gauges
described in Chapter 21—must be first converted to a change in voltage through a
suitable circuit (the Wheatstone bridge) and then amplified from the millivolt to
the volt level. The manipulations needed to produce the desired end result are
referred to as signal conditioning. The wiring of the sensor to the signal



conditioning circuitry requires significant attention to grounding and shielding
procedures, to ensure that the resulting signal is as free from noise and
interference as possible. Very often, the conditioned sensor signal is then
converted to digital form and recorded in a computer for additional manipulation
or is displayed in some form. The apparatus used in manipulating a sensor output
to produce a result that can be suitably displayed or stored is called a
measurement system. Figure 7.1 depicts a typical measurement system in block
diagram form.

Figure 7.1 Measurement system
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Sensor Classification
Sensors may be grouped according to their physical characteristics (e.g., active
electronic sensors, passive resistive sensors) or by the quantity measured by the
sensor (e.g., temperature, flow rate). Other classifications are also possible. Table
7.1 presents a partial classification of sensors grouped according to the quantity
sensed. Most measurements of interest to an engineer are likely to fall in the
categories listed in Table 7.1. The table includes references to sensors described
in the Focus on Measurement sections.

Table 7.1 Sensor classification
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A sensor is usually accompanied by a set of specifications that indicate its
overall effectiveness. Some of these specifications are defined below:



Accuracy: conformity of a measurement to the true value, usually in percent of
full-scale reading

Error: difference between measurement and true value, usually in percent of
full-scale reading

Precision: the degree to which the value of a measurement can be reliably
reproduced, usually expressed in bits or significant figures

Resolution: smallest measurable increment

Span: linear operating range

Range: the range of measurable values

Linearity: conformity to an ideal linear calibration curve, usually in percent of
reading or of full-scale reading (whichever is greater)

Motion and Dimensional Measurements
Motion and dimension are perhaps the most commonly measured engineering
quantities, including absolute position, relative position (displacement), velocity,
acceleration, and jerk (the derivative of acceleration). These can be either
translational or rotational measurements. These measurements are often made by
sensing elementary properties, such as changes in resistance (e.g., strain gauges,
potentiometers), in electric field (e.g., capacitive sensors), or in magnetic field
(e.g., inductive, variable-reluctance, or eddy current sensors). Other mechanisms
may be based on special materials (e.g., piezoelectric crystals) or on optical
signals and imaging systems.

Force, Torque, and Pressure Measurements
Another common class of measurements is that of pressure and force, and the
related measurement of torque. Perhaps the largest family of force and pressure
sensors are those based on strain gauges, such as load cells and diaphragm
pressure transducers. Piezoelectric and capacitive sensors are also common.

Flow Measurements
In many engineering applications it is desirable to sense the flow rate of a fluid,
whether compressible (gas) or incompressible (liquid). The measurement of fluid
flow rate is a complex subject. Three common flow rate measurement systems are
described in Figure 7.2. The measurement described in Figure 7.2(a) is based on



the differential-pressure across a calibrated orifice, where the relationship
between the differential pressure p1 − p2 and flow rate q is given by theory and
calibration constants.
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Figure 7.2 Devices for the measurement of flow



(7.1)

The system shown in Figure 7.2(b) is a hot-wire anemometer, which relies
on a heated wire being cooled by a flowing gas. Since the resistance R of the wire
changes with temperature, a Wheatstone bridge circuit can be used to convert the
change in resistance to a change in voltage. Hot-film anemometers employ the
same approach to sense the air mass-flow rate into an automotive engine and
determine its air-to-fuel ratio.

Figure 7.2(c) depicts a turbine flowmeter in which the fluid flow causes a
turbine to rotate. The angular velocity of the turbine, which is related to the fluid
flow rate, can be measured by a noncontact sensor, such as a magnetic pickup.2

Many other techniques exist for measuring fluid flow.

Temperature Measurements
One of the most frequently measured physical quantities is temperature. The need
to measure temperature arises in just about every field of engineering. This
subsection is devoted to summarizing two common temperature sensors—the
thermocouple and the resistance temperature detector (RTD)—and their
related signal conditioning needs.

Thermocouples

A thermocouple is formed by the junction of two dissimilar metals. This junction
results in an open-circuit thermoelectric voltage due to the Seebeck effect,
named after Thomas Seebeck, who discovered the phenomenon in 1821. Various
types of thermocouples exist; they are usually classified according to the data of
Table 7.2. The Seebeck coefficient is specified at a given temperature because the
output voltage υ of a thermocouple has a nonlinear relationship to temperature T,
which is typically expressed as a polynomial of the following form:

Table 7.2 Thermocouple data



For example, the coefficients of the J thermocouple in the range of −100 to
+1,000°C are as follows:
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The electrical leads connected to a thermocouple must be chosen carefully
because they may produce additional thermoelectric junctions that will, in effect,
act as additional thermocouples. For example, each junction shown in Figure 7.3
will generate a thermoelectric voltage, which is dependent on the temperature at
these junctions. However, only junction J1 is intended to respond to temperature.
To accommodate the effects of junctions J2 and J3 it would be necessary to know
the voltages across these junctions. To address this problem the voltmeter
connections are made within an isothermal block, as shown in Figure 7.4, so that
their contributions to the measured voltage cancel. In addition, a reference
junction at known temperature, such as the ice water bath cold junction shown in
Figure 7.4, can be employed to reference the temperature of junction J1 to a
known temperature. In this way, when junction J1 is held at 0°C (32°F), the
measured voltage will be zero. Other J1 temperatures will result in voltmeter
readings related to T1 − Tref.

Figure 7.3 J thermocouple circuit



(7.2)

(7.3)

Figure 7.4 Cold junction−compensated thermocouple circuit

Resistance Temperature Detectors

A resistance temperature detector (RTD) is a device whose resistance is a
function of temperature. RTDs offer greater accuracy and stability than
thermocouples. Thermistors are part of the RTD family. All RTDs are passive
devices. The change in resistance in an RTD is usually converted to a change in
voltage by forcing a current through the device. RTDs are susceptible to a self-
heating error caused by i2R resistive heating. The sensitivity of an RTD to this
error is usually denoted by the power required to raise its temperature by 1°C. A
smaller current will reduce self-heating, but it will also reduce the output voltage.

RTDs have fairly linear dependence on temperature. The RTD temperature
coefficient α, which can be positive or negative, is commonly defined in terms of
the change in resistance R100 − R0 from 0 to 100°C.

A more accurate cubic equation relating the RTD resistance to its temperature
depends upon published tables of coefficients. As an example, a platinum RTD
Page 479could be described either by the temperature coefficient α = 0.003911 or
by the equation

where the coefficient C is equal to zero for temperatures above 0°C.
Because RTDs have fairly low resistance, they are sensitive to error

introduced by the added resistance of lead wires. Figure 7.5 depicts the effect of
the lead resistances rL on the RTD measurement. Note that the measured voltage
includes the resistance of the RTD and the leads. Thus, if the lead resistance is
significant, its impact on the measurement will also be significant. This impact
can be mitigated by the four-wire RTD circuit and the three-wire Wheatstone
bridge circuit, shown in Figure 7.6(a) and (b), respectively. In the circuit of
Figure 7.6(a), the resistances of the lead wires from the excitation rL1 and rL4 may
be arbitrarily large since the measurement is affected by the resistances of only
the output lead wires rL2 and rL3. The circuit of Figure 7.6(b) takes advantage of



the properties of the Wheatstone bridge to cancel out the unwanted effect of the
lead wires.

Figure 7.5 Effect of connection leads on RTD measurement

Figure 7.6 (a) Four-wire RTD circuit and (b) three-wire Wheatstone
bridge RTD circuit

7.2 WIRING, GROUNDING AND NOISE
It is difficult to overstate the importance of proper circuit connections. This
section summarizes some important considerations regarding signal source



connections, various types of input configurations, noise sources and coupling
mechanisms, and means of minimizing the influence of noise on a measurement.

Signal Sources and Measurement System
Configurations
Every sensor can be thought of as a signal source. A general representation of a
sensor connected to a measurement system is shown in Figure 7.7(a). The sensor
is modeled as an ideal voltage source in series with a source resistance. Although
this representation is not appropriate for all sensors, it permits the discussion of
an important wiring issue. Figure 7.7(b) and (c) show two types of sources:
grounded and floating. One terminal of a grounded source is tied to a reference
ground, such as the case or housing of the source. (The case or housing of an
electric device is commonly tied to earth ground through the thick, round prong
of a typical three-prong AC plug.) Neither terminal of a floating source is tied to a
reference ground, thus, the voltage across its terminals is unrelated to the
reference ground. A thermocouple acts intrinsically as a floating source because
its output is the difference of two voltages. A thermocouple could be used as a
grounded source, but this is usually not a desirable arrangement for this particular
sensor.



Figure 7.7 Measurement system and types of signal sources

A measurement system can also be either ground-referenced or differential.
In a ground-referenced system, the signal low connection is tied to the instrument
case ground; in a differential system, neither of the two signal connections is tied
to ground. Thus, a differential measurement system is well suited to measuring
the difference between two signal levels (such as the output of an ungrounded
thermocouple). Multimeters and oscilloscopes are examples of differential and
ground-referenced measurement systems, respectively.
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One of the potential dangers in dealing with grounded sources is the
introduction of ground loops. A ground loop is an undesired current path caused
by the connection of two reference voltages to each other, as shown in Figure 7.8,
where a grounded source is connected to a ground-referenced measurement
system. The source ground and the measurement system ground are denoted by
two different symbols because there may exist a voltage difference Δυ between
them. This voltage difference, if it exists, is the result of a current through the
nonzero resistance of the nonideal wire connecting the two grounds. The net
effect of the ground loop is that the measured voltage υm would include the
unknown voltage difference Δυ, as shown in Figure 7.8. Ground loops can cause
substantial errors in measurement systems. In addition, ground loops are the
primary cause of unwanted noise.

Figure 7.8 Ground loop in ground-referenced measurement system

A differential measurement system, such as that shown in Figure 7.9, can be
employed to eliminate the impact of a ground loop Δυ. Notice in the figure that
the source and measurement system grounds are not connected to each other
through their cases or otherwise.



Figure 7.9 Differential (nonreferenced) measurement system

If the source connected to the differential measurement system is floating, as
shown in Figure 7.10, it is often recommended to reference the source to the
instrument ground by means of two identical resistors that provide a return path
to ground for any currents present at the instrument. An example of such input
currents would be the input bias currents always present at the input of an
operational or instrumentation amplifier.

Figure 7.10 Measuring signals from a floating source: (a) differential
input; (b) single-ended input

Noise Sources and Coupling Mechanisms
Noise—meaning any undesired signal in a measurement—is unavoidable in
measurements. The block diagram shown in Figure 7.11 depicts the two essential
requirements for a noisy measurement: a noise source and a noise coupling
mechanism. Page 481Noise sources are always present and are often impossible
to mitigate completely; typical sources of noise in practical measurements are the
electromagnetic fields caused by fluorescent light fixtures, video monitors, power
supplies, switching circuits, and high-voltage (or current) circuits. Many other
sources exist, of course, but often the simple sources in our everyday environment
are the most difficult to defeat.



Figure 7.11 Noise sources and coupling mechanisms

Various coupling mechanisms can exist between a noise source and an
instrument. Noise coupling can be conductive; that is, noisy currents may be
conducted directly from the source to the instrument. Noise can also be coupled
capacitively, inductively, and radiatively.

Figure 7.12(a) illustrates how interference can be conductively coupled by
way of a ground loop. Notice that a power supply is connected to both a load and
a sensor. KCL requires that the current i is the sum of the load and sensor
currents. If the sensor and load currents share a substantial portion of the ground
return path and the load current is substantial compared to the sensor current, the
voltage at junction a can be substantially higher than ground because of the
nonzero resistance of the nonideal wire. Thus, the sensor voltage will include not
only υba but also υa itself, which may be large. In other words, the measured
sensor output will no longer be υo, but υo + υba + υa. If the load is switched on and
off, its current changes abruptly and these changes will be manifested in the
sensor output voltage as noise.



Figure 7.12 Conductive coupling: ground loop and separate ground
returns

This problem can be effectively mitigated by providing separate ground
returns for the load and sensor to eliminate the shared ground loop. Figure
7.12(b) depicts this simple modification. The sensor output voltage is now υo +
υba, which is unaffected by the load current.

The mechanism of capacitive coupling noise is rooted in electric fields due to
external sources. The electromagnetic principle is depicted in Figure 7.13(a),
where a noise source is shown to generate an electric field. If a conductor in Page
482the noise source is sufficiently close to a conductor in the measurement
system, the electric field separating the two conductors will be impacted by
changes in the distance between the two conductors, which effectively form a
capacitor. Figure 7.13(b) depicts an equivalent circuit in which the noise voltage
υN couples to the measurement circuit through a capacitor that represents the
capacitance of the noise path. Most notebook computer touchpads rely on
capacitive coupling between the pad itself and a conductive human finger to



operate. If this coupling is not well designed, it is common to find the cursor
jumping all over the screen due to the motion of a human hand nearby.

Figure 7.13 Capacitive coupling and equivalent-circuit representation

Inductive coupling noise is due to the presence of conductive loops in a
measurement system interacting with spurious magnetic fields. The mutual
inductance between the noise source and the measurement system enables the
coupling, as depicted in Figure 7.14.

Figure 7.14 Inductive coupling and equivalent-circuit representation

Noise Reduction
Various techniques exist for minimizing the effect of undesired interference, in
addition to proper wiring and grounding procedures. The two most common
methods are shielding and the use of twisted-pair wire. A shielded cable is



1.

2.

3.

4.

shown in Figure 7.15. The shield is made of a copper braid or of foil and is
usually grounded at the source end but not at the instrument end because this
would result in a ground loop. The shield can protect the signal from a significant
amount of electromagnetic interference, especially at lower frequencies. Shielded
cables with various numbers of conductors are available commercially. However,
shielding cannot prevent inductive coupling. The simplest method for minimizing
inductive coupling is the use of twisted-pair wire; the reason for using twisted-
pair wire is that Page 483untwisted wire can offer large loops that can couple a
substantial amount of electromagnetic radiation. Twisting drastically reduces the
enclosed loop area and with it the interference. Twisted pair is available
commercially.

Figure 7.15 Shielding

Four important rules of thumb to reduce measurement noise are
Use large conducting ground planes to reduce the resistance from one point
to another along the common reference ground.
Connect loads with potentially large currents close to the ultimate return
point of a ground plane so as to minimize the current through most of the
ground plane.
Use grounded shielding, such as provided in coax cabling, between a source
and the measurement system.
Use twisted-pair wiring or other means to keep the enclosed area of all wire
loops as small as possible.

7.3 SIGNAL CONDITIONING
A properly wired, grounded, and shielded sensor connection is a necessary first
stage of any well-designed measurement system. The next stage consists of any
signal conditioning that may be required to manipulate the sensor output into a
form appropriate for the intended use. Very often, the sensor output is meant to be
fed into a digital computer, as illustrated in Figure 7.1. In this case, it is important



(7.4)

to condition the signal so that it is compatible with the process of data acquisition.
Two of the most important signal conditioning functions are amplification and
filtering. Both are discussed in this section.

Instrumentation Amplifiers
An instrumentation amplifier (IA) is a differential amplifier with very high
input impedance, low bias current, and programmable gain that finds widespread
application when low-level signals with large common-mode components are to
be amplified in noisy environments. This situation occurs frequently when a low-
level transducer signal needs to be preamplified, prior to further signal
conditioning (e.g., filtering). Instrumentation amplifiers were briefly introduced
in Chapter 6 as an extension of the differential amplifier. The IA introduced there
consisted of two stages, the first composed of two noninverting amplifiers, the
second of a differential amplifier. Although this design is useful and is sometimes
employed in practice, it suffers from a few drawbacks, most notably the
requirement for precisely matched resistors and source impedances to obtain the
maximum possible cancellation of the common-mode signal. If the resistors are
not matched exactly, the common-mode rejection ratio of the amplifier is
significantly reduced.

Assume the amplifier of Figure 7.16 has the following characteristics:

where ΔR is the mismatch between R and R′. The closed-loop gain of the input-
stage noninverting amplifiers (see Example 6.2) is



(7.5)

(7.6)

(7.7)

(7.8)

(7.9)

Figure 7.16 Discrete op-amp instrumentation amplifier
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The voltage at the noninverting terminal is

Since the inverting-terminal voltage is υ− = υ+, the feedback current is

The source current is

Assume that input currents of each op-amp are negligible and apply KCL at the
inverting node to find iF = −iS and obtain the following expression.

The output voltage may be computed as:

Note that if ΔR = 0, then . However, because of the resistor
mismatch, there is a corresponding mismatch between the gains for the two
differential signal components. Further—and more important—if the original
signals υa and υb contained both differential-mode and common-mode
components such that

then:



(7.10)

(7.11)

(7.12)

(7.13)

(7.14)

(7.15)

The common-mode components do not cancel in the amplifier output because of
the gain mismatch, and the output of the amplifier is

resulting in the output voltage of

with
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and

Notice that as ΔR → 0, υoCM → 0 and υoDM → (RF/R) GυDM. The common-mode
rejection ratio (CMRR; see Chapter 6), in units of decibels, is defined by:

where ADM is the differential gain (which is usually assumed equal to the nominal
design value). Since the common-mode gain υoCM/υCM should ideally be zero, the
theoretical CMRR for the instrumentation amplifier with perfectly matched
resistors is infinite. In fact, even a small mismatch in the resistors would



(7.16)

dramatically reduce the CMRR, as two of the Check Your Understanding
exercises at the end of this section illustrate. Even with resistors having 1 percent
tolerance, the maximum CMRR that could be attained for typical values of
resistors and an overall gain of 1,000 would be only 60 dB. In many practical
applications, a requirement for a CMRR of 100 or 120 dB is not uncommon, and
these would demand resistors of 0.01 percent tolerance. It should be evident, then,
that the “discrete” design of the IA, employing three op-amps and discrete
resistors, will not be adequate for the more demanding instrumentation
applications.

The general expression for the CMRR of the instrumentation amplifier of
Figure 7.16, without assuming any of the resistors are matched, except for R2 and 

, is

and it can easily be shown that the CMRR is infinite if the resistors are perfectly
matched.

Many of the problems encountered in the design of instrumentation amplifiers
using discrete components can be dealt with effectively through a single
monolithic integrated circuit, where the resistors can be carefully matched by
appropriate fabrication techniques. The functional structure of an IC
instrumentation amplifier is depicted in Figure 7.17. Specifications for a common
IC instrumentation amplifier (and a more accurate circuit description) are shown
in Figure 7.18. Among the features worth mentioning here are the programmable
gains, which the user can set by suitably connecting one or more of the resistors
labeled R1 to the appropriate connection. Note that the user may also choose to
Page 486connect additional resistors to control the amplifier gain, without
adversely affecting the amplifier’s performance, since R1 requires no matching. In
addition to the pin connection that permits programmable gains, two additional
pins, sense and reference, are provided to the user for the purpose of referencing
the output voltage to a signal other than ground, by means of the reference
terminal, or for further amplifying the output current (e.g., with a transistor
stage), by connecting the sense terminal to the output of the current amplifier.



Figure 7.17 IC instrumentation amplifier

Figure 7.18 AD625 instrumentation amplifier

EXAMPLE 7.1 Common-Mode Gain and Rejection Ratio
Problem
Compute the common-mode gain and common-mode rejection ratio for the
instrumentation amplifier of Figure 7.16.
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Solution
Known Quantities: Amplifier nominal closed-loop gain; resistance values;
resistor tolerance.
Schematics, Diagrams, Circuits, and Given Data: G = 10; RF = 10 kΩ; R = 1
kΩ; ΔR = 20 Ω.
Find: υocom/υCM, CMRRdB

Analysis: The common-mode gain is equal to the ratio of the common-mode
output signal to the common-mode input; from equation 7.14:

The CMRR (in units of decibels) can be computed from equation 7.15, where

and therefore,

Comments: Note that, in general, it is difficult to determine exactly the level of
resistor mismatch ΔR in an instrumentation amplifier.

EXAMPLE 7.2 Instrumentation Amplifier Gain Configuration
Using Internal Resistors
Problem



Determine the possible input-stage gains that can be configured using the choice
of resistor values given for the instrumentation amplifier (IA) of Figure 7.17.

Solution
Known Quantities: IA resistor values.
Find: G, for different resistor combinations.
Schematics, Diagrams, Circuits, and Given Data: RF = R = 10 kΩ; R2 = 20 kΩ;
R1 = 80.2, 201, 404 Ω.

Analysis: Recall that the gain of the input stage (for each of the differential
inputs) can be calculated according to equation 7.4:

Page 488

Thus, by connecting each of the three resistors, we can obtain gains

It is also possible to obtain additional input-stage gains by connecting resistors in
parallel:

Comments: The use of resistors supplied with the IA package is designed to
reduce the uncertainty introduced by the use of external resistors since the value
of the internally supplied resistors can be controlled more precisely.

CHECK YOUR UNDERSTANDING
Use the definition of the common-mode rejection ratio given in equation 7.16 to
compute the CMRR (in decibels) of the amplifier of Example 7.1 if RF/R = 100
and G = 10, and if ΔR = 5 percent of R. Assume R = 1 kΩ and RF = 100 kΩ.

Repeat for a 1 percent variation in R.
Repeat for a 0.01 percent variation in R.



Calculate the mismatch in differential gains for the 5 percent resistance mismatch.

CHECK YOUR UNDERSTANDING
Calculate the mismatch in gains for the differential components for the 1 percent
resistance mismatch of the previous Check Your Understanding.

What value of resistance R1 would permit a gain of 1,000 for the IA of Example
7.2?

7.4 ANALOG-TO-DIGITAL AND DIGITAL-TO-
ANALOG CONVERSION
To take advantage of the capabilities of a microprocessor, it is necessary to
suitably interface signals from external devices with a microcontroller. Depending
on the nature of the signal, either an analog or a digital interface circuit will be
required. The advantages in memory storage, programming flexibility, and
computational power afforded by microcontrollers are such that the
instrumentation designer almost always chooses to convert an analog signal to an
equivalent digital representation, to exploit these capabilities. In many cases, the
data converted from analog to digital form remain in digital form for ease of
storage or for further processing. In some instances it is necessary to convert the
data back to analog form. The latter condition arises frequently in the context of
control system design, Page 489where an analog measurement is converted to
digital form and processed by a digital computer to generate a control action (e.g.,
raising or lowering the temperature of a process, or exerting a force or a torque);
in such cases, the output of the digital computer is converted back to analog form
so that a continuous signal becomes available to the actuators. Figure 7.19

Answer: 66 dB; 80 dB; 120 dB; −6.1 dB

Answer: −20.1 dB; 40 Ω



(7.17)

(7.18)

illustrates the general appearance of a digital measuring instrument and of a
digital controller acting on a plant or process.

Figure 7.19 Block diagrams of a digital measuring instrument and a
digital control system

It is useful and often necessary to understand how the digital-to-analog
converter (DAC) and analog-to-digital converter (ADC) blocks of Figure 7.19
function. Discrete circuit examples of these blocks illustrate their fundamental
aspects; however, it is uncommon (and impractical) to design such circuits using
discrete components. The performance and ease of use of IC packages make them
the preferred choice in virtually all applications.

Digital-to-Analog Converters
A digital-to-analog converter (DAC) converts a binary word to an analog output
voltage (or current). The binary word is represented in terms of 1s and 0s, where
typically (but not necessarily) 1s correspond to a 5-V level and 0s to a 0-V signal.
As an example, consider a 4-bit binary word representing a positive (or unsigned)
integer number

The analog voltage corresponding to the digital word B would be



(7.19)

(7.20)

where δυ is the smallest step size by which υa can increment. This step size will
occur whenever the least significant bit (LSB) b0 changes and is the smallest
increment the digital number can make.
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The step size is determined on the basis of each given application, and it is
usually determined on the basis of the number of bits in the digital word to be
converted to an analog voltage. The maximum value υa can attain is

It is relatively simple to construct a DAC using a summing amplifier.
Consider the circuit shown in Figure 7.20, where each bit is represented by a
switch. When the switch is closed, the bit takes a value of 1; when the switch is
open, the bit has a value of 0. Thus, the output of the DAC is proportional to the
word bn−1bn−2⋅ ⋅ ⋅ b1b0.

Figure 7.20 An n-bit digital-to-analog converter

A property of the summing amplifier is that the sum of the currents at the
inverting node is zero, yielding the relationship

where Ri is the resistor associated with each bit and bi is the decimal value of the
ith bit (that is, bi = 20, b1 = 21, and so on). If the resistors Ri are selected such that
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the result is weighted gains for each bit such that the output voltage is

Notice that the analog output voltage is proportional to the decimal representation
of the binary word. As an illustration, consider the case of a 4-bit word; a
reasonable choice for R0 might be R0 = 10 kΩ, yielding a resistor network
consisting of 10-, 5-, 2.5-, and 1.25-kΩ resistors, as shown in Figure 7.21. The
largest decimal value of a 4-bit word is 24 − 1 = 15, and so it is reasonable to
divide this range into steps of 1 V (that is, δυ = 1 V). Thus, the full-scale value of
υa is 15 V

with RF selected according to the following expression:

The corresponding 4-bit DAC is shown in Figure 7.21.

Figure 7.21 A 4-bit DAC

The DAC transfer characteristic is such that the analog output voltage υa has a
steplike appearance because of the discrete nature of the binary signal. The
coarseness of the “staircase” can be adjusted by adjusting the number of bits in
the binary representation.



The practical design of a DAC is generally not carried out in terms of discrete
components because of problems such as the accuracy required of the resistor
value. Many of the problems associated with this approach can be solved by
designing the complete DAC circuit as an integrated circuit. The specifications
stated by the IC manufacturer include the resolution, that is, the minimum
nonzero voltage; Page 491the full-scale accuracy; the output range; the output
settling time; the power supply requirements; and the power dissipation.

Analog-to-Digital Converters
An analog-to-digital converter (ADC) converts an analog input to a binary word
and is also available as a single IC. This section illustrates the essential features
of four types of ADCs: the tracking ADC, which utilizes a DAC to perform the
conversion; the integrating ADC; the flash ADC; and the successive-
approximation ADC. The sample-and-hold amplifier is also introduced.

Quantization

The process of converting an analog voltage (or current) to digital form requires
that the analog signal be quantized and encoded in binary form. The process of
quantization consists of subdividing the range of the signal into a finite number
of intervals; usually, one employs 2n − 1 intervals, where n is the number of bits
available for the corresponding binary word. Following this quantization, a binary
word is assigned to each interval (i.e., to each range of voltages or currents); the
binary word is then the digital representation of any voltage (current) that falls
within that interval. Note that the smaller the interval, the more accurate the
digital representation is. However, some error is necessarily always present in the
conversion process; this error is usually referred to as quantization error. Let υa
represent the analog voltage and υd its quantized counterpart, as shown in Figure
7.22 for an analog voltage in the range of 0 to 16 V. In the figure, the analog
voltage υa takes on a value of υd = 0 whenever it is in the range of 0 to 1 V; for 1
≤ υa < 2, the corresponding value is υd = 1; for 2 ≤ υa < 3, υd = 2; and so on, until
for 15 ≤ υa < 16, we have υd = 15. Note that each 1-V analog interval corresponds
to a unique binary word. In this example, a 4-bit word is used to represent the
analog voltage, although the representation is only accurate to 1 V. As the number
of bits increases, the quantized voltage is closer and closer to the original analog
signal.



Figure 7.22 A digital voltage representation of an analog voltage

Tracking ADC

Although not the most efficient in all applications, the tracking ADC is an easy
starting point to illustrate the operation of an ADC, in that it is based on the DAC
presented in the previous section. The tracking ADC, shown in Figure 7.23,
compares the analog input signal with the output of a DAC; the comparator
output determines whether the DAC output is larger or smaller than the analog
input to be converted to binary form. If the DAC output is smaller, then the
comparator output will cause an up-down counter to count up until it reaches a
level close to the analog signal; if the DAC output is larger than the analog signal,
then the counter is forced to count down. Note that the rate at which the up-down
counter is incremented is determined by the external clock and that the binary
counter output corresponds to the binary representation of the analog signal. A
feature of the tracking ADC is that it follows (“tracks”) the analog signal by
changing 1 bit at a time.



Figure 7.23 Tracking ADC

Integrating ADC

The integrating ADC operates by charging and discharging a capacitor,
according to the following principle: If one can ensure that the capacitor charges
(discharges) Page 492linearly, then the time it will take for the capacitor to
discharge is linearly related to the amplitude of the voltage that has charged the
capacitor. In practice, to limit the time it takes to perform a conversion, the
capacitor is not required to charge fully. Rather, a clock is used to allow the input
(analog) voltage to charge the capacitor for a short time, determined by a fixed
number of clock pulses. Then the capacitor is allowed to discharge through a
known circuit, and the corresponding clock count is incremented until the
capacitor is fully discharged. The latter condition is verified by a comparator, as
shown in Figure 7.24. The clock count accumulated during the discharge time is
proportional to the analog voltage.

Figure 7.24 Integrating ADC



In Figure 7.24, the switch causes the counter to reset when it is connected to
the reference voltage Vref. The reference voltage is used to provide a known,
linear discharge characteristic through the capacitor. When the comparator detects
that the output of the integrator is equal to zero, it switches state and disables the
NAND gate, thus stopping the count. The binary counter output is now the digital
counterpart of the voltage υa.

Successive-Approximation ADC

Successive-approximation ADCs are the most commonly used. A block diagram
of the successive-approximation ADC is shown in Figure 7.25(a). This type of
ADC uses a single comparator, and its performance depends strongly on the
accuracy of the DAC used in the circuit. The analog output of a high-speed DAC
is compared against the analog input signal. The digital result of the comparison,
that is, the output of the comparator [C in Figure 7.25(a)] is used to control the
contents of a digital buffer that both drives the DAC and provides the digital
output word. The digital word corresponding to the output of the ADC is obtained
by using n bit-by-bit comparisons, where n is the length of the binary word.

Flash ADC

The flash ADC is fully parallel and is used for high-speed conversion. A resistive
divider network of 2n resistors divides the known voltage range into that many
equal increments. A network of 2n − 1 comparators then compares the unknown
voltage with that array of test voltages. All comparators with inputs exceeding the
unknown are on; all others are off. This comparator code can be converted to
conventional binary by a digital priority encoder circuit. For example, assume
that the 3-bit flash ADC of Figure 7.25(b) is set up with Vref = 8 V. An input of
6.2 V Page 493is provided. Numbering the seven comparators from the top of
Figure 7.25(b), the state of each is given in Table 7.3.



Figure 7.25 (a) Block diagram of 8-bit successive-approximation ADC;
(b) a 3-bit flash ADC

Table 7.3 State of comparators in a 3-bit flash ADC

Sample-and-Hold Amplifier
These four different techniques for converting an analog voltage to its digital
counterpart require a certain amount of time to perform the A/D conversion. This
ADC conversion time is an important specification of an ADC device. A natural
question at this point would be: If the analog voltage changes during the Page



494analog-to-digital conversion and the conversion process itself takes a finite
time, how fast can the analog input signal change while still allowing the ADC to
provide a meaningful digital representation of the analog input? To resolve the
uncertainty generated by the finite ADC conversion time of any practical
converter, it is necessary to use a sample-and-hold amplifier. The objective of
such an amplifier is to “freeze” the value of the analog waveform for a time
sufficient for the ADC to complete its task.

A typical sample-and-hold amplifier is shown in Figure 7.26. A MOSFET
analog switch (see chapter 10) is used to “sample” the analog waveform. When a
voltage pulse is provided to the sample input of the MOSFET switch, the
MOSFET acts as a short-circuit for the duration of the sampling pulse. While the
MOSFET conducts, the analog voltage υa charges the “hold” capacitor C at a fast
rate through the small “on” resistance of the MOSFET. Because the MOSFET
acts as a short-circuit for the duration of the sampling pulse, the charging (RC)
time constant is very small, and the capacitor charges very quickly. When the
sampling pulse is over, the MOSFET analog switch returns to its nonconducting
state, and the capacitor holds the sampled voltage without discharging, thanks to
the extremely high input impedance of the voltage-follower (buffer) stage. Thus,
υSH is the sampled-and-held value of υa at any given sampling time.

Figure 7.26 Description of the sample-and-hold process

The resolution of an ADC is a very important feature in selecting a specific
ADC for a given application. Instrumentation manufacturers typically refer to
ADC resolution as the maximum analog voltage range divided by 2n, where n is
the number of bits in the ADC. For example, an 8-bit ADC with an analog
voltage range of ±15 V will have a resolution of 30/28 = 30/256 = 117.2 mV.
Example 7.8 illustrates this calculation in a practical application.



The appearance of the output of a typical sample-and-hold circuit is shown in
Figure 7.27, together with the analog signal to be sampled. The time interval
between samples, or sampling interval, tn − tn−1 allows the ADC to perform the
conversion and make the digital version of the sampled signal available, say, to a
microcontroller or to another data acquisition and storage system. The sampling
interval needs to be at least as long as the A/D conversion time, of course; but it is
reasonable to ask how frequently one needs to sample a signal to preserve its
fundamental properties, that is, the basic shape Page 495of the waveform. One
might instinctively be tempted to respond that it is best to sample as frequently as
possible, within the limitations of the ADC, so as to capture all the features of the
analog signal. In fact, this is not necessarily the best strategy. Fortunately, an
entire body of knowledge exists with regard to sampling theory, which enables
the practicing engineer to select the best sampling rate for any given application.
The most fundamental sampling theorem is the Nyquist sampling criterion.

Figure 7.27 Sampled data

The Nyquist criterion states that the sample rate should be selected to be at
least twice the highest-frequency component present in the signal.

Thus, if we were sampling an audio signal (say, music), we would have to sample
at a frequency of at least 40 kHz (twice the highest audible frequency, 20 kHz). In
practice, it is advisable to select sampling frequencies substantially greater than
the Nyquist rate; a good rule of thumb is 5 to 10 times greater. Example 7.8
illustrates how the designer might take the Nyquist criterion into account in
designing a practical A/D conversion circuit.

Data Acquisition Systems



The basic building blocks of a data acquisition system are shown in Figure 7.28.
A typical system employs an analog multiplexer to process several different input
signals. A bank of bilateral analog MOSFET switches (see chapter 10), such as
the one described in the sample-and-hold amplifier, enables the selection of the
input signal to be sampled and converted to digital form. Control logic,
employing standard gates and counters, is used to select the desired channel
(input signal) and to trigger the sampling circuit and the ADC. When the
conversion is completed, the ADC sends an appropriate end-of-conversion signal
to the control logic, thereby enabling the next channel to be sampled.

Figure 7.28 Data acquisition system
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In the block diagram of Figure 7.28, four analog inputs are shown; if these
were to be sampled at regular intervals, the sequence of events would appear as
depicted in Figure 7.29. Notice that the effective sampling rate for each channel is
one-fourth the actual external clock rate; thus, it is important to ensure that the
sampling rate for each individual channel satisfies the Nyquist criterion. Further,
although each sample is held for four consecutive cycles of the external clock, the
ADC can use only one cycle of the external clock to complete the conversion
since its services will be required by the next channel during the next clock cycle.
The internal clock that times the ADC must be sufficiently fast to allow for a
complete conversion of any sample within the design range.



Figure 7.29 Multiplexed sampled data

EXAMPLE 7.3 DAC Resolution
Problem
Determine the resolution of an 8-bit DAC sampling a 12-V range.

Solution
Known Quantities: Maximum analog voltage.
Find: Resolution δυ.
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Schematics, Diagrams, Circuits, and Given Data: υa, max = 12 V.



Analysis: Using equation 7.19, compute

Comments: Note that the resolution is dependent not only on the number of bits,
but also on the analog voltage range (12 V in this case).

EXAMPLE 7.4 Determining the Required Number of Bits in a DAC
Problem
Find an expression for the required precision (number of bits) in a DAC, using
the definitions of range and resolution.

Solution
Known Quantities: Range and resolution of DAC. Voltage level corresponding to
logic 1.
Find: Number of DAC bits required.
Schematics, Diagrams, Circuits, and Given Data:

Range: the analog voltage range of the DAC = υa max − υa min

Resolution: the minimum step size δυ
Vin = voltage level corresponding to logic 1
0 V = voltage level corresponding to logic 0

Analysis: The maximum amplitude of the DAC analog voltage output is obtained
when all bits are set to 1. Using equation 7.22, determine υa, max:

The minimum analog voltage output is realized when all bits are set to logic 0. In
this case, since the voltage level associated with a logic 0 is 0 V, υa min = 0. Thus,
the range of this DAC is υa max − υa min = υa max.



1.
2.

The resolution was defined in Example 7.3 as

Knowing both range and resolution, and that log 2n = n log 2, solve for the
number of bits n.

Since n must be an integer, the result of the above expression will be rounded up
to the nearest integer. For example, if we require a 10-V range DAC with a
resolution of 10 mV, we can compute the required number of bits to be

Page 498

EXAMPLE 7.5 Using DAC Device Data Sheets
Problem
Use a datasheet for the AD7524 8-bit D/A converter to answer the following
questions:

What is the best (smallest) resolution attainable for a range of 10 V?
What is the maximum allowable conversion frequency of this DAC?

Solution
Known Quantities: Desired range of DAC.
Find: Resolution and maximum conversion frequency.
Schematics, Diagrams, Circuits, and Given Data: Range = 10 V. DAC
specifications found in device data sheet.



1.

2.

Assumptions: The DAC is operated at full-scale range.
Analysis:

The AD7524 is an 8-bit converter. Thus, the best resolution that can be
obtained (see equation 7.19) is

The maximum frequency of the DAC depends on the settling time. This is
defined as the time required for the output to settle to within one-half of the
least significant bit of its final value. Only one conversion can be performed
during the settling time. The settling time is dependent on the voltage range,
and for the 10-V range indicated in this problem it is equal to TS = 1 μs. The
corresponding maximum sampling frequency is FS = 1/TS = 1 MHz.

EXAMPLE 7.6 Flash ADC
Problem
How many comparators are needed in a 4-bit flash ADC?

Solution
Known Quantities: ADC resolution.
Find: Number of comparators required.
Analysis: The number of comparators needed is 2n − 1 = 15.
Comments: The flash ADC has the advantage of high speed because it can
simultaneously determine the value of each bit, thanks to the parallel
comparators. However, because of the large number of comparators, flash ADCs
tend to be expensive.
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1.
2.

1.
2.

EXAMPLE 7.7 Sample-and-Hold Amplifier
Problem
Use a datasheet for the AD585 sample-and-hold amplifier to answer the
following questions:

What is the acquisition time of the AD585?
How could the acquisition time be reduced?

Solution
Known Quantities: AD585 device data sheets.
Find: Acquisition time.
Schematics, Diagrams, Circuits, and Given Data: DAC specifications are found
in the device data sheet. Definition: The acquisition time T is the time required
for the output of the sample-and-hold amplifier to reach its final value, within a
specified error bound, after the amplifier has switched from the sample mode to
the hold mode. The time T includes the switch delay time, the slewing interval,
and the amplifier settling time.
Analysis:

From the data sheets, the acquisition time for the AD585 is 3 μs.
This acquisition time could be reduced by reducing the value of the holding
capacitor CH.

EXAMPLE 7.8 Performance Analysis of an Integrated-Circuit ADC
Problem
Use a datasheet for the AD574 12-bit A/D converter to answer the following
questions:



1.
2.

1.

2.

What is the accuracy (in volts) of the AD574?
What is the highest-frequency signal that can be converted by this ADC
without violating the Nyquist criterion?

Solution
Known Quantities: ADC supply voltage; input voltage range.
Find: ADC accuracy; maximum signal frequency for undistorted A/D
conversion.
Schematics, Diagrams, Circuits, and Given Data: VCC = 15 V; 0 ≤ Vin ≤ 15 V.
ADC specifications are found in device data sheet.
Analysis:

The precision of the AD574 is determined by its LSB. For a range of 0 to 15
V, the resolution of the LSB is
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The data sheet states that the maximum guaranteed conversion time of the
ADC is 35 μs; therefore, the highest conversion frequency for this ADC is

The Nyquist criterion states that the maximum signal frequency that can be
sampled without distortion due to aliasing is one-half of the sampling
frequency. Thus, the maximum signal frequency that can be acquired by this
ADC is approximately 14 kHz.

Comments: In practice, it is a good idea to oversample by a certain amount. A
reasonable rule of thumb is to oversample by a factor of 2 to 5. If the signal is
oversampled by a factor of 2, then the maximum signal frequency would be 7
kHz, in this example.

One way to ensure that the signal being sampled is limited to a 7-kHz
bandwidth is to prefilter the signal with a low-pass filter having a cutoff
frequency at or below 7 kHz.



CHECK YOUR UNDERSTANDING
If the maximum analog voltage Vamax of a 12-bit digital-to-analog converter
(DAC) is 15 V, find the smallest step size δυ by which υa can increment.

CHECK YOUR UNDERSTANDING
Find the minimum number of bits required in a DAC if the range of the DAC is
from 0.5 to 15 V and the resolution of the DAC is 20 mV.

CHECK YOUR UNDERSTANDING
In Example 7.8, if the maximum conversion time were 50 μs, what would be the
highest-frequency signal allowed by the Nyquist criterion?

7.5 COMPARATOR AND TIMING CIRCUITS
Timing and comparator circuits find frequent application in instrumentation
systems. The aim of this section is to introduce the foundations of op-amp
comparators and multivibrators, and of an integrated circuit timer.
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Answer: 3.66 mV

Answer: 10 bits

Answer: fmax = 10 kHz



(7.23)

(7.24)

The Op-Amp Comparator
The prototype of op-amp switching circuits is the op-amp comparator of Figure
7.30. This circuit does not employ feedback. Thus, when Ro = 0:

Because of the large open-loop gain of the op-amp (A > 105), any small difference
ε between input voltages will cause large outputs. In particular, for ε on the order
of a few tens of microvolts, the op-amp will go into saturation at either extreme,
according to the voltage supply values and the polarity of the voltage difference
(recall the discussion of the op-amp voltage supply limitations in Section 6.6).
For example, for ε equal to 1 mV and for an open-loop gain A = 105, the ideal op-
amp output would equal 100 V, and yet, in practice, the op-amp would saturate at
the voltage supply limits. Clearly, almost any difference between input voltages
will cause the output to saturate toward either supply voltage, depending on the
polarity of ε.

Figure 7.30 Op-amp in open-loop mode

One can take advantage of this property to generate switching waveforms.
Consider, for example, the circuit of Figure 7.31 in which a sinusoidal voltage
source υin(t) of peak amplitude V is connected to the noninverting input. In this
circuit, in which the inverting terminal has been connected to ground, the
differential input voltage is given by



(7.25)

Figure 7.31 Noninverting op-amp comparator

and will be positive during the positive half-cycle of the sinusoid and negative
during the negative half-cycle. Thus, the output will saturate toward  or ,
depending on the polarity of ε: the circuit is, in effect, comparing υin(t) and
ground, producing a positive υo when υin(t) is positive and a negative υo when
υin(t) is negative, independent of the amplitude of υin(t) (provided, of course, that
the peak amplitude of the sinusoidal input is at least 1 mV or so). The circuit just
described is therefore called a comparator and in effect it performs a binary
decision, determining whether υin(t) > 0 or υin(t) < 0. The comparator is perhaps
the simplest form of an analog-to-digital converter, that is, a circuit that converts
a continuous waveform to discrete values. The comparator output consists of only
two discrete levels: greater than and less than a reference voltage.

The input and output waveforms of the comparator are shown in Figure 7.32,
where it is assumed that V = 1 V and that the saturation voltage corresponding to
the ±15-V supplies is approximately ±13.5 V. This circuit is termed a
noninverting comparator because a positive voltage differential ε gives rise to a
positive output voltage. It should be evident that it is also possible to construct an
inverting comparator by connecting the noninverting terminal to ground and
connecting the input to the inverting terminal. Figure 7.33 depicts the waveforms
for the inverting comparator. The analysis of any comparator circuit is
summarized by the following relationship:

where Vsat is the saturation voltage for the op-amp (somewhat lower than the
supply voltage, as discussed in Chapter 6). Typical values of supply voltages for
practical op-amps are ±5 to ±24 V.
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Figure 7.32 Input and output of noninverting comparator

Figure 7.33 Input and output of inverting comparator

A simple modification of the comparator circuit just described consists of
connecting a fixed reference voltage to one of the input terminals; the effect of
the reference voltage is to raise or lower the voltage level at which the comparator
will switch from one extreme to the other.

Another useful interpretation of the op-amp comparator can be obtained by
considering its input-output transfer characteristic. Figure 7.34 displays a plot
of υo versus υin for a noninverting zero-reference (no offset) comparator. This
circuit is often called a zero-crossing comparator because the output voltage
goes through a transition (Vsat to −Vsat, or vice versa) whenever the input voltage
changes sign. Figure 7.35 displays the transfer characteristic for a comparator of
the inverting type with a nonzero reference voltage.



Figure 7.34 Transfer characteristic of zero-crossing comparator

Figure 7.35 Transfer characteristic of inverting comparator with offset

When converting an analog signal to a binary representation, it is often
necessary to use voltage levels other than ±Vsat, such as 0 and 5 V. The voltage
transfer characteristic can be modified by connecting a Zener diode between the
output of the op-amp and the noninverting input, in the configuration sometimes
Page 503called a level or Zener clamp. The circuit shown in Figure 7.36 relies
on a reversed-biased Zener diode to hold a constant voltage VZ across its
terminals, from cathode to anode, as discussed in Chapter 8. When the diode is
forward-biased, on the other hand, the voltage across the Zener diode terminals
equals the offset voltage Vγ, from anode to cathode. An additional advantage of



the level clamp is that it reduces the switching time. Input and output waveforms
for this particular Zener-clamped comparator are shown in Figure 7.37, for the
case of a sinusoidal υin(t) of peak amplitude 1 V and Zener voltage equal to 5 V.
More practical variations of the Zener-clamped comparator exist, some of which
employ negative feedback.

Figure 7.36 Level-clamped comparator

Figure 7.37 Zener-clamped comparator waveforms

Although the Zener-clamped circuit illustrates a specific issue of interest in
the design of comparator circuits, namely, the need to establish desired reference
output voltages other than the supply saturation voltages, this type of circuit is
rarely employed in practice. Special-purpose integrated-circuit packages are
available that are designed specifically to serve as comparators. These can
typically accept relatively large inputs and have provision for selecting the



desired reference voltage levels (or, sometimes, are internally clamped to a
specified voltage range). A representative product is the LM311, which provides
an open-collector output, as shown in Figure 7.38. The open-collector output
allows the user to connect the output transistor to any supply voltage of choice by
means of an external pull-up resistor, thus completing the output circuit. The
actual value of the resistor is not critical; values between a few hundred and a few
thousand ohms are typical.

Figure 7.38 Open-collector comparator output with representative
external supply connection

The Schmitt Trigger
One of the typical applications of the op-amp comparator is the detection of an
input voltage exceeding a threshold level. The desired threshold is then
represented by a DC reference Vref connected to the noninverting input, and the
input voltage source is connected to the inverting input, as in Figure 7.35. Under
ideal conditions, for noise-free signals, and with an infinite slew rate for the op-
amp, the operation of such a circuit would be as depicted in Figure 7.39.



Figure 7.39 Waveforms for inverting comparator with offset

Two improvements can be made to better the switching speed of the
comparator and to enable correct operation in the presence of noisy signals. If the
input to the comparator is changing slowly, the comparator will not switch
instantaneously since its open-loop gain is not infinite and, more important, its
slew rate limits the switching speed. In fact, commercially available comparators
have slew rates that are typically much lower than those of conventional op-amps.
Further, Page 504in the presence of noisy inputs, a conventional comparator is
inadequate because the input signal could cross the reference voltage level
repeatedly and cause multiple triggering. Figure 7.40 depicts the latter
occurrence.

Figure 7.40 Comparator response to noisy inputs



(7.26)

(7.27)

One effective way of improving the performance of the comparator is by
introducing positive feedback. Positive feedback can increase the switching speed
of the comparator and provide noise immunity at the same time. Figure 7.41
depicts a frequently used comparator circuit known as a Schmitt trigger in which
the output has been tied back to the noninverting input (thus the terminology
positive feedback) by means of a resistive voltage divider. The effect of this
positive-feedback connection is to provide a reference voltage at the noninverting
input equal to a fraction of the comparator output voltage; since the comparator
output is equal to either the positive or the negative saturation voltage ±Vsat, the
reference voltage at the noninverting input can be either positive or negative.

Figure 7.41 Transfer characteristic of the Schmitt trigger

Consider, first, the case when the comparator output is υo = +Vsat. It follows
that

and therefore the differential input voltage is

The output voltage υo will switch from the positive to the negative saturation state
when the differential voltage ε becomes negative; that is, the condition for υo to
switch states is



(7.28)

(7.29)

(7.30)

(7.31)

(7.32)

(7.33)

Thus, υo will not transition when υin crosses zero; instead, υo transitions at a
positive voltage that is determined by Vsat, R1 and R2.
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Consider, now, the case when the comparator output is υo = −Vsat. Then

and therefore

The output voltage υo will switch from the negative to the positive saturation state
when the differential voltage ε becomes positive; the condition for υo to switch
states is now

Thus, υo will not transition when υin crosses zero; instead, υo transitions at a
negative voltage that is determined by Vsat, R1 and R2. Figure 7.41 depicts the
effect of the different thresholds on the voltage transfer characteristic, showing
the switching action by means of arrows.

If it is desired to switch about voltages not centered at zero, a DC offset
voltage can be superposed upon the noninverting terminal, as shown in Figure
7.42. Now the noninverting terminal voltage is

and the switching levels for the Schmitt trigger are

for the negative-going transition and



(7.34)

for the positive-going transition. In effect, the Schmitt trigger provides a noise
rejection range equal to ±[R2/(R2 + R1)]Vsat within which υo will not switch. Thus,
if the noise amplitude is contained within this range, the Schmitt trigger will
prevent multiple triggering. Figure 7.43 depicts the response of a Schmitt trigger
with appropriate switching thresholds to a noisy waveform.

Figure 7.42 Schmitt trigger with offset voltage Voffset = Vref R1/(R1 +
R2)

Figure 7.43 Schmitt trigger response to noisy waveforms



Multivibrators
Timing circuits

Numerous applications require timing functions, such as the generation of a fixed
frequency clock waveform, which is simply a pulse train with a known period.
Another is the one-shot in which a pulse of known duration and amplitude is Page
506generated. These two timing functions are known as astable and monostable
modes, respectively, of a so-called multivibrator circuit.

Monostable multivibrators are usually employed in IC package form. An IC
one-shot can generate voltage pulses when triggered by the rising or a falling
edge of an external input voltage. Various input connections are usually provided
for selecting the preferred triggering mode. Multivibrators make use of a time
constant that is usually set by an external RC network to determine the output
pulse duration. Figure 7.44 shows the response of a one-shot to a triggering signal
for the four conditions that may be attained with a typical one-shot.

Figure 7.44 IC monostable multivibrator waveforms
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A typical IC one-shot circuit based on the 74123 is displayed in Figure 7.45.
The 74123 is a dual one-shot, meaning that the package contains two monostable
multivibrators, which can be used independently. The outputs of the one-shot are
indicated by the symbols , and , where the overbar indicates the



(7.35)

(7.36)

complement of the output. For example, if Q1 corresponds to a positive-going
output pulse,  indicates a negative-going output pulse of equal duration.

Figure 7.45 Dual one-shot circuit

Timer ICs: The NE555
The NE555 is a multivibrator IC capable of operating in either a monostable or
astable mode. In the monostable mode the time delay or pulse duration is
determined by an external RC network. In the astable mode the pulse train
frequency is typically determined by two external resistors and one capacitor.
Figure 7.46 depicts typical circuits for monostable and astable operation of the
NE555. The threshold and trigger pins are used to set the voltage levels at which
the transitions of the NE555 output occur. For the monostable circuit, the pulse
width is

For the astable circuit, the positive and negative pulse widths are



(7.37)
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Figure 7.46 NE555 timer

EXAMPLE 7.9 Comparator With Offset
Problem
Sketch the input and output waveforms of the comparator with offset shown in
Figure 7.47.

Figure 7.47 Comparator with offset

Solution
Known Quantities: Input voltage, voltage offset.
Find: Output voltage υo(t).



Schematics, Diagrams, Circuits, and Given Data: υin(t) = sin ωt; Voffset = 0.6 V.

Analysis: First, compute the differential voltage across the inputs of the op-amp:

Then, use equation 7.25 to determine the switching conditions for the comparator:

Thus, the comparator will switch whenever the sinusoidal voltage rises above or
falls below the reference voltage. Figure 7.48 depicts the appearance of the
comparator output voltage. Note that the comparator output waveform is no
longer a symmetric square wave.

Figure 7.48 Waveforms of comparator with offset

Comments: Since it is often not practical to use a separate external reference
voltage source, a potentiometer can be used between the supply voltages to
achieve Vref by voltage division.
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EXAMPLE 7.10 Analysis and Design of Schmitt Trigger
Problem



Find the required resistor values for the Schmitt trigger circuit shown in Figure
7.49.

Solution
Known Quantities: Supply voltages and supply saturation voltages; reference
voltage (offset); noise amplitude.
Find: R1, R2, R3.

Schematics, Diagrams, Circuits, and Given Data: 
.
Assumptions: .
Analysis: To avoid using a separate independent reference voltage source, the
resistor R3 is included to establish an offset voltage Voffset by voltage division at
the noninverting terminal. From the circuit of Figure 7.49 the noninverting
terminal voltage is expressed using the principle of superposition.

Figure 7.49 Schmitt trigger

The required noise protection level is ΔV = ±100 mV, which is one-half of the
width of the transfer characteristic symmetrically placed about Voffset in Figure
7.42. Thus:

The offset voltage itself is related to the resistor network by



Figure 7.50 depicts the ±100-mV noise protection band around the 2 V offset
voltage. The two equations for ΔV and Voffset can be solved for R2 and R3 once a
value is picked for R1. Notice that when R1 ≫ R2 and  is set to zero R2 and R3

will act like a simple series voltage divider. Likewise, when R3 ≫ R2 and  is set
to zero, R1 and R2 will act like a simple series voltage divider. (Ra ∥ Rb ≈ Ra

when Rb ≫ Ra). These ideas suggest that R1 ≫ R3 ≫ R2 should satisfy the
requirements for ΔV and Voffset.

Figure 7.50 Schmitt trigger waveforms and transfer characteristics
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After some algebraic manipulations the following relationships can be
derived.

where

Assume R1 = 100.0 kΩ and plug in values for  and ΔV to find R3 ≈ 2.73
kΩ and R2 ≈ 342 Ω. Using standard discrete resistor values this circuit can be
implemented by selecting R3 = 2.7 kΩ and R2 = 330 Ω. The transfer characteristic
of the comparator and the associated waveforms are shown in Figure 7.50. In
practice, some adjustment of the resistor values is necessary to account for the
impact of any specific op amp.



Comments: In Figure 7.50 the Schmitt trigger output is compared to that of a
comparator without noise protection. For the input used in this example, the
conventional comparator is triggered twice in the presence of noise.

EXAMPLE 7.11 Analysis of the 555 Timer
Problem
Calculate the component values required to obtain a 0.421-ms pulse using the 555
timer monostable configuration of Figure 7.46.

Solution
Known Quantities: Desired pulse duration T.
Find: Values of R1 and C.

Schematics, Diagrams, Circuits, and Given Data: T = 0.421 ms.
Assumptions: Assume a value for C.
Analysis: Using equation 7.35,

And assuming C = 1 μF, calculate

or

Comments: Any reasonable combination of R1 and C values can yield the desired
design value of T. Thus, the component selection shown in this example is not
unique.



CHECK YOUR UNDERSTANDING
For the comparator circuit of Figure 7.47, sketch the waveforms υo(t) and υin(t) if
υin(t) = 0.1 cos ωt and Voffset = 50 mV. Assume that ∣VS∣ = 15 V.
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CHECK YOUR UNDERSTANDING
Derive the expressions for the switching thresholds of the Schmitt trigger of
Figure 7.41.
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Conclusion
In this chapter, you have learned a number of important facts about
instrumentation systems.

Measurements and instrumentation are among the most important areas of
electrical engineering because virtually all engineering disciplines require the
ability to perform measurements of some kind.

A measurement system consists of three essential elements: a sensor, signal
conditioning circuits, and recording or display devices. The last are often based
on digital computers.

Sensors are devices that convert a change in a physical variable to a
corresponding change in an electrical variable, typically a voltage. A broad range
of sensors exist to measure virtually all physical phenomena. Proper wiring,



1.
2.

3.
4.

5.

7.1

7.2

7.3

7.4

grounding, and shielding techniques are required to minimize undesired
interference and noise.

Often, sensor outputs need to be conditioned before further processing can
take place. The most common signal conditioning circuits are instrumentation
amplifiers and active filters.

If the conditioned sensor signals are to be recorded in digital form by a
computer, it is necessary to perform an analog-to-digital conversion process;
timing and comparator circuits are also often used in this context.

Upon completing this chapter you should have mastered the following
learning objectives:

Be familiar with major classes of sensors.
Know how to properly ground circuits and be familiar with noise shielding
and noise reduction methods.
Design signal conditioning amplifiers and filters.
Understand the principles of A/D and D/A conversion and know how to
select the specifications of an A/D or D/A system.
Know how to analyze and design simple comparator and timing circuits, and
how to use other common integrated circuits.

HOMEWORK PROBLEMS
Section 7.1: Measurement Systems and Transducers

Most motorcycles have engine speed tachometers, as well as speedometers,
as part of their instrumentation. What differences, if any, are there between
the two in terms of transducers?

Explain the differences between the engineering specifications you would
write for a transducer to measure the frequency of an audible sound wave
and a transducer to measure the frequency of a visible light wave.

A measurement of interest in the summer is the temperature-humidity index,
consisting of the sum of the temperature and the relative humidity
percentage. How would you measure this? Sketch a simple schematic
diagram.

Consider a capacitive displacement transducer as shown in Figure P7.4. Its
capacitance is



7.5

a.

b.

7.6

a.

where A = cross-sectional area of the transducer plate (in2) and d = air-gap
length (in). Determine the change in voltage Δυ0 when the air gap changes
from 0.01 to 0.015 in.

Figure P7.4
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The circuit of Figure P7.5 may be used for operation of a photodiode. The
voltage VD is a reverse-bias voltage large enough to make the diode current
iD proportional to the incident light intensity H. Under this condition, iD/H =
0.5 μA-m2/W.

Show that the output voltage υo varies linearly with H.

If H = 1,500 W/m2, VD = 7.5 V, and an output voltage of 1 V is
desired, determine an appropriate value for Ro.

Figure P7.5

A material constant G is equal to 0.055 V-m/N for quartz in compressive
stress and 0.22 V-m/N for polyvinylidene fluoride in axial stress.

A force sensor uses a piezoelectric quartz crystal as the sensing
element. The quartz element is 0.25 in thick and has a rectangular
cross section of 0.09 in2. The sensing element is compressed, and the



b.

7.7

7.8

7.9
a.

output voltage is measured across the thickness. What is the output of
the sensor in volts per newton?

A polyvinylidene fluoride film is used as a piezoelectric load sensor.
The film is 30 μm thick, 1.5 cm wide, and 2.5 cm in the axial direction.
It is stretched by the load in the axial direction, and the output voltage
is measured across the thickness. What is the output of the sensor in
volts per newton?

Let b be the damping constant of the mounting structure of a machine as
pictured in Figure P7.7. It must be determined experimentally. First, the
spring constant K is determined by measuring the resultant displacement
under a static load. The mass m is directly measured. Finally, the damping
ratio ζ is measured using an impact test. The damping constant is given by 

. If the allowable levels of error in the measurements of K, m, and ζ
are ±5 percent, ±2 percent, and ±10 percent, respectively, estimate a
percentage error limit for b.

Figure P7.7

The quality control system in a plant that makes acoustical ceiling tile uses a
proximity sensor to measure the thickness of the wet pulp layer every 2 ft
along the sheet, and the roller speed is adjusted based on the last 20
measurements. Briefly, the speed is adjusted unless the probability that the
mean thickness lies within ±2 percent of the sample mean exceeds 0.99. A
typical set of measurements (in millimeters) is as follows:

8.2, 9.8, 9.92, 10.1, 9.98, 10.2, 10.2, 10.16, 10.0, 9.94, 9.9, 9.8, 10.1, 10.0,
10.2, 10.3, 9.94, 10.14, 10.22, 9.8

Would the speed of the rollers be adjusted based on these measurements?
Justify your answer.

Discuss and contrast the following terms:

Measurement accuracy.



b.

c.

d.

7.10

a.

b.

Instrument accuracy.

Measurement error.

Precision.

Four sets of measurements were taken on the same response variable of a
process using four different sensors. The true value of the response was
known to be constant. The four sets of data are shown in Figure P7.10. Rank
these data sets (and hence the sensors) with respect to

Precision.

Accuracy.
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Figure P7.10

Section 7.3: Signal Conditioning



7.11

7.12

7.13

7.14

7.15

7.16

7.17

7.18

7.19

For the instrumentation amplifier (IA) of Figure P7.11, find the gain of the
input stage if R1 = 1 kΩ and R2 = 5 kΩ.

Figure P7.11

Consider the IA of Figure P7.11. Let R1 = 1 kΩ. What value of R2 should be
used to make the gain of the input stage equal 50?

Consider the IA of Figure P7.11. Let R2 = 10 kΩ. What value of R1 will
yield an input-stage gain of 16?

For the IA of Figure P7.11, find the gain of the input stage if R1 = 1 kΩ and
R2 = 10 kΩ.

For the IA of Figure P7.11, find the gain of the input stage if R1 = 1.5 kΩ
and R2 = 80 kΩ.

Find the differential gain for the IA of Figure P7.11 if R2 = 5 kΩ, R1 = R' = R
= 1 kΩ, and RF = 10 kΩ.

Refer to equations 7.4–7.16 and suppose, for the circuit of Figure P7.11, that
RF = 200 kΩ, R = 1 kΩ, and ΔR = 0.02R. Calculate the CMRR of the IA.
Express your result in decibels.

Given the IA of Figure P7.11, with the component values of Problem 7.17,
calculate the mismatch in gains for the differential components. Express
your result in decibels.

Given RF = 10 kΩ and R1 = 2 kΩ for the IA of Figure 7.11, find R and R2 so
that a differential gain of 900 can be achieved.

Section 7.4: Analog-to-Digital and Digital-to-Analog
Conversion



7.20

7.21
7.22

7.23

7.24

a.

b.

7.25

a.

List two advantages of digital signal processing over analog signal
processing.

Discuss the role of a multiplexer in a data acquisition system.

Discuss the purpose of using sample-and-hold circuits in data acquisition
systems.

The circuit shown in Figure P7.23 represents a sample-and-hold circuit, such
as might be used in a successive-approximation ADC. Assume that the
NMOS is turned on (i.e., acting as a short-circuit) when υG is high and off
(i.e., acting as an open-circuit) when υG is low. Explain the operation of the
circuit.

Figure P7.23
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For the circuit shown in Figure P7.23, let υin be a 1-kHz sinusoidal signal
with 0° phase angle, 0 VDC offset, and 20-V peak-to-peak amplitude. Let υG
be a rectangular pulse train, with pulse width 10 μs and period 100 μs with
the leading edge of the first pulse at t = 0.

Sketch υo if the RC circuit has a time constant equal to 20 μs.

Sketch υo if the RC circuit has a time constant equal to 1 ms.

The unsigned decimal number 1210 is inputted to a 4-bit DAC. (See Figure
7.20.) Given that RF = R0/15, logic 0 corresponds to 0 V, and logic 1
corresponds to 4.5 V,

What is the output of the DAC?



b.

c.

d.

7.26

a.

b.

c.

d.

7.27

7.28

What is the maximum voltage that can be outputted from the DAC?

What is the resolution over the range 0 to 4.5 V?

Find the number of bits required in the DAC if an improved resolution
of 20 mV is desired.

The unsigned decimal number 21510 is inputted to an 8-bit DAC. (See
Figure 7.20.) Given that RF = R0/255, logic 0 corresponds to 0 V, and logic 1
corresponds to 10 V,

What is the output of the DAC?

What is the maximum voltage that can be outputted from the DAC?

What is the resolution over the range 0 to 10 V?

Find the number of bits required in the DAC if an improved resolution
of 3 mV is desired.

The circuit shown in Figure P7.27 represents a simple 4-bit DAC. Each
switch is controlled by the corresponding bit of the digital number—if the bit
is 1, the switch is up; if the bit is 0, the switch is down. Let the digital
number be represented by b3b2b1b0. Determine an expression relating υo to
the binary input bits.

Figure P7.27

The unsigned decimal number 9810 is inputted to an 8-bit DAC. (See Figure
7.20.) Given that RF = R0/255, logic 0 corresponds to 0 V, and logic 1
corresponds to 4.5 V,



a.

b.

c.

d.

7.29

7.30

7.31

What is the output of the DAC?

What is the maximum voltage that can be outputted from the DAC?

What is the resolution over the range 0 to 4.5 V?

Find the number of bits required in the DAC if an improved resolution
of 0.5 mV is desired.

For the DAC circuit shown in Figure P7.29 (using an ideal op-amp), what
value of RF will give an output range of −10 ≤ υo < 0 V? Assume that logic 0
= 0 V and logic 1 = 5 V.

Figure P7.29

Explain how to redesign the circuit of Figure P 7.27 so that the overall
circuit is a noninverting device.

The circuit of Figure P7.31 has been suggested as a means of implementing
the NMOS switches needed for the 4-bit DAC of Figure P7.27. Assume the
NMOS transistors act as short- and open-circuits when their gate inputs are
logic 1 and 0, respectively. Explain how the circuit works. k = 0,· · ·,3.

Figure P7.31



7.32

a.

b.

c.

d.

7.33

7.34

7.35

7.36

7.37

7.38

7.39

a.

b.

c.

The unsigned decimal number 34510 is inputted to a 12-bit DAC. (See
Figure 7.20.) Given that RF = R0/4,095, logic 1 corresponds to 10 V, and
logic 0 corresponds to 0 V,

What is the output of the DAC?

What is the maximum voltage that can be outputted from the DAC?
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What is the resolution over the range 0 to 10 V?

Find the number of bits required in the DAC if an improved resolution
of 0.5 mV is desired.

For the DAC circuit shown in Figure P7.29 (using an ideal op-amp), what
value of RF will give an output range of −15 ≤ υo ≤ 0 V?

Using the model of Figure P7.27, design a 4-bit DAC whose output is given
by

A data acquisition system uses a DAC with a range of ±15 V and a
resolution of 0.01 V. How many bits must be present in the DAC?

A data acquisition system uses a DAC with a range of ±10 V and a
resolution of 0.04 V. How many bits must be present in the DAC?

A data acquisition system uses a DAC with a range of −10 to +15 V and a
resolution of 0.004 V. How many bits must be present in the DAC?

A DAC is to be used to deliver velocity commands to a motor. The
maximum velocity is to be 2,500 r/min, and the minimum nonzero velocity
is to be 1 r/min. How many bits are required in the DAC? What will the
resolution be?

Assume the full-scale value of the analog input voltage to a particular ADC
is 10 V.

If this is a 3-bit device, what is the resolution of the output?

If this is an 8-bit device, what is its resolution?

Make a general comment about the relationship between the number of
bits and the resolution of an ADC.



7.40

7.41

7.42

a.

b.

7.43

7.44

7.45

7.46

The voltage range of feedback signals from a process is −5 to +15 V, and a
resolution of 0.05 percent of the voltage range is required. How many bits
are required for the DAC?

Eight channels of analog information are being used by a computer to close
eight control loops. Assume that all analog signals have identical frequency
content and are multiplexed into a single ADC. The ADC requires 100 μs
per conversion. The closed-loop software requires 500 μs of computation
and output time for four of the loops, and for the other four it requires 250
μs. What is the maximum frequency content that the analog signal can have
according to the Nyquist criterion?

A rotary potentiometer is to be used as a remote rotational displacement
sensor. The maximum displacement to be measured is 180°, and the
potentiometer is rated for 10 V and 270° of rotation.

What voltage increment must be resolved by an ADC to resolve an
angular displacement of 0.5°? How many bits would be required in the
ADC for full-range detection?

The ADC requires a 10-V input voltage for full-scale binary output. If
an amplifier is placed between the potentiometer and the ADC, what
amplifier gain should be used to take advantage of the full range of the
ADC?

Suppose it is desired to digitize a 250-kHz analog signal to 10 bits using a
successive-approximation ADC. Estimate the maximum permissible
conversion time for the ADC.

A torque sensor has been mounted on a farm tractor engine. The voltage
produced by the torque sensor is to be sampled by an ADC. The rotational
speed of the crankshaft is 800 r/min. Because of speed fluctuations caused
by the reciprocating action of the engine, frequency content is present in the
torque signal at twice the shaft rotation frequency. What is the minimum
sampling period that can be used to ensure that the Nyquist criterion is
satisfied?

The output voltage of an aircraft altimeter is to be sampled using an ADC.
The sensor outputs 0 V at 0-m altitude and outputs 10 V at 10,000-m
altitude. If the allowable error in sensing  is 10 m, find the minimum
number of bits required for the ADC.

Consider a circuit that generates interrupts at fixed time intervals. Such a
device is called a real-time clock and is used in control applications to



7.47

a.
b.
c.

7.48

7.49

establish the sample period as T seconds for control algorithms. Show how
this can be done with a square wave (clock) that has a period equal to the
desired time interval between interrupts.

Find the minimum number of bits required to digitize an analog signal with a
resolution of

5 percent
2 percent
1 percent
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Section 7.5: Comparator and Timing Circuits
A useful application that exploits the open-loop characteristics of op-amps is
known as a comparator. One particularly simple example, known as a
window comparator, is shown in Figure P7.48(a) and (b). Show that υo = 0
whenever Vlow < υin < Vhigh and that υo = +V otherwise.

Figure P7.48

Design a Schmitt trigger to operate in the presence of noise with peak
amplitude = ±150 mV. The circuit is to switch around the reference value −1
V. Assume an op-amp with ±10-V supplies (Vsat = 8.5 V).



7.50

7.51

7.52

a.

b.

7.53
a.

b.

In the circuit of Figure P7.50, R1 = 100 Ω, R2 = 56 kΩ, Ri = R1∥R2, and υin
is a 1-V peak-to-peak sine wave. Assuming that the supply voltages are ±15
V, determine the threshold voltages (positive and negative υ+) and draw the
output waveform. (See Example 6.15 to understand the role of Ri.)

Figure P7.50

The circuit in Figure P7.51 shows how a Schmitt trigger might be
constructed with an op-amp. Explain the operation of this circuit.

Figure P7.51

Consider the circuit of Figure P7.51. Let the op-amp be an LM741 with ±15-
V bias supplies, and suppose RF is chosen to be 104 kΩ. Assume υin is a 1-
kHz sinusoidal signal with 1-V amplitude.

Determine the appropriate value for Rin if the output is to be high
whenever .

Sketch the input and output waveforms.

For the circuit shown in Figure P7.53,

Draw the output waveform for υin, a 4-V peak-to-peak sine wave at
100 Hz and Vref = 2 V.

Draw the output waveform for υin, a 4-V peak-to-peak sine wave at
100 Hz and Vref = −2 V.



7.54
a.

b.

7.55

Note that the silicon diodes placed at the input ensure that the differential
voltage does not exceed the diode offset voltage, Vγ = 0.7 V. (See chapter 8.)

Figure P7.53

Figure P7.54 shows a simple go-no go detector application of a comparator.

Explain how the circuit works.

Design a circuit (i.e., choose proper values for the resistors) such that
the green LED will turn on when υin exceeds 5 V and the red LED will
be on whenever υin is less than 5 V. Assume only 15-V supplies are
available.

Page 518

Figure P7.54

For the circuit of Figure P7.55, υin is a 100-mV-peak sine wave at 5 kHz, R =
10 kΩ, and D1 and D2 are 6.2-V Zener diodes. Draw the output voltage
waveform.



7.56

7.57

7.58

Figure P7.55

An op-amp multivibrator can be constructed by first adding a resistor R3
between the output and inverting terminals of the Schmitt trigger shown in
Figure 7.41. A capacitor C is then added between the inverting terminal and
reference. In this way, υin tracks the capacitor voltage as the capacitor
charges and discharges. Show that the period of oscillation of an op-amp
astable multivibrator is given by the expression

Use the data sheets for the 74123 monostable multivibrator to analyze the
connection shown in Figure 7.45 in the text. Draw a timing diagram
indicating the approximate duration of each pulse, assuming that the trigger
signal consists of a positive-going transition.

In the monostable multivibrator (one-shot) configuration of the NE555 timer
shown in Figure 7.46 in the text, assume R1 = 10 kΩ and that the output
pulse width is T = 10 ms. Determine the capacitance C.

1See the Focus on Measurements box, “Resistance Strain Gauges.”

2See the Focus on Measurements box “Magnetic Reluctance Position Sensors” in
Chapter 14.

Design Credits: Mini DVI cable adapter isolated on white background: Robert Lehmann/Alamy Stock
Photo; Balance scale: Alex Slobodkin/E+/Getty Images; Icon for “Focus on measurements” weighing scales:
Media Bakery.
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PART III
ANALOG

ELECTRONICS

CobraCZ/Shutterstock

Semiconductors and Diodes

Bipolar Junction Transistors: Operation, Circuit
Models, and Applications



Chapter 10

M

Field-Effect Transistors: Operation, Circuit
Models, and Applications
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C H A P T E R
8

SEMICONDUCTORS AND DIODES

arvelous advances have taken place in the field of solid state electronics
ever since the invention of the diode and transistor. Modern analog and
digital electronic systems are possible because these discrete electronic
elements have been integrated into complex devices and systems. Although

discrete electronic elements have been replaced in many applications by integrated
circuits (e.g., operational amplifiers), it is nonetheless important to understand how
these elements function. The aim of Part III of this textbook is to explore the
behavior and applications of diodes, transistors, and other electronic devices.

This chapter explains the workings of the semiconductor diode, a device that
finds use in many practical circuits used in electric power systems and in high- and
low-power electronic circuits. While the i-υ characteristic of a diode is inherently
nonlinear, simple linear models can be used to approximate the diode characteristic
and thus produce linear circuits that can be analyzed using the analytical tools
developed in earlier chapters.
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1.

2.

3.

4.

5.

6.

 Learning Objectives
Students will learn to...

Understand the basic principles underlying the physics of semiconductor devices
in general and of the pn junction in particular. Become familiar with the
forward-bias exponential diode equation and a typical diode i-υ characteristic
Sections 8.1–8.2.
Use linear large-signal models of the semiconductor diode in simple circuits
Section 8.3.
Linearize the forward-bias exponential diode model in the neighborhood of an
operating point to analyze the impact of small variations in the diode voltage on
the diode current. Section 8.4.
Study practical full-wave rectifier circuits and learn to analyze and determine the
practical specifications of a rectifier by using large-signal diode models. Section
8.5.
Understand the basic operation of Zener diodes as voltage references and use
simple circuit models to analyze elementary voltage regulators. Section 8.6.
Understand the basic principle of operation of photodiodes, including solar cells
photosensors, and light-emitting diodes. Section 8.7.

8.1 ELECTRICAL CONDUCTION IN
SEMICONDUCTOR DEVICES
Elemental1 or intrinsic semiconductors are those elements, specifically silicon and
germanium, from group IV of the periodic table whose conductivity is much weaker
than that of a typical conductor but significantly stronger than that of a typical
insulator. For example, typical conductivities of copper (a good conductor) and glass
(a common insulator) are 5.96 × 107 S/m and 10−13 S/m, respectively. By
comparison, silicon and germanium, both semiconductors, have conductivities on the
order of 10−3 S/m and 100 S/m, respectively. Another important property of silicon
and germanium is that their conductivities increase with temperature, whereas the
conductivity of most conductors (e.g., metals) decreases with temperature. It is
important to note that most of the group IV elements are not semiconductors; tin and
lead are metals whose conductivity is large and decreases with temperature.

Conducting materials have enough weakly bonded electrons in the outer
conduction band that a modest electric field can easily produce a significant current.
By contrast, the outer-band electrons in a semiconducting material are held by
covalent bonds such that much stronger electric fields are needed to liberate them.



Figure 8.1 depicts the lattice arrangement for a pure silicon (Si) matrix. At
sufficiently high temperatures, thermal energy causes the atoms in the lattice to
vibrate; when sufficient kinetic energy is present, some of the valence electrons break
their bonds with the lattice structure and become available as conduction electrons.
These free electrons enable current flow in the semiconductor. As the temperature
increases, more valence electrons are liberated, which explains why the conductivity
of a semiconductor increases with temperature.

Figure 8.1 Lattice structure of silicon, with four valence electrons

However, the free valence electrons are not the only charge carriers present in a
semiconductor. Whenever a free electron is liberated from the lattice, a
corresponding Page 523net positive charge or hole within the lattice is also created as
depicted by Figure 8.2. Holes act as positive charge carriers within a semiconducting
material but with a different mobility—the ease with which charge carriers move
through the lattice—than free electrons. Free electrons move far more easily around
the lattice than holes. These two charge carriers also move in opposite directions
when subjected to an external electric field, as illustrated in Figure 8.3.

Figure 8.2 Free electrons and “holes” in the lattice structure



(8.1)

Figure 8.3 Current in a semiconductor

Occasionally, a free electron traveling in the immediate neighborhood of a hole
will recombine with it to form a covalent bond. The result is two lost charge carriers.
This additional phenomenon of recombination is proportional to the number of free
electrons and holes and reduces the number of charge carriers in a semiconductor.
However, in spite of recombination, at any given temperature a number of free
electrons and holes will be available for conduction. The number of available charge
carriers is called the intrinsic concentration ni . The most commonly reported
expression for ni is

where T is temperature in K; E2 is the bandgap energy, which for silicon is 1.12 eV;
and k is Boltzmann’s constant 8.62 × 10−5 eV/K. At T = 300 K, n2 is approximately
1.5 × 1010 carriers /cm3. Note the strong dependence on temperature.2

As noted, pure semiconductors are not particularly good conductors. To enhance
the concentration of charge carriers and thus the conductivity, a semiconductor can
be doped, whereby either trivalent (group III) or pentavalent (group V) impurities
are added to the crystalline structure of the semiconductor.3 Trivalent impurities,
such as boron and gallium, add holes to the semiconductor’s lattice and are known as
acceptors; pentavalent impurities, such as phosphorus and arsenic, add free
electrons, as depicted in Figure 8.4, and are known as donors.



(8.2)

(8.3)

(8.4)

Figure 8.4 Doped semiconductor

Free electrons are the majority charge carrier, and holes are the minority charge
carrier in semiconductors doped with donor elements. These materials are called n-
type semiconductors. Likewise, holes are the majority charge carrier, and free
electrons are the minority charge carrier in semiconductors doped with acceptor
elements. These materials are called p-type semiconductors. In thermal equilibrium,
the concentration of free electrons n (negative) is related to the concentration of holes
p (positive) by:

In a doped semiconductor, the concentration of donated atoms is usually much
greater than the intrinsic concentration of the semiconductor. In this case, the
concentration of majority charge carriers is approximately the same as the
concentration of donated atoms, which is determined by the doping process and is
not a function of temperature. However, the concentration of minority charge carriers
is determined by temperature and is usually much less than the intrinsic
concentration of the semiconductor. For example, in an n-type material, the
concentration of free Page 524electrons nn is approximately equal to the
concentration of donor atoms nD . Since , the result is

Likewise, in a p-type material where nA is the concentration of acceptor atoms:

In the previous two equations, the subscripts i, n, and p indicate whether the material
is intrinsic (pure) semiconductor, n-type, or p-type, respectively.

It is important to keep in mind that doped n- and p-type materials are electrically
neutral because the donor and acceptor elements are themselves electrically neutral.
The material type simply indicates the nature of the mobile majority charge carriers
present in the conduction band of the material lattice.

8.2 THE PN JUNCTION AND THE
SEMICONDUCTOR DIODE
A simple section of n- or p-type material is not particularly useful for the
construction of electronic circuits. However, when sections of n- and p-type material



are brought in contact to form a pn junction, a diode is formed. Diodes have a
number of interesting and useful properties that are due entirely to the nature of the
pn junction.

Figure 8.5 depicts an idealized pn junction. The difference in concentrations of
free electrons in the n-type material compared to the p-type material results in a
diffusion of free electrons from right to left across the junction. Likewise, the
difference in concentration of holes across the junction results in diffusion of holes
from left to right. In both cases, the diffusion current I2 is directed left to right
because a positive current is defined as either positive holes moving left to right or
negative free electrons moving right to left.

Figure 8.5 A pn junction

As free electrons leave the n-type material and enter the p-type material they tend
to recombine with holes. Likewise, as holes leave the p-type material and enter the n-
type material they tend to recombine with free electrons. Once free electrons and
holes recombine they are no longer mobile, but held in place in the material lattice by
covalent bonds. At first, most of the recombinations occur close to the junction.
However, as time passes, more and more of the mobile charges near the junction
have recombined such that diffusing mobile charges must travel further from the
junction to encounter a partner with which to recombine. Thus, this diffusion process
results in recombinations on both sides of the junction and, as the process continues,
an expanding depletion region wherein virtually no mobile charge carriers remain.
This region is electrically charged because mobile Page 525charge carriers that have
recombined to form the region have no electrical counterpart in the lattice where they
have become fixed. In Figure 8.5 this result is depicted by the negatively charged p-
type region to the left of the junction and the positively charged n-type region to the
right of the junction.

Once the depletion region begins to form, the resulting net charge separation
produces an electric field pointing from the positively charged n-type to the
negatively charged p-type portions of the depletion region. This electric field slows
the ongoing diffusion of majority charge carriers by establishing a potential barrier
or contact potential across the depletion region. This potential depends upon the



semiconductor material (about 0.6 to 0.7 V for silicon) and is also known as the
offset voltage Vγ .

In addition to the diffusion current associated with majority charge carriers, an
oppositely directed drift current IS associated with minority charge carriers is
established across the depletion region. Specifically, free electrons and holes are
thermally generated in the p- and n-type materials, respectively. Any of these
minority carriers that manage to reach the depletion region are swept across it by the
electric field. Note that both components of the drift current contribute to a positive
current from right to left because a positive current is defined as either positive holes
moving right to left or negative free electrons moving left to right.

Figure 8.6 depicts the presence of both a diffusion current and drift current across
the depletion region. Its equilibrium width is reached when the average net drift
current exactly offsets the average net diffusion current. Recall that the magnitude of
the diffusion current is largely determined by the concentration of the donor and
acceptor elements while the magnitude of the drift current is highly temperature
dependent. Thus, the equilibrium width of the depletion region depends upon both
temperature and the doping process.

Figure 8.6 Drift and diffusion currents in a pn junction

Now consider the case shown in Figure 8.7(a) where a battery has been
connected across a pn junction in the reverse-biased direction. Assume that suitable
contacts between the battery and the p- and n-type materials are established. The
reverse-bias orientation of the battery widens the depletion region and increases the
potential barrier across it such that the majority carrier diffusion current decreases.
On the other hand, the minority carrier drift current increases such that there is now a
small (on the order of nano-amperes) nonzero current I0 directed from the n- to p-
type region. I0 is small because it is comprised of minority carriers. Thus, when
reverse-biased, the diode current iD is



(8.5)

(8.6)

(8.7)

where IS is known as the reverse saturation current.

When the pn junction is forward-biased as in Figure 8.7(b), the depletion region
is narrowed and the potential barrier across it is lowered such that the majority carrier
diffusion current increases. As the forward-biased diode voltage υD is increased the
diffusion current Id increases exponentially:

where qe = 1.6 × 10−19 C is the elementary charge, k = 1.38 times 10−23 J/K is the
Boltzmann constant, T is the material temperature (in K), and VT = kT/qe is the
thermal voltage. At room temperature, VT ≈ 25 mV. The net diode current under
forward bias is

Figure 8.7 Forward- and reverse-biased pn junctions

Page 526

Figure 8.8 depicts the diode i-υ characteristic described by the diode equation for a
fairly typical silicon diode for υD > 0. Since I0 is typically very small (10−9 to 10−15



(8.8)

A), the diode equation is often approximated by:

This expression is a good approximation for a silicon diode at room temperature
when υD is greater than a few tenths of a volt.

Figure 8.8 Typical diode i-υ characteristic curve

The ability of the pn junction to conduct significant current only in the forward-
biased direction allows it to function in electric circuits much like a check valve
functions in mechanical circuits. A generic pn junction and the diode circuit symbol
are shown in Figure 8.9. Notice that the triangle shape suggests the direction of
forward-biased current. Positive current i2 passes from the anode to the cathode,
where the term cathode always refers to the source of electrons (negative charge
carriers) whether used in reference to a diode or battery.4



Figure 8.9 Diode circuit symbol

Figure 8.10 shows the complete i-υ characteristic of a diode. Note that the diode
current is approximately zero when υD < 0 unless υD is sufficiently large and negative
(reverse-biased) such that reverse breakdown occurs. When υD < −VZ, the diode
conducts current in the reverse-biased direction. Two effects contribute to this
reverse-biased current: the Zener effect and avalanche breakdown. In silicon diodes,
the Zener effect tends to dominate when VZ < 5.6 V while avalanche breakdown
tends to dominate at larger, more negative diode voltages.

Figure 8.10 The diode i-υ characteristic

The root causes of these two effects, while similar, are not the same. The Zener
effect is significant when the depletion region is designed to be heavily doped but
very thin such that for a given potential difference υ2, the electric field is large



enough to sever covalent bonds in the depletion region and generate pairs of free
electrons and holes, which are then swept away by the electric field, thus creating a
current. Avalanche breakdown occurs when the potential difference υD is large
enough that the kinetic energy of minority charge carriers is sufficient to break
covalent bonds during collisions. These collisions may liberate free electrons and
holes, which, again, are swept away by the electric field. The process by which
energy is imparted to new charge carriers is called impact ionization. These new
charge carriers may also have enough energy to energize other low-energy electrons,
such that a sufficiently large reverse-biased diode voltage may initiate an avalanche
of liberated charge carriers.

In Zener breakdown the high concentration of charge carriers provides the
means for a substantial reverse-biased current to be sustained, at a nearly constant
Page 527reverse-biased voltage, the Zener voltage VZ . This effect is very useful in
applications where one would like to regulate (hold constant) the voltage across a
load. It should also be noted that a typical silicon diode is not designed for use in
reverse breakdown, where even a modest current at a large VZ will likely generate
more power than the diode can dissipate through heat transfer. The result could be a
melted or burned diode!

MAKE THE CONNECTION

Hydraulic Check Valves
The operation of a diode can be understood intuitively by reference to a very
common hydraulic device that finds application whenever one wishes to restrict the
flow of a fluid to a single direction and to prevent (check) reverse flow. Hydraulic
check valves perform this task in a number of ways. A few examples are illustrated
here.



The first figure below depicts a swing check valve. In this design, flow from left
to right is permitted, as the greater fluid pressure on the left side of the valve forces
the swing door to open. If flow were to reverse, the reversal of fluid pressure (greater
pressure on the right) would cause the swing door to shut.

The second figure below depicts a flapper check valve. The principle is similar to
that described above for the swing check valve in that fluid flow is permitted from
left to right, but not in the reverse direction. The response of the flapper checkvalve
is faster than the swing check valve due to the shorter travel distance of the flapper.

Diode circuits are much easier to understand when the behavior of the diode is
visualized to be similar to that of a check valve, with the pressure difference across
the valve orifice being analogous to the voltage across the diode and the fluid flow
rate being analogous to the current through the diode. Charge flows only when the
voltage across the diode is positive or forward-biased, and no charge flows when the
diode voltage is negative or reverse-biased.

8.3 LARGE-SIGNAL MODELS FOR THE
SEMICONDUCTOR DIODE
From the viewpoint of a user of electronic circuits (as opposed to a designer), it is
often sufficient to characterize a device in terms of its i-υ characteristic, using either
load-line analysis or appropriate circuit models to determine the operating currents
and voltages. This section shows how it is possible to use the i-υ characteristics of
the semiconductor diode to construct simple yet useful circuit models. Depending on
the desired level of detail, it is possible to construct large-signal models of the diode,
which describe the gross behavior of the device in the presence of relatively large



voltages and currents; or small-signal models, which are capable of describing the
behavior of the diode in finer detail and, in particular, the response of the diode to
small changes in the average diode voltage and current. From the user’s standpoint,
these circuit models greatly simplify the analysis of diode circuits and make it
possible to effectively analyze relatively “difficult” circuits simply by using the
familiar circuit analysis tools of Chapter 2. The first two major divisions of this
section describe different diode models and the assumptions under which they are
obtained, to provide the knowledge you will need to select and use the appropriate
model for a given application.

Ideal Diode Model
The simplest large-signal diode model is the ideal diode, which approximates a
diode as a simple on/off device (like a check valve in hydraulic circuits). The circuit
symbol for an ideal diode, its i-υ approximation, and the i-υ characteristic of a typical
diode are shown in Figure 8.11. An ideal diode behaves as an open-circuit when
reverse-biased (υD < 0) and as a short-circuit when forward-biased Page 528(υD ≤ 0).
Due to its simplicity, the ideal diode model can be very useful in circuit analysis.

Ideal diodes are represented by the solid black triangle symbol shown in Figure
8.11.

Figure 8.11 Large-signal on/off ideal diode model

A general method for analyzing diode circuits is illustrated using the circuit
shown in Figure 8.12, which contains a 1.5-V battery, an ideal diode, and a 1-k Ω
resistor. The method is simply to assume that the ideal diode is forward-biased (υD ≤
0) and thus equivalent to a short-circuit, as indicated in Figure 8.13. Under this



assumption, υD = 0 such that the loop current is iD = 1.5 V/1 k Ω = 1.5 mA. Since the
resulting direction of the current and the diode voltage are consistent with the
assumption of a conducting diode (υD ≤ 0, iD > 0), the assumption is correct. If the
assumption had resulted in diode current and voltage that contradict the assumption,
then the assumption would have been deemed incorrect, and the opposite assumption
of a nonconducting diode could be tested, and presumably found to be true.

Figure 8.12 Circuit containing ideal diode

Figure 8.13 Circuit of Figure 8.12, assuming that the ideal diode conducts

To test the opposite assumption, assume the ideal diode is reverse-biased (υD < 0)
and thus equivalent to an open-circuit, as shown in Figure 8.14. Since the loop does
not form a closed path, the current iD must be zero and thus Ohm’s law requires the
voltage across the resistor to also be zero. Then, KVL requires that υD = 1.5 V.
However, this result contradicts the assumption that the ideal diode is reverse-biased.
Thus, the assumption is deemed incorrect.

Figure 8.14 Circuit of Figure 8.12, assuming that the ideal diode does not
conduct

The method can be applied to more complicated circuits involving multiple
diodes by simply testing all the possible combinations of forward- and reverse-biased
assumptions for the diodes. In such cases, it is helpful to consider which Page
529combinations are more likely to yield a correct solution and test those
combinations first. With practice, such educated guesses should become more and
more effective in reducing the number of tests necessary for any particular problem.



(8.9)

It is only necessary to find one set of assumptions that does not result in a
contradiction.

Offset Diode Model
While the ideal diode model is useful in approximating the large-scale characteristics
of a physical diode, it does not account for the diode offset voltage. A better model is
the offset diode model, which consists of a battery when the diode if forward-biased,
as shown in Figure 8.15, where the battery voltage equals the offset voltage (for
silicon diodes Vγ ≈ 0.6 V). The effect of the battery is to shift the forward-biased
characteristic of the ideal diode to the right on the voltage axis, as shown in Figure
8.16.

Figure 8.15 Offset diode model forward- and reverse-biased states

Figure 8.16 Offset diode model i-υ characteristic

The behavior of a diode in the offset diode model is described as follows:

F O C U S  O N  P R O B L E M  S O LV I N G



1.
2.

3.
4.

DETERMINING THE CONDUCTION STATE OF
IDEAL DIODES

Assume a diode conduction state (forward- or reverse-biased) for each diode
Replace each diode with an ideal diode (short-circuit if forward-biased, op
circuit if reverse-biased).
Solve for the diode currents and voltages, using linear circuit analysis.
If the entire solution is consistent with the assumptions, then the in
assumptions were correct; if not, at least one of the initial diode conduction s
assumptions is wrong. Change at least one of the assumed diode conduc
states, and solve the new circuit. Continue to iterate this process until a solu
is found that is consistent with the assumptions.

EXAMPLE 8.1 Determining the Conduction State of an Ideal Diode
Problem
Determine whether the ideal diode of Figure 8.17 is conducting.

Figure 8.17

Solution
Known Quantities: VS = 12 V; VB = 11 V; R1 = 5 Ω; R2 = 10 Ω; R3 = 10 Ω.

Find: The conduction state of the diode.
Assumptions: Use the ideal diode model.
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Analysis: Assume initially that the ideal diode does not conduct, and replace it with
an open-circuit, as shown in Figure 8.18. The voltage across R2 can then be
computed by using the voltage divider rule:

Figure 8.18

Apply KVL to the right-hand-side mesh, in which the current is zero, to obtain

The result indicates that the diode is reverse-biased and confirms the initial
assumption. Thus, the diode is not conducting.

As further illustration, assume that the diode conducts. In this case, the diode is
replaced with a short-circuit, as shown in Figure 8.19. The resulting circuit can be
solved by node analysis, noting that υ1 = υ2 because of the short-circuit.



Figure 8.19

With υ1 = υ2 = 8.75 V, the current through the diode is

However, this negative current violates the forward-biased assumption about the
diode. Thus, the forward-biased conducting assumption is incorrect.

EXAMPLE 8.2 Determining the Conduction State of an Ideal Diode
Problem
Determine whether the ideal diode of Figure 8.20 is conducting.

Figure 8.20

Solution
Known Quantities: VS = 12 V; VB = 11 V; R1 = 5 Ω; R2 = 4 Ω.

Find: The conduction state of the diode.
Assumptions: Use the ideal diode model.
Analysis: Assume initially that the ideal diode does not conduct, and replace it with
an open-circuit, as shown in Figure 8.21. The current through the resulting series
loop is
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Figure 8.21

The voltage at node υ1 is

The result indicates that the diode is strongly reverse-biased, since υD = 0 − υ1 =
−11.44 V, and is in accord with the initial assumption. Thus, the diode is not
conducting. Note that υ1 = VB + 4/9 (VS − VB) as expected due to voltage division
applied to two resistors in series.

EXAMPLE 8.3 Using the Offset Diode Model
Problem
Use the offset diode model to determine the value of υ1 for which diode D1 first
conducts in the circuit of Figure 8.22.

Figure 8.22

Solution



Known Quantities: VB = 2 V; R1 = 1 k Ω; R2 = 500 Ω; Vγ = 0.6 V.

Find: The lowest value of υ1 for which diode D1 conducts.

Assumptions: Use the offset diode model.
Analysis: Start by replacing the diode with the offset diode model, as shown in
Figure 8.23. If υ1 is negative, the diode will certainly be off. The point at which the
diode turns on as υ1 is increased can be determined by analyzing the circuit with the
diode assumed to be on. KVL applied around the left mesh yields:

Thus, the condition required for the diode to conduct is

Comments: The same solution method can be applied using the ideal diode model.

Figure 8.23
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CHECK YOUR UNDERSTANDING
If the resistor R2 is replaced with an open-circuit in the circuit of Figure 8.17, will the
ideal diode conduct? If the offset diode model is used will the diode conduct?

CHECK YOUR UNDERSTANDING

Answer: Yes, to both questions.



a.
b.
c.
d.

Repeat the analysis of Example 8.2, assuming that the diode is conducting, and show
that this assumption leads to inconsistent results.

Determine which of the diodes conduct in the circuit shown below for each of the
following voltages. Treat the diodes as ideal.

υ1 = 0 V; υ2 = 0 V
υ1 = 5 V; υ2 = 5 V
υ1 = 0 V; υ2 = 5 V
υ1 = 5 V; υ2 = 0 V

CHECK YOUR UNDERSTANDING
Determine which of the diodes conduct in the circuit shown below. Each diode has
an offset voltage of 0.6 V.

Answer: (a) Neither; (b) both; (c) D2 only; (d) D1 only

Answer: Both diodes conduct.
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8.4 SMALL-SIGNAL MODELS FOR THE
SEMICONDUCTOR DIODE
As one examines the diode i-υ characteristic more closely, it becomes apparent that
the short-circuit approximation is not adequate to represent the small-signal behavior
of the diode. The term small-signal behavior usually signifies the response of the
diode to small time-varying signals that may be superimposed on the average diode
current and voltage. Figure 8.8 provides a more detailed view of a silicon diode i-υ
curve. Clearly, the short-circuit approximation is not very accurate when a diode’s
behavior Page 533is viewed on a finer scale. To a first-order approximation,
however, the i-υ characteristic is linear for voltages greater than the offset voltage.
Thus, it seems reasonable to model a conducting diode as a resistor with an offset
voltage. Load-line analysis can be exploited to determine the diode small-signal
resistance, which is related to the slope of its i-υ characteristic.

Consider the circuit of Figure 8.24, which represents the Thévenin equivalent
circuit of an arbitrary linear resistive circuit connected to a diode. KVL yields the
governing equation:

The constitutive relation for the diode is

These two equations in two unknowns cannot be solved analytically since one of
the equations is transcendental; that is, it contains the unknown υD in exponential
form. Transcendental equations of this type can be solved graphically or numerically.
Only a graphical solution is considered here.

Consider a plot of the two preceding equations in the iD−υD plane. The diode
equation gives rise to the familiar curve of Figure 8.8. The load-line equation,
obtained from KVL, is the equation of a line with slope −1/RS, open-circuit voltage
VS, and short-circuit current VS/RS.



(8.13)

Figure 8.24 Diode circuit used to illustrate load-line analysis

The superposition of these two curves gives rise to the plot of Figure 8.25, where the
solution to the two equations is found graphically to be the pair of values (IQ, VQ).
The intersection of the two curves is called the quiescent (operating) point, or Q
point. The voltage υD = VQ and the current iD = IQ are the actual diode voltage and
current when the diode is connected as in the circuit of Figure 8.24. Note that this
method is also useful for circuits containing a larger number of elements, where the
diode is treated as the load and Thévenin’s theorem is used to simplify the remaining
(assumed linear) source network.

Figure 8.25 Graphical solution of equations 8.13 and 8.14

Piecewise Linear Diode Model
The graphical solution of diode circuits can be somewhat tedious, and its accuracy is
limited by the resolution of the graph. However, it does provide insight into the
piecewise linear diode model in which the diode is treated as an open-circuit in the
“off” state and as a linear resistor in series with an offset voltage Vγ in the “on” state.
Figure 8.26 provides a graphical illustration of this model. The straight line that
approximates the on state of the diode is chosen to be tangent to the operating point
Q. Thus, in the neighborhood of the Q point, the diode in this model acts as a linear
resistor with slope given by 1/rD , where:

In this context, the diode offset voltage is defined as the intersection of the tangent
line at Q with the voltage axis. Thus, rather than represent the diode as a Page



1.

2.
3.

4.

534short-circuit in its forward-biased state, it is treated as a linear resistor rD to
account for changes in iD due to changes in υD. The piecewise linear model offers the
convenience of a linear representation once the state of the diode is established, and
of a more accurate model than either the ideal or the offset diode model. This model
is very useful in representing the performance of diodes in circuits where the diode
voltage is varying about the DC operating point Q.

Figure 8.26 Piecewise linear diode model 

F O C U S  O N  P R O B L E M  S O LV I N G

DETERMINING THE OPERATING POINT OF A
DIODE

With the diode as the load, apply Thévenin’s or Norton’s theorem to simplify
(assumed linear) network seen by the diode.
Use the result of the simplification to determine the load line (equation 8.12)
Use an iterative numerical method to solve the two simultaneous equation
two unknowns (the load-line equations and the diode equation) for the d
current and voltage.

or

Use a graphical method to find the intersection of the diode curve (e.g., fro
data sheet) with the load-line curve. The intersection of the two curves is
diode operating point Q.



EXAMPLE 8.4 Using Load-Line Analysis and Diode Curves to
Determine the Operating Point of a Diode
Problem
Determine the operating point of the 1N914 diode in the circuit of Figure 8.27, and
compute the total power output of the 12-V battery.

Figure 8.27
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Solution
Known Quantities: VBAT = 12 V; R1 = 50 Ω; R2 = 10 Ω; R3 = 20 Ω; R4 = 20 Ω.

Find: The diode operating voltage and current and the power supplied by the battery.
Assumptions: Use the diode nonlinear model, as described by its i-υ curve (Figure
8.28).

Figure 8.28 The 1N914 diode i-υ curve

Analysis: Consider the diode in Figure 8.27 to be the load and everything else
attached to it as its source network. Replace the source network with its Thévenin
equivalent (Figure 8.29) and determine the load line as shown in Figure 8.30. The



Thévenin equivalent resistance and the Thévenin (open-circuit) voltage seen by the
diode are

Figure 8.29

Figure 8.30 Superposition of load line and diode i-υ characteristic
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The short-circuit current is VS/RS = 41 mA. The intersection of the diode curve and
the load line is the quiescent or operating point Q of the diode, which is given by the
values VQ = 1.0 V and IQ = 21 mA.

To determine the battery power output, observe that the power supplied by the
battery is PB = 12 × IB and that IB is equal to the current through R1. Upon further
inspection, the battery current must, by KCL, be equal to the sum of the currents
through R2 and the diode. The current through the diode is IQ . To determine the



current through R2 , observe that the voltage across R2 is equal to the sum of the
voltages across R3 , R4 , and D1:

and therefore the current through R2 is IR2 = VR2 /R2 = 0.184 A.

Finally:

Comments: Graphical solutions are not the only means of solving the nonlinear
equations that result from using a nonlinear diode model. The same equations could
be solved numerically by using an iterative nonlinear equation solver.

EXAMPLE 8.5 Computing the Incremental (Small-Signal) Resistance
of a Diode
Problem
Determine the incremental resistance of a diode, using the diode equation.

Solution
Known Quantities: I0 = 10−14 A; VT = 25 mV (at T = 300 K); IQ = 50 mA.

Find: The diode incremental (small-signal) resistance rD .

Assumptions: Use the approximate diode equation (equation 8.8).
Analysis: The approximate diode equation is

This expression can be used along with equation 8.13 to compute the incremental
resistance:



To calculate the numerical value of the above expression, first compute the quiescent
diode voltage corresponding to the quiescent current IQ = 50 mA:

Substitute the numerical value of VQ in the expression for rD to obtain:

Comments: The incremental resistance of a diode at an operating point can be
computed for any particular circuit. However, in general, a diode cannot be treated
simply as a resistor. Page 537The incremental (small-signal) resistance of the diode
is used in the piecewise linear diode model to account for the fact that there is a
dependence between diode voltage and current. The incremental resistance will
change if the operating point changes since it is, after all, the slope of the i-υ
characteristic at the operating point.

EXAMPLE 8.6 Using the Piecewise Linear Diode Model
Problem
Determine the load voltage υo in the rectifier circuit of Figure 8.31, using a piecewise
linear approximation.

Figure 8.31

Solution
Known Quantities: .



Find: The load voltage υo .

Assumptions: Use the piecewise linear diode model (Figure 8.26).

Figure 8.32 Piecewise linear model of forward-biased diode inserted in
circuit of Figure 8.31. 

Analysis: Apply KVL to the circuit in Figure 8.32 to determine the requirement for
diode conduction. That result and the complementary result for when the diode is not
conducting are

Observe that when υS is negative, the diode will be off; it will act as an open-circuit;
the voltages υ1 , υ2 , and υ2 will be zero; and υD = υS. At the onset of conduction the
diode is forward-biased but the diode current is still zero. Under this condition υ1 , υ2,
and υo are zero (Ohm’s law) such that υD = υS = Vγ = 0.6 V. Thus, the condition for
conduction is:

Once the diode conducts, the difference between υS and Vγ is divided among the three
series resistors according to voltage division. Thus:
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The source and load voltage are plotted in Figure 8.33(a). The transfer characteristic
of the circuit is shown as a plot of υo versus υS in Figure 8.33(b). Notice the offset
voltage.



Figure 8.33 (a) Source voltage and rectified load voltage; (b) voltage
transfer characteristic

CHECK YOUR UNDERSTANDING
Use load-line analysis to determine the operating point Q of the diode circuit shown
below. The diode has the i-υ characteristic shown in Figure 8.30. Treat the diode as
the load and graph the load line using the short-circuit current VTH/RTH as the
ordinate intercept and −1/RTH as the slope of the load line.

CHECK YOUR UNDERSTANDING
Compute the incremental resistance of the diode of Example 8.5 if the current
through the diode is 250 mA.

Answer: VQ = 1.11 V, IQ = 27.7 mA
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CHECK YOUR UNDERSTANDING
Consider the half-wave rectifier circuit shown below where υi = 18 cos(t) V and R =
4 Ω. Sketch the output voltage waveform if the piecewise linear diode model is used
to represent the diode, with Vγ = 0.6 V and rD = 1 Ω. What is the peak value of the
output waveform?

8.5 RECTIFIER CIRCUITS
The need for converting one form of electric energy to another arises frequently in
practice. The most readily available form of electric power is alternating current, as
generated and delivered by electric power utilities. However, DC power is frequently
required for applications ranging from the control of electric motors to the operation
of consumer electronic circuits, such as tablet computers and smartphones. An
important part of the process of converting an AC signal to direct current is
rectification, which is the process of converting an electrical signal so that all of its
parts have the same sign. Of particular interest is the process of converting an AC
signal (e.g., a typical 120-V rms line voltage) with zero average (DC) value to a
signal with a nonzero DC value. For example, power supplies use rectification to
produce a DC output from the readily available AC line voltage. The basic principle
of rectification is well illustrated using ideal diodes, particularly when the magnitude
of the AC voltage is large compared to the diode offset voltage Vγ.

Answer: rD = 0.1 Ω

Answer: υo, peak = 13.92 V
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This section introduces the following three types of rectifier circuits:

Half-wave rectifier
Full-wave rectifier
Bridge rectifier

The Half-Wave Rectifier
Consider the circuit of Figure 8.34, where an AC source υi is connected to an ideal
diode and a resistive load in a series loop. The diode will conduct only when it is
forward-biased (υD ≤ 0), which occurs during the positive half-cycle of the sinusoidal
voltage. During that interval the ideal diode acts as a short-circuit such that υo = υi
and iD = υi/R. During the negative half-cycle of the sinusoid the ideal diode is
reverse-biased (υD < 0) and acts as an open-circuit. The loop current iD is then zero,
and, by Ohm’s law, the output voltage υo is also zero. The input voltage υi and the
resulting output voltage υo are shown in Figure 8.35, where the frequency Page 540is
assumed to be ω = 2 π f = 2 π (60 Hz). Notice that although the input voltage has a
zero average (DC) value, the rectified output voltage υ2 has a nonzero average (DC)
value, which is computed, in general, as:

where T is the period of the output waveform. For example, assume 
. Then:

The circuit of Figure 8.34 is known as a half-wave rectifier, because only the
positive half of the input waveform appears across the output. This result is not
particularly satisfying nor efficient since half of the input waveform is lost.

Figure 8.34 Ideal diode acting as a half-wave rectifier



Figure 8.35 Ideal diode half-wave rectifier input and output

The Full-Wave Rectifier
The full-wave rectifier shown in Figure 8.36 includes an AC source and a center-
tapped transformer with 1:2N turns ratio and offers a substantial improvement in
performance over the half-wave rectifier. The purpose of the transformer is to step up
(N > 1) or step down (N < 1) the primary voltage υS prior to rectification. The voltage
amplitude across each half of the secondary coil is NυS. In addition to scaling the
source voltage, the transformer isolates the rectifier circuit from the AC source
voltage since there is no direct electrical connection between the input and output of
a transformer.

Figure 8.36 Center-tapped AC transformer and a full-wave rectifier with
two ideal diodes.

In most applications, the amplitude of the secondary voltage (the input voltage to
the rectifier) is much larger than the offset voltage of the diodes. Page 541When this
condition is true, the diodes can be approximated as ideal without significantly
compromising the result of the analysis. The key to the operation of the full-wave
rectifier is to note that as the sign of υS periodically alternates between positive and
negative, the two diodes alternate in turns between forward- and reverse-biased
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(8.18)

states. For instance, during the positive half-cycle of υS, the top diode is forward-
biased while the bottom diode is reverse-biased. Alternately, during the negative half-
cycle of υS, the top diode is reverse-biased while the bottom diode is forward-biased.
Therefore, the output current io satisfies the following two relations:

Wow! The direction of io does not alternate! It is always positive as shown.

The source voltage, the output voltage, and the currents i1 and i2 are shown in
Figure 8.37 for a load resistance R = 1 Ω and N = 1. Notice that the output voltage is
exactly the superposition of the output of two half-wave rectifiers 180° out of phase.
Thus, the DC output of the full-wave rectifier should be twice that of the half-wave
rectifier. This observation can be confirmed by computing the DC value of the full-
wave rectifier output.

Figure 8.37 Full-wave rectifier current and voltage waveforms (R = 1 Ω)

Keep in mind that this result is approximate because the impact of the diode offset
voltage was ignored by assuming ideal diodes. When the offset voltage is included,
there will be periods (typically brief) when both diodes are reverse-biased and the
output voltage is zero. The net effect is to reduce the output waveform shown in
Figure 8.37 by Vγ . However, those portions of the adjusted waveform that would



otherwise be negative (between 0 and −Vγ ) are, in fact, zero because both diodes are
reverse-biased for the brief periods when −Vγ < υS < Vγ .
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The Bridge Rectifier
Another rectifier circuit commonly available “off the shelf” as a single integrated
circuit is the bridge rectifier, which employs four diodes in the bridge configuration
shown in Figure 8.38.

Figure 8.38 Bridge rectifier with four ideal diodes

The analysis of the bridge rectifier is best understood by observing that as the
sign of υS periodically alternates between positive and negative, pairs of the four
bridge diodes alternate in turns between forward- and reverse-biased states, as shown
in Figure 8.39. During the positive half-cycle of υS, diodes D1 and D3 are forward-
biased while diodes D2 and D4 are reverse-biased. Alternately, during the negative
half-cycle of υS, diodes D1 and D3 are reverse-biased while diodes D2 and D4 are
forward-biased. It is important to note that the current i through R is directed from
node c to node d during both half-cycles.



(8.19)

Figure 8.39 Operation of bridge rectifier

The input and rectified output waveforms are shown in Figure 8.40(a) and (b) for
the case of ideal diodes and a 30-V peak AC source input. If each diode is assumed
to have an offset voltage Vγ = 0.6 V, the effect is to reduce the output waveform by
2Vγ = 1.2 V, as shown in Figure 8.40(c). The 2Vγ reduction occurs during both half-
cycles. During the positive half-cycle of υγ, the path from node a to node b contains
two forward-biased diodes D1 and D3. Alternately, during the negative half-cycle of
υS, the path from node b to node a also contains two forward-biased diodes D2 and
D4. Each of these forward-biased diodes requires a “toll” of Vγ.

As with the full-wave rectifier, no portion of the rectified output waveform is
negative even when reduced by 2Vγ. Instead, during those periods when −2Vγ < υS <
2Vγ , all four diodes are reverse-biased and the rectified output waveform is zero.

In most practical applications of rectifier circuits, the signal waveform to be
rectified is the 60-Hz, 110 V rms line voltage. As shown in Figures 8.37 and 8.40, the
fundamental frequency of the rectified output waveform is twice that of the Page
543input waveform. Thus, for a 60-Hz input waveform, the fundamental ripple
frequency is 120 Hz or 754 rad/s. A low-pass filter is required such that:



Scale (step up or step down) the amplitude of the AC input waveform. This
step is commonly accomplished by a transformer although high-frequency
switch-mode circuits can also provide scaling of a DC output.
Rectify the scaled AC input waveform. This step may be accomplished by a
full-wave or bridge rectifier. Rectification can also be accomplished by more
exotic devices, such as gate turnoff thyristors (GTOs) and insulated-gate
bipolar transistors (IGBTs).

Figure 8.40 (a) Unrectified source voltage; (b) rectified load voltage (ideal
diodes); (c) rectified load voltage (ideal and offset diodes)

Figure 8.41 shows the resulting waveforms.

Figure 8.41 Bridge rectifier followed by a low-pass filter, and the resulting
waveforms

DC Power Supplies
The rectification of an AC input waveform is just one of four fundamental steps
needed to convert an AC input to a practical DC output. In a typical DC power
supply these steps are, in order:
Step 1:

Step 2:



Filter the rectified output waveform to remove remaining AC components
known as ripple. This step can be accomplished by an RC low-pass
(antiripple) filter in a simple DC power supply, as shown in Figure 8.41, or by
more sophisticated active low-pass filters.
Regulate the filtered DC output voltage to maintain the desired DC value for a
large range of loads. The Zener diode provides a very inexpensive and simple
form of voltage regulation. Linear voltage regulators, which have very good
noise characteristics, and switched-mode regulators, which have very high
energy efficiency, are available as integrated circuits (e.g., the 78xx linear
series).
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Step 3:

Step 4:

These steps are represented in the generic depiction of a DC power supply shown
in Figure 8.42.

Figure 8.42 DC power supply

EXAMPLE 8.7 Using the Offset Diode Model in a Half-Wave Rectifier
Problem
Compute and plot the rectified load voltage υR in the circuit of Figure 8.43.



Figure 8.43

Solution
Known Quantities: υS (t) = 3 cos ωt; Vγ = 0.6 V.

Find: An analytical expression for the load voltage.
Assumptions: Use the offset diode model.
Analysis: When the source voltage is greater than Vγ = 0.6 V, the diode is forward-
biased such that it behaves as a short-circuit in series with a small offset voltage
drop, as shown in Figure 8.43. The loop current i and the voltage υR across R are
given by:

Now assume that the diode is reverse-biased and replace it with an open-circuit,
as shown in Figure 8.44. Since the current through R is zero, the diode voltage υD is
found from KVL to be:
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Figure 8.44

Thus, the half-wave rectifier circuit behavior is summarized by:



The resulting rectified waveform υR(t) is plotted along with υS(t) in Figure 8.45. The
effect of the offset voltage is to lower the positive portion of the rectified waveform
by Vγ. The period T + during which the rectified waveform is positive is slightly
shorter than half the period T of the input waveform. The reason for this result is that
the diode is not on unless υS ≤ Vγ. In this example, the onset of conduction occurs
when υS = Vγ = 3 cos(ωΔt), such that T+ = T/2 − 2Δt. For ideal diodes, the maximum
amplitude of the rectified waveform equals the amplitude of the input waveform and
T+ = T/2.
Comments: The rectified waveform is shifted downward by an amount equal to the
offset voltage Vγ. The shift is visible in the case of this example because Vγ is a
substantial fraction of the source voltage. If the source voltage had peak values of
tens or hundreds of volts, such a shift would be negligible, and an ideal diode model
would serve just as well.

Figure 8.45 Source waveform (…) and rectified waveform (—) for the
circuit of Figure 8.43

EXAMPLE 8.8 Half-Wave Rectifiers
Problem
A half-wave rectifier, similar to that in Figure 8.34, is used to provide a DC supply to
a 50-Ω load. If the AC source voltage is 20 V rms, find the peak and average current
in the load. Assume an ideal diode.



Solution
Known Quantities: Value of circuit elements and source voltage.
Find: Peak and average values of load current in half-wave rectifier circuit.
Schematics, Diagrams, Circuits, and Given Data: υS = 20 V rms, R = 50 Ω.

Assumptions: Ideal diode.
Analysis: For a forward-biased ideal diode, the peak load voltage is equal to the peak
sinusoidal source voltage. Thus, the peak load current is
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To compute the average current, integrate the half-wave rectified sinusoid:

EXAMPLE 8.9 Bridge Rectifier
Problem
A bridge rectifier, similar to that in Figure 8.38, is used to produce a 50-V, 5-A DC
power supply. What is the smallest allowed value of the load R that will result in a 5-
A DC output current? What is the required source voltage υS (in V rms) to achieve
the desired DC output voltage? Assume ideal diodes.

Solution
Known Quantities: Value of circuit elements and source voltage.
Find: Source voltage υS (in V rms) and the load resistance R.

Schematics, Diagrams, Circuits, and Given Data: .
Assumptions: Ideal diodes.



Analysis: The load resistance that will result in an average direct current of 5 A is:

which is the lowest value of R for which the DC supply will be able to provide the
required current. To compute the required source voltage, we observe that the
average load voltage can be found from the expression

Hence:

CHECK YOUR UNDERSTANDING
Compute the DC value of the rectified waveform for the circuit of Figure 8.34 for υi
= 52 cos ωt V.
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CHECK YOUR UNDERSTANDING
In Example 8.8, what is the peak current if an offset diode model is used with Vγ =
0.6 V?

Answer: 16.55 V

Answer: 0.554 A



CHECK YOUR UNDERSTANDING
Show that the DC output voltage of the full-wave rectifier of Figure 8.36 is 2
NυSpeak/π .

Compute the peak voltage output of the bridge rectifier of Figure 8.38, assuming
diodes with 0.6-V offset voltage and a 110-V rms AC supply.

8.6 ZENER DIODES AND VOLTAGE REGULATION
For many applications, it is desirable that a DC supply be steady and ripple-free.
Voltage regulators are used to ensure that the output of a DC supply is steady and
relatively independent of load. The most common device employed in voltage
regulation schemes is the Zener diode, which is designed and intended to be used
when reverse-biased. The basic mechanism behind the Zener reverse breakdown
effect was described in Section 8.2. It is important to recall that the mechanisms
behind the Zener and avalanche reverse breakdown effects are different. This
difference accounts for the difference in the range of breakdown voltages VZ within
which each effect dominates.

Figure 8.10 shows a generic diode i-υ characteristic, with forward offset voltage
Vγ and reverse breakdown voltage VZ. Note the steep slope of the i-υ characteristic
near VZ, which suggests that when υD ≈ −VZ the diode voltage will change very little
for large changes in the diode current. It is exactly this property that makes the Zener
diode a useful voltage regulator.

Although the slope of the i-υ characteristic is not constant near −VZ , for the sake
of simplicity in introducing the basic principles of voltage regulation this slope will
be assumed to be constant such that a Zener diode can be modeled with linear
elements when it is reverse-biased near υD = −VZ .

Like other diodes, a Zener diode has three regions of operation:

Answer: 154.36 V



1.

2.

3.

When υD ≤ Vγ, the Zener diode is forward-biased and can be analyzed using the
piecewise linear model shown in Figure 8.46.
When −VZ < υD < Vγ, the Zener diode is reverse-biased but has not reached
breakdown. In this region, it can be modeled as an open-circuit.
For υD ≤ −VZ , the Zener diode is reverse-biased and breakdown has ensued. In
this region, it can be modeled using the piecewise linear model shown in Figure
8.47.

Figure 8.46 Zener diode forward bias model. Note the orientation of anode
and cathode. Zener diodes are not, in general, designed for use in forward
bias.

Figure 8.47 Zener diode reverse bias model for voltage regulation. Note
the orientation of anode and cathode.

The combined effect of forward and reverse bias may be lumped into a single model
with the aid of ideal diodes, as shown in Figure 8.48.
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1.

(8.20)

2.

(8.21)

Figure 8.48 Complete model for Zener diode

To illustrate the operation of a Zener diode as a voltage regulator, consider the
circuit of Figure 8.49(a), where the unregulated DC source VS is regulated to the
value of the Zener voltage VZ . Note how the diode must be connected “upside
down” to obtain a positive regulated voltage. Also note that when υS > VZ the Zener
diode is in reverse breakdown. (In practice, it is important that υS remain greater than
VZ .) The source resistance RS is essential because it allows the voltage difference υS
− VZ to be nonzero. If the diode resistance rZ is small compared to RS and R, the
Zener diode model of Figure 8.47 can be approximated as a battery of strength VZ ,
as shown in the simplified circuit of Figure 8.49(b). Typical values of rZ are on the
order of several ohms or smaller.

Figure 8.49 (a) A Zener diode voltage regulator; and (b) the simplest
equivalent circuit

Three observations are sufficient to understand the operation of this voltage
regulator:

The load voltage must equal VZ as long as the Zener diode is in the reverse
breakdown mode. Then:

The output current is the nearly constant difference between the unregulated
supply current iS and the diode current iZ:



3.

(8.22)

(8.23)

(8.24)

Any current in excess of that required to keep the load at the constant voltage VZ
is sent to ground through the diode. Thus, the Zener diode acts as a sink for any
undesired source current.
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The source current is

The examples that follow and the end-of-chapter exercises illustrate some of the
considerations that arise in the design of a practical voltage regulator. One of these
considerations is the power rating of the diode. The power PZ dissipated by the diode
is

Since VZ is more or less constant, the power rating establishes an upper limit on the
allowable diode current iZ . This limit would be exceeded if the supply voltage rises
unexpectedly or if the load is removed such that all the supply current sinks through
the diode. The possibility of an open-circuit output must be accommodated in the
design of a practical voltage regulator.

Another significant limitation occurs when the load resistance is small, thus
requiring large amounts of current from the unregulated supply. In this case, the
Zener diode is hardly taxed at all in terms of power dissipation, but the unregulated
supply may not be able to provide the current required to sustain the load voltage. In
this case, regulation fails to take place. Thus, in practice, the range of load resistances
for which load voltage regulation may be attained is constrained to a finite interval:

where Rmax is typically limited by the Zener diode power rating and Rmin by the
maximum supply current.

EXAMPLE 8.10 Determining the Power Rating of a Zener Diode



Problem
Design a regulator similar to the one depicted in Figure 8.49(a). Determine the
minimum acceptable power rating of the Zener diode.

Solution
Known Quantities: υS = 24 V; VZ = 12 V; RS = 50 Ω; R = 250 Ω.

Find: The maximum power dissipated by the Zener diode under worst-case
conditions.
Assumptions: Use the piecewise linear Zener diode model (Figure 8.48) with rZ = 0.

Analysis: When the regulator operates according to the intended design
specifications, that is, with a 250-Ω load, the source and load currents are

Thus, the Zener current would be
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corresponding to a nominal power dissipation

However, if the load were accidentally (or intentionally) disconnected from the
circuit, all the load current would be diverted to flow through the Zener diode. Thus,
the worst-case Zener current is the source current since the Zener diode would sink
all the source current for an open-circuit load:

Therefore the maximum power dissipation that the Zener diode must sustain is

Comments: A safe design would exceed the value of PZ max computed above. For
example, one might select a 3-W Zener diode.



1.

EXAMPLE 8.11 Calculation of Allowed Load Resistances for a Given
Zener Regulator
Problem
Calculate the allowable range of load resistances for the Zener regulator of Figure
8.50 such that the diode power rating is not exceeded.

Figure 8.50

Solution
Known Quantities: VS = 50 V; VZ = 14 V; PZ = 5 W.

Find: The smallest and largest values of R for which a load voltage regulation of 14
V is achieved and which do not cause the diode power rating to be exceeded.
Assumptions: Use the piecewise linear Zener diode model of Figure 8.47 with rZ = 0.

Analysis:
Determining the minimum acceptable load resistance. To determine the
minimum acceptable load, we observe that the regulator can at most supply the
load with the amount of current that can be provided by the source. Thus, the
minimum theoretical resistance can be computed by assuming that all the source
current goes to the load and that the load voltage is regulated at the nominal
value.

If the load required any more current, the source would not be able to supply it.
Note that for this value of the load, the Zener diode dissipates zero power
because the Zener current is zero.



2. Determining the maximum acceptable load resistance. The second constraint we
need to invoke is the power rating of the diode. For the stated 5-W rating, the
maximum Zener current is
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Since the source will generate

the load must not require any less than 1.2 − 0.357 = 0.843 A; if it required any
less current (i.e., if the resistance were too large), the Zener diode would be
forced to sink more current than its power rating permits. From this requirement
we can compute the maximum allowable load resistance

Finally, the range of allowable load resistance is 11.7 Ω ≤ R ≤ 16.6 Ω.
Comments: This regulator circuit is not practical because it cannot operate with an
open-circuit load! Typically, Zener diodes are used to regulate source voltages not
much greater than the Zener voltage.

EXAMPLE 8.12 Effect of Nonzero Zener Resistance in a Regulator
Problem
Calculate the amplitude of the ripple present in the regulator output voltage shown in
Figure 8.51. The unregulated supply voltage is depicted in Figure 8.52.



1.

Figure 8.51

Figure 8.52

Solution
Known Quantities: VS = 14 V; υripple = 100 mV; VZ = 8 V; rZ = 10 Ω; RS = 50 Ω; R =
150 Ω.
Find: Amplitude of ripple component in load voltage.
Assumptions: Use the piecewise linear Zener diode model shown in Figure 8.47.
Analysis: Consider the DC and AC equivalent circuits shown in Figure 8.53.

Figure 8.53

DC equivalent circuit. In the DC equivalent circuit, the output voltage has two
components: one due to the unregulated DC supply VS and one due to the Zener
diode VZ. Apply superposition and voltage division to obtain:
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2. AC equivalent circuit. The AC component of the output voltage is

Thus, 16 mV of ripple is present in the output voltage, or only 16 percent of the
source ripple. Regulation!

Comments: Note that the DC output voltage is affected by the unregulated source
voltage; if the unregulated supply were to fluctuate significantly, the regulated
voltage would also change. Thus, one of the effects of the Zener resistance is
imperfect regulation. If the rZ is much smaller than both RS and R, its impact will not
be as pronounced.

CHECK YOUR UNDERSTANDING
In Example 8.10, how would the minimum power rating change if the load were
reduced to 100 Ω?

CHECK YOUR UNDERSTANDING
In Example 8.11, what should the power rating of the Zener diode be to withstand
operation with an open-circuit load?

CHECK YOUR UNDERSTANDING
Compute the actual DC load voltage and the percent of ripple reaching the load
(relative to the initial 100-mV ripple) for the circuit of Example 8.12 if rZ = 1 Ω.

Answer: The worst-case power rating would not change.

Answer: PZ max = 16.8 W
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FOCUS ON MEASUREMENTS

Diode Peak Detector Circuit for Capacitive
Displacement Transducer
Another common application of semiconductor diodes, the peak detector, is very
similar in appearance to the half-wave rectifier with capacitive filtering as shown in
Figure 8.56. One of its more classic applications is in the demodulation of amplitude-
modulated (AM) signals.

In Chapter 3, a capacitive displacement transducer was introduced in the two
Focus on Measurements boxes, “Capacitive Displacement Transducer and
Microphone.” It took the form of a parallel-plate capacitor composed of a fixed plate
and a movable plate. The capacitance of this variable capacitor was shown to be a
function of displacement; that is, it was shown that a movable-plate capacitor can
serve as a linear transducer. Recall the expression derived in Chapter 3

Answer: 8.06 V, 2 percent



where C is the capacitance in picofarads, A is the area of the plates in square
millimeters, and x is the variable separation distance in millimeters. The nominal
plate separation is d. If the capacitor is placed in an AC circuit, its impedance will be
determined by the expression

so that

Thus, at a fixed frequency ω, the impedance of the capacitor will vary linearly with
displacement. This property may be exploited in the bridge circuit of Figure 8.54,
where a differential-pressure transducer is shown made of two movable-plate
capacitors. Such a transducer can be constructed (see Figure 3.7) so that if the
capacitance of one capacitor increases as a consequence of a pressure difference
across the transducer, the capacitance of the other decreases by a corresponding
amount, at least for small effective displacements Δx.

Figure 8.54 Bridge circuit for displacement transducer

Using phasor notation, the output voltage was derived in Chapter 3 to be:

provided that R1 = R2. Thus, the output voltage will vary as a scaled version of the
input voltage in proportion to the displacement. A typical υba(t) is displayed in Figure
8.55 for a 0.05-mm “triangle” diaphragm displacement, with d = 0.5 mm and Vs a
50-Hz sinusoid with 1-V amplitude. Clearly, although the output voltage Page 554is
a function of the effective displacement Δx, it is not in a convenient form since the
displacement is proportional to the amplitude of the sinusoidal peaks.



Figure 8.55 Effective displacement Δx and bridge output voltage
waveforms

The diode peak detector is a circuit capable of tracking the sinusoidal peaks
without exhibiting the oscillations of the bridge output voltage. The peak detector
operates by rectifying and filtering the bridge output in a manner similar to that of
the circuit of Figure 8.34. The peak detector circuit is shown in Figure 8.56, and the
response of a practical peak detector is shown in Figure 8.57. Its operation is based
on the rectification property of the diode, coupled with the filtering effect of the
shunt capacitor, which acts as a low-pass filter.

Figure 8.56 Peak detector circuit

From a time domain perspective, when the diode is forward-biased (υba ≤ Vγ for
an offset diode) the capacitor charges at a rate set by the time constant RDC, where
RD is the forward-biased effective resistance of the diode. When reverse-biased, the
diode prevents any significant discharging of the capacitor. Thus, eventually, in
steady-state, the capacitor voltage oscillates slightly around the peak voltage as
shown in Figure 8.57.
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Figure 8.57 Rectified and peak-detected bridge output voltage waveforms

FOCUS ON MEASUREMENTS

Diode Thermometer



1.

2.

1.

Problem:
An interesting application of a diode, based on the diode equation, is an electronic
thermometer. The concept is based on the empirical observation that if the current
through a diode is nearly constant, the diode voltage is nearly a linear function of
temperature, as shown in Figure 8.58(a).

Figure 8.58
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Show that iD in the circuit of Figure 8.58(b) is nearly constant in the face of
variations in the diode voltage υD. This can be done by computing the
percentage change in iD for a given percentage change in υD. Assume that υD
changes by 10 percent, from 0.6 to 0.66 V.
On the basis of the graph of Figure 8.58(a), write an equation for υD(T°) of the
form

Solution:

With reference to the circuit of Figure 8.58(b), the current iD is

For



2.

The percentage change in υD over the full scale of the thermometer (assuming
the midrange temperature of 50° to be the reference value) is

The corresponding percentage change in iD is

Thus, iD is nearly constant over the range of operation of the diode thermometer.
The diode voltage versus temperature equation can be extracted from the graph
of Figure 8.58(a):

Comments: The graph of Figure 8.58(a) was obtained experimentally by calibrating
a commercial diode in both hot water and an ice bath. The circuit of Figure 8.58(b) is
rather simple, and one could fairly easily design a better constant-current source;
however, this example illustrates that an inexpensive diode can serve quite well as
the sensing element in an electronic thermometer.

8.7 PHOTODIODES
Another property of semiconductor materials that finds common application in
measurement systems is their response to light energy. In appropriately fabricated
diodes, called photodiodes, when light reaches the depletion region of a pn junction,
photons cause hole-electron pairs to be generated by a process called
photoionization. This effect can be achieved by using a surface material that is
transparent to light. As a consequence, the reverse saturation current I0 depends on
the light intensity (i.e., on the number of incident photons), in addition to the other
factors mentioned earlier in Section 8.2. In a photodiode, the reverse current is Page
557given by −(I0 + Ip), where Ip is the additional current generated by
photoionization. The result is depicted in the family of solid curves of Figure 8.59,
where the diode characteristic is shifted downward by an amount related to the
additional current generated by photoionization. Figure 8.59 depicts the appearance
of the i-υ characteristic of a photodiode for various values of Ip, where the i-υ curve
is shifted to lower values for progressively larger values of Ip. The circuit symbol is
depicted in Figure 8.60.



Figure 8.59 Photodiode i-υ curves (—) and three load lines (---)

Figure 8.60 Photodiode circuit symbol

Also displayed (as dashed lines) in Figure 8.59 are three load lines, which depict
the three modes of operation of a photodiode. Curve L1 represents the source network
of a diode operating under forward bias. Note that the operating point of the device is
in the positive i, positive υ (first) quadrant of the i-υ plane; thus, the diode dissipates
positive power in this mode and is therefore a passive device, as we already know.
On the other hand, load line L2 represents the source network of a photodiode
operating as a solar cell; in this mode, the operating point is in the negative i,
positive υ, or fourth, quadrant, and therefore the power dissipated by the diode is
negative. In other words, the photodiode is generating power by converting light
energy to electric energy. Note further that the load line intersects the voltage axis at
zero, meaning that no supply voltage is required to bias the photodiode in the solar-
cell mode. Finally, load line L3 represents the source network of a photodiode
operating as a light sensor: when the diode is reverse-biased, the current flowing
through the diode is determined by the light intensity; thus, the diode current changes
in response to changes in the incident light intensity.

The operation of the photodiode can also be reversed, in principle, by forward-
biasing the diode and causing a significant level of recombination to take place in the
depletion region. Some of the energy released is converted to light energy by the
emission of photons. Thus, a diode operating in this mode emits light when forward-
biased. Photodiodes used in this way are called light-emitting diodes (LEDs); they
exhibit a typical forward (offset) voltage of 1.6 to 3.4 V, depending upon the color of
the LED. The circuit symbol for the LED is shown in Figure 8.61.



Figure 8.61 Light-emitting diode circuit symbol

Gallium arsenide (GaAs) is one of the more popular substrates for creating LEDs;
gallium phosphide (GaP) and the alloy GaAs1−xPx are also quite common. Table 8.1
lists combinations of materials and dopants used for common LEDs and the colors
they emit. The dopants are used to create the necessary pn junction.
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Table 8.1 LED materials and wavelengths

The construction of a typical LED is shown in Figure 8.62, along with the
schematic representation for an LED. A shallow pn junction is created with electrical
contacts made to both p and n regions. As much of the upper surface of the p material
is uncovered as possible so that light can leave the device unimpeded. It is important
to note that, actually, only a relatively small fraction of the emitted light leaves the
device; the majority stays inside the semiconductor. A photon that stays inside the
device will eventually collide with an electron in the valence band, and the collision
will force the electron into the conduction band, emitting an electron-hole pair and
absorbing the photon. To minimize the probability that a photon will be absorbed
before it has an opportunity to leave the LED, the depth of the p-doped region is left
very thin. Also, it is advantageous to have most of the recombinations that emit
photons occur as close to the surface of the diode as possible. This is made possible
by various doping schemes, but even so, of all the carriers going through the diode,
only a small fraction emit photons that are able to leave the semiconductor. An
important application of LEDs and photodiodes is shown in Figure 8.63.



Figure 8.62 Light-emitting diode (LED)

A simple LED circuit is shown in Figure 8.64. From the standpoint of circuit
analysis, LED characteristics are very similar to those of the silicon diode, except
that the offset voltage is usually quite a bit larger. Typical values of Vγ are in the
range of 1.6 to 3.4 V, depending upon the LED color, and operating currents can
range from 10 to 100 mA. Manufacturers usually specify an LED’s characteristics by
giving the rated operating-point current and voltage.
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FOCUS ON MEASUREMENTS

Opto-isolators
One of the common applications of photodiodes and LEDs is the optocoupler, or
opto-isolator. This device, which is usually enclosed in a sealed package, uses the



light-to-current and current-to-light conversion property of photodiodes and LEDs to
provide signal connection between two circuits without any need for electrical
connections. Figure 8.63 depicts the circuit symbol for the opto-isolator.

Figure 8.63

Because diodes are nonlinear devices, the opto-isolator is not used in transmitting
analog signals: the signals would be distorted because of the nonlinear diode i-υ
characteristic. However, opto-isolators find a very important application when on/off
signals need to be transmitted from high-power machinery to delicate computer
control circuitry. The optical interface ensures that potentially damaging large
currents cannot reach delicate instrumentation and computer circuits.

EXAMPLE 8.13 Analysis of Light-Emitting Diode
Problem
For the circuit of Figure 8.64, determine (1) the LED power consumption, (2) the
resistance Rs, and (3) the power required by the voltage source.



1.

2.

3.

Figure 8.64 LED drive circuit and i-υ characteristic based on offset model

Solution
Known Quantities: Diode operating point: VLED = 1.7 V; ILED = 40 mA; VS = 5 V.

Find: PLED; RS; PS.

Assumptions: Use the offset diode model.
Analysis:

The power consumption of the LED is determined directly from the specification
of the operating point:

To determine the required value of RS to achieve the desired operating point, we
apply KVL around the circuit of Figure 8.64:

n
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To satisfy the power requirement of the circuit, the battery must be able to
supply 40 mA to the diode. Thus,

Comments: A more practical LED biasing (drive) circuit is found in Example 9.3.

CHECK YOUR UNDERSTANDING
Determine the source resistance required to bias the LED of Example 8.13 if the
required LED current is 24 mA.

Answer: 137.5 Ω



1.

2.

3.

4.

Conclusion
This chapter introduces the topic of electronic devices by presenting the
semiconductor diode.

Upon completing this chapter, you should have mastered the following learning
objectives:

Understand the basic principles underlying the physics of semiconductor devices
in general and of the pn junction in particular. Become familiar with the diode
equation and i-υ characteristic. Semiconductors have conductive properties that
fall between those of conductors and insulators. These properties make the
materials useful in the construction of many electronic devices that exhibit
nonlinear i-υ characteristics. Of these devices, the diode is one of the most
commonly employed.
Use various circuit models of the semiconductor diode in simple circuits. These
are divided into two classes: the large-signal models, useful to study rectifier
circuits, and the small-signal models. The semiconductor diode acts as a one-
way current valve, permitting the flow of current only when it is forward-biased.
The behavior of the diode is described by an exponential equation, but it is
possible to approximate the operation of the diode by means of simple circuit
models. The simplest (ideal) model treats the diode either as a short-circuit
(when it is forward-biased) or as an open-circuit (when it is reverse-biased). The
ideal model can be extended to include an offset voltage, which represents the
contact potential at the diode pn junction. A further model, useful for small-
signal circuits, includes a resistance that models the forward resistance of the
diode. With the aid of these models it is possible to analyze diode circuits by
using the DC and AC circuit analysis methods of earlier chapters.
Study practical full-wave rectifier circuits, and learn to analyze and determine
the practical specifications of a rectifier by using large-signal diode models. One
of the most important properties of the diode is its ability to rectify AC voltages
and currents. Diode rectifiers can be of the half-wave and full-wave types. Full-
wave rectifiers can be constructed in a two-diode configuration or in a four-
diode bridge configuration. Diode rectification is an essential element of DC
power supplies. Another important part of a DC power supply is the filtering, or
smoothing, that is usually accomplished by using capacitors.
Understand the basic operation of Zener diodes as voltage references, and use
simple circuit models to analyze elementary voltage regulators. In addition to
rectification and filtering, the power supply requires output voltage regulation.
Zener diodes can be used to provide a voltage reference that is useful in voltage
regulators.



5.

8.1

(Equation 8.2)

Understand the basic principle of operation of photodiodes, including solar
cells, photosensors, and light-emitting diodes. Semiconductor material
properties can also be affected by light intensity. Certain types of diodes, known
as photodiodes, find applications in light detectors, solar cells, or light-emitting
diodes.
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HOMEWORK PROBLEMS
Section 8.1: Electrical Conduction in Semiconductor

Devices
In a semiconductor material, the net charge is such that the density of positive
charges equals the density of negative charges. Charge carriers (free electrons
and holes) and ionized dopant atoms have a charge equal to the magnitude of
one electronic charge. Therefore the charge neutrality equation (CNE) is

where

no = equilibrium negative carrier density

po = equilibrium positive carrier density

 = ionized acceptor density

 = ionized donor density
The carrier product equation (CPE) states that as a semiconductor is doped, the
product of the charge carrier densities remains constant:

For intrinsic silicon at T = 300 K:

The semiconductor material is n- or p-type depending on whether donor or
acceptor doping is greater. Almost all dopant atoms are ionized at room
temperature. Assume intrinsic silicon is doped such that



a.

b.

c.

8.2

a.

b.

c.

8.3

8.4

8.5

8.6

8.7

Determine:

If this is an n- or p-type extrinsic semiconductor.

Which are the major and which are the minority charge carriers.

The density of majority and minority carriers.

Assume intrinsic silicon is doped such that

Determine:

If this is an n- or p-type extrinsic semiconductor.

Which are the majority and which are the minority charge carriers.

The density of majority and minority carriers.

Describe the microscopic structure of semiconductor materials. What are the
three most commonly used semiconductor materials?

Describe the thermal production of charge carriers in a semiconductor and how
this process limits the operation of a semiconductor device.

Describe the properties of donor and acceptor dopant atoms and how they affect
the densities of charge carriers in a semiconductor material.

Section 8.2: The pn Junction and the Semiconductor Diode
Describe the behavior of the charge carriers and ionized dopant atoms in the
vicinity of a semiconductor pn junction that creates the potential (energy) barrier
that inhibits charge carriers from crossing the junction.

Section 8.3: Large-signal Models for the Semiconductor
Diode

Consider the circuit of Figure P8.7. Determine whether the diode is conducting.
Assume VA = 12 V, VB = 10 V, and that the diode is ideal.



