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Recent combinations of semantic technology and artificial intelligence (AI) 
present new techniques to build intelligent systems that identify more pre-
cise results. Semantic AI in Knowledge Graphs locates itself at the forefront of 
this novel development, uncovering the role of machine learning to extend 
the knowledge graphs by graph mapping or corpus-based ontology learning.

Securing efficient results via the combination of symbolic AI and statistical 
AI such as entity extraction based on machine learning, text mining methods, 
semantic knowledge graphs, and related reasoning power, this book is the 
first of its kind to explore semantic AI and knowledge graphs. A range of 
topics are covered, from neuro-symbolic AI, explainable AI and deep learn-
ing to knowledge discovery and mining, and knowledge representation and 
reasoning.

A trailblazing exploration of semantic AI in knowledge graphs, this book is a 
significant contribution to both researchers in the field of AI and data mining 
as well as beginner academicians.
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Preface

This book, Semantic Artificial Intelligence in Knowledge Graphs, comprises 
extended papers from workshops collocated during the Knowledge Graph 
and Semantic Web Conference (KGSWC) 2021. The workshops included 
the Third International Workshop on Semantic Web (IWSW 2021), First 
International Workshop on Multilingual Semantic Web (IWMSW 2021), and 
First International Workshop on Deep Learning for Question Answering 
(IWDLQ 2021).

The papers explored major roles artificial intelligence (AI) with semantic 
technologies to present enhanced semantic AI architecture with knowledge 
graphs. In this book, the role of machine learning toward extending knowl-
edge graphs by graph mapping or corpus-based ontology learning was dis-
covered. Efficient results were obtained via the combination of symbolic AI 
and statistical AI such as entity extraction based on machine learning, text 
mining methods, semantic knowledge graphs, and related reasoning power.

Topics covered in this book include Deep Semantics in Knowledge Graphs, 
Neuro-Symbolic AI and eXplainable AI, Deep Learning, Knowledge 
Discovery and Mining, Information Retrieval and Question Answering, 
Knowledge Representation and Reasoning, Natural Language Processing, 
Entity Linking, etc. this book is made of eight chapters: Leveraging Semantic 
Knowledge Graphs in Educational Recommenders to Address the Cold‑Start 
Problem; Modeling Event‑Centric Knowledge Graph for Crime Analysis on Online 
News; Semantic Natural Language Processing for Knowledge Graphs Creation; 
MSE**: Multi‑modal semantic embeddings for datasets with several positive match‑
ings; Text‑Based Emergency Alert Framework for Under‑Resourced Languages in 
Southern Nigeria; Knowledge Graphs in Healthcare; Explainable Machine Learning‑
Based Knowledge Graph for Modeling Location‑Based Recreational Services from 
Users Profile; and Building Knowledge Graph from Relational Database.

Firstly, our thanks go to all the organizers of the main conference and pro-
gram committee members for ensuring a rigorous review process that led 
to the successful events. The efforts of the workshop chairs and co-chairs 
toward the success of the workshops were highly appreciated. We are also 
very thankful to the authors for their painstaking efforts to write up for the 
extension. Finally, we are thankful to the editorial board of Taylor & Francis 
for providing this book opportunity to publish all extended chapters.

Patience Usoro Usip, and Rim Hantach
Sanju Tiwari, Fernando Ortíz-Rodriguez, Sarra Ben Abbés,  
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2 Semantic AI in Knowledge Graphs

1.1 Introduction

Developing artificial intelligence systems that, mildly at least, understand 
the structure of knowledge is foundational to building an effective recom-
mendation system for education (Bauman & Tuzhilin, 2018; Jiang, Pardos, 
& Wei, 2019), as well as for many other applications (Lewis et al., 2020; Yano 
& Kang, 2016) related to knowledge management and tracing. Many intel-
ligent educational recommenders at present use knowledge components 
(KCs)/ topics to represent the skills that human learner masters over time. 
But many of these systems assume that these KCs are unrelated to each other 
when modeling learner knowledge (Yudelson, Koedinger, & Gordon, 2013). 
Otherwise, human experts are relied upon to annotate the concept relat-
edness. We identify knowledge bases as a rich source of information that 
can be utilized to automate harvesting semantic relatedness (SR) informa-
tion needed for modeling. Our motivation in this work is to use Wikipedia, 
an open, multilingual, and dynamic encyclopedia to demonstrate that edu-
cational recommendation can be improved by leveraging automatically 
computed SR information, making the next generation of educational recom-
menders semantically aware.

Through this work, we verify the utility of semantic knowledge graphs 
in improving educational recommender systems. Our proposal, Semantic 
TrueLearn, is a family of novel and transparent learner models that incorpo-
rate automatic entity linking and Wikipedia (a publicly available, humanly 
intuitive, domain-agnostic, and ever-evolving) knowledge graph, as a first 
step toward building an educational recommender that automatically 
labels materials and embeds the structure of universal knowledge using 
Wikipedia.

Our proposal, Semantic TrueLearn, is a probabilistic graphical model 
(PGM) that maintains a symbolic representation of learners’ knowledge that 
allows explanations, rationalizations, and scrutiny. The proposed learner 
model is the perfect example of how probabilistic graphical modeling can 
harmonize with semantic knowledge graphs to build the accurate and sub-
symbolic learner models that are needed in many applications that require 
interaction and collaboration with the user.

Toward verifying the utility of knowledge graphs to improve informa-
tional recommender systems, we:

i. Identify the ability to exploit the SR between entities in Wikipedia.
ii. Propose a novel sub-symbolic Bayesian learner model.

iii. Identify several research questions relating to validating the utility 
of the proposed learner model.

iv. Validate the research questions using a large dataset of learners 
engaging with educational resources.
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While our experiments focus on the educational domain, we hypothesize 
these findings may extend to any other informational recommenders.

In this chapter, Section 1.1 introduces the context and outlines the moti-
vation behind this chapter, while Section 1.2 describes the relevant litera-
ture on the topic and how they are related/different to our contribution. 
Section 1.3 formalizes the problem setting and proposes several approaches 
to model SR between concepts as a solution. Subsequently, Section 1.4 identi-
fies the research questions relevant to the solutions proposed, while outlin-
ing the different experiments that are run in order to answer the defined 
research questions. The latter part of Section 1.4 presents the results observed  
from the experiments and goes further to discuss the results. Section 1.5 con-
cludes this chapter.

1.2 Related Work

Knowledge tracing (KT) (Yudelson et al., 2013) is one of the most popular 
methods for user modeling in intelligent tutoring systems (ITS) and edu-
cational recommendation (EdRecSys) (Bulathwela, Pérez-Ortiz, Yilmaz, & 
Shawe-Taylor, 2020b) contexts. Incorporation of SR in KT systems is gaining 
more attention recently, where it is being utilized in prerequisite modeling 
(Carmona, Millán, Pérez-de-la Cruz, Trella, & Conejo, 2005; Chen, Lu, Zheng, 
& Pian, 2018), exercise similarity (Huang et al., 2019; Nakagawa, Iwasawa, & 
Matsuo, 2019; Pandey & Srivastava, 2020), and various other tasks (Bauman 
& Tuzhilin, 2018; Thaker, Zhang, He, & Brusilovsky, 2020). However, KT 
often relies on expert labeling of the KCs (Selent, Patikorn, & Heffernan, 
2016) (sometimes also for knowledge hierarchies; Bauman & Tuzhilin, 
2018), which is not scalable to large-scale lifelong learning applications 
in  practice. In the majority of the approaches, the similarity between dif-
ferent items (exercises, educational materials) is modeled by using the over-
lapping KCs or the users’ co-consuming pairs of items. Both of these main 
approaches require either the experts or the learners to invest a substantial 
amount of human effort in the system before relatedness can be recovered. 
Another challenge in the above approaches is that the different proposals 
use different KC taxonomies making the different work hard to compare 
and inter-operate. The advancement of deep learning and graph neural 
networks has led to a new generation of neural models that are attempting 
to exploit the relatedness structures of educational materials using graph 
neural networks and attention mechanisms (Nakagawa et al., 2019; Song  
et al., 2021; Yang et al., 2020). However, these approaches require large quan-
tities of data to train and lack interpretability, making them unsuitable for an 
educational recommendation system. Recent studies have also started ques-
tioning the superiority of these neural models over the classical approaches 
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(Mandalapu, Gong, & Chen, 2021; Schmucker, Wang, Hu, & Mitchell, 2022). 
Furthermore, neural models do not focus on formulating humanly intuitive 
graphical models to model the data generation process positioning them 
beyond the scope of this work.

Wikification, a form of entity linking (Brank, Leban, & Grobelnik, 2017), 
has shown substantial progress and great promise in automatically captur-
ing the KCs covered in an educational resource addressing the scalable con-
tent annotation problem. Another advantage of using Wikification is that 
it grounds the KCs to a universal knowledge graph like Wikipedia, that  
is multi-lingual, cross-domain, and temporally dynamic (i.e., its knowledge 
evolves with time). Using Wikipedia as an ontology or knowledge graph 
to understand documents is not a new idea. While Wikipedia itself has 
been used as an ontology using page links and category links to describe 
“relates to” and “is a type of” relationships, respectively (Kawakami, 
Morita, & Yamaguchi, 2017; Syed, Finin, & Joshi, 2008), other works have 
pushed further and used the wealth of information in Wikipedia to build 
downstream knowledge bases and ontologies (Auer et al., 2007), as well as 
ontology-driven information retrieval systems (Grefenstette & Rafes, 2015). 
From the early days of Wikipedia, exploiting different aspects (such as text, 
link structure, etc.) to model SR that represents “relates to” links have been 
attempted. These SR metrics have evolved over time into recent proposals 
that are diverse and sophisticated metrics highly predictive of concept relat-
edness (Ponza, Ferragina, & Chakrabarti, 2020). However, the utility of these 
proposals with graphical models is underexplored and is investigated in 
this chapter.

1.2.1 Wikipedia Concept-Based User Modeling

State-based user modeling is a mature topic in personalization (Bulathwela 
et al., 2021a). As a reliable content-based feature, keywords/concepts/
entities/topics are widely used in user state modeling. These techniques in 
unison are identified as concept-based approaches (Zarrinkalam, Faralli, Piao, 
& Bagheri, 2020) where Wikipedia-based concept features are shown to be 
effective. Many concept-based approaches use the frequency of user interac-
tions with the items related to a concept to build a concept profile for the user. 
Once the user profile is available, the similarity between the profile and the 
items can be used to rank them (Bulathwela, Pérez-Ortiz, Novak, Yilmaz, & 
Shawe-Taylor, 2021b; Piao, 2021).

Recent works in educational recommendation have also used concept-
based user modeling to recommend Massively Online Open Courses 
(MOOCs) to learners (Piao & Breslin, 2016). In their approach, they consider 
the user session to be a document where the topics they visit over time are 
terms (words) in this document. They compute the Term Frequency (TF) for 
each user over time to build a user profile. The engagement is predicted by 
measuring the similarity between the user profile and the content using the 
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cosine similarity. In recent work relating to EdRecSys, TrueLearn (Bulathwela, 
Pérez-Ortiz, Yilmaz, & Shawe-Taylor, 2020c), using Wikification, has demon-
strated state-of-the-art performance in building PGMs on top of automati-
cally extracting topics from a semantic knowledge graph, Wikipedia. In this 
work, Bulathwela, Pérez-Ortiz, et al. also introduce an online multi-skill 
KT model inspired by Bishop, Winn, and Diethe (2015),which is another 
PGM that relies on Wikipedia concepts. We identify these two models to be 
the most relevant prior work to the proposed Semantic TrueLearn model. 
TrueLearn Novel, the best performing model in Bulathwela et al. (2020c), 
builds a learner profile where the skill of each KC (Wikipedia topic) is 
updated based on the learner engagement with a fragment of an educational 
video. The model is a Bayesian factor graph that uses message passing to 
learn the KC parameters. This score can be used to rank the recommenda-
tions. While these models utilize a rich knowledge graph like Wikipedia, 
the exploitation of a rich source of semantic information in these cases can 
be considered a bare minimum as these methods merely use Wikipedia to 
automatically annotate and represent the KCs/concepts. All these models 
consider that Wikipedia concepts are independent and thus unrelated, intro-
ducing an obvious weakness to the model assumptions. This work breaks 
from these incorrect model assumptions to exploit the SR between the top-
ics in Wikipedia, making the utility of Wikipedia in the EdRecSys domain 
rather as an ontology (that also models relates to relationships) than a simple 
taxonomy. More specifically, the contribution of this work is to improve the 
performance of the TrueLearn Novel model by incorporating the missing 
assumption of KC relatedness to address the cold-start problem. Our final 
experiments also demonstrate and validate if the incorporation of related-
ness assumptions can apply to other Wikipedia concept-based models (e.g., 
Piao & Breslin, 2016).

1.2.2 Representations from Graphs

The core technical contribution of this work is proposing a method to infer 
the latent value of an unobserved skill parameter using observed ones via 
information sharing based on an SR graph. This requires developing a mech-
anism to exploit the connectedness structure of Wikipedia topics. Several 
works have proposed novel ways to use a relationship graph to recover a 
latent representation for an unknown node using a set of known nodes. 
Recently proposed Graph Convolutional Neural Networks (Kipf & Welling, 
2017) infer hidden node embeddings ( + 1H ) by taking the weighted average of 
the embeddings of its neighbors. This is done using the adjacency matrix A  
and diagonal D of the relatedness graph as per =+ − −

  1 1
2

1
2H D AD H W . 

Another popularizing idea in the representation learning research commu-
nity is the attention mechanism (Bahdanau, Cho, & Bengio, 2015) that uses  
the concept of alignment. This mechanism learns to quantify the related-
ness of the neighboring embeddings to compute the context embedding at 
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a point in order to make a prediction. The alignment is used to compute a 
normalized weighted sum of the related embeddings, which becomes the 
context embedding used as part of the feature set when predicting. This 
method has revolutionized neural modeling significantly improving the 
state-of-the-art. Our work described in this chapter also uses these ideas, 
where we utilized the observed embeddings (KC variables) of the TrueLearn 
learner model in order to infer the value of unobserved variables. In sum-
mary, this work lays the foundations for applying SR in an educational rec-
ommender using:

i. A PGM
ii. The SR values extracted from Wikipedia

1.3 Methodology

Given that there is a gap in exploiting SR to improve concept-based recom-
mendations, our work focuses on developing a method to do so. Specifically, 
we focus on the instance of cold-start in concept-based user modeling as a 
foundational step toward using semantic knowledge graphs. In the case of 
cold-start, the informational concept is novel, i.e., it has not been encountered 
by the user before in their interaction history. In the conventional user model 
outlined in Section 1.2, the system will not have any data to infer the learner’s 
interest/skill for such an unobserved concept. In the case of Bayesian probabi-
listic models such as TrueLearn Novel, the model will use a non-informative 
prior. To address this issue, we formalize the problem and propose a solution 
in this section.

1.3.1 Problem Formulation

Consider the case of a learner  interacting with a set of educational resources 
{ }⊂ …



, ,1S r rQ  over a period of = …(1, , )T t  time steps, Q being the total of 
resources in the system. Each resource ri is characterized by the top KCs or 
topics covered { }⊂ …1, ,K Nri  (N  is the total of KCs considered by the sys-
tem) and the depth of coverage dri  of those. We represent learner knowledge 
at time t as a multivariate Gaussian distribution θθ µµ Σ

  

~ ( , )t t t , µµ ∈


t Q being 
the mean of knowledge and Σ



t  the covariance matrix. TrueLearn assumed 
that Σ is a diagonal covariance matrix in all cases and thus knowledge top-

builds toward considering a full covariance matrix, assuming that ρij (esti-
mated SR) is a proxy for Σij for topics i and j when ≠i j.

The key idea behind TrueLearn Novel (Bulathwela et al., 2020c) is to model 
the probability of engagement { }∈ −



1, 1,e r
t

i  between learner  and resource ri 

ics  are completely independent from each other. The work in this chapter 
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at time t as a function of the learner skills/knowledge θθ


t  and resource repre-
sentation dri  for the top KCs covered Kri. When a new learner joins the recom-
mender system, TrueLearn sets µ =



00 , βΣ =ii , where β is a hyperparameter 
of the system, and Σ = ≠0, i jij . Then, when the learner consumes an educa-
tional video fragment, TrueLearn updates the learner model/skills accord-
ingly. Every skill that is not updated is set to the value from the last time 
step, meaning at time t there might be many unobserved skills, especially 
given the number of topics considered by the system (equal to the number of 
Wikipedia pages). Thus, TrueLearn assumes that the skill for topics in Kri can 
only be obtained through those topics and not semantically related ones. The 
same problem setting can be generalized to the other concept-based learner 
models outlined in prior works (Bulathwela et al., 2021b; Piao & Breslin, 2016). 
The key difference is that these models do not model uncertainty of the skill 
variables (assuming Σ = Σ = 0ii ij  as well).

1.3.2 Semantic TrueLearn

Extending the TrueLearn model (Bulathwela et al., 2020c), Semantic 
TrueLearn, is a learner model that infers the knowledge state of learners 
in an online fashion. Semantic TrueLearn exploits its current knowledge of 
observed concepts (through interactions from time steps … −0 1t ) and their 
SR to the novel concept encountered at time t to make a better prior skill esti-
mate. This approach is graphically illustrated in Figure 1.1.

FIGURE 1.1
Inferring the knowledge for the unseen topic (white circle) based on semantically related and 
seen ones (grey circles) by transferring knowledge (dotted lines). Topics are ML (machine 
learning), RL (reinforcement learning), Prob (probability), CV (computer vision), NLP (natural 
language processing), and W2V (Word2Vec).
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1.3.2.1 Incorporating Semantic Relatedness between Concepts/KCs

The main assumption when incorporating SR is that knowledge can be 
shared across semantically related topics. In other words, we assume that 
the demonstration of having knowledge in certain KCs enables us to reason 
about their degree of knowledge of related, yet unobserved KCs. By taking 
inspiration from graph convolution (Kipf & Welling, 2017), we assume the 
relationship between concepts illustrated in Figure 1.1. The skill of the unob-
served KC is calculated as the weighted average of the observed related skills 
as per Equation 1.1:

∑θ γ θ θ µ σ=
Ω

⋅
∈Ω





 



1 , where ~ ( , ),
,

, ,
2

,

i
t

i
j

ij j
t

i
t

i

  (1.1)

where Ωi represents the set of topics used to infer the representation of topic i 
(e.g., most semantically related seen topics), where ≠i j. The mixing factors γ ij 
can be set to SR ρij or to a factor of the standard error of topic j (meaning most 
observed topics are used). In the TrueLearn (Bulathwela et al., 2020c) model, 
which we extend, θ  is a Gaussian variable.

Two mathematical formulations are tested to capture the relatedness 
among the topics, namely the (i) univariate and (ii) multivariate formulations.

1.3.2.2 The Univariate Formulation

This formulation assumes that relatedness exists exclusively between the 
unobserved topic and the set of observed related topics. The SR between the 
pairs of observed topics is ignored in this scenario. The motivation behind 
this is that the relatedness of the observed topics in the user profile doesn’t 
have a significant effect on the final estimation of the unobserved skill 
parameter. We use Equation 1.2 to calculate the unknown parameter θ

,i
t  in 

this formulation:

  

ˆ ~
1

,
1

, ,

2

,
2

i
t

j i
ij j

t

j i
ij i

t

i i

 ∑ ∑θ ρ µ ρ σ( )Ω
⋅ ⋅

Ω
⋅







⋅












∈Ω ∈Ω

(1.2)

1.3.2.3 The Multivariate Formulation

This formulation, on the contrary to Equation 1.2, assumes that relatedness 
between all observed KCs also Equation 1.3 presents this formulation where 
σ in this case represents the covariance matrix:
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1.4 Experiments and Results

We ask the following research questions:

• RQ1: Which SR Metric is the most suitable (ρ)?
• RQ2: How many observed related topics should be used (Ωi )?
• RQ3: Can Semantic TrueLearn outperform TrueLearn Novel?
• RQ4: Does semantic information contribute to the gains? How?
• RQ5: Can this approach generalize to other user models?

1.4.1 Semantic Relatedness Metric (SR Metric)

As mentioned in Section 1.2, different measures of SR for Wikipedia con-
cepts exist (Ponza et al., 2020). We empirically evaluate if the predictive 
performance of an educational recommender can be improved by incor-
porating seven different SR Metrics to substitute ρij in Equations 1.2 and 
1.3. We devise Milne and Witten (M&W), Entity Embeddings (W2V), 
Point-wise Mutual Information (PMI), Language Model (LM), Jaccard 
Similarity (Jaccard), Conditional Probability (CP), and Barabasi and Albert 
(BA) SR Metrics, where SR values are pre-computed and publicly available 
(Piccinno, 2017).

1.4.2 Models

The core objective of this research tested through RQ 1–4 is to validate if 
exploiting SR can improve the predictive capability of the TrueLearn Novel 
model. To test this we integrate the formulations outlined in Section 1.3 by 
using them whenever the model has not encountered that Wikipedia-based 
KC in the learner history before. The two models, Semantic TrueLearn 
Univariate (Semantic TLN Univ.) using Equation 1.2 and Semantic 
TrueLearn Multivariate (Semantic TLN Mult.) using Equation  1.3, are 
developed and tested against TrueLearn Novel (Bulathwela et al., 2020c) 
as the baseline.

To test RQ5, we create the semantic counterparts of a set of relevant base-
lines that use Wikipedia concepts for user modeling. KT, a different PGM 
that models learner skills as Bernoulli variables and two user models, the 
Cosine model (Bulathwela et al., 2021b) and TF(Cosine) (Piao & Breslin, 2016), 
that are not PGMs are transformed into semantically aware models by 
using Equation 1.2. The variance calculation in the equation is omitted as 
the above models do not explicitly model the variance of the skill variables 
(σ = 0). This introduces Semantic Cosine and Semantic TF(Cosine) for empiri-
cally testing RQ5.
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1.4.3 Data

As the TrueLearn Novel model deals with video fragment recommendation, 
we test the new proposals using the same prediction task. We use the PEEK 
dataset (Bulathwela et al., 2021b), a dataset of more than 20,000 informal learn-
ers consuming video lectures in VideoLectures.Net1 platform. The dataset 
provides information about how different users consumed fragments of vid-
eos over time (Bulathwela, Kreitmayer, & Pérez-Ortiz, 2020a). The majority 
of videos in this repository are related to computer science. This dataset uses 
entity linking (Brank et al., 2017) to associate most related Wikipedia concepts 
to documents. We use the TagMe WAT API (Piccinno & Ferragina, 2014)2 to 
source the required SR annotations. As the KCs associated with a video frag-
ment are highly related to each other, we exclusively use the most relevant 
KC from each video fragment to represent the topic covered by that video 
fragment ignoring the other KCs associated with that video fragment. Doing 
this helps us avoid any side effects that can dilute our objective of measuring 
if exploiting SR improves the predictive abilities of the model. It also exponen-
tially decreases the number of SR annotations we need to run the experiments.

To keep the computational complexity lower, a smaller dataset of the 
20 most active users is used when validating RQ 1 and 2. Once the choice of 
SR metric and the number of related topics have been determined, the full 
dataset of 20,000 users is used to validate RQ 3–5, which are our primary 
research questions.

1.4.4 Experimental Design

We used a phased experimental methodology where the results from the 
early experiments determined the parameters for the subsequent experi-
ments. We empirically evaluated models built with different SR metrics to 
answer RQ1. The best performant SR metric from the RQ1 experiment was 
then used to determine how many related topics should be used (RQ2). 
Then, we used both of these results in RQ3 to test Semantic TLN Univ. and 
Semantic TLN Mult. against the TrueLearn Novel baseline. Finally, the 
semantic counterparts of KT, Cosine and TF(Cosine) models were developed 
as per Equation 1.1 empirically tested for RQ5 with the same SR metric and 
number of topics that are predetermined in RQ 1 and 2 experiments, respec-
tively. As the latter models used in the RQ5 experiment do not have a vari-
ance component, Equations 1.2 and 1.3 reduce to the same formulation as the 
mean µ is computed similarly.

1.4.4.1 Impact of Semantic Relatedness

We use the topics encountered in user sessions to build a topic-relatedness 
graph and extract a few attributes linked to graph connectedness for each 
user. Spearman’s Rank Order Correlation Coefficient (SROCC) statistic is 
then used to evaluate the correlation between the extracted features and the 
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predictive performance. User’s number of events, number of unique topics, topic 
sparsity rate (Bulathwela et al., 2020c), positive label rate, Avg. Connectedness, i.e., 
average of the degree distribution of the topics, and Min. Cut Set Size, i.e., the 
minimum number of topics that need to be removed to break the graph into 
more sub-graphs, are analyzed. The correlation with the recall score is inves-
tigated as the improvement in recall attributes to the performance gains of 
the proposed model (see Table 1.1). To validate if SR is specifically influential 
in earlier parts of the user session, we plot the mean recall score of all users 
at event n, for different number of events (n).

1.4.5 Evaluation

In all the empirical evaluations (RQ 1, 2, 3, and 5), a sequential prediction 
design where engagement at time t is predicted using events 1 to − 1t  is uti-
lized in this prediction task. A training set of 70% of learners is used for 
hyperparameter tuning and the remainder is used for testing and reporting. 
Being a binary classification task, precision, recall, and F1-measure are eval-
uated whereas F1-measure is used for overall model selection (Bulathwela 
et al., 2021b). The evaluation metrics are computed for each learner separately 
and the weighted average of the scores based on the number of learner’s 
events is reported. In cases where the entire dataset is used for evaluation 
(RQ3 experiment onward), we use a learner-wise one-tailed paired t-test to 
verify the statistical significance of the improvement.

When measuring the correlation between different learner session-related 
attributes and the recall score in order to validate RQ4, we use SROCC to 
assess the degree of correlation between pairs of variables.

TABLE 1.1

Predictive Performance of Adding SR to TrueLearn Novel Algorithm. 
The Different Configurations (SR Metric) of the Semantic TrueLearn 
Novel Algorithm (Our Proposal) Are Evaluated Using Precision 
(Prec.), Recall (Rec.), and F1 Score (F1)

Model SR Metric Prec. Rec. F1

TrueLearn Novel – 0.7667 0.9476 0.8348

M&W 0.7701 0.9469 0.8364
W2V 0.7714 0.9467 0.8370

Semantic PMI 0.7682 0.9480 0.8355
TrueLearn LM 0.7605 0.9507 0.8322
Novel Jaccard 0.7605 0.9507 0.8322

CP 0.7621 0.9507 0.8330
BA 0.7704 0.9469 0.8364

Note: The most performant value and the next best value are highlighted in 
Bold and Italic faces, respectively. The Semantic TrueLearn algorithms 
that outperform the baseline model in terms of F1 score are Underlined.
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1.4.6 Results

We run experiments to answer the research questions outlined above. 
To  identify the most suitable SR metric (RQ1), we evaluate the Semantic 
TrueLearn model using seven SR Metrics proposed in Section 1.3.2. The 
results are outlined in Table 1.1. To understand the effect of Ωi, the Number of 
Semantically Related Topics (RQ2), we use the identified SR Metric to experi-
ment with different numbers of semantically related topics. The results of this 
experiment are reported in Table 1.2. Finally, we use the full PEEK dataset to 
validate if the use of SR data improves the baseline TrueLearn model (RQ3). 
The results obtained in this experiment are presented in Table 1.3. Figure 1.2 
presents the results obtained in investigating the impact of SR (RQ4) where 
(left) the correlation investigation between topic connectivity of users and 
recall score and (right) the performance of the model based on a different 
number of events is reported. The predictive performance of the different 
user models (left) and their semantic counterparts (right) on the PEEK data-
set are outlined in Table 1.4 (RQ5). To ensure fairness of comparisons, Cosine, 
TF(Cosine), and KT models are trained using the highest ranking topic for 

TABLE 1.2

The Performance of Semantic TrueLearn Model with W2V SR 
Metric Is Reported in Terms of Precision (Prec.), Recall (Rec.), and 
F1 Score (F1)

Number of Topics (ΩΩ
 ,i) Prec. Rec. F1

Most related topic 0.7717 0.9431 0.8359
Three most related Topics 0.7622 0.9486 0.8325
Five most related Topics 0.7659 0.9490 0.8345
Ten most related topics 0.7654 0.9490 0.8342
All related topics 0.7714 0.9467 0.8370

Note: The performance of the model is reported when different Ω
,i top 

semantically related topics are utilized in Equation 1.1. The most per-
formant value and the next best value are highlighted in Bold and 
Italic faces, respectively.

TABLE 1.3

Predictive Performance of Semantic TrueLearn Model (Our Proposal) 
Using Precision (Prec.), Recall (Rec.), and F1 Score (F1)

Model Prec. Rec. F1

Baseline TrueLearn Novel 0.5829 0.7924 0.6471

Semantic
TLN

Univariate (Univ.) 0.5711 0.8563(*) 0.6512(*)

Multivariate (Mult.) 0.5759 0.8251(*) 0.6480(*)

Note: The most performant value is highlighted in Bold face. The Semantic 
TrueLearn model that outperforms the baseline model ( < 0.01p  in a one-
tailed paired t-test) is marked with·(*).
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each video fragment in the learner sessions. However, prior work shows that 
the cosine and the TF(Cosine) models perform best when using the five high-
est ranked topics. Therefore, we also report the performance of the model 
trained on five topics in Table 1.4 for a more informative comparison.

1.4.7 Discussion

It is evident from Table 1.1 that incorporating SR leads to improvements in 
overall F1 score in most of the SR metrics that beat the baseline TrueLearn 
algorithm. Four Semantic TrueLearn models (ones that use M&W, W2V, PMI, 
and BA) tend to outperform the baseline TrueLearn Novel model in terms 
of precision and F1. The remainder demonstrates superiority in the recall. 
When we consider the F1 score for model comparison, the model that uses 

FIGURE 1.2
(Left) Relationship between different behavioral characteristics of user-profiles and model 
recall performance presented using SROCC. The numbers and the intensity of each cell corre-
spond to the Spearman r coefficient where a significant correlation is present ( < 0.01p ). Empty 
cells represent the lack of significant correlation. (Right) The average recall performance of the 
two models for the learner population at a different number of events.

TABLE 1.4

Predictive Performance of Semantic Models (Our Proposals) Using Precision (Prec.), 
Recall (Rec.), and F1 Score (F1) 

Model

Prior Work Semantic

Prec. Rec. F1 Prec. Rec. F1

Knowledge tracing 0.5325 0.2856 0.3451 0.5737(*) 0.5613(*) 0.5344(*)

Cosine 0.4792 0.1599 0.2112 0.5652(*) 0.7377(*) 0.5978(*)

• Five topics 0.5786 0.5845 0.5406 • • • 
TF(Cosine) 0.5231 0.3355 0.3670 0.5651(*) 0.6805(*) 0.5728(*)

• Five topics 0.5675 0.6595 0.5711 • • • 

Note: The most performant value and the next best value are highlighted in Bold and Italic 
faces, respectively. The semantic models that outperform the baseline model ( < 0.01p  in a 
one-tailed paired t-test) are marked with·(*).
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the entity embedding-based SR metric (W2V) indicates the best performance 
among the different semantic models. This is expected, as neural-based SR 
measures often outperform their graph-based counterparts (Ponza et al., 
2020). Therefore, we can observe that the most suitable SR metric for this task 
(RQ1) is the entity embedding-based metric. Our empirical results in experi-
ments relating to RQ2, outlined in Table 1.2, show that using all semantically 
related topics to infer the skill of the unobserved KC gives the best prediction 
results in contrast to restricting the number of related topics used. The results 
in Table 1.3, which attempts to validate if the proposed semantic formulations 
can help TrueLearn Novel address the cold-start problem (RQ3), show the 
superiority of Semantic TrueLearn models in comparison to the baseline that 
does not exploit SR information from Wikipedia. This is a clear indication that 
a knowledge base such as Wikipedia can be critical to improving the assump-
tions used for a learner, modeled using a PGM in the education context. Both 
the Univ. and Mult. Semantic TrueLearn models outperform the baseline to a 
statistically significant degree in recall and F1. It is observed in Table 1.3 that 
this improvement of F1 score is attained by significantly increasing the recall 
of the model by sacrificing a smaller amount of precision. While this is a com-
promise of this model, the overall performance of the model is improved. It 
is also interesting to see that modeling the relatedness between the observed 
topics (Mult. formulation) leads to better precision than not doing it. This indi-
cates that accounting for many different dynamics in the data generation pro-
cess and capturing them leads to a more precise prediction. However, this 
precision doesn’t translate to overall model superiority in terms of the F1 score 
in comparison to the Univ. counterpart. It is also noteworthy that the compu-
tational complexity of the Mult. version is significantly higher as there is expo-
nentially more SR connections that need to be used in the variance calculation. 
In an online, lifelong learning platform that needs to scale seamlessly, this can 
be a disadvantage. The results give promise that the information encoded in a 
knowledge base such as Wikipedia can be used in ways beyond representing 
contents in a universal taxonomy. Certain relationships in Wikipedia can be 
further utilized to improve the model assumptions. In this scenario, SR has 
shown truly valuable in the early stages of the user session when the interac-
tion data about the user is limited, thus addressing the cold-start problem.

The evaluation of correlations presented in Figure 1.2 (left) investigates the 
reasons behind the superior performance of the semantic models (RQ4). This 
sub-figure shows the lack of correlation between Positive Label Rate  and 
recall score across both TrueLearn models. Although it has been demon-
strated by the original authors that the TrueLearn algorithm capitalizes on 
recall, there is no information in the work regarding the positive label rate 
in the datasets. This observation confirms that the TrueLearn family of algo-
rithms find true patterns in learner data rather than merely capitalizing on 
the positive labels to boost performance.

Multiple observations in Figure 1.2 (left) give evidence of the superiority 
of Semantic TrueLearn exploiting the SR between topics to boost recall. The 
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main two observations are the new model’s stronger Spearman’s rank cor-
relation with learner Avg. Connectedness and Min. Cut Set Size. This is a strong 
indication that the Semantic TruLearn model is exploiting the topic corre-
lations. The correlation between the number of events, number of unique 
topics, and topic connectedness causes the higher correlation between these 
features and the Semantic TrueLearn model. Figure 1.2 (right) clearly shows 
how the recall score of predictions is much larger in the Semantic TrueLearn 
algorithm regardless of the early or later stage of the learner session. Linking 
this to results in Table 1.1 shows that this impressive gain of recall score is 
achieved with a much smaller sacrifice of the precision score. Figure 1.2 (right) 
also shows the nature of this cold-start problem which can occur at any time 
during the learner’s session. Usually, the cold-start problem is associated 
with the early stages of a learner session, mainly because the scarcity of data 
is prominent in early stages of a user session in a recommender. However, 
in educational recommenders and other informational recommenders (e.g., 
news, podcasts, etc.) where the concept space can be very vast and the learner 
can journey in the entire knowledge space, the cold-start problem can occur at 
any given stage of the learner session. The analysis shows that the approach 
proposed helps combat this phenomenon successfully.

The final question we want to answer is if exploiting SR goes beyond 
the TrueLearn Novel model (RQ5). The results in Table 1.4 provide solid evi-
dence that this is the case. The table shows that adding the semantic exten-
sion proposed in this work to a variety of recently proposed Wikipedia 
concept-based user models leads to statistically significant improvements 
across precision, recall, and F1 score. When comparing with the five topic 
versions of the Cosine and TF(Cosine) models, the table gives evidence that 
the one topic version of semantic models still outperforms the five topic non-
semantic versions by a significant margin in recall and F1 score, the overall 
evaluation metric. This is further evidence that the utilization of SR coming 
from Wikipedia can have a strong positive impact on user modeling.

1.4.8 Human-Intuitive Representations

The Semantic TrueLearn model in unison with all the other models used in 
this work uses Wikipedia-based concepts to build the user representation. This 
makes the user models humanly intuitive and capable of diagnosis, interpreta-
tion, and scrutiny. As the concepts/KCs in the model are symbols familiar to 
human perception, user-friendly explanations and rationalizations can be pro-
duced using the model representation. Specifically, in the context of exploiting 
SR, the models proposed in this work use the mechanism presented in Figure 1.1. 
This is already a simple, user-friendly visualization of how the learner model 
is reasoning. Therefore, approaches such as this that rely on knowledge bases 
such as Wikipedia have the ability to connect the AI systems to the human 
users with richer explanations allowing the users to provide a higher degree of 
engagement and feedback, leading the systems to improve rapidly over time.
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1.4.9 Limitations

Amid the significant gains, we observe that most KCs encountered by the 
model in a session are highly correlated to each other (as the majority of video 
lectures on the source website are about computer science). This leads to over-
lapping information being propagated repeatedly when using Equation 1.1 
which may lead to an overestimation of knowledge of unseen KCs. While 
restricting to exclusively using the top-ranked KC from each video fragment 
helps us reduce this effect, it doesn’t completely solve the problem. Methods 
to address this effect should be investigated further. As the proposed method 
primarily infers unobserved skills, its use diminishes over time when the user 
session matures (as new topics are encountered less often). While there is 
a chance to encounter new topics at any stage of the learner journey, the 
changes become slimmer over time and so is this approaches usefulness. 
Mechanisms to retain the use of semantic awareness to refine representa-
tions is a much-needed improvement to the proposed method.

1.5 Conclusions

Leveraging SR between Wikipedia topics has demonstrated promise to 
improve the predictive performance of informational recommenders such as 
TrueLearn, which are built on Wikipedia ontology and PGMs. In addition, we 
identify that restricting the number of related topics leads to degraded per-
formance, suggesting the use of all available KCs extracted from Wikification. 
Our analysis also shows that topic connectedness within learner sessions is 
positively correlated with the performance gains of Semantic TrueLearn, giv-
ing clearer evidence of the positive impact of incorporating this aspect when 
modeling learners and their journey within an education setting. Further 
investigations also show that the proposed methods generalize to other 
learner modeling techniques that go beyond the TrueLearn family of models 
extending to both PGMs and classical concept-based user models.

1.5.1 Future Work

The proposed model is a stepping stone to accounting for SR. However, it 
still can do better in terms of capturing the correlation among the observed 
topics. We propose (i) using algorithms such as PageRank (Brin & Page, 1998) 
to derive uncorrelated skill parameters and (ii) incorporating richer ontolo-
gies (Auer et al., 2007) that contain more fine-grained relationships, entity 
 definitions/categorizations, and constraints in the place of the raw Wikipedia 
graph to incorporate finer grain semantic awareness to the learner model. 
Mechanisms to continuously utilize SR information (even in the absence of 
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new topics) should be identified and investigated in future work. Moreover, 
SR measures are not usually built and validated with educational datasets 
or topics, which is a limitation of the field. In the future, we should aim to 
validate the usefulness of proposed SR metrics with educational applications 
and thrive to improve them to align more with educational and information 
use cases. Also, more advanced model families (e.g., Bulathwela, Pérez-Ortiz, 
Yilmaz, & Shawe-Taylor, 2022) can benefit from the proposed techniques 
leading to a generation of semantically aware, integrative educational rec-
ommendation systems. As Semantic TrueLearn builds a sub-symbolic rep-
resentation that is humanly intuitive, it is possible to create narratives and 
intelligent user interfaces (e.g., Bulathwela et al., 2020a; Pérez-Ortiz et al., 
2021) that can be used to interpret and rationalize (Riedl & Bulitko, 2013) the 
learnings from the model leading toward more human-in-the-loop artificial 
intelligence. This will increase trust and enable verification and scrutinizing 
of the models (Balog, Radlinski, & Arakelyan, 2019). Going beyond recom-
mendation, SR can be harnessed to improve information retrieval systems as 
well Ahmed and Bulathwela (2022).
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2.1 Introduction

Crime analysis is the set of quantitative and qualitative techniques to analyze 
crime data, including not only the analysis of actual crimes, criminals, and 
victims but also the understanding of problems related to the quality of life 
in a community, the socio-demographic aspects and other factors that can 
influence the frequency of crime in that community. Also, crime analysis 
aims at identifying crime patterns and trend correlations that can help law 
enforcement agencies (LEAs) in crime reduction, prevention, and evaluation. 
Police reports can be helpful for these scopes since they provide a complete 
description of crimes; however, these documents are usually private and 
authorization is required for access.

In this context, newspapers are valuable sources of information. The 
extraction of structured information on events from online sources for the 
purpose of crime intelligence gathering has been acknowledged to be of 
paramount importance by various organizations worldwide. Newspapers 
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provide reliable, localized, and timely data (the time delay between the occur-
rence of the event and the publication of the related news article does not 
exceed 24/48 hours). The main drawback is that newspapers do not collect and 
publish all the facts related to crimes, but only the ones that arouse the read-
ers’ interest. Therefore, a percentage of police reports will not be turned into 
news articles and is lost. Natural language processing (NLP) techniques can 
be exploited for understanding the content of the news articles and extracting 
semantically enriched data. Moreover, information about an event is usually 
spread across multiple news articles. Over time, more details are provided 
about the dynamics of the event. Identifying the news articles related to the 
same event is of key importance to merge duplicates and make crime analy-
sis more reliable. On the other hand, clustering similar news articles allows 
to perform statistical analysis on crime events, e.g., finding the number of 
car thefts occurred in a specific month in a certain neighborhood of the city 
or the rate of armed robberies w.r.t. the total number of robberies in the city. 
For this reason, a representation of the events and their relations is needed.

The Event-Centric Knowledge Graphs are specific knowledge graphs in 
which information is centered on the event instead of the entities, as defined 
by Rospocher et al. (2016). These knowledge graphs are able to provide an 
accurate description of the events and allow for the interconnection between 
them. Each event is represented by a central node that is connected to other 
nodes which express the characteristics of the event. These nodes can be con-
nected to more central nodes, which means the corresponding events have 
something in common. Community detection algorithms can be applied to 
the graph to distinguish groups of similar event nodes.

In this chapter, we propose a methodology to build in Neo4j an Event-
Centric Knowledge Graph related to crime events as they are described in 
news articles. Centrality algorithms are used to find the importance of the 
central nodes, and community detection allows to find similar events to per-
form crime analysis. The methodology is applied to the Italian Crime News 
dataset1 demonstrating the advantages of using graph-based analysis in 
crime monitoring.

The remainder of the contribution is organized as follows: Section 2.2 intro-
duces some previous related work, then Section 2.3 explains the workflow 
to build our Event-Centric Knowledge Graph, while the experiments on an 
Italian dataset are presented in Section 2.4 as well as some possible analysis on 
crime events. We conclude with a discussion and future work in Section 2.5.

2.2 Related Work

In recent years, researchers have taken an increasing interest in the auto-
matic construction of knowledge graphs. Indeed, knowledge graphs have 
been found to be very helpful representations applied in a multiple number 
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of contexts. In particular, they can be employed for representing events and 
discovering their relations.

In literature, there are few works focusing on the construction of event-based 
knowledge graphs for the representation of information contained in unstruc-
tured data, e.g., freeform text (Guo, Jiang, and Zhang, 2020; Lakshika and 
Caldera, 2021). A graph analytical approach was proposed by Po, Rollo, and 
Lado (2016) to identify the main topics published on social media. The graph is 
based on the co-occurrence of words across the news articles; however, seman-
tic relationships are not included. An extension was provided by Rollo (2017) 
to consider also entities for the generation of the graph. In our recent work 
(Rollo and Po, 2022), we described a method to build knowledge graphs from 
textual data using Entity Linking and Automatic Keyphrase Extraction.

Moreover, a consistent number of previous works refer to methodologies 
for the extraction and analysis of named events, e.g., historical events of 
global importance, from existing knowledge graph (Kuculo, 2022). In most 
cases, knowledge graphs focus on Entity-Centric knowledge; for example, 
this is the case of large-scale knowledge graphs such as Wikidata (Vrandecic, 
2012), DBpedia (Auer et al., 2007), and YAGO (Mahdisoltani, Biega, and 
Suchanek, 2015). The concept of Event-Centric Knowledge Graph was defined 
by Rospocher et al. (2016). In the knowledge graph centered on the event all 
the data are stored w.r.t. the event, this feature allows to capture the dynamic 
of the event. Several analyses can be performed on the graph to derive new 
knowledge about the events, make prediction, generate a storyline of the 
events, understand their causality (Li et al., 2023; Yan and Tang, 2022). Some 
works focus on expressing the temporal relation between events (Gottschalk 
and Demidova, 2018; Knez, 2022; Park et al., 2022).

The use of knowledge graph in the context of criminal data allows to develop 
technique for investigating, fighting, and preventing crime (Abdul Jalil et al., 
2017; Jedrzejek and Bak, 2012; Onnoom et al., 2014; Venkata Srimukh and 
Shridevi, 2020). Robinson and Scogings (2018) proposed the GraphExtract algo-
rithm to build a weighted graph for proactively identifying criminal events and 
the actors responsible. Elezaj et al. (2019) extended the SMONT ontology devel-
oped by Kalemi et al. (2017) and defined a knowledge graph-based framework 
to identify the murderer by inferring the person who has the motive, opportu-
nity, and method starting from social networks. Peppes et al. (2020) proposed 
a visualization tool based on the use of an ontology for performing advanced 
crime analysis. Szekely et al. (2015) suggested a method to crawl sexual ads 
from the web and provide LEAs a knowledge graph tool to fight human traf-
ficking and support victims. Data from the web are organized in a predefined 
ontology, then, the authors address the problem of duplicates through text sim-
ilarity and entity resolution. Table 2.1 summarizes the main aspects of previ-
ous works on the use of knowledge graph in the context of crimes.

With respect to the cited related works, in this chapter, we combine tech-
niques based on graph structure with semantic-based extraction and rela-
tionship generation for the analysis of crime events. Adding semantics makes 
the data not only interconnected but also smarter, allowing for inference, 
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2.3 Event-Centric Knowledge Graph

Our Event-Centric Knwoledge Graph aims at providing a comprehensive 
representation of the events and highlighting the relationships between dif-
ferent events.

TABLE 2.1

Previous Works on the Use of Knowledge Graph in the Context of Criminal Data

Reference Goal(G), Use case(U), Limitation(L)

Abdul Jalil et al. 
(2017)

G: development of a model to match similar crimes and help 
investigation officer in targeting suspects within the shortest time.

U: motorcycle thefts
L: thefts are connected each other just considering the exact match of 
some data (modus operandi, motorcycle type, crime scene, and time), 
no semantic approach is used to link semantically similar values

Venkata Srimukh 
and Shridevi (2020)

G: description of an ontology to represent crimes reported to LEAs
L: the model does not allow to express key information of crimes, e.g., 
what was used to commit the crime, the stolen objects in a theft. 
Besides, the ontology is not available for integration and reuse

Onnoom et al. (2014) G: ontology development to recommend words to fill in reports of 
crime scene investigation

U: real crime cases from the Forensic Science Police Center 4 of Thailand
L: the proposed ontology is limited to the specific use case, 
generalization requires training on new documents

Jedrzejek and Bak 
(2012)

G: extension of a model for representing economic crimes committed by 
employees

L: the complexity of the ontology assumes a deep preprocessing of the 
data to represent, this could be a limit for usability

Elezaj et al. (2019) G: definition of a knowledge graph-based framework for crime analysis 
starting from social networks

L: the framework is not implemented; therefore, it is not possible to 
evaluate its efficiency

Szekely et al. (2015) G: development of an ontology-based knowledge graph from online 
sexual ads

U: fighting human trafficking and supporting victims
L: the text similarity used to find duplicates does not consider 
synonyms and/or semantic relationships, e.g., connecting the entities 
to a known vocabulary

analytics, and learning. Moreover, we propose a novel representation of the 
events that is specific of events as they are described in the news articles. To 
the best of our knowledge, this is the first work that proposes the construc-
tion of such a knowledge graph starting from news articles for crime analysis 
purposes.
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In journalism, the 5W + 1H are the questions the reporter needs to answer 
in reporting an event:

• What (what is happening?)
• Who (who is involved?)
• Where (where did it happen?)
• When (when did it happen?)
• Why (why did it happen?)
• How (how did it happen?)

FIGURE 2.1
Crime event representation in the Event-Centric Knowledge Graph.

Each news article is complete if it contains the answers to all the ques-
tions, on the other hand, extracting these answers allows at giving a com-
plete description of the event. In some contexts, the answer to some of these 
questions may not be present, for instance, this is often the case of question 
Why. In news articles reporting crime events, the people involved (Who) 
can be detailed based on the role in the event: the author(s) of the crime, the 
victim(s), and other participants, e.g., the police. Considering this subdivi-
sion, the total number of questions is eight. Since in most cases the scope of 
the news articles is to provide information related to single events, a single-
crime-event-per-document assumption is made. Thus, event and news article 
can be considered as synonyms in this chapter. Figure 2.1 shows an exem-
plar representation of a crime event through the Event-Centric Knowledge 
Graph. The central node E representing the event is connected to eight nodes 
representing the eight questions. The same answer to a certain question can 
be extracted from different news articles and shared by multiple events. 
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Also, the semantically similar answers can be connected each other. 
Different approaches can be exploited to calculate the semantic similarity 
of two answers. We propose to use the contextualized word embeddings 
of BERT (Bidirectional Encoder Representations from Transformers). BERT 
was introduced in 2019 and is a bidirectional transformer-based language 
model (Devlin et al., 2019). After training a BERT model on a consistent cor-
pus and extracting the word embeddings, the model can be fine-tuned to 
perform different tasks. Word embeddings are dense vector representations 
of words in a lower dimensional space. Despite the static word embeddings 
of  traditional models like Word2Vec, the contextualized word embeddings of 
BERT are able to capture the meaning of a word based on the context where it 
is used. In this way, the same word used in two different sentences can have 
two different vector representations. Similarity links are generated in the 
graph based on the value of the vectors similarity, i.e., the semantic similarity 
of the two answers.

The resulting graph appears like the one in Figure 2.3a. Then, the objective 
is to create connections between the event nodes themselves to express how 
“connected” two events are. We generated the initial knowledge graph in 
Neo4j, then several operations are made on the graph using the Cypher query 
language to create Event-Event connections. As illustrated in Figure 2.3b, two 
directed connections are generated for each of the 5W + 1H questions if at 
least one answer is shared. The weight of the relationships is obtained sum-
ming the number of shared nodes for that question and the similarity val-
ues of the nodes with similarity higher than a certain threshold. The Cypher 
queries used are reported in Listing 2.1, these queries are executed for each 
question type.

FIGURE 2.2
Interconnection between two crime events.

Representing events in such a way allows to understand the interconnection 
between the news articles and, consequently, the events. Just as an example, 
Figure 2.2 illustrates two events (E1 and E2) sharing one node What, one Who 
author, and one Who victim.
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Listing 2.1: Cypher queries to generate relationships between the event 
nodes based on the shared answers to the 5W + 1H questions.

MATCH (c1:CrimeNews)–[w1:WHAT]->(w:What)<-[w2:WHAT]- 
(c2:CrimeNews)
WHERE c1.id>c2.id
WITH c1, c2, COUNT(*) AS num_count
CREATE (c1)−[r:CONNECTED_SAME_WHAT]−>(c2)
SET r.weight=apoc.convert.toFloat(num_count)
MATCH (c1:CrimeNews)−[r1:WHAT]−>(w1:What)−
     [r:SIM_WHAT]−(w2:What)<−[r2:WHAT]−(c2:CrimeNews)
WHERE c1.id>c2.id
WITH c1, c2, r
CREATE (c1)−[r_new:CONNECTED_SIM_WHAT]−>(c2)
SET r_new.weight=apoc.convert.toFloat(r.weight)

FIGURE 2.3
Representation of two events and their relationships (a) and generation of directed connections 
between event nodes in the Event-Centric Knowledge Graph (b).
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MATCH (c1:CrimeNews), (c2:CrimeNews)
OPTIONAL MATCH (c1)−[r1:CONNECTED_SAME_WHAT]−(c2)
OPTIONAL MATCH (c1)−[r2:CONNECTED_SIM_WHAT]−(c2)
WITH c1, c2, sum(r1.weight) AS sumW1, sum(r2.weight) AS sumW2
WHERE c1.id>c2.id
AND apoc.convert.toFloat(sumW1+sumW2) > 0.0
CREATE (c1)−[:CONNECTED_WHAT {weight:apoc.convert.toFloat 
(sumW1+sumW2)}]−>(c2)
CREATE (c2)−[:CONNECTED_WHAT {weight:apoc.convert.toFloat 
(sumW1+sumW2)}]−>(c1)

Before the identification of communities, the importance of the nodes in the 
obtained weighted graph is calculated by the centrality algorithm.

2.3.1 Node Centrality

In graph theory and network analysis, centrality is a metric of key impor-
tance since it helps to better understand the network and navigate through 
chaos while extracting information from a network. There are a lot of iterative 
algorithms to calculate the centrality of nodes. Each algorithm has a differ-
ent perspective and assigns scores based on different factors. If considering a 
directed graph, each node can have incoming relationships, i.e., links incident 
on the node, and outgoing relationships, i.e., nodes directed at other nodes.

The degree centrality (Freeman, 1978) exploits incoming and/or outgoing 
relationships to calculate the degree of each node. Given a graph =: ( , )G V E , 
where V is the set of vertices (i.e., nodes) and E the set of edges (i.e., relation-
ships), the adjacency matrix ,Av t is defined. Each element ,av t of that matrix 
is 1 if vertex v is connected to vertex t, 0 otherwise. The score of vertex v is 
computed by the formula:
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where n is the number of vertices in the graph. Therefore, in the degree central-
ity, the importance of a vertex depends only on the number of its neighbors.

The eigenvector centrality, as described in Ruhnau (2000), aims at measuring 
the influence of a node in the graph. It is more suitable for undirected graph. 
In our graph, eigenvector centrality can measure how much an event influ-
ences another event. The algorithm is based on the idea that relationships with 
high-scoring nodes contribute more to the score of a node w.r.t connections 
with low-scoring nodes. In other words, a node connected to a few number of 
nodes with high scores is more important than a node connected to a higher 
number of low-scoring nodes. The score of node v is given by the formula:
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where M(v) is the set of neighbors of v and λ is a constant. The algorithm 
can be applied also to weighted graph. In this case, the score of a node sent 
to its neighbors is multiplied by the normalized weight of the relationship. 
Therefore, the score depends on the weight of the relationship.

Two extensions of the eigenvector centrality are the page rank and the arti-
cle rank. The page rank, introduced by Brin and Page (1998), assigns a score to 
the nodes of the graph considering both directed and undirected edges and 
optional edge weights. Assuming a node v is connected to nodes { }…, ,1T Tn , 
its page rank (PR) is calculated as:

 ∑= − +
=

( ) 1 ( )
( )
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PR v d d PR T
C T
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where ∈ [0,1)d  is a damping factor and ( )PR Tt  and ( )C Tt  are the page rank 
and the number of outgoing links of the neighbor Tt, respectively. The damp-
ing factor controls the convergence speed of page rank algorithm. A low 
damping factor is used to determine the score of a node based on the score 
received from external nodes and allows the iterations to quickly converge. 
In contrast with the eigenvector centrality, the idea beyond page rank is that 
relationships originating from low-degree nodes have a higher influence 
than relationships from high-degree nodes.

With respect to page rank, the article rank (Li and Willett, 2009) lowers the 
influence of low-degree nodes. This is a more recent iterative algorithm used 
to measure the transitive influence of nodes in a graph. The score of node v 
at iteration i is given by:
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where ( )N vin  and ( )N wout  denote incoming and outgoing neighbors of node  v  
and w, respectively, ∈ [0,1)d  is a damping factor, and Nout is the average 
out-degree.

The implementation of all the described algorithms is available in the 
Neo4j Graph Data Science library2 and allows the application to directed and 
weighted graphs, matching our use case. The algorithms take in input the 
name of the nodes to consider, the relationships, and their weights. Also, 
some configuration parameters are allowed. In the degree centrality, it is pos-
sible to specify the direction of the relationship to consider for the calculation 
of the degree. Since in our graph each relationship is generated in both direc-
tions, we can consider just one direction in the algorithm. In the eigenvector 
centrality, the node scores are normalized using the Euclidean norm. The 
damping factor can be specified in the configuration of the page rank and 
the article rank algorithms, 0.85 is the default value in Neo4j since it is the one 
suggested by the authors of the original paper.
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2.3.2 Community Detection

Community detection is usually the first step in extracting information 
from graphs. A community is a dense subgraph within a larger graph 
that corresponds to a specific function (Aviyente and Karaaslanli, 2022). 
We are interested in identifying groups of most densely connected nodes, 
i.e., communities, because if nodes are densely connected each other, the 
events they represent are similar. Similar events mean that the events have 
some characteristics in common. Community detection allows identifying 
these events in short time, then further crime analysis can be performed 
on the events in the same community. The Neo4j Graph Data Science 
library mentioned before offers some already implemented community 
detection algorithms.

The label propagation algorithm (Rezaei, Far, and Soleymani, 2015) detects 
communities exploiting only the graph structure. It assigns to a node the 
label occurring with the highest frequency among its neighbors. This opera-
tion is repeated more times, iteratively. A label can quickly become dominant 
in a group of closely connected nodes, but will reach with difficulty sparsely 
connected region. At the end of the iterations, densely connected nodes have 
the same label that means they are part of the same community.

Louvain is an iterative heuristic algorithm introduced in 2008 by Blondel 
et al. (2008). It tries to identify communities in a graph by optimizing the mod-
ularity score. Modularity is a numerical value between –0.5 (non- modular 
clustering) and 1 (fully modular clustering) that quantifies the quality of an 
assignment of nodes to communities and evaluate how densely connected 
the nodes in the same community are w.r.t. relationships outside communi-
ties. The modularity of a community c is given by the formula:
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where m is the sum of all of the relationship weights in the graph, ∑in is the 
sum of relationship weights between nodes within the community c consid-
ering each relationship twice, and ∑tot is the sum of all relationship weights 
of nodes within the community including relationships which link to nodes 
of other communities. The iterative procedure of Louvain groups nodes into 
communities based on how closely connected nodes are and calculates the 
modularity. The nodes are assigned to a different community if this change 
leads to increased modularity.

The weakly connected components algorithm identifies groups of nodes where 
each node is connected to all the other nodes (Monge and Elkan, 1997). The 
result does not depend on the direction of the relationships.

These algorithms have different perspectives; we expect the communi-
ties identified by the weakly connected components algorithm to be differ-
ent from the ones of the previous two algorithms since the scope is slightly 
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different. However, it will be interesting to investigate their results and make 
some comparisons.

2.4 Application

In this section, we show the application of our methodology to an open-
source dataset of Italian news articles reporting crime events occurred in the 
city of Modena.

2.4.1 Dataset

The dataset contains 10,395 news articles from the Gazzetta di Modena 
newspaper.3 The news articles are related to some crime events occurred in 
the province of Modena from 2011 to 2021 and cover 13 types/categories of 
crimes (theft, robbery, murder, sexual violence, mistreatment, aggression, 
illegal sale, drug dealing, scam, fraud, money laundering, evasion, and kid-
napping). The dataset has been obtained by the application of web crawler 
method along with several semantic approaches for information retrieval: 
crime categorization, named entity extraction, 5W + 1H identification, linked 
data mapping, geo-localization, time expression normalization, entity link-
ing, and duplicate detection. The framework that allowed to generate the 
dataset has been described in Rollo and Po (2020) and Rollo, Po, and Bonisoli 
(2022) while details on the text categorization task developed to understand 
the type of crime reported in the news articles are provided in Bonisoli, 
Rollo, and Po (2021) and Rollo, Bonisoli, and Po (2021). The dataset is openly 
available1 and is the first one of its kind for the Italian language. The dataset 
is unbalanced on the crime category: the most news articles are related to 
thefts (70%), while sexual violence, money laundering, evasion, and fraud are 
less than 1% of the dataset.

repository.4 The answers to Why and How are rarely reported, so they are 
excluded from the experiments. The question for What is used to identify 
the  stolen object(s), i.e., bike, jewels, money, car, phone, and other objects. 
Some answers to When indicate the date of the crime event or the moment of 
the day, i.e., morning, evening, and so on. The answers to Who author can be 
generic, such as il ladro (the thief), sometimes more specific information are 
indicated, e.g., the nationality or the age of the thief, or the number of thieves 
if the responsible for the theft is a gang. The same consideration can be done 
for Who victim, generic answers are il titolare del negozio (the shop owner) 

The experiments described in this chapter are related to 285 news arti-
cles about thefts occurred in 2020. The answers to the 5W + 1H questions 
have been manually extracted from the text of the news articles by a group 
of bachelor students. The annotated dataset is available online in a GitHub 
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or il proprietario dell’auto (the car owner). An example of news article and its 
knowledge graph is provided in Figure 2.4.

2.4.2 Modena Crime Knowledge Graph

Each news article is represented in the Modena Crime Knowledge Graph as 
reported in Figure 2.1. Table 2.2 reports the number of nodes and relation-
ships, i.e., the relationships from the crime event node to the answers (incom-
ing relationships) and the ones between the similar answers (similarity 
relationships). The BERT model used to calculate the similarity is the Italian 
cased model (Schweter, 2020). Semantic similarity was not calculated for 
Where nodes since usually the answer to Dove è avvenuto il crimine? (Where 
did the crime event happen?) is the proper name of a place, the name of a city 
or a specific address. Therefore, semantic similarity in this case is meaning-
less. In the other cases, the similarity threshold was set to 0.85.

The Cypher queries have been executed to create six types of relationships, 
named “connected_what,” “connected_where,” “connected_when,” “con-
nected_who_author,” “connected_who_victim,” and “connected_who_other,” 

FIGURE 2.4
Exemplar news article related to a theft with the corresponding Event-Centric Knowledge  

03/12/news/castelvetro-assalto-al-bar-del-parco-spariti-soldi-e-bibite-1.41294303}).

TABLE 2.2

Number of Nodes and Relationships of the Modena Crime 
Knowledge Graph

Node Instances Incoming rel. Similarity rel.

CrimeNews 285 – –
What 318 382 101
Where 270 342 –
When 219 255 320
WhoAuthor 268 398 257
WhoVictim 285 375 75
WhoOther 199 289 437

Graph. (News extracted from \url{https://www.gazzettadimodena.it/modena/cronaca/2022/ 

https://www.gazzettadimodena.it
https://www.gazzettadimodena.it
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between the CrimeNews nodes. Thus, we obtain the final weighted directed 
graph that consists of 285 CrimeNews nodes and 11,047 relationships. Part of 
the graph is shown in Figure 2.5. As can be noticed in the figure, there are 
some isolated groups of nodes that do not have external connections with 
other nodes.

All the centrality algorithms described in Section 2.3.1 have been applied  
to the graph. The damping factor in the page rank and article rank algo-
rithms was set to 0.5 because in our graph the number of outgoing relation-
ships for each node is equal to the number of its incoming relationships. 
Analyzing the scores assigned by each algorithm, we notice that the events 
with the highest scores are approximately the same for all the algorithms. 
Table 2.3 reports the top five events and the corresponding centrality scores. 
These nodes are also among the ones with the highest number of relation-
ships with other CrimeNews nodes.

Seven projections of the final graph have been generated in Neo4j: one pro-
jection contains all the CrimeNews nodes and the relationships of the final 
graph, with the relationship weights and the four centrality scores of the 
nodes, while the other six projections contain only one type of relationship 
between the CrimeNews nodes, i.e., “connected_what,” “connected_where,” 
and so on. The community detection algorithms described in Section 2.3.2 
have been applied to all the seven generated graphs. Comparing the commu-
nities identified on the same graph by different algorithms, we noticed that 

FIGURE 2.5
Crime news nodes and their relationships.



34 Semantic AI in Knowledge Graphs

there is a very substantial overlap. This means that the result is almost the 
same regardless the algorithm used.

Table 2.4 shows the number of communities identified by Louvain and 
the corresponding modularity value based on the centrality score and the 
type of relationships and nodes (W) included in the graph (in the table, “all” 

TABLE 2.3

The Five Nodes with the Highest Centrality Scores

Crime News

ID English Title Degree Eigenvector
Article 
Rank

Page 
Rank

1917556 Hunting the blue car of Modena and 
Castelnuovo: three thefts in a few hours

140.812 227.173 0.515 2.888

246 Thieves in the apartment “They 
destroyed everything”

191.455 218.145 0.486 3.640

1773111 Thieves discovered, flight into the  
night and theft foiled

129.042 217.915 0.479 2.565

1743523 Tevere Street in the crosshairs: robbed 
and damaged two businesses

131.802 205.752 0.467 2.665

187 New alarms at the deli
robbed by a gang

110.226 205.303 0.456 2.204

Note: The English title was derived from the translation of the original Italian title.

TABLE 2.4

Results of the Louvain Community Detection Based on the Relationship and Node 
Type (W) Included and the Centrality Algorithm Used

W
Centrality 
Algorithm #Community Modularity

Centrality 
Algorithm #Community Modularity

What Degree 156 0.900 Eigenvector 156 0.900

Where 213 0.652 213 0.652

When 142 0.689 142 0.689

Who author 106 0.255 106 0.255

Who victim 169 0.490 169 0.490

Who other 116 0.630 116 0.630

All  10 0.353 15 0.360

What Page rank 156 0.900 Article rank 156 0.900

Where 213 0.652 213 0.652

When 142 0.689 142 0.689

Who author 106 0.255 106 0.255

Who victim 169 0.490 169 0.490

Who other 116 0.630 116 0.630

All  17 0.360 15 0.350
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means that all the relationships – connected_what, connected_where, etc. – 
are included). The highest value of modularity was reached in the What 
graph, this is probably due to the fact that in the other graphs the nodes are 
more densely connected and it is more difficult to identify the communities. 
Moreover, the centrality score does not seem to affect the results since the 
same values of modularity is reported regardless the centrality algorithm. 
Only when all the relationship types are included, the number of identified 
communities changes based on the centrality algorithm as well as the modu-
larity values. This means that the community detection algorithm exploits the 
centrality scores associated to the event nodes to generate the communities.

Figure 2.6 shows four graphs, which contain all the relationship types; 
in each graph a different centrality algorithm was used. The communities 
identified by Louvain are highlighted with a different color; the size of the 
nodes depends on the centrality score. In all the graphs, the small groups 
of nodes connected each other are detected as one single community in most 
cases. However, sometimes even if the number of nodes connected each 
other and with no relationship with other nodes is very low, these nodes are 

 

 

FIGURE 2.6
Louvain Identified communities on the final directed graph with nodes scored by four dif-
ferent centrality algorithms: degree centrality (a), eigenvector centrality (b), page rank (c), and 
article rank (d).
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assigned to different communities while we expect to be part of the same 
community. The page rank is the algorithm that identifies the highest num-
ber of communities (17).

To increase the influence of node centrality, a new weight has been associ-
ated to each relationship ( , )r i j , following the formula:

 = + +
_

2
( , ) ( , )new weight weight

C C
r i j r i j

i j

where ( , )weightr i j  is the weight already associated to the relationship that con-
nects the node i to the node j, and ( )C i  and ( )C j  are the centrality scores of the 
nodes i and j, respectively. Four new weights have been calculated for each 
relationship, each using a different centrality algorithm. Community detec-
tion has been applied to the graph projections including the new weights, 
one at a time. Using the weakly connected components algorithm or the label 
propagation, the result is not affected by the centrality score used in the new 
weight. Probably, this is due to the fact that the scores of the centrality algo-
rithm are very similar each other. Figure 2.7 shows the centrality scores of 
some nodes in the graph normalized by the min-max scaler. There is a clear 
overlap of the four lines representing the four algorithms. There are few dif-
ferences in the obtained communities when Louvain is used. In this case, the 
highest modularity value was reached when using the weights derived from 
article rank and considering only the CrimeNews relationships generated by 
the answers to What. Indeed, as can be seen in Figure 2.8, the communities 
clearly identify the nodes that are densely connected each other.

2.4.3 Modena Crime Analysis

The data of the Italian Department of Public Security of the Minister of  
the Interior (published by Sole24Ore5) classifies the city of Modena at the 
12th  position among the other Italian cities based on the number of crimes 
reported to the police. The total number of police reports in Modena in 2021 
was 26,328 (3,722 reports per 100,000 inhabitants). The first city in the national 

FIGURE 2.7
Normalized scores of CrimeNews nodes according to four different centrality algorithms.
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ranking is Milan with 159,613 reports (4,866 reports per 100,000 inhabitants). 
According to the latest report of ISTAT,6 the most frequent crimes in Modena 
from 2016 to 2020 are thefts, damages, scams and computer fraud, threats, and 
willful injury. Figure 2.9 reports the number of the mentioned crimes reported 
to the authorities. As can be seen, the number of thefts decreases from 2019 to 
2020. This is probably due to the lockdown caused by the COVID-19 emergency. 
In fact, because of the pandemic, the government had imposed severe restrictive 
measures, allowing only essential displacements. As a result, the population 
was often at home and worked from home, if allowed. On the other hand, the 
number of computer fraud increased (from 1,985 in 2019 to 2,773 in 2020).

This kind of reports allows to give an overview of the crime situation of 
the city, however, there is no detailed information on the victims and the 
authors, the dynamics, the place where the crime occurred with specifica-
tion of the address or neighborhood, and so on. Thanks to the extraction of 
the 5W + 1H answers from the text of the news articles and the use of graph 
analysis techniques, it is possible to generate these data. Also, it is possible 
to geolocate the crime events and generate heatmaps as we discussed in a 
previous work (Po and Rollo, 2018). For example, looking at the graph gener-
ated by the 285 news articles related to thefts, it is possible to know which is 
the most stolen items in Modena. They are the What node with the highest 
number of incoming relationships. In our graph, these nodes are: handbag, 
bicycle, safety deposit box, car, phone, wallet, and cash register. The same can 

FIGURE 2.8
Communities detected by Louvain in the What graph weighted by the article rank.
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be done to discover the cities and the area of the city where the most crimes 
occur. These data can be combined with information on the activities/shops 
located in the same address to understand the cause of the crime events and 
alerts the police to monitor the situation in that area.

2.5 Conclusion and Future Work

FIGURE 2.9
Crimes reported to the authorities in the province of Modena from 2016 to 2020. (Source: ISTAT, 
data of the Italian Ministry of the Interior.)

The chapter presented a methodology for the construction of a knowledge 
graph for the representation of crime events as they are described in news 
articles. The Event-Centric Knowledge Graph has been generated based on 
the extraction of the answers to the 5W + 1H journalistic questions from the 
text of the news. Then, we added direct relationships in the graph among the 
nodes representing the events to indicate that they share some  characteristics. 
Centrality algorithms were used to determine the importance of the individ-
ual nodes, while community detection algorithms allowed to distinguishing 
groups of similar nodes within the overall graph. The tool used for the cre-
ation and the analysis of the knowledge graph is Neo4j. Some experiments 
have been conducted on a manually annotated Italian dataset containing news 
articles related to thefts in the province of Modena. We focus on thefts as they 
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Since the manual extraction of the 5W + 1H answers is very time consuming, 
as future work, we will work on automatic approaches through the question 
answering using BERT. This will allow to increase the amount of annotated 
news articles and the size of the generated knowledge graph as community 
detection algorithms work better in large graphs. The increasing dimension 
of the graph will probably improve also the influence of the centrality scores 
on the final results. Moreover, further analysis of the graph could be performed 
to measure the similarity of the text of the news articles in the same commu-
nity and identify the news articles related to the same event. This analysis 
should allow to create a storyline of the event. Finally, it could be interesting to 
explore the possibility of connecting the answers to the 5W + 1H questions to 
external ontologies, taxonomies, or vocabularies such as WordNet, BabelNet 
to better understand their similarity. This should allow to increase the num-
ber of similarity relationships. Another future work will focus on building a 
knowledge graph mapping information published in newspapers with respect 
to the new Crime Event Model, developed by Rollo, Po, and Castellucci (2023).
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Notes

 1 Italian Crime News dataset: https://paperswithcode.com/dataset/italian- 
crime-news

 2 https://neo4j.com/docs/graph-data-science/

are the most frequent crime in Modena. However, the methodology developed 
depends neither on the language of the news articles nor on the type of event 
described since all the events can be represented by the answers to the 5W + 1H 
questions. The results of the experiments are promising and demonstrate how 
it is possible to develop crime analysis techniques by using knowledge graph.

https://paperswithcode.com
https://paperswithcode.com
https://neo4j.com
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 3 https://gazzettadimodena.gelocal.it
 4 https://github.com/federicarollo/W-1H-extraction-in-news-articles-for-event-

detection
 5 https://lab24.ilsole24ore.com/indice-della-criminalita/?Modena
 6 http://dati.istat.it/Index.aspx?DataSetCode=dccv_delittips
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3.1 Introduction

Throughout history, humans have striven to assign categorical mean-
ing to concepts in the world around them. However, it was not until 1613 
that these practices became a systematic field of study [78], when the term 
“ontology” (or “ontologia”) was separately coined by the philosophers 
[24] in his Lexicon philosophicum and [45] in his Theatrum philosophi-
cum. Ontologics in the philosophical sense refers to a field of study that 
focuses on the nature of being and the conception of entities and things 
[40]. However, this is not the only definition. A computational ontology 
concerns itself with constructing a conceptual model of what it means for 
a domain to exist, and assign meaning and relationships to the entities in 
that domain [57]. As a result, a computational ontology provides an effec-
tive method for modeling a particular conceptual domain and the entities 
and relationships therein.

Computational ontologies have wide-ranging applications. Some research 
domains that have been modeled by ontologies include biomedicine [38, 73], 
historical research [65], and space data [71, 72, 76]. Although these topics 
are disparate, they demonstrate that computational ontologies are effective 
tools for modeling complex, interrelated, heterogeneous data. They can also 
be used to support a variety of tasks, such as classification, data explora-
tion,  discovering new topics, and detecting research communities [75]. These 
factors make ontologies suited for representing information about scientific 
fields. Overall, being able to capture a domain in an ontology presents par-
ticular advantages, such as making complex information accessible, discov-
ering new connections, and facilitating the ability to explore data.

3.4.4.2 Preprocessing for Text Mining (TM) .............................. 70
3.4.4.3 Named Entity Recognition (NER) Using spaCy ........... 71
3.4.4.4 Entity and Relationship Extraction Using POS 

Tagging ...............................................................................72
3.5 Results and Analysis ...................................................................................75

3.5.1 Exploratory Analysis ....................................................................... 75
3.5.1.1 NER Performance Metrics ...............................................75
3.5.1.2 NER Word Embeddings and Clustering ....................... 76
3.5.1.3 Ontology Analysis ............................................................ 79

3.6 Discussion .....................................................................................................80
3.6.1 Text Mining Implementation .........................................................80
3.6.2 Discussion of Spacy NER Model ...................................................80
3.6.3 Automated vs. Semi-automated vs. Manual Ontology 

Creation ............................................................................................. 82
3.7 Conclusion .................................................................................................... 82
References ...............................................................................................................84



47Semantic Natural Language Processing for Knowledge Graphs Creation

However, there are specific challenges related to the development of compu-
tational ontologies. The complexity of a domain may mean that scalability is 
difficult, particularly when manually adding data. Additionally, data properties 
such as multiple data types, continuous evolution, expansive content, the seman-
tic nature of data, and varying levels of relationships may make information 
difficult to capture [82]. Tools such as Protégé contain a suite of tools to enable 
ontology development, including automatic reasoners that create inferences 
between data [66, 73], although manual intervention is still needed to ensure 
accuracy. Additionally, evaluating the efficacy and validity of an ontology is 
an essential step for ensuring its quality. Nevertheless, this aspect of develop-
ment has been frequently underreported in prior research [42]. Ontology evalu-
ation is also complex, often requiring the manual knowledge of domain experts. 
Overall, there are many issues related to ontology development, particularly 
over the matter of how to efficiently capture the complexity of a topic.