8.8

8.9

8.10

8.11

8.12

8.13

a.

b.

c.

8.14

Figure P8.7

Repeat Problem 8.7 for VA = 12 V and VB = 15 V.

Consider the circuit of Figure P8.9. Determine whether the diode is conducting.
Assume VA = 12 V, VB = 10 V, VC = 5 V and that the diode is ideal.

Figure P8.9

Repeat Problem 8.9 for VB = 15 V.

Repeat Problem 8.9 for VC = 15 V.

Repeat Problem 8.9 for VB = 15 V and VC = 10 V.
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For the circuit of Figure P8.13, sketch iD(t) using:

The ideal diode model.

The offset diode model with Vγ = 0.6 V.

The piecewise linear diode model (see Section 8.4) with rD = 1 kΩ and Vγ
= 0.6 V.

Figure P8.13

For the ideal diode circuit of Figure P8.14, find the range of Vin for which D1 is
forward-biased.



8.15

a.

b.

Figure P8.14

One of the more interesting applications of a diode, based on the diode equation,
is an electronic thermometer. The concept is based on the empirical observation
that if the current through a diode is nearly constant, the diode voltage is nearly
a linear function of the diode temperature, as shown in Figure P8.15(a).

Show that iD in the circuit of Figure P8.15(b) is nearly constant in the face
of variations in the diode voltage υD. To do so, compute the percent
change in iD for a given percent change in υD. Assume that υD changes by
5 percent from 0.6 V to 0.63 V.

On the basis of the graph of Figure P8.15(a), write an equation for υD (T°)
of the form



8.16

8.17
8.18

Figure P8.15

Find expressions for the voltage υo in Figure P8.16, assuming D is an ideal
diode, for positive and negative values of υS. Sketch a plot of υo versus υS.

Figure P8.16

Repeat Problem 8.16, using the offset diode model.

Find the power dissipated in diode D, and the power dissipated in R in Figure
P8.18. Use the exponential diode equation and assume R = 2 kΩ, 

, and I0 = 15 nA.



8.19

8.20

a.

b.

8.21

8.22

Figure P8.18

Determine the Thévenin equivalent network seen by the ideal diode D in Figure
P8.19, and use it to Page 563determine the diode current iD. Also, solve for the
currents i1 and i2. Assume R1 = 5 kΩ, R2 = 3 kΩ, Vcc = 10 V, and Vdd = 15 V.

Figure P8.19

In Figure P8.20, assume a sinusoidal source VS = 50 V rms, R = 170 Ω, and Vγ =
0.6 V. Use the offset diode model for a silicon diode to determine:

The maximum forward current.

The peak reverse voltage across the diode.

Figure P8.20

Determine voltages V2 assuming the diodes are ideal in each of the
configurations shown in Figure P8.21.

Figure P8.21

In the circuit of Figure P8.22, find the range of Vin for which D1 is forward-
biased. Assume ideal diodes.



8.23

8.24

8.25

Figure P8.22

Determine which diodes are forward-biased and which are reverse-biased in the
configurations shown in Figure P8.23. Assuming a 0.7-V drop across each
forward-biased diode, determine υout.

Figure P8.23

Sketch the output waveform and the voltage transfer characteristic for the circuit
of Figure P8.24. Assume an ideal diode, υs(t) = 8 sin (π t ), V1 = 3 V, R1 = 8 Ω,
and R2 = 5 Ω.

Figure P8.24

Repeat Problem 8.24, using the offset diode model with Vγ = 0.55 V.



8.26

8.27

a.

b.

8.28

Section 8.4: Small-signal Models for the Semiconductor
Diode

Repeat Problem 8.24 for υS (t) = 1.5 sin (2,000 πt), V1 = 1 V, and R1 = R2 = 1
kΩ. Use the piecewise linear model with rD = 200 Ω.

The silicon diode shown in Figure P8.27 is described by:

where at T = 300 K
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Determine the current iD at the operating point Q:

Using the diode offset model.

By graphically solving the circuit characteristic (i.e., the DC load-line
equation) and the device characteristic (i.e., the diode equation).

Figure P8.27

Repeat Problem 8.27 using the following data:

where at T = 300 K



8.29

a.

b.

c.

8.30

a.

b.

c.

8.31

8.32

A diode with the i-υ characteristic shown in Figure 8.8 is connected in series
with a 5-V DC voltage source (in the forward-bias direction) and a load
resistance of 200 Ω, similar to that shown in Figure P8.34. Determine:

The load current and voltage.

The power dissipated by the diode.

The load current and voltage if the load is changed to 100 Ω and 500 Ω.

A diode with the i-υ characteristic shown in Figure 8.28 is connected in series
with a 2-V DC source (in the forward-bias direction) and a 200-Ω load
resistance, similar to that shown in Figure P8.34. Determine:

The load current and voltage.

The power dissipated by the diode.

The load current and voltage if the load is changed to 100 Ω and 300 Ω.

The silicon diode shown in Figure P8.32 is described by:

where at T = 300 K

The DC operating (quiescent) point Q and the AC small-signal equivalent
resistance at Q are

Determine the AC voltage across the diode and the AC current through it.

The silicon diode shown in Figure P8.32 is in series with two voltage sources
and a resistor, where:

Determine the minimum value of VS1 at which the diode will be forward-biased
and conduct charge.



8.33

8.34

a.

b.

c.

8.35

Figure P8.32

Find the average value of the output voltage υo shown in Figure P8.33. Assume
υin = 10 sin(ωt) V, C = 80 nF, and Vγ = 0.5 V. (See the Focus on Measurements
box “Diode Peak Detector. . .”.)

Figure P8.33

The circuit of Figure P8.34 is driven by a sinusoidal source υS(t) = 6 sin(314t) V.
Determine the average and peak diode currents, using:

The ideal diode model.

The offset diode model.

The piecewise linear model with resistance rD.
Assume Ro = 200 Ω, rD = 25 Ω, and Vγ = 0.8 V.

Figure P8.34

Page 565

Section 8.5: Rectifier Circuits
A half-wave rectifier produces an average voltage of 50 V at its output.



a.

b.

c.

d.

e.

8.36

8.37

8.38

a.

b.

Draw a schematic diagram of the circuit.

Sketch the output voltage waveform.

Determine the peak value of the output voltage.

Sketch the input voltage waveform.

What is the rms voltage at the input?

A half-wave rectifier is used to provide a DC supply to a 80-Ω load. If the AC
source voltage is 32 V rms, find the peak and average current in the load.
Assume an ideal diode.

The bridge rectifier in Figure P.8.37 is driven by a sinusoidal voltage source
υs(t) = 6 sin(314t) V. Redraw this figure to show that it is functionally identical
to Figure 8.38. Determine the average and peak forward current through each
diode when Ro = 200 Ω. Assume ideal diodes.

Figure 8.37 Full-wave rectifier current and voltage waveforms (R = 1 Ω)

In the full-wave power supply shown in Figure P8.38 the silicon diodes are
1N4001 with a rated peak reverse voltage of 25 V.

Determine the actual peak reverse voltage across each diode.

Explain why these diodes are or are not suitable for the specifications
given.



8.39

a.

b.

8.40

a.

b.

8.41

Figure P8.38

In the full-wave power supply shown in Figure P8.38,

The silicon diodes are 1N914 switching diodes (but used here for AC-DC
conversion) with the following performance ratings:

The derating factor is 3 mW/°C for 25°C < T ≤ 125°C and 4 mW/°C for 125°C <
T ≤ 175°C.

Determine the actual peak reverse voltage across each diode.

Are these diodes suitable for the specifications given? Explain.

Refer to Problem 8.38 and assume a load voltage waveform as shown in Figure
P8.40. Also assume:

Determine:

The turns ratio n.

The capacitor C.

Figure P8.40

Refer to Problem 8.38. Assume:



a.

b.

8.42

8.43

a.

b.

c.

8.44

Determine:

The turns ratio n.

The capacitor C.
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Repeat Problem 8.37, using the diode offset model with Vγ = 0.8 V.

You have been asked to design a bridge rectifier for a power supply. A step-
down transformer has already been chosen. It will supply 12 V rms to your
rectifier. The bridge rectifier is shown in Figure P8.43.

If the diodes have an offset voltage of 0.6 V, sketch the input source
voltage υS (t) and the output voltage υo(t), and state which diodes are on
and which are off in the appropriate cycles of υS2(t). The frequency of the
source is 60 Hz.

If Ro = 1,000 Ω and a filtering capacitor has a value of 8 μF, sketch the
output voltage υo(t).

Repeat part b, with the capacitance equal to 100 μF.

Figure P8.43

In the bridge rectifier of the power supply shown in Figure P8.44 the silicon
diodes are 1N4001 with a rated peak reverse voltage of 50 V.



a.

b.

8.45

a.

b.

8.46

8.47

8.48

a.

b.

Determine the actual peak reverse voltage across each diode.

Are these diodes suitable for the specifications given? Explain.

Figure P8.44

Refer to Problem 8.44. Assume the diodes have a rated peak reverse voltage of
10 V and:

Determine the actual peak reverse voltage across the diodes.

Explain why these diodes are or are not suitable for the specifications
given.

Refer to Problem 8.44. Assume:

Determine the value of the average and peak current through each diode.

Repeat Problem 8.37, using the piecewise linear diode model with Vγ = 0.8 V
and resistance RD = 25 Ω.

Refer to Problem 8.44. Assume:

Determine:

The turns ratio n.

The capacitor C.



8.49

8.50

8.51

8.52

Section 8.6: Zener Diodes and Voltage Regulation
The diode shown in Figure P8.49 has a piecewise linear characteristic that
passes through the points (−10 V, −5 μA), (0, 0), (0.5 V, 5 mA), and (1 V, 50
mA). Determine the piecewise linear model, and using that model, solve for i
and υ.

Figure P8.49

In the circuit shown in Figure P8.50, R must maintain the Zener diode within its
specified limits. Page 567If Vbatt = 15 ± 3 V, Ro = 1,000 Ω, Vz = 5 V, 4 mA ≤ Iz ≤
18 mA, determine the minimum and maximum values of R that can be used.

Figure P8.50

Determine the minimum value and the maximum value that the series resistor
may have in a regulator circuit whose output voltage is to be 25 V, whose input
voltage varies from 35 to 40 V, and whose maximum load current is 75 mA. The
Zener diode used in this circuit has a maximum current rating of 250 mA.

The i-υ characteristic of a semiconductor diode designed to operate in the Zener
breakdown region is shown in Figure P8.52. The Zener or breakdown region
extends from the knee of the curve, located here at υD = −3 V and iD = −10 mA,
to a maximum rated current equal to −80 mA. The test point is υD = −5 V and iD
= −32 mA. Determine the Zener resistance and Zener voltage of the diode.



8.53

8.54

Figure P8.52

The Zener diode in the simple voltage regulator shown in Figure P8.53 is a
1N5231B. The source voltage is obtained from a DC power supply. It has DC
and ripple components:

where:

Determine the maximum rated current the diode can handle without exceeding
its power limitation.

Figure P8.53

Repeat Problem 8.53 for the following specifications:

At the knee of the reverse-biased Zener diode curve (see Figure P8.52):



8.55

8.56

8.57

8.58

In the simple voltage regulator shown in Figure P8.53, R must maintain the
Zener diode current within its specified limits for all values of the source
voltage, load current, and Zener diode voltage. Determine the minimum and
maximum values of R that can be used.

Repeat Problem 8.55 for the following specifications:

In the circuit shown in Figure P8.57, compute the diode currents. Let Vcc = 24
V, Io = 5 mA, R1 = 1 kΩ, Vdd = 6 V, Vz1 = Vz2 = 5 V, R2 = 3 kΩ.

Figure P8.57
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In the circuit shown in Figure P8.58, compute the currents I1 and I2. Let Vcc =
18 V, Vdd = 24 V, Vz1 = 7.5 V, Vz2 = 5 V, R1 = 5 kΩ, R2 = 2 kΩ.



8.59

8.60

a.

b.

Figure P8.58

The Zener regulator shown in Figure P8.59 holds the load voltage at Vo = 14 V.
Find the range of load resistance Ro for which regulation can be obtained if the
Zener diode is rated at 14 V, 5 W.

Figure P8.59

A Zener diode ideal i-υ characteristic is shown in Figure P8.60(a). Given a
Zener voltage, VZ of 7.7 V, find the output voltage Vo for the circuit of Figure
P8.60(b) if VS is

12 V

20 V



8.61

8.62

Figure P8.60

Section 8.7: Photodiodes
For the LED circuit of Example 8.13, determine the LED power consumption if
the LED consumes 20 mA at the same voltage. How much power is required of
the source?

For the LED circuit of Example 8.13, determine the LED power consumption if
the LED consumes 30 mA and the diode voltage is 1.5 V. How much power is
required of the source?

Design Credits: Mini DVI cable adapter isolated on white background: Robert Lehmann/Alamy Stock Photo;
Balance scale: Alex Slobodkin/E+/Getty Images; Icon for “Focus on measurements” weighing scales: Media
Bakery.

1Semiconductors can also be made of more than one element, in which case the
elements are not necessarily from group IV.

2Another reported relation [A.B. Sproul and M.A. Green, J. Appl. Phys. 70, 846
(1991)] is  with a value at 300 K of approximately 1.0 × 1010 carriers/cm3.

3The group number system used here is somewhat antiquated. Under the current
international system, groups III, IV, and V were renumbered as groups 13, 14, and



15. However, the older number system has value in this context since it represents the
number of valence electrons.

4The positive terminal of a battery is referred to as the cathode because internally it is
the source of negative ions traveling toward the negative terminal.
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C H A P T E R
9

BIPOLAR JUNCTION
TRANSISTORS: OPERATION,

CIRCUIT MODELS AND
APPLICATIONS

ver the last half-century, transistor technology has revolutionized the
manner in which power and information are transmitted and utilized
within our society. The impact of this technology is difficult to
overstate, and examples of it are ubiquitous. Moreover, the

technology and the products that depend upon it continue to develop at an
exponential rate. It is astounding to consider that the first Macintosh
personal computer was introduced by Apple Computer Co. in January 1984
with 64 kB of ROM, 128 kB of RAM, a motherboard running at 8 MHz, a
display with 384 × 256 pixel resolution, all for the modest price of $2,495,
which is roughly equivalent to $6,038 in 2018. In the same year, IBM
released its second-generation AT (advanced technology) personal computer,
which featured the 16-bit, 6-MHz Intel 80286 microprocessor, a 20-MB hard



drive. Just 35 years later, the minimum recommended specifications of a
modest desktop computer for college students typically include a 64-bit, 3.2-
GHz quad core Page 570processor, a 1.3-GHz data bus with 8 GB of RAM,
500 GB of internal drive storage and a monitor resolution of 1600 × 900.

Of course, advances in analog and digital technology have not been
limited to personal computers. In general, communication systems of all
kinds have been revolutionized. Until 1983, interpersonal
telecommunications were limited to land-line phone calls. The only
asynchronous form of telecommunication was provided by analog telephone
tape recorders and by letter and package carriers such as the U.S. Postal
Service, UPS, and FedEx. While these services continue to play an
important role in our society, new forms of communication, particularly
real-time asynchronous communications, have exploded. Today we transmit,
exchange, and broadcast digital images, video, text, and voice using
handheld and wearable mobile devices. It is not unreasonable to describe
these smartphones as pocket-sized supercomputers. According to the Pew
Research Center’s Internet & American Life Project, as of May 2011,
roughly 35 percent of American adults owned a smartphone of one type or
another. Today that number has risen to 81 percent.

Fundamentally, all this progress has relied on advances in transistor
technology. Given the broad impact of this technology, it would seem
essential that engineers of all stripes possess a basic understanding of
transistors and how they are used to produce the two building blocks of all
communication and power devices. These two building blocks are the
switch and the amplifier. Chapters 9 and 10 are dedicated to revealing how
transistors are utilized to produce various types of switches and amplifiers.
Chapter 9 focuses on a family of transistors known as bipolar junction
transistors (BJTs). The underlying physics is discussed in sufficient detail
to provide a comfortable basis for understanding the three modes of BJT
operation. Practical examples are provided to illustrate important BJT
circuits and their analysis using linear circuit models.

 Learning Objectives
Students will learn to...



1.

2.

3.

4.

5.

Understand the basic principles of amplification and switching. Section
9.1.
Understand the physical operation of bipolar junction transistors;
determine the operating point of a bipolar transistor circuit. Section 9.2.
Understand the large-signal model of the bipolar junction transistor and
apply it to simple amplifier circuits. Section 9.3.
Select the operating point of a bipolar junction transistor circuit;
understand the principle of small-signal amplifiers. Section 9.4.
Understand the operation of a bipolar junction transistor as a switch and
analyze basic analog and digital gate circuits. Section 9.5.

9.1 AMPLIFIERS AND SWITCHES
A transistor is a three-terminal semiconductor device that can perform two
functions that are fundamental to the design of electronic circuits:
amplification and switching. Amplification consists of using an external
power source to produce a scaled reproduction of a signal. Switching
consists of using a relatively small input current or voltage to control a
larger output current or voltage.
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Four different linear amplifier models are shown in Figure 9.1.
Controlled voltage and current sources generate an output proportional to an
input current or voltage; each proportionality constant Ai, Aυ, Gm and Rm is
called the internal gain of the transistor. (The internal gain Gm is a
transconductance with units of A/V; it is not a dimensionless gain G as
defined in previous chapters.) Bipolar junction transistor (BJTs) are well-
modeled as current-controlled devices.1



Figure 9.1 Controlled-source models of linear amplifiers

Transistors are also operated in a nonlinear mode, as voltage- or current-
controlled switches. Figure 9.2 depicts the idealized operation of the
transistor as a switch, suggesting that the switch is closed (on) whenever a
control voltage or current is greater than zero and is open (off) otherwise.
More realistic conditions on transistors acting in a switch mode are
discussed later in this chapter and Chapter 10.

Figure 9.2 Models of ideal transistor switches
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EXAMPLE 9.1 Model of Linear Amplifier
Problem
Determine the voltage gain of the amplifier circuit model shown in Figure
9.3.

Figure 9.3

Solution
Known Quantities: Amplifier internal input and output resistances ri and ro;
amplifier internal gain Aυ; source and load resistances RS and R.

Find: 
Analysis: Apply voltage division to determine υin:

Then, the output of the controlled voltage source is

and the output voltage can also be found using voltage division:



Finally, the amplifier voltage gain can be computed:

Comments: Note that the voltage gain computed above is always less than
the transistor internal voltage gain Aυ . One can easily show that if ri ≫ RS

and ro ≪ R, then G ≈ Aυ . In general, the amplifier gain always depends on
the ratio of the source RS to input ri resistances and the ratio of output ro to
load R resistances.

CHECK YOUR UNDERSTANDING
Repeat Example 9.1 for a current-controlled voltage source (CCVS) as
shown in Figure 9.1(d). What is the amplifier voltage gain? Under what
conditions would G = Rm/RS?
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Repeat Example 9.1 for the current-controlled current source (CCCS) of
Figure 9.1(a). What is the amplifier voltage gain?

Repeat Example 9.1 for the voltage-controlled current source (VCCS) of
Figure 9.1(c). What is the amplifier voltage gain?

9.2 THE BIPOLAR JUNCTION TRANSISTOR
(BJT)



A BJT is formed by joining three sections of alternating p- and n-type
material. An npn transistor is a BJT with a thin, lightly doped p-type base
region sandwiched between a heavily doped n-type emitter region and a
large, lightly doped n-type collector region. The BJT counterpart to the npn
is the pnp transistor, which utilizes the same doping scheme except that the
n and p regions are swapped with respect to the npn. In both of these BJT
types, the heavily doped emitter region is often labeled n+ or p+ to
distinguish it from the lightly doped collector. Figure 9.4 illustrates the
construction, symbols, and nomenclature for the two types of BJTs. Notice
that there are the two pn junctions in a BJT: the emitter-base junction
(EBJ) and the collector-base junction (CBJ). The operating mode of a BJT
depends upon whether these junctions are reverse- or forward-biased, as
indicated in Table 9.1.

Figure 9.4 Bipolar junction transistors

Table 9.1 BJT operating modes
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Although the construction of a BJT results in two opposing pn junctions,
it is important to avoid modeling a BJT as two identical but opposing
diodes. The EBJ always behaves as a true diode; however, because of the
thin base region and the lightly doped collector region, the CBJ does not.



Figure 9.5 depicts the basic geometry of a cross section of a BJT. The base
region is shown much thicker (compared to the emitter and collector) for the
sake of clarity. There are two key points to note from the figure: (1) the base
is a very thin envelope around the emitter, and (2) the collector is much
larger than the emitter and the base because it envelopes both and is itself
relatively thick compared to the emitter. The result of this geometry is that
the collector can receive large numbers of mobile charge carriers without
any significant impact upon its density of charge carriers.

Figure 9.5 Cross section of an npn transistor. Notice that the
collector is much larger and much more lightly doped than the
emitter. However, the base is, in fact, very thin compared to the
emitter and collector.

Cutoff Mode (EBJ Reverse-Biased; CBJ Reverse-
Biased)
When both pn junctions are reverse-biased, no current is present across
either junction and the path from collector to emitter can be approximated as
an open-circuit. In fact, small reverse currents due to minority carriers are
present across the junctions, but for most practical applications these reverse
currents are negligible. In silicon-based BJTs, the offset voltage for the EBJ
is the same Vγ presented in Chapter 8 for single silicon diodes, where Vγ ≈
0.6 V. Thus, in cutoff mode, when υBE < Vγ , the transistor acts as a switch in
its off (open-circuit) condition.

Active Mode (EBJ Forward-Biased; CBJ Reverse-
Biased)
Figure 9.6 shows a Norton source connected across the base and emitter
terminals of an npn transistor and the resulting i-υ characteristic of its EBJ.



Notice that iB ≈ 0 when υBE ≤ Vγ , which is cutoff mode. However, when the
EBJ is forward-biased such that υBE ≤ Vγ , current is conducted as in a
typical diode. Majority carriers in the emitter and base drift across the EBJ
under the influence of the forward-bias voltage in excess of the potential
barrier of the depletion region. However, since the emitter is heavily doped
while the base is lightly doped, the current IE through the EBJ (see Figure
9.7) is dominated by the majority carriers from the emitter.

Figure 9.6 The i-υ characteristic of the emitter-base junction of a
typical npn transistor
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The i-υ characteristics of the EBJ for npn and pnp transistors are
identical except that the abscissas are υBE and υEB, respectively. The
discussion below is based upon the behavior of an npn transistor; however,
the behavior of a pnp transistor is completely analogous to that of an npn
transistor, except that positive and negative charge carriers are interchanged
and the EBJ is forward-biased from emitter to base rather than from base to
emitter.

The behavior of a pnp transistor is completely analogous to that of an
npn transistor, except that positive and negative charge carriers are



(9.1)

interchanged and the EBJ is forward-biased from emitter to base rather
than from base to emitter.

For an npn BJT, the majority carriers in the emitter are free electrons
while the majority carriers in the base are holes, as indicated in Figure 9.7.
Some of these free electrons recombine with holes in the base; however,
since the base is lightly doped, most of these electrons remain mobile
minority carriers in the p-type base. As these mobile electrons cross the
EBJ, their growing concentration in the base causes them to diffuse toward
the CBJ. The equilibrium concentration of these mobile electrons throughout
the base region is a maximum at the EBJ and is given by:

Figure 9.7 Flow of emitter electrons into the collector in an npn
transistor

where υBE is the forward-bias voltage from base to emitter and (np)o is the
thermal equilibrium concentration of electrons in the base. Since the base is
very thin, the equilibrium concentration gradient across the base is nearly
linear, as depicted in Figure 9.8, such that the electron diffusion rate from
the EBJ to the CBJ can be approximated as:



(9.2)

(9.3)

Figure 9.8 Equilibrium concentration gradient of free electrons in
the p-type base of a forward-biased EBJ of an npn transistor

where A is the cross-sectional area of the EBJ, W is the width of the base
(not including the width of the two bounding depletion regions), and Dn is
the diffusivity of electrons in the base. It is important to note that this
electron diffusion rate is Page 576temperature dependent and that it
represents a diffusion current directed from the CBJ to the EBJ because of
the convention that the direction of positive current is the direction of flow
of positive charge carriers. Once these diffusing electrons reach the CBJ
they are swept into the collector by the reverse-bias voltage across the CBJ.
Thus, the collector current iC is

where NA is the doping concentration of holes in the base and IS is known as
the scale current because it scales with the cross-sectional area A of the
EBJ. Typical values of IS range from 10−12 A to 10−15 A.



(9.4)

(9.5)

The base current iB (from base to emitter) is comprised of those
majority carriers in the base (e.g., holes for an npn transistor) that traverse
the EBJ. Some of these carriers recombine with the majority carriers in the
emitter (e.g., electrons for an npn transistor); however, those majority
carriers lost to recombination are replaced by additional majority carriers
supplied by V1. Because the concentration of these majority carriers is
proportional to , the base current is proportional to the collector
current iC such that:

where β is known as the forward common-emitter current gain with
typical values ranging from 20 to 200. Although β can vary significantly
from one transistor to another, most practical electronic devices only require
that β ≫ 1. Figure 9.7 depicts the flow of charge carriers from emitter to
base to collector and from base to emitter, as discussed above, for an npn
transistor. A BJT is a bipolar device because its current is comprised of both
electrons and holes.2

The parameter β is not often found in a data sheet. Instead, the forward
DC value of β is listed as hFE, which is the large-signal current gain. A
related parameter, hfe, is the small-signal current gain.

Finally, to satisfy KCL, the emitter current iE must be the sum of the
collector and base currents and, therefore, must also be proportional to .
Thus:

where IES is the reverse saturation current and α is the common-base
current gain with a typical value close to, but not exceeding, 1.



Saturation Mode (EBJ Forward-Biased; CBJ
Forward-Biased)
A BJT remains in active mode as long as the CBJ is reverse-biased; that is,
as long as V2 > 0, electrons diffusing across the base will be swept away into
the collector Page 577once they reach the CBJ. However, when the CBJ is
forward-biased (V2 < 0), these diffusing electrons are no longer swept away
into the collector but instead accumulate at the CBJ such that the
concentration of minority carrier electrons there is no longer zero. The
magnitude of this concentration increases as V2 decreases, such that the
concentration gradient across the base decreases. The result is that the
diffusion of minority carrier electrons across the base decreases; in other
words, the collector current iC decreases as the forward bias of the CBJ
increases.

It is important to realize that as the concentration gradient across the
base decreases and the rate of diffusion across the base decreases, the rate of
increase of the concentration near the CBJ slows and the concentration
gradient across the base approaches zero asymptotically. This asymptotic
process expresses itself as an upper limit on the forward-bias voltage across
the CBJ. Figure 9.9 defines three voltages across the terminals of an npn
transistor. In saturation, the action of the transistor limits υCB such that υCE is
always positive, although small. In fact, deep saturation mode is often best
recognized as when the value of υCE is approximately 0.2 V for a silicon-
based BJT.

Figure 9.9 Definition of BJT voltages and currents



(9.6)

(9.7)

(9.8)

In saturation, the collector current is no longer proportional to the base
current and the collector-emitter voltage υCE for a silicon-based BJT is
small (< 0.4 V). An increasing base current drives a BJT further into
saturation, and υCE approaches the saturation limit of VCE sat ≈ 0.2 V.

Key BJT Characteristics
The voltages and currents shown in Figure 9.9 for an npn transistor are
related by KCL and KVL.

The BJT currents are temperature dependent because they are proportional
to both  and . These currents are also proportional to the cross-
sectional area A of the EBJ and inversely proportional to the effective width
W of the base.

The relationships between these voltages and currents are commonly
represented by a graph of iC versus υCE, with iB treated as a parameter. A
typical example of such a graph is shown in Figure 9.10. The operating
mode of a BJT is completely specified by these three variables. The three
modes of operation are indicated in the figure. Cutoff and saturation modes
occur when iC and υCE are very small, respectively.



Figure 9.10 Typical characteristic lines of a BJT

For any fixed value of iB, the slope of the transistor characteristic is very
small in active mode. In the ideal case, this slope would be zero; however,
the effective width of the base decreases with υCE such that the
concentration gradient of charge carriers in the base increases and, thus, the
collector current increases as well. This increase in iC with υCE is known as
the Early effect or base-width modulation.
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It is important to realize that the operating values of iB, iC, and υCE, and
the operating mode itself, are determined by the external circuitry attached
to the BJT. An important objective of this chapter is to provide a method to
design the external circuitry so as to dictate and control the operating mode
of a BJT. To understand the development of such a method, it is essential to
keep in mind the key characteristics of the cutoff, active, and saturation
modes, which are the same for both npn and pnp transistors, and which are
summarized in the box below.

Cutoff mode: Both the EBJ and CBJ are reverse-biased such that all
three currents iC, iB, and iE are approximately zero. In cutoff mode, a BJT



acts as an open switch between the collector and emitter.

Active mode: The EBJ is forward-biased while the CBJ is reverse-
biased.

The BJT currents are related by:

In active mode, these currents are largely independent of υCB and the
BJT acts as a linear amplifier.

Saturation mode: Both the EBJ and CBJ are forward-biased such that
υBE ≈ 0.7 V and υCE ≈ 0.2 V. The collector current iC is highly sensitive to
small changes in υCE, and, since υCE is small, iC is largely determined by
external circuitry attached to the collector terminal. In saturation mode,
the BJT approximates a closed switch between the collector and emitter.

Determining the Operating Mode of a BJT
A few simple voltage measurements permit a quick determination of the
state of a transistor. Consider, for example, an npn transistor placed in the
circuit of Figure 9.11, where:

Page 579

Figure 9.11 Determination of the operating mode of a BJT



and

Assume that for these external parameter values the measured collector,
emitter, and base terminal voltages are

The method used in determining the state of a transistor is to assume an
operating mode and then test the assumption against the known data. It is
usually best to first assume cutoff mode and check whether the EBJ is
reverse-biased. The voltage across the EBJ is

Thus, the EBJ is forward-biased, not reverse-biased, and the transistor is not
in cutoff mode.

One can next assume either active or saturation mode and test the
assumption. For this example, assume saturation mode and test whether the
CBJ is forward-biased. The voltage across the CBJ is

Thus, the CBJ is reverse-biased and the transistor is in active mode. The
same determination could be made by evaluating the voltage across the
collector-emitter terminals.

The requirement for saturation mode is VCE < 0.4 V, which is clearly not
satisfied.

Since the transistor is in active mode, it is possible to calculate the
common- emitter current gain β. The base current is



The collector current is

Thus, the current amplification factor is
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The operating point of the transistor in the given circuit can be located
on a characteristic plot such as that in Figure 9.10. It is important to note
that the operating mode of the transistor is determined by the attached
circuitry. In this example, the values of VB, VC, and VE were measured.
However, for analytic problems, these values can be calculated using KCL,
KVL, Ohm’s law, and the known characteristics of the three possible modes
of operation.

EXAMPLE 9.2 Determining the Operating Mode of a BJT
Problem
Determine the operating mode of the BJT in the circuit of Figure 9.11.

Solution
Known Quantities: Base, collector, and emitter voltages with respect to
ground.
Find: Operating mode of the transistor.
Schematics, Diagrams, Circuits, and Given Data: V1 = VB = 1.0 V; V2 = VE
= 0.3 V; V3 = VC = 0.6 V; RB = 40 kΩ; RC = 1 kΩ; RE ≈ 26 Ω.



Analysis: Compute VBE and VBC to determine the bias conditions of the EBJ
and CBJ, which determine the mode of operation of the transistor.

Since both junctions are forward-biased, the transistor is in saturation mode.
Also, notice that VCE = VC − VE = 0.3 V is less than 0.4 V, which indicates
that the BJT is operating near or in saturation.

The operating point of this transistor can be located in Figure 9.10 by
calculating:

and

Notice that the operating point in Figure 9.10 is near the elbow in the IB =
75.0 μA curve at VCE = 0.3 V.

Comments: KCL requires IE = IC + IB. The latter sum is 11.475 mA,
whereas IE is 0.3 V/RE ≈ 11.5 mA. The difference between these two
currents is due entirely to the approximate value of RE. In fact, KCL is—as
it must be—satisfied exactly.

It is important to notice that by only changing RE from 26 to 161 Ω (as in the
analysis described on the previous page), the operating mode of the
transistor is changed from saturation mode to active mode.

CHECK YOUR UNDERSTANDING
Describe the operation of a pnp transistor in active mode by analogy with
that of the npn transistor.
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CHECK YOUR UNDERSTANDING
For the circuit of Figure 9.11, the voltmeter readings are V1 = 3.1 V, V2 = 2.4
V, and V3 = 2.7 V. Determine the operating mode of the transistor. What is
the value of RE required to satisfy KCL? Assume RB = 40 kΩ and RC = 1
kΩ.

9.3 BJT LARGE-SIGNAL MODEL
The i-υ characteristics of a BJT indicate that it acts as a current-controlled
current source (CCCS) in the cutoff and active operating modes. In those
two modes, the base current dictates the behavior of the BJT. These
characteristics form part of a large-signal model for the BJT that describes
its behavior in terms of the amplitudes of the base and collector currents.
Like all models, the large-signal model does not account for every
characteristic of a BJT. In particular, it does not account for the Early effect
nor temperature effects. However, this model does provide a useful and
simple starting point for the analysis of transistor circuits.

Large-Signal Model of the npn BJT
In cutoff mode, the BE junction is reverse-biased, the base and collector
currents are approximately zero, and therefore the transistor acts as a virtual
open-circuit. In practice, there is always a leakage current, denoted by ICEO,
through the collector, even when VBE = 0 and IB = 0.

In active mode, the BE junction is forward-biased, and the collector
current is proportional to the base current, where the constant of
proportionality is β.

Answer: Saturation, RE ≈ 257 Ω



(9.9)

Since β ≫ 1, this relationship indicates that the collector current is
controlled by a relatively small base current.

Finally, in saturation mode, the base current is sufficiently large that the
collector-emitter voltage VCE reaches its saturation limit, and the collector
current is no longer proportional to the base current. In fact, the collector-
emitter pathway acts like a virtual short-circuit, except for the small
potential drop VCE sat ≈ 0.2V.

All three of these operating modes are described by the simple circuit
models shown in Figure 9.12. Each of these individual models approximates
one of the three operating modes indicated in Figure 9.10. Notice that the
large-signal model treats the forward-biased BE junction as an offset diode.

Figure 9.12 An npn BJT large-signal model

Selecting an Operating Point for a BJT
The family of curves shown for the collector i-υ characteristic in Figure 9.10
reflects the dependence of the collector current on the base current. For each



(9.10)

(9.11)

(9.12)

value of the base current iB there exists a corresponding iC-υCE curve. Thus,
by selecting the base current and collector current (or collector-emitter
voltage), an operating point Q for the transistor is determined. Q is defined
in terms of the quiescent (or idle) currents and voltages that are present at
the terminals of the device under DC conditions. The circuit of Figure 9.13
illustrates an ideal (not practical) DC bias circuit, used to set Page 582the
operating point Q such that VCE ≈ VCC/2. (A practical bias circuit is
discussed later in this chapter.) In this illustration, Norton and Thévenin
sources represent the linear networks seen by the base and collector
terminals, respectively. The underlying principle is to pick RC and RB such
that under quiescent DC conditions the BJT is maintained in active mode for
all anticipated variations in IB, IC, and VCE under operating (nonquiescent)
conditions.

Figure 9.13 A simple ideal bias circuit for a BJT amplifier

KVL can be applied to yield the following equations:

and

or



Note that equation 9.11 represents a load line for the source network of VCC
in series with RC. When VCE = 0, the collector current is IC = VCC/RC; when
IC = 0, the collector-emitter voltage is VCE = VCC. These two conditions
represent the virtual short- and open-circuit cases for the collector-emitter
pathway, that is, the saturation and cutoff modes of the BJT, respectively.
The load line can be superimposed upon the plot of BJT characteristics as
shown in Figure 9.14. The slope of the load line is −1/RC. The operating
point Q is the intersection of the load line with one of the BJT characteristic
lines. The particular characteristic line is determined by the base current IB,
as given by equation 9.10. The particular load line shown in Figure 9.14
assumes VCC = 15 V, VCC/RC = 40 mA, which are the open-circuit voltage
and short-circuit current, respectively, of the Thévenin source seen by the
collector.

Figure 9.14 Load-line analysis of a simplified BJT amplifier
2

Once the operating point is established, the BJT is considered biased
and prepared to operate as a linear amplifier. It is important to note that in
circuit diagrams transistors are usually designated Q1, Q2, etc. The use of Q
to denote transistors is related to the use of Q to denote an operating point,
but the two uses serve two different purposes.
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FOCUS ON MEASUREMENTS

Large-Signal Amplifier Design for a Diode
Thermometer
Problem:
A diode can be used as the temperature transducer in an electronic
thermometer (see the Focus on Measurements box, “Diode Thermometer” in
Chapter 8). In this example, a diode element acts as a temperature transducer
within the transistor amplifier circuit shown in Figure 9.15.



Figure 9.15 Large-signal amplifier for diode thermometer

Solution:

Known Quantities—Diode and transistor amplifier bias circuits; diode
voltage versus temperature response.

Find—Resistor values and transistor output voltage versus temperature.

Schematics, Diagrams, Circuits, and Given Data—Figures 8.58, 9.10 and
9.15.

Assumptions—See discussion.

Analysis—The objective of this exercise is to design an amplifier that will
output a linearly scaled reproduction of the diode voltage as it varies with
temperature. The first design specification is that the amplifier be linear; that
is, that the BJT remain in active Page 584mode throughout the temperature
range 0 < T < 100°C. A common approach to satisfying this specification is
to establish the transistor nominal operating point so that VCEQ ≈ VCC/2,
where VCEQ is the collector-emitter voltage υCE at the midrange temperature
T0 = 50°C. This choice provides headroom and legroom above and below
VCEQ to allow υCE to vary as the diode temperature varies without leaving
active mode. Thus, for this example, an initial design specification is

The second design specification is that the diode voltage remain a linear
function of temperature during operation. Recall from Figure 8.58 that the
diode voltage is a nearly linear function of temperature when the diode
current is held constant, which can be accomplished by choosing υCC ≫ υD
such that the voltage drop across RS is relatively constant. It is assumed here
that iS ≫ iB, which can be accomplished by selecting RS ≈ RB since the
voltage drop across RB is the small difference between the two diode
voltages υD and υBE. Thus, two more design specifications could be



In addition, to maintain active mode it is essential to maintain υD > υBE
so that the base current is directed into the base of the NPN transistor. This
result will also hold as long as iS ≫ iB; that is, as long as these two
specifications are met. Also, the assumption that iS ≫ iB implies that iD ≈ iS.

Assuming the BJT is maintained in active mode, the base-emitter
voltage υBE can be assumed to be significantly larger than Vγ . Since Vγ ≈
0.65 V a minimum design specification could be υD > Vγ + 0.5 V at the high
end of the temperature range.

Figure 8.58 shows the diode voltage versus temperature for a diode
current iD ≈ 1.5 mA. At T = 100°C the diode voltage is approximately 0.6 V,
which does not satisfy the minimum specification on υD. However, as with
all diodes, the forward-biased diode voltage υD increases as the diode
current iD increases. Figure 9.16(a) shows the diode voltage as a function of
temperature when the diode current is approximately 100 mA. Notice that
the diode voltage at T = 100°C is roughly 0.73 V, which satisfies υD > Vγ +
0.5 V. Thus, another design specification could be

Consider the specifications VCC ≫ υD and iD ≈ 100 mA. The implication
that iD ≈ iS also implies iS ≈ 100 mA. If VCC = 12 V and υD ≈ 0.8 V, then RS
≈ (12 − 0.8) V/100 mA = 112 Ω. The nearest standard resistor values are
100 Ω and 120 Ω. A slightly larger value for iS is preferable to a slightly
lower value, so choose RS = 100. Consequently, RB = 100 Ω also to satisfy
the RS ≈ RB specification.



To produce a design specification for RC it is necessary to estimate the
collector current iC when υCE ≈ 6 V at T0 = 50°C. Ohm’s law could then be
applied to RC to yield:
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The i-υ characteristic curves for a typical BJT shown in Figure 9.14 can
be used to estimate iC for various values of iB given that υCE = 6 V. Ohm’s
law applied to RB is

Figure 9.16(a) indicates that υD ≈ 0.78 V when iD ≈ 100 mA at T0 =
50°C. But what about υBE at the same operating point? No additional
information is available for this particular 2N3904 NPN transistor. However,
a reasonable assumption is that υBE increases and decreases with υD and that
the difference between them is quite small. Thus, assume that υD − υBE ≈
0.01 V to make an initial estimate of iB, iC and finally RC. Simulations
and/or experiments can be performed to evaluate and iterate on these initial
estimates to improve the performance of the amplifier. Such iterations are a
common aspect of any design process.

Assuming υD − υBE ≈ 0.01 V and RB = 100 Ω the initial estimate is iB ≈
100 μA. Using this value and Figure 9.14, the initial estimate of the collector
current is iC ≈ 17 mA and thus RC ≈ 353 Ω. The nearest standard resistor
values are 330 Ω and 390 Ω. A larger RC results in a smaller iC and, thus, a
smaller iB in active mode, which supports the implication that iD ≈ iS. Thus,
choose RC = 390 Ω for the initial amplifier design.

The amplifier output υCE for these parameter values over the temperature
range 0 < T < 100°C is shown in Figure 9.16(b).



Figure 9.16 (a) Diode voltage temperature dependence; (b)
Amplifier output

Notice the greatly increased sensitivity of the output voltage to changes
in temperature when compared to that of the diode voltage. Also notice that
the slope of υCE(T) is positive. This result is due to the fact that a common-
emitter amplifier inverts the slope of the collector-emitter voltage relative to
the slope of the base voltage.

The design parameters chosen here are not the only viable options and
are unlikely optimal for this particular application. Other combinations of
RS, RB and RC yield useful results. The efficacy of the choices depends upon
the objectives for any particular project. The process outlined here is
intended to illustrate some of the issues that should be considered when
designing a BJT amplifier. Typically, an actual design would involve
iterations on an initial design to improve performance. A practical amplifier
Page 586design would also include coupling and bypass capacitors to
address other common amplifier design issues. It is also true that other
amplifier configurations can be used to accomplish the same task.

It is a worthwhile exercise to compare the results of the final design to
the assumptions that led to that design. For the values of RS, RB and RC
selected here, the collector current is 14.4 mA at 50°C, which is somewhat
lower than the 17 mA used to determine RC. Also, the actual base current is
approximately 75 μA at 50°C, which is lower than the 100 μA design
estimate. However, the important question is whether the design
performance satisfies the objectives. It does.



Comments: —In active mode, iC = βiB. However, in practice, the value of β
is not used as a design specification because its value can vary greatly even
within the same type of transistor. Instead, amplifier designs rely on β ≫ 1,
which is a feature of all BJTs.

The results shown in Figure 9.16(a)–(b) were generated using the
TINACloud circuit simulator. Experimental results may vary somewhat. To
reproduce the simulation results it is important that only the diode
temperature be permitted to vary. If the BJT and diode temperatures are
allowed to vary together the amplifier output voltage is greatly
compromised.

EXAMPLE 9.3 LED Driver
Problem
Design a transistor switch to control an LED as shown in Figure 9.17. The
LED is required to turn on and off with the on/off signal from a digital
output port of a microcontroller that is in series with the transistor base.

Figure 9.17 LED driver circuit

Solution



Known Quantities: Microcontroller output resistance and output signal
voltage and current levels; LED offset voltage, required current, and power
rating; BJT current gain and base-emitter junction offset voltage.
Find: (a) Collector resistance RC such that the transistor is in saturation
when the microcontroller outputs 5 V; (b) power dissipated by LED.
Schematics, Diagrams, Circuits, and Given Data:

Microcontroller: output resistance = RB = 1 kΩ; VON = 5 V; VOFF = 0 V.

Transistor: VCC = 5V; Vγ = 0.7V; β = 95; VCE sat = 0.2V.

LED: VLED = 1.4 V; ILED = 30 mA; Pmax = 100 mW.

Assumptions: Use the large-signal models for cutoff and saturation as
shown in Figure 9.12. In saturation, VCE ≈ VCE sat = 0.2 V.

Analysis: When the microcontroller output voltage is zero, the BJT is in
cutoff mode since the base current is zero. When the microcontroller output
voltage is VON = 5 V, the transistor should be in saturation mode so that the
LED sees a virtual short-circuit from collector to emitter. Figure 9.18(a)
depicts the equivalent base-emitter circuit when the microcontroller output
voltage is VON = 5 V. Figure 9.18(b) depicts the collector circuit, and Figure
9.18(c), Page 587the same collector circuit with the large-signal model for
the transistor in place of the BJT. Apply KVL to obtain:

or



Figure 9.18 (a) BE circuit for LED driver; (b) equivalent collector
circuit of LED driver, assuming that the BJT is in the linear active
mode; (c) LED driver equivalent collector circuit, assuming that
the BJT is in saturation mode

A typical LED requires at least 15 mA to be on. In this example, the LED
current is specified as 30 mA to ensure that the LED is reasonably bright
when on. The collector resistance RC needed to provide this current is ≈ 113
Ω.

To confirm that the transistor is in saturation when the microcontroller
voltage is 5 V, the ratio IC/IB should be less than β. For the given
specifications, the base current is

Thus:

In active mode, the ratio IC/IB = β = 95. For sufficiently large values of the
base current, the transistor leaves active mode and enters saturation. In
saturation, the ratio IC/IB is no longer constant and is always less than β.
Clearly, this condition is satisfied when the microcontroller output is on. For
any particular transistor, the value of β can be significantly different from its
typical value given in a generic data sheet. Thus, in practice, it is a good idea



to make sure that IC/IB ≪ βtyp. In this example, 7 ≪ 95 such that it is
reasonably certain that the transistor will be in saturation for the design
specification of RC ≈ 113 Ω.

The power dissipated by the LED is

Since the power rating of the LED has not been exceeded, the design is
complete.
Comments: The large-signal model of the BJT is easy to apply because the
BE and CE junctions are approximated as short-circuits in series with an
independent voltage source. Remember to first check the operating mode of
the transistor by assuming a mode and then verifying that the assumption is
not contradicted by the resulting voltages across the EBJ, CBJ and CEJ.
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EXAMPLE 9.4 Simple BJT Battery Charger (Current Source)
Problem
Design a constant-current battery charging circuit by selecting values of
VCC, R1, R2 (a potentiometer) that will cause the transistor Q1 to act as a
current-controlled current source (CCCS) with a selectable range 10 mA ≤
iC ≤ 100 mA.

Solution
Known Quantities: Transistor large-signal parameters; Li-ion battery
nominal voltage.
Find: VCC, R1, R2.



Schematics, Diagrams, Circuits, and Given Data: Figure 9.19. VCC = 12 V;
Vγ = 0.6 V; β = 100.

Assumptions: Assume that the transistor can be represented by the large-
signal model.
Analysis: To determine the operating mode of the transistor, assume one of
the three possible modes and check for any contradictions. First, if cutoff
mode is assumed, iB = 0 and iC = 0. Clearly, this mode is not useful for
charging. Moreover, KVL requires VBE + iB(R1 + R2) = VCC, or since iB = 0,
VBE = VCC = 12 V. Thus, the EBJ would be forward-biased if iB = 0. This
result is a contradiction of the cutoff mode assumption, which therefore
must be incorrect.

Figure 9.19 Simple battery charging circuit

Second, if the saturation mode is assumed, VCE ≈ VCE sat = 0.2 V.
However, KVL requires VCE + 9 V = VCC = 12 V, or VCE = 3 V, which is a
contradiction of the assumed saturation mode.

Thus, the transistor must be in active mode. The base and collector
currents, iB and iC, are given by Ohm’s law and iC = βiB, respectively.

The bounds on the collector current iC, which charges the battery, are



The potentiometer wiper can be set to any value in the range 0 ≤ α ≤ 1 such
that the resistance seen by the base is R1 + αR2max. The maximum collector
current is obtained when the wiper is set to the far right position α = 0. Thus,
select R1 by setting  when α = 0.
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or

If the value of R1 is restricted to the E12 series of standard resistor values,
the closest standard value is R1 = 12 kΩ, which will result in a slightly lower
maximum collector current. The rated value of the potentiometer  is
found by requiring that  when the wiper is set to the far left
position α = 1. Thus:

or

Again, if the value of  is restricted to the E12 series of standard resistor
values, the closest standard value is , which results in a slightly
higher minimum collector current.
Comments: A practical note on Li-ion batteries: a standard 9-V Li-ion
battery is made up of two 3.6-V cells. Thus, the actual nominal battery
voltage is 7.2 V. Further, as the battery becomes fully charged, each cell may
rise as high as 4.2 V, leading to a fully charged voltage of 8.4 V.



EXAMPLE 9.5 Simple BJT Motor Drive Circuit
Problem
The aim of this example is to design a BJT driver for the Lego® 9V DC XL
motor, model 8882. Figure 9.20 shows the driver circuit. The motor has a
maximum (stall) current of 2,020 mA. The minimum current needed to start
motor rotation is 110 mA. The aim of the circuit is to control the current to
the motor (and therefore the motor torque, which is proportional to the
current) through the potentiometer .

Solution
Known Quantities: Transistor large-signal parameters; component values.
Find: Values of R1 and .

Schematics, Diagrams, Circuits, and Given Data: Figure 9.20. Maximum
(stall) of 2,020 mA; minimum (start) current of 110 mA; Vγ = 0.6 V; β = 40;
VCC = 12 V.

Figure 9.20 BJT motor driver circuit
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Assumptions: Use the large-signal model with β = 40 for each transistor.



Analysis: This circuit is a good example of how to stage transistors to
accomplish a task that is difficult or impossible to accomplish with one
transistor alone. Assume that both transistors are in active mode such that iC
= βiB for each transistor. Once a solution is found, the voltages across the
EBJ and CBJ can be checked for compatibility with the active mode
assumption.

It is important to recognize that the emitter current from Q1 is the base
current for Q2. Since iE1 = iC1 + iB1 = (β + 1)iB1, iB2 = iE1, and iC2 = βiB2, the
collector current iC2 of Q2 is related to the base current iB1 of Q1 by:

The base current iB1 of Q1 is given by Ohm’s law.

Therefore, the range of the motor current is

The potentiometer wiper can be set to any value in the range 0 ≤ α ≤ 1
such that the resistance seen by the base of Q1 is . The maximum
(stall) current for the motor is obtained when the wiper is set to the far right
position α = 0. Thus, select R1 by setting  when α = 0.

or

If the value of R1 is restricted to the E24 series of standard resistor values,
the closest standard value is R1 = 9.1 kΩ, which will result in a somewhat
lower maximum motor current. The rated value of the potentiometer  is



found by requiring that  when the wiper is set to the far left
position α = 1. Thus:

Again, if the value of  is restricted to the E24 series of standard resistor
values, the closest standard value that is still greater than ,
which results in a slightly lower minimum motor current. The lower
minimum motor current will allow the motor to be turned off by adjusting
the potentiometer. Great!
Comments: This design is simple and permits manual control of the motor
current (and torque). If the motor is to be controlled by a microcontroller,
the circuit should be redesigned to accept an external voltage input.
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CHECK YOUR UNDERSTANDING
Repeat the analysis of Example 9.3 for RC = 400 Ω. In which mode is the
transistor operating? What is the collector current?

What is the power dissipated by the LED in Example 9.3 if RC = 30 Ω?

CHECK YOUR UNDERSTANDING
In Example 9.4, what is VCE when the battery is fully charged (8.4 V)? Is
this value consistent with the assumption that the transistor is in active
mode?

Answer: Saturation; 8.5 mA; 159 mW



CHECK YOUR UNDERSTANDING
Compute the maximum and minimum possible motor currents for the circuit
in Example 9.5 using the selected standard resistor values for R1 and .

9.4 A BRIEF INTRODUCTION TO SMALL-
SIGNAL AMPLIFICATION
The purpose of a DC operating point Q for a BJT circuit is to bias the BJT
so that it is prepared to act as a linear amplifier for a relatively small time-
varying input signal.

Typically, a time-varying voltage signal ΔVB is superimposed upon a
much larger DC voltage VBB, as shown in Figure 9.21, such that the base
current is also a time-varying function IB + ΔIB. The primary objective of the
DC biasing is to prevent the variation in the base current ΔIB from driving
the BJT out of active mode. This objective will be achieved if the maximum
variation in the base current  is small compared to the DC bias current
IB and if IB is picked such that the operating point of the BJT is located in
active mode, far from cutoff and saturation. An example of such an
operating point Q is shown in Figure 9.14. In that figure, notice that IB
would have to change by at least ±100 μA from the 150-μA bias current for
the BJT to leave active mode and enter either cutoff or saturation. As the
base current changes, the location of Q simply moves along the load line,

Answer: VCE ≈ 3.6V ≫ VCEsat = 0.2V; Yes

Answer: 



(9.13)

(9.14)

(9.15)

either up and to the left as IB increases, or down and to the right as IB
decreases.

Figure 9.21 Circuit illustrating the amplification effect in a BJT

The phrase small-signal model refers to the fact that the maximum
variation in the amplified signal must be small compared to the DC
bias conditions.
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As long as the BJT remains in active mode the collector current will be
roughly proportional to the base current, such that:

Further, as seen in Figure 9.21, KVL around the collector source network
yields:

In the quiescent state (no time-varying input signal), this equation becomes:



(9.16)

(9.17)

(9.18)

(9.19)

(9.20)

(9.21)

Subtract equation 9.15 from equation 9.14 to obtain:

Notice that the variation in the collector-emitter voltage ΔVCE is
proportional to the variation in the base current, where the constant of
proportionality is βRC.

Further analysis applying KVL around the base source network yields:

In the quiescent state, this equation becomes:

Subtract equation 9.18 from equation 9.17 to obtain:

or

Use this result to substitute for ΔIB in equation 9.16 to obtain:

This equation shows that the time-varying component ΔVBB of the input
voltage is amplified by a factor of βRC/RB to produce a time-varying
component ΔVCE of the output voltage. Notice that the output of the BJT
circuit in Figure 9.21 is considered to be the collector-emitter voltage.

It is important to mention that equation 9.21 shows that the expression
for ΔVCE is proportional to ΔVBB only if ΔVBE is negligibly small compared
to ΔVBB. Keep in mind that when the BJT is in active mode the EBJ is
forward-biased such that the operating point for the EBJ diode is located



along the steep portion of the curve shown in Figure 9.6. As a result, ΔVBE
tends to be quite small for changes in IB. Whether ΔVBE is negligible
requires more analysis than is appropriate here. Besides, there are other
nonideal behaviors of a BJT that prevent the amplifier from being
completely linear. The key point is that if the BJT is properly biased, these
nonideal effects can be kept small.

An example of the amplification process described above is illustrated in
Figure 9.22, where a time-varying sinusoidal collector current IC + ΔIC is
shown Page 593to the right of the horizontal time axis and the resulting
time-varying sinusoidal collector- emitter voltage VCE + ΔVCE is shown
below the VCE axis. Notice that the base current oscillates between 110 and
190 μA, causing the collector current to correspondingly fluctuate between
15.3 and 28.6 mA. Thus, the BJT acts as a current amplifier.

Figure 9.22 Amplification of sinusoidal oscillations in a BJT

A Practical Self-Biasing BJT Circuit
In practice, the circuit shown in Figure 9.21 can be used to bias a BJT;
however, it has some weaknesses that can create serious problems in
applications. In particular, variations in temperature can cause the operating
point Q to shift significantly, and perhaps result in thermal runaway. Even if
temperature effects are compensated for by other means, the Q points for
two apparently identical reproductions of this circuit can be significantly
different if the β values for the two BJTs are significantly different, as is
often the case even in BJTs of the same type and lot.



(9.22)

(9.23)

A much better self-biasing circuit that automatically compensates for
such parameter variations is shown in Figure 9.23. This circuit also has the
added advantage of needing only one common power supply VCC. Notice
that VCC appears across both (R1, R2) and (RC, RE) such that the circuit can
be redrawn as shown in Figure 9.24(a). The Thévenin equivalent network
seen by the base is shown in Figure 9.24(b), where:

and

Figure 9.23 Practical single power supply BJT self-bias DC
circuit

Notice that the circuit in Figure 9.24(b) closely resembles the circuit in
Figure 9.21. The important difference is the presence of RE between the
emitter and the node along the bottom portion of the diagram.



(9.24)

(9.25)

(9.26)

(9.27)

(9.28)

Figure 9.24 DC self-bias circuit represented in equivalent-circuit
form

KVL can be applied around the base and collector networks to yield:
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and

where

These two equations can be solved to obtain:

and

The latter equation is the load line for the bias circuit. Notice that the
effective load resistance seen by the collector circuit is now:

rather than simply RC.

The role of RE is to provide negative feedback to a change in the
operating point Q due to, for example, a change in temperature that, in turn,
changes β of the transistor. Refer to Figure 9.24(b) for the case of a change



Δβ. The most immediate effect is a change in the collector current ΔIC =
ΔβIB. In turn, this change results in a change in the emitter current ΔIE = ΔIC
+ ΔIB. It is here that RE plays its part. The change in the emitter current
results in a change in the voltage across RE of ΔIERE, which then brings
about a change in the voltage VBE across the EBJ. Finally, this change in VBE
brings about a change in the base current due to the fact that the EBJ is a
diode. At this point, it is important to realize that the change in base current
always tends to offset the original change in the collector current because
ΔIC = βΔIB. In other words, if Δβ is positive, then ΔIB will be negative, and
vice versa. Thus, while a change in β tends to move the operating point Q,
the effect of RE is to restrain Q from moving.
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EXAMPLE 9.6 A BJT Small-Signal Amplifier
Problem
With reference to the BJT amplifier of Figure 9.25 and to the collector
characteristic curves of Figure 9.22, determine (1) the DC operating point of
the BJT, (2) the nominal current gain β at the operating point, and (3) the AC
voltage gain G = ΔVo/ΔVB.



1.

Figure 9.25

Solution
Known Quantities: Base, collector, and emitter resistances; base and
collector supply voltages; collector characteristic curves; BE junction offset
voltage.
Find: (1) DC (quiescent) base and collector currents IBQ and ICQ and
collector-emitter voltage VCEQ, (2) β = ΔIC/ΔIB, and (3) G = ΔVo/ΔVB.

Schematics, Diagrams, Circuits, and Given Data: RB = 10 kΩ; RC = 375 Ω;
VBB = 2.1 V; VCC = 15 V; Vγ = 0.6 V. Collector characteristic curves such as
those shown in Figure 9.27.
Assumptions: Assume that the BE junction resistance is negligible
compared to the base resistance. Assume that each voltage and current can
be represented by the superposition of a DC (quiescent) value and an AC
component, for example, υ0 = V0Q + ΔV0.

Analysis:
DC operating point. If the resistance of the BE junction is assumed to
be much smaller than RB, any change in the voltage across the EBJ is
negligible such that υBE = VBEQ = Vγ. Figure 9.26 shows the resulting
DC equivalent base circuit. KVL yields:

The quiescent base current can be computed as:



2.

3.

Figure 9.26

The load-line equation for the collector circuit is given by KVL as:

The load line and its intersection Q with the IB = 150 μA line is shown
in Figure 9.27. At the operating or quiescent point Q, VCEQ = 6.75 V,
ICQ = 22 mA, and IBQ = 150 μA.

Figure 9.27 Operating point on the characteristic curve

AC gain. The current gain is determined from the characteristic curves
of Figure 9.27. The collector current values corresponding to base
currents of 190 and 110 μA are 28.6 Page 596and 15.3 mA,
respectively. These collector current excursions ΔIC from the Q point
correspond to the effects of an oscillation ΔIB in the base current. Thus,
the current gain of the BJT amplifier can be computed as:

which is the nominal current gain of the transistor.
AC voltage gain. To determine the AC voltage gain G = ΔVo/ΔVB,
express ΔVo as a function of ΔVB. Observe that .
Thus:



The principle of superposition allows ΔIB to be computed from the
KVL equation for the base circuit.

However, due to the assumed small EBJ resistance, ΔVBE is negligible.
Thus:

Substitute this result into the expression for ΔVo to find

or

Comments: The circuit examined in this example is not self-biasing, but it
demonstrates most of the essential features of BJT amplifiers, which are
summarized below.

Transistor amplifier analysis is greatly simplified by applying the
principle of superposition to consider the DC bias circuit and the AC
equivalent circuits separately.
Once the bias point Q has been determined, the current gain can also be
determined. Its value is somewhat dependent on the location of Q.
The AC voltage gain of the amplifier is strongly dependent on RB and
RC. Note that the AC voltage gain ΔVo is negative! This inversion
corresponds to a 180° phase shift for a sinusoidal AC input. This result
is typical of all common-emitter amplifiers.

It is important to master this example when studying this section.



EXAMPLE 9.7 Practical BJT Bias Circuit
Problem
Determine the DC bias point of the transistor in the circuit of Figure 9.23.

Solution
Known Quantities: Base, collector, and emitter resistances; collector supply
voltage; nominal transistor current gain; BE junction offset voltage.
Find: DC (quiescent) base and collector currents IBQ and ICQ and collector-
emitter voltage VCEQ.

Schematics, Diagrams, Circuits, and Given Data: R1 = 100 kΩ; R2 = 50
kΩ; RC = 5 kΩ; RE = 3 kΩ; VCC = 15 V; Vγ = 0.7 V, β = 100.
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Analysis: Compute the equivalent base voltage from equation 9.22,

and the equivalent base resistance from equation 9.23.

Compute the base current from equation 9.27.

Knowing the current gain of the transistor β, compute the collector current:



Finally, the collector-emitter junction voltage can be computed with
reference to equation 9.28:

Thus, the Q point of the transistor is given by:

Comment In practice, the value of β is not used in calculations because its
value can vary greatly even within the same type of transistor. Instead,
amplifier designs rely on β ≫ 1, which is a feature of all BJTs.

CHECK YOUR UNDERSTANDING
In Example 9.6, find the new Q point if RC is increased to 680 Ω.

CHECK YOUR UNDERSTANDING
In the circuit of Figure 9.24, find the value of VBB that yields a collector
current IC = 6.3 mA. What is the corresponding collector-emitter voltage?
Assume that VBE = 0.6 V, RB = 50 kΩ, RE = 200 Ω, RC = 1 kΩ, β = 100, and
VCC = 14 V.

Answer: Since VBB and RB are unchanged and the change in VBEQ
is negligible, IBQ will remain approximately equal to 150 μA. By
observation, VCEQ ≈ 0.5 V is much smaller and the BJT is close to
saturation. The new collector current ICQ ≈ 20 mA.



What percentage change in collector current would result if β were
changed to 150 in Example 9.8? Why does the collector current increase less
than 50 percent?
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9.5 GATES AND SWITCHES
In describing the properties of transistors, it was suggested that, in addition
to serving as amplifiers, three-terminal devices can be used as electronic
switches in which one terminal controls the current between the other two. It
had also been hinted in Chapter 8 that diodes can act as on/off devices as
well. In this section, we discuss the operation of diodes and transistors as
electronic switches, illustrating the use of these electronic devices as the
switching circuits that are at the heart of analog and digital gates. Transistor
switching circuits form the basis of digital logic circuits, which are
discussed in greater detail in Chapter 11. The objective of this section is to
discuss the internal operation of these circuits and to provide the reader
interested in the internal workings of digital circuits with an adequate
understanding of the basic principles.

An electronic gate is a device that, on the basis of one or more input
signals, produces one of two or more prescribed outputs; as will be seen
shortly, one can construct both digital and analog gates. A word of
explanation is required, first, regarding the meaning of the words analog and
digital. An analog voltage or current—or, more generally, an analog signal
—is one that varies in a continuous fashion over time, in analogy (hence the
expression analog) with a physical quantity. An example of an analog signal
is a sensor voltage corresponding to ambient temperature on any given day,
which may fluctuate between, say, 30 and 50°F. A digital signal, on the other

Answer: VBB = 5 V, VCE = 6.43 V; 3.74 percent. Because RE
provides negative feedback action that will keep IC and IE nearly
constant



hand, is a signal that can take only a finite number of values; in particular, a
commonly encountered class of digital signals consists of binary signals,
which can take only one of two values (for example, 1 and 0). A typical
example of a binary signal would be the control signal for the furnace in a
home heating system controlled by a conventional thermostat, where one
can think of this signal as being on (or 1) if the temperature of the house has
dropped below the thermostat setting (desired value), or off (or 0) if the
house temperature is greater than or equal to the set temperature (say, 68°F).
Figure 9.28 illustrates the appearance of the analog and digital signals in this
furnace example.

Figure 9.28 Illustration of analog and digital signals

The discussion of digital signals will be continued and expanded in
Chapters 11 and 12. Digital circuits are an especially important topic
because a large part of today’s industrial and consumer electronics is
realized in digital form.

Diode Gates

Recall that a diode conducts current when it is forward-biased and otherwise
acts very much as an open-circuit. Thus, the diode can serve as a switch if
properly employed. The circuit of Figure 9.29 is called an OR gate; it
operates as follows. Let voltage levels greater than, say, 2 V correspond to a
“logic 1” and voltages less than 2 V represent a “logic 0.” Suppose, then,



that input voltages υA and υB can be equal to either 0 V or 5 V. If υA = 5 V,
diode DA will conduct; if υA = 0 V, DA will act as an open-circuit. The same
argument holds for DB. It should be apparent, then, that the voltage across
the resistor R will be 0 V, or logic 0 if both υA and υB are 0. If either υA or υB
is equal to 5 V, though, the corresponding diode will conduct, and—
assuming an offset model for the diode with Vγ = 0.6 V—we find that υo =
4.4 V, or logic 1. Similar analysis yields an equivalent result if both υA and
υB are equal to 5 V.

Figure 9.29 Diode OR gate

This type of gate is called an OR gate because υo is equal to logic 1 (or
“high”) if either υA or υB is on while it is logic 0 (or “low”) if neither υA nor
υB is on. Other functions can also be implemented; however, the discussion
of diode gates will be limited to this simple introduction because diode gate
circuits, such Page 599as the one of Figure 9.29, are rarely, if ever,



employed in practice. Most modern digital circuits employ transistors to
implement switching and gate functions.

BJT Gates

The large-signal models and the i-υ characteristics of BJTs include a cutoff
mode, where the collector current is virtually zero. On the other hand, when
sufficient current is injected into the base, a BJT will reach saturation, and
the collector current is independent of the base current. This behavior is
quite well suited to the design of electronic gates and switches and can be
visualized by superimposing a load line on the collector characteristic, as
shown in Figure 9.30.

Figure 9.30 BJT switching characteristic and simple logic inverter
circuit



(9.29)

(9.30)

(9.31)

The operation of the simple BJT switch is illustrated in Figure 9.30. The
load-line equation of the collector circuit is

and

Thus, when the input voltage υin is low (say, 0 V), the transistor is in cutoff
mode and the collector current is very small. Then:

such that the output is “logic high.” This result is represented by point A in
Figure 9.30.

When υin is large enough to drive the transistor into saturation, the
collector-emitter voltage saturates at VCE sat, which is typically on the order
of 0.2 V. This result corresponds to point B in Figure 9.30. For the input
voltage υin to drive the BJT into saturation, a base current of approximately
50 μA is required. Assuming υin = 5 V and RB = 82 kΩ, then iB = (υin −
Vγ)/RB = (5 − 0.6)/82,000 ≈ 54 μA such that the BJT is in saturation, and υo
= VCE sat ≈ 0.2 V.

Thus, whenever υin corresponds to a logic high (or logic 1), υo takes a
value close to 0 V, or logic low (or 0); conversely, υin = “0” (logic “low”)
leads to υo = “1.” The values of 5 and 0 V for the two logic levels 1 and 0
are quite common in practice and are the standard values used in a family of
logic circuits denoted by the acronym TTL, which stands for transistor-
transistor logic.3 One of the more common TTL blocks is the inverter
shown in Figure 9.30, so called because it “inverts” the input by providing a
low output for a high input, and vice versa. This type of inverting, or
“negative,” logic behavior is typical of BJT common-emitter amplifier
circuits.



EXAMPLE 9.8 TTL NAND Gate
Problem
Refer to Figure 9.31 and complete the table below to determine the logic
gate operation of a TTL NAND gate, which acts as an inverted AND gate
(thus the prefix N in NAND, which stands for NOT).
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Figure 9.31 TTL NAND gate

Solution
Known Quantities: Resistor values; VBE on and VCE sat for each transistor.



1.

2.

Find: υo for each of the four combinations of υ1 and υ2.

Schematics, Diagrams, Circuits, and Given Data: R1 = 5.7 kΩ; R2 = 2.2
kΩ; R3 = 2.2 kΩ; R4 = 1.8 kΩ; VCC = 5 V; VBE on = Vγ = 0.7 V; VCE sat = 0.2
V.
Assumptions: Model the BE junctions of Q1 as offset diodes. Assume that
the transistors are in saturation when conducting.
Analysis: The inputs to the TTL gate, υ1 and υ2, are applied to the emitter of
transistor Q1. The transistor is designed so as to have two emitter circuits in
parallel. Transistor Q1 is modeled by the offset diode model, as shown in
Figure 9.32. Consider each of the four cases.

Figure 9.32

υ1 = υ2 = 0 V. With the emitters of Q1 connected to ground and VCC = 5
V, the BE junction will clearly be forward-biased and Q1 is on. This
result means that the base current of Q2 (equal to the collector current of
Q1) is negative, and therefore Q2 must be off. If Q2 is off, its emitter
current must be zero, and therefore the base current into Q3 is zero.
With Q3 off, the current through R3 is zero, and therefore υo = 5 − υR3 =
5 V.
υ1 = 5 V; υ2 = 0 V. With reference to Figure 9.32, diode D2 is still
forward-biased, but D1 is now reverse-biased because of the 5-V



3.

4.

potential at υ1. Thus, the EBJ conducts current and Q1 is on. The
remainder of the analysis is the same as in case 1, and Q2 and Q3 are
both off, leading to υo = 5 V.
υ1 = 0 V; υ2 = 5 V. By symmetry with case 2, one emitter branch is
conducting, Q1 is on, Q2 and Q3 are off, and υo = 5 V.
υ1 = 5 V; υ2 = 5 V. Here, diodes D1 and D2 are both reverse-biased,
there is no emitter current, and Q1 is off. Note, however, that although
D1 and D2 are reverse-biased, the BCJ of Q1 is forward-biased, and a
base current exists for Q2; thus, Q2 is on and its emitter current turns on
Q3. To determine the output voltage, assume that Q3 is operating in
saturation such that:

Ohm’s law can be applied to R3 to find:

A reasonable question is, Can Q2 also be in saturation? If it is, then R2
and R4 are virtually in series and the base voltage of Q3 can be
computed by voltage division.

Since the emitter of Q3 is tied directly to the reference node (V = 0), the
voltage across the EBJ of Q3 would also be 2.16 V. But this value is
incompatible with the assumption that Vγ ≈ 0.7 V for silicon-based
transistors. Thus, Q2 cannot be in saturation. But since it is on, it must
be in active mode.
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The results for all four cases are summarized in the table below. The
output values are consistent with TTL logic; the output voltage for case 4 is



1.

sufficiently close to zero to be considered zero for logic purposes.

Comments: While exact analysis of TTL logic gate circuits could be tedious
and involved, the method demonstrated in this example—to determine
whether transistors are on or off—leads to a very simple analysis. When
working with logic devices, the primary interest is in logic levels rather than
exact values; thus, approximations are appropriate.

CHECK YOUR UNDERSTANDING
Use the BJT switching characteristic of Figure 9.30 to find the value of RB
required to drive the transistor to saturation. Assume a base current of 50 μA
when the minimum υin to turn on the transistor is 2.5 V.

Conclusion
This chapter introduces the bipolar junction transistor, and by way of the
simple circuit model demonstrates its operation as an amplifier and a switch.
Upon completing this chapter, you should have mastered the following
learning objectives:

Understand the basic principles of amplification and switching.
Transistors are three-terminal electronic semiconductor devices that can
serve as amplifiers and switches.

Answer: RB ≤ 38 kΩ



2.

3.

4.

5.

6.

9.1

Understand the physical operation of bipolar junction transistors;
determine the operating point of a bipolar junction transistor circuit.
The transistor has four modes of operation. These can be readily
identified by simple voltage measurements.
Understand the large-signal model of the bipolar junction transistor
and apply it to simple amplifier circuits. The large-signal model of the
BJT is very easy to use, requiring only a basic understanding of DC
circuit analysis, and can be readily applied to many practical situations.
Select the operating point of a bipolar junction transistor circuit.
Biasing a transistor consists of selecting the appropriate values for the
DC supply voltage(s) and for the resistors that comprise a transistor
amplifier circuit. When biased in the forward active mode, the transistor
acts as a current-controlled current source and can amplify small
currents injected into the base by as much as a factor of 200.
Understand the principle of small-signal amplifiers. WHEN MAINTAINED

IN ACTIVE MODE, A BJT CAN BE USED TO PRODUCE A LINEAR AMPLIFIER, WHERE

THE SHAPE OF A SMALL INPUT WAVEFORM IS REPRODUCED ON A MUCH LARGER

SCALE AT AN OUTPUT TERMINAL.
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Understand the operation of a bipolar junction transistor as a switch
and analyze basic analog and digital gate circuits. The operation of a
BJT as a switch is very straightforward, and consists of designing a
transistor circuit that will go from cutoff to saturation when an input
voltage changes from a high to a low value, or vice versa. Transistor
switches are commonly used to design digital logic gates.

HOMEWORK PROBLEMS
Section 9.2: The Bipolar Junction Transistor

For each transistor shown in Figure P9.1, determine whether the BE
and BC junctions are forward- or reverse-biased, and determine the
operating mode.



9.2
a.

b.

c.

d.

9.3

9.4

Figure P9.1

Determine the mode of operation for the following transistors:

npn, VBE = 0.8 V, VCE = 0.4 V

npn, VCB = 1.4 V, VCE = 2.1 V

pnp, VEB = 0.9 V, VEC = 0.4 V

npn, VBE = −1.2 V, VCB = 0.6 V

Given the circuit of Figure P9.3, estimate the operating point of the
transistor. Assume Vγ = 0.65 V and β = 150.

Figure P9.3

Refer to Figure 9.4 and assume that for a pnp transistor the emitter and
base currents are IE = 5 mA and IB = 0.2 mA, respectively. The voltage



a.

b.

c.

9.5

9.6

drops across the emitter-base and collector-base junctions are VEB =
0.67 V and VCB = 7.8 V. Find:

VCE.

The collector current.

The total power dissipated in the transistor, defined here as P =
VCEIC + VBEIB.

For the circuit shown in Figure P9.5, determine the emitter current IE
and the collector-base voltage VCB, as defined in Figure 9.9. Assume Vγ
= 0.62 V.

Figure P9.5

Given the circuit of Figure P9.6, determine VCE and IC. Assume β = 80,
R1 = 15 kΩ, R2 = 25 kΩ, Rc = 2 kΩ, VBB = 5 V, VCC = 10 V, and VAA =
−4 V.

Figure P9.6
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9.7

9.8

9.9

a.

b.

Given the circuit of Figure P9.7, determine the emitter current IE and
the collector-base voltage VCB. Assume the offset voltage is Vγ = 0.6 V.

Figure P9.7

Given the circuit of Figure P9.8, estimate VCE and IC. Assume R1 = 50
kΩ, R2 = 10 kΩ, RC = 600 Ω, RE = 400 Ω, VBE = 0.7 V, IB = 25 μA, I2 =
230 μA, and VCC = 15 V. Assume a 2N2222A BJT.

Figure P9.8

The collector characteristics for a certain transistor are shown in Figure
P9.9.

Find the ratio IC/IB for VCE = 10 V and IB = 100, 200, and 600
μA.

If the maximum allowable collector power dissipation is P =
iCυCE = 0.5 W for IB = 500 μA, find VCE.



9.10

9.11

Figure P9.9

Given the circuit of Figure P9.10, determine the current IR. Let RB = 30
kΩ, RC1 = 1 kΩ, RC2 = 3 kΩ, R = 7 kΩ, VBB1 = 4 V, VBB2 = 3 V, VCC =
10 V, β1 = 40, and β2 = 60.

Figure P9.10

For the circuit shown in Figure P9.11, determine IR. Let RB = 50 kΩ, RC
= 1 kΩ, R = 2 kΩ, VBB = 2 V, VCC = 12 V, and β = 120.



9.12

9.13

a.

b.

c.

Figure P9.11

For the circuit shown in Figure P9.12, determine whether the transistor
is in saturation. Let RB = 8 kΩ, RE = 260 Ω, RC = 1.1 kΩ, VCC = 13 V,
VBB = 7 V, and β = 100.

Figure P9.12
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For the circuit shown in Figure P9.8, VCC = 20 V, RC = 5 kΩ, and RE =
1 kΩ. Determine the operating mode of the transistor if:

IC = 1 mA, IB = 20 μA, VBE = 0.7 V

IC = 3.2 mA, IB = 0.3 mA, VBE = 0.8 V

IC = 3 mA, IB = 1.5 mA, VBE = 0.85 V



9.14

9.15

9.16

For the circuit shown in Figure P9.14, find the minimum input voltage
υin required to saturate the transistor. Assume VCC = 5 V, RC = 2 kΩ, RB
= 50 kΩ, VCE sat = 0.2 V, VBE sat = 0.8 V, and β = 50.

Figure P9.14

An npn transistor, such as that in Figure 9.9, is operated in active mode
with iC = 60iB and with junction voltages of VBE = 0.6 V and VCB = 7.2
V. If IE = 4 mA, find (a) IB and (b) VCE.

Use the collector characteristics of the 2N3904 npn transistor shown in
Figure P9.16(a) and (b) to determine IC and VCE of the transistor in
Figure P9.16(c). Is the transistor in the active mode? If so, determine its
value of β.



Figure P9.16



9.17

9.18

9.19

9.20

9.21

9.22

Section 9.3: BJT Large-Signal Model
Refer to Example 9.3 and Figure 9.17. Assume that all given values are
unchanged except that the application requires ILED ≤ 10 mA. Find the
range of collector resistance RC values that will permit the transistor to
supply the required current.

Refer to the Focus on Measurements box, “Large-Signal Amplifier
Design for a Diode Thermometer” and Figure 9.15. Assume RB = RS =
100 Ω. Estimate (by analysis or simulation) VCEQ when RC = 330 Ω
and when RC = 470 Ω. Do the results make sense? How do these
changes impact the performance of the diode thermometer?

Refer to Example 9.3 and Figure 9.17. Assume that all given values are
unchanged except that RC = 340 Ω, ILED ≤ 10 mA, and that the
maximum base current supplied by the microprocessor is 5 mA. Find
the range of values of RB that satisfy these requirements.
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Use the same data given in Problem 9.19 but assume that RB = 10 kΩ.
Find the minimum value of β that satisfies the requirements.

Repeat Problem 9.20 for the case of a microprocessor operating on a
2.8-V supply (that is, VON = 2.8 V).

Consider the LED driver circuit of Figure 9.17. This circuit is now used
to drive an automotive fuel injector (an electromechanical solenoid
valve). The differences in the circuit are as follows: The collector
resistor and the LED are replaced by the fuel injector, which can be
modeled as a series RL circuit. The voltage supply for the fuel injector
is 13 V (instead of 5 V). For the purposes of this problem, it is
reasonable to assume R = 12 Ω and L ∼ 0. Assume that the maximum
current that can be supplied by the microprocessor is 1 mA, that the
current required to drive the fuel injector must be at least 1 A, and that
the transistor saturation voltage is VCE sat = 1 V. Find the minimum
value of β required for the transistor.



9.23

9.24

9.25

9.26

Refer to Problem 9.22. Assume β = 7,000. Find the allowable range of
RB.

Given the circuit of Figure P9.8, find the minimum value of RC such
that transistor operates in active mode and dissipates less than 15 mW.
Let VCC = 10 V, R1 = R2 = 40 kΩ, RE = 1.5 kΩ, VBE = 0.7 V, β = 70, and
VCE sat = 0.25 V.

The circuit shown in Figure P9.25 is a 9-V battery charger. The purpose
of the Zener diode is to provide a constant voltage across resistor R2,
such that the transistor will source a constant emitter (and therefore
collector) current. Select the values of R2, R1, and VCC such that the
battery will be charged with a constant 40-mA current.

Figure P9.25

The circuit shown in Figure P9.26 is a variation of that shown in Figure
P9.25. Analyze the operation of the circuit and explain how this circuit
will provide a decreasing charging current (taper current cycle) until
the Li-ion battery is fully charged (8.4 V—see Comments in Example
9.4). Choose appropriate values of VCC and R1 that would result in a
practical design. Use standard resistor values.



9.27

9.28

Figure P9.26

The circuit shown in Figure P9.27 is a variation of the motor driver
circuit of Example 9.5. The external voltage υin represents the analog
output of a microcontroller and alternates between 0 and 5 V. Complete
the design of the circuit by selecting the value of the base resistor Rb
such that the motor will see the maximum design current when υin = 5
V. Use the other specifications given in the example.

Figure P9.27

For the circuit shown in Figure P9.28, RC = 1 kΩ, VBB = 5 V, βmin = 50,
and VCC = 10 V. Find the range of RB so that the transistor is in
saturation.



9.29

9.30

9.31

Figure P9.28
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For the circuit shown in Figure P9.28, VCC = 5 V, RC = 1 kΩ, RB = 10
kΩ, and βmin = 50. Find the range of values of VBB so that the transistor
is in saturation.

For the circuit shown in Figure 9.13, Vγ = 0.6 V, RB = 100 kΩ, IBB = 26
μA, RC = 2 kΩ, VCC = 10 V, and β = 100. Find IC, IE, VCE, and VCB.

Section 9.4: A Brief Introduction to Small-Signal
Amplification

The circuit shown in Figure P9.31 is a common-emitter amplifier stage.
Determine the DC Thévenin equivalent of the network between the
base node and the reference node. Use it to redraw the circuit.



9.32

9.33

Figure P9.31

The circuit shown in Figure P9.32 is a common-collector (or emitter
follower) amplifier stage implemented with an npn silicon transistor
and a single DC supply VCC = 12 V. Determine VCEQ at the DC
operating (Q) point.

Figure P9.32

Shown in Figure P9.33 is a common-emitter amplifier stage
implemented with an npn silicon transistor and two DC supplies VCC =
12 V and VEE = 4 V. Determine VCEQ and the DC mode of operation.



9.34

9.35

a.

b.

c.

d.

Figure P9.33

Shown in Figure P9.34 is a common-emitter amplifier stage
implemented with an npn silicon transistor and a single DC supply VCC
= 12 V. Determine VCEQ and the DC mode of operation.

Figure P9.34

For the circuit shown in Figure P9.35 υS is a small sine wave signal
with average value of 3 V. If β = 100 and RB = 60 kΩ,

Find the value of RE so that IE is 1 mA.

Find RC so that VC is 5 V.

For Ro = 5 kΩ, find the small-signal equivalent circuit of the
amplifier.

Find the small-signal voltage gain.
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9.36

a.

b.

c.

d.

e.

Figure P9.35

The circuit in Figure P9.36 is similar to a common collector when RC is
small. Assume RC = 200 Ω. The AC coupling capacitor Cb blocks any
DC component of υS so assume υS is a small sine wave signal as in
Problem 9.35.

Find the operating point Q of the transistor.

Find the voltage gain υo/υin.

Find the current gain io/iin.

Find the input resistance ri = υin/iin.

Find the output resistance ro = υo/io.

Figure P9.36



9.37

9.38

a.

b.

c.

9.39

A Darlington pair of transistors is shown in Figure P9.37. The
transistor parameters for large-signal operation are Q1: β = 130; Q2: β =
70. Calculate the overall small-signal current gain.

Figure P9.37

Assume the transistor shown in Figure P9.8 has Vγ = 0.6 V. Also
assume RC = 1.5 kΩ, VCC = 18 V and RE = 1.0 kΩ. Determine values
for R1 and R2 such that:

The DC collector-emitter voltage VCEQ is 5 V.

The DC collector current ICQ will vary no more than 10 percent
as β varies from 20 to 50.

Values of R1 and R2 that will permit maximum symmetrical swing
in the collector current. Assume β = 100.

Section 9.5: BJT Switches and Gates
An automobile fuel injector system is depicted in Figure P9.39(a). The
internal circuitry of the injector can be modeled as shown in Figure
P9.39(b). The injector will inject gasoline into the intake manifold
when Iinj ≤ 0.1 A. A voltage pulse train υsignal is shown in Figure



a.

b.

P9.39(c). For a cold engine at start-up, the pulse width τ is determined
by:

where

The characteristics of VCIT and KC are shown in Figure P9.39(d).
Assume the transistor Q1 saturates at Page 608VCE = 0.3 V and VBE =
0.9 V. Find the period of the fuel injector pulse if:

Vbatt = 13 V, TC = 100°C

Vbatt = 8.6 V, TC = 20°C



9.40

Figure P9.39

The circuit shown in Figure P9.40 is used to switch a relay under the
control of a microcontroller. The relay dissipates 0.5 W at 5 VDC. It



9.41

9.42

9.43

switches on at 3 VDC and off at 1.0 VDC. What is the maximum
frequency with which the relay can be switched? The inductance of the
relay is 5 mH, and the transistor saturates at 0.2 V, Vγ = 0.8 V.

Figure P9.40

Show that the circuit of Figure P9.41 functions as an OR gate if the
output is taken at υo1.

Figure P9.41

Show that the circuit of Figure P9.41 functions as a NOR gate if the
output is taken at υo2.

Show that the circuit of Figure P9.43 functions as an AND gate if the
output is taken at υo1.
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9.44

9.45

9.46

Figure P9.43

Refer to the circuit in Figure P9.14. The input voltage waveform is
shown in Figure P9.44. Determine υo assuming β = 90, RB = 40 kΩ, RC
= 2 kΩ, and VCC = 4 V.

Figure P9.44

For the circuit shown in Figure P9.14, assume β > 10, and the minimum
value of υin for a high input is 2.0 V. Find the range for resistor RB that
guarantees the transistor is on.

Figure P9.46 shows a circuit with two transistor inverters connected in
series, where



a.

b.

9.47

9.48

Find υB, υo, and the state of transistor Q1 when υin is low (0 V).

Find υB, υo, and the state of transistor Q1 when υin is high (5 V).

Figure P9.46

For the circuit shown in Figure P9.47, determine υo(t), where υin(t) is as
shown in Figure P9.44. Let β = 120, RB = 10 kΩ, RC1 = RC2 = 1 kΩ,
and VCC = 4 V.

Figure P9.47

For the circuit shown in Figure P9.48, determine υo(t), where υin(t) is as
shown in Figure P9.44. Let β = 90, RB = 3 kΩ, RC = 5 kΩ, and VCC = 6



9.49

9.50

V.

Figure P9.48

The basic circuit of a TTL gate is shown in Figure P9.49. Determine its
logic function.
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Figure P9.49

Figure P9.50 shows a three-input TTL NAND gate. Assuming that all
the input voltages are high, find υB1, υB2, υB3, υC2, and υo. Also indicate
the operating mode of each transistor.



9.51

9.52

Figure P9.50

Show that two or more emitter-follower outputs connected to a
common load, as shown in Figure P9.51, result in an OR operation; that
is, υo = υ1 + υ2. Here, the + sign represents a logical OR operation.

Figure P9.51

Verify that the circuit of Figure P9.52 is a NAND gate. Assume that a
low state is 0.2 V, a high state is 5 V, and βmin = 40.



Figure P9.52

1Another family of transistors, the field-effect transistors (FETs), are well-
modeled as voltage controlled devices. See Chapter 10.

2By contrast, a field-effect transistor (FET) is a unipolar device. See Chapter
10.

3TTL logic values are actually quite flexible, with υHIGH as low as 2.4 V and
υLOW as high as 0.8 V.

Design Credits: Mini DVI cable adapter isolated on white background: Robert Lehmann/Alamy
Stock Photo; Balance scale: Alex Slobodkin/E+/Getty Images; Icon for “Focus on measurements”
weighing scales: Media Bakery.
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C H A P T E R
10

FIELD-EFFECT TRANSISTORS:
OPERATION, CIRCUIT MODELS

AND APPLICATIONS

hapter 10 introduces the family of field-effect transistors, or FETs, in
which an external electric field is used to control the conductivity of a
channel, causing the FET to behave either as a voltage-controlled resistor
or as a voltage-controlled current source. FETs are the dominant transistor

family in today’s integrated electronics, and although these transistors come in
several different configurations, it is possible to understand the operation of the
different devices by focusing principally on one type. Two large families of FETs
are the JFETs ( junction FETs) and the MOSFETs (metal-oxide semiconducting
FETs). Both families can be further classified by a mode (enhancement or
depletion) and a channel type (n or p). In this chapter, the focus is on the
enhancement-mode MOSFET with either an n-type channel (NMOS) or p-type
channel (PMOS). The very important CMOS technology, which combines both
NMOS and PMOS, is also introduced.
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1.
2.

3.
4.

5.
6.

1.
2.
3.

 Learning Objectives
Students will learn to...

Understand the classification of field-effect transistors. Section 10.1.
Learn the basic operation of enhancement-mode MOSFETs by understanding
their i-υ curves and defining equations. Section 10.2.
Learn how enhancement-mode MOSFET circuits are biased. Section 10.3.
Understand the concept and operation of FET large-signal amplifiers. Section
10.4.
Understand the concept and operation of FET switches. Section 10.5.
Analyze FET switches and digital gates. Section 10.5.

10.1 FIELD-EFFECT TRANSISTOR CLASSES
There are three major classes of field-effect transistors:

Enhancement-mode MOSFETs
Depletion-mode MOSFETs
Junction field-effect transistors, or JFETs

Each of these classes is comprised of n and p-channel devices, where the n or p
designation indicates the nature of the doping in the channel. The acronym
MOSFET stands for metal-oxide semiconductor field-effect transistor, and
although the specific materials and processes used in fabricating transistors has,
of course, evolved over time, the acronym continues to be used to describe all
enhancement-mode and depletion-mode FETs.

Figure 10.1 shows common circuit symbols for the n- and p-channel devices
within each of the three transistor classes. These transistors have similar
behaviors and applications; for the sake of brevity, only the enhancement-mode
MOSFET is discussed in detail in this chapter. All the FETs are unipolar devices
in that current is conducted by only one type of charge carrier, either holes or
electrons, unlike BJTs that conduct current using both holes and electrons. Also,
whereas both FETs and BJTs are three-terminal devices, the BJTs are asymmetric
devices because the collector and emitter are not interchangeable. In concept, the
analogous terminals of a FET, known as the drain and source, are symmetric and
interchangeable; however, most commercially available FETs are constructed
such that the drain and source are not interchangeable, as suggested by Figure
10.2.



Figure 10.1 Classification of field-effect transistors

Figure 10.2 The n-channel enhancement MOSFET construction and
circuit symbol

10.2 ENHANCEMENT-MODE MOSFETS
Figure 10.2 depicts the circuit symbol and the construction of a typical n-channel
enhancement-mode MOSFET. The device has four regions: the gate, the drain,
the source, and the bulk.1 Each of these regions has its own conducting terminal.
The bulk and source terminals are often electrically connected, in which case the
bulk terminal is not shown in the circuit symbol. The gate consists of a
conducting plate separated from the p-type bulk by a thin (10−9 m) insulating



layer, usually silicon dioxide SiO2.2 The drain and source regions are both
composed of n+ material.
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Consider the case when the gate and source terminals are connected to a
reference node and the drain terminal is connected to a positive voltage supply
VDD , as shown in Figure 10.3(a). The bulk terminal is also connected to the
reference node, by virtue of its connection to the source terminal, and so the pn+

junction between the bulk and drain is reverse-biased. Obviously, the voltage
across the pn+ junction between the bulk and the source is zero, and thus that
junction is also reverse-biased. Thus, a path between drain and source consists of
two reverse-biased pn+ junctions such that the current from drain to source is
effectively zero. In this case, the resistance from drain to source is on the order of
1012 Ω.

When the voltage from gate to source is zero, the n-channel enhancement-
mode MOSFET acts as an open-circuit. Thus, enhancement-mode devices
are referred to as normally off and their channels as normally open.



Figure 10.3 Channel formation in NMOS transistor: (a) With zero
voltage from gate to source, the source-bulk and bulk-drain junctions
are both reverse-biased, and the channel acts as an open-circuit; (b)
when a positive gate-to-source voltage is applied, positive majority
carriers in the bulk (i.e., holes) are repelled by the gate leaving behind
negatively charged atoms. Also, negative majority carriers from the
source and drain (i.e., electrons) are drawn toward the gate. The result
is a conducting n-type channel between the source and drain regions.
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Suppose now that a positive DC voltage VGG is applied to the gate as shown
in Figure 10.3(b). Positive majority charge carriers in the bulk (i.e., holes) are
repelled in the region nearest the gate. At the same time, negative majority charge
carriers in the source and drain (i.e., electrons) are drawn to the same region. The
result is a narrow n-type channel beneath the insulating layer that separates the
gate from the bulk. For a given drain voltage, the higher the gate voltage, the
higher the concentration of negative charge carriers in the channel, and the higher
its conductivity. The term enhancement mode refers to the influence of the gate



voltage in enhancing the conductivity of the channel. The term field effect refers
to the effect of the electric field from gate to bulk that is associated with the gate
voltage.

Depletion-mode devices also exist, in which an externally applied field
depletes the channel of charge carriers by reducing the effective channel width.
Depletion-mode MOSFETs are normally on (i.e., the channel is conducting) and
are turned off (i.e., the channel is not conducting) by an external gate voltage.

Both enhancement- and depletion-mode MOSFETs are available with either
n- or p-type channels. Depending upon the mode and channel type, FETs can be
active high or active low devices, where high and low refer to the voltage of the
gate relative to a common reference. Table 10.1 summarizes these results. n- and
p-channel MOSFETs are referred to as NMOS and PMOS transistors,
respectively.

Table 10.1

Operating Regions and the Threshold Voltage Vt
When the gate-to-bulk voltage of an NMOS transistor (Figure 10.4) is less than a
threshold voltage Vt , a channel will not form between the source and drain. The
result is that no current can be conducted from drain to source and the transistor is
in the cutoff region. A typical value of Vt is between 0.3 and 1.0 V, although it can
be significantly larger.

When the gate-to-bulk voltage is greater than the threshold voltage Vt a
conducting n-type channel is formed. If, as usual, the source and bulk are both
connected to a common reference, then the gate-to-bulk voltage is the same as the
gate-to-source voltage υGS. If the drain is also connected to the same common
reference such that υDS = 0, then a channel of uniform thickness and uniform
resistance per unit length is formed from drain to source. In this state, known as
the ohmic region, the channel effectively acts as a variable resistor whose
resistance is dictated by the gate voltage. In other words, for a given value of υGS,
the channel current iDS is proportional to υDS. This linear relationship between iD



(10.1)

(10.2)

(10.3)

and υDS is valid for small values of υDS. It is common to introduce the overdrive
voltage υOV = υGS − Vt , which is the gate-to-source voltage Page 615in excess of
what is necessary to create a channel. Note that υOV > 0 is another way to write
υGS > Vt.

When υGS > Vt and the drain-to-source voltage υDS is no longer small but held
at a positive value VDD, the channel is thinner near the drain than near the source,
as depicted in Figure 10.3(b). In addition, if υGD > Vt , which is equivalent to the
requirement that υDS < υOV , the channel resistance per unit length is no longer
uniform and the channel current iD is proportional to . In this state, the
transistor is in the triode region.

It is important to realize that the ohmic region is simply one part of the triode
region when υDS ≪ υOV.

Eventually, if υDS is increased to exceed υOV, then υGD < Vt and the channel
thickness at the drain goes to zero. However, due to the increase in υDS, the
depletion region of the bulk drain junction has expanded sufficiently to take the
place of the channel. This condition is often called channel pinch-off. Although
the channel thickness is now zero, current is still conducted in the channel
because the voltage at the drain is large enough to drive mobile electrons in the
channel across the depletion region. However, any increase in υDS beyond υOV is
confined to the depletion region such that the voltage across the channel length
remains constant. The result is that the channel current is independent of υDS and
depends only upon υOV. In this state, the transistor is in the saturation region.

The boundary between triode and saturation is υDS = υOV. Since υGD = υGS −
Vt − υDS + Vt = υOV − υDS + Vt another way to express that boundary is υGD = Vt.
Thus, the condition υDS < υOV is equivalent to υGD > Vt. Likewise, the condition
υDS > υOV is equivalent to υGD < Vt. The three operating regions and their
dependence upon υGD and υGS are depicted in Figure 10.4.
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(10.6)

Figure 10.4 Regions of operation of NMOS transistor

Channel Current iD and the Conductance Parameter
K
The ability of the channel to conduct is dependent on various mechanisms, the
effects of which are captured in a conductance parameter K, defined as:

where W is the cross-sectional width of the channel, L is the channel length, μ is
the mobility of the majority channel charge carrier (electrons in n-channel
devices, holes in p-channel devices), and Cox is the gate-channel capacitance due
to the thin insulating oxide layer. The units of K are A/V2.

With this definition of the conductance parameter, the relationship between iD
and υDS can be expressed in the various operating regions as listed here. In the
cutoff region, υGS < Vt :

In the triode region, υGS > Vt and υGD > Vt :



(10.7)

(10.8)

(10.9)
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When υDS ≪ υOV (or equivalently when υGD ≈ υGS), this expression is
approximated by

which is a linear relationship between iD and υDS such that the transistor acts as a
resistor controlled by the overdrive voltage υOV. This property allows transistors
to act as resistors in integrated circuit (IC) designs. Other applications of a
voltage-controlled resistor are found in tunable (variable-gain) amplifiers and in
analog gates.

In the saturation region, υGS > Vt and υGD < Vt :

Here, the transistor acts as a voltage-controlled current source. This relationship
is made more exact by accounting for the Early effect, which describes the effect
of υDS on the effective length of the channel.

where VA is known as the Early voltage. When VA is large compared to υDS, as is
often the case, the Early effect is small and equation 10.9 is well approximated by
equation 10.8.

The three regions of operation can also be identified in the characteristic
curves shown in Figure 10.5, which can be generated from the circuit of Figure
10.3(b) by varying the gate and drain voltages relative to the source voltage.
Notice that for υGS < Vt the transistor is in the cutoff region and iD = 0. The
boundary between the saturation and triode regions is indicated by the curve 

, which is the locus of all points where the slope of the characteristic
curve first becomes zero as υDS increases. (If the Early voltage VA is not
negligible, then the slope of the characteristic lines in saturation is not zero, but
some small positive constant.) In the saturation Page 617region, the transistor
drain current is nearly constant and independent of υDS. In fact, its value is
proportional to . Finally, in the triode region, the drain current is strongly
dependent on υGS and υVDS. As υDS → 0 the slope of each characteristic curve
becomes approximately constant, which is the characteristic of the ohmic region.
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(10.11)

Figure 10.5 Characteristic drain curves for an NMOS transistor with Vt
= 2 V and K = 1.5 mA/V2

Operation of the P-channel Enhancement-Mode
MOSFET
The operation of a PMOS enhancement-mode transistor is very similar in concept
to that of an NMOS device. Figure 10.6 depicts a test circuit and a sketch of the
device construction. Note that the roles of the n-type and p-type materials are
reversed and that the charge carriers in the channel are holes, not electrons.
Further, the threshold voltage Vt is now negative. However, if υGS is replaced with
υSG, υGD with υDG, and υDS with υSD, and |Vt| is used in place of Vt, then the
analysis of the device is completely analogous to that of an NMOS transistor. In
particular, Figure 10.7 depicts the behavior of a PMOS transistor in terms of the
gate-to-drain and gate-to-source voltages, in analogy with Figure 10.4. The
resulting equations for the three modes of operation of the PMOS transistor are
summarized below:

Cutoff region: when υSG < |Vt|.

Saturation region: when υSG > |Vt|> and υDG < |Vt|.



(10.12)

Triode region: when υSG > |Vt| and υDG > |Vt|.

Figure 10.6 The p-channel enhancement-mode field-effect transistor
(PMOS)

Figure 10.7 Regions of operation of PMOS transistor



a.
b.
c.

EXAMPLE 10.1 Determining the Operating State of a MOSFET
Problem
Determine the operating state of the MOSFET shown in the circuit of Figure 10.8
for the given values of VDD and VGG if the ammeter and voltmeter shown read the
following values:
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Figure P10.8

Solution
Known Quantities: MOSFET drain resistance; drain and gate supply voltages;
MOSFET equations.
Find: MOSFET quiescent drain current iDQ and quiescent drain-source voltage
υDSQ .

Schematics, Diagrams, Circuits, and Given Data: Vt = 2 V; K = 18 mA/V2.

Assumptions: None.
Analysis: First, notice that the diode indicator in Figure 10.8 points from bulk to
channel. These arrows always point from p to n; thus, the channel is n-type and



a.

b.

c.

the transistor is an NMOS. The channel is also marked by a dashed line indicating
enhancement mode.

Since the drain current is zero, the MOSFET is in the cutoff region. You
should verify that both the conditions υGS < Vt and υGD < Vt are satisfied.
In this case, υGS = VGG = 4 V > Vt . On the other hand, υGD = υG − υD = 4 −
2.8 = 1.2 V < Vt . Thus, the transistor is in the saturation region. We can
calculate the drain current to be iD = K(υGS − Vt )2 = 18 × (4 − 2)2 = 72
mA. Alternatively, the drain current can be calculated as:

In the third case, υGS = VGG = υG = 3 V > Vt. The drain voltage is
measured to be υGD = υD = 1.5 V, and therefore υGD = 3 − 1.5 = 1.5 V < Vt.
In this case, the MOSFET is in the ohmic, or triode, region. We can now
calculate the current to be 

. The drain
current can also be calculated as:
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CHECK YOUR UNDERSTANDING
What is the operating state of the MOSFET of Example 10.1 for the following
conditions?

10.3 BIASING MOSFET CIRCUITS

Answer: Saturation



Now that the basic characteristics of enhancement-mode MOSFETs and the
means for identifying operating regions are known, it is time to develop
systematic procedures for biasing a MOSFET. To bias a transistor is to set its DC
operating voltages and currents. This section presents two bias circuits, which are
identical to those presented for biasing BJTs. The first, illustrated in Examples
10.2 and 10.3, uses two distinct voltage supplies. This bias circuit is easier to
understand, but not very practical—as was discussed in Chapter 9, it is preferable
to have a single DC voltage supply and to enable the circuit to regulate its bias
point. These features are presented in the second bias circuit, described in
Examples 10.4 and 10.5.

EXAMPLE 10.2 MOSFET Q-Point Graphical Determination
Problem
Determine the Q point for the MOSFET in the circuit of Figure 10.9.

Figure 10.9 An n-channel enhancement MOSFET circuit and
characteristics
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Solution



Known Quantities: MOSFET drain resistance; drain and gate supply voltages;
MOSFET drain curves.
Find: MOSFET quiescent drain current iDQ and quiescent drain-source voltage
υDSQ.

Schematics, Diagrams, Circuits, and Given Data: VGG = 2.4 V; VDD = 10 V; RD
= 100 Ω.
Assumptions: Use the characteristic curves of Figure 10.9.
Analysis: First, notice that the diode indicator in Figure 10.9 points from bulk to
channel. These arrows always point from p to n; thus, the channel is n-type and
the transistor is an NMOS. The channel is also marked by a dashed line indicating
enhancement mode.

To determine the Q point, apply KVL and Ohm’s law to the drain circuit.

This equation is plotted as a dashed line on the drain curves of Figure 10.9. The
drain current axis intercept is equal to VDD/RD = 100 mA and the drain-source
voltage axis intercept is equal to VDD = 10 V. The Q point is the intersection of
the load line with the υGS = 2.4 V curve. Thus, iDQ = 52 mA and υDSQ = 4.75 V.

Comments: The determination of a Q point for a MOSFET is easier than for a
BJT because the gate current is essentially zero.

EXAMPLE 10.3 MOSFET Q-Point Calculation
Problem
Use the MOSFET characteristic curves shown in Figure 10.9 to determine the Q
point for the conditions listed below.

Solution



Known Quantities: MOSFET drain resistance; drain and gate supply voltages;
MOSFET equations.
Find: MOSFET quiescent drain current iDQ and quiescent drain-source voltage
υDSQ.

Schematics, Diagrams, Circuits, and Given Data: VGG = 2.4 V; VDD = 10 V; Vt =
1.4 V; K = 48.5 mA/V2; RD = 100 Ω.

Assumptions: None.
Analysis: The gate supply VGG ensures that υGSQ = VGG = 2.4 V. Thus, υGSQ > Vt.
Assume that the MOSFET is in the saturation region, and proceed to use equation
10.8 to calculate the drain current:
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Apply KVL and Ohm’s law to the drain circuit to calculate the quiescent drain-to-
source voltage.

The conditions required for saturation (region 2) are υGS > Vt and υGD < Vt. The
first condition is clearly satisfied. The second can be verified by recognizing that:

Clearly, the condition υGD < Vt is also satisfied, and the MOSFET is indeed
operating in the saturation region.

EXAMPLE 10.4 MOSFET Self-Bias Circuit
Problem



Figure 10.10(a) depicts a practical self-bias circuit for a MOSFET. Determine the
Q point for the MOSFET by choosing RS such that υDSQ = 8 V. The values of all
other parameters are given.

Figure 10.10 (a) Self-bias circuit; (b) equivalent circuit for part (a)

Solution
Known Quantities: MOSFET drain and gate resistances; drain supply voltage;
MOSFET parameters Vt and K; desired drain-to-source voltage υDSQ.

Find: MOSFET quiescent gate-source voltage υGSQ , quiescent drain current iDQ ,
and quiescent drain-source voltage υDSQ .

Schematics, Diagrams, Circuits, and Given Data: VDD = 30 V; RD = 10 k Ω; R1
= R2 = 1.2 MΩ; Vt = 4 V; K = 0.2188 mA/V2; υDSQ = 8 V.

Assumptions: Assume operation in the saturation region.



(a)

(b)

(c)

Analysis: Apply Thévenin’s theorem and voltage division to determine the
equivalent network seen by the gate in Figure 10.10(a). The result is shown in
Figure 10.10(b), where

Since the conductance parameter K is given in units of mA/V2, assume that all
currents are expressed in milliamps and all resistances in kilo-ohms. Applying
KVL around the equivalent gate circuit of Figure 10.10(b) yields:

Since iGQ = 0, due to the infinite input resistance of the MOSFET, the gate
equation simplifies to:

The drain circuit equation is
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Use equation 10.8 to obtain:

Use equation (a) to substitute for iDQRS in equation (b). The result is

Since VGG = VDD/2 this equation can be rewritten as

Substitute the above equation for iDQ into equation (c) to obtain a quadratic
equation that can be solved for υGSQ using the desired value of υDSQ.



The two solutions for the above quadratic equation are

Only the first of these two values is acceptable for operation in the saturation
region, since the second root corresponds to a value of υGS lower than the
threshold voltage Vt = 4 V. Substitute the first value into equation (c) to compute
the quiescent drain current:

Use this value in the gate circuit equation (a) to compute the solution for the
source resistance:

Comments: Two mathematical solutions are found from the quadratic equation.
Only one of the solutions satisfies the physical constraints in the problem.

EXAMPLE 10.5 Analysis of a MOSFET Amplifier
Problem
Determine the gate and drain-source voltage and the drain current for the
MOSFET amplifier of Figure 10.11.



Figure 10.11

Solution
Known Quantities: Drain, source, and gate resistors; drain supply voltage;
MOSFET parameters.
Find: υGS; υDS; iD .
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Schematics, Diagrams, Circuits, and Given Data: R1 = R2 = 1 MΩ; RD = 6 k Ω;
RS = 6 kΩ; VDD = 10 V; Vt = 1 V; K = 0.5 mA/V2.

Assumptions: The MOSFET is operating in the saturation region.
Analysis: Since the gate current is zero, the gate voltage can be computed by
applying voltage division to the virtual series connection between resistors R1 and
R2.

Apply KVL and Ohm’s law to write:

Also, since RD = RS Ohm’s law requires the voltage drop across RD to be equal to
the voltage drop across RS. Consequently, υD must be greater than VDD/2 and υGD



must be negative. Thus, υGD < Vt, the transistor is operating in saturation and the
drain current iD is approximated by equation 10.8.

or

with solutions

Only one of these two values will satisfy the requirement υGS > Vt. For iD = 0.89
mA, υGS = 5 − 6iD = −0.34 V. For iD = 0.5 mA, υGS = 5 − 6iD = 2 V. Thus, the
only physically viable solution is

The corresponding drain voltage is therefore found to be

And

Comments: These results can be used to verify that the transistor is operating in
saturation: υGS = 2 > Vt and υGD = υGS − υDS = 2 − 4 = −2 < Vt .

CHECK YOUR UNDERSTANDING
Determine the operating region of the MOSFET of Example 10.2 when υGS = 3.5
V.

Answer: The MOSFET is in the ohmic region.



(10.13)
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CHECK YOUR UNDERSTANDING
Find the lowest value of RD for the MOSFET of Example 10.3 that will place the
MOSFET in the triode region.

CHECK YOUR UNDERSTANDING
Determine the appropriate value of RS if we wish to move the operating point of
the MOSFET of Example 10.4 to υDSQ = 12 V. Also find the values of υGSQ and
iDQ. Are these values unique?

10.4 MOSFET LARGE-SIGNAL AMPLIFIERS
The objective of this section is to illustrate how a MOSFET can be used as a
large-signal amplifier, in applications similar to those illustrated in Chapter 9 for
bipolar transistors. Equation 10.8 describes the approximate saturation region
relationship between the drain current and gate-source voltage for the MOSFET
in a large-signal amplifier application. Appropriate biasing, as explained in the
preceding section, is used to ensure that the MOSFET is operating in saturation.

Answer: ≈ 185.6 Ω

Answer: The answer is unique. One of the two solutions is υGS = 2.42
V, but this value is less than Vt so it is not valid. The other solution is
υGS = 6.03 V with RS = 9.9 kΩ and iD = 0.9 mA.



(10.14)

(10.15)

(10.16)

(10.17)

MOSFET amplifiers are commonly found in one of two configurations: Page
625common-source and source-follower. Figure 10.12 depicts a basic common-
source configuration. When the MOSFET is in saturation, this amplifier is
essentially a voltage-controlled current source (VCCS), in which the drain current
is controlled by the gate voltage. Thus, in saturation, the voltage υo across the
load Ro is

Figure 10.12 Common-source MOSFET amplifier

Notice that as υo increases with VG, the drain voltage relative to reference
decreases. The result is that the drain voltage is inversely related to the gate
voltage for a common-source amplifier.

A source-follower amplifier is shown in Figure 10.13(a). Note that the load is
now connected between the source and reference. Once again, the load voltage is
given by the expression υo = RoiD , where

where Δυ = υG − Vt. Expand the quadratic term to obtain:

This expression can be rearranged to yield:



(10.18)

(10.19)

Use the quadratic equation to solve for the load current:

Figure 10.13 (a) Source-follower MOSFET amplifier; (b) drain current
response of a source-follower amplifier for a 100-Ω load when K =
0.018 A/V2 and Vt = 1.2 V
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where

Figure 10.13(b) depicts the linear drain current response of the source-follower
MOSFET amplifier when the gate voltage varies between the threshold voltage
and 5 V for a 100-Ω load when K = 0.018 A/V2 and Vt = 1.2 V. Notice that υo
increases linearly with VG in a noninverted fashion for a source-follower
amplifier.



EXAMPLE 10.6 Using a MOSFET as a Current Source for Battery
Charging
Problem
Analyze the two battery charging circuits shown in Figure 10.14 (a) and (b). Use
the transistor parameters to determine the range of required gate voltages υG to
provide a variable charging current up to a maximum of 0.1 A. Assume that the
terminal voltage of a discharged battery is 9 V, and of a charged battery is 10.5 V.

Solution
Known Quantities: Transistor large-signal parameters, lithium (Li) battery
nominal voltage.
Find: VDD, υG , range of gate voltages leading to a maximum charging current of
0.1 A.
Schematics, Diagrams, Circuits, and Given Data. Figure 10.14(a) and (b). Vt =
1.2 V; K = 18 mA/V2, VB = 9 V discharged, VB = 10.5 V charged.

Assumptions: Assume that the MOSFETs are operating in the saturation region.
Analysis: The conditions for the MOSFET to be in the saturation region are υGS >
Vt and υGD < Vt. The first condition is satisfied when υGS ≤ 1.2 V. The second
condition is satisfied Page 627for the entire range of battery voltages as long as
VDD > 10.5 + υGS − Vt. Assuming both conditions are satisfied such that the
transistor is operating in saturation the drain current is

The plot of Figure 10.14(c) depicts the battery charging (drain) current as a
function of υGS. The maximum charging current of 100 mA is generated at υGS ≈
3.5 V.



a.

b.

Figure 10.14 MOSFET battery charger

Common-source configuration: In this configuration υS = 0 and so υG > 1.2
V is required to begin charging the battery. The maximum charging current
occurs when υG ≈ 3.5 V so to guarantee continuous operation in saturation
mode it is necessary to set VDD > 10.5 + 3.5 − 1.2 = 12.8 V.

Source-follower (common-drain) configuration: In this configuration υD
= VDD and υGS > 1.2 V is required to begin charging the battery. The
maximum source (battery) voltage is 10.5 V. Thus, υG > 11.7 V is required
to maintain current until the battery is fully charged. Again, the maximum
charging current occurs when υGS ≈ 3.5 V so to guarantee continuous
operation in saturation mode it is necessary to set VDD > 10.5 + 3.5 − 1.2 =
12.8 V, which is the same requirement for the source-follower
configuration. Assuming the battery is initially discharged so that VB = 9 V



and the initial gate voltage is set to υG = 11.7 V the initial charging current
is

Also assume that during charging the battery voltage increases linearly from
9 to 10.5 V over a period of 20 min to calculate the charging current as the
battery voltage increases. Note that when the battery is charged, υGS is no
longer larger than Vt and the transistor is cut off. A plot of the drain
(charging) current as a function of time is shown in Figure 10.14(d). Note
that the charging current tapers to zero as the battery voltage increases.

Comments: In the circuit of part b, the battery voltage is not likely to increase
linearly. The voltage rise will taper off as the battery approaches full charge. In
practice, the charging process will take longer than projected in Figure 10.14(d).
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EXAMPLE 10.7 MOSFET DC Motor Drive Circuit
Problem
Design a common-source MOSFET driver for the Lego® 9V XL motor, model
8882. Figure 10.15 shows the driver circuit. Assume that the motor has a
maximum (stall) current of 2,020 mA and a minimum startup current of 110 mA.
The aim of the circuit is to control the current to the motor (and therefore the
motor torque, which is proportional to the current) via the gate voltage.



Figure 10.15 DC motor drive circuit

Solution
Known Quantities: Transistor large-signal parameters, component values.
Find: R1 and R2, and the value of υG needed to drive the motor.



Schematics, Diagrams, Circuits, and Given Data: Figure 10.15. Vt = 1.2 V; K =
0.08 A/V2.
Assumptions: Assume that the MOSFET operates in the saturation region.
Analysis: The conditions for the MOSFET to be in the saturation region are υGS >
Vt and υGD < Vt . The first condition is satisfied whenever υGS = υG ≤ 1.2 V. Thus
the transistor will first begin to conduct when υG = 1.2 V. The second condition is
satisfied for the nominal 9 V motor voltage as long as VDD > 9 + υGS − Vt.
Assuming both conditions are satisfied such that the transistor is operating in
saturation the drain current is

The plot of Figure 10.15(b) depicts the DC motor (drain) current as a function of
the gate voltage. The maximum current of 2,020 mA can be generated with a gate
voltage of approximately 6.2 V. It would take approximately 2.4 V at the gate to
generate the minimum required current of 110 mA.
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Comments: This circuit could be quite easily implemented in practice to drive the
motor with a signal from a microcontroller. In practice, instead of trying to output
an analog voltage, a microcontroller is better suited to the generation of a digital
(on/off) signal. For example, the gate drive signal could be a pulse-width
modulated (PWM) 0−12 V pulse train, in which the ratio of the on time to the
period of the waveform time is called the duty cycle. Figure 10.15(c) depicts the
possible appearance of a digital PWM gate voltage input.

CHECK YOUR UNDERSTANDING
What is the range of duty cycles needed to cover the current range of the Lego
motor?

Answer: 20 to 52 percent
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10.5 CMOS TECHNOLOGY AND MOSFET
SWITCHES
The objective of this section is to illustrate how a MOSFET can be used as an
analog or a digital switch (or gate). Most MOSFET switches are based upon a
complementary MOS, or CMOS, technology, which makes use of the
complementary characteristics of PMOS and NMOS devices to enable energy-
efficient integrated circuits. Further, CMOS circuits are easily fabricated and
require only a single supply voltage, which is a significant advantage.

Digital Switches and Gates
Consider the CMOS inverter of Figure 10.16, in which two enhancement-mode
transistors, one PMOS and one NMOS, are connected to a single supply voltage
(VDD , relative to the reference node). Their gates share a common input voltage
υin . This device is known as an inverter because the output voltage υo ≈ VDD
whenever υin ≈ 0, and vice versa. When used as a logic device, a voltage close to
VDD is known as a logic high, or a 1, whereas a voltage close 0 V is known as a
logic low, or a 0.

Figure 10.16 CMOS inverter

The objective is to use υin to drive one of the two transistors into the ohmic
region and at the same time drive the other transistor into cutoff. The result would
be that i = 0 due to the transistor in cutoff and that, in turn, would result in υDS = 0
across the other transistor. Thus, the circuit would behave like an open-circuit in



series with a short-circuit. When the NMOS transistor is acting as the short-
circuit, υo ≈ 0. When the PMOS transistor is acting as the short-circuit, υo ≈ VDD.

Consider the case when υin ≈ VDD is acting as a logic high input and assume
that VDD ≫ Vt. The operating mode equations for the NMOS transistor are

The operating mode equations for the PMOS transistor are

With υin ≈ VDD the PMOS transistor will be in cutoff since

With the PMOS is cutoff the drain current through the NMOS will be zero. Also,
with υin ≈ VDD the operating conditions for the NMOS transistor are

where υo = 0 because for the NMOS transistor υDS = iDrDS = 0. The overall result
can be represented as ideal open and closed switches, respectively, as shown in
Figure 10.17(a).

The same analysis can be applied to the case when υin is a logic low. In this
case, the PMOS transistor sees a large negative gate-to-source voltage and a
channel is formed in the triode state. On the other hand, the NMOS transistor sees
a gate-to-source voltage near zero such that no channel is formed in the cutoff
state. Figure 10.17(b) represents this situation in terms of ideal switches. Note
that this circuit does not require the transistors to be biased. Also, note that the
drain current iD is zero in both cases such that a CMOS inverter consumes very
little power.

Page 631



(10.20)

(10.21)

(10.22)

Figure 10.17 CMOS inverter approximated by ideal switches: (a)
When υin is high, υo is tied to ground; (b) when υin is low, υo is tied to
VDD .

Analog Switches
A common analog gate employs a FET and takes advantage of the fact that its
current can be bidirectional in the ohmic region. Recall that a MOSFET operating
in the ohmic state acts very much as a linear resistor. For example, for an NMOS
enhancement-mode transistor the conditions for the ohmic state can be defined as:

As long as the NMOS satisfies these conditions, it reasonably acts as a simple
linear resistor with a channel resistance of:

Thus, the drain current can be simply represented as:

The most important feature of the MOSFET operating in the ohmic region is that
it acts as a voltage-controlled resistor, with the gate-source voltage υGS
controlling the channel resistance rDS . The use of the MOSFET as a switch in the
ohmic region consists of providing a gate-source voltage that can either hold the
MOSFET in the cutoff region (υGS ≤ Vt ) or the ohmic region (υGS ≫ υin).



Consider the circuit shown in Figure 10.18, where υG can be varied externally
and υin is an analog input signal source that is to be connected to the load Ro at
some appropriate time. When υGS ≤ Vt, the FET is in the cutoff region and acts as
an open-circuit. If υGS ≤ Vt such that the MOSFET is in the ohmic region, then
υGD > Vt and the transistor acts as a linear resistance rDS . If rDS ≪ Ro, then, by
voltage division, υo ≈ υin .

MOSFET analog switches are usually produced in integrated-circuit (IC)
form and denoted by the symbol shown in Figure 10.19, where υC is the
controlling voltage (υG in Figure 10.18).
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Figure 10.18 MOSFET analog switch

Figure 10.19 Symbol for a bilateral FET analog gate



FOCUS ON MEASUREMENTS

MOSFET Bidirectional Analog Gate
The variable-resistor feature of MOSFETs in the ohmic state finds application in
the analog transmission gate. The circuit shown in Figure 10.20 depicts a circuit
constructed using CMOS technology. The circuit operates on the basis of a
control voltage υC that can be either low (say, 0 V) or high (υC ≫ Vt ), where Vt is
the threshold voltage for the n-channel MOSFET and −Vt is the threshold voltage
for the p-channel MOSFET. The circuit operates in one of two modes. When the
gate of Q1 is connected to the high voltage and the gate of Q2 is connected to the
low voltage, the path between υin and υo has a relatively small resistance and the
transmission gate conducts. When the gate of Q1 is connected to the low voltage
and the gate of Q2 is connected to the high voltage, the transmission gate acts as a
very large resistance and is an open-circuit for all practical purposes. A more
precise analysis follows.



Figure 10.20 Analog transmission gate
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Let υC = V ≫ Vt and . Assume that the input voltage υin is in the range 0
≤ υin ≤ V. To determine the state of the transmission gate, consider only the
extreme cases υin = 0 and υin = V. When υin = 0, υGS1 = υC − υin = V − 0 = V ≫ Vt
. Since V is above the threshold voltage, MOSFET Q1 conducts (in the ohmic
region). Further, . Since the gate-source voltage is not more
negative than the threshold voltage, Q2 is in cutoff and does not conduct. Since
one of the two possible paths between υin and υo is conducting, the transmission
gate is on. Now consider the other extreme, where υin = V. By reversing the
previous argument, Q1 is now off, since υGS1 = 0 < Vt. However, now Q2 is in the
ohmic state, because . In this case, then, it is Q2 that
provides a conducting path between the input and the output of the transmission
gate, and the transmission gate is also on. Thus, when υC = V and , the
transmission gate conducts and provides a near-zero-resistance (typically tens of
ohms) connection between the input and the output of the transmission gate, for
values of the input ranging from 0 to V.

When the control voltages are reversed so that υC = 0 and , it is
straightforward to show that, regardless of the value of υin, both Q1 and Q2 are
always off; therefore, the transmission gate is essentially an open-circuit.

The analog transmission gate finds common application in analog
multiplexers and sample-and-hold circuits.



EXAMPLE 10.8 NMOS Switch
Problem
Determine the operating points of the NMOS switch of Figure 10.21 when the
input signal is equal to 0 and 2.5 V, respectively.

Figure 10.21

Solution
Known Quantities: Drain resistor; VDD; input signal voltage.

Find: The Q point for each value of the input signal voltage.
Schematics, Diagrams, Circuits, and Given Data: RD = 125 Ω; VDD = 10 V; υin =
0 V for t < 0; υin = 2.5 V for t ≤ 0.

Assumptions: NMOS drain characteristic curves (Figure 10.22).
Analysis: Apply KVL around the drain circuit to find its load line:

If iD = 0, then υDS = 10 V. Likewise, if υDS = 0, then iD = 10/125 = 80 mA. These
two results establish the load line for the drain circuit, as shown in Figure 10.22.
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1.

2.

Figure 10.22 Drain curves for the NMOS of Figure 10.21

t < 0 s: When the input signal is zero, the gate voltage is zero and the NMOS
is in the cutoff region. The Q point is

t ≤ 0 s: When the input signal is 2.5 V, the gate voltage is 2.5 V and the
NMOS is in the saturation region as indicated by the intersection of the load
line and the approximate location of the υGS = 2.5 V curve. The Q point is

This result satisfies KVL because RDiD = 0.06 × 125 = 7.5 V

EXAMPLE 10.9 CMOS Gate
Problem
Determine the logic function implemented by the CMOS gate of Figure 10.23.
Use the table below to summarize the behavior of the circuit.



a.

Solution
Find: The logic value of υout for each combination of υ1 and υ2 .

Schematics, Diagrams, Circuits, and Given Data: Vt = 1.7 V; VDD = 5 V.

Assumptions: Treat the MOSFETs as open-circuits when off and as linear
resistors when on.
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Figure 10.23

Analysis: Note that the state of an NMOS transistor for a high (5-V) gate input is
the same as the state of a PMOS transistor for a low (0-V) gate input; both result
in the formation of a channel with the transistors in the triode (ohmic) state. In
these two cases, the transistors can be represented by simple linear resistors.

On the other hand, the state of an NMOS transistor for a low (0-V) gate input
is the same as the state of a PMOS transistor for a high (5-V) gate input; both
result in no channel formation with the transistors in the cutoff state. In these two
cases, the transistors can be represented by open-circuits.

υ1 = υ2 = 0 V: With both input voltages equal to zero, M3 and M4 are in cutoff
and are off since υGS < Vt for both transistors. On the other hand, both M1 and
M2 form channels, are on, and act as simple linear resistors. However,



b.

c.

d.

because both M3 and M4 act as open-circuits, there is no current through M1
and M2, which act as pull-up resistors; that is, with no current through M1
and M2, there is no voltage drop across either transistor and, thus, υo = VDD =
5 V, which is a logic high. This situation is depicted in Figure 10.24(a).
υ1 = 0 V; υ2 = 5 V: With υ1 = 0, M1 forms a channel, is on, and acts as a
linear resistor. However, M3 does not form a channel, is off, and acts as an
open-circuit. With υ2 = 5 V, M2 does not form a channel, is off, and acts as an
open-circuit, whereas M4 forms a channel, is on, and acts as a linear resistor.
This situation is depicted in Figure 10.24(b). Notice that there can be no
current through M4 because M2 prevents M4 from seeing the 5-V source. The
result is that υo = 0, which is a logic low.
υ1 = 5 V; υ2 = 0 V: By symmetry with case b, when the values of υ1 and υ2
are inverted, the states of the four transistors are also inverted. As a result,
M1 and M4 are off and act as open-circuits, whereas M2 and M3 are on and
act as linear resistors, as depicted in Figure 10.24(c). Again, an open-circuit,
this time M1, prevents M3 from seeing the 5-V source such that there is no
current through M3. The result is that once again υo = 0, which is a logic low.
υ1 = υ2 = 5 V: Finally, with both input voltages equal to 5 V, M1 and M2 do
not form channels, are off, and act as open-circuits. Although M3 and M4
both form channels, are on, and act as linear resistors, as depicted in Figure
10.24(d), they are unable to see the 5-V supply voltage and, thus, their
currents are zero. Therefore, υo = 0, which is a logic low. Notice that this
situation is the inverse of that in case a.
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Figure 10.24 When υ1 = υ2 = 0, the gate-to-source voltage is low for all
four transistors. The result is that the NMOS transistors M3 and M4 are
off, while the PMOS transistors M1 and M2 are on.

These results are summarized in the table below.

Columns υ1, υ2, and υo represent a two-variable truth table when 0 V and 5 V are
interpreted as FALSE and TRUE conditions, respectively. The results indicate
that the output variable υo is TRUE if and only if both input variables are FALSE.
Otherwise, the output is FALSE. Such a truth table describes a two-input NOR
gate.

CHECK YOUR UNDERSTANDING
What value of RD would ensure a drain-to-source voltage υDS of 5 V when υin =
2.5 V in the circuit of Example 10.8?

CHECK YOUR UNDERSTANDING
Analyze the CMOS gate of Figure 10.25, and find the output voltages for the
following conditions: (a) υ1 = 0, υ2 = 0; (b) υ1 = 5 V, υ2 = 0; (c) υ1 = 0, υ2 = 5 V;
(d) υ1 = 5 V, υ2 = 5 V. Show that the behavior is equivalent to a logical NAND
gate.
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Answer: 83.3 Ω



Figure 10.25 CMOS NAND gate

CHECK YOUR UNDERSTANDING
Show that the CMOS bidirectional gate described in the Focus on Measurements
box, “MOSFET Bidirectional Analog Gate,” is off for all values of υin between 0
and V whenever υC = 0 and .

Conclusion
This chapter has introduced field-effect transistors, focusing primarily on metal-
oxide semiconductor enhancement-mode n-channel devices to explain the
operation of FETs as amplifiers. A brief introduction to p-channel devices is used
as the basis to introduce CMOS technology and to present analog and digital
switches and logic gate applications of MOSFETs. Upon completing this chapter,
you should have mastered the following learning objectives:

Answer: 



1.

2.

3.

4.

5.

6.

10.1

Understand the classification of field-effect transistors. FETs include three
major families; the enhancement-mode family is the most commonly used
and is the one explored in this chapter. Depletion-mode and junction FETs
are only mentioned briefly.
Learn the basic operation of enhancement-mode MOSFETs by understanding
their i-υ curves and defining equations. MOSFETs can be described by the i-
υ drain characteristic curves and by a set of nonlinear equations linking the
drain current to the gate-to-source and drain-to-source voltages. MOSFETs
can operate in one of four regions: cutoff, in which the transistor does not
conduct current; triode, in which the transistor can act as a voltage-controlled
resistor under certain conditions; saturation, in which the transistor acts as a
voltage-controlled current source and can be used as an amplifier; and
breakdown when the limits of operation are exceeded.
Learn how enhancement-mode MOSFET circuits are biased. MOSFET
circuits can be biased to operate around a certain operating point, known as
the Q point, when appropriate supply voltages and resistors are selected.
Understand the concept and operation of FET large-signal amplifiers. Once
a MOSFET circuit is properly biased in the saturation region, it can serve as
an amplifier by virtue of its voltage-controlled current source property: small
changes in the gate-to-source voltages are translated to proportional changes
in drain current.
Understand the concept and operation of FET switches. MOSFETs can serve
as analog and digital switches: by controlling the gate voltage, a MOSFET
can be turned on and off (digital switch), or its resistance can be modulated
(analog switch).
Analyze FET switches and digital gates. These devices find application in
CMOS circuits as digital logic gates and analog transmission gates.
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HOMEWORK PROBLEMS
Section 10.2: Enhancement-Mode MOSFETs

The transistors shown in Figure P10.1 have |Vt| = 3 V. Determine the
operating region.



10.2

a.

b.

10.3

a.

b.

c.

10.4

Figure P10.1

The three terminals of an n-channel enhancement-mode MOSFET are at
potentials of 4, 5, and 10 V with respect to ground. Draw the circuit symbol,
with the appropriate voltages at each terminal, if the device is operating

In the ohmic region.

In the saturation region.

An enhancement-type NMOS transistor with Vt = 2 V has its source
grounded and a 3-VDC source connected to the gate. Determine the
operating state if

υD = 0.5 V

υD = 1 V

υD = 5 V

In the circuit shown in Figure P10.4, the PMOS transistor has |Vt| = 2 V and
K = 10 mA/V2. Find R and υS for iS = 0.4 mA.

Figure P10.4



10.5

10.6

10.7

10.8

An enhancement-type NMOS transistor has Vt = 2.5 V and iD = 0.8 mA
when υGS = υDS = 4 V. Find the value of iD for υGS = 5 V.

The NMOS transistor shown in Figure P10.6 has Vt = 1.5 V and K = 0.4
mA/V2. If υG is a pulse with 0 to 5 V, find the voltage levels of the pulse
signal at the drain.

Figure P10.6

In the circuit shown in Figure P10.7, a drain voltage of 0.1 V is established.
Find the current iD for Vt = 1 V and K = 0.5 mA/V2.

Figure P10.7

Section 10.3: Biasing MOSFET Circuits
An n-channel enhancement-mode MOSFET, shown in Figure P10.8, is
operated in the ohmic Page 639region. Size the resistors so that the quiescent
drain current IDQ = 4 mA. Let VDD = 15 V, K = 0.3 mA/V2, and Vt = 3.3 V.



10.9

10.10

10.11

Figure P10.8

Compute the power dissipated by the circuit in Figure P10.9. Let VDD = VSS
= 15 V, R1 = R2 = 90 k Ω, RD = 0.1 k Ω, Vt = 3.5 V, K = 0.816 mA/V2.

Figure P10.9

Find the operating region of the enhancement-type NMOS transistor
shown in Figure P10.8. Let VDD = 20 V, K = 0.2 ma/V2, Vt = 4 V, R1 = 4
MΩ, R2 = 3 MΩ, and RD = 3 kΩ.

Find the operating region of the enhancement-type NMOS transistor
shown in Figure P10.11. Let VDD = 18 V, K = 0.3 ma/V2, Vt = 3 V, R1 =
5.5 MΩ, R2 = 4.5 MΩ, RD = 2 k Ω, and RS = 1 k Ω.



10.12

a.

b.

10.13

Figure P10.11

In the circuit shown in Figure P10.12, the MOSFET operates in the
saturation region, for IS = 0.5 mA and VS = 3 V. This enhancement-type
PMOS has Vt = −1 V, and K = 0.5 mA/V2. Find:

RS and the ratio R1/R2.

The largest allowable value of RS for the MOSFET to remain in the
saturation region.

Figure P10.12

The i-υ characteristic of an n-channel enhancement MOSFET is shown in
Figure P10.13(a); a standard bias circuit based on the n-channel MOSFET
is shown in Figure P10.13(b). Determine the quiescent current IDQ and
drain-to-source voltage VDS when VDD = 10 V and RD = 5 Ω. In what
region is the transistor operating?
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10.14

Figure P10.13

Given the enhancement-type NMOS transistor and drain characteristic
shown in Figure P10.14, compute RS and VDD. Let R1 = 200 kΩ and R2 =
100 k Ω.



10.15

10.16

10.17

a.

b.

10.18

a.

b.

Figure P10.14

Given the enhancement-type NMOS transistor shown in Figure P10.8,
compute R1, R2 and RD. Let ID = 2 mA, Vt = 4 V, VDS = 8 V, VDD = 16 V,
K = 0.375 mA/V2, and total dissipated power PT = 35 mW.

Given the enhancement-type NMOS transistor shown in Figure P10.11,
compute R1, R2, RS and RD. Let ID = 4 mA, VD = 9 V, VDS = 4.5 V, VDD =
18 V, Vt = 4 V, K = 0.625 mA/V2, and maximum total dissipated power
PT, max = 75 mW.

Section 10.4: MOSFET Large-Signal Amplifiers
The power MOSFET circuit of Figure P10.17 is configured as a voltage-
controlled current source (VCCS). Let K = 1.5 A/V2 and Vt = 3 V.

If VG = 5 V, find the range of R for which the VCCS will operate.

If R = 1 Ω, determine the range of VG for which the VCCS will
operate.

Figure P10.17

The circuit of Figure P10.18 is called a source follower and acts as a
voltage-controlled current source (VCCS).

Determine IS if VG = 10 V, R = 2 Ω, K = 0.5 A/V2 and Vt = 4 V.

If the power rating of the MOSFET is 50 W, how small can R be?



10.19
a.

b.

c.

d.

10.20

a.

b.

c.

Figure P10.18
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The circuit of Figure P10.19 is a class A amplifier.

Determine the output current for the given biased audio tone input υG =
10 + 0.1 cos(500t ) V. Let K = 2 mA/V2 and Vt = 3 V.

Determine the output voltage υo.

Determine the voltage gain of the cos(500 t ) signal.

Determine the DC power consumption of the resistor and the
MOSFET.

Figure P10.19

The circuit of Figure P10.20 is a source-follower amplifier. Let K = 30
mA/V2, Vt = 4 V, and υG = 9 + 0.1 cos(500 t ) V.

Determine the source current iS.

Determine the output voltage υo.

Determine the voltage gain for the cos(500 t ) signal.



d.

10.21

10.22

Determine the DC power consumption of the MOSFET and the 4-Ω
resistor.

Figure P10.20

Sometimes it is necessary to discharge batteries before recharging. To do
this, an electronic load can be used. A high-power electronic load is
shown in Figure P10.21, for the battery discharge application. With K = 4
A/V2, Vt = 3 V, and VG = 8 V, determine the discharging current ID and the
required MOSFET power rating.

Figure P10.21

A precision voltage source can be created by driving the drain of a
MOSFET. Figure P10.22 shows a circuit that will accomplish this
function. With IRef = 0.01 A, determine the output VG. Let K = 0.006 A/V2

and Vt = 1.5 V.



10.23

10.24

Figure P10.22

To allow more current in a MOSFET amplifier, several MOSFETs can be
connected in parallel. Determine the currents ID and IS in the circuits of
Figure P10.23. Let K = 0.2 A/V2, Vt = 3 V, and VG = VDD.
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Figure P10.23

A push-pull amplifier can be constructed from matched n and p-channel
MOSFETs, as shown in Figure P10.24. Let Kn = Kp = 0.5 A/V2, Vin = +3
V, Vip = −3 V, and υin = 0.8 cos(1,000 t ) V. Determine υo and io.



10.25

10.26

a.

b.

c.

Figure P10.24

Show that the NMOS shown in Figure P10.25 cannot be in triode mode.
Determine its i-υ characteristic to show that it acts as a VCCS.

Figure P10.25

Determine υo and io for the two-stage amplifier shown in the circuit of
Figure P10.26, with identical MOSFETs having K = 1 A/V2 and Vt = 3 V,
for

υG = 4 V.

υG = 5 V.

υG = 4 + 0.1 cos(750 t).



10.27

10.28

10.29
10.30
10.31
10.32
10.33
10.34
10.35

10.36

Figure P10.26

Section 10.5: CMOS Technology and MOSFET Switches
For the CMOS NOR gate of Figure 10.23 identify the state of each
transistor for υ1 = υ2 = 5 V. Assume VDD = 5 V.

Repeat Problem 10.27 for υ1 = 5 V and υ2 = 0 V.

Draw the schematic diagram of a two-input CMOS OR gate.

Draw the schematic diagram of a two-input CMOS AND gate.

Draw the schematic diagram of a two-input CMOS NOR gate.

Draw the schematic diagram of a two-input CMOS NAND gate.

Draw the schematic diagram of a three-input CMOS OR gate.

Draw the schematic diagram of a three-input CMOS AND gate.

Draw the schematic diagram of a three-input CMOS gate that realizes the
logic function .
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Show that the circuit of Figure P10.36 functions as a logic inverter.



10.37

10.38

Figure P10.36

Show that the circuit of Figure P10.37 functions as a NOR gate.

Figure P10.37

Show that the circuit of Figure P10.38 functions as a NAND gate.



10.39

Figure P10.38

Determine the logic function implemented by the CMOS gate of Figure
P10.39. Use a table to summarize the behavior of the circuit.

Figure P10.39



Design Credits: Mini DVI cable adapter isolated on white background: Robert Lehmann/Alamy Stock
Photo; Balance scale: Alex Slobodkin/E+/Getty Images; Icon for “Focus on measurements” weighing scales:
Media Bakery.

1The bulk is also known as the substrate, body, or base.

2In the past, a metal oxide was used, which explains the terminology metal-oxide
semiconductor MOS.
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C H A P T E R
11

DIGITAL LOGIC CIRCUITS

igital computers have played a prominent role in engineering and science for
over half a century, performing a number of essential functions such as
numerical computations and data acquisition. The elements of all digital
computers are combinational and sequential logic circuits, built up from basic

logic gates. The inputs, operations, and outputs of these circuits are described in
terms of the binary number system and boolean algebra. Several practical examples
are presented to demonstrate that even simple combinations of logic gates can
perform useful functions in engineering practice. A number of logic modules are
introduced that are described in terms of simple logic gates and yet provide more
advanced functions, such as read-only memory, multiplexing, and decoding.
Throughout the chapter, simple examples are given to demonstrate the usefulness of
digital logic circuits in various engineering applications.
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 Learning Objectives
Students will learn to...

Apply concepts of analog and digital signals and of quantization. Section 11.1.
Convert between decimal and binary number systems and use the hexadecimal
system and BCD and Gray codes. Section 11.2.



3.

4.
5.

Write truth tables, and realize logic functions from truth tables by using logic
gates. Section 11.3.
Systematically design logic functions using Karnaugh maps. Section 11.4.
Apply various combinational logic modules, including multiplexers, memory
and decoder elements, and programmable logic arrays. Section 11.5.

11.1 ANALOG AND DIGITAL SIGNALS
One of the fundamental distinctions in the study of signals derived from physical
measurements is that between analog and digital signals. An analog signal is one
that varies in analogy with a physical quantity (e.g., temperature, force, or
acceleration). For example, most electronic sensors produce a voltage proportional to
some other measured quantity, such as a variable pressure or vibration. Figure 11.1
depicts an analog function of time f(t), which can take any value in the given range.