Natural language processing (NLP) is a field of Machine Learning (ML) that 
contains a theoretically motivated range of computational techniques for the 
analysis and representation of naturally occurring texts at one or more levels of 
linguistic analysis in order to achieve a human-like level of understanding for 
a range of tasks and applications [41]. Because NLP techniques can be applied 
to a text or data corpus, they can be used for automatic or semi-automatic ontol-
ogy generation. The intersection of NLP ML techniques and ontology creation 
is known as ontology learning [50]. Many ontologies have utilized NLP tech-
niques, including ones for risk management [51], biomedicine [3, 44], and clini-
cal texts [35]. Owing to the complex nature of many domains, NLP techniques 
can be helpful for parsing relevant text corpuses, and ontology learning can be 
used to establish relationships and entities. Then, this may allow for additional 
resources to be directed toward other aspects of a scientific effort. However, 
NLP techniques often rely on a rigid corpus of rules in order to create enti-
ties and relationships, which tend to be limited to the domain being modeled, 
and are not easily modified for other domains. In short, NLP techniques have 
shown promise for the semi-automatic or automatic population of ontologies.

Additional methods have been proposed to address the problem of domain-
restricted NLP models. One such technique was utilized by Ayadi et al. [3], 
who utilized a deep learning-based ontology population system to enhance 
a biomedical network ontology. An additional technique utilized by Elnagar 
et al. [15] employed Complex Embeddings (ComplEx) to ensure complete-
ness and reference ontologies to refine the model. However, there is room for 
additional research into training an NLP model on a text corpus to automati-
cally populate an ontology for a complex scientific domain.

Information extraction (IE) refers to the process of extracting structured 
information from semi-structured or unstructured text [64]. IE pipelines 
(IEPs) have been formulated for several IE efforts, ranging from scientific lit-
erature [89] to hotel information [82]. Examining these efforts facilitates the 
creation of an IEP, so that relevant entities and relationships can be generated 
from a relevant text corpus. This IEP begins with the preprocessing stage, 
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where the text data is cleaned of extraneous information. It then goes through 
a named entity recognition (NER) stage, where significant entities in the text 
are extracted based on training information [1]. Finally, a knowledge graph 
(KG) showing the data nodes and relationships between them can be gener-
ated, and analysis can be done on the results of the model. Consequently, the 
aim of IE is to utilize technology in order to provide meaning to text.

This research utilizes NASA Centre for Helio-Analytics (CfHA) data and 
NLP techniques to create an ontology learning model centering on the domain 
of heliophysics. This is done with the goal of examining the techniques used to 
develop the model in order to determine their efficacy and how they may be 
applied to future models. As a result, this model provides a case study for exam-
ining NLP methods for ontology learning. Furthermore, prior models have 
been examined in Section 3.2 in order to establish a foundation for this research.

This chapter is organized as follows:

1. Section 3.1 discusses the purpose of the research, the driving ques-
tions, and the objectives that organize and guide this effort.

2. Section 3.2 provides a review of existing literature on ontologies and 
NER models that have been developed for scientific domains.

3. Section 3.3 discusses the journey from text to ontology; from collect-
ing data to developing the NER and ontology learning parts of the 
model, and evaluating the results.

4. Section 3.4 lays out the results of the model, including a review of 
the reasoning behind the choices made when developing each part.

5. Section 3.5 provides an exploratory analysis of data generated from 
each major part of the model.

6. Section 3.6 presents the results along with the research questions, 
placing the results in context with prior literature. It also brings up 
the limitations of this project.

7. Section 3.7 summarizes the results of the experiments and provides 
an overview of areas for further research.

3.1.1 Background

The National Aeronautics and Space Administration (NASA) is an organi-
zation that employs individuals who work in a broad range of specializa-
tions across space-related disciplines. Consequently, employees collaborate 
on research projects with diverse aims that reflect their different domains 
of knowledge. As collaboration facilitates scientific discovery, there is the 
need to explore methods to enable knowledge-sharing. For example, the 
NASA Center for Helio-Analytics (CfHA) is a cross-disciplinary commu-
nity that develops methodologies centered on applications for emerging 
technologies and techniques to hasten the development of space physics 
research. McGranaghan et al. [56] developed a KG as a response to the need 
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for facilitating cross-discipline knowledge-sharing. This was proposed to 
address difficulties faced by members of the CfHA community when attempt-
ing to discover information about other members and projects. As a result, 
this led to the creation of the CfHA ontology, which was manually developed.

By creating a centralized means of accessing community information, gaps 
in skills and knowledge can be identified, and cross-group collaboration facili-
tated. In contrast, alternative methods of knowledge representation may face 
shortcomings when used for these ends. For example, spreadsheets are less 
structured when compared to many programming languages, which may 
lead users to cause redundancy, loss of data, and corruption [11]. Furthermore, 
spreadsheets cannot be searched or queried in the same way as a KG. 
Meanwhile, databases contain organizational structures that can more accu-
rately model real-world domains, but are often limited by issues of scalability 
and multi-tenancy when attempting to provide information to many users [32]. 
Furthermore, querying information from databases frequently necessitates spe-
cialist knowledge, unless there is an interface to simplify the process. Therefore, 
a KG provides a promising avenue for representing a complex domain through 
its representation of entity nodes and the relationships between them.

Owing to the multidisciplinary emphasis of the CfHA and the projects that 
its members are involved with, it presents the opportunity for a case study 
on the benefits and applications of ontology learning in scientific domains. 
Indeed, there are several potential drawbacks to a purely manual approach 
that may be addressed by an NLP-based model. For one, although the ontol-
ogy can be manually updated, it may be difficult to accurately capture current 
developments in the CfHA in a timely fashion. In addition, introducing auto-
mation to ontology population efforts can free up human resources that can 
go toward other areas of a project. Furthermore, although CfHA data is used 
to train the ontology learning model, the implications of this research may 
inform broader approaches to information representation and KG population.

In summary, there is room to study the uses for NLP techniques, and how 
they can be harnessed to construct a model based on CfHA-related data to 
automatically populate a CfHA ontology in a way that facilitates knowledge-
sharing between the group. In the process, methods for increasing the accu-
racy and reliability of the model can be analyzed.

3.1.2 Research Questions

In this chapter, the following Research Questions (RQ) around ontology 
learning and how to utilize state-of-the-art NLP techniques for populating 
ontologies are addressed.

• RQ1: What are the current state-of-the-art approaches to ontology 
learning?

• RQ2: Which NLP techniques for NER are the most relevant to the 
automatic/semi-automatic population of ontologies?
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• RQ3: How can an automated approach to ontology population facili-
tate information sharing between members of the CfHA?

• RQ4: How can an automated approach toward ontology population 
benefit a broader research effort?

3.2 Literature Review

In order to formulate an effective model, research into prior efforts must be 
undertaken. Critical evaluation of what sources are available is important for 
understanding both what methodologies have already been formulated, and 
where there are gaps that can be addressed.

3.2.1 Ontology Learning

The history of ontology learning as a field is inextricable from develop-
ments in ML and the Semantic Web. At the beginning of the 21st century,  
the web was inefficient due to a lack of standardization and quality control 
measures [2]. As a result, it was difficult to piece together meaningful infor-
mation. The semantic web was popularized by Berners-Lee et al. [8], who 
published an article in Scientific American that provided an overview of con-
cepts that were vital to the scientific web. Notably, this article detailed the 
role of ontologies in providing a formally structured method of represent-
ing data in a particular domain. Another article on the relevance of ontolo-
gies for facilitating cooperative information discovery was published in AI 
Magazine, where Maedche and Staab [48] used knowledge portals, many of 
which were domain- or market-specific, as case studies for how ontologies 
could facilitate better information access.

Ontologies were proposed as a method for organizing the semantic web, 
but they had use in broader scientific efforts. Maedche and Staab [49] elabo-
rated further on the potential utility of ontologies by proposing the concept 
of ontology learning. The vision that they put forth built upon structured, 
semi-structured, or unstructured data to support a semi-automatic, coop-
erative ontology engineering process. NLP models for ontology learning 
have been developed since the early 2000s [50, 55]. A two-stage methodol-
ogy was proposed by Valarakos et al. [85] for automatically populating an 
allergens ontology. Their model utilized a NER and classification (NERC) 
model, which was trained by using Hidden Markov Models (HMMs). For 
the allergens ontology, semi-automation meant that a domain expert would 
only need to be consulted before the second processing stage, when extrac-
tion rules for populating the ontology needed to be created. This method-
ology was an early adopter of NLP techniques for ontology learning and 
used Precision and Recall metrics to determine the accuracy of their work. 
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Nevertheless, the authors were not able to robustly test the entirety of their 
performance approach and may have benefited from a narrower method-
ology scope. Overall, the early history of ontology learning was sparser 
compared to more recent efforts, but the usefulness of NLP techniques in 
ontology learning was reflected in research at the time.

Ontology learning research efforts became more commonplace in the 2010s. 
As the field has developed, increasingly sophisticated NLP techniques such 
as deep learning have been employed. For example, Ayadi et al. [3] utilized a 
variety of biological documents to populate an already-existing biomolecular 
network ontology. Their methodology involved using tokenization to prepro-
cess the biological documents, followed by normalization to convert words 
into a unified format. Word2vec, an algorithm that employs shallow neural 
networks to learn word embeddings, was employed for the representation 
of words as vectors. Word2vec was specifically utilized to group semanti-
cally close words together, whilst moving unrelated words away from each 
other. This is useful when attempting to create entities, as entity recognition 
algorithms may face problems with syntactic disambiguation. When assess-
ing the model, Ayadi et al. [3] used Precision, Recall, and the F-measure to 
determine the accuracy of their model, whereas in comparison, Valarakos 
et al. [85] used only Precision and Recall to assess their model. The model 
developed by Ayadi et al. [3] ultimately performed well in Precision for all 
measures, whereas Recall fell behind Precision, and the F-measure fell in-
between. What this demonstrates is that an approach using shallow neural 
networks may benefit from additional training in order to ensure that labels 
are accurately classified. Furthermore, more cutting-edge NLP techniques 
may not perform better in all measures than traditional NLP approaches.

One additional ontology learning effort was made by Youn et al. [90]. 
Similarly to [3], they utilized Word2Vec for word embeddings with the aim of 
populating a food ontology. Unlike [3], they used the GloVe and fastText algo-
rithms to test the efficacy of pre-trained word embeddings. Youn et al. [90] 
used Precision as the metric for evaluating the algorithms, which demon-
strated that those that employed embedding performed better. However, only 
Precision was used as an evaluation metric. Ayadi et al. [3] used Precision, 
Recall, and the F-measure to evaluate their algorithm, which demonstrated 
that a high Precision score may not correlate to a high Recall score, and vice 
versa. Although the algorithms that Youn et al. [90] tested demonstrated 
that embedded algorithms scored higher than non-embedded algorithms in 
Precision, this is not the sole metric that can be used to determine the efficacy 
of an algorithm. Recall, for instance, would have revealed which proportion 
of true positives is accurately classified, and the F-score would demonstrate 
the trade-off between Recall and Precision. Nevertheless, the robustness in 
comparing different algorithms is important in establishing which models 
outperform others and analyzing why that may be the case.

An initial analysis of existing research demonstrates that ontology learn-
ing efforts have significantly evolved in terms of methodology and NLP 



52 Semantic AI in Knowledge Graphs

techniques used since they were first introduced. Furthermore, new inno-
vations in NLP have opened up a range of new possibilities for facilitating 
the IEP through techniques such as shallow neural networks. Nevertheless, 
there is room to explore how the accuracy of ontology learning models can be 
improved, particularly when assessing how models extract entities.

3.2.2 Scientific Efforts and Ontologies

The original use for an ontology is rooted in philosophy. Lorhard [45] in 
Theatrum philosophicum and Gōckel [24] in Lexicon philosophicum both 
independently used the term, as “ontologia.” The term was used in refer-
ence to metaphysics, which is a discipline that studies the philosophical 
nature of existence. Subsequent philosophical ontologists sought to pro-
vide a definitive and exhaustive classification of all entities in all spheres of 
being [79]. The definition of an ontology in computer science is similar, as 
ontologies were originally conceived to construct meaning for the seman-
tic web. Ontology-based formalisms were used to add structure where none 
had previously existed, and the W3C Web Ontology Language (OWL) was 
 developed to create a language for constructing ontologies. Similarly, the 
Resource Description Framework Schema (RDF/S) was developed as a data 
model for storing metadata about an ontology [19]. This transition from phi-
losophy to computer science is united by an aim of representing the nature 
of a particular domain.

Although computer science ontologies were initially developed to assign 
meaning to the semantic web, they came to be used as a method of mod-
eling data in particular domains. Munir and Sheraz Anjum [61] detail the 
use of ontologies as an alternative to databases for managing information. 
The authors specify that a major advantage of using a domain ontology is its 
ability to define a semantic model of the data combined with the associated 
domain knowledge. Zemmouchi-Ghomari et al. [91] detail several primary 
differences between ontologies and databases. Where databases are intended 
for the closed-world storage of data, ontologies are an open-world representa-
tion of a domain. Ontology schemata tend to be more complex than databases, 
and ontologies tend to be independent of a specific application or problem. 
These features make them appropriate for modeling scientific domains.

Managing space-related data is a particularly pertinent area of applica-
tion for ontologies. Rovetto [71] mentions that ontologies are useful for the 
knowledge management of space-related disciplines due to their knowledge-
rich nature. The author then provides an overview of existing ontologies for 
orbital space, the NASA taxonomy, and planetary data. Many of the projects 
described are currently ongoing, which demonstrates the open-world, evolv-
ing nature of ontologies and provides support for the necessity of efficient 
ontology population methods. Describing space systems through ontologies 
can help overcome challenges associated with non-ontology methods such 
as semantics being ignored for ease of implementation, missing discipline 
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context information, and there being no existing knowledge capture and 
mechanism for applying knowledge [28].

A project that has benefitted from the inclusion of an ontology include the 
Ontology-driven Interactive Search Environment for Earth Sciences (ODISEES). 
Rutherford et al. [74] describe the purpose of this ontology as aiding research-
ers aiming to find usable data among a proliferation of closely related data. 
This effort was aimed at making data easily available to the public, serving 
both scientists and researchers as well as laymen. An automated approach 
may be beneficial, considering the scale of the data that the ODISEES handles. 
Another effort is the Orbital Debris Ontology (ODO), which Rovetto et al. [72] 
describe as an ontology for monitoring the amount of orbital detritus, particu-
larly the threat it poses to assets in orbit. As a result, timeliness in populat-
ing the ontology is vital to ensure that accurate, up-to-date data is reflected. 
The authors also mention that ontologies are relatively easy to modify, as 
they do not require code maintenance, and that changing domain knowledge 
can be reflected in an ontology. Nevertheless, ontologies that reflect domains 
with time-sensitive information may be hindered if some automation is not 
employed, especially in larger ontologies. However, the high-risk nature of 
tracking orbital debris means that some human intervention is still needed.

3.2.3 Named Entity Recognition

One of the most crucial steps of the IEP is the process of extracting mean-
ingful entities from a text corpus. This procedure is known as NER. These 
NE are nouns – people, places, or things. For example, NER can involve the 
extraction of Persons, Locations, or Organizations from a selected text [53]. 
This process is one stage in the information extraction pipeline (IEP), which 
refers to the whole procedure for taking a text corpus and converting it into 
data that is meaningful for a particular objective [82]. The Pipeline can be 
visualized in Figure 3.1. Out of all steps in the IEP, NER is perhaps the most 
important for ontology creation, as it is this step that deals with identify-
ing and classifying texts into pre-defined ontological classes. Named entities 
(NEs) often bear important information and must be recognized and trans-
lated appropriately, and they are important for the construction of a domain 
grammar [92]. Consequently, it is worth examining existing research and the 
efficacy of methodologies for NER.

In conclusion, ontologies present a promising addition to scientific efforts, 
particularly in domains that are like the CfHA ontology that this chapter 
uses as a case study. Ontologies also present certain advantages over data-
bases for modeling complex domains. Furthermore, the case studies described 
by Rutherford et al. [74], Rovetto [71], and Rovetto et al. [72] demonstrate how 
ontologies are useful for a scientific effort by allowing for large quantities of 
data to be quickly sorted through and analyzed. These case studies also dem-
onstrate the potential use of automation in ontology population to reduce the 
need for human intervention.
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Batbaatar and Ryu [7] present a recurrent neural network approach to 
ontology-based NER based on Twitter messages. Their work utilized the 
Pytorch library to implement the BiLSTM-CRF model for NER, which was 
applied to a corpus of health data extracted from Twitter. The BiLSTM-CRF 
model has four layers. The embedding layer examines embedding fea-
tures, character features, and additional word features. The BiLSTM layer 
learns contextual information. The CRF layer calculates tagging scores for 
word input. Finally, the Viterbi layer is used to find a tag sequence to maxi-
mize the tagging scores. The algorithm evaluation was based on Precision, 
Recall, and F-score measures alongside a comprehensive comparison against 
variant models such as LSTM-CRF (word, char, part-of-speech [POS], and 
combinations) and BiLSTM-CRF (word, char, POS, and combinations). This 
demonstrated that BiLSTM-CRF scored high on Precision, with a maxi-
mum of 94.53% for the Disease or Symptom, 90.83% for Sign or Symptom, 
and 94.93% for the Pharmacologic Substance predictive performance. Recall 
scored lower, with a maximum of 73.31% for the word + char + POS metric 
for Disease or Syndrome, 81.98% for the Sign or Symptom, and 73.47% for 
the Pharmacologic Substance predictive performance. Overall, the authors 
presented a thorough approach to model testing for NER.

Another study by Wang et al. [88] explores NERO, a biomedical NER 
Ontology. This ontology was designed with minimizing arbitrary anno-
tative semantic text labels in mind and aimed to represent textual entities 
recognized by text mining tools. The Conditional Random Fields (CRF) algo-
rithm was used for the NE recognizer, and the CRF is often used for NER, 
POS tagging, and gene prediction. The authors measured NER performance 
using Precision, Recall, and F1-score metrics. The overall performance was 
measured at 54.9% Precision, 37.3% Recall, and a 43.4% F1-score. This indi-
cates that the CRF algorithm was not as robust as the algorithm presented by 
Batbaatar and Ryu [7]. The main limitation of the study was that, although 
the authors aimed for the NERO ontology to cover all entities in the biomedi-
cal research literature, not all levels of granularity were covered in classi-
fying entities. Furthermore, many concept types were not well represented 
due to the heavy-tail distribution in the frequencies of ontology classes. This 
indicates that ontology learning methods might be ideal for addressing com-
pleteness problems in ontologies where there is a lack of sufficient data, espe-
cially in complex domains.

FIGURE 3.1
Overview of the IEP.
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A third effort detailed in [31] is the SatelliteNER, a tool for automatically 

specifically examines NER in the context of a space-related domain, which 
is relevant to the focus of this research effort. Although the purpose of the 
SatelliteNER is not ontology population, NER is used specifically for recog-
nizing satellite entities. The spaCy module was selected to build SatelliteNER, 
and the Pseudo-rehearsal strategy was chosen for the algorithm to run 
through existing training data and remember assigned weights. However, 
as there can be common entities, the resultant model is not fast. The authors 
evaluated several different models to compare them to the SatelliteNER 
model, including StanfordNer, Stanza, GoogleNER, and MicrosoftNER. 
The evaluation criteria were based on Precision, Recall, the F1-score, and 
Processing Time, and the models were tested on three datasets. SatelliteNER 
had the best Precision, as it was built to only detect models that the authors 
deemed relevant. SatelliteNER had a high Recall in testing dataset 1, as this 
was the training dataset, as well as a Recall of over 50% for datasets 2 and 3. 
The neural network-based models also had higher Recall scores compared 
to other models. The F1-score of SatelliteNER was also the highest, as the 
F1-score is the weighted average of Precision and Recall. Finally, SatelliteNER 
performed the quickest in Processing Time. Ultimately, this demonstrates 
that custom built NER algorithms for a specific domain tend to outperform 
generic alternatives and supports the use of a NER model tailored to the 
CfHA ontology and trained on a quality, relevant data corpus.

In conclusion, several case studies of NER models were examined. Not 
every case study detailed the use of NER in ontology creation [31, 82], 
although many did [7, 54, 92]. These studies highlighted the importance of 
developing an efficient and accurate NER model for extracting labels from a 
text corpus, as [31] demonstrated by comparing the Precision, Recall, F1-score, 
and Runtime of a custom-built algorithm that was trained on satellite detec-
tion data against other, generic NER algorithms. This demonstrates the ben-
efit of creating an algorithm that is trained on existing CfHA ontology data, 
because the more accurate the entity extraction is, the more accurate the data 
for the ontology population will be.

3.2.4 NLP Models for Ontology Learning

Examining existing models that have been developed for the ontology popu-
lation is important for determining how to represent a particular domain. 
Because ontology domains are often heterogeneous and feature technical 
concepts, ontology population models often benefit from an automated or 
semi-automated mechanism for extracting information and populating 
ontologies [43]. Some type of ontology-based information extraction (OBIE) 
is typically used for the population of an ontology. Maynard et al. [55] detail 
that this involves determining the key terms in a specific text and relat-
ing them to existing terms in the ontology. IE usually consists of linguistic 

detecting satellite entities from different sources of textual data. This chapter 
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preprocessing followed by a NER technique, before an ontology population 
algorithm is used. However, the authors do not elaborate on specific ontol-
ogy population methodologies. Thus, examining case studies can provide 
further insight into existing ontology population algorithms.

di Buono et al. [14] present a case study on applying computational linguis-
tics to the cultural heritage domain. The authors posit that NLP techniques 
can be used for bridging the information gap and improving access to cul-
tural resources. Lexicon-Grammar (LG) is the NLP theoretical and practi-
cal framework used. The authors describe that it is based on the Operator 
Argument Grammar developed by Harris [27], where human languages are 
self-organizing systems where word syntactic and semantic properties can 
be calculated based on their relationships with co-occurring words inside 
nuclear or simple sentence contexts. Furthermore, electronic dictionaries are 
used to describe syntax. Finite-State Automata (FSA) variables were used for 
identifying ontological classes and properties for subjects, objects, and predi-
cates within RDF graphs. The authors developed an FSA with variables that 
apply to specific POS. Finally, linguistic data was matched to RDF triples and 
translated into SPARQL and SERQL path expressions. Although the authors 
describe their methodology for ontology population, they do not provide 
an evaluation section, so the efficacy of their process is not elaborated on. 
Nevertheless, it provides insight into how a grammar can be constructed for 
populating an ontology.

Another case study conducted by Peña et al. [67] focused on Aragon Open 
Data, a project to open data by the Government of Aragon. Due to the volume 
of data released, the authors proposed a methodology for allowing unstruc-
tured institutional information to become structured data that can be ana-
lyzed and browsed. Consequently, an ontology was designed to standardize 
public administration information. The authors implemented a set of subpro-
cesses through an AI software framework called Moriarty. This is based on 
two concepts: workitem, a class that implements an atomic function and can 
be used in multiple contexts, and workflow, which is composed of workitems 
or other workflows that receive some inputs and perform transformations 
on them generating and returning outputs. Additionally, a neural network 
known as the MultiLayer Perceptron (MLP) was used for NER. Extracted 
knowledge was stored in OpenLink Virtuoso, which uses subprocesses to 
insert data extracted using the MLP. The algorithm was able to crawl through 
667 websites, process 3,963 URLs, and populate the ontology with 95,978 new 
instances. Although the authors did not provide metrics for specific aspects 
of their method, the overall results demonstrate how automation can aid in 
collecting large amounts of information.

One additional study conducted by Makki et al. [51] focuses on automatic 
ontology population for risk management. It is important to have up-to-date 
information in order to establish accurate risk assessments. Adopting a fully 
automated method is dangerous, as risk assessment requires human control 
and validation, but using NLP techniques can be used to enrich an ontology. 
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The authors detailed a semi-automated ontology population method on a 
generic risk management ontology. First, the corpus of risk-related texts was 
processed using TreeTagger, a POS tagger that annotates texts. Associations 
between verbs were built through synonyms generated through the lexi-
cal resource WordNet, as well as frequent verbs extracted from the anno-
tated corpus and human interference. Finally, triplets were identified and 
extracted from the list of verbs, which were then validated by a domain 
expert. The authors formulated a sample experiment to validate their work 
by using the PRIMA risk management ontology. First, POS tagging was 
applied to a corpus by the Environmental Protection Agency, and a list of 
related verbs was built. Then, triplets were extracted and proposed to the 
syntactic structure recognition procedure, which generated 150  triplets. 
Eighty-five percent of these were evaluated as acceptable triplets. Although 
a fully automated method is not ideal for a domain such as risk manage-
ment, the 85% acceptability rate for triplets indicates that adopting a semi-
automated methodology is beneficial. There is still room to test additional 
parts of the process using evaluation metrics in order to optimize the meth-
odology further.

The reviewed methodologies focused on different domains, ranging from 
risk management [52] to government data [67] to cultural heritage [14]. There 
were additional differences in their methodologies. di Buono et al. [14] used 
LG and FSA variables in order to process relevant keywords, before they 
were matched to RDF triples. Meanwhile, Peña et al. [67] used OpenLink 
Virtuoso subprocesses in order to extract data and populate the ontology. 
Finally, Makki et al. [52] used TreeTagger and WordNet to process and cre-
ate triplets. Out of these surveys, Makki et al. [51] described an 85% accept-
ability rate for the ontology triplets. However, the performance of the model 
was not elaborated on, which indicates that there is room for more detailed 
survey methods in assessing the acceptability of automatically generated 
ontology entities.

3.3 From Text to Ontology

This section discusses the steps toward development of the ontology learn-
ing model based on the text corpus. It specifies, in detail, the algorithms that 
have been employed in each stage of the IEP. Although prior research efforts 

are few that contain a model that spans every stage. Nevertheless, examining 
existing models that correlate to stages in the IEP is useful when developing 
a methodology. For example, Witte et al. [20] presented a model that utilized 
NLP for NER, which is the process of assigning meaningful labels to enti-
ties extracted from a text corpus. The researchers created a model that went 

have made use of one or more stages of the IEP employed in this chapter, there 
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through standard textual preprocessing, including tokenization and POS 
tagging. NEs were then detected through a two-step process:

1. Step 1: An OntoGazetter labeled each word token in the text with all
possible ontology classes it could belong to.

2. Step 2: Ontology grammar rules written in the JAPE language were
used to find NEs.

One additional approach utilized by Jafari et al. [31] used the Spacy library 
alongside the Pseudo-rehearsal strategy in order to train their model on exist-
ing data in order to discover entities. These recognized entities were then 
added to the training data, to ensure that the model does not forget learned 
weights. The issue of an NLP model forgetting earlier items after learning a 
new item is referred to as the “catastrophic forgetting” problem. Therefore, 
introducing a “pseudorehearsal” strategy is a simple way to solve this problem, 
in which random inputs are temporarily stored along with their outputs [18]. 
Jafari et al. [31] also created a from-scratch NER model entitled SatelliteNER, 
although they did not elaborate on how they developed or trained this model 
within the paper. Other ontology learning research, including the NERO bio-
medical ontology [88], also used spaCy for the NER process. Therefore, spaCy 
has been used for the NER portion of the CfHA model.

The methodology for developing the NLP model built upon the pro-
cedures described in this section alongside the literature that has been 
evaluated in Chapter 3. spaCy has been utilized for IE purposes to label 
instances with class labels from the CfHA ontology. For the sake of limiting 
the scope of this project, seven class labels have been chosen: PERSON and 
ORG, which already exist in the spaCy NER package, and the custom labels 
ASTROPHYSICS, HELIOPHYSICS, MISSION, PROJECT, and PAPER. All of 
these labels correspond to class types in the CfHA ontology and have been 
trained on data pulled from a heliophysics text corpus.

The ontology learning methodology stages are as follows:

• Step 1: The text corpus will be tokenized, preprocessed, lemmatized,
and stemmed.

• Step 2: The spaCy NER library is imported.
• Step 3: The dependency tree for each sentence is parsed according to

a rule intended to extract subjects, objects, modifiers, and compound
words.

• Step 4: Relations are extracted as well by using dependency pars-
ing based on the root or verb of the sentence. This process is broken
down by step in Figure 3.2.

• Step 5: The entities and relationships are converted into RDF triples,
and a KG is generated. These triples are then placed into a Protégé
ontology.
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3.3.1 NLP in Ontology Learning

To construct a foundation for the ontology learning model, the concepts 
underpinning NLP must be explored. NLP is a field that sits at the intersec-
tion between Artificial Intelligence (AI) and linguistics and uses data sci-
ence techniques to bridge the gap between human forms of communication 
and machine communication [63]. NLP techniques have been proposed for 
their use in enhancing ontology development. As an example, Lame [39] 
implemented an ontology by using Syntex text parsing in order to extract 
keywords and relationships from legal text corpora and performing statis-
tical analysis in order to assign importance to certain concepts. Statistical 
approaches are commonly used in NLP, such as dependency analysis, lexico-
syntactic analysis, term subsumption, formal concept analysis (FCA), hier-
archical clustering, and association rule mining (ARM) [2]. These concepts 
provide a foundation for the NLP elements utilized in the model.

ML principles underlie NLP. ML can be defined as automated comput-
ing procedures that aim to mimic human reasoning and generate classify-
ing expressions that are simple enough to be understood by humans [4]. 
ML techniques can be divided into supervised learning, where input data 
and an output target variable are known and a model is trained against this 
variable, and unsupervised learning, where only input data is available. 
Supervised learning includes methods such as classification and regres-
sion, while unsupervised learning includes methods such as clustering [12]. 
Hybrid approaches are also possible. These techniques are appropriate for 
the development of the CfHA ontology learning model, where the aim is to 
infer classes and relationships similarly to how a human can.

There are additional fields that are relevant to the process of IE. Data min-
ing (DM) involves the extraction of information from structured databases, 
which is part of the broader field of Knowledge Discovery in Databases 

FIGURE 3.2
Overview of ontology learning model methodology.
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(KDD) [70]. KDD is defined as the non-trivial process of identifying valid, 
novel, potentially useful, and ultimately understandable patterns in data 
[84]. Meanwhile, text mining (TM) deals with the extraction of information 
from unstructured, textual forms. TM holds more relevancy to the aims of 
this research, as unstructured text is used for developing the model.

TM allows for the systematic extraction of meaningful content from a 
particular corpus of text, which is relevant to the ontology population from 
CfHA meeting notes. However, TM applications apply constraints on NLP 
tools, as they usually rely on large volumes of textual data and do not allow 
for exponential algorithms to be used. Furthermore, semantic models for a 
given domain are typically not available, and this limits the sophistication 
of the semantic and pragmatic levels of a model [70]. This is the reason why 
models for ontology learning are often rule-based and specific to a particular 
domain.

The process of creating a KG is divided into two parts. The first half focuses 
on TM and preprocessing in order to extract information from the text, while 
the second half focuses on the creation of the ontology from extracted data. 
TM techniques are used to generate meaning from an unstructured text cor-
pus, based on a trained spaCy model. According to [80], TM is divided into 
several stages.

1. The first stage involves the collection of unstructured data from dif-
ferent sources that are available in different file formats.

2. The second stage involves preprocessing and cleansing operations, 
which aim to eliminate abnormalities and capture the essence of the 
text. Cleansing also aims to remove stop words, as well as stemming 
and indexing the data.

3. The third stage applies processing and controlling operations in 
order to audit and clean the data set by automatic processing.

4. The fourth stage involves pattern analysis implemented by the 
Management Information System (MIS).

5. The fifth stage is to synthesize the information extracted from the text 
in order to inform decisions and further utilize the processed data.

Extracting meaning from an unstructured text is often done manually. 
Inniss et al. [30] describe that the typical process for generating a biomedi-
cal ontology involves interviewing experts, transcribing the text, and man-
ually mining the text for feature-attribute pairs. Automated TM instead 
uses speech and language processing concepts in order to construct a 
structured data object. Where manually parsing a text corpus relies on a 
human understanding of grammar and disambiguation, NLP for TM must 
go through several main steps in order to interpret a corpus. These steps 
include “Lexical Analysis,” “Syntactic Analysis,” “Semantic Analysis,” 
“Pragmatic Analysis,” and “Discourse Analysis,” each comprising a differ-
ent subfield of NLP [62].
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For the CfHA ontology learning model, these various sources of informa-
tion have been synthesized into the theoretical concepts that underlie each 
step. The overall system architecture is depicted in Figure 3.3.

1. Step 1: Here, TM concepts are used to clean and preprocess a text 
corpus. The corpus is tokenized, stripped of unnecessary symbols 
and stopwords, and lemmatized.

2. Step 2: NER techniques must be employed in order to extract entities 
from the cleaned text. The model must also be trained to recognize 
labels that do not already exist in the default model.

3. Step 3: Based on the NER labels extracted earlier, concepts and rela-
tions must be extracted from the text.

4. Step 4: A KG is built from the concepts and relations.
5. Step 5: The KG values are processed into RDF triples and inserted 

into a Protégé ontology.

FIGURE 3.3
Architecture of ontology learning model.
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3.3.2 Prototype Evaluation

To complete the methodology, there needs to be a system for evaluating the 
efficacy and accuracy of the model. Furthermore, a thorough evaluation 
of the methodology assesses the quality of the research backing the model. 
Systematic reviews are preferential, as no type of study should be evaluated in 
isolation. An assessment should be balanced and draw on a variety of sources 
[21]. Qualitative data analysis methods provide insight into the suitability of 
both the text used in TM as well as the ML models themselves. Sonntag [80] 
defined four categories matching text quality dimensions: contextual, which 
deals with the amount of data, completeness, relevancy, and timeliness, repre-
sentational, which deals with consistent, concise representation, ease of under-
standing, and interpretability, intrinsic, which deals with accuracy, objectivity 
and reputation, and accessibility. These metrics are listed in Table 3.1.

For the rest of the model, additional metrics suited to assessing NLP mod-
els must be used. Siebert et al. [77] provide various metrics for assessing ML 
models based on quality attributes, such as Accuracy, Precision, Recall, and the 
F-score, for development and runtime correctness. Additional quality attributes 
such as robustness can be evaluated using Equalized Loss of Accuracy (ELA), 
and the level of interpretability can be assessed by using complexity metrics. 
Gunawardana and Shani [23] survey accuracy evaluation metrics to establish 
which ones apply to a particular domain. Accuracy metrics that measure truth 
values such as the Root of the Mean Square Error (RMSE) method, the ROC 
area curve, and confusion matrices are relevant to classification problems [87].

The performance metrics that are used on the ML model are summarized 
in Table 3.1.

However, additional focus will be given to Precision, Recall, and the 
F-Score, as these are commonly employed for NER problems [3, 85, 88]. For 
these metrics, each object is associated with a binary label L, which corre-
sponds to the correctness of an object. Additionally, there is an assignment 
A that corresponds to the relevance of an object [22]. This experimental out-
come may be summarized in a truth table (Table 3.2).

Here, a true positive would correspond to an entity that was assigned a label, 
and that the NER model correctly identified as an entity. A false negative would 

TABLE 3.1

Performance Measure Metrics for NER Models

Performance Metrics

Evaluation metric Description

Accuracy Determines the overall proportion of true results among the total results
Precision Determines how many predicted positives match up with the true 

number of positives
Recall Determines what proportion of true positives is accurately classified
F1-score Evaluates the accuracy of a test, calculated from the harmonic mean of 

the precision and recall values
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correspond to an entity that was assigned a label and that the NER model did 
not identify as an entity. A false positive would correspond to a token that 
was incorrectly identified as an entity by the NER model, and a true negative 
would mean a token that was correctly identified as not being an entity. From 
this truth table, the equations for determining Precision and Recall can be cal-
culated. The equation for Precision is displayed in Equation 3.1:

 precision TruePositive TruePositive FalsePositive= +( )/(( ) ( )) (3.1)

This can be interpreted as the total number of actual entities over the total 
number of identified entities, whether those be correctly identified or not. 
The equation for Recall is displayed in Equation 3.2:

 recall TruePositive TruePositive FalseNegative= +( )/(( ) ( )) (3.2)

This can be interpreted as the total number of actual entities over the total 
number of actual entities as well as the total number of entities that were not 
identified.

From here, the F1-score can be calculated. It is the harmonic mean of 
Precision and Recall. This is displayed in Equation 3.3:

 F TruePositive TruePositive FalsePositive FalseNegative= + +1 ( )/( 1/2( )) (3.3)

This can be taken as a measure of the accuracy of a test. As a result, it pro-
vides a means of demonstrating an average between Precision and Recall. In 
cases where Precision or Recall are different values, it can demonstrate the 
overall efficacy of a model. Consequently, Precision, Recall, and the F1-score 
are employed to evaluate this model.

3.4 Experimental Study

This section details the development of the NLP model, from selecting the 
data to the creation of the final ontology. The reasoning behind choices 
made during development is described in the following sections. The code 

TABLE 3.2

Truth Table for NER Metrics

Evaluation Metrics

Assignment

Positive Negative

Binary label L Positive True positive False negative
Negative False positive True negative
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associated with the development of the model is publicly available online.2 
The developed repository contains an overview of the model prototype, 
starting from importing text and finishing with the final ontology with all 
the necessary steps explained in the document.

3.4.1 Overview of the Proposed System

3.4.1.1 Data Sourcing

The data for this research was sourced from both private documents and 
publicly available research. The CfHA Meeting Notes are running notes that 
document developments in the CfHA ontology and formed part of the train-
ing data for the NER model. Permission was obtained to use these meeting 
notes for the project. The second portion of the data used for this project came 
from a JSON file of heliophysics-related paper titles, bibcodes, and abstracts. 
Permission was also obtained to use this information.

3.4.1.2 Data Preprocessing

Select text snippets were sourced from both the CfHA Meeting Notes and the 
heliophysics text corpus. These snippets were chosen for the variety in the enti-
ties that were contained within them, in order to train the NER model with rel-
evant data. Concepts that were selected for were already reflected in the CfHA 
ontology. The text was cleaned and preprocessed in order to remove unneces-
sary information such as stopwords, the process of which is elaborated on in 
Section 3.4.4. This process was performed on the heliophysics text corpus, which 
was used for this research due to its robustness and the amount of available data.

3.4.1.3 Model Construction

After preprocessing the text corpus, the NER and KG portions of the model 
were constructed (see Section 3.4.4.1) in order to identify important  entities 
in the heliophysics text corpus and extract relations between the entities. 
Additional data analysis was performed on the IEP in order to provide 
insights into the model (see Section 5.1).

3.4.2 Data Sourcing

3.4.2.1 Heliophysics Text Corpus

Due to the advent of social media and digital information sharing, large swaths 
of data can be generated and disseminated. Having large amounts of data for a 
NER model is important to ensure the accuracy of a NER model and should be 
indicative of the data that the model is used to predict. Consequently, sourcing 
quality data is an important stage in the model development process. Jafari 
et al. [31] constructed the SatelliteNER model by using Wikipedia data on gov-
ernmental and private space agency names, as well as a list of orbital launch 
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systems for each country and for each agency. Wikipedia presents an easily 
accessible and robust source of information to train a NER model. However, 
Wikipedia is open-access, and many citations reference news articles, YouTube 
videos, or other non-peer-reviewed sources [17].

This model focuses on a scientific domain and contains five custom entity 
labels: Astrophysics, HELIOPHYSICS, PAPER, PROJECT, and MISSION, 
alongside two default spaCy labels PERSON and ORG. As a result, peer-
reviewed research data is particularly valuable for NER training. This is 
because peer-reviewed research is likely to be written by experts and feature 
correct usage of entities and relationships in context. As a result, a corpus 
consisting of heliophysics paper titles, abstracts, and bibliographic codes was 
sourced to train and test the model.

This heliophysics corpus was provided by Ryan McGranaghan. It consists 
of a JSON file that contains academic publications, including the title, bib-
code, and abstract for all heliophysics-related articles from 2020. All articles 
in the NASA Astrophysics Data Service were sub-selected using the criteria 
of only journals that are relevant to the domain of heliophysics.

The data was manually sorted through to identify entities that matched 
up to instances that were already present in the CfHA ontology. Text snip-
pets containing these entities were selected and used as training and test 
validation data. The different classes were split up a relatively even amount 
of instances, and the proportion of classes and instances is visualized in 
Table 3.3. Subclasses are grouped with superclasses.

TABLE 3.3

Classes and Number of Instances

Word Number of Occurrences

Action 0
Activity (incl. Affiliate, Match, Meeting, 
Mission, Project)

8

Event (incl. Presentation, Workshop) 0
Funds 0
Object 0
Organization (incl. Group) 95
Other 0
Output 0
Person 74
Position 0
Program 0
Publication (incl. Data, Paper, Software) 0
Role 0
Skill 0
Team 0
Topic (Astrophysics, Heliophysics, etc.) 159
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Table 3.3 demonstrates where there is a need for additional data in the 
CfHA ontology, with several classes such as Action, Event, and Publication 
not having any instances. This reveals a gap in the information that is rep-
resented in the CfHA ontology. The training and test data has aimed to 
encompass both instances that are well represented in the ontology and 
instances that are not. However, the classes without instances cannot be 
matched to instances in training data. Furthermore, the majority of the enti-
ties in the heliophysics text corpus related to heliophysics and astrophysics. 
Consequently, the data that was extracted from the heliophysics text corpus 
contained an unbalanced amount of entities. According to [34], training a 
spaCy model with custom annotations involved around 100 occurrences of 
each entity. As a result, it is important to ensure that the training data con-
tains a sufficient representative sample for each entity.

3.4.2.2 CfHA Meeting Notes

There was an additional problem to be confronted when it comes to data 
sources. Because the entities that were manually extracted from the helio-
physics text corpus were unbalanced, additional entities representing people 
and organizations had to be included. Consequently, an appropriate addi-
tional data source had to be procured to train the model. The Person entity 
was the label that primarily lacked sample data, and a text corpus was sought 
out that contained entities relevant to the CfHA ontology.

While developing the CfHA ontology, a paper that documented the out-
comes and important points of each meeting was created. This is referred 
to as the CfHA Running Notes and contains information about each person 
involved in the ontology development as well as actions related to the ontol-
ogy [56]. As a result, it presented a relevant source of training data for the 
spaCy NER model.

The process of selecting and extracting entities from the CfHA Running 
Notes was similar to the process outlined in Section 3.4.2.2 for extracting 
entities from the heliophysics text corpus. Entities were identified through 
dynamic embedding, which is based on the context of the word as it appears 
in the sentence [34]. Dynamic embedding is important to the performance of 
the NER model, as entities may appear in different contexts within a text cor-
pus. For example, NASA may appear as a standalone ORG, or it may appear 
as part of the title of a PROJECT.

Due to the need for a sufficient amount of examples for each entity, the 
CfHA Meeting Notes was utilized as an auxiliary text corpus alongside 
the heliophysics text corpus. It was particularly important to provide data 
for the custom entities, as those did not have any existing pre-training in 
the spaCy default English model. However, providing additional data for the 
PERSON and ORG entity labels is beneficial for further improving the accu-
racy of the spaCy model.
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3.4.2.3 Discussion of Approach

The next stage of the model development is to critically appraise the data 
collection approach utilized. This includes a discussion of the benefits and 
limitations. To begin with, choosing an appropriate data source was crucial 
to facilitate the custom entity label training. Having a robust heliophysics 
text corpus was vital for this end, especially one that reflected the domain 
expertise displayed by peer-reviewed research papers. However, the spe-
cialized nature of this text corpus caused limitations. There were almost 
no entities that could be used to train the PERSON class, and less entities 
for the ORG, PROJECT, and MISSION classes compared to heliophysics and 
astrophysics-related topics. This meant that the training and test data had 
plenty of HELIOPHYSICS and ASTROPHYSICS examples, with compara-
tively less PERSON, ORG, PROJECT, and MISSION instances. As the amount 
of instances used to train the data was not balanced, this fails to meet the 
standards outlined by the “Corpus-based” evaluation method for an ontol-
ogy, as a large amount of the domain cannot be covered [69].

Another problem related to the source of the data was that the language 
used was at an academic level. Academic descriptions show entities in 
context, however complex language exacerbates ambiguity problems with 
disambiguation, or determining the right context that a word appears in. 
Overcoming this problem is known as Word Sense Disambiguation (WSD), 
but solutions often necessitate large linguistic databases such as WordNet 
to have a proper sample size to draw from [25]. This is further exacerbated 
by the use of custom topics, as the default SpaCy model has no training data 
to draw from. Heliophysics and astrophysics-related topics have appropriate 
samples to draw from, but for entities with less examples, this demonstrates 
the importance of having an appropriately large sample size. If the sample 
size is small, it may lead to issues with predicting Actual Positive classes 
and how many of the predicted entities are correctly identified by producing 
false negatives, or entities that are NEs, but were not labeled as being NEs.

The issues described above presented the opportunity to additionally 
use  the CfHA Running Notes text corpus. As it is a body of work that is 
relevant to the CfHA Ontology, further examples can be sourced from it. 
However, there are limitations associated with the CfHA Running Notes 
text corpus. For example, unstructured phrases in contrast to structured and 
edited sentences may include abbreviated words, irregular grammar and 
spelling, and mixed languages which negatively impact entity detection [36]. 
Furthermore, time restrictions meant that additional data sources could not 
be utilized to provide more examples for entities.

Nevertheless, there are advantages to this approach. Both bodies of text 
are relevant to the research and, together, provide sufficient examples for 
the purposes of this research. The data was provided specifically for this 
model, so data collection is done with consent and with respect to privacy. 
The data is at a high academic standard, and there is a wealth of high-quality 
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examples for some labels. Furthermore, the data was easily available and can 
be further utilized to enhance the model beyond the scope of this research.

3.4.2.4 Ethical Considerations

This research centers on detecting NEs and relationships between NEs relat-
ing to the domain of the CfHA and heliophysics research. Informed con-
sent in the use of data is paramount, as the data that the model is trained 
on involves current research and the work of other individuals. All data was 
freely provided with the knowledge that it would be used for this research.

Another ethical consideration when it comes to training the model is in 
being mindful of algorithmic bias. Demographic bias in NER is a recog-
nized phenomenon [13]. For example, the spaCy model surveyed in [59] 
had the highest accuracy score for recognizing Names that were labeled as 
White Male. Consequently, this must be accounted for when developing the 
NER model.

This research was approved by Birmingham City University.

3.4.3 Outline of Model Objectives

3.4.3.1 Objective 1: NER Optimization

In order to guide the performance of the model, suitable objectives must be 
outlined. The first of these deals with the optimization of the NER portion 
of the model. There are several factors that may improve the accuracy of 
a NER model. For one, providing NE information to a dependency parser 
can improve the accuracy of the parsing [10]. Furthermore, Fernández-
Pedauye et al. [16] mention the importance of having a robust training data 
set with a variety of contexts that entities appear in. It was this factor that 
contributed the most to the NER optimization. Fernández-Pedauye et al. 
[16] also detail how selecting appropriate preprocessing techniques can 
also improve the performance of a NER model. These factors are echoed 
by Jafari et al. [31].

After evaluating prior methods of optimizing NER models, an important 
goal of this research is to source an adequate amount of data. As has been 
discussed in Section 3.4.2, the two text corpora used in this research both 
provide a large amount of examples for classification. Furthermore, the tech-
niques in textual preprocessing are carefully chosen in order to ensure that 
the text corpus that goes into the NER model does not face issues with noise 
or extraneous tokens.

Finally, there are metrics that can be employed to evaluate the performance 
of a NER model. Siebert et al. [77] suggest various metrics for assessing ML 
models based on quality attributes, such as Accuracy, Precision, Recall, and 
the F-score, for development and runtime correctness. Additional quality 
attributes such as robustness can be evaluated using ELA, and the level of 
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interpretability can be assessed by using complexity metrics. These metrics 
are further elaborated on in Section 3.2.3.

3.4.3.2 Objective 2: Entity Relationship Modeling Optimization

A suitable objective must also guide the development of the KG portion of the 
model. Evaluating an ontology can be more difficult than evaluating a NER 
model, as metrics for evaluation do not rely on numerical values and thus 
can be subjective. Success metrics include whether the ontology is capable 
of accomplishing tasks in the target domain, if hierarchical and taxonomi-
cal concepts are well represented, and whether the ontology is meeting the 
technical specifications [29]. A well-functioning ontology that is easy to use is 
particularly important in a multidisciplinary team such as that of the CfHA.

Ma et al. [46] explore a framework that examines ontology usability 
based on System Usability Scale (SUS), a ten-item Likert scale. From this, 
the authors came up with a pool of statements separated into three primary 
categories: syntax, semantics, and pragmatics. Another survey by Raad and 
Cruz [69] examines several evaluation methods: gold standard-based, which 
compares the learned ontology with a previously created “gold standard” 
reference ontology, Corpus-based, which evaluates how far an ontology cov-
ers a given domain, Task-based, which measures how far an ontology goes 
toward improving the results of a certain task, and Criteria-based, which 
is divided into Structure-based, which compute various structure proper-
ties, and Complex/Expert-based, which involves expert evaluation. Hooi 
et al. [29] also describe level-based evaluation: Syntax, which assess whether 
the syntax of the formal language is correct, Structure, which assesses if the 
concepts and hierarchy are sound, Lexical, which assesses the terms used 
to represent knowledge, Semantic, which refers to the ontology coping with 
different terms that relate to the same concept, and Context, which examines 
how the ontology affects the functionality and usability of ontology-driven 
applications. Furthermore, Brank et al. [9] add other semantic relations as a 
level of evaluation. Because different authors use different frameworks for 
ontology evaluation, it is useful to single out which measures are the most 
useful for the target domain.

In summary, there are multiple measures that can be used to evaluate an 
ontology. However, studies focused on evaluating an ontology that has been 
populated through semi-automated or automated means remain elusive, so 
selecting measures for evaluation must be carefully done.

3.4.4 Model Implementation

3.4.4.1 Text Corpus Overview

The model utilized the heliophysics text corpus outlined in Section 3.4.2.1 As 
this corpus was originally in JSON format, it had to be converted into a text 
file in order to employ preprocessing techniques. The JSON file contained 
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objects with the properties “bibcode,” “title,” and “abstract.” The total size 
of the file is 13.7 MB, and there are 8990 entries, 1,955,540 words, and it is 
13,683,768 characters long. Due to the large size of the file, there were process-
ing problems when attempting to run the model. Running environment and 
processing restrictions limited the total maximum file size.

Furthermore, using every entry in the document would create a KG that 
is laden with so much information that it is difficult to read, even when dis-
playing parts of the graph by relationship. Ma et al. [47] found that training 
a NER model on word embeddings learned from unlabeled data is effective 
even when data is sparse. Furthermore, Baeza-Yates and Liaghat [5] detail 
other considerations in regard to the size of a data training corpus, such as 
training data size, learning time, and quality obtained. They found that, gen-
erally, with increased data size came increased quality. However, the perfor-
mance versus data size curve peaked with a data size of 5 MB.

After considering these restrictions, a sample was procured from the total 
heliophysics dataset. The size of the file is 354 KB, and there are 249 entries, 
50,549 words, and 353,773 characters. This text corpus sample was chosen 
when considering training data size balanced against the time the model 
takes to run, as well as the quality of the finished model.

3.4.4.2 Preprocessing for Text Mining (TM)

Employing well-selected textual preprocessing techniques is an important 
factor in the overall success of a model [16]. Indeed, preprocessing can take 
up to 80% of the total efforts in knowledge discovery [60]. The primary aims 
of text preprocessing are to extract key features from a corpus, to improve the 
relevancy between words and documents, and between words and classes, 
as well as to convert a text corpus into raw data [33]. Consequently, prepro-
cessing is an important stage to consider.

First, an overview of textual preprocessing methods must be provided. 
Common techniques for preprocessing a corpus for any TM task include 
tokenization, which converts raw texts into segmented textual units, stop 
word removal, which involves the removal of commonly repeated features 
such as conjunctions and pronouns, and stemming, which involves the 
removal of affixes (prefixes and suffixes) from a document [33]. More specifi-
cally, Asim et al. [2] describe POS tagging, sentence parsing, and lemmatiza-
tion as the linguistic-based preprocessing techniques that are used in almost 
every ontology learning methodology. POS tagging involves labeling cor-
pus words with their corresponding POS tags. Parsing is a type of syntactic 
analysis that discovers the dependencies between words in a sentence and 
represents them in a parsing tree data structure. Lemmatization is used to 
bring terms into a normal form by removing word stems. For example, “pro-
cessing” and “processed” become “process.”

This model also utilizes the preprocessing techniques outlined by Asim 
et al. [2]. First, the heliophysics corpus sample (see Section 3.4.4.1) was saved 
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in a text file and read by the model, before being tokenized using the Natural 
Language ToolKit (NLTK). Regular expressions used for pattern-matching 
were employed to remove unnecessary punctuation, whitespace, and char-
acters, before the NLTK toolkit was used to remove stopwords from the text. 
The cleaned text was then written to a new file for further preprocessing.

After the text went through initial preprocessing, stemming and lemma-
tization modules from NLTK were imported. This allowed for the text to be 
converted into a standard format and was done after tokenization and stop 
word removal so that extraneous characters did not impact the rest of the 
preprocessing. Vectorization involves the process of converting documents 
into a numerical vector form, which makes it possible to analyze them and 
create instances in which the model works [37]. After vectorizing the text, 
it is stemmed to remove all word stems, and lemmatized to group together 
different inflections of a word together. This concludes the general prepro-
cessing phase.

3.4.4.3 Named Entity Recognition (NER) Using spaCy

NER is a particularly important step in the IEP for ontology creation, as it 
involves the identification of entities from texts and categorization of them 
into predefined ontological classes. NEs are vital for constructing a domain 
grammar [92]. Therefore, ensuring that the NER portion of the model is 
accurately constructed is important to ensure that the domain is correctly 
represented.

The spaCy NER library was used as a basis for developing the NER portion 
of this model. As spaCy is a common choice for NER in multiple scientific 
domains [31, 74, 88], it was selected as an appropriate basis for the domain 
of heliophysics. spaCy NER contains the option for one of several pretrained 
models to be imported, as well as for creating a model from scratch. The en_
core_web_sm pretrained model was selected as a basis for the heliophysics 
NER model. This decision was made because training a blank NER model 
would have taken a larger amount of data and resources, and the time scale 
for this research is limited. Thus, the heliophysics model was already par-
tially trained. This utilizes the principle of transfer learning – where the 
performance of a target learner on a target domain is improved by transfer-
ring the knowledge that is already contained in a different, related source 
domain [93].

As the NER model must be tailored for the CfHA ontology, the default labels 
provided by spaCy are insufficient. Thus, additional labels were appended 
to the heliophysics model. Alongside the default labels PERSON and ORG, 
which correspond to the Person and Organisation classes, five additional 
labels were added: ASTROPHYSICS, HELIOPHYSICS, MISSION, PROJECT, 
and PAPER. Due to time limitations, the seven labels were selected on the 
basis of representing a cross section of the classes already in the ontology. 
This was done on the basis of labels representing concepts that are the most 
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important to the ontology, as it is a person-focused ontology that involves 
research into heliophysics through missions and projects and produces out-
put on this research such as papers.

The next stage of developing the NER model is training it. This step 
is necessary if there are custom entities, as spaCy relies on in-context 
examples for entity identification [26]. Jafari et al. [31] detail the process 
of training the SatelliteNER model to detect custom entities, specifying 
that a model trained on a particular corpus is suited to detecting enti-
ties in a similar corpus. Part of the effort involved updating a pre trained 
spaCy model, which involved the use of Wikipedia text corpora and an 
automatic entity tagger to train the model to detect the custom entities 
orgName, rocketName, and satelliteName – therefore, the trained model 
was suitable for detecting entities in articles. Similarly, the heliophysics 
NER model training data was primarily sourced from scientific article 
abstracts, as the CfHA ontology models scientific data. Therefore, sen-
tences containing instances of the selected entity categories were extracted 
from the text corpus.

After providing training data, it was appended to the NER model using a 
“pseudo rehearsal” strategy, in which random inputs are temporarily stored 
along with their outputs. The NER model also had to be tested for suitability, 
so an additional corpus of data with labeled entities was utilized to test the 
NER model. The results are elaborated on in Chapter 6. This testing involved 
the use of separate data from the training corpus in order to verify the per-
formance of the model.

The next stage involved using the model to extract entities. spaCy contains 
functionality for visualizing entities, labels, and label descriptions in order 
to assess the performance of the NER model, so these were utilized in order 
to assess which entities the model discovered. Further assessment metrics, 
including TFIDF, word similarity, clustering, and visualization diagrams 
were applied to the model to determine its quality, which are detailed in 
Chapter 6.

3.4.4.4 Entity and Relationship Extraction Using POS Tagging

The other important stage in the ontology learning pipeline involves the 
extraction of entities and relationships from a text corpus in order to cre-
ate a KG Maynard et al. [55] describe that OBIE is usually used for ontol-
ogy population, which involves determining key terms in a text and relating 
them to existing terms in the ontology. Therefore, the entity extraction pro-
cess involves checking for entity categories that relate to already-existing 
instances in the CfHA ontology.

One additional factor involves determining what constitutes an entity. 
POS tagging can identify entities that are single words, as they would be 
nouns and proper nouns – however, the dependency tree of a sentence must 
be parsed if entities are multiple words long. di Buono et al. [14] describe 
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a system that is based on the Operator-Argument Grammar developed 
by Harris [27], where FSA variables apply to specific parts of speech, and 
word syntactic and semantic properties can be calculated based on relation-
ships with co-occurring words inside nuclear or simple sentence contexts. 
Consequently, dependency tree parsing must be utilized to check the various 
parts of a sentence and construct entities from there.

Entities are not the only elements that need to be extracted to create a KG. 
Relations between nodes is the other part, which necessitates discovering 
the root, or verb of a sentence. Any predicate verb can be taken to indicate a 
relationship between entities and is taken as the relationship type [58]. This 
will serve to connect the subject and object entities together.

From here, two distinct algorithms can be developed, one for entity extrac-
tion, and one for relationship extraction. The entity extraction algorithm is 
detailed in Algorithm 1, and the relationship extraction algorithm is detailed 
in Algorithm 2.

Algorithm 1 is based on a dependency tree parsing approach. Extraneous 
characters and stopwords are ignored, and tokens are checked for whether 
they are part of a compound word. The subject and object tokens are checked 
to ensure that they are NEs that are recognized by the NER portion of the 
model. Only entities that are identified as NEs are stored as nodes in the KG. 
After the subject and object are captured, the previous token and  dependency 
tag are updated.

Algorithm 2 utilizes a pattern matching approach. Essentially, a Matcher 
object can be used to determine relationships within sentences that match a 
particular pattern. In this case, patterns with the root, or verb of the sentence, 
are classified as relationships. Once the root is identified, the pattern Matcher 
checks if it is followed by a preposition. If this is the case, the preposition is 
appended to the root.

Similarly to the approach elaborated on in [14], POS tagging was employed 
to match up the roots, or verbs, of a sentence. Furthermore, the subject and 
object of a sentence were determined to be the entities and checked as to 
whether they were already recognized as NEs. After cleaning the resulting 
entity and relation lists to ensure there are no blank nodes, a Pandas graph 
is employed to visualize the KG. These results are elaborated on further in 
Section 5 and visualized in Section 5.1.

The final stage of the model involves the importation of the KG into an 
ontology visualization software. Protégé was chosen for this purpose, as the 
original CfHA ontology was developed in Protégé. The rdflib library, which 
represents information as RDF triples, was selected to facilitate the importa-
tion. A graph was employed to map the KG triples to, and the nodes were 
separated out into instances, classes, and object properties based on their 
status as a source, edge, or target. Classes corresponding to entities were then 
appended to the graph. Finally, the RDF triples were saved to an already-
created tester ontology file to visualize the results. Images of the final Protégé 
ontology are visualized in Section 5.1.
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Algorithm 1 Entity Extraction

 function get entities (sentence)
Ensure: contents ← heliophysics ner text
  Initialise Part of Speech variables
  Populate Subject and Object lists
  for token in sentence do 
   if token ≠ punctuation then
    if token == compound then
     prefix ← tokentext
     if previous token dependency == compound then
      Add previous token to current token
      if previous token in stopwords then
       prefix ←”
      end if
     end if
    end if
    if token dependency ends with a modifier then
     modifier ← token text
     if previous token dependency == compound then
      Add previous token to current token
      if previous token in stopwords then
       modifier ←”
      end if
     end if
     if token dependency in subjects or token dependency in 
objects then
      if token dependency subject exists and token in 
contents then
       tokeninfo ← token
       if token dependency subject exists and token in 
contents then
        tokeninfo ←”
       end if
       Addmodifier, prefix, and tokeninfo
       Reset prefix, modifier, and previous token 
dependency
       if token dependency object exists then
        tokeninfo ← token
        Addmodifier, prefix, and tokeninfo
       end if
     end if
    end if
    Set previous token dependency to current token 
dependency
    Set previous token text to token
   end if
  end if
 end for
 return entity 1 and entity 2
end function
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Algorithm 2 Relationship Extraction

 function get_relationship (sentence)
Ensure: contents ← heliophysics ner text
matcher ← Matcher
Assign dependency patterns to extract sentence roots
Add patterns to Matcher
matches ← Apply Matcher to contents
k ← len (matches) − 1
span ← the result of pattern matching each sentence in the 

text corpus
 return span
end function

3.5 Results and Analysis

The results of the model analysis described in Section 3.4 are elaborated on 
within this section. This covers all major stages of the model, including NER 
evaluation, word embeddings and clustering, and an analysis of the ontology.

3.5.1 Exploratory Analysis

In order to create a foundation for assessing the model, the performance met-
rics must be contextualized and examined according to stage. Examining the 
performance results also provides insight into how the NLP techniques used 
in the model construction handled the text corpora.

3.5.1.1 NER Performance Metrics

The metrics chosen to evaluate the NER portion of the model were 
Precision, Recall, and the F1-score. As is described in Table 3.1, precision 
is a measure of whether a classifier successfully does not label a posi-
tive sample as negative. Recall is a measure of whether a classifier suc-
cessfully finds all positive samples. The F1-score is the harmonic mean of 
Precision and Recall. It is used to provide an average of the performances 
of Precision and Recall [77].

It must be noted that the training corpus has been run twice, as spaCy 
flags an error when NEs span multiple words. Table 3.4 shows the results of 
running the performance metrics for the en_core_web_sm model that has 
been trained and tested on heliophysics data. Meanwhile, Table 3.5 shows the 
same metrics generated from an untrained en_core_web_sm model that has 
not had the custom labels appended. If the metrics were calculated from an 
untrained en_core_web_sm model with the custom labels, the scores would 
be 0, as spaCy would have no frame of reference to extract entities and spaCy 
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needs in-context training information [26]. This demonstrates the utility of 
transfer learning, where less training was necessitated due to the knowledge 
already contained in spaCy en_core_web_sm.

3.5.1.2 NER Word Embeddings and Clustering

After running performance metrics on the NER model, there are additional 
metrics that can be applied to the text corpus in order to provide further 
insight. Term Frequency – Inverse Document Frequency (TF-IDF) is a model 
that can be used for text to numeric conversion, in order to identify the most 
important words in a corpus [68]. It assigns higher value to certain words over 
others, so that even important words that occur infrequently are assigned 
high weights. A dictionary of words was created from the vectorized helio-
physics text corpus and was sorted using TF-IDF in order to produce words 
with the highest weights and, therefore, importance. Table 3.6 displays the 
top ten words and their TFIDF scores.

Another tool is word embeddings, which is a language modeling method 
that is used to map words to vectors that consist of real numbers. Words 
that occur in similar contexts should hypothetically be closer to each other 
in vector space. Therefore, related words in the ontology can be extracted by 
using word embeddings. Word2vec is an algorithm that uses shallow neu-
ral networks for word embeddings, and it can be used to represent words 
as vectors [90]. A Word2Vec model for the heliophysics corpus was con-
structed and trained. Dimensionality reduction algorithms transform data 

TABLE 3.4

Performance Metrics for Trained 
en_core_web_sm Model

Evaluation Metrics

Precision 100%
Accuracy 100%
Recall 66.6%
F1-score 80%

TABLE 3.5

Performance Metrics for Untrained 
en_core_web_sm Model

Evaluation Metrics

Precision 0%
Accuracy 100%
Recall 0%
F1-score 0%
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with a high number of dimensions, such as images, into a lower amount of 
dimensions [86]. This allows for the interpretation of relationships between 
vectors extracted from the heliophysics text corpus. One such example is 
determining the top-K most similar words to a particular term and was 
applied to the word “solar.” The results are displayed in text and graph 
format in Table 3.7.

A final tool that provides insight into the text is clustering. In ML, clus-
tering is an unsupervised technique that groups entities based on similar 
features. Clustering can be used to discover hitherto unknown patterns 
in data and can use several different measures for calculating distance [6]. 
Hierarchical clustering, which divides data into clusters without manually 
specifying a number of clusters, was initially applied to the TF-IDF features 

TABLE 3.6

Top 12 Words by TFIDF Score

Word TFIDF Score (Rounded)

Sub 0.29333
Abstract 0.25186
Bibcode 0.25186
Title 0.25186
sup 0.176000
Observations 0.14767
Model 0.14667
Models 0.13655
Climate 0.12846
Data 0.12845
Solar 0.11936
Surface 0.11733

TABLE 3.7

Top Ten Words Most Similar to “Solar”

Evaluation Metrics

Word Similarity Score (Rounded)

The 0.98165
SUB 0.98064
We 0.98041
Global 0.97834
Also 0.97728
Using 0.97676
Abstract 0.97646
Models 0.97641
Data 0.97607
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to determine how the algorithm would divide up the data. The output of the 
algorithm is displayed in Figure 3.4 and demonstrates that the text corpus 
can be separated into three clusters.

The hierarchical clustering algorithm demonstrated that the text corpus 
separates into three clusters. Choosing an appropriate number of clus-
ters is particularly important for K-means clustering. The utility of apply-
ing K-means clustering to the data is that it can determine what values are 
assigned to which clusters. It aims to separate n data values into K clusters, 
where K = 3 as is established in Figure 3.4. The clusters generated by K-means 
are visualized in Table 3.8.

FIGURE 3.4
Dendrogram displaying number of clusters by Euclidean distance.

TABLE 3.8

Top Ten Terms by Cluster

Cluster 0 Cluster 1 Cluster 2

sub Title Magnetic
sup Bibcode Measurements
Model Abstract Analysis
Models 2020georl Field
Observations Mars Waves
Surface Climate Induced
High 2020ssrv Fields
Data 216 Solar
Results Global Pressure
Time Dust Signals
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3.5.1.3 Ontology Analysis

The final part of the exploratory analysis involves examining the resulting 
KG and resultant ontology. Assessing an ontology is more challenging than 
assessing a NER model, as the success of an ontology depends on several 
measures, many of which are more subjective than NER evaluation metrics 
such as Precision, Accuracy, and Recall. These measures include whether the 
ontology is capable of solving tasks in the target domain, whether hierarchi-
cal and taxonomic concepts are represented, and ensuring that the ontology 
meets technical specifications [29].

Additionally, there are systematic frameworks for evaluating ontology per-
formance, some of which were discussed in Section 3.4.3. For the purposes 
of this research, a level-based evaluation is used. This was chosen for several 
reasons. The primary aim of this research is populating an already-existing 
ontology rather than creating one from scratch, so the primary objective that 
must be assessed is whether the entities and relationships created from the 
text corpus are similar to entities and relationships in the CfHA Ontology. To 
this end, the levels that are used to assess the ontology are Syntax, Structure, 
Lexical, Semantic, and Context, which are based on the metrics described 
by Hooi et al. [29]. These evaluation metrics and a summary of their perfor-
mance are summarized in Table 3.9.

TABLE 3.9

Ontology Assessment Metrics

Level Description Assessment

Syntax Assesses whether the syntax of the 
formal language is correct

Instances are mostly grammatically sound. 
There are a handful of exceptions with 
out-of-context numbers or tokens. Entity 
relationships also make logical 
grammatical sense

Structure Assesses if the concepts and 
hierarchy are sound

Concepts are in-line with those in the CfHA 
ontology. When examining the assignment 
of instances to classes, there are some that 
do not match

Lexical Assesses the terms used to 
represent knowledge

Classes and instances reflect terms and 
concepts used in the CfHA ontology and 
source heliophysics corpus. Terms reflect 
many domain concepts

Semantic Refers to how the ontology copes 
with different terms that relate to 
the same concept

Due to text preprocessing, particularly 
stemming and lemmatization, having 
multiple similar terms was not a 
significant issue

Context Examines how the ontology affects 
the functionality and usability of 
ontology-driven applications

The automated results can be integrated 
with the existing CfHA ontology after 
some manual annotation, which is the 
purpose of the tool
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3.6 Discussion

This section discusses in detail the model described in Section 3.4 and the 
results described in Section 3.5, linking back to the literature review done in 
Section 3.2. It weighs the successes and limitations of the model as well.

3.6.1 Text Mining Implementation

Overall, the TM portion of the model involved the use of well-established 
TM techniques [2, 33] in order to process the text into a suitable format for 
constructing the ontology learning model. Removing stop words and spe-
cial characters was a particularly important step, as many of the tokens in 
the heliophysics text corpus included special characters. This is particularly 
important to consider for an ontology creation model, as the process of for-
matting RDF triples involves the formulation of IRIs, where the inclusion of 
certain special characters or spaces renders them syntactically invalid.

Stemming and lemmatization were also crucial stages in the model devel-
opment, which is echoed by Asim et al. [2]. Although these two steps are 
important when being applied to other text corpora, the heliophysics cor-
pus particularly benefited from this stage. Expert intervention is frequently 
required for the development of scientific ontologies [30], as scientific 
domains are particularly open-world and information-rich [91]. Concepts in 
scientific domains are systematic and frequently interrelated – for example, 
“sunrise” is related to “presunrise” and “sunset.” Therefore, stemming and 
lemmatization allow for the root concept to be extracted, which results in the 
most important concepts to be highlighted and terms to be simplified for the 
NER stage.

3.6.2 Discussion of Spacy NER Model

The NER stage was crucial for determining which entities are relevant to the 
aims of developing the ontology. Without a robust NER model, constructing 
an accurate domain grammar would be difficult [92]. Answering RQ1, about 
already-existing approaches to ontology learning, revealed several existing 
NER models such as StanfordNER, Stanza, GoogleNER, and MicrosoftNER. 

Training a NER model on custom labels necessitates a large amount of 
data [34]. However, this research had to be completed in a limited amount 
of time, and part of compromising for the sake of time involved selecting a 
pre-trained NER model as a basis and adding additional data for the custom 

However, in the research for this chapter, there were no NER models that 
covered precisely the same domain as the one detailed in this chapter. This 
was particularly important when a primary aim of this research is to harness 
ontology learning to populate an already-existing ontology. Therefore, the 
NER model had to allow for custom labeling and training.
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entities. spaCy in particular was chosen after conducting the literature 
review, as it was frequently used as a NER model for scientific domains 
[31, 88] and has robust documentation. spaCy did not perform as well as 
the custom-built SatelliteNER model built by Jafari et al. [31], although the 
benefits of convenience and the comparatively small difference in perfor-
mance between a custom-built model and one trained on top of the spaCy 
en_core_web_sm model justified using a pre-trained spaCy model for this 
effort. The NER model leveraged transfer learning, where the pre-trained 
model trained with additional information scored highly on evaluation met-
rics which worked well within the limited constraints of this effort. A simi-
lar methodology was used for time reduction purposes by Kamat Tarcar 
et al. [34], who harnessed transfer learning by using pre-trained spaCy mod-
els on biomedical data.

One additional factor was the performance of the NER model. This 
research utilized Precision, Recall, and the F1-score for evaluation, which 
was done to provide a holistic view of how the model performed when iden-
tifying entities. Some prior studies only used one or two of these metrics [85, 
90]. However, Precision was included to determine whether the NER model 
was incorrectly classifying non-entities as being entities, whereas Recall was 
included to determine whether the NER model was overlooking entities. 
The F1-score was included because it provides a look at the average perfor-
mance of the model, in order to determine the trade-off between Precision 
and Recall and whether one needs to be improved at the potential expense 
of the other.

Comparing the performance of the custom-build spaCy heliophysics 
model to prior models revealed that it performed similarly and that the pat-
terns resemble those seen in prior research. The custom heliophysics spaCy 
NER model scored 100% on Precision, 66.6% on Recall, and had an F1-score of 
80%. The BiLSTM-CRF model developed by Batbaatar and Ryu (2019) scored 
higher on Precision (with a maximum of 94.53% for the Disease or Symptom, 
90.83% for Sign or Symptom, and 94.93% for the Pharmacologic Substance) 
and lower on Recall (with a maximum of 73.31% for the word + char + POS 
metric for Disease or Syndrome, 81.98% for the Sign or Symptom, and 73.47% 
for the Pharmacologic Substance). This pattern is also demonstrated by the 
NERO NER model developed by Wang et al. [88], where the overall perfor-
mance was measured at 54.9% Precision and 37.3% Recall, alongside a 43.4% 
F1-score.

This demonstrates that the heliophysics NER model performed better, 
which is attributable to the fact that many concept types were not well rep-
resented in the NERO ontology due to the heavy-tail distribution of ontol-
ogy classes. Additionally, the SatelliteNER model had Precision as the best 
metric, a high Recall that was still lower than Precision, and an F1-score that 
sat in-between Precision and Recall. What this reveals is that NER models in 
general uniformly appear to have significantly lower Recall than Precision, 
which is attributable to the specialist terms that are used in many scientific 
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domains that a NER model may miss. A comparison of the performance 
metrics also reveals how vital providing a large enough sample of training 
data is. While developing the NER model, the Precision, Recall, and F1-score 
increased as more training data was added, which indicated that the model 
was able to more easily identify entities in context.

3.6.3 Automated vs. Semi-automated vs. Manual Ontology Creation

The other important facet of the model was the ontology creation mechanism. 
Two of the driving research questions was how automated approaches to the 
population of an ontology can facilitate information sharing and how it can 
benefit a broader research effort. To this end, the literature review revealed 
that several prior studies had determined the benefits of automation for the 
ontology population [43, 55, 67]. Therefore, discussing the approach taken 
can reveal insight into the uses of automation for ontology development.

When the CfHA ontology was first being developed, it required manual 
effort to analyze texts to extract entities and relationships. Extracting individ-
uals in particular was time consuming, as it required annotating them with 
classes and relationships. This can be automated through ontology learning, 
where entities correspond to individuals, edges correspond to properties, 
and labels correspond to classes. However, the utility of automation depends 
on the quality of the model – hence, why evaluating the ontology learning 
pipeline stage-by-stage is necessary.

The KG faced challenges during development. For example, due to the 
nature of heliophysics as a scientific domain, several entities spanned mul-
tiple words – therefore, the entity extraction function had to account for this. 
Furthermore, the function had to ensure that the identified entities were 
actually relevant to the CfHA ontology. To address this challenge, the NER 
stage was crucial in ensuring that extracted terms coincided with identi-
fied entities. If this step was not taken, then irrelevant concepts may have 
been introduced into the ontology, which would require additional time to 
survey the ontology and remove the relevant items. Therefore, this demon-
strates how good design reduces the need for human intervention further 
down the line.

3.7 Conclusion

Ontologies provide a unique tool for facilitating knowledge-sharing and 
scientific discovery. Nevertheless, populating an ontology is an involved 
task. Harnessing ML techniques allows for resources to be freed up to be 
put toward other areas of scientific efforts. This body of research devel-
oped an ML model for ontology learning that contains two components: 
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a heliophysics NER model and an ontology population tool. The model 
is able to identify NEs from a text corpus that are relevant to heliophys-
ics, extract relationships, and process this information into RDF triples 
which are then saved in an ontology. Both components are applications 
of NER and ontology learning techniques to a novel domain and serve 
as an extension of the development of the CfHA ontology, which had pre-
viously been manually generated and populated. The CfHA ontology and 
the CfHA community are ever-evolving and necessitate adaptive means of 
facilitating knowledge-sharing, and the project was limited by time and 
available data. Consequently, there is room to extend the results of this 
research further.