Figure 11.1 Voltage analog of internal combustion engine in-cylinder
pressure

A digital signal, on the other hand, can take only a finite number of values. This
is an extremely important distinction. An example of a digital signal is one that
allows display of a temperature measurement on a digital readout. Assume that the
digital readout is three digits long and can display numbers from 0 to 100, that the
temperature sensor is correctly calibrated to measure temperatures from 0 to 100°C,
and that the output of the sensor ranges from 0 to 5 V, where 0 V corresponds to 0°C
and 5 V to 100°C. Then, the calibration constant of the sensor is
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Clearly, the output of the sensor is an analog signal; however, the display can show
only a finite number of readouts (101, to be precise). Because the display can only
take a value out of a discrete set of states—the integers from 0 to 100—it is called a
digital display, indicating that the variable displayed is expressed in digital form.

It is important to realize that each temperature on the display corresponds to a
range of voltages: each digit on the display represents one-hundredth of the 5-V
range of the sensor, or 0.05 V = 50 mV. Thus, the display will read 0 if the sensor
voltage is between 0 and 49 mV, 1 if it is between 50 and 99 mV, and so on. Figure
11.2 depicts the staircase function relationship between the analog voltage and the
digital readout. This quantization of the sensor output voltage is in effect an
approximation. To know the temperature with greater precision, a greater number of
display digits could be employed.

Figure 11.2 Digital representation of an analog signal

The most common digital signals are binary signals. A binary signal is a signal
that can take only one of two discrete values and is therefore characterized by
transitions between two states. Figure 11.3 displays a typical binary signal. In binary
arithmetic (which we discuss in Section 11.2), the two discrete values f1 and f0 are
represented, respectively, by the numbers 1 and 0. In binary voltage waveforms,
these values are represented by two voltage levels. For example, in the TTL



convention (see Chapter 9), these values are (nominally) 5 and 0 V, respectively; in
CMOS circuits, these values can vary substantially. Other conventions are also used,
including reversing the assignment, for example, by letting a 0-V level represent a
logic 1 and a 5-V level represent a logic 0. Note that in a binary Page 648waveform,
knowledge of the transition between one state and another (e.g., from f0 to f1 at t = t2)
is equivalent to knowledge of the state. Thus, digital logic circuits can operate by
detecting transitions between voltage levels. The transitions are often called edges
and can be positive (f0 to f1) or negative (f1 to f0). They are also referred to asleading
and trailing edges, respectively. Virtually all the signals handled by a computer are
binary.

Figure 11.3 A binary signal

11.2 THE BINARY NUMBER SYSTEM
The binary number system is a natural choice for representing the behavior of
circuits that operate in one of two states (on or off, 1 or 0, or the like). Diode and
transistor gates and switches fall into this category. Table 11.1 shows the
correspondence between decimal and binary number systems for integer decimal
numbers up to 16.

Table 11.1 Conversion from decimal to binary



Binary numbers are based on powers of 2, whereas the decimal system is based
on powers of 10. For example, the number 372 in the decimal system can be
expressed as

while the binary number 10110 corresponds to the following combination of powers
of 2:

A subscript is often used to indicate the base of a number and thus clarify its value,
as shown below. The absence of a subscript often implies base 10, although at times
a sequence of 1’s and 0’s is understood from its context to be base 2.

Note that a fractional number can also be similarly represented. For example, the
number 3.25 in the decimal system may be represented as

while in the binary system the number 10.011 corresponds to



Table 11.1 shows that it takes four binary digits, also called bits, to represent the
decimal numbers 0 to 15. Usually, the rightmost bit is called the least significant bit,
or LSB, and the leftmost bit is called the most significant bit, or MSB. Since binary
numbers clearly require a larger number of digits than decimal numbers to represent
a value, the digits are usually grouped into sets of 4, 8, or 16. Four bits are a nibble
and eight bits are a byte. A word is the basic unit of data in a digital system. A word
may be two or more bytes depending upon the particular digital architecture.

Addition and Subtraction
The binary operations of addition and subtraction are based on the simple rules
shown in Tables 11.2 and 11.3. Note that, just as is done in the decimal system, a
Page 649carry is generated whenever the sum of two digits exceeds the largest
single-digit number in the given number system, which is 1 in the binary system. The
carry is treated exactly as in the decimal system. A few examples of binary addition
and subtraction are shown in Figures 11.4 and 11.5, with their decimal counterparts.

Table 11.2 Rules for addition

Table 11.3 Rules for subtraction

Figure 11.4 Examples of binary addition

Figure 11.5 Examples of binary subtraction



Multiplication and Division
Whereas in the decimal system the multiplication table consists of 102 = 100 entries,
in the binary system we only have 22 = 4 entries (see Table 11.4).

Table 11.4 Rules for multiplication

Division in the binary system is also based on rules analogous to those of the
decimal system, with the two basic laws given in Table 11.5. Once again, there are
only two cases, and just as in the decimal system, division by zero is not
contemplated.

Table 11.5 Rules for division

Conversion From Decimal to Binary
The conversion of a decimal number to its binary equivalent is performed by
successive division of the decimal number by 2, checking for the remainder each
time. Figure 11.6 illustrates this idea with an example. The result obtained in Figure
11.6 may be easily verified by performing the opposite conversion, from binary to
decimal:

Figure 11.6 Example of conversion from decimal to binary

Page 650



The same technique can be used for converting decimal fractional numbers to their
binary form, provided that the whole number is separated from the fractional part and
each is converted to binary form (separately), with the results added at the end.
Figure 11.7 outlines this procedure by converting the number 37.53 to binary form.
The procedure is outlined in two steps. First, the integer part is converted; then, to
convert the fractional part, one simple technique consists of multiplying the decimal
fraction by 2 in successive stages. If the result exceeds 1, a 1 is needed to the right of
the binary fraction being formed (100101 . . . , in our example). Otherwise, a 0 is
added. This procedure is continued until no fractional terms are left. In this case, the
decimal part is 0.5310, and Figure 11.7 illustrates the succession of calculations.
Stopping the procedure after 11 digits results in the following approximation:

Greater precision could be attained by continuing to add binary digits, at the expense
of added complexity. Note that an infinite number of binary digits may be required to
represent a decimal number exactly.

Figure 11.7 Conversion of 37.5310 from decimal to binary

Complements and Negative Numbers
Complements are used to simplify the operation of subtraction in digital computers.
In practice, the operation X − Y is replaced with the operation X + (−Y ). This



procedure results in considerable simplification since the computer hardware need
include only adding circuitry. Two types of complements are used with binary
numbers: the ones complement and the twos complement.

The ones complement of an n-bit binary number is obtained by subtracting the
number itself from 2n − 1. Two examples are as follows:

The twos complement of an n-bit binary number is obtained by subtracting the
number itself from 2n. Twos complements of the same numbers a and b used in the
preceding illustration are computed as follows:
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A simple rule that may be used to obtain the twos complement directly from a binary
number is the following: Starting at the least significant (rightmost) bit, copy each bit
until the first 1 has been copied, and then replace each successive 1 by a 0 and each 0
by a 1. You may wish to try this rule on the two previous examples to verify that it is
much easier to use than subtraction from 2n.

Different conventions exist in the binary system to represent whether a number is
negative or positive. One convention, called the sign-magnitude convention,
designates a sign bit, usually positioned at the beginning of the number, for which a
value of 1 represents a minus sign and a value of 0 represents a plus sign. Thus, an 8-
bit binary number would consist of 1 sign bit followed by 7 magnitude bits, as shown
in Figure 11.8(a). In a digital system that uses 8-bit signed integer words, we could
represent integer numbers (decimal) in the range



or

Figure 11.8 (a) An 8-bit sign-magnitude binary number; (b) an 8-bit 1s
complement binary number; (c) an 8-bit 2s complement binary number

A second convention uses the ones complement notation. In this convention, a
sign bit is also used to indicate whether the number is positive (sign bit = 0) or
negative (sign bit = 1). However, the binary number is represented by its true
magnitude if the number is positive and by its ones complement if the number is
negative. Figure 11.8(b) illustrates the convention. For example, the number 9110
would be represented by the 7-bit binary number 10110112 with a leading 0 (the sign
bit): 010110112. On the other hand, the number −9110 would be represented by the 7-
bit ones complement binary number 01001002 with a leading 1 (the sign bit):
101001002.

Most digital computers use the twos complement convention in performing
integer arithmetic operations. The twos complement convention represents positive
numbers by a sign bit of 0, followed by the binary magnitude; negative numbers are
represented by a sign bit of 1, followed by the twos complement of the binary
magnitude, as shown in Figure 11.8(c). The advantage of the twos complement
convention is that the algebraic sum of twos complement binary numbers is carried
out very simply by adding the two numbers including the sign bit.
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The Hexadecimal System
It should be apparent by now that representing numbers in base-2 and base-10
systems is simply a matter of convenience, given a specific application. Another
frequently used base is 16, which results in the hexadecimal system. In the
hexadecimal (or hex) code, the bits in a binary number are gathered into groups of 4.
Since there are 16 possible distinct bit combinations for a 4-bit number, 16 distinct
symbols are needed to fully represent a hex digit. Thus, the symbols 0–9 and A–F are
used, as shown in Table 11.6. In hex code, an 8-bit word corresponds to just two
digits; for example,

Table 11.6 Hexadecimal code

The ASCII1 character code represents all alphanumeric characters, and others,
commonly used in printed documents as hexadecimal values. This code is used, for
example, to define the visual output associated with char type variables found in all
computer programming languages. The 128 members of the standard ASCII
character set are listed in Appendix D along with their hexadecimal equivalents.

Binary Codes
Variations on the standard binary code are used in certain applications for practical
reasons. Two of the most commonly used variations are the Gray code and binary-



coded decimal, or BCD, representation. The most basic BCD representation
consists of the first 10 entries of the standard 4-bit binary code, as shown in Table
11.7. There are also other BCD codes, all reflecting the same principle: Each decimal
digit is represented by a fixed-length binary word. Although this method is attractive
because of its direct correspondence with the decimal system, it is not efficient.
Consider, for example, the decimal number 68. Its binary representation by direct
conversion is the 7-bit number 1000100. However, the corresponding BCD
representation would require 8 bits:

Table 11.7 BCD code

Gray code is simply a reshuffled binary code with the property that any two
consecutive numbers differ by only 1 bit. Table 11.8 illustrates the 3-bit Gray code.
Page 653The Gray code is useful in encoding applications because a single bit
reading error results in an off-by-one counting error. Thus, the impact of bit reading
errors is more likely to be marginal than when using other encoding schemes.

Table 11.8 Three-bit Gray code



FOCUS ON MEASUREMENTS

Digital Position Encoders
Position encoders are devices that output a digital signal proportional to their (linear
or angular) position. These devices are very useful in measuring instantaneous
position in motion control applications. Motion control is a technique used when it is
necessary to accurately control the motion of a moving object; examples are found in
robotics, machine tools, and servomechanisms. For example, in positioning the arm
of a robot to pick up an object, it is very important to know its exact position at all
times. Since one is usually interested in both rotational and translational motion, two
types of encoders are discussed in this example: linear and angular position
encoders.

An optical position encoder consists of an encoder pad, which is either a strip
(for translational motion) or a disk (for rotational motion) with alternating black and
white areas. These areas are arranged to reproduce some binary code, as shown in
Figure 11.9, where both the conventional binary and Gray codes are depicted for a 4-
bit linear encoder pad. A fixed array of photodiodes (see Chapter 8) senses the
reflected light from each of the cells across a row of the encoder path; depending on
the amount of light reflected, each photodiode circuit will output a voltage
corresponding to a binary 1 or 0. Thus, a different 4-bit word is generated for each
row of the encoder.



Figure 11.9 Binary and Gray code patterns for linear position encoders

Suppose the encoder pad is 100 mm in length. Then its resolution can be
computed as follows. The pad will be divided into 24 = 16 segments, and each
segment corresponds to an increment of 100/16 mm = 6.25 mm. If greater resolution
were necessary, more bits could be employed: an 8-bit pad of the same length would
attain a resolution of 100/256 mm = 0.39 mm.

A similar construction can be employed for the 5-bit angular encoder of Figure
11.10. In this case, the angular resolution can be expressed in degrees of rotation,
where 25 = 32 sections correspond to 360°. Thus, the resolution is 360°/32 = 11.25°.
Once again, greater angular resolution could be obtained by employing a larger
number of bits.
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Figure 11.10 Binary and Gray code patterns for angular position encoders



1.
2.

EXAMPLE 11.1 Twos Complement Operations
Problem
Perform the following subtractions, using twos complement arithmetic.

X − Y = 1011100 − 1110010 (7-bits)
X − Y = 10101111 – 01110011 (8-bits)

Solution
Analysis: The twos complement subtractions are performed by replacing the
operation X − Y with the operation X + (−Y). Thus, for the difference of the two 7-bit
numbers, find the twos complement of Y and add the result to X.

Next, add the sign bit (in boldface type) in front of the result since the difference X −
Y is a negative number.

Repeat the procedure for the difference of the two 8-bit numbers.

where the first digit is a 0 because X − Y is a positive number.
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EXAMPLE 11.2 Conversion From Binary to Hexadecimal
Problem
Convert the following binary numbers to hexadecimal form.



1.
2.
3.
4.
5.
6.

1.
2.
3.
4.
5.
6.

a.
b.
c.
d.
e.
f.
g.
h.
i.

a.

100111
1011101
11001101
101101111001
100110110
1101011011

Solution
Analysis: A simple method for binary to hexadecimal conversion consists of
grouping each binary number into 4-bit groups and then performing the conversion
for each 4-bit word following Table 11.6:

1001112 = 0010201112 = 2716

10111012 = 0101211012 = 5D16

110011012 = 1100211012 = CD16

1011011110012 = 101120111210012 = B7916

1001101102 = 000120011201102 = 13616

11010110112 = 001120101210112 = 35B16

Comments: To convert from hexadecimal to binary, replace each hexadecimal
number with the equivalent 4-bit nibble.

CHECK YOUR UNDERSTANDING
Convert the following decimal numbers to binary form.

39
59
512
0.4475

0.796875
256.75
129.5625
4,096.90625

Convert the following binary numbers to decimal.
1101



b.
c.
d.
e.
f.
g.
h.
i.

a.
b.
c.
d.
e.
f.
g.
h.

11011
10111
0.1011
0.001101
0.001101101
111011.1011
1011011.001101
10110.0101011101

Page 656

CHECK YOUR UNDERSTANDING
Perform the following additions and subtractions. Express the answer in decimal
form for (a) through (d) and in binary form for (e) through (h).

1001.12 + 1011.012

1001012 + 1001012

0.10112 + 0.11012

1011.012 + 1001.112

6410 – 3210

12710 − 6310

93.510 − 42.7510

Answer: (a) 100111, (b) 111011, (c) 1000000000, (d) 0.011100101000, (e)
0.11001, (f) 0.110011, (g) 100000000.11, (h) 10000001.1001, (i)
1000000000000.11101; (a) 13, (b) 27, (c) 23, (d) 0.6875, (e) 0.203125, (f)
0.212890625, (g) 59.6875, (h) 91.203125, (i) 22.3408203125

Answer: (a) 20.7510, (b) 7410, (c) 1.510, (d) 2110, (e) 1000002, (f)
10000002, (g) 110010.112, (h) 100011.111112



a.
b.
c.

a.
b.
c.
d.
e.
f.

CHECK YOUR UNDERSTANDING
How many possible numbers can be represented in a 12-bit word?

If we use an 8-bit word with a sign bit (7 magnitude bits plus 1 sign bit) to represent
voltages −5 and +5 V, what is the smallest increment of voltage that can be
represented?

CHECK YOUR UNDERSTANDING
Find the twos complement of the following binary numbers.

11101001
10010111
1011110

CHECK YOUR UNDERSTANDING
Convert the following numbers from hexadecimal to binary or from binary to
hexadecimal.

F83
3C9
A6
1101011102

101110012

110111011012

Answer: 4,096; 39 mV

Answer: (a) 00010111, (b) 01101001, (c) 0100010



a.
a.
c.

Convert the following numbers from hexadecimal to binary, and find their twos
complements.

F43
2B9
A6
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11.3 BOOLEAN ALGEBRA AND LOGIC GATES
The mathematics associated with the binary number system (and with the more
general field of logic) is called boolean, in honor of the English mathematician
George Boole, who published a treatise in 1854 entitled “An Investigation of the
Laws of Thought, on Which Are Founded the Mathematical Theories of Logic and
Probabilities.” The development of a logical algebra, as Boole called it, is one of the
results of his investigations. The variables in a boolean, or logic, expression can take
only one of two values, usually represented by the numbers 0 and 1. These variables
are sometimes referred to as true (1) and false (0). This convention is normally
referred to as positive logic. (There is also a negative logic convention in which the
roles of logic 1 and logic 0 are reversed.)

Analysis of logic functions, that is, functions of logical (boolean) variables, can
be carried out in terms of truth tables. A truth table is a listing of all the possible
values that each of the boolean variables can take and of the corresponding value of
the desired function. Logic gates represent these functions and can be constructed
from transistors and used to implement logic functions.

AND and OR Gates
The basis of boolean algebra lies in the operations of logical addition, or the OR
operation, and logical multiplication, or the AND operation. Both of these find a
correspondence in simple logic gates. Logical addition, although represented by the
symbol +, differs from conventional algebraic addition, as shown in the last rule
listed in Table 11.9. Note that this rule also differs from the last rule of binary
addition studied in Section 11.2. Logical addition can be represented by the logic

Answer: (a) 111110000011, (b) 001111001001, (c) 10100110, (d) 1AE, (e)
B9, (f) 6ED; (a) 0000 1011 1101, (b) 1101 0100 0111, (c) 0101 1010



(11.1)

(11.2)

gate called an OR gate, whose symbol, inputs, and outputs are shown in Figure
11.11. The OR gate represents the following logical statement:

This rule is embodied in electronic gates, in which a logic 1 corresponds, say, to a 5-
V signal and a logic 0 to a 0-V signal.

Table 11.9 Rules for logical addition (OR)

Figure 11.11 Logical addition and the OR gate

Logical multiplication is denoted by the center dot · , is defined by the rules of
Table 11.10, and is represented by the AND gate, which is shown in Figure 11.12.
The AND gate corresponds to the following logical statement:

One can easily envision logic gates (AND and OR) with an arbitrary number of
inputs; three- and four-input gates are not uncommon.

Table 11.10 Rules for logical multiplication (AND)



Figure 11.12 Logical multiplication and the AND gate

The rules that define a logic function are often represented in a tabular form
known as a truth table. Truth tables for the AND and OR gates are shown in Page
658Figures 11.11 and 11.12. A truth table is nothing more than a tabular summary of
all possible outputs of a logic gate, given all possible input values. If the number of
inputs is 3, the number of possible combinations grows from 4 to 8, but the basic idea
is unchanged. Truth tables are very useful in defining logic functions. A typical logic
design problem might specify requirements such as “the output Z shall be logic 1
only when the condition (X = 1 AND Y = 1) OR (W = 1) occurs, and shall be logic 0
otherwise.” The truth table for this particular logic function is shown in Figure 11.13.



Figure 11.13 Example of logic function implementation with logic gates

The AND and OR gates form the basis of all logic design in conjunction with the
NOT gate. The NOT gate is essentially a single-input, single-output inverter that
provides the complement of the input logic variable. The complement of a logic
variable X is denoted by , as shown in Figure 11.14.

Figure 11.14 Complements and the NOT gate

To illustrate the use of the NOT gate, or inverter, return to the design example of
Figure 11.13, where the output of a logic circuit is Z = 1 only if X = 0 AND Y = 1 OR
if W = 1. This example could also be stated as follows: “The output Z shall be logic 1
only when the condition  occurs, and shall be logic 0
otherwise.” The formal solution to this elementary design exercise is illustrated in
Figure 11.15.



Figure 11.15 Solution of a logic problem using logic gates

Table 11.11 lists some of the rules of boolean algebra; each of these can be
proved by using a truth table, as will be shown in examples and exercises. An
example of proof by perfect induction for rule 16 is given in Figure 11.16 in the
form of a truth table. This technique can be employed to prove any of the laws of
Table 11.11, which in turn can be used to simplify logic expressions.
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Table 11.11 Rules of boolean algebra



(11.3)

(11.4)

Figure 11.16 Proof of rule 16 by perfect induction

De Morgan’s Laws
Two very important logic rules are known as De Morgan’s laws. These laws state
that AND and OR functions can be interchanged by making appropriate NOT
operations. In terms of Boolean algebra these theorems are

De Morgan’s laws

Notice the duality that exists between AND and OR operations.

Any logic function can be implemented using only OR and NOT gates or only
AND and NOT gates.



De Morgan’s laws can be visualized in terms of logic gates and the associated truth
tables, as shown in Figure 11.17.

Figure 11.17 De Morgan’s laws

An important consequence of De Morgan’s laws is the ability to express any logic
function as a sum of products (SOP) and/or as a product of sums (POS), as shown
in Figure 11.18. The two forms are logically equivalent; however, one may be
simpler to implement with logic gates.
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Figure 11.18 Sum-of-products and product-of-sums logic functions

NAND and NOR Gates
In addition to AND and OR gates, the complementary forms of these gates, called
NAND and NOR, are commonly used in practice. In fact, NAND and NOR gates
form the basis of most practical logic circuits. Figure 11.19 depicts these two gates
Page 661and illustrates how they can be easily interpreted in terms of AND, OR, and
NOT gates by virtue of De Morgan’s laws. It is easy to verify that the logic function



implemented by the NAND and NOR gates corresponds, respectively, to AND and
OR gates followed by an inverter. It is very important to note that, by De Morgan’s
laws, the NAND gate performs a logical addition on the complements of the inputs,
while the NOR gate performs a logical multiplication on the complements of the
inputs. Consequently, any logic function could be implemented with either NOR or
NAND gates only.

Figure 11.19 Equivalence of NAND and NOR gates with AND and OR
gates

The XOR (Exclusive OR) Gate
It is rather common practice for a manufacturer of integrated circuits to provide
common combinations of logic circuits in a single integrated-circuit (IC) package.
An example of this idea is provided by the exclusive OR (XOR) gate, which
provides a logic function similar, but not identical, to the OR gate we have already
studied. The XOR gate acts as an OR gate, except when its inputs are all logic 1s; in
this case, the output is a logic 0 (thus the term exclusive). Figure 11.20 shows the
logic circuit symbol adopted for this gate and the corresponding truth table. The logic
function implemented by the XOR gate is the following: either X or Y, but not both.
This description can be extended to an arbitrary number of inputs.

Figure 11.20 XOR gate



The symbol adopted for the exclusive OR operation is ⊕. The XOR gate can be
obtained by a combination of basic gates. For example, the XOR function can be
expressed as , and realized by means of the circuit shown
in Figure 11.21.

Figure 11.21 Realization of an XOR gate

Common IC logic gate configurations are typically available in both of the two
more common device families, TTL and CMOS.

FOCUS ON MEASUREMENTS

Fail-Safe Autopilot Logic
This example aims to illustrate the significance of De Morgan’s laws and of the
duality of the sum-of-products and product-of-sums forms. Suppose that a fail-safe
autopilot system in a commercial aircraft requires that, prior to initiating a takeoff or
landing maneuver, the following check be passed: two of three possible pilots must
be available. The three possibilities are the pilot, the copilot, and the autopilot.
Imagine further that there exist switches in the pilot and copilot seats that are turned
on by the weight of the crew, and that a self-check circuit exists to verify the proper



operation of the autopilot system. Let the variable X denote the pilot state (1 if the
pilot is sitting at the controls), Y denote the same condition for the copilot, and Z
denote the state of the autopilot, where Z = 1 indicates that the autopilot is
functioning. Then since we wish two of these conditions to be active before the
maneuver can be initiated, the logic function corresponding to “system ready” is

This can also be verified by a truth table.
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The function f defined above is based on the notion of a positive check; that is, it
indicates when the system is ready. Apply De Morgan’s laws to the function f, which
is in sum-of-products form:

The function g, in product-of-sums form, conveys exactly the same information as
the function f, but it performs a negative check; in other words, g verifies the system
not ready condition. Clearly, whether one chooses to implement the function in one
form or another is simply a matter of choice; the two forms give exactly the same
information.

EXAMPLE 11.3 Simplification of Logical Expression
Problem



Using the rules of Table 11.11, simplify the following function.

Solution
Find: Simplified expression for logical function of four variables.
Analysis:
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EXAMPLE 11.4 Realizing Logic Functions From Truth Tables
Problem
Realize the logic function described by the truth table below.

Solution



Known Quantities: Value of function y (A, B, C) for each possible combination of
logical variables A, B, C.
Find: Logical expression realizing the function y.
Analysis: Express y as the sum of the products of the three variables for each
combination that yields y = 1. If the value of a variable is 1, use the uncomplemented
variable. If it’s 0, use the complemented variable. For example, the second row (first
instance of y = 1) would yield the term . Thus,

Thus, the function is a two-input OR gate, as shown in Figure 11.22.

Figure 11.22

Comments: The derivation above has made use of two rules from Table 11.11: rules
4 and 18. Notice that the variable B does not appear in the final realization.

EXAMPLE 11.5 De Morgan’s Laws and Product-of-Sums Expressions
Problem
Realize the logic function y = A+B⋅C in product-of-sums form. Implement the
solution, using AND, OR, and NOT gates.

Solution
Known Quantities: Logical expression for the function y(A, B, C).
Find: Physical realization using AND, OR, and NOT gates.
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Analysis: We use the fact that � y = y and apply De Morgan’s laws as follows:



The original sum-of-products function is realized using complements of each
variable (obtained using NOT gates) and is finally complemented as shown in Figure
11.23.

Figure 11.23

Comments: It should be evident that the original sum-of-products expression, which
could be implemented with just one AND and one OR gate, has a much more
efficient realization.

EXAMPLE 11.6 Realizing the AND Function With NAND Gates
Problem
Use a truth table to show that the AND function can be realized using only NAND
gates, and show the physical realization.

Solution
Known Quantities: AND and NAND truth tables.
Find: AND realization using NAND gates.
Assumptions: Consider two-input functions and gates.
Analysis: The truth table below summarizes the two functions:



To realize the AND function, simply invert the output of a NAND gate. Observe that
a NAND gate with its inputs tied together acts as an inverter, which can be verified in
the above truth table by looking at the NAND output for the input combinations 0–0
and 1–1, or by referring to Figure 11.24. The final realization is shown in Figure
11.25.

Figure 11.24 NAND gate as an inverter

Figure 11.25
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Comments: NAND (and NOR) gates are well suited to implement functions that
contain complemented products. Complementary logic gates arise naturally from the
inverting characteristics of transistor switches.

EXAMPLE 11.7 Realizing the AND Function With NOR Gates
Problem



Show that the AND function can be realized using only NOR gates, and determine
the physical realization.

Solution
Known Quantities: AND and NOR functions.
Find: AND realization using NOR gates.
Assumptions: Consider two-input functions and gates.
Analysis: This problem can be solved using De Morgan’s laws. The output of an
AND gate can be expressed as . Using De Morgan’s theorem, write

The above function is implemented by noting that a NOR gate with its input tied
together acts as a NOT gate (Figure 11.26). Thus, the logic circuit of Figure 11.27
provides the desired answer.

Figure 11.26 NOR gate as an inverter

Figure 11.27

Comments: NOR (and NAND) gates are well suited to implement functions that
contain complemented products. Complementary logic gates arise naturally from the
inverting characteristics of transistor switches. As a result, such gates are commonly
employed in practice.



EXAMPLE 11.8 Realizing a Function With NAND and NOR Gates
Problem
Realize the following function, using only NAND and NOR gates:
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Solution
Known Quantities: Logical expression for y.
Find: Realization of y using only NAND and NOR gates.
Assumptions: Consider two-input functions and gates.
Analysis: Refer to Examples 11.6 and 11.7 and realize the term  using a two-
input NAND gate, and the term  using a two-input NOR gate. The solution is
shown in Figure 11.28.

Figure 11.28

EXAMPLE 11.9 Half Adder
Problem
Analyze the half adder circuit of Figure 11.29.



Solution
Known Quantities: Logic circuit.
Find: Truth table, functional description.
Schematics, Diagrams, Circuits, and Given Data: Figure 11.29.

Figure 11.29 Logic circuit realization of a half adder

Analysis: The addition of two binary digits was summarized in Table 11.2. It is
important to observe that when both A and B are equal to 1, the sum requires two
digits: the lower digit is a 0, and there also is a carry of 1. Thus, the circuit
representing this operation must give an output consisting of two digits. Figure 11.29
shows a circuit called a half adder that performs binary addition providing two
output bits: the sum S and the carry C.

A logic statement for the rule of addition can be written as follows: S is 1 if A is 0
and B is 1, or if A is 1 and B is 0; C is 1 if A and B are 1. In terms of a logic function,
we can express this statement with the following logical expressions:

The circuit of Figure 11.29 implements this function using NOT, AND, and OR
gates.
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EXAMPLE 11.10 Full Adder



Problem
Analyze the full adder circuit of Figure 11.30.

Solution
Known Quantities: Logic circuit.
Find: Truth table, functional description.
Schematics, Diagrams, Circuits, and Given Data: Figure 11.30.

Figure 11.30 Logic circuit realization of a full adder

Analysis: A full adder is a circuit capable of performing a complete 2-bit addition,
including taking a carry from a preceding operation. The circuit of Figure 11.30 uses
two half adders, such as the one described in Example 11.9, and an OR gate to
process the addition of 2 bits, A and B, plus the possible carry from a preceding
addition from another (half or full) adder circuit. The truth table below illustrates this
operation.

Comments: To perform the addition of two 4-bit nibbles, we would need a half adder
for the first column (LSB), and a full adder for each additional column, that is, three
full adders.

CHECK YOUR UNDERSTANDING
Prepare a step-by-step truth table for the following logic expressions.



a.
b.
c.

(Hint: Your truth table must have 2n entries, where n is the number of logic
variables.)
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Answer: 



CHECK YOUR UNDERSTANDING
Implement the three logic functions of the previous Check Your Understanding
exercise using the smallest number of AND, OR, and NOT gates only.

Page 669

CHECK YOUR UNDERSTANDING
Implement the three logic functions of the previous Check Your Understanding
exercise using the least number of NAND and NOR gates only. (Hint: Use De
Morgan’s laws and the fact that )

CHECK YOUR UNDERSTANDING
Show that one can obtain an OR gate by using NAND gates only. (Hint: Use three
NAND gates.)

CHECK YOUR UNDERSTANDING
Show that the XOR function can also be expressed as . Realize the
corresponding function using NOT, AND, and OR gates. [Hint: Use truth tables for
the logic function Z (as defined in the exercise) and for the XOR function.]

Answer: 

Answer: 



11.4 KARNAUGH MAPS AND LOGIC DESIGN
In the design of logic functions by means of logic gates, more than one solution is
usually available for the implementation of a given logic expression. Some
combinations of gates can implement a given function more efficiently than others.
Fortunately, there is a procedure that utilizes a map describing all possible
combinations of the variables present in a logic function. This map is called a
Karnaugh map, after its inventor. Figure 11.31 depicts the appearance of Karnaugh
maps for two-, three-, and four-variable expressions in two different forms. As can be
seen, the row and column assignments for two or more variables are arranged so that
all adjacent terms change by only 1 bit. For example, in the three-variable map, the
columns next to column 01 are columns 00 and 11. Also note that each map consists
of 2N cells, where N is the number of logic variables.

Each cell in a Karnaugh map contains a minterm, that is, a product of the N
variables that appear in our logic expression (perhaps in complemented form). For
example, for the case of three variables (N = 3), there are 23 = 8 such combinations,
or minterms, as shown in Figure 11.31. The content of each cell—that is, the
minterm—is the product of the variables appearing at the corresponding vertical
Page 670and horizontal coordinates. For example, in the three-variable map, 
appears at the intersection of  and . The map is filled by placing a value of 1 for
any combination of variables for which the desired output is a 1. For example,
consider the function of three variables for which an output of 1 is desired whenever
variables X, Y, and Z have the following values:

The same truth table is shown in Figure 11.32 together with the corresponding
Karnaugh map.



Figure 11.31 Two-, three-, and four-variable Karnaugh maps



Figure 11.32 Truth table and Karnaugh map representations of a logic
function

The arrangement of the cells in the Karnaugh map is such that any two adjacent
cells contain minterms that vary in only one variable. This property is quite useful in
the design of logic functions by means of logic gates, especially if the map is
considered to be continuously wrapping around itself, as if the top and bottom, and
right and left, edges were touching. For the three-variable map given Page 671in
Figure 11.31, for example, the cell  is adjacent to  if the map is “rolled”
so that the right edge touches the left. Note that these two cells differ only in the
variable X.2

Shown in Figure 11.33 is a more complex, four-variable logic function. First,
define a subgroup as a set of 2m adjacent cells with logical value 1, for m = 1,2,3,. . .
,N. Thus, a subgroup can consist of 1, 2, 4, 8, 16, 32, . . . cells. All possible
subgroups for the four-variable map of Figure 11.33 are shown in Figure 11.34. Note
that there are no four-cell subgroups in this particular case. Note also that there is
some overlap between subgroups. Examples of four-cell and eight-cell subgroups are
shown in Figure 11.35.



Figure 11.33 Karnaugh map for a four-variable expression

Figure 11.34 One- and two-cell subgroups for the Karnaugh map of Figure
11.31



Figure 11.35 Examples of four- and eight-cell subgroups

In general, the goal is to find the largest possible subgroups to cover all the 1
entries in the map. The use of maps and subgroups in minimizing logic expressions is
best explained by considering the following rule of boolean algebra:

where the variable Y could represent a product of logic variables [e.g., we could
similarly write  with . This rule is easily proved
by factoring Y

and observing that  always. Then it should be clear that variable X need not
appear in the expression at all.

Consider the logic expression
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and factor it as follows:



That is quite a simplification! Consider a map in which a 1 is placed in the cells
corresponding to the minterms  and 
It can easily be verified that the map of Figure 11.36 shows a single four-cell
subgroup corresponding to the term 

Figure 11.36 Karnaugh map for the function 

In any subgroup, one or more of the variables present will appear in both
complemented and uncomplemented forms in all their combinations with the other
variables. These variables can be eliminated. As an illustration, in the eight-cell
subgroup case of Figure 11.37, the full-blown expression would be

However, consider the eight-cell subgroup and note that the three variables X, W, and
Z appear in both complemented and uncomplemented form in all their combinations
with the other variables, and thus can be removed from the expression. Thus, the
seemingly unwieldy expression simplifies to  In logic design terms, a simple
inverter with Y input is sufficient to implement the expression.

Figure 11.37

Sum-of-Products and Product-of-Sums Realizations
Logic functions can be expressed in either of two forms: sum of products (SOP) or
product of sums (POS). For example, the following logic expression is in SOP form:



1.
2.
3.

4.
5.
6.
7.

A Karnaugh map can be used to determine a minimal sum-of-products expression.

F O C U S  O N  P R O B L E M  S O LV I N G

SUM-OF-PRODUCTS REALIZATIONS
The following steps describe the process of using an existing N variable Karna
map to determine the minimal sum-of-products (SOP) realization of a logic functi

Identify all 2N-1 cell subgroups.
Determine the minimal logic expression for each such subgroup.
Identify all 2N-2 cell subgroups not already included in a higher dimen
subgroup.
Determine the minimal logic expression for each such subgroup.
Continue this process until only isolated cells remain.
Determine the logic expression for each isolated cell.
Sum all of the above logic expressions.
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De Morgan’s laws state that every SOP expression has an equivalent POS form.
A simple example of a POS expression is . For any particular logical
expression one of the two forms may lead to a realization involving a smaller number
of gates.

F O C U S  O N  P R O B L E M  S O LV I N G

PRODUCT-OF-SUMS REALIZATIONS



1.

2.

3.

4.

Group 0s in subgroups exactly as is done for 1s when seeking an S
expression.
Produce a complemented Karnaugh map by swapping X with  with  an
with 
Each subgroup of 0s represents a sum of the complemented Karnaugh m
elements.
Form the product of those sums.

An alternate POS realization method is to represent each subgroup of 0s as the
product of the Karnaugh map elements, form the sum of these products, and
complement the entire summation. After some manipulation using DeMorgan’s laws,
the result will yield an equivalent POS form. Examples 11.16 and 11.17 illustrate
how one form may result in a more efficient solution than the other.

Don’t-Care Conditions
Another simplification technique may be employed whenever the value of a logic
function is permitted to be either 1 or 0 for certain combinations of the input
variables. This situation often arises in problem specifications. A good example is the
binary-coded decimal (BCD) system, in which the six 4-bit combinations [1010],
[1011], [1100], [1101], [1110], and [1111] are not permitted. The algorithm used to
determine the value of the BCD nibble should be indifferent to these six
combinations. On the other hand, an error checking algorithm should not be; it
should detect an erroneous input nibble!

Whenever it does not matter whether a position in the map is filled by a 1 or a 0,
a don’t-care entry is used, denoted by an x. When forming subgroups in the
Karnaugh map, each don’t-care entry can be treated as either a 1 or a 0 as necessary
to yield the smallest number of subgroups and therefore the greatest simplification.

FOCUS ON MEASUREMENTS



Safety Circuit for Operation of a Stamping Press
Problem:
To operate a stamping press, an operator must press two buttons (b1 and b2) 1 m apart
from each other and away from the press (this ensures that the operator’s hands
cannot be caught in the press). When the buttons are pressed, the logical variables b1
and b2 are equal to 1. Thus, define a new variable A = b1⋅b2; when A = 1, the
operator’s hands are safely away from the press. In addition to this safety
requirement, however, other Page 674conditions must be satisfied before the operator
can activate the press. The press is designed to operate on one of two workpieces,
part I and part II, but not both. Thus, acceptable logic states for the press to be
operated are “part I is in the press, but not part II” and “part II is in the press, but not
part I.” Denote the presence of part I in the press by the logical variable B = 1 and the
presence of part II by the logical variable C = 1, so that, for example, a robot used to
place either part in the press could activate a pair of switches (corresponding to
logical variables B and C) indicating which part, if any, is in the press. Finally, for the
press to be operable, it must be “ready,” meaning that it has to have completed any
previous stamping operation. Let the logical variable D = 1 represent the ready
condition. The operation of the press is now represented in terms of four logical
variables, summarized in the truth table of Table 11.12. Note that only two
combinations of the logical variables will result in operation of the press: ABCD =
1011 and ABCD = 1101. Using a Karnaugh map, realize the logic circuitry required
to implement the truth table shown.

Table 11.12 Conditions for operation of stamping press



Solution:
Table 11.12 can be converted to a Karnaugh map, as shown in Figure 11.38. Since
there are many more 0s than 1s in the table, the use of 0s in covering the map will
lead to greater simplification. This will result in a product-of-sums expression. The
four subgroups shown in Figure 11.38 yield the equation

By De Morgan’s law, this equation is equivalent to

which can be realized by the circuit of Figure 11.39.

Figure 11.38



Figure 11.39
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For the purpose of comparison, the corresponding sum-of-products circuit is
shown in Figure 11.40. Note that this circuit employs a greater number of gates and
will therefore lead to a more expensive design.
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Figure 11.40

EXAMPLE 11.11 Logic Circuit Design Using Karnaugh Maps
Problem
Design a logic circuit that implements the truth table of Figure 11.41.



Figure 11.41

Solution
Known Quantities: Truth table for y (A, B, C, D).
Find: Realization of y.
Assumptions: Two-, three-, and four-input gates are available.
Analysis: The truth table is represented in the Karnaugh map of Figure 11.42, which
is shown with values of 1 and 0 already in place. There are four subgroups in the
map; three are four-cell subgroups, and one is a two-cell subgroup. The expressions
for the subgroups are  for the two-cell subgroup:  for the subgroup that
wraps around the map;  for the 4-by-1 subgroup; and A ⋅ D for the square
subgroup at the bottom of the map. Thus, the expression for y is
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Figure 11.42 Karnaugh map for Example 11.11

The implementation of the above function with logic gates is shown in Figure
11.43.



Figure 11.43 Logic circuit realization of Karnaugh map of Figure 11.42

Comments: Notice the OR gate at the far right. It produces the sum of all the
individual AND products. The Karnaugh map highlighting of Figure 11.42 yields an
SOP expression because all the 1s were highlighted.

EXAMPLE 11.12 Deriving a Sum-of-Products Expression from a Logic
Circuit
Problem
Derive the truth table and minimum sum-of-products expression for the circuit of
Figure 11.44.

Figure 11.44

Solution
Known Quantities: Logic circuit representing f (x, y, z).
Find: Expression for f and corresponding truth table.
Analysis: The logic function corresponding to the logic circuit of Figure 11.44 is



The truth table corresponding to this expression and the corresponding Karnaugh
map with sum-of-products covering are shown in Figure 11.45.

Figure 11.45

Comments: If the 0s in the Karnaugh map had been highlighted, the resulting
expression would be a POS. Verify that the complexity of the circuit would be
unchanged. Note also that the subgroup (x = 0, yz = 01, 11) is not used because it
does not further minimize the solution.
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EXAMPLE 11.13 Realizing a Sum of Products Using Only NAND
Gates
Problem
Realize the following three-input POS function in SOP form, using only two-input
NAND gates. Keep in mind that a NAND gate with identical inputs acts as a NOT
gate.

Solution
Known quantities: f(x, y, z).
Find: Logic circuit for f using only NAND gates.



Analysis: The first step is to convert the expression for f into an expression that can
be easily implemented with NAND gates. Observe that direct application of De
Morgan’s laws yields

Thus, the function can be written as

and implemented with five NAND gates, as shown in Figure 11.46.

Figure 11.46

The entire function f can be negated twice (leaving it unchanged) before applying
one of De Morgan’s laws to produce the SOP form of f.

The SOP form requires one NOT gate, two AND gates and one NOR gate. However,
NAND technology tends to be faster than other gates and so the implementation
shown in Figure 11.46 may be preferable in practice.

EXAMPLE 11.14 Simplifying Expressions by Using Karnaugh Maps
Problem
Simplify the following expression by using a Karnaugh map.



Page 679

Solution
Known Quantities: f (x, y, z).
Find: Minimal expression for f.
Analysis: A three-term Karnaugh map is highlighted, as shown in Figure 11.47. The
1s can be covered using just two subgroups:  Thus, the term y⋅z is
redundant.

Figure 11.47

Comments: Notice that the term y⋅z is covered by the two subgroups. Thus, the
expression  is equivalent to, but more complicated than, 

EXAMPLE 11.15 Simplifying a Logic Circuit by Using the Karnaugh
Map
Problem
Derive the Karnaugh map for the circuit of Figure 11.48 and use the resulting map to
produce a minimized logic expression.



Figure 11.48

Solution
Known Quantities: Logic circuit.
Find: Minimized logic circuit.
Analysis: Determine the expression f (x, y, z) from the logic circuit.

This expression leads to the Karnaugh map shown in Figure 11.49, where the 1s are
covered by three two-cell subgroups. However, the 1s in the Karnaugh map can be
covered more efficiently by two four-cell subgroups, resulting in the simpler function

 and the logic circuit shown in Figure 11.50.

Figure 11.49

Figure 11.50

Comments: In general, a smaller number of subgroups results in a smaller number of
terms in the logic expression.
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EXAMPLE 11.16 Product-of-Sums Design
Problem
Realize the function f described by the accompanying truth table in minimal product-
of-sums form. Draw the corresponding Karnaugh map.

Solution
Known Quantities: Truth table for logic function.
Find: Realization in minimal product-of-sums forms.
Analysis: Cover the Karnaugh map of Figure 11.51 using 0s to obtain the following
function:

Figure 11.51

Comments: What is the equivalent SOP solution? Find it! Is it simpler?



1.

2.

EXAMPLE 11.17 Comparison of Sum-of-Products and Product-of-
Sums Designs
Problem
Realize the function f described by the accompanying truth table, using both 0 and 1
coverings in the Karnaugh map.

Solution
Known Quantities: Truth table for logic function.
Find: Realization in both sum-of-products and product-of-sums forms.
Analysis:

Product-of-sums expression. Product-of-sums expressions use 0s to determine
the logical expression from a Karnaugh map. Figure 11.52 depicts the Karnaugh
map covering with 0s, leading to the expression
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Sum-of-products expression. Sum-of-products expressions use 1s to determine
the logical expression from a Karnaugh map. Figure 11.53 depicts the Karnaugh
map covering with 1s, leading to the expression



Figure 11.52

Figure 11.53

Comments: It is worthwhile to verify that both SOP forms of f are correct. The POS
solution requires five gates (one three-input OR, one two-input OR, two NOT, and
one AND), while the SOP solution requires six gates (one three-input OR, two NOT,
and three AND). Thus, the POS solution leads to a simpler design.

EXAMPLE 11.18 Using Don’t-Care Conditions to Simplify Expressions
—1
Problem
Find a minimum sum-of-products realization for the expression f (A,B,C).

Solution
Known Quantities: Logical expression, don’t-care conditions.
Find: Minimal realization.
Schematics, Diagrams, Circuits, and Given Data:



Analysis: Cover the Karnaugh map of Figure 11.54 using 1s and don’t-care entries to
obtain the following minimal expression from one four-cell subgroup and one two-
cell subgroup.

Figure 11.54

Comments: Note that one of the don’t-care entries was not used, since doing so
would not lead to any further simplification.

EXAMPLE 11.19 Using Don’t-Care Conditions to Simplify Expressions
—2
Problem
Use don’t-care entries to simplify the expression

Solution
Known Quantities: Logical expression; don’t-care conditions.
Find: Minimal realization.
Schematics, Diagrams, Circuits, and Given Data: Don’t-care conditions: f(A,B,C,D)
= {0100,0110,1010,1110}.



Analysis: Cover the Karnaugh map of Figure 11.55 using 1s and don’t-care entries to
obtain the following simplified expression from two four-cell subgroups and one
two-cell subgroup.

Figure 11.55

Comments: The don’t-care entries can be interpreted as 0s to find the POS form.
Verify that the SOP expression is simpler.

CHECK YOUR UNDERSTANDING
Simplify the following expression, using a Karnaugh map.

Simplify the following expression, using a Karnaugh map.

CHECK YOUR UNDERSTANDING

Answer: 



Would a sum-of-products realization for Example 11.16 require fewer gates?
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CHECK YOUR UNDERSTANDING
Verify that the product-of-sums expression for Example 11.17 can be realized with
fewer gates than the sum-of-products expression.

CHECK YOUR UNDERSTANDING
Show that the circuit of Figure 11.53 can also be obtained from the sum of products.

CHECK YOUR UNDERSTANDING
In Example 11.18, assign a value of 0 to the don’t-care terms and derive the
corresponding minimal expression. Is the new function simpler than the one obtained
in Example 11.18?

In Example 11.18, assign a value of 1 to all don’t-care terms and derive the
corresponding minimal expression. Is the new function simpler than the one obtained
in Example 11.18?

CHECK YOUR UNDERSTANDING
In Example 11.19, assign a value of 0 to the don’t-care terms and derive the
corresponding minimal expression. Is the new function simpler than the one obtained
in Example 11.19?

Answer: No

Answer: 



11.5 COMBINATIONAL LOGIC MODULES
The basic logic gates described in the previous section are used to implement more
advanced functions and are often combined to form logic modules, which, thanks to
modern technology, are available in compact integrated-circuit packages. In this
section a few of the more common combinational logic modules are discussed,
illustrating how these can be used to implement advanced logic functions.

Multiplexers
Multiplexers, or data selectors, are combinational logic circuits. A typical
multiplexer (MUX) has 2n data lines, n address (or data select) lines, and one
output. In addition, other control inputs (e.g., enables) may exist. Standard,
commercially available MUXs allow for n up to 4; however, two or more MUXs can
be combined if a greater range is needed. The MUX allows for one of 2n inputs to be
selected as the data output. The address or data select lines determine which input is
selected as the output. Figure 11.56 depicts the block diagram of a four-input (n = 2)
MUX. Page 683The input data lines are labeled D0, D1, D2, and D3; the data select,
or address, lines are labeled I0 and I1; and the output is available in both
complemented and uncomplemented form and is thus labeled F or  Finally, an
enable input, labeled E, is also provided, as a means of enabling or disabling the
MUX: if E = 1, the MUX is disabled; if E = 0, it is enabled. The negative logic
(MUX off when E = 1 and on when E = 0) is indicated by the small “bubble” at the
enable input, which represents a complement operation (just as at the output of
NAND and NOR gates). The enable input is useful when using a cascade of MUXs,
to select a line from a large number, say, 28 = 256, inputs.

Answer: 



Figure 11.56 4-to-1 MUX

Figure 11.57 shows the internal logic of a 4:1 MUX using exclusively NAND
gates and inverters. Figure 11.58 depicts the concept of a cascade of MUXs. (In
practice, one 8:1 MUX would be used instead of cascading two 4:1 MUXs.) When
there are more than 16 data inputs it may be necessary to cascade MUXs.

Figure 11.57 Internal logic of a 4-to-1 MUX with inverted enable logic (E
= 0 enables the MUX.)



Figure 11.58 Cascade of two 4:1 MUXs with a third 2:1 MUX to select
from the other two. The data select lines S1, S2, and S3 determine which
data input will appear at F3.

In the design of digital systems (e.g., microprocessors), a single line is often
required to carry two or more different digital signals. However, only one signal Page
684at a time can be placed on the line. A MUX allows different signals to be selected
at different instants on the single output line by using clock inputs on the data select
lines.

The data selector function of a 4:1 MUX is best understood in terms of Table
11.13. In this truth table, each x represents a don’t-care entry. As can be seen from
the truth table, the output selects one of the data lines depending on the values of I1
and I0, assuming that I0 is the least significant bit. For example, I1 I0 = 10 selects D2,
which means that the output F will be the same as input D2. Similar tables can be
constructed for larger MUXs.

Table 11.13

Read-Only Memory (ROM)



Another common technique for implementing logic functions uses read-only
memory, or ROM. As the name implies, a ROM is a logic circuit that holds
information in storage (“memory”)—in the form of binary numbers—that cannot be
altered but can be “read” by a logic circuit. A ROM is an array of memory cells, each
of which can store either a 1 or a 0. The array consists of 2m × n cells, where n is the
number of bits in each word3, m is the number of address lines and 2m is the number
of words stored in a ROM. When an address is selected, in a fashion similar to the
operation of the MUX, the binary word corresponding to the address selected appears
at the output, which consists of n bits, that is, the same number of bits as the stored
words. In some sense, a ROM can be thought of as a MUX that has an output
consisting of a word instead of a single bit. A ROM is often used to store a lookup
table where results of complicated computations are stored so that the results can be
“looked up” instead of being computed in real time by a microprocessor.

Figure 11.59 depicts the conceptual arrangement of a ROM with n = 4 and m = 2.
As an illustration, the ROM lookup table has been filled with arbitrary 4-bit words.
In Figure 11.59, for an enable input of 0 (i.e., on) and values for the address lines of
I0 = 0 and I1 = 1, the output word would be W2 = 0110, so that b0 = 0, b1 = 1, b2 = 1,
b3 = 0. Depending on the content of the ROM and the number of address and output
lines, one could implement an arbitrary logic function.

Figure 11.59 Read-only memory

Unfortunately, the data stored in read-only memories must be entered during
fabrication and cannot be altered later. A much more convenient type of read-only
memory is the erasable programmable read-only memory (EPROM), the Page
685content of which can be easily programmed and stored and may be changed if



needed. EPROMs find use in many practical applications, because of their flexibility
in content and ease of programming. The Focus on Measurements box illustrates the
use of an EPROM to store a lookup table (LUT).

Decoders and SRAM
Decoders, which are commonly used for applications such as address decoding or
memory expansion, are combinational logic circuits. A decoder converts a m-bit
input code to a unique n-bit output code, where m ≤ n ≤ 2m. Figure 11.60 shows the
logic and block diagrams and the truth table for a 2-to-4 decoder with two inputs A
and B and four outputs  and . The decoder has an active-low enable input 
. When  is logic 1, all decoder outputs are forced to logic 1 regardless of the select
inputs. The decoder shown here employs active low logic such that when  is logic 0
only one of the outputs is logic 0. The other outputs are logic 1. The particular logic
0 output is determined by the select inputs A and B. Decoders are also available with
active high logic such that when  is logic 0 only one of the outputs is logic 1 while
all other outputs are logic 0. Decoders are also available with an active-high enable
input.



Figure 11.60 A 2-to-4 decoder

This simple description of decoders permits a brief discussion of the internal
organization of static random-access memory (SRAM), which provides high-speed
memory, a large bit capacity, and low cost. The memory array has a column length
equal to the number of words 2m and a row length equal to the number of bits per
word N. To select a word, an m-to-2m decoder is needed. The decoder inputs select
one word in the memory array. To choose the desired word from the memory array,
the proper address inputs are required. As an example, if the number of words in the
memory array is eight, a 3-to-8 decoder is needed. Figure 11.61 shows the internal
organization of a typical SRAM.



1.

2.

3.

Figure 11.61 Internal organization of a SRAM

Gate Arrays and Programmable Logic Devices
Many of today’s digital logic designs are deployed using programmable logic
devices (PLDs). Early PLDs consisted of arrays of AND and OR gates connected by
way of a programmable interconnect. Specific combinational logic functions Page
686are implemented onto these devices by programming the interconnect to create
the required logical connections. More recent PLDs consist of arrays of
programmable logic blocks, in lieu of basic gate arrays, combined with a
programmable interconnect. These devices also incorporate flip-flops making them
suitable for sequential logic (see chapter 12) designs. All PLDs can be programmed
using special programming languages called hardware description languages
(HDLs). Four types of PLDs are defined here:

PAL (programmable array logic): An early PLD containing an array of
programmable AND gates whose outputs are connected to a fixed array of OR
gates.
PLA (programmable logic array): An early PLD containing an array of
programmable AND gates whose outputs are connected to an array of
programmable OR gates. These devices provide more programming flexibility
than PAL devices.
CPLD (complex programmable logic device): A modern device that combines
multiple PLDs into a single package allowing for more complex logic designs.
The PLDs are connected to each other via a programmable interconnect. Each
PLD is paired with a flip-flop making these devices suitable for both
combinational and sequential logic designs. Configuration information for these
reprogrammable devices is stored in a nonvolatile electrically erasable



4.

programmable read-only memory (EEPROM) and thus they retain their
configuration between power cycles.
FPGA (field-programmable gate array): A modern PLD containing an array of
programmable logic blocks connected by way of a programmable interconnect.
Programmable logic blocks contain one or more n-input look-up tables (LUTs),
a variety of multiplexers, and one or more flip-flops. Each n-input LUT can
implement any arbitrary n-input Boolean function. These devices often have tens
to hundreds of thousands of programmable logic blocks making them the most
flexible of the PLDs presented here. FPGAs also include random-access
memory (RAM) blocks into the programmable interconnect that can be
incorporated into the logic design. Programming information for these
reprogrammable devices is typically stored in volatile memory and thus they
must be reprogrammed each time power is applied.

To illustrate the concept of logic design using a PLA, Figure 11.62 shows a
diagram of a small PLA architecture with three inputs and two outputs. The circles
represent programmable interconnects. Filled circles represent a location where a
connection exists, whereas empty circles represent a location where no connection
exists. The PLA shown in this figure implements two logical functions:

An equivalent logic circuit and the corresponding HDL code to program these logical
functions into a PLA is shown in Figure 11.63. The HDL first defines the inputs and
outputs. Next, a set of equations describes the logical functions to be implemented
and to which output the result is assigned. Note that the Page 687symbol &
represents the logical function AND. The symbol ∣ represents the logical function
OR.



Figure 11.62 Internal structure of a simple PLA

Figure 11.63 (a) Logic circuit; (b) corresponding HDL code

A second example of the use of a PLD introduces the concept of timing
diagrams, which are covered in greater detail in Chapter 12. Figure 11.64 depicts a
timing diagram related to an automotive fuel-injection system, in which multiple
injections are to be performed. Three pilot injections and one primary injection are to
be performed. The master control line enables the entire sequence. The resulting
output sequence, shown at the bottom of the plot and labeled “injector fuel
pulse,”Page 688 is the combination of the three pilot pulses and the primary pulse.
Based on the timing plot of the signals shown in Figure 11.64(a), the following



inputs are used: I1=master control, I2=pilot inject #1, I3=pilot inject #2, I4=pilot
inject #3, I5=primary inject, and the output O1=injector fuel pulse. The required
logic function is

This function is realized by the code in Figure 11.64(b).

Figure 11.64 (a) Injector timing sequence; (b) sample code for multiple-
injection sequence

A final example illustrates the use of a single FPGA programmable logic block,
commonly referred to as a configurable logic block (CLB), to implement a logical
function. Figure 11.65(a) shows the layout of a simple CLB consisting of a four-input
LUT, a flip-flop, and a two-input MUX. To implement the logical function 

, the LUT is programmed with the values shown in Figure
11.65(b). For a combinational logic implementation of the function, the CLB’s flip-
flop is bypassed by programming the S input of the MUX to be tied low. For a
sequential logic implementation of the function, the S input of the MUX is tied high.

Figure 11.65 (a) A simple CLB; (b) sample contents of LUT



A typical FPGA contains an array of many thousands of CLBs. The contents of
CLBs vary widely between FPGA product families and vendors.
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FOCUS ON MEASUREMENTS

EPROM-based Lookup Table for Automotive Fuel-
Injection System Control
One of the most common applications of EPROMs is an arithmetic lookup table,
which is used to store computed values of certain functions, eliminating the need to
compute the function. A practical application of this concept is present in every
automobile manufactured in the United States since the early 1980s, as part of the
exhaust emission control system. For the catalytic converter to minimize the
emissions of exhaust gases (especially hydrocarbons, oxides of nitrogen, and carbon
monoxide), it is necessary to maintain the air-to-fuel ratio A/F as close as possible to
the stoichiometric ratio of 14.7 parts of air for each part of fuel. Most modern
engines are equipped with fuel-injection systems that are capable of delivering
accurate amounts of fuel to each individual cylinder—thus, the task of maintaining
an accurate A/F amounts to measuring the mass of air that is aspirated into each
cylinder and computing the corresponding mass of fuel. Many automobiles are
equipped with a mass airflow sensor, capable of measuring the mass of air drawn
into each cylinder during each engine cycle. Let the output of the mass airflow sensor
be denoted by the variable MA, and let this variable represent the mass of air (in



grams) actually entering a cylinder during a particular stroke. It is then desired to
compute the mass of fuel MF (also expressed in grams) required to achieve an A/F of
14.7. This computation is simply

Although this computation is a simple division, its actual calculation in a low-
cost digital computer (such as would be used on an automobile) is rather
complicated. It would be much simpler to tabulate a number of values of MA, to
precompute the variable MF, and then to store the result of this computation in an
EPROM. If the EPROM address were made to correspond to the tabulated values of
air mass, and the content at each address to the corresponding fuel mass (according
to the precomputed values of the expression MF = MA/14.7), it would not be
necessary to perform the division by 14.7. For each measurement of air mass into one
cylinder, an EPROM address is specified and the corresponding content is read. The
content at the specific address is the mass of fuel required by that particular cylinder.

In practice, the fuel mass needs to be converted to a time interval corresponding
to the duration of time during which the fuel injector is open. This final conversion
factor can also be accounted for in the table. Suppose, for example, that the fuel
injector is capable of injecting KF g/s of fuel; then the time duration TF during which
the injector should be open to inject MF g of fuel into the cylinder is given by

Therefore, the complete expression to be precomputed and stored in the EPROM is

Figure 11.66 illustrates this process graphically.
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Figure 11.66 Use of EPROM lookup table in automotive fuel-injection
system

To provide a numerical illustration, consider a hypothetical engine capable of
aspirating air in the range 0 < MA < 0.51 g and equipped with fuel injectors capable
of injecting at the rate of 1.36 g/s. Thus, the relationship between TF and MA is

If the digital value of MA is expressed in decigrams (dg, or tenths of a gram), the
lookup table of Figure 11.67 can be implemented, illustrating the conversion
capabilities provided by the EPROM. Note that to represent the quantities of interest
in an appropriate binary format compatible with the 8-bit EPROM, the units of air
mass and of time have been scaled.

Figure 11.67 Lookup table for automotive fuel-injection application

CHECK YOUR UNDERSTANDING
Which combination of the control lines will select the data line D3 for a 4-to-1
MUX?



1.
2.

3.

Show that an 8-to-1 MUX with eight data inputs (D0 through D7) and three control
lines (I0 through I2) can be used as a data selector. Which combination of the control
lines will select the data line D5?
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Which combination of the control lines will select the data line D4 for an 8-to-1
MUX?

CHECK YOUR UNDERSTANDING
How many address inputs do you need if the number of words in a memory array is
16?

Conclusion
This chapter contains an overview of digital logic circuits. These circuits form the
basis of all digital computers, and of most electronic devices used in industrial and
consumer applications. Upon completing this chapter, a student will have learned to:

Apply concepts of analog and digital signals and of quantization.
Convert between decimal and binary number systems and use the hexadecimal
system and BCD and Gray codes. The binary and hexadecimal systems form the
basis of numerical computing.
Write truth tables, and realize logic functions from truth tables using logic gates.
Boolean algebra permits the analysis of digital circuits through a relatively
simple set of rules. Digital logic gates are the means through which one can
implement logic functions; truth tables permit the easy visualization of logic
functions and can aid in the realization of these functions by using logic gates.

Answer: To select D3 use I1I0 = 11; to select D5 use I2I1I0 = 101; to select
D4 use I2I1I0 = 100

Answer: Four



4.

5.

11.1

11.2

11.3

11.4
a.

b.

c.

d.

e.

f.

11.5
a.

b.

c.

Systematically design logic functions using Karnaugh maps. The design of logic
circuits can be systematically approached by using an extension of truth tables
called the Karnaugh map. Karnaugh maps facilitate the simplification of logic
expressions and their realization through logic gates in either sum-of-products or
product-of-sums form.
Apply various combinational logic modules, including multiplexers, memory and
decoder elements, and programmable logic arrays. Practical digital logic circuits
rarely consist of individual logic gates; gates are usually integrated into
combinational logic modules that include memory elements and gate arrays.

HOMEWORK PROBLEMS
Section 11.2: The Binary Number System

Convert the following base-10 numbers to hexadecimal and binary:

a. 303 b. 275 c. 18 d. 43 e. 87

Convert the following hexadecimal numbers to base-10 and binary:

a. C b. 44 c 28 d. 59 e. 14

Convert the following base-10 numbers to binary:

a. 231.45 b. 58.78 c. 21.22 e. 93.375
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Convert the following binary numbers to hexadecimal and base 10:

1101

1000100

1111100

1110000

10000

101010

Perform the following additions, all in the binary system:

10101111 + 10100

111100001 + 111000

111001011 + 111001



11.6
a.

b.

c.

11.7

11.8

11.9

11.10
a.

b.

11.11

11.12

11.13

11.14

Perform the following subtractions, all in the binary system:

11010001 − 11100

11111100 − 101010

100110110 − 1001100

Assuming that the most significant bit is the sign bit, find the decimal value of
the following sign-magnitude form 8-bit binary numbers:

a. 10100111 b. 01010110 c. 11111100

Find the sign-magnitude form binary representation of the following decimal
numbers:

a. 122 b. −110 c. −87 d. 40

Find the twos complement of the following binary numbers:

a. 1110 b. 1100101 c. 1110000 d. 11100

Using 10 fingers, including thumbs:

How high can one count in a binary (base 2) number system?

How high can one count in base 6, using one hand to count units and the
other hand for carries?

Section 11.3: Boolean Algebra and Logic Gates
Use a truth table to show that

Realize the logic function:

using logic gates and construct its truth table.

Using the method of proof by perfect induction, show that

Simplify the expression

using boolean algebra, and then draw the logic circuit using logic gates.



11.15

11.16

11.17

11.18

11.19

Simplify the expression

using the boolean algebra.

Simplify the expression

using the boolean algebra.

Find a logic function equivalent to the truth table given in Figure P11.17.

Figure P11.17

Determine the boolean function describing the operation of the circuit shown
in Figure P11.18 and simplify it using boolean algebra.

Figure P11.18

Use a truth table to show when the output of the circuit of Figure P11.19 is 1.



11.20

a.

b.

c.

11.21

11.22

Figure P11.19
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Baseball is a complicated game, and often the manager has a difficult time
keeping track of all the rules of thumb that guide decisions. To assist your
favorite baseball team, you have been asked to design a logic circuit that will
flash a light when the manager should give the steal sign. The rules have been
laid out for you by a baseball fan with limited knowledge of the game as
follows: Give the steal sign if there is a runner on first base and

There are no other runners, the pitcher is right-handed, and the runner is
fast; or

There is one other runner on third base, and one of the runners is fast; or

There is one other runner on second base, the pitcher is left-handed, and
both runners are fast.

Under no circumstances should the steal sign be given if all three bases have
runners. Design a logic circuit that implements these rules to indicate when
the steal sign should be given.

A small county board is composed of three commissioners. Each
commissioner votes on measures presented to the board by pressing a button
indicating whether the commissioner votes for or against a measure. If two or
more commissioners vote for a measure, it passes. Design a logic circuit that
takes the three votes as inputs and lights either a green or a red light to
indicate whether a measure passed.

A water purification plant uses one tank for chemical sterilization and a
second, larger tank for settling and aeration. Each tank is equipped with two
sensors that measure the height of water in each tank and the flow rate of
water into each tank. When the height of water or the flow rate is too high,
the sensors produce a logic high output. Design a logic circuit that sounds an
alarm whenever the height of water in both tanks is too high and either of the



11.23

11.24

11.25

a.

b.

11.26

11.27

flow rates is too high, or whenever both flow rates are too high and the height
of water in either tank is also too high.

Many automobiles incorporate logic circuits to alert the driver to problems or
potential problems. In one particular car, a buzzer is sounded whenever the
ignition key is turned and either a door is open or a seat belt is not fastened.
The buzzer also sounds when the key is not turned but the lights are on. In
addition, the car will not start unless the key is in the ignition, the car is in
park, and all doors are closed and seat belts fastened. Design a logic circuit
that takes all the inputs listed and sounds the buzzer and starts the car when
appropriate.

An on/off start-up signal governs the compressor motor of a large commercial
air conditioning unit. In general, the start-up signal should be on whenever
the output of a temperature sensor S exceeds a reference temperature.
However, you are asked to limit the compressor start-ups to certain hours of
the day and also enable service technicians to start up or shut down the
compressor through a manual override. A time-of-day indicator D is available
with on/off outputs, as is a manual override switch M. A separate timer T
prohibits a compressor start-up within 10 min of a previous shutdown. Design
a logic diagram that incorporates the state of all four devices (S, D, M, and T )
and produces the correct on/off condition for the motor start-up.

NAND gates require one less transistor than AND gates. They are often used
exclusively to construct logic circuits. One such logic circuit that uses three-
input NAND gates is shown in Figure P11.25.

Determine the truth table for this circuit.

Find a logic function that represents the circuit.

Figure P11.25

Draw a logic circuit that is equivalent to the function:

The circuit shown in Figure P11.27 is called a half adder for two single bit
inputs, giving a two-bit sum as outputs. Build a truth table and verify that it
indeed acts as a summer.



11.28

11.29

11.30

11.31

Figure P11.27

Draw a logic circuit that is equivalent to the function:
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Determine the truth table (F given A, B, C, and D) and a logical expression
for the circuit of Figure P11.29.

Figure P11.29

Determine the truth table (F given A, B, and C) and a logical expression for
the circuit of Figure P11.30.

Figure P11.30

A “vote taker” logic circuit forces its output to agree with a majority of its
inputs. Such a circuit is shown in Figure P11.31 for the three voters, A, B and



11.32

11.33

11.34

C. Write a logic expression for the output of this circuit in terms of its inputs.
Also create the truth table for the output in terms of the inputs.

Figure P11.31

A “consensus indicator” logic circuit is shown in Figure P11.32. Write a
logical expression for the output of this circuit in terms of its input. Also
create the truth table for the output in terms of the inputs.

Figure P11.32

A half-adder circuit is shown in Figure P11.33. Write a logical expression for
the outputs of this circuit in terms of its inputs. Also create the truth table for
the outputs in terms of the inputs.

Figure P11.33

For the logic circuit shown in Figure P11.34, write a logical expression for
the outputs of this circuit in terms of its inputs, and create the truth table for
the outputs in terms of the inputs, including any required intermediate
variables.



11.35

11.36

11.37
a.

b.

Figure P11.34

For the logic circuit in Figure P11.35, write a logical expression for the
outputs of this circuit in terms of its inputs, and create the truth table for the
Page 695outputs in terms of the inputs, including any required intermediate
variables.

Figure P11.35

Simplify the following logic function:

Complete the truth table for the circuit of Figure P11.37.

What mathematical function does this circuit perform, and what do the
outputs signify?

How many standard 14-pin ICs would it take to construct this circuit?

Figure P11.37

Section 11.4: Karnaugh Maps and Logic Design



11.38

11.39

11.40

11.41
11.42

11.43

Find the logic function corresponding to the truth table of Figure P11.38 in
the simplest SOP form.

Figure P11.38

Find the minimum expression for the output of the logic circuit shown in
Figure P11.39.

Figure P11.39

Build the Karnaugh map of the function  and verify it using boolean
algebra.

Use a Karnaugh map to minimize the function 

Fill in the Karnaugh map for the function Y = f(A,B,C) defined by the truth
table of Figure P11.42, and find the minimum expression for the function.

Figure P11.42

A function F is defined such that it equals 1 when a 4-bit input code is
equivalent to any of the decimal numbers 3, 6, 9, 12, or 15. Function F is 0
for input codes 0, 2, 8, and 10. Other input values cannot occur. Use a



11.44

11.45

11.46

11.47
11.48

Karnaugh map to determine a minimal expression for this function. Design
and sketch a circuit to implement this function, using only AND and NOT
gates.

Design the circuit of the function Y = f(A,B,C) described in Figure P11.44.

Figure P11.44

Design a logic circuit that will produce the ones complement of an 8-bit
signed binary number.
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Construct the Karnaugh map for the logic function defined by the truth table
of Figure P11.46, and find the minimum expression for the function.

Figure P11.46

Use a Karnaugh map to minimize the function 

Find the minimum output expression for the circuit of Figure P11.48.



11.49
11.50

11.51

11.52

Figure P11.48

Design a combinational logic circuit that will add two 4-bit binary numbers.

Minimize the expression described in the truth table of Figure P11.50, and
draw the circuit.

Figure P11.50

Find the minimum expression for the output of the logic circuit of Figure
P11.51.

Figure P11.51

The objective of this problem is to design a combinational logic circuit that
will aid in determination of the acceptability of emergency blood
transfusions. It is known that human blood can be categorized into four types:
A, B, AB, and O. Persons with type A blood can donate to both A and AB
types and can receive blood from both A and O types. Persons with type B
blood can donate to both B and AB types and can receive from both B and O
types. Persons with type AB blood can donate only to type AB but can
receive from any type. Persons with type O blood can donate to any type but
can receive only from type O. Make appropriate variable assignments, and
design a circuit that will approve or disapprove any particular transfusion
based on these conditions.



11.53

11.54

a.

b.

c.

11.55

Find the minimum expression for the logic function at the output of the logic
circuit of Figure P11.53.

Figure P11.53

Determine the minimum boolean logic expression associated with the
Karnaugh map in Figure P11.54 and create (realize) the logic circuit.

Figure P11.54

Construct a Karnaugh map associated with the truth table of Figure
P11.55.

What is the minimum expression for the function?
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Draw the logic circuit, using AND, OR, and NOT gates.

Figure P11.55



11.56

11.57

11.58

a.

b.

Fill in the Karnaugh map for the logic function defined by the truth table of
Figure P11.56. What is the minimum expression for the function?

Figure P11.56

Fill in the Karnaugh map for the logic function defined by the truth table of
Figure P11.57. What is the minimum expression for the function? Realize the
function using only NAND gates.

Figure P11.57

Design a circuit with a 4-bit input representing the binary number A3A2A1A0.
The output should be 1 if the input value is divisible by 3. Assume that the
circuit is to be used only for the digits 0 through 9 (thus, values for 10 to 15
can be don’t-care conditions).

Draw the Karnaugh map and truth table for the function.

Determine the minimum expression for the function.



c.

11.59

11.60

11.61

11.62

Draw the circuit, using only AND, OR, and NOT gates.

Find the simplest SOP representation of the function associated with the
Karnaugh map shown in Figure P11.59.

Figure P11.59

Can the circuit for Problem 11.54 be simplified if it is known that the input
represents a BCD (binary-coded decimal) number, that is, if it can never be
greater than 910? If not, explain why not. Otherwise, design the simplified
circuit.

Find the simplest SOP representation of the function associated with the
Karnaugh map shown in Figure P11.61.

Figure P11.61

Page 698

One method of ensuring reliability in data transmission systems is to transmit
a parity bit along with every nibble, byte, or word of binary data transmitted.
The parity bit confirms whether an even or odd number of 1s were
transmitted in the data. In even-parity systems, the parity bit is set to 1 when
the number of 1s in the transmitted data is odd. Odd-parity systems set the
parity bit to 1 when the number of 1s in the transmitted data is even. Assume
that a parity bit is transmitted for every nibble of data. Design a logic circuit



11.63

11.64

11.65

11.66

11.67

11.68

11.69

that checks the nibble of data and transmits the proper parity bit for both
even- and odd-parity systems.

Assume that a parity bit is transmitted for every nibble of data. Design two
logic circuits that check a nibble of data and its parity bit to determine if there
may have been a data transmission error. Assume first an even-parity system,
then an odd-parity system.

Design a logic circuit that takes a 4-bit Gray code input from an optical
encoder and translates it into two 4-bit nibbles of BCD.

Design a logic circuit that takes a 4-bit Gray code input from an optical
encoder and determines if the input value is a multiple of 3.

The 4221 code is a base 10–oriented code that assigns the weights 4221 to
each of 4 bits in a nibble of data. Design a logic circuit that takes a BCD
nibble as input and converts it to its 4221 equivalent. The logic circuit should
also report an error in the BCD input if its value exceeds 1001.

The 4-bit digital output of each of two sensors along an assembly line
conveyor belt is proportional to the number of parts that pass by on the
conveyor belt in a 30-s period. Design a logic circuit that reports an error if
the outputs of the two sensors differ by more than one part per 30-s period.

Section 11.5: Combinational Logic Modules
A function F is defined such that it equals 1 when a 4-bit input code is
equivalent to any of the decimal numbers 3, 6, 9, 12, or 15. F is 0 for input
codes 0, 2, 8, and 10. Other input values cannot occur. Use a Karnaugh map
to determine a minimal expression for this function. Design and sketch a
circuit to implement this function using only AND and NOT gates.

Fill in the Karnaugh map for the logic function defined by the truth table of
Figure P11.69. What is the minimum expression for the function? Realize the
function using a 1-of-8 multiplexer.



11.70

11.71

Figure P11.69

Fill in the truth table for the multiplexer circuit shown in Figure P11.70. What
binary function is performed by these multiplexers?

Figure P11.70

The circuit of Figure P11.71 operates as a 4:16 decoder. Terminal EN denotes
the enable input. Describe its operation. What is the role of logic variable A?

Figure P11.71



11.72

11.73

a.

b.

11.74

11.75

11.76
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Show that the circuit given in Figure P11.72 converts 4-bit binary numbers to
4-bit Gray code.

Figure P11.72

Suppose one of your classmates claims that the following boolean
expressions represent the conversion from 4-bit Gray code to 4-bit binary
numbers:

Show that your classmate’s claim is correct.

Draw the circuit that implements the conversion.

Select the proper inputs for a four-input multiplexer to implement the
function  Assume inputs I0, I1, I2, and I3 correspond to

, and AB, respectively, and that each input may be  or C.

Select the proper inputs for an 8-bit multiplexer to implement the function 
 Assume the inputs I0 through I7 correspond

to  and ABC, respectively, and that each input
may be  or D.

Use a 3:8 decoder and a three-input OR gate to implement the logic function 
 Draw a logic diagram and create the associated truth table.



Design Credits:Mini DVI cable adapter isolated on white background: Robert Lehmann/Alamy Stock Photo;
Balance scale: Alex Slobodkin/E+/Getty Images; Icon for “Focus on measurements” weighing scales: Media
Bakery.

1American Standard Code for Information Interchange.

2A useful rule to remember is that in a two-variable map, there are two minterms
adjacent to any given minterm; in a three-variable map, three minterms are adjacent
to any given minterm; in a four-variable map, the number is four, and so on.

3The size of a word depends upon the particular system architecture.
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C H A P T E R
12

DIGITAL SYSTEMS

n general, a digital system is able to perform computations on digital
signals and data and store the results in memory. Some of these
computations are performed by combinational logic gates (Chapter 11),
which require no knowledge of prior logic states. However, other

computations do require such knowledge. Sequential logic gates, which are built
up from combinational logic gates, employ feedback from outputs to inputs to
generate output logic states that depend upon the output logic states at earlier
times. In effect, these sequential logic gates have memory. The first part of this
chapter is focused on sequential logic gates and rudimentary devices, such as flip-
flops, counters, and registers that are built up from them.

The second part of the chapter builds upon the first part by describing basic
computer system architecture, including registers, which are the most
fundamental units of digital memory. A discussion of microcontrollers, and
details of the Atmel ATmega328P® microcontroller, in particular, follows the
section on architecture.1 The popular, open-source, microcontroller-based
Arduino hardware and software project is also described in sufficient detail to
motivate applications and student projects, such as motor control and data
acquisition.
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2.
3.

4.
5.

6.

1.

2.

1.
2.
3.
4.

 Learning Objectives
Students will learn to...

Analyze the operation of flip-flops and latches. Section 12.1.
Analyze and apply digital counters and registers. Section 12.2.
Design simple sequential circuits using state transition diagrams. Section
12.3.
Describe the basic architecture of computers. Section 12.4.
Identify the architecture of microprocessors, microcontrollers, and the
ATmega328P®, in particular. Section 12.5.
Utilize the Arduino hardware and software project. Section 12.6.

12.1 LATCHES AND FLIP-FLOPS
A flip-flop is an elementary sequential logic gate. Various types of flip-flops
exist; however, all flip-flops share the following characteristics:

A flip-flop is a bistable device; that is, it can remain in one of two stable
states (0 and 1) until appropriate conditions cause it to change state. Thus, a
flip-flop can serve as a memory element.
A flip-flop has two outputs, one of which is the complement of the other.

RS Flip-Flop
It is customary to depict flip-flops by their block diagram and their output by a
name, such as Q. Figure 12.1 represents the RS flip-flop, which has two inputs,
denoted by S and R, and two outputs Q and Q  ̅ . The value at Q is called the
binary output state of the flip-flop. The two inputs R and S are used to change the
state of the flip-flop, according to the following rules:

When R = S = 0, Q remains unchanged from its present state.
When S = 1 and R = 0, the output is set such that Q = 1.
When S = 0 and R = 1, the output is reset such that Q = 0.
S and R are not permitted to be 1 simultaneously.



Figure 12.1 RS flip-flop symbol and truth table

A timing diagram is a convenient means of describing the transitions that
occur in the output of a flip-flop due to changes in its inputs. Figure 12.2 depicts a
table of transitions for an RS flip-flop Q as well as the corresponding timing
diagram.

Figure 12.2 Timing diagram for the RS flip-flop

It is important to note that the RS flip-flop is level-sensitive. This means that
the set and reset operations are completed only after the R and S inputs have
reached the appropriate levels. Thus, in Figure 12.2 the transitions in the Q output
occur with a small delay relative to the transitions in the R and S inputs.

Figure 12.3 illustrates how an RS flip-flop could be constructed from two
inverters and two NAND gates. Consider the case when S = R = 0 such that 

. Then the result of each NAND gate is determined entirely by  and Q.



That is, when one input to a NAND gate is set high to 1, the output of that NAND
gate is the inversion of the other input (refer to the NAND gate truth table in Page
703Chapter 11). Thus, when S = R = 0, the outputs of the two NAND gates in
Figure 12.3 are simply  and . In other words, the output states of the RS
flip-flop remain unchanged from their prior states whenever S and R are both set
low to 0.

Figure 12.3 NAND gate implementation of the RS flip-flop

When S is set high to 1, the output of the upper NAND gate Q is also set high
to 1. Why? Because when S is set high to 1,  is set low to 0, and when one input
to a NAND gate is low, the output of the NAND gate is high regardless of the
state of the other input. Likewise, when R is set high to 1,  is set high to 1.

The only difficulty with the RS flip-flop occurs when both S and R are set
high to 1. Clearly, it is an inherent contradiction to suppose that both Q and  are
both set high to 1 at any point in time. Why? Because  is, by definition, the
inversion of Q. Thus, S = R = 1 is not allowed. The RS flip-flop cannot be both set
and reset at the same time. In practice, one could set S = R = 1, but the output will
be unstable.

As is true for any logic network, it is possible to find alternate formulations of
the RS flip-flop. One of DeMorgan’s laws states that a NAND gate is equivalent
to an OR gate with inverted inputs. Make this replacement in Figure 12.3, and
note that all of the inputs are now inverted prior to the OR gates. When inverters
are added to the outputs of the OR gates the result is NOR gates with Q and 
interchanged. The result is shown in Figure 12.4.



Figure 12.4 NOR gate implementation of the RS flip-flop

Figure 12.5 shows the same two-NOR-gate implementation of the RS flip-
flop, but with an enable input E connected to two AND gates such that the R or S
inputs will be effective only when E = 1. The enable input is often a clock signal
used to synchronize other inputs.

Figure 12.5 also illustrates two additional features: the preset P and clear C
functions. These features have no effect when set low to 0. However, when P is
set high to 1, the output of the upper NOR gate  is set low to 0 and, thus, Q is set
high to 1. P = 1 always results in Q = 1. Likewise, when C is set high to 1, the
output of the lower NOR gate Q is set low to 0. The preset and clear are not
controlled by the enable input and, thus, are said to be asynchronous. It is
important to realize that P = C = 1 is not allowed. The timing diagram of Figure
12.5 illustrates the role of the enable, preset, and clear inputs. Notice that
transitions due to S and R occur only after E is set high. The flip-flop can be
designed so Page 704that the P and C inputs are also controlled by E; in fact,
many commercial flip-flops are designed this way so that all inputs are
synchronized with E.

Figure 12.5 The RS flip-flop with enable, preset, and clear lines: (a)
logic diagram, (b) example timing diagram

Another extension of the RS flip-flop, called a data latch, or delay, is shown
in Figure 12.6. In this circuit,  such that when E = 1, Q = D. When E is set
low to 0, the output Q does not change but retains its value until E is set high



again. In other words, Q is latched when E is set low and unlatched when E is set
high. The timing diagram illustrates that this effect also delays the impact of D on
Q until the next time E is set high.

Figure 12.6 Data latch and associated timing diagram
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D Flip-Flop
The D flip-flop is an extension of the data latch that utilizes two RS flip-flops, as
shown in Figure 12.7(a), and a clock signal to drive their enable inputs. Note that
the clock is inverted prior to E1 such that latch 1 is enabled when the clock goes
low. However, latch 2 is disabled when the clock is low, such that its output will
not change state until the clock subsequently goes high to enable the transfer of
state from Q1 to Q2.

It is important to note the triangular “knife-edge” symbol shown at the CLK
input in Figure 12.7(b). This symbol indicates that the D flip-flop changes state
only on a positive clock transition; that is, a transition from low to high.
Internally, Q1 is set on a negative transition, whereas Q2 (and therefore Q) is set
on a positive transition, as shown in Figure 12.7(c). Thus, this particular D flip-
flop is said to be positive edge–triggered, or leading edge–triggered, as indicated
in the following truth table, where the symbol ↑ indicates a positive transition.



Figure 12.7 The D flip-flop: (a) functional diagram, (b) device symbol,
(c) timing waveforms, and (d) IC schematic
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JK Flip-Flop
The symbol and truth table of the JK flip-flop are shown in Figure 12.8. The
bubble at the clock input signifies it is negative or trailing edge–triggered. Its
operating rules are

When J and K are both low, the output is unchanged.
When J = 0 and K = 1, the output is reset to 0.
When J = 1 and K = 0, the output is set to 1.



When both J and K are high, the output will toggle between states at every
negative transition of the clock input, denoted by the symbol ↓.

Figure 12.8 Truth table for the JK flip-flop

The operation of the JK flip-flop can also be explained in terms of two RS
flip-flops as shown in Figure 12.9(a). When the clock transitions from low to
high, the master is enabled; however, the slave does not receive the master
outputs until it is enabled during a negative clock transition. This behavior is
similar to that of an RS flip-flop, except for the J = 1, K = 1 condition, which is
allowed and results in the outputs being toggled.

Figure 12.9 The JK flip-flop: (a) functional diagram, and (b) IC
schematic of two independent JK flip-flops



The JK flip-flop is also known as the universal flip-flop because it can be
configured to behave as an RS or D flip-flop. When both inputs are 0, the outputs
remain in their previous state during a clock transition. With the assignments J =
S and K = R (but avoiding J = K = 1) the JK flip-flop acts as an RS flip-flop. With
the assignments , the JK flip-flop acts as a D flip-flop. Finally, when the
inputs are set so that K = J, the outputs behave as a T flip-flop, which is described
in Example 12.2.
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EXAMPLE 12.1 RS Flip-Flop Timing Diagram
Problem
Determine the output of an RS flip-flop for the series of inputs given in the table
below.

Solution
Known Quantities: RS flip-flop truth table (Figure 12.1).
Find: Output Q of RS flip-flop.
Analysis: The timing diagram for the RS flip-flop is completed, following the
rules stated earlier to determine the output of the device; the result is summarized
below.

A sketch of the waveforms, shown below, can also be generated to visualize the
transitions.



EXAMPLE 12.2 The T Flip-Flop
Problem
Determine the truth table of the T flip-flop of Figure 12.10. Note that the T flip-
flop is a JK flip-flop with its inputs tied together.

Figure 12.10 The T flip-flop symbol and timing waveforms
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Solution
Known Quantities: JK flip-flop truth table (see Figure 12.8).
Find: Truth table and timing diagram for T flip-flop.
Analysis: The T flip-flop is a JK flip-flop with K = J. Thus, the flip-flop will need
only a two-element truth table to describe its operation, corresponding to the top
and bottom entries in the truth table of Figure 12.8. The truth table is shown
below. A timing diagram is also included in Figure 12.10.



Comments: The T flip-flop takes its name from the fact that it toggles between
the high and low states. Note that the toggling frequency is one-half that of the
clock. Thus the T flip-flop also acts as a divide-by-2 counter.

EXAMPLE 12.3 The JK Flip-Flop Timing Diagram
Problem
Determine the output of a JK flip-flop for the series of inputs given in the table
below. The initial state of the flip-flop is Q0 = 1.

Solution
Known Quantities: JK flip-flop truth table (see Figure 12.8).
Find: Output of JK flip-flop as a function of the input transitions.
Analysis: Complete the timing diagram for the JK flip-flop, using the rules of
Figure 12.8.

A sketch of the waveforms, shown below, can also be generated to visualize the
transitions. Each vertical line corresponds to a clock transition.
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Comments: How would the timing diagram change if the initial state of the flip-
flop were Q0 = 0?

CHECK YOUR UNDERSTANDING
Derive the detailed truth table and draw a timing diagram for the JK flip-flop,
using the model of Figure 12.9 with two flip-flops. Include each unique internal
input in the table and timing diagram.

12.2 DIGITAL COUNTERS AND REGISTERS
One of the more immediate applications of flip-flops is in the design of counters.
A counter is a sequential logic device that can take one of N possible states,
stepping through these states in a sequential fashion. When the counter has
reached its last state, it resets to 0 and is ready to start counting again. For
example, a 3-bit binary up counter would have 23 = 8 possible states and might
appear as shown in the functional block of Figure 12.11. The clock input steps the
counter through the eight states, one transition per clock pulse. This particular
counter also has a reset input, which can force the counter outputs low: b2b1b0 =
000.



Figure 12.11 Binary up counter functional representation, state table,
and timing waveforms
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Although binary counters are very useful in many applications, one is often
interested in a decade counter, that is, a counter that counts from 0 to 9 and then
resets. A 4-bit binary counter can easily be configured in principle to provide this
function. As shown in Figure 12.12(b), if bits b3 and b0 are tied to a four-input
AND gate, along with  and , the output of the AND gate will reset the counter
immediately after the count reaches 10012 = 910. Additional logic can provide a
carry bit, which could be passed along to another decade counter, enabling counts
up to 99. Decade counters can be cascaded to represent any series of decimal
digits.



Figure 12.12 Decade counter: (a) counting sequence; (b) functional
diagram; and (c) IC schematic of two independent counters

Although the decade counter of Figure 12.12 is attractive because of its
simplicity, this configuration would never be used in practice, because of
propagation delays, which are due to the finite response time of the internal
transistors. In general, propagation delays are not the same for any two gates or
flip-flops. Thus, if the reset signal—which is presumed to be applied at exactly
the same time to each of the four JK flip-flops in the 4-bit binary counter—does
not cause all four flip-flops to reset prior to the next clock trigger, then the binary
word appearing at the output of the counter will change from 1001 to a number
other than 0000, and the output of the four-input AND gate will no longer be
high. Here, the CLEAR function is assumed to be active high, such that a reset
occurs when the output of the AND gate goes high. This problem can be
addressed with the aid of state transition diagrams, which are discussed in the
next section.

An implementation of a 3-bit binary ripple counter is shown in Figure 12.13.
Its transition table illustrates how the Q output of each stage becomes the clock
input to the next stage, while each flip-flop is held in the toggle mode. The output
transitions assume that the clock (CLK) is a simple square wave (with all three
JKs negative edge–triggered).



Figure 12.13 Ripple counter

This 3-bit ripple counter can be used to provide a divide-by-8 counter by
connecting the outputs to an AND gate, as shown in Figure 12.14. The result is
one output pulse for every eight clock pulses. Note that the clock input signal is
also connected to the AND gate to synchronize the output. This application of
ripple counters is further illustrated in Example 12.4.

Figure 12.14 Ripple counter used to produce a divide-by-8 circuit
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A slightly more complex version of the binary counter is the synchronous
counter, in which the input clock triggers all the flip-flops simultaneously. Figure
12.15 depicts a 3-bit synchronous counter constructed using T flip-flops, which
are JK flip-flops with the JK inputs tied together (see Example 12.2). Q0 toggles
to 1 first and then Q1 does the same. The AND gate ensures that Q2 will toggle
only after Q0 and Q1 have both reached the 1 state (Q0 ⋅ Q1 = 1).

Figure 12.15 Three-bit synchronous counter

Other common counters are the ring counter, illustrated in Example 12.5,
and the up-down counter, which has an additional select input that determines
whether the counter counts up or down.
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FOCUS ON MEASUREMENTS

Digital Measurement of Angular Position and Velocity
Another type of angular position encoder, besides the angular encoder discussed
in Chapter 11, is the slotted encoder shown in Figure 12.16. This encoder can be
used in conjunction with a pair of counters and a high-frequency clock to
determine the speed of rotation of the slotted wheel. As shown in Figure 12.17, a
clock of known frequency is connected to a counter while another counter records
the number of slot pulses detected by an optical slot detector as the wheel rotates.
Dividing the counter values, the speed of the rotating wheel can be obtained in
radians per second. For example, assume a clocking frequency of 1.2 kHz. If both
counters are started at zero and at some instant the timer counter reads 3,050 and
the encoder counter reads 2,850, then the speed of the rotating encoder is found to
be

and



If this encoder is connected to a rotating shaft, it is possible to measure the
angular position and velocity of the shaft. Such shaft encoders are used in
measuring the speed of rotation of electric motors, machine tools, engines, and
other rotating machinery.

Figure 12.16

Figure 12.17 Calculating the speed of rotation of the slotted wheel

A typical application of the slotted encoder is to compute the ignition and
injection timing in an automotive engine. In an automotive engine, information
related to speed Page 713is obtained from the camshaft and the flywheel, which
have known reference points. The reference points determine the timing for the
ignition firing points and fuel-injection pulses and are identified by special slot
patterns on the camshaft and crankshaft. Two methods are used to detect the
special slots (reference points): period measurement with additional transition
detection (PMA) and period measurement with missing transition detection
(PMM). In the PMA method, an additional slot (reference point) determines a
known reference position on the crankshaft or camshaft. In the PMM method, the
reference position is determined by the absence of a slot. Figure 12.18 illustrates
a typical PMA pulse sequence, showing the presence of an additional pulse. The
additional slot may be used to determine the timing for the ignition pulses relative
to a known position of the crankshaft. Figure 12.19 depicts a typical PMM pulse
sequence. Because the period of the pulses is known, the additional slot or the



missing slot can be easily detected and used as a reference position. These pulse
sequences can be implemented using ring counters.

Figure 12.18 PMA pulse sequence

Figure 12.19 PMM pulse sequence

Registers
A register consists of a cascade of flip-flops that can store binary data, 1 bit in
each flip-flop. The simplest type of register is the parallel input–parallel output
register shown in Figure 12.20. In this register, the load input pulse, which acts
on all clocks simultaneously, causes the parallel inputs b0b1b2b3 to be transferred
to the respective flip-flops. The D flip-flop employed in this register allows the
transfer from b2 to Q2 to occur very directly. Thus, D flip-flops are very
commonly used in this type of application. The binary word b3b2b1b0 is now
“stored,” each bit being represented by the state of a flip-flop. Until the load input
is applied again and a new word appears at the parallel inputs, the register will
preserve the Page 714stored word. Note that a D flip-flop can be constructed
using a JK flip-flop with .



Figure 12.20 A 4-bit parallel register

Figure 12.21 A 4-bit shift register

The construction of the parallel register presumes that the N-bit word to be
stored is available in parallel form. However, often a binary word will arrive in
serial form, that is, 1 bit at a time. A register that can accommodate this type of
logic signal is called a shift register. Figure 12.21 illustrates how the same basic
structure of the parallel register applies to the shift register. The input is now
applied to the first flip-flop and the output of each flip-flop is shifted forward as
the input of its succeeding flip-flop. Note that this type of register provides both a
serial and a parallel output.

FOCUS ON MEASUREMENTS

Seven-Segment Display



A seven-segment display (Figure 12.22) is a very convenient device for
displaying digital data. Operation of a seven-segment display requires a decoder
circuit to light the proper combinations of segments corresponding to the desired
decimal digit.

Figure 12.22 Sevensegment display

A typical BCD to seven-segment decoder function block is shown in Figure
12.23, where the lowercase letters correspond to the segments shown in Figure
12.22. The decoder features four data inputs (A, B, C, D), which are used to
determine the state of the seven outputs. Each output is connected to one segment
of the display. A BCD to seven-segment decoder is similar to the 2:4 decoder
described in Chapter 11.

Figure 12.23

Page 715



EXAMPLE 12.4 Divider Circuit
Problem
A binary ripple counter provides a means of dividing the fixed output rate of a
clock by powers of 2. For example, the circuit of Figure 12.24 is a divide-by-2 or
divide-by-4 counter. Draw the timing diagrams for the clock input, Q0 and Q1 to
demonstrate these functions.

Figure 12.24

Solution
Known Quantities: JK flip-flop truth table (Figure 12.8).
Find: Output of each flip-flop Q as a function of the input clock transitions.
Assumptions: Assume positive edge–triggered devices. The DC supply voltage is
VCC. Outputs Q0 and Q1 begin low.

Analysis: With both inputs tied to VCC (logic 1) the JK flip-flops act as toggle (T)
flip-flops. Notice that the clock input is positive-edge triggered and that Q0 serves
as the clock input to flip-flop 1. Thus, Q0 toggles from low to high when the
clock first transitions from low to high. This positive Q0 transition will also cause
Q1 to toggle from low to high. On the second positive clock transition Q0 will
toggle from high to low. However, this negative transition of Q0 will leave Q1
unchanged. On the third positive clock transition Q0 will toggle from low to high
and so Q1 will also toggle but from high to low. Finally, on the fourth positive
clock transition Q0 will toggle from high to low such that the states of the clock,
Q0 and Q1 are the same as when the entire sequence began. That sequence will
continue to repeat from that time on. The overall result is that Q0 switches at one-
half the frequency of the clock and Q1 switches at one-half the frequency of Q0,
hence the timing diagram shown in Figure 12.25.



Figure 12.25 Divider circuit timing diagram
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EXAMPLE 12.5 Ring Counter
Problem
Draw the timing diagram for the ring counter of Figure 12.26.

Figure 12.26

Solution
Known Quantities: JK flip-flop truth table (Figure 12.8).
Find: Output of each flip-flop Q as a function of the input clock transitions.



Assumptions: The JK flip-flops are positive edge–triggered. Also, the Init line is
set high after the first positive edge transition of the clock and then is
immediately set low to 0.
Analysis: After the first positive clock transition the Init line will set Q3 = 1 and
reset (clear) the other three flip-flops to Q2 = Q1 = Q0 = 0. At the second positive
clock transition, Q3 = 1 such that the second flip-flop is set high to Q2 = 1. Both
Q1 and Q0 remain unchanged since their inputs were in the reset condition J = 0
and K = 1 at the clock transition. Likewise, the inputs to Q3 were in the reset
condition so it was also reset low to 0. The pattern continues, causing the 1 state
to ripple from left to right over and over again as shown in the following
transition table.

Comments: The structure depicted in Figure 12.26 is known as a “ring” counter
because the outputs of one flip-flop are the inputs to the succeeding flip-flop.
That is, Q0 → Q3, Q3 → Q2, Q2 → Q1 and Q1 → Q0, and so on and so on.
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CHECK YOUR UNDERSTANDING
The speed of the rotating encoder of the Focus on Measurements box, “Digital
Measurement of Angular Position and Velocity,” is found to be 9,425 rad/s. The
encoder timer reads 10, and the clock counter reads 300. Assuming that both the
timer counter and the encoder counter started at zero, find the clock frequency.

Answer: 45 kHz



12.3 SEQUENTIAL LOGIC DESIGN
The design of sequential circuits, just like the design of combinational circuits,
can be carried out by means of a systematic procedure. A state diagram and its
associated state transition table describe the logic states and their
interrelationships required of the system design. Consider the 3-bit binary counter
of Figure 12.27, which is made up of three T flip-flops. The input equations for
this counter are T1 = 1, T2 = q1, and T3 = q1 ⋅ q2. Knowing the inputs, the three
outputs can be determined at any moment. The outputs Q1, Q2, and Q3 form the
state of the machine. It is straightforward to show that as the clock goes through a
series of cycles, the counter will go through the transitions shown in Table 12.1,
where the current state is indicated by lowercase q and the next state by an
uppercase Q. Note that the state diagram of Figure 12.27 provides information
regarding the sequence of states assumed by the counter in graphical form. In a
state diagram, each state is denoted by a circle called a node, and the transition
from one state to another is indicated by a directed edge, that is, a line with a
directional arrow. The analysis of sequential circuits consists of determining
either their state transition table or their state diagram.

Figure 12.27 A 3-bit binary counter and state diagram
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Table 12.1 State transition table for 3-bit binary counter



The reverse of this analysis process is the design process. That is, how can
one systematically design a sequential circuit, such as a counter, by employing
state transition tables and state diagrams?

The goal of the design process is to identify a logic circuit that matches the
design specifications. There is no single unique implementation for a given set of
output specifications. Therefore, the first step is to select a flip-flop and use its
truth table characteristics to define its excitation table. The truth and excitation
tables for the RS, D, and JK flip-flops are given in Tables 12.2, 12.3, and 12.4,
respectively. Notice that each line in the excitation table represents one or more
lines in the truth table that have the same pair of output states Qt and Qt+1. The
don’t-care entries indicate inputs that do not impact particular state transitions.

Table 12.2 Truth table and excitation table for RS flip-flop

Table 12.3 Truth table and excitation table for D flip-flop



Table 12.4 Truth table and excitation table for JK flip-flop
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The use of excitation tables will now be demonstrated in the design of a
modulo-4 binary up-down counter. The phrase “modulo-4 binary” indicates
that the counter output is limited to the integers 0 to 3 represented in binary form;
that is, in bits. Of course, these four integers can be completely represented by 2
bits. The phrase “up-down” indicates that the counter will increment or decrement
its output depending upon the value of a single bit input, which will be high or
low (1 or 0) to increment or decrement the output, respectively. Figure 12.28
shows the state diagram for this counter, where a clockwise or counterclockwise
progression is an increment or decrement, respectively. One flip-flop is required
to produce the two states (Q = 0 and Q = 1) of each of the two output bits. For
this example design, two RS flip-flops are used to construct the state transition
table shown in Table 12.5. Note immediately that for a device with a single bit
input and a double bit output there are eight distinct combinations of inputs and
outputs. The first five columns of Table 12.5 specify the desired next state Q1Q2
for each possible input x and current state q1q2. This information matches the
information presented in Figure 12.28.



Figure 12.28 State diagram of a modulo-4 binary up-down counter

Table 12.5 State transition table for modulo-4 binary up-down counter

Next, match the values of each output pair (Q2, Q2+1) found in the RS flip-flop
excitation table to each of the two pairs of counter outputs (q1, Q1) and (q2, Q2) to
determine the RS input pairs (S1, R1) and (S2, R2). For example, the first row of
the counter’s state transition table is developed by matching (q1 = 0, Q1 = 1) to
the second row of the RS excitation table where (Q2 = 0, Q2+1 = 1). Thus, the RS
input pair (S1 = 1, R1 = 0) will produce the desired relationship between the
current state variable q1 and the next state variable Q1. For the same first row of
the state transition table, since q2 = q1 = 0 and Q2 = Q1 = 1, the other RS input
pair must also be (S2 = 1, R2 = 0.) The other rows of the state transition table are
filled out in exactly the same manner. A d in the table represents a don’t-care
condition. Remember that for this counter x = 0 indicates a decrement and x = 1
indicates an increment.

At this point, the required logic circuit can be determined using combinational
logic tools, such as the Karnaugh maps of Figure 12.29. Verify that the following



expressions can be obtained from those maps.

Figure 12.29 Karnaugh maps for flip-flop inputs in modulo-4 counter

The complete design is shown in Figure 12.30.
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Figure 12.30 Implementation of modulo-4 counter

Programmable Logic Controllers



Sequential logic designs and state machines are found in programmable logic
controllers, or PLCs, which are finite-state machines that are used in a variety of
industrial applications to implement logic functions. For example, machining,
packaging, material handling, and automated assembly are some of the example
applications in which these systems are encountered. PLCs are specialized
computers that are very effective at executing a series of complex logical
decisions. Not long ago, microcontrollers began to replace PLCs in many
industrial applications. The basic architecture of microcontrollers and a specific
example of one are discussed in the remaining sections of this chapter.

12.4 COMPUTER SYSTEM ARCHITECTURE
The general structure of a computer system is shown in Figure 12.31. At the far
left is the central processing unit (CPU), which receives data over the CPU bus
from the memory and input data blocks and transmits data over the same Page
721bus to the output blocks. The CPU bus is simply a very low-resistance
conducting pathway over which electrical signals (pulses) are transferred.
Generally, only one set of data signals can travel over the bus at any one time;
thus, it is important that transmitted data be managed properly to prevent
interference. A CPU bus is usually characterized by the number of bits that are
transferred during one clock cycle. Program instructions and addresses associated
with memory locations are transferred along a separate bus. The CPU manages
the flow of data and coordinates the different functions of the computer, in
addition to processing data—in effect, the CPU is the heart and brains of the
computer. A single CPU located on a single integrated circuit is known as a
single-core microprocessor.

Figure 12.31 Generic computer architecture

One of the important features of a digital computer is its ability to store data.
This is made possible by two general types of memory: volatile and nonvolatile.



The former type requires a steady source of power to retain its data, while the
latter does not. Examples of volatile memory are random-access memory, such
as SRAM and DRAM, which can be directly and quickly read and written to by
the CPU and are therefore used primarily during the execution of programs to
store partial or permanent results, and generally to store all the software currently
in use by the computer. Examples of nonvolatile memory are read-only memory,
such as EEPROM and Flash memory, which can be overwritten in smaller
blocks than EEPROM. There are two types of flash memory: NAND and NOR.
The former is found in many portable commercial devices. Other familiar types
of nonvolatile memory are the mass storage devices, such as hard drives, solid-
state drives, optical drives, and tape drives.

These various types of memory used within a computer offer tradeoffs
between fixed cost, speed, reliability, durability, and power consumption. The
main advantage of RAM is its access speed, with a latency period on the order of
nanoseconds, whereas a typical latency period for a hard drive is on the order of
microseconds. However, mass storage device memory is far less expensive per
unit of memory.

Analog-to-digital converters (ADCs) and digital-to-analog converters
(DACs) enable a computer to retrieve data from external sensors and transmit
data to external actuators, respectively. Details of their operation and
specifications can be found in Chapter 7.

Typical peripheral devices include a keyboard, a mouse, audio speakers and
earphones, printers, and displays. There are many other peripheral devices
available for a modern computer. These devices are commonly connected via
USB ports and cables as well as many other types of network communication
ports and cables.

The Clock
The clock represents the heartbeat of the CPU. The clock function is typically
implemented by a crystal oscillator that determines the rate at which instructions
are executed.

Memory
The CPU needs to have access to different kinds of memory to execute programs.
Nonvolatile read-only memory (ROM) is used for permanent programs and data
tPage 722hat are necessary, for example, to boot and initialize the system.
Information stored in ROM remains unchanged even when power to the computer
is turned off. Volatile random access read/write memory (RAM) is used to



temporarily store data and instructions. For example, the program that is executed
by the CPU and the intermediate results of the calculations are stored in RAM.
Many microcontrollers also employ electrically erasable programmable read-only
(EEPROM) and Flash memory, which enable small changes in memory without
overwriting the entire ROM.

Computer memory is arranged on the basis of bits, that is, a single digital
variable with a value of 0 or 1. Bits are grouped in bytes, consisting of 8 bits, and
in words, consisting of 16 or 32 bits. While the size of a word can vary, 1 byte
always consists of 8 bits.

Mass storage devices can also be used to increase a computer’s data storage
capacity. However, access times to data stored in such devices are several orders
of magnitude larger than access times for ROM and RAM.

Computer Programs
A computer program is a listing of instructions to be executed by the CPU. The
instructions are coded in a special machine language that consists of
combinations of bytes. To assist the programmer, each CPU instruction is
encoded as a mnemonic for the actual operational instruction codes (op codes).

More commonly, a computer is programmed in a higher-level language such
as C, C++, C#, or Java; the high-level language program is then translated to
machine code by a compiler. High-level programming languages use various
codes as well. A good example of such a code is the ASCII2 character code,
which represents all alphanumeric characters, and others, commonly used in
printed documents and on computer displays, as hexadecimal values. This code is
used to define the visual output associated with char type variables found in all
high-level programming languages. It is important to realize that a char type
variable stores an integer; however, the integer is interpreted as a reference to the
ASCII character code. Thus, char type variables can be manipulated as integers
(e.g., added and subtracted) to produce various results, such as the conversion of
letters from upper- to lower-case, or vice-versa, by adding, or subtracting, 0x20
(32 decimal), respectively. The 128 members of the standard ASCII character set
are listed in Appendix D along with their hexadecimal equivalents.

The ASCII code could be used, for example, to relate the numeric output of a
seven-segment display (see the Focus on Measurements box “Seven-Segment
Display” earlier in this chapter) to a computer program designed to produce
numeric characters on such a display. For example, the ASCII code defines the
hexadecimal equivalents of the digits 0 to 9 as 0x30 to 0x39. These hexadecimal



 

 

 

 

 

values are then readily converted to the BCD inputs commonly used by a seven-
segment display driver chip.

CPU Registers
A CPU directly accesses volatile memory cells called registers to retrieve data
and to store the results of computations, particularly those of an arithmetic logic
unit (ALU), which is often incorporated into a CPU. A memory map defines the
names Page 723and types of the memory locations that are accessible to the CPU
in addition to the registers. Several of the typical uses of these registers are listed
below.

An accumulator may be used to hold the results of arithmetic operations
performed by the CPU.
An index is used to point to an address in memory where the CPU will read
or write information.
A program counter (PC) register keeps track of the address of the next
instruction to be executed by the CPU.
The condition code register (CCR) holds information that reflects the status
of prior CPU operations. For example, branch instructions look at the CCR
to make either/or decisions.
The stack pointer (SP) register contains return address information and the
previous content of all CPU registers. When the CPU is interrupted or a
subroutine is initiated, the status of the program is retained prior to the
interrupt or subroutine branching. After the CPU has serviced the interrupt
or has completed the subroutine, it can resume its previous operations by
loading the contents of the SP register.

Interrupts
Interrupts perform an important function by allowing the CPU to interrupt its
normal flow of operations to respond to an external event. For example, an
interrupt request may occur when an ADC makes available to the CPU the digital
value of a sensor reading.

FOCUS ON MEASUREMENTS



Reading Sensor Data Using Interrupts
In modern automotive instrumentation, a microcontroller performs all the signal
processing operations for several measurements. A block diagram for such
instrumentation is given in Figure 12.32. Depending on the technology used, the
sensors’ outputs can be either digital or analog. If the sensor signals are analog,
they must be converted to digital format by means of an analog-to-digital
converter, as shown in Figure 12.33. The analog-to-digital conversion process
requires an amount of time that depends on Page 724the individual ADC, as is
explained in Chapter 7. After the conversion is completed, the ADC then signals
the computer by changing the logic state on a separate line that sets its interrupt
request flip-flop. This flip-flop stores the ADC’s interrupt request until it is
acknowledged (see Figure 12.34).

Figure 12.32 Automotive instrumentation



Figure 12.33 Sensor interface

Figure 12.34 Interrupt request

When an interrupt occurs, the processor automatically jumps to a designated
program location and executes the interrupt service subroutine. For the ADC, this
would be a subroutine to read the conversion results and store them in some
appropriate location, or to perform an operation on them. When the processor
responds to the interrupt, the interrupt request flip-flop is cleared by a direct
signal from the processor. To resume execution of the program at the proper point
upon completion of the ADC service subroutine, the program counter content is
automatically saved before control is transferred to the service subroutine. The
service subroutine saves in a stack the content of any registers it uses and restores
the registers’ content before returning.

The interrupt may occur at any point in a program’s execution, independent of
the internal clock; it is therefore referred to as an asynchronous event.

Of course, a wide variety of computer systems are manufactured. Large
mainframes are used by industry to store and analyze vast amounts of data. Such
mainframes employ parallel processing wherein numerous CPUs work in
concert to achieve very high rates of computation. Smaller computer systems,
such as a laptop or desktop computer, contain a microprocessor that typically has
multiple cores, which act as a set of CPUs working in parallel. On a smaller scale
still are microcontrollers, which consist of a CPU, memory, and input and output
ports, all on a single integrated-circuit chip mounted on a single printed circuit
board (PCB). Some microcontrollers are designed to be versatile with no



particular dedicated application in mind. Others are designed for specific
applications and can be embedded directly in devices and systems.

12.5 THE ATMEGA328P MICROCONTROLLER
Microcontrollers have become an essential part of many engineering products,
processes, and systems and are often embedded in large and small products and
systems, such as automobiles, home appliances, and portable devices. The Page
725ATmega328P®, made by Atmel® Corporation, is a versatile reduced
instruction set computing (RISC) microcontroller that is used in automobiles
and the well-known Arduino prototyping platform. The ATmega328P® has many
of the capabilities commonly found in microcontrollers. Of course, detailed
specifications vary across microcontrollers; nonetheless, a solid understanding of
the ATmega328P® provides an excellent introduction to microcontrollers, in
general. A block diagram of the ATmega328P® microcontroller is shown in
Figure 12.35.



Figure 12.35 Block diagram of the ATmega328P® microcontroller
(Courtesy: Atmel® Corporation, which owns the intellectual property.
Copyright Atmel Corporation 2013)
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Capabilities and Pin Configurations
The external pins of the ATmega328P® access two 8-bit bidirectional I/O ports,
one 7-bit bidirectional I/O port, an analog voltage reference for analog-to-digital
(A/D) conversion, and a reset. Additional pins are for connecting ground and
power supplies. The ports are designed to provide specialized functions, such as
six 10-bit ADCs, six pulse-width modulation (PWM) output channels, and two
8-bit and one 16-bit timer/counters. Portions of these ports can also be tasked to
provide communication interfaces, such as a programmable universal serial
asynchronous receive and transmit (USART) interface, a serial master/slave
serial peripheral interface (SPI), and a two-wire serial interface (TWI)
compatible with the Philips I2C standard.

The equivalent network of each individual I/O pin is shown in Figure 12.36.
Regardless of the configuration of other pins, each pin can be configured to
provide general digital I/O. The configuration is determined by three single-bit
registers: DDxn, PORTxn, and PINxn, where x refers to the port (B, C, or D) and
n refers to a specific pin on a port. By default, each pin is configured as a tristate
input with [DDxn PORTxn] set to [00]. Setting PORTxn to logic 1 in input mode
[01] enables an internal 20K pull-up resistor such that the pin takes on an open-
collector type behavior. Setting DDxn to logic 1 configures a pin for output. Table
12.6 shows the complete list of possible states for each I/O pin.

Table 12.6 ATmega328P® I/O pin configurations



Figure 12.36 General I/O pin equivalent network (Courtesy: Atmel®
Corporation, which owns the intellectual property. Copyright Atmel
Corporation 2013)

Each I/O pin can source/sink up to 40 mA although the total current through
any I/O port should not exceed 100 mA. It is important to keep in mind that
exceeding the current limits will almost certainly damage a pin and may damage
other parts of the microcontroller as well. It is also recommended that the state of
all unused pins be defined by enabling the internal pull-up resistor or some other
external method.
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Power Requirements
The ATmega328P® also provides six low-power modes to conserve battery life
and generally reduce power consumption. When running at 1 MHz and 1.8 V, the
ATmega328P® sinks 100 nA in power-down mode and 200 μA in active mode.
Generally, the ATmega328P® operates at 4.5 to 5.5 V with a clock speed as high
as 20 MHz; however, when the clock is limited to 4 MHz, it can operate at
voltages as low as 1.8 V.

AVR® Architecture
The heart of the ATmega328P® microcontroller is an AVR® CPU core, which has
a modified Harvard architecture, as shown in Figure 12.37. There is a dedicated
bus and memory for data separate from those used for program instructions. An
arithmetic logic unit (ALU) reads instructions and data from the thirty-two 8-bit
general-purpose registers (R0–R31); performs various logical, arithmetic
operations, and bit-functions on the data; and writes the results back to the
registers, in most cases in one clock cycle. While the AVR® CPU is executing



these three Page 728steps, the modified Harvard architecture enables it to pre-
fetch the next upcoming instruction from the Flash program memory. Three pairs
of registers (R26–R31) are referred to as X, Y, and Z and may be used to store
three 16-bit indirect address pointers; X may also point to look-up tables stored in
Flash memory. All 32 registers are also assigned direct addresses 0x00 through
0x1F (hexadecimal) such that they are the first 32 bytes of the overall memory
map. The individual bits in these registers can be accessed using the SBIS, SBIC,
SBI, and CBI instructions (see below).

Figure 12.37 Block diagram of the ATmega328P® AVR® CPU
architecture (Courtesy: Atmel® Corporation, which owns the
intellectual property. Copyright Atmel Corporation 2013)



Memory
The ATmega328P® possesses nonvolatile memory of up to 32K bytes of in-
system programmable Flash memory with read-while-write capability and 1K
byte of EEPROM. These two memory banks can reliably undergo 104 and 105

write/erase cycles, respectively, over a lifetime. The Flash memory is organized
into 16K 2-byte words because AVR® instructions are either 2 or 4 bytes long.
These words are addressed by a 14-bit program counter. (Note: 14 bits can
represent 214 = 16,386 different items, or in this case, addresses.) The EEPROM
can be accessed via an SPI interface. The read/write processes to EEPROM have
a typical write time of 3.3 ms.

Up to 2K bytes of SRAM are also available for storing data sent to and from
the AVR® registers. The SRAM is also used to store the stack, which includes the
program counter.

AVR® Instructions
The AVR® operates on 131 different instructions, examples of which are listed in
the Table 12.7. Most of these instructions are executed in a single clock cycle,
which can be as short as 50 ns resulting in a throughput of up to 20 million
instructions per second (MIPS).

Table 12.7 Example ATmega328P® Instructions
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Each mnemonic represents a 16-bit op code, such as [1001 1001 pppp pbbb]
for SBIC P, B. In the op code, the p sequence indicates the specific general-
purpose register P of the 32 available in the AVR® and the b sequence indicates
the specific bit B within that register. Whereas many of the AVR® instructions can
access various portions of the overall memory map, the SBI and CBI instructions
only interact with the 32 general-purpose registers located at 0x00 through 0x1F.
Many more details of the AVR® instruction set are available online.

A short sample code of AVR® instructions for configuring the external port B
pins of the ATmega328P® is shown below. Also shown is an equivalent code
written in C for comparison.3

Another sample code for reading and writing to EEPROM is shown below. Again
the equivalent C code is presented for comparison. Both codes are presented as
functions to be called.4
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Additional detailed information and development tools, including an
integrated software environment, are freely available from the Atmel® website
www.atmel.com.

Mechatronics and Embedded Systems
Industry and consumers demand engineering processes and products that are
more reliable, more efficient, smaller, faster, and less expensive. The
production and development of these devices require engineers who have
integrated perspectives on system design. The discipline of mechatronic design
involves the integration of mechanical, electrical, and computer science
engineering (Figure 12.38). Design elements from these traditional disciplines
don’t simply exist side by side but are deeply integrated in the design process.
Whether a given functionality should be achieved electronically, by software,
or by elements from electrical or mechanical engineering domains requires
mastery of analysis and synthesis techniques from the different areas. Being a
successful mechatronics design engineer requires an in-depth understanding of
many of, if not all, its constituent disciplines. Most major programs in the
United States don’t emphasize mechatronics as a primary curriculum
component, but industry continues to motivate its development. The
automotive, aerospace, manufacturing, power systems, test and
instrumentation, consumer, and industrial electronics industries make use of
and contribute to mechatronics.

One of the distinguishing features of the mechatronic approach to the
design of products and processes is the use of embedded microcontrollers,
which replace many mechanical functions with electronic ones, resulting in

http://www.atmel.com/


much greater flexibility, ease of redesign or reprogramming, the ability to
implement distributed control in complex systems, and the ability to conduct
automated data collection and reporting. Mechatronic design represents the
fusion of traditional mechanical, electrical, and software engineering design
methods with sensors and instrumentation technology, electric drive and
actuator technology, and embedded real-time microcontrollers and real-time
software. Mechatronic systems range from heavy industrial machinery, to
vehicle propulsion systems, to precision electromechanical motion control
devices.

Figure 12.38 Mechatronics as the intersection of three engineering
disciplines
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12.6 THE ARDUINO™ PROJECT
The Arduino project is a collection of open-source prototyping hardware and
software resources aimed at casual users and professionals. In fact, the Arduino
webpage states that the resources are “intended for artists, designers, hobbyists,
and anyone interested in creating interactive objects or environments.”5 There are
many incarnations of the Arduino hardware prototyping platform. The Arduino
Uno hardware was developed around the ATmega328P® microcontroller.

The Arduino is well suited for academic projects, particularly those involving
undergraduate engineering students because it was designed to handle and hide
many of the complex details of working directly with a microprocessor.
Commonly desired communication capabilities, such as a USB interface and
serial output to a computer display, are built in. The Arduino’s USB interface has
a resettable polyfuse to protect against overcurrent damage to the host computer.6
The Arduino also does not require the user to burn firmware onto the
ATmega328P® chip. Finally, many high-level programming functions are



provided by the Arduino Team and third parties that integrate lower-level AVR®

instructions to provide easy access to powerful and versatile capabilities, such as
ADC.

Features
Figure 12.39 shows the Arduino Uno R3 board. It has fourteen digital I/O pins,
six 10-bit analog input pins, a USB connector, a 6-pin in-circuit serial
programming (ICSP) header, and a reset button. The Arduino prefers an external
7 to 12 VDC source, either from a battery, or through the DC power jack or USB
cable. The board provides 5-V and 3.3-V regulated DC power pins with current
limits of 40 mA and 50 mA, respectively. Internally, the Arduino operates on 5
VDC and each of its pins has the same 40-mA DC current limit as the
ATmega328P®. Likewise, the available SRAM, EEPROM, and Flash memory are
2, 1, and 32 KB, respectively. The on-board clock speed is 16 MHz.

Figure 12.39 The Arduino Uno R3 PCB (Courtesy of Arduino)
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As with the ATmega328P®, the Arduino’s 14 digital I/O pins may be
individually configured as either inputs or outputs, with high and low values of 5
and 0 V. Each pin can source or sink up to 40 mA DC and may be enabled with
an internal 20K pull-up resistor. Many of these pins can be individually tasked to
provide specific useful capabilities, including six 8-bit PWM outputs (pins 3, 5, 6,



and 9 to 11), SPI communication (pins 10 to 13), UART serial communication
(pins 0 and 1), and two external interrupts (pins 2 and 3).

Elsewhere on the board, pins A4 and A5 can be tasked as serial data (SDA)
and serial clock (SCL) pins, respectively, to provide TWI (I2C) communication.
Additionally, the Arduino provides a regulated DC reference voltage (AREF) pin
for use in conjunction with its analog input capability. A dedicated reset input pin
can be driven low to reset the Arduino from an external switch or controlled
source. Figure 12.40 shows the pin mapping between the ATmeg328 and the
Arduino Uno.

Figure 12.40 Pin mapping between ATmega328P® and Arduino Uno
(Courtesy: Atmel® Corporation, which owns the intellectual property.
Copyright Atmel Corporation 2013)

The ATmega328P® microcontroller chip on the Arduino Uno is preloaded
with a bootloader that enables a user-written sketch to be uploaded without any
additional burning hardware and software. The Arduino also provides its own
built-in burner in case a user wishes to create his or her own Arduino board or
install the bootloader on a stand-alone ATmega328P® chip.

User Programs: Sketches
In the parlance of the Arduino project, a sketch is a user-written C/C++ program.
Variables and functions obey the same rules for type, scope, and storage class.
Every sketch must include two particular functions: setup() and loop(). The



Arduino project provides a large library of high-level functions, all of which are
well organized and documented on the Arduino website.

Shown below is a sketch that illustrates the use of the Arduino’s I/O pins’
pull-up resistors.7

Page 733

Notice that variables are declared and initialized as in a typical C/C++

program. The variables declared outside of setup() and loop() have global scope.
On the other hand, the scope of variables sensorInt and sensorChar is limited to
the loop function. Recall that the Arduino provides six 10-bit analog input pins
A0 to A5; thus, the 10-bit integer value is assigned to sensorInt. By default,
integer variables are allocated 2 bytes, whereas character variables are allocated 1
byte.

The Serial.print function sends data to the host computer terminal via the
USB port. Notice the use of tab spaces sent as single character strings (“t”).



1.

2.

3.

4.

5.

6.

Serial.print does not include a hidden carriage return, whereas Serial.println does.
Finally, when using a digital pin for input it is good practice to always ensure

the pin value is determined, and not floating at any time. In the above Page
734example, the logicDevice value being read is assumed to be determined as
high or low by an external logic device. In such cases, an internal pull-up resistor
on an input pin does not need to be enabled. However, for many other common
circumstances, such as when a switch is located between the pin and V2 or
ground, an internal pull-up resistor should be enabled. Otherwise, when the
switch is open, the state of the pin will be indeterminate; that is, determined in a
manner not set by the user.

An extensive list of useful sketches can be found on the Arduino website.

Conclusion
This chapter presents an overview of digital logic circuits. These circuits form the
basis of all digital computers and of most electronic devices used in industrial and
consumer applications. Upon completing this chapter, a student will have learned
to:

Analyze the operation of flip-flops and latches, which are the building blocks
of a sequential logic circuits. Feedback from outputs to inputs creates outputs
whose future values depend upon their present values. In other words, these
circuits possess memory. The operation flip-flops and latches are described
by state transition tables and state diagrams.
Analyze and apply digital counters and registers. Counters are a very
important class of digital circuits and are based on sequential logic elements.
Registers are the most fundamental form of random-access memory (RAM).
Design simple sequential circuits using state transition diagrams. Sequential
circuits can be designed using formal design procedures employing state
diagrams.
Describe the basic architecture of computers and how aspects of that
architecture are utilized to provide computers with their various capabilities.
Identify the basic architecture of microcontrollers, and the ATmega328P®, in
particular. A microcontroller is a system that includes a central processing
unit (CPU) and various I/O capabilities.
Utilize the Arduino project, including its hardware specifications, its software
capabilities, and some of its many practical applications.
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12.4

HOMEWORK PROBLEMS
Section 12.1: Latches and Flip-Flops

The input to the circuit of Figure P12.1 is a square wave having a period of 2
s, maximum value of 5 V, and minimum value of 0 V. Assume all flip-flops
are initially in the reset state.

Explain what the circuit does.

Sketch the timing diagram, including the input and all four outputs.

Figure P12.1
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Suppose a circuit is constructed from three D-type flip-flops, one input I,
with

Draw the circuit diagram.

Assume the circuit starts with all flip-flops set. Sketch a table that
shows the outputs of all three flip-flops.

Suppose that you want to use a JK flip-flop for a laboratory experiment.
However, you have only D flip-flops. Assuming that you have all the logic
gates available, make a JK flip-flop using a D flip-flop and some logic
gate(s).

Draw a timing diagram (four complete clock cycles) for A0, A1, and A2 for
the circuit of Figure P12.4. Assume that all initial values are 0. Note that all
flip-flops are negative edge–triggered.
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12.6

12.7

12.8

Figure P12.4

Given the sequential circuit of Figure P12.5, determine the output Y when
input A is [1 0 1 1].

Figure P12.5

Write the truth table for an RS flip-flop with enable (E), preset (P), and clear
(C) lines.

A JK flip-flop is wired as shown in Figure P12.7 with a given input signal.
Assuming that Q is at logic 0 initially and the negative trailing-edge
triggering is effective, sketch the output Q.

Figure P12.7

With reference to the JK flip-flop of Problem 12.7, assume that the output at
the Q terminal is made to serve as the input to a second JK flip-flop wired
exactly as the first. Sketch the Q output of the second flip-flop.



12.9

12.10

12.11

Figure P12.9 shows an RS flip-flop acting as a debouncing circuit for a
single-pole, double-throw (SPDT) switch. Fill in the table to indicate the
state of Q for each of the two switch positions A and B. What is the purpose
of the two 10 K resistors?

Figure P12.9

Figure P12.10 shows a D flip-flop with preset and clear acting as a
debouncing circuit for a single-pole, double-throw (SPDT) switch. Fill in
the table to indicate the state of Q for each of the two switch positions A
and B. What is the purpose of the two 10 K resistors?
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Figure P12.10

Section 12.2: Digital Counters and Registers
Assume that the slotted encoder shown in Figure P12.11 has a length of 1
m and a total of 1,000 slots (i.e., there is one slot per millimeter). If a
counter is incremented by 1 each time a slot goes past a sensor, design a
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a.

b.

12.13

12.14

digital counting system that determines the speed of the moving encoder
(in meters per second).

Figure P12.11

A binary pulse counter can be constructed by interconnecting T-type flip-
flops in an appropriate manner. Assume it is desired to construct a counter
that can count up to 10010.

How many flip-flops would be required?

Sketch the circuit needed to implement this counter.

Explain what the circuit of Figure P12.13 does and how it works. (Hint:
This circuit is called a 2-bit synchronous binary up-down counter.)

Figure P12.13

Figure P12.14 shows a simple divide-by-2 circuit using a leading
(positive) edge–triggered JK flip-flop. Assume the clock pulse train
repeats equal length low and high intervals. Draw the corresponding
timing diagram for the output Q.
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12.16

Figure P12.14

Figure P12.15 shows a simple divide-by-3 circuit using two leading
(positive) edge–triggered JK flip-flops. Assume the clock pulse train
repeats equal length low and high intervals. Draw the corresponding
timing diagrams for the outputs A and B until they both repeat.

Figure P12.15

Figure P12.16 shows a simple divide-by-4 circuit using two leading
(positive) edge–triggered JK flip-flops. Assume the clock pulse train
repeats equal length low and high intervals. Draw the corresponding
timing diagrams for the outputs A and B until they both repeat.

Figure P12.16
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Figure P12.17 shows a Johnson counter using four leading (positive)
edge–triggered D flip-flops, each with preset and clear. Draw the timing
diagrams for the outputs Q0, Q1, Q2 and Q3 until they all repeat.

Figure P12.17

Section 12.3: Sequential Logic Design
Using necessary logic gates and D-type flip-flops, create a sequential
circuit (one input–one output) from the state table given below.

Use JK flip-flops to construct a sequential circuit with the state diagram
shown in Figure P12.19.
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a.

b.

12.24

12.25
12.26

a.

b.

c.

12.27
a.

b.

Figure P12.19

Section 12.4: Computer System Architecture
Explain the purpose of the ALU.

Name the internal registers of a microprocessor, and explain their
functions.

Name the three different systems buses, and explain their functions.

Suppose a microprocessor has n registers.

How many control lines do you need to connect each register to all
other registers?

How many control lines do you need if a bus is used?

Explain the function of the status register (flag register), and give an
example.

What is the distinction between volatile and nonvolatile memory?

A typical PC has 8 GB of RAM.

How many 16-bit words is this?

How many nibbles is this?

How many bits is this?

Suppose it is desired to implement a 4K byte 16-bit memory.

How many bits are required for the memory address register?

How many bits are required for the memory data register?
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Suppose a particular magnetic tape can be formatted with eight tracks per
centimeter of tape width. The recording density is 200 bits/cm, and the
transport mechanism moves the tape past the read heads at a velocity of
25 cm/s. How many bytes per second can be read from a 2-cm-wide tape?

Draw a block diagram of a circuit that will interface two interrupts, INT0
and INT1, to the INT input of a CPU so that INT1 has the higher priority
and INT0 has the lower. In other words, a signal on INT1 is to be able to
interrupt the CPU even when the CPU is currently handling an interrupt
generated by INT0, but not vice versa.

Design Credits: Mini DVI cable adapter isolated on white background: Robert Lehmann/Alamy Stock
Photo; Balance scale: Alex Slobodkin/E+/Getty Images; Icon for “Focus on measurements” weighing scales:
Media Bakery.

1Atmel®, the Atmel logo and combinations thereof, AVR®, and others are
registered trademarks, or trademarks of Atmel Corporation or its subsidiaries.

2American Standard Code for Information Interchange.

3These code segments are used courtesy of Atmel® Corporation and were taken
directly from the document 7810C-AVR-10/12, p. 70.

4Ibid., p. 23.

5See www.arduino.cc.

6The Arduino’s digital I/O pins are not protected against overcurrent damage. The
user must take precautions against exceeding their current limits when used as
outputs.

7Portions are taken from example sketches found on the Arduino website and
used under their Creative Commons Attribution-ShareAlike 3.0 license.
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C H A P T E R
13

ELECTRIC POWER SYSTEMS

he basic concepts underlying simple AC power and the generation and
distribution of electric power are extensions of those previously developed in
Chapter 3, namely, phasors and impedance. Together, they pave the way for
the material on electric machines in Chapters 14 to 16. The principal new

concepts introduced in this chapter are average and complex power, and how they are
computed for complex loads. The concept of the power factor is introduced as is the
method for correcting (adjusting) it. A brief discussion of ideal transformers and
maximum power transfer is provided, followed by an introduction to three-phase
power, electrical safety, and finally a discussion of electric power generation and
distribution.

In this chapter, quantities often involve angles. Unless indicated otherwise, angles
are given in units of radians.
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 Learning Objectives
Students will learn to...

Understand the meaning of instantaneous and average power, use AC power
notation, compute average power, and compute the power factor of a complex
load. Section 13.1.



2.

3.

4.

5.

6.

(13.1)

Use complex power notation; compute apparent, real, and reactive power for
complex loads; and draw a power triangle. Section 13.2.
Compute the capacitance required to correct the power factor of a complex load
Section 13.3.
Analyze an ideal transformer; compute primary and secondary currents,
voltages, and turns ratios; calculate reflected sources and impedances across
ideal transformers; and understand maximum power transfer. Section 13.4.
Use three-phase AC power notation; and compute load currents and voltages for
balanced wye and delta loads. Section 13.5.
Understand the basic principles of residential electrical wiring and of electrical
safety. Sections 13.6 and 13.7.

13.1 INSTANTANEOUS AND AVERAGE POWER
When a linear electric circuit is excited by a sinusoidal source, all voltages and
currents in the circuit are also sinusoids of the same frequency as the source. Figure
13.1 depicts the general form of a linear AC circuit. The most general expressions for
the voltage and current delivered to an arbitrary load are as follows:

Figure 13.1 Time and frequency domain representations of an AC circuit.
The phase angle of the load is θZ = θV − θI.

where V and I are the peak amplitudes of the sinusoidal voltage and current,
respectively, and θV and θt are their phase angles. Two such waveforms are plotted in



(13.2)

(13.3)

(13.4)

Figure 13.2, with unit amplitude, angular frequency 150 rad/s, and phase angles θV =
0 and θI = π/3. Notice that the current leads the voltage; or equivalently, the voltage
lags the current. Keep in mind that all phase angles are relative to some reference,
which is usually chosen to be the phase angle of a source. The reference phase angle
is freely chosen and therefore usually set to zero for simplicity. Also keep in mind
that a phase angle represents a time delay of one sinusoid relative to its reference
sinusoid.

Figure 13.2 Current and voltage waveforms with unit amplitude and a
phase shift of 60°

The instantaneous power dissipated by any element is the product of its
instantaneous voltage and current.

This expression is further simplified with the aid of the trigonometric identity:

Let x = ωt + θV and y = ωt + θI to yield:
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Equation 13.4 illustrates that the total instantaneous power dissipated by an element
is equal to the sum of a constant  and a sinusoidal , which



(13.5)

(13.6)

(13.7)

oscillates at twice the frequency of the source. Since the time average of a sinusoid is
zero over one period or over a sufficiently long interval, the constant  is the
time averaged power dissipated by a complex load Z, where θZ is the phase angle of
that load.

Figure 13.3 shows the instantaneous and average power corresponding to the
voltage and current signals of Figure 13.2. These observations can be confirmed
mathematically by noting that the time average of the instantaneous power is defined
by:

where T is one period of p(t). Use equation 13.4 to substitute for p(t) and yield:

Figure 13.3 Instantaneous and average power corresponding to the signals
in Figure 13.2
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The integral of the first part cos(2ωt + θV + θI) is zero while the integral of the
second part (a constant) is Tcos(θZ). Thus, the time averaged power Pavg is:



(13.8)

(13.9)

(13.10)

(13.11)

where

Effective Values
In North America, AC power systems operate at a fixed frequency of 60 cycles per
second, or hertz (Hz), which corresponds to an angular (radian) frequency ω given
by:

In Europe and most other parts of the world, the AC power frequency is 50 Hz.

Unless indicated otherwise, the angular (radian) frequency ω is assumed to be
377 rad/s throughout this chapter.

It is customary in AC power analysis to employ the effective or root-mean-
square (rms) amplitude (see Section 3.3) rather than the peak amplitude for AC
voltages and currents. In the case of a sinusoidal waveform, the effective voltage 

 is related to the peak voltage V by:

Likewise, the effective current  is related to the peak current I by:

The rms, or effective, value of an AC source is the DC value that produces the
same average power to be dissipated by a common resistor.



(13.12)

(13.13)

(13.14)

(13.15)

(13.16)

The average power can be expressed in terms of effective voltage and current by
plugging  and  into equation 13.7 to find:
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Voltage and current phasors are also represented with effective amplitudes by the
notation:

and

It is critical to pay close attention to the mathematical notation that was first
introduced in Chapter 3, namely that complex quantities, such as V, I, and Z are
boldface. On the other hand, scalar quantities, such as  and  are italic. The
relationship between these quantities is  and 

Impedance Triangle
Figure 13.4 illustrates the concept of the impedance triangle, which is an important
graphical representation of impedance as a vector in the complex plane. Basic
trigonometry yields:

where R is the resistance and X is the reactance. Notice that both R and Pavg are
proportional to cos(θZ), which suggests that a triangle similar to (i.e., the same shape
as) the impedance triangle could be constructed with Pavg as one leg of a right
triangle. In fact, such a triangle is known as a power triangle. The similarity of these
two types of triangles is a powerful concept for problem solving, as is shown in
Section 13.2.



(13.17)

(13.18)

(13.19)

(13.20)

(13.21)

(13.22)

(13.23)

Figure 13.4 Impedance triangle

Power Factor
The phase angle θZ of the load impedance plays a very important role in AC power
circuits. From equation 13.12, the average power dissipated by an AC load is
proportional to cos(θZ). For this reason, cos(θZ) is known as the power factor (pf).
For purely resistive loads:

For purely inductive or capacitive loads:

For loads with nonzero resistive (real) and reactive (imaginary) parts:

Using the definition pf = cos(θZ) the average power can be expressed as:

Thus, average power dissipated by a resistor is:

because pfR = 1. By contrast, the average power dissipated by a capacitor or inductor
is:
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because pfX = 0, where the subscript X indicates a reactive element (i.e., either a
capacitor or inductor). It is important to note that although capacitors and inductors
are lossless (i.e., they store and release energy but do not dissipate energy), they do
influence power dissipation in a circuit by affecting the voltage across and the current
through resistors in the circuit.

When θZ is positive, the load is inductive and the power factor is said to be
lagging; when θZ is negative, the load is capacitive and the power factor is said to be
leading. It is important to keep in mind that pf = cos(θZ) = cos(−θZ) because the
cosine is an even function. Thus, while it may be important to know whether a load is
inductive or capacitive, the value of the power factor only indicates the extent to
which a load is inductive or capacitive. To know whether a load is inductive or
capacitive, one must know whether the power factor is leading or lagging.

EXAMPLE 13.1 Computing Average and Instantaneous AC Power
Problem
Compute the average and instantaneous power dissipated by the load of Figure 13.5.

Figure 13.5

Solution
Known Quantities: Source voltage and frequency, load resistance and inductance
values.
Find: Pavg and p(t) for the RL load.

Schematics, Diagrams, Circuits, and Given Data: υ(t) = 14.14 sin(377t)V; R = 4Ω;
L = 8 mH.



1.

2.

Assumptions: None.
Analysis: The source voltage is expressed in terms of sin(377t). By convention, all
time- domain sinusoids should be expressed as cosines. To convert sin(377t) to
cos(377t + θV) recall that a sine equals a cosine shifted forward in time (to the right)
by π/2 rad; that is, sin(377t) = cos(377t − π/2). Thus, at the angular frequency ω =
377 rad/s the source voltage is:

where 14.14V = 10Vrms.
The equivalent impedance of the load is:
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The current in the loop is:

It is instructive to compute the average power dissipated in the circuit in two
ways:

The most straightforward and brute force approach is to compute:

Another approach is to realize that the average power dissipated by the inductor
is zero. Thus, the total average power dissipated equals the average power
dissipated by the resistor. Thus:

The instantaneous power is given by:

The instantaneous voltage and current waveforms and the instantaneous and average
power are plotted in Figure 13.6.



Figure 13.6 Voltage, current and power waveforms for Example 13.1.

Comment: It is standard procedure in electrical engineering practice to use rms
values in power calculations. Also, note that the instantaneous power can be negative
at times even though the average power is positive. This result reflects the fact that
although the average power of an inductor is identically zero, the instantaneous
power of an inductor can be positive or negative as the inductor charges or discharges
with the sinusoidal source.
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EXAMPLE 13.2 Computing Average AC Power
Problem
Compute the average power dissipated by the load of Figure 13.7.



Figure 13.7 Circuit for Example 13.2.

Solution
Known Quantities: Source voltage, internal resistance, load resistance, capacitance,
and frequency.

Find: Pavg for the Ro∣∣Co load.

Schematics, Diagrams, Circuits, and Given Data:

Assumptions: None.
Analysis: First, compute the impedance of the load at the angular frequency ω = 377
rad/s:

where the angle is given in radians. Next, apply voltage division to compute the load
voltage:

Finally, compute the average power using equation 13.12:

Alternatively, compute the source current  and then use equation 13.12 to compute
the average power:



EXAMPLE 13.3 Computing Average AC Power
Problem
Compute the average power dissipated by the load of Figure 13.8.

Figure 13.8

Solution
Known Quantities: Source voltage, internal resistance, load resistance, capacitance
and inductance values, and frequency.
Find: Pavg for the complex load.
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Schematics, Diagrams, Circuits, and Given Data:
 Figure 13.8.