One avenue that may potentially be explored further is the development 
of a from-scratch custom model for the heliophysics domain. This project 
utilized the spaCy en_core_web_sm model as a basis, although fewer time 
constraints allow for more focus to be given toward the training component 
of model development. Jafari et al. (2014) demonstrated the benefits of devel-
oping a from-scratch model for SatelliteNER, where it outperformed the 
default StanfordNer, Stanza, GoogleNER, and MicrosoftNER models. A sim-
ilar model may be created for the heliophysics domain, which would require 
additional training data for POS tagging and entity annotating. Alternatively, 
a transfer learning methodology could be utilized by employing a model that 
has been trained on a related domain. One particular benefit of the model 
in this research is that it is adaptable to other domains if applicable data is 
used to train it. There is also the opportunity to perform a wide-scale test 
of how other NER models perform compared to spaCy when trained on the 
heliophysics corpus.

Another opportunity is to involve expert opinion in ontology develop-
ment. This research effort did not involve a large amount of expert opinion, 
particularly in the entity recognition stage, due to time constraints. Having 
input over what would constitute entities in the heliophysics text corpus and 
how to classify them would improve the quality of the model and ensure 
that the training data has accurate entity samples. This is a vital step in any 
future work that extends upon this project, to ensure the accuracy of a model. 
Training data quality is also vital for the model performance, due to how 
spaCy learns from entities being displayed in context.

This body of research aimed to build an ML model that automatically 
detects NEs and entity relationships from a text corpus, create RDF triples 
from them, and generates a KG from the RDF triples. After fine-tuning 
the training data corpus, the model showed promising results in-line with the 
manually constructed CfHA ontology. As scientific communities  continue to 
harness cutting-edge technologies for research efforts, it is of vital impor-
tance to develop methodologies that are able to facilitate these efforts and 
handle research outputs. This research features a case study on how ML 
methods can be used for rapid ontology population, which in turn presents 
evidence for how automation can facilitate scientific research.
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Notes

 1 https://github.com/meganpowers1/SemanticNaturalLanguageProcessingfor 
KnowledgeGraphsCreation
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4.1 Introduction

Understanding an image or a text, even independently, is an extremely com-
plex task, for which handcrafted methods are both difficult to develop and 
not very robust. Advances in machine learning have nevertheless made it 
possible to obtain results about the similarity between two images or between 
two sentences. These learning methods are part of the deep learning frame-
work: deep convolutional neural networks (CNN, Krizhevsky et al. 2017) for 
images and deep recurrent neural networks (LSTM-RNN, Hochreiter and 
Schmidhuber 1997) for texts. To perform a task, a neural network with hid-
den layers will use these hidden layers to compute a useful representation, 
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which is a latent vector that translates the properties of interest for the task 
the network was trained on. For example, if one wants to classify images 
into dogs and cars, a useful representation of the image would be whether 
or not there are ears, eyes, wheels, or glass panes, from which it is easy to 
learn which class the image corresponds to. However, the representation 
that would be learned from such a supervised task would be specialized 
and might not be useful for other tasks. This is a problem when the task one 
wants a model for does not have abundant data or when labels are rare and 
costly: the medical domain is full of such tasks due to data being hard to 
acquire and labels costly to make.

When the only information is whether two items are related or not (e.g., 
this image corresponds to this caption, this video sequence follows this 
sequence), contrastive learning can be used to learn good representations 
(generic and rich enough to be good starting points) before fine-tuning on 
a task where labels are sparse/few. In essence, contrastive learning aims to 
have representations of related elements be close to one another and repre-
sentations of unrelated elements be far from each other (see Weng 2021) for 
an introduction to the different methods of contrastive learning). Contrastive 
learning is particularly useful when dealing with data with several modal-
ities (e.g., an image associated with a caption, a video associated with an 
audio track, Rohrbach et al. 2013). In this domain, it may be desirable to 
obtain similar representations for the different modalities of the same object. 
This common representation can be viewed as a way to capture the mean-
ing of the object represented: this is called semantic embedding. In the case 
of image and text modalities, the VSE neural architecture (Kiros et al. 2014) 
uses a CNN and an RNN in parallel in order to obtain a common vector 
representation for both the image and its associated legend. Once trained 
on a set of images and legends, the architecture can be used as an encoding-
decoding machine in order to produce new legends for unknown images: the 
legend is generated (decoded) from the vector that encodes the image, or to 
select images that best suits a new sentence: e.g., select the image from a data-
set whose encoding best corresponds to the encoding of the sentence. The 
idea to use this kind of pipeline comes from the work done in the domain of 
machine translation (Cho et al. 2014) (with two RNNs), indeed legend genera-
tion is a way to translate an image into a description.

Note that obtaining a common representation coming from the two neu-
ral networks, i.e., a cross-modality representation, is only possible if the 
parallels networks are guided with loss functions that aims at making more 
similar to the data referring to the same object and non-similar to the data 
referring to a different object. This leads to consider the classical method 
for contrastive learning which aims at minimizing a triplet loss (Schroff 
et al. 2015) where triplets are composed of an element which can be consid-
ered a query, an element which can be considered a relevant/matching ele-
ment (w.r.t. the query), and an element which can be considered irrelevant/
non-matching. The goal is then to extract a representation from all these 
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elements such that the query and matching elements are more similar to 
one another than the query and the nonmatching elements are. The rep-
resentations are extracted with neural networks, whose parameters are 
learned through the minimization of the triplet loss. The need to define a 
very accurate loss function was shown by Faghri et al. (2018) where these 
authors propose a new method VSE++ in which the architecture is the same 
as the one of VSE (Kiros et al. 2014), but the loss function is more elaborate. 
Indeed in VSE++, the authors extend VSE with the explicit introduction of 
hard negatives in the loss for multi-modal embeddings. They show that 
their proposal improves the results already obtained on the same datasets: 
experiments were done on Microsoft COCO dataset (Lin et al. 2015) with 
an out-performance “on the best reported result of almost 9%” (according 
to the authors).

The two drawbacks of VSE++ are the following: on the one hand, only two 
modalities are considered namely image and text, while it would be inter-
esting to offer the possibility to express information with other modes like, 
e.g., text in another language, logical formulas, diagrams, etc. On the second 
hand, we have encountered datasets where the same image is associated with 
several texts (in COCO dataset, each image is associated with five legends). 
Due to the way the loss function is defined, VSE++ is not able to handle such 
dataset in its integrality. Indeed, let us consider two texts t1 and t2 that are 
both well adapted with an image i. VSE++ can only take into account one of 
them for being the positive representative of this image, it means that some 
may be useful and complementary information is lost.

Several approaches have been proposed for improving the learning of 
joint representations of vision and language. In Li et al. (2019), the authors 
propose to first transform the images into a more structured represen-
tation that relates image regions using Graph Convolutional Networks 
(Welling and Kipf 2016) to generate features with semantic relationships 
and then use the triplet ranking loss of VSE++. In the same vein, Oscar 
approach (Li et al. 2020b) performs a pre-training in order to obtain a data-
set made of triples (word tokens, object tags, region features) by focusing 
on some salient elements in the images using Faster R-CNN (Ren et al. 
2015). Unicoder-VL (Li et al. 2020a) extends this idea by using three differ-
ent pre-trainings in order to align the visual and textual modalities: a pre-
training using an attention mechanism (Vaswani et al. 2017) is performed 
in order to learn a “cross-modality contextualized embedding” between 
regions and word tokens. This pre-training requires first to dispose of the 
linguistic embeddings (it is done with BERT, Kenton and Toutanova 2019): 
a pre-trained model for language prediction based on attention mecha-
nism) and image embeddings which are obtained by using Faster R-CNN. 
In more recent approaches the pre-training is done with self-attention 
modules that are used for capturing distant dependencies or heteroge-
neous interactions between regions (Xue et al. 2021), see Dou et al. (2022) 
for an extensive analysis of the different pre-training models on several 
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image-caption datasets. As we can see all these improvements concern 
the pre-processing of the dataset in order to focus on salient regions or 
words and these approach only deal with the two modalities image and 
text. Note that the object tags used in Oscar approach could be viewed as a 
third modality, but it is obtained by a pre-processing on the initial dataset, 
hence obtaining this modality is already a part of the learning process. 
To sum up, as far as we know there is no approach that proposes both to 
extend the triple loss notion with multiple positives and to accept multiple 
modalities in the dataset.

In this chapter, we propose an approach called MSE** which extends VSE++ 
to many modalities and to the possibility to handle a set of positive items of 
the same modality for one object. We compare the two methods and show 
that despite a better expressivity MSE** gives nearly the same results as VSE++ 
on several datasets. We show that the loss function of **MSE  is more accurate 
for some hard cases of our dataset.

4.2 Proposed Model: MSE**

In this section, we describe a new model called MSE** that extends the 
VSE++ model. The main feature of these two models is the use of triples 
consisting of an anchor, a positive element, and a negative element and a 
similarity function between the elements. The goal of the learning process 
is to learn a representation of each of its elements such that the anchor and 
the positive element are more similar to each other than the anchor and the 
negative. We first define the triples and then the loss function used to guide 
the learning process.

4.2.1 Definitions and Notations

Let us denote by K the number of different modalities contained by a given 
dataset. For example, for a dataset containing images and text legends, K is 
equal to 2. We denote by X  such a dataset, consisting in I tuples denoted by 
Xi. Each tuple Xi is formed by K sets denoted by , in {1 ... }X k Ki

k , i.e., one set 
by modality: X X X X X i Ii i i i

K= = ∈{ | ( , ..., ), {1... }}1

Note that within the ith tuple Xi, a set Xi
k contains one or several elements 

from the modality k, i.e., = …{ , },1 ,| |X x xi
k

i
k

i X
k

i
k , where | |Xi

k  stands for the cardi-
nal of Xi

k.

The rest of this chapter is organized as follows. Section 4.2 presents the 
new MSE** model, Section 4.3 discusses the particular issues raised in this 
new framework, Section 4.4 gives the implementation details and analyzes 
the results obtained on the MS-COCO dataset. The last section summarizes 
the approach and evokes several perspectives.
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To illustrate these notations, Figure 4.1a shows a small example consist-
ing in three images and six legends. In this example, K is equal to 2 (two 
modalities). One can observe that this dataset contains three tuples, among 
which the first consists in a set of images = { }1

1
1,1
1X x  (in this example only one 

image corresponds to one tuple) and a set of two captions = { , }1
2

1,1
2

1,2
2X x x  (the 

two legends corresponding to the first image).
In the following, we introduce the notion of triplet, which will be further 

used to derive the proposed training process.

Definition 2.1 (triplet). A triplet is composed of:

• an anchor x=: any element from any set of any tuple Xi of dataset X ;
• a positive x+: any element extracted from a set belonging to the same tuple 

Xi as the anchor but from a different modality;
• a negative x−: any element from any set of a different tuple than the anchor, 

Xi′ with i i≠ ′, from a different modality than the anchor.

(a)

k = 1 k = 2 k = 2

xi j
k
, j = 1 j = 1 j = 2

i = 1 A woman in 
a red jacket 
skiing 
down a 
slope

A woman 
posing 
for the 
camera 
standing 
on skis.

i = 2 Two giraffes 
during day 
in field of 
grasses.

A couple 
giraffes 
staring in 
the same 
direction

i = 3 A close up 
of a cell 
phone, 
scissors 
and a cup.

A cup of 
coffee, 
cell 
phone 
and 
scissor 
sitting on 
a desk.

(b)

Sim x1,1
2 x1,2

2 x2,1
2 x2,2

2 x3,1
2 x3,2

2

x1,1
1

x2,1
1

x3,1
1

FIGURE 4.1
(a) Toy dataset containing three tuples and two modalities. Each tuple contains one image 
and two legends. For a given element, index i defines the tuple, k its modality, and j its rank 
in the modality set. (b) Positive (green) and negative (red) legends for each image of this 
toy example.
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Reconsidering the toy example in Figure 4.1a, one valid triplet respecting the 
definition above is x x x( , , )1,1

1
1,1
2

3,2
2 , containing image x1,1

1  as anchor, a legend 
associated with it as positive and a legend associated with another image 
as negative. Furthermore, Figure 4.1b illustrates how triplets can be formed 
from this small dataset, by selecting an element of a row as the anchor, an 
element corresponding to a green cell from the same row as the positive, 
and an element corresponding to any red cell as the negative. Note that by 
transposing the matrix, the anchor can correspond to a legend instead of 
an image.

4.2.2 Loss Function

The triplets defined in the previous section contain two pairs of interest: 
the anchor and the positive, hereafter referred to as a positive pair, and the 
anchor and the negative, called negative pair. In general, one can evaluate 
how close two representations a and b are using a similarity function Sim, 
which maps the two representations to a scalar ( Sim a b ∈( , ) ), where a large 
value corresponds to a high similarity. One example of such a function is the 
cosine similarity, which is the dot product of two unit-vectors. It is worth 
mentioning that one can also use a distance instead of a similarity function, 
for which the signs and comparison operators are swapped.

Given a triplet, the objective herein is to have a representation of each of 
its elements such that the anchor and the positive are more similar to each other 
than the anchor and the negative, i.e., Sim x x Sim x x<= − = +( , ) ( , ). Furthermore, 
this inequality will be strengthened using a margin parameter α such that 
Sim x x Sim x xα+ <= − = +( , ) ( , ).

The objective of the learning process is therefore to learn a representa-
tion function which leads to the least number of violation of this constraint. 
Unfortunately, this constraint is not differentiable (because of the compari-
son operator) and is therefore not suitable for learning a model through 
gradient descent. In order to facilitate the training of a neural network, one 
therefore needs to reformulate this inequality into a differentiable loss func-
tion as follows:

 α= + −= + − = − = +( , , ) (0, ( , ) ( , )) x x x max Sim x x Sim x x  (4.1)

This function, called the triplet inge loss in the related literature, cor-
responds to the violation of the constraint on pair similarities. In the case 
where the positive pair is more similar by a margin of α than the negative 
pair, the loss is 0. Note that with this loss function the constraint is only 
imposed to be satisfied, i.e., the degree of constraint satisfaction is not quan-
tified. Otherwise, the loss function becomes strictly positive. Starting from 
this definition of the loss for a triplet, let us define the loss for a given anchor, 
from which, as explained previously, one can form several triplets by assign-
ing a positive and a negative.
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Definition 2.2

For a given item x= in a set of modality k, Xi
k, of a tuple Xi, we denote by X+ 

the set of its positive elements and by X− the set of its negative elements (with 
positive and negative elements defined as in Definition 2.1. With these nota-
tions, the loss function for a given anchor, x =( ), is given by:

 ==
∈

+
∈

− = + −
+ + − −( ) [ ( , , )],x x x xx X x XL R R H  (4.2)

where R+ and R− are functions mapping a set of elements to one of its subset, 
called reduction functions and  is the mathematical expectation.

In our case, these reduction functions select elements based on =( , )Sim x x ,  
their similarity with the anchor. In the case of selecting all elements (no 
 reduction function), this is equivalent to considering the mean of the triplet 
losses (the traditional triplet loss). In the case of selecting only the hardest posi-
tive and negative (respectively the ones with the lowest and highest similarities 
to the anchor) this is equivalent to taking the hardest triplet as VSE++ loss does.

From the definition of the loss for a given anchor, one can define the loss 
function for a given modality. The loss for the kth modality is defined as the 
mean of the losses of the elements of this modality, normalized by the margin:

 
α

= ∈
=

=( ) 1 [ ( )] X xk
x Xk  (4.3)

Note that the interest of the normalization by the margin is to obtain a (soft) 
loss bounded between 0 and 1. In practice, the worst case is when the represen-
tations of all elements collapse to the same vector, leading to a loss of α for all 
triplets. Finally, the global loss is the mean of the losses of the kth sets for each k:

  Xk
k = [ ( )] (4.4)

Let us note also that VSE++ defines the loss for only one modality and that 
the global loss is not using the mean of individual losses but rather the sum. 
The two are equivalent from an optimization point of view, given that the 
mean is equal to the sum scaled by a constant factor ( 1

| |Xk  for the loss of the kth 
modality X k( ), K

1  for the global loss ).
In the general formalism proposed above, we can highlight that VSE++ is a 

particular case where:

• the modality of the anchor and the modality of the positive and neg-
ative are different, i.e., cross-modality is imposed;

• there is only one positive by modality, i.e., for each tuple i, for each 
modality k, =| | 1Xi

k ;
• the reduction function uses a maximum: it selects the hardest nega-

tive taking =−
∈ ∈

= −
− − − −arg max ( ( , ))Sim x xx X x X .
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The main contribution of VSE++ was to compute the loss on the hardest trip-
let, which in the absence of multiple positives turns to having  =− arg max. 
The authors of VSE++ argued that most negative triplets do not contribute to 
learning good representations (because they are too easy, i.e., too different 
from the anchor) while forcing the loss function to local minima in which 
improving the hard negatives would not help to improve the loss. Therefore, 
using only the hardest negative example led to better representations.

The main contribution herein is the extension to several positive elements. 
If the reduction function over positives (+) is linear (e.g., a sum), considering 
multiple positives is equivalent to computing the anchor loss with a different 
positive each time, i.e., increasing the batch size with same anchor associ-
ated with different positive samples. However, similarly to how selecting the 
hardest negative improves the representations learned by VSE++, we show 
that selecting the hardest positive has also a positive impact on the represen-
tations learned, in particular forcing the representations of the positive to be 
close to the anchor even in the worst case.

4.3 Particular Issues Raised within MSE** Framework

In this section, we describe how we dealt with two problems raised by the 
model: the first is due to the fact that we allow an anchor to be associated 
with a set of negative elements instead of being associated with a single ele-
ment, the second concerns the constraints induced by the use of different 
modalities on the data augmentation.

4.3.1 Optimizing the Hardest Negative Selection Process

Although selecting the hardest negative ultimately leads to better learned 
representations, the optimization process is more difficult when consider-
ing all negatives. This is especially the case at the beginning of the training, 
where the representations are weak and a collapse to the same representation 
for all elements can occur, which would be a failed training.

The authors of VSE++ identified this issue and proposed to train the model by 
using the mean reduction for a few epochs before switching to the max reduc-
tion. It is however not trivial to choose the number of epochs before switching, 
and as it is a form of pre-training it could lead to worse optima at the end of the 
training compared to using the max reduction from the beginning.

To meet this challenge, we propose to use the top- f  operation as reduction 
function: it consists in selecting the hardest fraction f  of the elements, where 
“hardest” stands for “most similar to the anchor” for the negatives and “least 
similar” for the positives. When f  equals 1, this function is equivalent to 
the mean, and when f  equals 0 it is equivalent to the max (since we always 
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select at least 1 element). For example, for 100 elements, top- f  with f = 0.3 will 
return the 30 elements with the largest values.

By decreasing f  from 1 to 0 over the course of the training, one can start 
the training with a loss easy to optimize and gradually progress to a harder 
but more productive loss, therefore avoiding a collapse into the same repre-
sentation for all elements. This method is progressively switching the loss 
function from mean to max. But sometimes the “pretraining” (with the mean 
reduction) has a long duration before enabling to switch to the max reduction.

While decreasing f  linearly over a small (≈ 10, 000, out of ≈ 250, 000) num-
ber of steps, we noticed that the loss decreased until f ≈ 0.2, after which it 
increased to reach 1 when f = 0. Therefore, we decided to give priority to 
a decay rule which spends as few steps as possible in the “easy” regime, in 
order to do as little “pretraining” as possible. Such a behavior is ensured by 
the following hyperbola expression scaled between 1 and 0, with the main 
“inflection point” at y = 0.2:

 
k
−

+ ×
1 step _ fraction

1 step _ fraction
 (4.5)

where step _ fraction is the fraction of the decay steps (e.g., 10,000) done at this 
point and k = 16.

Note that this approach can be linked to some forms of curriculum learn-
ing. Indeed, curriculum learning is a form of learning in which a model is 
trained on tasks in a particular order. The tasks can either be the specific 
examples that the model has to learn: in that case curriculum means to first 
learn the easy examples then the hard ones or qualitatively different tasks 
(Pentina et al. 2014): in that case curriculum learning consists in first clas-
sifying an object either in animal or machine, then in classifying it either 
in cat, dog, boat, and plane. In our proposal, we do not alter the order in 
which the samples are presented to the model, but we start with an “easy” 
task (the mean reduction) and progressively evolve toward the “hard” task 
(the max reduction).

The way the transition from easy to hard tasks is done using the top- f  
reduction can be seen as applying binary weights over the elements and 
assigning 0 to the weights of the easiest elements as the training goes on. 
We could instead have used weights between 0 and 1 and have shifted the 
distribution of these weights toward the hardest elements as the training was 
going on. This last approach seems more appealing (it avoids to directly take 
into account the difficulty of the task), but we do not expect it to have much 
(if any) impact on the accuracy. Therefore, this is left for perspective study.

Even though this careful increase of the difficulty of the task helps with the 
optimization and makes it possible to train the network, it should be noted 
that the length of the decay period (how many steps until we reach f = 0) is 
still important: indeed a too short period will still lead to a failed training 
while a too long one will lead to worse results.
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4.3.2 Data Augmentations for Multi-Modal Tuples of Sets

Deep neural networks often suffer from overfitting, and one way to reduce 
it is to use data augmentation. This consists in applying label conservative 
transformations to the data, which will artificially increase the amount of 
data. Training on this augmented data can force the network to encounter 
some conditions which it would not have met if augmentations had not taken 
place, this generally helps to learn more robust representations. Examples of 
such transformations for images are horizontal flip (mirror symmetry), crop-
ping some part of the image, rotations, modifying the color, etc. Concerning 
texts, one can remove some words or replace them with synonyms.

When working with multi-modal data, some transformations need to be 
applied to all modalities in order to be label conservative. For example, when 
applying an horizontal flip to an image, any text describing it must have the 
words “left” and “right” swapped (Desai and Johnson 2021).

When the multi-modal data is made of sets of elements under the same 
modality, such a transformation should be applied with the same parameters 
to all elements of each relevant set. Flipping an image and one of its legend 
necessarily requires us to flip all the images and legends of the tuple, oth-
erwise we would not preserve left-right positions: a flipped image would 
not be completely similar to an “unflipped” legend, and trying to match 
them through the contrastive loss would lead to a network which would be 
unable to recognize left from right (assuming the flip is done 50% of the 
time). However, when a transformation is not applied to multiple modalities, 
it is preferable to apply it with different parameters to the different element 
of a set. For example, with two images of a tennis ball, modifying the color of 
the image in the exact same way (say yellow to orange) will result in the ten-
nis ball being the same color in both images. Even though this will still lead 
to the network having to recognize tennis ball by something else than their 
color over the course of the training process (and multiple applications of the 
transformation with different parameters), having the two tennis balls be of 
different colors will make an update on the parameters which will concern 
other properties than its specific color. We argue that this is desirable and we 
implemented it in our experiments. However, we did not run any experiment 
to confirm it (one would simply need to disable this augmentation parameter 
difference for the elements of a set) and we think that it will not make any 
difference on our datasets given the results we obtained.

4.4 Implementation

In order to test our main hypothesis that using multiple positives in the triplet 
loss improves the learned representations, we had to implement the VSE++ model, 
apply the necessary changes to it, and run the experiment on suitable data. 
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This implementation is available via the Github repository https://github.
com/JeremieHuteau/adria_internship.

4.4.1 Dataset

The triplet loss minimization method can be applied to any dataset if we con-
sider an element as the anchor, an augmentation of this element as the posi-
tive and a distinct element as the negative. But as we were originally in the 
context of cross-modal representations, we stuck with the classic dataset for 
this task: MS-COCO (Lin et al. 2015). This dataset is suitable for many tasks, 
but we are mostly interested in the captioning part of the dataset, which con-
tains in its training set about 113,000 images, each described by five different 
captions generated by humans. The validation/test set contains 5,000 images, 
again with five captions each. Therefore, only the image modality will have 
multiple positives.

Due to lack of time to run the experiments, we did not experiment on other 
datasets. The most suitable one would have been Flicker30K (Young et al. 
2014) (similar to MS-COCO but with only 30,000 images). As for the medical 
domain, a dataset can be built from the PEIR library (Jones et al. 2001), which 
is way smaller with about 5,000 images but in which the text modality is hav-
ing multiple positives (a caption can describe a variable number of images). 
It should be noted that training a complete visual model for medical images 
with only 5,000 images would not be easy, and using a model trained on 
natural images as a pre-trained base might not be perfect (see Raghu et al. 
2019 for a work on transfer learning for medical imaging).

Let us remark that the MS-COCO dataset is not perfect for our task, as 
some captions can describe multiple images while only being linked to 
a single image. For example, a caption stating “A tennis player ready to 
hit the ball.” fits to all images of tennis players in action, but will only be 
linked to one of them in the dataset. Therefore, many captions which we 
will consider as negatives are actually false negatives. From a summary 
exploration of the dataset, we estimate that about 1% of the captions could 
describe multiple images.

4.4.2 Model

Even if the theoretical model may use more than two modalities and even 
identical ones, for comparison purposes, we use the same model architecture 
as the one in VSE++. The model has to be able to process both images and texts.

For the image modality, a CNN is used to extract a representation. The 
architecture of this CNN is the one of the ResNet family (He et al. 2015). 
Material constraints did not allow us to use the largest model in the ResNet 
family (ResNet-152) due to memory requirements, so we ran the biggest net-
work that fits on a single NVidia 1080 Ti GPU: namely, ResNet-34. The model 
we use is pre-trained on the ImageNet dataset (Russakovsky et al. 2015).

https://github.com
https://github.com
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For the text modality, token embeddings of dimensionality 300 are learned 
for all the words appearing at least four times in the training captions. The 
captions are then summarized using a Gated Recurrent Unit (GRU) (Cho 
et al. 2014), which outputs a 1024 dimensional vector. The embedding vec-
tors are initialized from a normal distribution with mean 0 and variance 1

300.  
The exact distribution does not seem to matter, but if the initial values are 
too large (like they are with the default PyTorch embedding initialization, 
which uses a variance of 1) the results will be hampered. There are some 
work related with the importance of embedding initialization (Kocmi and 
Bojar 2017) which further explore and explain this behavior.

When training the model, the image encoding network is frozen (not 
updated) until some epochs have passed. Therefore, to allow for some flex-
ibility of the image representation, and to help align it with the text represen-
tation, and more importantly to make it of the same dimension as the output 
of the text encoder, a linear projection is appended to the image encoder net-
work. As the text encoder is defined and trained from scratch, it does not 
need a projection. Before computing the similarities of the representations of 
images and texts, the vectors are normalized to unit vectors. This, combined 
with using a dot product as the similarity function, makes it such that the 
similarity scores are bounded by –1 and 1: the similarity is the cosine similar-
ity. Once the similarity scores are computed, the triplet loss can be computed 
according to the formulas in Section 4.2.1.

4.4.3 Triplet Loss

Regarding the triplet loss using top- f  as the reduction function, naive 
implementations were responsible for about 50% of the total training time, 
most likely due to transfers between CPU and GPU as well as being ineffi-
cient (not vectorized). Vectorizing this function is not trivial due to anchors 
having potentially different number of positives (and therefore negatives) 
in a batch. A user from the PyTorch forums came up with a way to vec-
torize this function.2 However, this implementation has a cubic time and 
space complexity with respect to the number of elements in the batch (the 
time complexity is acceptable due to running on a GPU, but as we were 
already memory constrained, this space complexity is not acceptable). We 
ended up using an implementation which computes the loss on groups of 
anchors having the same number of positives, which has a quadratic com-
plexity both in time and space, and made the time necessary for the compu-
tation of the loss negligible compared to the forward and backward crossing 
of the network (as it should be). An implementation for the max reduction 
function was created, using the same techniques as the cubic complexity 
implementations (masking the irrelevant elements to still allow for vector-
ization), but it ended up by not being used due to not being always applica-
ble and not providing any run-time benefits (the implementation on groups 
is already fast enough).
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4.4.4 Libraries Used

As with most deep learning projects, Python is the language we use. We chose 
to use PyTorch (Paszke et al. 2019) as the deep learning framework, combined 
with PyTorch Lightning (Falcon 2019). PyTorch is responsible of handling the 
computations, while PyTorch Lightning is there to provide a standardized 
way to organize the deep learning code (how to define a model, load data, 
compute metrics, log, etc.). To configure our application, we use Hydra Yadan 
(2019) which makes modifying the configuration of the application easy due 
to the way individual configurations (e.g., model architecture, data augmen-
tations) can be composed to form the complete application configuration. 
Finally, we use GNU Make (Stallman et al. 2004) to link the various scripts 
(environment configuration generation, data preprocessing, model training).

4.4.5 Model Training

We use the training process from the VSE++ paper. As a preprocessing step, 
all images are resized such that their smallest side has a length of 256 pixels. 
This is done in order to avoid loading full resolution images (that will not 
be fed to the network anyway). We also create a dictionary that maps all the 
words appearing at least four times in the captions to an integer (which is 
used to index the embedding table).

When loading the data, the following transformations are applied:

• Text is put in lower case.
• Image is cropped at a random position to a size 224 × 224 pixels.
• Image and text are randomly flipped horizontally (mirror symmetry 

for image, “left”–“right” swap for text).
• Image is normalized according to ImageNet mean and variance of 

each channel.
• Text is tokenized (split into individual words) using NLTK’s word 

tokenizer.
• Text is padded with start/end of sentence tokens.
• Text tokens are converted to indices using the dictionary made dur-

ing preprocessing.

As described in Section 4.3.2, if an image is (not) flipped then all the cap-
tions that describe it are also (not) flipped.

We do not apply data augmentations to texts. Simple augmentations which 
would most likely improve performance exist (Wei and Zou 2019). We could 
also apply more powerful augmentations to the images, but did not do so to 
keep our results comparable to the ones from VSE++.

We use a batch size of 128 tuples, which for COCO corresponds to 128 images, 
and either 128 captions when using one single positive or 640  captions 
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when  using all the available positives. We use the Adam Kingma and Ba 
(2015) optimizer. The learning rate is initialized to e−2 4 and is set to e−2 5 after 
75 epochs (≈ 70, 000 steps for COCO) have passed. The image encoder (but 
not the linear projection following it) is frozen (not updated) until 150 epochs 
have passed, to avoid to “forget” the pre-trained knowledge while the net-
work still performs poorly on the task.

4.4.6 Results and Analysis

We are interested in two metrics:

• Retrieval at K: it is the fraction of the anchors which have one of 
their positives in their K most similar elements.

• Mean rank: it is the average rank of the positives among the ele-
ments of the anchors.

We compute the metrics when using images as anchors and texts as anchors 
and present the values in Table 4.1.

Even though the validation loss is lower using multiple positives, we do not 
observe improvement on the retrieval metrics. We also computed the mean 
rank of the positive that is returned last, which is what our method is opti-
mized for, and did not find significant improvements there either (244 vs 247 
for VSE++ vs MSE**) (Tables 4.2 and 4.3).

We suspect that selecting the hardest positive does not improve the per-
formance due to the low number of positive captions (five on MS-COCO) as 
well as the simplicity of the captions, which makes it unlikely to find a truly 
difficult positive (there aren’t many ways to describe an image with a short 
sentence). We expect this method to perform better (relatively to using a sin-
gle positive/the mean over positives) on datasets containing a lot of variety 
of positives. One such dataset would be ImageNet, which contains images of 
concepts in varied scenes, postures, orientations, etc.

TABLE 4.1

Validation Scores of VSE++ and Our Method (MSE**) on MS-COCO 

Image to Text Text to Image

Model Method R@1 R@5 R@10 R@1 R@5 R@10

ResNet-34 VSE++ 0.31 0.61 0.74 0.23 0.51 0.65
ResNet-34 MSE** 0.31 0.60 0.72 0.21 0.50 0.63
ResNet-101 VSE++ 0.37 0.67 0.80 0.27 0.57 0.70
ResNet-101 MSE** 0.36 0.67 0.79 0.26 0.55 0.68

Note: R@K is the retrieval at K metric: proportion of anchors for which we found positives in the 
K most similar elements.
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Should our method perform better on some other datasets, ablations to 
identify the important parts would be necessary. The interesting questions to 
explore would concern the results that we could obtain if we:

• Increase the batch size for the single positive method to match the
number of anchors of our method (using a single positive, we have
one anchor per tuple, while the multiple positives ends up using
every positive as an anchor).

• Use the mean instead of the max for the reduction function over
positives (R+).

• Do not use different data augmentations parameters for all the ele-
ments of a set.

• Use augmentations of an anchor as its positives, instead of the native
positives (elements in the dataset tuple of this anchor).

Even if our method is only equivalent in results with VSE++, it seems to 
produce a better similarity function, as shown on the example of Figure 4.2.

TABLE 4.2

Validation Scores of VSE++ and Our Method (MSE**) on MS-COCO

Image to Text Text to Image

Model Method Loss MeanR MeanWorstR MeanR

ResNet-34 VSE++ 0.98 163 244 35
ResNet-34 MSE** 0.91 177 247 35
ResNet-101 VSE++ 0.90 134 470 28
ResNet-101 MSE** 0.85 121 393 27

Note: Loss is the triplet loss on the validation set; MeanR, the mean rank of the positives; and 
MeanWorstR, the mean rank of the hardest positive (only computed for “Image to Text” 
as captions only have one positive).

TABLE 4.3

Similarities between Images a and b with Their Legends

Legend

Image a of Figure 4.2 Image b of Figure 4.2

VSE++ MSE** VSE++ MSE**

1 0.17 0.57 0.12 0.52
2 0.17 0.53 −0.02 −0.07
3 0.15 0.51 0.10 0.19
4 0.16 0.45 0.13 0.56
5 −0.01 0.15 0.11 0.48
Hardest negative 0.20 0.57 0.17 0.59
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We notice that MSE** seems to perform better when one legend has typos 
(see the fifth legend of Figure 4.2 Image a [“kitcken,” “refigeratator”]) and 
words absent from the vocabulary or is plain wrong (Image b’s second leg-
end [“horses”]). There is a difference in the magnitude of similarities between 
VSE++ and MSE**.

4.5 Conclusion

In this chapter, we have extended the triplet learning method to the case 
where there are multiple positives associated with an object, this extension 
does not improve the accuracy of the representations learned w.r.t. the one 
obtained by the existing method VSE++ in the particular case of the dataset 
MS-COCO. Nevertheless, the implementation is done to improve the devel-
opment of this method in future works on different datasets.

This work opens several perspectives: (1) use the triplets method with mul-
tiple positives on datasets having many examples of each class; (2) use a VSE 
model to find new positive pairs and to eliminate false negatives present in 

Image a Image b

1. There are two refrigerators in this dirty, 
rundown kitchen.

2. Two refrigerators standing side by side in 
a room.

3. An olive green refrigerator next to a white 
refrigerator in an old kitchen.

4. A small refrigerator in a small kitchen with 
a window.

5. A kitcken that has two different 
refigeratators in it.

1. A herd of elephants standing on top of 
a field.

2. a number of horses standing near one 
another

3. Two elephants that are pressing their 
heads together.

4. A couple of elephants standing in the 
grass.

5. a couple of elephants out in a large 
field

FIGURE 4.2

Two images and their five captions from MS-COCO dataset.
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some datasets; (3) associate the images not with texts but with logical formulas 
(in addition to allowing reasoning in post-processing, this would make it pos-
sible to introduce degrees of positivity/specificity: if a formula describing an 
image is more specific than another one, then we will be a priori more intran-
sigent on the respect of the similarity/dissimilarity with this image/another 
image); generate the most similar captions to the images: is it possible to obtain 
more exhaustive descriptions of the scenes than those provided by humans?

Notes

platform (http://osirim.irit.fr/site/en) that is administered by the Institut de 
Recherche en Informatique de Toulouse (IRIT) and supported by the French 
National Center for Scientific Research (CNRS), the Occitanie Region, the 
French Government, and the European Regional Development Fund (ERDF). 
The work has benefited from a CISA-IRIT funding.

 2 https://discuss.pytorch.org/t/how-can-i-vectorize-this-for-loop-loss-function/ 
122407/2
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5.1 Introduction

Language has been the ultimate medium of presenting human experiences from 
the beginning of time. Without language, humans would be unable to express 
their feelings, thoughts, emotions, desires, and beliefs. Without language, there 
could be no society and possibly no religion. Hence, language is what makes 
us humans. Apart from being a medium of communication, language is also a 
means of cultural expression and personal identity among people. The power 
of language in human coexistence cannot be overemphasized as the history and 
development of speakers are inherent in their language. Although, the world 
today is described as a global village, this was not the case decades ago. From 
the inception of civilization, language has been a determinant in people group-
ing and communal association. This is because the persons with the largest 
population of unanimous speakers often dominate those with lesser popula-
tion, otherwise referred to as minorities. But as civilization advances and com-
puters become more powerful, language bridges have continued to emerge, with 
natural language processing (NLP) and inter-language translations becoming 
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simpler tasks. Most works that have been undertaken over the years to achieve 
language translation are done to aid knowledge sharing (Shi et al., 2019).

Knowledge sharing, a major reason for the current rapid growth of tech-
nology, would be greatly limited if vital materials and information privy to 
minority language speakers cannot be accessed and utilized by non-speakers 
of the minority languages and vice versa. In addition, such knowledge sharing 
would foster inclusiveness, encourage development, and contribute to mak-
ing the world further interconnected. Minority languages in this context are 
well-spoken languages by natives of respective communities but with little or 
no digital presence in terms of data and information usable for further knowl-
edge generation computationally. Hence, they are referred to low-resourced 
(Magueresse et al., 2020) or under-resourced (Karim et al., 2020). Whereas lan-
guages like English, French, Mandarin, Spanish, Russian, etc., are more easily 
translated to each other, most native African languages, especially those spo-
ken in southern Nigeria, do not have any structure for computer aided transla-
tion (Ezeani et al., 2020). Notwithstanding the fact that the Africa’s language 
diversity is second to none on the planet and Nigeria alone has over 500 under-
resourced languages outside the three (Hausa, Igbo, and Yoruba) popular ones.