Assumptions: None.
Analysis: First, compute the impedance of the load Zo at the angular frequency ω =
377 rad/s:



Note that the equivalent load impedance at ω = 377 rad/s has a negative imaginary
part, which is a feature of a capacitive load, as shown in Figure 13.9. The average
power is:

Figure 13.9

Comment: At ω = 377 rad/s, the capacitance has a larger impact on the total
equivalent impedance than the inductance. At lower frequencies, where the
impedance of the capacitor is large compared to R + jωL, the parallel equivalent
impedance will be inductive. It is instructive to determine the frequencies when the
parallel equivalent impedance has a zero imaginary part.

CHECK YOUR UNDERSTANDING
Consider the circuit shown in Figure 13.10. Find the impedance of the load “seen” by
the voltage source, and compute the average power dissipated by the load. The
constant 155.6 multiplying the cosine function is always the peak amplitude, not the
rms amplitude.

Figure 13.10



(13.24)

(13.25)

CHECK YOUR UNDERSTANDING
For Example 13.2, compute the average power dissipated by the internal source
resistance RS.

13.2 COMPLEX POWER
The computation of AC power is simplified by defining a complex power S, where:
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where the asterisk denotes the complex conjugate (see Appendix A). Note that the
effect of taking the complex conjugate of a phasor is to multiply its phase angle by
−1. In other words,  The definition of complex power
leads to:

where  and  are the resistance and reactance of the
impedance triangle shown in Figure 13.11. The real and imaginary parts of S are the
real power  and the reactive power  respectively, such
that:

Answer: 

Answer: 101.46 W; 595 W



(13.26)

(13.27)

(13.28)

Figure 13.11 The impedance triangle

The magnitude ∣S∣ of the complex power is called the apparent power S and is
measured in units of volt-amperes (VA). The units of Q are volt-amperes reactive,
or VAR.

The relationship between S, P, and Q is summarized by a power triangle as
shown in Figure 13.12. It is important to note that the impedance and power triangles
are similar; that is, they have the same shape. This result is helpful in problem
solving. Table 13.1 shows the general expressions for calculating P and Q.

Figure 13.12 The complex power triangle

Table 13.1 Real and reactive power

The complex power can also be expressed as:

Furthermore, since  and  the complex power can be re- expressed
as:



1.

2.

3.

As previously stated, capacitors and inductors (reactive loads) do not dissipate
energy themselves; they are lossless elements. However, they do influence power
dissipation in a circuit by affecting the voltage across and current through resistors,
which do dissipate energy. This influence is now quantified by the reactive power, Q,
which is due entirely to capacitance and inductance in a circuit. It is worth noting that
Q = 0, pf = 1, and therefore P = S in purely resistive networks. It is also important to
realize that P represents the real work done (per unit time) by a circuit. For example,
the real power P of an electric motor represents the work done (per unit time) by the
motor to perform some useful task. From the perspective of the utility company that
provides the electric power for the motor and of the owner of the motor who has to
pay the utility bill, it would be best if all the apparent power S provided by the utility
company was converted to useful power P. (Why?) However, all electric motors have
some inductance (e.g., coils of wire) such that Q ≠ 0, pf < 1, and P < S. It is possible
to correct the effect of a motor’s inductance by adding capacitance in parallel with
the motor so as to decrease Q and thereby decrease the apparent power S that must be
provided for a given P required by the task.
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F O C U S  O N  P R O B L E M  S O LV I N G

COMPLEX POWER COMPUTATION
Use AC circuit analysis methods to compute (as phasors) the voltage across 
current through the load. Convert peak amplitudes to effective (rms) values.

Compute θZ = θV − θI and the power factor pf = cos(θZ). Draw the impeda
triangle, as shown in Figure 13.11.
Use one of the two following methods to compute Pavg and Q.

Compute the complex power  such that P = Pavg = Re(S), Q = Im(S), 
S = ∣S∣. The effect of taking the complex conjugate of a phasor is to mult
its phase angle by −1, such that 



4.

5.

Compute the apparent power  such that P = Pavg = Spf and Q 
sin(θZ).

Draw the power triangle, as shown in Figure 13.12, and confirm that S2 = P
Q2 and that tan(θZ) = Q/P.
If Q is negative, the load is capacitive and the power factor is leading; if 
positive, the load is inductive and the power factor is lagging.

EXAMPLE 13.4 Complex Power Calculations

Figure 13.13 Circuit for Example 13.4.

Problem
Compute the complex power for the load Zo of Figure 13.13.

Solution
Known Quantities: Source, load voltage, and current.
Find: S = Pavg + jQ for the complex load.

Schematics, Diagrams, Circuits, and Given Data: υ(t) = 100 cos(ωt + 0.262) V; i(t)
= 2 cos(ωt − 0.262) A; ω = 377 rad/s.
Assumptions: All angles are given in units of radians unless indicated otherwise.
Analysis: First, realize that the constants multiplying the cosine functions are always
peak, not rms, values. These functions can be converted to phasor quantities with rms
amplitudes as follows:
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Compute the phase angle of the load, and the real and reactive power, using the
definitions of equation 13.12:

Apply the definition of complex power (equation 13.24) to repeat the same
calculation:

Therefore

Comments: Note how the definition of complex power yields both quantities at one
time.

EXAMPLE 13.5 Real and Reactive Power Calculations
Problem
Compute the complex power for the load of Figure 13.14.



Figure 13.14 Circuit for Example 13.5.

Solution
Known Quantities: Source voltage and resistance; load impedance.
Find: S = P + jQ for the complex load.
Schematics, Diagrams, Circuits, and Given Data:

Assumptions: All amplitudes are effective (rms) values. All angles are given in units
of radians unless indicated otherwise.
Analysis: The load impedance is:

Next, apply voltage division and the generalized Ohm’s law to compute the load
voltage and current:

Finally, compute the complex power, as defined in equation 13.24:
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Therefore:

Comment: Is the reactive power capacitive or inductive? Since Q < 0, the reactive
power is capacitive!



1.
2.
3.

1.

EXAMPLE 13.6 Real Power Transfer for Complex Loads
Problem
Compute the complex power for the load between terminals a and b of Figure 13.15.
Repeat the computation with the inductor removed from the load, and compare the
real power for the two cases.

Figure 13.15 Circuit for Example 13.6.

Solution
Known Quantities: Source voltage and resistance; load impedance.
Find:

S1 = P1 + jQ1 for the complex load.
S2 = P2 + jQ2 for the real load.
For each case, compute the ratio of the real power dissipated by the load to the
overall real power dissipated by the circuit.

Schematics, Diagrams, Circuits, and Given Data:

Assumptions: All amplitudes are effective (rms) values. All angles are given in units
of radians unless indicated otherwise.
Analysis:

With the inductor included in the load, its impedance Zo is:



2.

Apply voltage division to compute the load voltage  and the generalized Ohm’s
law to compute the current 

Finally, compute the complex power, as defined in equation 13.24:

Therefore:
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With the inductor excluded from the load (Figure 13.16), its impedance is:

Compute the load voltage and current:

Finally, compute the complex power, as defined in equation 13.24:

Therefore:



3.

Figure 13.16 Circuit for Example 13.6 with inductor removed.

To compute the overall real power Ptotal dissipated by the circuit, it is necessary
to include the impact of the line resistance RS and compute for each case:

For case 1:

The percent real power transfer is:

For case 2:

The percent real power transfer is:

Comments: If it were possible to eliminate the reactive part of the impedance, the
percentage of real power transferred from the source to the load would be increased
significantly. The procedure to accomplish this goal is called power factor
correction.

EXAMPLE 13.7 Complex Power and Power Triangle
Problem



Find the reactive and real power for the load of Figure 13.17. Draw the associated
power triangle.
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Figure 13.17 Circuit for Example 13.7.

Solution
Known Quantities: Source voltage; load impedance.
Find: S = Pavg + jQ for the complex load.

Schematics, Diagrams, Circuits, and Given Data:

Assumptions: All amplitudes are effective (rms) values. All angles are given in units
of radians.
Analysis: First, compute the load current:

Next, compute the complex power, as defined in equation 13.24:

Therefore:

The total reactive power must be the sum of the reactive powers in each of the
elements, such that Q = QC + QL. Compute these two quantities as follows:



and

Comments: The power triangle corresponding to this circuit is drawn in Figure
13.18. The vector diagram shows how the complex power S results from the vector
addition of the three components P, QC, and QL.

Figure 13.18 Power triangle for Example 13.7.

CHECK YOUR UNDERSTANDING
Compute the real and reactive power for the load of Example 13.2.

CHECK YOUR UNDERSTANDING
Compute the real and reactive power for the load of Figure 13.10.
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Answer: Pavg = 595 W; Q = −359 VAR

Answer: Pavg = 2.1 kW; Q = 1.39 kVAR



CHECK YOUR UNDERSTANDING
Refer to Example 13.6, and compute the percent of real power transfer for the case
where the inductance of the load is one-half of the original value.

CHECK YOUR UNDERSTANDING
Compute the power factor for the load of Example 13.7 with and without the
inductor in the circuit.

13.3 POWER FACTOR CORRECTION
A power factor close to unity signifies an efficient transfer of energy from the AC
source to the load while a small power factor corresponds to inefficient use of energy,
as illustrated in Example 13.6. If a load requires a given real power P, the current
required by the load will be minimized when the power factor is maximized, that is,
when pf = cos(θZ) →1. When pf < 1, it is possible to increase it (i.e., correct it) by
adding, as appropriate, reactance (e.g., capacitance) to the load. When pf is leading,
inductance must be added; when pf is lagging, capacitance must be added.

If θZ > 0, then Q > 0, the load is inductive, the load current lags the load
voltage, and the power factor pf is lagging. Alternatively, if θZ < 0, then Q < 0,
the load is capacitive, the load current leads the load voltage, and the power
factor pf is leading.

Answer: 29.3%

Answer: pf = 0.6, lagging (with L in circuit); pf = 0.5145, leading (without
L)



Table 13.2 illustrates and summarizes these concepts. For simplicity, the phase angle
of the voltage phasor  shown in the table is zero and acts as a reference angle for the
current phasor.

Table 13.2 Important facts related to complex power

In practice, the load designed for a useful industrial task is often inductive
because of the presence of electric motors. The power factor of an inductive load can
be corrected by adding capacitance in parallel with the load. This procedure is called
power factor correction.

The measurement and correction of the power factor for the load are an
extremely important aspect of any industrial engineering application that requires the
use of substantial quantities of electric power. In particular, industrial plants,
construction sites, heavy machinery, and other heavy users of electric power must be
aware of the power factor that their loads present to the electric utility company. As
was already observed, a low power factor results in greater current draw from the
electric utility and greater line losses. Thus, computations related to the power factor
of complex loads are of great utility to any practicing engineer.

Page 757



1.

2.

3.

4.

5.

F O C U S  O N  P R O B L E M  S O LV I N G

POWER FACTOR CORRECTION
Follow the steps outlined in the Focus on Problem Solving box, “Com
Power Computation,” to find the initial phase angle of the load , power fa
pfi, real power Pi, and reactive power Qi. If both Pi and either pf or θZ are gi
compute Q directly using Q = P tan(θZ). An initial power triangle is helpful
visualizing this information.
For a lagging power factor, augment the load with a parallel capacitor such th

Express the final reactive power Qf as:

The real power is unchanged by the addition of the capacitor in parallel. Thu
= Pi and the final (corrected) phase angle of the augmented load is:

It is helpful to draw a final power triangle to visualize the effect of the par
capacitor.
The final corrected power factor is:
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1.
2.

1.

EXAMPLE 13.8 Power Factor Correction
Problem
Calculate the power factor for the circuit of Figure 13.19. Correct it to unity by
adding a capacitor in parallel with the load.

Figure 13.19 Circuit for Example 13.8.

Solution
Known Quantities: Source voltage; load impedance.
Find:

S = P + jQ for the complex load.
Value of parallel capacitance that results in pf = 1.

Schematics, Diagrams, Circuits, and Given Data:

Assumptions: All amplitudes are effective (rms) values. All angles are given in units
of radians unless indicated otherwise.
Analysis:

First, compute the load impedance:

Next, compute the load current 

The complex power, as defined in equation 13.24, is:

Therefore:



2.

3.

The power triangle corresponding to this circuit is drawn in Figure 13.20. The
vector diagram shows how the complex power S results from the vector addition
of the two components P and Q.

Figure 13.20 Power triangle for Example 13.8.

To correct the power factor to unity it is necessary to subtract 118.5 VAR. This
goal can be accomplished by adding in parallel a capacitor with QC = −118.5
VAR. The required capacitance is found by:

The reactance XC is related to the capacitance by:

Thus, the result is:
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The total current required of the source is  where:

Notice that  The total current is computed by phasor
addition to be:

The corrected power factor pf = 1 implies that the impedance of the load is now
purely real; that is, θZ = 0. Thus, the source current must now be in phase with
the source voltage; and it is.



Comments: Notice that the magnitude of the source current is reduced by increasing
the power factor. The power factor correction, which is a very common procedure in
electric power systems, is illustrated in Figure 13.21.

Figure 13.21 Power factor correction

EXAMPLE 13.9 Can a Series Capacitor Be Used for Power Factor
Correction?
Problem
The circuit of Figure 13.22 suggests the use of a series capacitor for power factor
correction. Why is this approach not a feasible alternative to the parallel capacitor
approach demonstrated in Example 13.8?

Figure 13.22 Circuit for Example 13.9.

Solution
Known Quantities: Source voltage; load impedance.



Find: Load (source) current.
Schematics, Diagrams, Circuits, and Given Data:

Assumptions: All amplitudes are effective (rms) values. All angles are given in units
of radians unless indicated otherwise.
Analysis: First, compute the impedance of the load between terminals a and b:
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Notice that the reactance of the capacitor was chosen so as to make the total load
purely resistive. Thus, θZ = 0 and the corrected power factor is pf = 1. So far, so
good.

Next, compute the current through the series load:

The corrected power factor pf = 1 implies that the impedance of the load is now
purely real; that is, θZ = 0. Thus, the source current must now be in phase with the
source voltage; and it is.

The problem with this approach to power factor correction is revealed by
computing the initial current through the load, prior to the addition of the capacitor.

Comments: Notice the twofold increase in the source current as a result of the
additional capacitor in series. Consequently, the power required by the source
doubled as well. In practice, adding capacitance in parallel can be accomplished
relatively easily with one large bank located somewhere on an industrial site and
away from the production motors themselves. Electric utilities motivate industries to
raise power factors by offering discounted rates ($/kWh).



1.
2.

1.

EXAMPLE 13.10 Power Factor Correction
Problem
A capacitor is used to correct the power factor of the 100 kW and lagging pf = 0.7
load of Figure 13.23. Determine the reactive power of the load alone, and compute
the capacitance required for a corrected power factor pf = 1.

Figure 13.23 Circuit for Example 6.10.

Solution
Known Quantities: Source voltage; load power and power factor.
Find:

The reactive power Q of the load alone.
The capacitance C required for a corrected power factor pf = 1.

Schematics, Diagrams, Circuits, and Given Data: 
lagging for the load; ω = 377 rad/s.
Assumptions: All amplitudes are effective (rms) values. All angles are given in units
of radians unless indicated otherwise.
Analysis:

For the load alone, pf = 0.7 lagging or cos(θZ) = 7/10, and the power triangle has
the shape shown in Figure 13.24. The real power is given as P = 100 kW, so the
reactive power of the load can be computed using the relative triangle
dimensions to be:

Since the power factor is lagging, the reactive power is positive as indicated in
Table 13.2 and shown in the power triangle of Figure 13.25.



2.

Figure 13.24 Relative dimensions of power triangle

Figure 13.25 Power triangle
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To set the corrected power factor to pf = 1 the capacitance must contribute −102
kVAR of reactive power. That is:

Since the voltage across capacitor  equals the source voltage , the reactive
power of the capacitor is:

Thus, to correct the power factor to pf = 1 (zero total reactive power), the
capacitor must satisfy:

or

Use trigonometry and/or the Pythagorean theorem to show that the apparent
power ∣S∣ = 143 kVA, as indicated in Figure 13.25.

Comments: Note that it is not necessary to know the load impedance to perform
power factor correction; however, it is a useful exercise to compute the equivalent



1.
2.
3.

1.

impedance seen by  and check that cos(θZ) = 0.7.

EXAMPLE 13.11 Power Factor Correction
Problem
Figure 13.26 shows a second load added to the circuit of Figure 13.23. Determine the
capacitance required for an overall corrected power factor pf = 1. Draw the phasor
diagram showing the relationship between  and 

Figure 13.26 Circuit with two loads.

Solution
Known Quantities: Source voltage; load power and power factor.
Find:

The total reactive power of loads 1 and 2.
The capacitance C required for an overall power factor pf = 1.

 and  and construct a phasor diagram of these currents.
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Schematics, Diagrams, Circuits, and Given Data: 
lagging; P2 = 50 kW; pf2 = 0.95 leading; ω = 377 rad/s.

Assumptions: All amplitudes are effective (rms) values. All angles are given in units
of radians unless indicated otherwise.
Analysis:

Compute  and  using the relation 



and

It is important to keep in mind that although inverse trigonometric functions are
double-valued [e.g., cos−1 (0.7) ≈ ±0.795 rad], the power factor for load 1 is
lagging such that  rad is the correct choice.
Similarly, for load 2:

and

The power factor for load 2 is leading such that  rad is the correct
choice.

Now use the given data and the relation Q = P tan(θZ) to compute the reactive
power for each load.

and

The power triangles for the two loads are shown in Figures 13.27 and 13.28. The
total reactive power is therefore Q = Q1 + Q2 ≈ 85.6 kVAR.

Figure 13.27 Power triangle for load 1



2.

3.

Figure 13.28 Power triangle for load 2

To set the corrected power factor to pf = 1 the capacitance must contribute −85.6
kVAR of reactive power. That is:

For a capacitor alone its reactive power is:

Thus, to correct the power factor to pf = 1 (zero total reactive power), the
capacitor must satisfy:

or
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To compute the capacitor current it is not possible to use  because P = 0
and pf = 0 for a capacitor. Instead, the generalized Ohm’s law provides an
alternative approach.

where . The phase angle of  is:

The current phasor diagram can now be drawn as shown in Figure 13.29.



a.
b.

a.
b.
c.
d.

Figure 13.29

Comment: The power triangle suggests that the capacitor current can also be
calculated using the relation  where θC = −π/2 and 

 Try it!

CHECK YOUR UNDERSTANDING
Two cases of the voltage across and the current through a load are given below.
Determine the power factor of the load, and whether it is leading or lagging, for each
case.

υ(t) = 540 cos(ωt + 15°) V, i(t) = 2 cos(ωt + 47°) A
υ(t) = 155 cos(ωt − 15°) V, i(t) = 2 cos(ωt − 22°) A

CHECK YOUR UNDERSTANDING
Determine if a load is capacitive or inductive, given the following facts:

pf = 0.87, leading
pf = 0.42, leading
υ(t) = 42 cos(ωt) V, i(t) = 4.2 sin(ωt) A [Hint: sin(ωt) lags cos(ωt).]
υ(t) = 10.4 cos(ωt − 22°) V, i(t) = 0.4 cos(ωt − 22°) A

Answer: a. 0.848, leading; b. 0.9925, lagging

Answer: a. Capacitive; b. capacitive; c. inductive; d. neither (resistive)



CHECK YOUR UNDERSTANDING
Compute the power factor for an inductive load with L = 100 mH in series with R =
0.4Ω. Assume ω = 377 rad/s.
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FOCUS ON MEASUREMENTS

The Wattmeter
The instrument used to measure power is called a wattmeter. The external part of a
wattmeter consists of four connections and a metering mechanism that displays the
amount of real power dissipated by a circuit. The external and internal appearance of
a wattmeter is depicted in Figure 13.30. Inside the wattmeter are two coils: a current-
sensing coil and a voltage-sensing coil. In this example, we assume for simplicity
that the impedance of the current-sensing coil ZI is zero and that the impedance of

Answer: pf = 0.0106, lagging



1.

the voltage-sensing coil ZV is infinite. In practice, this will not necessarily be true;
some correction mechanism will be required to account for the impedance of the
sensing coils.

Figure 13.30 Wattmeter: external connections and internal layout.

A wattmeter should be connected as shown in Figure 13.31 to provide both
current and voltage measurements. We see that the current-sensing coil is placed in
series with the load and that the voltage-sensing coil is placed in parallel with the
load. In this manner, the wattmeter is seeing the current through and the voltage
across the load. Remember that the power dissipated by a circuit element is related to
these two quantities. The wattmeter, then, is constructed to provide a readout of the
real power absorbed by the load: 

Figure 13.31 Wattmeter connection.

Problem:
For the circuit shown in Figure 13.32, show the connections of a wattmeter
between the ideal voltage source and the load and find the power dissipated by
the load.



2.

1.

2.
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Show the connections that will determine the power dissipated by R2. What
should the meter read?

Figure 13.32 Wattmeter: example of power calculation.

Solution:
To measure the power dissipated by the load, we must know the current through
and the voltage across the entire load circuit. This means that the wattmeter must
be connected as shown in Figure 13.33. The wattmeter should read

Figure 13.33 Wattmeter: example of power calculation.

To measure the power dissipated by R2 alone, we must measure the current
through R2 and the voltage across R2 alone. The connection is shown in Figure
13.34. The meter will read
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Figure 13.34 Circuit with wattmeter inserted to measure only the power
dissipated by R2

FOCUS ON MEASUREMENTS

Power Factor
Problem:
A capacitor is being used to correct the power factor of a load to unity, as shown in
Figure 13.35. The capacitor value is varied, and measurements of the total current are



taken. Explain how it is possible to zero in on the capacitance value necessary to
bring the power factor to unity just by monitoring the current 

Figure 13.35 Circuit for illustration of power factor correction.

Solution:
The current through the load is

The current through the capacitor is
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The source current to be measured is

The magnitude of the source current is

We know that when the load is a pure resistance, then the current and voltage are in
phase, the power factor is 1, and all the power delivered by the source is dissipated
by the load as real power. This corresponds to equating the imaginary part of the
expression for the source current to zero or, equivalently, to the following expression:



(13.29)

in the expression for  Thus, the magnitude of the source current is actually a
minimum when the power factor is unity! It is therefore possible to “tune” a load to a
unity pf by observing the readout of the ammeter while changing the value of the
capacitor and selecting the capacitor value that corresponds to the lowest source
current value.

13.4 TRANSFORMERS
Two separate AC circuits are often interfaced by a transformer, which acts as a
magnetic coupling and transforms the voltage and current at the interface (e.g., by
matching the high-voltage, low-current output of one circuit to the low-voltage, high-
current input required by the other). Transformers play a major role in electric power
engineering and are a necessary part of the electric power distribution network. The
objective of this section is to introduce the ideal transformer and the concepts of
impedance reflection and impedance matching.

The Ideal Transformer
The ideal transformer consists of two coils coupled to each other by a magnetic
medium. There is no conducting electrical connection between the coils. The input
side of a transformer is known as the primary while the output side is known as the
secondary. The number of turns in the primary and secondary coils are designated n1
and n2, respectively. The turns ratio N is defined by:

Figure 13.36 illustrates the convention by which voltages and currents are usually
assigned at a transformer. The solid black dots in Figure 13.36 are used to mark coil
terminals that have the same polarity.

Figure 13.36 Ideal transformer
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Recall from Faraday’s law that each coil experiences self-induction in that a time-
varying current through a coil produces a time-varying magnetic flux through the coil



(13.30)

(13.31)

itself, which, in turn, induces a potential difference opposing the time-varying
magnetic flux. The net effect of this self-induction is expressed by the inductance L
of a coil. However, when two coils are present, as in a transformer, both coils also
experience mutual induction in that some of the time-varying magnetic flux due to
one coil passes through the other coil and induces another opposing potential
difference. The net effect of the mutual induction is expressed by the mutual
inductance M of the two coils. Both L and M contribute to the behavior of a
transformer.

Notice the emphasis on time variations in the previous paragraph. One result of
Faraday’s law is that a leave in current through a coil, which generates a constant
magnetic field, induces no opposing reaction within the coil itself (no self-induction)
nor within any nearby coil (no mutual induction). Instead, a coil acts as a short-
circuit in the presence of leave in current and transformers perform no useful
function in DC circuits. See Chapter 14 for further discussion of Faraday’s law as it
relates to electromechanics.

As depicted in Figure 13.36, the relationships between primary and secondary
currents and voltages in an ideal transformer are:

When  and a transformer is called a step-up transformer. When 
 and a transformer is called a step-down transformer. Either side of

an ideal transformer can be used as the primary; thus, to produce a step-up
transformer from a step-down transformer one only need exchange the primary and
secondary connections. (Exchanging the primary and secondary by mistake can lead
to significant dangers in a laboratory experiment!) Finally, when N = 1, a transformer
is called an isolation transformer, which can be used to electrically couple or isolate
two circuits and adjust the output and input impedances at the interface of two
circuits.

A comparison of the complex power at the primary and secondary terminals of an
ideal transformer reveals that they are the same:

That is, ideal transformers conserve power.
As shown in Figure 13.37, the secondary coil of many practical transformers is

center-tapped, which splits the secondary voltage into two equal halves. This type of



(13.32)

transformer is found at the entry of a power line into a household, where a high-
voltage primary is transformed to 240 V as well as split into two 120-V lines.
Referring to Figure 13.37,  and  would both provide 120 V for common
household appliances while  would provide 240 V for higher-powered
devices, such as clothes dryers and electric ranges.

Figure 13.37 Center-tapped transformer
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Impedance Reflection
Transformers are commonly used to couple one AC circuit to another, as depicted in
Figure 13.38, where an AC Thévenin source network is connected to a load Z2 by
means of a transformer.

Figure 13.38 Operation of an ideal transformer

The equivalent impedance seen by the Thévenin source is that of the entire
network to the right of terminals a and b. Applying the definition of equivalent
impedance and using the ideal transformer relations from equation 13.30, the result
is:



(13.33)

(13.34)

(13.35)

(13.36)

(13.37)

Thus, the equivalent impedance seen by the AC Thévenin source is the load
impedance Z2 reduced by the factor 1/N2.

Likewise, the equivalent network seen by Z2 is the Thévenin equivalent of the
entire network to the left of terminals c and d. When Z2 is replaced by an open-
circuit,  and the Thévenin (open-circuit) voltage is:

However, since  the voltage drop across ZS is zero such that  with
the result:

When Z2 is replaced by a short-circuit,  and the short-circuit current is:

However, since  the voltage drop across ZS is  such that 
with the result:

Thus, the Thévenin equivalent impedance seen by Z2 is:

Thus, the equivalent impedance seen by Z2 is the source impedance ZS multiplied by
N2.

Figure 13.39 summarizes and illustrates these effects, which are known as
impedance reflection across a transformer and which play an important role in
power transfer.
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(13.38)

(13.39)

(13.40)

Figure 13.39 Impedance reflection across a transformer

Maximum Power Transfer
Recall that in resistive DC circuits, maximum power is transferred to a load when the
load equals the Thévenin equivalent resistance of the source network. For AC
circuits, the analogous maximum power transfer condition is known as impedance
matching.

Consider the general form of an AC circuit, shown in Figure 13.40, and assume
that the source impedance ZT is:

Figure 13.40 The maximum power transfer problem in AC circuits

What value of the load Zo results in the maximum real power transfer to the load
itself? The real power absorbed by the load is:

Apply voltage division and the generalized Ohm’s law to find:



(13.41)

(13.42)

(13.43)

(13.44)

(13.45)

Let  and since  the real power
absorbed by the load can be expressed as:

Or, after simplification:

The condition for the maximum value of Po can be found by solving:

or
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Both of these conditions are satisfied when Ro = RT and Xo = −XT. That is, the
condition for maximum real power transfer to a load is 

Maximum power is transferred to the load when its impedance equals the
complex conjugate of the Thévenin equivalent impedance of the source. When
this condition is satisfied, the load and source impedances are matched.

In some cases, it may not be possible to match the load to the source because of
practical limitations. In these situations, it may be possible to use a transformer as the
interface between the source and the load to achieve maximum power transfer.
Figure 13.41 illustrates how the reflected load impedance, as seen by the source, is
equal to Zo/N2, such that the condition for maximum power transfer is:



(13.46)

Figure 13.41 Maximum power transfer in an AC circuit with a transformer

EXAMPLE 13.12 Ideal Transformer Turns Ratio
Problem
We require a transformer (see Figure 13.42) to output 500 mA at 24 V from a 120 V
rms input line source. The primary has n1 = 3,000 turns. How many turns are
required in the secondary? What is the primary current?

Figure 13.42 Example 13.12

Solution



Known Quantities: Primary and secondary voltages; secondary current; number of
turns in the primary coil.
Find: n2 and 

Schematics, Diagrams, Circuits, and Given Data:  n1 =
3,000 turns.
Assumptions: All amplitudes are effective (rms) values. All angles are given in units
of radians.
Analysis: Use equation 13.30 to compute the number of turns in the secondary coil:
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Again, use equations 13.29 and 13.30 to compute the primary current:

Comment: Note that since the transformer does not affect the phase of the voltages
and currents, it was possible to solve the problem using only the rms amplitudes.

EXAMPLE 13.13 Center-Tapped Transformer
Problem
An ideal center-tapped power transformer (Figure 13.43) has a 4,800-V primary and
a 240-V secondary. The center-tap is located such that . Three resistive
loads are attached to the secondary terminals. Compute the current in the primary
assuming that R2, R3, and R4 each absorb P2, P3, and P4, respectively. Also compute
the current through each load and the resistance of each load.



Figure 13.43 Example 13.13

Solution
Known Quantities: Primary and secondary voltages; load power ratings.
Find: 
Schematics, Diagrams, Circuits, and Given Data:

 P2 = 5,000 W; P3 = 1,000 W; P4 = 1,500 W.

Assumptions: All amplitudes are effective (rms) values. All angles are given in units
of radians unless indicated otherwise. The transformer is ideal.
Analysis: Power is conserved for an ideal transformer; thus:

Since each load is purely resistive, θZ = 0 and pf = cos θZ = 1 such that:

Since

Thus:
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The current through each resistor is simply:



The resistor values are:

Comments: The calculations in this example were particularly straightforward
because the load was purely resistive, such that θZ = 0, the power triangle is flat, and
the apparent power S equals the real power P. When the load is complex, θZ > 0, the
power triangle is not flat, and the apparent power S equals P cosθZ. Then, the
calculations are more complicated.

Also, KCL can be used to determine the current drawn from/to the outside and
center taps. Try it!

EXAMPLE 13.14 Use of Transformers to Improve Power Line
Efficiency
Problem
Figure 13.44 illustrates the use of transformers in electric power transmission lines.
The line voltage is transformed before and after being transmitted over long
distances. This example illustrates the efficiency gained through the use of
transformers. For the sake of simplicity, ideal transformers and simple resistive
models for the generator, transmission line, and load have been assumed.

Solution
Known Quantities: Values of circuit elements.
Find: Calculate the power transfer efficiency for the two circuits of Figure 13.44.
Schematics, Diagrams, Circuits, and Given Data: Step-up transformer turns ratio is
N, step-down transformer turns ratio is M = 1/N. All transformers are ideal.
Assumptions: None.



Analysis: Since the load and source currents are equal in Figure 13.44(a), the power
transmission efficiency is:
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Figure 13.44 Electric power transmission: (a) direct power transmission;
(b) power transmission with transformers; (c) equivalent circuit seen by
generator; (d) equivalent circuit seen by load



In Figure 13.44(b), transformers are introduced between each of the three portions of
the overall circuit. The equivalent load resistance seen by the transmission line (or
“reflected” by the step-down transformer) is found from equation 13.32 to be:

Now, the step-up transformer sees the equivalent impedance . The resistance
seen by the generator (or “reflected” by the step-up transformer) is:
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These transformations are depicted in Figure 13.44(c). The effect of the two
transformers is to reduce the line resistance seen by the source by N2. The source
current is:

The source power is:

The same process can be repeated starting from the left and reflecting the source
circuit to the right of the step-up transformer:

Now the circuit to the left of the step-down transformer comprises the series
combination of , which can be reflected to the right of the step-down
transformer to obtain , and Rload
in series. These transformations are depicted in Figure 13.44(d). Thus, the load
voltage, current, and power are:



Finally, the power efficiency can be computed as the ratio of the load to source
power:

Notice that the power transmission efficiency calculated for Figure 13.44(a) was
improved by reducing the effect of the line resistance by a factor of 1/N2.

EXAMPLE 13.15 Maximum Power Transfer Through a Transformer
Problem
Find the transformer turns ratio N and the load reactance Xo that results in maximum
power transfer in the transformer shown in Figure 13.45.

Figure 13.45 Circuit for Example 13.15.

Solution
Known Quantities: Source voltage, frequency, and impedance; load resistance.
Find: Transformer turns ratio and load reactance.
Schematics, Diagrams, Circuits, and Given Data:
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Assumptions: All amplitudes are effective (rms) values. All angles are given in units
of radians. The transformer is ideal.
Analysis: The requirements for maximum power transfer, as given by equation
13.46, are Ro = N2RS and Xo = −N2XS = −N2(ω × 0.1). Thus:

Thus, the load reactance should be a capacitor with value:

CHECK YOUR UNDERSTANDING
With reference to Example 13.12, compute the number of primary turns required if
n2 = 600 but the transformer is required to deliver 1 A. What is the primary current
now?

CHECK YOUR UNDERSTANDING
If the transformer of Example 13.12 has 300 turns in the secondary coil, how many
turns will the primary require?

CHECK YOUR UNDERSTANDING

Answer: 

Answer: n2 = 6,000



Assume that the generator produces a source voltage of 480 V rms, and that N = 300.
Further assume that the source impedance is 2 Ω, the line impedance is also 2 Ω, and
that the load impedance is 8 Ω. Calculate the efficiency improvement for the circuit
of Figure 13.37(b) over the circuit of Figure 13.37(a).

CHECK YOUR UNDERSTANDING
The transformer shown in Figure 13.46 is ideal. Assume that ZS = 1,800Ω and Zo =
8Ω to find the turns ratio N that will ensure maximum power transfer to the load.
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Figure 13.46 Ideal transformer—calculation of maximum power transfer.

Now assume that N = 5.4 and Zo = 2 + j10Ω. Find the source impedance ZS that will
ensure maximum power transfer to the load.

13.5 THREE-PHASE POWER
The material presented so far in this chapter has dealt exclusively with single-phase
AC power, which implies a single sinusoidal source. However, most of the AC
power used today is generated and distributed as three-phase power, which implies
three sinusoidal sources, each out of phase with the other. The primary benefit is
efficiency: The weight of the conductors and other components in a three-phase
system is much lower than that in a single-phase system delivering the same amount

Answer: 80% vs. 67%

Answer: N = 0.0667; ZS = 0.0686 − j0.3429 Ω



(13.47)

(13.48)

(13.49)

of power. Further, while the power produced by a single-phase system has a pulsating
nature (recall the results of Section 13.1), a three-phase system can deliver a steady,
constant supply of power. For example, later in this section it will be shown that a
three-phase generator producing three balanced voltages—that is, voltages of equal
amplitude and frequency displaced in phase by 120°—has the property of delivering
constant instantaneous power.

The change to three-phase AC power systems from the early DC system
proposed by Edison was due to a number of reasons: the efficiency resulting from
transforming voltages up and down to minimize transmission losses over long
distances, the ability to deliver constant power, a more efficient use of conductors,
and the ability to provide starting torque for industrial motors.

Consider a three-phase source connected in a wye (Y) configuration, as shown
in Figure 13.47. Each of the three voltages is 120° out of phase with the Page
778others, such that:

Figure 13.47 Balanced three-phase AC circuit

If the three-phase source is balanced, then:

For three balanced phase voltages each separated by 120°, the phase amplitudes are
also equal:



(13.50)

(13.51)

The result is the so-called positive abc sequence, as shown in Figure 13.48. In the
wye configuration, the three phase voltages share a common neutral node, denoted
by n.

It is also possible to define line voltages as the potential differences between
lines aa′ and bb′, lines aa′ and cc′, and lines bb′ and cc′. Each line voltage is related
to the phase voltages by:

Figure 13.48 Positive, or abc, sequence for balanced three-phase voltages

It is instructive to note that the circuit of Figure 13.47 can be redrawn as shown
in Figure 13.49, where it is clear that the three branches are in parallel.

When Za = Zb = Zc = Z, the wye load configuration is also balanced. When both
the source and load networks are balanced, KCL requires that the current  in the
neutral line n − n′ be identically zero.

Another important characteristic of a balanced three-phase power system is
illustrated by a simplified version of Figure 13.49, where the balanced load
impedances are replaced by three equal resistors R. Since θR = 0, the instantaneous
power p(t) delivered to each resistor is given by equation 13.4 [with θV = θI and with
the freely chosen reference (θV)a = 0] to be:



(13.52)

(13.53)

Figure 13.49 Balanced three-phase AC circuit (redrawn)
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The total instantaneous power p(t) delivered to the total load is the sum:

It is worthwhile to verify that the sum of the three cosine terms is identically zero.
(Hint: Consider the phasor sum of  and )

Thus, with the simplified balanced resistive load, the total power delivered to the
load by the balanced three-phase source is constant. This is an extremely important
result, for a very practical reason: Delivering power in a steady fashion (as opposed
to the pulsating nature of single-phase power) reduces “wear and tear” on the source
and load.

It is also possible to connect three AC sources in a delta (Δ) configuration, as
shown in Figure 13.50 although it is rarely used in practice.



(13.54)

(13.55)

(13.56)

(13.57)

(13.58)

Figure 13.50 Delta configuration

Balanced Wye Loads
These results for purely resistive loads can be generalized for any arbitrary balanced
complex load. Consider again in Figure 13.47, where now the balanced load consists
of three complex impedances:

Because of the common neutral line n − n′, each impedance sees the corresponding
phase voltage across itself. Therefore, since , it is also true that 

 and the phase angles of the currents will differ by ±120°. Consequently, it
is possible to compute the power for each phase from the phase voltage and the
associated line current. Denote the complex power for each phase by S, where:

The total real power delivered to the balanced wye load is 3P, and the total reactive
power is 3Q. The total complex power ST is:

The apparent power ∣ST∣ is:

such that:



(13.59)

(13.60)

Balanced Delta Loads
It is also possible to assemble a balanced load in a delta configuration. A wye
generator and a delta load are shown in Figure 13.51.
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Figure 13.51 Balanced wye generators with balanced delta load

Note immediately that each impedance ZΔ sees a corresponding line voltage,
rather than a phase voltage. For example, the voltage across  is  Thus, the three
load currents are:

The relationship between a delta load and a wye load can be illustrated by
determining the delta load ZΔ that would draw the same amount of current as a wye
load Zy, assuming a given source voltage. Consider the circuits shown in Figures
13.47 and 13.51. For instance, the line current drawn in phase a by a wye load is:

The current drawn by a delta load is:



(13.61)

(13.62)
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The two currents  and  are equal if:

This result also implies that a delta load will draw three times as much current and
absorb three times as much power as a wye load with the same branch impedance.

EXAMPLE 13.16 Per-Phase Solution of Balanced Wye-Wye Circuit
Problem
Compute the power delivered to the load by the three-phase generator in the circuit
shown in Figure 13.52.

Figure 13.52 Circuit for Example 13.16.

Solution
Known Quantities: Source voltage, line resistance, load impedance.



Find: Power delivered to the load Pload.

Schematics, Diagrams, Circuits, and Given Data: 
 

Assumptions: All amplitudes are effective (rms) values. All angles are given in units
of radians unless indicated otherwise.
Analysis: Since the circuit is balanced,  and the current through the neutral
line is zero. As a result, each phase has the structure shown in Figure 13.53. For
example, the real power absorbed by the load in phase a is:

Figure 13.53 One phase of the three-phase circuit

where

and Pa = (84.85A)2(2Ω) = 14.4 kW. Since the circuit is balanced, the results for
phases b and c are identical, such that:

EXAMPLE 13.17 Parallel Wye-Delta Load Circuit
Problem



Compute the power delivered to the wye-delta load by the three-phase generator in
the circuit shown in Figure 13.54.

Figure 13.54 AC circuit with delta and wye loads

Solution
Known Quantities: Source voltage, line resistance, load impedance.
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Find: Power delivered to the load Pload.

Schematics, Diagrams, Circuits, and Given Data:
 

 
Assumptions: All amplitudes are effective (rms) values. All angles are given in units
of radians.
Analysis: First, convert the balanced delta load to an equivalent wye load, according
to equation 13.62. Figure 13.55 illustrates the effect of this conversion.



Figure 13.55 Conversion of delta load to equivalent wye load

Since the circuit is balanced,  and the current through the neutral line is zero.
The resulting per-phase circuit is shown in Figure 13.56. For example, the real power
absorbed by the load in phase a is:

where

The load current  is:

Figure 13.56 Per-phase circuit
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Thus, Pa = (132.6)2 × Re(Zo) = 28.5 kW. Since the circuit is balanced, the results for
phases b and c are identical, such that:

CHECK YOUR UNDERSTANDING
Find the power lost in the line resistance shown in Example 13.16.

Compute the complex power So delivered to the balanced load of Example 13.16 if
the lines have zero resistance and Zy = 1 + j3Ω.



(13.63)

Show that the voltage across each branch of the wye load is equal to the
corresponding phase voltage (e.g., the voltage across Za is ).

Prove that the sum of the instantaneous powers absorbed by the three branches in a
balanced wye-connected load is constant and equal to 3 

13.6 RESIDENTIAL WIRING; GROUNDING AND
SAFETY
Common residential electric power service consists of a three-wire AC system
supplied by the local power company. The three wires originate from a utility pole
and consist of a neutral wire, which is connected to earth ground, and two “hot”
wires. Each of the hot lines supplies 120 V rms to the residential circuits; the two
lines are 180° out of phase, for reasons that will become apparent during the course
of this discussion. The phasor line voltages, shown in Figure 13.57, are usually
referred to by means of a subscript convention derived from the color of the
insulation on the different wires: W for white (neutral), B for black (hot), and R for
red (hot). This convention is adhered to uniformly.

Figure 13.57 Line voltage convention for residential circuits

The voltages across the hot lines are given by

Answer: Pline = 43.2 kW;So = 69.12kW + j207.4kVA



Appliances such as electric stoves, air conditioners, and heaters are powered by the
240 V rms arrangement. On the other hand, lighting and all the electric outlets in the
house used for small appliances are powered by a single 120 V rms line.

The use of 240 V rms service for appliances that require a substantial amount of
power to operate is dictated by power transfer considerations. Consider the two
circuits shown in Figure 13.58. In delivering the necessary power to a load, a lower
line loss will be incurred with the 240 V rms wiring since the power loss in the lines
(the I2R loss, as it is commonly referred to) is directly related to the current required
by the load. In an effort to minimize line losses, the size of the wires is increased for
the lower-voltage case. This typically reduces the wire resistance by a factor of 2. In
the top circuit, assuming RS/2 = 0.01 Ω, the current required by the 10-kW load is
approximately 83.3 A while in the bottom circuit, with RS = 0.02 Ω, it is
approximately one-half as much (41.7 A). (You should be able to verify that the
approximate I2R losses are 69.4 W in the top circuit and 34.7 W in the bottom
circuit.) Limiting the I2R losses is important from the viewpoint of Page
784efficiency, besides reducing the amount of heat generated in the wiring for safety
considerations. Figure 13.59 shows some typical wiring configurations for a home.
Note that several circuits are wired and fused separately.

Figure 13.58 Line losses in 120- and 240-VAC circuits



Figure 13.59 A typical residential wiring arrangement

Today, most homes have three wire connections to their outlets. The outlets
appear as sketched in Figure 13.60. Then why are both the ground and neutral
connections needed in an outlet? The answer to this question is safety: The ground
connection is used to connect the chassis of the appliance to earth ground. Without
this provision, the appliance chassis could be at any potential with respect to ground,
possibly even at the hot wire’s potential if a segment of the hot wire were to lose
some insulation and come in contact with the inside of the chassis! Poorly grounded
appliances can thus be a significant hazard. Figure 13.61 illustrates schematically
how even though the chassis is intended to be insulated from the electric circuit, an
unintended connection (represented by the dashed line) may occur, for example,
because of corrosion or a loose mechanical connection. A path to ground might be
provided by the body of a person touching the chassis with a hand. In the figure, such
an undesired ground loop current is indicated by IG. In this case, the ground current
IG would pass directly through the body to ground and could be harmful.



Figure 13.60 A three-wire outlet

Figure 13.61 Unintended connection

In some cases the danger posed by such undesired ground loops can be great,
leading to death by electric shock. Figure 13.62 describes the effects of electric
currents on an average male when the point of contact is dry skin. Particularly
hazardous conditions are liable to occur whenever the natural resistance to current
provided by the skin breaks down, as would happen in the presence of water. Thus,
the danger presented to humans by unsafe electric circuits is very much dependent on
the particular conditions—whenever water or moisture is present, the natural
electrical resistance Page 785of dry skin, or of dry shoe soles, decreases dramatically,
and even relatively low voltages can lead to fatal currents. Proper grounding
procedures, such as those required by the National Electrical Code, help prevent
fatalities due to electric shock. The ground fault circuit interrupter, labeled GFCI
in Figure 13.59, is a special safety circuit used primarily with outdoor circuits and in
bathrooms, where the risk of death by electric shock is greatest. Its application is best
described by an example.



Figure 13.62 Physiological effects of electric currents

Consider the case of an outdoor pool surrounded by a metal fence, which uses an
existing light pole for a post, as shown in Figure 13.63. The light pole and the Page
786metal fence can be considered as forming a chassis. If the fence were not
properly grounded all the way around the pool and if the light fixture were poorly
insulated from the pole, a path to ground could easily be created by an unaware
swimmer reaching, say, for the metal gate. A GFCI provides protection from
potentially lethal ground loops, such as this one, by sensing both the hot-wire (B) and
the neutral (W) currents. If the difference between the hot-wire current IB and the
neutral current IW is more than a few milliamperes, then the GFCI disconnects the
circuit nearly instantaneously. Any significant difference between the hot and neutral
(return-path) currents means that a second path to ground has been created (by the
unfortunate swimmer, in this example) and a potentially dangerous condition has
arisen. Figure 13.64 illustrates the idea. GFCIs are typically resettable circuit
breakers, so that one does not need to replace a fuse every time the GFCI circuit is
enabled.



Figure 13.63 Outdoor pool

Figure 13.64 Use of a GFCI in a potentially hazardous setting

CHECK YOUR UNDERSTANDING
Use the circuits of Figure 13.58 to show that the I2R losses will be higher for a 120-V
service appliance than a 240-V service appliance if both have the same power usage
rating.

13.7 POWER GENERATION AND DISTRIBUTION

Answer: The 120 V rms circuit has double the losses of the 240 V rms
circuit for the same power rating.



We now conclude the discussion of power systems with a brief description of the
various elements of a power system. Electric power originates from a variety of
sources; in Chapter 15, electric generators are introduced as a means of producing
electric power from a variety of energy conversion processes. In general, electric
power may be obtained from hydroelectric, thermoelectric, geothermal, wind, solar,
and nuclear sources. The choice of a given source is typically dictated by the power
requirement for the given application, and by economic and environmental factors. In
this section, the structure of an AC power network, from the power-generating
station to the residential circuits discussed in Section 13.6, is briefly outlined.

A typical generator will produce electric power at 18 kV rms, as shown in the
diagram of Figure 13.65. To minimize losses along the conductors, the output of the
generators is processed through a step-up transformer to achieve line voltages Page
787of hundreds of kilovolts (345 kV rms, in Figure 13.65). Without this
transformation, the majority of the power generated would be lost in the
transmission lines that carry the electric current from the power station.

Figure 13.65 Structure of an AC power distribution network

The local electric company operates a power-generating plant that is capable of
supplying several hundred megavolt-amperes (MVA) on a three-phase basis. For this
reason, the power company uses a three-phase step-up transformer at the generation
plant to increase the line voltage to around 345 kV rms. One can immediately see



1.

2.

that at the rated power of the generator (in megavolt-amperes) there will be a
significant reduction of current beyond the step-up transformer.

Beyond the generation plant, an electric power network distributes energy to
several substations. This network is usually referred to as the power grid. At the
substations, the voltage is stepped down to a lower level (10 to 150 kV rms,
typically). Some very large loads (e.g., an industrial plant) may be served directly
from the power grid although most loads are supplied by individual substations in the
power grid. At the local substations (one of which you may have seen in your own
neighborhood), the voltage is stepped down further by a three-phase step-down
transformer to 4,800 V. These substations distribute the energy to residential and
industrial customers. To further reduce the line voltage to levels that are safe for
residential use, step-down transformers are mounted on utility poles. These drop the
voltage to the 120/240-V three-wire single-phase residential service discussed in
Section 13.6. Industrial and commercial customers receive 460- and/or 208-V three-
phase service.

Conclusion
Chapter 13 introduces the essential elements that permit the analysis of AC power
systems. AC power is essential to all industrial activities and to the conveniences we
are accustomed to in residential life. Virtually all engineers will be exposed to AC
power systems in their Page 788careers, and the material presented in this chapter
provides all the necessary tools to understand the analysis of AC power circuits.
Upon completing this chapter, you should have mastered the following learning
objectives:

Understand the meaning of instantaneous and average power, master AC power
notation, and compute average power for AC circuits. Compute the power factor
of a complex load. The power dissipated by a load in an AC circuit consists of
the sum of an average and a fluctuating component. In practice, the average
power is the quantity of interest.
Learn complex power notation; compute apparent, real, and reactive power for
complex loads. Draw the power triangle, and compute the capacitor size
required to perform power factor correction on a load. AC power can best be
analyzed with the aid of complex notation. Complex power S is defined as the
product of the phasor load voltage and the complex conjugate of the load
current. The real part of S is the real power actually consumed by a load (that for
which the user is charged); the imaginary part of S is called the reactive power
and corresponds to energy stored in the circuit—it cannot be directly used for
practical purposes. Reactive power is quantified by a quantity called the power
factor, and it can be minimized through a procedure called power factor
correction.



3.

4.

5.

13.1

13.2

13.3

a.

b.

c.

d.

13.4
a.

b.

c.

d.

Analyze the ideal transformer; compute primary and secondary currents and
voltages and turns ratios. Calculate reflected sources and impedances across
ideal transformers. Understand maximum power transfer. Transformers find
many applications in electrical engineering. One of the most common is in
power transmission and distribution, where the electric power generated at
electric power plants is stepped “up” and “down” before and after transmission,
to improve the overall efficiency of electric power distribution.
Learn three-phase AC power notation; compute load currents and voltages for
balanced wye and delta loads. AC power is generated and distributed in three-
phase form. Residential services are typically single-phase (making use of only
one branch of the three-phase lines) while industrial applications are often
served directly by three-phase power.
Understand the basic principles of residential electrical wiring, of electrical
safety, and of the generation and distribution of AC power.

HOMEWORK PROBLEMS
Section 13.1: Instantaneous and Average Power

The heating element in a soldering iron has a resistance of 20Ω. Find the
average power dissipated in the soldering iron if it is connected to a voltage
source of 90 V rms.

A coffeemaker has a rated power of 1,000 W at 240 V rms. Find the resistance
of the heating element.

A current source i(t) is connected to a 50-Ω resistor. Find the average power
delivered to the resistor, given that i(t) is

7 cos100t A

7 cos(100t − 30°) A

7 cos100t − 3 cos(100t − 60°) A

7 cos100t − 3A

Find the rms value of each of the following periodic currents:

cos 200t + 3 cos200t
cos 10t + 2 sin10t
cos 50t + 1

cos 30t + cos (30t + π/6)



13.5

13.6

13.7

13.8
a.

b.

c.

13.9

a.

b.

A current of 2.5 A through a neon light advertisement is supplied by a 115 V
rms voltage source. The current lags the voltage by 30°. Find the impedance of
the light, the real power dissipated by it, and its power factor.

Compute the average power dissipated by the load seen by the voltage source in
Figure P13.6. Let  and C = 200μF.
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Figure P13.6

A drilling machine is driven by a single-phase induction machine connected to a
110 V rms supply. Assume that the machining operation requires 1 kW, that the
tool machine has 90 percent efficiency, and that the supply current is 14 A rms
with a power factor of 0.8. Find the AC machine efficiency.

Given the waveform of a voltage source shown in Figure P13.8, find:

The steady DC voltage that would cause the same heating effect across a
resistance.

The average current supplied to a 10-Ω resistor connected across the
voltage source.

The average power supplied to a 1-Ω resistor connected across the voltage
source.

Figure P13.8

A current source i(t) is connected to a 100-Ω resistor. Find the average power
delivered to the resistor, given that i(t) is:

4 cos (100t) A

4 cos (100t − 50°) A



c.

d.

13.10

13.11

13.12

a.

b.

c.

d.

13.13

a.

b.

c.

d.

4 cos (100t − 3) cos (100t − 50°) A

4 cos (100t − 3) A

Find the rms value of each of the following periodic currents:

cos (377t) + cos (377t) A

cos (2t) + sin (2t) A

cos (377t) + 1 A

cos (2t) + cos (2t + 135°) A

cos (2t) + cos (3t) A

Section 13.2: Complex Power
A current of 10 A rms results when a single-phase circuit is placed across a
220 V rms source. The current lags the voltage by 60°. Find the power
dissipated by the circuit and the power factor.

A network is supplied by a 120 V rms, 60-Hz voltage source. An ammeter
and a wattmeter indicate that 12 A rms is drawn from the source and 800 W
are consumed by the network. Determine:

The network power factor.

The network phase angle.

The network impedance.

The equivalent resistance and reactance of the network.

For the following numeric values, determine the average power, P, the
reactive power, Q, and the complex power, S, of the circuit shown in Figure
P13.13. Note: Phasor quantities are rms.



13.14

a.

b.

c.

d.

13.15

a.

b.

c.

d.

13.16

a.

b.

13.17

Figure P13.13

For the circuit of Figure P13.13, determine the power factor for the load Zo
and determine whether it is leading or lagging for the following conditions:

For the circuit of Figure P13.13, determine whether the load is capacitive or
inductive, assuming:
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pf = 0.87 (leading)

pf = 0.42 (leading)

For the circuit shown in Figure P13.16, assume C = 265 μF, L = 25.55 mH,
and R = 10 Ω. Find the instantaneous real and reactive power if:

υS(t) = 120 cos (377t) V (i.e., the frequency is 60 Hz)

υS(t) = 650 cos (314t) V (i.e., the frequency is 50 Hz)

Figure P13.16

A load impedance, Zo = 10 + j3 Ω, is connected to a source with line
resistance equal to 1 Ω, as shown in Figure P13.17. Calculate the following
values:



a.

b.

c.

d.

e.

13.18

13.19

13.20

13.21

The average power delivered to the load.

The average power absorbed by the line.

The apparent power supplied by the generator.

The power factor of the load.

The power factor of line plus load.

Figure P13.17

Section 13.3: Power Factor Correction
A single-phase motor draws 220 W at a power factor of 0.8 lagging when
connected across a 240 V rms, 60-Hz source. A capacitor is connected in
parallel with the load to produce a unity power factor. Determine the required
capacitance.

The networks seen by the voltage sources in Figure P13.19 have unity power
factor. Determine CP and CS.

Figure P13.19

A 1,000-W electric motor is connected to a 120 Vrms, 60-Hz source. The
power factor seen by the source is 0.8, lagging. To correct the pf to 0.95
lagging, a capacitor is placed in parallel with the motor. Calculate the current
drawn from the source with and without the capacitor connected. Determine
the value of the capacitor required to make the correction.

The motor inside a blender can be modeled as a resistance in series with an
inductance, as shown in Figure P13.21. The wall socket source is modeled as



a.

b.

c.

d.

13.22
a.

b.

c.

an ideal 120 V rms voltage source in series with a 2-Ω output resistance.
Assume the source frequency is ω = 377 rad/s.

What is the power factor of the motor?

What is the power factor seen by the voltage source?

What is the average power, PAV, consumed by the motor?

What value of capacitor when placed in parallel with the motor will
change the power factor seen by the voltage source to 0.9 lagging?

Figure P13.21
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For the circuit shown in Figure P13.22, find:

The Thévenin equivalent network seen by the load.

The power dissipated by the load resistor.

The load impedance that would result in maximum power transfer to the
load.



13.23

a.

b.

c.

13.24

a.

b.

c.

d.

13.25

a.

b.

c.

d.

Figure P13.22

For the following numerical values, determine the capacitance to be placed in
parallel with the load Zo shown in Figure P13.13 that will result in a unity
power factor seen by the voltage source. Assume ω = 377 rad/s.

For the circuit of Figure P13.13, determine the power factor of the load for
each case listed below. Is it leading or lagging?

Zo = (20 + j5) Ω

Zo = (20 − j5) Ω

For the circuit of Figure P13.13, determine whether the load Zo is capacitive
or inductive, if:

its power factor is pf = 0.76 lagging.

its power factor is pf = 0.5 (leading).



13.26

13.27

a.

b.

13.28

a.

b.

c.

13.29

Find the real and reactive power supplied by the voltage source shown in
Figure P13.26 for ω = 5 rad/s and ω = 15 rad/s. Let υS = 15 cos (ωt) V, R =
5Ω, C = 0.1 F, L1 = 1 H, L2 = 2 H.

Figure P13.26

In Figure P13.27, assume 
 and XC = −4 Ω. Find:

The amplitude of the current supplied by each source.

The total real power supplied by each source.

Figure P13.27

For the circuit shown in Figure P13.28, assume 
 and XC = −8 Ω. Calculate:

The capacitance C and the inductance L.

The power factor seen by the voltage source.

The new capacitance required to correct that power factor to unity.

Figure P13.28
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The load Zo shown in Figure P13.29 consists of a 20-Ω resistor in series with
a 0.01-H inductor. Assuming  Calculate:



a.

b.

c.

13.30

13.31

13.32

13.33

The apparent power supplied by the voltage source.

The apparent power delivered to the load.

The power factor of the load.

Figure P13.29

Calculate the real and reactive power of the load between terminals a and b in
Figure P13.30. Assume  and XL = 5Ω.

Figure P13.30

Calculate the apparent power, real power, and reactive power supplied by the
voltage source shown in Figure P13.31. Draw the power triangle. Assume 

 and L = 0.001 H.

Figure P13.31

Refer to Problem 13.31 and determine the capacitance needed in parallel with
the voltage source to correct the power factor seen by the source to 0.95.
Draw the power triangle.

A single-phase motor is modeled as a resistor R in series with an inductor L
as shown in Figure P13.33. The capacitor corrects the power factor between
terminals a and b to unity. Assume the meters shown are ideal and f = 50 Hz,
V = 220 V rms, I = 20 A rms, and I1 = 25 A rms. Find the capacitor value.



13.34

13.35

a.

b.

c.

d.

Figure P13.33

Suppose that the electricity in your home has gone out on a hot, humid
summer day and the power company will not be able to fix the problem for
several days. The freezer in the basement contains $300 worth of food that
you cannot afford to let spoil. You would also like to keep one window air
conditioner running, as well as run the refrigerator in your kitchen. When
these appliances are on, they draw the following currents (all values are rms):

In the worst-case scenario, how much power must an emergency generator
supply?

The French TGV high-speed train absorbs 11 MW at 300 km/h (186 mi/h).
The power supply module shown in Figure P13.35 consists of two 25-kV rms
single-phase AC power stations connected at the same overhead line, one at
each end of the module. For the return circuits, the rail is used. The train is
also designed to operate at a low speed with 1.5-kV DC in railway stations or
under the old electrification lines. The natural (average) power factor in the
AC operation is 0.8. Assume that the equivalent specific resistance of the
overhead line is 0.2 Ω/km and that the rail resistance can be neglected. Find:

A simple circuit model for the system.

The locomotive’s current in the condition of a 10 percent voltage drop.

The reactive power supplied by the power stations.

The supplied real power, overhead line losses, and maximum distance
between two power stations supplied in the condition of a 10 percent



e.

f.

13.36

13.37

a.

b.

13.38

voltage drop when the train is located at the half-distance between the
stations.
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Overhead line losses in the condition of a 10 percent voltage drop when
the train is located at the half-distance between the stations, assuming pf =
1. (The French TGV is designed with a state-of-the-art power
compensation system.)

The maximum distance between the two power stations supplied in the
condition of a 10 percent voltage drop when the train is located at the half-
distance between the stations, assuming the DC (1.5-kV) operation at one-
quarter power.

Figure P13.35

An industrial assembly hall is continuously lit by one hundred 40-W mercury
vapor lamps in parallel and supplied by a 120 V rms, 60-Hz source. The
power factor seen by the source is 0.65, which is so low that a 25 percent
penalty is applied at billing. If the average price of 1 kWh is $0.05 and the
average cost of a capacitor is $50 per mF, compute how long it will take
before the billing penalty equals the cost of the capacitor needed to correct
the power factor to 0.85.

Refer to Problem 13.36 and assume that each lamp is now available with a
compensating capacitor in parallel with the original lamp. Find:

The compensating capacitor value for unity power factor seen by the
source.

The maximum number of additional lamps that can be installed without
exceeding the original current supplied by the source when using
uncompensated lamps.

The voltage and current supplied by a source to a load are:



a.

b.

c.

13.39

13.40

a.

b.

c.

13.41

a.

b.

Determine:

The real power consumed as work and dissipated as heat in the load.

The reactive power stored in the load.

The impedance angle of the load and its power factor.

Determine the real power dissipated and the reactive power stored in each of
the impedances shown in Figure P13.39. Assume:

Figure P13.39

The following are supplied by a source to a load:

Determine:

The real power consumed as work and dissipated as heat in the load.

The reactive power stored in the load.

The impedance angle of the load and its power factor.

Section 13.4: Transformers
A center-tapped transformer has the schematic representation shown in Figure
P13.41. The primary-side voltage is stepped down to two secondary-side
voltages. Assume that each secondary supplies a 7-kW resistive load and that
the primary is connected to 100 V rms. Find:

The primary power.

The primary current.



13.42

a.

b.

13.43

a.

b.

13.44
a.

b.

c.

13.45

a.

Figure P13.41
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A center-tapped transformer has the schematic representation shown in Figure
P13.41. The primary-side voltage is stepped down to a secondary-side voltage

 by a ratio of n:1. On the secondary side, 

What must  and we desire  to be 5 V rms?

For the circuit shown in Figure P13.43, assume that 
 and Ro = 12Ω. Assume an ideal transformer.

Find:

The equivalent resistance seen by the voltage source.

The power Psource supplied by the voltage source.

Figure P13.43

Refer to Problem 13.43 and find:

The power Pload consumed by Ro.

The installation efficiency Pload/Psource.

The load Ro that results in maximum power transfer to the load.

An ideal transformer is rated to deliver 460 kVA at 380 V rms to a customer,
as shown in Figure P13.45.

How much current can the transformer supply to the customer?



b.

c.

d.

e.

13.46

a.

b.

c.

d.

13.47

If the customer’s load is purely resistive (i.e., if pf = 1), what is the
maximum power that the customer can receive?

If the customer’s power factor is 0.8 lagging, what is the maximum usable
power the customer can receive?

What is the maximum power if the pf is 0.7 lagging?

If the customer requires 300 kW to operate, what is the minimum power
factor with the given size transformer?

Figure P13.45

For the ideal transformer shown in Figure P13.46, assume 
 and the step-down turns ratio is set by n = 3.

Determine:

The primary current iin.

The secondary voltage υo.

The secondary power 

The installation efficiency Pin/Po, where 

Figure P13.46

For Figure P13.47, assume the transformer is ideal. Find the step-down turns
ratio M = n that provides maximum power transfer to Ro. Let 



13.48

13.49

13.50

Figure P13.47

Consider the 8-Ω resistor shown in Figure P13.48 to be the load. Assume 
 and a variable turns ratio n. What value of n results in

maximum power (a) dissipated by the load? (b) supplied by the voltage
source? What value of n results in maximum power transfer efficiency from
source to load?
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Figure P13.48

Assume the transformer shown in Figure P13.49 delivers 70 A rms at 90 V
rms to a resistive load. What is the power transfer efficiency between voltage
source and load? Let 

Figure P13.49

A method for determining the equivalent network of a nonideal transformer
consists of two tests: the open-circuit test and the short-circuit test. The open-
circuit test, shown in Figure P13.50(a), is usually done by applying rated
voltage to the primary side of the transformer while leaving the secondary
side open.



 The current into the primary side is measured, as is the power dissipated.
The short-circuit test, shown in Figure P13.50(b), is performed by increasing
the primary voltage until rated current is going into the transformer while the
secondary side is short-circuited. The current into the transformer, the applied
voltage, and the power dissipated are measured.

 The equivalent circuit of a transformer is shown in Figure P13.50(c), where
rw and Lw represent the winding resistance and inductance, respectively, and
rc and Lc represent the losses in the core of the transformer and the inductance
of the core. The ideal transformer is also included in the model.

 With the open-circuit test, we may assume that  Then all
the current that is measured is directed through the parallel combination of rc
and Lc. We also assume that  is much greater than . Using these
assumptions and the open-circuit test data, we can find the resistance rc and
the inductance Lc.

 In the short-circuit test, we assume that  is zero, so that the voltage
on the primary side of the ideal transformer is also zero, causing no current
through the rc∥Lc parallel combination. Using this assumption with the short-
circuit test data, we are able to find the resistance rw and inductance Lw.

 The following test data was measured by the meters indicated in Figure
P13.50(a) and (b):

 Both tests were made at ω = 377 rad/s. Use the data to determine the
equivalent network of the nonideal transformer.



13.51

13.52

Figure P13.50

Use the methods outlined in Problem 13.50 and the following data to find the
equivalent network of a nonideal transformer.

The transformer is rated at 460 kVA, and tests are performed at 60 Hz.
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A method of thermal treatment for a steel pipe is to heat the pipe by the Joule
effect, caused when a current is directed through the pipe. In most cases, a
low-voltage, high-current transformer is used to deliver the current through
the pipe. In this problem, we consider a single-phase transformer at 220 V
rms, which delivers 1.2 V rms. Because of the pipe’s resistance variation with
temperature, a secondary voltage regulation is needed in the range of 10
percent, as shown in Figure P13.52. The voltage regulation is obtained with
five different slots in the primary winding (high-voltage regulation).
Assuming that the secondary coil has two turns, find the number of turns for
each slot.
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a.

b.

c.

13.54

a.

b.

13.55

a.

b.

c.

d.

Figure P13.52

Refer to Problem 13.52 and assume a pipe resistance of 2 × 10−4Ω and a
secondary resistance (wire leads + slide contacts) of 5 × 10−5Ω. The primary
current is 28.8 A rms and the power factor seen by the 220 V rms source is
0.91. Find:

The slot number.

The secondary reactance.

The power transfer efficiency.

A single-phase transformer used for street lighting (high-pressure sodium
discharge lamps) converts 6 kV rms to 230 V rms with an efficiency of 0.95.
Assuming the power factor seen by the high voltage source is 0.8 and the
primary apparent power is 30 kVA, find:

The secondary current.

The transformer turns ratio N.

The transformer shown in Figure P13.55 has several sets of windings on the
secondary side. The windings have the following turns ratios:

: N = 1/15

: N = 1/4

: N = 1/12

: N = 1/18

If  find and draw the connections that will allow you to
produce the following secondary voltages:



a.

b.

c.

d.

13.56

24.67∠0°Vrms

36.67∠0°Vrms

18∠0°Vrms

54.67∠180°Vrms

Figure P13.55

The circuit in Figure P13.56 shows the use of ideal transformers for
impedance matching. You have a limited choice of turns ratios among
available transformers. Suppose you can find transformers with turns ratios of
2:1, 7:2, 120:1, 3:2, and 6:1. If Zo is 475∠−25°Ω and Zab must be
267∠−25°, find the combination of transformers that will provide this Page
797impedance. (You may assume that polarities are easily reversed on these
transformers.)

Figure P13.56



13.57

13.58

13.59

Before cable TV was generally available, TV networks broadcast their signals
wirelessly. Large antennas were often installed atop residential homes to
improve the reception of these signals. The impedance of the wire connecting
the roof antenna to the TV set was typically 300 Ω, as shown in Figure
P13.57(a). However, a typical TV had a 75-Ω impedance connection, as
shown in Figure P13.57(b). To achieve maximum power transfer from the
antenna to the television set, an ideal transformer was placed between the
antenna and the TV, as shown in Figure P13.57(c). What is the turns ratio, N
= 1/n, needed to obtain maximum power transfer?

Figure P13.57

Section 13.5: Three-Phase Power
The magnitude of the phase voltage of a balanced three-phase wye system is
208 V rms. Express each phase and line voltage in both polar and rectangular
coordinates.

The phase currents in a four-wire wye-connected load, such as that shown in
Figure 13.49, are:



13.60

a.

b.

13.61

13.62

Determine the current in the neutral wire.

Each voltage source shown in Figure P13.60 has a relative phase difference of
2π/3.

Find  where  and 

Compare the results of part a with the calculations:

Figure P13.60

For the three-phase network shown in Figure P13.61, find the current in each
wire and the real power consumed by the wye network. Let 

 and 
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Figure P13.61

For the three-phase network shown in Figure P13.62, find the current in each
wire and the real power consumed by the wye network. Let 



13.63

a.

b.

13.64

a.

b.

13.65

a.

b.

 and 

Figure P13.62

A three-phase steel-treatment electric oven has a phase resistance of 10 Ω and
is connected at three-phase 380 V rms AC. Compute

The current through the resistors in wye and delta connections.

The power of the oven in wye and delta connections.

A naval in-board synchronous generator has an apparent power of 50 kVA
and supplies a three-phase network of 380 V rms. Compute the phase
currents, the real power, and the reactive power if:

The power factor is 0.85.

The power factor is 1.

The three-phase circuit shown in Figure P13.65 has a balanced wye source
but an unbalanced wye load.

Determine the current through Z1, using the following methods:

Mesh analysis.

Superposition.



13.66

13.67

13.68

Figure P13.65

Determine the current through R shown in Figure P13.66. Assume: 
 

Figure P13.66

The circuit of Figure P13.67 has a balanced three-phase wye source but an
unbalanced delta load. Determine the current through each impedance.

Figure P13.67
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If we model each winding of a three-phase motor like the circuit shown in
Figure P13.68(a) and connect the windings as shown in Figure P13.68(b), we
have the three-phase circuit shown in Figure P13.68(c). The motor can be
constructed so that R1 = R2 = R3 and L1 = L2 = L3, as is the usual case. If we
connect the motor as shown in Figure P13.68(c), find the currents  and 

 assuming that the resistances are 40 Ω each and each inductance is 5 mH.
The frequency of each source is 60 Hz.



13.69
a.

b.

c.

13.70

Figure P13.68

With reference to the motor of Problem 13.67,

How much power (in watts) is delivered to the motor?

What is the motor’s power factor?

Why is it common in industrial practice not to connect the ground lead to
motors of this type?

In general, a three-phase induction motor is designed for wye connection
operation. However, for short-time operation, a delta connection can be used
at the nominal wye voltage. Find the ratio between the power delivered to the
same motor in the wye and delta connections.



13.71

a.

b.

13.72

a.

A residential four-wire system supplies power at 240 V rms to the following
single-phase appliances: On the first phase, there are ten 60-W bulbs. On the
second phase, there is a 1-kW vacuum cleaner with a power factor of 0.9. On
the third phase, there are ten 23-W compact fluorescent lamps with a power
factor of 0.61. Find:

The current in the neutral wire.

The real, reactive, and apparent power for each phase.

The electric power company is concerned with the loading of its transformers.
Since it is responsible for a large number of customers, it must be certain that
it can supply the demands of all customers. The power company’s
transformers will deliver rated kVA to the secondary load. However, if the
demand increased to a point where greater than rated current were required,
the secondary voltage would have to drop below rated value. Also, the current
would increase, and with it the I2R losses (due to winding resistance),
possibly causing the transformer to overheat. Unreasonable current demand
could be caused, for example, by excessively low power factors at the load.

 The customer, on the other hand, is not greatly concerned with an
inefficient power factor, provided that sufficient power reaches the load. To
make the customer more aware of power factor considerations, the power
company may install a penalty on the customer’s bill. A typical penalty–
power factor chart is shown in Table 13.3. Power factors below 0.7 are not
permitted. A 25 percent penalty will be applied to any billing after two
consecutive months in which the customer’s power factor has remained
below 0.7.

Table 13.3
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The wye-wye circuit shown in Figure P13.72 is representative of a three-
phase motor load.

Find the total power supplied to the motor.



b.

c.

d.

13.73

a.

b.

13.74

Find the power converted to mechanical energy if the motor is 80 percent
efficient.

Find the power factor.

Does the company risk facing a power factor penalty on its next bill if all
the motors in the factory are similar to this one?

Figure P13.72

To correct the power factor problems of the motor in Problem 13.72, the
company has decided to install capacitors as shown in Figure P13.73.

What capacitance must be installed to achieve a unity power factor if the
line frequency is 60 Hz?

Repeat part a if the power factor is to be 0.85 lagging.

Figure P13.73

Find the apparent power and the real power delivered to the load in the Y-Δ
circuit shown in Figure P13.74. What is the power factor?



13.75

13.76

a.

b.

Figure P13.74

The circuit shown in Figure P13.75 is a Y-Δ-Y connected three-phase circuit.
The primaries of the transformers are wye-connected, the secondaries are
delta-connected, and the load is wye-connected. Find the currents 

 and 

Figure P13.75

A three-phase motor is modeled by the wye-connected circuit shown in
Figure P13.76. At t = t1, a line fuse is blown (modeled by the switch). Find
the line currents  and  and the power dissipated by the motor in the
following conditions:

t ≪ t1

t ≫ t1
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13.77

Figure P13.76

For the circuit shown in Figure P13.77, find the currents  and  and
the real power dissipated by the load.

Figure P13.7

Design Credits: Mini DVI cable adapter isolated on white background: Robert Lehmann/Alamy Stock Photo;
Balance scale: Alex Slobodkin/E+/Getty Images; Icon for “Focus on measurements” weighing scales: Media
Bakery.
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C H A P T E R
14

PRINCIPLES OF
ELECTROMECHANICS

he objective of this chapter is to introduce the fundamental notions of
electromechanical energy conversion, leading to an understanding of the
operation of various electromechanical transducers. The chapter also serves as
an introduction to the material on electric machines to be presented in Chapter

15. The foundations for the material introduced in this chapter may be found in the
circuit analysis chapters (1 through 6).

The subject of electromechanical energy conversion is one that should be of
particular interest to the non–electrical engineer, because it forms one of the
important points of contact between electrical engineering and other engineering
disciplines. Electromechanical transducers are commonly used in the design of
industrial and aerospace control systems and in biomedical applications, and they
form the basis of many common appliances. In the course of our exploration of
electromechanics, we illustrate the operation of practical devices, such as
loudspeakers, relays, solenoids, and sensors for the measurement of position and
velocity.
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1.
2.

3.

4.
5.

 Learning Objectives
Students will learn to...

Review the basic principles of electricity and magnetism. Section 14.1.
Use the concepts of reluctance and magnetic circuit equivalents to compute
magnetic flux and currents in simple magnetic structures. Section 14.2.
Understand the properties of magnetic materials and their effects on magnetic
circuit models. Section 14.3.
Use magnetic circuit models to analyze transformers. Section 14.4.
Model and analyze force generation in electromagnetomechanical systems.
Analyze moving-iron transducers (electromagnets, solenoids, relays) and
moving-coil transducers (electrodynamic shakers, loudspeakers, and seismic
transducers). Section 14.5.

14.1 ELECTRICITY AND MAGNETISM
The notion that the phenomena of electricity and magnetism are interconnected was
first proposed in the early 1800s by H. C. Oersted, a Danish physicist. Oersted
showed that an electric current produces magnetic effects (more specifically, a
magnetic field). Soon after, the French scientist André Marie Ampère expressed this
relationship by means of a precise formulation known as Ampère’s law. A few years
later, the English scientist Faraday illustrated how the converse of Ampère’s law also
holds true, that is, that a magnetic field can generate an electric field; in short,
Faraday’s law states that a changing magnetic field gives rise to a voltage.

As is explained in the next few sections, the magnetic field forms a necessary
connection between electrical and mechanical energy. Ampère’s and Faraday’s laws
formally illustrate the relationship between electric and magnetic fields, but it should
already be evident from your own individual experience that the magnetic field can
also convert magnetic energy to mechanical energy (e.g., by lifting a piece of iron
with a magnet). In effect, the devices we commonly refer to as electromechanical
should more properly be referred to as electromagnetomechanical, since they almost
invariably operate through a conversion from electrical to mechanical energy (or vice
versa) by means of a magnetic field. Chapters 14 and 15 are concerned with the use
of electricity and magnetic materials for the purpose of converting electrical to
mechanical energy, and back.

The Magnetic Field and Faraday’s Law



(14.1)

The quantities used to quantify the strength of a magnetic field are the magnetic flux
ϕ, in units of webers (Wb); and the magnetic flux density B, in units of webers per
square meter (Wb/m2), or teslas (T). The latter quantity and the associated magnetic
field intensity H (in units of amperes per meter, or A/m) are vectors.1 Thus, the
density of the magnetic flux and its intensity are in general described in Page
805vector form, in terms of the components present in each spatial direction (e.g., on
the x, y, and z axes). In discussing magnetic flux density and field intensity in this
chapter and Chapter 15, we almost always assume that the field is a scalar field—that
is, that it lies in a single spatial direction. This will simplify many explanations.

It is customary to represent the magnetic field by means of the familiar lines of
force (a concept also due to Faraday); we visualize the strength of a magnetic field by
observing the density of these lines in space. You probably know from a previous
course in physics that such lines are closed in a magnetic field; that is, they form
continuous loops exiting at a magnetic north pole (by definition) and entering at a
magnetic south pole. The relative strengths of the magnetic fields generated by two
magnets could be depicted as shown in Figure 14.1.

Figure 14.1 Lines of force in a magnetic field

Magnetic fields are generated by electric charge in motion, and their effect is
measured by the force they exert on a moving charge. As you may recall from
previous physics courses, the vector force f exerted on a charge of q moving at
velocity u in the presence of a magnetic field with flux density B is given by



(14.2)

(14.3)

(14.4)

where the symbol × denotes the (vector) cross product. If the charge is moving at a
velocity u in a direction that makes an angle θ with the magnetic field, then the
magnitude of the force is given by

and the direction of this force is at right angles with the plane formed by the vectors
B and u. This relationship is depicted in Figure 14.2.

Figure 14.2 Charge moving in a constant magnetic field

The magnetic flux ϕ is then defined as the integral of the flux density over some
surface area. For the simplified (but often useful) case of magnetic flux lines
perpendicular to a cross-sectional area A, the flux is given by:

in webers, where the subscript A indicates that the integral is evaluated over surface
A. Furthermore, if the flux were to be uniform over the cross-sectional area A (a
useful simplification), the preceding integral is approximated by:

Figure 14.3 illustrates this idea, by showing hypothetical magnetic flux lines
traversing a surface, delimited in the figure by a thin conducting wire.



(14.5)

Figure 14.3 Magnetic flux lines crossing a surface bounded by a thin
conducting wire.

Faraday’s law states that if the imaginary surface A were bounded by a
conductor—for example, the thin wire of Figure 14.3—then a changing magnetic
field would induce a voltage, and therefore a current, in the conductor. More
precisely, Faraday’s law states that a time-varying flux causes an induced
electromotive force, or emf, e as follows:

A little discussion is necessary at this point to explain the meaning of the minus
sign in equation 14.5. Consider the one-turn coil of Figure 14.4, which forms Page
806a circular cross-sectional area, in the presence of a magnetic field with flux
density B oriented in a direction perpendicular to the plane of the coil. If the
magnetic field, and therefore the flux within the coil, is constant, no voltage will
exist across terminals a and b; if, however, the flux were increasing and terminals a
and b were connected—for example, by means of a resistor, as indicated in Figure
14.4(b)—current would be generated in the coil such that the magnetic flux
generated by the current would oppose the increasing flux. Thus, the flux induced by
such a current would be in the direction opposite to that of the original flux density
vector B. This principle is known as Lenz’s law. The reaction flux would then point
downward in Figure 14.4(a), or into the page in Figure 14.4(b). Now, by virtue of the
right-hand rule, this reaction flux would induce a current clockwise in Figure
14.4(b), that is, a current out of terminal b and into terminal a. The resulting voltage
across the hypothetical resistor R would then be negative. If, on the other hand, the
original flux were decreasing, current would be induced in the coil so as to
reestablish the initial flux; but this would mean that the current would have to
generate a flux in the upward direction in Figure 14.4(a) [or out of the page in Figure
14.4(b)]. Thus, the resulting voltage would change sign.



(14.6)

(14.7)

(14.8)

Figure 14.4 Flux direction

The polarity of the induced voltage can usually be determined from physical
considerations; therefore the minus sign in equation 14.5 can be left out. We use this
convention throughout the chapter.

In practical applications, the size of the voltages induced by the changing
magnetic field can be significantly increased if the conducting wire is coiled so as to
multiply the area crossed by the magnetic flux lines many times over. For an N-turn
coil with cross-sectional area A, for example, we have the emf

CHECK YOUR UNDERSTANDING
A coil having 100 turns is immersed in a magnetic field that is varying uniformly
from 80 to 30 mWb in 2 s. Find the induced voltage in the coil.
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Figure 14.5 shows an N-turn coil linking a certain amount of magnetic flux; you can
see that if N is very large and the coil is tightly wound (as is usually the case in the
construction of practical devices), it is not unreasonable to presume that each turn of
the coil links the same flux. It is convenient, in practice, to define the flux linkage λ
as

so that

Answer: e = –2.5 V



(14.9)

Note that equation 14.8, relating the derivative of the flux linkage to the induced
emf, is analogous to the equation describing current as the derivative of charge:

In other words, flux linkage can be viewed as the dual of charge in circuit analysis
provided that we are aware of the simplifying assumptions just stated in the
preceding paragraphs, namely, a uniform magnetic field perpendicular to the area
delimited by a tightly wound coil. These assumptions are not at all unreasonable
when applied to the inductor coils commonly employed in electric circuits.

Figure 14.5 Concept of flux linkage

What, then, are the physical mechanisms that can cause magnetic flux to change,
and therefore to induce an electromotive force? Two such mechanisms are possible.
The first consists of physically moving a permanent magnet in the vicinity of a coil,
for example, so as to create a time-varying flux. The second requires a time-varying
current to produce a time-varying magnetic field. The latter method is more practical
in many circumstances, since it does not require the use of permanent magnets and
allows variation of field strength by varying the applied current; however, the former
method is conceptually simpler to visualize. The voltages induced by a moving
magnetic field are called motion voltages; those generated by a time-varying
magnetic field are termed transformer voltages. We are interested in both in this
chapter, for different applications.



(14.10)

(14.11)

(14.12)

In the analysis of linear circuits, as in Chapter 3, it is assumed that the
relationship between flux linkage and current is linear:

so that the effect of a time-varying current is to induce a transformer voltage across
an inductor coil, according to the expression

This is, in fact, the defining equation for the ideal self-inductance L. In addition to
self-inductance, however, it is important to consider the magnetic coupling that can
occur between neighboring circuits. Self-inductance measures the voltage induced in
a circuit by the magnetic field generated by a current flowing in the same circuit. It is
also possible that a second circuit in the vicinity of the first may experience an
induced voltage as a consequence of the magnetic field generated in the first circuit.
As explained in Section 14.4, this principle underlies the operation of all
transformers.
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Self-Inductance and Mutual Inductance
Figure 14.6 depicts a pair of coils, one of which, L1, is excited by a current i1 and
therefore develops a magnetic field and a resulting induced voltage υ1. The second
coil, L2, is not energized by a current, but links some of the flux generated by current
i1 around L1 because of its close proximity to the first coil. The magnetic coupling
between the coils established by virtue of their proximity is described by a quantity
called mutual inductance and defined by the symbol M. The mutual inductance is
defined by the equation



(14.13)

(14.14)

Figure 14.6 Mutual inductance

The dots shown in the two drawings indicate the polarity of the coupling between the
coils. If the dots are at the same end of the coils, the voltage induced in coil 2 by a
current in coil 1 has the same polarity as the voltage induced by the same current in
coil 1; otherwise, the voltages are in opposition, as shown in the lower part of Figure
14.6. Thus, the presence of such dots indicates that magnetic coupling is present
between two coils. It should also be pointed out that if a current (and therefore a
magnetic field) were present in the second coil, an additional voltage would be
induced across coil 1. The voltage induced across a coil is, in general, equal to the
sum of the voltages induced by self-inductance and mutual inductance.

In practical electromagnetic circuits, the self-inductance of a circuit is not
necessarily constant; in particular, the inductance parameter L is not constant, in
general, but depends on the strength of the magnetic field intensity, so that it will not
be possible to use such a simple relationship as υ = L di/dt, with L constant. If we
revisit the definition of the transformer voltage

we see that in an inductor coil, the inductance is given by

This expression implies that the relationship between current and flux in a magnetic
structure is linear if the inductance L is constant (the inductance being the slope of
the line). In fact, the properties of ferromagnetic materials are such that the flux–
current relationship is nonlinear, so that the simple linear inductance parameter used
in electric circuit analysis is not adequate to represent the behavior of the magnetic
circuits of this chapter. In any practical situation, the relationship between the flux
linkage λ and the current is nonlinear, and might be described by a curve similar to
that shown in Figure 14.7. Whenever the i-λ curve is not a straight line, it is more
convenient to analyze the magnetic system in terms of energy calculations, since the
corresponding circuit equation would be nonlinear.



(14.15)

(14.16)

(14.17)

(14.18)

Figure 14.7 Relationship between flux linkage, current, energy, and co-
energy

In a magnetic system, the energy stored in the magnetic field is equal to the
integral of the instantaneous power, which is the product of voltage and current, just
as in a conventional electric circuit:
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However, in this case, the voltage corresponds to the induced emf, according to
Faraday’s law,

and is therefore related to the rate of change of the magnetic flux. The energy stored
in the magnetic field could therefore be expressed in terms of the current by:

It should be straightforward to recognize that this energy is equal to the area above
the λ-i curve of Figure 14.7. From the same figure, it is also possible to define a
fictitious (but useful) quantity called co-energy, equal to the area under the curve and
identified by the symbol . From the figure, it is also possible to see that the co-
energy can be expressed in terms of the stored energy by:

Example 14.1 illustrates the calculation of energy, co-energy, and induced voltage,
using the concepts developed in these paragraphs.

The calculation of the energy stored in the magnetic field around a magnetic
structure will be particularly useful later in the chapter when the discussion turns to
practical electromechanical transducers and it will be necessary to actually compute
the forces generated in magnetic structures.



1.

EXAMPLE 14.1 Energy and Co-Energy Calculation for an Inductor
Problem
Compute the energy, co-energy, and incremental linear inductance for an iron-core
inductor with a given λ-i relationship. Also compute the voltage across the terminals,
given the current through the coil.

Solution
Known Quantities: λ-i relationship; nominal value of λ; coil resistance; coil current.

Find: 

Schematics, Diagrams, Circuits, and Given Data: i = (λ + 0.5λ2) A; λ0 = 0.5 V-s; R
= 1 Ω; i(t) = 0.625 + 0.01 sin(400t).
Assumptions: Assume that the magnetic equation can be linearized, and use the
linear model in all circuit calculations.
Analysis:

Calculation of energy and co-energy. From equation 14.17, we calculate the
energy as follows.
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The above expression is valid in general; in our case, the inductor is operating at
a nominal flux linkage λ0 = 0.5 V-s, and we can therefore evaluate the energy to
be

Thus, after equation 14.18, the co-energy is given by

where

and



2.

3.

Calculation of incremental inductance. If we know the nominal value of flux
linkage (i.e., the operating point), we can calculate a linear inductance LΔ, valid
around values of λ close to the operating point λ0. This incremental inductance is
defined by the expression

and can be computed to be

The above expressions can be used to analyze the circuit behavior of the
inductor when the flux linkage is around 0.5 V-s, or, equivalently, when the
current through the inductor is around 0.625 A.
Circuit analysis using linearized model of inductor. We can use the incremental
linear inductance calculated above to compute the voltage across the inductor in
the presence of a current i(t) = 0.625 + 0.01 sin(400t). Using the basic circuit
definition of an inductor with series resistance R, the voltage across the inductor
is given by

Comments: The linear approximation in this case is not a bad one: the small
sinusoidal current is oscillating around a much larger average current. In this type of
situation, it is reasonable to assume that the inductor behaves linearly. This example
explains why the linear inductor model introduced in Chapter 3 is an acceptable
approximation in most circuit analysis problems.

CHECK YOUR UNDERSTANDING
The relation between the flux linkages and the current for a magnetic material is
given by λ = 6i/(2i + 1) Wb-turns. Determine the energy stored in the magnetic field
for λ = 2 Wb-turns.

Answer: Wm = 0.648 J
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FOCUS ON MEASUREMENTS

Linear Variable Differential Transformer
The linear variable differential transformer (LVDT) is a displacement transducer
based on the mutual inductance concept just discussed. Figure 14.8 represents an
LVDT as a primary coil subject to AC excitation (υex) and of a pair of identical
secondary coils, which are connected so that:

The ferromagnetic core between the primary and secondary coils can be displaced in
proportion to some external motion x and determines the magnetic coupling between
primary and secondary coils. Intuitively, as the core is displaced upward, greater
coupling will occur between the primary coil and the top secondary coil, thus
inducing a greater voltage in the top secondary coil. Hence, υout > 0 for positive
displacements. The converse is true for negative displacements. More formally, if the
primary coil has resistance Rp and self-inductance Lp, we can write



and the voltages induced in the secondary coils are given by

so that

Figure 14.8 Linear variable differential transformer

where M1 and M2 are the mutual inductances between the primary and the respective
secondary coils. It should be apparent that each of the mutual inductances is
dependent on the position of the iron core. For example, with the core at the null
position, M1 = M2 and υout = 0. The LVDT is typically designed so that M1 – M2 is
linearly related to the displacement of the core x.
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Because the excitation is by necessity an AC signal (why?), the output voltage is
actually given by the difference of two sinusoidal voltages at the same frequency and
is therefore itself a sinusoid, whose amplitude and phase depend on the displacement
x. Thus, υout is an amplitude-modulated (AM) signal, similar to the one discussed in
the Focus on Measurements box, “Capacitive Displacement Transducer and
Microphone,” in Chapter 3. To recover a signal proportional to the actual
displacement, it is therefore necessary to use a demodulator circuit, such as the one
discussed in the Focus on Measurements box, “Peak Detector Circuit for Capacitive
Displacement Transducer,” in Chapter 8.

Ampère’s Law



(14.19)

As explained in the previous section, Faraday’s law is one of two fundamental laws
relating electricity to magnetism. The second relationship, which forms a counterpart
to Faraday’s law, is Ampère’s law. Qualitatively, Ampère’s law states that the
magnetic field intensity H in the vicinity of a conductor is related to the current
carried by the conductor; thus Ampère’s law establishes a dual relationship with
Faraday’s law.

In the previous section, the magnetic field is described by its flux density B and
flux ϕ. To explain Ampère’s law and the behavior of magnetic materials, we define
the magnetic field intensity H as:

where μ is a scalar constant for a particular physical medium (at least, for the
applications we consider here) and is called the permeability of the medium. The
permeability of a material can be factored as the product of the permeability of free
space μ0 = 4π × 10–7 H/m, and the relative permeability μr, which varies greatly
according to the medium. For example, for air and for most electrical conductors and
insulators, μr is equal to 1. For ferromagnetic materials, μr can take values ranging
from 103 to 106. The size of μr represents a measure of the magnetic properties of the
material. A consequence of Ampère’s law is that the larger the value of μ, the smaller
the current required to produce a large flux density in an electromagnetic structure.
Consequently, many electromechanical devices make use of ferromagnetic materials,
called iron cores, to enhance their magnetic properties. Table 14.1 gives approximate
values of μr for some common materials.

Table 14.1 Relative permeabilities for common materials

The reason for introducing the magnetic field intensity is that it is independent of
the properties of the materials employed in the construction of magnetic circuits.



(14.20)

(14.21)

(14.22)

Thus, a given magnetic field intensity H will give rise to different flux densities in
different materials. It will therefore be useful to define sources of magnetic energy in
terms of the magnetic field intensity, so that different magnetic structures and
materials can then be evaluated or compared for a given source. As stated earlier,
both the magnetic flux density and the field intensity are vector quantities; however,
for ease of analysis, scalar fields will be chosen by appropriately selecting the
orientation of the fields, wherever possible.
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Ampère’s law states that the integral of the vector magnetic field intensity H
around a closed path is equal to the total current linked by the closed path i:

where dl is an increment in the direction of the closed path. If at every point along
the path the magnetic field is parallel to the path, we can use scalar quantities to
write:

Figure 14.9 illustrates the case of a wire carrying a current i and of a circular path
of radius r surrounding the wire. In this simple case, you can see that the magnetic
field intensity H is determined by the familiar right-hand rule. This rule states that if
the direction of current i points in the direction of the thumb of one’s right hand, the
resulting magnetic field encircles the conductor in the direction in which the other
four fingers would encircle it. Thus, in the case of Figure 14.9, the closed-path
integral becomes equal to H · 2π r, since the path and the magnetic field are in the
same direction, and therefore the magnitude of the magnetic field intensity is given
by



(14.23)

Figure 14.9 Illustration of Ampère’s law

CHECK YOUR UNDERSTANDING
The magnitude of H at a radius of 0.5 m from a long linear conductor is 1 A-m–1.
Find the current in the wire.

Now, the magnetic field intensity H is unaffected by the material surrounding the
conductor, but the flux density B depends on the material properties. The density of
flux lines around the conductor would be far greater in the presence of a magnetic
material than if the conductor were surrounded by air. The field generated by a Page
814single conducting wire is relatively weak; however, if the wire is a tightly wound
coil with many turns, the strength of the magnetic field is increased greatly. For a coil
with N turns, one can verify visually that the lines of force associated with the
magnetic field link all the turns of the conducting coil, so that we have effectively
increased the current linked by the flux lines N-fold. The product N · i is a useful
quantity in electromagnetic circuits and is called the magnetomotive force,2  (or
mmf), in analogy with the electromotive force.

Figure 14.10 illustrates the magnetic flux lines in the vicinity of a coil. The
magnetic field generated by the coil can be made to generate a much greater flux
density if the coil encloses a magnetic material. The most common ferromagnetic
materials are steel and iron; in addition to these, many alloys and oxides of iron—as
well as nickel—and some artificial ceramic materials called ferrites exhibit magnetic
properties. In recent years, rare earth magnets have found increasing use, especially
in the design of high-performance electric motors. The two most common rare earth

Answer: I = π A



(14.24)

(14.25)

materials are neodymium and samarium (lanthanides), which are used in compounds
that include transition metals, such as iron, nickel, and cobalt. Such magnets can
produce magnetic fields of strength two to three times greater than ferrites. Winding
a coil around a ferromagnetic material accomplishes two useful tasks at once: It
forces the magnetic flux to be concentrated within the coil and—if the shape of the
magnetic material is appropriate—completely confines the flux within the magnetic
material, Page 815thus forcing the closed path for the flux lines to be almost entirely
enclosed within the ferromagnetic material. Typical arrangements are the iron-core
inductor and the toroid of Figure 14.11. The flux densities for these inductors are
given by

Figure 14.10 Magnetic flux lines in the vicinity of a current-carrying coil

In equation 14.24, l represents the length of the coil wire; Figure 14.11 defines the
parameter r2 in equation 14.25.



Figure 14.11 Practical inductors

Intuitively, the presence of a high-permeability material near a source of
magnetic flux causes the flux to preferentially concentrate in the high-μ material,
rather than in air, much as a conducting path concentrates the current produced by an
electric field in an electric circuit. Figure 14.12 depicts an example of a simple
electromagnetic structure which forms the basis of the practical transformer.

Figure 14.12 A simple electromagnetic structure

Table 14.2 summarizes the variables introduced thus far in the discussion of
electricity and magnetism.



(14.26)

(14.27)

(14.28)

Table 14.2 Magnetic variables and units

14.2 MAGNETIC CIRCUITS
It is possible to analyze the operation of electromagnetic devices such as the one
depicted in Figure 14.12 by means of magnetic equivalent circuits, similar in many
respects to the equivalent electric circuits of earlier chapters. Before we can present
this technique, however, we need to make a few simplifying approximations. The
first of these approximations assumes that there exists a mean path for the magnetic
flux and that the corresponding mean flux density is approximately constant over the
cross-sectional area of the magnetic structure. Using equation 14.4, we see that a coil
wound around a core with cross-sectional area A will have flux density

where A is assumed to be perpendicular to the direction of the flux lines. Figure
14.12 illustrates such a mean path and the cross-sectional area A. Knowing the flux
density, we obtain the field intensity:

But then, knowing the field intensity, we can relate the mmf of the coil  to the
product of the magnetic field intensity H and the length of the magnetic (mean) Page
816path l; we can use equations 14.24 and 14.19 to derive

In summary, the mmf is equal to the magnetic flux times the length of the magnetic
path, divided by the permeability of the material times the cross-sectional area:



(14.29)

(14.30)

A review of this formula reveals that the magnetomotive force  may be viewed as
being analogous to the voltage source in a series electric circuit, and that the flux ϕ is
then equivalent to the electric current in a series circuit and the term l/μA to the
“magnetic resistance” of one leg of the magnetic circuit. You will note that the term l/
μA is very similar to the term describing the resistance of a cylindrical conductor of
length l and cross-sectional area A, where the permeability μ is analogous to the
conductivity σ. The term l/μA occurs frequently enough to be assigned the name of
reluctance and the symbol . It is also important to recognize the relationship
between the reluctance of a magnetic structure and its inductance. This can be
derived easily starting from equation 14.14:

In summary, when an N-turn coil carrying a current i is wound around a magnetic
core such as the one indicated in Figure 14.12, the mmf  generated by the coil
produces a flux ϕ that is mostly concentrated within the core and is assumed to be
uniform across the cross section. Within this simplified picture, then, the analysis of a
magnetic circuit is analogous to that of resistive electric circuits. This analogy is
illustrated in Table 14.3 and in the examples in this section.

Table 14.3 Analogy between electric and magnetic circuits

The usefulness of the magnetic circuit analogy can be emphasized by analyzing a
magnetic core similar to that of Figure 14.12, but with a slightly modified geometry.
Figure 14.13 depicts the magnetic structure and its equivalent-circuit analogy. In the



1.
2.
3.

figure, we see that the mmf  excites the magnetic circuit, which is composed of
four legs: two of mean path length l1 and cross-sectional area A1 = d1w, and the other
two of mean length l2 and cross-sectional area A2 = d2w. Thus, the reluctance Page
817encountered by the flux in its path around the magnetic core is given by the
quantity , with

and

Figure 14.13 Analogy between magnetic and electric circuits

It is important at this stage to review the assumptions and simplifications made in
analyzing the magnetic structure of Figure 14.13:

All the magnetic flux is linked by all the turns of the coil.
The flux is confined exclusively within the magnetic core.
The density of the flux is uniform across the cross-sectional area of the
core.

You can probably see intuitively that the first of these assumptions might not hold
true near the ends of the coil, but that it is more reasonable if the coil is tightly
wound. The second assumption is equivalent to stating that the relative permeability
of the core is infinitely higher than that of air (presuming that this is the medium
surrounding the core); if this were the case, the flux would indeed be confined within
the core. It is worthwhile to note that we make a similar assumption when we treat



wires in electric circuits as perfect conductors: The conductivity of copper is
substantially greater than that of free space, by a factor of approximately 1015. In the
case of magnetic materials, however, even for the best alloys, we have a relative
permeability only on the order of 103 to 105. Thus, an approximation that is quite
appropriate for electric circuits is not nearly as good in the case of magnetic circuits.
The flux in a structure, such as those of Figures 14.12 and 14.13, not confined within
the core is usually referred to as leakage flux. Finally, the assumption that the flux is
uniform across the core cannot hold for a finite-permeability medium, but it is very
helpful in giving an approximate mean behavior of the magnetic circuit.
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The magnetic circuit analogy is therefore far from exact. However, short of
employing the tools of electromagnetic field theory and of vector calculus, or
advanced numerical simulation software, it is the most convenient tool at the
engineer’s disposal for the analysis of magnetic structures. In the remainder of this
chapter, the approximate analysis based on the electric circuit analogy is used to
obtain approximate solutions to problems involving a variety of useful magnetic
circuits. Among these are the loudspeaker, solenoids, automotive fuel injectors, and
sensors for the measurement of linear and angular velocity and position.

EXAMPLE 14.2 Analysis of Magnetic Structure and Equivalent
Magnetic Circuit
Problem
Calculate the flux, flux density, and field intensity on the magnetic structure of
Figure 14.14.

Figure 14.14 Figure for Example 14.2.



1.

2.

3.

Solution
Known Quantities: Relative permeability; number of coil turns; coil current;
structure geometry.
Find: ϕ; B; H.
Schematics, Diagrams, Circuits, and Given Data: μr = 1,000; N = 500 turns; i = 0.1
A. The cross-sectional area is A = w2 = (0.01)2 = 0.0001 m2. The magnetic circuit
geometry is defined in Figures 14.14 and 14.15.

Figure 14.15 Cross section of magnetic structure for Example 14.2.

Assumptions: All magnetic flux is linked by the coil; the flux is confined to the
magnetic core; the flux density is uniform.
Analysis:

Calculation of magnetomotive force. From equation 14.28, we calculate the
magnetomotive force:

Calculation of mean path. Next, we estimate the mean path of the magnetic flux.
On the basis of the assumptions, we can calculate a mean path that runs through
the geometric center of the magnetic structure, as shown in Figure 14.15. The
path length is

Calculation of reluctance. Knowing the magnetic path length and cross-sectional
area, we can calculate the reluctance of the circuit:



4.

The corresponding equivalent magnetic circuit is shown in Figure 14.16.

Figure 14.16 Equivalent magnetic circuit for Example 14.2.
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Calculation of magnetic flux, flux density, and field intensity. On the basis of the
assumptions, we can now calculate the magnetic flux

the flux density

and the magnetic field intensity

Comments: This example illustrates all the basic calculations that pertain to
magnetic structures. Remember that the assumptions stated in this example (and
earlier in the chapter) simplify the problem and make its approximate numerical
solution possible in a few simple steps. In reality, flux leakage, fringing, and uneven
distribution of flux across the structure would require the solution of three-
dimensional equations using finite-element methods. These methods are not
discussed in this book, but are necessary for practical engineering designs.

The usefulness of these approximate methods is that you can, for example,
quickly calculate the approximate magnitude of the current required to generate a
given magnetic flux or flux density. These calculations can be used to determine
electromagnetic energy and magnetic forces in practical structures.

The methodology described in this example is summarized in the following
Focus on Problem Solving box.

CHECK YOUR UNDERSTANDING



1.
2.

3.
4.

5.

Determine the equivalent reluctance of the structure of Figure 14.17 as seen by the
“source” if μr for the structure is 1,000, l = 5 cm, and all the legs are 1 cm on a side.

Figure 14.17 Magnetic structure with two loops.
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F O C U S  O N  P R O B L E M  S O LV I N G

MAGNETIC STRUCTURES AND EQUIVALENT
MAGNETIC CIRCUITS
Direct Problem
Given—The structure geometry and the coil parameters.

Calculate—The magnetic flux in the structure.
Compute the mmf.
Determine the length and cross section of the magnetic path for each continu
leg or section of the path.
Calculate the equivalent reluctance of the leg.
Generate the equivalent magnetic circuit diagram, and calculate the t
equivalent reluctance.
Calculate the flux, flux density, and magnetic field intensity, as needed.

Answer: Assuming a mean path 1 cm from the edges of the structure, 



1.
2.
3.
4.

Inverse Problem
Given—The desired flux or flux density and structure geometry.

Calculate—The necessary coil current and number of turns.
Calculate the total equivalent reluctance of the structure from the desired flux
Generate the equivalent magnetic circuit diagram.
Determine the mmf required to establish the required flux.
Choose the coil current and number of turns required to establish the des
mmf.

Consider the analysis of the same simple magnetic structure when an air gap is
present. Air gaps are very common in magnetic structures; in rotating machines, for
example, air gaps are necessary to allow for free rotation of the inner core of the
machine. The magnetic circuit of Figure 14.18(a) differs from the circuit analyzed in
Example 14.2 simply because of the presence of an air gap; the effect of the gap is to
break the continuity of the high-permeability path for the flux, adding a high-
reluctance component to the equivalent circuit. The situation is analogous to adding a
very large series resistance to a series electric circuit. It should be evident from
Figure 14.18(a) that the basic concept of reluctance still applies, although now two
different permeabilities must be taken into account.

Figure 14.18 (a) Magnetic circuit with air gap; (b) its equivalent magnetic
circuit



(14.31)

The equivalent circuit for the structure of Figure 14.18(a) may be drawn as
shown in Figure 14.18(b), where  is the reluctance of path ln , for n = 1, 2, . . . , 5,
Page 821and  is the reluctance of the air gap. The reluctances can be expressed as
follows, if we assume that the magnetic structure has a uniform cross-sectional area
A:

Note that in computing  the length of the gap is given by δ and the permeability is
given by μ0, as expected, but Ag is different from the cross-sectional area A of the
structure. This is so because the flux lines exhibit a phenomenon known as fringing
as they cross an air gap. The flux lines actually bow out of the gap defined by the
cross section A, not being contained by the high-permeability material any longer.
Thus, it is customary to define an area Ag that is greater than A, to account for this
phenomenon. Example 14.3 describes in greater detail the procedure for finding Ag
and also discusses the phenomenon of fringing.

EXAMPLE 14.3 Magnetic Structure With Air Gaps
Problem
Compute the equivalent reluctance of the magnetic circuit of Figure 14.19 and the
flux density established in the bottom bar of the structure.



1.

2.

Figure 14.19 Electromagnetic structure with air gaps

Solution
Known Quantities: Relative permeability; number of coil turns; coil current;
structure geometry.
Find: .
Schematics, Diagrams, Circuits, and Given Data: μr = 10,000; N = 100 turns; i = 1
A.
Assumptions: All magnetic flux is linked by the coil; the flux is confined to the
magnetic core; the flux density is uniform.
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Analysis:
Calculation of magnetomotive force. From equation 14.28, we calculate the
magnetomotive force:

Calculation of mean path. Figure 14.20 depicts the geometry. The path length is

Figure 14.20 Geometry of magnetic structure with air gap

However, the path must be broken into three legs: the upside-down U-shaped
element, the air gaps, and the bar. We cannot treat these three parts as one
because the relative permeability of the magnetic material is very different from
that of the air gap. Thus, we define the following three paths, neglecting the very
small (half bar thickness) lengths l5 and l6:



3.

where

Next, we compute the cross-sectional area. For the magnetic structure, we
calculate the U-shaped element cross section to be AU = 𝑤2 = (0.01)2 = 0.0001
m2 and the cross section of the bar to be Abar = (0.01 × 0.005) = 0.0005 m2. For
the air gap, we will make an empirical adjustment to account for the
phenomenon of fringing, that is, to account for the tendency of the magnetic flux
lines to bow out of the magnetic path, as illustrated in Figure 14.21. A rule of
thumb used to account for fringing is to add the length of the gap to each
dimension of the actual cross-sectional area. Thus

Figure 14.21 Fringing effects in air gap

Calculation of reluctance. Knowing the magnetic path length and cross-sectional
area, we can calculate the reluctance of each leg of the circuit:

Note that the reluctance of the air gap is dominant with respect to that of the
magnetic structure, in spite of the small dimension of the gap. This is so because
the relative permeability of the air gap is much smaller than that of the magnetic
material.



4.

The equivalent reluctance of the structure is

Thus,

Since the gap reluctance is two orders of magnitude greater than the reluctance
of the magnetic structure, it is reasonable to neglect the magnetic structure
reluctance and work only with the gap reluctance in calculating the magnetic
flux.
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Calculation of magnetic flux and flux density in the bar. From the result of the
preceding subsection, we calculate the flux

and the flux density in the bar

Comments: It is very common to neglect the reluctance of the magnetic material
sections in these approximate calculations. We shall make this assumption very
frequently in the remainder of the chapter.

CHECK YOUR UNDERSTANDING
Find the equivalent reluctance of the magnetic circuit shown in Figure 14.22 if μr of
the structure is infinite, δ = 2 mm, and the physical cross section of the core is 1 cm2.
Do not neglect fringing.



Figure 14.22 Magnetic circuit

EXAMPLE 14.4 Magnetic Structure of Electric Motor
Problem
Figure 14.23 depicts the configuration of an electric motor. The electric motor
consists of a stator and a rotor. Compute the air gap flux and flux density. Neglect
fringing.

Solution
Known Quantities: Relative permeability; number of coil turns; coil current;
structure geometry.
Find: ϕgap; Bgap.

Schematics, Diagrams, Circuits, and Given Data: μr → ∞; N = 1,000 turns; i = 10
A; lgap = 0.01 m; Agap = 0.1 m2. The magnetic circuit geometry is defined in Figure
14.23.
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Answer: 



1.

2.

3.

Figure 14.23 Cross-sectional view of synchronous motor

Assumptions: All magnetic flux is linked by the coil; the flux is confined to the
magnetic core; the flux density is uniform. The reluctance of the magnetic structure
is negligible.
Analysis:

Calculation of magnetomotive force. From equation 14.28, we calculate the
magnetomotive force:

Calculation of reluctance. Knowing the magnetic path length and cross-sectional
area, we can calculate the equivalent reluctance of the two gaps:

Calculation of magnetic flux and flux density. From the results of steps 1 and 2,
we calculate the flux

and the flux density

Comments: Note that the flux and flux density in this structure are significantly
larger than those in Example 14.3 because of the larger mmf and larger gap area of
this magnetic structure.



1.

The subject of electric motors is formally approached in Chapter 15.

EXAMPLE 14.5 Equivalent Circuit of Magnetic Structure With
Multiple Air Gaps
Problem
Figure 14.24 depicts the configuration of a magnetic structure with two air gaps.
Determine the equivalent circuit of the structure.
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Figure 14.24 Magnetic structure with two air gaps

Solution
Known Quantities: Structure geometry.
Find: Equivalent-circuit diagram.
Assumptions: All magnetic flux is linked by the coil; the flux is confined to the
magnetic core; the flux density is uniform. The reluctance of the magnetic structure
is negligible.
Analysis:

Calculation of magnetomotive force.



2.

3.

Calculation of reluctance. Knowing the magnetic path length and cross-sectional
area, we can calculate the equivalent reluctance of the two gaps:

Calculation of magnetic flux and flux density. Note that the flux must now divide
between the two legs, and that a different air-gap flux will exist in each leg. Thus

and the total flux generated by the coil is ϕ = ϕ1 + ϕ2.
 The equivalent circuit is shown in the bottom half of Figure 14.24.

Comments: Note that the two legs of the structure act as resistors in a parallel circuit.

CHECK YOUR UNDERSTANDING
Find the equivalent magnetic circuit of the structure of Figure 14.25 if μr is infinite.
Give expressions for each of the circuit values if the physical cross-sectional area of
each of the legs is given by

Do not neglect fringing.

Figure 14.25 Magnetic circuit



1.

2.

1.
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EXAMPLE 14.6 Inductance, Stored Energy, and Induced Voltage
Problem

Find the inductance and the magnetic energy stored in the structure of Figure
14.18(a). The structure is identical to that of Example 14.2 except for the air gap.
Ignore fringing.
Assume that the flux density in the air gap varies sinusoidally as B(t) =
B0sin(ωt). Determine the induced voltage across the coil e.

Solution
Known Quantities: Relative permeability; number of coil turns; coil current;
structure geometry; flux density in air gap.
Find: L; Wm; e.

Schematics, Diagrams, Circuits, and Given Data: μr → ∞; N = 500 turns; i = 0.1 A.
The magnetic circuit geometry is defined in Figures 14.14 and 14.15. The air gap has
lg = 0.002 m. B0 = 0.6 Wb/m2.

Assumptions: All magnetic flux is linked by the coil; the flux is confined to the
magnetic core; the flux density is uniform. The reluctance of the magnetic structure
is negligible.
Analysis:

Use equation 14.30 to calculate the inductance of the magnetic structure.

To calculate the reluctance, assume that the reluctance of the structure is
negligible.
Answer: 



2.

and

Finally, calculate the stored magnetic energy as follows:

To calculate the induced voltage due to a time-varying magnetic flux at the
frequency of 60 Hz(377 rad/s), we use equation 14.16:

Comments: The voltage induced across a coil in an electromagnetic transducer is a
very important quantity called the back electromotive force, or back emf.
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FOCUS ON MEASUREMENTS



Magnetic Reluctance Position Sensor
A simple magnetic structure, very similar to those examined in the previous
examples, finds very common application in the variable-reluctance position sensor,
which, in turn, finds widespread application in a variety of configurations for the
measurement of linear and angular velocity. Figure 14.26 depicts one particular
configuration that is used in many applications. In this structure, a permanent magnet
with a coil of wire wound around it forms the sensor; a steel disk (typically
connected to a rotating shaft) has a number of tabs that pass between the pole pieces
of the sensor. The area of the tab is assumed equal to the area of the cross section of
the pole pieces and is equal to a2. The reason for the name variable-reluctance
sensor is that the reluctance of the magnetic structure is variable, depending on
whether a ferromagnetic tab lies between the pole pieces of the magnet.

Figure 14.26 Variable-reluctance position sensor

The principle of operation of the sensor is that an electromotive force eS is
induced across the coil by the change in magnetic flux caused by the passage of the
tab between the pole pieces when the disk is in motion. As the tab enters the volume
between the pole pieces, the flux will increase, because of the lower reluctance of the
configuration, until it reaches a maximum when the tab is centered between the poles
of the magnet. Figure 14.27 depicts the approximate shape of the resulting voltage,
which, according to Faraday’s law, is given by

The rate of change of flux is dictated by the geometry of the tab and of the pole
pieces and by the speed of rotation of the disk. It is important to note that, since the
flux is changing only if the disk is rotating, this sensor cannot detect the static
position of the disk.



One common application of this concept is in the measurement of the speed of
rotation of rotating machines, including electric motors and internal combustion
engines. In these applications, use is made of a 60-tooth wheel, which permits the
conversion of the speed rotation directly to units of revolutions per minute. The
output of a variable-reluctance position sensor magnetically coupled to a rotating
disk equipped Page 828with 60 tabs (teeth) is processed through a comparator or
Schmitt trigger circuit (see Chapter 7). The voltage waveform generated by the
sensor is nearly sinusoidal when the teeth are closely spaced, and it is characterized
by one sinusoidal cycle for each tooth on the disk. If a negative zero-crossing
detector (see Chapter 7) is employed, the trigger circuit will generate a pulse
corresponding to the passage of each tooth, as shown in Figure 14.28. If the time
between any two pulses is measured by means of a high-frequency clock, the speed
of the engine can be directly determined in units of revolutions per minute (r/min) by
means of a digital counter (see Chapter 12).

Figure 14.27 Variable-reluctance position sensor waveform

Figure 14.28 Signal processing for a 60-tooth wheel rpm sensor



FOCUS ON MEASUREMENTS

Voltage Calculation in Magnetic Reluctance Position
Sensor
Problem:
This example illustrates the calculation of the voltage induced in a magnetic
reluctance sensor by a rotating toothed wheel. In particular, we will find an
approximate expression for the reluctance and the induced voltage for the position
sensor shown in Figure 14.29, Page 829and we will show that the induced voltage is
speed dependent. It will be assumed that the reluctance of the core and fringing at the
air gaps are both negligible.



Figure 14.29 Reluctance sensor for measurement of angular position

Solution:
From the geometry shown in the preceding Focus on Measurements box, the
equivalent reluctance of the magnetic structure is twice that of one gap, since the
permeability of the tab and the magnetic structure are assumed infinite (i.e., they
have negligible reluctance). When the tab and the poles are aligned, the angle θ is
zero, as shown in Figure 14.29, and the area of the air gap is maximum. For angles
greater than 2θ0, the magnetic length of the air gaps is so large that the magnetic field
may reasonably be taken as zero.

To model the reluctance of the gaps, we assume the following simplified
expression, where the area of overlap of the tab with the magnetic poles is assumed
proportional to the angular displacement:

Naturally, this is an approximation; however, the approximation captures the
essential idea of this transducer, namely, that the reluctance will decrease with
increasing overlap area until it reaches a minimum, and then the reluctance will
increase as the overlap area decreases. For θ = θ1, that is, with the tab outside the
magnetic pole pieces, we have . For θ = 0, that is, with the tab perfectly
aligned with the pole pieces, we have . The flux ϕ may therefore be
computed as follows:
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The induced voltage eS is found by

where ω = dθ/dt is the rotational speed of the steel disk. It should be evident that the
induced voltage is speed dependent. For a = 1 cm, r = 10 cm, lg = 0.1 cm, N = 1,000
turns, i = 10 mA, θ1 = 6° ≈ 0.1 rad, and ω = 400 rad/s (approximately 3,800 r/min),
we have



(14.32)

That is, the peak amplitude of eS will be 2.5 mV.

14.3 MAGNETIC MATERIALS AND B-H CURVES
In the analysis of magnetic circuits presented in the previous sections, the relative
permeability μr was treated as a constant. In fact, the relationship between the
magnetic flux density B and the associated field intensity H is:

and is characterized by the fact that the relative permeability of magnetic materials is
not a constant but is a function of the magnetic field intensity. In effect, all magnetic
materials exhibit a phenomenon called saturation, whereby the flux density
increases in proportion to the field intensity until it cannot do so any longer. Figure
14.30 illustrates the general behavior of all magnetic materials. You will note that
since the B-H curve shown in the figure is nonlinear, the value of μ (which is the
slope of the curve) depends on the intensity of the magnetic field.

Figure 14.30 Permeability and magnetic saturation effects

To understand the reasons for the saturation of a magnetic material, we need to
briefly review the mechanism of magnetization. The basic idea behind magnetic
materials is that the spin of electrons constitutes motion of charge, and therefore
leads to magnetic effects, as explained in the introductory section of this chapter. In



most materials, the electron spins cancel out, on the whole, and no net effect remains.
In ferromagnetic materials, on the other hand, atoms can align so that the electron
spins cause a net magnetic effect. In such materials, there exist small regions with
strong magnetic properties, called magnetic domains, the effects of Page 831which
are neutralized in unmagnetized material by other, similar regions that are oriented
differently, in a random pattern. When the material is magnetized, the magnetic
domains tend to align with one another, to a degree that is determined by the intensity
of the applied magnetic field.

In effect, a large number of miniature magnets within the material are aligned
(polarized) by the applied magnetic field. As the field increases, more and more
domains become aligned. When all the domains have become aligned, any further
increase in magnetic field intensity does not yield an increase in flux density beyond
the increase that would be caused in a nonmagnetic material. Thus, the relative
permeability μr approaches 1 in the saturation region. It should be apparent that an
exact value of μr cannot be determined; the value of μr used in the earlier examples is
to be interpreted as an average permeability, for intermediate values of flux density.
For example, commercial magnetic steels saturate at flux densities of a few teslas.

There are two more features that cause magnetic materials to further deviate from
the ideal model of the linear B-H relationship: eddy currents and hysteresis. The
first phenomenon consists of currents that are caused by any time-varying flux in the
core material. As you know, a time-varying flux will induce a voltage, and therefore
a current. When this happens inside the magnetic core, the induced voltage will cause
eddy currents (the terminology should be self-explanatory) in the core, which depend
on the resistivity of the core. Figure 14.31 illustrates the phenomenon of eddy
currents. The effect of these currents is to dissipate energy in the form of heat. Eddy
currents are reduced by selecting high-resistivity core materials, or by laminating the
core, introducing tiny, discontinuous air gaps between core layers (see Figure 14.31).
Lamination of the core reduces eddy currents greatly without affecting the magnetic
properties of the core.



Figure 14.31 Eddy currents in magnetic structures

Hysteresis is another loss mechanism in magnetic materials; it displays a rather
complex behavior, related to the magnetization properties of a material. The curve of
Figure 14.32 reveals that the B-H curve for a magnetic material during magnetization
(as H is increased) is displaced with respect to the curve that is measured when the
material is demagnetized. To understand the hysteresis process, consider a core that
has been energized for some time, with a field intensity of H1 A-turns/m. As the
current required to sustain the mmf corresponding to H1 is decreased, we follow the
hysteresis curve from the point α to the point β. When the mmf is exactly zero, the
material displays the remanent (or residual) magnetization Br. To bring the flux
density to zero, we must further decrease the mmf (i.e., produce a negative current)
until the field intensity reaches the value –H0 (point γ on the curve). As the mmf is
made more negative, the curve eventually reaches the point α′. If the excitation
current to the coil is now increased, the magnetization curve will follow the path α′ =
β′ = γ′ = α, eventually returning to the original point in the B-H plane, but via a
different path.



Figure 14.32 Hysteresis in magnetization curves

The result of this process, by which an excess mmf is required to magnetize or
demagnetize the material, is a net energy loss. It is difficult to evaluate this loss;
however, it can be shown that it is related to the area between the curves of Figure
14.32. Experimental techniques exist that measure these losses.

Figure 14.33 depicts magnetization curves for three very common ferromagnetic
materials: cast iron, cast steel, and sheet steel.
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Figure 14.33 Magnetization curves for (a) cast iron, (b) cast steel, and (c)
sheet steel



14.4 TRANSFORMERS
One of the more common magnetic structures in everyday applications is the trans
former. The ideal transformer was introduced in Chapter 13 as a device that can step
an AC voltage up or down by a fixed ratio, with a corresponding decrease or increase
in current. The structure of a simple magnetic transformer is shown in Figure 14.34,
which illustrates that a transformer is very similar to the magnetic circuits described
earlier in this chapter. Coil L1 represents the input side of the transformer, while coil
L2 is the output coil; both coils are wound around the same magnetic structure, which
we show here to be similar to the “square doughnut” of the earlier examples.

Figure 14.34 Structure of a transformer
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The ideal transformer is defined by the same set of assumptions made earlier. The
flux is confined to the core, the flux links all turns of both coils, and the permeability
of the core is infinite. The last assumption is equivalent to stating that an arbitrarily
small mmf is sufficient to establish a flux in the core. In addition, we assume that the
ideal transformer coils offer negligible resistance to current.

A time-varying voltage applied to the primary side of the transformer results in a
corresponding time-varying current in L1. This current acts as an mmf and causes a
time-varying flux in the structure. This flux will induce an emf across the secondary
coil! Without the need for a direct electrical connection, the transformer can couple a
source voltage across to the primary winding to the secondary winding, which is
connected to a load; the coupling occurs by means of the magnetic field acting on
both coils. Thus, a transformer operates by converting electric energy to magnetic,
and then back to electric. The following derivation illustrates this viewpoint in the
ideal case (no loss of energy) and compares the result with the definition of the ideal
transformer in Chapter 13.

If a time-varying voltage source is connected to the input side, then by virtue of
Faraday’s law, a corresponding time-varying flux dϕ/dt is established in coil L1:



(14.33)

(14.34)

(14.35)

(14.36)

(14.37)

(14.38)

But since the flux thus produced also links coil L2, an emf is induced across the
output coil as well:

This induced emf can be measured as the voltage υ2 at the output terminals, and one
can readily see that the ratio of the open-circuit output voltage to input-terminal
voltage is

A load current i2, and its corresponding mmf , is produced when a load is
connected to the output terminals in Figure 14.34. The mmf would cause the flux in
the core to change; however, this is not possible since a change in ϕ would cause a
corresponding change in the voltage induced across the input coil. But this voltage is
determined (fixed) by the source υ1 so that the input coil is forced to generate a
counter-mmf to oppose the mmf of the output coil drawing a current i1 from the
source υ1 such that:

or

where α is the ratio of primary to secondary turns (the transformer ratio) and N1 and
N2 are the primary and secondary turns, respectively. If there were any net difference
between the input and output mmf, the flux balance required by the input voltage
source would not be satisfied. Thus, the two magnetomotive forces must be equal.
Page 834As you can easily verify, these results are the same as in Chapter 13; in
particular, the ideal transformer does not dissipate any power, since

Note the distinction we have made between the induced voltages (emf’s) e and the
terminal voltages υ. In general, these are not the same.



(14.39)

The results obtained for the ideal case do not completely represent the physical
nature of transformers. A number of loss mechanisms need to be included in a
practical transformer model, to account for the effects of leakage flux, for various
magnetic core losses (e.g., hysteresis), and for the unavoidable resistance of the wires
that form the coils.

Commercial transformer ratings are usually given on the nameplate, which
indicates the following normal operating conditions:

Primary-to-secondary voltage ratio
Design frequency of operation
(Apparent) rated output power

For example, a typical nameplate might read 480:240 V, 60 Hz, 2 kVA. The voltage
ratio can be used to determine the turns ratio, while the rated output power represents
the continuous power level that can be sustained without overheating. It is important
that this power be rated as the apparent power in kilovoltamperes, rather than real
power in kilowatts, since a load with low power factor would still draw current and
therefore operate near rated power. Another important performance characteristic of
a practical transformer is its power efficiency, defined by:

EXAMPLE 14.7 Transformer Nameplate
Problem
Determine the turns ratio and the rated currents of a transformer from nameplate
data.

Solution
Known Quantities: Nameplate data.
Find: α = N1/N2; I1; I2.

Schematics, Diagrams, Circuits, and Given Data: Nameplate data: 120 V/480 V; 48
kVA; 60 Hz.
Assumptions: Assume an ideal transformer.



Analysis: The first element in the nameplate data is a pair of voltages, indicating the
primary and secondary voltages for which the transformer is rated. The ratio α is
found as follows:
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To find the primary and secondary currents, we use the kilovoltampere rating
(apparent power) of the transformer:

Comments: In computing the rated currents, we have assumed that no losses take
place in the transformer; in fact, there will be losses due to coil resistance and
magnetic core effects. These losses result in heating of the transformer and limit its
rated performance.

CHECK YOUR UNDERSTANDING
The high-voltage side of a transformer has 500 turns, and the low-voltage side has
100 turns. When the transformer is connected as a step-down transformer, the load
current is 12 A. Calculate: (a) the turns ratio α; and (b) the primary current. Then, (c)
Calculate the turns ratio if the transformer is used as a step-up transformer.

The output of a transformer under certain conditions is 12 kW. The copper losses
are 189 W, and the core losses are 52 W. Calculate the efficiency of this transformer.

EXAMPLE 14.8 Impedance Transformer

Answer: (a) α = 5; (b) I1 = l2/α = 2.4 A; (c) α = 0.2; η = 98 percent



Problem
Find the equivalent load impedance seen by the voltage source (i.e., reflected from
secondary to primary) for the transformer of Figure 14.35.

Figure 14.35 Ideal transformer

Solution
Known Quantities: Transformer turns ratio α.
Find: Reflected impedance .
Assumptions: Assume an ideal transformer.
Analysis: By definition, the load impedance is equal to the ratio of secondary phasor
voltage and current:

To find the reflected impedance, we can express the above ratio in terms of the
primary voltage and current:
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where the ratio V1/I1 is the impedance seen by the source at the primary coil, that is,
the reflected load impedance seen by the primary (source) side of the circuit. Thus,
we can write the load impedance Z2 in terms of the primary circuit voltage and
current; we call this the :

Thus, . Figure 14.36 depicts the equivalent circuit with the load impedance
reflected back to the primary.



Figure 14.36 Equivalent reflected circuit for impedance transformer.

Comments: The equivalent reflected circuit calculations are convenient because all
circuit elements can be referred to a single set of variables (i.e., only primary or
secondary voltages and currents).

CHECK YOUR UNDERSTANDING
The output impedance of a servo amplifier is 250 Ω. The servomotor that the
amplifier must drive has an impedance of 2.5 Ω. Calculate the turns ratio of the
transformer required to match these impedances.

14.5 ELECTROMECHANICAL ENERGY
CONVERSION
From the material developed thus far, it should be apparent that
electromagnetomechanical devices are capable of converting mechanical forces and
displacements to electromagnetic energy, and that the converse is also possible. The
objective of this section is to formalize the basic principles of energy conversion in
electromagnetomechanical systems, and to illustrate its usefulness and potential for
application by presenting several examples of energy transducers. A transducer is a
device that can convert electric to mechanical energy (in this case, it is often called
an actuator), or vice versa (in which case it is called a sensor).

Several physical mechanisms permit conversion of electric to mechanical energy
and back, including the piezoelectric effect,3 consisting of the generation of a
change in electric field in the presence of strain in certain crystals (e.g., quartz), and
electrostriction and magnetostriction, in which changes in the dimension of certain
materials lead to a change in their electrical (or magnetic) properties. This chapter is

Answer: α = 10



concerned only with transducers in which electric energy is converted to mechanical
energy through the coupling of a magnetic field. It is important to note that all
rotating machines (motors and generators) fit the basic definition of
electromechanical transducers we have just given.
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Forces in Magnetic Structures
Mechanical forces can be converted to electric signals, and vice versa, by means of
the coupling provided by energy stored in the magnetic field. In this subsection, we
discuss the computation of mechanical forces and of the corresponding
electromagnetic quantities of interest; these calculations are of great practical
importance in the design and application of electromechanical actuators. For
example, a problem of interest is the computation of the current required to generate
a given force in an electromechanical structure. This is the kind of application that is
likely to be encountered by the engineer in the selection of an electromechanical
device for a given task.

As already seen in this chapter, an electromechanical system includes an
electrical system, interacting through a magnetic field. Figure 14.37 illustrates the
coupling between the electrical and mechanical systems. In the mechanical system,
energy loss can occur because of the heat developed as a consequence of friction,
while in the electrical system, analogous losses are incurred because of resistance.
Loss mechanisms are also present in the magnetic coupling medium, since eddy
current losses and hysteresis losses are unavoidable in ferromagnetic materials.
Either system can supply energy, and either system can store energy. Thus, the figure
depicts the flow of energy from the electrical to the mechanical system, accounting
for these various losses. The same flow could be reversed if mechanical energy were
converted to electrical form.

Figure 14.37 Losses in electromechanical energy conversion.

Moving-Iron Transducers



(14.40)

(14.41)

(14.42)

One important class of electromagnetomechanical transducers is that of moving-iron
transducers, which include common devices such as electromagnets, solenoids, and
relays. The simplest example of a moving-iron transducer is Figure 14.38, in which
the U-shaped element is fixed and the bar is movable. In the following paragraphs,
we shall derive a relationship between the current applied to the coil, the
displacement of the movable bar, and the magnetic force acting in the air gap.

Figure 14.38 Basic electromagnet.

The principle that will be applied throughout the section is that for a mass to be
displaced, some work needs to be done; this work corresponds to a change in the
energy stored in the electromagnetic field, which causes the mass to be displaced.
With reference to Figure 14.38, let fe represent the magnetic force acting on the bar
and x the displacement of the bar, in the direction shown. Then the net work Wm into
the electromagnetic field is equal to the sum of the work done by the electric circuit
plus the work done by the mechanical system. Therefore, for an Page 838incremental
amount of work, we can write

where e is the electromotive force across the coil and the minus sign is due to the
sign convention indicated in Figure 14.38. Recalling that the emf e is equal to the
derivative of the flux linkage (equation 14.16), we can further expand equation 14.40
to obtain

or



(14.43)

(14.44)

(14.45)

(14.46)

Now, observe that the flux in the magnetic structure of Figure 14.38 depends on two
variables, which are in effect independent: the current through the coil and the
displacement of the bar. Each of these variables can cause the magnetic flux to
change. Similarly, the energy stored in the electromagnetic field is also dependent on
both current and displacement. Thus we can rewrite equation 14.42 as follows:

Since i and x are independent variables, we can write

From the first expression in equation 14.44 we obtain the relationship

where  is the co-energy. Observe that the force acting to push the bar toward the
electromagnet structure is of opposite sign to fe, and assuming that  we can
write

Equation 14.46 includes a very important assumption: The energy is equal to the co-
energy. If you refer to Figure 14.7, you will realize that in general this is not true.
Energy and co-energy are equal only if the λ-i relationship is linear. Thus, the useful
result of equation 14.46, stating that the magnetic force acting on the moving iron is
proportional to the rate of change of stored energy with displacement, applies only
for linear magnetic structures.

Thus, to determine the forces present in a magnetic structure, it is necessary to
compute the energy stored in the magnetic field. To simplify the analysis, we assume
hereafter that the structures analyzed are magnetically linear. This is, of course, only
an approximation, in that it neglects a number of practical aspects of
electromechanical systems (e.g., the nonlinear λ-i curves described earlier, and the
core losses typical of magnetic materials), but it permits relatively simple analysis of
many useful magnetic structures. Thus, although the analysis method presented in
this section is only approximate, it will serve the purpose of providing a feeling Page
839for the direction and the magnitude of the forces and currents present in
electromechanical devices. On the basis of a linear approximation, it can be shown
that the stored energy in a magnetic structure is given by



(14.47)

(14.48)

(14.49)

(14.50)

1.

and since the flux and the mmf are related by the expression

the stored energy can be related to the reluctance of the structure according to

where the reluctance has been explicitly shown to be a function of displacement, as is
the case in a moving-iron transducer. Finally, then, we use the following approximate
expression to compute the magnetic force acting on the moving iron:

Examples 14.9, 14.10, and 14.12 illustrate the application of this approximate
technique for the computation of forces and currents (the two problems of practical
engineering interest to the user of such electromechanical systems) in some common
devices. The Focus on Problem Solving box outlines the solution techniques for
these classes of problems.

F O C U S  O N  P R O B L E M  S O LV I N G

ANALYSIS OF MOVING-IRON
ELECTROMECHANICAL TRANSDUCERS
Calculation of current required to generate a given for

Derive an expression for the reluctance of the structure as a function of air 
displacement: 



2.

3.

4.

Express the magnetic flux in the structure as a function of the mmf (i.e., of
current I) and of the reluctance 

Compute an expression for the force, using the known expressions for the 
and for the reluctance:
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Solve the expression in step 3 for the unknown current i.

Calculation of force generated due to transducer
geometry and mmf
Repeat steps 1 through 3 above, substituting the known current to solve for the f
f.

EXAMPLE 14.9 An Electromagnet
Problem
An electromagnet is used to collect and support a solid piece of steel, as shown in
Figure 14.38. Calculate the starting current required to lift the load and the holding
current required to keep the load in place once it has been lifted and is attached to the
magnet. Assume that the cross-sectional areas of the electromagnet, load (bar), and
air gap are equal.

Solution
Known Quantities: Geometry, magnetic permeability, number of coil turns, mass,
acceleration of gravity, initial position of steel bar.



Find: Current required to lift the bar; current required to hold the bar in place.
Schematics, Diagrams, Circuits, and Given Data:

N = 500

μ0 = 4π × 10–7

μr = 104 (equal for electromagnet and load)

Initial distance (air gap) = 0.5 m
Magnetic path length of electromagnet = l1 = 0.60 m

Magnetic path length of movable load = l2 = 0.30 m

Gap cross-sectional area = 3 × 10– 4 m2

m = mass of load = 5 kg

g = 9.8 m/s2

Assumptions: None.
Analysis: To compute the current we need to derive an expression for the force in the
air gap. We use the equation

and calculate the reluctance, flux and force as follows:
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With this expression we can now calculate the current required to overcome the
gravitational force when the load is 0.5 m away. The force we must overcome is mg
= 49 N.



Finally, we calculate the holding current by letting x = 0:

Comments: Note how much smaller the holding current is than the lifting current.

One of the more common practical applications of the concepts discussed in this
section is the solenoid. Solenoids find application in a variety of electrically
controlled valves. The action of a solenoid valve is such that when it is energized, the
plunger moves in such a direction as to permit the flow of a fluid through a conduit,
as shown schematically in Figure 14.39.

Figure 14.39 Application of the solenoid as a valve

Examples 14.10 and 14.11 illustrate the calculations involved in the
determination of forces and currents in a solenoid.

EXAMPLE 14.10 A Solenoid
Problem



1.

2.

1.

Figure 14.40 depicts a simplified representation of a solenoid. The restoring force for
the plunger is provided by a spring.

Derive a general expression for the force exerted on the plunger as a function of
the plunger position x.
Determine the mmf required to pull the plunger to its end position (x = a).

Figure 14.40 A solenoid

Solution
Known Quantities: Geometry of magnetic structure; spring constant.
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Find: f; mmf.
Schematics, Diagrams, Circuits, and Given Data: a = 0.01 m; l29 = 0.001 m; k = 10
N/m.
Assumptions: Assume that the reluctance of the iron is negligible; neglect fringing.
At x = 0 the plunger is in the gap by an infinitesimal displacement ε.
Analysis:

Force on the plunger. To compute a general expression for the magnetic force
exerted on the plunger, we need to derive an expression for the force in the air
gap. Using equation 14.50, we see that we need to compute the reluctance of the
structure and the magnetic flux to derive an expression for the force.



2.

 Since we are neglecting the iron reluctance, we can write the expression for
the reluctance as follows. Note that the area of the gap is variable, depending on
the position of the plunger, as shown in Figure 14.41.

Figure 14.41 Detail of solenoid structure.

The derivative of the reluctance with respect to the displacement of the plunger
can then be computed to be

Knowing the reluctance, we can calculate the magnetic flux in the structure as a
function of the coil current:

The force in the air gap is given by
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Thus, the force in the gap is proportional to the square of the current and does
not vary with plunger displacement.
Calculation of magnetomotive force. To determine the required magnetomotive
force, we observe that the magnetic force must overcome the mechanical
(restoring) force generated by the spring. Thus, fgap = kx = ka. For the stated
values, fgap = (10 N/m) × (0.01 m) = 0.1 N, and



1.

2.

3.

4.

5.

6.

The required mmf can be most effectively realized by keeping the current value
relatively low and using a large number of turns.

Comments: The same mmf can be realized with an infinite number of combinations
of current and number of turns; however, there are tradeoffs involved. If the current
is very large (and the number of turns small), the required wire diameter will be very
large. Conversely, a small current will require a small wire diameter and a large
number of turns. A homework problem explores this tradeoff.

CHECK YOUR UNDERSTANDING
A solenoid is used to exert force on a spring. Estimate the position of the plunger if
the number of turns in the solenoid winding is 1,000 and the current going into the
winding is 40 mA. Use the same values as in Example 14.10 for all other variables.

Practical Facts About Solenoids

Solenoids can be used to produce linear or rotary motion, in either the push or the
pull mode. The most common solenoid types are listed here:

Single-action linear (push or pull). Linear stroke motion, with a restoring
force (e.g., from a spring), to return the solenoid to the neutral position.
Double-acting linear. Two solenoids back to back can act in either direction.
The restoring force is provided by another mechanism (e.g., a spring).
Mechanical latching solenoid (bistable). An internal latching mechanism
holds the solenoid in place against the load.
Keep solenoid. Fitted with a permanent magnet so that no power is needed to
hold the load in the pulled-in position. Plunger is released by applying a
current pulse of opposite polarity to that required to pull in the plunger.
Rotary solenoid. Constructed to permit rotary travel. Typical range is 25 to
95°. Return action via mechanical means (e.g., a spring).
Reversing rotary solenoid. Rotary motion is from one end to the other; when
the solenoid is energized again, it reverses direction.

Answer: x = 0.5 mm
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Solenoid power ratings are dependent primarily on the current required by the
coil, and on the coil resistance. The I2R is the primary power sink, and solenoids
are therefore limited by the heat they can dissipate. Solenoids can operate in
continuous or pulsed mode. The power rating depends on the mode of operation,
and can be increased by adding hold-in resistors to the circuit to reduce the
holding current required for continuous operation. The hold resistor is switched
into the circuit once the pull-in current required to pull the plunger has been
applied and the plunger has moved into place. The holding current can be
significantly smaller than the pull-in current.

A common method to reduce the solenoid holding current employs a normally
closed (NC) switch in parallel with a hold-in resistor. In Figure 14.42, when the
pushbutton (PB) closes the circuit, full voltage is applied to the solenoid coil,
bypassing the resistor through the NC switch. When the solenoid closes, the NC
switch opens, connecting the resistor in series with the coil. The resistor will now
limit the current to the value required to hold the solenoid in position. Note the
diode “snubber” circuit to shunt the reverse current when the solenoid is
deenergized.

Figure 14.42 Practical solenoid circuit.

Another electromechanical device that finds common application in industrial
practice is the relay. The relay is an electromechanical switch that permits the
opening and closing of electrical contacts by means of an electromagnetic structure
similar to those discussed earlier in this section.

A relay such as would be used to start a high-voltage single-phase motor is
shown in Figure 14.43. The magnetic structure has dimensions equal to 1 cm on all
sides, and the transverse dimension is 8 cm. The relay works as follows. When the
pushbutton is pressed, an electric current flows through the coil and generates a field
in the magnetic structure. The resulting force draws the movable part toward the
fixed part, causing an electrical contact to be made. The advantage of the relay is that
a relatively low-level current can be used to control the opening and closing of a



circuit Page 845that can carry large currents. In this particular example, the relay is
energized by a 120-VAC contact, establishing a connection in a 240-VAC circuit.
Such relay circuits are commonly employed to remotely switch large industrial loads.

Figure 14.43 A relay

Circuit symbols for relays are shown in Figure 14.44. An example of the
calculations that would typically be required in determining the mechanical and
electrical characteristics of a simple relay are given in Example 14.11.



Figure 14.44 Circuit symbols and basic operation of relays

EXAMPLE 14.11 A Relay
Problem
Figure 14.45 depicts a simplified representation of a relay. Determine the current
required for the relay to make contact (i.e., pull in the ferromagnetic plate) from a
distance x.
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Figure 14.45 Relay circuit for Example 14.11.

Solution
Known Quantities: Relay geometry; restoring force to be overcome; distance
between bar and relay contacts; number of coil turns.
Find: i.
Schematics, Diagrams, Circuits, and Given Data: Agap = (0.01 m)2; x = 0.05 m;
frestore = 5 N; N = 10,000.

Assumptions: Assume that the reluctance of the iron is negligible; neglect fringing.
Analysis:

The derivative of the reluctance with respect to the displacement of the plunger can
then be computed as

Knowing the reluctance, we can calculate the magnetic flux in the structure as a
function of the coil current:

and the force in the air gap is given by

The magnetic force must overcome a mechanical holding force of 5 N; thus,



(14.51)

or

Comments: The current required to close the relay is much larger than that required
to hold the relay closed, because the reluctance of the structure is much smaller once
the gap is reduced to zero.

Moving-Coil Transducers
Another important class of electromagnetomechanical transducers is that of moving-
coil transducers. This class of transducers includes a number of common devices,
such as microphones, loudspeakers, and all electric motors and generators. The aim
of this section is to explain the relationship between a fixed magnetic field, the emf
across the moving coil, and the forces and motions of the moving element of the
transducer.
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The basic principle of operation of electromechanical transducers is that a
magnetic field exerts a force on a charge moving through it. The equation describing
this effect is

which is a vector equation, as explained earlier. To correctly interpret equation 14.51,
we must recall the right-hand rule and apply it to the transducer, illustrated in Figure
14.46, depicting a structure consisting of a sliding bar which makes contact with a
fixed conducting frame. Although this structure does not represent a practical
actuator, it will be a useful aid in explaining the operation of moving-coil transducers
such as motors and generators. In Figure 14.46, and in all similar figures in this
section, a small cross represents the “tail” of an arrow pointing into the page, while a
dot represents an arrow pointing out of the page; this convention will be useful in
visualizing three-dimensional pictures.



Figure 14.46 A simple electromechanical motion transducer

CHECK YOUR UNDERSTANDING
In the circuit in Figure 14.46, the conducting bar is moving with a velocity of 6 m/s.
The flux density is 0.5 Wb/m2, and l = 1.0 m. Find the magnitude of the resulting
induced voltage.

Motor Action

A moving-coil transducer can act as a motor when an externally supplied current
flowing through the electrically conducting part of the transducer is converted to a
force that can cause the moving part of the transducer to be displaced. Such a current
would flow, for example, if the support of Figure 14.46 were made of Page
848conducting material, so that the conductor and the right-hand side of the support
“rail” were to form a loop (in effect, a one-turn coil). To understand the effects of this
current flow in the conductor, one must consider the fact that a charge moving at a
velocity u′ (along the conductor and perpendicular to the velocity of the conducting
bar, as shown in Figure 14.47) corresponds to a current i = dq/dt along the length l of
the conductor. This fact can be explained by considering the current i along a
differential element dl and writing

Answer: 3 V



(14.52)

(14.53)

(14.54)

(14.55)

(14.56)

(14.57)

since the differential element dl would be traversed by the current in time dt at a
velocity u′. Thus we can write

or

for the geometry of Figure 14.47. From Section 14.1, the force developed by a charge
moving in a magnetic field is, in general, given by

For the term qu′ we can substitute il, to obtain

Using the right-hand rule, we determine that the force f′ generated by the current i is
in the direction that would push the conducting bar to the left. The magnitude of this
force is f′ = Bli if the magnetic field and the direction of the current are
perpendicular. If they are not, then we must consider the angle γ formed by B and l;
in the more general case,

The phenomenon we have just described is sometimes referred to as the Blilaw.

Figure 14.47 Simplified structure of moving-coil transducer.



(14.58)

Generator Action

The other mode of operation of a moving-coil transducer occurs when an external
force causes the coil (i.e., the moving bar, in Figure 14.46) to be displaced. This
external force is converted to an emf across the coil, as will be explained in the
following paragraphs.

Since positive and negative charges are forced in opposite directions in the
transducer of Figure 14.46, a potential difference will appear across the conducting
bar; this potential difference is the electromotive force, or emf. The emf must be
equal to the force exerted by the magnetic field. In short, the electric force per unit
charge (or electric field) e/l must equal the magnetic force per unit charge f/q = Bu.
Thus, the relationship
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holds whenever B, l, and u are mutually perpendicular, as in Figure 14.48. If
equation 14.58 is analyzed in greater depth, it can be seen that the product lu (length
times velocity) is the area crossed per unit time by the conductor. If one visualizes
the conductor as “cutting” the flux lines into the base in Figure 14.47, it can be
concluded that the electromotive force is equal to the rate at which the conductor
“cuts” the magnetic lines of flux. It will be useful for you to carefully absorb this
notion of conductors cutting lines of flux, since this greatly simplifies the
understanding of the material in this section and in Chapter 15.

Figure 14.48 When magnetic flux, current and velocity vectors are
mutually perpendicular, e = Blu.
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(14.60)

In general, B, l, and u are not necessarily perpendicular. In this case one needs to
consider the angles formed by the magnetic field with the normal to the plane
containing l and u, and the angle between l and u. The former is angle α of Figure
14.48; the latter is angle β in the same figure. It should be apparent that the optimum
values of α and β are 0° and 90°, respectively. Thus, most practical devices are
constructed with these values of α and β. Unless otherwise noted, it will be tacitly
assumed that this is the case. TheBlu law just illustrated explains how a moving
conductor in a magnetic field can generate an electromotive force.

To summarize the electromechanical energy conversion that takes place in the
simple device of Figure 14.46, we must note now that the presence of a current in the
loop formed by the conductor and the rail requires that the conductor move to the
right at a velocity u (Blu law), thus cutting the lines of flux and generating the emf
that gives rise to current i. On the other hand, the same current causes a force f′ to be
exerted on the conductor (Bli law) in the direction opposite to the movement of the
conductor. Thus, it is necessary that an externally applied force fext exist to cause the
conductor to move to the right with a velocity u. The external force must overcome
the force f′. This is the basis of electromechanical energy conversion.

An additional observation we must make at this point is that the current i flowing
around a closed loop generates a magnetic field, as explained in Section 14.1. Since
this additional field is generated by a one-turn coil in our illustration, it is reasonable
to assume that it is negligible with respect to the field already present (perhaps
established by a permanent magnet). Finally, we must consider that this coil links a
certain amount of flux, which changes as the conductor moves from left to right. The
area crossed by the moving conductor in time dt is

so that if the flux density B is uniform, the rate of change of the flux linked by the
one-turn coil is

In other words, the rate of change of the flux linked by the conducting loop is equal
to the emf generated in the conductor. You should realize that this statement simply
confirms Faraday’s law.

It was briefly mentioned that the Blu and Bli laws indicate that, thanks to the
coupling action of the magnetic field, a conversion of mechanical to electric energy
—or the converse—is possible. The simple structures of Figures 14.46 and 14.47
can, again, serve as an illustration of this energy conversion process, although we
have not yet indicated how these idealized structures can be converted to a practical
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device. In this section we begin to introduce some physical considerations. Before we
proceed any further, we should try to compute the power—electric and Page
850mechanical—that is generated (or is required) by our ideal transducer. The
electric power is given by

while the mechanical power required, say, to move the conductor from left to right is
given by the product of force and velocity:

The principle of conservation of energy states that in this ideal (lossless) transducer
we can convert a given amount of electric energy to mechanical energy, or vice versa.
We can utilize the structure of Figure 14.46 to illustrate this reversible action. If the
closed path containing the moving conductor is now formed from a closed circuit
containing a resistance R and a battery VB, as shown in Figure 14.49, the externally
applied force fext generates a positive current i into the battery provided that the emf
is greater than VB. When e = Blu > VB, the ideal transducer acts as a generator. For
any given set of values of B, l, R, and VB, there will exist a velocity u for which the
current i is positive. If the velocity is lower than this value—that is, if e = Blu < VB
—then the current i is negative, and the conductor is forced to move to the right. In
this case the battery acts as a source of energy and the transducer acts as a motor (i.e.,
electric energy drives the mechanical motion).

Figure 14.49 Motor and generator action in an ideal transducer

In practical transducers, we must be concerned with the inertia, friction, and
elastic forces that are invariably present on the mechanical side of the transducer.
Similarly, on the electrical side we must account for the inductance of the circuit, its
resistance, and possibly some capacitance. Consider the structure of Figure 14.50. In
the figure, the conducting bar has been placed on a surface with a coefficient of
sliding friction b; it has a mass m and is attached to a fixed structure by means of a



(14.63)

(14.64)

(14.65)

spring with spring constant k. The equivalent circuit representing the coil inductance
and resistance is also shown.

Figure 14.50 A more realistic representation of the transducer of Figure
14.49

If we recognize that u = dx/dt in the figure, we can write the equation of motion
for the conductor as

where the Bli term represents the driving input that causes the mass to move. The
driving input in this case is provided by the electric energy source υS; thus the
transducer acts as a motor, and f is the electromechanical force acting on the mass of
the conductor. On the electrical side, the circuit equation is

Equations 14.63 and 14.64 could then be solved by knowing the excitation voltage υS
and the physical parameters of the mechanical and electric circuits. For example, if
the excitation voltage were sinusoidal, with

and the field density were constant

then we could postulate sinusoidal solutions for the transducer velocity u and current
i:



1.

2.

3.

and use phasor notation to solve for the unknowns (U, I, θu, θi).
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The results obtained in the present section apply directly to transducers that are
based on translational (linear) motion. These basic principles of electromechanical
energy conversion and the analysis methods developed in the section are next applied
to practical transducers in a few examples. A Focus on Problem Solving box outlines
the analysis procedure for moving-coil transducers.

F O C U S  O N  P R O B L E M  S O LV I N G

ANALYSIS OF MOVING-COIL
ELECTROMECHANICAL TRANSDUCERS

Apply KVL to write the differential equation for the electrical subsyst
including the back emf (e = Blu) term.
Apply Newton’s second law to write the differential equation for the mechan
subsystem, including the magnetic force f = Bli term.
Use a Laplace transform on the two coupled differential equations to formula
system of linear algebraic equations, and solve for the desired mechanical 
electrical variables.

EXAMPLE 14.12 A Loudspeaker
Problem
A loudspeaker, shown in Figure 14.51, uses a permanent magnet and a moving coil
to produce the vibrational motion that generates the pressure waves we perceive as
sound. Vibration of the loudspeaker is caused by changes in the input current to a
coil; the coil is, in turn, coupled to a magnetic structure that can produce time-
varying forces on the speaker diaphragm. A simplified model for the mechanics of
the speaker is also shown in Figure 14.51. The force exerted on the coil is also



exerted on the mass of the speaker diaphragm, as shown in Figure 14.52, which
depicts a free-body diagram of the forces acting on the loudspeaker diaphragm.

Figure 14.51 Loudspeaker

Figure 14.52 Forces acting on loudspeaker diaphragm
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The force exerted on the mass fi is the magnetic force due to current flow in the
coil. The electric circuit that describes the coil is shown in Figure 14.53, where L
represents the inductance of the coil, R represents the resistance of the windings, and
e is the emf induced by the coil moving through the magnetic field.

Figure 14.53 Model of transducer electrical side

Determine the frequency response U(jω)/V(jω) of the speaker.



Solution
Known Quantities: Circuit and mechanical parameters; magnetic flux density;
number of coil turns; coil radius.
Find: Frequency response of loudspeaker U(jω)/V(jω).
Schematics, Diagrams, Circuits, and Given Data: Coil radius = 0.05 m; L = 10 mH;
R = 8 Ω; m = 0.01 kg; b = 22.75 N-s2/m; k = 5 × 104 N/m; N = 47; B = 1 T.
Analysis: To determine the frequency response of the loudspeaker, we write the
differential equations that describe the electrical and mechanical subsystems. We
apply KVL to the electric circuit, using the circuit model of Figure 14.53, in which
we have represented the Blu term (motional voltage) in the form of a back
electromotive force e:

or

Next, we apply Newton’s second law to the mechanical system, consisting of a
lumped mass representing the mass of the moving diaphragm m; an elastic (spring)
term, which represents the elasticity of the diaphragm k; and a damping coefficient b,
representing the frictional losses and aerodynamic damping affecting the moving
diaphragm.

where fi = Bli and therefore

Note that the two equations are coupled; that is, a mechanical variable appears in the
electrical equation (velocity u in the Blu term), and an electrical variable appears in
the mechanical equation (current i in the Bli term).

To derive the frequency response, we use the Laplace transform on the two
equations to obtain



We can write the above equations in matrix form and resort to Cramer’s rule to solve
for U(s) as a function of V(s):

with solution
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or

To determine the frequency response of the loudspeaker, we let s → jω in the above
expression:

where l = 2π Nr, and substitute the appropriate numerical parameters:

The resulting frequency response is plotted in Figure 14.54.



Figure 14.54 Frequency response of loudspeaker

CHECK YOUR UNDERSTANDING
In Example 14.12, we examined the frequency response of a loudspeaker. However,
over time, permanent magnets may become demagnetized. Find the frequency
response of the same loudspeaker if the permanent magnet has lost its strength to a
point where B = 0.95 T.
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FOCUS ON MEASUREMENTS

Answer: 



Seismic Transducer
Problem:
The device shown in Figure 14.55 is called a seismic transducer and can be used to
measure the displacement, velocity, or acceleration of a body. The permanent magnet
of mass m is supported on the case by a spring k, and there is some viscous damping
b between the magnet and the case; the coil is fixed to the case. You may assume that
the coil has length l and resistance and inductance Rcoil and Lcoil, respectively; the
magnet exerts a magnetic field B. Find the transfer function between the output
voltage υout and the velocity of the body dxc/dt. Note that x(t) is not equal to zero
when the system is at rest. We ignore this offset displacement.

Figure 14.55 An electromagnetomechanical seismic transducer



Solution:
First we apply KVL around the electric circuit to write the differential equation
describing the electrical systems:

Also note that υout = –Routi. Next, we observe that the displacement of the magnet,
xm, is equal to the sum of the case displacement, xc, and the relative displacement
between the magnet and the case, x(t): xm = x + xc. Apply Newton’s second law to the
mass of the magnet, m, we obtain

Substituting the relation xm = x + xc, we obtain
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From this expression we can now derive the transfer function between the
displacement of the case, Xc(s), and the output voltage, Vout(s). Let R = Rcoil + Rout.
Then

Now, let the velocity of the case be Uc(s) = sXc(s); since Vout(s) = –RoutI(s), the
transfer function from case velocity to output voltage becomes

Conclusion
This chapter introduces electromechanical systems. Electromechanical devices
include a variety of sensors and transducers that find common engineering



1.

2.

3.

4.

5.

application in many fields. All electromechanical devices use the coupling between
mechanical and electrical systems provided by a magnetic field. This magnetic
coupling makes it possible to convert energy from electric to mechanical form, and
back. Devices that convert electric to mechanical energy include all forms of
electromagnetomechanical actuators, such as electromagnets, solenoids, relays,
electrodynamic shakers, linear motors, and loudspeakers. Conversion from
mechanical to electric energy results in generators, and various sensors that can
detect mechanical displacement, velocity, or acceleration. Upon completing this
chapter, you should have mastered the following learning objectives:

Review the basic principles of electricity and magnetism. The basic laws that
govern electromagnetomechanical energy conversion are Faraday’s law, stating
that a changing magnetic field can induce a voltage, and Ampère’s law, stating
that a current flowing through a conductor generates a magnetic field.
Use the concepts of reluctance and magnetic circuit equivalents to compute
magnetic flux and currents in simple magnetic structures. The two fundamental
variables in the analysis of magnetic structures are the magnetomotive force and
the magnetic flux; if some simplifying approximations are made, these quantities
are linearly related through the reluctance parameter, in much the same way as
voltage and current are related through resistance according to Ohm’s law. This
simplified analysis permits approximate calculation of forces and currents in
electromagnetomechanical structures.
Understand the properties of magnetic materials and their effects on magnetic
circuit models. Magnetic materials are characterized by a number of nonideal
properties, which must be considered in a detailed analysis of any
electromechanical transducer. The most important phenomena are saturation,
eddy currents, and hysteresis.
Use magnetic circuit models to analyze transformers. One of the most common
magnetic structures in use in electric power systems is the transformer. The
methods developed in the earlier sections provide all the tools needed to perform
an analysis of these important devices.
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Model and analyze force generation in electromagnetomechanical systems.
Analyze moving-iron transducers (electromagnets, solenoids, relays) and
moving-coil transducers (electrodynamic shakers, loudspeakers, and seismic
transducers). Electromagnetomechanical transducers can be broadly divided into
two categories: moving-iron transducers, which include all electromagnets,
solenoids, and relays; and moving-coil transducers, which include loudspeakers,
electrodynamic shakers, and all electric motors. Section 14.5 develops analysis
and design methods for these devices.



14.1
a.

b.

c.

14.2

14.3

14.4

HOMEWORK PROBLEMS
Section 14.1: Electricity and Magnetism

For the electromagnet of Figure P14.1:

Find the flux density in the core.

Sketch the magnetic flux lines and indicate their direction.

Indicate the north and south poles of the magnet.

Figure P14.1

A single loop of wire carrying current I2 is placed near the end of a solenoid
having N turns and carrying current I1, as shown in Figure P14.2. The solenoid
is fastened to a horizontal surface, but the single coil is free to move. With the
currents directed as shown, is there a resultant force on the single coil? If so, in
what direction? Why?

Figure P14.2

A practical LVDT is typically connected to a resistive load. Derive the LVDT
equations in the presence of a resistive load RL connected across the output
terminals, using the results of the Focus on Measurements box, “Linear Variable
Differential Transformer.” Let RS, LS be the secondary coil parameters.

On the basis of the equations of the Focus on Measurements box, “Linear
Variable Differential Transformer,” and of the results of Problem 14.3, derive



14.5

a.

b.

14.6

14.7
a.

b.

14.8

the frequency response of the LVDT, and determine the range of frequencies for
which the device will have maximum sensitivity for a given excitation. (Hint:
Compute dυout/dυex, and set the derivative equal to zero to determine the
maximum sensitivity.)

An iron-core inductor has the following characteristic:

Determine the energy, co-energy, and incremental inductance for λ = 1 V-
s.

Given that the coil resistance is 1 Ω and that

determine the voltage across the terminals on the inductor.

Repeat Problem 14.5 if

An iron-core inductor has the characteristic shown in Figure P14.7:

Determine the energy and the incremental inductance for i = 1.0 A.

Given that the coil resistance is 2 Ω and that i(t) = 0.5 sin 2π t, determine
the voltage across the terminals of the inductor.

Figure P14.7

Page 857

Determine the reluctance of the structure of Figure 14.12 in the text if the cross-
sectional area is A = 0.1 m2 and μr = 2,000. Assume that each leg of the mean
magnetic path is 0.1 m in length and that it runs through the exact center of the
structure.

Section 14.2: Magnetic Circuits



a.

b.

14.10
a.

b.

c.

d.

14.11

14.9 Find the reluctance of a magnetic circuit if a magnetic flux ϕ = 4.2 × 10–4

Wb is established by an impressed mmf of 400 A-turns.

Find the magnetizing force H in SI units if the magnetic circuit is 6 in
long.

For the circuit shown in Figure P14.10:

Determine the reluctance values and show the magnetic circuit, assuming
that μ = 3,000μ0.

Determine the inductance of the device.

The inductance of the device can be modified by cutting an air gap in the
magnetic structure. If a gap of 0.1 mm is cut in the arm of length l3, what
is the new value of inductance?

As the gap is increased in size (length), what is the limiting value of
inductance? Neglect leakage flux and fringing effects.

Figure P14.10

The magnetic circuit shown in Figure P14.11 has two parallel paths. Find the
flux and flux density in each leg of the magnetic circuit. Neglect fringing at
the air gaps and any leakage fields. N = 1,000 turns, i = 0.2 A, lg1 = 0.02 cm,
and lg2 = 0.04 cm. Assume the reluctance of the magnetic core to be
negligible.



14.12

14.13

a.14.14

Figure P14.11

Find the current necessary to establish a flux of ϕ = 3 × 10–4 Wb in the series
magnetic circuit of Figure P14.12. Here liron = lsteel = 0.3 m, area (throughout)
= 5 × 10–4 m2, and N = 100 turns. Assume μr = 5,195 for cast iron and μr =
1,000 for cast steel.

Figure P14.12

Find the magnetic flux ϕ established in the series magnetic circuit of Figure
P14.13.

Figure P14.13
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Find the current I required to establish a flux ϕ = 2.4 × 10–4 Wb in the
magnetic circuit of Figure P14.14. Here area(throughout) = 2 × 10–4 m2,



b.

14.15

14.16

a.

b.

lab = lef = 0.05 m, laf = lbe = 0.02 m, lbc = ldc, and the material is sheet
steel.

Compare the mmf drop across the air gap to that across the rest of the
magnetic circuit. Discuss your results, using the value of μ for each
material.

Figure P14.14

For the series-parallel magnetic circuit of Figure P14.15, find the value of I
required to establish a flux in the gap of ϕ = 2 × 10–4 Wb. Here, lab = lbg = lgh
= lha = 0.2 m, lbc = lfg = 0.1 m, lcd = lef = 0.099 m, and the material is sheet
steel.

Figure P14.15

Refer to the actuator of Figure P14.16. The entire device is made of sheet
steel. The coil has 2,000 turns. The armature is stationary so that the length of
the air gaps, g = 10 mm, is fixed. A direct current passing through the coil
produces a flux density of 1.2 T in the gaps. Assume μr = 4,000 for sheet
steel. Determine:

The coil current.

The energy stored in the air gaps.



c.

14.17

a.

b.

The energy stored in the steel.

Figure P14.16

A core is shown in Figure P14.17, with μr = 2,000 and N = 100. Find:

The current needed to produce a flux density of 0.4 Wb/m2 in the center
leg.

The current needed to produce a flux density of 0.8 Wb/m2 in the center
leg.

Figure P14.17
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Section 14.4: Transformers



14.18

a.

b.

14.19

a.

b.

14.20
a.

b.

c.

14.21

a.

For the transformer shown in Figure P14.18, N = 1,000 turns, l1 = 16 cm, A1
= 4 cm2, l2 = 22 cm, A2 = 4 cm2, l3 = 5 cm, and A3 = 2 cm2. The relative
permeability of the material is μr = 1,500.

Construct the equivalent magnetic circuit, and find the reluctance
associated with each part of the circuit.

Determine the self-inductance and mutual inductance for the pair of coils
(that is, L11, L22, and M = L12 = L21).

Figure P14.18

A transformer is delivering power to a 300-Ω resistive load. To achieve the
desired power transfer, the turns ratio is chosen so that the resistive load
referred to the primary is 7,500 Ω. The parameter values, referred to the
secondary winding, are:

Core losses are negligible.

Determine the turns ratio.

Determine the input voltage, current, and power and the efficiency when
this transformer is delivering 12 W to the 300-Ω load at a frequency f =
10,000/2π Hz.

A 220/20-V transformer has 50 turns on its low-voltage side. Calculate:

The number of turns on its high side.

The turns ratio α when it is used as a step-down transformer.

The turns ratio α when it is used as a step-up transformer.

The high-voltage side of a transformer has 750 turns, and the low-voltage
side has 50 turns. When the high side is connected to a rated voltage of 120 V,
60 Hz, a rated load of 40 A is connected to the low side. Calculate:

The turns ratio.



b.

c.

14.22

14.23

a.

b.

c.

d.

14.24

14.25

a.

b.

c.

14.26

14.27
a.

The secondary voltage (assuming no internal transformer impedance
voltage drops).

The resistance of the load.

A transformer is to be used to match an 8-Ω loudspeaker to a 500-Ω audio
line. What is the turns ratio of the transformer, and what are the voltages at
the primary and secondary terminals when 10 W of audio power is delivered
to the speaker? Assume that the speaker is a resistive load and that the
transformer is ideal.

The high-voltage side of a step-down transformer has 800 turns, and the low-
voltage side has 100 turns. A voltage of 240 VAC is applied to the high side,
and the load impedance is 3 Ω (low side). Find:

The secondary voltage and current.

The primary current.

The primary input impedance from the ratio of primary voltage to current.

The primary input impedance.

Calculate the transformer ratio of the transformer in Problem 14.23 when it is
used as a step-up transformer.

A 2,300/240-V, 60-Hz, 4.6-kVA transformer is designed to have an induced
emf of 2.5 V/turn. Assuming an ideal transformer, find:

The numbers of high-side turns Nh and low-side turns Nl.

The rated current of the high-voltage side Ih.

The transformer ratio when the device is used as a step-up transformer.

Section 14.5: Electromechanical Energy Conversion
Calculate the current required to lift the load for the electromagnet of
Example 14.9. Calculate the holding current required to keep the load in place
once it has been lifted and is attached to the magnet. Page 860Assume: N =
700; μ0 = 4π × 10–7; μr = 104 (equal for electromagnet and load); initial
distance (air gap) = 0.5 m; magnetic path length of electromagnet = l1 = 0.80
m; magnetic path length of movable load = l2 = 0.40 m; gap cross-sectional
area = 5 × 10–4 m2; m = mass of load = 10 kg; g = 9.8 m/s2.

For the electromagnet of Example 14.9:

Calculate the current required to keep the bar in place. (Hint: The air gap
becomes zero, and the iron reluctance cannot be neglected.) Assume μr =



b.

14.28

a.

b.

14.29

14.30

14.31

14.32

1,000, L = 1 m.

If the bar is initially 0.1 m away from the electromagnet, what initial
current would be required to lift the magnet?

The electromagnet of Figure P14.28 has reluctance given by 
 where x is the length of the variable gap in meters. The

coil has 980 turns and 30-Ω resistance. For an applied voltage of 120 VDC,
find:

The energy stored in the magnetic field for x = 0.005 m.

The magnetic force for x = 0.005 m.

Figure P14.28

With reference to Example 14.10, determine the best combination of current
magnitude and wire diameter to reduce the volume of the solenoid coil to a
minimum. Will this minimum volume result in the lowest possible resistance?
How does the power dissipation of the coil change with the wire gauge and
current value? To solve this problem, you will need to find a table of wire
gauge diameter, resistance, and current ratings. Table 1.1 in this book
contains some information. The solution can only be found numerically.

Derive the same result obtained in Example 14.10, using equation 14.46 and
the definition of inductance given in equation 14.30. You will first compute
the inductance of the magnetic circuit as a function of the reluctance, then
compute the stored magnetic energy, and finally write the expression for the
magnetic force given in equation 14.46.

With reference to Example 14.11, calculate the required holding current to
keep the relay closed. The mass of the moving element is m = 0.05 kg.
Neglect damping. The initial position is x = ϵ = 0.001 m.

The relay circuit shown in Figure P14.32 has the following parameters: Agap =
0.001 m2; N = 500 turns; L = 0.02 m; μ = μ0 = 4π × 10–7 (neglect the iron
reluctance); k = 1,000 N/m; R = 18 Ω. What is the minimum DC supply



14.33

14.34

voltage υ for which the relay will make contact when the electrical switch is
closed?

Figure P14.32

The magnetic circuit shown in Figure P14.33 is a very simplified
representation of devices used as surface roughness sensors. The stylus is in
contact with the surface and causes the plunger to move along with the
surface. Assume that the flux ϕ in the gap is given by the expression 
, where β is a known constant and  is the reluctance of the gap. The emf e
is measured to determine the surface profile. Derive an expression for the
displacement x as a function of the various parameters of the magnetic circuit
and of the measured emf. (Assume a frictionless contact between the moving
plunger and the magnetic structure and that the plunger is restrained to
vertical motion only. The cross-sectional area of the plunger is A.)
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Figure P14.33

A cylindrical solenoid is shown in Figure P14.34. The plunger may move
freely along its axis. The air gap between the shell and the plunger is uniform
and equal to 1 mm, and the diameter d is 25 mm. If the exciting coil carries a



14.35

a.

b.

c.

14.36

current of 7.5 A, find the force acting on the plunger when x = 2 mm. Assume
N = 200 turns, and neglect the reluctance of the steel shell. Assume lg is
negligible.

Figure P14.34

The double-excited electromechanical system shown in Figure P14.35 moves
horizontally. Assume that resistance, magnetic leakage, and fringing are
negligible; the permeability of the core is very large; and the cross section of
the structure is 𝑤 × 𝑤. Find:

The reluctance of the magnetic circuit.

The magnetic energy stored in the air gap.

The force on the movable part as a function of its position.

Figure P14.35

Determine the force F between the faces of the poles (stationary coil and
plunger) of the solenoid pictured in Figure P14.36 when it is energized. When
energized, the plunger is drawn into the coil and comes to rest with only a
negligible air gap separating the two. The flux density in the cast steel
pathway is 1.1 T. The diameter of the plunger is 10 mm. Assume that the
reluctance of the steel is negligible.



14.37

14.38

a.

b.

14.39

Figure P14.36

An electromagnet is used to support a solid piece of steel, as shown in
Example 14.9. A force of 10,000 N is required to support the weight. The
cross-sectional area of the magnetic core (the fixed part) is 0.01 m2. The coil
has 1,000 turns. Determine the minimum current that can keep the weight
from falling for x = 1.0 mm. Assume negligible reluctance in steel and
negligible fringing in the air gaps.

The armature, frame, and core of a 12-VDC control relay are made of sheet
steel. The average length of the magnetic circuit is 12 cm when the relay is
energized, and the average cross section of the magnetic circuit is 0.60 cm2.
The coil is wound with 250 turns and carries 50 mA. Determine:

The flux density  in the magnetic circuit of the relay when the coil is
energized.

The force  exerted on the armature to close it when the coil is energized.
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A relay is shown in Figure P14.39. Find the differential equations describing
the system.



14.40

a.

b.

14.41

Figure P14.39

A solenoid having a cross section of 10 cm2 is shown in Figure P14.40.

Calculate the force exerted on the plunger when the distance x is 2 cm and
the current in the coil (where N = 100 turns) is 5 A. Assume that the
fringing and leakage effects are negligible. The relative permeabilities of
the magnetic material and the nonmagnetic sleeve are 2,000 and 1.

Develop a set of differential equations governing the behavior of the
solenoid.

Figure P14.40

Derive the differential equations (electrical and mechanical) for the relay
shown in Figure P14.41. Do not assume that the inductance is fixed; it is a
function of x. You may assume that the iron reluctance is negligible.

Figure P14.41



14.42

14.43

14.44

Derive the complete set of differential equations describing the relay shown
in Figure P14.42.

Figure P14.42
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A wire of length 20 cm vibrates in one direction in a constant magnetic field
with a flux density of 0.1 T; see Figure P14.43. The position of the wire as a
function of time is given by x(t) = 0.1 sin 10t m. Find the induced emf across
the length of the wire as a function of time.

Figure P14.43

The wire of Problem 14.43 induces a time-varying emf of

A second wire is placed in the same magnetic field but has a length of 0.1 m,
as shown in Figure P14.44. The position of this wire is given by x(t) = 1 – 0.1
sin 10t. Find the induced emf e(t) defined by the difference between e1(t) and
e2(t).



14.45

14.46

14.47

a.

b.

c.

Figure P14.44

A conducting bar shown in Figure 14.47 in the text is carrying 4 A of current
in the presence of a magnetic field B = 0.3 Wb/m2. Find the magnitude and
direction of the force induced on the bar.

A wire, shown in Figure P14.46, is moving in the presence of a magnetic
field B = 0.4 Wb/m2. Find the magnitude and direction of the induced voltage
in the wire.

Figure P14.46

The electrodynamic shaker shown in Figure P14.47 is commonly used as a
vibration tester. A constant current is used to generate a magnetic field in
which the armature coil of length l is immersed. The shaker platform with
mass m is mounted in the fixed structure by way of a spring with stiffness k.
The platform is rigidly attached to the armature coil, which slides on the fixed
structure thanks to frictionless bearings.

Neglecting iron reluctance, determine the reluctance of the fixed structure,
and hence compute the strength of the magnetic flux density B in which
the armature coil is immersed.

Knowing B, determine the dynamic equations of motion of the shaker,
assuming that the moving coil has resistance R and inductance L.

Derive the transfer function and frequency response function of the shaker
mass velocity in response to the input voltage VS.



14.48

14.49

14.50

14.51

a.

Figure P14.47

The electrodynamic shaker of Figure P14.47 is used to perform vibration
testing of an electrical connector. The connector is placed on the test platform
(with mass m), and it may be assumed to have negligible mass when
compared to the platform. The test consists of shaking the connector at the
frequency ω = 2π × 100 rad/s.

Given the parameter values B = 1,000 Wb/m2, l = 5 m, k = 1,000 N/m, m = 1
kg, b = 5 N-s/m, L = 0.8 H, and R = 0.5 Ω, determine the peak amplitude of
the sinusoidal voltage VS required to generate an acceleration of 5g (49 m/s2).
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Derive and sketch the frequency response of the loudspeaker of Example
14.12 for (1) k = 50,000 N/m and (2) k = 5 × 106 N/m. Describe qualitatively
how the loudspeaker frequency response changes as the spring stiffness k
increases and decreases. What will the frequency response be in the limit as k
approaches zero? What kind of speaker would this condition correspond to?

The loudspeaker of Example 14.12 has a midrange frequency response.
Modify the mechanical parameters of the loudspeaker (mass, damping, and
spring rate) so as to obtain a loudspeaker with a bass response centered on
400 Hz. Demonstrate that your design accomplishes the intended task, using
frequency response plots. Note: This is an open-ended design problem.
The electrodynamic shaker shown in Figure P14.51 is used to perform
vibration testing of an electronic circuit. The circuit is placed on a test table
with mass m, and is assumed to have negligible mass when compared to the
table. The test consists of shaking the circuit at the frequency ω = 2π(100)
rad/s.

Write the dynamic equations for the shaker. Clearly indicate system
input(s) and output(s).



b.

c.

Find the frequency response function of the table acceleration in response
to the applied voltage.

Figure P14.51

Given the following parameter values:

Determine the peak amplitude of the sinusoidal voltage VS required to
generate an acceleration of 5g (49 m/s2) under the stated test conditions.

Design Credits: Mini DVI cable adapter isolated on white background: Robert Lehmann/Alamy Stock Photo;
Balance scale: Alex Slobodkin/E+/Getty Images; Icon for “Focus on measurements” weighing scales: Media
Bakery.

1We will use the boldface symbols B and H to denote the vector forms of B and H;
the standard typeface will represent the scalar flux density or field intensity in a
given direction.

2Note that although they are dimensionally equal to amperes, the units of
magnetomotive force are ampere-turns.

3See the Focus on Measurements box, “Charge Amplifiers,” in Chapter 6.
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C H A P T E R
15

ELECTRIC MACHINES

he objective of this chapter is to introduce the basic operation of rotating
electric machines. The operation of the three major classes of electric
machines—DC, synchronous, and induction—is described as intuitively as
possible, building on the material presented in Chapter 14.

The emphasis of this chapter is on explaining the properties of each type of
machine, with its advantages and disadvantages with regard to other types; and on
classifying these machines in terms of their performance characteristics and
preferred field of application.
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 Learning Objectives
Students will learn to...

Understand the basic principles of operation of rotating electric machines,
their classification, and basic efficiency and performance characteristics
Section 15.1.



2.

3.
4.
5.

Understand the operation and basic configurations of separately excited,
permanent-magnet, shunt and series DC machines. Section 15.2.
Analyze DC motors under steady-state and dynamic operation. Section 15.3.
Analyze DC generators at steady state. Section 15.4.
Understand the operation and basic configuration of AC machines, including
the synchronous motor and generator, and the induction machine. Sections
15.6 to 15.9.

15.1 ROTATING ELECTRIC MACHINES
This introductory section is aimed at explaining the common properties of all
rotating electric machines. We begin our discussion with reference to Figure 15.1,
in which a hypothetical rotating machine is depicted in a cross-sectional view. In
the figure, a box with a cross inscribed in it indicates current flowing into the
page, while a dot represents current out of the plane of the page.

Figure 15.1 A rotating electric machine

In Figure 15.1, we identify a stator, of cylindrical shape, and a rotor, which,
as the name indicates, rotates inside the stator, separated from the latter by means
of an air gap. The rotor and stator each consist of a magnetic core, some electrical
insulation, and the windings necessary to establish a magnetic flux (unless this is
created by a permanent magnet). The rotor is mounted on a bearing-supported
shaft, which can be connected to mechanical loads (if the machine is a motor) or
to a prime mover (if the machine is a generator) by means of belts, pulleys,
chains, or other mechanical couplings. The windings carry the electric currents
that generate the magnetic fields and flow to the electrical loads, and also provide



the closed loops in which voltages will be induced (by virtue of Faraday’s law, as
discussed in Chapter 14).

Basic Classification of Electric Machines
An immediate distinction can be made between different types of windings
characterized by the nature of the current they carry. If the current serves the sole
purpose of providing a magnetic field and is independent of the load, it is called a
magnetizing, or excitation, current, and the winding is termed a field winding.
Field currents are nearly always direct current (DC) and are of relatively low
power, since their only purpose is to magnetize the core (recall the important role
of high-permeability cores in generating large magnetic fluxes from relatively
small currents). On the other hand, if the winding carries only the load current, it
is called an armature. In DC and alternating-current (AC) synchronous
machines, separate windings exist to carry field and armature currents. In the
induction motor, the magnetizing and load currents flow in the same winding,
called the input winding, or primary; the output winding is then called the
secondary. As we shall see, this terminology, which is reminiscent of
transformers, is particularly appropriate for induction motors, which bear a
significant analogy to the operation of the transformers studied in Chapters 13
and 14. Table 15.1 characterizes the principal machines in terms of their field and
armature configuration.
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Table 15.1 Configurations of the three types of electric machines

It is also useful to classify electric machines in terms of their energy
conversion characteristics. A machine acts as a generator if it converts
mechanical energy from a prime mover, say, an internal combustion engine, to



(15.1)

(15.2)

electric energy. Examples of generators are the large machines used in power
generating plants, or the common automotive alternator. A machine is classified
as a motor if it converts electric energy to mechanical form. The latter class of
machines is probably of more direct interest to you, because of its widespread
application in engineering design. Electric motors are used to provide forces and
torques to generate motion in countless industrial applications. Machine tools,
robots, punches, presses, mills, and propulsion systems for electric vehicles are
but a few examples of the application of electric machines in engineering.

Note that in Figure 15.1 we have explicitly shown the direction of two
magnetic fields: that of the rotor BR and that of the stator BS. Although these
fields are generated by different means in different machines (e.g., permanent
magnets, alternating currents, direct currents), the presence of these fields is what
causes a rotating machine to turn and enables the generation of electric power. In
particular, we see that in Figure 15.1 the north pole of the rotor field will seek to
align itself with the south pole of the stator field. It is this magnetic attraction
force that permits the generation of torque in an electric motor; conversely, a
generator exploits the laws of electromagnetic induction to convert a changing
magnetic field to an electric current.

To simplify the discussion in later sections, we now introduce some basic
concepts that apply to all rotating electric machines. Referring to Figure 15.2,
which depicts a permanent-magnet DC machine, note that the force on a wire is
given by the expression:

where iw is the current in the wire, l is a vector along the direction of the wire, and
× denotes the cross product of two vectors. Then the torque for a multiturn coil is:

where:
B = magnetic flux density caused by stator field
K = constant depending on coil geometry
α = angle between B and normal to plane of coil



(15.3)

Figure 15.2 Stator and rotor fields and the force acting on a rotating
permanent-magnet DC machine

In the machine of Figure 15.2, there are two magnetic fields: one generated
within the stator, the other within the rotor windings. Either (but not both) of
these fields Page 868could be generated by a current or by a permanent magnet.
Thus, we could replace the permanent-magnet stator of Figure 15.2 with a
suitably arranged winding to generate a stator field in the same direction. If the
stator were made of a toroidal coil of radius R (see Chapter 14), then the magnetic
field of the stator would generate a flux density B, where:

and where N is the number of turns and i is the coil current. The direction of the
torque is always the direction determined by the rotor and stator fields as they
seek to align to each other (i.e., counterclockwise in the diagram of Figure 15.1).

It is important to note that Figure 15.2 is only one example of the major
features and characteristics of rotating machines. A variety of configurations
exist, depending on whether each of the fields is generated by a current in a coil
or by a permanent magnet and whether the load and magnetizing currents are
direct or alternating. The type of excitation (AC or DC) provided to the windings
permits a first classification of electric machines (see Table 15.1). According to
this classification, one can define the following types of machines:



•

•

•

DC machines: Direct current in both stator and rotor (the stator could
also be realized by a permanent magnet, as in Figure 15.2)
Synchronous machines: Alternating current in one stator, direct current
in the rotor (the rotor could alternatively consist of a permanent magnet)
Induction machines: Alternating current in both

In most industrial applications, the induction machine is the preferred choice,
because of the simplicity of its construction. However, the analysis of the
performance of an induction machine is rather complex. On the other hand, DC
machines are quite complex in their construction but can be analyzed relatively
simply with the analytical tools we have already acquired. Therefore, the
progression of this Page 869chapter is as follows: We start with a section that
discusses the physical construction of DC machines, both motors and generators.
Then we continue with a discussion of synchronous machines, in which one of
the currents is now alternating, since these can easily be understood as an
extension of DC machines. Finally, we consider the case where both rotor and
stator currents are alternating, and we analyze the induction machine.

Performance Characteristics of Electric Machines
As already stated earlier in this chapter, electric machines are energy conversion
devices, and we are therefore interested in their energy conversion efficiency.
Typical applications of electric machines as motors or generators must take into
consideration the energy losses associated with these devices. Figure 15.3(a) and
(b) represents the various loss mechanisms you must consider in analyzing the
efficiency of an electric machine for the case of DC machines. It is important for
you to keep in mind this conceptual flow of energy when analyzing electric
machines. The sources of loss in a rotating machine can be separated into three
fundamental groups: electrical (I2R) losses, core losses, and mechanical losses.



Figure 15.3a Generator losses, direct current

Figure 15.3b Motor losses, direct current
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Usually I2R losses are computed on the basis of the DC resistance of the
windings at 75°C; in practice, these losses vary with operating conditions. The
difference between the nominal and actual I2R loss is usually lumped under the
category of stray-load loss. In DC machines, it is also necessary to account for
the brush contact loss associated with slip rings and commutators.

Mechanical losses are due to friction (mostly in the bearings) and windage,
that is, the air drag force that opposes the motion of the rotor. In addition, if
external devices (e.g., blowers) are required to circulate air through the machine



for cooling purposes, the energy expended by these devices is included in the
mechanical losses.

Open-circuit core losses consist of hysteresis and eddy current losses, with
only the excitation winding energized (see Chapter 14 for a discussion of
hysteresis and eddy currents). Often these losses are summed with friction and
windage losses to give rise to the no-load rotational loss. The latter quantity is
useful if one simply wishes to compute efficiency. Since open-circuit core losses
do not account for the changes in flux density caused by the presence of load
currents, an additional magnetic loss is incurred that is not accounted for in this
term. Stray-load losses are used to lump the effects of nonideal current
distribution in the windings and of the additional core losses just mentioned.
Stray-load losses are difficult to determine exactly and are often assumed to be
equal to 1.0 percent of the output power for DC machines; these losses can be
determined by experiment in synchronous and induction machines.

The performance of an electric machine can be quantified in a number of
ways. In the case of an electric motor, it is usually portrayed in the form of a
graphical torque–speed characteristic and efficiency map. The torque–speed
characteristic of a motor describes how the torque supplied by the machine varies
as a function of the speed of rotation of the motor for steady speeds. As we shall
see in later sections, the torque–speed curves vary in shape with the type of motor
(DC, induction, synchronous) and are very useful in determining the performance
of the motor when connected to a mechanical load. Figure 15.4(a) depicts the
torque–speed curve of induction motor. Figure 15.4(b) depicts a typical efficiency
map for a permanent-magnet synchronous motor. In most engineering Page
871applications, it is quite likely that the engineer is required to make a decision
regarding the performance characteristics of the motor best suited to a specified
task. In this context, the torque–speed curve of a machine is a very useful piece of
information.



Figure 15.4 Torque–speed and efficiency curves for an electric motor:
(a) an induction machine; (b) an electric drive system for a hybrid-
electric vehicle

The first feature we note of the torque–speed characteristic is that it bears a
strong resemblance to the i-υ characteristics used in earlier chapters to represent
the behavior of electrical sources. It should be clear that, according to this torque–
speed curve, the motor is not an ideal source of torque (if it were, the curve would
appear as a horizontal line across the speed range). One can readily see, for
example, that the induction motor represented by the curves of Figure 15.4(a)
would produce maximum torque in the range of speeds between approximately
800 and 1,400 r/min. What determines the actual speed of the motor (and
therefore its output torque and power) is the torque–speed characteristic of the
load connected to it, much as a resistive load determines the current drawn from a
voltage source. In the figure, we display the torque–speed curve of a load,
represented by the dashed line; the operating point of the motor-load pair is
determined by the intersection of the two curves.

Another important observation pertains to the fact that the motor of Figure
15.4(a) produces a nonzero torque at zero speed. This fact implies that as soon as
electric power is connected to the motor, the latter is capable of supplying a
certain amount of torque; this zero-speed torque is called the starting torque. If
the load requires less than the starting torque the motor can provide, then the
motor can accelerate the load until the motor speed and torque settle to a stable
value, at the operating point. As we discuss each type of machine in greater
detail, we shall devote some time to the discussion of its torque–speed curve.

The efficiency of an electric machine is also an important design and
performance characteristic. The 2005 Department of Energy’s Energy Policy Act,
also known as EPACT, has required electric motor manufacturers to guarantee a
minimum efficiency. The efficiency of an electric motor is usually described
using a contour plot of the efficiency value (a number between 0 and 1) in the
torque–speed plane. This representation permits a determination of the motor
efficiency as a function of its performance and operating conditions. Figure
15.4(b) depicts the efficiency map of an electric drive used in a hybrid-electric
vehicle—a 20-kW permanent-magnet AC synchronous machine. We discuss this
type of machine in Chapter 16. Note that the peak efficiency can be as high as
0.95 (95 percent), but that the efficiency decreases significantly away from the
optimum point (around 3,500 r/min and 45 N-m), to values as low as 0.65.

The most common means of conveying information regarding electric
machines is the nameplate. Typical information conveyed by the nameplate



1.
2.
3.
4.
5.

(15.4)

(15.5)

includes
Type of device (e.g., DC motor, alternator)
Manufacturer
Rated voltage and frequency
Rated current and voltamperes
Rated speed and horsepower

The rated voltage is the terminal voltage for which the machine was designed,
and which will provide the desired magnetic flux. Operation at higher voltages
Page 872will increase magnetic core losses, because of excessive core saturation.
The rated current and rated voltamperes are an indication of the typical current
and power levels at the terminal that will not cause undue overheating due to
copper losses (I2R losses) in the windings. These ratings are not absolutely
precise, but they give an indication of the range of excitations for which the
motor will perform without overheating. Other name plate characteristics are
introduced in Example 15.2.

Peak power operation in a motor may exceed rated torque, power, or currents
by a substantial factor (up to as much as 6 or 7 times the rated value); however,
continuous operation of the motor above the rated performance will cause the
machine to overheat and eventually to sustain damage. Thus, it is important to
consider both peak and continuous power requirements when selecting a motor
for a specific application. An analogous discussion is valid for the speed rating:
While an electric machine may operate above rated speed for limited periods of
time, the large centrifugal forces generated at high rotational speeds will
eventually cause undesirable mechanical stresses, especially in the rotor
windings.

Another important feature of electric machines is the regulation of the
machine speed or voltage, depending on whether it is used as a motor or as a
generator, respectively. Regulation is the ability to maintain speed or voltage
constant in the face of load variations. The ability to closely regulate speed in a
motor or voltage in a generator is an important feature of electric machines;
regulation is often improved by means of feedback control mechanisms, some of
which are briefly introduced in this chapter. We take the following definitions as
being adequate for the intended purpose of this chapter:



Please note that the rated value is usually taken to be the nameplate value, and
that the meaning of load changes depending on whether the machine is a motor,
in which case the load is mechanical, or a generator, in which case the load is
electrical.

EXAMPLE 15.1 Regulation
Problem
Find the percentage of speed regulation of a shunt DC motor.

Solution
Known Quantities: No-load speed; speed at rated load.
Find: Percentage speed regulation, denoted by SR%.
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Schematics, Diagrams, Circuits, and Given Data:
nnl = no-load speed = 1,800 r/min

nrl = rated load speed = 1,760 r/min

Analysis:

Comments: Speed regulation is an intrinsic property of a motor; however,
external speed controls can be used to regulate the speed of a motor to any
(physically achievable) desired value. Some motor control concepts are discussed
later in this chapter.

CHECK YOUR UNDERSTANDING



The percentage of speed regulation of a motor is 10 percent. If the full-load speed
is 50π rad/s, find (a) the no-load speed in radians per second and (b) the no-load
speed in revolutions per minute. (c) If the percentage of voltage regulation for a
250-V generator is 10 percent, find the no-load voltage of the generator.

Table 15.2 summarizes important unit conversions that relate SI to English units,
as the latter are still used in nameplate data in the United States.

Table 15.2 Unit conversions for electric machines

EXAMPLE 15.2 Nameplate Data
Problem
Discuss the nameplate data, shown below, of a typical induction motor.

Solution
Known Quantities: Nameplate data.
Find: Motor characteristics.
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Answer: (a) ω = 55π rad/s; (b) n = 1,650 r/min; (c) Vno-load = 275 V



Schematics, Diagrams, Circuits, and Given Data: The nameplate appears below.

Analysis: The nameplate of a typical induction motor is shown in the preceding
table. The model number (sometimes abbreviated as MOD) uniquely identifies
the motor to the manufacturer. It may be a style number, a model number, an
identification number, or an instruction sheet reference number.

The term frame (sometimes abbreviated as FR) refers principally to the
physical size of the machine, as well as to certain construction features.

Ambient temperature (abbreviated as AMB, or MAX. AMB) refers to the
maximum ambient temperature in which the motor is capable of operating.
Operation of the motor in a higher ambient temperature may result in shortened
motor life and reduced torque.

Insulation class (abbreviated as INS. CL.) refers to the type of insulation used
in the motor. The classes most often used are class A (105°C) and class B
(130°C).

The duty (DUTY), or time rating, denotes the length of time the motor is
expected to be able to carry the rated load under usual service conditions.
“CONT.” means that the machine can be operated continuously.

The “CODE” letter sets the limits of starting kilovoltamperes per horsepower
for the machine. There are 19 levels, denoted by the letters A through V,
excluding I, O, and Q.



Service factor (abbreviated as SERV FACT) is a term defined by the National
Electrical Manufacturers Association (NEMA) as follows: “The service factor of
a general-purpose alternating-current motor is a multiplier which, when applied to
the rated horsepower, indicates a permissible horsepower loading which may be
carried under the conditions specified for the service factor.”

The voltage figure given on the nameplate refers to the voltage of the supply
circuit to which the motor should be connected. Sometimes two voltages are
given, for example, 230/460. In this case, the machine is intended for use on
either a 230-V or a 460-V circuit. Special instructions will be provided for
connecting the motor for each of the voltages.

The term “BRG” indicates the nature of the bearings supporting the motor
shaft.
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CHECK YOUR UNDERSTANDING
The nameplate of a three-phase induction motor indicates the following values:

Find the rated torque, rated voltamperes, and maximum continuous output power.

EXAMPLE 15.3 Torque–Speed Curves

Answer: Irated = 40.7 N-m; rated VA = 11,431 VA; Pmax = 11.5 hp.



Problem
Discuss the significance of the torque–speed curve of an electric motor.

Solution
An induction motor has a torque output that varies directly with speed; hence, the
power output varies directly with the speed. Motors with this characteristic are
commonly used with fans, blowers, and centrifugal pumps. Figure 15.5 shows
typical torque–speed curves for this type of motor. Superimposed on the motor
torque–speed curve is the torque–speed curve for a typical fan where the input
power to the fan varies as the cube of the fan speed. Point A is the actual
operating point, which could be determined graphically by plotting the load line
and the motor torque–speed curve on the same graph, as illustrated in Figure 15.5.
The fan will operate at the speed corresponding to the intersection of the two
curves.

Figure 15.5 Torque–speed curves of electric motor and load
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CHECK YOUR UNDERSTANDING
A motor having the characteristics shown in Figure 15.4(a) is to drive a load; the
load has a linear torque–speed curve and requires 150 percent of rated torque at
1,500 r/min. Find the operating point for this motor-load pair.



1.
2.

Basic Operation of All Rotating Machines
We have already seen in Chapter 14 how the magnetic field in electromechanical
devices provides a form of coupling between electrical and mechanical systems.
Intuitively, one can identify two aspects of this coupling, both of which play a
role in the operation of electric machines:

Magnetic attraction and repulsion forces generate mechanical torque.
The magnetic field can induce a voltage in the machine windings (coils) by
virtue of Faraday’s law.

Thus, an electric machine can serve either as a motor or a generator, depending
on whether the input power is electric and mechanical power is produced (motor
action), or the input power is mechanical and the output power is electric
(generator action). Figure 15.6 illustrates the two cases graphically.

Figure 15.6 Generator (a) and motor (b) action in an electric machine

The coupling magnetic field performs a dual role, which may be explained as
follows. When a current i flows through conductors placed in a magnetic field, a
force is produced on each conductor, according to equation 15.1. If these
conductors are attached to a cylindrical structure, a torque is generated; and if the
structure is free to rotate, then it will rotate at an angular velocity ωm. As the
conductors rotate, however, they move through a magnetic field and cut through
flux lines, thus generating an electromotive force in opposition to the excitation.
This emf is also called counter-emf, as it opposes the source of the current i. If, on
the other hand, the rotating element of the machine is driven by a prime mover
(e.g., an internal combustion engine), then an emf is generated across the coil that
is rotating in the magnetic field (the armature). If a load is connected to the

Answer: 170 percent of rated torque; 1,700 r/min.



1.
2.

armature, a current i will flow to the load, and this current flow will in turn cause
a reaction torque on the armature that opposes the torque imposed by the prime
mover.
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You see, then, that for energy conversion to take place, two elements are
required:

A coupling field B; generated in the field winding or by a permanent magnet.
An armature winding that supports the load current i and the emf e.

Magnetic Poles in Electric Machines
Before discussing the actual construction of a rotating machine, we should spend
a few paragraphs to illustrate the significance of magnetic poles in an electric
machine. In an electric machine, torque is developed as a consequence of
magnetic forces of attraction and repulsion between magnetic poles on the stator
and on the rotor; these poles produce a torque that accelerates the rotor and a
reaction torque on the stator. It is also important to observe that the number of
poles must be even, since there have to be equal numbers of north and south
poles.

The motion and associated electromagnetic torque of an electric machine are
the result of two magnetic fields that are trying to align with each other so that the
south pole of one field attracts the north pole of the other. Figure 15.7 illustrates
this action by analogy with two permanent magnets, one of which is allowed to
rotate about its center of mass.

Figure 15.7 Alignment action of poles



Figure 15.8 depicts a two-pole machine in which the stator poles are
constructed in such a way as to project closer to the rotor than to the stator
structure. This type of construction is rather common, and poles constructed in
this fashion are called salient poles. Note that the rotor could also be constructed
to have salient poles.

Figure 15.8 A two-pole machine with salient stator poles

To understand magnetic polarity, we need to consider the direction of the
magnetic field in a coil carrying current. Figure 15.9 shows how the right-hand
rule can be employed to determine the direction of the magnetic flux. If one were
to grasp the coil with the right hand, with the fingers curling in the direction of
current flow, then the thumb would be pointing in the direction of the magnetic
flux. Magnetic flux by convention is viewed as entering the south pole and
exiting from the north pole. Thus, to determine whether a magnetic pole is Page
878north or south, we must consider the direction of the flux. Figure 15.10 shows
a cross section of a coil wound around a pair of salient rotor poles. In this case,
one can readily identify the direction of the magnetic flux in the rotor and
therefore the magnetic polarity of the poles by applying the right-hand rule, as
illustrated in the figure.



Figure 15.9 Right-hand rule

Figure 15.10 Magnetic field in a salient rotor winding

Often, however, the coil windings are not arranged as simply as in the case of
salient poles. In many machines, the windings are embedded in slots cut into the
stator or rotor, so that the situation is similar to that of the stator depicted in
Figure 15.11. This figure is a cross section in which the wire connections between
“crosses” and “dots” have been cut away. In Figure 15.11, the dashed line
indicates the axis of the stator flux according to the right-hand rule, showing that
the slotted stator in effect behaves as a pole pair. The north and south poles
indicated in the figure are a consequence of the fact that the flux exits the top part
of the structure (thus, the north pole indicated in the figure) and enters the bottom
half of the structure (thus, the south pole). In particular, if you consider Page
879that the windings are arranged so that the current entering the right-hand side
of the stator (to the right of the dashed line) flows through the back end of the
stator and then flows outward from the left-hand side of the stator slots (left of the



dashed line), you can visualize the windings in the slots as behaving in a manner
similar to the coils of Figure 15.10, where the flux axis of Figure 15.11
corresponds to the flux axis of each of the coils of Figure 15.10. The actual circuit
that permits current flow is completed by the front and back ends of the stator,
where the wires are connected according to the pattern a-a′, b-b′, c-c′, as depicted
in the figure.

Figure 15.11 Magnetic field of stator

Another important consideration that facilitates understanding of the
operation of electric machines pertains to the use of alternating currents. It should
be apparent by now that if the current flowing into the slotted stator is alternating,
the direction of the flux will also alternate, so that in effect the two poles will
reverse polarity every time the current reverses direction, that is, every half-cycle
of the sinusoidal current. Further—since the magnetic flux is approximately
proportional to the current in the coil—as the amplitude of the current oscillates
in a sinusoidal fashion, so will the flux density in the structure. Thus, the
magnetic field developed in the stator changes both spatially and in time.

This property is typical of AC machines, where a rotating magnetic field is
established by energizing the coil with an alternating current. As explained in
Section 15.2, the principles underlying the operation of DC and AC machines are
quite different: In a direct-current machine, there is no rotating field, but a
mechanical switching arrangement (the commutator) makes it possible for the
rotor and stator magnetic fields to always align at right angles to each other.

The book website includes two-dimensional “animations” of the most
common types of electric machines. You might wish to explore these animations
to better understand the basic concepts described in this section.



15.2 DIRECT-CURRENT MACHINES
As explained in the introductory section, DC machines are easier to analyze than
their AC counterparts although their actual construction is made rather complex
by the need to have a commutator, which switches the load winding connection to
the source so as to always maintain an angle close to 90° between the stator and
the rotor magnetic fields. The objective of this section is to describe the major
construction features and the operation of DC machines, as well as to develop
simple circuit models that are useful in analyzing the performance of this class of
machines.

Physical Structure of DC Machines
A representative DC machine was depicted in Figure 15.8, with the magnetic
poles clearly identified, for both the stator and the rotor. Figure 15.12 is a
photograph of the same type of machine. Note the salient pole construction of the
stator and the slotted rotor. As previously stated, the torque developed by the
machine is a consequence of the magnetic forces between stator and rotor poles.
This torque is maximum when the angle γ between the rotor and stator poles is
90°. Also, as you can see from the figure, in a DC machine the armature circuit is
on the rotor, and the field winding is on the stator.
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Figure 15.12 (a) DC machine; (b) rotor; (c) permanent-magnet stator
(Photos copyright © 2005, Rockwell Automation. All rights reserved.
Used with permission.)

To keep this torque angle close to 90° as the rotor spins on its shaft, a
mechanical switch, called a commutator, is configured so the rotor poles are
consistently close to 90° with respect to the fixed stator poles. In a DC machine,
the magnetizing current is DC so that there is no spatial alternation of the stator
poles due to time-varying currents. To understand the operation of the
commutator, consider the simplified diagram of Figure 15.13. In the figure, the
brushes are fixed, and the rotor revolves at an angular velocity ωm; the
instantaneous position of the rotor is given by the expression θ = ωmt – γ.



Figure 15.13 Rotor winding and commutator
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The commutator is fixed to the rotor and is made up in this example of six
segments that are made of electrically conducting material but are insulated from
one another. Further, the rotor windings are configured so that they form six coils,
connected to the commutator segments as shown in Figure 15.13.

As the commutator rotates counterclockwise, the rotor magnetic field rotates
with it up to θ = 30°. At that point, the direction of the current changes in coils L3
and L6 as the brushes make contact with the next segment. Now the direction of
the magnetic field is –30°. As the commutator continues to rotate, the direction of
the rotor field will again change from –30° to +30°, and it will switch again when
the brushes switch to the next pair of segments. In this machine, then, the torque
angle γ is not always 90°, but can vary by as much as ±30°; the actual torque
produced by the machine would fluctuate by as much as ±14 percent, since the
torque is proportional to sin γ. As the number of segments increases, the torque
fluctuation produced by the commutation is greatly reduced. In a practical
machine, for example, one might have as many as 60 segments, and the variation
of γ from 90° would be only ±3°, with a torque fluctuation of less than 1 percent.
Thus, the DC machine can produce a nearly constant torque (as a motor) or
voltage (as a generator).

Configuration of DC Machines
The DC machine of Figure 15.12 employs a permanent magnet to generate a
constant magnetic field in the stator. However, in DC machines, the field
excitation that provides the magnetizing current may be provided by an external
source, in which case the machine is said to be separately excited [Figure
15.14(a)]. More often, the field excitation is derived from the armature voltage,
and the machine is said to be self-excited. The latter configuration does not
require the use of a separate source for the field excitation and is therefore
frequently preferred. If a machine is in the separately excited configuration, an
additional source Vf is required. In the self-excited case, one method used to
provide the field excitation is to connect the field in parallel with the armature;
since the field winding typically has significantly higher resistance than the
armature circuit (remember that it is the armature that carries the load current),
this will not draw excessive current from the armature. Further, a series resistor
can be added to the field circuit to provide the means for adjusting the field
current independent of the armature voltage. This configuration is called a shunt-



connected machine and is depicted in Figure 15.14(b). Another method for self-
exciting a DC machine consists of connecting the field in series with the
armature, leading to the series-connected machine, depicted in Figure 15.14(c);
in this case, the field winding will support the entire armature current, and thus
the field coil must have low resistance (and therefore relatively few turns). This
configuration is rarely used for generators, since the generated voltage and the
load voltage must always differ by the voltage drop across the field coil, which
varies with the load current. Thus, a series generator would have poor (large)
regulation. However, series-connected motors are commonly used in traction
applications.

Figure 15.14 Basic configurations of DC machines with field
excitation.

DC Machine Models
As stated earlier, it is relatively easy to develop a simple model of a DC machine,
which is well suited to performance analysis, without the need to resort to the
Page 882details of the construction of the machine itself. This section illustrates



(15.6)

(15.7)

(15.8)

the development of such models in two steps. First, algebraic equations relating
field and armature currents and voltages to speed and torque are introduced;
second, the differential equations describing the dynamic behavior of DC
machines are derived.

When a field excitation is established, a magnetic flux ϕ is generated by the
field current If. From equation 15.2, we know that the torque acting on the rotor is
proportional to the product of the magnetic field and the current in the load-
carrying wire; the latter current is the armature current Ia (iw in equation 14.2).
Assuming that, by virtue of the commutator, the torque angle γ is kept very close
to 90°, and therefore sin γ = 1, we obtain the following expression for the torque
(in units of newton-meters) in a DC machine:

You may recall that this is simply a consequence of the Bli law of Chapter 14.
The mechanical power generated (or absorbed) is equal to the product of the
machine torque and the mechanical speed of rotation ωm rad/s, and is therefore
given by

Recall now that the rotation of the armature conductors in the field generated by
the field excitation causes a back emf Eb in a direction that opposes the rotation
of the armature. According to the Blu law (see Chapter 14), then, this back emf is
given by

where ka is called the armature constant and is related to the geometry and
magnetic properties of the structure. The voltage Eb represents a countervoltage
(opposing the DC excitation) in the case of a motor and the generated voltage in



(15.9)

(15.10)

(15.11)

(15.12)

the case of a generator. Thus, the electric power dissipated (or generated) by the
machine is given by the product of the back emf and the armature current:

The constants kT and ka in equations 15.6 and 15.8 are related to geometry
factors, such as the dimension of the rotor and the number of turns in the armature
winding, and to properties of materials, such as the permeability of the magnetic
materials. Note that in the ideal energy conversion case Pm = Pe, and therefore ka
= kT. We shall in general assume such ideal conversion of electric to mechanical
energy (or vice versa) and will therefore treat the two constants as being identical:
ka = kT. The constant ka is given by

where:
p = number of magnetic poles
N = number of conductors per coil
M = number of parallel paths in armature winding
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An important observation concerning the units of angular speed must be made
at this point. The equality (under the no-loss assumption) between the constants
ka and kT in equations 15.6 and 15.8 results from the choice of consistent units,
namely, volts and amperes for the electrical quantities and newton-meters and
radians per second for the mechanical quantities. You should be aware that it is
fairly common practice to refer to the speed of rotation of an electric machine in
units of revolutions per minute (r/min).1 In this book, we shall uniformly use the
symbol n to denote angular speed in revolutions per minute; the following
relationship should be committed to memory:

If the speed is expressed in revolutions per minute, the armature constant changes
as follows:



(15.13)

(15.14)

where

Having introduced the basic equations relating torque, speed, voltages, and
currents in electric machines, we may now consider the interaction of these
quantities in a DC machine at steady state, that is, operating at constant speed and
field excitation. Figure 15.15 depicts the electric circuit model of a separately
excited DC machine, illustrating both motor and generator action. It is very
important to note the reference direction of armature current flow, and of the
developed torque, to make a distinction between the two modes of operation. The
field excitation is shown as a voltage Vf generating the field current If that flows
through a variable resistor Rf and through the field coil Lf. The variable resistor
permits adjustment of the field excitation. The armature circuit, on the other hand,
consists of a voltage source representing the back emf Eb, the armature resistance
Ra, and the armature voltage Va. This model is appropriate both for motor and for
generator action. When Va < Eb, the machine acts as a generator (Ia flows out of
the machine). When Va > Eb, the machine acts as a motor (Ia flows into the
machine). Thus, according to the circuit model of Figure 15.15, the operation of a
DC machine at steady state (i.e., with the inductors in the circuit replaced by
short-circuits) is described by the following equations:



(15.15a)

(15.15b)

Figure 15.15 Electric circuit model of a separately excited DC machine

Equation 15.14 together with equations 15.6 and 15.8 may be used to determine
the steady-state operating condition of a DC machine.
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The circuit model of Figure 15.15 permits the derivation of a simple set of
differential equations that describe the dynamic analysis of a DC machine. The
dynamic equations describing the behavior of a separately excited DC machine
are as follows:

These equations can be related to the operation of the machine in the presence of
a load. If we assume that the motor is rigidly connected to an inertial load with



(15.16)

(15.17)

(15.18)

(15.19)

moment of inertia J and that the friction losses in the load are represented by a
viscous friction coefficient b, then the torque developed by the machine (in the
motor mode of operation) can be written as

where TL is the load torque. Typically TL is either constant or some function of
speed ωm in a motor. In the case of a generator, the load torque is replaced by the
torque supplied by a prime mover, and the machine torque T(t) opposes the
motion of the prime mover, as shown in Figure 15.15. Since the machine torque is
related to the armature and field currents by equation 15.6, equations 15.16 and
15.17 are coupled to each other; this coupling may be expressed as follows:

or

The dynamic equations described in this section apply to any DC machine. In the
case of a separately excited machine, a further simplification is possible, since the
flux is established by virtue of a separate field excitation, and therefore

where Nf is the number of turns in the field coil,  is the reluctance of the
structure, and If is the field current.

DC Machine Steady-State Equations
The equations that describe the steady-state behavior of DC motors and
generators are summarized below. The key to interpreting these equations is in
correctly evaluating the expression for the flux ϕ for each of the four cases of
interest in this chapter: field generated by a separate excitation, field generated by
a shunt connection, field generated by a series connection, and field generated by
a permanent magnet (constant field). See Figure 15.14 for a reference to the first
three configurations.
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DC Motor Steady-State Equations

In a separately excited machine [Figure 15.14(a)]:

where Vs is the external source voltage.

 In a shunt-connected machine [Figure 15.14(b)]:

In a series-connected machine [Figure 15.14(c)]:

Finally, in a permanent-magnet machine, where the field excitation is
provided by a permanent magnet:

DC Generator Steady-State Equations

where Vg is the generator open-circuit output voltage, with no load
connected. In a separately excited machine [Figure 15.14(a)]:



(15.20)

(15.21)

In a shunt-connected machine [Figure 15.14(b)]:

In a series-connected machine [Figure 15.14(b)]:

Finally, in a permanent-magnet machine:
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15.3 DIRECT-CURRENT MOTORS
DC motors are widely used in applications requiring accurate speed or torque
control, for example in servo systems. In the preceding section, we had
introduced the analysis of a separately excited DC machine; in this section we
extend that analysis to include a review of the other three commonly used
configurations (shunt, series, and permanent-magnet motors) to study their
torque–speed characteristics and dynamic behavior.

The Shunt Motor
In a shunt motor [see Figure 15.14(b)], the armature current is found by dividing
the net voltage across the armature circuit (source voltage minus back emf) by the
armature resistance:

An expression for the armature current may also be obtained from equation
15.17, as follows:



(15.22)

(15.23)

(15.24)

It is then possible to relate the torque requirements to the speed of the motor
by substituting equation 15.20 in equation 15.21:

Equation 15.22 describes the steady-state torque–speed characteristic of the
shunt motor. To understand this performance equation, we observe that if Vs, ka,
ϕ, and Ra are fixed in equation 15.22 (the flux is essentially constant in the shunt
motor for a fixed Vs), then the speed of the motor is directly related to the
armature current. Now consider the case where the load applied to the motor is
suddenly increased, causing the speed of the motor to drop. As the speed
decreases, the armature current increases, according to equation 15.20. The
excess armature current causes the motor to develop additional torque, according
to equation 15.21 until a new equilibrium is reached between the higher armature
current and developed torque and the lower speed of rotation. The equilibrium
point is dictated by the balance of mechanical and electric power, in accordance
with the relation:

Thus, the shunt DC motor will adjust to variations in load by changing its
speed to preserve this power balance. The torque–speed curves for the shunt
motor may be obtained by rewriting the equation relating the speed to the
armature current:
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To interpret equation 15.24, one can start by considering the motor operating
at rated speed and torque. As the load torque is reduced, the armature current will
also decrease, causing the speed to increase in accordance with equation 15.24.
The increase in speed depends on the extent of the voltage drop across the
armature resistance IaRa. The change in speed will be on the same order of
magnitude as this drop; it typically takes values around 10 percent. This



(15.25)

(15.26)

(15.27)

(15.28)

(15.29)

(15.30)

corresponds to a relatively good speed regulation, which is an attractive feature of
the shunt DC motor (recall the discussion of regulation in Section 15.1). The
dynamic behavior of the shunt motor is described by equations 15.15 through
15.18, with the additional relation:

Series Motors
The series motor [see Figure 15.14(c)] behaves somewhat differently from the
shunt and separately excited motors because the flux is established solely by
virtue of the series current flowing through the armature. It is relatively simple to
derive an expression for the emf and torque equations for the series motor if we
approximate the relationship between flux and armature current by assuming that
the motor operates in the linear region of its magnetization curve. Then we can
write

and the emf and torque equations become, respectively,

The circuit equation for the series motor becomes

where Ra is the armature resistance, RS is the series field winding resistance, and
RT is the total series resistance. From equation 15.29, we can solve for Ia and
substitute in the torque expression (equation 15.28) to obtain the following
torque–speed relationship:



(15.31)

(15.32)

which indicates the inverse squared relationship between torque and speed in the
series motor. This expression describes a behavior that can, under certain
conditions, become unstable. Since the speed increases when the load torque is
reduced, one can readily see that if one were to disconnect the load altogether, the
speed would tend to increase to dangerous values. To prevent excessive speeds,
series motors are always mechanically coupled to the load. This feature is not
necessarily a drawback, though, because series motors can develop very high
torque at low speeds and therefore can serve very well for traction-type loads
(e.g., conveyor belts or vehicle propulsion systems).
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The differential equation for the armature circuit of the motor can be given as

Permanent-Magnet DC Motors
Permanent-magnet (PM) DC motors have become increasingly common in
applications requiring relatively low torques and efficient use of space. The
construction of PM DC motors differs from that of the motors considered thus far
in that the magnetic field of the stator is produced by suitably located poles made
of magnetic materials. Thus, the basic principle of operation, including the idea of
commutation, is unchanged with respect to the wound-stator DC motor. What
changes is that there is no need to provide a field excitation, whether separately or
by means of the self-excitation techniques discussed in the preceding sections.
Therefore, the PM motor is intrinsically simpler than its wound-stator
counterpart.

The equations that describe the operation of the PM motor follow. The torque
produced is related to the armature current by a torque constant kPM, which is
determined by the geometry of the motor:

As in the conventional DC motor, the rotation of the rotor produces the usual
count or back emf Eb, which is linearly related to speed by a voltage constant
ka,PM:



(15.33)

(15.34)

(15.35)

(15.36)

The equivalent circuit of the PM motor is particularly simple, since we need not
model the effects of a field winding. Figure 15.16 shows the circuit model and the
torque–speed curve of a PM motor.

We can use the circuit model of Figure 15.16 to derive the torque–speed curve
shown in the same figure as follows. From the circuit model, for a constant speed
(and therefore constant current), we may consider the inductor a short-circuit and
write the equation:

Figure 15.16 Circuit model and torque–speed curve of PM motor
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thus obtaining the equations relating speed and torque:

and



(15.37)

(15.38)

(15.39)

(15.40)

1.

2.

From these equations, one can extract the stall torque T0, that is, the zero-
speed torque:

and the no-load speed ωm0:

Under dynamic conditions, assuming an inertia plus viscous friction load, the
torque produced by the motor can be expressed as

The differential equation for the armature circuit of the motor is therefore
given by

The fact that the airgap flux is constant in a PM DC motor makes its
characteristics somewhat different from those of the wound DC motor. A direct
comparison of PM and wound-field DC motors reveals the following advantages
and disadvantages of each configuration.

Comparison of Wound-Field and PM DC Motors
PM motors are smaller and lighter than wound motors for a given power
rating. Further, their efficiency is greater because there are no field
winding losses.
An additional advantage of PM motors is their essentially linear speed–
torque characteristic, which makes analysis (and control) much easier.
Reversal of rotation is also accomplished easily, by reversing the
polarity of the source.



3.

4.

A major disadvantage of PM motors is that they can become
demagnetized by exposure to excessive magnetic fields, application of
excessive voltage, or operation at excessively high or low temperatures.
A less obvious drawback of PM motors is that their performance is
subject to greater variability from motor to motor than is the case for
wound motors, because of variations in the magnetic materials.
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EXAMPLE 15.4 DC Shunt Motor Analysis
Problem
Find the speed and torque generated by a four-pole DC shunt motor.

Solution
Known Quantities: Motor ratings; circuit and magnetic parameters.
Find: ωm, T.

Schematics, Diagrams, Circuits, and Given Data:
Motor ratings: 3 hp, 240 V, 120 r/min.

Circuit and magnetic parameters: IS = 30 A; If = 1.4 A; Ra = 0.6 Ω; ϕ = 20 mWb;
N = 1,000; M = 4 (see equation 15.10).
Analysis: We convert the power to SI units:

Next we compute the armature current as the difference between source and field
current (equation 15.25):

The no-load armature voltage Eb is given by:



and equation 15.10 can be used to determine the armature constant:

Knowing the motor constant, we can calculate the speed, after equation 15.25:

Finally, the torque developed by the motor can be found as the ratio of the power
to the angular velocity:

CHECK YOUR UNDERSTANDING
A 200-V DC shunt motor draws 10 A at 1,800 r/min. The armature circuit
resistance is 0.15 Ω, and the field winding resistance is 350 Ω. What is the torque
developed by the motor?
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EXAMPLE 15.5 DC Shunt Motor Analysis
Problem

Answer: 



1.
2.
3.

4.

Determine the following quantities for the DC shunt motor, connected as shown
in the circuit of Figure 15.17:

Field current required for full-load operation.
No-load speed.
Plot of the speed torque curve of the machine in the range from no-load
torque to rated torque.
Power output at rated torque.

Figure 15.17 Shunt motor configuration

Solution
Known Quantities: Magnetization curve, rated current, rated speed, circuit
parameters.
Find: If; nno-load; T-n curve, Prated.

Schematics, Diagrams, Circuits, and Given Data:
Figure 15.18 (magnetization curve)

Motor ratings: 8 A, 120 r/min

Circuit parameters: Ra = 0.2 Ω; Vs = 7.2 V; N = number of coil turns in winding =
200



1.

2.

Figure 15.18 Magnetization curve for a small DC motor

Analysis:
To find the field current, we must find the generated emf since Rf is not
known. Writing KVL around the armature circuit, we obtain

Having found the back emf, we can find the field current from the
magnetization curve. At Eb = 5.6 V, we find that the field current and field
resistance are

To obtain the no-load speed, we use the equations:
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leading to

or

At no load, and assuming no mechanical losses, the torque is zero, and we
see that the current Ia must also be zero in the torque equation (T = kaϕIa).
Thus, the motor speed at no load is given by

We can obtain an expression for kaϕ knowing that, at full load:



3.

4.

so that, for constant field excitation:

Finally, we may solve for the no-load speed.

The torque at rated speed and load may be found as follows:

Now we have the two points necessary to construct the torque–speed curve
for this motor, which is shown in Figure 15.19.
The power is related to the torque by the frequency of the shaft:

or, equivalently:

Figure 15.19 Torque-speed curve for motor of Example 15.5.

EXAMPLE 15.6 DC Series Motor Analysis



Problem
Determine the torque developed by a DC series motor when the current supplied
to the motor is 60 A.

Solution
Known Quantities: Motor ratings; operating conditions.
Find: T60, torque delivered at 60-A series current.
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Schematics, Diagrams, Circuits, and Given Data:
Motor ratings: 10 hp, 115 V, full-load speed = 1,800 r/min

Operating conditions: motor draws 40 A
Assumptions: The motor operates in the linear region of the magnetization curve.
Analysis: Within the linear region of operation, the flux per pole is directly
proportional to the current in the field winding. That is,

The full-load speed is

or

Rated output power is

and full-load torque is

Thus, the machine constant may be computed from the torque equation for the
series motor:



At full load:

and we can compute the torque developed for a 60-A supply current to be

CHECK YOUR UNDERSTANDING
A series motor draws a current of 25 A and develops a torque of 100 N-m. Find
(a) the torque when the current rises to 30 A if the field is unsaturated and (b) the
torque when the current rises to 30 A and the increase in current produces a 10
percent increase in flux.

EXAMPLE 15.7 Dynamic Response of PM DC Motor
Problem
Develop a set of differential equations and a transfer function describing the
dynamic response of the motor angular velocity of a PM DC motor connected to a
mechanical load.
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Solution

Answer: (a) 144 N-m; (b) 132 N-m



Known Quantities: PM DC motor circuit model; mechanical load model.
Find: Differential equations and transfer functions of electromechanical system.
Analysis: The dynamic response of the electromechanical system can be
determined by applying KVL to the electric circuit (Figure 15.16) and Newton’s
second law to the mechanical system. These equations will be coupled to one
another, as you shall see, because of the nature of the motor back emf and torque
equations.

Applying KVL and equation 15.33 to the electric circuit, we obtain

or

Applying Newton’s second law and equation 15.32 to the load inertia, we obtain

or

These two differential equations are coupled because the first depends on ωm and
the second on Ia. Thus, they need to be solved simultaneously.

To derive the transfer function, we use the Laplace transform on the two
equations to obtain

We can write the above equations in matrix form and resort to Cramer’s rule to
solve for Ωm(s) as a function of VL(s) and Tload(s).

with solution:



or

Comments: Note that the dynamic response of the motor angular velocity
depends on both the input voltage and the load torque. This problem is explored
further in the homework problems.
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DC Drives and DC Motor Speed Control
The advances made in power semiconductors have made it possible to realize
low-cost speed control systems for DC motors. In this section we describe some
of the considerations that are behind the choice of a specific drive type, and some
of the loads that are likely to be encountered.

Constant-torque loads are quite common and are characterized by a need for
constant torque over the entire speed range. This need is usually due to friction;
the load will demand increasing horsepower at higher speeds, since power is the
product of speed and torque. Thus, the power required will increase linearly with
speed. This type of loading is characteristic of conveyors, extruders, and surface
winders.

Another type of load is one that requires constant horsepower over the speed
range of the motor. Since torque is inversely proportional to speed with constant
horsepower, this type of load will require higher torque at low speeds. Examples
of constant-horsepower loads are machine tool spindles (e.g., lathes). This type of
application requires very high starting torques.

Variable-torque loads are also common. In this case, the load torque is related
to the speed in some fashion, either linearly or geometrically. For some loads, for
example, torque is proportional to the speed (and thus horsepower is proportional
to speed squared); examples of loads of this type are positive displacement
pumps. More common than the linear relationship is the squared-speed



dependence of inertial loads such as centrifugal pumps, some fans, and all loads
in which a flywheel is used for energy storage.

To select the appropriate motor and adjustable-speed drive for a given
application, we need to examine how each method for speed adjustment operates
on a DC motor. Armature voltage control serves to smoothly adjust speed from 0
to 100 percent of the nameplate rated value (i.e., base speed), provided that the
field excitation is also equal to the rated value. Within this range, it is possible to
fully control motor speed for a constant-torque load, thus providing a linear
increase in horsepower, as shown in Figure 15.20. Field weakening allows for
increases in speed of up to several times the base speed; however, field control
changes the characteristics of the DC motor from constant torque to constant
horsepower, and therefore the torque output drops with speed, as shown in Figure
15.20. Operation above base speed requires special provision for field control, in
addition to the circuitry required for armature voltage control, and is therefore
more complex and costly.

Figure 15.20 Speed control in DC motors
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CHECK YOUR UNDERSTANDING
Describe the cause-and-effect behavior of the speed control method of changing
armature voltage for a shunt DC motor.

current to drop and the motor torque to decrease until a balance
condition is reached between motor and load torque and the motor runs
at constant speed.



15.4 DIRECT-CURRENT GENERATORS
The same analysis and equations used in the preceding section can be applied to
DC generators, with the understanding that in a motor, the external voltage Vs is a
DC supply that enables the motor to generate a torque, while in a generator the
torque provided by a prime mover results in the motor rotating at a speed Ω,
which in turn generates an open-circuit voltage Vg. When the generator is
connected to a load, armature current flows, and a load voltage VL is generated.
Figure 15.21 depicts the configuration of a separately excited DC generator, and
Figure 15.22 depicts a magnetization curve for a generator that can be used to
calculate the back emf (generator open-circuit voltage) as a function of field
current. Two examples follow, to illustrate methods of analysis for DC generators.

Figure 15.21 Separately excited DC generator

Answer: Increasing the armature voltage leads to an increase in
armature current. Consequently, the motor torque increases until it

exceeds the load torque, causing the speed to increase as well. The
corresponding increase in back emf, however, causes the armature

ddhdilbl



1.

2.
3.

1.

Figure 15.22 Separately excited DC generator magnetization curve

EXAMPLE 15.8 Separately Excited DC Generator
Problem
A separately excited DC generator is characterized by the magnetization of
Figure 15.22.

If the prime mover is driving the generator at 800 r/min, what is the no-load
terminal voltage Va?
If a 1-Ω load is connected to the generator, what is the generator voltage?
Assume steady-state operation.
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Solution
Known Quantities: Generator magnetization curve and ratings.
Find: Terminal voltage with no load and 1-Ω load.
Schematics, Diagrams Circuits and Green Data: Generator ratings: 100 V, 100
A, 1,000 r/min. Circuit parameters: Ra = 0.14 Ω; Vf = 100 V; Rf = 100 Ω.

Analysis:
The field current in the machine at steady state is



2.

From the magnetization curve, it can be seen that this field current will
produce 100 V at a speed of 1,000 r/min. Since this generator is actually
running at 800 r/min, the induced emf may be found by assuming a linear
relationship between speed and emf. This approximation is reasonable,
provided that the departure from the nominal operating condition is small.
Let n0 and Eb0 be the nominal speed and emf, respectively (that is, 1,000
r/min and 100 V). Then:

and therefore:

The open-circuit (output) terminal voltage of the generator is equal to the
emf from the circuit model of Figure 15.15: therefore:

When a load resistance is connected to the circuit (the practical situation), the
terminal (or load) voltage is no longer equal to Eb, since there will be a
voltage drop across the armature winding resistance. The armature (or load)
current may be determined from

where R2 = 1 Ω is the load resistance. The terminal (load) voltage is therefore
given by

CHECK YOUR UNDERSTANDING
A 24-coil, two-pole DC generator has 16 turns per coil in its armature winding.
The field excitation is 0.05 Wb per pole, and the armature angular velocity is 180



1.
2.
3.
4.

1.

rad/s. Find the machine constant and the total induced voltage.
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EXAMPLE 15.9 Separately Excited DC Generator
Problem
Determine the following quantities for a separately excited DC:

Induced voltage
Machine constant
Torque developed at rated conditions
Assume steady-state operation

Solution
Known Quantities: Generator ratings and machine parameters.
Find: Eb, ka, T.

Schematics, Diagrams, Circuits, and Given Data: Generator ratings: 1,000 kW,
2,000 V, 3,600 r/min. Circuit parameters: R0 = 0.1 Ω, flux per pole ϕ = 0.5 Wb.

Analysis:
The armature current may be found by observing that the rated power is
equal to the product of the terminal (load) voltage and the current. Then:

The generated voltage is equal to the sum of the terminal voltage and the
voltage drop across the armature resistance (see Figure 15.14):

Answer: ka = 5.1; Eb = 45.9 V



2.

3.

The speed of rotation of the machine in units of radians per second is

Thus, the machine constant is found to be

The torque developed is found from equation 15.6:

Comments: In many practical cases, it is not actually necessary to know the
armature constant and the flux separately, but it is sufficient to know the value of
the product kaϕ. For example, suppose that the armature resistance of a DC
machine is known and that, given a known field excitation, the armature current,
load voltage, and speed of the machine can be measured. Then the product kaϕ
may be determined from equation 15.8, as follows:

where VL, Ia and ωm are measured quantities for given operating conditions.
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CHECK YOUR UNDERSTANDING
A 1,000-kW, 1,000-V, 2,400 r/min separately excited DC generator has an
armature circuit resistance of 0.04 Ω. The flux per pole is 0.4 Wb. Find (a) the
induced voltage, (b) the machine constant, and (c) the torque developed at the
rated conditions.

Answer: 



CHECK YOUR UNDERSTANDING
A 100-kW, 250-V shunt generator has a field circuit resistance of 50 Ω and an
armature circuit resistance of 0.05 Ω. Find (a) the full-load line current flowing to
the load, (b) the field current, (c) the armature current, and (d) the full-load
generator voltage.

15.5 ALTERNATING-CURRENT MACHINES
AC machines represent the vast majority of industrial applications. The objective
of this section is to explain the basic operation of both synchronous and induction
machines and to outline their performance characteristics. In doing so, we also
point out the relative advantages and disadvantages of these machines in
comparison with DC machines.

Rotating Magnetic Fields
As mentioned in Section 15.1, the fundamental principle of operation of AC
machines is the generation of a rotating magnetic field, which causes the rotor to
turn at a speed that depends on the speed of rotation of the magnetic field. We
now explain how a rotating magnetic field can be generated in the stator and air
gap of an AC machine by means of alternating currents.

Consider the stator shown in Figure 15.23, which supports windings a-a′, b-
b′, and c-c′. The coils are geometrically spaced 120° apart, and a three-phase
voltage is applied to the coils. As you may recall from the discussion of AC
power in Chapter 13, the currents generated by a three-phase source are also
spaced by 120°, as illustrated in Figure 15.24. The phase voltages referenced to
the neutral terminal would then be given by the expressions

Answer: (a) 400 A; (b) 5 A; (c) 405 A; (d) 270.25 V



Figure 15.23 Two-pole three-phase stator

Figure 15.24 Three-phase stator winding currents
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where ωe is the frequency of the AC supply, or line frequency. The coils in each
winding are arranged in such a way that the flux distribution generated by any
one winding is approximately sinusoidal. Such a flux distribution may be
obtained by appropriately arranging groups of coils for each winding over the
stator surface. Since the coils are spaced 120° apart, the flux distribution resulting
from the sum of the contributions of the three windings is the sum of the fluxes



due to the separate windings, as shown in Figure 15.25. Thus, the flux in a three-
phase machine rotates in space according to the vector diagram of Figure 15.26,
and the flux is constant in amplitude. A stationary observer on the machine’s
stator would see a sinusoidally varying flux distribution, as shown in Figure
15.25.

Figure 15.25 Flux distribution in a three-phase stator winding as a
function of angle of rotation

Figure 15.26 Rotating flux in a three-phase machine

Since the resultant flux of Figure 15.25 is generated by the currents of Figure
15.24, the speed of rotation of the flux must be related to the frequency of the
sinusoidal phase currents. In the case of the stator of Figure 15.23, the number of
magnetic poles resulting from the winding configuration is two; however, it is
also possible to configure the windings so that they have more poles. For
example, Figure 15.27 depicts a simplified view of a four-pole stator.



(15.41)

Figure 15.27 Four-pole stator

In general, the speed of the rotating magnetic field is determined by the
frequency of the excitation current f and by the number of poles present in the
stator p according to

where ns (or ωs) is usually called the synchronous speed.

Now, the structure of the windings in the preceding discussion is the same
whether the AC machine is a motor or a generator; the distinction between the
two depends on the direction of power flow. In a generator, the electromagnetic
torque is a reaction torque that opposes rotation of the machine; this is the torque
against which the prime mover does work. In a motor, on the other hand, the
rotational (motional) voltage generated in the armature opposes the applied
voltage; this voltage is the counter- (or back) emf. Thus, the description of the
rotating magnetic field given thus far applies to both motor and generator action
in AC machines.
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As described a few paragraphs earlier, the stator magnetic field rotates in an
AC machine, and therefore the rotor cannot “catch up” with the stator field and is
in constant pursuit of it. The speed of rotation of the rotor will therefore depend
on the number of magnetic poles present in the stator and in the rotor. The
magnitude of the torque produced in the machine is a function of the angle γ
between the stator and rotor magnetic fields; precise expressions for this torque
depend on how the magnetic fields are generated and will be given separately for
the two cases of synchronous and induction machines. What is common to all
rotating machines is that the number of stator and rotor poles must be identical if
any torque is to be generated. Further, the number of poles must be even, since
for each north pole there must be a corresponding south pole.



One important desired feature in an electric machine is an ability to generate a
constant electromagnetic torque. With a constant-torque machine, one can avoid
torque pulsations that could lead to undesired mechanical vibration in the motor
itself and in other mechanical components attached to the motor (e.g., mechanical
loads, such as spindles or belt drives). A constant torque may not always be
achieved although it will be shown that it is possible to accomplish this goal when
the excitation currents are multiphase. A general rule of thumb, in this respect, is
that it is desirable, insofar as possible, to produce a constant flux per pole.

15.6 THE ALTERNATOR (SYNCHRONOUS
GENERATOR)
One of the most common AC machines is the synchronous generator, or
alternator. In this machine, the field winding is on the rotor, and the connection
is made by means of brushes, in an arrangement similar to that of the DC
machines studied earlier. The rotor field is obtained by means of a direct current
provided to the rotor winding, or by permanent magnets. The rotor is then
connected to a mechanical source of power and rotates at a speed that we will
consider constant to simplify the analysis.

Figure 15.28 depicts a two-pole three-phase synchronous machine. Figure
15.29 depicts a four-pole three-phase alternator, in which the rotor poles are
generated Page 902by means of a wound salient pole configuration and the stator
poles are the result of windings embedded in the stator according to the simplified
arrangement shown in the figure, where each of the pairs a/a′, b/b′, and so on
contributes to the generation of the magnetic poles, as follows. The group a/a′,
b/b′, c/c′ produces a sinusoidally distributed flux (see Figure 15.25)
corresponding to one of the pole pairs, while the group –a/ –a′, –b/ –b′, –c/ –c′
contributes the other pole pair. The connections of the coils making up the
windings are also shown in Figure 15.29. Note that the coils form a wye
connection (see Chapter 13). The resulting flux distribution is such that the flux
completes two sinusoidal cycles around the circumference of the air gap. Note
also that each arm of the three-phase wye connection has been divided into two
coils, wound in different locations, according to the schematic stator diagram of
Figure 15.29. One could then envision analogous configurations with greater
numbers of poles, obtained in the same fashion, that is, by dividing each arm of a
wye connection into more windings.
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Figure 15.28 Two-pole synchronous machine

Figure 15.29 Four-pole three-phase alternator

The arrangement shown in Figure 15.29 requires that a further distinction be
made between mechanical degrees θm and electrical degrees θe. In the four-pole
alternator, the flux will see two complete cycles during one rotation of the rotor,
and therefore the voltage that is generated in the coils will also oscillate at twice
the frequency of rotation. In general, the electrical degrees (or radians) are related
to the mechanical degrees by the expression:

where p is the number of poles. In effect, the voltage across a coil of the machine
goes through one cycle every time a pair of poles moves past the coil. Thus, the
frequency of the voltage generated by a synchronous generator is
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(15.44)

where n is the mechanical speed in revolutions per minute. Alternatively, if the
speed is expressed in radians per second, we have

where ωm is the mechanical speed of rotation in radians per second. The number
of poles employed in a synchronous generator is then determined by two factors:
the frequency desired of the generated voltage (e.g., 60 Hz, if the generator is
used to produce AC power) and the speed of rotation of the prime mover. In the
latter Page 903respect, there is a significant difference, for example, between the
speed of rotation of a steam turbine generator and that of a hydroelectric
generator, the former being much greater.

A common application of the alternator is seen in automotive battery-charging
systems, in which, however, the generated AC voltage is rectified to provide the
DC required for charging the battery. Figure 15.30 depicts an automotive
alternator.

Figure 15.30 Automotive alternator (© 2012 Remy International, Inc.
All rights reserved.)

CHECK YOUR UNDERSTANDING
A synchronous generator has a multipolar construction that permits changing its
synchronous speed. If only two poles are energized, at 50 Hz, the speed is 3,000
r/min. If the number of poles is progressively increased to 4, 6, 8, 10, and 12, find
the synchronous speed for each configuration. Draw the complete equivalent
circuit of a synchronous generator and its phasor diagram.
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15.7 THE SYNCHRONOUS MOTOR
Synchronous motors are virtually identical to synchronous generators with regard
to their construction, except for an additional winding for helping start the motor
and minimizing motor speed over- and undershoots. The principle of operation is,
of course, the opposite: An AC excitation provided to the armature generates a
magnetic field in the air gap between stator and rotor, resulting in a mechanical
torque. To generate the rotor magnetic field, some direct current must be provided
to the field windings; this is often accomplished by means of an exciter, which
consists of a small DC generator propelled by the motor itself, and therefore
mechanically connected to it. It was mentioned earlier that to obtain a constant
torque in an electric motor, it is necessary to keep the rotor and stator magnetic
fields constant relative to each other. This means that the electromagnetically
rotating field in the stator and the mechanically rotating rotor field should be
aligned at all times. The only condition for which this is possible occurs if both
fields are rotating at the synchronous speed ns = 120 f/p. Thus, synchronous
motors are by their very nature constant-speed motors, if the excitation frequency
is constant.

For a non–salient pole (cylindrical rotor) synchronous machine, the torque
can be written in terms of the stator alternating current iS(t) and the rotor direct
current, If :

where γ is the angle between the stator and rotor fields (see Figure 15.7). Let the
angular speed of rotation be
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Answer: 1,500, 1,000, 750, 600, and 500 r/min
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(15.48)

(15.49)

(15.50)

(15.51)

where ωm = 2πn/60, and let ωe be the electrical frequency of iS(t), where 
 Then the torque may be expressed as

where k is a machine constant, IS is the rms value of the stator current, and If is
the rotor direct current. Now, the rotor angle γ can be expressed as a function of
time by

where γ0 is the angular position of the rotor at t = 0; the torque expression then
becomes

It is a straightforward matter to show that the average value of this torque,
denoted by 〈T〉, is different from zero only if ωm = ±ωe, that is, only if the
motor is turning at the synchronous speed. The resulting average torque is then
given by

Note that equation 15.49 corresponds to the sum of an average torque plus a
fluctuating component at twice the original electrical (or mechanical) frequency.
The fluctuating component results because, in the foregoing derivation, a single-
phase current was assumed. The use of multiphase currents reduces the torque
fluctuation to zero and permits the generation of a constant torque.

A per-phase circuit model describing the synchronous motor is shown in
Figure 15.31, where the rotor circuit is represented by a field winding equivalent
resistance and inductance, Rf and Lf, respectively, and the stator circuit is
represented by equivalent stator winding inductance and resistance, LS and RS,
respectively, and by the induced emf Eb. From the exact equivalent circuit as
given in Figure 15.31, we have



(15.52)

(15.53)

Figure 15.31 Per-phase circuit model

where XS is known as the synchronous reactance and includes magnetizing
reactance.

The motor power is

for each phase, where T is the developed torque and θ is the angle between the
stator voltage and current, VS and IS.

When the phase winding resistance RS is neglected, the circuit model of a
synchronous machine can be redrawn as shown in Figure 15.32. The input power
(per phase) is equal to the output power in this circuit, since no power is
dissipated in the circuit:

Figure 15.32 Per-phase circuit model of synchronous machines with
winding resistance neglected.
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(15.55)

(15.56)

Also by inspection of Figure 15.32, we have

Then:
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The total power of a three-phase synchronous machine is then given by

Because of the dependence of the power upon the angle δ, this angle has come to
be called the power angle. If δ is zero, the synchronous machine cannot develop
useful power. The developed power has its maximum value at δ equal to 90°. If
we assume that ∣Eb∣ and ∣VS∣ are constant, we can draw the curve shown in
Figure 15.33, relating the power and power angle in a synchronous machine.

Figure 15.33 Power versus power angle for a synchronous machine

A synchronous generator is usually operated at a power angle varying from
15° to 25°. For synchronous motors and small loads, δ is close to 0°, and the
motor torque is just sufficient to overcome its own windage and friction losses; as
the load increases, the rotor field falls further out of phase with the stator field
(although the two are still rotating at the same speed) until δ reaches a maximum
at 90°. If the load torque exceeds the maximum torque, which is produced for δ =



(15.57)

(15.58)

90°, the motor is forced to slow down below synchronous speed. This condition is
undesirable, and provisions are usually made to shut down the motor
automatically whenever synchronism is lost. The maximum torque is called the
pull-out torque and is an important measure of the performance of the
synchronous motor.

Accounting for each of the phases, the total torque is given by

where m is the number of phases. From Figure 15.32, we have Eb sin(δ) = XSIS
cos(θ). Therefore, for a three-phase machine, the developed torque is

Typically, analysis of multiphase motors is performed on a per-phase basis, as
illustrated in Examples 15.10 and 15.11.

EXAMPLE 15.10 Synchronous Motor Analysis
Problem
Find the kilovoltampere rating, the induced voltage, and the power angle of the
rotor for a fully loaded synchronous motor.

Solution
Known Quantities: Motor ratings; motor synchronous impedance.
Find: S; Eb; δ.

Schematics, Diagrams, Circuits, and Given Data: Motor ratings: 460 V; three-
phase; power factor = 0.707 lagging; full-load stator current: 12.5 A. ZS = 1 + j12
Ω.
Assumptions: Use per-phase analysis.
Analysis: The circuit model for the motor is shown in Figure 15.34. The per-
phase current in the wye-connected stator winding is



Figure 15.34 Circuit model of synchronous motor.
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The per-phase voltage is

The kilovoltampere rating of the motor is expressed in terms of the apparent
power S (see Chapter 13):

From the equivalent circuit, we have

The induced line voltage is defined to be

From the expression for Eb, we can find the power angle:

Comments: The minus sign indicates that the machine is in the motor mode.



EXAMPLE 15.11 Synchronous Motor Analysis
Problem
Find the stator current, the line current, and the induced voltage for a synchronous
motor, with reference to Figure 15.34, where ZS = RS + jXS.

Solution
Known Quantities: Motor ratings; motor synchronous impedance.
Find: IS; Iline; Eb.

Schematics, Diagrams, Circuits, and Given Data: Motor ratings: 208 V; three-
phase; 45 kVA; 60 Hz; power factor = 0.8 leading; ZS = 0 + j2.5 Ω. Friction and
windage losses: 1.5 kW; core losses: 1.0 kW; load power: 15 hp.
Assumptions: Use per-phase analysis.
Analysis: The output power of the motor is 15 hp; that is,

The electric power supplied to the machine is

As discussed in Chapter 13, the resulting line current is
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Because of the delta connection, the armature current is

The emf may be found from the equivalent circuit and KVL:

The power angle is



CHECK YOUR UNDERSTANDING
Find an expression for the maximum pull-out torque of the synchronous motor.

Synchronous motors are not very commonly used in practice, for various
reasons, among which are that they are essentially required to operate at constant
speed (unless a variable-frequency AC supply is available) and that they are not
self-starting. Further, separate AC and DC supplies are required. It will be seen
shortly that the induction motor overcomes most of these drawbacks.

15.8 THE INDUCTION MOTOR
The induction motor is the most widely used electric machine, because of its
relative simplicity of construction. The stator winding of an induction machine is
similar to that of a synchronous machine; thus, the description of the three-phase
winding of Figure 15.23 also applies to induction machines. The primary
advantage of the induction machine, which is almost exclusively used as a motor
(its performance as a generator is not very good), is that no separate excitation is
required for the rotor. The rotor typically consists of one of two arrangements: a
squirrel cage or a wound rotor. The former contains conducting bars short-
circuited at the end and embedded within it; the latter consists of a multiphase
winding similar to that used for the stator, but electrically short-circuited.

In either case, the induction motor operates by virtue of currents induced from
the stator field in the rotor. In this respect, its operation is similar to that of a
transformer, in that currents in the stator (which acts as a primary coil) induce
currents in the rotor (acting as a secondary coil). In most induction motors, no
external electrical connection is required for the rotor, thus permitting a simple,
rugged construction without the need for slip rings or brushes. Unlike the
synchronous motor, the induction motor operates not at synchronous speed, but at
a somewhat lower speed, which is dependent on the load. Figure 15.35 illustrates

Answer: 



the appearance of a squirrel cage induction motor. The following discussion
focuses mainly on this very common configuration.
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Figure 15.35 (a) Squirrel cage induction motor; (b) conductors in rotor;
(c) photograph of squirrel cage induction motor; (d) views of Smokin’
Buckeye motor: rotor, stator, and cross section of stator ((c) Normal
Life/Shutterstock; (d) Courtesy: David H. Koether Photography)

By now you are acquainted with the notion of a rotating stator magnetic field.
Imagine now that a squirrel cage rotor is inserted in a stator in which such a
rotating magnetic field is present. The stator field will induce voltages in the cage
conductors, and if the stator field is generated by a three-phase source, the
resulting rotor currents—which circulate in the bars of the squirrel cage, with the
conducting path completed by the shorting rings at the end of the cage—are also
three-phase and are determined by the magnitude of the induced voltages and by



(15.59)

(15.60)

(15.61)

the impedance of the rotor. Since the rotor currents are induced by the stator field,
the number of poles and the speed of rotation of the induced magnetic field are
the same as those of the stator field, if the rotor is at rest. Thus, when a stator
field is initially applied, the rotor field is synchronous with it, and the fields are
stationary with respect to one another. Thus, according to the earlier discussion, a
starting torque is generated.

If the starting torque is sufficient to cause the rotor to start spinning, the rotor
will accelerate up to its operating speed. However, an induction motor can never
reach synchronous speed; if it did, the rotor would appear to be stationary with
respect to the rotating stator field, since it would be rotating at the same speed.
But in the absence of relative motion between the stator and rotor fields, no
voltage would be induced in the rotor. Thus, an induction motor is limited to
speeds somewhere below the synchronous speed ns. Let the speed of rotation of
the rotor be n; then the rotor is losing ground with respect to the rotation of the
stator field Page 909at a speed ns – n. In effect, this is equivalent to backward
motion of the rotor at the slip speed, defined by ns – n. The slip s is usually
defined as a fraction of ns:

which leads to the following expression for the rotor speed:

The slip s is a function of the load, and the amount of slip in a given motor is
dependent on its construction and rotor type (squirrel cage or wound rotor). Since
there is a relative motion between the stator and rotor fields, voltages will be
induced in the rotor at a frequency called the slip frequency, fR = sf, where f is
the frequency of the sinusoidal excitation related to the relative speed of the two
fields. This gives rise to an interesting phenomenon: The rotor field travels
relative to the rotor at the slip speed sns, but the rotor is mechanically traveling at
the speed (1 – s)ns, so that the net effect is that the rotor field travels at the speed:



that is, at synchronous speed. The fact that the rotor field rotates at synchronous
speed—although the rotor itself does not—is extremely important because it
means that the stator and rotor fields will continue to be stationary with respect to
each other, and therefore a net torque can be produced.

As in the case of DC and synchronous motors, important characteristics of
induction motors are the starting torque, the maximum torque, and the torque–
speed curve. These will be discussed shortly, after some analysis of the induction
motor is performed.

EXAMPLE 15.12 Induction Motor Analysis
Problem
Find the full-load rotor slip and frequency of the induced voltage at rated speed in
a four-pole induction motor.

Solution
Known Quantities: Motor ratings.
Find: s; fR.

Schematics, Diagrams, Circuits, and Given Data: Motor ratings: 230 V; 60 Hz;
full-load speed: 1,725 r/min.
Analysis: The synchronous speed of the motor is

The slip is
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The rotor frequency fR is



(15.62)

(15.63)

CHECK YOUR UNDERSTANDING
A three-phase induction motor has six poles. (a) If the line frequency is 60 Hz,
calculate the speed of the magnetic field in revolutions per minute. (b) Repeat the
calculation if the frequency is changed to 50 Hz.

The induction motor can be described by means of an equivalent circuit,
which is essentially that of a rotating transformer. (See Chapter 13 for a circuit
model of the transformer.) Figure 15.36 depicts such a circuit model, where:

The primary internal stator voltage ES is coupled to the secondary rotor voltage
ER by an ideal transformer with an effective turns ratio of α. For the rotor circuit,
the induced voltage at any slip will be

where ER0 is the induced rotor voltage at the condition in which the rotor is
stationary. Also, XR = ωRLR = 2πfRLR = 2πsfLR = sXR0, where XR0 = 2πfLR is the
reactance when the rotor is stationary. The rotor current is given by

The resulting rotor equivalent circuit is shown in Figure 15.37.

Answer: (a) n = 1,200 r/min; (b) n = 1,000 r/min



(15.64)

(15.65)

(15.66)

(15.67)

Figure 15.36 Circuit model for induction machine

Figure 15.37 Rotor circuit
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The voltages, currents, and impedances on the secondary (rotor) side can be
reflected to the primary (stator) by means of the effective turns ratio. When this
transformation is effected, the transformed rotor voltage is given by

The transformed (reflected) rotor current is

The transformed rotor resistance can be defined as

and the transformed rotor reactance can be defined by

The final per-phase equivalent circuit of the induction motor is shown in Figure
15.38.



1.
2.
3.
4.

Figure 15.38 Equivalent circuit of an induction machine

Examples 15.13 and 15.14 illustrate the use of the circuit model in
determining the performance of the induction motor.

EXAMPLE 15.13 Induction Motor Analysis
Problem
Determine the following quantities for an induction motor, using the circuit
model of Figures 15.36 to 15.38.

Speed
Stator current
Power factor
Output torque

Solution
Known Quantities: Motor ratings; circuit parameters.
Find: n; ωm; IS; power factor (pf); T.
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Schematics, Diagrams, Circuits, and Given Data: Motor ratings: 460 V; 60 Hz;
four poles; s = 0.022; Pout = 14 hp; RS = 0.641 Ω; R2 = 0.332 Ω; XS = 1.106 Ω; X2
= 0.464 Ω; Xm = 26.3 Ω



1.

2.

3.

Assumptions: Use per-phase analysis. Neglect core losses (RC = 0).

Analysis:
The per-phase equivalent circuit is shown in Figure 15.38. The synchronous
speed is found to be

or

The rotor mechanical speed is

or

The reflected rotor impedance is found from the parameters of the per-phase
circuit to be

The combined magnetization plus rotor impedance is therefore equal to

and the total impedance is

Finally, the stator current is given by

The power factor is



4.

1.
2.
3.

The output power Pout is

and the output torque is
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CHECK YOUR UNDERSTANDING
A four-pole induction motor operating at a frequency of 60 Hz has a full-load slip
of 4 percent. Find the frequency of the voltage induced in the rotor (a) at the
instant of starting and (b) at full load.

EXAMPLE 15.14 Induction Motor Analysis
Problem
Determine the following quantities for a three-phase induction motor, using the
circuit model of Figure 15.38.

Stator current
Power factor
Full-load electromagnetic torque

Answer: (a) fR = 60 Hz; (b) fR = 2.4 Hz



Solution
Known Quantities: Motor ratings; circuit parameters.
Find: IS; pf; T.

Schematics, Diagrams, Circuits, and Given Data: Motor ratings: 500 V; three-
phase; 50 Hz; p = 8; s = 0.05; P = 14 hp.

Circuit parameters:  magnetic
branch admittance describing core loss and mutual inductance = 0.004 – j0.05 Ω–

1; stator/rotor turns ratio = 1:α = 1:1.57.
Assumptions: Use per-phase analysis. Neglect mechanical losses.
Analysis: The approximate equivalent circuit of the three-phase induction motor
on a perphase basis is shown in Figure 15.39. The parameters of the model are
calculated as follows:

Figure 15.39 Per-phase equivalent circuit of induction machine.
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Using the approximate circuit, we have



CHECK YOUR UNDERSTANDING
A four-pole, 1,746 r/min, 220-V, three-phase, 60-Hz, 10-hp, Y-connected
induction machine has the following parameters: RS = 0.4 Ω, R2 = 0.14 Ω, Xm =
16 Ω, XS = 0.35 Ω, X2 = 0.35 Ω, RC = ∞. Using Figure 15.38 find (a) the stator
current, (b) the rotor current, (c) the motor power factor, and (d) the total stator
power input.

Performance of Induction Motors
The performance of induction motors can be described by torque–speed curves
similar to those already used for DC motors. Figure 15.40 depicts an induction
motor torque–speed curve, with five torque ratings marked a through e. Point a is
the starting torque, also called breakaway torque, and is the torque available
with the rotor “locked,” that is, in a stationary position. At this condition, the
frequency of the voltage induced in the rotor is highest, since it is equal to the
frequency of rotation of the stator field; consequently, the inductive reactance of
the rotor is greatest. As the rotor accelerates, the torque drops off, reaching a
minimum value called the pull-up torque (point b); this typically occurs
somewhere between 25 and 40 percent of synchronous speed. As the rotor speed
continues to increase, the rotor reactance decreases further (since the frequency of
the induced voltage is determined by the relative speed of rotation of the rotor

Answer: (a) 25.92∠−22.43° A; (b) 24.35∠−6.51° A; (c) 0.9243; (d)
9,129 W



(15.68)

with respect to the stator field). The torque becomes a maximum when the rotor
inductive reactance is equal Page 915to the rotor resistance; maximum torque is
also called breakdown torque (point c). Beyond this point, the torque drops off
until it is zero at synchronous speed, as discussed earlier. Also marked on the
curve are the 150 percent torque (point d) and the rated torque (point e).

Figure 15.40 Performance curve for induction motor

A general formula for the computation of the induction motor steady-state
torque–speed characteristic is

where m is the number of phases.
Different construction arrangements permit the design of induction motors

with different torque–speed curves, thus permitting the user to select the motor
that best suits a given application. Figure 15.41 depicts the four basic
classifications—classes A, B, C, and D—as defined by NEMA. The determining
features in the classification are the locked-rotor torque and current, the
breakdown torque, the pull-up torque, and the percentage of slip. Class A motors
have a higher breakdown torque than class B motors, and a slip of 5 percent or
less. Motors in this class are often designed for a specific application. Class B
motors are general-purpose motors; this is the most commonly used type of
induction motor, with typical values of slip of 3 to 5 percent. Class C motors have
a high starting torque for a given starting current, and a low slip. These motors



are typically used in applications demanding high starting torque but having
relatively normal running loads, once the running speed has been reached. Class
D motors are characterized by high starting torque, high slip, low starting current,
and low full-load speed. A typical value of slip is around 13 percent.

Figure 15.41 Induction motor classification

Factors that should be considered in the selection of an AC motor for a given
application are the speed range, both minimum and maximum, and the speed
variation. For example, it is important to determine whether constant speed is
required; what variation might be allowed, either in speed or in torque; or whether
variable-speed operation is required, in which case a variable-speed drive will be
needed. Page 916The torque requirements are obviously important as well. The
starting and running torque should be considered; they depend on the type of
load. Starting torque can vary from a small percentage of full-load torque to
several times full-load torque. Furthermore, the excess torque available at start-up
determines the acceleration characteristics of the motor. Similarly, deceleration
characteristics should be considered, to determine whether external braking
might be required.

Another factor to be considered is the duty cycle of the motor. The duty cycle,
which depends on the nature of the application, is an important consideration
when the motor is used in repetitive, noncontinuous operation, such as is
encountered in some types of machine tools. If the motor operates at zero or
reduced load for periods of time, the duty cycle—that is, the percentage of the
time the motor is loaded—is an important selection criterion. Last, but by no
means least, are the thermal properties of a motor. Motor temperature is
determined by internal losses and by ventilation; motors operating at a reduced
speed may not generate sufficient cooling, and forced ventilation may be
required.



Thus far, we have not considered the dynamic characteristics of induction
motors. Among the integral-horsepower induction motors (i.e., motors with
horsepower rating greater than 1), the most common dynamic problems are
associated with starting and stopping and with the ability of the motor to continue
operation during supply system transient disturbances. Dynamic analysis methods
for induction motors depend to a considerable extent on the nature and
complexity of the problem and the associated precision requirements. When the
electric transients in the motor are to be included as well as the motion transients,
and especially when the motor is an important element in a large network, the
simple transient equivalent circuit of Figure 15.42 provides a good starting
approximation. There,  is called the transient reactance. The voltage  is
called the voltage behind the transient reactance and is assumed to be equal to
the initial value of the induced voltage, at the start of the transient. The stator
resistance is RS. The dynamic analysis problem consists of selecting a sufficiently
simple but reasonably realistic representation that will not unduly complicate the
dynamic analysis, particularly through the introduction of nonlinearities.

Figure 15.42 Simplified induction motor dynamic model

It should be remarked that the basic equations of the induction machine, as
derived from first principles, are quite nonlinear. Thus, an accurate dynamic
analysis of the induction motor, without any linearizing approximations, requires
the use of computer simulation.

AC Motor Speed and Torque Control
As explained in an earlier section, AC machines are constrained to fixed-speed or
near fixed-speed operation when supplied by a constant-frequency source.
Several simple methods exist to provide limited speed control in AC induction
machines; more complex methods, involving the use of advanced power
electronics circuits, can be used if the intended application requires wide-
bandwidth control of motor speed or torque. In this subsection we provide a
general overview of available solutions.

Pole Number Control



The (conceptually) easiest method to implement speed control in an induction
machine is by varying the number of poles. Equation 15.41 explains the
dependence Page 917of synchronous speed in an AC machine on the supply
frequency and on the number of poles. For machines operated at 60 Hz, the
following speeds can be achieved by varying the number of magnetic poles in the
stator winding:

While for machines operating at 50 Hz, the speeds are

Motor stators can be wound so that the number of pole pairs in the stators can be
varied by switching between possible winding connections. Such switching
requires that care be taken in timing it to avoid damage to the machine.

Slip Control

Since the rotor speed is inherently dependent on the slip, slip control is a valid
means of achieving some speed variation in an induction machine. Since motor
torque falls with the square of the voltage (see equation 15.68), it is possible to
change the slip by changing the motor torque through a change in motor voltage.
This procedure allows for speed control over the range of speeds that allow for
stable motor operation. With reference to Figure 15.40, this is possible only above
point c, that is, above the breakdown torque.

Rotor Control

For motors with wound rotors, it is possible to connect the rotor slip rings to
resistors; adding resistance to the rotor increases the losses in the rotor and
therefore causes the rotor speed to decrease. This method is also limited to
operation above the breakdown torque although it should be noted that the shape
of the motor torque–speed characteristic changes when the rotor resistance is
changed.

Frequency Regulation

The last two methods cause additional losses to be introduced in the machine. If a
variable-frequency supply is used, motor speed can be controlled without any
additional losses. As seen in equation 15.41, the motor speed is directly



dependent on the supply frequency, as the supply frequency determines the speed
of the rotating magnetic field. However, to maintain the same motor torque
characteristics over a range of speeds, the motor voltage must change with
frequency, to maintain a constant torque. Thus, generally, the volts/hertz ratio
should be held constant. This condition is difficult to achieve at start-up and at
very low frequencies, in which cases the voltage must be raised above the
constant volts/hertz ratio that will be appropriate at higher frequency.
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15.9 ELECTRIC MOTOR DRIVES
High-power semiconductor devices make it possible to design effective and
relatively low-cost electronic supplies that take full advantage of the device
capabilities. Electronic power supplies for DC and AC motors is one of the major
fields of application of power electronic devices. This section introduces two
families of power supplies, or electric drives: choppers, or DC-DC converters;
and inverters, or DC-AC converters. These families find widespread use in the
control of AC and DC motors in a variety of applications and power ranges.

Depending on the relationship between the voltage across and the current
through a load, an electronic drive can operate in one of four possible modes, as
indicated in Figure 15.43. It is important to notice that in quadrants I and III
power is supplied by the drive and absorbed by the load. By contrast, in quadrants
II and IV power is absorbed by the drive and supplied by the load.

Figure 15.43 The four quadrants of an electric drive

DC-DC Converters
As the name suggests, a DC-DC converter is capable of converting a fixed DC
supply to a variable DC supply. This feature is particularly useful for speed
control of a DC motor, which is depicted in Figure 15.44. The torque Tm is
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proportional to the current Ia supplied to the motor armature, while the speed of
rotation of the motor ωm is proportional to the voltage Ea (emf) across the
armature. A DC motor is an example of an electromechanical energy conversion
system, which converts electrical energy to mechanical energy (or vice versa
when used as a generator). In the mechanical domain, the product of torque and
speed is power; in the electrical domain, the product of current and voltage is
power. Thus, in the ideal case of lossless energy conversion:

Figure 15.44 DC motor

Of course, no energy conversion process is lossless; however, there is a
correspondence between the four electrical quadrants of Figure 15.43 and the
mechanical power output of the motor. In particular, the mechanical power of a
DC motor will have the same sign as the electrical power of its drive. That is,
when the drive is supplying power, the DC motor will be doing work on its load,
as in the forward and reverse motoring modes. When the drive is absorbing
power, the DC motor will be having work done on it by its load, as in the forward
and reverse regenerative braking modes.

A simple circuit that can accomplish the task of providing a variable DC
supply from a fixed DC source is the buck converter (step-down chopper),
shown in Figure 15.45. The circuit consists of a switch, denoted by the symbol S,
and a snubber diode. The switch can be any power switch, for example, a power
BJT or MOSFET. The circuit to the right of the diode is a model of a DC motor,
including the inductance and resistance of the armature windings, and the effect
of the back-emf Ea. When the switch is turned on (say, at t = 0), the supply VS is
connected to the load and υo = VS. The load current io is determined by the motor
parameters. When the switch is turned off, the load current continues to flow
through the snubber diode, but the output voltage is now υo = 0. At time T, the
switch is turned on again, and the cycle repeats.



(15.70)

(15.71)

Figure 15.45 Buck converter (step-down chopper)
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Figure 15.46 depicts the υo and io waveforms. The average value of the output
voltage 〈υo〉 is given by:

Figure 15.46 Step-down chopper waveforms

where δ is the duty cycle of the chopper. The step-down chopper has the useful
range:

It is also possible to expand the range of a DC-DC converter to above the
supply voltage by using the energy storage properties of an inductor; the resulting
circuit is shown in Figure 15.47. When the chopper switch S is closed, the supply
current is through the inductor Lo and the switch, so energy is stored in the
inductor; the output voltage υo is zero since the switch is a short-circuit. When the
switch is open, the supply current is through the diode and the load. However, the
inductor voltage is negative during the transient following the opening of the
switch and therefore adds to the source voltage: the energy stored in the inductor
while the switch was closed is now released and transferred to the load. This
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stored energy makes it possible for the output voltage to be higher than the supply
voltage for a finite period.

Figure 15.47 Boost converter (step-up chopper)

To maintain a constant average load current, the current increase between 0
and t1 must equal the current decrease from t1 to T. Therefore:

from which the following relationship can be found:

This result can be rewritten to express the average output voltage as:

Since the duty cycle δ is always less than 1, the theoretical range of the supply is:

The waveforms for the boost converter are shown in Figure 15.48.

Figure 15.48 Boost converter output voltage waveform (ideal)



A boost converter (step-up chopper) can also be used for regenerative
braking, where the motor armature voltage is used as the “supply” voltage and the
output voltage is that across a DC battery; then power will flow from the motor
and recharge the battery. This configuration is shown in Figure 15.49.

Figure 15.49 Boost converter used for regenerative braking in an
electric vehicle.

The operations of the buck converter and boost converter can be combined to
form a buck-boost converter, shown in Figure 15.50. This same circuit can act
as a two-quadrant chopper to provide both regenerative braking and forward
motoring operation in a DC motor. When switch S2 is open, switch S1 can serve
as a chopper, and the circuit operates as a buck converter. In this mode, the drive
and motor operate in quadrant I. The output voltage υo will switch between VS
and zero, as shown in Figure 15.46, and the current i0 is directed toward the
motor, as indicated in Figure 15.50.
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Figure 15.50 Two-quadrant DC-DC converter

When switch S1 is open, switch S2 can serve as a chopper, and the circuit
operates as a boost converter. The source is the motor emf Ea and the load is the
battery, as depicted in Figure 15.49. The current i0 is directed away from the
motor (the sum of the motor emf and the voltage across the inductor is greater
than the battery voltage), and the drive operates in quadrant IV.

Inverters (DC-AC Converters)
Variable-speed drives for AC motors require a multiphase variable-frequency,
variable-voltage supply. Such drives are called DC-AC converters, or inverters.
Inverter circuits can be quite complex; only a brief introduction illustrating the
basic principles is presented here.

A voltage source inverter (VSI) converts the output of a fixed DC supply
(e.g., a battery) to a variable-frequency AC supply. Figure 15.51 depicts a half-
bridge VSI; once again, the switches can be bipolar or MOS transistors, or
thyristors. When switch S1 is closed, the output voltage is in the positive half-
cycle, and υo = VS/2. When switch S2 is closed, υo = −VS/2. A switching sequence
for S1 and S2 is shown in Figure 15.52. It is important that each switch be turned
off before the other is turned on; otherwise, the DC supply will be short-circuited.
Since a motor drive load is inductive, the load current io will lag the voltage, as
shown in Figure 15.52. As a result, there will be periods when the voltage is
positive but the current is negative. During these periods the diodes D1 and D2
conduct the load current, which would otherwise be forced to zero. Figure 15.52
indicates which diode is conducting in each of these periods.

Figure 15.51 Half-bridge voltage source inverter



Figure 15.52 Half-bridge voltage source inverter waveforms

A full-bridge version of the VSI can also be designed as shown in Figure
15.53; the associated output voltage waveform is shown in Figure 15.54. The
operation of this circuit is analogous to that of the half-bridge VSI; switches S1
and S2 are fired during the first half-cycle, and switches S3 and S4 during the
second half. Note that the full-bridge configuration allows the output voltage to
swing from VS to −VS. The diodes provide a path for the load current whenever
the load voltage and current are of opposite polarity.

Figure 15.53 Full-bridge voltage source inverter

Figure 15.54 Half-bridge voltage source inverter output waveform
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A three-phase version of the VSI and its related waveforms are shown in
Figures 15.55 and 15.56. Once again, the operation is analogous to that of the
previous VSI circuits. The top three waveforms depict the pole voltages, which
are referenced to the DC supply neutral point o. The pole voltages are obtained by
firing switches S1 through S6 at appropriate times. For example, if S1 is fired at ωt
= 0, then pole a is connected to the positive side of the DC supply and υao = VS/2;
Page 921if S4 is subsequently turned on at ωt = π, then pole a is connected to the
negative side of the DC supply and υao = −VS/2. The other pairs of switches are
then fired in an analogous sequence, shifted by 120 electrical degrees with respect
to each other, to obtain the waveforms shown in the top three graphs of Figure
15.56. The line voltages are obtained from the pole voltages by using the
relations

Figure 15.55 Three-phase voltage source inverter
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Figure 15.56 Three-phase voltage source inverter waveforms

and are shown in the second set of three diagrams in Figure 15.56. These are also
phase-shifted by 120°. The pole voltages can be expressed in terms of the load
phase voltages υan, υbn, and υcn:
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and since υan + υbn + υcn = 0 is required for balanced operation, the following
relationship can be derived for the DC supply neutral (o) to load neutral (n)
voltage:

This voltage is also shown to be a square wave switching three times as fast as the
inverter output voltage. Finally, the following relations can be used to obtain the
phase voltages:
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Only one phase voltage, υan, is shown in the picture; however, it is
straightforward to construct the other two phase voltages by using equation 15.79.
Note that the load-phase voltage waveform shown in Figure 15.56 is a coarse
stepwise approximation of a sinusoidal waveform; the corresponding load current
ia is a filtered version of the load voltage since the load is inductive in nature and
is therefore somewhat smoothed with respect to the voltage waveform. The
discontinuous nature of these waveforms creates a significant higher harmonic
spectrum at frequencies that are integer multiples of the inverter output
frequency; this is an unavoidable property of all inverters that employ switching
circuits, but the problem can be reduced by using more complex switching
schemes. Another major shortcoming of this AC supply is that if the DC supply is
fixed, the amplitude of the inverter output is fixed.

The VSI circuit described in the foregoing paragraphs can provide a variable-
frequency supply provided that the commutation frequency of the electronic
switches can be varied. Thus, in general, it is necessary to also provide the
capability for timing circuits that can provide variable switching rates; this is
often accomplished with a microcontroller.

The limitations of the VSI of Figure 15.55 can be overcome with the use of
more advanced switching schemes, such as pulse-width modulation (PWM) and
sinusoidal PWM. The complexity of these schemes is beyond the scope of this
book, and the interested reader is invited to explore a more advanced power
electronics text to learn about advanced inverter circuits. However, it is possible



1.

2.

1.
2.

to significantly reduce the harmonic content of the inverter waveforms and to
provide variable-frequency, variable-amplitude, three-phase supplies for AC
motors by means of power switching circuits under microprocessor control.

EXAMPLE 15.15 Two-Quadrant Chopper
Problem

Determine the turn-on time of the chopper of Figure 15.50 in the motoring
mode when n = 500 rpm and io = 90 A. Also determine the power absorbed
by the motor armature winding, the power absorbed by the motor, and the
power delivered by the source.
Determine the turn-on time of the chopper in the regenerative mode if n =
380 rpm and io = –90 A. Also determine the power absorbed by the motor
armature winding, the power absorbed by the motor, and the power delivered
by the source.

Solution
Known Quantities: Supply voltage; motor parameters; chopping frequency
armature resistance and inductance.
Find: For each of the two cases: t1, Pa, Pm, PS.

Schematics, Diagrams, Circuits, and Given Data:
VS = 120 V; Ea = 0.1n; Ra = 0.2 Ω; 1/T = chopping frequency = 300 Hz.
VS = 120 V; Ea = 0.1n; Ra = 0.2 Ω; LS → ∞; 1/T = chopping frequency = 300
Hz.
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Assumptions: The switches in the chopper of Figure 15.50 act as ideal switches.
Assume that the motor inductance is sufficiently small to be neglected in the
calculations (i.e., assume a short-circuit).
Analysis:



1.

2.

Analysis of motoring operation. To analyze the motoring operation of the
chopper, refer to Figure 15.45 and apply KVL to the motor side:

Use equation 15.70 to compute the duty cycle δ of the chopper:

Since the chopping frequency is 300 Hz, we can compute t1:

The power absorbed by the armature is

The power absorbed by the motor is

The power delivered by the voltage supply is

Analysis of regenerative operation. To analyze the regenerative operation of
the chopper, refer to Figure 15.47 and apply KVL to the motor side, noting
that the current is reverse directed:

Use equation 15.74 and observe that the motor now acts as the source, and
the supply voltage as the load.

This expression can be solved to find the duty cycle and t1 for the step-up
chopper.
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2.

3.

The power absorbed by the armature is

The power generated by the motor is

The power absorbed by the battery is

Of course, the sum of the power absorbed by the armature and the battery is
exactly equal to the power supplied by the motor.
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Comments:
In motoring operation, the sum of the motor and armature power losses is
equal to the power supplied by the source; this result reflects the ideal
(lossless) switches assumed in the example. In a practical chopper, the
chopping circuit would absorb power; heat dissipation is therefore an
important issue in the design of choppers.
In regenerative operation, the equivalent duty cycle is greater than 1. The
motor supplies power to the rest of the circuit. However, the armature
resistance still absorbs power, as must be true for any resistive load.
VS could represent a battery pack in an electric vehicle, which would be
recharged at the rate of 1.8 kW. The source of energy capable of producing
this power is the inertial energy stored in the vehicle: when the vehicle
decelerates, mechanical energy causes the electric motor to act as a generator,
producing the 90-A current in the reverse direction.

Conclusion
This chapter introduces the most common classes of rotating electric machines.
These machines, which can range in power from the milliwatt to the megawatt
range, find common application in virtually every field of engineering, from
consumer products to heavy-duty industrial applications. The principles
introduced in this chapter can give you a solid basis from which to build upon.
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Upon completing this chapter, you should have mastered the following
learning objectives:

Understand the basic principles of operation of rotating electric machines,
their classification, and basic efficiency and performance characteristics.
Electric machines are defined in terms of their mechanical characteristics
(torque–speed curves, inertia, friction and windage losses) and their electrical
characteristics (current and voltage requirements). Losses and efficiency are
an important part of the operation of electric machines, and it should be
recognized that machines will suffer from electrical, mechanical, and
magnetic core losses. All machines are based on the principle of establishing
a magnetic field in the stationary part of the machine (stator) and a magnetic
field in the moving part of the machine (rotor); electric machines can then be
classified according to how the stator and rotor fields are established.
Understand the operation and basic configurations of separately excited,
permanent-magnet, shunt and series DC machines. Direct-current machines,
operated from a DC supply, are among the most common electric machines.
The rotor (armature) circuit is connected to an external DC supply via a
commutator. The stator electric field can be established by an external circuit
(separately excited machines), by a permanent magnet (PM machines), or by
the same supply used for the armature (self-excited machines).
Analyze DC motors under steady-state and dynamic operation. DC motors
are commonly used in a variety of variable-speed applications (e.g., electric
vehicles, servos) which require speed control; thus, their dynamics are also of
interest.
Analyze DC generators at steady state. DC generators can be used to supply
a variable direct current and voltage when propelled by a prime mover
(engine, or other thermal or hydraulic machine).
Understand the operation and basic configuration of AC machines, including
the synchronous motor and generator and the induction machine. AC
machines require an alternating-current supply. The two principal classes of
AC machines are the synchronous and induction types. Synchronous
machines rotate at a predetermined speed, which is equal to the speed of a
rotating magnetic field present in the stator, called the synchronous speed.
Induction machines also operate based on a rotating Page 925magnetic field
in the stator; however, the speed of the rotor is dependent on the operating
conditions of the machine and is always less than the synchronous speed.
Variable-speed AC machines require more sophisticated electric power
supplies that can provide variable voltage/current and variable frequency. As
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15.1

a.

b.

15.2

a.

b.

the cost of power electronics is steadily decreasing, variable-speed AC drives
are becoming increasingly common.
Understand the basic operation of power converters, and in particular of DC-
DC converters (choppers) used to control DC machines, and of DC-AC
converters (inverters), used to control AC machines.

HOMEWORK PROBLEMS
Section 15.1: Rotating Electric Machines

The power rating of a motor can be modified to account for different
ambient temperature, according to the following table:

A motor with Pe = 10 kW is rated up to 85°C. Find the actual power for each
of the following conditions:

Ambient temperature is 50°C.

Ambient temperature is 30°C.

The speed-torque characteristic of an induction motor has been empirically
determined as follows:

The motor will drive a load requiring a starting torque of 4 N-m and increase
linearly with speed to 8 N-m at 1,500 r/min.

Find the steady-state operating point of the motor.

Equation 15.68 predicts that the motor speed can be regulated in the
face of changes in load torque by adjusting the stator voltage. Find the
change in voltage required to maintain the speed at the operating point
of part a if the load torque increases to 10 N-m.
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15.4

15.5

a.

b.

15.6

15.7

a.

b.

c.

d.

15.8

15.9

Section 15.2: Direct-Current Machines
Calculate the force exerted by each conductor, 6 in long, on the armature of
a DC motor when it carries a current of 90 A and lies in a field the density of
which is 5.2 × 10–4 Wb/in2.

In a DC machine, the air gap flux density is 4 Wb/m2. The area of the pole
face is 2 cm × 4 cm. Find the flux per pole in the machine.

Section 15.3: Direct-Current Motors
A 220-V shunt motor has an armature resistance of 0.32 Ω and a field
resistance of 110 Ω. At no load the armature current is 6 A and the speed is
1,800 r/min. Assume that the flux does not vary with load, and calculate

The speed of the motor when the line current is 62 A (assume a 2-V
brush drop).

The speed regulation of the motor.

A 50-hp, 550-V shunt motor has an armature resistance, including brushes,
of 0.36 Ω. When operating at rated load and speed, the armature takes 75 A.
What resistance should be inserted in the armature circuit to obtain a 20
percent speed reduction when the motor is developing 70 percent of rated
torque? Assume that there is no flux change.

A shunt DC motor has a shunt field resistance of 400 Ω and an armature
resistance of 0.2 Ω. The motor nameplate rating values are 440 V, 1,200
r/min, 100 hp, and full-load efficiency of 90 percent. Find

The motor line current.

The field and armature currents.

The counter-emf at rated speed.

The output torque.
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A 240-V series motor has an armature resistance of 0.42 Ω and a series-field
resistance of 0.18 Ω. If the speed is 500 r/min when the current is 36 A, what
will be the motor speed when the load reduces the line current to 21 A?
(Assume a 3-V brush drop and that the flux is proportional to the current.)

A 220-V DC shunt motor [see Figure 15.14(b)] has an armature resistance of
0.2 Ω and a rated armature current of 50 A. Find
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15.10

15.11

15.12

a.

b.

15.13

15.14

a.

b.

The voltage generated in the armature.

The power developed.

A 550-V series motor takes 112 A and operates at 820 r/min when the
load is 75 hp. If the effective armature-circuit resistance is 0.15 Ω,
calculate the horsepower output of the motor when the current drops to 84
A, assuming that the flux is reduced by 15 percent.

A 200-V DC shunt motor has the following parameters:

When running at 1,100 r/min with no load connected to the shaft, the
motor draws 4 A from the line. Find E and the rotational losses at 1,100
r/min (assuming that the stray-load losses can be neglected).

A 230-V DC shunt motor has the following parameters:

When loaded, the motor draws 46 A from the line. Find

The speed, Pdev, and Tsh.

If Lf = 25 H, La = 0.008 H, and the terminal voltage has a 115-V
change, find ia(t) and ωm(t).

A 200-VDC shunt motor with an armature resistance of 0.1 Ω and a field
resistance of 100 Ω draws a line current of 5 A when running with no load
at 955 r/min. Determine the motor speed, the motor efficiency, the total
losses (i.e., rotational and I2R losses), and the load torque Tsh that will
result when the motor draws 40 A from the line. Assume rotational power
losses are proportional to the square of shaft speed.

A 50-hp, 230-V shunt motor has a field resistance of 17.7 Ω and operates
at full load when the line current is 181 A at 1,350 r/min. To increase the
speed of the motor to 1,600 r/min, a resistance of 5.3 Ω is “cut in” via the
field rheostat; the line current then increases to 190 A. Calculate

The power loss in the field and its percentage of the total power input
for the 1,350 r/min speed.

The power losses in the field and the field rheostat for the 1,600 r/min
speed.
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15.15

15.16

a.

b.

c.

15.17

15.18

The percent losses in the field and in the field rheostat at 1,600 r/min.

A 10-hp, 230-V shunt-wound motor has a rated speed of 1,000 r/min and
full-load efficiency of 86 percent. Armature circuit resistance is 0.26 Ω;
field-circuit resistance is 225 Ω. If this motor is operating under rated load
and the field flux is very quickly reduced to 50 percent of its normal
value, what will be the effect upon counter-emf, armature current, and
torque? What effect will this change have upon the operation of the motor,
and what will be its speed when stable operating conditions have been
regained?

The machine of Example 15.5 is to be used in a series connection. That is,
the field coil is connected in series with the armature, as shown in Figure
P15.16. The machine is to be operated under the same conditions as in
Example 15.5, that is, n = 120 r/min and Ia = 8 A. In the operating region,
ϕ = kIf and k = 200. The armature resistance is 0.2 Ω, and the resistance of
the field winding is negligible.

Find the number of field winding turns necessary for full-load
operation.

Find the torque output for the following speeds:

Plot the speed–torque characteristic for the conditions of part b.

Figure P15.16

With reference to Example 15.7, assume that the load torque applied to
the PM DC motor is zero. Determine the speed response of the motor
speed to a step change in input voltage. Derive expressions for Page
927the natural frequency and damping ratio of the second-order system.
What determines whether the system is over- or underdamped?

A motor with polar moment of inertia J develops torque according to the
relationship T = aω + b. The motor drives a load defined by the torque–
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15.20

a.

b.

15.21

15.22

speed relationship TL = cω2 + d. If the four coefficients are all positive
constants, determine the equilibrium speeds of the motor-load pair, and
whether these speeds are stable.

Assume that a motor has known friction and windage losses described by
the equation TFW = bω. Sketch the T-ω characteristic of the motor if the
load torque TL is constant, and the TL-ω characteristic if the motor torque
is constant. Assume that TFW at full speed is equal to 30 percent of the
load torque.

A PM DC motor is rated at 6 V, 3,350 r/min and has the following
parameters: ra = 7 Ω, La = 120 mH, kT = 7 × 10–3 N-m/A, J = 1 × 10–6 kg-
m2. The no-load armature current is 0.15 A.

In the steady-state no-load condition, the magnetic torque must be
balanced by an internal damping torque; find the damping coefficient
b. Now sketch a model of the motor, write the dynamic equations, and
determine the transfer function from armature voltage to motor speed.
What is the approximate 3-dB bandwidth of the motor?

Now let the motor be connected to a pump with inertia JL = 1 × 10–4

kg-m2, damping coefficient bL = 5 × 10–3 N-m-s, and load torque TL =
3.5 × 10–3 N-m. Sketch the model describing the motor-load
configuration, and write the dynamic equations for this system;
determine the new transfer function from armature voltage to motor
speed. What is the approximate 3-dB bandwidth of the motor/pump
system?

A PM DC motor with torque constant kPM is used to power a hydraulic
pump; the pump is a positive displacement type and generates a flow
proportional to the pump velocity: qp = kpω. The fluid travels through a
conduit of negligible resistance; an accumulator is included to smooth out
the pulsations of the pump. A hydraulic load (modeled by a fluid
resistance R) is connected between the pipe and a reservoir (assumed at
zero pressure). Sketch the motor-pump circuit. Derive the dynamic
equations for the system, and determine the transfer function between
motor voltage and the pressure across the load.

The shunt motor in Figure P15.22 is characterized by a field coefficient kf
= 0.12 V-s/A-rad, such that the back emf is given by the expression Eb = kf
Ifω and the motor torque by the expression T = kf If Ia. The motor drives



a.

b.