Prior to modern innovations in natural language translation, an individual 
would require several weeks, months, or even years to study, understand, 
and fluently translate words, phrases, and sentences made in their native lan-
guage to a foreign language. Today, same can be accomplished in seconds 
following the rapid development of mobile technologies and steady migra-
tion of innovations to the web space. One of the most popular and robust 
digital language translators often patronized for translation tasks is Google 
Translate. However, as divers and robust as it may be; it fails to capture 
under-resourced languages like Ibibio, Ijaw, and Itshekiri among others, even 
though the number of people speaking each of these languages supers the 
population of some independent countries whose language are supported. 
With globalization, it is imperative that under-resourced languages grow-
ing in popularity be interpretable anywhere in the world using technolog-
ical devices. To achieve such translations, one can leverage on the several 
resources finding expression around communities with under-resourced 
languages. The language-based contents from such communities can form a 
huge information base that is useful for enhancing intelligence.

It is not strange to find that a sizeable number of natives who are mostly res-
ident in rural areas and uneducated cannot communicate fluently in English, 
which is the lingua franca in Nigeria. There are vital information and knowl-
edge possessed by such individuals, and English speakers would sometimes 
possess vital and beneficial information, but because of the language bar-
rier, an exchange cannot happen. In most of these rural areas, custodians 
of traditional health, cultural, security, and trans-generational information 
and knowledge live and pass away without documentation or knowledge 
transfer. Similarly, in the face of current increase in crime and insecurity, 
people have lost their life because they could not understand the language 
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of personnel giving safety instructions during emergencies. In other cases, 
making moves contrary to the directives of the attackers due to language 
barrier has led to the death of persons that may have survived the attack.

Furthermore, there are neighboring communities that speak totally different 
languages such that if an attack is ongoing in one community and someone safely 
escapes, communicating the impending danger to residents of the neighboring 
community for precautionary measures to be taken is very difficult. However, 
if there are digital alert systems that can notify people of an emergency in their 
native language, several persons would take well-informed steps to ensure the 
safety of their life and family. This vacuum in research is identified and noted 
as one that ought to be filled. Hence, this work presents a framework for a text-
based emergency alert system for select under-resourced languages. The pro-
posed system will get text in a sender’s preferred language, then translate and 
transmit same to the target recipient(s) in their native under-sourced language.

5.2 Related Works

Machine translation is an applied area of machine learning that involves con-
version of words, phrases, or sentences from a source language to a target lan-
guage or representation (Abiola et al., 2020). Over the years, much of the gains 
in machine translation have been due to researches into statistical machine 
translation (SMT) procedures. The efforts have birthed approaches like NLP, 
example-based translation, and neural machine translation. The direct trans-
lation of words, phrases, and sentences is the most primitive or the original 
approach in machine translation. Here, words in the source language are 
replaced with words in the target language following the sequence in which 
the words appear without much linguistic analysis and processing. The major 
resource used by this approach is a bilingual dictionary, hence it is known 
as dictionary-driven machine translation. A word-to-word translation of the 
output text is performed, and the result is obtained in the form of output text. 
The direct machine translation approach is effective for unidirectional tasks 
but accesses only one language pair at a time, hence it is not conducive for 
multilingual machine translation (Abiola et al., 2015; Agbeyangi et al., 2051).

The rule-based approach is another technique adopted in machine trans-
lation. It involves the application of morphological, syntactic, and semantic 

The rest of this chapter is structured as follows: Section 5.2 presents related 
works on machine translation while Section 5.3 highlights methodologies 
adopted by the proposed framework and the service-oriented architecture 
(SOA) of the proposed emergency alert system framework with its components. 
Section 5.4 presents the results of the implementation of the proposed frame-
work while Section 5.5 concludes this chapter with future research directions 
on possible inclusion of other under-resourced languages in Southern Nigeria.
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rules in the analysis of the source language file and the synthesis of the 
target-language text. A database of translation rules is used to translate text 
from source to target language. This approach deals with the word-order 
problem and since it uses linguistic knowledge, errors in translation can be 
traced and resolved more easily by the algorithm. Rule-based machine trans-
lation parses the source text and produces an intermediate representation 
which may be a parse tree or some abstract representation. The target text is 
then generated from the intermediate representation. Systems implementing 
this technique rely on the specification of rules for morphology, syntax, lexi-
cal selection and transfer, semantic analysis, and generation. It identifies the 
relationship between source-language words and their structural represen-
tations. Although the approach requires a lot of human effort and dedication, 
it has been effective in early multilingual translation tasks.

The corpus-based technique has also been widely adopted (Ali and 
Al-Gamal et al., 2021, Tehseen et al., 2018). Corpus-based language translation 
consists of the SMT and example-based machine translations (EBMT) types. 
The SMT deals with automatically mapping sentences in one language into 
another. Using SMT, the translation is modeled either with string-to-string 
mapping, trees-to-strings, or tree-to-tree models. All these models share the 
central idea that translation is automatic, with models estimated from paral-
lel corpora and also from monolingual corpora (Post, 2012). In contrast to 
the rule-based approach, most SMT systems are phrase-based and assem-
ble translations using overlap phrases. In phrase-based translation, the aim 
is to reduce the restrictions of word-based translation by translating whole 
sequences of words, where the lengths may differ. The sequences of words 
are called phrases, but typically are not linguistic phrases, but phrases found 
using statistical methods from bilingual text corpora. A complexity with this 
method issue is its need of bilingual content, which can be tricky when it 
comes to finding content written in under-resourced languages.

Using either the rule-based or corpus-based approaches, a number of 
works have been undertaken to convert one form of natural language file to 
another, including text-to-text, speech-to-text, text-to-speech, and speech-to-
speech translations (Arikpo and Dickson, 2018). The methods and approaches 
adapted in each of these efforts continue to achieve varying results from one 
language to another. A deduction from this is that the semantic and syntac-
tic diversity in languages affects the performance of proposed models. For 
high-resourced languages, all four forms of machine translation have been 
greatly investigated; however, the contrary is the case with low-resourced 
languages. Nevertheless, many machine translation efforts in native African 
and Nigerian languages have focused more on the area of text-to-text transla-
tion, while a few based on speech-to-text.

The submission by Awofolu and Malita (2002) undertook text-based machine 
translation of English words and sentences to their Yoruba equivalent, using 
a syntactic and semantic technique. Folajimi and Isaac (2012) also undertook 
a similar study using statistical approach for bidirectional machine transla-
tion between English and Yoruba languages. A bilingual lexicon for building 
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In Chinenyeze et al. (2019), English to Igbo language translating system is 
presented. Although the submission shows evidence of successful transla-
tion, the underlying method adopted is not clearly outlined. Furthermore, 
the number of words and phrases used to train and test the system is not 
also clearly presented. This is in addition to the absence of system accuracy 
in terms of its translation of words and phrases from source to target lan-
guage. Ezeani and collaborators reported an ongoing effort toward creating 
and making available an Igbo-to-English dataset with over 100,000 sentence 
pairs and 100,000 monolingual Igbo sentences for machine translation tasks 
and research (Ezeani et al., 2020). Part of speech (POS) tagging is a prerequi-
site in most NLP tasks, and the Igbo language also requires this for efficient 
dataset generation and effective NLP task completion. The work by Onyenwe 
and colleagues (2019) presented comparative results of six POS tagging tech-
niques and showed the higher accuracy score obtained from their linguistic 
probabilistic method that took the productive agglutinative morphology of 
the Igbo language into consideration.

The Ibibio language is the native language of the Ibibio people of Akwa 
Ibom and Abia States, of Nigeria, belonging to the Ibibio-Efik dialect cluster of 
the Cross River languages. The name Ibibio is sometimes used for the entire 
dialect cluster. In precolonial times, it was written with Nsibidi ideograms, 
similar to Igbo, Efik, Anaang, and Ejagham. Ibibio has also had influences on 
Afro-American diasporic languages such as African-American Vernacular 
English words like buckra, and buckaroo, which come from the Ibibio word 
mbakara, and in the Afro-Cuban tradition of abakua. Ibibio is spoken by 
1.5–2 million people in the world and is considered by most to be the fourth 
most popular language in Nigeria after Hausa, Yoruba, and Igbo. The Ibibio 
language boasts of a dictionary with English concordance (Urua et al., 2004). 
Similarly, efforts have been made to translate the Holy Bible into Ibibio lan-
guage (Okon and Noah, 2004). There are also a number of other informa-
tive and educative materials generated in Ibibio and those translated from 
some other language into Ibibio language. Although these laudable efforts in 
Ibibio language translation exist with the help of human translators, to the 
best of our knowledge, there is no automated machine translator. Table 5.1 
summarizes the review of the various machine translation approaches.

technicians is proposed in Abiola et al. (2020), where the web-based translator 
uses a direct-based approach for the unidirectional word translation from 
Yoruba to English. The integrated text-to-speech feature was however for 
English language which is already a standardized language in terms of text-
to-speech machine translation. Many works that have attempted English to 
Yoruba translation have adopted the rule-based technique for system model-
ing, except in few, like in Akinwale et al. (2015), where a data-driven approach 
is adopted. The English to Yoruba translator proposed by Eludiora and 
Odejobi (2016), however, utilized a combination of NLP tools for the system 
implementation. Ortíz-Rodriguez et al. (2022) presented MEXIN – a multidi-
alectal ontology supporting NLP approach to improve government electronic 
communication with the Mexican Ethnic Groups.
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TABLE 5.1

Tabulated Review Process

Study Aims Data Settings/Method Key Findings Critique

Abiola et al. 
(2015)

Translation of 
unidirectional tasks

Bilingual dictionary Direct machine 
translation approach

Accesses only one language 
pair at a time

Not conducive for 
multilingual 
machine translation

Akinwale et al. 
(2015)

Involves application 
of morphological, 
syntactic, and 
semantic rules in the 
analysis

Database of translation 
rules

Rule-based approach Produces an intermediate 
representation, deals with 
the word-order problem 
and can easily trace and 
resolve errors

Requires a lot of 
human effort and 
dedication

Ali and Al-Gamal 
(2021) and 
Tehseen et al. 
(2018)

Reduce the restrictions 
of word-based 
translation

Models estimated from 
parallel corpora and 
also from monolingual 
corpora

Corpus-based 
language translation 
consists of the SMT 
and EBMT

Translation is modeled 
either with string-to-string 
mapping, trees-to-strings, 
or tree-to-tree models

Complexity due to 
its need of bilingual 
content

Awofolu and 
Malita (2002)

Text-based translation Bilingual corpora of 
English/Yoruba words 
and sentences

Text-based machine 
translation

Used syntactic and 
semantic technique

Limited to one 
language and 
text-based

Abiola et al. 
(2020)

Unidirectional word 
translation from 
Yoruba to English

Bilingual lexicon Web-based translator 
uses a direct-based 
approach

Integrates text-to-speech 
feature for English 
language

Speech not 
incorporated for 
Yoruba language
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As technology advances, there is need to exploit NLP techniques for auto-
mation of Ibibio language. However, the research in this direction is greatly 
limited, although, great efforts are made in developed countries, where the 
Multilingual Legacy Emergency Alert System (EAS) and Internet-based 
EAS (FCC_US, 2022) serve as possible tools for public safety and homeland 
security. This is the case with the Izon language, which is another under-
resourced language spoken by millions of indigenes resident in southern 
Nigeria. More tasking is the fact that the Izon language, otherwise called 
Ijaw or Ijo in some quarters, does not yet have a comprehensive human 
translated dictionary. Efforts toward the Ijaw language demystification 
are seen in the linguistic identification and classification of Ekiugbo and 
Ayunku (2018) and Prezi (2014). This submission is therefore designed to 
cover an available research gap and form a foundation for further knowl-
edge discovery and development of digital content for under-resourced lan-
guages of southern Nigeria.

5.3 Methodology

Being that large amount of data is often required for effective model training 
and efficient language translation systems, natural language understand-
ing by the machine is inevitable. Understanding the patterns in selected 
under-resourced languages and generating digitally annotated dataset that 
aids machine training are keys to goal actualization. This section introduces 
the data source, the hybridized methodology, and the proposed SOA-based 
emergency alert system framework.

5.3.1 Source – Target Word Concord

Exploiting the strengths of the rule-based and corpus-based language 
translation approaches, this work presents a hybrid approach that over-
comes the weaknesses of the statistical and rule-based translation method-
ologies. The approach involves rules post-processed by statistics, such that 
 translations are performed using rule-based engine. Statistics are used in 
an attempt to adjust and correct the output from the rule’s engine. Statistical 
computations are guided by rules that are used to preprocess data for an 
enhanced statistical engine. Rule-based approach requires declarative 
component/linguistic knowledge and procedural component. The linguistic 
knowledge is built from language-specific dictionary of the source under-
resourced language. The work by Urua et al. (2004) that produced an Ibibio 
dictionary serves as a reliable word base. The process of word concordance 
determination from the bilingual dictionary is depicted in Figure 5.1, where 
the user’s input text is processed and segmented for corresponding words 
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determination in the target language. Output from this stage serves as the 
input for the SOA-based emergency framework.

5.3.2 Hybridization

In Figure 5.2, the incorporation of rule-based and corpus-based transla-
tion approaches into a hybrid technique for efficient language translation 
is graphically described. From the description, the preprocessing phase 
incorporates part of speech (POS) tagging, word sense disambiguation, and 
other standard noise removal activities in NLP. The proposition of a hybrid 
translation technique is justified by the absence of properly curated corpus 
in source under-resourced languages, making the corpus-based approach 

FIGURE 5.1
Description of word concordance determination.

FIGURE 5.2
Flow of the proposed hybridization.
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alone inadequate, hence, the inclusion of rule-based approach which allows 
expert formulation of rules in conformity with syntactic and semantic rules 
of target language. Another reason for the introduction of the rule-based 
technique is to handle abbreviated words in text. For instance, words like 
“Thanks,” “because,” “before” are often abbreviated or misspelt by writers 
to “Thks or Tanks,” “b/cuz or cus,” and “b4 or bfor,” respectively. Rules are 
defined to normalize this kind of word spellings within sentences to achieve 
proper sentence representation. The need to undertake such word normal-
ization hinges on the fact that being an emergency alert system; users should 
be given some degree of liberty to use machine interpretable short forms of 
words for quick communication with intended recipients.

Effective rules generation requires word class identification, taking into 
consideration that some words in certain languages require certain explana-
tion, unlike others which have direct definitions and meanings. POS tagging 
is an established means of class identification with successful application 
in English and well-resourced languages. For the Ibibio English language 
dictionary being adopted in this study, POS tagging is already done. Our 
defined rules therefore adapted the POS tags already done for word classifi-
cation in the input text. This is achieved by putting the sentence into a parse 
tree and iteratively traversing the tree using a depth-first search algorithm to 
ensure accurate word sequencing.

Upon sentence sequencing, the corpus is referenced for correspond-
ing sentence in the under-resourced language. When there is none, source 
words are used to retrieve their corresponding pair in the target language 
taking into consideration word sense utilization, by getting the words into 
a parse tree for the under-resourced language. The new translated sentence 
can now be added to the corpus as an update. Tagged words in both lan-
guages are matched to ensure a noun in source language is still a noun 
in the target language even though their positions in the sentence may 
differ due to morphological and syntactic characteristics of the target lan-
guage. This, however, involves morphological and grammar synthesis rules 
defined for the translator. The rule-based approach in the English-Arabic 
translation (Shaalan, 2010) and English-Filipino (Tan et al., 2019) is useful for 
model implementation.

In processing source text for translation using the predefined rules, POS 
tagging is followed by word sense disambiguation accomplished with super-
vised machine learning algorithm, Naïve Bayes, described by Equation 5.1.
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test example, while ∇( )P Vj  is the probability of ∇  Vj. Since the value of ∇( ) P Vj

remains constant for all classes of Ci, the equation can be further expressed 
as in Equation 5.2. During training, naïve Bayes constructs the matrix ( ) P V

C
j

i , 
while ( ) P Ci  is estimated from the distribution of training examples among 
the classes (Ayogu, 2020).
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In the process flow description of the hybrid model, the corpus gets updated 
constantly with new de-noised text not already in the corpus. With this, the 
system becomes more robust and efficient with continued usage. On the 
other hand, when an input text corresponds to some predefined translation 
sequence in the corpus, the grammar rules need not apply for the transla-
tion to be completed. As part of the system, the translated text in the under-
resourced language is forwarded to the target recipient. For a successful 
information transmission between users at either end of the system, some 
type of network must be established. While the network type or design is 
outside the scope of this work, the sender would require an internet connec-
tion to use the system. The emergency alert system is therefore presented 
using the software as a service principle; hence, implementation is based 
on SOA.

5.3.3 SOA-Based Framework

As shown in Figure 5.3, the framework is designed based on the SOA. 
Generally, SOA describes ways to make given software easily reusable 
through service interfaces that utilize communication protocols like HTTPS 
for data communication between the tiers. From the architecture, users (both 
sender and receiver) with the support of application programming interface 
(API) are connected to services on the infrastructure layer via the platform 
layer that detects language (in text messages) and translate same to meet the 
communication needs of the users (i.e., receiver). These layers are distinc-
tive, reliable, and loosely coupled to offer flexibility for distributed language 
detection and translation in a bilingual (one-to-many) communication sce-
nario with English language as the link language among a community of 
speakers of any one of the under-resourced languages. It can also lead to an 
increase in corpus generation and refinement of the under-resourced lan-
guage at minimal cost due to flexibility offered by the cloud-based services, in 
terms of billing. Furthermore, to manage message sending from one user (i.e., 
source) to another user (i.e., receiver), a middleware (i.e., message- processing 
bus) responsible for point-to-point or publish to subscribe (García-Valls and 
Basanta-Val, 2017) delivery patterns across networks is proposed for effective 
message delivery to users.
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Further describing the components of the architecture, the input and 
expected output from the system are both plain texts. However, the text 
would be in different languages. The emergency alert system is designed to 
receive natural language text in a user preferred language at the API layer; 
this language is automatically detected by the system using the Language 
Detector module integrated into the message-processing bus of the plat-
form layer. Every language is different from the next in terms of its syntax 
and morphology (Ekiugbo and Ayunku, 2018), as such the proposed system 
by Chinenyeze et al. (2019) incorporated a customized keyboard that con-
sidered characters in the native Igbo language that are not tenable in the 
standard QWERTY, DVORAK, or any other everyday computer keyboard. 
Because languages are different, grammar rules are incorporated within 
the message-processing bus to hold rules (apart from the generic ones,) that 
are unique to the source language’s definition. These rules cover word sense, 
usage  context, subject-verb agreement, and other linguistic uniqueness asso-
ciated with the source language.

Based on the detected language, a rule selector selects the predefined 
associated rules of the source language. This selector concurrently scans the 
infrastructure layer to identify the appropriate corpus with structured words, 
phrases, or sentences in the source language. Using the specific bilingual cor-
pus in combination with the grammar rules, the inputted text is passed to 
the language translator module aided by internet service, where the actual 
conversion is done automatically. This process which generates the text in the 
target under-sourced language is followed by an instant transmission of the 

FIGURE 5.3
An SOA-based emergency alert system framework.



122 Semantic AI in Knowledge Graphs

under-sourced language text to the mobile device(s) of the intended individ-
uals. The action or reaction of the recipients of the message is not considered 
by this system, except the recipient decides to also respond via the system.

5.4 Result and Discussion

The semantics of Ibibio and a number of other under-resourced languages 
makes direct machine translation inaccurate sometimes. As such, inter-
views and interactions with native speakers on syntax and order of words in 
Ibibio translated sentences provided insight necessary for rules formulation. 
Contextual word and grammar usage in Ibibio is another insight derived 
from the data collection process. Although the proposed rules have not been 
presented in this work, SOA-based translation have been achieved and pre-
sented. The implementation that uses two-tier network architecture leverages 
on the Ibibio dictionary (Urua et al., 2004) identified in this work. For trans-
lation of words and phrases, system accomplished tasks in an average time 
of 0.5 seconds. This is a relatively short time, but being an emergency alert 
system, further work would be undertaken to reduce the turnaround time.

Although the Ibibio–English dictionary is available, it is not useable in our 
work in it’s as-is form, hence, its conversion into a useable database using 
the MongoDB technology. MongoDB is a NoSQL database technology that’s 
robust and easily scalable. Over 2000 words were annotated with their corre-
sponding POS tags in the database. Built as a web-based application, the API 
can be integrated with all common everyday browsers save Internet Explorer. 
Whereas the emergency notification system is intended to be mobile based, 
with event describable emogies for quick and easy composition of text and 
graphics messages, this initial phase has been developed to be highly reus-
able. Hence, its implementation with Node.js, a JavaScript framework built on 
C++. Other technologies adopted include Vue.js and TailwindCSS.

The SOA-based emergency alert framework proposes translation of mul-
tilingual text messages for the purpose of alerting designated receiver with 
vital and emergency information. Normally, such messages are short and 
most times they do not constitute a complete sentence. As such, translations 
sometimes may not make complete sense in the under-resourced language. 
However, the Ibibio to English bidirectional translator implemented in this 
work as a plug-in ensures near exact translations from source to target lan-
guage. An interface of the plug-in installed on a web browser is shown in 
Figure 5.4. In Figure 5.5, an example translation from Ibibio to English and 
vice versa is shown. Based on the proposed framework’s design that com-
bines several bilingual corpora into a robust multilingual corpus, other lan-
guages can be integrated into the API, while new APIs can also be developed 
following this hybrid translation approach.
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FIGURE 5.4
Ibibio–English Translator interface.

FIGURE 5.5
Bidirectional translation sample.
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5.5 Conclusion and Future Work

This work presents a multilingual text translation framework for under-
resourced languages of southern Nigeria. Although a usable Ibibio-English 
bilingual corpus has not been produced as part of this work, the framework 
is robust and implementable with machine learning techniques based on the 
SOA. The framework has been designed in such a way that multiple bilingual 
corpuses following predefined standard configurations can be integrated to 
form the multilingual translator of under-resourced languages using English 
as an intermediate language. The dynamics of subject-verb agreements and 
morphemes in most under-resourced languages makes rule definition in 
rule-based translation complex. However, the message-processing bus would 
hold rules that effectively perform the bidirectional translations.

The choice of the SOA architecture in the work is partly due to our desire to 
implement bilingual APIs that are loosely coupled, so that it can be easily inte-
grated onto different platforms, and for reusability which will aid the extension 
of the API functionality to support the targeted under-resourced languages, 
thus making the system fully multilingual. Through the adoption of the SOA, 
a platform that supports flexibility in language detection and translation to 
service a community of different language speakers, usage, standardization, 
and maintenance of corpora of the under-resourced language can be achieved. 
Bridging the gap of communication between speakers of different languages 
through NLP techniques can provide reliable corpus for accurate detection 
and translation of under-resourced languages. As such, the focus in the future 
would be to implement the framework and include other under-resourced 
 languages widely spoken in southern Nigeria by millions of people. Target lan-
guages would include Ijaw, Ibibio, Oro, Itshekiri, and Isoko among others.
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6.1 Introduction

Recent times have seen a spike in interest in graphs. They are seen to be 
employed everywhere from search engines to social media to recommen-
dation systems [1]. The main reason for this is that graphs allow a techni-
cal way to integrate data from different sources in a structured manner and 
enable the capturing of relationships between the different data types. A 
graph is a data structure that maps entities and their connections. One cat-
egory of graphs is the knowledge graph which is a system of interconnected 
data entities, representing real-world objects and their relationships. It pro-
vides a way to represent the world as it exists in data.

Knowledge graphs are also viewed as semantic networks or a database of 
interconnected concepts and their relationships. Knowledge graphs are made 
up of nodes (representing entities, i.e., things) and edges (representing relation-
ships between things). Nodes can be seen as ‘places’ or ‘locations’ in the world, 
while edges can be seen as ‘connections’ or ‘relationships’ between these places. 
Knowledge graphs are typically created by extracting data from large vol-
umes of unstructured text in the form of natural language and other sources. 
This process is known as ‘knowledge extraction’ or ‘knowledge harvesting.’

https://doi.org/10.1201/9781003313267-6C
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Other definitions suggest that knowledge graphs are ontologies based on 
taxonomies, i.e., a knowledge base [2]. This is because ontologies formalize 
the representation of entities in a graph and can contain multiple taxonomies. 
In other words, knowledge graphs provide a hierarchical classification of the 
world’s knowledge. For example, if you were to search for ‘car’ in a knowl-
edge graph, you would find out that cars fall under the category of vehicles 
and then under the category of transportation.

Knowledge graphs can be used for a variety of purposes such as informa-
tion retrieval, data integration and analysis, personalization for users, and 
more. Knowledge graphs can help you find answers to questions like ‘Where 
does this term come from?’ or ‘What is the definition?’ Representing the data 
as graphs has many benefits. It can be used to represent complex information 
in a way that makes it easier to understand. It can find concealed information 
between entities by allowing users to query the data and apply graph ana-
lytical techniques in addition to generating inferences between previously 
unknown entities. It allows easy access and interaction with data by multi-
hopping relationships between entities. It also allows users to visualize data.

Healthcare has also benefited from the use of knowledge graphs. Since 
the beginning of time health has been a vital part of our lives. The health-
care industry was established to enable prolonged and good health. It is 
responsible for giving proper diagnoses and treatments in a timely manner. 
Furthermore, it is responsible for making future predictions to allow pre-
ventive care by making timely changes in lifestyles. A timely diagnosis and 
treatment are of utmost importance to save lives from progressive diseases 
such as cancer. Therefore, over the years, many analytical applications with 
genomics and clinical datasets have been developed [3]. Researchers have 
identified the need to consolidate genomic and clinical data for better analyt-
ics [4]. Knowledge graphs can play an important role in this.

Healthcare data is structured but heterogeneous in nature. To have a broad 
and clear picture of the data, it is essential to bring all the data together. 
Health knowledge graphs are an excellent option for this as they enable doc-
tors, service providers, and researchers to easily find information from a 
wide array of variables and data sources. However, many challenges come 
with the construction of health knowledge graphs [5]. Some of these are 
listed below:

• Data is not centralized and so may not always be accessible
• Data is structured and heterogenous making it challenging to map 

relationships and complex biological concepts
• Data follows various, non-central medical standards
• Data may be of poor quality or not properly captured

There is a wide range of use-cases of health knowledge graphs which address 
one or more of the challenges. This chapter provides insight into knowledge 
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graphs based on two real-world scenarios. The first use-case illustrates how 
knowledge graphs can be utilized to organize genomic data for representa-
tion and analysis by providing details on how genomic data is mapped onto 
knowledge graphs. This is followed by a discussion on how to capture and 
visualize variations within the knowledge graphs as the genome sequence 
is altered due to diseases over the course of time. It further provides details 
on how to enrich these knowledge graphs even more by incorporating addi-
tional details. The second use-case discusses how knowledge graphs can 
be utilized to integrate clinical and genomic datasets to provide value in 
the long-term preservation of data, analytics, and decision-making process. 
This is followed by details on how to ensure the results are accurate when 
integrating these heterogeneous sources in silos by using entity relation-
ships to avoid deduplication of records along with consistency mecha-
nisms to preserve the integrity of the results. This chapter concludes with a  
discussion on results and some future avenues for employing knowledge 
graphs within the healthcare domain. The following section looks at related 
work from the literature.

6.2 Related Work

Knowledge graphs are a great way to identify the relationships in healthcare 
services, which is why they are being used more often. Not only can they 
map the relationships between different data points, but they can also use 
machine learning to find connections. Table 6.1 summarizes some uses of 
knowledge graphs in healthcare.

Electronic health records (EHR) are widely used in healthcare. They are 
non-centralized and may have missing or poor-quality data. Capturing the 
data and its nuances from EHR can be very beneficial especially because it is 
used by a wide variety of personnel such as doctors, clinicians, nurses, and 
technicians. It is no surprise that knowledge graphs have been used to create 

TABLE 6.1

Summary of Use of Knowledge Graphs in Healthcare

Data Type Information Extracted

Electronic health record Prediction and validation
Question-answer framework

Visual genome datasets Object detection
Relationship detection

Drug – Target Drug-target interaction prediction
Repositories Data centralization
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graphs from EHR which relate symptoms to diseases [6]. This overcomes the 
challenge of mapping relationships and complex biological concepts from 
structured and heterogeneous data.

A knowledge graph-based question-and-answer framework for EHR has 
also been developed which is an intelligent EHR agent answering questions 
from users [7]. This makes the EHR data more centralized. It also helps over-
come the use of non-central medical standards by providing a more acces-
sible and unified view. Knowledge graphs have also been used to predict and 
validate unknown adverse drug reactions from EHR [8]. This is beneficial 
when trying out new drugs by mapping relationships and complex biologi-
cal concepts. Knowledge graphs have been applied to other areas of health-
care besides EHR. Object detection and relationship detection in biomedical 
images is important for diagnosis and treatment. Objects in image detec-
tion have used knowledge graphs to infer relationships between semantic 
objects detected using images (i.e., visual relationship detection) from visual 
genome datasets [9].

Drugs can have beneficial as well as harmful effects on their targets. It is 
important to make a prediction of the effect before a drug is given. Also, it 
is vital to verify the effect on real data. In order to understand the effects of 
a drug on a target, drug-target interaction predictions have also made use of 
knowledge graphs to quickly predict and verify the effects of drugs [10].

Rich repositories of information are found scattered across the different 
fields of biomedicine. Centralizing and extracting meaningful information 
from these can be very beneficial. Knowledge graphs provide a way of doing 
this. A knowledge base for biomedical sciences called KnowLife has been 
developed [11]. It uses distant supervision of pattern-based extractions of 
data from different sources. It then uses these patterns for automated and 
scalable knowledge base construction.

The use of knowledge graphs in healthcare is fairly new. The next section 
looks at two uses-cases that can employ knowledge graphs.

6.3 Proposed Methodology

The relationships between the genomic and clinical datasets can be easily 
represented as graphs using nodes and edges. Biological concepts such as 
genes and chromosomes can be organized with relative modesty using taxo-
nomical hierarchies and, in turn, giving us knowledge graphs. This gives 
immediate benefits in terms of the knowledge which can be extracted from 
the datasets using graph algorithms and machine learning techniques. 
Furthermore, exploiting knowledge graphs for decision-making processes 
based on the provenance of datasets provides a deeper understanding and 
knowledge of the processes involved and generates trust in the results.
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6.3.1  Use-Case 1: Knowledge Graph in Genomics to Organize 
Genomic Data for Easy Access and Analysis

Knowledge graphs can support analytics in the field of genomics. They can 
be employed for mapping relationships between heterogeneity and structure 
of healthcare data. To do this, taxonomies and ontologies are used to orga-
nize data as knowledge graphs. Graphs have been known to provide a uni-
fied representation of the human genome and its variations [12].

The reference genome comes from the file type FAST-All (commonly known 
as FASTA), which is an accepted standard in bioinformatics for representing 
nucleotide or protein sequences. As shown in Figure 6.1, the file contains the 
sequence of the genome as single-letter codes representing the nucleotides 
within the genome. These nucleotides appear in the same sequence as they 
are present in the chemical structure of the genome. The file begins with a 
‘>’ sign followed by a short description of the sequence. The rest of the lines 
under this are the nucleotides represented by the codes ‘A,’ ‘C,’ ‘G,’ and ‘T.’

To generate a graph of the reference genome, the information is extracted 
from the FASTA file as three types of entities, ‘reference genome,’ ‘chromo-
some,’ and ‘nucleotide.’ These entities are presented as nodes with prop-
erties in a graph as shown in the schema in Figure 6.2. There are three 
types of relationships between these nodes. The relationship between 
the ‘reference genome’ node (with property ‘Version’) and the ‘chromo-
some’ node (with property ‘Number’) is ‘HAS.’ Similarly, the relationship 
between the ‘chromosome’ node and the ‘nucleotide’ node (with prop-
erty ‘Position’) is ‘HAS.’ The relationship between the  ‘nucleotide’ nodes 
is ‘NEXT’ indicating the sequence of appearance within the genome. 
Intuitively, the graph schema in Figure 6.2 can be read as: ‘the Reference 
Genome’ with a version number ‘GRChxx’ has Chromosome number x 
which contains the ‘nucleotide’ at Position x. Furthermore, the nucleo-
tides are arranged in a sequence indicated by the ‘NEXT’ relationship 
between the nucleotide nodes.

FIGURE 6.1
Example of FASTA file.
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With this graph model as a base, further information from other data 
sources can now be mapped onto this graph. One such data source is the 
VCF (Variant Call Format) file. The VCF file contains variations discovered 
from the variant call process which aligns the sample genome to a reference 
genome, identifies the differences, and writes these as variations to the VCF 
file. The VCF file is a standardized file and has two parts – a header section 
and a data section. The header section contains the meta-information about 
the data in the data section. The data section is tab delimited and is divided 
into eight mandatory columns as can be seen in Figure 6.3.

Each row represents one variant with the corresponding information 
about it arranged into columns. Each variation (or row) in the VCF file can be 
mapped to the graph model of a reference genome modeled above by using 
the chromosome (CHROM), Position (POS), Reference (REF), and Alternate 

FIGURE 6.3
Structure of the VCF file. (Reproduced from Aizad, S., & Anjum, A. (2019, August). Graph 
Data Modelling for Genomic Variants. In 2019 IEEE SmartWorld, Ubiquitous Intelligence 
& Computing, Advanced & Trusted Computing, Scalable Computing & Communications, 
Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/
SCALCOM/UIC/ATC/CBDCom/IOP/SCI) (pp. 1577–1584). IEEE. [12].)

FIGURE 6.2
Graph schema of the reference genome.
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(ALT) columns. The reference genome version number is extracted from the 
header section of the VCF file.

Within the data section of the VCF, the first column reads the chromosome 
number on which the variation lies. The second column reads the position of 
the variation on this chromosome. The fourth column indicates the nucleotide(s) 
expected at this position on the reference genome. The fifth column reads the 
alternate nucleotide(s) found at the position instead of the expected nucleotide(s). 
The rest of the columns contain various information about the variant found. 
The variant can be a Single Nucleotide Polymorph (SNP) or a Structural Variant. 
An SNP can be a mutation of the kind of substitution, deletion, or insertion. The 
VCF file also allows multiple alleles at a given position. This means that there 
can be more than one variant present at a given position.

The SNP mutations were mapped onto the reference genome by [12]. 
Additional nodes were added to the graph of the reference genome (explained 
above) by finding the position on the chromosome and creating relations 
between them. Figure 6.4 shows a snapshot of a VCF file. The lines starting 
with ## belong to the header section. The data section begins with the line 
starting with #. This line contains the labels of the columns. The rest of the 
file contains the variations as rows.

The first variation row in Figure 6.4 shows a substitution, the second row 
shows an insertion, and the third row shows a deletion. These are mapped 
onto the reference genome graph at the corresponding positions.

Figure 6.5 shows the substitution row in Figure 6.4 mapped to the refer-
ence genome graph. A single nucleotide in the reference genome is replaced 
by another single nucleotide. This is shown as a new variant node being 
 created at the position this change has occurred. The relationships between 
the  variant nodes at the reference node show the alternate path that can be 
traversed to reach this variation from the reference genome graph.

Figure 6.6 models the insertion row in Figure 6.4 mapped to the reference 
genome graph where more than one nucleotide is added to the reference 
genome at the indicated position. Several new variant nodes are added 

FIGURE 6.4
VCF records from VCF file.
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to the reference genome graph at the given position. The relationships 
between the variant nodes and the reference nodes show the alternate 
path created to reach this variation from the genome graph. The relation-
ships between the variant nodes show the order in which they are con-
nected to each other.

FIGURE 6.5
Substitution mutations mapped to the reference genome.

FIGURE 6.6
Insertion mutations mapped to the reference genome.
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Figure 6.7 depicts the deletion row in Figure 6.4 mapped to the reference 
genome graph. One or more of the reference nucleotides are missing. A sin-
gle variant node is added to represent the deletion. It is connected to the 
reference genome nodes by a relationship which connects to a position after 
the missing nucleotides.

As can be seen from the examples above, it becomes relatively easy 
to organize genome data. Chromosomes, nucleotides, and variants are 
 taxonomies within this knowledge graph as they are using basic con-
structs of categories and hierarchical relationships. Ontologies can be 
used to further represent collections of data. For example, genes can be 
added to the knowledge graph. To show how this can be done, let’s look at 
Chromosome 21, which is the smallest human autosome chromosome. It 
is made up of a sequence of 48 million nucleotides. There are 234 protein-
coding genes associated with Chromosome 21 as estimated by the Ensembl 
genome database [13]. The gene called APP (Amyloid-beta precursor pro-
tein) is found on Chromosome 21 from nucleotide position 25,880,550 to 
nucleotide position 26,171,128. This can be mapped to the graph by creating 
a gene node with two relationships indicating the start and end of the gene 
as shown in Figure 6.8.

As can be seen, with a relatively modest organization of data using taxo-
nomical hierarchies, we get immediate benefits in terms of the knowledge 
that can be extracted. Multiple hierarchies can be dynamically layered on 
top of data. For example, the gene APP on Chromosome 21 is attributed to 
Alzheimer’s disease. There are other genes associated with this disease, but 
they are found on different chromosomes. These can be linked together by 

FIGURE 6.7
Deletion mutations mapped to the reference genome.
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adding a disease hierarchy by creating a disease node and linking it to the 
genes associated with this disease. This is shown in Figure 6.9.