15.23

15.24

a.

b.

c.

d.

an inertia/viscous friction load with parameters J = 0.8 kg-m2 and b = 0.6
N-m-s/rad. The field equation may be approximated by VS = Rf If. The
armature resistance is Ra = 0.75 Ω, and the field resistance is Rf = 60 Ω.
The system is perturbed around the nominal operating point VS0 = 150 V,
ω0 = 200 rad/s, and Ia0 = 186.67 A.

Derive the dynamic system equations in symbolic form.
Linearize the equations you obtained in part a.

Figure P15.22

A PM DC motor is rigidly coupled to a fan; the fan load torque is
described by the expression TL = 5 + 0.05ω + 0.001ω2, where torque is in
newton-meters and speed in radians per second. The motor has kaϕ = kTϕ
= 2.42; Ra = 0.2 Ω and the inductance is negligible. If the motor voltage is
50 V, what is the speed of rotation of the motor and fan?

A separately excited DC motor has the following parameters:

An inertial load has J = 0.5 kg-m2 and b = 2 N-m-s/rad. No external load
torque is applied.

Sketch a diagram of the system and derive the (three) differential
equations.

Sketch a simulation block diagram of the system (you should have
three integrators).

Code the diagram, using Simulink.

Run the following simulations:
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15.26

a.

b.

c.

15.27

Armature control. Assume a constant field with Vf = 100 V; now
simulate the response of the system when the armature voltage changes
in step fashion from 50 to 75 V. Save and plot the current and angular
speed responses.

Field control. Assume a constant armature voltage with Va = 100 V;
now simulate the response of the system when the field voltage
changes in step Page 928fashion from 75 to 50 V. This procedure is
called field weakening. Save and plot the current and angular speed
responses.

Determine the transfer functions from input voltage to angular velocity
and from load torque to angular velocity for a PM DC motor rigidly
connected to an inertial load. Assume resistance and inductance
parameters Ra, La let the armature constant be ka. Assume ideal energy
conversion, so that ka = kT. The motor has inertia Jm and damping
coefficient bm, and it is rigidly connected to an inertial load with inertia J
and damping coefficient b. The load torque TL acts on the load to oppose
the magnetic torque.

Assume that the coupling between the motor and the inertial load of
Problem 15.25 is flexible (e.g., a long shaft). This can be modeled by
adding a torsional spring between the motor inertia and the load inertia.
Now we can no longer lump together the two inertias and damping
coefficients as if they were one; we need to write separate equations for
the two inertias. In total, there will be three equations in this system: the
motor electrical equation, the motor mechanical equation (Jm and Bm), and
the load mechanical equation (J and B).

Sketch a diagram of the system.

Use free-body diagrams to write each of the two mechanical equations.
Set up the equations in matrix form.

Compute the transfer function from input voltage to load speed, using
the method of determinants.

A wound DC motor is connected in both a shunt and a series
configuration. Assume generic resistance and inductance parameters R2,
R2, L2, L2; let the field magnetization constant be kf and the armature
constant be ka. Assume ideal energy conversion, so that ka = kT. The



a.

b.

c.

d.

15.28

15.29

motor has inertia Jm and damping coefficient bm, and it is rigidly
connected to an inertial load with inertia J and damping coefficient b.

Sketch a system-level diagram of the two configurations that illustrates
both the mechanical and electrical systems.

Write an expression for the torque–speed curve of the motor in each
configuration.

Write the differential equations of the motor-load system in each
configuration.

Determine whether the differential equations of each system are linear;
if one (or both) is (are) nonlinear, could they be made linear with some
simple assumption? Explain clearly under what conditions this would
be the case.

Derive the differential equations describing the electrical and mechanical
dynamics of a shunt-connected DC motor, shown in Figure P15.28, and
draw a simulation block diagram of the system. The motor constants are
ka, kT = armature and torque reluctance and kf = field flux.

Figure P15.28

Derive the differential equations describing the electrical and mechanical
dynamics of a series-connected DC motor, shown in Figure P15.29, and
draw a simulation block diagram of the system. The motor constants are
ka, kT = armature and torque reluctance and kf = field flux.
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15.32

15.33

a.

b.

15.34

15.35

Figure P15.29

Develop a Simulink simulator for the shunt-connected DC motor of
Problem 15.28. Assume the following parameter values: La = 0.15 H; Lf =
0.05 H; Ra = 1.8 Ω; Rf = 0.2 Ω; ka = 0.8 V-s/rad; kT = 20 N-m/A; kf = 0.20
Wb/A; b = 0.1 N-m-s/rad; J = 1 kg-m2.

Develop a Simulink simulator for the series-connected DC motor of
Problem 15.29. Assume the following parameter values: L = La + Lf = 0.2
H; R = Ra + Rf = 2 Ω; ka = 0.8 V-s/rad; kT = 20 N-m/A; kf = 0.20 Wb/A; b
= 0.1 N-m-s/rad; J = 1 kg-m2.
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Section 15.4: Direct-Current Generators
A 120-V, 10-A shunt generator has an armature resistance of 0.6 Ω. The
shunt field current is 2 A. Determine the voltage regulation of the
generator.

A 20-kW, 230-V separately excited generator has an armature resistance
of 0.2 Ω and a load current of 100 A. Find

The generated voltage when the terminal voltage is 230 V.

The output power.

A 10-kW, 120-VDC series generator has an armature resistance of 0.1 Ω
and a series field resistance of 0.05 Ω. Assuming that it is delivering rated
current at rated power, find (a) the armature current and (b) the generated
voltage.

The armature resistance of a 30-kW, 440-V shunt generator is 0.1 Ω. Its
shunt field resistance is 200 Ω. Find



a.

b.

c.

15.36

15.37

15.38

15.39

15.40

The power developed at rated load.

The load, field, and armature currents.

The electric power loss.

A four-pole, 450-kW, 4.6-kV shunt generator has armature and field
resistances of 2 and 333 Ω. The generator is operating at the rated speed
of 3,600 r/min. Find the no-load voltage of the generator and terminal
voltage at half load.

A 30-kW, 240-V generator is running at half load at 1,800 r/min with an
efficiency of 85 percent. Find the total losses and input power.

A self-excited DC shunt generator is delivering 20 A to a 100-V line when
it is driven at 200 rad/s. The magnetization characteristic is shown in
Figure P15.38. It is known that Ra = 1.0 Ω and Rf = 100 Ω. When the
generator is disconnected from the line, the drive motor speeds up to 220
rad/s. What is the terminal voltage?

Figure P15.38

Section 15.6: The Alternator (Synchronous Generator)
An automotive alternator is rated 500 VA and 20 V. It delivers its rated
voltamperes at a power factor of 0.85. The resistance per phase is 0.05 Ω,
and the field takes 2 A at 12 V. If the friction and windage loss is 25 W
and the core loss is 30 W, calculate the percent efficiency under rated
conditions.

It has been determined by test that the synchronous reactance Xs and
armature resistance ra of a 2,300-V, 500-VA, three-phase synchronous
generator are 8.0 and 0.1 Ω, respectively. If the machine is operating at
rated load and voltage at a power factor of 0.867 lagging, find the
generated voltage per phase and the torque angle.
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15.42

15.43

15.44

Section 15.7: The Synchronous Motor
A non–salient pole, Y-connected, three-phase, two-pole synchronous
machine has a synchronous reactance of 7 Ω and negligible resistance and
rotational losses. One point on the open-circuit characteristic is given by
Vo = 400 V (phase voltage) for a field current of 3.32 A. The machine is to
be operated as a motor, with a terminal voltage of 400 V (phase voltage).
The armature current is 50 A, with power factor 0.85, leading. Determine
Eb, field current, torque developed, and power angle δ.

A factory load of 900 kW at 0.6 power factor lagging is to be increased by
the addition of a synchronous motor that takes 450 kW. At what power
factor must this motor operate, and what must be its kilovoltampere input
if the overall power factor is to be 0.9 lagging?

A non–salient pole, Y-connected, three-phase, two-pole synchronous
generator is connected to a 400-V (line to line), 60-Hz, three-phase line.
The stator impedance is 0.5 + j1.6 Ω (per phase). The generator is
delivering rated current (36 A) at unity power factor to the line. Determine
the power angle for this load and the value of Eb for this condition. Sketch
the phasor diagram, showing Eb, IS, and VS.

A non–salient pole, three-phase, two-pole synchronous motor is connected
in parallel with a three-phase, Y-connected load so that the per-phase
equivalent circuit is as shown in Figure P15.44. The parallel combination
is connected to a 220-V (line to line), 60-Hz, three-phase line. The load
current IL is 25 A at a power factor of 0.866 inductive. The motor has XS
= 2 Ω and is operating with If = 1 A and T = 50 N-m at a power angle of –
30°. (Neglect all Page 930losses for the motor.) Find IS, Pin (to the motor),
the overall power factor (i.e., angle between I1 and VS), and the total
power drawn from the line.

Figure P15.44
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a.

b.

c.

15.47

15.48

15.49

15.50

A four-pole, three-phase, Y-connected, non–salient pole synchronous
motor has a synchronous reactance of 10 Ω. This motor is connected to a 

 (line to line), 60-Hz, three-phase line and is driving a load such
that Tshaft = 30 N-m. The line current is 15 A, leading the phase voltage.
Assuming that all losses can be neglected, determine the power angle δ
and E for this condition. If the load is removed, what is the line current,
and is it leading or lagging the voltage?

A 10-hp, 230-V, 60-Hz, three-phase, Y-connected synchronous motor
delivers full load at a power factor of 0.8 leading. The synchronous
reactance is 6 Ω, the rotational loss is 230 W, and the field loss is 50 W.
Find

The armature current.

The motor efficiency.

The power angle.

Neglect the stator winding resistance.

A 2,000-hp, unity power factor, three-phase, Y-connected, 2,300-V, 30-
pole, 60-Hz synchronous motor has a synchronous reactance of 1.95 Ω per
phase. Neglect all losses. Find the maximum power and torque.

A 1,200-V, three-phase, Y-connected synchronous motor takes 110 kW
(exclusive of field winding loss) when operated under a certain load at
1,200 r/min. The back emf of the motor is 2,000 V. The synchronous
reactance is 10 Ω per phase, with negligible winding resistance. Find the
line current and the torque developed by the motor.

The per-phase impedance of a 600-V, three-phase, Y-connected
synchronous motor is 5 + j50 Ω. The motor takes 24 kW at a leading
power factor of 0.707. Determine the induced voltage and the power angle
of the motor.

Section 15.8: The Induction Motor
A 74.6-kW, three-phase, 440-V (line to line), four-pole, 60-Hz induction
motor has the following (per-phase) parameters referred to the stator
circuit (see Figure 15.36):
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a.

b.

c.

d.

15.53

a.

b.

15.54

a.

b.

The no-load power input is 3,240 W at a current of 45 A. Determine the
line current, input power, developed torque, shaft torque, and efficiency at
s = 0.02.

A 60-Hz, four-pole, Y-connected induction motor is connected to a 400-V
(line to line), three-phase, 60-Hz line. The equivalent circuit parameters
are

When the machine is running at 1,755 r/min, the total rotational and stray-
load losses are 800 W. Determine the slip, input current, total input power,
mechanical power developed, shaft torque, and efficiency.

A three-phase, 60-Hz induction motor has eight poles and operates with a
slip of 0.05 for a certain load. Determine

The speed of the rotor with respect to the stator.

The speed of the rotor with respect to the stator magnetic field.

The speed of the rotor magnetic field with respect to the rotor.

The speed of the rotor magnetic field with respect to the stator
magnetic field.

A three-phase, two-pole, 400-V (per phase), 60-Hz induction motor
develops 37 kW (total) of mechanical power Pm at a certain speed. The
rotational loss at this speed is 800 W (total). (Stray-load loss is
negligible.)

If the total power transferred to the rotor is 40 kW, determine the slip
and the output torque.

If the total power into the motor Pin is 45 kW and RS is 0.5 Ω, find IS
and the power factor.

The nameplate speed of a 25-Hz induction motor is 720 r/min. If the speed
at no load is 745 r/min, find

The slip.

The percent regulation.

Page 931
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a.

b.

c.

d.

e.

15.56

a.

b.

15.58

15.59

a.

15.57

The nameplate of a squirrel cage four-pole induction motor has the
following information: 25 hp, 220 V, three-phase, 60 Hz, 830 r/min, 64-A
line current. If the motor draws 20,800 W when operating at full load,
calculate

Slip.

Percent regulation if the no-load speed is 895 r/min.

Power factor.

Torque.

Efficiency.

A 60-Hz, four-pole, Y-connected induction motor is connected to a 200-V
(line to line), three-phase, 60-Hz line. The equivalent circuit parameters
are

The motor is operating at slip s = 0.04. Determine the input current, input
power, mechanical power, and shaft torque (assuming that stray-load
losses are negligible).

A three-phase, 220-V, 60-Hz induction motor runs at 1,140 r/min.
Determine the number of poles (for minimum slip), the slip, and the
frequency of the rotor currents.

To reduce the starting current, a three-phase squirrel cage induction
motor is started by reducing the line voltage to Vs/2. By what factor are
the starting torque and the starting current reduced?

A six-pole induction motor for vehicle traction has a 50-kW input electric
power rating and is 85 percent efficient. If the supply is 220 V at 60 Hz,
compute the motor speed and torque at a slip of 0.04.

An AC induction machine has six poles and is designed for 60-Hz, 240-V
(rms) operation. When the machine operates with 10 percent slip, it
produces 60 N-m of torque.

The machine is now used in conjunction with a friction load that
opposes a torque of 50 N-m. Determine the speed and slip of the
machine when used with the above-mentioned load.
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a.

b.

c.
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a.

b.
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15.63

a.

b.

c.

d.

If the machine has an efficiency of 92 percent, what minimum rms
current is required for operation with the load of part a?

(Hint: You may assume that the speed–torque curve is approximately
linear in the region of interest.)

A blocked-rotor test was performed on a 5-hp, 220-V, four-pole, 60-Hz,
three-phase induction motor. The following data were obtained: V = 48 V,
I = 18 A, P = 610 W. Calculate

The equivalent stator resistance per phase RS.

The equivalent rotor resistance per phase RR.

The equivalent blocked-rotor reactance per phase XR.

Calculate the starting torque of the motor of Problem 15.60 when it is
started at

220 V

110 V

The starting torque equation is

A four-pole, three-phase induction motor drives a turbine load. At a
certain operating point the machine has 4 percent slip and 87 percent
efficiency. The motor drives a turbine with torque–speed characteristic
given by TL = 20 + 0.006ω2. Determine the torque at the motor-turbine
shaft and the total power delivered to the turbine. What is the total power
consumed by the motor?

A four-pole, three-phase induction motor rotates at 1,700 r/min when the
load is 100 N-m. The motor is 88 percent efficient.

Determine the slip at this operating condition.

For a constant-power, 10-kW load, determine the operating speed of
the machine.

Sketch the motor and load torque–speed curves on the same graph.
Show numerical values.

What is the total power consumed by the motor?
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a.

b.

c.

15.69

15.70

Find the speed of the rotating field of a six-pole, three-phase motor
connected to (a) a 60-Hz line and (b) a 50-Hz line, in revolutions per
minute and radians per second.

A six-pole, three-phase, 440-V, 60-Hz induction motor has the following
model impedances:

Calculate the input current and power factor of the motor for a speed of
1,200 r/min.
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An eight-pole, three-phase, 220-V, 60-Hz induction motor has the
following model impedances:

Find the input current and power factor of this motor for s = 0.02.

A nameplate is given in Example 15.2. Find the rated torque, rated
voltamperes, and maximum continuous output power for this motor.

A three-phase induction motor, at rated voltage and frequency, has a
starting torque of 140 percent and a maximum torque of 210 percent of
full-load torque. Neglect stator resistance and rotational losses and assume
constant rotor resistance. Determine

The slip at full load.

The slip at maximum torque.

The rotor current at starting as a percentage of full-load rotor current.

A 60-Hz, four-pole, three-phase induction motor delivers 35 kW of
mechanical (output) power. At a certain operating point the machine has 4
percent slip and 87 percent efficiency. Determine the torque delivered to
the load and the total electric (input) power consumed by the motor.

A four-pole, three-phase induction motor rotates at 16,800 rev/min when
the load is 140 N-m. The motor is 85 percent efficient.
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a.

b.
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a.

b.

c.
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a.

b.

Determine the slip at this operating condition.

For a constant-power, 20-kW load, determine the operating speed of
the machine.

Sketch the motor and load torque–speed curves for the load of part b
on the same graph. Show numerical values.

An AC induction machine has six poles and is designed for 60-Hz, 240-V
(rms) operation. When the machine operates with 10 percent slip, it
produces 60 N-m of torque.

The machine is now used in conjunction with an 800-W constant
power load. Determine the speed and slip of the machine when used
with the above-mentioned load.

If the machine has an efficiency of 89 percent, what minimum rms
current is required for operation with the load of part a?

(Hint: You may assume that the speed torque curve is approximately
linear in the region of interest.)

Section 15.9: Electric Motor Drives
The DC-DC converter of Figure 15.45 is used to control the speed of a
DC motor. Let the supply voltage be 120 V and the armature resistance of
the motor be 0.15 Ω. The motor back-emf constant is 0.05 V/rpm, and the
switching frequency is 250 Hz. Assume that the motor current is free of
ripple and equal to 125 A at 120 rpm.

Determine the duty cycle of the converter δ and the converter on time
t1.

Determine the average power absorbed by the motor.

Determine the apparent power supplied by the source.

The circuit of Figure 15.49 is used to provide regenerative braking in a
traction motor. The motor constant is 0.25 V/rpm, and the supply voltage
is 550 V. The armature resistance is Ra = 0.15 Ω. The motor speed is
1,000 rpm, and the motor current is 200 A.

Determine the duty cycle δ of the converter.

Determine the average power fed back to the battery.
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15.75

15.76

15.77

15.78

15.79

15.80

For the two-quadrant converter of Figure 15.50 assume that thyristors S1
and S2 are on for t1 and off for T – t1, where T is the switching period.
Derive an expression for the average output voltage  in terms of the
supply voltage VS and the duty cycle δ.

A boost converter is powered by an ideal 200-V battery pack. The load
voltage waveform consists of rectangular pulses that are high (on) for 0.5
ms out of a total period of 3.0 ms. Calculate the average and rms values of
the converter supply voltage.

A buck converter connected to a 100-V battery pack supplies an RL load,
where R = 0.5 Ω and L = 1 mH. The thyristor switch is on for 1 ms, and
the period of the switching waveform is 3 ms. Calculate the average value
of the load voltage and the power supplied by the battery.

The converter of Problem 15.76 is used to supply a separately excited DC
motor with Ra = 1 Ω and La = 2 mH. At the lowest speed of operation, the
back-emf Ea is equal to 15 V. What is the average value of the load
current and voltage when the switching period is 4 ms and the duty cycle
is 0.5?
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A separately excited DC motor with Ra = 0.33 Ω and La = 15 mH is
controlled by a DC-DC converter in the range of 0 to 2,000 rpm. The DC
supply is 220 V. If the load torque is constant and requires an average
armature current of 25 A, calculate the range of duty cycles required if the
motor armature constant is Kaϕ = 0.00167 V-s/rad.

A separately excited DC motor is rated at 10 kW, 240 V, 1,000 rpm, and is
supplied by a single-phase controlled bridge rectifier. The power supply is
sinusoidal and rated at 240 V, 60 Hz. The motor armature resistance is
0.42 Ω, and the motor constant is Ka = 2 V-s/rad. Calculate the speed,
power factor, and efficiency for SCR firing angles α of 0° and 20° if the
load torque is constant. Assume that additional inductance is present to
ensure continuous conduction.

A separately excited DC motor is rated at 10 kW, 300 V, 1,000 rpm, and is
supplied by a three-phase controlled bridge rectifier. The power supply is
sinusoidal and rated at 220 V, 60 Hz. The motor armature resistance is 0.2
Ω, and the motor constant is Ka = 1.38 V-s/rad. The motor delivers rated
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power at α = 0°. Calculate the speed, power factor, and efficiency for a
firing angle α = 30° if the load torque is constant. Assume that additional
inductance is present to ensure continuous conduction.

Sketch the current through the load Ro in the switched-mode power supply
of Figure P15.81.

Figure P15.81

In the switched-mode power supply of Figure P15.82, sketch the load
voltage signal υo.

Figure P15.82

The switched mode power supply of Figure P15.83 will convert DC to
three-phase AC. Sketch timing diagrams for the three low-power clock
inputs A, B, and C to generate a balanced three-phase source. Also sketch
the current in the neutral return wire. Assume the period of the cycle is
normalized.
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15.85

Figure P15.83

A DC-to-DC converter can also be thought of, and analyzed as, a DC
transformer! Figure P15.84 shows a particular DC-to-DC converter
configuration that converts the 1.2 V of a Ni-Cd battery cell to a desired
12 VDC supply. Using the usual transformer “reflecting theorems” (see
Chapter 13), determine the power supplied by the 1.2-V source, and to the
10-Ω load.

Figure P15.84

Shown in Figure P15.85 is a “charge pump” circuit for a switched-mode
power supply (with all transistors acting in the switched mode). A 555-
timer chip drives the two inputs, which are the timer’s clock (CLK), and
its inverse, clock-not  is low Page 934whenever CLK is high, and
conversely. Assuming that the frequency of the clock is relatively high,
determine the voltage across a high resistance load R.
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15.87

Figure P15.85

Sketch the low-power periodic signals, A, B, and C versus time that drive
the high current power transistors in the (DC)-to-(three-phase-AC)
switched-mode power supply of Figure P15.86, so that the load sees a
balanced three-phase square-wave source.

Figure P15.86

In the switched-mode power supply of Figure P15.87, sketch the load
voltage signal υo.



Figure P15.87

Design Credits: Mini DVI cable adapter isolated on white background: Robert Lehmann/Alamy Stock
Photo; Balance scale: Alex Slobodkin/E+/Getty Images; Icon for “Focus on measurements” weighing scales:
Media Bakery.

1Note that the abbreviation rpm although certainly familiar to the reader, is not a
standard unit, and its use should be discouraged.
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C H A P T E R
16

SPECIAL-PURPOSE ELECTRIC
MACHINES

he objective of this chapter is to introduce the operating principles and
performance characteristics of a number of special-purpose electric
machines that find widespread engineering application in a variety of
fields, ranging from robotics to vehicle propulsion, aerospace, and

automotive control. In Chapters 14 and 15, you were introduced to the operating
principles of the major classes of electric machines: DC machines, synchronous
machines, and induction motors. The machines discussed in this chapter operate
according to the essential principles described earlier but are also characterized
by unique features that set them apart from the machines described in Chapter
15. The first of these special-purpose machines is the brushless DC motor. Next,
we discuss stepping motors, illustrating a very natural match between
electromechanical devices and digital logic. The switched reluctance motor is
presented next. A discussion of universal motors and single-phase induction
motors follows, with a brief description of the types of electronic drives used to
supply power to these machines. The discussion of the electronic drives ties the
electromechanics material with the subject of power electronics introduced in
Chapter 17. Finally, in the last section motor selection and applications are
discussed, along with coverage of design and performance specifications.



1.

2.

3.

4.

5.
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The machines introduced in this chapter are used in many applications
requiring fractional horsepower, or the ability to accurately control position,
velocity, or torque.

 Learning Objectives
Students will learn to...

Understand the basic principles of operation of brushless DC motors, and
the tradeoffs between these and brush-type DC motors. Section 16.1.
Understand the operation and basic configurations of step motors as well as
step sequences for the different classes of step motors. Section 16.2.
Understand the operating principles of switched reluctance machines
Section 16.3.
Classify and analyze single-phase AC motors, including the universal
motor and various types of single-phase induction motors, using simple
circuit models. Section 16.4.
Outline the selection process for an electric machine, given an application;
perform calculations related to load inertia, acceleration, efficiency, and
thermal characteristics. Section 16.5.

16.1 BRUSHLESS DC MOTORS
In spite of its name, the brushless DC motor is actually not a DC motor, but a
permanent-magnet synchronous machine; the name is actually due not to the
construction of the machine, but to the fact that its operating characteristics
resemble those of a shunt DC motor with constant field current. This
characteristic can be obtained by providing the motor with a power supply
whose electrical frequency determines the mechanical frequency of rotation of
the rotor. To generate a source of variable frequency, use is made of DC-to-AC
converters (inverters), consisting of banks of transistors that are switched on and
off at a frequency corresponding to the rotor speed; thus, the inverter converts a
DC source to an AC source of variable frequency. As far as the user is
concerned, then, the source of excitation of a brushless DC motor is DC
although the current that actually flows through the motor windings is AC. In



effect, the brushless DC motor is a synchronous motor in which the torque angle
δ is kept constant by an appropriate excitation current.

Brushless DC motors require measurement of the position of the rotor to
determine its speed of rotation, and to generate a supply current at the same
frequency. This function is accomplished by means of a position-sensing
arrangement that usually consists either of a magnetic Hall-effect position
sensor, which senses the passage of each pole in the rotor, or of an optical
encoder similar to the encoders discussed in Chapter 11.

Figure 16.1(a) depicts the appearance of a brushless DC motor. Note how
the multiphase winding is similar to that of the synchronous motor of Chapter
15. Figure 16.1(b) depicts the construction of a typical brushless DC
servomotor. The brushless motor consists of a stator with a multiphase winding,
usually three phase; a permanent-magnet rotor; and a rotor position sensor. It is
interesting to observe that since the commutation is performed electronically by
switching the current to the motor—rather than by brushes, as in DC motors—
the brushless motor can be produced in many different configurations,
including, for example, very flat (“pancake”) motors. Page 16-3Figure 16.1
shows the classical configuration of inside rotor, outside stator. For simple
machines, it is also possible to resort to an outside rotor, with greater ease of
magnet attachment and inherently smoother rotation, but with inferior thermal
characteristics, since a stator encased within the rotor structure cannot be cooled
efficiently.

Figure 16.1(a) Two-pole brushless DC motor with three-phase stator
winding



Figure 16.1(b) A typical brushless DC servomotor (Courtesy of
Kollmorgen Corporation.)

In conventional DC motors, the supply voltage is limited by brush wear and
sparking that can occur at the commutator, often resulting in the need for
transformers to step down the supply voltage. In brushless DC motors, on the
other hand, such a concern does not arise because the commutation is performed
electronically without the need for brushes. Further, since, in general, the
armature (load-carrying winding) is on the stator and thus the losses are
concentrated in the stator, liquid cooling (if required) is feasible and does not
involve excessive complexity. You will recall that in a conventional DC motor
the armature is on the rotor, and therefore auxiliary liquid cooling is very
difficult to implement.

Another important advantage of brushless DC motors is that by sealing the
stator, submersible units can be built. In addition to these operational
advantages, note that these motors are also characterized by easier construction:
The construction of the stator in a brushless DC motor is similar to that in
traditional induction motors and is therefore suitable for automated production.
The windings may also be fitted with temperature sensors, providing the
possibility of additional thermal protection.

The permanent-magnet rotor is typically made either of rare-earth magnets
(Sm-Co) or of ceramic magnets (ferrites). Rare-earth magnets have outstanding
magnetic properties, but they are expensive and in limited supply, and therefore
the more commonly employed materials are ceramic magnets. Rare-earth
magnet motors can be a cost-effective solution—since they allow much greater
fluxes to be generated by a given supply current—in applications where high
speed, high efficiency, and small size are important. Brushless DC motors can
be rated up to 250 kW at 50,000 r/min. The rotor position sensor must be



designed for operation inside the motor, and must withstand the backlash,
vibrations, and temperature range typical of motor operation.

Brushless DC motors do require a position-sensing device, though, to permit
proper switching of the supply current. Recall that the brushless DC motor
replaces the cumbersome mechanical commutation arrangement with electronic
switching of the supply current. The most commonly used position-sensing
devices are position encoders and resolvers. The resolver, shown in Figure
16.2, is a rotating machine that is mechanically coupled to the rotor of the
brushless motor and consists of two Page 16-4stator and two rotor windings; the
stator windings are excited by an AC signal, and the resulting rotor voltages are
proportional to the sine and cosine of the angle of rotation of the rotor, thus
providing a signal that can be directly related to the instantaneous position of
the rotor. The resolver has two major disadvantages: First, it requires a separate
AC supply; second, the resolver output must be appropriately decoded to obtain
a usable position signal. For these reasons, angular position encoders (see
Chapter 11) are often used. You will recall that such encoders provide a digital
signal directly related to the position of a rotating shaft. Their output can
therefore be directly used to drive the current supply for a brushless motor.

Figure 16.2 Resolver

To understand the operation of the brushless DC motor, it is useful to make
an analogy with the operation of a permanent-magnet (PM) DC motor. As
discussed in Chapter 15, in a permanent-magnet DC motor, a fixed magnetic
field generated by the permanent magnets interacts with the field induced by the
currents in the rotor windings, thus creating a mechanical torque. As the rotor
turns in response to this torque, however, the angle between the stator and rotor
fields is reduced, so that the torque would be nullified within a rotation of 90
electrical degrees. To sustain the torque acting on the rotor, permanent-magnet
DC motors incorporate a commutator, fixed to the rotor shaft. The commutator
switches the supply current to the stator so as to maintain a constant angle δ =



(16.1)

(16.2)

90° between interacting fields. Because the current is continually switched
between windings as the rotor turns, the current in each stator winding is
actually alternating, at a frequency proportional to the number of motor
magnetic poles and the speed.

The basic principle of operation of the brushless DC motor is essentially the
same, with the important difference that the supply current switching takes
place electronically, instead of mechanically. Figure 16.3 depicts a transistor
switching circuit capable of switching a DC supply so as to provide the
appropriate currents to a three-phase rotor winding. The electronic switching
device consists of a rotor position sensor, fixed on the motor shaft, and an
electronic switching module that can supply each stator winding. Diagrams of
the phase-to-phase back emf’s and the switching sequence of the inverter are
shown in Figure 16.4. The back emf Page 16-5waveforms shown in Figure 16.4
are called trapezoidal; the total back emf of the inverter is obtained by
piecewise addition of the motor phase voltages and is a constant voltage,
proportional to motor speed. You should visually verify that the addition of the
three phase voltages of Figure 16.4 leads to a constant voltage. The brushless
DC motor (BLDC) is therefore similar to a standard permanent-magnet DC
motor, and it can be described by the following simplified equations:



Figure 16.3 Transistor and SCR drives for a brushless DC motor

Figure 16.4 Phase voltages and transistor switching sequence for the
brushless DC motor drive of Figure 16.3

where

and where

The speed and torque of a brushless DC motor can therefore be controlled with
any variable-speed DC supply, such as one of the supplies discussed in Chapter
17. Further, since the brushless motor has intrinsically higher torque and lower
inertia than its DC counterpart, its response speed is superior to that obtained
from traditional DC motors. Figure 16.5 depicts the (a) torque–speed and (b)
efficiency curves of a commercially produced brushless DC motor.



One important difference between the conventional DC motor and the
brushless motor, however, is due to the coarseness of the electronic switching
compared with the mechanical switching of the brush-type DC motor (recall the
discussion of Page 16-6torque ripple due to the commutation effect in DC
motors in Chapter 15). In practice, one cannot obtain the exact trapezoidal emf
of Figure 16.4 by means of the transistor switching circuit of Figure 16.3, and a
voltage ripple results as a consequence, leading to a torque ripple in the motor.
Additional phase windings on the stator could solve the problem, at the expense
of further complexity in the drive electronics, since the switching sequence
would be more complex. Thus, brushless motors suffer from an inherent
tradeoff between torque ripple and drive complexity.

Figure 16.5 Performance and efficiency characteristics of brushless
DC motor (Courtesy Pacific Scientific)

Among other applications, brushless DC motors find use in the design of
servo loops in control systems, for example, in computer disk drives, and in
propulsion systems for electric vehicles. The comparisons between the
conventional DC motor and the brushless DC motor are summarized in the
following table:



1.
2.
3.

1.

1.
2.
3.
4.
5.

1.

Conventional DC motors

Advantages
Controllability over a wide range of speeds.
Capability of rapid acceleration and deceleration.
Convenient control of shaft speed and position by servo amplifiers.

Disadvantage
Commutation (through brushes) causing wear, electrical noise, and
sparking.

Brushless DC motors

Advantages
Controllability over a wide range of speeds.
Capability of rapid acceleration and deceleration.
Convenient control of shaft speed and position.
No mechanical wear or sparking problem due to commutation.
Better heat dissipation capabilities.

Disadvantage
Need for more complex power electronics than the brush-type DC
motor for equivalent power rating and control range.
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EXAMPLE 16.1 Sinusoidal Torque Generation in Brushless DC
Motors
Problem



Show that the use of sinusoidal currents in a brushless DC motor can result in a
ripple-free torque.

Solution
Known Quantities: Coil (phase) currents.
Find: Total output torque T.
Schematics, Diagrams, Circuits, and Given Data: Im1 = Im sin θ; Im2 = Im cos θ.

Assumptions: The field coil is wound in a two-phase circuit; each winding is
sinusoidally spaced. Sinusoidal currents can be generated by suitable power
electronics circuits.
Analysis: Using equation 16.2, we determine that the torques generated by the
currents in each of the two coils of the two-phase stator are

The sinusoidal form of the torques is due to the sinusoidal distribution of the
stator windings in each phase, which are spaced 90° out of phase with one
another so as to produce sine-cosine components, and is shown in Figure 16.6.

Figure 16.6 Sinusoidal torque generation circuit and current
waveforms for a brushless DC motor

The net torque produced by the motor is the sum of the two phase torques:



Thus, the torque generated by the motor is constant, or ripple free.
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Comments: Note that this scheme requires two features: sinusoidally spaced
two-phase windings and sinusoidal phase currents. It is also very important that
both the windings and the currents be exactly 90° out of phase.

EXAMPLE 16.2 Selecting a Trapezoidal Speed Profile to Match a
Desired Motion Profile
Problem
Determine the trapezoidal speed profile required to move a load 0.5 m in 5 s.
Analyze the motion of the motor.

Solution
Known Quantities: Desired load motion profile.
Find: Required trapezoidal speed profile.
Schematics, Diagrams, Circuits, and Given Data: The motor covers 0.5 m in
100 revolutions. Trapezoidal profile characteristics as shown in Figure 16.7.



Figure 16.7 Trapezoidal profile

Assumptions: Assume a trapezoidal speed profile and that the motor will
accelerate for 1 s and decelerate for 1 s.
Analysis: Define the following quantities:

From the above definitions, we can calculate the maximum rotational velocity
of the motor as follows. For constant acceleration, the expressions for the motor
displacement and velocity are

From the above expressions, we can relate the maximum velocity to the
acceleration and deceleration rates:
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Now we can write an expression for the total motor travel (100 revolutions):

Note that the above expression is quite general and could be used also for
asymmetric profiles. Using the given numbers, we calculate the maximum
velocity to be

which corresponds to 25 × 60 = 1,500 r/min.
Comments: The results derived in this example are very useful—trapezoidal
speed profiles are very common in servomotors.



16.2 STEPPING MOTORS
Stepping, or stepper, motors convert digital information to mechanical motion.
The principles of operation of stepping motors have been known since the
1920s; however, their application has seen a dramatic rise with the increased use
of digital computers. Stepping motors, as the name suggests, rotate in distinct
steps, and their position can be controlled by means of logic signals. Typical
applications of stepping motors are in-line printers, positioning of heads in
magnetic disk drives, and any other situation where continuous or stepwise
displacements are required.

Stepping motors can generally be classified in one of three categories:
variable-reluctance, permanent-magnet, and hybrid types. The principles of
operation of each of these devices bear a definite resemblance to those of
devices already encountered in the book. Stepping motors have a number of
special features that make them particularly useful in practical applications.
Perhaps the most important feature of a stepping motor is that the angle of
rotation of the motor is directly proportional to the number of input pulses;
further, the angle error per step is very small and does not accumulate. Stepping
motors are also capable of rapid responses—starting, stopping, and reversing
commands—and can be driven directly by digital signals. Another important
feature is a self-holding capability that makes it possible for the rotor to be held
in the stopped position without the use of brakes. Finally, a wide range of
rotating speeds—proportional to the frequency of the pulse signal—may be
attained in these motors.

Figure 16.8 depicts the general appearance of three types of stepping
motors. The permanent-magnet rotor stepping motor, seen in Figure 16.8(a),
permits a nonzero holding torque when the motor is not energized. Depending
on the construction of the motor, it is typically possible to obtain step angles of
7.5, 11.25, 15, 18, 45, or 90°. The angle of rotation is determined by the number
of stator poles, as is illustrated in Example 16.3. The variable-reluctance
stepping motor, seen in Figure 16.8(b), has an iron multipole rotor and a
laminated wound stator, and it rotates when the teeth on the rotor are attracted to
the electromagnetically energized stator teeth. The rotor inertia of a variable-
reluctance stepping motor is low, and the response is very quick, but the
allowable load inertia is small. When Page 16-10the windings are not energized,



the static torque of this type of motor is zero. Generally, the step angle of the
variable-reluctance stepping motor is 15° (see Examples 16.4 and 16.5).

Figure 16.8 Stepping motor configurations

The hybrid stepping motor, seen in Figure 16.8(c), is characterized by a
multitoothed stator and rotor, the rotor having an axially magnetized concentric



magnet around its shaft. It can be seen that this configuration is a mixture of the
variable-reluctance (VR) and permanent-magnet types. This type of motor
generally has high accuracy and high torque and can be configured to provide a
step angle as small as 1.8°. Figure 16.9(a) through (e) depicts the construction
of a VR step motor.

Figure 16.9 VR stepper motor: (a) complete motor assembly; (b) PM
rotor; (c) stator cross section; (d) fully assembled stator; (e) stator



with windings (Courtesy of Kollmorgen Corporation.)
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For any of these configurations, the principle of operation is essentially the
same: When the coils are energized, magnetic poles are generated in the stator,
and the rotor will align in accordance with the direction of the magnetic field
developed in the stator. By reversing the phase of the currents in the coils, or by
energizing only some of the coils (this is possible in motors with more than two
stator poles), the alignment of the stator magnetic field can take one of a
discrete number of positions; if the currents in the coils are pulsed in the
appropriate sequence, the rotor will advance in a step-by-step fashion. Thus, this
type of motor can be very useful whenever precise incremental motion must be
attained. As mentioned earlier, typical applications are in printer wheels,
computer disk drives, and plotters. Other applications are found in the control of
the position of valves (e.g., control of the throttle valve in an engine, or of a
hydraulic valve in a fluid power system) and in drug-dispensing apparatus for
clinical applications.

Examples 16.3 to 16.6 illustrate the operation of a four-pole, two-phase
permanent-magnet stepping motor and of a similar motor of the variable-
reluctance type. The operation of these motors is representative of all stepping
motors.

EXAMPLE 16.3 Analysis of Two-Phase, Four-Pole Step Motor
Problem
Determine the full-step single-phase, full-step two-phase, and half-step current
excitation sequences for the PM step motor of Figure 16.10.



Figure 16.10 Two-phase four-pole PM stepper motor

Solution
Known Quantities: Phase currents.
Find: Full-step sequence for the motor.
Assumptions: The motor currents at the start of the sequence are i1 > 0 and i2 =
0.
Analysis: With the initial currents assumed (phase 1 energized), the motor will
be at rest if the rotor is in the position shown in Figure 16.10. A single-phase
sequence consists of turning on each of the two coils in sequence, reversing the
polarity of the currents every other time. Then the PM rotor will align with the
stator poles according to the polarity of the magnetic field generated by each
coil’s pole pair. For example, if coil 1 is turned off and coil 2 is turned on with a
positive current polarity, the rotor will rotate clockwise by 90°. Table 16.1
depicts the (bipolar) sequence of coil currents and the corresponding motor
position.

If both coils are activated, it is possible to cause the rotor to align between
stator poles, also in increments of 90°, but shifted in phase by 45° with respect
to the single-phase stepping sequence. Table 16.2 illustrates this stepping
sequence.

Table 16.1 Full-step, single-phase sequence

Table 16.2 Full-step, two-phase sequence



Finally, if one combines the two sequences (easily accomplished, since the
current commands for the two sequences are distinct), it is possible to obtain
increments of 45°. Table 16.3 depicts the half-step sequence. Any finer
resolution would require an increase in the number of windings and teeth in the
stator.

Table 16.3 Half-step sequence

Comments: The simplicity of the electronic controls required by this type of
machine is one of the very attractive features of step motors.
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EXAMPLE 16.4 Analysis of Variable-Reluctance Step Motor
Problem



Determine the current excitation sequences required to achieve 45° steps in the
VR step motor of Figure 16.11.

Figure 16.11 Two-phase, four-pole VR stepping motor

Solution
Known Quantities: Phase currents.
Find: Current excitation sequence for 45° steps.
Assumptions: The motor currents at the start of the sequence are i1 > 0 and i2 =
0.
Analysis: The operation of the variable-reluctance step motor (with a salient
pole rotor) is simpler than that of the PM type because the rotor is not
magnetically polarized, and therefore it is not necessary to have bipolar currents
to achieve the desired rotor motion. The stator of Figure 16.10 is excited by
direct currents supplied by a single (unipolar) voltage supply. The switches
shown in the figure could be controlled by a logic circuit similar to the ones
described in Chapters 11 and 12. Note that four separate coils are used.
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Figure 16.12 depicts how the first three steps of the sequence could be
achieved. These are summarized in Table 16.4.



Figure 16.12 Two-phase, four-pole VR motor positioning sequence

Table 16.4 Current excitation sequence for VR step motor

Comments: Note that the circuit required to drive this circuit is even simpler
than the one required by the PM step motor.

EXAMPLE 16.5 Step Angle Determination of VR Step Motor



Problem
Determine an expression for the step angle of a VR step motor based on the
number of teeth on the rotor and stator and on the number of phases.

Solution
Known Quantities: Number of rotor and stator teeth; number of phases.
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Find: Step angle.
Schematics, Diagrams, Circuits, and Given Data: t = number of teeth = 4; m =
number of phases = 3.
Analysis: The number of steps in a revolution N is given by the product of the
number of teeth and the number of phases (e.g., in Example 16.4 it is equal to 2
teeth × 4 phases = 8 steps). Thus, N = tm.

The step angle increment, or resolution, is equal to Δθ = 360°/N. For the
motor described in this example,

EXAMPLE 16.6 Torque Equation of Step Motor
Problem
Calculate the torque generated by a step motor.

Solution
Known Quantities: t = number of teeth per phase; L = axial length of rotor; g =
rotor-to- stator radial air gap; r = rotor radius;  developed across the two
air gaps (in series) through which a line of flux must pass in one phase.
Expression for the motor torque.



Find: Torque developed by the motor.
Schematics, Diagrams, Circuits, and Given Data: t = 16 (48 steps, three-phase
excitation); L = 6.35 × 10–3 m; g = 6.35 × 10–5 m; r = 1.29 × 10–2 m;  A-
turns.

Analysis: Using the expression given above gives

CHECK YOUR UNDERSTANDING
Determine the smallest increment in angular position that can be achieved with
a PM stepper motor with six stator teeth and three-phase current excitation.
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CHECK YOUR UNDERSTANDING
Express the stepping sequence of the variable-reluctance stepping motor of
Example 16.4 as a four-digit binary sequence.

Answer: Δθ = 20°



CHECK YOUR UNDERSTANDING
Express the torque in Example 16.6 in units of pound-inches.

From the preceding examples, you should now have a feeling for the
operation of variable-reluctance and PM stepping motors. The hybrid
configuration is characterized by multitooth rotors that are made of magnetic
materials, thus providing a variable-reluctance geometry in conjunction with a
permanent-magnet rotor.

An ideal torque–speed characteristic for a stepper motor is shown in Figure
16.13. Two distinct modes of operation are marked on the curve: the locked-
step mode and the slewing mode. In the first mode, the rotor comes to rest (or
at least decelerates) between steps; this is the mode commonly used to achieve a
given rotor position. In the locked-step mode, the rotor can be started, stopped,
and reversed. The slewing mode, on the other hand, does not allow stopping or
reversal of the rotor although the rotor still advances in synchronism with the
stepping sequence, as described in the preceding examples. The slewing mode
can achieve higher continuous speeds than the locked-step mode.

Answer: 

Answer: 29.82 lb-in



Figure 16.13 Ideal torque–speed characteristic of a stepping motor
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The power supply, or driver, required by a stepping motor is shown in block
diagram form in Figure 16.14; it includes a DC power supply, to provide the
required current to drive the motor, in addition to logic and switching circuits to
provide the appropriate inputs at the right time. One of the important
considerations in driving a stepping motor is the excitation mode, which can be
one phase or two phase. The driver is the circuit that arranges, distributes, and
amplifies pulse trains from the logic circuit determining the stepping sequence;
the driver excites each winding of the stepping motor at specified times. In the
one-phase excitation mode, current is supplied to one phase at a time, with the
advantages of low power consumption and good step-angle accuracy. Input
signal pulses and the change in the condition of each phase excitation are shown
in Figure 16.15. In the two-phase excitation mode, current is simultaneously
provided to two phases.

Figure 16.14 Power supply for stepping motor



Figure 16.15 One- and two-phase excitation waveforms for stepper
motors

CHECK YOUR UNDERSTANDING
Derive the excitation waveforms corresponding to the direction of rotation
opposite to that caused by the stepping sequence shown in Figure 16.15.

In addition to the classification of the excitation by phase, stepping motor
drives are classified according to whether the drive supplies are unipolar or
bipolar, that is, whether they can carry current in one or two directions. Unipolar
excitation is clearly simpler although in the case of the two-phase excitation
mode, only one-half of the motor windings are used, with a resulting decrease in
performance. Figure 16.16 shows a circuit diagram of a unipolar drive and the
sequence of phase excitation.

Figure 16.16 Unipolar drive for stepper motor

When a bipolar drive is used, motor windings are used effectively, because
of the bidirectional exciting current; when operated in this mode, a stepping
motor Page 16-17can generate a large output torque at low speed compared with

Answer: 



the unipolar drive. Figure 16.17 shows two versions of the bipolar drive. The
first requires two power supplies, one for each polarity, while the second
requires only one power supply but needs four switching transistors per phase to
reverse the polarity.

Figure 16.17 Bipolar drive for stepper motors

16.3 SWITCHED RELUCTANCE MOTORS
The switched reluctance (SR) machine is the simplest electric machine that
permits variable-speed operation. Today, this machine finds increasingly
common application in variable-speed drives for industrial applications and in
traction drives for automotive propulsion.

Figure 16.18 depicts the simplest configuration of a reluctance machine and
illustrates how the reluctance and inductance of the machine change as a
function of position. Note that the magnetic circuit consists only of iron and air
—no permanent magnets are required! Note also that the rotor is a salient pole
iron element, Page 16-18which is the lowest-cost rotor that can be
manufactured. When a current is supplied to the coil, the rotor will experience a
torque seeking to align it with the magnetic poles of the stator; when θ = 0, the
torque is zero and the rotor will no longer move, having reached its minimum
reluctance position. Note that minimum reluctance corresponds to minimum
stored energy in the system. Thus, the torque in the motor is developed because



of the change in reluctance with rotor position. This principle makes the
reluctance machine different from all other (AC or DC) machines discussed so
far. Note also that this machine is one of a few machines, along with the
induction motor and VR step motor, to be singly excited, that is, to have a single
source of magnetic field (whether generated by a coil or by a permanent
magnet). One can think of the basic reluctance machine as a salient pole
synchronous machine without any field excitation.

Figure 16.18 (a) Basic reluctance machine and (b) inductance
variation as a function of position

The switched reluctance machine is a special variation of the simple
reluctance machine shown in Figure 16.18 that relies on continuous switching
of currents in the stator to guarantee motion of the rotor. It is also a true
reluctance machine in that it has salient poles both in the rotor and in the stator.
The configuration of a typical SR machine is shown in Figure 16.19. Note that
Page 16-19the configuration of the SR machine is very similar to that of a VR
step motor, discussed in Section 16.2. The primary difference between the two
is that the SR machine is designed for continuous and not stepped (discrete)
motion. The advent of low-cost power semiconductors, especially GTOs,
IGBTs, and power MOSFETs (see Chapter 17) has made it possible to reliably
control SR machines. With reference to Figure 16.19, you can see that the stator
of an SR machine is wound through slots, with simple solenoid-type windings,
and is similar to that of an induction or synchronous AC machine. This stator
can be excited by any multiphase source, such as the three-phase sources
described in Chapter 15. The SR machine is excited by discrete current pulses
that must be timed with respect to the relative position of the rotor poles to the



(16.3)

(16.4)

(16.5)

(16.6)

stator poles, thus requiring position feedback. The speed of the rotor is
determined by the switching frequency of the stator coil currents.

Figure 16.19 Configuration of switched reluctance machine

Operating Principles of SR Machine
Torque production in an SR machine depends on the variation in stored
magnetic energy as a function of position. Consider the simple reluctance
machine of Figure 16.18, and assume that the variation in winding inductance
with rotor position is sinusoidal. The inductance will vary at twice the excitation
frequency, because of the number of poles:

We determine the torque generated by the machine, given the excitation current:

The magnetic stored energy (see Chapter 14) is given by

and the flux linkage is

We know that the torque can be written as follows:



(16.7)

(16.8)

(16.9)

1.

2.

3.

Given the known sinusoidal current and inductance variations, we can write the
torque expression as

It can be shown, with the use of trigonometric identities, that if the rotor rotates
at angular velocity ωm, such that θ = ωmt – θ0 (with θ0 equal to the rotor
position at t = 0), the torque of the SR machine will be nonzero only if the
frequency of the sinusoidal stator current is ω = ωm. If the electrical Page 16-
20frequency is synchronous with the mechanical frequency, then the average
torque is given by

We can draw some conclusions from this simplified analysis of the SR machine:

The reluctance machine develops an average torque only at one
particular (synchronous) speed ω = ωm. Thus, the reluctance machine is
a synchronous machine.
The torque developed by the machine is proportional to Ld – Lq and is
therefore dependent on the amplitude of the variation in inductance (or
reluctance); thus, this torque is called reluctance torque. The values Ld
and Lq are called direct axis inductance and quadrature axis
inductance, respectively.
The torque varies with angle θ0, which is therefore equivalent to the
torque angle δ defined in Chapter 15 for synchronous machines. The
maximum torque occurs at θ0 = π/4 and is called the pull-out torque.

The above equations have been derived for a continuous reluctance
machine; a switched reluctance machine has discontinuous currents, and will
therefore have nonsinusoidal reluctance (inductance) variations and a



(16.10)

discontinuous torque. Figure 16.20 depicts the typical appearance of the L and
Tm curves for an SR machine. It can be shown that the magnetic torque
generated by an SR machine may be expressed as

where  is the root-mean-square (rms) current, P is the number of pulses per
revolution, m is the number of phases, Lmax and Lmin are the maximum and
minimum inductances seen by the exciting coils, and K is a physical constant.
Note that the rms value in equation 16.10 includes also the higher harmonics.

Figure 16.20 Inductance and torque variation in switched reluctance
machine
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16.4 SINGLE-PHASE AC MOTORS
In Chapter 15, two types of AC machines were discussed: synchronous and
induction. In the discussion of these devices, especially in their motor
applications, three-phase excitation was assumed; however, in many practical
applications—and especially in small household appliances and small industrial
motors—three-phase sources are not readily available, and it would be desirable
to use single-phase excitation. Unfortunately, single-phase power does not lend
itself to the generation of a rotating magnetic field: single-phase currents in the
winding of an AC machine lead to a magnetic field that pulsates in amplitude
but does not rotate in space. Thus, it would not be possible to use the AC



1.

machines described in Chapter 15 if only single-phase power were available.
This section discusses the construction and the operating and performance
characteristics of single-phase AC motors. The discussion focuses mainly on the
universal motor and single-phase induction motors.

Fractional-horsepower (as opposed to integral-horsepower) motors
represent by far the major share of all electric motors. Many fractional-
horsepower motors are designed for single-phase use, since single-phase AC
power is readily available practically anywhere. Many applications are related
to household appliances: refrigerator compressors, air conditioners, fans,
electric tools, washer and dryer motors, and others. For the rest of this chapter,
we shall examine qualitatively the principle of operation of single-phase motors
and look at a few applications. The variety of designs for practical single-phase
motors is such that it would not be possible to present the detailed principles of
operation for all common types. However, it is hoped that the introduction
provided in this chapter will help you in decoding the manufacturer’s
specifications for a given motor, and in making a preliminary selection for a
given application.

Fractional-Horsepower Motors
A small motor, as defined by the American Standards Association (ASA)
and the National Electrical Manufacturers Association (NEMA; see Chapter
15), is a “motor built in a frame smaller than that having a continuous rating
of 1 hp, open type, at 1700 to 1800 r/min.” Small motors are generally
considered fractional-horsepower motors. However, since the determination
is based on frame size and on a given speed range, the classification of a
motor is not always obvious. Let us give two examples.

Consider a  1,200 r/min motor. This motor is not considered a
fractional-horsepower motor, because of its frame size. If the same
frame size were used for an 1,800 r/min motor, it would produce a rating
of more than 1 hp. Thus, it is considered an integral-horsepower motor
of

In other words, since the motor is capable of integral-horsepower
performance at speeds of 1,700 to 1,800 r/min, it is classified as an



2.
integral-horsepower motor.
Consider now a 1.25-hp, 3,600 r/min motor. This motor is classified as a
fractional-horsepower motor, in spite of the fact that its power output is
actually greater than 1 hp. If the same motor were used at a speed of
1,800 r/min, it would produce a rating of less than 1 hp:

Thus, we see once again that some attention must be paid to the speed of
operation of the motor in determining its classification. The term
fractional horsepower relates more to the physical size of the machine
than to the actual power output rating.
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The Universal Motor
If it were possible to operate a DC motor from a single-phase AC supply, a wide
range of simple applications would become readily available. Recall that the
direction of the torque produced by a DC machine is determined by the
direction of current flow in the armature conductors and by the polarity of the
field; torque is developed in a DC machine because the commutator
arrangement permits the field and armature currents to remain in phase, thus
producing torque in a constant direction. A similar result can be obtained by
using an AC supply, and by connecting the armature and field windings in
series, as shown in Figure 16.21. A series DC motor connected in this
configuration can therefore operate on a single-phase AC supply, and it is
referred to as a universal motor. An additional consideration is that, because of
the AC excitation, it is necessary to reduce AC core losses by laminating the
stator; thus, the universal motor differs from the series DC motor discussed in
Chapter 15 in its construction. As shown in Figure 16.21, the load current is
sinusoidal and therefore reverses direction each half-cycle; however, the torque
generated by the motor is always in the same direction, resulting in a pulsating
torque, with nonzero average value. Typical torque–speed curves for AC and
DC operation of a universal motor are shown in Figure 16.22.



Figure 16.21 Operation and circuit diagram of a universal motor

As in the case of a DC series motor, the best method for controlling the
speed of a universal motor is to change its (rms) input voltage. The higher the
rms input voltage, the greater the resulting speed of the motor. Approximate
torque–speed characteristics of a universal motor as a function of voltage are
shown in Figure 16.23.
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Figure 16.22 Torque–speed curve of a universal motor
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Figure 16.23 Torque–speed characteristics of a universal motor

EXAMPLE 16.7 Analysis of Universal Motor
Problem
Find the following quantities for a universal motor:

Back emf
Power output
Shaft torque
Motor efficiency

Solution
Known Quantities: Motor operating data and circuit parameters.
Find: Eb; Pout; Tout; η (efficiency).

Schematics, Diagrams, Circuits, and Given Data: Motor operating data: 120 V;
60 Hz; two poles; 800 r/min; 17.85 A (full load); pf = 0.912 (lagging). Circuit
parameters: Rf = 0.65 Ω; Xf = 1.2 Ω; Ra = 1.36 Ω; Xa = 1.6 Ω.

Assumptions: Use the circuit model for the series motor described in Chapter
15. The rotational losses amount to 80 W.
Analysis: The circuit model for the series machine is shown in Figure 16.24. We
shall use this model with the understanding that all currents and voltages are
now phasors.



1.

2.
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Figure 16.24 Equivalent circuit of a universal motor

Back emf computation. To determine the back emf, we need to calculate the
voltage across the armature coil and subtract it from the supply voltage:

The impedance angle is the only unknown quantity, and it may be found
from the power factor:

Thus:
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Output power calculation. The total power developed by the motor is equal
to the product of the back emf and the series current:

The mechanical (output) power of the motor is the difference between the
total power and the rotational losses:

Output (shaft) torque calculation. The output torque is equal to the ratio of
output power to shaft speed:



4. Efficiency calculation. The efficiency of the motor is defined as the ratio of
output power to input power:

Comments: Note that the analysis of this machine is very similar to that of the
series DC motor, except for the use of phasors. It is very important to notice that
in calculating the input power, one has to consider the power factor of the motor
to obtain the real power.

EXAMPLE 16.8 Universal Motor Torque Expression
Problem
Compute an expression for the average torque generated by a universal motor,
based on the circuit diagram of Figure 16.24.

Solution
Known Quantities: Circuit model of motor.
Find: Expression for average torque Tav.

Assumptions: The motor operates in the linear region of the magnetization
curve.
Analysis: With reference to Chapter 15, we know that the flux produced in a
series motor by the series current iS(t) is ϕ = kSiS(t). The instantaneous torque
produced by the machine is given by



If the source waveform has period τ = 2π/ω, we can calculate the average power
by integrating the instantaneous torque over one period:

where IS is the peak value of the (series) armature current.

Comments: The series motor can produce a nonzero average torque when
excited by an alternating current because of the quadratic nature of the
instantaneous torque. A permanent-magnet DC machine, which has a linear
torque–current relationship, would generate zero average torque if driven from
an AC supply.
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Single-Phase Induction Motors
A typical single-phase induction motor bears close resemblance to the
polyphase squirrel cage induction motor discussed in Chapter 15, the major
difference being in the configuration of the stator winding. A simplified
schematic diagram of such a motor, with a single winding, is shown in Figure
16.25; the winding is typically distributed around the stator so as to produce an
approximately sinusoidal mmf.

Figure 16.25 Single-phase induction motor

Assume that the mmf for a practical motor can be generated so as to
approximate the following function:

This function can be written as the sum of two components, as follows:



These two components may be interpreted as representing two mmf waves
traveling in opposite directions around the stator. Each mmf produces torque
according to the induction principles described in Chapter 15; however, the two
components are equal and opposite, and no net torque results if the rotor is at
rest. The resulting mmf is pulsating (i.e., changing in amplitude), but not
rotating in space, as it would be in a polyphase stator. If the rotor is made to turn
in either direction, however, the two mmf’s will not be equal any longer because
the motion of the rotor will induce an additional mmf, which will add to one of
the two mmf’s and subtract from the other. Thus, a net torque will be
established, causing the motor to continue its rotation in the same direction in
which it was started. In particular, if the rotor is started in the forward direction,
the forward mmf  will be greater than the backward mmf, and the motor will
continue to rotate in the forward direction.

Figure 16.26 depicts an equivalent circuit for the single-phase induction
motor with stationary rotor, where the parameters in the circuit are defined as
follows:

RS = resistance of stator winding

XS = leakage reactance of stator winding

Xm = magnetizing reactance of stator winding

XR = leakage reactance of rotor referred to stator at standstill

RR = leakage resistance of rotor referred to stator at standstill

Eb = voltage induced in stator winding by (stationary) pulsating flux in air
gap

Figure 16.26 Circuit model for single-phase induction motor with
rotor at standstill



(16.11)

(16.12)

(16.13)

Figure 16.27 depicts the equivalent circuit for the same motor with the rotor
rotating with slip s. Note that the circuit is asymmetric, because of the different
air gap flux forward and backward components Ef and Eb, respectively. The
factors of 0.5 come from the resolution of the pulsating stator mmf into forward
and backward components. Note further that the reflected rotor impedance is
asymmetric because of the presence of the slip parameter in the expression for
the reflected rotor resistance. Further, the circuit model also confirms that the
forward induced voltage Ef must be greater than the backward voltage Eb since
the slip is always less than 1.
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Figure 16.27 Circuit model for single-phase induction motor with
rotor in motion

It can be shown that the torque components in the forward and backward
directions are given by

and:

where ωs is the synchronous speed and:

Here, Rf is the resistive component of the forward field impedance; also:



(16.14)

(16.15a)

(16.15b)

where Rb is the resistive component of the backward field impedance. Since the
torque produced by the backward field is in the opposite direction to that
produced by the forward field, the net torque will consist of the difference
between the two:

The mechanical power developed by the motor is

EXAMPLE 16.9 Slip in a Single-Phase Induction Motor
Problem
Find the slip of the field in the forward and backward directions for a single-
phase induction machine.

Solution
Known Quantities: Motor operating characteristics.
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Find: Forward slip sf; backward slip sb.

Schematics, Diagrams, Circuits, and Given Data: Motor operating
characteristics: 115 V; 60 Hz; four poles; 1,710 r/min.
Analysis: We first determine the synchronous speed of the motor:



The slip in the forward direction (direction of rotation of the motor) can now be
computed:

The slip in the backward direction can be computed as follows, with reference
to Figure 16.27:

EXAMPLE 16.10 Analysis of Single-Phase Induction Motor
Problem
Find the input current and generated torque for a single-phase induction motor.

Solution
Known Quantities: Motor operating characteristics and circuit parameters.
Find: Motor input (stator) current IS; motor torque T.

Schematics, Diagrams, Circuits, and Given Data: Motor operating data: 
110 V; 60 Hz; four poles. Circuit parameters: RS = 1.5 Ω; XS = 2 Ω; RR = 3 Ω;
XR = 2 Ω; Xm = 50 Ω; s = 0.05.

Assumptions: The motor is operated at rated voltage and frequency.
Analysis: With reference to the equivalent circuit of Figure 16.27, you can
easily show that the impedance seen by the back emf Eb is much smaller than
that seen by the forward emf Ef. This corresponds to stating that the backward
component of the magnetizing impedance (which is in parallel with the
backward component of the rotor impedance) is much larger than the backward
component of the rotor impedance and can therefore be neglected as shown
below.



This approximation is generally true for values of slip less than 0.15. An
approximate circuit based on this simplification is shown in Figure 16.28.
There, the impedance seen by the backward emf is given by
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Figure 16.28 Approximate circuit model for single-phase induction
motor

The impedance seen by the forward emf is, on the other hand, given by the
exact expression:

If we let ZS = RS + jXS = 1.5 + j2 Ω, we can write an expression for the total
impedance of the motor as follows:



1.
2.

Knowing the total series impedance, we can calculate the stator current:

We can now calculate the power absorbed by the motor by separately
computing the real power absorbed in the forward and backward fields:

The net power is the difference between the two components; thus, P = Pf – Pb
= 261.8 W, and the torque developed by the motor is equal to the ratio of the
power to the motor speed. The synchronous speed can be computed to be

and if we assume negligible rotational losses, we have

Comments: Note that the power factor of the motor is pf = cos (–51.3°) = 0.625.
Such low power factors are typical of single-phase motors.
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EXAMPLE 16.11 Analysis of Single-Phase Induction Motor
Problem
Find the following quantities for the single-phase machine of Example 16.10:

Output torque
Output power



3.

1.

2.

3.

Efficiency

Solution
Known Quantities: Motor operating characteristics.
Find: Motor torque T; output power Pout; efficiency η.

Schematics, Diagrams, Circuits, and Given Data: Motor operating data: 
110 V; 60 Hz; four poles; s = 0.05.
Assumptions: The motor is operated at rated voltage and frequency. The
combined rotational and core losses are Prot + Pcore = 30 W.

Analysis:
Output power calculation. The motor generated power is the difference
between the forward and backward components, as explained in Example
16.10. Thus:

The motor power is the difference between the generated power and the
losses:

Shaft torque calculation. The shaft speed is

and the torque is

Efficiency calculation. To calculate the overall efficiency of the motor, we
must account for three loss mechanisms: mechanical losses, core losses,
and electrical losses. The first two are given as a lumped number; the
electrical losses can be computed by calculating the I2R losses in the stator
and forward and backward circuits:



The efficiency can be calculated according to the following expression:
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Comments: Note that the overall efficiency of this machine is fairly low.
Multiphase AC machines can achieve significantly higher efficiencies.

CHECK YOUR UNDERSTANDING
(a) What is the zero-speed torque for a single-phase induction motor? (b) If a
starting torque is applied to the machine, what final speed will the machine
reach?

The equations and circuit models in the preceding examples suggest that a
single-phase induction motor is capable of sustaining a torque, and of reaching
its operating speed, once it is started by external means. However, because the
magnetic field in a single-phase winding is stationary, a single-phase motor is
not self-starting. The speed–torque characteristic of a typical single-phase
induction motor shown in Figure 16.29 shows that the starting torque for this
motor is zero. The curve also shows that the motor can operate in either

Answer: (a) Zero, without a start winding; (b) n = (1 – s)ns, where ns
= 120 f/p and s = slip (determined by shaft load).



direction, depending on the direction of the initial starting torque, which must
be provided by separate means.

Figure 16.29 Torque–speed curve of a single-phase induction motor

Classification of Single-Phase Induction Motors
Thus far, we have not mentioned how the initial starting torque can be provided
to a single-phase motor. In practice, single-phase motors are classified by their
starting and running characteristics, and several methods exist to provide
nonzero starting torque. The aim of this section is to classify single-phase
motors by describing their configuration on the basis of the method of starting.
For each class of motor, a torque–speed characteristic is also described.

Split-Phase Motors

Split-phase motors are constructed with two separate stator windings, called
main and auxiliary windings; the axes of the two windings are actually at 90°
with respect to each other, as shown in Figure 16.30. The auxiliary winding
current is designed to be out of phase with the main winding current, as a result
of the different reactances of the two windings. Different winding reactances
can be attained by having a different ratio of resistance to inductance, for
example, by increasing the resistance of the auxiliary winding. In particular, the
auxiliary winding current Iaux leads the main winding current Imain. The net
effect is that the motor sees a two-phase (unbalanced) current that results in a
rotating magnetic field, as in any polyphase stator arrangement. Thus, the motor
has a nonzero starting torque, as shown in Figure 16.31. Once the motor has
started, a centrifugal switch is used to disconnect the auxiliary winding, since a
single winding is sufficient to sustain the motion of the rotor. The switching
action permits the use of relatively high-resistance windings, since these are not
used during normal operation, and therefore Page 16-31one need not be
concerned with the losses associated with a higher-resistance winding. Figure
16.31 also depicts the combined effect of the two modes of operation of the
split-phase motor.



Figure 16.30 Split-phase motor

Figure 16.31 Torque–speed curve of split-phase motor

Split-phase motors have appropriate characteristics (at very low cost) for
fans, blowers, centrifugal pumps, and other applications in the range of  to .

Capacitor-Type Motors

Another way to obtain a phase difference between two currents, and thus, a
rotating magnetic field is by the addition of a capacitor. Motors that use this
arrangement are termed capacitor-type motors. These motors make different
use of capacitors to provide starting or running capabilities, or a combination of
the two. The capacitor-start motor is essentially identical to the split-phase
motor, except for the addition of a capacitor in series with the auxiliary winding,
as shown in Figure 16.32. The addition of the capacitor changes the reactance of
the auxiliary circuit in such a way as to cause the auxiliary current to lead the
main current. The advantage of using the capacitor to achieve a phase split is
that greater starting torque may be obtained than with the split-phase
arrangement. A centrifugal switching arrangement is used to disconnect the



auxiliary winding above a certain speed, in the neighborhood of 75 percent of
synchronous speed.

Figure 16.32 Capacitor-start motor

Figure 16.33 depicts the torque–speed characteristic of a capacitor-start
motor. Because of their higher starting torque, these motors are very useful in
Page 16-32connection with loads that present a high static torque. Examples of
such loads are seen in compressors, pumps, and refrigeration and air-
conditioning equipment.

Figure 16.33 Torque–speed curve for a capacitor-start motor

It is also possible to use the capacitor-start motor without the centrifugal
switch, leading to a simpler design. Motors with this design are called
permanent split-capacitor motors; they offer a compromise between running
and starting characteristics. A typical torque–speed curve is shown in Figure
16.34.



Figure 16.34 Torque–speed curve for a permanent split-capacitor
motor

A further compromise can be achieved by using two capacitors—one to
obtain a permanent phase split and the resulting improvement in running
characteristics, the other to improve the starting torque. A small capacitance is
sufficient to improve the running performance, while a much larger capacitor
provides the temporary improvement in starting torque. A motor with this
design is called a capacitor-start capacitor-run motor; its schematic diagram
is shown in Figure 16.35. Its torque–speed characteristic is similar to that of a
capacitor-start motor.

Figure 16.35 Capacitor-start capacitor-run motor

Shaded-Pole Motors

The last type of single-phase induction motor discussed in this chapter is the
shaded-pole motor. This type of motor operates on a different principle from
the motors discussed thus far. The stator of a shaded-pole motor has a salient
pole construction, as shown in Figure 16.36, that includes a shading coil
consisting of a copper band wound around part of each pole. The flux in the
shaded portion of the pole lags behind the flux in the unshaded part, achieving
an effect similar to a rotation of the flux in the direction of the shaded part of the
pole. This flux rotation in effect produces a rotating field that enables the motor
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to have a starting torque. This construction technique is rather inexpensive and
is used in motors up to about  hp.

Figure 16.36 Shaded-pole motor

A typical torque–speed characteristic for a shaded-pole motor is given in
Figure 16.37.

Figure 16.37 Torque–speed curve of a shaded-pole motor

Summary of Single-Phase Motor Characteristics
Four basic classes of single-phase motors are commonly used:

Single-phase induction motors are used for the larger home and small
business tasks, such as furnace oil burner pumps, or hot water or hot
air circulators. Refrigerator compressors, lathes, and bench-mounted
circular saws are also powered with induction motors.



2.

3.

4.
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Shaded-pole motors are used in the smaller sizes for quiet, low-cost
applications. The size range is from  hp (24.9 W) to  hp (373 W),
particularly for fans and similar drives in which the starting torque is
low.
Universal motors will operate on any household AC frequency or on
direct current without modification or adjustment. They can develop
very high speed while loaded and very high power for their size.
Vacuum cleaners, sewing machines, kitchen food mixers, portable
electric drills, portable circular saws, and home motion-picture
projectors are examples of applications of universal motors.
The capacitor-type motor finds its widest field of application at low
speeds (below 900 r/min) and in ratings from  hp (0.5595 kW) to 3 hp
(2.238 kW) at all speeds, especially in fan drives.

EXAMPLE 16.12 Analysis of Capacitor-Start Motor
Problem
With reference to Figure 16.32, find the required starting capacitance.

Solution
Known Quantities: Motor operating characteristics; motor circuit parameters.
Find: Starting capacitance C.
Schematics, Diagrams, Circuits, and Given Data: Motor operating data:  hp;
120 V; 60 Hz. Circuit parameters: Rmain = 4.5 Ω; Xmain = 3.7 Ω; Raux = 9.5 Ω;
Xaux = 3.5 Ω.

Analysis: The purpose of the starting capacitor is to cause the auxiliary winding
current Iaux at standstill to lead the main winding current Imain by 90°. The 90°
phase lead will provide the maximum starting torque. Figure 16.38 shows the



phasor diagram for these two currents and the voltage. The impedance angle of
the main winding is

Figure 16.38 Starting phasor diagram for capacitor-start motor

Knowing that the desired phase shift between the main and auxiliary impedance
angles is –90°, we compute the impedance angle of the auxiliary winding:

The minus sign indicates that Iaux leads the terminal voltage. The required
capacitance can now be calculated from the relationship:
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and we can compute the desired capacitance as



1.
2.
3.

EXAMPLE 16.13 Split-Phase Motor Nameplate Analysis
Problem
The table below depicts a split-phase motor nameplate. Determine the following
quantities, using nameplate data:

Rated slip
Synchronous speed
Rated torque

Solution
Known Quantities: Nameplate data.
Find: s; ωS; T.

Schematics, Diagrams, Circuits, and Given Data:

Analysis: An explanation of the nameplate for a typical electric motor was
given in Chapter 15. This example focuses on a few specific items of interest in
the case of a split-phase motor. As you can see, the nameplate directly indicates
the split-phase motor classification. Following the hertz designation is the phase
information. AC systems may have one, two, or three phases. Single-phase and
three-phase systems are the most common.

The code letter following KVA CODE indicates the locked-rotor
kilovoltamperes per horsepower, as explained in NEMA Motor and Generator
Standards, NEMA Publication No. MG 1-10.37. The symbol “N” means that
this motor has a maximum locked-rotor kilovoltamperes per horsepower of
12.5. Since the motor is rated at  hp, the maximum locked-rotor kilovoltampere
value is 12.5/3 = 4.167. The maximum locked-rotor ampere value at 115 V will
be 4.167 kVA/115 V = 36.23 A.



A large percentage of fractional-horsepower motors are now provided with
built-in thermal protection. The use of such protection will also be indicated in
the motor nameplate, for example, here by “Thermal Protected.”

Bearing is abbreviated as “BRG.” Fractional-horsepower motors normally
use one of two types of bearings: sleeve or ball.
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A variety of additional information may appear on the nameplate. This may
include instructions for connecting the motor to a source of supply, reversing the
direction of rotation, lubricating the motor, or operating it safely.

For the machine in this example, the synchronous speed is

The slip at rated speed is

The power is

The rated torque is

where the constant K is given by

CHECK YOUR UNDERSTANDING



1.
2.
3.
4.
5.
6.

Draw the starting phasor diagram relating V, I, Imain, and Iaux for the circuit of
Figure 16.36, and sketch the time-domain waveforms.

16.5 MOTOR SELECTION AND APPLICATION
The objectives of this section are to outline the selection process of a motor for
application to an electric drive and to summarize the characteristics of the most
common drive motors, with emphasis on fractional-horsepower applications. An
Page 16-36electric motor should satisfy a set of precise requirements to be
considered for a specific application. These include

Starting characteristics (torque and current).
Acceleration characteristics (dependent on the load).
Efficiency at rated load.
Overload capability.
Electrical and thermal safety.
Cost.

These requirements suggest that the specific details of the application should be
clear in the designer’s mind. For example, the nature of the load, the available
electrical supplies, and the ambient conditions should be carefully investigated
before the motor selection process is initiated. Once the application
environment is known, it is usually possible to narrow the selection of a drive
motor to a few choices. In this section we provide some insight into the motor
selection process.

Answer: 



Motor Performance Calculations
To better understand the motor selection process, it is important to review some
of the basic ideas underlying the motion of the motor and of the load. For
rotational systems, the relationships of Table 16.5 hold. Figure 16.39
summarizes the various types of load profiles that are likely to be encountered
in practical applications. These include constant-torque loads; viscous friction-
type loads, where torque is proportional to speed; loads in which the torque is
proportional to a power of speed (e.g., fans, pumps); and constant-power loads,
where torque is inversely proportional to speed.

Table 16.5 Equations of motion and definitions of variables

Figure 16.39 Typical load torque–speed curves

Reflected Load Inertia Calculations



(16.16)

(16.17)

(16.18)

(16.19)

(16.20)

To calculate the motor requirements, one must compute the required torque
referenced to the motor output shaft. Since gearing systems are often employed,
the Page 16-37inertias of all rotating components must be referred to the motor
shaft. Using the terminology of Table 16.5, we then conclude that the reflected
load torque at the motor shaft Tr is related to the load torque TL by the
relationship:

where ωr = ωm is the motor shaft speed, and the ratio of load speed to motor
speed is equal to the gear ratio:

If we equate the kinetic energy on the motor side to that on the load side, we can
also derive an expression for the reflected load inertia:

or:

Thus, the reflected inertia seen by the motor at the shaft is equal to the load
inertia times the square of the gear ratio. Note that this is a mechanical
impedance transformation similar to that used in the case of transformers. For
all practical purposes, one can think of a gearing system as a mechanical
transformer that, in the ideal case, conserves power. Under this ideal gearing
assumption, it can be shown that the acceleration of the load is given by

where the numerator on the right-hand side is the peak torque the motor can
produce and Jm is the motor inertia. If one wished to determine what gear ratio



(16.21)

(16.22)

1.

2.

were required to obtain maximum acceleration of the load, equation 16.20
would be differentiated and set equal to zero, to obtain

This expression implies that the load inertia should be made equivalent to the
motor inertia by appropriate gearing, in order to obtain the best acceleration.
Substituting equation 16.21 in 16.20, we can show that the maximum
acceleration is given by

Equations 16.16 to 16.22 are very useful in sizing a motor and in determining
whether any gearing will be necessary to achieve the desired performance.
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Torque Definitions

Although definitions of various torques were introduced in Chapter 15, it is
useful to briefly review those definitions in light of the preceding subsection. In
sizing a motor, it is important to ensure that the motor is capable of overcoming
static friction at start-up, to accelerate to the desired speed in an acceptable
fashion, and to handle any overloads that may occur. The following definitions
will help in the analysis:

Locked-rotor, or static, torque: The minimum torque the motor will
develop at rest for all angular positions under rated conditions.
Breakdown torque: The maximum torque a motor will develop under
rated conditions without an abrupt drop in speed.
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(16.23)

(16.24)

(16.25)

Full-load torque: The torque necessary to produce rated power output
at full-load speed.
Acceleration torque: At any specified speed, acceleration torque, that
is, the torque available for acceleration, is Tacc = Tm – TL – TF, where Tm
is the motor torque, TL is the load torque, and TF is the frictional load
torque.

Clearly, for the motor to accelerate to full-speed operation, the motor torque at
standstill must exceed the total static-load torque. When the motor torque–speed
curve intersects the load torque–speed curve, then a balanced operating
condition has been reached.

Acceleration Calculations

The equation that defines the acceleration characteristics of a motor-load pair is

where TL is the total load torque. From this equation we can calculate the time
required to accelerate the load from a speed ω1 to a speed ω2 as follows:

or, in units of revolutions per minute:

where T is the net torque (motor torque minus load torque) and JT is the total
system inertia (motor inertia plus reflected load inertia).

Efficiency Calculations

The efficiency of a motor is the ratio of the mechanical power output to the
electric power input, that is, the effectiveness of the electromechanical energy
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conversion. We have already discussed the sources of loss in Chapter 15 and
classified them Page 16-39as electrical losses, magnetic losses, and mechanical
losses; refer to Section 15.1 for these definitions. The efficiency of a motor η is
defined by

Thermal Calculations

The calculation of the temperature rise and thermal dissipation in a motor can
be quite complex and depends very much on the motor construction. For the
purpose of illustration, we briefly discuss only the thermal characteristics of a
DC motor and perform some thermal calculations for this type of machine.

Thermal dissipation is one of the most important limiting factors in the
operation of DC machines. We assume that most power losses take place in the
armature (a reasonable assumption, since most of the electric power flows
through the armature circuit), and we use the thermal-electrical system analogy
where the thermal difference Δθ° is given by

and where Ia is the armature current, Ra the armature resistance, and RT the
thermal resistance of the rotor. The thermal time constant of the motor is then
defined to be the time (in seconds) taken by the armature to reach 63 percent of
the temperature rise corresponding to a given constant power dissipation. Now,
the maximum continuous torque the motor can develop is related to the power
dissipation because the motor torque is proportional to the armature current:

where Pdiss is the dissipated power and Rmax the rotor resistance at the
maximum temperature, RT is the rotor thermal resistance at ambient
temperature, and Δθ is the temperature rise. The temperature rise of copper can
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be determined from the known resistance of the wound rotor by computing the
maximum temperature as follows:

and by computing , it is possible to use equation 16.28 to
determine the maximum acceptable torque.

Conversely, to ensure that a given motor can operate within its thermal
limits, one can calculate an average rms current requirement Irms, consisting of
the acceleration, deceleration, and running current, and use it to compute the
temperature as
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Motor Selection
The range of electric motor applications is so broad that it is difficult to
establish precise rules for motor selection. The differences between applications
such as vehicle traction, robot motion, micromotors, disk drives, manufacturing
machines, and pump systems, for example, are so many that it is virtually
impossible to specify what the best motor would be unless the application and
its environment were clearly specified. The aim of this subsection is simply to
outline a procedure that can help in narrowing down the choice of a suitable
drive motor to a few most likely candidates.

The first step in selecting a motor is the analysis of the requirements
imposed by the application; these can be divided into three groups: (1) motor
requirements, (2) load requirements, and (3) control requirements. Table 16.6
summarizes the important considerations for each of these.

Table 16.6 Motor selection requirements



On the basis of the requirements listed in Table 16.6, one can undertake the
task of selecting a motor for a specific application.

Motion Requirements

The first step in the drive selection process is to understand the application-
driven specifications, such as the type of motion, duty cycle, required
acceleration and gearing system, and type of control that may be required
(position, velocity, torque).

Motor Sizing

The second step in the drive selection process concerns the sizing of the motor
itself. This is done first by calculating the maximum speed; next, the reflected
inertia of the load and drive components is calculated. From the inertia
calculations, the peak torque required by the application can be calculated. The
maximum speed and torque requirements thus obtained will narrow the field
significantly. Next, one should determine the appropriate constants for each of
the candidate motors; these include, in general, inertias, resistances (electrical
and thermal), and torque and back emf constants. With these constants it
becomes possible to determine that the motor can operate within its thermal
specifications by calculating the temperature rise of Page 16-41the machine in
operation. This, of course, can be a greater limitation during certain portions of
the motion cycle, for example, during a hard acceleration.

6Defining the Power Requirements

Calculate the peak voltage and current to determine the supply requirements.

Choosing a Transmission
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2.

3.

Although we have been assuming that the mechanical drive system was known
beforehand, so that the reflected inertia and peak torque could be calculated,
there are many issues that need to be investigated in establishing the drive
system, for example, the effect that elastic couplings might have in creating
mechanical resonances; noise and vibration characteristics; and backlash due to
gearing system imperfections.

Summary
It should be apparent from this brief discussion that the process of selecting an
electromechanical drive is quite complex, and it requires a good understanding
of many aspects of engineering, including heat transfer, kinematics, dynamics,
electronics, systems, and, of course, electromechanics. We hope that this brief
introduction will provide the motivation to pursue further studies in this subject
area.

Conclusion
This chapter introduces a number of special-purpose electric machines that find
widespread application in industry. The operating principles and analysis
methods used in this chapter build directly on the foundations of Chapters 14
and 15.

Upon completing this chapter on electric machines, you should have
mastered the following learning objectives:

Understand the basic principles of operation of brushless DC motors and
the tradeoffs between these and brush-type DC motors. The brushless DC
motor is a PM synchronous motor in which the mechanical commutation of
conventional DC motors is replaced by electronic commutation. Brushless
DC motors can be made quite compact, and they find application in vehicle
propulsion and motion control.
Understand the operation and basic configurations of step motors, and
understand step sequences for the different classes of step motors. Stepping
motors—of the variable-reluctance, PM, or hybrid type—permit fine
angular displacement control by moving in fixed, discrete steps. Typical
applications are seen in robotics and control systems.
Understand the operating principles of switched reluctance machines.
Switched reluctance machines are gaining more widespread acceptance
because of their simplicity, since they require no permanent magnets and
have very simple stator windings and rotor construction. Possible
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5.

16.1

16.2

a.

b.

applications of switched reluctance machines include low-cost industrial
applications and vehicular propulsion.
Classify and analyze single-phase AC motors, including the universal
motor and various types of single-phase induction motors, using simple
circuit models. The universal motor is very similar in construction to a DC
motor, but can operate on AC supplies; its speed can be controlled by
electronic circuits of modest complexity. Thus, the universal motor finds
common application in both variable- and fixed-speed appliances, such as
power drills and vacuum cleaners, respectively. Induction motors can
operate on a single-phase AC supply as a means is provided to establish a
starting torque. Various techniques are commonly employed, such as split-
phase, capacitor-start, and shaded-pole construction. Page 16-42The
different types are characterized by differing torque–speed characteristics
that make the single-phase induction motor a very versatile device. This is
probably the most commonly employed electric machine.
Outline the selection process for an electric machine, given an application;
perform calculations related to load inertia, acceleration, efficiency, and
thermal characteristics. The selection of the appropriate motor for a given
application should take into consideration many factors, including cost and
packaging, the nature of the load, the performance specifications, and
thermal considerations.

HOMEWORK PROBLEMS
Section 16.1: Brushless DC Motors

It is found that λm = 0.1 V-s for a permanent-magnet, six-pole, two-phase
synchronous machine. Calculate the amplitude (peak value) of the open-
circuit phase voltage measured when the rotor is turned at 60 r/sec.

A four-pole, two-phase brushless dc motor is driven by a mechanical
source at n = 3,600 r/min. The open-circuit voltage across one of the
phases is 50 V rms.

Calculate λ.

The mechanical source is removed, and the following voltages are
applied:  and  where θ = ωet. Calculate the
no-load rotor speed ω in radians per second.
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16.4

16.5

16.6

16.7

16.8

With reference to Example 16.2, we wish to shorten the trapezoidal speed
profile cycle time by accelerating the motor to a maximum speed of 1,800
r/min. If we still allow 1 s for acceleration and deceleration, how long will
the cycle time be?

With reference to the triangular speed profile of Figure P16.4, determine
the speed profile required to move a load 0.5 m (or 100 r) in 3 s.

Figure P16.4

Section 16.2: Stepping Motors
With reference to Example 16.4, design a logic circuit that uses the logic
design principles of Chapters 11 and 12 to achieve the step sequence given
in Table 16.4.

(Hint: Use a counter and logic gates.)

A permanent-magnet stepper motor has six poles and a bipolar supply (i.e.,
the current into each coil pair can be either positive or negative). Figure
16.10 depicts a four-pole stepper motor as an example; the motor described
in this problem has two additional poles. The spacing between the poles is
uniform. Determine the size of the smallest achievable step in degrees.

Derive the dynamic equation for a stepping motor coupled to a load. The
motor moment of inertia is Jm, the load moment of inertia is JL, the viscous
damping coefficient is D, and motor friction torque is Tf.

Sketch the rotor-stator configuration of a hybrid stepper motor capable of
18° steps.

(Hint: The rotor will have five teeth.)
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16.10

16.11

a.

b.

16.12

16.13

Use a binary counter and logic gates to implement the stepping motor
binary sequence of the second Check Your Understanding following
Example 16.6.

A two-phase permanent-magnet stepper motor has 50 rotor teeth. When
the rotor is driven by an external mechanical source at ω = 100 rad/s, the
measured open-circuit phase voltage is 25 V peak to peak. Calculate λ.
If ia = 1 A and ib = 0, express the developed torque. Assume the winding
resistance is 0.1 Ω.

The schematic diagram of a four-phase, two-pole permanent-magnet
stepper motor is shown in Figure P16.11. The phase coils are excited in
sequence by means of a logic circuit. Find

The logic schedule for full stepping of this motor.

The displacement angle of the full step.
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Figure P16.11

A permanent-magnet stepper motor is designed to provide a full-step
angle of 15°. Find the number of stator and rotor poles.

A bridge driver scheme for a two-phase stepping motor is shown in
Figure P16.13. Find the excitation sequences of the bridge operation (fill
in the blanks of the table).
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a.

b.

c.

d.

16.15

a.

b.

c.

d.

Figure P16.13

A permanent-magnet stepper motor with a 15° step angle is used to
directly drive a 0.100-in lead screw. Determine

The resolution of the stepper motor in steps per revolution.

The distance the lead screw travels (in inches) for each 15° step of
the stepper motor.

The number of full 15° steps required to move the lead screw and the
stepper motor shaft through 17.5 revolutions.

The shaft speed (r/min) when the stepping frequency is 220 pulses
per second.

Section 16.4: Single-Phase AC Motors
Determine whether the following motors are integral- or fractional-
horsepower motors:



16.16

16.17

16.18

16.19

16.20

a.

b.

The spatial fluctuation of the stator mmf  is expressed as

where θ is the electrical angle measured from the stator coil axis and
F1(peak) is the instantaneous value of the mmf wave at the coil axis and is
proportional to the instantaneous stator current. If the stator current is a
cosine function of time, the instantaneous value of the spatial peak of the
pulsating mmf wave is

where F1(max) is the peak value corresponding to maximum
instantaneous current. Derive the expression for , and verify that for a
single-phase winding, both forward and backward components are
present.

A 200-V, 60-Hz, 10-hp, single-phase induction motor operates at an
efficiency of 0.86 and a power factor of 0.9. What capacitor should be
placed in parallel with the motor so that the feeder supplying the motor
will operate at unity power factor?

A 230-V, 50-Hz, two-pole, single-phase induction motor is designed to
run at 3 percent slip. Find the slip in the opposite direction of rotation.
What is the speed of the motor in the normal direction of rotation?

Determine the amount of time (in seconds) it will take for a stepper
motor with a 15° step angle, operating in one-phase excitation mode, to
rotate through 28 rad when the pulse rate is 180 pps. Note: t = θ/ω.
A  110-V, 60-Hz, four-pole capacitor-start motor has the
following parameters:

Find

The stator current.

The mechanical power.
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16.22

16.23

16.24

16.25

a.

b.

c.

d.

The rotor speed.
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A  four-pole, 110-V, 60-Hz, single-phase induction motor has the
following data:

Find the mechanical power output.

A single-phase, 115-V, 60-Hz, four-pole induction motor has the
following parameters:

Find the input current and developed torque when the motor speed is
1,730 r/min.

The no-load test of a single-phase induction motor is made by running
the motor without load at rated voltage and rated frequency. Derive the
equivalent circuit of a single-phase induction motor for the no-load test.

(Hint: The no-load slip is very small.)

Derive the equivalent circuit of a single-phase induction motor for the
locked-rotor test. Neglect the magnetizing current.

The design for a  two-pole, 115-V universal motor gives the effective
resistances of the armature and series field as 4 and 6 Ω, respectively.
The output torque is 0.17 N-m when the motor is drawing rated current
of 1.5 A (rms) at a power factor of 0.88 at rated speed. Find

The full-load efficiency.

The rated speed.

The full-load copper losses.

The combined windage, friction, and iron losses.
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a.

b.

c.

d.

16.27

16.28

16.29

a.

b.

c.

The motor speed when the rms current is 0.5 A, neglecting phase
differences and saturation.

A 240-V, 60-Hz, two-pole universal motor operates at a speed of 12,000
r/min on full load and draws a current of 6.5 A at 0.94 power factor
lagging. The series field-winding impedance is 4.55 + j3.2 Ω, and the
armature circuit impedance is 6.15 + j9.4 Ω. Find

The back emf of the motor.

The mechanical power developed by the motor.

The power output if the rotational loss is 65 W.

The efficiency of the motor.

A single-phase motor is drawing 20 A from a 400-V, 50-Hz supply. The
power factor is 0.8 lagging. What value of capacitor connected across
the circuit will be necessary to raise the power factor to unity?

A three-phase induction motor is required to operate from a single-phase
source. One possible connection is shown in Figure P16.28. Will the
motor work? Explain why or why not.

Figure P16.28

In performing a brake-load test upon a  capacitor-start motor with its
output adjusted to rated value, the following data were obtained: E = 115
V, I = 3.8 A, P = 310 W, rotation speed = 1,725 r/min. Calculate

Efficiency.

Power factor.

Torque in pound-inches.



16.30

a.

b.

c.

d.

e.

f.

g.

h.

i.

16.31

Section 16.5: Motor Selection and Application
What type of motor would you select to perform the following tasks?
Justify your selection.

Vacuum cleaner

Refrigerator

Air conditioner compressor

Air conditioner fan

Variable-speed sewing machine

Clock

Electric drill

Tape drive

X-Y plotter

A 5-hp, 1,150-r/min shunt motor has its speed controlled by means of a
tapped field resistor, as shown in Figure P16.31. With the tap at position
3, determine the speed of the motor and the torque available at the
maximum permissible load.
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Figure P16.31
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a.

b.

c.

d.

e.

f.

g.

16.33

a.

b.

c.

16.34

16.35

a.

b.

Which single-phase motor would you choose for the following
applications?

Inexpensive analog electric clock.

Bathroom ventilator fan.

Escalator which must start under all load conditions.

Kitchen blender.

Table-model circular saw operating at about 3,500 r/min.

Handheld circular saw operating at 15,000 r/min.

Water pump.

The power required to drive a fan varies as the cube of the speed. If a
motor driving a shaft-mounted fan is loaded to 100 percent of its
horsepower rating on the top speed connection, find the horsepower
output in percent of rating:

At a speed reduction of 20 percent.

At a speed reduction of 30 percent.

At a speed reduction of 50 percent.

An industrial plant has a load of 800 kW at a power factor of 0.8
lagging. It is desired to purchase a synchronous motor of sufficient
capacity to deliver a load of 200 kW and also serve to correct the overall
plant power factor to 0.92. Assuming that the synchronous motor has an
efficiency of 91 percent, determine its kilovoltampere input rating and
the power factor at which it will operate.

An electric machine is controlled so that its torque–speed characteristics
exhibit a constant-torque region and a constant-power region as shown
in Figure P16.35. The average efficiency of the electric drive
(combination of machine, plus power electronics, plus control
electronics) is 87 percent. The machine torque is constant from 0 to
2,500 r/min, and is equal to 150 N-m. The constant-power region is
valid from 2,500 to 6,000 r/min. The machine drives a constant-torque
load requiring 75 N-m.

Determine the operating speed of the machine.

Determine the electric power needed to operate the machine.
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Figure P16.35

A PM synchronous (brushless DC) motor (wound stator, PM rotor, as
shown in Figure P16.36) needs to be rated in terms of its thermal
dissipation characteristics. To help in developing a rating, you are asked
to write the dynamic equations linking the electrical dynamics to the
thermal dynamics. Write the differential equations describing the
electrothermomechanical dynamics of the system. You may make the
following assumptions:

All heat is generated in the stator by the stator current (i.e., the heat
generated in the rotor is negligible). The rotor and stator are at the same
temperature, and you may assume specific heat c.
The stator is highly thermally conductive, and the dominant heat-transfer
term is convection. You may assume an overall thermal resistance Rt from
stator to air. The motor thermal mass is m.
The motor generates torque according to the equation Tm = kIS, and the
back emf is equal to Eb = kω.

Figure P16.36 Thermoelectromechanical system. Electrical
subsystem parameters: RS, LS, k (motor constant), VS(t), IS(t).
Mechanical subsystem parameters: inertia and damping coefficient, J,
b. Thermal subsystem parameters: thermal resistance, specific heat,
mass, Rt, c, m.
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e.
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A wound separately excited DC motor (wound stator and rotor, as shown
in Figure P16.37) needs to be rated in terms of its thermal dissipation
characteristics. To help in developing a rating, you are asked to write the
dynamic equations linking the electrical dynamics to the thermal
dynamics. Write the differential equations describing the
electrothermomechanical dynamics of the system. (Hint: Start with the
thermal equations.)

Use the following assumptions:

Heat is generated in the stator and in the rotor by the respective
currents.

The stator and rotor are highly thermally conductive, and the
dominant heat-transfer term is convection through the air gap and to
ambient.

Heat storage in the air gap is negligible, and the air gap is infinitely
thin.

The motor generates torque according to the equation Tm = kTIa, and
the back emf is equal to Eb = kaω.

The stator and rotor each act as a lumped thermal mass.

Figure P16.37 Thermoelectromechanical system. Electrical
subsystem parameters: Rf, Lf, Ra, La (motor field and armature
electrical parameters), kf, ka, kT (motor field and armature constants),
VS(t), Vf (t), Ia(t), If (t). Mechanical subsystem parameters: load
inertia, damping coefficient, load torque, J, b, TL. Thermal subsystem
parameters: Ct–rotor, ht–rotor, Arotor [rotor thermal capacitance, film
coefficient of heat transfer from rotor surface to air and from air to
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a.

b.

c.

16.39

a.

b.

stator inner surface, rotor and inner stator surface area (assumed
equal)]. Ct–stator, ht–stator, Astator (stator thermal capacitance, film
coefficient of heat transfer from stator outer surface to air, stator outer
surface area).

We wish to develop a thermal power rating for the (brushless DC) PM
synchronous motor of Problem 16.36. To help in developing a rating,
you are asked to write a simplified set of dynamic equations linking the
electrical dynamics to the thermal dynamics. You may use the following
assumptions:

All heat is generated in the stator by the stator current. The rotor and
stator are at the same temperature, and you may assume specific heat
c.

The stator is highly thermally conductive, and the dominant heat
transfer term is convection. You may assume an overall thermal
resistance Rm from stator to air. The motor thermal mass is m.

The motor operates at its rated (constant) speed ωm (the brief
acceleration transient to get the motor up to speed takes a short time,
so you do not need to consider the mechanical dynamics).

Write the differential equation needed to calculate the time it takes the motor to
reach its steady-state temperature. Determine, symbolically, the time constant
for the temperature rise.

An electric machine is controlled so that its torque–speed characteristics
exhibit a constant-torque region and a constant-power region, as shown
in the sketch of Figure P16.35. The average efficiency of the electric
drive (combination of machine, plus power electronics, plus control
electronics) is 87 percent. The machine torque is constant from 0 to
2,500 rpm, and is equal to 150 N-m. The constant power region is valid
from 2,500 to 6,000 rpm. The machine drives a constant torque load
requiring 75 N-m.

Determine the operating speed of the machine.

Determine the electric power needed to operate the machine.

 Sketch the solution on the curve of Figure P16.35 with exact
numerical values.



16.40 A PM DC motor is rigidly coupled to a fan; the fan load torque is
described by the expression TL = 5 + 0.05ω + 0.001ω2 where torque is in
N-m and speed in rad/s. The motor has kaϕ = kTϕ = 2.42. Ra = 0.2 Ω,
and the inductance is negligible. If the motor voltage is 50 V, what will
be the speed of rotation of the motor and fan?

Design Credits: Mini DVI cable adapter isolated on white background: Robert Lehmann/Alamy Stock
Photo; Balance scale: Alex Slobodkin/E+/Getty Images; Icon for “Focus on measurements” weighing
scales: Media Bakery.
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POWER ELECTRONICS

ower electronic devices are specially designed diodes and transistors
that have the ability to carry large currents and sustain large voltages.
These devices are the “muscle” of many electromechanical systems.
For example, one finds such devices in many appliances, in industrial

machinery, and virtually wherever an electric motor is found since one of the
foremost applications of power electronic devices is to supply and control
the currents and voltages required to power electric machines.

This chapter surveys the basic properties and types of power electronic
devices and illustrates the application of a few of these devices, especially
with regard to electric motor drivers. As alluded to above, diodes and
transistors are at the heart of power electronic devices and systems. Diodes
act as rectifiers and regulators and as simple unidirectional “valves” for
current. Transistors act as switches and amplifiers. In particular, power
amplifiers often rely on BJTs due to their superior linearity and current
handling capability when compared to MOSFETs. MOSFETs are capable of
much higher switching speeds than BJTs. When large currents must be
switched at high speeds, a hybrid device known as an insulated gate bipolar
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transistor (IGBT) is commonly used because it possesses some of the
advantages of both BJTs and MOSFETs. In fact, switch-mode power
supplies, many of which rely on IGBTs, are popular choices for many power
electronic applications.
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 Learning Objectives
Students will learn to...

Classify power electronic devices and circuits. Sections 17.1 and 17.2.
Analyze the operation of practical voltage regulators. Section 17.3.
Utilize transistor power amplifiers. Section 17.4.
Analyze the operation of single- and three-phase controlled rectifier
circuits. Section 17.5.

17.1 POWER ELECTRONIC DEVICES AND
CIRCUITS
Power semiconductors can be classified into five groups:

Power diodes.
Thyristors.
Power bipolar junction transistors.
Insulated-gate bipolar transistors.
Static induction transistors.

Figure 17.1 depicts the symbols for common power electronic devices.



Figure 17.1 Classification of power electronic devices

Power diodes are functionally identical to small-signal diodes, except
for their ability to manage much larger voltages and currents. For example, a
general-purpose diode may be rated at 3 kV and 3.5 kA, while a high-speed
diode may be rated as high as 3 kV and 1 kA. Schottky diodes are even
faster, with switching intervals in the nanosecond range, but they are
typically limited to 0.1 kV and 0.3 kA. The forward voltage drops of small-
signal and power diodes are similar, both being on the order of 1 V, which is



usually negligible compared to the voltages found in power applications. As
a result, power diodes often approximate ideal switches.

Thyristors are one of the oldest power electronic devices and are similar
to power diodes except for an additional gate terminal that determines when
conduction begins. A small current injected into the gate will trigger
conduction if the diode portion of the thyristor is forward-biased, as
indicated in Figure 17.1. Once triggered, the gate current is not needed to
maintain conduction, which continues until the diode portion of the thyristor
is reverse-biased. Thyristors can be rated at up to 6 kV and 3.5 kA. The
turnoff time of a thyristor is an important characteristic and can be as short
as 10 μs; however, a short turnoff time is usually accompanied by a lower
power rating. Over the years many varieties of thyristors have been
developed, including the gate turnoff (GTO), reverse-conducting (RCT),
static induction (SIT), gate-assisted turnoff (GATT), MOS controlled
(MCT), and force- and line-commutated thyristors, as well as the original
silicon-controlled rectifier (SCR) and light-activated SCR (LASCR). The
operation of each of these devices is a slight modification of the basic Page
17-3thyristor. Of this group, only the GTO can be turned on and off without
the aid of a separate commutation circuit. A short negative pulse to the gate
turns off a GTO. A triac is essentially a pair of oppositely directed thyristors
connected in parallel, as shown in Figure 17.1. A single gate enables
conduction in either direction. Conduction is maintained until the thyristor is
no longer forward-biased in either direction.

Power BJTs can reach ratings up to 1,200 V and 400 A, and they
operate in much the same way as a conventional BJT. Power BJTs are used
in power converter applications at frequencies up to around 10 kHz. Power
MOSFETs can operate at somewhat higher frequencies (a few to several
tens of kilohertz) but are limited in power (typically up to 1,000 V and 50
A). Insulated-gate bipolar transistors (IGBTs) are voltage-controlled
(because of their insulated gate, reminiscent of insulated-gate FETs) power
transistors that offer superior speed with respect to BJTs but are not quite as
fast as power MOSFETs.

Power Electronic Circuits
One possible classification of power electronic circuits is given in Table
17.1. The first four of these circuits may be familiar. For example, voltage



regulators and rectifiers were introduced in the chapter on diodes. In this
chapter, practical considerations and variations of these circuits are
discussed. Likewise, principles of transistor switches and amplifiers were
discussed in earlier chapters. Here, high-power versions of these circuits and
their characteristics are discussed. For example, it is important to consider
carefully power limitations and signal distortion in power amplifiers. Other
properties are important when transistors are used as switches.

Table 17.1 Power electronic circuits

The last four circuits listed in Table 17.1 were not introduced in any
previous chapter. They are all generally known as converters, and their
principal shared characteristic is the use of a switch to control or vary their
output. For example, the DC output of a thyristor-based controlled rectifier
is variable in the sense that the gate current can be varied to control the
initiation of conduction, resulting in Page 17-4a DC output like that
illustrated in Figure 17.2. The firing angles α and α + π indicate the initiation
of conduction through thyristors T1 and T2 during each period of the AC
supply. This type of AC-DC converter is commonly used in DC motor
applications.



Figure 17.2 AC-DC converter circuit and waveform

As another example, Figure 17.3 shows one type of AC voltage
controller, where the bidirectional capability of a triac is employed to
modify an AC waveform. The period of the output waveform matches that
of the input waveform; however, the rms value of the output υo is smaller
than that of the input υs. This type of circuit is known more generally as an
AC-AC converter.

Figure 17.3 AC-AC converter circuit and waveform



Figure 17.4 shows a basic chopper, or switching regulator, converts a
fixed DC source to a variable DC source. In this circuit, a BJT is employed
as a switch to enable/disable conduction according to the duty cycle of the
base-emitter voltage. The reduced DC average of the output waveform is
determined by that duty cycle. Such DC-DC converters are often used as
variable-voltage supplies for DC motors.

Figure 17.4 DC-DC converter circuit and waveform
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Figure 17.5 shows a basic inverter, which converts a fixed DC supply to
a variable AC supply by coordinating the switching of pairs of transistors.
Such DC-AC converters find application in AC motor control.



(17.1)

Figure 17.5 DC-AC converter circuit and waveform

17.2 VOLTAGE REGULATORS
Figure 17.6 depicts a Zener diode i-υ characteristic and shows a block
diagram of a three-terminal voltage regulator. A simple voltage regulator
comprised of a resistor in series with a Zener diode was introduced in the
chapter on diodes. In practice, a more robust voltage regulator includes a
series pass transistor, as shown later in Figure 17.8, where υS = VS ± ΔυS, υo
= Vo ± Δυo, and υZ = VZ + iZrZ. When the nominal supply voltage VS is
sufficiently greater than the Zener voltage VZ, the BJT will be in the active
region such that υBE ≈ Vγ, iC ≫ iZ, and iC ≈ io. The result is that υZ ≈ VZ and,
by KVL, the load voltage is

Figure 17.6 Zener diode characteristic and voltage regulator
circuit

Note that this result is relatively independent of fluctuations in the
unregulated source voltage and of the required load current. Also note that,



(17.2)

by KVL, υCE = υS – υo. Thus, the required power rating of the BJT may be
determined by considering the largest unregulated voltage υS max:

Three-terminal voltage regulators are available in a single package that
often includes overcurrent protection and is rated in terms of the regulated
voltage and maximum power dissipation. The regulated voltage is usually
fixed but for some packages may be adjusted through external components.
When large power dissipation is required, regulators need to be attached to a
heat sink, usually a metal plate with fins to enhance heat transfer to the
surroundings. Figure 17.7 depicts typical heat sinks.
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Figure 17.7 Heat sink construction for voltage regulators

EXAMPLE 17.1 Analysis of Voltage Regulator
Problem
Determine the nominal load current io and the required Zener diode power
rating for the voltage regulator of Figure 17.8.



Figure 17.8 Practical voltage regulator

Solution
Known Quantities: Zener voltage; nominal source voltage; BJT base and
load resistors; transistor parameters.
Find:  and PZ.

Schematics, Diagrams, Circuits, and Given Data: VZ = 12.7 V; VS = 20 V;
RB = 47 Ω; Ro = 10 Ω. Transistor data for a TIP31: VBE on = Vγ = 1.8 V; β =
10 (see Table 17.2).
Assumptions: None.
Analysis: Notice immediately that since the nominal value VS of the voltage
source is significantly greater than the nominal Zener voltage VZ the base-
collector junction of the BJT is reverse-biased. Also, the base-emitter
junction must be forward-biased. (It is a worthwhile exercise to show that
the BJT cannot be in cutoff mode.) Consequently, the BJT is in active mode,
the Zener diode is on, and the load voltage is being regulated.

To solve for the load current consider Figure 17.9, which depicts the
equivalent load circuit. From KVL:



Figure 17.9

Thus, the nominal load current is:

To solve for the required Zener diode power rating it is necessary to
determine the nominal power PZ = VZIZ consumed. Since VZ is specified, it
is only necessary to find IZ, Page 17-7as shown in Figure 17.10. The first
step is to apply KVL to the base circuit, as shown in Figure 17.11, to
compute IRB:

Figure 17.10



Figure 17.11

The next step is to solve for IB by recalling that the transistor is in active
mode and writing IE = (β + 1) IB, where IE is the same as the load current Io.
Thus:

Next, apply KCL at the wire junction shown in Figure 17.10 to find:

Finally, the power consumed by the Zener diode is

The required Zener diode power rating should exceed this value and also
allow for small variations in IZ. A  Zener diode should suffice, while a 1-
W Zener diode would be more than adequate.
Comments: Note that the BJT enables regulation while keeping the Zener
current relatively small. Also, in this example, the nominal collector-emitter
voltage is easily found from KVL to be VCE = VS – Vo = VS – VZ + Vγ = 9.1
V. Since VCE ≫ VCE sat = 1.3 (see Table 17.2), the transistor is not close to
saturation and modest variations in the source and load voltage will not
compromise the regulator.

CHECK YOUR UNDERSTANDING
Repeat Example 17.1 using the MJE3055T transistor (see Table 17.2).

Table 17.2 Typical parameters for representative power BJTs
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17.3 POWER AMPLIFIERS
There are many applications in which substantial power must be delivered to
a load, such as a loudspeaker or electric motor. The control of electric power
in industry requires electronic devices that can carry currents as high as
hundreds of amperes and voltages up to thousands of volts. The aim of this
section is to discuss some of the more relevant issues in the design of power
amplifiers, such as distortion and heat dissipation.

BJTs are still preferred for audio power amplifiers due to the relatively
linear amplification characteristics of BJTs operating in active mode. Power
MOSFETs have advantages in many other applications, particularly those
involving high-frequency waveforms. However, an understanding of the
issues involved with power BJT circuits also provides insight on the issues
present in power MOSFET circuits.

In practice, a BJT is limited in its operation by the maximum collector
current, the maximum collector-emitter voltage, and the maximum power
dissipation, which is the product of IC and VCE. Figure 17.12 shows the
maximum power limit of a BJT as presented in a plot of iC versus υCE. As
alluded to above, it is also important to keep in mind that linear
amplification using a BJT requires operation in the active mode.



1.

2.

3.

Exceeding the maximum allowable current IC max on a continuous
basis will result in melting the wires that bond the device to the
package terminals.
Maximum power dissipation is the locus of points for which VCEIC =
Pmax at a case temperature of 25°C. The average power dissipation
should not exceed Pmax.
The instantaneous value of υCE should not exceed VCE max;
otherwise, avalanche breakdown of the collector-base junction may
occur.

Figure 17.12 Limitations of a BJT amplifier

Consider the effect of driving an amplifier beyond the limits of the linear
active region, into saturation or cutoff. The result will be signal distortion.
For example, a sinusoid amplified by a transistor amplifier that is forced into
Page 17-9saturation, either by a large input or by an excessive gain, will be
compressed around the peaks, because of the decreasing device gain in the
extreme regions. Thus, to satisfy these limitations—and to fully take
advantage of the relatively distortion-free linear active region of operation



1.
2.
3.

for a BJT—the Q point should be placed in the center of the device
characteristic to obtain the maximum symmetric swing.

Of course, the maximum power dissipation of the device can present a
rather severe limitation on the performance of the amplifier, in that the
transistor can be irreparably damaged if its power rating is exceeded. Values
of the maximum allowable collector current IC max, the maximum allowable
transistor power dissipation Pmax, and other relevant power BJT parameters
are given in Table 17.2 for a few typical devices. Because of their large
geometry and high operating currents, typical power transistor parameters
are quite different from those of small-signal transistors.

β is low. It can be as low as 5; the typical value is 20 to 80.
Typically IC max is in the ampere range; it can be as high as 100 A.
VCEO is usually 40 to 100 V, but it can reach 500 V.

EXAMPLE 17.2 Class A and B Amplifiers: Push-Pull Power
Amplifier Output Stage (Loudspeaker Driver)
Problem
One of the limitations of transistor power amplifiers, as explained in this
section, is their power dissipation, which limits the maximum useful load
power a transistor can output. The aim of this example is to compare a
typical emitter-follower amplifier with a push-pull amplifier when used as
an output power stage to drive, say, a loudspeaker. Because of the low
impedance of a loudspeaker (8 Ω is typical), the power or output stage of an
audio amplifier needs to provide fairly high currents. For example, an 8-Ω,
50-W loudspeaker will require 2.5 A, demanding the use of a power
transistor stage. Further, note that the input signal to be amplified is
intrinsically an AC signal and that, therefore, the output stage current must
swing above and below ground.



Solution
Known Quantities: Transistor parameters for TIP33C-34C complementary
power BJT pair.

Find: Analyze the two transistor amplifiers in Figure 17.13(a) and (b).
Schematics, Diagrams, Circuits, and Given Data: Figure 17.13.
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Figure 17.13 Emitter-follower (class A) and push-pull (class B)
amplifier

Assumptions: None.
Analysis: Consider first the emitter follower of Figure 17.13(a). To ensure
that the amplifier output can swing above and below ground, the biasing of
the amplifier will require that a substantial (quiescent) direct current flow
through the amplifier at all times, so that the Q point of the amplifier is in
the middle of the characteristic curve and the collector current can “swing”
over the full range between the cutoff region on the low end and the
maximum power dissipation (or saturation) limits shown in Figure 17.12.

This means that if we require a swing of 5 A (±2.5 A around the Q
point), the amplifier will see a continuous quiescent current of 2.5 A, which
will result in substantial continuous power dissipation. We can estimate this
quiescent power dissipation to be the sum of the power dissipated by the 8-
Ω resistor, approximately  plus the power dissipated by
the transistor, ICQ × VCEQ = 2.5 × VCEQ, which could be as much as 10 or 20
additional watts, depending on the collector-emitter bias voltage. So we are
looking at a continuous power dissipation that is greater than the (50-W)
power actually absorbed by the loudspeaker!

The circuit of Figure 17.13(b) uses two complementary (npn-pnp)
transistors in a push-pull configuration to avoid this problem. Note that this
circuit requires a symmetrical power supply [the single-ended collector
supply of Figure 17.13(a) is no longer adequate]. When the input signal
(assume a sinusoidal signal for simplicity) is in the positive half of the cycle,
the top (npn) transistor enters the active region (once the input voltage
exceeds the junction voltage) and amplifies the base current, while the
bottom transistor is in the cutoff region. During the input signal negative
half-cycle, the bottom (pnp) transistor acts as a linear amplifier, while the
top transistor is in cutoff. The advantage of this configuration is that if the
input signal is zero, both transistors are off. Thus, there is no quiescent
power consumption. Note that no resistors are required to bias this amplifier
configuration; Page 17-11thus, there will be no I2R power consumption
either. The primary disadvantage of the push-pull amplifier is illustrated in
Figure 17.13(c). The figure clearly shows that the output of the amplifier is
zero until one of the transistors has entered the active region. This leads to



the crossover distortion shown in the figure. The crossover distortion can
be eliminated with the circuit of Figure 17.13(d), in which two diodes are
included such that their forward-bias voltages cause the two base-emitter
junctions to be always forward-biased. Now the two BJTs are immediately
in the active region whenever the appropriate half of the cycle is on.
Comments: The push-pull amplifier is the most common form of output
stage in audio amplifier and finds use in many other linear amplifier
configurations.

EXAMPLE 17.3 Efficiency of Power Amplifiers
Problem
Example 17.2 illustrated the advantage of a push-pull amplifier output stage
in reducing the quiescent power consumption of an amplifier. In this
example, the efficiency of three different amplifier configurations are
compared: the common-emitter, emitter-follower, and push-pull amplifiers.

Solution
Known Quantities:
Find: The power dissipation Po = υoio of each of the transistor amplifiers in
Figure 17.14(a) to (c). Calculate the efficiency η of each amplifier based on
the following definition (ratio of load to input rms power):

Schematics, Diagrams, Circuits, and Given Data: Figure 17.14.
Assumptions: In all amplifiers we assume a sinusoidal input, and we also
assume that the amplifier is biased to permit maximum symmetrical load
voltage swing, from zero to +VCC for the common-emitter and emitter-



1.

follower amplifiers, and –VCC to VCC for the push-pull configuration. This
last assumption is not very realistic, but it simplifies the calculations a great
deal.

Figure 17.14 Three amplifier output stages

Analysis:
Common-emitter amplifier. Since we have assumed that the load voltage
swing is from 0 to +VCC, we can write the following expression for the
load voltage:

and the current will be



2.

3.

Now, since the input power is PCC = VCCIC and IC = io, we can write
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Conversely, the load power is

Thus, the efficiency of the amplifier can be calculated from the
expression:

The rms value of the function (1 + sin ωt) can be computed to be equal
to  and therefore

Emitter-follower amplifier. Since we have assumed that the amplifier is
biased to produce a symmetrical swing, there is very little difference
between common-emitter and emitter-follower configurations. In the
emitter-follower, the load current is the emitter current (rather than the
collector current). A similar derivation can be followed, as shown in
part 1, to arrive at the same result.
Push-pull amplifier. Here, we assume that the load voltage swing is
from –VCC to +VCC, for maximum amplification. Then, we can write the
following expression for the load voltage:
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and the current will be



Now, since the input power is PCC = VCCIC and IC = io (noting that the
load current is the emitter current from the transistor that is on during each
half-cycle—see Example 17.2), we can write

Conversely, the load power is

Thus, the efficiency of the amplifier can be calculated from the
expression:

The rms value of the above function is 0.707, and therefore

Comments: The push-pull amplifier is very useful in power output stages.

17.4 TRANSISTOR SWITCHES
In addition to their application in power amplifiers, power BJTs can serve as
controlled power switches, taking advantage of the switching characteristic
described in Chapter 9. In addition to the properties already discussed, it is
important to understand the phenomena that limit the switching speed of
bipolar devices. The parasitic capacitances CCB and CBE that exist at the CB
and BE junctions along with a transistor’s internal resistance impose a
limiting time constant on the rate at which a transistor can switch from
cutoff to saturation. Figure 17.15 illustrates a transistor’s response to a step



voltage applied to the base. Whereas the current into the base also
experiences a step change, this current must charge the base capacitance
such that the BE junction voltage requires a finite time to reach Vγ and
results in a delay td. Once the BE junction is forward-biased, a collector
current ensues and rises steadily over a finite rise time tr. This behavior
reflects the steadily rising BE junction voltage as the transistor transitions
from cutoff, through the active mode, to saturation.

Figure 17.15 BJT switching waveforms

An analogous process (though the physics are different) takes place
when the base voltage is reversed to drive the BJT into cutoff. The excess
charge accumulated in the base must be discharged before the BE junction
can be reverse-biased. This discharge takes place over a storage time ts,
which can be shortened by driving the base voltage to a negative value (–
V2). The reverse-biased BE junction capacitance must then be charged to (–
V2) before the switching transient is complete; this process takes place
during the fall time tf. In the figure, ICS represents Page 17-14the collector
saturation current. Thus, the turn-on and turnoff times of the BJT are given
by



(17.3)

Power MOSFETs
MOSFETs are also used as power switches. The preferred mode of operation
of a power MOSFET operated as a switch is the ohmic region, where
substantial drain current can flow for relatively low drain voltages. Thus, a
MOSFET switch is driven from cutoff to the ohmic state by the gate voltage.
In an enhancement MOSFET, positive gate voltages are required to turn the
transistor on; in depletion MOSFETs, either positive or negative voltages
can be used.

Recall the parasitic capacitances that exist between pairs of terminals:
CGS, CGD, and CDS. Once again, these capacitances cause a turn-on delay
td(on) corresponding to the time required to charge the equivalent input
capacitance to the threshold voltage VT. As shown in Figure 17.16, a finite
rise time tr is required to charge the gate-to-source voltage υGS beyond first
VT and then VGSP as the MOSFET transitions to the ohmic state.

Figure 17.16 MOSFET switching waveforms

The turnoff delay time td(off) is the time required for the input
capacitance to discharge so that υGS can fall and υDS can rise. The fall time tf
is the time required for υGS to drop below the threshold voltage and turn off
the transistor.

Insulated-Gate Bipolar Transistors



The insulated-gate bipolar transistor, or IGBT, is a hybrid device, combining
features of both field-effect and bipolar devices. The circuit symbol of the
IGBT is shown in Figure 17.1; a simplified equivalent circuit is shown in
Figure 17.17. The IGBT is a voltage-controlled device, like a MOSFET, but
its performance is closer to that of a BJT. The switching and conduction
losses of the IGBT are lower than those of a MOSFET, and the switching
speed is greater than that of a BJT (but somewhat lower than that of a
MOSFET); the convenience of an insulated gate is an advantage over BJTs.

Figure 17.17 IGBT simplified equivalent circuit

IGBTs can be rated up to 400 A and 1,200 V, with switching frequencies
as high as 20 kHz.

17.5 AC-DC CONVERTERS
One of the most immediate applications of the semiconductor diode is
rectification of AC voltages and currents, to convert AC waveforms to direct
current. Rectification can be achieved both with conventional diodes and
with controlled diodes, such as thyristors. A simple diode rectifier can
provide only a fixed DC voltage level; however, variable DC supplies can be
easily obtained with the aid of thyristors.

Single-Phase Rectifiers and Snubbers
The load seen by a DC power supply can impact its performance. In
practice, loads are often inductive, such as when a power supply drives a DC
motor. To operate at a constant speed a DC motor requires a constant
voltage. However, variations in the effective load due to variations in the



external work demanded of the motor can, if not accounted for, cause the
motor voltage to vary as well.
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The top circuit in Figure 17.18 is a simple half-wave rectifier connected
to an inductive load, which has a phase shift θZ = tan–1(ωL/R) (i.e., time
delay) between the voltage υ0 and the current i0. For simplicity, assume an
ideal diode D1. Then, when D1 is forward-biased, KVL requires υ0 = υAC.
On the other hand, when D1 is reverse-biased, the current in the loop must
be zero and υ0 = 0, as shown in the upper plot of Figure 17.19. However,
since i0 is delayed relative to υ0, when υAC transitions from positive to
negative, the current i0 is not yet zero. The consequence is that the current
through the inductor is interrupted resulting in a sudden spike in the voltage
across the inductor as it attempts to maintain its current. This spike, known
as a flyback voltage, is proportional to dio/dt and could seriously damage
the load and the diode.

Figure 17.18 Rectifier connected to an inductive load



(17.4)

(17.5)

Figure 17.19 Operation of a freewheeling diode

The additional freewheeling diode D2 in the bottom circuit of Figure
17.18 accommodates the current continuity requirement of the inductive
load by providing a current pathway when υAC is negative. Such a circuit is
known as a snubber. Note that diode D2 is off (reverse-biased) when υAC is
positive, but turns on (forward-biased) when υAC is negative and D1 is
reverse-biased and no longer conducts. Consequently, the flyback voltage L
dio/dt that developed in the top circuit is relieved because the inductor
current can circulate through D2 when υAC is negative. The lower plot in
Figure 17.19 depicts the load current, which is smooth and nearly constant,
for the snubber circuit.

An analysis of the snubber circuit is fairly simple. For a sinusoidal
voltage source υAC(t) = A sin ωt as indicated in Figure 17.19, and assuming
ideal diodes, the load voltage is

The time-average (DC) value of υ0(t) is V0 = A/π as marked in Figure 17.19.
Since the inductor acts like a short-circuit to this DC voltage, the DC current
I0 is simply:



(17.6)

(17.7)

Fourier analysis is required to compute the exact AC ripple current because
υ0 is not a pure sinusoid. For the sake of simplicity, assume that most of the
energy is at the AC source frequency. Then:

where I0 is the average load current, IAC is the peak value of the ripple
current, and θ is its phase. The load voltage can also be approximated as
shown in Figure 17.20:

This expression can be used to compute IAC.

Figure 17.20 Approximation of ripple voltage for a half-wave
rectifier

Three-Phase Rectifiers
It is important to realize that the same type of circuit that can be used for
single-phase rectifiers can also be employed to design multiphase rectifiers.
In many high-power applications, three-phase voltages need to be
transformed and rectified to give rise to a single DC supply. Consider the
balanced three-phase circuit shown in Figure 17.21. A three-phase wye-
connected source is attached to a three-phase transformer, with a Page 17-
16delta-connected primary and a wye-connected secondary. The three
secondary currents ia, ib, and ic encounter the diode pairs D1-D4, D3-D6, and
D5-D2, respectively. The diodes will conduct in pairs depending on the
relative line voltages, according to the following sequence: D1-D2, D2-D3,



D3-D4, D4-D5, D5-D6, and D6-D1. Recall that the line-to-line voltage is 
greater than the phase voltage in a three-phase wye-connected source. The
instantaneous source voltages and the related diode conduction periods, as
well as the load voltage, are shown in Figure 17.22.

Figure 17.21 Three-phase diode bridge rectifier



(17.8)

(17.9)

Figure 17.22 Waveforms and conduction times of three-phase
bridge rectifier

The average output voltage is given by:
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where Vm is the peak phase voltage. The rms output voltage is

Thyristors and Controlled Rectifiers
In a number of applications, it is useful to externally control the current from
an AC source to a load. A family of power semiconductor devices that
provide this control by means of a third input, the gate G, are called
controlled rectifiers. Arguably the oldest member of this family is the
silicon-controlled rectifier (SCR), or thyristor. Figure 17.23 depicts the
internal structure of a thyristor, which consists of four layers of alternating
p-type and n-type material, and its circuit symbol, which suggests that this
device acts as a controlled diode.

Figure 17.23 Thyristor structure and circuit symbol



When υAK ≤ 0, the thyristor is reverse-biased and acts as a conventional
pn junction in the off state. When υAK > 0, the thyristor is forward-biased but
it will not conduct current unless a small current is injected into the gate or
the applied forward voltage exceeds the so-called breakover voltage. Once
the thyristor begins to conduct it will continue to do so, even in the absence
of gate current as long as the forward current exceeds the latching current.
The holding current is the minimum forward current required to maintain
conduction, regardless of whether a gate current is present. Figure 17.24
shows typical characteristic i-v curves for a thyristor.

Figure 17.24 Thyristor i-υ characteristic

The four-layer pnpn thyristor may also be modeled as a pnp transistor
connected to an npn transistor, as shown in Figure 17.25, such that 
and  Suppose, initially, that iG and  are both zero. Then Qn is in
cutoff and  It then follows that  such that Qp is also in cutoff and
iCp = 0, a result which is consistent with the initial assumption. Thus, cutoff
is a stable state, in the sense that unless an external condition perturbs the
thyristor, it will remain off.



Figure 17.25 Thyristor two-transistor model

Suppose a small pulse of current is injected at the gate when the thyristor
is in cutoff. Then  and Qn will conduct, provided that υAK > 0. It then
follows that  such that Qp also will conduct and  and .
Once this condition is achieved the thyristor will remain on and continue to
conduct even if iG is subsequently set to zero since  remains
nonzero. The thyristor reverts to the off state when υAK becomes negative
such that both transistors return to cutoff.
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The general waveforms for the circuit of Figure 17.26 can be analyzed
as follows. Assume a pulse voltage υtrigger is applied to the thyristor gate at t
= τ, as depicted in Figure 17.27, such that the thyristor begins to conduct,



(17.10)

(17.11)

(17.12)

(17.13)

and it continues to do so until υS is negative. The average (DC) component
of the load voltage υ0 is zero prior to t = τ.

Figure 17.26 Controlled rectifier circuit

Figure 17.27 Half-wave controlled rectifier waveforms

where T is the period of υS(t). Let:

to express the average (DC) value of the load voltage as:

where α is the firing angle, defined by:



(17.14)

The integral of equation 17.12 can be evaluated to show the dependence of
⟨υ0⟩ = V0 on the firing angle α:

EXAMPLE 17.4 Thyristor-Based Variable Voltage Supply
Problem
Analyze the thyristor-based variable voltage supply shown in Figure 17.28.
Determine (1) the rms load voltage as a function of the firing angle and (2)
the power supplied to the resistive load at zero firing angle and at firing
angles equal to π/2 and π.

Figure 17.28

Solution
Known Quantities: Load resistance R0 of the lamp; input voltage source
υS(ωt) = VS sin(ωt).

Find: 



1.
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Schematics, Diagrams, Circuits, and Given Data: 
 The pulsed gate current iG(t) is shown in

Figure 17.29.

Figure 17.29

Assumptions: The thyristor acts as an ideal diode when on (VAK > 0).

Analysis:
Load voltage calculation. The load voltage is shown in Figure 17.30.
The rms value of the load voltage as a function of the firing angle α is
computed by:



2.

Figure 17.30
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where θ = ωt. Substitute  and use the trigonometric identity
sin2(θ) = [1 – cos (2θ)]/2 to evaluate the integral.

Load power calculation. We can now compute the load power for each
of the three values of α:

For α = 0:

For α = π/2:



For α = π:

Comments: Note that no power is wasted when the firing angle is set for
zero load voltage. This would not be the case if a resistive voltage divider
were used to adjust the load voltage.

EXAMPLE 17.5 Automotive Battery Charger
Problem
Qualitatively explain the operation of the automotive battery charger shown
in Figure 17.31.

Figure 17.31 Automotive battery charger
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Solution
Analysis: The charging circuit is connected to a standard 110-V single-phase
supply. Diodes D1 and D2 form a full-wave rectifier; resistors R1 and R2 and



thyristor T2 form a variable-voltage divider.

Assume that thyristor T2 is not in the conducting state and that the anode
voltage of D3 is such that D3 conducts. Then T1 will be fired near the
beginning of the positive half-cycle of the AC source voltage, and its period
of conduction will be long, providing a substantial current to the battery
(resistors R4 and Rp are sufficiently large that most of the current flowing
through T1 will go to the battery).

The potentiometer Rp is set so that when the battery voltage is low, the
voltage VR is not sufficient to turn on the Zener diode Z. Thus, Z is
effectively an open-circuit, and T2 remains off (recall that we had initially
assumed T2 to be off—this confirms the correctness of the assumption). As
the battery charges to a progressively higher value, Z will eventually
conduct; when Z conducts, a gate current is injected into T2, which is then
turned on.

When T2 conducts, the voltage across the R2-T2 series connection
becomes significantly lower, because T2 is now nearly a short-circuit.
Resistors R1 and R2 are selected so that when T2 conducts, D3 becomes
reverse-biased. Once this condition occurs, T1 is turned off and charging
stops. Note that the circuit has built-in overcharging protection.

EXAMPLE 17.6 Thyristor Circuit
Problem
Determine the value of R in the circuit of Figure 17.32 such that the average
current through the thyristor is 1 A.



Figure 17.32

Solution
Known Quantities: Resistances and source voltage.
Find: Resistor R such that ⟨i1⟩ = 1 A.

Schematics, Diagrams, Circuits, and Given Data: υS = 200 V rms, 250 Hz;
VAK (on) = 0 V; R1 = 75 Ω; RG = 1 kΩ; C = 1 μF.

Assumptions: The thyristor acts as an ideal diode when on (VAK > 0).

Analysis: Figure 17.33 depicts the relative timing of the source voltage υS(t),
thyristor current i1(t), and triggering voltage υt(t). The source voltage is

Figure 17.33

The current through R1 = 75 Ω is



and the triggering voltage is
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The triggering voltage will go positive at the desired firing angle α, thus
injecting a current into the gate of the thyristor and turning it on. To set ⟨i1⟩
= 1 A requires:

Upon evaluating the integral, the requirement is

for which α = 99.6°.
Observe that the AC source voltage appears across RC. If the gate

current is assumed to be negligibly small, υt can be found (in phasor
notation) by voltage division:

To solve for R observe that the phase of Vt( jω) is the firing angle α. Thus:



CHECK YOUR UNDERSTANDING
Using the approximations given in equations 17.6 and 17.7, find the DC and
AC loads for the circuit of Figure 17.18 if R = 10 Ω, L = 0.3 H, A = 170 V,
and ω = 377 rad/s.

CHECK YOUR UNDERSTANDING
Calculate the rms load voltage in the circuit of Figure 17.26 for A = 100 V
and α = π/3 rad. Let the input AC rms voltage be 240 V in the circuit of
Example 17.4. Find the rms value of the load voltage and the power
dissipated in the load if the firing angle α = π/4 rad.

CHECK YOUR UNDERSTANDING
Compute the rms value of the load current in the circuit of Figure 17.32.
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Answer: I0 = 5.4 A, IAC = 0.75 A, θ = –84.95°

Answer: V0 rms = 44.85 V; V0 rms = 161.81 V, P0 = 109 W

Answer: 



1.

2.

3.

4.

17.1
17.2

Conclusion
The following learning objectives should have been mastered upon
completion of this chapter:

Learn the classification of power electronic devices and circuits. Power
electronic devices can handle up to a few thousand volts and up to
several hundred amperes and are used in many industrial applications.
The various families of power electronics devices and systems are
introduced in this section.
Analyze the operation of practical voltage regulators. Voltage
regulators are a basic element of DC power supplies and are used to
provide a stable voltage output. The principal element of a voltage
regulator is the Zener diode, used as a voltage reference.
Understand the principal limitations of transistor power amplifiers.
Transistors, both BJT and MOSFET, as well as IGBTs are commonly
used as power amplifiers and switches. The principal limitations in
these applications are the allowable power dissipation and the switching
time.
Analyze the operation of single- and three-phase controlled rectifier
circuits. Rectifiers, like voltage regulators, are essential elements in DC
power supplies. Controlled rectifiers can provide a variable DC voltage,
and they are therefore very useful in the design of power converters for
DC motors, and in other industrial applications that require variable DC
voltage supplies.

HOMEWORK PROBLEMS
Section 17.2: Voltage Regulators

Repeat Example 17.1 for a 7-V Zener diode.

For the current regulator circuit shown in Figure P17.2, derive an
expression for RS in terms of VZ and I.



17.3

17.4

Figure P17.2

For the shunt-type voltage regulator shown in Figure P17.3, find an
expression for the output voltage Vo in terms of RS, VZ, and R.

Figure P17.3

Section 17.3: Power Amplifiers
The circuit of Figure P17.4 is a very effective battery charger. Its
operation is simple, and the TIP-33C npn power transistor can sink 10
A if a big enough heat sink is used. Assuming that the transistor
remains in the active operating region, determine the power delivered
to the 1.2-V rechargeable battery in the circuit.



17.5

Figure P17.4
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An IGBT can be modeled as shown in the circuit of Figure P17.5. With
Vt = 4 and K = 0.01 A/V2 for the MOSFET, and β = 200 for the BJT,
determine the current through Ro and the voltage across it. Let VG = 8
V and Ro = 2 Ω.

Figure P17.5

Section 17.5: AC-DC Converters



17.6

17.7

17.8

a.

b.

17.9

Consider the half-wave rectifier shown in Figure 17.18. Assume υAC(t)
= VM sin(ωt). Determine the current io(t) for one period of the source
waveform with and without the freewheeling diode. Assume ideal
diodes D1 and D2.

Consider the half-wave rectifier shown in Figure 17.18. Determine υo(t)
with and without the freewheeling diode. Assume each diode has a
forward resistance of 50 Ω and a forward bias voltage of 0.7 V. Also
assume R = 10 Ω and L = 2H.

For the circuit shown in Figure P17.8, υAC is a sinusoid with a 12-V
peak amplitude, R = 3 kΩ, and the forward-conducting voltage of D is
0.65 V.

Sketch the waveform of υo(t).

Find the average value of υo(t).

Figure P17.8

A vehicle battery charge circuit is shown in Figure P17.9. Describe the
circuit, and draw the output waveform (L1 and L2 represent the
inductances of the windings of the alternator).

Figure P17.9



17.10
17.11

a.

b.

c.

17.12

a.

b.

17.13

17.14

Repeat Example 17.4 for α = π/4 and α = π/8.

The circuit shown in Figure P17.11 is a speed control system for a
DC motor. Assume  the thyristors S1 and S2 are fired
at α = 60°, and that the motor direct current is 20 A and is ripple-
free.

Sketch the output voltage waveform υo.

Compute the average power (in watts) absorbed by the motor.

Compute the apparent power (in volt-amperes) supplied by the
source.

Figure P17.11

Consider a full-wave, single-phase controlled rectifier, similar to that
shown in Figure 17.2, that is used to drive a DC motor instead of the
resistive load Ro. Assume that the motor is rated at 4 kW and 110
Vrms and that the AC supply is 80 Vrms 60 Hz. Also assume that the
motor inductance is very large such that the motor current is ripple-
free and that the motor constant is 0.055 V/rpm. If the motor runs at
1,000 rpm at rated current:

Determine the firing angle of the converter.

Determine the rms value of the supply current.
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For the light dimmer circuit of Example 17.4, determine the load
power at firing angles α = 0°, 30°, 60°, 90°, 120°, 150°, and 180°,
and plot the load power as a function of α.

In the circuit shown in Figure P17.14:



17.15

17.16

Assume υo = Vo + Vripple(t) and the diodes are fabricated from silicon.
Determine the conduction angle of the diodes.

Figure P17.14

Assume that the conduction angle of the silicon diodes shown in the
circuit of Figure P17.15 is

Determine the rms value of the ripple voltage.

Figure P17.15

The diodes in the full-wave DC power supply shown in Figure
P17.14 are silicon. Assume:



17.17

17.18

17.19

Determine the value of the average and peak current through each
diode.

The diodes in the full-wave DC power supply shown in Figure
P17.15 are silicon. Assume:

Determine the value of the conduction angle for the diodes and the
average and peak current through the diodes. The load voltage
waveform is shown in Figure P17.17.

Figure P17.17

A power supply is shown in Figure P17.18. Sketch the signals Vab,
Vcd, Vef, and Vgh. Assume Vz = 8 V and silicon rectifier diodes.

Figure P17.18

A power supply is shown in Figure P17.19. Sketch the signals Vab,
Vcd, Vef, and IZ. Assume VZ = 6 V and a silicon rectifier diode.



17.20

17.21

17.22

Figure P17.19

Figure P17.20 depicts a low-cost full-wave bridge rectifier with a
Zener diode voltage regulator. Sketch the voltages across terminals
a-b, c-d, and e-f. The transformer turns ratio is 10:1 (step down).
Assume VZ = 12 V and silicon rectifier diodes.
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Figure P17.20

In the DC power supply shown in Figure P17.21, sketch the voltage
across a-b, c-a, and d-e, assuming that R is so large as to make any
ripple negligible. Assume silicon rectifier diodes.

Figure P17.21

A DC power supply known as a voltage doubler is shown in Figure
P17.22. It is assumed that the capacitors are large enough that the
ripple is not significant in the output voltage. Sketch the signals υab
and υcd. Assume silicon rectifier diodes.



Figure P17.22

Design Credits: Mini DVI cable adapter isolated on white background: Robert Lehmann/Alamy
Stock Photo; Balance scale: Alex Slobodkin/E+/Getty Images; Icon for “Focus on measurements”
weighing scales: Media Bakery.
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C H A P T E R
18

ANALOG COMMUNICATION
SYSTEMS

his chapter introduces the foundations of electrical communication
systems, emphasizing basic analog communications ideas.

The subject of electrical communications is one that touches
everyone’s life: telephones, TV, and radio have been a part of our lives for many
decades. Today, new means of communications are as pervasive as the traditional
ones. Computer networks, satellite weather systems, and personal communication
systems (pagers, cellular phones, etc.) are essential parts of our everyday lives.
The aim of this chapter is to present the basic mathematics of spectrum analysis,
which are the foundations of all communication systems, and the basic operation
of amplitude- and frequency-modulation systems. The explanation of these
concepts is supplemented by the use of computer-aided tools. In addition, the
chapter also includes an overview of different types of commonly used
communication systems.

Page 18-2



1.

2.

3.

4.

 Learning Objectives
Students will learn to...

Be familiar with the most common types of communication systems in block
diagram form. Sections 18.1 and 18.5.
Be capable of performing spectral analysis of simple signals using analytical
and computer-aided tools. Section 18.2.
Understand the principles of amplitude modulation (AM) and demodulation
and perform basic calculations and numerical computations on AM signals
Section 18.3.
Understand the principles of frequency modulation (FM) and demodulation
and perform basic calculations and numerical computations on FM signals
Section 18.4.

18.1 INTRODUCTION TO COMMUNICATION
SYSTEMS
The modern era of communications began with the telegraph and the Morse
code and rapidly moved toward radio and television. Table 18.1 summarizes
some of the major dates in the history of communication systems.

Table 18.1 A brief history of communications



Information, Modulation, and Carriers
The purpose of communication systems is to communicate information; the four
most common sources of information are speech (or sound), video, and data.
Regardless of Page 18-3the source, the information that is transmitted and
received in a communication system consists of a signal, which has the
information encoded in some appropriate fashion. Figure 18.1 depicts the general
layout of a communication system: an input transducer (e.g., a microphone)
converts the input message into a message signal (e.g., a time-varying voltage)
that is transmitted over a channel and converted by a receiver into an output
signal. An output transducer (e.g., a loudspeaker) converts the received signal
into an output message (e.g., sound). The transmitter performs a very important
function on communication signals by encoding the signals in some fashion
making use of a carrier signal. The information is contained in a so-called
modulating signal that modulates a carrier signal. For example, in FM radio the
modulating signal consists of speech and music, and the carrier is a sinusoidal
wave of predetermined frequency, much higher than the modulating signal
frequency. Table 18.2 summarizes the frequency band allocation and typical
applications in each frequency band.



Figure 18.1 Block diagram of a communication system

Table 18.2 Frequency bands

There are two principal reasons for the use of a very broad spectrum of carrier
frequencies. The first is that allowing for a broad spectrum permits many
simultaneous users to broadcast information at different frequencies without
interference among different transmissions; the second is that depending on the
frequency of the carrier, the electromagnetic waves that are transmitted have
different propagation characteristics. Thus, different carrier frequencies are better
suited for propagating over long distances than others.
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Classification of Communication Systems
Communication systems can be classified into two basic families, based on the
nature of the message signal: analog communication systems and digital
communication systems. In this chapter we focus on analog communications
although it should be noted that digital communications are taking an increasingly



prominent role even in the most common applications.1 Digital communications
are covered in Chapter 19. Another classification may be made based on the type
of transmission: light wave versus radio frequency, or RF transmission, as is
explained in the next section. A third classification is that of carrier versus direct
baseband transmission system. This latter classification is based on whether the
signal of interest is directly transmitted (e.g., as in the case of the telegraph), or
whether the signal modulates a carrier wave, as in the case of AM and FM radio
transmission.

Communication Channels
The modulated transmitted signal can reach the receiver in a number of ways. In
some cases, communication systems are hard wired. Examples of this
configuration are local area computer networks, local telephone systems, and
local cable TV networks. Depending on the frequency range, the transmitted
signal can be carried by twisted wire pair, coaxial cable, waveguides, or optical
fiber. However, in most communications systems, after the signal has been
carried over a wire or cable, it is eventually broadcast over air by an antenna, to
be received by a similar antenna elsewhere. Figure 18.2 depicts some typical
communication system components.

Figure 18.2 Communication system components; clockwise from top
left: (a) coaxial cables; (b) RF cabling components; (c) detail of coaxial
cable; (d) monopole antenna; (e) optical fiber bundle (Photos: (a) Kevin
Jordan/Getty Images (b) Jochen Tack/imageBROKER/age fotostock (c)



Don Farrall/Getty Images (d) Sylvain Grandadam/Getty Images (e)
Glow Images)
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The range of transmission can be significant—consider that signals can be
received from the far reaches of the solar system via radio astronomy. The most
common means of transmission of communication signals is via the broadcast of
radio frequency waves over the air. To understand the different types of wave
propagation, we need to briefly explain the geometry of the earth’s atmosphere.
With reference to Figure 18.3, the atmosphere is composed of layers, of which the
troposphere and the ionosphere are the most important for radio wave
transmission. The troposphere (up to about 20 km above sea level) is where the
earth’s air is contained; air density, temperature, and humidity decrease with
increasing altitude. The propagation of radio waves in air depends on various
properties of the medium. The speed of propagation of electromagnetic waves
and the refractive index of the medium (causing the deflection of the wave)
increase with altitude. As a consequence, radio waves tend to bend back toward
the earth as they propagate through the troposphere.

Figure 18.3 Propagation of radio frequency waves

The ionosphere is so called because of the ionization of the small amounts of
air present at these altitudes (50 to 600 km). Electromagnetic waves reaching the
ionosphere may propagate through it with some losses (attenuation) or may be
reflected down to earth, depending on the frequency of the transmissions. In
general, frequencies above 30 MHz will propagate through the ionosphere and are
therefore suitable for space communications.

To achieve long-range communications over the earth, sky waves are used.
These waves are reflected by the ionosphere and can reach points beyond the
horizon. These waves must have frequencies below 30 MHz to allow them to be



reflected by the ionosphere. Short-wave radio makes use of sky waves.
Tropospheric waves can also propagate beyond the horizon, but instead of being
reflected, as in the case of sky waves, they bend around the earth due to
diffraction. Direct waves are used in line-of-sight transmission, where the
transmitter and receiver are in the line of “sight” of one another. The earth’s
curvature is the primary limitation to the distance of such transmissions; however,
due to reflections from the ground, and to ground and surface waves, this
transmission can achieve greater distances than one would calculate simply based
on the earth’s curvature and the height of the antennas.

Coaxial cables are very commonly used for the transmission of radio-
frequency waves over short to medium distances, typically in the frequency range
between a fraction of a megahertz to hundreds of megahertz. Coaxial cable
consists of a copper core, surrounded by an insulating layer, in turn surrounded by
a conductive (ground) layer and by an external protective sheath. Today, the most
common Page 18-6example of the use of coaxial cable is the distribution of cable
television signals from the receiving station to individual homes.

An increasingly common type of communication system is based on light
wave transmission. Light is also electromagnetic radiation, but at much higher
frequencies than radio waves. The main drawback in the use of light as a carrier is
that it needs to be enclosed in a guide to travel over significant distances; optical
fibers are used to achieve such transmission. An optical fiber consists of a hair-
thin strand of glass, the core, surrounded by a protective layer, the cladding.
Snell’s law of optics ensures that if light enters the fiber at a sufficiently low
angle of incidence, the transmission benefits from total internal reflection,
confining the light signal to the core with minimal losses. High-speed computer
communications networks are increasingly making use of optical fibers.

18.2 SPECTRAL ANALYSIS

Signal Spectra
Signals can be represented in time-domain and frequency-domain forms. Phasor
notation is the starting point of the frequency-domain representation, or spectral
representation, of signals: a phasor describes a sinusoidal signal’s amplitude and
phase as a function of frequency. The spectrum of a signal is its frequency-
domain representation. For example, the signal x(t) = A1cos(ω1t + ϕ1) only
contains a single sinusoidal frequency, ω1, and its spectrum therefore consists of a
pair of spectral lines at the frequency ±ω1.2 Figure 18.4(a) to (c) depict the



representation of a sinusoidal signal in the time domain and in the frequency
domain. A complete representation of the frequency domain requires both
magnitude and phase.

Figure 18.4 (a) Time-domain and (b, c) frequency-domain [(b)
magnitude, (c) phase] representation of a sinusoidal voltage (amplitude:
1 V-peak; phase: 0 rad)

Periodic Signals: Fourier Series
Periodic signals can be represented as an infinite summation of sinusoids, as
explained in Section 5.2. Each sinusoid in the summation oscillates at its own
unique frequency, each of which is determined by the characteristics of the
original signal. These sinusoidal components of the original signal are known as
its harmonics.



(18.1)

(18.2)

Nonperiodic Signals: Fourier Transform
Practical communication signals have both periodic and nonperiodic components.
Typically, the carrier waveform is periodic (usually a sine wave), while the
modulating signal, consisting of speech, music, video, or data, is nonperiodic.
The analysis of nonperiodic signals uses a mathematical tool different from (but
related to) the Fourier series: the Fourier transform. The Fourier transform, also
named after the French mathematician Jean-Baptiste Joseph Fourier, is an integral
transform, so called because it is mathematically represented by an integral and
because it performs a transformation between two domains: the time domain and
the frequency, or spectral, domain.
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The Fourier transform of a function x(t) is the function X(ω) defined by the
integral

Conversely, if the function X(ω) is known, the inverse Fourier transform is
defined by:
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The pair x(t) and X(ω) represent a Fourier transform pair, a relationship
usually denoted by x(t) ↔ X(ω). Table 18.3 provides a summary of Fourier
transform pairs that are often useful in computations.

Table 18.3 Properties of Fourier transforms



(18.3)

The unit impulse or delta function, δ(t), which is the derivative of the unit
step function, plays an important role in Fourier transform analysis. (SeeA
ppendix B, equation B.13.)

The unit impulse function has three important properties: (1) its area is equal
to one; (2) it has infinite amplitude; and (3) it has zero duration, that is, its
occurrence is concentrated at one instant in time. Clearly, such a signal is a
mathematical abstraction since it is impossible to physically generate a signal that
has zero duration and infinite amplitude. Figure 18.5 shows how one can think of
the delta function as the limit of a sequence of rectangular pulses that are
increasingly narrow and tall, such that the product of height (1/ε) and width (ε) is
always equal to 1: the delta function can be thought of as the limit of this
sequence as ε approaches zero.



(18.4)

Figure 18.5 Delta function as the limit of a sequence of rectangular
pulses of unit area

The delta function has one further property that is of interest in signal
analysis:

that is, the delta function “samples” the function x(t) at the time of the occurrence
of the impulse. Table 18.4 lists the Fourier transform of δ(t) along with that of
other common functions.

Table 18.4 Fourier transform pairs



The importance of the Fourier transform is that it allows us to view signals in
the frequency or spectral domain. The spectral representation of signals is much
Page 18-9more convenient and effective in representing communication signals,
among other reasons because it allows important concepts, such as bandwidth and
spectrum allocation, to be defined. A sinusoidal signal is represented by a single
frequency. In the following examples, the Fourier transforms of a sinusoid, a
single rectangular pulse, and a sine wave burst, or RF pulse, are computed. These
three signals are frequently present in communication systems.

Bandwidth
The bandwidth of a signal is the range of frequencies comprising the spectrum of
the signal. Bandwidth is a very important concept in communication systems, as
the allocation of the radio frequency spectrum for different communication
systems permits the transmission of a signal within a certain specified bandwidth.
For example, standard FM radio allows a bandwidth of 200 kHz for each radio
station. The most common definition of bandwidth is that of 3-dB bandwidth,
also called half-power bandwidth. The 3-dB bandwidth of a signal is defined as
the frequency range between points where the signal level is 3 dB below its
maximum passband value. This informal definition is illustrated in Figure 18.6,
where an arbitrary voltage signal is shown to have a spectrum V(f), with center
frequency f0 and 3-dB bandwidth 2B.



Figure 18.6 Definition of 3-dB (half-power) bandwidth

You will recall from the definitions given in Chapter 5 that the 3-dB point in a
frequency plot is the frequency where the amplitude has dropped to a value equal
to  or 0.707, times the maximum value. Since signal power is proportional to
the square of the voltage, the 3-dB bandwidth is also called the half-power
bandwidth. Thus, half of the signal power is contained in the frequency band f0 –
B to f0 + B; we call 2B the bandwidth of the signal. Please observe that this
informal definition assumes that the signal spectrum has a bandpass shape. This is
usually the case for most, if not all, communication signals.
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How much bandwidth does a signal require? This depends on two factors: (1)
the bandwidth of the signal itself and (2) the type of modulation. We shall revisit
the concept of bandwidth when we explore amplitude- and frequency-modulation
systems.

EXAMPLE 18.1 Sinusoidal Signal Spectrum
Problem
Generate the spectrum of a signal consisting of the addition of two unity-
amplitude sine waves for different frequencies and phases. Plot the time-domain



sum and the spectrum of the sum.

Solution
Known Quantities: Sine wave amplitude, frequency, and phase.
Find: Plot the time-domain sum of the signals and the frequency-domain
spectrum.
Schematics, Diagrams, Circuits, and Given Data: ω1 = 300 rad/s; ω2 = 500
rad/s; ϕ1 = 0 rad; ϕ2 = π/4 rad/s.

Assumptions: None.
Analysis: The time-domain signals x1(t) and x2(t) and their sum are shown in
Figure 18.7(a). Figure 18.7(b) depicts the frequency spectrum of the sum signal.



Figure 18.7 (a) Time-domain and (b) frequency-domain representation
of the sum of two sinusoidal voltages

Comments: Note that the signal amplitude in the time domain is divided between
two spectral lines at each signal component frequency and at the corresponding
negative frequency; thus, signal power is preserved. The phase angle (at the
positive frequencies) is shown to be –π/2 for the signal x1(t) because the signal is
a sine wave (in Chapter 3 we defined the cosine as the reference function, with
zero phase angle); thus, x2(t) has phase angle –π/2 + π/4 = –π/4.
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EXAMPLE 18.2 Fourier Series of Pulse Train
Problem
Compute the complete Fourier series of the periodic pulse train shown in Figure
18.8.

Figure 18.8 Periodic pulse train

Solution
Known Quantities: Amplitude, period, and functional form of the signal.
Find: bn and cn coefficients as a function of n.

Schematics, Diagrams, Circuits, and Given Data: 
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Assumptions: The function repeats periodically.
Analysis: The expression for x(t) is simple:

Evaluate the integral below to determine the complex coefficients of the Fourier
series (see Chapter 5 for more on Fourier coefficients):



We may simplify the notation by using the sinc function, defined as:

Thus we may rewrite the coefficients as:

Figure 18.9(a) depicts the pulse train corresponding to the numerical values given
above, and Figure 18.9(b) its Fourier series coefficients up to n = 1,000. The
envelope of the discrete-frequency coefficients is the sinc function defined above.



Figure 18.9 Time-domain representation and Fourier series spectrum of
periodic pulse train with δ = 0.2

Comments: In this example, the integral representation of the Fourier coefficients
is easily evaluated because x(t) is a simple constant. Fourier integrals with
polynomial forms of x(t) can be evaluated by repeated application of the method
of integration by parts. More generally, Fourier integrals with periodic forms of
x(t) can be evaluated using Euler’s theorem and expressions found in Chapter 5.

Note that in the complex form of the Fourier series, the coefficients range
from negative infinity to positive infinity.
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EXAMPLE 18.3 Fourier Transform of Sine Wave
Problem
Compute the Fourier transform of an arbitrary sinusoidal signal.

Solution
Known Quantities: Functional form of the signal x(t).
Find: X(ω).
Schematics, Diagrams, Circuits, and Given Data: Figure 18.10.

Figure 18.10 Sinusoidal signal of frequency ωo = 2π Rad/s.



Assumptions: None
Analysis: The signal shown in Figure 18.10 is defined as
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The Fourier transform for the signal is calculated using the complex
representation

Using the relation from Table 18.4 for the defined Fourier transform pairs, the
above integral can be evaluated as:

Thus, the Fourier transform of an arbitrary sinusoid consists of a pair of delta
functions in the frequency domain, as shown in Figure 18.11.

Figure 18.11 Fourier transform of sinusoid

Comments: We can extend the result of this example to an arbitrary periodic
signal since we know that any periodic signal can be represented by the sum of an
infinite number of sinusoidal functions. The Fourier transform X(ω) of a periodic



signal x(t) is a train of impulses occurring at the harmonically related frequencies
and for which the area of the impulse at the nth harmonic frequency nω0 is 2π
times the nth Fourier series coefficient an. The Fourier series coefficients for this
sinusoid signal are

Hence, the Fourier transform coefficients are given by

EXAMPLE 18.4 Fourier Transform of Rectangular Pulse Signal
Problem
Compute the Fourier transform of a square pulse signal.
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Solution
Known Quantities: Functional form of the signal x(t).
Find: X(ω).
Schematics, Diagrams, Circuits, and Given Data: Figure 18.12.



Figure 18.12 Rectangular pulse

Assumptions: None.
Analysis: Consider the rectangular pulse x(t) of duration T and unity amplitude
shown in Figure 18.12. We define this pulse mathematically as follows:

The Fourier transform of x(t) is

A plot of the spectrum is shown in Figure 18.13. The figure illustrates the
characteristics of the sinc function, with zero crossings at integer multiples of
2π/T rad/s or 1/T Hz, and peak amplitude of T.

Figure 18.13 Fourier transform of square pulse (magnitude only)

Comments: Single and repetitive square bursts occur commonly in
communication systems. The analysis completed in this example will be useful in
the following sections.



EXAMPLE 18.5 Fourier Transform of Sine Burst (RF Pulse)
Problem
Compute the Fourier transform of the sine wave burst shown in Figure 18.14.

Figure 18.14 Radio-frequency (RF) burst

Solution
Known Quantities: Functional form of the signal x(t).
Find: X(ω).
Schematics, Diagrams, Circuits, and Given Data: Figure 18.14.
Assumptions: None.
Analysis: The pulse signal x(t) shown in Figure 18.14 consists of a sinusoidal
wave of unit amplitude and frequency fc, for a duration t = –T/2 to t = T/2. The
signal x(t) can be defined mathematically as follows:
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The Fourier transform of x(t) is



Note that we could have used the frequency-shifting property of the Fourier
transform to obtain the above result without carrying out the integration
explicitly. The magnitude spectrum of the RF pulse is shown in Figure 18.15. It
clearly illustrates the frequency-shifting property of the Fourier transform.

Figure 18.15 Magnitude spectrum of RF burst

Comments: This signal is specifically referred to as a RF pulse when the
frequency fc of the sinusoid wave falls in the radio frequency range.

EXAMPLE 18.6 Bandwidth of Commercial AM (or TV, or FM)
Signals



a.

Problem
Analyze the bandwidth of the signal from a commercial AM station and
determine how many stations can be assigned frequencies over the frequency
band assigned to commercial AM.

Solution
Schematics, Diagrams, Circuits, and Given Data: See
www.ntia.doc.gov/osmhome/allochrt.pdf.
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Analysis: As can be seen in the diagram displayed in the given website, the AM
band frequency allocation goes from 535 to 1,605 kHz. Each channel is allocated
a bandwidth of approximately 10 kHz (we shall see in the next section what this
calculation includes). Thus, the total number of stations that can operate in the
same region is approximately equal to:

Each AM station can operate with a total bandwidth of 10 kHz. As we shall see in
the next section, this actually corresponds to a signal bandwidth of only 5 kHz.
Comments: You are probably aware of the fact that the FCC licenses many more
than 107 AM stations in the United States. This is possible because AM broadcast
has a limited range, and two stations can be assigned the same frequency if they
are located sufficiently far apart. You may also have noticed that at night it is
possible to receive AM radio signals from much greater distances (for example,
in Ohio one can tune in to stations from as far as New York City and New
Orleans late at night). This is a consequence of the change in ionization density in
the ionosphere during the night, permitting reflection of radio waves over a
longer range. The FCC regulates not only the frequency allocated, but also the
power allocated to a given station; a station may be required to switch to a lower-
power transmitter during certain times of the day.

CHECK YOUR UNDERSTANDING
Compute the coefficients of the complete Fourier series expansion for the
signal x(t) = 1.5 cos(100t).

http://www.ntia.doc.gov/osmhome/allochrt.pdf


b.

c.

Sketch the Fourier transform of a square pulse with unity amplitude and
with a duration of 10 μs.
The spectrum of a signal can be described by the function X(ω) = (αω/ω2

+ α2). Let α = 103, and calculate the 3-dB bandwidth of the signal. What is
the center frequency of the signal?
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(18.5)

(18.6)

18.3 AMPLITUDE MODULATION AND
DEMODULATION
The concept of amplitude modulation (AM) was introduced in Chapter 3 (Focus
on Measurements box, “Capacitive Displacement Transducer and Microphone”),
where it was shown that the signal produced by a capacitive microphone
(displacement transducer) inserted in a Wheatstone bridge circuit modulated the
amplitude of a sinusoidal excitation signal. In that example, the pressure changes
sensed by the microphone constituted the modulation, while the sinusoidal
excitation provided a carrier. In Chapter 8 (Focus on Measurements box, “Peak
Detector for Capacitive Displacement Transducer”), it was shown that a diode
circuit was capable of demodulating the AM signal and of recovering the desired
information (pressure changes corresponding to acoustic waves, that is, sound). In
this section, the same basic principles introduced in the above mentioned
examples will be discussed more formally, as they apply to AM communication
systems.

The most common manifestation of amplitude modulation in communication
systems is commercial AM radio, or standard AM. The Federal Communications
Commission (FCC), a body that regulates the usage and allocation of the radio
frequency spectrum in the United States has assigned the frequency band between
540 and 1,600 kHz to commercial AM radio transmission. Each station can
occupy a bandwidth of 10 kHz centered around its carrier. As we shall see, this
corresponds to an effective signal bandwidth of 5 kHz—sufficient for good
reproduction of speech and acceptable reproduction of music.

Basic Principle of Amplitude Modulation
AM signals are generated by modulating the amplitude of a carrier signal. Let the
carrier signal be a sinusoid at frequency ωc:

and, for illustration purposes, let the modulation also be a single tone (sinusoid),
at a frequency ωm ≪ ωc:

With these definitions, we can define the basic AM signal as follows:



(18.7)

(18.8)

(18.9)

(18.10)
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or

The modulation index μ is defined to be the ratio of the modulation to carrier
signal amplitudes:

and for proper amplitude modulation should be less than 1. If equation 18.8 is
expanded, we see that an AM signal is composed of two terms: a sinusoidal
carrier wave, plus a wave that is the product of two sinusoidal terms. Using
trigonometric identities, we can write the following expression:

Equation 18.10 shows that the AM signal is really composed of three sinusoidal
waveforms: (1) a carrier wave; (2) a lower sideband signal, at frequency (ωc –
ωm), containing the modulating signal; and (3) an upper sideband signal, at
frequency (ωc + ωm), also containing information (the modulation). Example 18.7
illustrates some important properties of an AM signal with pure sinusoidal
modulation. An understanding of single-tone modulation, as in Example 18.7, is
essential to understanding double-tone and nonperiodic modulation found in more
realistic AM signals.

AM Demodulation; Integrated Circuit Receivers
Demodulation is the process of recovering the modulating signal from a received
modulated signal. With reference to Figure 18.1, one can think of the transmitter
in an AM signal as the device that imposes the modulation on a carrier, while the
receiver extracts the modulating signal from a received AM signal. To understand
the basic principle of modulation and demodulation, we observe that amplitude
modulation consists in effect of multiplying the carrier signal times the



(18.11)

(18.12)

modulating signal. This process is often called mixing, and a mixer is the device
that implements this function, that is, multiplication.

Consider the AM signal of equation 18.8. Multiply it by a second signal at the
same frequency as the carrier signal:

Multiply the two cos(ωct) terms and use the trigonometric identity cos2(ωct) = [1
+ cos(2ωct)]/2 to yield:

Page 18-20

In the case that Ac = 1:

The result of the mixing operation consists of two terms: a constant plus the
original modulation signal m(t)—what we desire to recover—and an amplitude-
modulated term at twice the carrier frequency. Since the baseband of the
modulation signal is typically (for example, 0 to 5 kHz for speech and music)
much lower than the carrier band, the modulating signal can be recovered by low-
pass filtering the output of the mixer. Figure 18.16 depicts a block diagram of a
conceptual AM demodulator as well as the spectra of the AM signal before and
after mixing.



Figure 18.16 (a) Block diagram of AM demodulator; (b) spectrum of
AM signal; (c) spectrum of signal following the mixer (multiplier)—
note that the modulation signal (at 100 Hz) can now be recovered via
low-pass filtering.

The process of demodulating AM signals is carried out today by means of
integrated circuit receivers.

A sample MatLab® code for calculating AM signals and carrying out the
mixing operation is listed below.
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EXAMPLE 18.7 Single-Tone Amplitude Modulation
Problem
Analyze the spectrum of a single-tone modulation signal based on the WOSU
AM 820 radio station. Use both analytical and computational tools.

Solution
Known Quantities: Carrier frequency; modulation index.



Find: Derive expressions for and plot time- and frequency-domain waveforms of
the AM signal.
Schematics, Diagrams, Circuits, and Given Data: fc = 0.82 MHz; μ = 0.5.
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Assumptions: Assume unity amplitude for the carrier, Ac = 1 and a modulating
frequency fm = 10 kHz.

Analysis: Define the modulating signal m(t) and the carrier signal c(t) as

These waveforms are plotted in Figure 18.17(a) and (b), respectively. The spectra
of these signals are plotted in Figure 18.17(d) and (e).

The AM wave s(t) is given by

and is plotted in Figure 18.17(c). Using the Fourier transform pairs given in Table
18.4 (pair 8), the Fourier transform of s(t) can be expressed as the sum of three
delta functions, centered at the carrier and at the sum (upper sideband) and
difference (lower sideband) frequencies. Note also that the spectrum is repeated
for negative frequencies, as explained earlier.



Figure 18.17 Time- and frequency-domain waveforms of single-tone
AM signal
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Thus, the spectrum of an AM wave for the special case of sinusoidal modulation
consists of the delta function at ±fc, fc ± fm, and –fc ± fm, as shown in Figure
18.16(f).
Comments: If you like, you may experiment with the value of the modulation
index and see its effect on the AM wave. It is recommended that the modulation
index μ be nearly equal to 1, but not greater. If the modulation index is greater
than 1 for any t, the carrier wave becomes over-modulated, resulting in carrier
phase reversals whenever the function [1 + μm(t)] crosses zero.



EXAMPLE 18.8 Double-Tone Modulation
Problem
Plot the frequency spectrum of a carrier signal with unity amplitude and
frequency fc = 1 MHz, which is amplitude modulated with a modulating signal
m(t) consisting of two sinusoidal frequencies.
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Solution
Known Quantities: Carrier frequency and amplitude; modulating signal.
Find: Modulation index and frequency spectrum of the AM wave with the
defined carrier and modulating signal.
Schematics, Diagrams, Circuits, and Given Data: fc = 1 MHz; Ac = 1 V; m(t) =
0.5 cos(2π 10,000t) + 0.4 cos(2π80,000t).
Assumptions: None.
Analysis: The modulation index for the signal is defined as

The spectrum of the AM wave in this case consists of delta functions at ± fc, fc ±
fm1, fc ± fm2, –fc ± fm1, and –fc ± fm2, where fm1 and fm2 are the frequencies
contained in the modulating signal. This is seen in Figure 18.18, where all time-
and frequency-domain waveforms are plotted.



Figure 18.18 Time- and frequency-domain waveforms of double-tone
AM signal

Comments: The frequency spectrum of the AM wave is just a shifted version of
the original modulating signal with the shift in frequency equal to the carrier
frequency. The portion of the spectrum of an AM wave lying above the carrier
frequency fc is the upper sideband whereas the symmetric portion below fc is
called the lower sideband.

EXAMPLE 18.9 Nonperiodic Amplitude Modulation
Problem



Plot the frequency spectrum of a carrier signal with unity amplitude and
frequency fc = 0.1 MHz, which is amplitude modulated with a non-periodic
modulating signal m(t) having a defined shape.

Solution
Known Quantities: Carrier frequency and amplitude; modulating wave m(t)
defined for a certain interval of time.
Find: Frequency spectrum of the AM wave.
Schematics, Diagrams, Circuits, and Given Data:

Assumptions: None.
Analysis: The signal waveform and the frequency spectrum of the modulating
signal and of the AM wave are shown in Figure 18.19(a) to (d). The spectrum of
the AM wave is a shifted version of the modulating signal spectrum around the
carrier frequency.
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a.

Figure 18.19 Time- and frequency-domain waveforms of nonperiodic
AM signal

Comments: If Bmax is the bandwidth of the modulating signal (the highest
frequency in the modulating signal), the bandwidth of the AM wave is defined as
twice the highest frequency in the modulating signal, i.e., B = 2Bmax.

CHECK YOUR UNDERSTANDING
Use the Matlab® files that accompany Examples 18.7 and 18.8 to plot only
the positive spectrum of the single- and double-tone AM signals.
Determine the bandwidth of the AM signal in each case.



b. Determine the bandwidth of the modulating signal in Figure 18.19(c);
what is the bandwidth of the AM signal? Is this consistent with
commercial AM practice? Would the FCC allow a commercial station to
broadcast such a signal?
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18.4 FREQUENCY MODULATION AND
DEMODULATION
You are certainly familiar with the term frequency modulation (FM) because of
the great diffusion of FM radio. As its name implies, frequency modulation refers
to encoding the information contained in a modulating signal in the frequency of
a carrier signal. Figure 18.20 depicts a sinusoidally modulated FM waveform and
its corresponding magnitude spectrum. FM transmission permits significant
improvements over AM, but at the cost of an increased requirement for
bandwidth. In this section you will be introduced to the basic signal models for
FM. Two different cases are discussed: narrowband FM and wideband FM.
The plots of Figure 18.20 correspond to a wideband FM signal. Note the
significant spread of signal frequencies relative to the carrier frequency!

Figure 18.20 (a) FM signal time waveform; (b) FM signal magnitude
spectrum

Basic Principle of FM
The basic principle underlying FM is that the instantaneous frequency of the
carrier is modulated by the information-carrying signal. If we assume a sinusoidal



(18.13)

(18.14)

(18.15)

(18.16)

carrier, as is usually the case, say c(t) = cos(2πfct), the modulation will cause the
frequency fc to be a function of time. In the signal of Figure 18.20, the carrier
frequency varies sinusoidally as well. Before proceeding with the analysis of FM
signals, it will be useful to examine the relationship between the instantaneous
phase and frequency of a sinusoidal signal. We first define the relationship
between the instantaneous phase and frequency of a sine wave as follows:

To illustrate this definition, consider the case of a simple sinusoidal signal,
υ(t) = A cos(ωt); in this signal we recognize that the phase angle (the argument of
the cosine function) is θi(t) = ωt, and therefore the instantaneous signal frequency
is given by fi(t) = (dθi(t)/dt) = ω. This result should not surprise you: all
sinusoidal signals must have a phase angle that increases linearly with time so
that their instantaneous frequency is constant. In the case of an FM signal, we
might Page 18-27have a phase angle that varies sinusoidally with time, thus
causing the instantaneous frequency to also vary in a sinusoidal fashion; this is
the simplest case of an FM signal and is treated next.

Single-Tone Modulation
Consider the case of single-tone modulation, where the modulating signal is:

The instantaneous frequency of the FM signal varies linearly with the
modulation; that is, the carrier frequency increases and decreases with the
modulating signal, as shown in equation 18.15:

In the above expression we have implicitly defined the frequency deviation Δf:

The frequency deviation is a very important characteristic of an FM signal; Δf
represents the maximum instantaneous deviation of the FM signal frequency from
the carrier frequency. It is dependent on the amplitude of the modulating signal



(18.17)

(18.18)

(18.19)

(18.20)

(18.21)

(18.22)

and is independent of the modulating signal frequency. The value of the constant
kf depends on the technique used for generating the modulated signal.

The instantaneous phase of the FM signal is calculated using equation 18.13:

Note that equation 18.17 introduces another important constant: the ratio of the
frequency deviation to the modulating frequency is called the modulation index
β:

The parameter β represents the maximum instantaneous deviation of the phase
angle of the FM signal from the angle of the carrier. Now we can write the
instantaneous angle of the FM signal as follows.

Finally, the sinusoidally modulated FM signal is defined in equation 18.20:

It is now possible to make a formal distinction between the two cases mentioned
earlier, narrowband FM and wideband FM, on the basis of the modulation index.

Narrowband FM

Narrowband FM corresponds to FM signals with a small modulation index (i.e., β
≪ 1). We can use a trigonometric identity to expand equation 18.20:

Page 18-28

and if β ≪ 1, we can use the small-angle approximations cos[β sin(2πfmt)] ≈ 1
and sin[β sin(2π fmt)] ≈ β sin(2π fmt) to write



(18.10)

Note the similarity between the expression for narrowband FM and that we
derived earlier for the AM signal, repeated below for convenience:

A reasonable rule of thumb is that the approximation given in equation 18.22
holds for β < 0.3. Figure 18.21(a) to (d) depicts the spectra of FM signals with
various values of β. Note how the bandwidth increases with the value of the
modulation index. Only in (a) and (b) is the signal narrowband FM.

Figure 18.21 Bandwidth increases with modulation index in FM
signals: (a) β = 0.1; (b) β = 0.3; (c) β = 0.6; (d) β = 1

Wideband FM

The mathematical representation of wideband FM signals is far more complex
than the approximation of equation 18.22. The nonlinearity of the wideband FM
signal is described using Bessel functions. This analysis is beyond the scope of



(18.23)

this chapter, Page 18-29and the interested reader is referred to any one of a
number of excellent textbooks in electrical communications.

Transmission Bandwidth of FM Signals

The transmission bandwidth of a frequency-modulated signal is theoretically
infinite; however, practical approximations are possible. In the case of
narrowband FM, we have already seen that we have the same transmissions
bandwidth as in an AM signal: B = 2fm. For large values of the modulation index
β, the bandwidth of the FM signal can be experimentally observed to be close to
the total frequency excursion ±Δf or 2Δf. These observations lead to the well-
known Carson’s rule, relating the approximate transmission bandwidth to the
frequency deviation and to the modulation index:

Carson’s rule suggests that as β becomes larger, the bandwidth approaches 2Δf,
while as β decreases, the bandwidth becomes closer to 2 fm.

FM Demodulation
Demodulation of an FM signal is accomplished by performing a frequency-to-
voltage conversion, that is, by converting the frequency modulation into a
voltage signal. This is the reverse of the modulation process and can be realized
in a number of ways. We describe two basic approaches in the following
subsections.

Frequency-to-Voltage Conversion

If a pulse of fixed amplitude A and fixed duration τ is generated at each zero
crossing of the sensor waveform, it can be readily shown that a voltage
proportional to the instantaneous signal frequency may be obtained. Figure 18.22
depicts the functional form of a frequency-to-voltage converter.

Ideally frequency-to-voltage (F-V) conversion could be obtained by
computing the following integral:



(18.24)

yielding a voltage proportional to the frequency of υS(t) during the ith cycle of the
carrier waveform. In practice it is quite difficult to reset the integrator of Figure
18.22 at each zero-crossing, so practical F-V converters employ a low-pass filter
in place of the ideal integrator.

Figure 18.22 Frequency-to-voltage conversion
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Phase-Locked Demodulation

Another method for implementing F-V conversion utilizes a phase-locked loop
(PLL) as a frequency-to-voltage converter, or FM demodulator. The PLL can act
as an FM demodulator once it is phase-locked to an input signal waveform. When
the PLL is in lock, any change in the input signal frequency generates an error
voltage at the output of the phase detector, which can be either analog (a mixer)
or digital, consisting of a pair of zero-crossing detectors.

The output voltage of the PLL υo(t) is the voltage that is required to maintain
a voltage-controlled oscillator (VCO) running at the same frequency as the input
signal and changes in the input signal frequency are matched by changes in υo(t).
In this sense, the PLL acts as an F-V converter, with the input-output
characteristic shown in Figure 18.23. Note that the PLL can offer only a finite
lock range.



Figure 18.23 Phase-locked loop F-V conversion

EXAMPLE 18.10 Narrowband FM
Problem
Compare the spectrum of a narrowband FM waveform with that of an AM
waveform with the same modulating and carrier frequencies.

Solution
Known Quantities: Carrier frequency, modulation frequency, modulation index.
Find: Plot the frequency-domain waveforms of the narrowband FM and AM
signals.
Schematics, Diagrams, Circuits, and Given Data: fc = 1,000 Hz; fm = 100 Hz; Ac
= 1 V; Am = 0.2 V; μ = 0.2; β = 0.2.

Assumptions: Assume sinusoidal modulation and unity amplitude for the carrier,
Ac = 1.

Analysis: Figure 18.24 depicts two signals: the first signal is an FM waveform
with β = 0.2; the second is an AM signal with μ = 0.2. The resulting spectra are
plotted in Figure 18.24(a) and (b), respectively.



Figure 18.24 Comparison of narrowband FM and AM signal spectra:
(a) FM, β = 0.2; (b) AM, μ = 0.2

Comments: Note how the two amplitude spectra are virtually identical. The only
difference between the two spectra is in the phase angle of the signals.
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EXAMPLE 18.11 Commercial FM Broadcast
Problem
Use Carson’s rule to analyze the bandwidth of a commercial FM station.

Solution
Known Quantities: Carrier frequency, modulation index.
Find: Approximate signal bandwidth.
Schematics, Diagrams, Circuits, and Given Data: fc = 90.5 MHz; Ac = 1; Am = 1;
fm = 10 kHz; kf = 6,000; β = 0.2.

Assumptions: Assume sinusoidal modulation.



a.
b.
c.

a.

Analysis: For sinusoidal modulation, the frequency deviation is Δf = kf Am = 6
kHz. Then, Carson’s rule predicts a bandwidth of

EXAMPLE 18.12 Bandwidth
Problem
Given an FM message signal, find:

The bandwidth of the message signal Bm.
The bandwidth of the modulated carrier signal Bc.
The band of frequencies occupied by the signal B.
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Solution
Known Quantities: Modulation frequency, carrier frequency, modulation
constant.
Find: Bm, Bc.

Schematics, Diagrams, Circuits, and Given Data: υ1 = 5 cos(200πt); fm = 100 fm;
kf = (1000/2π Hz/V).

Assumptions: Assume sinusoidal modulation.
Analysis:

The message signal is υm = 5 cos(200πt). Hence,



b.

c.

The bandwidth of the message signal is

The maximum frequency deviation is given by

Thus, the bandwidth of the modulated carrier signal is approximately given
by
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The carrier frequency is fc = 10 kHz. The frequency band is centered about
the carrier frequency. Therefore, the band of frequencies occupied spans
from

Hence, the frequency band is

which equals a band from 9.105 to 10.895 kHz.

Figure 18.25 depicts the modulating signal and the FM spectrum of the FM signal
examined in this example.



Figure 18.25 Time-domain and spectral plots for Example 18.12

EXAMPLE 18.13 Bandwidth
Problem
In the United States the assigned band for FM commercial broadcast is from 88.0
to 108.0 MHz with 100 possible channels. Find the bandwidth for each channel.

Solution
Known Quantities: Band for FM commercial broadcast, number of channels.
Find: The bandwidth of each channel.
Schematics, Diagrams, Circuits, and Given Data: See problem statement.
Assumptions: None.
Analysis: The bandwidth for each channel is defined as:



a.

b.

c.

d.

Comments: Each commercial FM radio station has a bandwidth allocation of 200
kHz.

CHECK YOUR UNDERSTANDING
Use the Matlab® files that accompany Example 18.10 to compute and plot
the phase angle of the two spectra. Are the phase spectra identical?

What is the effect of changing the amplitude of the modulating signal on
the bandwidth of the FM signal?

Investigate the effect of changing β on the FM signal bandwidth and analyze
the spectrum of the FM signal of Example 18.10 with β = 0.5.
Find the carrier frequency for Channel 11 used by WCBE Radio, Columbus,
OH, per the FCC regulations for the commercial broadcast in the United
States (use the data given in Example 18.13).
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18.5 EXAMPLES OF COMMUNICATION
SYSTEMS
The objective of this chapter is to summarize some important applications of
modern communication systems. The overview given in this chapter is certainly
not exhaustive, but it will give you a good summary of the technology underlying
some of today’s communication systems and of their capabilities.

Global Positioning System (GPS)
The Global Positioning System (GPS), illustrated in Figure 18.26, is rapidly
supplanting older navigation technologies based on radio communications used
by the aircraft and marine industries, such as Loran-C. GPS is based on 24
satellites linked to ground stations and effectively replaces—with much greater
accuracy—the century-old system of navigation based on star position. You can
think of the satellites as “man-made stars.” Differential GPS is capable of
position measurements accurate to within a few centimeters. In recent years, GPS
receivers have been miniaturized, and today amateur sailors, private pilots, and



other private users have the ability to purchase hand held GPS units. Among the
uses of GPS we list navigation systems for cars, boats, planes, and guiding
agricultural machining for “precision agriculture.” The operation of GPS is
explained in five basic steps, as shown in Table 18.5.

Figure 18.26 GPS principle (Courtesy of Trimble)

Table 18.5 Basic operation of GPS

Triangulation

The technique of triangulation is based on distance (range) measurements from
the receiver location to the satellite. Four satellites are needed to determine the
exact position of any receiver location on earth.

Measuring Distance

To measure distance, GPS computes the time required to receive each satellite
signal. The receiver and satellite both generate a synchronized signal; comparison
of the signal received from the satellite with that in the receiver is used to
calculate the time of travel. Since the speed of travel of electromagnetic waves is
known, distance can be calculated.

Timing Accuracy

Satellites carry atomic clocks on board to provide accurate timing. The clock in a
low-cost GPS receiver need not be as accurate, as an additional range (distance)
measurement can be used to remove the timing error in the receiver.

Satellite Positions



The positions of the satellites are essential in calculating distance. The orbits of
GPS satellites are known, and any deviations are measured by the Department of
Page 18-35Defense; any errors are transmitted to the satellites, which in turn
transmit this error information to the receivers along with their timing signals.

Correcting Errors

Signals traveling through the ionosphere experience additional delays, which turn
into transmission errors. There are many methods for correcting errors; the
technique called differential GPS can eliminate almost all errors. Additional
information on these topics may be found on the Web.

Radar
The acronym RADAR stands for RAdio Direction And Ranging. Radar systems
operate by radiating electromagnetic waves (typically at microwave frequencies)
and by detecting the echo returned from reflecting objects (targets). Radar
technology was developed during World War II and played a significant part in
the success of the Allied Forces. While military applications are obvious, today
radar finds widespread civilian application in air traffic control and in tracking
weather conditions, as well as in marine navigation (see Figure 18.27 for some
examples of radar technology used in the latter application, and Figure 18.28 for
an example of weather radar). In addition to detecting the position of a stationary
target, radar is capable of determining the trajectory of a moving target, thus
predicting its future location. This function is, for example, very useful in weather
radar where one wishes to predict weather conditions. The principle on which
radar operation is based is that of the doppler shift, a concept with which you are
probably already intuitively familiar (think of the sound of a train whistle as the
train moves by a stationary observer). The doppler shift permits a moving target
to be distinguished from a stationary one, thus allowing the radar system to
discern the echo of a stationary target from that of a moving target.



Figure 18.27 Radar antenna (top) and displays (©Copyright ©2014
Japan Radio Co., Ltd.)



1.
2.

3.

Figure 18.28 Weather radar (Courtesy of WSI Corporation.
www.wsicorp.com)
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Sonar
The term SONAR stands for SOund NAvigation and Ranging. Sonar is
conceptually similar to radar, in that it uses information about the reflection and
transmission of waves to determine the behavior of targets or the properties of the
environment. The principal difference between sonar and radar is that the former
is based on the reflection and propagation of acoustic (sound) waves, while the
latter is based on radio-frequency electromagnetic waves.

The applications of sonar are numerous, ranging from inexpensive depth
finders and imaging systems used to aid the navigation of small and large sea
vessels (see, for example, Figure 18.29), to underwater navigation, to ocean
thermal mapping. You will find a number of interesting resources related to sonar
on the Web.

Figure 18.29 Sonar displays for marine navigation (©Copyright ©2014
Japan Radio Co., Ltd.)

Conclusion
This chapter introduces the basic principles of analog communication systems.
Upon completing the chapter you should have mastered the following learning
objectives.

Be familiar with the most common communication systems.
Perform spectral analysis of simple signals using analytical and computer-
aided tools.
Understand the principles of AM modulation and demodulation, and perform
basic calculations and numerical computations on AM signals.

http://www.wsicorp.com/


4.

18.1

a.

b.

18.2

a.

b.

Understand the principles of FM modulation and demodulation, and perform
basic calculations and numerical computations on FM signals.

HOMEWORK PROBLEMS
Section 18.2: Fourier Series and Transform

Compute the Fourier series coefficients for a periodic square wave of unit
amplitude, time period τ, and duty cycle η as shown in Figure P18.1 and
defined mathematically as:

Figure P18.1 Square wave signal of periiod τ and duty cycle η

 Use Matlab® to plot the frequency spectrum of this signal with time
period τ = (1/300) s and duty cycle

η = 50 percent

η = 30 percent

A full wave-rectified sinusoidal signal of natural frequency ω0 rad/s is
shown in Figure P18.2.

Find the Fourier series coefficients for the full wave-rectified sinusoid.

Generate the frequency spectrum for a full wave-rectified sinusoid of
natural frequency ω0 = 200π rad/s.



18.3

a.

b.

18.4

Figure P18.2 Full wave-rectified sine wave of natural frequency ω0
rad/s

A full wave-rectified cosine signal of natural frequency ω0 rad/s is shown in
Figure P18.3.

Find the Fourier series coefficients for the full wave-rectified cosine.

Generate the frequency spectrum for a full wave-rectified cosine with
natural frequency ω0 = 150π rad/s.
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Figure P18.3 Full wave-rectified cosine wave of natural frequency ω0
rad/s

Compute the Fourier series coefficients for the cosine-burst signal shown in
Figure P18.4.

Figure P18.4 Cosine-burst signal



18.5

a.

b.

18.6

a.

b.

The triangular pulse signal shown in Figure P18.5 is mathematically defined
as:

Find the Fourier transform of the triangular pulse.

Plot the frequency spectrum of a triangular pulse of period T = 0.01 s
and amplitude A = 0.5.

Figure P18.5 Triangular pulse x(t) of duration 2T

A double exponential signal shown in Figure P18.6 is defined
mathematically by:

Compute the Fourier transform of the signal. (Hint: Use the linearity
property of the Fourier transform.)

Plot the frequency spectrum of the signal using Matlab® for a = 8.



18.7

18.8

a.

b.

Figure P18.6 Double exponential signal

Evaluate the Fourier transform of the damped sinusoidal wave shown in
Figure P18.7 and having the functional form:

where u(t) is the unit step function.

Figure P18.7 Damped sinusoidal signal

An ideal sampling function consists of an infinite sequence of uniformly
spaced delta functions and is mathematically defined as:
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Compute the Fourier transform of the ideal sampling function shown
in Figure P18.8.

Also, use Matlab® to generate the time-domain signal and its
amplitude spectrum for To = 0.01 s.



18.9

18.10

18.11

18.12

18.13

18.14

Figure P18.18 Dirac delta function with period T0

Download the utterance signal utter.au and use the Matlab® command
auread(‘utter.au’) to load it to the workspace. Use the FFT tools in Matlab®

to identify the frequency components of the signal.

A bat echolocation chirp signal is provided to you on the book website.
Do a frequency analysis of the signal and explain what you observe.
(Courtesy Digital Signal Processing Group, Rice University.)

Section 18.3: Amplitude Modulation and Demodulation
Find the modulation index μ for an AM signal having a carrier of
amplitude Ac = 1.0, and where the amplitude of the carrier at the
maximum is Amax = 3.0 and at the minimum is Amin = 0.6.

Plot the anticipated frequency spectrum of a carrier signal with an
amplitude of unity and frequency fc = 1.3 MHz that is amplitude
modulated (μ = 1) with a signal m(t), where

Plot the anticipated time-domain response of a carrier signal with an
amplitude of unity and frequency fc = 10 MHz that is amplitude
modulated (μ = 1) with a signal m(t), where

Hint: The message signal is a triangular wave of time period T.

An AM radio station uses a carrier signal of unity amplitude and
frequency fc = 1.6 MHz. The message signal is a voice signal having
certain frequency components and defined as:

Plot the time-domain and the frequency-domain AM signal of modulation
index μ = 1.



18.15

18.16

18.17

a.

b.

c.

18.18

a.

b.

18.19

A non-periodic message signal m(t) is amplitude modulated (μ = 1) by a
carrier signal of unity amplitude and frequency fc = 0.5 MHz. Plot the
time- and frequency-domain signal.

Consider a modulating wave m(t) that consists of a single frequency
component and is defined as:

 where Am is the amplitude of the modulating wave and fm is the
frequency. The sinusoidal carrier wave has amplitude Ac and frequency fc.
The signal is amplitude modulated to produce the signal s(t). Find the
average power delivered to a 1-Ω resistor by s(t).
The carrier frequency of the W-OSU channel is 0.82 MHz. If the upper
sideband of the AM signal has frequency components of amplitude 0.4 at
0.825 MHz, 0.2 at 0.83 MHz, and 0.25 at 0.84 MHz,

Find an expression for the modulating signal.

Plot the spectrum of the modulating signal.

Plot the spectrum of the AM signal including the lower sideband.

The AM commercial radio band in the United States is authorized to
operate from 525 kHz to 1.7 MHz. A carrier frequency is assigned to each
station, and regulations require them to be separated by 10 kHz. Find:

The number of channels that can be accommodated in the given
frequency range.

The maximum modulating frequency that can be transmitted without
overlap.

The speech signal utter.au is to be amplitude modulated for transmission
on an AM commercial radio band in the United States. Plot the frequency
spectrum of the AM signal. Use any channel according to its separations
and a modulation index μ = 1 in your design.
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Section 18.4: Frequency Modulation and Demodulation
The message signal given by m(t) = 5 cos(750πt) is frequency modulated
by a carrier frequency 105 times the message frequency, and the
modulation constant is kf = 1,005. Find the bandwidth of the message
signal.

If the message signal given by m(t) = 2 cos(360πt) is frequency modulated
by a carrier frequency 100 times the message frequency and the
modulation constant kf = 1,000, find the bandwidth of the modulated
carrier signal.

Find the band of frequencies occupied by the FM signal of Problem 18.21.

A message signal m(t) is frequency modulated by a carrier of unity
amplitude and frequency fc = 10.0 MHz, with modulating constant kf =
1,000. Plot the time-and frequency-domain FM signal if m(t) = 0.8
sin(2π5,000t).
A packet of information is sent on an FM channel of frequency fc = 15.0
MHz that uses a modulating constant kf = 6,000. Plot the frequency
spectrum of the FM signal.

WOSU-FM uses a carrier frequency of 90.5 MHz and modulating
constant kf = 66,000. The speech signal utter.au is transmitted on this
channel. Plot the frequency spectrum of the FM speech signal.

Consider Example 18.13. If Channel 2 is allocated for country music and
the message signal may be considered to be m(t) = 10 cos(2π 103t), find:

The carrier frequency.

The value of kf.



Design Credits: Mini DVI cable adapter isolated on white background: Robert Lehmann/Alamy Stock
Photo; Balance scale: Alex Slobodkin/E+/Getty Images; Icon for “Focus on measurements” weighing scales:
Media Bakery.

1An example of this phenomenon is the changeover from analog to digital
systems in cellular telephony. Both systems coexist at the present time, but it is
reasonable to forecast that in a few years all personal communication systems will
be digital.

2Although negative frequencies have no physical significance, the mathematical
form of Fourier series and transforms requires that we consider both positive and
negative frequencies.
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C H A P T E R
19

DIGITAL COMMUNICATIONS

his chapter expands upon the analog communications concepts of
Chapter 18 and introduces digital communications, or the idea of
using digital processing techniques to simultaneously maximize
information throughput while minimizing the probability of error,

with the added constraint of limited transmitting power.

The field of digital communications was ushered in with the invention
of the telegraph by Samuel Morse. After overhearing two of his colleagues
speaking about electromagnets, Morse was struck with the idea of
communicating information by using an electromagnetic clacker to indicate
the flow of current in a long wire loop, where the flow of current was
controlled by a switch at the other end (see Figure 19.1). Because such a
machine can only communicate using the presence (“high”) or absence
(“low”) of electric current, any message passed through the machine needed
to be coded using these two states. To solve this problem, Morse invented a
simple digital coding technique consisting of variable-length high and low
states. High states that were shorter in duration were called dots, those that
were longer in duration were called dashes, and combinations of the two



were used to indicate each letter of the alphabet. Short low states were used
to indicate breaks between letters while long low states were used to
indicate breaks between words. This technique, later to become the well-
known Morse code, was first publicly demonstrated Page 19-2by
transmitting the phrase “What hath God wrought,” from the Supreme Court
room at the Capitol to the railway depot in Baltimore on May 24, 1844.

Figure 19.1 An early telegraph key (Ryan McVay/Getty Images)

Digital communication improves upon analog communication in many
ways. In general, digital signals can be designed to be much more resistant
to the effects of noise. Digital communication can have enhanced privacy
through the use of encryption. And digital communication systems are
usually less expensive to implement. Most importantly, digital
communication allows the engineer to optimize a system, given a limited
amount of transmitter power, for maximum information throughput while
having predictable control over the integrity of the information at the
receiver. On the downside, digital communication systems are generally
more complex to design and require more bandwidth than their analog
counterparts.

19.1 A TYPICAL DIGITAL
COMMUNICATIONS SYSTEM
Although there are a great variety of digital communication systems, many
of them can be broadly represented by the system of Figure 19.2. The input
to the system is some information source, which may supply information in
an analog (continuous) or digital (discrete) form. In the analog case, an
analog-to-digital converter is used to convert the information into digital
format. This is followed by a source coder that removes unnecessary
redundancy and reduces the information signal to its most basic form. A
channel coder then reintroduces a measured amount of redundancy that is



carefully designed to improve the robustness of the information when
exposed to noise. Next, the baseband modulator converts the digital
information into an analog waveform that is shifted up to the desired carrier
frequency by the upconverter. Once at the carrier frequency, the
information is carried over the channel, which represents the physical
medium over which we are communicating. On the receiver side, the
counterparts to the transmitter components serve to recover the original
information accurately.

Figure 19.2 A typical communications system

19.2 INTRODUCTORY PROBABILITY
It is impossible to discuss digital communications without encountering
probability theory, so in this section we present a very brief introduction to
the topic. We include only enough material to allow a basic understanding
of the digital communication concepts to follow. For a more thorough
treatment of probability theory, the reader should examine a full text on the
topic.
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Random Experiments
A random experiment is any experiment where the outcome cannot be
exactly predicted and may differ from trial to trial. Flipping a coin, tossing a
die, or spinning a roulette wheel are all examples of random experiments. A
random experiment is described by the sample space Ω of all possible
outcomes the experiment may produce. For example, flipping a coin once
has the sample space

while the experiment consisting of flipping a coin twice has sample space

Rolling a six-sided die has the sample space

The outcome obtained during a particular trial is denoted by ω.
An event E is a subset of Ω. For example, the event of getting at least

one tail in two flips is

The event of rolling a number less than four on the die above would be
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Since events are subsets of experiment outcomes, we can apply the set
theory concepts of union, intersection, and complement. For example, given
sets A and B, we can create the union event A ∪ B containing all outcomes
that are in events A or B. The intersection event A ∩ B consists of all
outcomes that belong to both events A and B. The complement event AC is



1.
2.
3.

4.

5.

the set of all outcomes that do not belong to A. Note that ∅ indicates the
empty set, i.e., ΩC = ∅. Returning to the six-sided die roll example on p.
000, consider the events E1 = {1, 2, 3} where the roll is less than four and
E2 = {2, 4, 6} where the roll is even. Then the union, intersection, and
complements of these events are as shown in Table 19.1.

Table 19.1 Examples of set theory

Probability
Given a random experiment, the probability is a real function P
representing the likelihood (from 0.0 to 1.0, with 1.0 being the most certain)
that a given event contains the outcome of a random experiment trial. As an
example, given the events E1 and E2 above, we have the probabilities
shown in Table 19.2.

Table 19.2 Examples of probabilities

Probabilities adhere to the following properties:
P(E) ≤ 0
P(Ω) = 1
P(A ∪ B) = P(A) + P(B) if A ∩ B = ∅

P(∅) = 0
P(E) = 1 – P(EC)



6. P(A ∪ B) = P(A) + P(B) – P(A ∩ B)

Conditional Probability
The conditional probability P(E1∣E2) is the probability of an outcome ω
being in E1 if we already know that ω is in E2. For example, if we define
the events E1 and E2 as above, then P(E1∣E2) asks the question, “What is
the probability that the outcome is less than four if we already know that the
outcome is even?” In this context, you can think of E2 as a filter of sorts,
narrowing down the possible outcomes Page 19-5from which E1 might be
selected. In this case, if we know that the outcome of the die roll is even,
then we can intuitively see that there is a one-in-three chance that it is less
than four. This can be represented mathematically by the relation

In the example above, the intersection of the two sets is

and therefore

as we found above.

Random Variables
A random variable is a one-to-one mapping from a random experiment’s
sample space Ω onto the real number line. Considering the example of the
coin toss given above, for example, we might map heads to +1 while
mapping tails to –1. A graphical depiction of this is given in Figure 19.3.
We can express this mapping mathematically by writing



(19.1)

Figure 19.3 Defining a random variable for the coin toss

which is referred to as a discrete random variable because each outcome is
mapped to a discrete number on the real axis.

Once a random variable has been defined for an experiment, its
cumulative distribution function (CDF) is expressed as:

which represents the probability that the value of a random variable for a
given trial will be less than or equal to the argument of the CDF. For
example, the CDF of the coin toss example above is given by

and illustrated in Figure 19.4. From this figure, we see that there is no
chance of the random value being less than –1, which is obvious because
the minimum possible value of X is –1. There is a 50 percent chance (FX =
0.5) that X will be less than 1, which is its value when the outcome is tails.
Finally, there is a 100 percent chance (FX = 1.0) that the value of X will be
less than or equal to +1 since there is no possible outcome for which the
random value is more than +1.

Figure 19.4 CDF of a coin toss random variable

From the CDF, one can define the probability mass function (PMF)
given by



(19.2)

(19.3)

The PMF tells us the probability that a discrete random variable is equal to
a particular value. For the example above, we can write the PMF as
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Similarly, a continuous random variable is one that is mapped to some
continuous range of the real number line, such as if we were to measure the
amount of rainfall within a particular area on any given day. Such a random
experiment might have a CDF that looks like Figure 19.5.

Figure 19.5 CDF of continuous random variable

For continuous random variables, it is normal to define the probability
density function (PDF) as

One commonly encountered PDF is that for a gaussian random variable,
given by

where m is the mean, or average value, and σ2 is the variance, or spreading
factor. The gaussian is encountered so often that it is frequently written as
N(m, σ2).



(19.4)

(19.5)

The standard normal Φ is a special case of the gaussian where m = 0
and σ2 = 1. Plots of a few gaussian distributions are given in Figure 19.6.

Figure 19.6 PDFs of gaussian distributions

For any random variable, we can use the PDF to find the probability
that X falls between two values for a given outcome by integrating the area
under the PDF for that interval. When X is the standard normal, for
example, the probability that X is greater than some value a is given by the
integral

The value of the integral above can be found from widely available
tabulated values of the tail function (also called the Q function) defined by
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Although the tail function is tabulated for the standard normal, it can be
applied for any gaussian through a simple variable transformation given by

where X is a gaussian random variable.



(19.6)

19.3 PULSE-CODE MODULATION
Pulse-code modulation (PCM) is simply the process of converting an
analog signal (continuous time and continuous amplitude) into a digital
signal (discrete time and discrete amplitude) by applying sampling and
quantization as previously described in Section 7.4 and illustrated in Figure
19.7.

Figure 19.7 Block diagram of a pulse-code modulator

For a well-designed digital system, it is important to know the extent of
any errors that are introduced into the system as a by-product of the PCM
process. Assuming that the sampling rate is sufficient for the frequency
content of the signal according to the Nyquist theorem, any such error
introduced into the system as a result of PCM will come from quantization
alone. As you recall from Section 7.4, a quantizer’s resolution Δ is set by
the number of bits used to represent its output.

where υmax and υmin define the dynamic range of the quantizer and b is the
number of bits. The quantization noise is then defined as the difference
between the sampled signal and the quantized version. To find a
relationship between the number of bits and the quantization noise, consider
the sampled continuous-amplitude signal and its quantized version shown in
Figure 19.8. From this figure, we can see that the maximum possible error
due to quantization noise is ±Δ/2, meaning that the maximum average
quantization noise power  or



(19.7)

Figure 19.8 A quantized signal and its noise

Assuming some signal power Ps, the signal–to–quantization noise ratio
(SQNR) is therefore proportional to the number of bits and is given by

From the above equation we can discover a very important rule of thumb:
each additional bit of resolution we add to a quantizer will increase the
SQNR of its output by about 6 dB. Thus, we can expect the output of a 10-
bit quantizer to have a SQNR of about 60 dB.
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19.4 SOURCE CODING
Source coding is the process of removing the redundancy of a signal and
reducing it to its most basic form, retaining only the basic information that
is necessary to communicate the message.

Redundancy is any message content carried by a signal beyond the
fundamental information being communicated. A source of information
contains redundancy if its messages can be represented with complete
fidelity in a more terse form. Redundancy may or may not serve a purpose.



For example, when announcing over a public address system that a parked
vehicle has its lights on, it is redundant, but useful, to announce the license
plate number several times.

Human speech is one of the best examples of redundancy in nature—
have you ever listened to a scratchy AM weather radio broadcast during a
thunderstorm? Even if you haven’t, you can imagine the quality of the
audio you might hear as the electrons contained within the thunderstorm
contribute noise to the signal as it travels from the radio station to our
receiver. Yet even with the extra noise, the details of the weather report can
usually still be understood by the listener. Even though a tiny fraction of the
original signal survives the trip from the speaker’s mouth to our ears, we are
still able to decode the information contained within it. Signal redundancy,
therefore, often serves to increase the probability that a message is
understood by the receiver.

Unfortunately, the price paid for redundancy is efficiency. Consider the
same radio example as above, except with a strong signal and no
thunderstorm. Although the audio has much more clarity, we receive the
same weather report details as before. Therefore, we can conclude that in
this case redundancy is unnecessary, and with the absence of noise in the
communications channel the message could be communicated just as
accurately without it.

Compressibility
Source coding can also be thought of as data compression because it results
in a message that can be represented using fewer bits. Lossless compression
codes the signal so that it can be reconstructed exactly by the receiver while
lossy compression Page 19-9allows some of the message to become
unrecoverable in order to gain additional compression by representing the
message with fewer bits. The field of information theory allows us to
determine a signal’s fundamental information content, or entropy, which is
a measure of its average uncertainty. From the entropy we can determine
the signal’s compressibility, or how much extraneous information can be
removed before some of the fundamental message contained within the
signal becomes unrecoverable. Thus, the entropy of the signal allows us to
establish a line between lossy and lossless compression.



(19.8)

(19.9)

Consider an experiment where the result X can be chosen from the set
{a1, a2,..., aN} and the probability of that result being an is pn = P(X = an).
The amount of information communicated by each possible result is
inversely proportional to the probability of that result occurring. For
example, knowing the stock market is going to crash tomorrow represents
much more information than knowing it’s not going to crash. This same
idea is applicable to any experiment, not just the stock market, so we
conclude that the amount of information contained by a particular result is
dependent only on the probability of that result occurring and not on the
result itself. This measure of self-information is notated by I and defined as
(see Figure 19.9)

Figure 19.9 Self-information versus probability of occurrence

The total entropy H(X) represented by the experiment is then the weighted
average of the self-information of each result and the probability of that
result occurring, as given by

A good example of lossy versus lossless compression can be found by
examining the storage of digital images. The two most common image
storage formats in use today are the Graphic Interchange Format (GIF)



created by CompuServe (now America Online) in 1987, and the format
named after the Joint Photographic Experts Group (JPEG) created by that
organization in 1986. While both formats serve to compress digital images,
they go about it in much different ways. The GIF standard uses an
implementation of the Lempel-Ziv-Welch (LZW) algorithm which Page 19-
10is lossless and therefore guarantees that the original image can be
recovered exactly. The JPEG standard uses a discrete cosine transformation
(DCT) to convert the image to the spectral domain where high-frequency
coefficients below a threshold set by the user are filtered out. Once these
coefficients are filtered out they cannot be recovered, and therefore the
technique is lossy. Determining which compression technique to use usually
depends on the application. For photographic images, JPEG usually results
in a smaller file with little noticeable loss. However, for images of technical
diagrams involving thin lines, JPEG usually results in larger files and may
introduce unacceptable artifacts (see Figure 19.10).



Figure 19.10 Examples of GIF and JPEG file sizes versus quality
(Mike Watson Images Limited/Glow Images)

Source Coding Techniques
Once the entropy of a signal is known, a code must be devised so that
individual events can be represented by sequences of bits, or codewords, for
transmission. Consider the event sequence
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At first glance, one might try coding each event with a unique binary
codeword of fixed length, as shown in Table 19.3.

Table 19.3 Simple fixed-width coding scheme

The assembled bit sequence representing the message X would then be

with 2 bits per event for a total of 16 bits to represent the entire sequence
message. By computing the entropy of the above signal, we can determine
the efficiency of the simple coding scheme above. By using equation 19.9
and Table 19.3, we find the entropy to be

meaning that the theoretical minimum bound is 1.75 bits per event to
represent the message without loss. Since our simple proposed code uses 2
bits per pixel, we know that there must be a more efficient way to code the
message. In the following sections we examine a few such coding
techniques that are more efficient than our simple method above.

Huffman Source Coding
Huffman source coding is a lossless technique that represents frequently
occurring events with short codewords and rarely occurring events with
longer ones. In practical applications, Huffman coding is generally used as
a secondary coder following some other coding technique. For example,
ZIP (a popular computer compression format), JPEG, and MP3 use
Huffman encoding as a secondary step.



1.

2.

3.
4.

For an example of Huffman coding, consider the sequence above with
the code shown in Table 19.4.

Table 19.4 Huffman coding scheme

The scheme defined in Table 19.4 would lead to a bit pattern of

with a total of 14 bits or 1.75 bits per event, which is a savings of 12.5
percent over the fixed-width code above and meets the theoretical limit
given by the Page 19-12entropy computed above. Because Huffman
codewords are not fixed length, however, care must be taken when choosing
the sequences so that they will be uniquely decodable. To be uniquely
decodable, codewords should be constructed in such a way that the decoder
can distinguish between consecutive events in a bit sequence. The decoder
knows that an event is ending when it either detects a 1 in the bit sequence
or when three 0s are received in a row (indicating an a4).

The procedure for creating a Huffman code is as follows:
Gather statistical data about the frequency of occurrence of each
potential event.
Combine the two least probable events (assign them bits 0 and 1) into a
new single event that occurs when either of the two original events
occurs. The probability of this new event occurring is then the sum of
the probabilities of the original events.
If only two events remain, go to step 4. Otherwise go back to step 2.
Assign 0 and 1 as bits representing the remaining two events. These
steps are illustrated graphically in Figure 19.11.



Figure 19.11 Creating a Huffman code

Lempel-Ziv-Welch Source Coding
While Huffman coding gives very good results that are close to the
theoretical limit given by the entropy, it has two major disadvantages. First,
a detailed knowledge of the statistical probability of each event occurring
must be known beforehand. With many common information sources such
as photographs, music and speech recordings, and streaming video, these
statistics cannot be predicted. Secondly, Huffman coding is efficient only
for codewords that represent a single event. If events are known to occur
frequently in patterns (say {a1, a1, a2}), then building a Huffman code
library for all such patterns quickly becomes unmanageable regardless of
how efficient such a code might be.

The Lempel-Ziv-Welch (LZW) code solves these two problems by
building a running dictionary of event patterns rather than the events
themselves. This dictionary is built by examining the event sequence to
identify unique recurring patterns and adding them to the dictionary as they
are encountered. Then, the pattern is replaced with a fixed-width codeword
indicating the matching entry is the dictionary.

To keep the size of the dictionary small, new event pattern entries are
represented as the concatenation of an existing dictionary entry with the
“new” event. Note that unlike Huffman encoding, the LZW approach
requires the dictionary to be transmitted along with the message.

As an example, consider the event sequence given by

To create a LZW code for this sequence, we add unique patterns to the
dictionary as they are encountered. The resulting grouped sequence and
dictionary are given by



By substituting codes from Table 19.5, the encoded bit sequence is found to
be

and uses a total of 18 bits or 1.64 bits per event.

Table 19.5 Example Lempel-Ziv-Welch coding scheme
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LZW coding is particularly useful in applications where very long or
repetitive event patterns exist, such as images of technical drawings where
there may be many consecutive pixels of the same color. It is typically less
useful in applications where event patterns are largely random or occur
infrequently, such as with photographs.

Parametric Source Coding
Both of the coding methods described above are lossless and rely on the
logical layout of the data to achieve compression rates near the entropy
limit. For many types of sources these codes function very close to the
theoretical limit determined by the entropy of the source. For sources such
as photographs and music that have little logical structure, however, these
codes usually result in poor performance.

Fortunately, it is frequently possible to achieve very efficient
compression rates for such sources by leveraging knowledge about the
ultimate application of the data. For example, fine details in a photograph
that are imperceptible to the naked eye can be removed, as with JPEG,
without significant detriment. Codes using such biometric techniques
belong to a class known as parametric source codes. Parametric source



codes generally achieve their impressive compression ratios by
transforming a sequence to be encoded into some spectral domain and
removing components that are unlikely to be missed. Because of this
property, such codes are almost always lossy, and unlike the Huffman and
LZW codes, they must be custom tailored for the intended receiver.

One of the most famous parametric codes of recent times was created in
1987 by Professor Dieter Seitzer of the University of Erlangen in
association with the Motion Picture Experts Group for compression of
audio, technically referred to as “Layer III.” This standard, commonly
known as MP3, can reduce the size of music files by a factor of 10 or more
by filtering out certain components of sound that are inaudible to the ear in
much the same way that JPEG removes photographic details that are
sharper than the eye can perceive.

EXAMPLE 19.1 Construction of a Huffman Code
Problem
Considering the events and probabilities given in Table 19.6, compute the
entropy, create an efficient Huffman code, and find its average code length.

Table 19.6
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Solution
The entropy of this experiment is given by



The Huffman code is created as shown in Figure 19.12. The average
codeword length is then computed from Table 19.7 as

Figure 19.12 Creating a Huffman code for Example 19.1

Table 19.7 Example Huffman code

which is close to the theoretical minimum of 1.3 bits per event given by the
entropy computation.

EXAMPLE 19.2 Construction of a Lempel-Ziv-Welch Code
Problem
For the event sequence

create a LZW dictionary and encode the sequence to bits.



Solution
First, the sequence is broken into unique patterns as they occur. This results
in the grouped sequence and dictionary given by

From Table 19.8, the encoded bit sequence is then

Note that the resulting bit sequence is identical to the sequence found in the
preceding text discussion. Only the dictionary has changed.

Table 19.8 Example Lempel-Ziv-Welch coding scheme
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19.5 DIGITAL BASEBAND MODULATION
We live in a world that is physically analog, so information must be in an
analog form before being transmitted across the physical medium.
However, this is not to be confused with analog communication systems
where the information to be transmitted and the waveform that is
transmitted are both analog (e.g., an analog voice signal). In digital
communication systems, the information to be sent from the transmitter to
the receiver is digital, but it is analog while traveling over the physical
medium. Baseband digital modulation converts a binary signal into an
analog signal that can be transmitted over the physical communication
channel.



Digital baseband modulation transmits bits of information across a
communication channel by mapping those bits to particular analog message
waveforms to indicate the states of those bits. The analog waveforms used
could represent voltage on a coaxial cable, electric-field potential in a
wireless link, acoustic pressure waves in an underwater link, or light pulse
amplitude in a fiber-optic line. By stringing together a number of these
waveforms, one after the other, an entire sequence of bits can be
transmitted. The receiver, using baseband demodulation, then decodes the
message by matching the received waveforms to an internal library of
previously agreed upon waveforms to recover the original bits.

Pulse-Position Modulation
One set of waveforms that is commonly used for digital baseband
modulation is shown in Figure 19.13, where a 0 bit is represented by m0(t)
and a 1 is represented by m1(t). Because the state of the bit is represented by
the position of the pulse within the overall duty cycle T, these are known as
pulse-position modulated (PPM) waveforms.

Figure 19.13 Binary pulse-position modulated (PPM) message
waveforms with duty cycle T

To send information in chunks of M simultaneous bits, the set with K =
2M message waveforms can be used, each with a duration of T seconds. For
example, to send 2 bits at a time we can use four message waveforms to
convey all the possible bit states, as illustrated in Figure 19.14.



Figure 19.14 PPM for 2 bits per message waveform

The transmission rate of a digital system depends on the duty cycle T as
well as on the number of bits that are being transmitted simultaneously. The
baud rate is 1/T, or the number of message waveform transmissions per
second. The bit rate is M/T, or M times the baud rate since M bits are sent
per transmission. For example, the V.90 telephone modem standard
specifies a baud rate of 8,000 message waveform transmissions per second
and a bit rate of 56,000 bits/s. Thus, each message waveform conveys 7 bits
by transmitting one out of a set of 128 message waveforms.
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Noise added to the signal as it travels through the channel can corrupt
the message that arrives at the receiver. Mathematically, the received signal
r(t) is written

where mi(t) is one of K message waveforms and 𝑤(t) is an additive noise
signal. For example, Figure 19.15(a) shows a noise signal 𝑤(t), and Figure
19.15(b) shows the message waveform corrupted by the noise 𝑤(t), where
the message waveform is chosen from the binary PPM waveform set shown
in Figure 19.13. By examining the received signal in Figure 19.15(b), we
see that it more closely resembles m1(t) than m0(t) in Figure 19.13. Thus,
we conclude that a 1 was sent.



(19.10)

(19.11)

Figure 19.15 (a) Gaussian noise; (b) signal corrupted by noise

In using our intuition to determine which waveform was transmitted, we
eventually come to the conclusion that the received signal r(t) was
somehow “closer” to one message waveform than the other. By measuring
this “distance” between waveforms, the receiver automatically decides
which message waveform was probably transmitted. One approach is to
calculate the root-mean-squared (RMS) distance by adding up the squared
absolute pointwise differences between the waveforms. The RMS distance
d between r(t) and a given waveform mi(t) is given by

Once the distances between the received signal and each of the candidate
waveforms are calculated, the receiver chooses the candidate with the
minimum RMS Page 19-17distance from the received waveform. Detection
theory tells us that if the message waveforms are equally likely to be sent,
then this minimum distance (MD) detection algorithm is optimal in the
sense of minimizing the probability of choosing the wrong waveform.
Mathematically, the MD detector is written

where we have removed the square root since it doesn’t affect the
determination of the minimum. Use of the arg operator returns the index of
the minimum value and not the minimum value itself. A block diagram of
the MD detector is shown in Figure 19.16.
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Figure 19.16 Minimum distance detector

In the absence of noise, the MD detector will find a distance of zero
between the matching mj(t) and the received signal, and a nonzero distance
between the received signal and all other message waveforms. As a result,
the message waveforms should be designed to be as far apart from each
other as possible so that noise disturbance cannot easily make the received
signal closer to a message waveform that was not sent. In the ideal case
there would be infinite distance between message waveforms to make the
error probability go to zero. Unfortunately, the transmit power is
constrained by the average energy E of the message waveform set,
calculated as

If two message waveform sets have the same average energy and one has a
greater minimum distance between message waveforms, then in general it
will have lower error probability. This is explored further in the chapter
problems.

The MD detector can be changed to an equivalent form, called the
correlation receiver, shown in Figure 19.17. In some cases, the correlation
receiver can be easier to implement than the MD detector. The correlation
receiver multiplies the samples of the received signal with each message
waveform, integrates the result, samples at t’ = T seconds, subtracts the
signal energy, and then chooses the index Page 19-18of the largest value.
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The multiply-integrate operation is called correlation. The correlation
receiver can be derived from the MD detector through the following
algebraic manipulation:

where  is the energy of the ith waveform. In the last line, we
changed the min to max by negating.

Figure 19.17 Correlation detector

Pulse-Amplitude Modulation
In pulse-amplitude modulation (PAM), the set of K message waveforms are
built by specifying amplitudes Ai of a prototype pulse m(t). Thus, the ith
waveform is
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If we assume that the prototype pulse m(t) has unit energy, i.e.,
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then each message waveform has energy . The correlation detector
shown above can now be simplified to:

where we changed the max to a min by negating. We complete the square
and ignore terms common to all indices to write the decision as:

From this equation we see that when using PAM the decision is made
simply by finding the amplitude that has minimum distance to the
correlation output y. This result greatly simplifies the receiver structure, as
seen in Figure 19.18.

Figure 19.18 PAM detector

For a moment, consider a PAM signal set with a unit energy square
prototype pulse as shown in Figure 19.19.
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(19.16)

Figure 19.19 Unit energy prototype pulse for PAM signal set

For binary PAM, we choose amplitudes A0 = +1 and A1 = –1. The
resulting message waveforms are shown in Figure 19.20. In this case, the
correlation output y will be

Figure 19.20 Binary PAM message waveforms
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where

is the noise. So far in our discussion we have avoided discussing the
specific nature of the noise signal z. As it turns out, noise sources such as
thermal noise, atmospheric interference, and channel distortion can be
modeled as white noise, or noise with a constant power at all frequencies.
Specifically, the power spectral density for such noise is given as
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where k is Boltzmann’s constant (1.38 × 10–23J/K) and T is the noise
temperature in kelvin. This model is actually non-physical because a
constant power spectral density at all frequencies would mean that the total
power of the noise signal is infinite. As we saw in Chapter 18, however,
engineers are usually only interested in a very narrow band of the spectrum
at a time. As a result, as long as the white noise model is applied within that
narrow band we can avoid breaking any physical laws. The ratio of signal
power to noise power is known as the signal-to-noise ratio (SNR).

Additive white gaussian noise (AWGN) is also a signal with constant
power density at all frequencies, but with the additional property that for
any particular sample n0 its value is a random variable Z with gaussian PDF.
Because the value of the signal z for a given sample n0 is described by a
random variable, the noise signal itself is known as a random process.

To see the effects of AWGN on transmission of bits over a channel,
consider a system where a single bit is transmitted using PAM with A0 = –
1.0 V to represent a 1 bit and A1 = –1.0 V to represent a 0 bit. After the
addition of AWGN, the output y for bit n0 will have a PDF given by

and resemble Figure 19.21, where the output for bit n0 can take on any
value according to the probability prescribed by the gaussian distribution.

Figure 19.21 Likelihood probability curves (signal + noise) of
bits transmitted over an AWGN channel



Now, consider a decoder that is designed to recover the intended value
of the transmitted bit. Such a decoder d[n] might use a simple comparator to
decide Page 19-21whether the output bit is a 1 or 0, such as

The decoder interprets an output less than 0.0 V to indicate a 0 bit and more
than 0.0 V to indicate a 1 bit. Unfortunately, the output of this decoder will
be in error whenever the noise signal causes the output to cross over the
zero threshold, as identified by the shaded region in the figure for a
transmitted 0 bit (–1.0 V). The probability of this occurring is the area of
the shaded region, as given by

Through symmetry, the same probability can be found for P(d = 0∣x = 1).

Binary Symmetric Channel Model
The binary symmetric channel model simplifies the AWGN model by
encapsulating the error mechanism into a single parameter, P(y∣x), or the
probability that event y was received given that x was transmitted.
Mathematically, the binary symmetric channel is described by specifying

where ∊ is the crossover probability, meaning that a transmission error
occurred such that the output does not equal the input; in other words, the
probability that the bit was “flipped” (see Figure 19.22). This simpler model
is often used to model computer storage or transmission systems.



Figure 19.22 Binary symmetric channel

19.6 CHANNEL CODING
In a previous section, we showed how source coding is used to represent a
sequence of events using the minimum possible number of bits. We also
showed how the entropy equation set a limit on lossless compression and
could be used to compute the efficiency of the coder. As we will see in the
following section, a similar theorem exists to show that for a given
transmitting power and bandwidth, there is a transmission rate at which one
can accomplish effectively error-free transmission Page 19-22of data over a
noisy channel. This transmission rate is called the channel capacity. Just as
source coding is the mechanism that allows sources to approach the
theoretical limit of compressibility, channel coding is the mechanism used
to approach this theoretical error-free transmission rate by adding sufficient
redundancy to improve the likelihood that the message can pass accurately
through the communications channel over which it is transmitted or stored.

As an example, consider storage of music on a compact disc (CD).
From the listener’s perspective such discs can store about 74 min of audio,
or the equivalent of 650 Mbytes of data, in the form of microscopic pits in a
layer of fragile metal foil encased in a piece of plastic. To reproduce the
music, the CD player must provide the means to accurately recover the
CD’s data even in the presence of normal wear and tear which may include
contamination of its surface with dust, oil, or scratches. To provide this
functionality, an additional 200 Mbytes of redundant data is stored on the
CD to allow the player to perform automatic error detection and correction
as the data bits are read from the disc. For CDs used for computer data
storage, the percentage of redundant data is even higher.
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The Channel Model and Additive White Gaussian
Noise
Before discussing channel coding schemes, we must characterize the nature
of the communication channel over which communication will take place.
Although there are many complicated methods for modeling
communication channels, the most common (and simplest) is the additive
channel. Using the system diagram of Figure 19.23, we can characterize the
output y[n] of an additive channel as the linear superposition of the message
signal x[n] with some noise signal z[n], expressed mathematically as:

Figure 19.23 Modeling the additive communications channel

Shannon Noisy Channel Capacity
Just as the entropy of the message defined the absolute limit on lossless
compression, a similar limit exists for the maximum error-free transmission
rate that can be achieved over a given channel. This limit is defined by the
Shannon noisy channel coding theorem, which for a simple channel with
AWGN results in

where C is the transmission rate in bits/s, W is the available bandwidth of
the channel, and P is the power transmitted per event.

Linear Block Channel Coding
Linear block coding is the simplest of all the channel coding techniques. As
with source coding, linear block coding relies on a dictionary of codes that



will be substituted for the input presented to the coder. However, while
source coders use dictionaries that reduce the total number of bits, channel
codes use carefully chosen codewords that actually increase the number of
bits and therefore add redundancy. As previously mentioned, adding
redundancy does not come for free—the additional bits require either more
time to transmit or increased bandwidth to accommodate the higher bit rate,
not to mention increased system complexity.
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In general, (n, k) linear block codes map 2k input sequences of k bits
into n-bit output sequences. Consider the following very simple (2, 1) code
as described by the dictionary in Table 19.9. This code converts each input
bit into two output bits, essentially doubling the number of bits that must be
transmitted. This simple code improves the reliability of the code by
providing error-detection capability. In this case, the extra bit in the pair
functions as a parity bit, meaning that the received code should always
contain an even number of 1s, or even parity. If it doesn’t, then the decoder
knows that one of the bits was distorted in the channel. This simple code
doesn’t protect against two errors occurring in a single codeword (meaning
both bits were flipped in the channel), and it also doesn’t provide any
capability to correct errors. However, it does give the receiver a
rudimentary ability to detect when errors occur.

Table 19.9 An even parity error-detecting channel code

To examine a code that provides error-correction capability, consider
the (5, 2) code of Table 19.10. This code converts each pair of input bits
into five output bits. From the receiver’s perspective it is easy to decode a
received bit pattern if it exactly matches one in the dictionary. But what
happens when an error in the channel causes the received pattern not to
match any of the available codewords? In this case we begin by computing
the Hamming distance, or the number of nonmatching bits between the



received pattern and each of the available codewords. Then, the codeword
with the smallest Hamming distance is taken as the received output. For
example, assuming that the decoder received the pattern 01111, the
Hamming distances are computed as shown in Table 19.11. Taking the
smallest Hamming distance, the decoder would choose 01110 as the
received codeword and therefore 01 as the decoded bit sequence.

Table 19.10 An error-correcting channel code

Table 19.11 Hamming distances for received bit pattern of 01111

EXAMPLE 19.3 Capacity of an AWGN Channel
Problem
For a channel with an available bandwidth of 10 kHz, find the maximum bit
rate at which an event sequence can be transmitted if AWGN is present with
a noise temperature of 20°C and the transmit power is 1.0 μW/event.

Solution



From the AWGN channel capacity theorem, the channel capacity for the
parameters given is:
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19.7 ADVANCED TOPICS
One of the technologies that has rapidly expanded the field of digital
communication is the cellular telephone. In this case the channel is the
atmosphere and all cellular traffic within a geographic area must therefore
share the same allocated frequency band, or multiplex, often at the same
time. In the United States, 1.9 GHz is one such band. The difficulty
becomes how to multiplex without causing interference between two
phones, or at least how a phone might understand the signal despite the
interference.

The answer to these problems is channel sharing, used by wired and
wireless systems alike to support multiple simultaneous users. There are
several techniques by which the channel can be shared among users to limit
interference. Two of the most common ones are frequency-division multiple
access and time-division multiple access.

Frequency-Division Multiple Access
As the name suggests, frequency-division multiple access (FDMA)
transmits multiple signals by separating them in frequency, assuming that
the channel bandwidth is much larger than the actual bandwidth required
for transmitting the signal. In other words, BC ≫ BU where the bandwidth
of the channel is BC and the bandwidth of each user is BU. Under these
conditions, we can transmit approximately (BC/BU) users on the channel
simultaneously. As an example, consider a 3-kHz voice signal on a 100-kHz
channel. Then we can theoretically transmit (100/3) ≈ 33 users on this
channel.



In practice, a frequency gap called a guard band is introduced between
each pair of consecutive channels to ensure there is no interference between
the two. Each of the signals is individually modulated and upconverted to
the frequency of transmission. If the start of the channel’s frequency band is
fC, then in our example, the first user would transmit at fC + 3 kHz with a
guard band from fC + 3 kHz to fC + 4 kHz. The second user would transmit
between fC + 4 kHz and fC + 7 kHz and so on. In this way 25 channels
actually could be transmitted on the channel. Figure 19.24 illustrates the
frequency layout of a typical FDMA system.

Figure 19.24 Frequency-division multiple access

Examples of systems using FDMA are analog radio, analog television
and cable service, and until recently the long distance telephone system.
The low cost and high quality of available FDMA equipment, especially
that intended for television signals, make it a reasonable choice for many
purposes. The downside is that the required bandwidth increases as more
and more users are added to the system. Since the channel often has a fixed
bandwidth, it is not possible to add users limitlessly.
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Time-Division Multiple Access
Another way to achieve the sharing of the medium is through time-division
multiple access (TDMA). With this approach multiple users are isolated
from each other by transmitting at different points in time. Assuming that
all users’ signals require the same bandwidth, say BU Hz, we know from the
Nyquist theorem that each of them requires the same sampling frequency fS



= 2BU and therefore two samples from the same user are TS = 1/fS seconds
apart. If we make the duration between user samples TU = (TS/N), then we
can accommodate the samples of all N users in one time slot of TS seconds
by sampling each user’s signal TU seconds apart and interleaving the
samples of all users. After interleaving, this multiplexed signal is modulated
and upconverted to the final transmission frequency. Figure 19.25 illustrates
the timing for a typical TDMA system.

Figure 19.25 Time-division multiple access

The Global System for Mobile Communications (GSM) cellular
standard uses TDMA, with individual channels that use 200 kHz of
bandwidth for one-way or simplex (i.e., mobile to base station or base
station to mobile) communication. In all, there are 124 pairs of such
simplex channels, where each simplex channel can be used to support eight
separate users by TDMA. The total number of users that can be supported
by this system is therefore 992.

TDMA is more efficient, easier to operate, less complex, and less
expensive than FDMA. However, the duration TU cannot be chosen
arbitrarily. This is because under some conditions the channel may suffer
from dispersion, meaning that even though a signal of a user is transmitted
at a particular time instant, the channel itself may cause it to “spread” in
time and spill over to the next user’s signal. So TU must be carefully chosen
to ensure that these channel effects do not cause interference between users.



Spread-Spectrum and Code-Division Multiple
Access
Spread spectrum had its beginnings during World War II when beautiful
Hollywood movie star Hedi Lamarr and talented pianist George Antheil
patented a covert system for guiding torpedoes. Their idea was to “hop” the
torpedo control signal between many different frequencies to make it
difficult for an enemy to jam. The torpedo receiver would be synchronized
to the transmitter and know exactly when the next frequency hop would
occur. Unfortunately for Lamarr and Antheil, the Page 19-26U.S. Navy was
not impressed by their invention, and they never saw a dime for their
efforts. Today, their basic spread-spectrum idea is used in millions of
mobile phones across the world.

A wireless communications system whose transmission occupies a
bandwidth W much greater than the information rate R of the data source is
called a spread-spectrum system. For example, a voice channel in a cellular
IS-95 system has an information rate of R = 9.6 kbits/s, but occupies a
bandwidth of W = 1.2288 MHz, a bandwidth expansion of W/R = 128. The
ratio W/R is often called the processing gain of the system. Third-
generation cellular standards use spread-spectrum waveforms that occupy
bandwidths of up to 5 MHz and have variable processing gains to enable
transmission of low and high data rates.

There are several ways to spread the bandwidth of the data source. Two
of the most popular include frequency-hopped spread spectrum and direct-
sequence spread spectrum. Frequency hopping is straightforward: a
narrowband transmit signal hops in a pseudorandom sequence from
frequency to frequency over a wide bandwidth. The instantaneously
occupied bandwidth is small, but on average, the signal bandwidth is large.
Direct-sequence spread-spectrum systems use signals whose instantaneous
bandwidth is large. One can construct such signals with pseudorandom
spreading code sequences called pseudorandom (PN) codes.

Since the transmit energy is spread over a wide bandwidth, the power
per unit of bandwidth is very low. An enemy with a spectral analyzer may
not even know the spread-spectrum signal is present, and even if he did, he
would have to know the PN spreading sequence to recover the transmitted
information. In addition, the pseudorandom nature of the spread-spectrum



signal makes it difficult for an enemy to jam. The anti-jamming attribute
also implies that multiple spread-spectrum users can access the same
bandwidth at the same time, where each spread-spectrum user is considered
a jammer to the others. When direct-sequence spread spectrum is used for
simultaneous access to common bandwidth, this is called code-division
multiple access (CDMA).

Ultrawideband
Ultrawideband (UWB) digital communication is a very recent development
using waveforms that distribute their power across a very wide bandwidth.
Because UWB is a form of extreme spread spectrum, dozens of devices can
operate in the same location at the same time. In addition, the transmitted
power per hertz is so low (below the noise floor, in many cases) that data
from the devices is extremely difficult for a third party to detect or
intercept.

There are currently two design philosophies proposed for UWB
communication system standardization. The first is impulse radio, using
waveforms with subnanosecond duty cycle and occupying several gigahertz
of bandwidth. Impulse radio is mainly intended for longer-range low-bit-
rate communication systems, though efforts are under way to increase
transmission rates. The second proposal is to transmit a multiband
waveform where each carrier occupies greater than 500 MHz. This
approach is intended for shorter-range higher-rate communication systems.
Both proposals have their benefits and drawbacks, but it is hoped that a
consensus between them can be reached quickly.

Potential applications for UWB radio communication range from
military covert communications to commercial indoor wireless links. UWB
devices can operate with low power for low-cost short-range
communications and may some day wirelessly Page 19-27connect hand-
held digital devices with personal computers at rates of up to 1 Gbit/s.
Another application for UWB technology is wirelessly streaming
multimedia content between components of a home entertainment system.
In addition to being used for communications purposes, UWB signals have
already been used for applications such as ground-penetrating radar,
location sensing, and through-wall imaging.



Because UWB signals occupy several gigahertz of bandwidth, it is
inevitable that they will overlap with incumbent narrowband systems such
as cellular telephony and the Global Positioning System (GPS). Studies
show that the interference is minimal because UWB transmission power per
megahertz is so low. Even so, GPS is so critical to many applications that as
an extra precaution the FCC has mandated that UWB devices may not emit
energy in the GPS band. A large push for commercial applications came
after the Federal Communications Commission (FCC) amended its Part 15
rules in February 2002 to allow unlicensed UWB spectral emissions.

19.8 DATA TRANSMISSION IN DIGITAL
INSTRUMENTS
A necessary aspect of data acquisition and control systems is the ability to
transmit and receive data. Often, a microprocessor-based data acquisition
system is interfaced to other digital devices, such as digital instruments or
other microprocessors. In these cases it is necessary to transfer data directly
in digital form. In fact, it is usually preferable to transmit data that are
already in digital form, rather than analog voltages or currents. Among the
chief reasons for the choice of digital over analog is that digital data are less
sensitive to noise and interference than analog signals: In receiving a binary
signal transmitted over a data line, the only decision to be made is whether
the value of a bit is 0 or 1. Further, digital data are often coded in such a
way that many transmission errors may be detected and corrected. Finally,
storage and processing of digital data are accomplished much more readily
than with analog signals.

Digital signals in a microprocessor are carried by a bus, consisting of a
set of parallel wires, each carrying 1 bit of information. In addition to the
signal-carrying wires, there are control lines that determine under what
conditions transmission may occur. A typical computer data bus consists of
eight parallel wires corresponding to 1 byte; digital data are encoded in
binary according to one of a few standard codes, such as the BCD code
described in Chapter 11 or the ASCII code (see Appendix D). This bus
configuration is usually associated with parallel transmission, whereby all
the bits are transmitted simultaneously, along with some control bits.



Figure 19.26 depicts the general appearance of a parallel connection.
Parallel data transmission can take place in one of two modes: synchronous
or asynchronous. In synchronous transmission, a timing clock pulse is
transmitted along with the data over a control line. The arrival of the clock
pulse indicates that valid data have also arrived. While parallel synchronous
transmission can be very fast, it requires the added complexity of a
synchronizing clock and is typically employed only for internal computer
data transmission and only over short distances (less than 4 m).
Asynchronous data transmission, on the other hand, does not take place at a
fixed clock rate, but requires a handshake protocol between sending and
receiving ends. The handshake protocol consists of the transmission of data
ready and acknowledge signals over two separate control wires. Whenever
the sending device is ready to transmit data, it sends a pulse over the data
ready line. When this signal reaches the receiver, and if the receiver is ready
to receive the data, an acknowledge pulse is sent back, indicating that the
transmission may occur.

Figure 19.26 Parallel data transmission
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Perhaps the most common parallel interface is the general-purpose
instrument bus (GPIB), which is based on the IEEE 488 standard. The
hugely popular and widely applied Universal Serial Bus (USB) and the
Controller Area Network (CAN) are two other important digital
communication interfaces.

Parallel Communication and IEEE 488
The IEEE 488 bus, depicted in Figure 19.27, is an 8-bit parallel
asynchronous interface that has found common application in digital



instrumentation applications. The physical bus consists of 16 lines, of
which 8 are used to carry data, 3 for the handshaking protocol, and the rest
to control data flow. The bus permits connection of up to 15 instruments
over a 20-m length at data rates up to 1 Mbyte/s. It is possible to extend the
operating distance of an IEEE 488 bus beyond the standard 20-m maximum
by means of bus extenders. The signals transmitted are TTL compatible and
employ negative logic, whereby a logic 0 corresponds to a TTL high state
(>2 V) and a logic 1 to a TTL low state (<0.8 V). Often, the 8-bit word
transmitted over an IEEE 488 bus is coded in ASCII format.

Figure 19.27 IEEE 488 bus

In an IEEE 488 bus system, devices may play different roles and are
typically classified as controllers, which manage data flow; talkers (e.g., a
digital voltmeter), which send data; listeners (e.g., a printer), which receive
data; and talkers/listeners (e.g., a digital oscilloscope), which receive and
send data. The simplest system configuration might consist of just a talker
and a listener. If more than two devices are present on the bus, a controller
is necessary to determine when and how data transmission occurs. For
example, only one talker can transmit at a time; however, several listeners



1.

may be active on the bus simultaneously. The talker will transmit at the
slowest listener data rate so that all data is received correctly.

The protocol is the set of rules by which the controller determines the
order of talking and listening. One aspect of the protocol is the handshake
procedure, which Page 19-29enables the transmission of data. Since
different devices (with different data rate capabilities) may be listening to
the same talker, the handshake protocol must take into account these
different capabilities. The three handshake lines used in the IEEE 488 have
important characteristics that give the interface system wide flexibility,
allowing interconnection of multiple devices that may operate at different
speeds. The slowest active device controls the rate of data transfer, and
more than one device can accept data simultaneously. The timing diagram
of Figure 19.28 and the list below illustrate the sequence in which the
handshake and data transfer are performed.

Figure 19.28 IEEE 488 data transmission protocol

All active listeners use the not ready for data (NRFD) line to indicate
their state of readiness to accept a new piece of information.
Nonreadiness to accept data is indicated if the NRFD line is held at 0 V.
If even one active listener is not ready, the NRFD line of the entire bus
is kept at 0 V and the active talker will not transmit the next byte.
When all active listeners are ready and they have released the NRFD
line, it goes high.



2.

3.

4.

5.

a.

b.

7.

6.

The designated talker drives all eight data input/output lines, causing
valid data to be placed on them.
Two microseconds after putting valid data on the data lines, the active
talker pulls the data valid (DAV) line to 0 V and thereby signals the
active listeners to read the information on the data bus. The 2-μs
interval is required to allow the data put on the data lines to reach
(settle to) valid logic levels.
After the DAV is asserted, the listeners respond by pulling the NRFD
line back down to zero. This prevents any additional data transfers
from being initiated. The listeners also begin accepting the data byte at
their own rates.
When a listener has accepted the data, it releases the not data accepted
(NDAC) line. Only when the last active listener has released its hold on
the NDAC line will that line go to its high-voltage-level state.

When the active talker sees that NDAC has come up to its high state,
it stops driving the data line.
At the same time, the talker releases the DAV line, ending the data
transfer. The talker may now put the next byte on the data bus.

The listeners pull down the NDAC line back to 0 V and put the byte
“away.”

Each of the instruments present on the data bus is distinguished by its
own Page 19-30address, which is known to the controller; thus, the
controller determines who the active talkers and listeners are on the bus by
addressing them. To implement this and other functions, the controller uses
the five control lines. Of these, ATN (attention) is used as a switch to
indicate whether the controller is addressing or instructing the devices on
the bus, or whether data transmission is taking place: when ATN is logic 1,
the data lines contain either control information or addresses; with ATN = 1,
only the controller is enabled to talk. When ATN = 0, only the devices that
have been addressed can use the data lines. The IFC (interface clear) line is
used to initialize the bus, or to clear it and reset it to a known condition in
case of incorrect transmission. The REN (remote enable) line enables a
remote instrument to be controlled by the bus; thus, any function that might
normally be performed manually on the instrument (e.g., selecting a range
or mode of operation) is now controlled by the bus via the data lines. The
SRQ (service request) line is used by instruments on the bus whenever the



instrument is ready to send or receive data; however, it is the controller that
decides when to service the request. Finally, the EOI (end or identify) line
can be used in two modes: When it is used by a talker, it signifies the end of
a message; when it is used by the controller, it serves as a polling line, that
is, a line used to interrogate the instrument about its data output.

Serial Communication and RS-232
The primary reason why parallel transmission of data is not used
exclusively is the limited distance range over which it is possible to
transmit data on a parallel bus. Although there are techniques that permit
the range to be extended for parallel transmission, these are complex and
costly. Therefore, serial transmission is frequently used, whenever data are
to be transmitted over a significant distance. Since serial data travel along
one single path and are transmitted 1 bit at a time, the cabling costs for long
distances are relatively low; further, the transmitting and receiving units are
also limited to processing just one signal and are also much simpler and less
expensive. Two modes of operation exist for serial transmission: simplex,
which corresponds to transmission in one direction only; and duplex, which
permits transmission in either direction. Simplex transmission requires only
one receiver and one transmitter, at each end of the link; on the other hand,
duplex transmission can occur in one of two manners: half-duplex and full-
duplex. In the former, although transmission can take place in both
directions, it cannot occur simultaneously in both directions; in the latter
case, both ends can simultaneously transmit and receive. Full-duplex
transmission is usually implemented by means of four wires.

The data rate of a serial transmission line is measured in bits per second
since the data are transmitted 1 bit at a time. The unit of 1 bit/s is 1 baud.
Like parallel transmission, serial transmission can also occur either
synchronously or asynchronously. Asynchronous transmission is less costly
but not as fast. A handshake protocol is also required for asynchronous
serial transmission. The most popular data-coding scheme for serial
transmission is ASCII, consisting of a 7-bit word plus a parity bit, for a
total of 8 bits per character. The role of the parity bit is to permit error
detection in the event of erroneous reception (or transmission) of a bit. In
serial asynchronous systems, handshaking is performed by using start and
stop bits at the beginning and end of each character. The beginning of a



serial asynchronous word is announced by the start bit, which is always a 0
state bit. For the next five to eight successive bit times the line is switched
to the 1 and 0 states Page 19-31required to represent the character being
sent. Following the last data bit the parity bit is 1 bit or more in the 1 state,
indicating “idle.” The time period associated with this transmission is called
the stop bit interval.

If noise pulses affect the transmission line, it is possible that a bit in the
transmission could be misread. Thus, following the 5 to 8 data bits, there is
a parity bit that is used for error detection. If the transmitter keeps track of
the number of 1s in the word being sent, it can send a parity bit, a 1 or a 0,
to ensure that the total number of 1s sent is always even (even parity) or
odd (odd parity). Similarly, the receiver keeps track of the 1s received to see
whether there was a transmission error. If an error is detected,
retransmission of the word is requested. No error detection scheme is
perfect; robust schemes generally impose significant overhead on the net
transmission rate. By contrast, parity checking has low overhead but limited
effectiveness.

A useful example of a serial data transmission protocol is the once
widely popular RS-232 standard. This standard is based on the
transmission of voltage pulses at a preselected baud rate; the voltage pulses
are in the range –3 to –15 V for a logic 0 and in the range +3 to +15 V for a
logic 1. It is important to note that this amounts to a negative logic
convention and that the signals are not TTL compatible. The distance over
which such transmissions can take place is up to approximately 17 m (50
ft). The RS-232 standard was designed to make the transmission of digital
data compatible with telephone lines, which were originally designed to
carry analog voice signals. The RS-232 standard describes the mechanical
and electrical characteristics of the interface between data terminal
equipment (DTE) and data communication equipment (DCE). DTE consists
of personal computers, digital instruments, and related peripherals; DCE
includes all those devices that are used to encode digital data in a format
that permits their transmission over telephone lines. Thus, the standard
specifies how data should be presented by the DTE to the DCE so that
digital data can be transmitted over analog voice lines.

A typical example of DCE is the modem, which stands for modulate-
demodulate. A modem uses digital pulses to modulate a sinusoidal carrier



for transmission and demodulates the transmitted signal to recover the
digital pulses at reception. Three methods are commonly used for
converting digital pulses to an audio signal: amplitude-shift keying,
frequency-shift keying, and phase-shift keying, depending on whether the
amplitude, phase, or frequency of the sinusoid is modulated by the digital
pulses. Figure 19.29 depicts the essential block of a data transmission
system based on the RS-232 standard as well as examples of digital data
encoded for transmission over a voice line.

Figure 19.29 Digital data encoded for analog transmission

The Universal Serial Bus
For many devices, the RS-232 standard has been replaced by the USB
standard, which was motivated by the need for a more flexible protocol for
interfacing peripheral devices to personal computers. The USB technical
specification describes the bus attributes, protocol definition, types of



1.
2.
3.

4.

5.

transactions, bus management, and programming interface that are
consistent with the requirements of digital devices. The original goals of the
USB standard were:

Ease of use for PC peripheral expansion.
Low-cost solution that supports transfer rates up to 480 Mbits/s.
Full support for real-time data for voice, audio, and video.
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Protocol flexibility for mixed-mode isochronous data transfers and
asynchronous messaging.
Integration in commodity device technology (e.g., portable media
storage, printers).

The USB standard provides electrical and mechanical specifications for
cables and connectors, as well as communication protocols, to accomplish
these and other more recent goals. The original USB 1.0 standard, released
in January 1996, specified two data transfer rates, low speed (1.5 Mbits/s)
and full speed (12 Mbits/s), to accommodate the requirements of different
peripheral devices. The USB 2.0 standard, released on April 27, 2000, and
named USB High-Speed, increased the maximum data transfer rate by a
factor of 40 to 480 Mbits/s. This version of the standard also introduced
type-A and type-B connectors. With the advent of smart phones, digital
cameras, and other portable digital devices, a version of USB that would
allow two devices to communicate without a host PC was needed. In
December 2001, the USB On-The-Go (OTG) standard was introduced to
allow any two USB devices to be connected directly, with one device acting
as the host and the other as the client. A wireless USB standard was
introduced in 2005. More recently, the USB 3.0 standard, released on
November 12, 2008, and named USB SuperSpeed, further increased the
maximum data transfer rate to 5 Gbits/s.

Among the many qualities of the USB standard is the compatibility
provided across all three versions of the standard. For instance, any USB
2.0 device can Page 19-33interface with a USB 3.0 device. In fact, in most
respects the difference between USB 2.0 and USB 3.0 devices is transparent
to the end user. One apparent change in the USB 3.0 standard was the
introduction of the Micro-A and -B type connectors that are now commonly



found on many handheld devices such as digital cameras and smart phones.
Both the USB 2.0 and 3.0 communication standards are based on the
concepts of endpoints, pipes, and transfer types. However, USB 3.0 added
several important new capabilities, including support for bursting whereby
data packets are sent continuously to an endpoint buffer without requiring
handshaking between each packet.

USB 3.0 also uses dual-simplex unicasting to concurrently send and
receive data packets along direct paths from the host to the endpoint.
Endpoints receive only those packets addressed to them. Hubs in the
network use routing information to direct data packets to the intended
endpoint.

Finally, USB 3.0 employs asynchronous notifications, which, along
with its unicasting feature, allows a USB 3.0 device to initiate multiple
concurrent send transactions on the same bus. These two features also allow
a USB 3.0 network to send an inactive device into a low-power sleep state
until a notification involving that device is generated. The result is
additional power savings compared to a USB 2.0 network, which
continuously polls connected devices to determine if the devices are still
idle.

Ethernet
Another popular communication protocol is Ethernet, which is based on
IEEE Standard 802.3, and is commonly used in local area networks
(LANs) such as office networks. Ethernet was developed at Xerox PARC
by Robert Metcalfe and others between 1972 and 1976 and published in
1980. Eventually, Ethernet was standardized in 1985. Many Ethernet
installations rely on twisted-pair cables to reduce sensitivity to noise and
compensate for stray capacitance. However, Ethernet is also implemented in
fiber optic networks. Depending upon the physical media, data transmission
rates can be as high as 100 Gbits/s. Common installations of Ethernet are
known as 10BASE-T, 100BASE-T, and 1000BASE-T, where the numeric
prefix indicates its nominal speed in Mbits/s.

Control Area Network



Yet another popular bus architecture is the control area network, or CAN,
protocol. CAN is a message-oriented transmission protocol used in
broadcast communication. Each transmission contains a message identifier
that is unique within the whole network and defines the content and priority
of the message. This is important when several stations are competing for
bus access. The CAN protocol supports two message frame formats, the
only essential difference being the length of the identifier. The CAN
standard frame, also known as CAN 2.0 A, supports a length of 11 bits for
the identifier; and the CAN extended frame, also known as CAN 2.0 B,
supports a length of 29 bits for the identifier. The structure of a CAN
message is shown in Figure 19.30.

Figure 19.30 Structure of CAN message
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It is very easy to add stations to an existing CAN network without
making any hardware or software modifications to the existing stations as
long as the new stations are purely receivers. This allows the concept of
modular electronics and also permits multiple reception and the
synchronization of distributed processes: data needed as information by
several stations can be transmitted via the network in such a way that it is
unnecessary for each station to have to know who is the producer of the
data. This makes it easy to service and upgrade networks, as data
transmission is not based on the availability of specific types of stations.

CAN was originally developed for passenger car applications. CAN
networks used in engine management connect several electronic control
units (ECUs). In addition, some passenger cars are equipped with CAN-
based multiplex systems connecting body ECUs. These multiplex networks
link door and roof control units as well as lighting control units and seat
control units. In some passenger cars, a CAN-based diagnostic interface is
implemented. The different CAN-based in-vehicle networks are connected
via gateways. In many system designs, the gateway functionality is
implemented in the dashboard. In the future, the dashboard itself may use a



local CAN network to connect the different display and control units. The
following microcontrollers, commonly used in automotive applications,
support CAN interfaces: Infineon C16XC series, Motorola 683xx series and
MPC5xx series, and Hitachi SH-2. Because of its widespread use in
automobiles, the popularity of the CAN bus has grown significantly in
recent years, and CAN has become a de facto standard for the automotive
industry.

EXAMPLE 19.4 ASCII to Binary Data Conversion over IEEE
488 Bus
Problem
Determine the actual binary data sent by a digital voltmeter over an IEEE
488 bus.

Solution
Known Quantities: Digital voltmeter reading V.
Find: Binary data sequence.
Schematics, Diagrams, Circuits, and Given Data: V = 3.405 V. ASCII
conversion table.
Assumptions: Data are encoded in ASCII format. Sequence is sent from
most to least significant digit.
Analysis: Using an ASCII conversion table:



1.

2.

3.
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The actual binary data sent can therefore be determined by converting
the hexadecimal ASCII sequence into binary data:

Comments: Note that the ASCII format is not very efficient; if you directly
performed a base-10 to binary conversion only 8 bits (plus the decimal
point) would be required.

CHECK YOUR UNDERSTANDING
Determine the actual binary data sent by a digital voltmeter reading of
17.06 V over an IEEE 488 bus if the data are encoded in ASCII format.
Assume that the sequence is from most to least significant digit.

Conclusion
Digital systems offer powerful capabilities for reliably transmitting
coded information by minimizing error associated with noise. Effective
digital communication systems rely on statistical methods to manage
the probabilistic nature of many sources of noise.
Pulse-code modulation is the process by which an analog signal is
sampled and quantized into a discrete sequence of digital data.
Source coding is the process of removing redundant and/or
unnecessary information in a signal so as to produce the minimum
signal necessary to communicate a message. Data compression

Answer: 31 37 2E 30 36 ↔ 00110011 00110111 00101110
00110000 00110110



4.

5.

6.

19.1

19.2

schemes, such as Huffman codes and Lempel-Ziv-Welch codes, are
examples of source coding techniques.
Digital baseband modulation refers to various methods for embedding
digital information in an analog signal prior to transmission through a
communication channel.
Communication channels have theoretical limits on the rate at which
data may be transmitted error-free through a channel. The limit for a
particular channel is known as its channel capacity. Channel coding
techniques are designed to produce transmission rates that approach the
channel capacity.
Digital communication standards, such as IEEE 488, RS232, and USB,
provide rules and guidelines for developing parallel and series
communication devices.

HOMEWORK PROBLEMS
Section 19.2: Introductory Probability

The Q-function is often used in the communications literature to
express the probability of error. Unfortunately, Matlab® does not have
a built-in Q-function; however, the built-in complementary error
function erfc(x) can be used to obtain the Q-function:

Obtain an expression for Q(x) in terms of erfc(x).
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Section 19.3: Pulse-Code Modulation
Consider that you have been assigned the task of quantizing for
transmission a voice signal whose bandwidth is 3.4 kHz. You are
constrained by a channel that can support a maximum bit rate of
35,000 bits/s. What is the maximum number of bits that you can



19.3

a.

b.

c.

d.

19.4

employ for quantization? Also find the corresponding sampling rate of
the signal.

Section 19.4: Source Coding
A remote color sensor observes a color manufacturing process and
transmits observations to a control center. The observed colors occur
with the following probabilities:

A computer at the sensor encodes the color observations according to
the following code:

These codewords are then sent to the control center (leftmost bit first).

What is the average length of the code?

The sequence (0000000100000011000000000000 0100) was
received at the control center with the leftmost bit received first.
What is the observed sequence of colors?

Notice that the observed sequence from part b is highly
redundant. To reduce this redundancy, devise a code that has an
average length less than two. What is the average length of your
code?

Encode the following sequence of color observations (leftmost
observed first) with your code from part c: {Red, Red, Red,
Green, Red, Red, Red, Yellow, Red, Red, Red, Red, Red, Red,
Green, Red}. Do you see an improvement?

In a musical CD recording, each of the two stereo signals is sampled
with a 16-bit ADC at 44.1 kHz.



a.

b.

c.

d.

19.5

19.6

19.7

19.8

What is the ratio of the output signal to the quantization noise for
a sinusoidal input signal?

The music bit stream is appended with error-correction bits,
clock extraction bits, and display and control bits. Assume that
these bits correspond to an overhead of 50 percent. What is the
playback bit rate of a CD?

Assume a CD records an hour of music. Determine the number
of bits recorded on a CD.

Now let’s compare data storage to the storage of music on a CD.
Consider a history textbook that contains 1,000 pages, 50 lines
per page, 15 words per line, 6 letters per word, and 7 bits per
word on average. Determine the number of bits required to
digitally store this textbook. Now estimate the number of such
textbooks that can be stored on a CD.

A sinusoidal signal with an amplitude of 2 is to be quantized such that
the ratio of the signal to quantization noise is at least 10 dB. What is
the minimum number of bits required to perform this quantization?

High definition TVs use a format in which there are 1,920 × 1,080
pixels on the TV screen. Each of these pixels has 16 different
brightness levels, and pictures are repeated at the rate of 30 frames per
second. Assuming that all brightness levels are equally likely to occur,
calculate the average rate of information conveyed by the TV. [Hint: If
the rate at which source X emits symbols is r symbols/s, the
information rate of the source is given by R = rH(X) bits/s. You can
think of the TV screen as a source and all the brightness levels of the
pixels as the set of possible outcomes of the source.]

Section 19.5: Digital Baseband Modulation
Suppose a cable modem communications standard specifies a baud
rate of one million message waveform transmissions per second.
Further, suppose there are 256 waveforms in the message waveform
set. What is the bit rate?

Referring to the waveforms of Figure P19.8:



a.

b.

c.

19.9

Compute the average energy of each of the three message
waveform sets. Note that for all sets the duty cycle is T = 1.

Compute the average RMS distance between the waveforms in
each set.

Which waveforms would you choose for binary signaling? Why?
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Figure P19.8 Three sets of binary message waveforms

Section 19.6: Channel Coding
It can be shown that the theoretical probability of error for a digital
communication system is given by



a.

b.

c.

d.

e.

f.

where Q(x) is the Q-function, Eb is the energy per bit, and T is the
noise temperature of the additive white gaussian noise. We would like
to verify this formula by performing the following experiment:

Generate a vector of equiprobable random bits {0, 1}.

Map each bit to a transmitted symbol in the following manner:

where Eb is the energy of the symbol.

Add gaussian noise with zero mean and variance kT/2 to the
transmitted symbol.

Perform detection by checking the sign of the received signal. If
the sign is greater than zero, then decide that a 0 was sent;
otherwise, decide that a 1 was sent.

Count the number of errors made.

Repeat until you have counted at least 100 errors. (The more
errors you count, the closer will be your estimate of the BER to
the theoretical results.)

The estimated probability of error is

Do steps a to f for signal-to-noise ratios (SNRs) of Eb/kT = 0, 2,..., 10
dB. Once you are done collecting the estimated probabilities of error,
plot your results on a log scale versus SNR in decibels, i.e., 10
log10(Eb/No). Show each data point as an X mark. Also plot the
theoretical probability of error Pe for comparison. Check your results
with Figure P19.9.
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a.

b.

19.11

a.

b.

c.

Figure P19.9 Theoretical bit error rate

You have been given the task of designing a point-to-point wireless
communications link between two buildings spaced 2 km apart.
Tests show that the signal-to-noise ratio P/kT at the receiver is 20
dB.

What is the minimum amount of bandwidth needed to support a
1 Mbit/s link?

Suppose you have a bandwidth limitation of 5 MHz. Is the SNR
sufficient to support a data rate of 5 Mbits/s?

Your task is to transmit a voice signal of bandwidth 3.4 kHz over an
AWGN channel. Assume Page 19-38the signal is sampled at 1.5
times the Nyquist rate and each sample is quantized into one of 256
equally likely levels.

What is the rate at which this voice source is generating
information?

Can you transmit the output of this source without error over an
AWGN channel with a bandwidth of 10 kHz and an SNR of 20
dB? (Hint: The SNR is P/kT.)

What is the minimum SNR required for error-free transmission
of this information over the channel?



d.

19.12

a.

b.

19.13

a.

b.

c.

Determine the minimum AWGN channel bandwidth required for
error-free transmission of the output of this source if the SNR is
20 dB.

A binary symmetric channel (BSC) has two inputs x1 = 0 and x2 = 1
and two outputs y1 = 0 and y2 = 1. The channel is symmetric
because the probability of receiving a 1 if a 0 is transmitted is the
same as the probability of receiving a 0 if a 1 is sent. This common
transition probability is denoted as b. Consider a simple repetition
coding scheme over the BSC in which each bit is repeated n times
where n = 2m + 1 is an odd integer. For decoding the received bits, a
majority rule is employed. In other words, if in a block of n received
bits the number of 0s is greater than the number of 1s, the decoder
will decide that a 0 was transmitted. Otherwise, the decoder will
decide that a 1 was transmitted. Therefore an error occurs whenever
m + 1 or more bits out of n bits are received incorrectly.

For this coding-decoding scheme, derive an expression for the
probability of bit error Pe.

Calculate Pe when b = 0.05 and n = 3, 5, 7.

Figure P19.13 compares the bit error rate (BER) performance of
BPSK transmission over an AWGN channel with and without error-
control coding.

At a BER of 10–5 what is the SNR required to transmit bits over
the channel without coding?

What is the SNR required to obtain BER 10–5 over the channel
with coding employed?

The coding gain is defined as the difference between the SNRs
required to obtain a certain BER using an uncoded and a coded
system. The coding gain represents the reduction in signal power
when using coding to achieve the same level of performance as
that of a scheme without coding. What is the coding gain of this
coding scheme at a BER 10–5?



19.14

19.15

a.

Figure P19.13

Your task is to transmit data from one computer to another through
an AWGN channel. For this purpose you employ a bipolar binary
signal that is a +1 V or a –1 V pulse during an interval [0, T]
depending on whether the information bit is a 0 or a 1. The power
spectral density of the noise added to the signal in the channel is
kT/2 = 10–3 W/Hz. Since you are transmitting important messages
over this system, you require that you obtain at most 100 errors in
every 125 Kbyte file. Determine the maximum rate at which you
can transmit bits over this channel. [Hint: The average probability of
error of this system or BER is (number of bits in error)/(total
number of bits sent). Compute the energy per bit Eb. Then the
average probability of error is given by 

Section 19.7: Advanced Topics
In this problem, we study a T1 carrier system used in digital
telephony. Voice signals are usually filtered using a low-pass filter
of cut-off frequency 3.4 kHz and then sampled at 8 kHz. This
system multiplexes samples from 24 voice signals in a single
sampling period. Voice signals are coded with 8-bit PCM, and each
frame (one sampling period) consists of 24 samples plus a single bit
added for synchronization.

Calculate the duration of each bit. Note that this system
multiplexes 24 samples each with 8 bits plus a single bit onto the



b.

19.16

19.17

19.18
a.

b.

c.

19.19
a.

b.

c.

time duration between two consecutive samples Ts = 1/fs.

Calculate the resulting transmission rate.
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Section 19.8: Data Transmission in Digital
Instruments

An ASCII (hex) encoded message is given below. Decode the
message.

An ASCII (binary) encoded message is given below. Decode the
message. (Hint: Follow a line-by-line sequence, not column-by-
column.)

Express the following decimal numbers in ASCII form:

12

345.2

43.5

Express the following words in ASCII form:

Digital

Computer

Ascii



d.

19.20

19.21

19.22

19.23

ASCII

Explain why data transmission over long distances is usually done
via a serial scheme rather than a parallel one.

A certain automated data-logging instrument has 16K words of on-
board memory. The device samples the variable of interest once
every 5 min. How often must data be downloaded and the memory
cleared to avoid losing any data?

Explain why three wires are required for the handshaking technique
employed by IEEE 488 bus systems.

A CD-ROM can hold 650 Mbytes of information. Suppose the CD-
ROMs are packed 50 per box. The manufacturer ships 100 boxes via
commercial airliner from Los Angeles to New York. The distance
between the two cities is 2,500 mi by air, and the airliner flies at a
speed of 400 mi/h. What is the data transmission rate between the
two cities in bits per second?

Design Credits: Mini DVI cable adapter isolated on white background: Robert Lehmann/Alamy
Stock Photo; Balance scale: Alex Slobodkin/E+/Getty Images; Icon for “Focus on measurements”
weighing scales: Media Bakery.
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A P P E N D I X
A

LINEAR ALGEBRA AND
COMPLEX NUMBERS

A.1 SOLVING SIMULTANEOUS LINEAR
EQUATIONS, CRAMER’S RULE, AND
MATRIX EQUATION
The solution of simultaneous equations, such as those that are often seen in
circuit theory, may be obtained relatively easily by using Cramer’s rule.
This method applies to 2 × 2 or larger systems of equations. Cramer’s rule
requires the use of the concept of determinant. Linear, or matrix, algebra is
valuable because it is systematic, general, and useful in solving complicated
problems. A determinant is a scalar defined on a square array of numbers,
or matrix, such as



(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

In this case the matrix is a 2 × 2 array with two rows and two columns, and
its determinant is defined as
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A third-order, or 3 × 3, determinant such as

is given by

For higher-order determinants, you may refer to a linear algebra book.
To illustrate Cramer’s method, a set of two equations in general form will
be solved here. A set of two linear simultaneous algebraic equations in two
unknowns can be written in the form:

where x1 and x2 are the two unknowns. The coefficients a11, a12, a21, and
a22 are known quantities. The two quantities on the right-hand sides, b1 and
b2, are also known (these are typically the source currents and voltages in a
circuit problem). The set of equations can be arranged in matrix form, as
shown in equation A.6.

In equation A.6, a coefficient matrix multiplied by a vector of unknown
variables is equated to a right-hand-side vector. Cramer’s rule can then be
applied to find x1 and x2, using the following formulas:



(A.7)

A.1

A.2

A.3

Thus, the solution is given by the ratio of two determinants: the
denominator is the determinant of the coefficient matrix, while the
numerator is the determinant of the same matrix with the right-hand-side
vector ([b1 b2]T in this case) substituted in place of the column of the
coefficient matrix corresponding to the desired variable (i.e., first column
for x1, second column for x2, etc.). In a circuit analysis problem, the
coefficient matrix is formed by the resistance (or conductance) values, the
vector of unknowns is composed of the mesh currents (or node voltages),
and the right-hand-side vector contains the source currents or voltages.

In practice, many calculations involve solving higher-order systems of
linear equations. Therefore, a variety of computer software packages are
often used to solve higher-order systems of linear equations.

CHECK YOUR UNDERSTANDING
Use Cramer’s rule to solve the system
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Use Cramer’s rule to solve the system

Convert the following system of linear equations into a matrix
equation as shown in equation A.6, and find matrices A and b.



(A.8)

(A.9)

A.2 INTRODUCTION TO COMPLEX
ALGEBRA
From your earliest training in arithmetic, you have dealt with real numbers
such as  π, e, etc., which may be used to measure distances in one
direction or another from a fixed point. However, a number that satisfies the
equation:

is not a real number. Imaginary numbers were introduced to solve equations
such as equation A.8. Imaginary numbers add a new dimension to our
number system. To deal with imaginary numbers, a new element, j, is added
to the number system having the property:

or

Thus, we have j3 = − j, j4 = 1, j5 = j, etc. Using equation A.9, you can see
that the solutions to equation A.8 are ±j3. In mathematics, the symbol i is

Answer: A1: υ1 = 2, υ2 = −1;. A2: i1 = 1, i2 = 2, i3 = 1;. A3: 



(A.10)

(A.11)

(A.12)

used for the imaginary unit, but this might be confused with current in
electrical engineering. Therefore, the symbol j is used in this book.

A complex number (indicated in boldface notation) is an expression of
the form:

where a and b are real numbers. The complex number A has a real part a
and an imaginary part b, which can be expressed as

It is important to note that a and b are both real numbers. The complex
number a + jb can be represented on a rectangular coordinate plane, called
the complex plane, by interpreting it as a point (a, b). That is, the horizontal
coordinate is a on the real axis, and the vertical coordinate is b on the
imaginary axis, as shown in Figure A.l. The complex number A = a + jb
can also be Page 938uniquely located in the complex plane by specifying
the distance r along a straight line from the origin and the angle θ, which
this line makes with the real axis, as shown in Figure A.1. From the right
triangle of Figure A.1, we can see that:

Figure A.1 Polar form representation of complex numbers

Then we can represent a complex number by the expression:



(A.13)

(A.14)

which is called the polar form of the complex number. The number r is
called the magnitude (or amplitude), and the number θ is called the angle
(or argument). The two numbers are usually denoted by r = ∣A∣ and θ =
arg A = ∠A.

Given a complex number A = a + jb, the complex conjugate of A,
denoted by the symbol A*, is defined by the following equalities:

That is, the sign of the imaginary part is reversed in the complex conjugate.
Finally, two complex numbers are equal if and only if the real parts are

equal and the imaginary parts are equal, which is equivalent to stating that
two complex numbers are equal only if their magnitudes are equal and their
arguments are equal.

The following examples and exercises should help clarify these
explanations.

EXAMPLE A.1
Convert the complex number A = 3 + j4 to its polar form.

Solution

EXAMPLE A.2

Convert the number A = 4∠(−60°) to its complex form.



(A.15)

(A.16)

(A.17)

(A.18)

Solution

Thus, 
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Addition and subtraction of complex numbers are governed by the
following rules:

Multiplication of complex numbers in polar form follows the law of
exponents. That is, the magnitude of the product is the product of the
individual magnitudes, and the angle of the product is the sum of the
individual angles, as shown below.

If the numbers are given in rectangular form and the product is desired in
rectangular form, it may be more convenient to perform the multiplication
directly, using the rule that j2 = −1, as illustrated in equation A.17.

Division of complex numbers in polar form follows the law of
exponents. That is, the magnitude of the quotient is the quotient of the
magnitudes, and the angle of the quotient is the difference of the angles, as
shown in equation A.18.



(A.19)

(A.20)

Division in the rectangular form can be accomplished by multiplying the
numerator and denominator by the complex conjugate of the denominator.
Multiplying the denominator by its complex conjugate converts the
denominator to a real number and simplifies division. This is shown in
Example A.4. Powers and roots of a complex number in polar form follow
the laws of exponents, as shown in equations A.19 and A.20.

EXAMPLE A.3
Perform the following operations, given that A = 2 + j3 and B = 5 − j4.

(a) A + B (b) A − B (c) 2A + 3B

Solution

For part c, 2A = 4 + j6 and 3B = 15 − j12. Thus, 2A + 3B = (4 + 15) +j[6 +
(−12)] = 19 − j6
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EXAMPLE A.4
Perform the following operations in both rectangular and polar form, given
that A = 3 + j3 and 

(a) AB (b) A ÷ B



(A.21)

Solution
(a) In rectangular form:

To obtain the answer in polar form, we need to convert A and B to their
polar forms:

Then

(b) To find A ÷ B in rectangular form, we can multiply A and B by B*.

Then

In polar form, the same operation may be performed as follows:

Euler’s Identity
Euler’s formula extends the usual definition of the exponential function

to allow for complex numbers as arguments.



(A.22)

A.4

All the standard trigonometry formulas in the complex plane are direct
consequences of Euler’s formula. The two important formulas are
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EXAMPLE A.5
Using Euler’s formula, show that

Solution
Using Euler’s formula gives

Extending the above formula, we can obtain

Thus,

CHECK YOUR UNDERSTANDING
In a certain AC circuit, V = IZ, where Z = 7.75∠90° and I =
2∠−45°. Find V.



A.5

A.6

A.7

A.8

In a certain AC circuit, V = IZ, where Z = 5∠82° and V = 30∠45°.
Find I.
Show that the polar form of AB in Example A.4 is equivalent to its
rectangular form.

Show that the polar form of A ÷ B in Example A.4 is equivalent to
its rectangular form.

Using Euler’s formula, show that 
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Answer: A4: V = 15.5∠45°; A5: I = 6∠(−37°)



(B.1)
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A P P E N D I X
B

THE LAPLACE TRANSFORM

The transient analysis methods illustrated in Chapter 4 for first- and second-
order circuits can become rather cumbersome when applied to higher-order
circuits. Moreover, solving the differential equations directly does not reveal
the strong connection that exists between the transient response and the
frequency response of a circuit. The aim of this appendix is to introduce an
alternate solution method based on the concepts of complex frequency and of
the Laplace transform. The concepts presented will demonstrate that the
frequency response of linear circuits is but a special case of the general
transient response of the circuit, when analyzed by means of Laplace methods.
In addition, the use of the Laplace transform method reveals systems concepts,
such as poles, zeros, and transfer functions.

B.1 COMPLEX FREQUENCY
In Chapter 3, we considered circuits with sinusoidal excitations such as
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(B.2)

(B.3)

(B.4)

(B.5)

which we also wrote in the equivalent phasor form:

The two expressions just given are related by

As was shown in Chapter 3, phasor notation is extremely useful in solving AC
steady-state circuits, in which the voltages and currents are steady-state
sinusoids. We now consider a different class of waveforms, useful in the
transient analysis of circuits, namely, damped sinusoids. The most general
form of a damped sinusoid is

As one can see, a damped sinusoid is a sinusoid multiplied by a real
exponential eσt. The constant σ is real and is usually zero or negative in most
practical circuits. Figure B.1(a) and (b) depict the case of a damped sinusoid
with negative σ and with positive σ, respectively. Note that the case of σ = 0
corresponds exactly to a sinusoidal waveform. The definition of phasor
voltages and currents given in Chapter 3 can easily be extended to account for
the case of damped sinusoidal waveforms by defining a new variable s, called
the complex frequency:

Figure B.1 Damped sinusoid: (a) exponential decay, negative σ; (b)
exponential growth, positive σ
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B.2

B.3

(B.6)

Note that the special case of σ = 0 corresponds to s = jω, that is, the familiar
steady-state sinusoidal (phasor) case. We shall now refer to the complex
variable V(s) as the complex frequency domain representation of υ(t). It
should be observed that from the viewpoint of circuit analysis, the use of the
Laplace transform is analogous to phasor analysis; that is, substituting the
variable s wherever jω was used is the only step required to describe a circuit
using the new notation.

CHECK YOUR UNDERSTANDING
Find the complex frequencies that are associated with

Find s and V(s) if υ(t) is given by
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Find υ(t) if

All the concepts and rules used in AC network analysis (see Chapter 3),
such as impedance, admittance, KVL, KCL, and Thévenin’s and Norton’s
theorems, carry over to the damped sinusoid case exactly. In the complex
frequency domain, the current I(s) and voltage V(s) are related by the
expression:

where Z(s) is the familiar impedance, with s replacing jω. We may obtain Z(s)
from Z( jω) by simply replacing jω by s. For a resistance R, the impedance is

Answers: B.1: a. −4; b. ± j2ω; c. ± jω; d. −2 ± j3; e. −3 and −3 ± j4.
B.2: a. −2, 5∠0°; b. −2 + j4, 5∠10°; c. j2, 4∠−20°. B.3: a. 2e−2t; b.
12cos(2t − 30°); c. 6e−4t cos(3t + 10°)



(B.7)

(B.8)

(B.9)

For an inductance L, the impedance is

For a capacitance C, it is

Impedances in series or parallel are combined in exactly the same way as in
the AC steady-state case, since we only replace jω by s.

EXAMPLE B.1 Complex Frequency Notation
Problem
Use complex impedance ideas to determine the response of a series RL circuit
to a damped exponential voltage.

Solution

Known Quantities: Source voltage, resistor, inductor values.

Find: The time-domain expression for the series current iL(t).

Schematics, Diagrams, Circuits, and Given Data: υs(t) = 10e−2t cos(5t) V; R =
4 Ω; L = 2 H.

Assumptions: None.

Analysis: The input voltage phasor can be represented by the expression

The impedance seen by the voltage source is



(B.10)

(B.11)
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Thus, the series current is

Finally, the time-domain expression for the current is

Comments: The phasor analysis method illustrated here is completely
analogous to the method introduced in Chapter 3, with the complex frequency
jω (steady-state sinusoidal frequency) replaced by s (damped sinusoidal
frequency).

Transfer functions H(s) can be defined as a ratio of a voltage to a current,
a ratio of a voltage to a voltage, a ratio of a current to a current, or a ratio of a
current to a voltage. The transfer function H(s) is a function of network
elements and their interconnections. Using the transfer function and knowing
the input (voltage or current) to a circuit, we can find an expression for the
output either in the complex frequency domain or in the time domain. As an
example, suppose Vi(s) and Vo(s) are the input and output voltages to a circuit,
respectively, in complex frequency notation. Then

from which we can obtain the output in the complex frequency domain by
computing

If Vi(s) is a known damped sinusoid, we can then proceed to determine υo(t) by
means of the method illustrated earlier in this section.

CHECK YOUR UNDERSTANDING



B.4

B.5

(B.12)

(B.13)

Given the transfer function H(s) = 3(s + 2)/(s2 + 2s + 3) and the input
Vi(s) = 4∠0°, find the forced response υo(t) if

Given the transfer function H(s) = 2(s + 4)/(s2 + 4s + 5) and the input
Vi(s) = 6∠30°, find the forced response υo(t) if

B.2 THE LAPLACE TRANSFORM
The Laplace transform, named after the French mathematician and astronomer
Pierre Simon de Laplace, is defined by
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The function F(s) is the Laplace transform of f (t) and is a function of the
complex frequency s = σ + jω, considered earlier in this section. Note that the
function f (t) is defined only for t ≤ 0. This definition of the Laplace transform
applies to what is known as the one-sided or unilateral Laplace transform,
since f (t) is evaluated only for positive t. To conveniently express arbitrary
functions only for positive time, we introduce a special function called the
unit-step function u (t), defined by the expression:

Answers: B.4: 
 



EXAMPLE B.2 Computing a Laplace Transform
Problem
Find the Laplace transform of f (t) = e−at u(t).

Solution

Known Quantities: Function to be Laplace-transformed.

Find: 

Schematics, Diagrams, Circuits, and Given Data: f (t) = e−at u(t).

Assumptions: None.

Analysis: From equation B.12,

Comments: Table B.1 contains a list of common Laplace transform pairs.

EXAMPLE B.3 Computing a Laplace Transform
Problem
Find the Laplace transform of f (t) = cos (ωt) u(t).

Solution

Known Quantities: Function to be Laplace-transformed.

Find: 

Schematics, Diagrams, Circuits, and Given Data: f (t) = cos (ωt) u(t).

Assumptions: None.



B.6

B.7
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Analysis: Using equation B.12 and applying Euler’s identity to cos (ωt) give:

Comments: Table B.1 contains a list of common Laplace transform pairs.

Table B.1 Laplace transform pairs

CHECK YOUR UNDERSTANDING
Find the Laplace transform of the following functions:

Find the Laplace transform of the following functions:



From what has been said so far about the Laplace transform, it is obvious
that we may compile a lengthy table of functions and their Laplace transforms
by repeated application of equation B.12 for various functions of time f (t).
Then we could obtain a wide variety of inverse transforms by matching entries
in the table. Table B.1 lists some of the more common Laplace transform
pairs. The computation of the inverse Laplace transform is in general rather
complex if one wishes to consider arbitrary functions of s. In many practical
cases, however, it is possible to use combinations of known transform pairs to
obtain the desired result.

EXAMPLE B.4 Computing an Inverse Laplace Transform
Problem
Find the inverse Laplace transform of

Solution

Known Quantities: Function to be inverse Laplace-transformed.

Find: 
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Schematics, Diagrams, Circuits, and Given Data:

Assumptions: None.

Answers: B.6: 



Analysis: Using Table B.1, we can individually inverse-transform each of the
elements of F(s):

Thus

EXAMPLE B.5 Computing an Inverse Laplace Transform
Problem
Find the inverse Laplace transform of

Solution

Known Quantities: Function to be inverse Laplace–transformed.

Find: 

Assumptions: None.

Analysis: A direct entry for the function cannot be found in Table B.1. In such
cases, one must compute a partial fraction expansion of the function F(s) and
then individually transform each term in the expansion. A partial fraction
expansion is the inverse operation of obtaining a common denominator and is
illustrated below.



B.8

To obtain the constants A and B, we multiply the above expression by each of
the denominator terms:
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From the above two expressions, we can compute A and B as follows:

Finally,

and using Table B.1, we compute

CHECK YOUR UNDERSTANDING
Find the inverse Laplace transform of each of the following functions:

Answers:  



(B.14)

(B.15)

B.3 TRANSFER FUNCTIONS, POLES, AND
ZEROS
It should be clear that the Laplace transform is a convenient tool for analyzing
the transient response of a circuit. The Laplace variable s is an extension of the
steady-state frequency response variable jω already encountered in this
appendix. Thus, it is possible to describe the input-output behavior of a circuit
by using Laplace transform ideas in the same way in which we used frequency
response ideas earlier. Now we can define voltages and currents in the
complex frequency domain as V(s) and I(s), and we denote impedances by the
notation Z(s), where s replaces the familiar jω. We define an extension of the
frequency response of a circuit, called the transfer function, as the ratio of any
output variable to any input variable, i.e.,

As an example, consider the circuit of Figure B.2. We can analyze it by using a
method analogous to phasor analysis by defining impedances:

Figure B.2 A circuit and its Laplace transform domain equivalent
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Then we can use mesh analysis to determine



(B.16)

(B.17)

(B.18)

(B.19)

(B.20)

or, upon simplifying and substituting the relationships of equation B.15,

If we were interested in the relationship between the input voltages and, say,
the capacitor voltage, we could similarly calculate

Note that a transfer function consists of a ratio of polynomials; this ratio can
also be expressed in factored form, leading to the discovery of additional
important properties of the circuit. Let us, for the sake of simplicity, choose
numerical values for the components of the circuit of Figure B.2. For example,
let R1 = 0.5 Ω,  L = 0.5 H, and R2 = 2 Ω. Then we can substitute these
values into equation B.18 to obtain

Equation B.19 can be factored into products of first-order terms as follows:

where it is apparent that the response of the circuit has very special
characteristics for three values of s: s = −4; s = +3.0000 − j5.5678; and s =
+3.0000 + j5.5678. In the first case, at the complex frequency s = −4, the
numerator of the transfer function becomes zero, and the response of the
circuit is zero, regardless of how large the input voltage is. We call this
particular value of s a zero of the transfer function. In the latter two cases, for s
= +3.0000 ± j5.5678, the response of the circuit becomes infinite, and we refer
to these values of s as poles of the transfer function.

It is customary to represent the response of electric circuits in terms of
poles and zeros, since knowledge of the location of these poles and zeros is
equivalent to knowing the transfer function and provides complete information
regarding the response of the circuit. Further, if the poles and zeros of the



transfer function of a circuit are plotted in the complex plane, it is possible to
visualize the response of the circuit very effectively. Figure B.3 depicts the
pole-zero plot of the circuit of Figure B.2; in plots of this type it is customary
to denote zeros by a small circle and poles by an “×.”

Figure B.3 Zero−pole plot for the circuit of Figure B.2
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The poles of a transfer function have a special significance, in that they are
equal to the roots of the natural response of the system. They are also called
the natural frequencies of the circuit. Example B.6 illustrates this point.

EXAMPLE B.6 Poles of a Second-Order Circuit
Problem
Determine the poles of a parallel RLC circuit. Express the homogeneous
equation using iL as the independent variable.

Solution

Known Quantities: Values of resistor, inductor, and capacitor.

Find: Poles of the circuit.

Assumptions: None.



Analysis: The differential equation describing the natural response of the
parallel RLC circuit is

with the characteristic equation given by

Now, let us determine the transfer function of the circuit, say, VL(s)/VS(s).
Applying the voltage divider rule, we can write

The denominator of this function, which determines the poles of the circuit, is
identical to the characteristic equation of the circuit: The poles of the transfer
function are identical to the roots of the characteristic equation!

Comments: Describing a circuit by means of its transfer function is completely
equivalent to representing it by means of its differential equation. However, it
is often much easier to derive a transfer function by basic circuit analysis than
it is to obtain the differential equation of a circuit.
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A P P E N D I X
C

FUNDAMENTALS OF
ENGINEERING (FE)

EXAMINATION

C.1 INTRODUCTION
The Fundamentals of Engineering (FE) examination1 is one of four steps to
be completed toward registering as a Professional Engineer (PE). Each of
the 50 states in the United States has laws that regulate the practice of
engineering; these laws are designed to ensure that registered professional
engineers have demonstrated sufficient competence and experience. Each
state’s Board of Registration administers the exam and supplies information
and registration forms.

The FE exam is offered throughout the year, except during the months
of March, June, September, and December.

An examinee handbook is freely available through the NCEES website.
The handbook contains information about eligibility, registration, fees,



1.

2.

3.

4.

1.
2.
3.
4.
5.
6.

accommodations, what to bring to the exam, the calculator policy, and
answers to other questions and issues that are likely to occur. Additional
information is available on the NCEES website.

Four steps are required to become a Professional Engineer:
Education. Usually this requirement is satisfied by completing a B.S.
degree in engineering from an accredited college or university.
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Fundamentals of Engineering examination. One must pass a discipline-
specific examination described in Section C.2.
Experience. Following successful completion of the Fundamentals of
Engineering examination, several years of engineering experience are
required.
Principles and practices of engineering examination. One must pass a
second examination, also known as the Professional Engineer (PE)
examination, which requires in-depth knowledge of one particular
branch of engineering.

This appendix provides a review of the background material in electrical
engineering required in three of the discipline-specific FE exams. Those
exams are prepared by the National Council of Examiners for Engineering
and Surveying2 (NCEES).

C.2 EXAM FORMAT AND CONTENT
The FE exam is offered in six specific engineering disciplines:

Chemical
Civil
Electrical and Computer
Environmental
Industrial and Systems
Mechanical

A seventh Other Disciplines exam is also offered. The 6-h, 110-question
exam is offered year-round at NCEES-approved test centers. Detailed



specifications of each exam can be found online at
http://ncees.org/engineering/fe/.

The passing score on the FE exam is not published by NCEES because
it varies slightly across the discipline-specific exams and over time.
However, data on passing rates is published and available on the NCEES
website.

Of the seven exams, only three cover material presented in this book.
Naturally, the Electrical and Computer Engineering exam covers nearly all
the material. The Mechanical Engineering exam covers five areas of
Electricity and Magnetism, namely:

Charge, current, voltage, power, and energy
Ohm’s law and Kirchhoff’s current and voltage laws
Equivalent circuits (series and parallel)
AC circuits
Motors and generators

The Other Disciplines exam covers a similar set of topics as well as
additional material on measuring devices, sensors, data acquisition, and
data processing.

C.3 PRACTICE QUESTIONS ON
ELECTRICITY AND MAGNETISM
What follows is a series of typical and relevant practice questions on FE
exam material related to Electricity and Magnetism, including extensions of
the theory to circuits, electronics, logic, instrumentation, communications,
and electromechanics. The questions are ordered as they would be
encountered in a typical engineering curriculum. Answers to the questions
are provided at the end of this appendix.
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Students preparing for the FE exam should keep in mind that the actual
exam time is 5 hours and 20 minutes, or 320 minutes. With 110 questions
on the exam the average time per question is slightly less than 3 minutes.

http://ncees.org/engineering/fe/


C.1

C.2

C.3
C.4

C.5

C.6

a.