In the knowledge graph described above, genes and diseases can be 
described as ontologies or classification schemes which describe the catego-
ries of data and the relationships between them. However, these are biologi-
cal concepts and cannot be restricted to just being hierarchical structures 
looking at broader to narrower views. These ontologies allow us to define the 
complex relationships between the different categories such as ‘gene is part 
of a chromosome,’ ‘disease has genes associated with it,’ etc. If need be, they 
also allow us to define the hierarchy of relationships for further classification 
(e.g., symmetrical relationships).

The benefit of using knowledge graphs for these biological concepts is that 
ontologies are built on top of already present data, so they are modular in 
nature. This makes them composable allowing each layer to be queried inde-
pendently. They also allow for looking at data across categories and hierar-
chies giving us the ability to carry out studies across domains. Furthermore, 

FIGURE 6.9
Disease mapped to the knowledge graph.

FIGURE 6.8
Gene ontology on the knowledge graph.
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clinical data and treatments can also be added to this knowledge graph, 
making it richer.

6.3.2  Use-Case 2: Distributed Knowledge Graphs for Scalable 
Integration, Analytics, and Decision-Making Process

Another avenue for knowledge graphs is the integration of clinical and 
genomic data sources in silos to unearth relationships and biomarkers for 
diseases such as colorectal cancers [14]. These diseases are becoming increas-
ingly common among populations across Europe. The challenge with such 
diseases is the fact that even in this age and time they are unrecoverable. 
Admittedly, the diagnosis of such diseases is particularly complicated. In 
general terms, due to the volume and velocity of data involved to detect and 
analyze the conditions, it frequently involves large-scale computing infra-
structures. As the challenge of volume and velocity of change increases so 
does the challenge of inconsistencies in integrating these data sources [15].

A prime example in a healthcare use-case to integrate various data sources 
to determine additional information for patients and clinicians is IBM Watson 
[16]. It aims to combine data from a variety of sources including but not lim-
ited to genes, chemical compounds, patents, drugs, and published studies. 
Inconsistencies can arise promptly as sources evolve, addition/deletion of a 
column, change in the column name, or merging of columns for instance 
[17] [20]. The consequence of inconsistencies is startling for data integration, 
particularly in the context of linking inaccurate records or faulty associations 
between data entities. This deluge of actions leads to false reports and analy-
ses. Coupled with the volume and velocity of changes, the repercussions of 
inconsistencies can be very detrimental to the overall distributed system.

The fundamental guideline is to guarantee that the elements from these 
heterogeneous datasets address similar elements inside a knowledge base or 
across different knowledge bases. This can be achieved by linking and group-
ing. For instance, in data integration, one would like to find different records 
(with possible contradictions) in one or multiple databases that refer to the 
same object in the real world. Also, there could be multiple ways of referring 
to the same person or an object in text, different drug details for medicines, 
etc. One more illustration of it very well may be when combining two data-
bases or cleaning a database, the user might want to decide when two records 
are alluding to a similar real-world entity (deduplication or potentially record 
linkage). In data integration, determining approximate join is significant for 
merging data from various sources; most frequently there won’t be a one-of-
a-kind key that can be utilized to join tables in dispersed databases, and the 
user should deduce if two records are from various databases, perhaps with 
various data structures, both referring to a similar entity.

In order to resolve the above-mentioned issue, entity resolution is employed 
within knowledge graphs to provide a true representation of integrated sets 
of data. Most of the prior entity resolution approaches were designed to find 
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matches in a single source or between two sources only. In the case of a single 
source, the matching entities are generally put together in a disjoint cluster with 
the determination that any of the two entities in a cluster should not be able to 
match the other. Also, none of the entities in the cluster should be able to match 
with the other cluster. In the case of two sources, the resultant match is usually a 
set of binary mappings that consist of pairs of matching entities commonly 
known as links or match correspondence. As a basic scenario, these binary 
match mappings can be further post-processed to decide clusters of matching 
entities for example by calculating the transitive closure of the correspondence 
(Connected Components – CC) and other clustering approaches. This work 
extends this approach by enabling support for more than two sources by first 
generating a summary graph using binary match links among the entities and 
then clustering these matching entities within the summary graph. A similar 
use of a summary graph has been considered in [18, 19].

As shown in Figure 6.10, the data sources are first converted into graphs in 
stage 1, followed by populating these graphs with data within stage 2 referred 
to as the Unified Graph Generator. Distributed Entity Resolution is then 
employed to generate a summary graph in stage 3 where preprocessing of the 
summary graph is carried out for property values required for similarity com-
putation are normalized. Stage 4 follows the initial clustering and decomposi-
tion of clusters based on Group-by and Similarity-based clusters. Eventually, 
stage 5 ensures that the summarized graph generates attributed clusters to 
integrate the sources as these evolve. Stage 6 finally ensures that these enti-
ties are consistent with the changes that occurred over the sources before 
pushing them over to the clinical data warehouse for long-term preservation 

FIGURE 6.10
Data model to integrate heterogenous sources as knowledge graphs.



139Knowledge Graphs in Healthcare

of data and reporting. Stages 2–6 are performed in-memory to speed up the 
process of integrating knowledge graphs and resolution of deduplication of 
records as passed on from data sources during the integration. This assists 
in providing the necessary performance guarantees as well as the accuracy 
required in the generation and integration of knowledge graphs.

6.4 Results and Discussion

The two use-cases of knowledge graphs in healthcare above help organize 
data in a centralized way, distribute the graphs for processing, and provide 
storage solutions in a data warehouse. They allow for the integration of 
genomic data with clinical data to get more meaningful insights. They allow 
quick access to data by making processing quicker by distribution. They also 
check for consistency, so no data is missing, allowing for a better quality of 
analysis and reporting.

Use-case 1 extracts data from heterogeneous data sources and uses biologi-
cal concepts to define ontologies and taxonomies which help organize the 
data in a graph. The graph can easily be traversed and data at any node can 
be quickly retrieved. The data is more centralized and organized. It elimi-
nates the need to look at different data sources to get information. It acts as a 
knowledge base for the diseases, linking them to genomic datasets.

Use-case 2 integrates the data from different data sources while ensuring 
that it is consistent and there is no data loss at any stage. It uses in-memory 
to speed up the process in addition to performing the tasks in a distributed 
environment for quicker processing. It provides a solution of consistent data 
integration in near to real-time for report generation and analyses.

Both the use-cases show how powerful knowledge graphs are in the field 
of healthcare and can be beneficial for data analysis.
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7.1 Introduction

An interconnected structure of web contents, which provides access to a huge 
collection of web pages containing graphics, text, audio, and video using 
hyperlinks, is known as World Wide Web (WWW). Most web resources are 
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unstructured, making information extraction an intricate task, which led the 
WWW consortium (W3C) to develop a technology to support “web of data,” 
known as the semantic web. Semantic web is an effort to label and connect 
web content in a way that makes it significant to systems. This ensures that 
the delineated and connected web contents are more meaningful to machines 
compared to previously known “web of documents.”

It has been established that data is not information, and information is not 
yet knowledge (Mohajan, 2016). To structure the huge array of information to 
a more meaningful format that machines can easily process, the concept of 
ontology was introduced (Ortíz-Rodriguez et al., 2022a). Ahmed and Gerhard 
(2010) define ontology as the assemblage of interrelated semantic-based con-
cepts, which depend on a limited set of terms. Ontologies provide an inclu-
sive description of a particular domain and are efficient because they present 
reusable knowledge representation and improve the knowledge about a 
domain. On the other hand, knowledge graph (KG) acquires and integrates 
information in ontology by using a reasoner to derive new knowledge. Thus, 
with KG, a better functional knowledge management system can be devel-
oped to enable semantic content classification, contextual search, and a more 
precise relevancy calculation.

A KG, also known as semantic network, describes a network of real-world 
objects and the relationship between them. Information is typically stored 
in a graph database and visualized as a graph structure, prompting the 
phrase “knowledge graph.” Hahn and Vertan (2005) reviewed semantic web 
technologies, their impact on the multilingual web, and the mechanisms for 
enhancing the quality of online translation systems. The authors argued that 
the vast amount of information available in the WWW makes it difficult to 
retrieve needed information using the standard keyword or lexical search 
approach. Thus, a standard semantic representation with ontologies and 
inferences among ontology objects is required.

The idea is that semantic web facilitates the existence of a systematic con-
ceptual description of facts or the availability of a domain with the relations 
between entities. With this in place, any information provider can use ontol-
ogy to represent information and illustrate the content with possibilities to 
map user query on the ontology. Consequently, an ontology developed by 
domain specialists, encoded in a standard web ontology language (OWL), is 
highly necessary and required. The text described semantically in a resource 
description framework (RDF) can be annotated and linked in the ontology. 
A searching machine on the server can compare the RDF annotated text and 
the query with the OWL-ontology and retrieve appropriate information, 
especially in cases where lexical search proves ineffective.

Customer 360 initiatives or Know Your Customer (KYC) uses linked and 
holistic views of the customer, enriched with contextual information, to 
develop personalized communication and make informed decisions. KGs 
automatically generate unified views of heterogeneous data sources, providing 
reusable datasets for analytics platforms or training machine learning (ML) 
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FIGURE 7.1
Toward eXplainable AI.

algorithms. On this basis, advanced applications for knowledge discovery, 
data, and content analytics can then be developed using a semantic layer. 
Figure 7.1 shows the developmental efforts toward eXplainable AI (XAI). It 
reveals that even though data scientists use traditional ML, knowledge scien-
tists are the ones who deal with semantic AI and XAI efforts and are involved 
in the entire KG life cycle.

Recreation is a vital part of every human life, with different varieties 
shaped naturally by individual interests and the surrounding acceptable 
practice. It could be active or passive, outdoors or indoors, communal or soli-
tary. Research indicates that access to exercise and leisure facilities may help 
to reduce the risk of obesity and other related health problems. Residents 
and tourists can improve their physical activity levels with a good exercise 
infrastructure. According to Ortíz-Rodriguez et al. (2022b), although govern-
ment services target all citizens, most of its physical and technology-based 
services do not cover all people. This chapter presents a framework based on 
KG and ontology with ML technique to provide semantic context for knowl-
edge sharing and context reasoning. The developed recreational facility KG 
supports pervasive context-aware AI applications where recommendations 
can be made to mobile users requesting recreational services such as gym, 
sports, live shows, café, parks, or health/beauty shops. The deployment of 
this framework can demonstrate the benefits of integrating KGs and ML to 
improve automatic reasoning, ontology enrichment, context-aware service 
delivery, data interpretability, and reusability.

The rest of this chapter is structured as follows. Section 7.2 presents 
related works on ontology, KG and multilingual semantic web, as well as 
ML-assisted KG generation and refinements with observed performance 
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metrics. It also reviews the main XAI approaches in existing literature as 
well as their underlying strengths and limitations. Section 7.3 highlights 
components of the proposed ML-based KG framework and presents the 
developed recreational facility KG. Section 7.4 discusses current trends in 
the semantic web and KG applications, open issues and major research 
challenges of semantic web adoption. In contrast, Section 7.5 concludes 
this chapter with future research directions toward ML and semantic AI 
approaches with KG.

7.2 Related Works

This section reviews related literature on semantic web technologies, mul-
tilingualism in semantic web, ontology development, ML and KG, RDF and 
OWL. The connections and AI applications of semantic web to other disci-
plines including open issues and research challenges are also presented.

7.2.1 Semantic Web Languages

Tim Berners-Lee, an inventor of WWW, published an article in 2001 with 
James Hendler and OraLassila, promoting the semantic web concept. In 2006, 
Tim Berners-Lee, Nigel Shadbolt, and Wendy Hall outlined developments, 
methodologies, techniques, and challenges of the semantic web. Shadbolt 
et al. (2006) identified the need for data integration in semantic web. Berners-
Lee et al. (2001) pointed out that semantic web facilitates the growth of the 
existing web of documents, where information is assigned precise denota-
tion to enhance cooperation and understanding between tasks performed 
by computers and people. According to Ahmed and Gerhard (2010), seman-
tic web is an intelligent improvement in WWW to gather, analyze, annotate, 
and present information in a machine-readable format for classification 
and consistent access to resources. Such structured information allows pro-
grams to interact easily with the web, enabling intelligent agents or software 
agents – which are autonomous computer programs that perform a task in 
place of humans, to automate tasks which will significantly augment the 
online experience.

In summary, there are numerous applications of semantic web in 
Healthcare (Abatal et al., 2018; Dissanayake et al., 2020), Internet of Things 
(Andročec et al., 2018; Antoniazzi and Viola, 2019; Corno et al., 2017; Lanza 
et al., 2019), Urban Traffic (Tan et al., 2021), Surveying and Remote Sensing 
(Hao et al., 2021), Education, Research, and Industry (Feldmann et al., 2016; 
Pauwels et al., 2017). The diverse areas of the application and interoperability 
of semantic web provide easy and timely access to accurate information that 
can help in critical decision-making processes.



145Explainable Machine Learning-Based Knowledge Graph

7.2.2 Multilingual Semantic Web

A multilingual semantic web ensures that web resources are organized and 
delivered in a machine-readable format regardless of the language. Gracia 
et al. (2012) reported that though the web of data contains several kinds of 
information in numerous languages, it lacks specific means to spontane-
ously resolve such information when communicated in different languages. 
This raises new concerns, including the necessity to deal with information 
expressed in diverse natural languages because data communicated in a 
particular language are not always accessible to those who speak other 
languages. They proposed a set of explicit approaches to implement mul-
tilingual access, such as ontology mapping, localization, and cross-lingual 
ontology-based information access and presentation.

Multilingualism is an essential concern, and addressing it on semantic 
web could significantly improve access to knowledge and data (Ehrmann 
et al., 2014). According to Hahn and Vertan (2005), deploying multilingual-
ism in semantic web can transform websites, improve knowledge man-
agement, and internationalized communication base for industry and 
commerce. Multilingual semantic web’s major challenge is ontology local-
ization (Espinoza et al., 2009; Gracia et al., 2012; León-Araúz and Faber, 
2014), which requires an ontology to be translated to specific language and 
culture (Suárez-Figueroa and Gómez-Pérez, 2008). Adjusting ontology to 
suit different cultural contexts especially linking up web documents in 
different languages will be a significant advancement in the multilingual 
semantic web. By so doing, the multilingual web of data can be understood 
as a layer of resources with services placed above the current linked data 
infrastructure (Gracia et al., 2012). Consequently, it can add information for 
vocabularies and data in different languages, map between data with labels 
in these languages, provide services to gain access, and navigate linked 
data across them.

7.2.3 Ontology

Gruber (1995) describes ontology development as the task of specifying 
concepts in order to assist software agents and humans share meaningful 
knowledge. According to Asikri et al. (2017), people, applications, and data-
bases can utilize ontology to enhance domain information sharing. Ontology 
explains the terms used to illustrate and represent a sphere of knowledge. 
It  ensures that knowledge about a specific domain or several domains is 
properly represented. The two major interests of ontologies in Lamy (2016) 
are that they can be applied to perform logical inferences for inferring new 
facts and connect numerous chunks of knowledge from distinct ontologies 
in the semantic web.

Authorized languages for ontology representation includes, OWL, RDF 
Schema language (RDFS), and Open Biomedical Ontologies format (OBO). 
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Ontology can be categorized into domain ontology (DO), natural language 
ontology (NLO), and Ontology Instance (OI). NLO considers ontology as 
part of both natural language semantics and metaphysics (Moltmann, 2020). 
DO, as the name implies, is the presentation of domain-specific concepts. 
DO can define a semantic model of the data merged with the associated 
domain knowledge, and OI generates automatic object-based web pages 
(Ahmed and Gerhard, 2010). The fields in which ontology can be applied 
include medicine, e-science, organizing complex and semi- structured 
information, military/government, social media analysis, semantic web, 
and semantic grid (Mohan and Venkataraman, 2017). A class is the main 
component of ontology. Classes are structured with “is-a” relations. The 
task of defining excellent class hierarchy for a knowledge base in order 
to permit efficient access from numerous AI tools including information 
retrieval and natural language processing (NLP) is challenging. Moreover, 
to manually organize a class hierarchy for a distinct KG is very tedious and 
costly. Gupta et al. (2016) and Velardi et al. (2013) proposed the automatic 
extraction of class hierarchies when dealing with extensive automatically 
acquired knowledge bases.

7.2.4 Resource Description Framework and OWL

RDF is simply a framework that aids resource description. It is a language cre-
ated to support knowledge representation on the semantic web (Gibbins and 
Shadbolt, 2010; Powers, 2003). RDF is the structure or data model for linked 
data. It provides useful facilities that aid data merging and interchange on 
the web, despite diverse underlying schemas (Jevsikova et al., 2017; Mitchell, 
2013). Its emergence is aimed at providing a logical infrastructure for shar-
ing, querying, and publishing organized data. However, the accomplishment 
of RDF and semantic web depends on the availability of applications that 
verify the appropriateness of concepts and programming interfaces that per-
mit such applications development, as well as databases and inference sys-
tems that manipulate RDF to classify and retrieve significant web resources.

Ristoski (2019) formally defined an RDF graph as a labeled graph G = (V, E), 
where V and E denote a set of vertices and a set of directed edges, respec-
tively. Typically, a unique identifier identifies each vertex, and every edge is 
labeled from a defined set of edge labels. The fundamental unit of knowl-
edge representation in RDF is the triple <subject, predicate, object>, where 
the subject and object make up the nodes of a graph, and the predicate 
specifies how the subject and object are related. The web of data constitutes 
directed labeled graphs, and these semantic graphs depend on the three-
way structure, targeting syntactic as well as semantic description of infor-
mation, to become reusable by systems and humans (Bizer et al., 2011; Faith 
and Chrzanowski, 2015; Gibbins and Shadbolt, 2010; Petrova, 2019). Thus, 
RDF, shown in Figure 7.2a–c, arranges knowledge in statements, associat-
ing two entities in a directed labeled KG by an edge, Alternatively, an RDF 
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statement can also be expressed as consisting of a subject, a predicate, and an 
object or as binary predicates. Although there are different formal languages 
to ensure the RDF model, Extensible Markup Language (XML) is the most 
appropriate for the semantic web.

However, RDF modeling alone is insufficient for the semantic web as no 
information is given between the numerous predicates. For instance, there 
is  a need for language that gives the main aspects by which classes, sub-
classes, properties, and sub-properties can be illustrated. Consequently, OWL 
was designed as a stand-alone language for ontology description (Bechhofer 
et al., 2004). OWL has exchange syntax with RDF/XML and a number of OWL 
expressions with modeled inference rules create a knowledge base.

7.2.4.1 Ontology and Multilingualism in Semantic Web

According to Hahn and Vertan (2005), web data’s multilingual character 
should be considered when building ontological meta-data. They observed 
that the documents on the web written in languages other than English have 
vividly increased in recent years with a rising interest in German, French, 
and Japanese, amid others. However, the difficulty in designing ontologies 
with multilingual instances is that words in a specific language frequently 
project concepts within the ontology and lack one-to-one mapping to the 
meaning in other languages. Vertan (2004) proposed a framework that can 
extract translation correspondences, keeping in mind their annotations in 
RDF. The semantic web is naturally believed to be language-independent, 
such that information is provided with explicit meaning through properly 
defined ontologies built on standard representation languages. Consequently, 
the commanding importance of the semantic web cannot be overempha-
sized, given the great opportunity it offers to ensure that web information 
are generally accessible and independent of native language and culture. 
The primary challenge in constructing a “multilingual semantic web” is to 
link the information needs of users in a specific language with the language- 
independent content of the web.

FIGURE 7.2
Examples of RDF statement.
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7.2.5 Linked Open Data

Semantic web KGs are the foundation of countless information systems 
requiring structured knowledge access. Such KGs contain unbiased knowl-
edge about real-world entities and the relations between them, usable in 
diverse data mining applications including NLP and information retrieval. 
KGs are widely accessible as linked open data – a linked assemblage of 
datasets in machine-readable format that handle major real-world entities 
(Schmachtenberg et al., 2014). Bizer et al. (2011) define linked data as a col-
lection of best practices for connecting and publishing structured RDF data 
(Manola et al., 2004) via a uniform resource locator (URL) on the web. Linked 
data guarantees that the corresponding data are in a format that can eas-
ily be interpreted by machines and accessible by people on the web. This 
transforms the web into a “global database” where resources from various 
sites and interrelated knowledge can be retrieved or extracted by the use 
of developed AI applications. According to Faith and Chrzanowski (2015), 
linked data provides an avenue for integrating many people with meaning-
ful information. McCrae et al. (2015) presented recently developed tools that 
can be used to create and publish language resources as linked data for mul-
tilingual access. The authors assert that linked data enables excellent data 
integration which allow semantic web to characterize data categories and 
facilitate improved resource interoperability.

7.2.6 ML and Knowledge Graph

Although, a generally accepted definition of the term “knowledge graph” does 
not exist (Ehrlinger and Wöß, 2016), the characteristics expressed in Paulheim 
(2016) indicate that it represents domain entities with the relations between 
them as a graph. Google coined the term when it introduced its KG in 2012 as 
a structure of a new web search strategy to migrate from ordinary text pro-
cessing to a symbolic knowledge representation. KG collects and put together 
information in ontology before applying a reasoner to derive new knowledge 
(Ehrlinger and Wöß, 2016; Ji et al., 2022). The graph is constructed by represent-
ing entities as nodes and connecting them via edges or relations (Duan et al., 
2018). According to Chen et al. (2018), a KG acts as an integrated information 
repository, interconnecting varied data out of diverse disciplines. When effec-
tively organized to represent knowledge, it can be utilized in advanced appli-
cations to provide semantics to textual information (Chen et al., 2020; Duan 
et al., 2018). Nevertheless, Chen et al. (2019) and Wang et al. (2021) assert that the 
quality of KG can be evaluated to enhance its performance in terms of accuracy, 
timeliness, worthiness, completeness, consistency, interpretability, robustness, 
availability, etc. This evaluation is necessary for building high-quality applica-
tions and could be achieved through detection of errors in entity types, attri-
butes, and relations as well as local and global update of the KG.

Paulheim (2016) stated that KGs had been the structure of numerous 
information systems that necessitate access to domain-independent or 
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domain-specific structured knowledge. The author identified DBpedia (Auer 
et al., 2007) and Wikidata (Vrandečić and Krötzsch, 2014) as large-scale cross-
domain KGs that are mostly used datasets for semantic web as well as the use 
of ML algorithms to improve KG tasks in recommender systems. Other well-
known public KGs include YAGO (Suchanek et al., 2007); OpenCyc (Färber 
et al., 2015), which was shut down in 2017, Freebase, acquired by Google and 
shut down in 2015; NELL, DBkWik, and WebIsALOD. Nevertheless, some 
company-owned KGs seem to lack the capability for in-depth analysis and 
are considered not suitable for developing applications by the public. They 
include Yahoo’s KG, Google’s Knowledge Vault, Google KG, Microsoft’s 
Satori, and Facebook’s KG. Table 7.1 summarizes the features of the afore-
mentioned KGs. The table describes the size of each KG and presents the 
number of entities, relations, classes, and properties. A class, in a KG, refers 
to a category of entities while property refers to a category of relations. For 
example, Organization, Country, City, Person, etc. are classes that may form 
hierarchies while height, birth date, etc. are properties.

KGs provide the following summarized goals: use of data for automatic 
reasoning; higher data quality; better interpretability of data and content; 
reusability of data; automated processes for networking and analyzing data; 
finding relevant data, personalizing and contextualizing it.

After decades of developing KGs, the discipline has also been influenced 
by many other knowledge domains, including mathematical logic, graph 
theory, information retrieval, computational linguistics, knowledge repre-
sentation, reasoning, and, most recently, semantic web and ML. Some appli-
cation scenarios of KGs include

• Orchestrating knowledge workflows in a collaborative setting
• Unify structured and unstructured data in a Smart Data Catalog
• Search and Analytics with KGs
• Deep Text Analytics (DTA)
• Excellent Customer Experience

TABLE 7.1

The Size of Some Public Cross-Domain KGs 

KG # of Entities # of Facts # of Classes # of Properties

OpenCyc 118,499 2,413,894 116,822 165
NELL 1,974,297 3,402,971 290 1,334
YAGO 5,130,031 1,435,808,056 30,765 11,053
Dbpedia 5,109,890 397,831,457 754 3,555
DbkWik 11,163,719 91,526,001 12,029 128,566
Wikidata 44,077,901 1,633,309,138 30,765 11,053
WebIsALOD 212,184,968 400,533,808 – 1



150 Semantic AI in Knowledge Graphs

Seeliger et al. (2019) reviewed current research directions on merging 
semantic web technologies with ML due to the latter’s potential in predic-
tive tasks and ability to proffer semantically interpretable solutions that 
facilitate reasoning on knowledge bases by the former. Since large-scale 
KGs are very difficult and challenging to create manually, ML techniques 
can be used to provide needed heuristics for the creation and refinement of 
generated KGs (Tiddi and Schlobach, 2022). They offer capabilities to fine-
tune parameters and obtain optimal prediction performance using met-
rics like precision, accuracy, recall, area under the precision-recall curve 
(AUG-PR), and area under the receiver operating characteristic curve (AUC-
ROC). Mainly supervised (classification) (Alirezaie et al., 2019; Che et al., 
2015; Chen et al., 2018; Choi et al., 2017; Clos et al., 2017; Geng et al., 2019; Ma 
et al., 2018; Sarker et al., 2017; Wang et al., 2017) and unsupervised (cluster-
ing, embeddings) (Aditya et al., 2018; Ai et al., 2018; Batet et al., 2010; Bellini 
et al., 2018; Choi et al., 2017; Gusmão et al., 2018; Huang et al., 2018; Liao 
et al., 2018; Ma et al., 2019; Wang et al., 2018; Zhang et al., 2019) eXplainable 
ML models have been deployed with semantic expressiveness for ontology, 
KG, and taxonomy.

ML techniques can create, extend, or map a KG to existing ones. This could 
be achieved by a manually coded training set or by employing knowledge 
previously established in a KG for training models to enhance or authenti-
cate existing information. While KGs are often times separately generated, it 
would be exciting to apply them as training data to enhance each other and 
allow them to cross-fertilize knowledge. However, Kotis et al. (2021) pointed 
out that hidden bias at different levels of graph representation in KGs is an 
issue that requires concern.

Recommender systems have changed how people discover and pay for ser-
vices and products. The advancements in web technology and the continuous 
increase in online services and products have made recommender systems 
a valuable tool for categorization of vast amount of information. The emer-
gence of semantic web and linked open data has also resulted in extensive 
application of recommender systems. KGs provide contextual information 
needed to extract relevant product features for enhanced recommendation 
results. It is possible to utilize KGs in collaborative, content-based, and hybrid 
techniques for diverse recommendation tasks, namely, Top-N recommenda-
tions, rating prediction, and cross-domain recommendation in content-based 
recommendations. Consequently, with linked open data, a much better per-
ception and representation of user preferences, contextual signs, and item 
features can be created in recommender systems.

7.2.7 Context-Aware Pervasive Computing

Context plays a significant role in ubiquitous environments. According 
to McGrath et al. (2003), applications in pervasive environments should 
be  context-aware to adapt themselves to the fast-changing technological 
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landscape. Such applications utilize different context information includ-
ing informational, personal, physical, environmental, application, social 
and system contexts, such as weather, activities and location of people, etc. 
Distributed infrastructure, specifically Context Toolkit (Dey, 2001), provides 
suitable middleware for building context-aware applications.

Pervasive computing environments comprise numerous independent 
entities that aid in the transformation of physical spaces into computa-
tionally active and intelligent spaces. Users, devices, services, or applica-
tions could make up these entities. Lately, improvements in middleware 
have permitted dissimilar entities to interact, even though the challenge 
to understand the “semantics” of the environment by autonomous entities 
still exists. This problem can be handled by semantic web technologies. 
Ontologies or KGs can be developed to describe different aspects of these 
environments to ensure those information systems are more adaptable, 
enabling different entities to understand numerous terms and concepts, 
thus, presenting seamless interaction. This will permit the discovery of 
entities and generation of intelligent interfaces that allow users to inter-
act effortlessly with the entities. Typical examples include MyCampus 
(Sadeh et al., 2002) – an agent-based environment for context-aware mobile 
services – and Rcal (Payne et al., 2002) – a distributed meeting schedul-
ing software that negotiates meeting times based on user’s availability 
and preferences. The former uses ontologies to describe contextual attri-
butes, user preferences, and web services but does not utilize any reason-
ing method to guarantee the correctness of the ontologies. The latter has 
a reasoning scheme that automatically integrates published schedules on 
semantic web into users’ schedules.

7.3  ML-Based KG for Modeling Users’ Profiles 
for Context-Aware Content Delivery

The development of adaptive and interactive systems in various domains, 
including recommendation tasks, has become an important driver of 
research in ML integration with semantic web technologies. With this com-
bination, the prediction performance is expected to increase with higher 
explainability and interpretability. This work presents an ML-based KG for 
ontology modeling user profiles to achieve personalized recommendations 
or content delivery of recreational services and their geographic locations 
in Uyo metropolis, Akwa Ibom State (AKS), Nigeria. This work adapts the 
ontology in Asuquo and Usip (2018) for its KG construction. Mobile users’ 
social role ontology was created as a sub-ontology under telecommunication 
service domain ontology (TSDO). It proposes the deployment of ML tech-
niques first to train and, later, test data obtained from users’ profiles and 
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preferences as well as other contextual information. The output predictions 
from the learned models, along with the interaction medium of the smart 
mobile devices, are then used to determine a user’s social role in some mobile 
service delivery. The components of the framework, shown in Figure 7.3, are 
explained as follows.

The Smart Mobile Device, furnished with context-aware sensors, col-
lects a user’s request and acquires the contextual information therein. 
During Context Acquisition, contextual information stored in the reposi-
tory may be captured and managed due to their heterogeneity. Data from 
such requests forms inputs to the ML models for classification, clustering, 
and regression analysis. The Output Predictions from the ML models are 
used to generate Context Ontology and KGs. At the same time, the Query 
and Reasoning module uses inference rules to deduce new situations from 
semantically represented context. The Service Adaptation module permits 
content providers to adapt recreational services to a user’s context in real 
time based on recommendations derived from query and reasoning mech-
anisms. The recommendations can be explained in diverse languages to 
express multilingualism.

To deduce high-level contexts from low-level ones, context ontology 
is utilized as input to the context processing and reasoning module. A 
two-tier hierarchy describes it: the general, domain-independent and the 
domain-dependent, application-specific levels. The first level may indi-
cate the user’s profile and preferences, activity, service requested, and 

FIGURE 7.3
Proposed ML-based KG framework for constructing context-aware applications.
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device and environment-related properties. The numerous social func-
tions a user can perform are ascertained by the competence of a particular 
interaction medium.

It has been debated that adequate access to exercise and recreational facili-
ties stimulates general physical activity. Recreation is an activity of leisure. 
Access to these facilities may help people to engage more in exercises and 
recreational activities, thus, encouraging running, walking, or cycling to and 
from these facilities. It is also believed that the presence of a decent exer-
cise infrastructure in the neighborhood can encourage residents to workout 
thus, increasing their physical activity levels. Research reveals that access to 
fitness facilities may help to reduce the risk of obesity, among other health 
challenges. While Table 7.2 presents details of 16 recreational facilities in 
the Uyo metropolis, Figure 7.4 shows the developed recreational facility 
KG, where services provided include a gym, park, sports, café, live show, 
bar, health/beauty shop, etc. The users of the recommendation system can 
also view the center name, operational hours, address, and location in terms 
of coordinating to access a nearby recreational center or one that provides 
explicit service demand. The KG also contains the center’s contact informa-
tion; including phone number, website, and social media handle for inquiry, 
advanced booking, and feedback. Our KG is generated from clarafinds.com.1 
On deployment by content providers, the proposed framework and its KG 
can facilitate personalized recommendations with increased prediction per-
formance, higher explainability, interpretability, and reusability. A number 
of studies indicate the proficiency of KGs in discovering meaningful knowl-
edge in a variety of domains. The emerging Graph Neural Networks (GNN) 
and Deep Learning (DL) can extract relations and object characteristics from 
KGs (Futia and Vetrò, 2020).

The KG in Figure 7.4 shows the various recreational facilities in the Uyo 
metropolis with services offered. Additional information, such as location 
with longitude and latitude and all contact details such as email, phone, 
address, social media links, etc., about each of the facilities can be obtained 
by clicking the node. Tourists will find the KG useful as filters are easily made 
on facilities that can provide required services. Let us consider two tourists, 
for example, Tourist A and Tourist B. Tourist A likes a party, hanging out, 
and alcohol consumption and will prefer facilities that offer park, bar, and 
live show services, while Tourist B is a female tourist with a medical condi-
tion who prefers facilities with gym, café, and health_and_beauty_shop as 
major required services as well as having a strong dislike for facilities with a 
live show. Filters for Tourist A and Tourist B are provided in Figures 7.5 and 
7.6, respectively, with details of the facilities. The filter result shows two 
facilities (G-Park Global Resort and Discovery Park) for Tourist A and three 
facilities (Ibom Golf Resort, Ultrafit Fitness Center, and The Gym Least Pay 
Group) for Tourist B. With fewer results, the tourists can easily view and 
make their choices, making the decision-making process or task speedily 
and less cumbersome.

https://clarafinds.com
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TABLE 7.2

Brief Detail of Some Recreational Facilities in Uyo Metropolis, AKS, Nigeria

Center Name
Location/

Coordinates
Operational 
Hours

Facilities/Services Offered

Gym Sports
Live 
Show Park

Health/
Beauty Shop Cafe Bar

Ibom Golf Resort 5.0545616318785065, 8.037756243417846 24/7 Yes Yes No Yes Yes Yes Yes
Discovery Park 5.01991441978015, 7.92697673470552 8 am–11 pm

Daily
No Yes Yes Yes No Yes Yes

G-Park Global Resort 5.0409697431450935, 7.909697838962606 8 am–11 pm
Daily

No No Yes Yes No Yes Yes

Iconic Fitness Room 5.038887371889059, 7.9128577985464945 6 am–6 pm
Daily

Yes No No No No Yes No

Metroflex Gym 5.029150007658079, 7.932987889121968 6 am–9 pm 
Mon–Sat

Yes No No No No No No

West Itam Mini Stadium 5.048128915230136, 7.886745296634592 6am-5pm daily No Yes No Yes No No No
Godswill Akpabio 
International Stadium

5.0064928061051495, 7.884999496634551 24/7 No Yes No Yes No No No

Ultrafit Fitness Center 5.0222129571357055, 7.942592238413909 6:30 am–-8 pm
Mon–Sat

Yes Yes No No Yes Yes No

Truth Fitness Center 5.009186550914736, 7.928503857626108 Daily Yes No No No No No No
Bubble Healthcare Pharmacy 
& Stores

5.000233317244198, 7.965711876768456 Daily No No No No Yes No No

The Gym Least Pay Group 5.02047964043979, 7.922789765946575 Daily Yes No No No Yes Yes Yes
Newtraford Fitness Centre 5.029909917198005, 7.949421671633873 Daily Yes No No No Yes Yes Yes
Fonz Natural 5.044786774597501, 7.923500803858317 Daily No No No No Yes No No
Basketball and Handball Court 5.04647462354298, 7.924668241686279 Daily No Yes No Yes No No No
Green World Africa 5.028350661003441, 7.929474814856342 Daily No No No No Yes No No
Lindoirs Beauty Shop 5.028099444039574, 7.943078929597149 Daily No No No No Yes No No
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FIGURE 7.4
Recreational facility KG.

FIGURE 7.5
KG filter showing suitable facilities for Tourist A with details.
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7.4 Challenges and Opportunities in Semantic Web

The evaluation of entity relatedness and similarity has been a difficult task 
especially during knowledge extraction from websites, information retrieval, 
and other NLP tasks. Whereas similarity solely assesses the likeness of two 
objects, relatedness considers an extensive array of relations. For instance, 
“country” as a class has two entities – “USA” and “Canada” where both pos-
sess high scores for similarity and relatedness analyses. Alternatively, “USA” 
and “Joe Biden” are not similar in any way but are very related. Furthermore, 
“Canada” and “Joe Biden” have no similarity whatsoever but have lower 
relatedness score. Apart from word distributions, the KG approach can effec-
tively evaluate entities’ semantic relatedness.

The literature shows six known challenges of semantic web: ontology and 
content availability; ontology modeling and evolving improvement; scalabil-
ity of semantic web content; multilingualism; visualization; and semantic web 

FIGURE 7.6
KG filter showing suitable facilities for Tourist B with details.
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languages standardization. It can be inferred that semantic web implementa-
tion is seriously faced by the challenges of processing and combining noisy 
and varied data, mismatched data models, mislaid standards, and applica-
tion programming interfaces (APIs) between components. Nevertheless, 
large-scale KG is difficult to be created manually, making demands for the 
use of heuristics. Thus, ML heuristics can be applied in creating KG and 
refining the generated KG, but without a substitution between data volume 
and the resultant KG’s accuracy as well as a certain level of noise.

7.5 Conclusion

Traditional content-based recommendation approaches lack sufficient infor-
mation to extract users’ profile and characterize every facet of their interac-
tion with the system. Findings from our study indicate that semantic-aware 
content-based recommender systems that incorporate ontological knowledge 
can be developed to surmount the shortcomings of their traditional content-
based counterparts. This implies that KGs and associated query languages 
can be used to discover entities, facts, and other relationships based on appro-
priate algorithms and node similarity metrics. To help tourists and residents 
in the Uyo metropolis boost their health condition and well-being, a recre-
ational facility KG was developed to recommend centers and geographic 
locations (coordinates) where precise service demands like sports, gyms, 
cafes, live shows, and beauty shops are provided. Even though KGs are sim-
ple to understand by people, they contain complex information about specific 
domains that are not easy to exploit for ML tasks. As an AI paradigm driven 
toward creating systems that require data training, ML techniques have the 
potential to advance accuracy performance of many data analytic tasks.