Therefore, it is important to develop techniques for quickly arriving at
correct answers or likely correct answers. In other words, it is not advisable
to approach the FE exam as one would a typical undergraduate engineering
exam. Rather it is worthwhile to develop skill at eliminating answers that
are unreasonable or unlikely to be correct. For example, one can often
eliminate answers due to the unreasonable scale of the answer or due to a
units mismatch. It is also worthwhile to develop skill at approximating
solutions. Remember, the average time per question is less than 3 minutes.
The exam questions are designed with this limitation in mind. What does
that tell you about the nature of many of the exam questions? When solving
the practice questions below, look for ways in which you could have found
the correct answer more quickly, more approximately, and/or with greater
probability of correctness. And limit yourself to 3 minutes each!

Finally, the exam score is based solely on the number of correct
answers. There are no deductions for wrong answers, so when in doubt,
guess!

CHECK YOUR UNDERSTANDING
Determine the total charge entering a circuit element between t = 1 s
and t = 2 s if the current passing through the element is i = 5t.
A lightbulb sees a 3-A current for 15 s. The lightbulb generates 3 kJ
of energy in the form of light and heat. What is the voltage drop
across the lightbulb?

How much energy does a 75-W electric bulb consume in 6 hours?

Find the voltage drop υab required to move a charge q from point a
to point b if q = –6 C and it takes 30 J of energy to move the charge.

Two 2-C charges are separated by a dielectric with a thickness of 4
mm and with a dielectric constant ε = 10–12 F/m. What is the force
exerted by each charge on the other?

The magnitude of the force on a particle of charge q placed in the
empty space between two infinite parallel plates with a spacing d
and a potential difference V is proportional to:

qV/d2



b.

c.

d.

e.

C.7

a.

b.

c.

d.

e.

C.8

a.

b.

c.

d.

e.

qV/d

qV2/d

q2V/d

q2V2/d
Assuming the connecting wires and the battery have negligible
resistance, the voltage across the 25-Ω resistance in Figure C.7 is

25 V

60 V

50 V

15 V

12.5 V

Figure C.7

Assuming the connecting wires and the battery have negligible
resistance, the voltage across the 6-Ω resistor in Figure C.8 is

6 V

3.5 V

12 V

8 V

3 V



C.9

a.

b.

c.

d.

e.

C.10

a.

b.

c.

d.

e.

Figure C.8

A 125-V battery charger is used to charge a 75-V battery with
internal resistance of 1.5 Ω, as shown in Figure C.9. If the charging
current is not to exceed 5 A, the minimum resistance in series with
the charger must be

10 Ω

5 Ω

38.5 Ω

41.5 Ω

8.5 Ω

Figure C.9

A coil with an inductance of 1 H and negligible resistance carries the
current shown in Figure C.10. The maximum energy stored in the
inductor is

2 J

0.5 J

0.25 J

1 J

0.2 J



C.11
a.

b.

c.

d.

e.

C.12

a.

b.

c.

d.

e.

C.13.

a.

b.

c.

d.

e.

Figure C.10
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The maximum voltage that will appear across the coil is

5 V

100 V

250 V

500 V

5,000 V

A voltage sine wave of peak value 100 V is in phase with a current
sine wave of peak value 4 A. When the phase angle is 60° later than
a time at which the voltage and the current are both zero, the
instantaneous power is most nearly

300 W

200 W

400 W

150 W

100 W

A sinusoidal voltage whose amplitude is  is applied to a 5-Ω
resistor. The root-mean-square value of the current is

5.66 A

4 A

7.07 A

8 A

10 A



C.14

a.

b.

c.

d.

e.

The magnitude of the steady-state root-mean-square voltage across
the capacitor in the circuit of Figure C.14 is

30 V

15 V

10 V

45 V

60 V

Figure C.14

The next set of questions (Exercises C.15 to C.19) pertain to single-phase
AC power calculations and refer to the single-phase electrical network
shown in Figure C.15. In this figure, ES = 480∠0° V; IS = 100∠−15° A; ω
= 120π rad/s. Further, load A is a bank of single-phase induction machines.
The bank has an efficiency η of 80 percent, a power factor of 0.70 lagging,
and a load of 20 hp. Load B is a bank of overexcited single-phase
synchronous machines. The machines draw 15 kVA, and the load current
leads the line voltage by 30°. Load C is a lighting (resistive) load and
absorbs 10 kW. Load D is a proposed single-phase capacitor that will
correct the source power factor to unity. This material is covered in Sections
13.1 and 13.2.

Figure C.15



C.15

a.

b.

c.

d.

e.

C.16

a.

b.

c.

d.

e.

C.17
a.

b.

c.

d.

e.

C.18

a.

b.

c.

d.

e.

The root-mean-square magnitude of load A current, denoted by IA, is
most nearly

44.4 A

31.08 A

60 A

38.85 A

55.5 A

The phase angle of IA with respect to the line voltage ES is most
nearly

36.87°

60°

45.6°

30°

48°

The power absorbed by synchronous machines is most nearly

20,000 W

7,500 W

13,000 W

12,990 W

15,000 W

The power factor of the system before load D is installed is most
nearly

0.70 lagging

0.866 leading

0.866 lagging

0.966 leading

0.966 lagging



C.19

a.

b.

c.

d.

e.

The capacitance of the capacitor that will give a unity power factor
of the system is most nearly

219 μF

187 μF

132.7 μF

240 μF

132.7 pF
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1This exam used to be called Engineer in Training (EIT).

2P.O. Box 1686 (1826 Seneca Road), Clemson, SC 29633-1686.
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A P P E N D I X
D

ASCII CHARACTER CODE

In addition to the codes described elsewhere in the book (binary, octal,
hexadecimal, binary-coded decimal), a character encoding convention
adopted by all computer manufacturers is ASCII,1 which maps a unique
numeric value to each of 128 graphic or control characters commonly used
in the display of text. The complete code is shown in Table D.1. Notice that
the numeric values are shown in hexadecimal. An additional 128
nonstandard characters are often defined for any particular font
implemented using the ASCII code, for a total of 256 characters in a typical
font. It is no accident that 256 characters are often defined since that is the
number of items that can be uniquely mapped by 8 bits or 1 byte of
memory.
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Table D.1 ASCII



1American Standard Code for Information Interchange..
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Index

A
Acceleration characteristics, 916
Acceptors, 523
AC circuit analysis, 164, 201–202

arbitrary sinusoidal input, solution for, 207–208
equivalent circuits, 203–204
mesh analysis, 212–214
nodal analysis, 208–209
phasor analysis and, 164, 206–207
Thévenin’s theorem, 211–212

Accumulator, 723
AC equivalent circuits, 203–204
AC line interference filter, 362–363
AC machines, 899–901
AC motors

frequency regulation, 917
pole number control, 916–917
rotor control, 917
slip control, 917



speed and torque control, 916–917
AC network analysis, 163–164

capacitors, 166–175. See also Capacitors
energy storage, 164–166, 169. See also Capacitance
impedance. See Impedance
inductors, 163, 164, 167, 176–182
phasor solution, 188–191
time-dependent waveforms, 183–187

AC power
average, 214–221, 742–749

computation of, 218–221, 746–749
complex power, 749–755

apparent power, 750
computation of, 224, 751–752
facts related to, 757
and power triangle, 227, 750, 754–755
reactive power, 750, 752–753
real power, 750, 752–754

generation and distribution, 786–787
impedance triangle, 222, 745
instantaneous, 214–219, 742–747

computation of, 218–219, 746–747
power factor, 217–218, 238–239, 745–746, 766–767

correction, 228–235, 756–764
residential wiring, 783–786
rms/effective values, 216–217, 744–745
single-phase, 777
three-phase power, 777–783

balanced delta loads, 779–781
balanced wye loads, 779
balanced wye-wye circuit, 781
parallel wye-delta load circuit, 781–783

transformer. See Transformers
AC signals, superposition of, 191, 210
Active filters, 425–433

design of, 429–433



Active mode, BJT operating mode, 574–576
Actuator, 836
ADC. See Analog-to-digital converter (ADC)
Address lines, multiplexers, 682
Admittance, 195, 199–200
Air gaps, 820

magnetic structure with, 821–823
multiple, equivalent circuit of magnetic structure with, 824–825
reluctance of, 821

Algebra, of complex numbers, 937–940
Alternator (synchronous generator), 901–903
ALU. See Arithmetic logic unit (ALU)
Ammeter, 137–138
Ampere, 10, 11
Ampère, André Marie, 804
Ampère’s law, 804, 812–815
Amplification, 570

small-signal of BJT and, 591–597
Amplifiers

BJT, 595–596
cascaded, and simulation of differential equation, 441–442
charge, 436–437
difference/differential, 408–410
electrocardiogram, 412–413
ideal, 394–399

characteristics of, 394–395
feedback, 396–399
input/output impedance, 396

input offset current on, effect of, 451–452
input offset voltage on, effect of, 451
instrumentation, 416–418
inverting, 402–403

circuit, 415–416
voltage supply limits in, 448

large-signal, for diode thermometer, 583–586



linear, model of, 572
MOSFET

analysis of, 622–623
large-signal, 624–629

noninverting, 403–404
operational. See Operational amplifier (op-amp)
sample-and-hold, 493–495, 499
short-circuit current limit on, effect of, 453–454
signal-flow diagram of, 397
slew rate limit on, effect of, 452–453
summing, 407–408
transistors and, 570–571
voltage gain of, 394, 395

Amplitude-modulated (AM) signal, 812
Analog gate, 598

bidirectional, 632–633
Analog signal, 646
Analog switches, 631–632
Analog-to-digital converter (ADC), 489, 491–495, 721

conversion time, 493–494
flash, 492–493, 498
integrating, 491–492

performance analysis of, 499–500
quantization, 491
resolution of, 494
sample-and-hold amplifier, 493–495, 499
successive-approximation, 492
tracking, 491

Analog transmission gate, 632–633
AND function

NAND gates, realizing with, 664–665
NOR gates, realizing with, 665

AND gate, 657–659
Anemometer, 477
Anode, 526



Apparent power, 221–223, 750
Arduino project, 731–734

features, 731–732
sketches, 732–734
USB interface, 731

Arduino Uno hardware, 731
Arithmetic logic unit (ALU), 722
Armature, 918
Armature constant, 882
ASCII character code, 652, 722, 959–960
Asynchronous feature, 703
ATmega328P® microcontroller, 724–730

AVR® CPU
architecture, 727–728
instructions, 728–730

block diagram, 725
capabilities, 726
memory, 728
pin configurations, 726
power requirements, 727

Automatic control system, 421
Automotive resistive throttle position sensor, 84–85
Automotive suspension, 294–295
Avalanche breakdown, 526
Average AC power, 214–221, 742–749

computation of, 218–221, 746–749
Average value, 184–185

of sinusoidal waveform, 186
AVR® CPU

architecture, 727–728
instructions, 728–730

B



Back emf, 882
Balanced delta loads, 779–781
Balanced voltages, 777
Bandpass filters

frequency response of, 355–361
resonance and bandwidth, 356–359

Bandwidth, 356, 359
half-power, 359
resonance and, 356–359

Base current, 576
Base region, BJT, 573
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Base-width modulation, 577
Batteries

electric vehicle battery pack, 26–27
MOSFET battery charging, 626–627

BCD representation. See Binary-coded decimal (BCD) representation
Bessel filters, 430
B-H curves, 830–832
Bias currents, 445
Biased BJT, 582
Binary-coded decimal (BCD) representation, 652
Binary codes, 652–653. See also specific codes
Binary number system, 648

addition in, 648–649
binary codes, 652–653
complements in, 650–651
conversion from decimal number system to, 648, 649–650
conversion to hexadecimal number system, 655
division in, 649
multiplication in, 649
negative numbers in, 650–651
sign-magnitude convention in, 651



subtraction in, 648–649
Binary signals, 598, 647–648. See also Digital signal
Binary up counter, 709
Bipolar junction transistor (BJT), 570, 573–580

battery charger, 588–589
characteristics of, 577–578
construction of, 574
gates. See Gates
large-signal model, 581–590

npn, 581, 582
motor drive circuit, 589–590
operating modes, 573

active mode, 574–576
cutoff mode, 574
determination of, 578–580
saturation mode, 576–577

operating point, selection of, 581–583
pn junction, 573–574
self-bias circuit, 593–594, 596–597
small-signal model, 591–597
switches, 598–601

Bistable device, flip-flop as, 702
Bits, 648, 722
BJT. See Bipolar junction transistor (BJT)
Bli law, 848, 849
Blu law, 848–849
Bode plots, 366–377

approximation, 373–377
high-pass filters, 368–371
RC low-pass filter, 366–368

Boolean algebra, 657
De Morgan’s laws, 659–660
AND gate, 657–659
NAND gate. See NAND gate
NOR gate. See NOR gate



NOT gate, 658
OR gate, 657–659
rules of, 659
XOR (exclusive OR) gate, 661

Boost converter, 919
Branch, circuit, 7–8
Branch currents, 8, 41–42
Breakaway torque, 914
Breakdown torque, 915, 917
Break frequency, 345
Bridge rectifier, 542–543, 546
Brush contact loss, 870
Buck-boost converter, 919
Buck converter, 918
Bulk, 612
Burn firmware, 731
Butterworth filters, 430

determining order of, 433–434
Butterworth polynomials, 430–431
Bytes, 648, 722

C
Calibrated orifice, 476
Capacitance. See also Capacitors

electrical, 167
equivalent, 168–169
fluid, 167
thermal, 263, 422

Capacitive coupling, 481–482
Capacitive displacement transducers, 170–171, 204–206

peak detector circuit for, 553–555
Capacitors, 166–175



current from voltage, calculation of, 173–174
defined, 168
discharging, 263
discrete, 166–167, 169
duality, 178–179
energy storage in, 169

time constants and, 277
hydraulic, 263
hydraulic analog of, 167
ideal, 166, 167–168
impedance of, 194–195
practical, impedance of, 197–198
properties of, 167
voltage

continuity of, 266–267
from current, calculation of, 174–175

Carbon composites resistors, 31
Carbon film resistors, 31
Carrier wave, 361
Cascaded amplifiers, and simulation of differential equation, 441–442
Cathode, 526
Cauer/elliptical filters, 430
CBJ. See Collector-base junction (CBJ)
Cells, Karnaugh maps, 669
Center frequency, 361
Center-tapped transformer, 768, 772–773
Central processing unit (CPU), 720

bus, 720–721
clock, 721
and computer programs, 722
interrupts, 723–724
memory, 721–722
registers, 722–723

Channel pinch-off, 615
Channels



MOSFETs
n-channel, 614
p-channel, 614

Characteristic roots, 296
Charge, 10

amplifiers, 436–437
in conductor, 13

char type variable, 652, 722
Chebyshev filters, 430
Choppers, 918

duty cycle, 919
step-down, 918
step-up, 919
two-quadrant, 919, 922–924

Circuits
biasing MOSFETs, 619–623
branches, 7–8
comparator, 500

input-output transfer characteristic, 502
inverting, 501
noninverting, 501
with offset, 508
op-amp, 501–503
Schmitt trigger, 503–505
zero-crossing, 502

defined, 4
divider, 714
dual one-shot, 507
elements. See also specific elements

energy storage, 164–166
i-v characteristics, 14–17
non-linear, 141–144
in parallel, 88–92
in series, 80–82
source-load perspective, 105–108

features of, 4–8



first-order transient analysis, 272–291
fluid, 179
full adder, 667
ground, 11–12
half adder, 666
ideal voltage source, 14–15
ideal wire, 5
inverting amplifier, 402, 415–416
LC

nonseries/nonparallel, analysis of, 309–311
parallel, 292–294, 302–303, 305–307
series, 294–296, 303–305

loop, 8
magnetic, 815–821
mesh, 8
monolithic integrated, 485
nodes in, 5–7
noninverting amplifier, 403
open-circuit, 30, 31
principal quantities within, 4
RC, 268–269
rectifier. See Rectifier circuits
RL, 269–271
safety, for stamping press operation, 673–675
second-order, poles of, 952
second-order transient analysis, 292–315
sensor calibration, 413–414
short-circuit, 29
simplification, frequency response function and, 329–330
simplification of, 273–274
with sinusoidal sources

phasor solution of, 188–191
thermal, model of, 38
timing, 500

multivibrators, 505–507
NE555, 507–508, 510

transient problems solutions, elements of, 261–271



tuning, 361
Clear feature, RS flip-flop, 703–704
Closed-loop mode, amplifier, 396
CM. See Common mode (CM)
CMRR. See Common-mode rejection ratio (CMRR)
Coaxial cable pulse response, 289–291
Co-energy, 808–810

calculation for inductor, 809–810
Cold junction, 478
Collector-base junction (CBJ), 573

forward-biased, 576–577
reverse-biased, 574–576

Collector current, 576, 577
Collector region, BJT, 573
Color code, resistors, 32
Combinational logic modules

decoders, 685
gate arrays, 685–688
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multiplexers, 682–684
programmable logic devices, 685–688
read-only memory, 684–685
SRAM (static random-access memory), 685

Common-base current gain, 576
Common-emitter current gain, 576
Common mode (CM), 411, 415
Common-mode gain ratio

instrumentation amplifiers, 486–487
Common-mode rejection ratio (CMRR), 411, 447

instrumentation amplifiers, 485, 486–487
Commutator, 879–881
Comparator, 500



input-output transfer characteristic, 502
inverting, 501
noninverting, 501
with offset, 508
op-amp, 501–503
Schmitt trigger, 503–505

analysis and design of, 509–510
zero-crossing, 502

Compilers, 722
Complementary MOS (CMOS) technology

gate, 634–636
inverters, 630, 631
and MOSFET switches, 630–637

analog, 631–632
digital, 630–631

Complements, in binary number system, 650–651
Complete response, 264–265, 274

of critically damped parallel LC circuit, 305–307
of first-order system, 275
of overdamped series LC circuit, 303–305
of underdamped parallel LC circuit, 302–303
of underdamped series LC circuit, 307–308

Complex exponential, 189–190
Complex frequency, 943–946

domain, 944
notation, 944–945

Complex power, 749–755
apparent power, 750
computation of, 224, 751–752
facts related to, 229, 757
and power triangle, 227, 750, 754–755
reactive power, 222, 223, 750

computation of, 224–225, 752–753
real power, 222, 223, 750

computation of, 224–225, 752–753
transfer for complex loads, 225–227, 753–754



Complex programmable logic device (CPLD), 686
Computer programs, 722
Computer system architecture, 720–724. See also Central processing unit

(CPU)
Condenser microphone, 170
Condition code register (CCR), 723
Conductance, 30
Conduction, 37
Conduction resistance, 38
Conductive coupling, 481
Configurable logic block (CLB), 688
Configuration, DC electric machines, 881
Constant horsepower, 895
Constant-K filters, 432
Constant-torque loads, 895
Constraint equation, 56
Contact potential, 525
Controlled sources. See Dependent/controlled sources
Convection, 37
Conversion time, of analog-to-digital converter, 493–494
Converters

analog-to-digital. See Analog-to-digital converter (ADC)
boost, 919
buck, 918
buck-boost, 919
DC-AC, 920–922
DC-DC, 918–920
digital-to-analog. See Digital-to-analog converter (DAC)

Cores, 724
Coulomb (C), 10
Coulomb, Charles, 10
Counter-emf, 876
Counter-mmf, 833



Counters, 709
binary up, 709
decade, 710
ring, 711

timing diagram for, 716
ripple, 710
synchronous, 711
up-down, 711

Covalent bonds, 522
CPU. See Central processing unit (CPU)
CPU bus, 720–721
Cramer’s rule, 935–937
Critical frequency, 345
Critically damped parallel LC circuit

complete response of, 305–307
Critically damped transient response, 260, 297
Crystal oscillator, 721
Current, 4

base, 576
branch, 8, 41–42
collector, 576, 577
in conductor, 13
defined, 10
division, parallel resistors and, 88–92
eddy, 831, 870
emitter, 576
ideal sources. See Current sources
inductor, from voltage, calculation of, 181
measurement devices, 136–139
mesh, 48. See also Mesh current method/analysis
Norton, computation of, 122–126
rated, 872
saturation, 576
scale, 576
semiconductor diode

diffusion current, 524



drift current, 525
reverse saturation current, 525

short-circuit, 107, 122–126
unit of, 10
from voltage, capacitor, calculation of, 173–174

Current sources
hydraulic analog of, 16
ideal, 4–5, 14–15
mesh current method with, 53–56
practical, 135–136

Cutoff frequency, 345, 432
Cutoff mode, BJT operating mode, 574
Cutoff region, 614

D
DAC. See Digital-to-analog converter (DAC)
Damped sinusoid, 944
Damping coefficient, 432
Data acquisition system, 495–496
Data latch, 704
Data lines, multiplexers, 682
Data select, 683
Data selectors, 682–684
DC-AC converters, 920–922
DC-DC converters, 918–920
DC drives, and DC motor speed control, 895
DC electric machines, 868, 879–885. See also DC generators; DC motors

configuration of, 881
models, 881–884
physical structure of, 879–881
steady-state equations, 884–885

DC gain, 274, 292
DC generators, 896. See also DC electric machines



separately excited, 896–899
DC motor drive circuit, 627–629
DC motors, 886–896. See also DC electric machines

permanent-magnet, 888–889
series motor, 887–888, 892–893
shunt motor, 886–887, 890–892
speed control systems for, 895
starting transient of, 279–281
turnoff transient of, 281–282

DC power supply, 543–544
DC steady-state, 261

long-term, 267–268, 274
DC value, 184, 576
Decade counter, 710
Decade slope, 367
Decaying exponential waveform, 260
Deceleration characteristics, 916
Decibels (dB), 366

3-dB frequency, 368
Decimal number system

conversion to binary number system, 648, 649–650
Decoders, 685
Delta (Δ) configuration, 779
De Morgan’s laws, 659–660

and product-of-sums expressions, 663–664
significance of, 661–662

Department of Energy’s Energy Policy Act, 2005 (EPACT), 871
Dependent/controlled sources, 16–17

node/mesh analysis with, 56–60
Depletion region, 524–525
D flip-flop, 705

truth table and excitation table for, 718
Dielectric material, 167

permittivity of, 170



Dielectric strength, 31
Differential amplifier, 408–410
Differential equation

first-order, 274
of RC circuit, 268–269
of RL circuit, 269–271
simulation, cascaded amplifiers to, 441–442
standard form of, 292

Differential measurement system, 479, 480
Differential mode (DM), 411, 415
Differential-pressure measurement, 476
Differentiators, ideal, 435–436
Digital counters, 709–711. See also Counters
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Digital gate, 598
Digital position encoders, 653–654
Digital signal, 646–647

binary signal, 647–648
Digital switches, 630–631
Digital-to-analog converter (DAC), 489–491, 721

device data sheets, 498
required precision in, 497
resolution of, 496–497

Dimensional measurement, 476
Dimensionless damping ratio, 260, 264, 292, 295
Diode peak detector

circuit, for capacitive displacement transducer, 553–555
Diodes

gates, 598–599
light-emitting. See Light-emitting diodes (LEDs)
semiconductor. See Semiconductor diodes
Zener, 547–552

Diode thermometer, 555–556



large-signal amplifier for, 583–586
Direct-current machines. See DC electric machines; DC generators; DC

motors
Directed edge, 717
Discrete capacitors, 166–167, 169
Discrete frequency spectrum, 336
Discrete resistors, 31–33
Divider circuit, 714
DM. See Differential mode (DM)
Donors, 523
Don’t-care conditions, 673, 680–681
Drain, 612
DRAM (dynamic random-access memory), 721
Drift current, 525
Duality, 178–179, 294, 659
Dual one-shot circut, 507
Duty cycle, 916, 919
Dynamic random-access memory (DRAM), 721
Dynamic response, of permanent-magnet DC motors, 893–894

E
Early effect, 577, 616
Early voltage, 616
EBJ. See Emitter-base junction (EBJ)
Eddy currents, 831

losses, 870
Edges, 648

directed, 717
falling, 506
rising, 506

EEPROM (electrically erasable programmable read-only memory), 686,
721, 722



Effective values, 185–186
AC power source, 216–217, 744–745

Efficiency, energy conversion, 869
Efficiency map, 870
Electrical capacitance, 167
Electrically erasable programmable read-only memory (EEPROM), 686,

721, 722
Electric circuit. See Circuits
Electric current. See Current
Electric machines, 865–924

AC machines, 899–901
alternator (synchronous generator), 901–903
classification of, 866–869
configurations of, 867
direct current, 868, 879–885. See also DC electric machines; DC

generators; DC motors
induction motor, 907–917
magnetic poles in, 877–879
performance characteristics of, 869–875
rotating. See Rotating electric machines

Electric motor, 866
AC, 916–917
direct-current. See DC motors
drives, 918–924
efficiency map of, 870
induction, 907–917
losses in, 869
magnetic structure of, 823–824
steady-state equations, 885
synchronous, 903–907
torque-speed characteristic of, 870

Electrocardiogram (EKG) amplifier, 412–413
Electromagnet, 840–841
Electromechanical energy conversion, 836–853

forces in magnetic structures, 837



moving-iron transducers, 837–846
Electromotive force (emf), 805

back, 882
Electronic gate, 598. See also Gates
Electrons, 10
Electrostriction, 836
Elementary charges, 10
Elliptical filters, 430
Embedded systems, 730
Emitter-base junction (EBJ), 573

forward-biased, 574, 576–577
i-v characteristics of, 575
reverse-biased, 574

Emitter current, 576
Emitter region, BJT, 573
Enable input, 683
Encoders

digital position, 653–654
slotted, 712–713

Energy, and transient response, 262–264
Energy conversion devices, 869. See also Electric machines
Energy storage

in capacitors, 166, 169
circuits elements, 164–166
in ignition coil, 181–182
in inductors, 179
in ultracapacitors, 171–172

Energy transducers, 836
Enhancement-mode MOSFET, 612–619

channel current, 615–617
conductance parameter, 615–617
devices, 613
n-channel, 612, 613
operating regions, 614–615



p-channel, 617
threshold voltage, 614–615

EPROM. See Erasable programmable read-only memory (EPROM)
Equiripple filters, 432
Equivalent capacitance, 168–169
Equivalent circuits

in AC circuit analysis, 203–204
magnetic, 818–820
of magnetic structure with multiple air gaps, 824–825
source transformations, 108–111

Equivalent inductance, 178
Equivalent resistance, 81

calculation and approximation, 95–96
between nodes, 93–100
Norton, 111–129
resistive network, redrawing of, 94–95
Thévenin, 111–131
wye-delta transformation, 96–97

Erasable programmable read-only memory (EPROM), 684–685
lookup table for automotive fuel-injection system control, 689–690

Euler’s formula, 189–190, 940–941
Even functions, 336
Excitation table, 718
Exciter, 903
Exclusive OR (XOR) gate, 661
Externally applied force, 849

F
Fail-safe autopilot logic, 661–662
Falling edge, 506
Falling exponential waveform, 260
Faraday’s law, 804–807
Feedback, amplifier, 396–399



negative, 396, 398–399, 402
positive, 396, 432

Feedback factor, 397
FE examination. See Fundamentals of Engineering (FE) examination
Ferrites, 814
Field-effect transistors (FETs), 611

classes, 612
junction, 611
MOSFETs. See MOSFET (metal-oxide semiconducting field-effect

transistor)
Field-programmable gate array (FPGA), 686
Field winding, 866
Filters

AC line interference, 362–363
active, 425–433
bandpass. See Bandpass filters
bessel, 430
Butterworth, 430

determining order of, 433–434
cauer/elliptical, 430
Chebyshev, 430
constant-K, 432
equiripple, 432
high-pass, 346–347

bode plots, 368–371
low-pass, 344–346, 348–351

bode plots, 366–368
overdamped, 432
resonance, 432
Sallen and Key, 432

design of, 434
underdamped, 432
Wheatstone bridge, 353–355

First-order differential equation, 274
First-order transient analysis, 272–291

circuit simplification, 273–274



first-order differential equation, 274
First-order transient circuit, 278–279
First-order transient response, 274–275

due to pulsed source, 285–286
Flapper check valve, 528
Flash ADC, 492–493, 498
Flash memory, 721, 722
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Flip-flops
D, 705

truth table and excitation table for, 718
defined, 702
JK, 706

timing diagram, 708–709
truth table and excitation table for, 718

outputs, 702
RS, 702–704

clear feature, 703–704
preset feature, 703–704
timing diagram, 702, 707
truth table and excitation table for, 718

T, 707–708
Floating signal source, 479
Flow rate, measurement of, 476–477
Fluid capacitance, 167
Fluid circuits, 179
Fluid flow rate, measurement of, 476–477
Fluid inertance, 179
Flux linkage, 807
Forced response, 265, 274

first-order, 287–288
Force measurements, 476

Wheatstone bridge and, 87–88



Forward motoring, 918
Fourier series, 335–342

coefficients, computation of, 336–338, 339–342
FPGA. See Field-programmable gate array (FPGA)
Frame, electric machine, 874
Free electrons, 522–523
Frequency regulation, 917
Frequency response

of bandpass filters, 355–361
circuit simplification, 329–330
computation, 334

using Thévenin’s theorem, 333–334
defined, 328, 347
first-order archetypes, 330–332
functions, 328–329
high-pass filters, 346–347, 352
limits, 443–444
of linear systems to periodic inputs, 338–339, 342–343
low-pass filters, 344–346, 348–350
second-order archetypes, 330–332
zeros/poles, 332–333

quadratic, 377–378
Frequency spectrum, discrete, 336
Friction, and mechanical losses, 870
Fringing, 821
Full adder circuit, 667
Full-scale accuracy, 491
Full-wave rectifier, 540–541
Fundamental frequency, 335
Fundamentals of Engineering (FE) examination, 953–958

content of, 954
Electricity and Magnetism, material related to, 954–955
format of, 954



G
Gain-bandwidth product, 444

increasing, 450
limit in op-amp, 449

Gate arrays, 685–688
Gates, 612. See also Logic gates

analog, 598
bipolar junction transistor, 598–601
CMOS, 634–636
digital, 598
digital switches and, 630–631
diodes, 598–599

Generators, 866, 867
direct-current, 896–899. See also DC generators
losses in, 869
steady-state equations, 885

GFCI. See Ground fault circuit interrupter (GFCI)
Gray code, 652–653
Ground, reference node and, 11–12
Grounded signal source, 479
Ground fault circuit interrupter (GFCI), 785, 786
Grounding procedure, 474
Ground loops, 480
Ground-referenced measurement system, 479, 480

H
Half adder circuit, 666
Half-bridge VSI, 920
Half-power bandwidth, 359
Half-power frequencies, 356, 359, 368
Half-wave rectifier, 539–540, 545–546

offset diode model in, 544–545



Hardware description languages (HDLs), 686
Harmonics, 335
HDLs. See Hardware description languages (HDLs)
Henrys (H), 176–177
Hexadecimal system, 652

conversion from binary number system to, 655
High-frequency asymptote, 367
High-pass filters, 346–347, 352

bode plots, 368–371
Holes, 523
Hot-film anemometers, 477
Hot-wire anemometer, 477
Hydraulic analog

of capacitors, 167
of current source, 16
of electrical resistance, 31
of inductors, 179
of voltage sources, 15

Hydraulic capacitor, 263
Hydraulic check valves, 527–528
Hydraulic tank, 274–275
Hysteresis, 831

and open-circuit core losses, 870

I
IA. See Instrumentation amplifier (IA)
IC. See Integrated circuit (IC)
Ideal amplifiers, 394–399

characteristics of, 394–395
current, 396
feedback, 396–399

negative, 396, 398–399
positive, 396



input/output impedance, 396
power, 396

Ideal capacitor, 166, 167–168
Ideal diodes, 527–529

conduction state of, determination of, 529–531
half-wave rectifier, 539–540

Ideal inductors, 176–178
Ideal operational amplifier, 401

first golden rule of, 401
Ideal resistor, 29
Ideal sources, 4–5

current, 15–16
voltage, 14–15

Ideal transformers, 767–768
conserve power, 768
turns ratio, 771–772

Ideal wire, 5
Ignition coil, energy storage in, 181–182
Impact ionization, 526
Impedance, 191

of capacitor, 194–195
defined, 192
generalized, 195
of inductor, 193–194
input/output, 394, 396
Ohm’s law, 192
of practical capacitor, 197–198
of resistor, 192
of series-parallel network, 199

Impedance matching, 770
Impedance reflection, 769–770
Impedance transformer, 835–836
Impedance triangle, 222, 745, 750
Index, 723



Inductance. See also Inductors
and energy stored in magnetic structure, 826
equivalent, 178

Induction machines, 868
Induction motors, 907–917

AC motor speed and torque control, 916–917
performance of, 914–916

Inductive coupling, 482
Inductors, 166, 167

calculating co-energy for, 809–810
current

continuity of, 266–267
from voltage, calculation of, 181

duality, 178–179
energy storage in, 179
hydraulic analog of, 179
ideal, 176–178
impedance of, 193–194
practical, 177

impedance of, 198–199
properties of, 167
voltage, from current, calculation of, 180

Initial steady state, 261
Input offset current, 445

effect on amplifier, 451–452
Input-output transfer characteristic, 502
Input side, of transformers, 767
Input winding, 866
Instantaneous AC power, 214–219, 742–747

computation of, 218–219, 746–747
Instrumentation amplifier (IA), 416–418

common-mode gain ratio, 486–487
common-mode rejection ratio, 485, 486–487
gain configuration using internal resistors, 487–488
signal conditioning, 483–486



Integrated circuit (IC), 399
Integrating ADC, 491–492

performance analysis of, 499–500
Integrators

ideal, 435
voltage supply limits in, 448–449

Internal resistance, 135
Interrupts, 723–724

reading sensor data using, 723–724
Intrinsic concentration, 523
Inverse Laplace transform, 948

computation of, 948–950
Inverter, 599
Inverters, 920–922

CMOS, 630, 631
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Inverting amplifier, 402–403
circuit, 415–416
voltage supply limits in, 448

Inverting comparator, 501
I2R loss, 783
Isolation buffer, 404–405
Isolation transformer, 768
I-v characteristics

of circuit elements, 14–17
diode, 527
of emitter-base junction, 575

J
JFETs. See Junction field-effect transistors (JFETs)
JK flip-flop, 706



timing diagram, 708–709
truth table and excitation table for, 718

Junction, 5
Junction field-effect transistors (JFETs), 611

K
Karnaugh maps, 669–681

don’t-care conditions, 673, 680–681
and logic circuit

design, 675–676
simplification, 678

simplifying expressions by using, 677–678
sum of products/product of sums realizations, 672–673

KCL. See Kirchhoff’s current law (KCL)
Kirchhoff, Gustav Robert, 22
Kirchhoff’s current law (KCL), 22, 106

application of, 25–26
electrical harnesses, 23–24

Kirchhoff’s voltage law (KVL), 23, 26–28, 106
application of, 27–28
electric vehicle battery pack, 26–27
mesh current and, 48–49

KVL. See Kirchhoff’s voltage law (KVL)

L
Laplace transform, 943, 946–950

computation of, 947–948
inverse, 948–950
one-sided/unilateral, 947
pairs, 948

Large-signal current gain, 576
Large-signal model, BJT, 581–590

npn, 581, 582



LC circuits
nonseries/nonparallel, analysis of, 309–311
parallel, 292–294

critically damped, complete response of, 305–307
underdamped, complete response of, 302–303

series, 294–296
overdamped, complete response of, 303–305

Leading edge-triggered, 705
Leakage flux, 817
Least significant bit (LSB), 648
LEDs. See Light-emitting diodes (LEDs)
Lego® 9V motor, model 9842, 627
Lenz’s law, 806
Level clamp, 503
Level-sensitive, RS flip-flop, 702
Level shifter, 418–420
Light-emitting diodes (LEDs), 557–558

analysis of, 559–560
driver, 586–587
materials and wavelengths, 558

Linear magnetic structure, 838
Linear networks, and principle of superposition, 100–104
Linear variable differential transformer (LVDT), 811–812
Lines of force, 805
Line voltages, 778, 921
Linking, magnetic flux, 807
Loading effects, 136, 396, 397
Load-line, 106, 107

analysis, 143–144
equation, 142, 533

Load networks, 107–108
Load neutral voltage, 921
Load phase voltages, 921



Loads, 107–108
Logical addition. See OR gate
Logical expression, simplification of, 662
Logical multiplication. See AND gate
Logic functions, 657. See also Product of sums (POS); Sum of products

(SOP)
De Morgan’s laws, 659–660
realizing from truth tables, 663
sum of products expression from, 676

Logic gates. See also Gates
AND, 657–659
defined, 657
NAND. See NAND gate
NOR. See NOR gate
NOT, 658
OR, 598, 657–659
sequential. See Sequential logic gates
XOR/exclusive OR, 661

Logic modules
combinational

decoders, 685
gate arrays, 685–688
multiplexers, 682–684
programmable logic devices, 685–688
read-only memory, 684–685
SRAM (static random-access memory), 685

Long-term steady state, 264
DC, 267–268, 274
response

of first-order system, 275
Look-up tables (LUTs), 686
Loop, 8
Loop gain, 397

open. See Open-loop gain
Loudspeaker, 851–8537



Low-frequency asymptote, 367
Low-pass filters, 344–346, 348–349

active filters, 426–429
application of, 349–350
attenuation, 350–351
bode plots, 366–368

LSB. See Least significant bit (LSB)
LUTs. See Look-up tables (LUTs)
LVDT. See Linear variable differential transformer (LVDT)

M
Machine language, 722
Machines. See Electric machines
Magnetic circuits, 815–821

equivalent, magnetic structure and, 818–820
Magnetic coupling, 807
Magnetic domains, 830–831
Magnetic fields

and Faraday’s law, 804–807
intensity, 804

Magnetic flux, 804, 877–878
B-H curves, 830–832
density of, 804
lines, 806
linking, 807
mean path for, 815

Magnetic materials, 830–832
Magnetic poles, in electric machines, 877–879
Magnetic reluctance position sensor, 826–830

voltage calculation in, 828–830
Magnetic structures

with air gaps, 821–823
of electric motor, 823–824



equivalent circuit, with multiple air gaps, 824–825
and equivalent magnetic circuit, 818–820
forces in, 837
linear, 838

Magnetism
Ampère’s law, 812–815
electricity and, 804–815
mutual inductance, 808–810
self-inductance, 808–810

Magnetizing current, 866
Magnetomotive force (mmf), 814

counter-mmf, 833
excess, 831

Magnetostriction, 836
Mass storage devices, 721
Matched resistance, 132
Matlab®

to solve for mesh currents, 51–52
to solve linear equations, 43–45

Matrix equation, 935–937
Maximum power transfer theorem, 132–134
Mean path, for magnetic flux, 815
Mean value, 184–185
Measurements/measurement system

configurations, signal sources and, 479–480
defined, 474
devices, 136–139. See also specific devices
differential, 479, 480
differential-pressure, 476
dimensional, 476
flow rate, 476–477
fluid flow rate, 476–477
force, 476

Wheatstone bridge and, 87–88
ground-referenced, 479, 480



motion, 476
noise, reduction in, 482–483
pressure, 476
sensors/transducers, 474

classification of, 475–476
temperature

resistance temperature detector, 478–479
thermocouples, 477–478

torque, 476
Mechanical loads, 866
Mechatronics, 730
Memory, 721–722

EEPROM, 721, 722
flash, 721, 722
random-access, 721, 722

dynamic, 721
static, 685, 721, 728

read-only, 684–685, 721
types of, 721

Memory element, flip-flop as, 702
Memory map, 722–723
Mesh, 8
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Mesh current method/analysis, 38, 48–61
AC circuit analysis, 212–214
with controlled sources, 56–60
with current sources, 53–56
examples of, 50–52
remarks on, 61

Microcontrollers, 724
ATmega328P®, 724–730

block diagram, 725
capabilities, 726
memory, 728



pin configurations, 726
power requirements, 727

Microphone, 170–171
Microprocessors, 724

analog-to-digital converter, 489, 491–495
digital-to-analog converter, 489–491
single-core, 721

Minterm, 669
Mnemonics, 722
Mobility, 523
Modulo-4 binary up-down counter

state diagram of, 719
state transition table for, 719

Monolithic integrated circuit, 485
MOSFET (metal-oxide semiconducting field-effect transistor), 611

amplifier
analysis of, 622–623
large-signal, 624–629

bidirectional analog gate, 632–633
circuits

biasing, 619–623
DC motor drive circuit, 627–629

as current source, for battery charging, 626–627
enhancement-mode, 612–619

channel current, 615–617
conductance parameter, 615–617
devices, 613
n-channel, 612
operating regions, 614–615
p-channel, 617
threshold voltage, 614–615

operating state of, 617–618
Q point

calculation, 620–621
graphical determination, 619–620

self-bias circuit, 621–622



switches, CMOS technology and, 630–637
analog, 631–632
digital, 630–631

Most significant bit (MSB), 648
Motion, measurement of, 476
Motion voltages, 807
Motors

circuits
MOSFET DC motor drive circuit, 627–629

DC. See DC motors
Motor vehicles

automotive fuel-injection system control, EPROM-based lookup table
for, 689–690

automotive ignition circuit, 312–315
automotive suspension, 294–295
electrical harnesses, 23–24
resistive throttle position sensor, 84–85

Moving-coil transducers, 846–853
generator action, 848–851
motor action, 847–848

Moving-iron transducers, 837–846
MSB. See Most significant bit (MSB)
Multiplexers (MUX), 682–684
Multivibrators, 505–507
Mutual inductance, 482, 808–810
Mutual induction, 768
MUX. See Multiplexers (MUX)

N
Nameplate

transformer, 834–835
Nameplates, 871, 873–875
NAND gate, 599–601, 660–661



function realization with, 665–666
AND function realization with, 664–665
RS flip-flop implementation, 702–703
sum of products realization using, 677

Natural frequency, 264, 292, 295, 360, 952
damped, 298

Natural response, 265, 274
first-order, 287–288

n-channel MOSFETs (NMOS), 614
gate-to-source voltage for, 630
switch, 633–634

Negative feedback, of amplifier, 396, 402
benefits of, 398–399

Negative logic convention, 657
Negative power, 17
NE555 timing circuits, 507–508

analysis of, 510
Networks

AC, analysis of. See AC network analysis
counting nodes in, 9–10
defined, 4
equivalent

Norton, 111–129
Thévenin, 111–131

features of, 4–8
ideal wire, 5
linear, 100–103
load, 107–108
nodes in, 5–7
resistive, 94–95
source, 106–107

Neutral node, 778
Neutrons, 10
Nibble, 648
NMOS (n-channel MOSFETs), 614



gate-to-source voltage for, 630
switch, 633–634

Nodes, 5–7
equivalent resistance between, 93–100
reference. See Reference node
in state diagram, 717

Node voltage, 5, 43, 82
analysis of. See Node voltage method/analysis

Node voltage method/analysis, 38–48
AC circuits, 208–209
with controlled sources, 56–58
examples of, 41–43
mesh currents method. See Mesh current method/analysis
remarks on, 61
with voltage sources, 46–48

Noise
reduction, 482–483
sources, 480–482

Noise coupling mechanism, 480–482
No-load rotational loss, 870
Noninverting amplifier, 403–404
Noninverting comparator, 501
Non-linear circuit element, 141–144

description of, 141
graphical analysis, 142

Nonlinear load power dissipation, 142–143
Nonseries/nonparallel LC circuit

analysis of, 309–311
Nonzero Zener resistance, effect in regulator, 551–552
NOR gate, 660–661

function realization with, 665–666
AND function realization with, 665

Norton current, computation of, 122–126
Norton equivalent resistance, 111–129



computation
with dependent sources, 113–114
without dependent sources, 113

experimental determination of, 128–129
Norton model, 135, 136
Norton’s theorem, 111
NOT gate, 658
n-type semiconductors, 523
Null position, 811
Number systems

binary. See Binary number system
decimal, 648, 649–650
hexadecimal system, 652

Nyquist sampling criterion, 495

O
Odd functions, 336
Oersted, H. C., 804
Offset diode model, 529, 531

of half-wave rectifier, 544–545
Offset voltage, 444–445

diodes, 533
Ohmic region, 614
Ohmmeter, 137
Ohm’s law, 29, 30, 192, 331, 403

in node analysis, 39
150 percent torque, 915
One-port network, 79, 111, 112
Ones complement, binary number system, 650
One-sided Laplace transform, 947
Op-amp. See Operational amplifier (op-amp)
Op-amp summer. See Summing amplifier



Open-circuit, 30, 31
Open-circuit core losses, 870
Open-circuit voltages, 107, 133
Open-loop gain, 395

operational amplifier, 400
Open-loop mode, amplifier, 396
Operational amplifier (op-amp), 393, 394, 399–400

active filters, 425–433
archetypes, 402–405
charge amplifiers, 436–437
circuit component values, criteria for selecting, 447
common mode, 411, 415
common-mode rejection ratio, 447
comparator, 501–503
difference/differential amplifier, 408–410
differential mode, 411, 415
differentiators, 435–436
frequency response limits, 443–444
gain-bandwidth product limit in, 449
ideal, 401

first golden rule of, 401
input bias currents, 445
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instrumentation amplifier, 416–418
integrated circuit, 399
integrators

ideal, 435
voltage supply limits in, 448–449

inverting amplifier, 402–403
circuit, 415–416
voltage supply limits in, 448

isolation buffer/voltage follower, 404–405
level shifter, 418–420
multiple input source, 406–410



noninverting amplifier, 403–404
offset voltage, 444–445
open-loop gain of, 400
output offset adjustment, 445
physical limitations of, 443–447
proportional-integral control with, 438–441
Schmitt trigger, 503–505

analysis and design of, 509–510
short-circuit output current, 446–447
slew rate limit, 445–446
small-signal, low-frequency model, 400
summing amplifier, 407–408
superposition, principle of, 406–410
temperature control using, 420–424
Thévenin’s theorem, application of, 405–406
voltage supply limits, 443

Operational instruction codes (op codes), 722, 729
Optocoupler, 559
Opto-isolators, 559
OR gate, 598, 657–659
Output range, 491
Output settling time, 491
Output winding, 866
Overdamped filter, 432
Overdamped series LC circuit

complete response of, 303–305
Overdamped transient response, 260, 296–297

P
PAL. See Programmable array logic (PAL)
Parallel LC circuits, 292–294

critically damped, complete response of, 305–307
underdamped, complete response of, 302–303

Parallel processing, 724



Parallel resistors, and current division, 88–92
Passband. See Bandwidth
Passband, of filter, 356
Passive sign convention, 17–20, 35
PCB. See Printed circuit board (PCB)
p-channel MOSFETs (PMOS), 614

enhancement-mode transistor, 617
gate-to-source voltage for, 630

Pentavalent impurities, semiconductor, 523
Periodic waveforms, time-dependent, 183–187
Period measurement with additional transition detection (PMA), 713
Period measurement with missing transition detection (PMM), 713
Permanent-magnet (PM) DC motors, 888–889

dynamic response of, 893–894
Permanent-magnet machine, 885
Permeability, 812
Permittivity, of dielectric material, 170
Phase angle (ϕ), 185
Phase shifts, 165
Phase voltages, 778
Phasors, 188–191

AC circuit analysis, 164, 206–207
notation, addition of two sinusoidal sources using, 196–197
polar and rectangular forms, 189, 190

Photoresistor, 33
Physical structure, DC electric machines, 879–881
Piecewise linear diode model, 533–534, 537–538
Piezoelectric effect, 836
Piezoelectric transducers, 436
PLA. See Programmable logic array (PLA)
PLC. See Programmable logic controller (PLC)
PLDs. See Programmable logic devices (PLDs)
PMA. See Period measurement with additional transition detection (PMA)



PMM. See Period measurement with missing transition detection (PMM)
PMOS (p-channel MOSFETs), 614

enhancement-mode transistor, 617
gate-to-source voltage for, 630

pn junction
in bipolar junction transistor, 573–574
semiconductor diodes, 524–527

Pole number control, 916–917
Poles

frequency response function, 332–333
of second-order circuit, 952

Pole voltages, 920
Position encoders, 653–654
Positive abc sequence, 778
Positive feedback, 396, 432
Positive logic convention, 657
Positive power, 17, 35
Potential barrier, 525
Potential difference, 11
Potentiometer, 34–35
Power

calculations, 20–21
dissipation, in resistors, 35
maximum transfer, 132–134
measurement devices, 136–139
negative, 17
nonlinear load dissipation, 142–143
and passive sign convention, 17–20
positive, 17, 35
resistors. See Resistors

Power angle, 905
Power dissipation, 491
Power efficiency, of transformer, 834
Power factor (pf), 217–218, 238–239, 745–746, 766–767



correction, 228–235, 756–764
series capacitor and, 232, 759–760

Power grid, 787
Power supply requirements, 491
Power triangle, 222, 745

complex, 227, 750, 754–755
Practical inductors, 177

impedance of, 198–199
Preset feature, RS flip-flop, 703–704
Pressure, measurement of, 476
Primary input side, transformer, 767
Primary winding, 866
Prime mover, 866
Principle of superposition, 79

linear networks and, 100–104
Principles of electromechanics, 803–855

electricity and magnetism, 804–815
electromechanical energy conversion. See Electromechanical energy

conversion
magnetic circuits, 815–821
magnetic materials and B-H curves, 830–832
transformers, 832–836

Printed circuit board (PCB), 724
Product of sums (POS), 659–660

design, 679–680
expressions, De Morgan’s laws and, 663–664
realizations, 672–673

Program counter, 728
Program counter (PC) register, 723
Programmable array logic (PAL), 686
Programmable logic array (PLA), 686
Programmable logic controller (PLC), 720
Programmable logic devices (PLDs), 685–688
Proof by perfect induction, 658



Propagation delays, 710
Proportional gain, 421
Proportional-integral control with op-amp, 438–441
Protons, 10
p-type semiconductors, 523
Pull-out torque, 905
Pull-up torque, 914
Pulse-width modulation (PWM), 726, 922

Q
Quadratic filter sections, 431–432
Quality factor, 358, 360, 432
Quantization, 647

analog-to-digital converter, 491
error, 491

Quiescent/idle currents, 581
Quiescent (operating)/Q point, 533

MOSFET
calculation, 620–621
graphical determination, 619–620

R
Random-access memory (RAM), 686, 721, 722

dynamic, 721
static, 685, 721, 728

Rated current, 872
Rated torque, 915
Rated voltage, 871
Rated voltamperes, 872
RC circuit, differential equation of, 268–269
RC filter



high-pass, 346–347, 352
bode plots, 368–371

low-pass, 344–346, 348–350
bode plots, 366–368

Reactance, 195
synchronous, 904
transient, 916

Page 969

Reactive power, 222, 223, 750
computation of, 224–225, 752–753

Read-only memory, 721
Real power, 222, 223, 750

computation of, 224–225, 752–753
transfer for complex loads, 225–227, 753–754

Recombination, 523
Rectifier circuits

bridge rectifier, 542–543, 546
DC power supply, 543–544
full-wave, 540–541
half-wave, 539–540, 545–546

offset diode model in, 544–545
Reduced instruction set computing (RISC) microcontroller, 725
Reference node, 6–7, 39

and ground, 11–12
Reference pin, 486
Regenerative braking, 918
Registers, 713–714

CPU, 722–723
shift, 714

Regulation, 872–873
Relay, 844–846
Reluctance, 816

of air gap, 821



magnetic reluctance position sensor, 826–830
Remanent/residual magnetization, 831
Residential wiring, 783–786
Resistance, 29, 195

conduction, 38
of copper wire, 30
equivalent. See Equivalent resistance
hydraulic analog of, 31
internal, 135
matched, 132
measurement devices, 136–139
small-signal, 533, 536–537
strain gauge, 86
thermal, 37
Zener regulator, 550–551

Resistance temperature detector (RTD), 478–479
Resistive network

redrawing, 94–95
Resistive throttle position sensor, 84–85
Resistors

carbon composites, 31
color code, 32
discrete, 31–33
ideal, 29
impedance of, 192
in parallel, 88–92
power dissipation in, 35
power ratings, 35–36
in series, 80–82, 92
variable, 33–34

Resolution, 490
Resonance

and bandwidth, 356–359
filters, 432

Resonant frequency, 358



Reverse-biased direction, 525
Reverse breakdown, 526
Reverse breakdown voltage, 547
Reverse motoring, 918
Reverse saturation current, 525
Right-hand rule, 806, 877
Ring counter, 711

timing diagram for, 716
Ripple counter, 710
RISC microcontroller. See Reduced instruction set computing (RISC)

microcontroller
Rising edge, 506
Rising exponential waveform, 260
RL circuit, differential equation of, 269–271
rms (root-mean-square) value, 185–186

of AC power source, 216–217, 744–745
ratio of, 186
of sinusoidal waveform, 186–187

Root-mean-square (rms) value, 185–186
of AC power source, 744–745
ratio of, 186
of sinusoidal waveform, 186–187

Rotating electric machines, 866–879
basic operation of, 876–877

Rotating magnetic field, 879
Rotating magnetic fields, 899–901
Rotor, 866, 867–868

squirrel cage, 907
wound, 907

Rotor control, 917
RS flip-flop, 702–704

clear feature, 703–704
preset feature, 703–704
timing diagram, 702, 707



truth table and excitation table for, 718
RTD. See Resistance temperature detector (RTD)

S
Safety circuit, for stamping press operation, 673–675
Salient poles, 877
Sallen and Key filters, 432

design of, 434
Sample-and-hold amplifier, 493–495, 499
Sampling interval, 494
Saturation, 830
Saturation current, 576
Scalar field, 805
Scale current, 576
Schmitt trigger, 503–505

analysis and design of, 509–510
Secondary input side, transformer, 767
Secondary winding, 866
Second-order filter sections, 431–432
Second-order transient analysis, 292–315

characteristics of, 292
parallel LC circuits, 292–294
series LC circuits, 294–296
transient response, 296–298

Seebeck effect, 477
Seismic displacement transducer, 363–366
Seismic transducer, 854–855
Self-excited machines, 881
Self-heating error, 478
Self-inductance, 807, 808–810
Self-induction, 768
Semiconductor, 522



diodes. See Semiconductor diodes
electrical conduction in, 522–524
n-type, 523
p-type, 523

Semiconductor diodes, 524
diffusion current, 524
diode thermometer, 555–556
drift current, 525
large-signal models for, 527–531

ideal diode model, 527–529
offset diode model, 529, 531

operating point, determination of, 534–536
pn junction and, 524–527
rectifier circuits

bridge rectifier, 542–543, 546
DC power supply, 543–544
full-wave, 540–541
half-wave, 539–540, 544–546

reverse saturation current, 525
signal processing applications

peak detector, 553–555
small-signal models for, 532–538

piecewise linear diode model, 533–534
Sense pin, 486
Sensor calibration circuit, 413–414
Sensors, 474, 836. See also Transducers

classification of, 475–476
magnetic reluctance position, 826–830

Separately excited DC generator, 896–899
Separately excited machines, 881, 883–884, 885
Sequential logic gates, 701

design, 717–720
digital counters, 709–711. See also Counters
flip-flops, 702

D, 705, 718
JK, 706, 708–709, 718



outputs, 702
RS, 702–704, 707, 718
T, 707–708

programmable logic controller, 720
registers, 713–714

Serial peripheral interface (SPI), 726
Series-connected machine, 881, 885
Series DC motor, 887–888, 892–893
Series LC circuits, 294–296

overdamped, complete response of, 303–305
Series-parallel network, impedance of, 199
Series resistors, 92

and voltage division, 80–82
Seven-segment display, 714
Shielding, 482
Shielding procedure, 474
Shift register, 714
Short-circuit

current, 107, 122–126, 133
Short-circuit current limit

effect on amplifier, 453–454
Short-circuit output current limit, 446–447
Shunt-connected machine, 881, 885
Shunt DC motor, 886–887, 890–892
Signal conditioning, 474, 483–486

instrumentation amplifier, 483–486
Signals

analog, 646
digital, 646–647

binary, 598
binary signal, 647–648

processing of, diodes applications
peak detector, 553–555

sinusoidal. See Sinusoidal signals



sources, 479–480
time-dependent sources, 183–187

Sign convention, 17–20
Sign-magnitude convention, 651
Simultaneous equations, 935–937
Single-core microprocessor, 721
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Single-phase AC power, 777
Sinusoidal frequency response. See Frequency response
Sinusoidal PWM, 922
Sinusoidal signals, 163, 184

characteristics of, 164
sources

addition, using phasor notation, 196–197
circuits with, phasor solution of, 188–191

waveforms
average value of, 186
rms value of, 186–187

Slew rate limitation
effect on amplifier, 452–453
in op-amp, 445–446

Slip, 909
Slip control, 917
Slip frequency, 909
Slip speed, 909
Slotted encoder, 712–713
Small-signal current gain, 576
Small-signal model, BJT, 591–597
Small-signal resistance, 533, 536–537
Solar cell, 557
Solenoids, 841–843

facts about, 843–844



Solid state electronics, 521. See also Semiconductor
SOP. See Sum of products (SOP)
Source, 612

loading, 133
Source-follower MOSFET amplifier, 625
Source-load perspective, 79, 105–108
Source networks, 106–107
Source transformations, 108–111
Speed range, 915
SP register. See Stack pointer (SP) register
Square wave, integrating, 437–438
Squirrel cage rotor, 907
SRAM. See Static random-access memory (SRAM)
Stack, 728
Stack pointer (SP) register, 723
Stamping press, safety circuit for operation of, 673–675
Standard form, frequency response function, 371
Standard terms, 366
Standard terms, frequency response function, 371–372
Starting torque, 871, 908, 914, 916
State, of machine, 717
State diagram, 717

of modulo-4 binary up-down counter, 719
State transition diagrams, 710
State transition table, 717

for 3-bit binary counter, 718
State variables, 165, 258, 261
Static random-access memory (SRAM), 685, 721, 728
Stator, 866, 867–868
Steady-state solution, 166
Step-down chopper, 918
Step-down transformer, 768



Step-up chopper, 919
Step-up transformer, 768
Strain gauge, resistance, 86
Strain gauge bridges, 88
Stray-load loss, 870
Stray-load losses, 870
Substations, 787
Successive-approximation ADC, 492
Summing amplifier, 407–408
Sum of products (SOP), 659–660

design, 679–680
expression, deriving from logic circuit, 676
realizations, 672–673

using NAND gates, 677
Supernode, 6
Superposition, principle of, 406–410
Supply neutral voltage, 921
Swing check valve, 527–528
Switches

bipolar junction transistor, 598–601
MOSFET, CMOS technology and, 630–637

analog, 631–632
digital, 630–631

NMOS, 633–634
transistors and, 570–571

Synchronous counter, 711
Synchronous generator, 901–903
Synchronous machines, 868
Synchronous motors, 903–907

torque, 903–904
Synchronous reactance, 904
Synchronous speed, 900



T
Temperature

control, using op-amp, 420–424
measurements

resistance temperature detector, 478–479
thermocouples, 477–478

Temperature coefficient (α), 478
Teslas (T), 804
T flip-flop, 707–708
Thermal capacitance, 263, 422
Thermal circuit model, 38
Thermal properties, 916
Thermal resistance, 37
Thermal systems, 37

dynamics of, 264
first-order, 272–273

Thermal voltage, 525
Thermistors, 31, 33, 478. See also Discrete resistors
Thermocouples, 477–478
Thermoelectric voltage, 477
Thévenin equivalent resistance, 111–131

computation
with dependent sources, 113–114, 116–117
without dependent sources, 113, 114–115

experimental determination of, 128–131
Thévenin model, 135, 136
Thévenin’s theorem, 111

AC circuit analysis, 211–212
and circuit simplification, 329–330
frequency response computation using, 333–334
and operational amplifier, 405–406

Thévenin voltage
computation, 117–122

for network with dependent source, 121–122



for network with one independent source, 119
for network with two independent source, 120

3-dB frequency, 368
Three-phase AC power, 777–783

balanced delta loads, 779–781
balanced wye loads, 779
balanced wye-wye circuit, 781
parallel wye-delta load circuit, 781–783

Time constant, 165, 261, 263, 264, 274
capacitor energy and, 277

Timing circuits, 500
multivibrators, 505–507
NE555, 507–508

analysis of, 510
Timing diagram

JK flip-flop, 708–709
for ring counter, 716
RS flip-flop, 702, 707

Torque, measurement of, 476
Torque-speed characteristic, 870–871, 875–876
Tracking ADC, 491
Trailing edge-triggered, 706
Transducers, 474. See also Sensors

capacitive displacement, 170–171, 204–206
peak detector circuit for, 553–555

energy, 836
moving-coil. See Moving-coil transducers
moving-iron, 837–846
piezoelectric, 436
seismic, 854–855
seismic displacement, 363–366

Transfer functions, 946, 950–952
Transformers, 767, 832–834

center-tapped, 768, 772–773
ideal, 767–768



conserve power, 768
impedance, 835–836
impedance reflection, 769–770
input side of, 767
isolation, 768
linear variable differential, 811–812
and maximum power transfer, 770–771, 775–776
nameplate, 834–835
output side of, 767
power efficiency, 834
and power line efficiency, 773–775
step-down, 768
step-up, 768
voltages, 807

Transient analysis, 259–260
first-order, 272–291

circuit simplification, 273–274
first-order differential equation, 274

objectives of, 258
second-order, 292–315

characteristics of, 292
parallel LC circuits, 292–294
series LC circuits, 294–296
transient response, 296–298

Transient event, defined, 261
Transient problems solutions, elements of, 261–271
Transient reactance, 916
Transient response, 257, 260

of automotive ignition circuit, 312–315
critically damped, 260, 297
energy and, 262–264
first-order, 274–275

due to pulsed source, 285–286
initial conditions on, 261–262, 265–266
overdamped, 260, 296–297
second-order, 296–298



of ultracapacitors, 283–285
underdamped, 260, 297–298

Transient solution, 166
Transistors

amplifiers and, 570–571
bipolar junction. See Bipolar junction transistor (BJT)
field-effect. See Field-effect transistors (FETs)
switches and, 570–571

Page 971

Transmission lines, 787
Trivalent impurities, semiconductor, 523
Truth tables, 657–658

realizing logic functions from, 663
TTL (transistor-transistor logic), 599

NAND gate, 599–601
Tuning circuits, 361
Turbine flowmeter, 477
Turns ratio, 767

ideal transformer, 771–772
TWI. See Two-wire serial interface (TWI)
Twisted-pair wire, 482–483
Two-quadrant chopper, 919
Twos complement, binary number system, 650

operations of, 654
Two-wire serial interface (TWI), 726

U
Ultracapacitors

energy storage in, 171–172
transient response of, 283–285

Underdamped filter, 432



Underdamped parallel LC circuit
complete response of, 302–303

Underdamped series LC circuit
complete response of, 307–309

Underdamped transient response, 260, 297–298
Unilateral Laplace transform, 947
Unit-step function, 947
Unity-gain frequency, 428
Universal flip-flop. See JK flip-flop
Universal serial asynchronous receive and transmit (USART) interface, 726
Up-down counter, 711
USART interface. See Universal serial asynchronous receive and transmit

(USART) interface
USB interface, Arduino, 731

V
VA. See Volt-amperes (VA)
VAR. See Volt-amperes reactive (VAR)
Variable-reluctance position sensor, 827–828
Variable resistors, 33–34
Variable-torque loads, 895
VCCS. See Voltage-controlled current source (VCCS)
Volt, 11
Volta, Alessandro, 10, 11
Voltage, 4, 581, 871–872

balanced, 777
calculation, in magnetic reluctance position sensor, 828–830
capacitor, from current and initial condition, 174–175
defined, 11
enhancement-mode MOSFET, 614–615
induced, 826
inductors, from current, calculation of, 180



line, 778, 921
load neutral, 921
load phase, 921
measurement devices, 136–139
motion, 807
node, 5, 43, 82
offset, 444–445
open-circuit, 107, 133
phase, 778
pole, 920
rated, 871
regulation, Zener diodes and, 547–552
reverse breakdown, 547
supply limits, 443

in inverting amplifier, 448
in op-amp integrator, 448–449

supply neutral, 921
thermal, 525
thermoelectric, 477
Thévenin, computation of, 117–122

for network with dependent source, 121–122
for network with one independent source, 119
for network with two independent source, 120

transformer, 807
Zener, 527

Voltage-controlled current source (VCCS), 421, 616
Voltage division, 82

series resistors and, 80–82
Voltage follower, 404–405
Voltage gain, of amplifier, 394, 395

determination of, 572
Voltage source inverter (VSI), 920, 922
Voltage sources

hydraulic analog, 15
ideal, 4–5, 14–15
node analysis with, 46–48



practical, 135–136
Volt-ampere characteristic. See I-v characteristics
Volt-amperes (VA), 750

rated, 872
Volt-amperes reactive (VAR), 750
Voltmeter, 138, 139–140
VSI. See Voltage source inverter (VSI)

W
Wattmeter, 138–139, 236–238, 764–766
Waveforms

parts of, 259
periodic, time-dependent, 183–187
sinusoidal signals

average value of, 186
rms value of, 186–187

Webers (Wb), 804
Wheatstone bridge, 82–83

and force measurements, 87–88
Wheatstone bridge filter, 353–355
Windage, and mechanical losses, 870
Wiring

residential, 783–786
shielding, 482
twisted-pair, 482–483

Word, 648, 722
Wound-field DC motors, 889
Wound rotor, 907
Wye (Y) configuration, 777–778

balanced wye loads, 779
Wye-delta transformation, 96–97



X
XOR (exclusive OR) gate, 661

Z
Zener breakdown, 526–527
Zener clamp, 503
Zener diodes

power rating of, 549–550
and voltage regulation, 547–552

Zener effect, 526
Zener regulator, load resistances for, 550–551
Zener voltage, 527
Zero-crossing comparator, 502
Zeros, frequency response function, 332–333
Zero-speed torque, 871
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Index

A
AC-AC converter, 17-4
Acceleration characteristics, 916
Acceleration torque, 16-38
Acceptors, 523
AC circuit analysis, 164, 201–202

arbitrary sinusoidal input, solution for, 207–208
equivalent circuits, 203–204
mesh analysis, 212–214
nodal analysis, 208–209
phasor analysis and, 164, 206–207
Thévenin’s theorem, 211–212

Accumulator, 723
AC-DC converter, 17-4
AC equivalent circuits, 203–204
AC line interference filter, 362–363
AC machines, 899–901
AC motors



frequency regulation, 917
pole number control, 916–917
rotor control, 917
single-phase. See Single-phase AC motors
slip control, 917
speed and torque control, 916–917

AC network analysis, 163–164
capacitors, 166–175. See also Capacitors
energy storage, 164–166, 169. See also Capacitance
impedance. See Impedance
inductors, 163, 164, 167, 176–182
phasor solution, 188–191
time-dependent waveforms, 183–187

AC power
average, 214–221, 742–749

computation of, 218–221, 746–749
complex power, 749–755

apparent power, 750
computation of, 224, 751–752
facts related to, 757
and power triangle, 227, 750, 754–755
reactive power, 750, 752–753
real power, 750, 752–754

generation and distribution, 786–787
impedance triangle, 222, 745
instantaneous, 214–219, 742–747

computation of, 218–219, 746–747
power factor, 217–218, 238–239, 745–746, 766–767

correction, 228–235, 756–764
residential wiring, 783–786
rms/effective values, 216–217, 744–745
single-phase, 777
three-phase power, 777–783

balanced delta loads, 779–781
balanced wye loads, 779
balanced wye-wye circuit, 781
parallel wye-delta load circuit, 781–783



transformer. See Transformers
AC signals, superposition of, 191, 210
Active filters, 425–433

design of, 429–433
Active mode, BJT operating mode, 574–576
Actuator, 836
AC voltage controller, 17-4
ADC. See Analog-to-digital converter (ADC)
Additive white gaussian noise (AWGN), 19-20

channel, capacity of, 19-22
and channel coding, 19-22

Address lines, multiplexers, 682
Admittance, 195, 199–200
Air gaps, 820

magnetic structure with, 821–823
multiple, equivalent circuit of magnetic structure with, 824–825
reluctance of, 821

Algebra, of complex numbers, 937–940
Alternator (synchronous generator), 901–903
ALU. See Arithmetic logic unit (ALU)
Ammeter, 137–138
Ampere, 10, 11
Ampère, André Marie, 804
Ampère’s law, 804, 812–815
Amplification, 570

small-signal of BJT and, 591–597
Amplifiers, 17-3

BJT, 594–596
operating point for, 589–590

cascaded, and simulation of differential equation, 441–442
charge, 436–437
difference/differential, 408–410
electrocardiogram, 412–413
ideal, 394–399



characteristics of, 394–395
feedback, 396–399
input/output impedance, 396

input offset current on, effect of, 451–452
input offset voltage on, effect of, 451
instrumentation, 416–418
inverting, 402–403

circuit, 415–416
voltage supply limits in, 448

large-signal, for diode thermometer, 583–584
linear, model of, 572
MOSFET

analysis of, 622–623
large-signal, 624–629

noninverting, 403–404
operational. See Operational amplifier (op-amp)
power, 17-8 to 17-13
push-pull, 17-9 to 17-11
sample-and-hold, 493–495, 499
short-circuit current limit on, effect of, 453–454
signal-flow diagram of, 397
slew rate limit on, effect of, 452–453
summing, 407–408
transistors and, 570–571
voltage gain of, 394, 395

Amplitude-modulated (AM) signal, 812
Amplitude modulation (AM), 18-18

commercial, bandwidth of, 18-16 to 18-17
double-tone, 18-23 to 18-24
lower sideband signal, 18-19
nonperiodic, 18-24 to 18-25
principle of, 18-18 to 18-19
single-tone, 18-21 to 18-23
upper sideband signal, 18-19

Amplitude-shift keying, 19-31
Analog communication systems, 18-4



Fourier transform, 18-6 to 18-9
signal spectra, 18-6

Analog gate, 598
bidirectional, 632–633

Analog signal, 646
Analog switches, 631–632
Analog-to-digital converter (ADC), 489, 491–495, 721, 19-2

conversion time, 493–494
flash, 492–493, 498
integrating, 491–492

performance analysis of, 499–500
quantization, 491
resolution of, 494
sample-and-hold amplifier, 493–495, 499
successive-approximation, 492
tracking, 491

Analog transmission gate, 632–633
AND function

NAND gates, realizing with, 664–665
NOR gates, realizing with, 665

AND gate, 657–659
Anemometer, 477
Angular position encoders, 16-4
Anode, 526
Apparent power, 221–223, 750
Arduino project, 731–734

features, 731–732
sketches, 732–734
USB interface, 731

Arduino Uno hardware, 731
Arithmetic logic unit (ALU), 722
Armature, 918
Armature constant, 882
ASCII character code, 652, 722, 959–960



Asynchronous data transmission, 19-27
Asynchronous feature, 703
ATmega328P® microcontroller, 724–730

AVR® CPU
architecture, 727–728
instructions, 728–730

block diagram, 725
capabilities, 726
memory, 728
pin configurations, 726
power requirements, 727

Audio power amplifiers, 17-8
Automatic control system, 421
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Automotive resistive throttle position sensor, 84–85
Automotive suspension, 294–295
Auxiliary winding, split-phase motor, 16-30
Avalanche breakdown, 526
Average AC power, 214–221, 742–749

computation of, 218–221, 746–749
Average value, 184–185

of sinusoidal waveform, 186
AVR® CPU

architecture, 727–728
instructions, 728–730

B
Back emf, 882
Balanced delta loads, 779–781
Balanced voltages, 777
Bandpass filters



frequency response of, 355–361
resonance and bandwidth, 356–359

Bandwidth, 356, 359, 18-9 to 18-10
FM, 18-31 to 18-33
half-power, 359, 18-9, 18-10
resonance and, 356–359
3-dB, 18-9, 18-10

Base current, 576
Base region, BJT, 573
Base-width modulation, 577
Batteries

automotive battery charger, 17-20 to 17-21
electric vehicle battery pack, 26–27
MOSFET battery charging, 626–627

Baud, 19-30
BCD representation. See Binary-coded decimal (BCD) representation
Bessel filters, 430
B-H curves, 830–832
Bias currents, 445
Biased BJT, 582
Binary-coded decimal (BCD) representation, 652
Binary codes, 652–653. See also specific codes
Binary number system, 648

addition in, 648–649
binary codes, 652–653
complements in, 650–651
conversion from decimal number system to, 648, 649–650
conversion to hexadecimal number system, 655
division in, 649
multiplication in, 649
negative numbers in, 650–651
sign-magnitude convention in, 651
subtraction in, 648–649

Binary signals, 598, 647–648. See also Digital signal



Binary symmetric channel model, 19-21
Binary up counter, 709
Bipolar junction transistor (BJT), 570, 573–580, 17-1, 17-8, 17-13

amplifiers, operating point for, 589–590
battery charger, 586–587
characteristics of, 577–578
construction of, 574
gates. See Gates
large-signal model, 581–590

npn, 581, 582
motor drive circuit, 588–589
operating modes, 573

active mode, 574–576
cutoff mode, 574
determination of, 578–580
saturation mode, 576–577

operating point, selection of, 581–583
pn junction, 573–574
power, 17-3
self-bias circuit, 592–594, 596–597
small-signal model, 581, 591–597
switches, 597–601

Bistable device, flip-flop as, 702
Bits, 648, 722
BJT. See Bipolar junction transistor (BJT)
Bli law, 848, 849
Blu law, 848–849
Bode plots, 366–377

approximation, 373–377
high-pass filters, 368–371
RC low-pass filter, 366–368

Boltzmann’s constant, 19-20
Boolean algebra, 657

De Morgan’s laws, 659–660
AND gate, 657–659



NAND gate. See NAND gate
NOR gate. See NOR gate
NOT gate, 658
OR gate, 657–659
rules of, 659
XOR (exclusive OR) gate, 661

Boost converter, 919
Branch, circuit, 7–8
Branch currents, 8, 41–42
Breakaway torque, 914
Breakdown torque, 915, 917, 16-38
Break frequency, 345
Breakover voltage, 17-17
Bridge rectifier, 542–543, 546
Brush contact loss, 870
Brushless DC motor, 16-2 to 16-9

sinusoidal torque generation in, 16-7 to 16-8
trapezoidal speed profile, selection of, 16-8 to 16-9

Buck-boost converter, 919
Buck converter, 918
Bulk, 612
Burn firmware, 731
Butterworth filters, 430

determining order of, 433–434
Butterworth polynomials, 430–431
Bytes, 648, 722

C
Calibrated orifice, 476
Capacitance. See also Capacitors

electrical, 167
equivalent, 168–169



fluid, 167
thermal, 263, 422

Capacitive coupling, 481–482
Capacitive displacement transducers, 170–171, 204–206

peak detector circuit for, 553–555
Capacitors, 166–175

current from voltage, calculation of, 173–174
defined, 168
discharging, 263
discrete, 166–167, 169
duality, 178–179
energy storage in, 169

time constants and, 277
hydraulic, 263
hydraulic analog of, 167
ideal, 166, 167–168
impedance of, 194–195
practical, impedance of, 197–198
properties of, 167
voltage

continuity of, 266–267
from current, calculation of, 174–175

Capacitor-start capacitor-run motor, 16-32
Capacitor-start motors, 16-31 to 16-32

analysis of, 16-33 to 16-34
Capacitor-type motors, 16-31 to 16-32
Carbon composites resistors, 31
Carbon film resistors, 31
Carrier signal, 18-3, 18-18
Carrier wave, 361
Carson’s rule, 18-29
Cascaded amplifiers, and simulation of differential equation, 441–442
Cathode, 526
Cauer/elliptical filters, 430



CBJ. See Collector-base junction (CBJ)
Cells, Karnaugh maps, 669
Center frequency, 361
Center-tapped transformer, 768, 772–773
Central processing unit (CPU), 720

bus, 720–721
clock, 721
and computer programs, 722
interrupts, 723–724
memory, 721–722
registers, 722–723

Channel capacity, 19-22
Shannon noisy, 19-22

Channel coder, 19-2
Channel coding, 19-21 to 19-23

additive white gaussian noise and, 19-22
linear block, 19-22 to 19-23

Channel pinch-off, 615
Channels, 19-2

communication systems, 18-4 to 18-6
MOSFETs

n-channel, 614
p-channel, 614

Characteristic roots, 296
Charge, 10

amplifiers, 436–437
in conductor, 13

char type variable, 652, 722
Chebyshev filters, 430
Chopper, 17-4
Choppers, 918

duty cycle, 919
step-down, 918
step-up, 919



two-quadrant, 919, 922–924
Circuits

biasing MOSFETs, 619-623
branches, 7–8
comparator, 500

input-output transfer characteristic, 502
inverting, 501
noninverting, 501
with offset, 508
op-amp, 501–503
Schmitt trigger, 503–505
zero-crossing, 502

defined, 4
divider, 714
dual one-shot, 507
elements. See also specific elements

energy storage, 164–166
i-v characteristics, 14–17
non-linear, 141–144
in parallel, 88–92
in series, 80–82
source-load perspective, 105–108

3

features of, 4–8
first-order transient analysis, 272–291
fluid, 179
full adder, 667
ground, 11–12
half adder, 666
ideal voltage source, 14–15
ideal wire, 5
inverting amplifier, 402, 415–416
LC

nonseries/nonparallel, analysis of, 309–311
parallel, 292–294, 302–303, 305–307



series, 294–296, 303–305
loop, 8
magnetic, 815–821
mesh, 8
monolithic integrated, 485
nodes in, 5–7
noninverting amplifier, 403
open-circuit, 30, 31
power, 17-3 to 17-5
principal quantities within, 4
RC, 268–269
rectifier. See Rectifier circuits
RL, 269–271
safety, for stamping press operation, 673–675
second-order, poles of, 952
second-order transient analysis, 292–315
sensor calibration, 413–414
short-circuit, 29
simplification, frequency response function and, 329–330
simplification of, 273–274
with sinusoidal sources

phasor solution of, 188–191
thermal, model of, 38
thyristors, 17-21 to 17-22
timing, 500

multivibrators, 505–507
NE555, 507–508, 510

transient problems solutions, elements of, 261–271
tuning, 361

Clear feature, RS flip-flop, 703–704
Closed-loop mode, amplifier, 396
CM. See Common mode (CM)
CMRR. See Common-mode rejection ratio (CMRR)
Coaxial cable pulse response, 289–291
Coaxial cables, 18-5 to 18-6
Code-division multiple access (CDMA), 19-25 to 19-26



Codewords, 19-10 to 19-11
Co-energy, 808–810

calculation for inductor, 809–810
Cold junction, 478
Collector-base junction (CBJ), 573

forward-biased, 576–577
reverse-biased, 574–576

Collector current, 576, 577
Collector region, BJT, 573
Color code, resistors, 32
Combinational logic modules

decoders, 685
gate arrays, 685–688
multiplexers, 682–684
programmable logic devices, 685–688
read-only memory, 684–685
SRAM (static random-access memory), 685

Common-base current gain, 576
Common-emitter current gain, 576
Common mode (CM), 411, 415
Common-mode gain ratio

instrumentation amplifiers, 486–487
Common-mode rejection ratio (CMRR), 411, 447

instrumentation amplifiers, 485, 486–487
Communication systems

analog. See Analog communication systems
block diagram, 18-3
channels, 18-4 to 18-6
classification of, 18-4
digital. See Digital communication systems
examples of, 18-34 to 18-36
Global Positioning System, 18-34 to 18-35
history of, 18-2
Morse code, 18-2
RADAR, 18-35



SONAR, 18-36
telegraph, 18-2

Commutator, 879–881
Comparator, 500

input-output transfer characteristic, 502
inverting, 501
noninverting, 501
with offset, 508
op-amp, 501–503
Schmitt trigger, 503–505

analysis and design of, 509–510
zero-crossing, 502

Compilers, 722
Complementary MOS (CMOS) technology

gate, 634–636
inverters, 630, 631
and MOSFET switches, 630–637

analog, 631–632
digital, 630–631

Complements, in binary number system, 650–651
Complete response, 264–265, 274

of critically damped parallel LC circuit, 305–307
of first-order system, 275
of overdamped series LC circuit, 303–305
of underdamped parallel LC circuit, 302–303
of underdamped series LC circuit, 307–308

Complex exponential, 189–190
Complex frequency, 943–946

domain, 944
notation, 944–945

Complex power, 749–755
apparent power, 750
computation of, 224, 751–752
facts related to, 229, 757
and power triangle, 227, 750, 754–755
reactive power, 222, 223, 750



computation of, 224–225, 752–753
real power, 222, 223, 750

computation of, 224–225, 752–753
transfer for complex loads, 225–227, 753–754

Complex programmable logic device (CPLD), 686
Compressibility, signals, 19-8 to 19-10
Computer programs, 722
Computer system architecture, 720–724. See also Central processing unit

(CPU)
Condenser microphone, 170
Conditional Probability, 19-4 to 19-5
Condition code register (CCR), 723
Conductance, 30
Conduction, 37
Conduction resistance, 38
Conductive coupling, 481
Configurable logic block (CLB), 688
Configuration, DC electric machines, 881
Constant horsepower, 895
Constant-K filters, 432
Constant-torque loads, 895
Constraint equation, 56
Contact potential, 525
Continuous random variable, 19-6
Control area network (CAN), 19-33 to 19-34
Controlled rectifier, 17-4

thyristors and, 17-17 to 17-18
Controlled sources. See Dependent/controlled sources
Convection, 37
Conversion time, of analog-to-digital converter, 493–494
Converters, 17-3

AC-AC, 17-4
AC-DC, 17-4, 17-14 to 17-22



analog-to-digital. See Analog-to-digital converter (ADC)
boost, 919
buck, 918
buck-boost, 919
DC-AC, 920–922, 17-5
DC-DC, 918–920, 17-4
digital-to-analog. See Digital-to-analog converter (DAC)

Cores, 724
Correlation receiver, 19-17 to 19-18
Coulomb (C), 10
Coulomb, Charles, 10
Counter-emf, 876
Counter-mmf, 833
Counters, 709

binary up, 709
decade, 710
ring, 711

timing diagram for, 716
ripple, 710
synchronous, 711
up-down, 711

Covalent bonds, 522
CPU. See Central processing unit (CPU)
CPU bus, 720–721
Cramer’s rule, 935–937
Critical frequency, 345
Critically damped parallel LC circuit

complete response of, 305–307
Critically damped transient response, 260, 297
Crossover probability, 19-21
Crystal oscillator, 721
Cumulative distribution function (CDF), 19-5
Current, 4

base, 576



branch, 8, 41–42
collector, 576, 577
in conductor, 13
defined, 10
division, parallel resistors and, 88–92
eddy, 831, 870
emitter, 576
ideal sources. See Current sources
inductor, from voltage, calculation of, 181
measurement devices, 136–139
mesh, 48. See also Mesh current method/analysis
Norton, computation of, 122–126
rated, 872
saturation, 576
scale, 576
semiconductor diode
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diffusion current, 524
drift current, 525
reverse saturation current, 525

short-circuit, 107, 122–126
unit of, 10
from voltage, capacitor, calculation of, 173–174

Current sources
hydraulic analog of, 16
ideal, 4–5, 14–15
mesh current method with, 53–56
practical, 135–136

Cutoff frequency, 345, 432
Cutoff mode, BJT operating mode, 574
Cutoff region, 614

D



DAC. See Digital-to-analog converter (DAC)
Damped sinusoid, 944
Damping coefficient, 432
Data acquisition system, 495–496
Data communication equipment (DCE), 19-31
Data latch, 704
Data lines, multiplexers, 682
Data select, 683
Data selectors, 682–684
Data terminal equipment (DTE), 19-31
Data transmission, 19-27 to 19-35

asynchronous, 19-27
control area network, 19-33 to 19-34
ethernet, 19-33
handshake protocol, 19-27
IEEE 488 bus, 19-30 to 19-31
parallel, 19-27
serial, 19-30 to 19-31
synchronous, 19-27

DC-AC converter, 17-5
DC-AC converters, 920–922
DC-DC converters, 918–920, 17-4
DC drives, and DC motor speed control, 895
DC electric machines, 868, 879–885. See also DC generators; DC motors

configuration of, 881
models, 881–884
physical structure of, 879–881
steady-state equations, 884–885

DC gain, 274, 292
DC generators, 896. See also DC electric machines

separately excited, 896–899
DC motor drive circuit, 627–629
DC motors, 886–896. See also DC electric machines

brushless, 16-2 to 16-9



sinusoidal torque generation in, 16-7 to 16-8
trapezoidal speed profile, selection of, 16-8 to 16-9

permanent-magnet, 888–889, 16-4
series motor, 887–888, 892–893
shunt motor, 886–887, 890–892
speed control systems for, 895
starting transient of, 279–281
turnoff transient of, 281–282

DC power supply, 543–544
DC steady-state, 261

long-term, 267–268, 274
DC value, 184, 576
Decade counter, 710
Decade slope, 367
Decaying exponential waveform, 260
Deceleration characteristics, 916
Decibels (dB), 366

3-dB frequency, 368
Decimal number system

conversion to binary number system, 648, 649–650
Decoders, 685
Delay, 17-13
Delta (Δ) configuration, 779
Delta function, 18-8
Demodulation

AM, 18-19 to 18-21
FM, 18-29 to 18-30
phase-locked loop, 18-30

De Morgan’s laws, 659–660
and product-of-sums expressions, 663–664
significance of, 661–662

Department of Energy’s Energy Policy Act, 2005 (EPACT), 871
Dependent/controlled sources, 16-17

node/mesh analysis with, 56–60



Depletion region, 524–525
D flip-flop, 705

truth table and excitation table for, 718
Dielectric material, 167

permittivity of, 170
Dielectric strength, 31
Differential amplifier, 408–410
Differential equation

first-order, 274
of RC circuit, 268–269
of RL circuit, 269–271
simulation, cascaded amplifiers to, 441–442
standard form of, 292

Differential GPS, 18-35
Differential measurement system, 479, 480
Differential mode (DM), 411, 415
Differential-pressure measurement, 476
Differentiators, ideal, 435–436
Digital baseband modulation, 19-15 to 19-21

binary symmetric channel model, 19-21
pulse-amplitude modulation, 19-18 to 19-21
pulse-position modulation, 19-15 to 19-18

Digital communication systems, 18-4, 19-2
baseband modulation. See Digital baseband modulation
channel coding, 19-21 to 19-23
code-division multiple access, 19-25 to 19-26
data transmission, 19-27 to 19-35

asynchronous, 19-27
control area network, 19-33 to 19-34
ethernet, 19-33
handshake protocol, 19-27
IEEE 488 bus, 19-30 to 19-31
parallel, 19-27
serial, 19-30 to 19-31
synchronous, 19-27



frequency-division multiple access, 19-24
layout of, 19-3
probability theory, 19-2

conditional, 19-4 to 19-5
random experiment, 19-3 to 19-4
random variables, 19-5 to 19-7

pulse-code modulation, 19-7 to 19-8
source coding. See Source coding
time-division multiple access, 19-25
ultrawideband, 19-26 to 19-27

Digital counters, 709–711. See also Counters
Digital gate, 598
Digital position encoders, 653–654
Digital signal, 646–647

binary signal, 647–648
Digital switches, 630–631
Digital-to-analog converter (DAC), 489–491, 721

device data sheets, 498
required precision in, 497
resolution of, 496–497

Dimensional measurement, 476
Dimensionless damping ratio, 260, 264, 292, 295
Diode peak detector

circuit, for capacitive displacement transducer, 553–555
Diodes, 17-1

freewheeling, 17-15
gates, 598
light-emitting. See Light-emitting diodes (LEDs)
power, 17-2
semiconductor. See Semiconductor diodes
Zener, 547–552

Diode thermometer, 555–556
large-signal amplifier for, 583–584

Direct axis inductance, 16-20



Direct-current machines. See DC electric machines; DC generators; DC
motors

Directed edge, 717
Direct waves, 18-5
Discrete capacitors, 166–167, 169
Discrete cosine transformation (DCT), 19-10
Discrete frequency spectrum, 336
Discrete random variable, 19-5
Discrete resistors, 31–33
Divider circuit, 714
DM. See Differential mode (DM)
Donors, 523
Don’t-care conditions, 673, 680–681
Doppler shift, 18-35
Drain, 612
DRAM (dynamic random-access memory), 721
Drift current, 525
Duality, 178–179, 294, 659
Dual one-shot circut, 507
Duplex transmission, 19-30
Duty cycle, 916, 919
Dynamic random-access memory (DRAM), 721
Dynamic response, of permanent-magnet DC motors, 893–894

E
Early effect, 577, 616
Early voltage, 616
EBJ. See Emitter-base junction (EBJ)
Eddy currents, 831

losses, 870
Edges, 648



directed, 717
falling, 506
rising, 506

EEPROM (electrically erasable programmable read-only memory), 686,
721, 722

Effective values, 185–186
AC power source, 216–217, 744–745
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Efficiency, energy conversion, 869
Efficiency map, 870
Electrical capacitance, 167
Electrically erasable programmable read-only memory (EEPROM), 686,

721, 722
Electric circuit. See Circuits
Electric current. See Current
Electric machines, 865–924

AC machines, 899–901
alternator (synchronous generator), 901–903
classification of, 866–869
configurations of, 867
direct current, 868, 879–885. See also DC electric machines; DC

generators; DC motors
induction motor, 907–917
magnetic poles in, 877–879
performance characteristics of, 869–875
rotating. See Rotating electric machines

Electric motor, 866
AC, 916–917
direct-current. See DC motors
drives, 918–924
efficiency map of, 870
induction, 907–917
losses in, 869
magnetic structure of, 823–824



steady-state equations, 885
synchronous, 903–907
torque-speed characteristic of, 870

Electrocardiogram (EKG) amplifier, 412–413
Electromagnet, 840–841
Electromechanical energy conversion, 836–853

forces in magnetic structures, 837
moving-iron transducers, 837–846

Electromotive force (emf), 805
back, 882

Electronic gate, 598. See also Gates
Electrons, 10
Electrostriction, 836
Elementary charges, 10
Elliptical filters, 430
Embedded systems, 730
Emitter-base junction (EBJ), 573

forward-biased, 574, 576–577
i-v characteristics of, 575
reverse-biased, 574

Emitter current, 576
Emitter region, BJT, 573
Enable input, 683
Encoders

angular position, 16-4
digital position, 653–654
slotted, 712–713

Energy, and transient response, 262–264
Energy conversion devices, 869. See also Electric machines
Energy storage

in capacitors, 166, 169
circuits elements, 164–166
in ignition coil, 181–182
in inductors, 179



in ultracapacitors, 171–172
Energy transducers, 836
Enhancement-mode MOSFET, 612–619

channel current, 615–617
conductance parameter, 615–617
devices, 613
n-channel, 612, 613
operating regions, 614–615
p-channel, 617
threshold voltage, 614–615

Entropy, 19-9
EPROM. See Erasable programmable read-only memory (EPROM)
Equiripple filters, 432
Equivalent capacitance, 168–169
Equivalent circuits

in AC circuit analysis, 203–204
magnetic, 818–820
of magnetic structure with multiple air gaps, 824–825
source transformations, 108–111

Equivalent inductance, 178
Equivalent resistance, 81

calculation and approximation, 95–96
between nodes, 93–100
Norton, 111–129
resistive network, redrawing of, 94–95
Thévenin, 111–131
wye-delta transformation, 96–97

Erasable programmable read-only memory (EPROM), 684–685
lookup table for automotive fuel-injection system control, 689–690

Ethernet, 19-33
Euler’s formula, 189–190, 940–941
Even functions, 336
Excitation table, 718
Exciter, 903



Exclusive OR (XOR) gate, 661
Externally applied force, 849

F
Fail-safe autopilot logic, 661–662
Falling edge, 506
Falling exponential waveform, 260
Fall time, 17-13 to 17-14
Faraday’s law, 804–807
Federal Communications Commission (FCC), 18-18
Feedback, amplifier, 396–399

negative, 396, 398–399, 402
positive, 396, 432

Feedback factor, 397
FE examination. See Fundamentals of Engineering (FE) examination
Ferrites, 814
Field-effect transistors (FETs), 611

classes, 612
junction, 611
MOSFETs. See MOSFET (metal-oxide semiconducting field-effect

transistor)
Field-programmable gate array (FPGA), 686
Field winding, 866
Filters

AC line interference, 362–363
active, 425–433
bandpass. See Bandpass filters
bessel, 430
Butterworth, 430

determining order of, 433–434
cauer/elliptical, 430
Chebyshev, 430
constant-K, 432



equiripple, 432
high-pass, 346–347

bode plots, 368–371
low-pass, 344–346, 348–351

bode plots, 366–368
overdamped, 432
resonance, 432
Sallen and Key, 432

design of, 434
underdamped, 432
Wheatstone bridge, 353–355

Firing angle, 17-18
First-order differential equation, 274
First-order transient analysis, 272–291

circuit simplification, 273–274
first-order differential equation, 274

First-order transient circuit, 278–279
First-order transient response, 274–275

due to pulsed source, 285–286
Flapper check valve, 528
Flash ADC, 492–493, 498
Flash memory, 721, 722
Flip-flops

D, 705
truth table and excitation table for, 718

defined, 702
JK, 706

timing diagram, 708–709
truth table and excitation table for, 718

outputs, 702
RS, 702–704

clear feature, 703–704
preset feature, 703–704
timing diagram, 702, 707
truth table and excitation table for, 718

T, 707–708



Floating signal source, 479
Flow rate, measurement of, 476–477
Fluid capacitance, 167
Fluid circuits, 179
Fluid flow rate, measurement of, 476–477
Fluid inertance, 179
Flux linkage, 807
Flyback voltage, 17-15
Forced response, 265, 274

first-order, 287–288
Force measurements, 476

Wheatstone bridge and, 87–88
Forward motoring, 918
Fourier series, 335–342, 18-6

coefficients, computation of, 336–338, 339–342
of pulse train, 18-11 to 18-13

Fourier transform, 18-6 to 18-9
inverse, 18-7
pairs, 18-9
properties of, 18-8
of rectangular pulse signal, 18-14 to 18-15
of sine wave, 18-13 to 18-14
of sine wave burst, 18-15 to 18-16

FPGA. See Field-programmable gate array (FPGA)
Frame, electric machine, 874
Free electrons, 522–523
Freewheeling diode, 17-15
Frequency bands, 18-3
Frequency deviation, 18-27
Frequency-division multiple access (FDMA), 19-24
Frequency domain, 18-6
Frequency modulation (FM), 18-26

bandwidth, 18-31 to 18-33



basic principle of, 18-26 to 18-27
commercial, bandwidth of, 18-16 to 18-17
commercial station, 18-31
demodulation, 18-29 to 18-30
narrowband, 18-26, 18-27 to 18-28, 18-30 to 18-31
signals, transmission bandwidth of, 18-29
single-tone, 18-27 to 18-29
wideband, 18-26, 18-28 to 18-29
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Frequency regulation, 917
Frequency response

of bandpass filters, 355–361
circuit simplification, 329–330
computation, 334

using Thévenin’s theorem, 333–334
defined, 328, 347
first-order archetypes, 330–332
functions, 328–329
high-pass filters, 346–347, 352
limits, 443–444
of linear systems to periodic inputs, 338–339, 342–343
low-pass filters, 344–346, 348–350
second-order archetypes, 330–332
zeros/poles, 332–333

quadratic, 377–378
Frequency-shift keying, 19-31
Frequency spectrum, discrete, 336
Frequency-to-voltage converter, 18-29
Friction, and mechanical losses, 870
Fringing, 821
Full adder circuit, 667
Full-duplex transmission, 19-30
Full-load torque, 16-38
Full-scale accuracy, 491



Full-wave rectifier, 540–541
Fundamental frequency, 335
Fundamentals of Engineering (FE) examination, 953–958

content of, 954
Electricity and Magnetism, material related to, 954–955
format of, 954

G
Gain-bandwidth product, 444

increasing, 450
limit in op-amp, 449

Gate arrays, 685–688
Gates, 612, 17-17. See also Logic gates

analog, 598
bipolar junction transistor, 597–601
CMOS, 634–636
digital, 598
digital switches and, 630–631
diodes, 598

Gaussian random variable, 19-6
Generators, 866, 867

direct-current, 896–899. See also DC generators
losses in, 869
steady-state equations, 885

GFCI. See Ground fault circuit interrupter (GFCI)
Global Positioning System (GPS), 18-34 to 18-35
Global System for Mobile Communications (GSM), 19-25
Graphic Interchange Format (GIF), 19-9
Gray code, 652–653
Ground, reference node and, 11–12
Grounded signal source, 479
Ground fault circuit interrupter (GFCI), 785, 786
Grounding procedure, 474



Ground loops, 480
Ground-referenced measurement system, 479, 480
Guard band, 19-24

H
Half adder circuit, 666
Half-bridge VSI, 920
Half-duplex transmission, 19-30
Half-power bandwidth, 359, 18-9, 18-10
Half-power frequencies, 356, 359, 368
Half-wave rectifier, 539–540, 545–546

offset diode model in, 544–545
Hamming distance, 19-23
Handshake protocol, 19-27
Hardware description languages (HDLs), 686
Harmonics, 335, 18-6
HDLs. See Hardware description languages (HDLs)
Heat sink, 17-5 to 17-6
Henrys (H), 176–177
Hexadecimal system, 652

conversion from binary number system to, 655
High-frequency asymptote, 367
High-pass filters, 346–347, 352

bode plots, 368–371
Holding current, 17-17
Holes, 523
Hot-film anemometers, 477
Hot-wire anemometer, 477
Huffman source coding, 19-11 to 19-12

construction of, 19-13 to 19-14
Hybrid stepping motor, 16-10



Hydraulic analog
of capacitors, 167
of current source, 16
of electrical resistance, 31
of inductors, 179
of voltage sources, 15

Hydraulic capacitor, 263
Hydraulic check valves, 527–528
Hydraulic tank, 274–275
Hysteresis, 831

and open-circuit core losses, 870

I
IA. See Instrumentation amplifier (IA)
IC. See Integrated circuit (IC)
Ideal amplifiers, 394–399

characteristics of, 394–395
current, 396
feedback, 396–399

negative, 396, 398–399
positive, 396

input/output impedance, 396
power, 396

Ideal capacitor, 166, 167–168
Ideal diodes, 527–529

conduction state of, determination of, 529–531
half-wave rectifier, 539–540

Ideal inductors, 176–178
Ideal operational amplifier, 401

first golden rule of, 401
Ideal resistor, 29
Ideal sources, 4–5

current, 15–16
voltage, 14–15



Ideal transformers, 767–768
conserve power, 768
turns ratio, 771–772

Ideal wire, 5
IEEE 488 bus, 19-30 to 19-31

ASCII to binary data conversion over, 19-34 to 19-35
Ignition coil, energy storage in, 181–182
Impact ionization, 526
Impedance, 191

of capacitor, 194–195
defined, 192
generalized, 195
of inductor, 193–194
input/output, 394, 396
Ohm’s law, 192
of practical capacitor, 197–198
of resistor, 192
of series-parallel network, 199

Impedance matching, 770
Impedance reflection, 769–770
Impedance transformer, 835–836
Impedance triangle, 222, 745, 750
Index, 723
Inductance. See also Inductors

direct axis, 16-20
and energy stored in magnetic structure, 826
equivalent, 178
quadrature axis, 16-20

Induction machines, 868
Induction motor

single-phase, 16-25 to 16-35
analysis of, 16-27 to 16-30
characteristics of, 16-32 to 16-33
classification of, 16-30 to 16-32. See also specific single-phase motors
slip in, 16-26 to 16-27



Induction motors, 907–917
AC motor speed and torque control, 916–917
performance of, 914–916

Inductive coupling, 482
Inductors, 166, 167

calculating co-energy for, 809–810
current

continuity of, 266–267
from voltage, calculation of, 181

duality, 178–179
energy storage in, 179
hydraulic analog of, 179
ideal, 176–178
impedance of, 193–194
practical, 177

impedance of, 198–199
properties of, 167
voltage, from current, calculation of, 180

Initial steady state, 261
Input offset current, 445

effect on amplifier, 451–452
Input-output transfer characteristic, 502
Input side, of transformers, 767
Input transducer, 18-3
Input winding, 866
Instantaneous AC power, 214–219, 742–747

computation of, 218–219, 746–747
Instantaneous frequency, 18-26
Instrumentation amplifier (IA), 416–418

common-mode gain ratio, 486–487
common-mode rejection ratio, 485, 486–487
gain configuration using internal resistors, 487–488
signal conditioning, 483–486

Insulated gate bipolar transistor (IGBT), 17-1, 17-3, 17-14
Integrated circuit (IC), 399



receivers
AM demodulation, 18-19 to 18-21

Integrating ADC, 491–492
performance analysis of, 499–500

Integrators
ideal, 435
voltage supply limits in, 448–449

Internal resistance, 135
Interrupts, 723–724

reading sensor data using, 723–724

7

Intrinsic concentration, 523
Inverse Fourier transform, 18-7
Inverse Laplace transform, 948

computation of, 948–950
Inverter, 599, 17-5
Inverters, 920–922

CMOS, 630, 631
Inverting amplifier, 402–403

circuit, 415–416
voltage supply limits in, 448

Inverting comparator, 501
Ionosphere, 18-5
I2R loss, 783
Isolation buffer, 404–405
Isolation transformer, 768
I-v characteristics

of circuit elements, 14–17
diode, 527
of emitter-base junction, 575



J
JFETs. See Junction field-effect transistors (JFETs)
JK flip-flop, 706

timing diagram, 708–709
truth table and excitation table for, 718

Joint Photographic Experts Group (JPEG), 19-9, 19-10
Junction, 5
Junction field-effect transistors (JFETs), 611

K
Karnaugh maps, 669–681

don’t-care conditions, 673, 680–681
and logic circuit

design, 675–676
simplification, 678

simplifying expressions by using, 677–678
sum of products/product of sums realizations, 672–673

KCL. See Kirchhoff’s current law (KCL)
Kirchhoff, Gustav Robert, 22
Kirchhoff’s current law (KCL), 22, 106

application of, 25–26
electrical harnesses, 23–24

Kirchhoff’s voltage law (KVL), 23, 26–28, 106
application of, 27–28
electric vehicle battery pack, 26–27
mesh current and, 48–49

KVL. See Kirchhoff’s voltage law (KVL)

L
Laplace transform, 943, 946–950

computation of, 947–948
inverse, 948–950



one-sided/unilateral, 947
pairs, 948

Large-signal current gain, 576
Large-signal model, BJT, 581–590

npn, 581, 582
Latching current, 17-17
LC circuits

nonseries/nonparallel, analysis of, 309–311
parallel, 292–294

critically damped, complete response of, 305–307
underdamped, complete response of, 302–303

series, 294–296
overdamped, complete response of, 303–305

Leading edge-triggered, 705
Leakage flux, 817
Least significant bit (LSB), 648
LEDs. See Light-emitting diodes (LEDs)
Lego® 9V motor, model 9842, 627
Lempel-Ziv-Welch (LZW) code, 19-12 to 19-13

construction of, 19-14
Lenz’s law, 806
Level clamp, 503
Level-sensitive, RS flip-flop, 702
Level shifter, 418–420
Light-emitting diodes (LEDs), 557–558

analysis of, 559–560
driver, 585–586
materials and wavelengths, 558

Light wave transmission, 18-6
Linear block channel coding, 19-22 to 19-23
Linear magnetic structure, 838
Linear networks, and principle of superposition, 100–104
Linear variable differential transformer (LVDT), 811–812



Lines of force, 805
Line voltages, 778, 921
Linking, magnetic flux, 807
Loading effects, 136, 396, 397
Load-line, 106, 107

analysis, 143–144
equation, 142, 533

Load networks, 107–108
Load neutral voltage, 921
Load phase voltages, 921
Loads, 107–108

full-load torque, 16-38
reflected inertia calculations, 16-36 to 16-37

Local area networks (LANs), 19-33
Locked-rotor torque, 16-38
Locked-step mode, stepping motor operation, 16-15
Logical addition. See OR gate
Logical expression, simplification of, 662
Logical multiplication. See AND gate
Logic functions, 657. See also Product of sums (POS); Sum of products

(SOP)
De Morgan’s laws, 659–660
realizing from truth tables, 663
sum of products expression from, 676

Logic gates. See also Gates
AND, 657–659
defined, 657
NAND. See NAND gate
NOR. See NOR gate
NOT, 658
OR, 598, 657–659
sequential. See Sequential logic gates
XOR/exclusive OR, 661

Logic modules



combinational
decoders, 685
gate arrays, 685–688
multiplexers, 682–684
programmable logic devices, 685–688
read-only memory, 684–685
SRAM (static random-access memory), 685

Long-term steady state, 264
DC, 267–268, 274
response

of first-order system, 275
Look-up tables (LUTs), 686
Loop, 8
Loop gain, 397

open. See Open-loop gain
Loudspeaker, 851–8537
Lower sideband signal, 18-19
Low-frequency asymptote, 367
Low-pass filters, 344–346, 348–349

active filters, 426–429
application of, 349–350
attenuation, 350–351
bode plots, 366–368

LSB. See Least significant bit (LSB)
LUTs. See Look-up tables (LUTs)
LVDT. See Linear variable differential transformer (LVDT)

M
Machine language, 722
Machines. See Electric machines

switched reluctance, 16-17 to 16-20
Magnetic circuits, 815–821

equivalent, magnetic structure and, 818–820



Magnetic coupling, 807
Magnetic domains, 830–831
Magnetic fields

and Faraday’s law, 804–807
intensity, 804

Magnetic flux, 804, 877–878
B-H curves, 830–832
density of, 804
lines, 806
linking, 807
mean path for, 815

Magnetic materials, 830–832
Magnetic poles, in electric machines, 877–879
Magnetic reluctance position sensor, 826–830

voltage calculation in, 828–830
Magnetic structures

with air gaps, 821–823
of electric motor, 823–824
equivalent circuit, with multiple air gaps, 824–825
and equivalent magnetic circuit, 818–820
forces in, 837
linear, 838

Magnetism
Ampère’s law, 812–815
electricity and, 804–815
mutual inductance, 808–810
self-inductance, 808–810

Magnetizing current, 866
Magnetomotive force (mmf), 814

counter-mmf, 833
excess, 831

Magnetostriction, 836
Main winding, split-phase motor, 16-30
Mass storage devices, 721
Matched resistance, 132



Matlab®

to solve for mesh currents, 51–52
to solve linear equations, 43–45

Matrix equation, 935–937
Maximum power transfer theorem, 132–134
Maximum symmetric swing, 17-9
Mean path, for magnetic flux, 815
Mean value, 184–185
Measurements/measurement system

configurations, signal sources and, 479–480
defined, 474
devices, 136–139. See also specific devices
differential, 479, 480
differential-pressure, 476
dimensional, 476
flow rate, 476–477
fluid flow rate, 476–477
force, 476

Wheatstone bridge and, 87–88
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ground-referenced, 479, 480
motion, 476
noise, reduction in, 482–483
pressure, 476
sensors/transducers, 474

classification of, 475–476
temperature

resistance temperature detector, 478–479
thermocouples, 477–478

torque, 476
Mechanical loads, 866
Mechatronics, 730
Memory, 721–722

EEPROM, 721, 722



flash, 721, 722
random-access, 721, 722

dynamic, 721
static, 685, 721, 728

read-only, 684–685, 721
types of, 721

Memory element, flip-flop as, 702
Memory map, 722–723
Mesh, 8
Mesh current method/analysis, 38, 48–61

AC circuit analysis, 212–214
with controlled sources, 56–60
with current sources, 53–56
examples of, 50–52
remarks on, 61

Microcontrollers, 724
ATmega328P®, 724–730

block diagram, 725
capabilities, 726
memory, 728
pin configurations, 726
power requirements, 727

Microphone, 170–171
Microprocessors, 724

analog-to-digital converter, 489, 491–495
digital-to-analog converter, 489–491
single-core, 721

Minimum distance (MD) detector, 19-17 to 19-18
Minterm, 669
Mixer, 18-19
Mnemonics, 722
Mobility, 523
Modem, 19-31
Modulating signal, 18-3, 18-18



Modulation index, 18-19, 18-27
Modulo-4 binary up-down counter

state diagram of, 719
state transition table for, 719

Monolithic integrated circuit, 485
Morse, Samuel, 19-1
Morse code, 18-2, 19-1 to 19-2
MOSFET (metal-oxide semiconducting field-effect transistor), 611, 17-1,

17-8
amplifier

analysis of, 622–623
large-signal, 624–629

bidirectional analog gate, 632–633
circuits

biasing, 619–623
DC motor drive circuit, 627–629

as current source, for battery charging, 626–627
enhancement-mode, 612–619

channel current, 615–617
conductance parameter, 615–617
devices, 613
n-channel, 612
operating regions, 614–615
p-channel, 617
threshold voltage, 614–615

operating state of, 617–618
power, 17-3, 17-14
Q point

calculation, 620–621
graphical determination, 619–620

self-bias circuit, 621–622
switches, CMOS technology and, 630–637

analog, 631–632
digital, 630–631

Most significant bit (MSB), 648
Motion, measurement of, 476



Motion Picture Experts Group, 19-13
Motion voltages, 807
Motors

acceleration characteristics of, 16-38
circuits

MOSFET DC motor drive circuit, 627–629
DC. See DC motors
efficiency, calculation of, 16-38 to 16-39
motion requirements, 16-40
performance calculations, 16-36 to 16-39
power requirements, 16-41
reflected load inertia calculations, 16-36 to 16-37
selection process, 16-35 to 16-41
sizing, 16-40 to 16-41
switched reluctance, 16-17 to 16-20
temperature, calculations of, 16-39

Motor vehicles
automotive battery charger, 17-20 to 17-21
automotive fuel-injection system control, EPROM-based lookup table

for, 689–690
automotive ignition circuit, 312–315
automotive suspension, 294–295
electrical harnesses, 23–24
resistive throttle position sensor, 84–85

Moving-coil transducers, 846–853
generator action, 848–851
motor action, 847–848

Moving-iron transducers, 837–846
MP3, 19-13
MSB. See Most significant bit (MSB)
Multiplexers (MUX), 682–684
Multivibrators, 505–507
Mutual inductance, 482, 808–810
Mutual induction, 768
MUX. See Multiplexers (MUX)



N
Nameplate

split-phase motors, analysis of, 16-34 to 16-35
transformer, 834–835

Nameplates, 871, 873–875
NAND gate, 599–601, 660–661

function realization with, 665–666
AND function realization with, 664–665
RS flip-flop implementation, 702–703
sum of products realization using, 677

Narrowband frequency modulation, 18-26, 18-27 to 18-28, 18-30 to 18-31
Natural frequency, 264, 292, 295, 360, 952

damped, 298
Natural response, 265, 274

first-order, 287–288
n-channel MOSFETs (NMOS), 614

gate-to-source voltage for, 630
switch, 633–634

Negative feedback, of amplifier, 396, 402
benefits of, 398–399

Negative logic convention, 657
Negative power, 17
NE555 timing circuits, 507–508

analysis of, 510
Networks

AC, analysis of. See AC network analysis
counting nodes in, 9–10
defined, 4
equivalent

Norton, 111–129
Thévenin, 111–131

features of, 4–8
ideal wire, 5
linear, 100–103
load, 107–108



nodes in, 5–7
resistive, 94–95
source, 106–107

Neutral node, 778
Neutrons, 10
Nibble, 648
NMOS (n-channel MOSFETs), 614

gate-to-source voltage for, 630
switch, 633–634

Nodes, 5–7
equivalent resistance between, 93–100
reference. See Reference node
in state diagram, 717

Node voltage, 5, 43, 82
analysis of. See Node voltage method/analysis

Node voltage method/analysis, 38–48
AC circuits, 208–209
with controlled sources, 56–58
examples of, 41–43
mesh currents method. See Mesh current method/analysis
remarks on, 61
with voltage sources, 46–48

Noise
reduction, 482–483
sources, 480–482

Noise coupling mechanism, 480–482
Noise temperature, 19-20
No-load rotational loss, 870
Noninverting amplifier, 403–404
Noninverting comparator, 501
Non-linear circuit element, 141–144

description of, 141
graphical analysis, 142

Nonlinear load power dissipation, 142–143



Nonseries/nonparallel LC circuit
analysis of, 309–311

Nonzero Zener resistance, effect in regulator, 551–552
NOR gate, 660–661

function realization with, 665–666
AND function realization with, 665

Norton current, computation of, 122–126
Norton equivalent resistance, 111–129

computation
with dependent sources, 113–114
without dependent sources, 113

experimental determination of, 128–129
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Norton model, 135, 136
Norton’s theorem, 111
NOT gate, 658
n-type semiconductors, 523
Null position, 811
Number systems

binary. See Binary number system
decimal, 648, 649–650
hexadecimal system, 652

Nyquist sampling criterion, 495

O
Odd functions, 336
Oersted, H. C., 804
Offset diode model, 529, 531

of half-wave rectifier, 544–545
Offset voltage, 444–445

diodes, 533



Ohmic region, 614
Ohmmeter, 137
Ohm’s law, 29, 30, 192, 331, 403

in node analysis, 39
150 percent torque, 915
One-phase excitation mode, 16-16
One-port network, 79, 111, 112
Ones complement, binary number system, 650
One-sided Laplace transform, 947
Op-amp. See Operational amplifier (op-amp)
Op-amp summer. See Summing amplifier
Open-circuit, 30, 31
Open-circuit core losses, 870
Open-circuit voltages, 107, 133
Open-loop gain, 395

operational amplifier, 400
Open-loop mode, amplifier, 396
Operational amplifier (op-amp), 393, 394, 399–400

active filters, 425–433
archetypes, 402–405
charge amplifiers, 436–437
circuit component values, criteria for selecting, 447
common mode, 411, 415
common-mode rejection ratio, 447
comparator, 501–503
difference/differential amplifier, 408–410
differential mode, 411, 415
differentiators, 435–436
frequency response limits, 443–444
gain-bandwidth product limit in, 449
ideal, 401

first golden rule of, 401
input bias currents, 445
instrumentation amplifier, 416–418



integrated circuit, 399
integrators

ideal, 435
voltage supply limits in, 448–449

inverting amplifier, 402–403
circuit, 415–416
voltage supply limits in, 448

isolation buffer/voltage follower, 404–405
level shifter, 418–420
multiple input source, 406–410
noninverting amplifier, 403–404
offset voltage, 444–445
open-loop gain of, 400
output offset adjustment, 445
physical limitations of, 443–447
proportional-integral control with, 438–441
Schmitt trigger, 503–505

analysis and design of, 509–510
short-circuit output current, 446–447
slew rate limit, 445–446
small-signal, low-frequency model, 400
summing amplifier, 407–408
superposition, principle of, 406–410
temperature control using, 420–424
Thévenin’s theorem, application of, 405–406
voltage supply limits, 443

Operational instruction codes (op codes), 722, 729
Optical fibers, 18-6
Optocoupler, 559
Opto-isolators, 559
OR gate, 598, 657–659
Output range, 491
Output settling time, 491
Output transducer, 18-3
Output winding, 866



Overdamped filter, 432
Overdamped series LC circuit

complete response of, 303–305
Overdamped transient response, 260, 296–297

P
PAL. See Programmable array logic (PAL)
Parallel data transmission, 19-27

IEEE 488 bus, 19-30 to 19-31
Parallel LC circuits, 292–294

critically damped, complete response of, 305–307
underdamped, complete response of, 302–303

Parallel processing, 724
Parallel resistors, and current division, 88–92
Parametric source coding, 19-13
Parity bit, 19-30
Passband. See Bandwidth
Passband, of filter, 356
Passive sign convention, 35, 17-20
PCB. See Printed circuit board (PCB)
p-channel MOSFETs (PMOS), 614

enhancement-mode transistor, 617
gate-to-source voltage for, 630

Pentavalent impurities, semiconductor, 523
Periodic waveforms, time-dependent, 183–187
Period measurement with additional transition detection (PMA), 713
Period measurement with missing transition detection (PMM), 713
Permanent-magnet (PM) DC motors, 888–889, 16-4

dynamic response of, 893–894
Permanent-magnet machine, 885
Permanent-magnet rotor stepping motor, 16-9
Permanent split-capacitor motors, 16-32



Permeability, 812
Permittivity, of dielectric material, 170
Phase angle (ϕ), 185
Phase-locked loop (PLL), 18-30
Phase-shift keying, 19-31
Phase shifts, 165
Phase voltages, 778
Phasors, 188–191

AC circuit analysis, 164, 206–207
notation, addition of two sinusoidal sources using, 196–197
polar and rectangular forms, 189, 190

Photoresistor, 33
Physical structure, DC electric machines, 879–881
Piecewise linear diode model, 533–534, 537–538
Piezoelectric effect, 836
Piezoelectric transducers, 436
PLA. See Programmable logic array (PLA)
PLC. See Programmable logic controller (PLC)
PLDs. See Programmable logic devices (PLDs)
PMA. See Period measurement with additional transition detection (PMA)
PMM. See Period measurement with missing transition detection (PMM)
PMOS (p-channel MOSFETs), 614

enhancement-mode transistor, 617
gate-to-source voltage for, 630

pn junction
in bipolar junction transistor, 573–574
semiconductor diodes, 524–527

Pole number control, 916–917
Poles

frequency response function, 332–333
of second-order circuit, 952

Pole voltages, 920
Position encoders, 653–654



Position feedback, 16-19
Positive abc sequence, 778
Positive feedback, 396, 432
Positive logic convention, 657
Positive power, 17, 35
Potential barrier, 525
Potential difference, 11
Potentiometer, 34–35
Power

calculations, 20–21
dissipation, in resistors, 35
maximum transfer, 132–134
measurement devices, 136–139
negative, 17
nonlinear load dissipation, 142–143
and passive sign convention, 17-20
positive, 17, 35
resistors. See Resistors

Power amplifiers, 17-8 to 17-13
audio, 17-8
efficiency of, 17-11 to 17-13
push-pull, 17-9 to 17-11

Power angle, 905
Power bipolar junction transistor, 17-3
Power diodes, 17-2
Power dissipation, 491
Power efficiency, of transformer, 834
Power electronic circuits, 17-3 to 17-5
Power electronic devices, 17-1

AC-DC converters, 17-14 to 17-22
amplifiers, 17-8 to 17-13
classification of, 17-2 to 17-3
transistor switches, 17-13 to 17-14
voltage regulators, 17-5 to 17-7



Power factor (pf), 217–218, 238–239, 745–746, 766–767
correction, 228–235, 756–764

series capacitor and, 232, 759–760
Power grid, 787
Power MOSFETs, 17-3, 17-14
Power supply requirements, 491
Power triangle, 222, 745

complex, 227, 750, 754–755
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Practical inductors, 177
impedance of, 198–199

Preset feature, RS flip-flop, 703–704
Pressure, measurement of, 476
Primary input side, transformer, 767
Primary winding, 866
Prime mover, 866
Principle of superposition, 79

linear networks and, 100–104
Principles of electromechanics, 803–855

electricity and magnetism, 804–815
electromechanical energy conversion. See Electromechanical energy

conversion
magnetic circuits, 815–821
magnetic materials and B-H curves, 830–832
transformers, 832–836

Printed circuit board (PCB), 724
Probability density function (PDF), 19-6
Probability mass function (PMF), 19-5
Probability theory, 19-2

conditional, 19-4 to 19-5
random experiment, 19-3 to 19-4
random variables, 19-5 to 19-7

Product of sums (POS), 659–660



design, 679–680
expressions, De Morgan’s laws and, 663–664
realizations, 672–673

Program counter, 728
Program counter (PC) register, 723
Programmable array logic (PAL), 686
Programmable logic array (PLA), 686
Programmable logic controller (PLC), 720
Programmable logic devices (PLDs), 685–688
Proof by perfect induction, 658
Propagation delays, 710
Proportional gain, 421
Proportional-integral control with op-amp, 438–441
Protons, 10
p-type semiconductors, 523
Pull-out torque, 905, 16-20
Pull-up torque, 914
Pulse-amplitude modulation (PAM), 19-18 to 19-21
Pulse-code modulation (PCM), 19-7 to 19-8
Pulse-position modulated (PPM), 19-15 to 19-18
Pulse-width modulation (PWM), 726, 922
Push-pull amplifiers, 17-9 to 17-11

Q
Q function, 19-6 to 19-7
Quadratic filter sections, 431–432
Quadrature axis inductance, 16-20
Quality factor, 358, 360, 432
Quantization, 647

analog-to-digital converter, 491
error, 491
noise, 19-7, 19-8



Quiescent/idle currents, 582
Quiescent (operating)/Q point, 533

MOSFET
calculation, 620–621
graphical determination, 619–620

R
RADAR, 18-35
Radio astronomy, 18-5
Radio frequency waves, 18-5
Random-access memory (RAM), 686, 721, 722

dynamic, 721
static, 685, 721, 728

Random variables, 19-5 to 19-7
continuous, 19-6
discrete, 19-5
gaussian, 19-6

Rated current, 872
Rated torque, 915
Rated voltage, 871
Rated voltamperes, 872
RC circuit, differential equation of, 268–269
RC filter

high-pass, 346–347, 352
bode plots, 368–371

low-pass, 344–346, 348–350
bode plots, 366–368

Reactance, 195
synchronous, 904
transient, 916

Reactive power, 222, 223, 750
computation of, 224–225, 752–753

Read-only memory, 721



Real power, 222, 223, 750
computation of, 224–225, 752–753
transfer for complex loads, 225–227, 753–754

Recombination, 523
Rectifier circuits, 17-3

bridge rectifier, 542–543, 546
DC power supply, 543–544
full-wave, 540–541
half-wave, 539–540, 545–546

offset diode model in, 544–545
single-phase, 17-14 to 17-15
three-phase, 17-15 to 17-17

Reduced instruction set computing (RISC) microcontroller, 725
Redundancy, 19-8
Reference node, 6–7, 39

and ground, 11–12
Reference pin, 486
Regenerative braking, 918
Registers, 713–714

CPU, 722–723
shift, 714

Regulation, 872–873
Relay, 844–846
Reluctance, 816

of air gap, 821
magnetic reluctance position sensor, 826–830

Reluctance torque, 16-20
Remanent/residual magnetization, 831
Residential wiring, 783–786
Resistance, 29, 195

conduction, 38
of copper wire, 30
equivalent. See Equivalent resistance
hydraulic analog of, 31



internal, 135
matched, 132
measurement devices, 136–139
small-signal, 533, 536–537
strain gauge, 86
thermal, 37
Zener regulator, 550–551

Resistance temperature detector (RTD), 478–479
Resistive network

redrawing, 94–95
Resistive throttle position sensor, 84–85
Resistors

carbon composites, 31
color code, 32
discrete, 31–33
impedance of, 192
in parallel, 88–92
power dissipation in, 35
power ratings, 35–36
in series, 80–82, 92
variable, 33–34

Resolution, 490
Resolvers, 16-3 to 16-4
Resonance

and bandwidth, 356–359
filters, 432

Resonant frequency, 358
Reverse-biased direction, 525
Reverse breakdown, 526
Reverse breakdown voltage, 547
Reverse motoring, 918
Reverse saturation current, 525
Right-hand rule, 806, 877
Ring counter, 711



timing diagram for, 716
Ripple counter, 710
RISC microcontroller. See Reduced instruction set computing (RISC)

microcontroller
Rise time, 17-13
Rising edge, 506
Rising exponential waveform, 260
RL circuit, differential equation of, 269–271
rms (root-mean-square) value, 185–186

of AC power source, 216–217, 744–745
ratio of, 186
of sinusoidal waveform, 186–187

Root-mean-square (rms) value, 185–186
of AC power source, 744–745
ratio of, 186
of sinusoidal waveform, 186–187

Rotating electric machines, 866–879
basic operation of, 876–877

Rotating magnetic field, 879
Rotating magnetic fields, 899–901
Rotor, 866, 867–868

squirrel cage, 907
wound, 907

Rotor control, 917
RS flip-flop, 702–704

clear feature, 703–704
preset feature, 703–704
timing diagram, 702, 707
truth table and excitation table for, 718

RS-232 standard, and serial data transmission, 19-31
RTD. See Resistance temperature detector (RTD)

S



Safety circuit, for stamping press operation, 673–675
Salient poles, 877
Sallen and Key filters, 432

design of, 434
Sample-and-hold amplifier, 493–495, 499
Sampling interval, 494
Saturation, 830
Saturation current, 576
Scalar field, 805
Scale current, 576
Schmitt trigger, 503–505

analysis and design of, 509–510
Secondary input side, transformer, 767
Secondary winding, 866
Second-order filter sections, 431–432
Second-order transient analysis, 292–315

characteristics of, 292
parallel LC circuits, 292–294
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series LC circuits, 294–296
transient response, 296–298

Seebeck effect, 477
Seismic displacement transducer, 363–366
Seismic transducer, 854–855
Seitzer, Dieter, 19-13
Self-excited machines, 881
Self-heating error, 478
Self-inductance, 807, 808–810
Self-induction, 768
Semiconductor, 522

diodes. See Semiconductor diodes
electrical conduction in, 522–524



n-type, 523
p-type, 523

Semiconductor diodes, 524
diffusion current, 524
diode thermometer, 555–556
drift current, 525
large-signal models for, 527–531

ideal diode model, 527–529
offset diode model, 529, 531

operating point, determination of, 534–536
pn junction and, 524–527
rectifier circuits

bridge rectifier, 542–543, 546
DC power supply, 543–544
full-wave, 540–541
half-wave, 539–540, 544–546

reverse saturation current, 525
signal processing applications

peak detector, 553–555
small-signal models for, 532–538

piecewise linear diode model, 533–534
Sense pin, 486
Sensor calibration circuit, 413–414
Sensors, 474, 836. See also Transducers

classification of, 475–476
magnetic reluctance position, 826–830

Separately excited DC generator, 896–899
Separately excited machines, 881, 883–884, 885
Sequential logic gates, 701

design, 717–720
digital counters, 709–711. See also Counters
flip-flops, 702

D, 705, 718
JK, 706, 708–709, 718
outputs, 702
RS, 702–704, 707, 718



T, 707–708
programmable logic controller, 720
registers, 713–714

Serial data transmission, 19-30 to 19-31
Serial peripheral interface (SPI), 726
Series-connected machine, 881, 885
Series DC motor, 887–888, 892–893
Series LC circuits, 294–296

overdamped, complete response of, 303–305
Series-parallel network, impedance of, 199
Series resistors, 92

and voltage division, 80–82
Seven-segment display, 714
Shaded-pole motors, 16-32
Shannon noisy channel coding theorem, 19-22
Shielding, 482
Shielding procedure, 474
Shift register, 714
Short-circuit

current, 107, 122–126, 133
Short-circuit current limit

effect on amplifier, 453–454
Short-circuit output current limit, 446–447
Shunt-connected machine, 881, 885
Shunt DC motor, 886–887, 890–892
Signal conditioning, 474, 483–486

instrumentation amplifier, 483–486
Signals

analog, 646
carrier, 18-18
compressibility, 19-8 to 19-10
digital, 646–647

binary, 598
binary signal, 647–648



modulating, 18-3, 18-18
processing of, diodes applications

peak detector, 553–555
redundancy, 19-8
sinusoidal. See Sinusoidal signals
sources, 479–480
spectrum of, 18-6
television, 18-16 to 18-17
time-dependent sources, 183–187

Signal-to-noise ratio (SNR), 19-20
Signal–to–quantization noise ratio (SQNR), 19-7
Sign convention, 17-20
Sign-magnitude convention, 651
Silicon-controlled rectifier (SCR), 17-17
Simplex transmission, 19-30
Simultaneous equations, 935–937
Single-core microprocessor, 721
Single-phase AC motors, 16-21 to 16-35

fractional-horsepower motors, 16-21
induction. See Induction motor
universal motor, 16-21, 16-22 to 16-23

analysis of, 16-23 to 16-24
torque expression, 16-24

Single-phase AC power, 777
Single-phase rectifier circuits, 17-14 to 17-15
Sinusoidal frequency response. See Frequency response
Sinusoidal PWM, 922
Sinusoidal signals, 163, 184

characteristics of, 164
sources

addition, using phasor notation, 196–197
circuits with, phasor solution of, 188–191

spectrum, 18-10 to 18-11
waveforms

average value of, 186



rms value of, 186–187
Sky waves, 18-5
Slewing mode, stepping motor operation, 16-15
Slew rate limitation

effect on amplifier, 452–453
in op-amp, 445–446

Slip, 909
Slip, in induction motor, 16-26 to 16-27
Slip control, 917
Slip frequency, 909
Slip speed, 909
Slotted encoder, 712–713
Small-signal current gain, 576
Small-signal model, BJT, 581, 591–597
Small-signal resistance, 533, 536–537
Snubbers, 17-14 to 17-15
Solar cell, 557
Solenoids, 841–843

facts about, 843–844
Solid state electronics, 521. See also Semiconductor
SONAR, 18-36
SOP. See Sum of products (SOP)
Source, 612

loading, 133
Source coding, 19-8 to 19-14

codewords, 19-10 to 19-11
compressibility, 19-8 to 19-10
Huffman, 19-11 to 19-12

construction of, 19-13 to 19-14
Lempel-Ziv-Welch, 19-12 to 19-13

construction of, 19-14
parametric, 19-13

Source-follower MOSFET amplifier, 625



Source-load perspective, 79, 105–108
Source networks, 106–107
Source transformations, 108–111
Space communications, 18-5
Spectral analysis

bandwidth, 18-9 to 18-10
Fourier series, 18-6
Fourier transform, 18-6 to 18-9
spectra, 18-6

Spectral lines, 18-6
Spectral representation, 18-6
Spectrum,of signals, 18-6
Speed range, 915
Split-phase motors, 16-30 to 16-31

nameplate analysis, 16-34 to 16-35
Spread spectrum, 19-25 to 19-26
SP register. See Stack pointer (SP) register
Square wave, integrating, 437–438
Squirrel cage rotor, 907
SRAM. See Static random-access memory (SRAM)
Stack, 728
Stack pointer (SP) register, 723
Stamping press, safety circuit for operation of, 673–675
Standard form, frequency response function, 371
Standard normal, 19-6
Standard terms, 366
Standard terms, frequency response function, 371–372
Starting torque, 871, 908, 914, 916
State, of machine, 717
State diagram, 717

of modulo-4 binary up-down counter, 719
State transition diagrams, 710
State transition table, 717



for 3-bit binary counter, 718
State variables, 165, 258, 261
Static random-access memory (SRAM), 685, 721, 728
Static torque, 16-38
Stator, 866, 867–868
Steady-state solution, 166
Step-down chopper, 918
Step-down transformer, 768
Stepping/stepper motors, 16-9 to 16-17

hybrid, 16-10
ideal torque–speed characteristic for, 16-15
locked-step mode, 16-15
one-phase excitation mode, 16-16
permanent-magnet rotor, 16-9
slewing mode, 16-15

12

torque equation, 16-14
two-phase, four-pole, 16-11 to 16-12
two-phase excitation mode, 16-16
variable-reluctance, 16-9 to 16-10

analysis of, 16-12 to 16-13
step angle determination of, 16-13 to 16-14

Step-up chopper, 919
Step-up transformer, 768
Storage time, 17-13
Strain gauge, resistance, 86
Strain gauge bridges, 88
Stray-load loss, 870
Stray-load losses, 870
Substations, 787
Successive-approximation ADC, 492
Summing amplifier, 407–408



Sum of products (SOP), 659–660
design, 679–680
expression, deriving from logic circuit, 676
realizations, 672–673

using NAND gates, 677
Supernode, 6
Superposition, principle of, 406–410
Supply neutral voltage, 921
Swing check valve, 527–528
Switched reluctance (SR) motors, 16-17 to 16-20

operating principles of, 16-19 to 16-20
Switches, 17-3

bipolar junction transistor, 597–601
MOSFET, CMOS technology and, 630–637

analog, 631–632
digital, 630–631

NMOS, 633–634
transistors and, 570–571

Switching regulator, 17-4
Synchronous counter, 711
Synchronous data transmission, 19-27
Synchronous generator, 901–903
Synchronous machines, 868
Synchronous motors, 903–907

torque, 903–904
Synchronous reactance, 904
Synchronous speed, 900

T
Tail/Q function, 19-6 to 19-7
Telegraph, 18-2
Television signals, 18-16 to 18-17
Temperature



control, using op-amp, 420–424
measurements

resistance temperature detector, 478–479
thermocouples, 477–478

Temperature coefficient (α), 478
Teslas (T), 804
T flip-flop, 707–708
Thermal capacitance, 263, 422
Thermal circuit model, 38
Thermal properties, 916
Thermal resistance, 37
Thermal systems, 37

dynamics of, 264
first-order, 272–273

Thermal voltage, 525
Thermistors, 31, 33, 478. See also Discrete resistors
Thermocouples, 477–478
Thermoelectric voltage, 477
Thévenin equivalent resistance, 111–131

computation
with dependent sources, 113–114, 116–117
without dependent sources, 113, 114–115

experimental determination of, 128–131
Thévenin model, 135, 136
Thévenin’s theorem, 111

AC circuit analysis, 211–212
and circuit simplification, 329–330
frequency response computation using, 333–334
and operational amplifier, 405–406

Thévenin voltage
computation, 117–122

for network with dependent source, 121–122
for network with one independent source, 119
for network with two independent source, 120



3-dB bandwidth, 18-9, 18-10
3-dB frequency, 368
Three-phase AC power, 777–783

balanced delta loads, 779–781
balanced wye loads, 779
balanced wye-wye circuit, 781
parallel wye-delta load circuit, 781–783

Three-phase rectifier circuits, 17-15 to 17-17
Thyristors, 17-2

circuit, 17-21 to 17-22
and controlled rectifiers, 17-17 to 17-18
turnoff time of, 17-2 to 17-3
and variable voltage supply, 17-18 to 17-20

Time constant, 165, 261, 263, 264, 274
capacitor energy and, 277

Time-division multiple access (TDMA), 19-25
Time domain, 18-6
Timing circuits, 500

multivibrators, 505–507
NE555, 507–508

analysis of, 510
Timing diagram

JK flip-flop, 708–709
for ring counter, 716
RS flip-flop, 702, 707

Torque
acceleration, 16-38
breakdown, 16-38
equation of step motor, 16-14
expression, universal motor, 16-24
full-load, 16-38
locked-rotor, 16-38
pull-out, 16-20
reluctance, 16-20
sinusoidal, generation in brushless DC motors, 16-7 to 16-8



static, 16-38
Torque, measurement of, 476
Torque angle, 16-20
Torque-speed characteristic, 870–871, 875–876
Tracking ADC, 491
Trailing edge-triggered, 706
Transducers, 474. See also Sensors

capacitive displacement, 170–171, 204–206
peak detector circuit for, 553–555

energy, 836
moving-coil. See Moving-coil transducers
moving-iron, 837–846
piezoelectric, 436
seismic, 854–855
seismic displacement, 363–366

Transfer functions, 946, 950–952
Transformers, 767, 832–834

center-tapped, 768, 772–773
ideal, 767–768

conserve power, 768
impedance, 835–836
impedance reflection, 769–770
input side of, 767
isolation, 768
linear variable differential, 811–812
and maximum power transfer, 770–771, 775–776
nameplate, 834–835
output side of, 767
power efficiency, 834
and power line efficiency, 773–775
step-down, 768
step-up, 768
voltages, 807

Transient analysis, 259–260
first-order, 272–291

circuit simplification, 273–274



first-order differential equation, 274
objectives of, 258
second-order, 292–315

characteristics of, 292
parallel LC circuits, 292–294
series LC circuits, 294–296
transient response, 296–298

Transient event, defined, 261
Transient problems solutions, elements of, 261–271
Transient reactance, 916
Transient response, 257, 260

of automotive ignition circuit, 312–315
critically damped, 260, 297
energy and, 262–264
first-order, 274–275

due to pulsed source, 285–286
initial conditions on, 261–262, 265–266
overdamped, 260, 296–297
second-order, 296–298
of ultracapacitors, 283–285
underdamped, 260, 297–298

Transient solution, 166
Transistors, 17-1

amplifiers and, 570–571
bipolar junction. See Bipolar junction transistor (BJT)
field-effect. See Field-effect transistors (FETs)
switches, 17-13 to 17-14, 570–571

Transmission lines, 787
Triac, 17-3
Trivalent impurities, semiconductor, 523
Troposphere, 18-5
Tropospheric waves, 18-5
Truth tables, 657–658

realizing logic functions from, 663
TTL (transistor-transistor logic), 599



NAND gate, 599–601
Tuning circuits, 361
Turbine flowmeter, 477
Turnoff delay time, 17-14
Turnoff time, of thyristors, 17-2 to 17-3
Turn-on delay, 17-14
Turns ratio, 767

ideal transformer, 771–772
TWI. See Two-wire serial interface (TWI)
Twisted-pair wire, 482–483, 19-33
Two-phase, four-pole step motor, 16-11 to 16-12

13

Two-quadrant chopper, 919
Twos complement, binary number system, 650

operations of, 654
Two-wire serial interface (TWI), 726

U
Ultracapacitors

energy storage in, 171–172
transient response of, 283–285

Ultrawideband (UWB), 19-26 to 19-27
Underdamped filter, 432
Underdamped parallel LC circuit

complete response of, 302–303
Underdamped series LC circuit

complete response of, 307–309
Underdamped transient response, 260, 297–298
Unilateral Laplace transform, 947
Unit impulse function, 18-8
Unit-step function, 947



Unity-gain frequency, 428
Universal flip-flop. See JK flip-flop
Universal motor, 16-21, 16-22 to 16-23

analysis of, 16-23 to 16-24
torque expression, 16-24

Universal serial asynchronous receive and transmit (USART) interface, 726
Universal Serial Bus (USB), 19-31 to 19-33
Up-down counter, 711
Upper sideband signal, 18-19
USART interface. See Universal serial asynchronous receive and transmit

(USART) interface
USB interface, Arduino, 731

V
VA. See Volt-amperes (VA)
VAR. See Volt-amperes reactive (VAR)
Variable-reluctance position sensor, 827–828
Variable-reluctance stepping motor, 16-9 to 16-10

analysis of, 16-12 to 16-13
step angle determination of, 16-13 to 16-14

Variable resistors, 33–34
Variable-torque loads, 895
VCCS. See Voltage-controlled current source (VCCS)
Volt, 11
Volta, Alessandro, 10, 11
Voltage, 4, 582, 871–872

balanced, 777
breakover, 17-17
calculation, in magnetic reluctance position sensor, 828–830
capacitor, from current and initial condition, 174–175
defined, 11
enhancement-mode MOSFET, 614–615
flyback, 17-15



induced, 826
inductors, from current, calculation of, 180
line, 778, 921
load neutral, 921
load phase, 921
measurement devices, 136–139
motion, 807
node, 5, 43, 82
offset, 444–445
open-circuit, 107, 133
phase, 778
pole, 920
rated, 871
regulation, Zener diodes and, 547–552
reverse breakdown, 547
supply limits, 443

in inverting amplifier, 448
in op-amp integrator, 448–449

supply neutral, 921
thermal, 525
thermoelectric, 477
Thévenin, computation of, 117–122

for network with dependent source, 121–122
for network with one independent source, 119
for network with two independent source, 120

transformer, 807
variable supply, thyristors and, 17-18 to 17-20
Zener, 527

Voltage-controlled current source (VCCS), 421, 616
Voltage division, 82

series resistors and, 80–82
Voltage follower, 404–405
Voltage gain, of amplifier, 394, 395

determination of, 572
Voltage regulators, 17-3, 17-5 to 17-7

analysis of, 17-6 to 17-7



heat sink construction for, 17-5 to 17-6
Voltage source inverter (VSI), 920, 922
Voltage sources

hydraulic analog, 15
ideal, 4–5, 14–15
node analysis with, 46–48
practical, 135–136

Volt-ampere characteristic. See I-v characteristics
Volt-amperes (VA), 750

rated, 872
Volt-amperes reactive (VAR), 750
Voltmeter, 138, 139–140
VSI. See Voltage source inverter (VSI)

W
Wattmeter, 138–139, 236–238, 764–766
Waveforms

parts of, 259
periodic, time-dependent, 183–187
sinusoidal signals

average value of, 186
rms value of, 186–187

Webers (Wb), 804
Wheatstone bridge, 82–83

and force measurements, 87–88
Wheatstone bridge filter, 353–355
White noise, 19-20
Wideband frequency modulation, 18-26, 18-28 to 18-29
Windage, and mechanical losses, 870
Wiring

residential, 783–786
shielding, 482
twisted-pair, 482–483, 19-33



Word, 648, 722
Wound-field DC motors, 889
Wound rotor, 907
Wye (Y) configuration, 777–778

balanced wye loads, 779
Wye-delta transformation, 96–97

X
XOR (exclusive OR) gate, 661

Z
Zener breakdown, 526–527
Zener clamp, 503
Zener diodes, 17-5

power rating of, 549–550
and voltage regulation, 547–552

Zener effect, 526
Zener regulator, load resistances for, 550–551
Zener voltage, 527
Zero-crossing comparator, 502
Zeros, frequency response function, 332–333
Zero-speed torque, 871
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