Alternatively, KGs provide needed capability for knowledge representation 
about entities and the relations between them with better explanation, improved 
reliability, and reuse. It is believed that the integration of ML and KG can sig-
nificantly improve the recommendation system’s explainability, accuracy, and 
reuse, thereby intensifying the capabilities of ML techniques. Future work shall 
address the integration of heterogeneous data to build KG with a common API 
for multilingual visualization of context-aware recreational services in TSDO.
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Note

 1 https://depot.clarafinds.com/graphs/rec-facilities/

References

Abatal A, Khallouki H, Bahaj M. “A semantic smart interconnected healthcare system 
using ontology and cloud computing.” 2018 4th International Conference on 
Optimization and Applications (ICOA), Mohammedia, Morocco, 2018, pp. 1–5.  
https://doi.org/10.1109/ICOA.2018.8370595.

Aditya S, Yang Y, Baral C. “Explicit reasoning over end-to-end neural architectures 
for visual question answering.” 2018 Proceedings of the AAAI Conference on 
Artificial Intelligence. Vol. 32, No. 1, 2018.

Ahmed Z, Gerhard D. “Role of ontology in semantic web development.” Computer 
Science, 2010. https://arxiv.org/abs/1008.1723.

Ai Q, Azizi V, Chen X, Zhang Y. “Learning heterogeneous knowledge base embed-
dings for explainable recommendation.” Algorithms, Vol. 11, No. 9, 2018, p. 137. 

Alirezaie M, Langkvist M, Sioutis M, Lout A. “Semantic referee: a neural symbol-
icframework for enhancing geospatial semantic segmentation.” Semantic Web, 
Vol. 10, No. 5, 2019, pp. 863–880. 
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8.1 Introduction

Google is the first organization that used the term knowledge graph (KG) in 
2012 to prove the power of semantic technologies in web search. Therefore, 
the Google search engine allows users to search for things like events or orga-
nizations rather than just performing the string matching as web documents 
did (“Things, not strings”). Recently, the term KG has also been used as a syn-
onym for semantic web knowledge bases such as Dbpedia (Voit & Paulheim, 
2021) or YAGO (Mahdisoltani et al., 2014). Currently, KGs are increasingly 
used as the main technology for data integration and are acknowledged by 
numerous businesses as an effective solution to data governance, metadata 
management, and data enrichment. Furthermore, KG can improve the qual-
ity of the data that can be employed later as input for machine learning (ML) 
algorithms (Dessì et al., 2021).

The KG consists of a number of interconnected descriptions of entities (real-
world objects as documents or abstract concepts such as a Person which is a 
being that has attributes like morality and consciousness, etc.) where these 
descriptions have formal semantics that makes it possible for both humans 
and machines to analyze them effectively and unambiguously. Ontologies – 
which can be thought of as the KG’s schema – are used to create a formal 
meaning for these entities. In this context, the ontologies work as a formal 
agreement that guarantees a common understanding of the data and its 
meaning between the creators of the KG and its consumers (Pan et al., 2017).

Understanding the primary stages and tasks necessary during the devel-
opment process is one of the major elements in creating KG. The knowledge 
acquisition layer, knowledge storage layer, and consumption layer are the 
three basic levels that pertain to the use of KGs. Firstly, the knowledge acqui-
sition layer covers the procedure for gathering data from different sources, 
organizing it, and then producing valuable knowledge. Secondly, after com-
pleting the data-collecting phase, the following step is to determine how to 
store that data (Pan et al., 2017). Finally, to increase the effectiveness of the 
data and address specific requirements, the phase of using the knowledge 
embedded in KG should be started (Pan et al., 2017).

Generally speaking, knowledge acquisition is the layer where we need 
to develop the ontology that represents the core elements of the KG. 
Furthermore, the steps to develop an ontology are somehow similar to the 
engineering ones. There are two basic approaches to creating an ontology: 
manual construction or using techniques that are relied on ML. The manual 
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construction of the ontology (Al-Arfaj & Al-Salman, 2015; Fernández-López 
et al., 1997; Grüninger & Fox, 1995; Noy & McGuinness, 2001; Sure et al., 2004; 
Uschold & King, 1995) is a very difficult and expensive operation that typi-
cally calls for a combination of domain experts’ knowledge and ontology 
engineers’ expertise. Due to these drawbacks, the term “ontology learning” 
(OL) has come into use, which captures an approach to explore ontological 
knowledge automatically or semi-automatically from various resources such 
as relational databases (RDBs), text documents, etc. In fact, OL methods can 
in a perfect way enhance the knowledge acquisition phase and makes the 
process of creating an ontology easy compared with manual methods.

In this chapter, we focused on the RDB as a source of information to build 
an ontology for several reasons. Firstly, RDBs are used to store almost 70% 
of the data on the web. Secondly, full conceptual representations are pre-
sented by RDBs. Thirdly, they offer a comprehensive and complete informa-
tion source. Finally, they provide one of the best mechanisms for altering 
and storing data. However, the lack of semantic meaning in RDBs makes it 
difficult to develop interoperability among information systems.

To build an ontology from an RDB, there are three main steps: mapping 
schema, data migration, and data accessibility. Firstly, the mapping schema 
includes two main steps: extraction of metadata from database models (con-
ceptual, logical, or physical) and generating mapping rules of each com-
ponent extracted in the metadata phase, then converting them into their 
corresponding component according to the ontology language (Spanos et al., 
2012). There are three types of mapping: automatic mapping, semi-automatic 
mapping, and manual mapping. Without no user interaction in the mapping 
process, the automatic mapping approach aims to convert an RDB to ontology 
in an accurate manner. The semi-automatic mapping approach took a place to 
improve a local ontology constructed using the automatic approach by using 
classes and properties from existing ontologies that are already developed 
and published on the web. Manual mapping approaches propose an iterative 
process in which a domain expert evaluates the proposed mappings.

Secondly, the mapping schema is not sufficient to create ontology from the 
database because the RDB includes both schema information and instances 
data which must be also manipulated. Therefore, the way instances data 
is transformed into ontological instances is called data migration and two 
methods that can be applied to achieve the data migration phase, either 
static transformation or dynamic transformation. Static transformation gen-
erates an RDF graph from an RDB instance, in the same manner as data 
warehousing approaches using the ETL process. ETL is composed of three 
steps: extract, transform, and load. The dynamic transformation relies on 
data synchronization, which is important if the data is frequently updated. 
In such cases, the data resides in the RDB, and how the data is accessed com-
prises rewriting the semantic query to an SQL query, which is executed, and 
its outcome is converted back as a response to the semantic query (Spanos 
et al., 2012).
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Thirdly, independent of the manner in which the ontology is constructed, 
data accessibility defines how the data is queried and retrieved from the 
knowledge constructed. Therefore, the ontology content can be accessed by 
using ontology query language or linked data (Po et al., 2020).

In this chapter, we addressed the first two steps which are schema map-
ping and data migration. More specifically, the principal contributions of this 
chapter are:

• We will focus on introducing a state-of-art ontology construction 
from RDBs.

• We will provide an overview of the main two approaches to build 
an ontology. Also, we present classification methods for construct-
ing ontology from the RDB. Furthermore, we present two important 
approaches to achieve the data migration phase and we deal with 
the two main methods to retrieve the data from the KG constructed.

• We will sum up the main mapping languages that can be used in the 
process of converting the RDB to the KG.

8.2 Ontology Construction

Knowledge management refers to the acquisition, accessing, and mainte-
nance of knowledge. Current knowledge management technology suffers 
from limitations in searching, extracting, maintaining, uncovering, and 
viewing information (Gruber, 1993). The concept of the KG appears to pro-
vide new approaches for managing information based on the use of seman-
tic metadata, which brings machine-readable descriptions to the data and 
documents that exist on the web or within an organization. In fact, using 
semantics metadata can enhance how information is presented and is the 
best solution for integrating information coming from different sources, 
whether within one organization or across organizations.

At the heart of the KG is the use of ontologies, which have been increas-
ingly used to solve data integration problems by making knowledge explicit 
through conceptualization (Swartout et al., 1996). The motivation behind 
using ontologies as a solution for integrating data between different infor-
mation systems is summarized in five applications (Sure et al., 2004): meta-
data representation, global conceptualization, support for high-level queries, 
declarative mediation, and mapping support.

As aforementioned, the use of ontologies is necessary to achieve seman-
tic interoperability within a heterogeneous information system. Therefore, 
the main question now is how to build an ontology and what are the meth-
odologies can be used to build it? There are two main approaches for its 
construction – either using manual techniques or relying on ML methods.
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8.2.1 Constructing Ontology from Scratch

Constructing ontology from scratch or manually (Al-Arfaj & Al-Salman, 2015; 
Fernández-López et al., 1997; Grüninger & Fox, 1995; Noy & McGuinness, 
2001; Sure et al., 2004; Uschold & King, 1995) is a very difficult and expen-
sive operation that typically calls for a combination of domain experts’ 
knowledge and ontology engineers’ expertise. Due to the incredible rate of 
 knowledge development in the real world, ontology engineers must con-
stantly update and rewrite the resulting ontologies with new concepts, 
terms, and lexicons. It is non-intuitive, time-consuming, error-prone, and 
potentially expensive (Antoniou & Van Harmelen, 2004). Due to these limi-
tations, the term “ontology learning” has come into use, which describes a 
strategy for automatically or semi-automatically learning ontological knowl-
edge from a structured, unstructured, or semi-structured source of data.

8.2.2 Ontology Learning

Ontology learning allows the automated acquisition and extraction of onto-
logical knowledge relying on ML techniques. Ontology learning may dis-
cover ontological knowledge at a faster rate than ontology construction from 
scratch, and it also reduces human interactions and errors (Maedche & Staab, 
2004). More precisely, when compared to the manual method, ontology 
learning substantially simplifies the process of creating ontologies and can 
eliminate the challenges associated with knowledge acquisition. As depicted 
in Figure 8.1, by using ontology learning methods, ontologies can be created 
from several sources of information sources including structured sources, 
such as a RDB, semi-structured sources, such as dictionaries, or unstruc-
tured sources, such as web pages. In this chapter, we focus on RDBs as a 
source of information.

FIGURE 8.1
The classification of ontology learning source of information.
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The reasons behind selecting the RDB as a source of building ontologies 
are the following:

• RDBs are used to store almost 70% of the data on the web.
• RDBs present full conceptual models.
• Full conceptual representations are presented by RDBs.
• RDBs provides one of the best mechanisms for altering and storing data.

The knowledge resources known as non-ontological resources (NORs) are 
those whose semantics have not yet been explicitly formalized using ontolo-
gies, such as RDBss.

8.3 Constructing Ontology from Relational Database

Selecting the knowledge that should be included in the KG is one of the key 
elements in the building process. The knowledge resources known as NORs 
are those whose semantics have not yet been explicitly formalized using 
ontologies, such as RDBs. In this context, the ontologilization of NORs has 
led to the design of several specific approaches. These include approaches for 
building the KG from RDB (Villazón-Terrazas, 2012).

In general, there are three main steps to build an ontology from RDBs: 
automatic mapping, semi-automatic mapping, and manual mapping.

8.3.1 Automatic Mapping

The automatic mapping approach aims to convert an RDB to a KG without 
user interaction to make the implicit data embedded in the RDB explicit. The 
direct mapping creates a KG from RDB taking as input the schema, instances, 
or both (Lourdusamy & Mattam, 2021). The W3C defines automatic mapping 
as a set of established guidelines that must be used to produce an RDF graph 
that accurately represents the structure and content of the RDB.

When the goal is to quickly make data sources available in a web machine-
readable format, with little consideration for semantic interoperability, the 
automatic mapping approach is often used (Yang & Wei, 2020). In the lit-
erature, automatic mapping is often used as a synonym for direct mapping, 
local ontology mapping, or ad-hoc ontology mapping.

8.3.2 Semi-Automatic Mapping

Semi-automatic is also known as augmented direct mapping. In fact, an 
RBD does not represent a good solution to describe a domain because it 
does not support a full description of this domain. In order to overcome 
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this drawback, the semi-automatic mapping approach is used to enhance 
the local ontology by utilizing classes and properties from ontologies that 
are available on the web. For example, suppose that the RDB contains a table 
named Person that combines all the necessary information to describe a per-
son, such as a name, age, profession, etc. In this case, instead of using URIs 
that are generated from RDB, we can use a special ontology that is specific 
to describe an entity Person such as foaf (Friend-of-Friend) ontology (Spanos 
et al., 2012).

Generally speaking, when semantic interoperability is required,  the 
automatic mapping approach is insufficient in real-world  applications and 
we need to improve the quality of the automatic mapping. Consequently, 
to align the local ontology with already-existing domain ontologies, 
ontology alignment techniques might be applied afterward (Spanos 
et al., 2012).

8.3.3 Manual Mapping

Manual mapping is also known as transformative mapping or domain 
semantic-driven mapping. However, manual mapping does not mean build-
ing ontology from scratch with no feedback or suggestions from the applica-
tion using existing tools such as Protégé editor. In contrast, after the direct 
mapping and the semi-automatic mapping, the domain semantic-driven 
mapping uses customized mapping rules generated by the user in addition 
to the automatically generated rules. For instance, it must be possible to man-
ually rename the property names. Furthermore, manual mapping can also 
be helpful when we want to define some internal heuristics rules such  as 
transitivity and symmetric relationships that are difficult to be identified 
automatically inside the RDB (Michel et al., 2014).

As we aforementioned, we will focus on developing ontology from RDB. 
More precisely, the RDB can be represented based on three models: concep-
tual, logical, and physical. Therefore, for a specific level, the ontologist can 
cover one of the steps or all the steps can be combined to build the ontology. 
The next section address all these models in more detail.

8.4 Methods for Constructing Ontology from RDB

Building the ontology from the RDB can be achieved from a conceptual 
model, a logical model or a physical model. As depicted in Figure 8.2, 
building an ontology from a conceptual model can either be done directly 
or via the use of reverse engineering techniques. The methods involved in 
each approach will be discussed in terms of their capabilities, advantages, 
and drawbacks.
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8.4.1 Building Ontology from Conceptual Model

The conceptual model describes the semantics of a particular domain. It 
is more powerful than the relational model because it is simple and easily 
understandable, it can be understood by non-technical specialists, and it 
gives a higher-level description of the domain. Compared to the relational 
model, the conceptual model is more in line with the ontologies’ semantic 
perspective. By using the conceptual model, we can build ontology either 
directly from the model or by using a reverse engineering approach.

8.4.1.1 Directly from a Conceptual Model

Peter Chen created entity relationship (ER) modeling, which was first pub-
lished in 1976. In fact, the data embedded in the RDB is defined based on an 
abstract model that is ER. The latter is based on two concepts:

• Entities: They are defined as a table that contains specific data.
• Relationships: They are characterized as associations and interac-

tions among entities.

ER diagrams also have several important drawbacks. Firstly, because of its 
graphical representation, it is difficult to parse an ER diagram to ontology 
(transform it into the formal language). Additionally, there is no representation 
of the data manipulation (ER diagram manipulates just the scheme structure), 
and no industry standard for notation, so it can be ambiguous. Finally, it pro-
vides limited constraints and specifications and limited expressiveness. Other 
problems with the entity-relationship model are the following (Thalheim, 2013):

• Hard to model IS-A relationship.
• There is no theoretical foundation for the idea of weak entities.

FIGURE 8.2
Methods to build ontology from RDBs.
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• Hard to represent: sets, sequences, and null-valued relationships.
• The intended semantics are not stated clearly.
• Different semantics are applied to the same concept.

All of the modeling concepts from the ER model are included in the Enhanced 
Entity-Relationship (EER) model. The extended ER model’s main contri-
bution is centered on data abstractions including aggregation, subclasses, 
superclasses, and inheritance. The EER model also uses the term “category” 
or “union type” to describe a group of items that are the union of objects of 
various entity types (Coronel & Morris, 2016).

There have several of publications in this area. All the discussed meth-
ods in Chujai et al. (2014), Fahad (2008), Lubyte and Tessaris (2007a), 
Myroshnichenko and Murphy (2009), Upadhyaya and Kumar (2005), Xu et al. 
(2004), and Zhang and Jia (2009) focused on capturing cardinality constraint 
and binary relationships and key constraints including a primary key and 
foreign key. These methods can handle different kinds of binary relation-
ships including the one-to-one, one-to-many, and many-to-many relation-
ships. According to Fahad (2008), the methods discussed by Lubyte and 
Tessaris (2007a), Upadhyaya and Kumar (2005), Xu et al. (2004), and Zhang 
and Jia (2009) suffer from some limitations, which include inappropriate 
mapping of composite attributes, where multivalued attributes are not han-
dled. These limitations can be bypassed by defining the rules concerning all 
the different kinds of attributes (Chujai et al., 2014; Fahad, 2008).

We have discussed the rules that enable us to verify if these methods define 
all the basic components of the conceptual model and if they find the match-
ing component in the ontology language (explained in Tables 8.1 and 8.2). 
Now, we will discuss the implementation details, composed of the tools and 
the API used to implement these methods and indicate if these methods are 
accompanied by accessible software. All the methods described above have 
accessible software except (Zhang & Jia, 2009).

Most of the methods that directly rely on the conceptual model (Chujai 
et al., 2014; Fahad, 2008; Lubyte & Tessaris, 2007b; Myroshnichenko & 
Murphy, 2009; Upadhyaya & Kumar, 2005; Xu et al., 2004; Zhang & Jia, 2009) 
produce ontology automatically and generate just the local ontology, which 
simply represents the structure of the database. In fact, the main drawback 
of the direct conceptual model methods is that they did not cover the data 
migration and the data accessibility phase.

Although previous publications (Chujai et al., 2014; Fahad, 2008; Lubyte 
& Tessaris, 2007a; Myroshnichenko & Murphy, 2009; Upadhyaya & Kumar, 
2005; Xu et al., 2004; Zhang & Jia, 2009) do not discuss how the data is accessed 
after the ontology has been created, this does not imply there is no solution. 
In reality, the only solution is to run the SPARQL against the database where 
the data is stored.

Even if all these methods generate the ontology by following the auto-
matic mapping rules, they do not capture the complicated domain semantics 
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TABLE 8.1

Comparison of Conceptual Model Approach Methods 

Conceptual Model Approach

Conceptual Model Directly Methods Conceptual Model Reverse Engineering Methods

Context

Xu 
et al. 

(2004)

Upadhyaya 
et al.

(2005)
Fahad 
(2008)

Lubyte 
et al.

Chujai 
et al. 
(2014)

Igor 
et al.

Zhang 
et al. 

(2012)
Astrova 
(2004)

Trinkunas 
et al.

He-ping 
et al. 

(2008)

Zhou, 
Meng 
et al.

Zhou, 
Ling 
et al.

Russo 
et al. 

(2012)

Lin 
et al. 

(2013)
Djado 
et al.

Concept Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Simple 
inheritance

N Y N Y N N Y Y N Y N Y N Y N

Multiple 
inheritance

N Y N Y N N N Y N Y N N N Y N

Value restriction N N N N N N N N N N N N N N N
Has value 
restriction

N N N N N N N N N N N N Y N N

Transitive 
property

N N N N N N Y N N N N N N N N

Symmetric 
property

N N N N N N N N N N N N N N N

Inverse 
property

Y Y N Y Y Y N Y N N Y Y Y N N

Equivalence 
class

N N N N N N N N N N N N N N N

Equivalence 
property

N N N N N N N N N N N N N N N

Enumerated 
class

N N N N N N N N N N Y N N N N

Disjoint class Y Y N Y Y N N Y N N N N N N N

(Continued)
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TABLE 8.1

Comparison of Conceptual Model Approach Methods 

Conceptual Model Approach

Conceptual Model Directly Methods Conceptual Model Reverse Engineering Methods

Context

Xu 
et al. 

(2004)

Upadhyaya 
et al.

(2005)
Fahad 
(2008)

Lubyte 
et al.

Chujai 
et al. 
(2014)

Igor 
et al.

Zhang 
et al. 

(2012)
Astrova 
(2004)

Trinkunas 
et al.

He-ping 
et al. 

(2008)

Zhou, 
Meng 
et al.

Zhou, 
Ling 
et al.

Russo 
et al. 

(2012)

Lin 
et al. 

(2013)
Djado 
et al.

Individuals Y N N N N N N Y N Y N N N N N
Same/different 
individuals

N N N N N N N N N N N N N N N

Sub-properties N N N N Y N N N N N N N N N N
Keys N Y N Y Y Y Y Y Y Y Y Y Y Y Y
Ternary and 
higher order 
relations

Y Y N N N Y N Y N Y Y N N N N

Functional 
property

N Y N N Y Y Y N N N N N Y N Y

Inverse 
functional 
property

N N N N Y Y N N N N N N N N Y

Cardinality 
restriction

Y Y Y Y Y Y Y N N Y N N Y Y Y

Some value 
from

N N N N N N N N N N N N N N N

Note: Y = Yes; N = No.

(Continued)
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TABLE 8.2

Comparison of Logical and Physical Approach Methods 

Logical Model 
Approach Methods Physical Model Approach Methods

Context
Telnarova 

(2010)

H. Zhang 
et al.

(2012)
Li et al. 
(2005)

Ghawi &  
Cullot 
(2007)

Astrova 
et al. 

(2007)

Nyulas 
et al. 

(2007)

Tirmizi 
et al. 

(2008)
L. Zhang &

Li (2011)

Yiqing 
et al. 

(2012)
Buccella 

et al.

Sedighi &  
Javidan 
(2012)

Bakkas 
et al. 
(2013

Concept Y Y Y Y Y Y Y Y Y Y Y Y
Simple inheritance N Y Y Y Y N Y Y N N Y N
Multiple inheritance N N N Y N N N N N N N N
Value restriction N N Y N Y N Y N N N N N
Has value restriction N N N N Y N N N N N N N
Transitive property N N N N Y N Y N N N N N
Symmetric property N N N N Y N Y N N N N N
Inverse property Y N Y Y Y N Y Y Y Y Y Y
Equivalence class N N N N N N N Y N N N N
Equivalence property N N N N N N N Y N N N N
Enumerated class N Y N N Y N Y N N N Y N
Disjoint class N N N N N N N N N N N N
Individuals N N Y N Y Y N N N N N Y
Same/different individuals N N N N N N N N N N N N
Sub-properties N N N N N N Y Y N N N N
Keys Y Y Y Y Y Y Y Y Y Y Y Y
Ternary and higher order 
relations

N N Y N Y N N N Y Y Y N

Functional property Y N N Y Y N Y Y N Y Y N
Inverse functional property N N N N Y N Y Y N N Y N
Cardinality restriction Y N Y N N N Y Y N N Y N
Some value from N N N N N N N N N N N N

Note: Y = Yes; N = No.
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needed by many applications and systems, and the generated ontology is 
local. The direct conceptual model approach cannot be a solution for the data 
integration problems. Therefore, this approach is valuable when the goal is to 
provide the data sources in machine readable format. In brief, all the meth-
ods described above (Chujai et al., 2014; Fahad, 2008; Lubyte & Tessaris, 2007a; 
Myroshnichenko & Murphy, 2009; Upadhyaya & Kumar, 2005; Xu et al., 2004; 
Zhang & Jia, 2009) are unable to express the property characteristics such as 
symmetry and transitivity.

8.4.1.2 Reverse Engineering

Reverse engineering is the process of converting a physical model into a con-
ceptual one to identify every component and its relationships. As illustrated 
in Figure 8.3, the main objective of database reverse engineering is to exam-
ine an existing database system (Chiang et al., 1994):

• Recognize the elements of the database (in an RDB, the relations, and 
attributes) and how they relate to one another.

• Recover domain semantics that isn’t explicitly expressed in the sub-
ject system (keys, cardinality ratios for relationships, etc.).

• Find domain semantics that a forward engineering approach would 
find challenging or impossible to get.

• Based on the discovered semantics, suggest potential design guide-
lines that might result in the current system.

• Create an entity-relationship model (or other conceptual representa-
tion) of the outcome to help with data interpretation for the applica-
tion domain.

As previously discussed, the reverse engineering technique is the process of 
transforming the physical model into the conceptual model. Therefore, sev-
eral approaches consist of building ontology by using this technique.

FIGURE 8.3
Reverse engineering steps.
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The methods described in Astrova (2004), Dadjoo and Kheirkhah (2015), 
He-ping et al. (2008), Lin et al. (2013), Russo et al. (2012), Trinkunas and 
Vasilecas (2007), Zhou, Ling et al. (2010), and Zhou, Meng et al. (2010) speci-
fied a set of mapping rules, including entity mapping, attribute mapping, 
primary key mapping, and foreign key mapping. For relationship manipula-
tion, the binary relationship is handled by Astrova (2004), Lin et al., (2013), 
Russo et al. (2012), Trinkunas and Vasilecas (2007), and Zhou, Meng et al. 
(2010), whereas the ternary relationship is covered by Astrova (2004), He-ping 
et al. (2008), and Zhou, Ling et al. (2010). Therefore, the cardinality constraint 
is missed in all approaches except Dadjoo and Kheirkhah (2015), He-ping 
et al. (2008), Lin et al. (2013), and Russo et al. (2012); the unique constraint and 
the Not Null constraint are handled only by Dadjoo and Kheirkhah (2015). 
Table 8.1 provides further details and compares all the methods based on the 
extracted metadata. Only the approaches described in He-ping et al. (2008), 
Lin et al. (2013), Trinkunas and Vasilecas (2007), Zhou, Ling et al. (2010), and 
Zhou, Meng et al. (2010) are implemented.

Most of the methods that belong to the reverse engineering approach fol-
low the procedure described in Figure 8.3. Automatic mapping is used to 
build an ontology in most cases (Dadjoo & Kheirkhah, 2015; Lin et al., 2013; 
Trinkunas & Vasilecas, 2007; Zhou, Ling et al., 2010; Zhou, Meng et al., 2010) 
except for Russo et al. (2012), which relies on the automatic and semi- automatic 
 mapping. As we already discussed, semi-automatic mapping is needed when 
the aim is to achieve semantic interoperability. In fact, semi-automatic map-
ping enhances the local ontology that results from automatic mapping by 
using existing domain ontologies or vocabularies such as WordNet.

In contrast to the previous approach, this approach takes into account 
the data migration process, which describes how the data is transformed 
from the RDB to the RDF triple store. Some approaches use static migra-
tion employing the ETL process (Dadjoo & Kheirkhah, 2015; Lin et al., 2013; 
Trinkunas & Vasilecas, 2007; Zhou, Ling et al., 2010; Zhou, Meng et al., 2010) 
whereas dynamic migration is used in an alternative approach (Astrova, 
2004). As  already mentioned, static migration is not executed against the 
most recent version of data, whereas dynamic migration relies on data syn-
chronization, which becomes important if the data is updated.

Unlike the direct conceptual model approach, which handles only the 
transformation schema, the reverse engineering approach covers the trans-
formation schema and the data migration. To decide which of the two 
approaches is to be used, it is necessary to determine the aim of the work and 
the problem to be solved. For instance, if the goal is to solve a data integration 
problem, it is preferable to choose a reverse engineering approach. Besides 
the overall aim, the major benefits of the reverse engineering approach are 
evident in the metadata extraction step because it can take advantage of the 
metadata residing in the physical and the conceptual models.

In short, all the above methods that include building ontology from a 
conceptual model directly or using a reverse engineering approach are 
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summarized in Table 8.1. Table 8.1 highlights the differences and similarities 
between these methods based on the metadata provided by ontology and the 
conceptual model. Our goal in identifying these differences and similarities 
is to show the context where the domain expert must focus when improving 
or building ontology.

8.4.2 Building Ontology from Logical Model

The logical model offers the abstraction structure of a domain of information 
and should be based on the structure identified in the conceptual model. 
Indeed, the conceptual model represents the meaning of information that 
can be stored in an RDB. In contrast, the logical model provides the founda-
tion for designing a database, and it identifies the requirements of the data as 
much detail as possible, without taking into consideration how they will be 
physically embedded in the RDB.

Telnarova (2010) and Zhang et al. (2012) focus on the principles of automatic 
conversion of the RDB, especially the logical model into an ontology. The set of 
rules that allows the process of transformation of the logical model into ontol-
ogy is included: table, columns, primary key, foreign key, binary relationship, 
unique constraint, and not null constraint. In fact, Telnarova (2010) provides 
11 mapping rules but there is no implementation for these rules whereas 
Zhang et al. (2012) propose a method for extracting and visualizing ontol-
ogy from a logical model with web interfaces. The prototype of this method 
is the EVis system, which comprises three modules. Firstly, the database to 
ontology module provides the corresponding rules for the table, attribute, 
and primary key, foreign key, binary relationship, unique constraint, and not 
null constraint. Secondly, the ontology editing module allows the user, after 
extracting ontology from the database, to correct the resulting errors, finally, 
loading of the resulting ontology and the transformed database for the evalu-
ation phase. The input database must be in third form normal (3NF).

The main problem in converting the logical model into ontology comes 
from relationships. One-to-many (or one-to-one) relationships without attri-
butes are easily found through a foreign key. If the foreign key is a subset 
of the primary keys, it is almost certain that the one-to-many relationship 
links a weak entity to a strong one. Indeed, the many-to-many relationships, 
if they include attributes, are somehow hidden, because they generate new 
tables that are identical to entity tables. Finally, the participation and cardi-
nalities of the relationships are also difficult to represent (Telnarova, 2010). 
Table 8.2 displays the metadata that can be extracted from the logical model.

Although the previous methods use the logical model approach to con-
struct ontology, they do not profit from the benefits presented by this model. 
Therefore, we notice no differences between the previous approach and this 
approach due to two main reasons: they do not know the main basis behind 
the logical model, and they do not answer an important question that justi-
fies the choice of the approach, namely what is the aim of the work.
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Similarly to the direct conceptual model approach, the logical model 
approach does not handle the data structure. Therefore, the data migration and 
the data accessibility phases are missed. The data may remain in the RDB, and 
to access this data it must use the SAPRQL query language against the RDB. It 
is the same solution as is used in the direct conceptual model approach. The 
two methods already discussed generate the local ontology automatically.

8.4.3 Building Ontology from Physical Model

The RDB’s actual design blueprint is represented by the physical model. It is 
crucial to take into account the conventions and limitations of the DBMS used 
during designing a physical model because it describes how data should be 
organized and handled in particular DBMS.

Table 8.2 listed all the possible metadata we can obtain from this model. 
Fortunately, there are many publications in this area. The main difference 
between these methods is in the steps which each method follows to build 
ontology as well as the metadata extracted and mapping rules proposed.

All the methods described in Astrova et al. (2007), Bakkas et al. (2013), 
Buccella et al. (2004), Ghawi and Cullot (2007), Li et al. (2005), Nyulas et al. 
(2007), Sedighi and Javida (2012), Tirmizi et al. (2008), Yiqing et al. (2012), and 
Zhang and Li (2011) take into account the table mapping, columns mapping, 
primary key mapping, foreign key mapping. However, the binary relation-
ship is missed in Nyulas et al. (2007), Yiqing et al. (2012), and Zhang and Li 
(2011) in addition to the ternary relationship which is not manipulated in 
Bakkas et al. (2013), Ghawi and Cullot (2007), Nyulas et al. (2007), Yiqing et al. 
(2012), and Zhang and Li (2011). Only Astrova et al. (2007) and Buccella et al. 
(2004) can handle the check constraint, Not Null constraint, and unique con-
straint, whereas Li et al. (2005), Sedighi and Javidan (2012), Tirmizi et al. (2008), 
and Yiqing et al. (2012) can cover the cardinality constraint. Consequently, 
all the previous methods are implemented except Tirmizi et al. (2008) and 
Zhang and Li (2011).

The advantage and drawbacks defined by the logical model are also 
applied to the physical model. However, the physical model is more robust 
because it can add expressivity that is not available in the logical model. For 
example, attribute domains may be more specific, and many different sorts 
of constraints may be specified, either through the use of a column of table 
constraints or more sophisticated methods such as the use of triggers.

In contrast to the two previous approaches, the physical model approach 
takes in account the structure and content of the database whereas the concep-
tual model approach relies just on the structure. The structure means all the 
metadata that we can extract from the physical model as displayed in Table 8.2, 
whereas the content means the instances or the individuals of the database.

The main benefit of the physical model approach is that it can cover all the 
phases shown in Figure 8.3: Mapping Scheme, data migration, ontology result-
ing, and data accessibility. For the first phase, which is the mapping schema, all 
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the methods described above rely on automatic mapping. For the data migra-
tion phase Astrova et al. (2007), Bakkas et al. (2013), and Nyulas et al. (2007) 
follow the static migration, while Ghawi and Cullot (2007) cover the dynamic 
migration, but Buccella et al. (2004), Sedighi and Javidan (2012), Tirmizi et al. 
(2008), Yiqing et al. (2012), and Zhang and Li (2011) do not handle the data 
migration phase, which plays an important role in determining the type of the 
data accessibility that can be used to describe how the data is retrieved.

The type of ontology obtained after the mapping schema and the data migra-
tion is local ontology (Buccella et al., 2004; Sedighi & Javidan, 2012; Tirmizi 
et al., 2008; Yiqing et al., 2012; Zhang & Li, 2011). In fact, the quality of the ontol-
ogy obtained in this approach depends on the quality and sophistication of 
the data modeling effort. Therefore, if greater-scale interoperability is desired, 
the local ontology still needs to be integrated with a global domain ontology.

The last phase is data accessibility, which describes how the data is queried 
from the source. All the methods described above do not explain how the 
data is queried after the ontology construction except (Ghawi & Cullot, 2007), 
which relies on the SPARQL language query. Table 8.2 displays the metadata 
that can be extracted from the physical model as well as exhibits the differ-
ences and similarities between these methods based on the metadata pro-
vided by the ontology and physical models.

8.5 Data Migration

The mapping schema phase covered thus far involves analyzing the database 
schema in detail. However, the mapping schema is not sufficient to create 
ontology from the database because the RDB must include both schema infor-
mation and instances data which must be also addressed. Therefore, the way 
instances data is transformed into ontological instances is called data migra-
tion which is also referred to in the literature as Mapping Implementation or 
Data Exposition. Two methods can be applied to achieve the data migration 
phase, either static transformation or dynamic transformation.

8.5.1 Static Transformation

Static transformation generates an RDF graph from an RDB instance, in the 
same manner as data warehousing approaches using the ETL process. ETL is 
composed of three steps: extract, transform, and load. Data extraction means 
extracting data from the source followed by data transformation where the 
data is converted into the proper structure for storage purposes. Finally, data 
loading is performed where the data is loaded into the final target database 
in the triple store. Other terms used in the literature for a static transforma-
tion are data materialization, batch transformation, ETL, or massive dump.
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The major benefit of ETL is evident in data integration problems where large 
amounts of data from multiple sources can be centralized. However, the ETL 
process does not guarantee that the returned data is updated because of the 
absence of the data synchronization criteria and does not give access to the 
data in its original form. Therefore, to keep a copy of the original data, users 
must perform extract, load, and then transform (ELT). In this case, the data is 
extracted and loaded into the triple store, where the user can transform the 
data into a new state or leave it in its original format (Services, 2015).

ETL is a part of data migration, which is the process of moving data from 
the RDB into the RDF store, unlike Spanos et al. (2012) and Michel et al. (2014), 
which consider ETL as a part of the data accessibility process that explains 
how the requested data is accessed.

8.5.2 The Dynamic Transformation

As mentioned before, one of the main drawbacks of the ETL is that the query is 
not always executed against the most recent version of the data. Consequently, 
the dynamic transformation relies on data synchronization, which is neces-
sary if the data is regularly changed. In these scenarios, the data is stored in 
an RDB, and accessing it entails converting the SPARQL query into an SQL 
query, running it, and then converting the result back to the SPARQL.

The dynamic transformation suffers from some limitations concerning 
how to deal with the reasoning processing, including the execution of the 
inference rules (Michel et al., 2014; Press, 2008). An alternative term, on-
demand mapping, can be used to refer to dynamic transformation.

8.6 Data Accessibility Approaches

Independent how the ontology is constructed, data accessibility also known 
in the literature as data retrieval, query implementation, or access paradigm, 
defines how the data is queried from its source. Therefore, the ontology con-
tent can be accessed by using an ontology query language and linked data. 
In the following section, we concisely describe these methods.

8.6.1 Query-Based Access

Based on the resulting ontology from the mapping process, several query 
languages have been developed (Zhang & Miller, 2005) to handle the data 
stored either in the RDF store, where the data entity is composed of subject-
predicate-object, or in the RDB, where the RDF statement can be considered 
as a table with three columns: the subject column, the predicate column, and 
the object column. Early approaches suggested query languages rather than 
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SPARQL. Nevertheless, they were abandoned when SPARQL became the de-
facto standard (Alaoui, 2019).

8.6.2 Linked Data

The linked data access signifies that the mapping’s outcome is provided 
online on the web based on the principles of linked data (Wood et al., 2014): 
all URIs should employ the HTTP method and, when they are dereferenced, 
they give important information about the site they designate.

Each entity that is converted into RDF during the mapping process has an 
exclusive IRI that identifies it in the data graph. Using this IRI in an HTTP 
GET request, it ought to be feasible to dereference any such IRI following 
the linked data standards (Wood et al., 2014). The entity identified by the IRI 
should be represented in the HTTP response. Typically, the output format of 
the data is decided upon by the client and the web server during a routine 
HTTP content type negotiation process (Po et al., 2020).

8.7 Mapping Languages

The RDB-to-RDF mapping languages used to construct KGs from various 
sources of information, including RDBs, were compared based on a set of 
properties outlined in this section. These characteristics ought to serve as the 
foundation when choosing an RDB-to-RDF mapping language for a particu-
lar application situation (Hert et al., 2011).

8.7.1 The D2RQ Mapping Language

The “D2RQ Mapping Language” (Bizer & Cyganiak, 2006; Bizer & Seaborne, 
2004) is a declarative language used to describe the relationship between an 
RDFS vocabulary or OWL ontology and an RDB architecture. Without need-
ing to duplicate the content into an RDF store, D2RQ provides RDF-based 
access to RDB content. The mapping creates a virtual RDF graph from the 
database. This virtual graph is an RDF graph rather than a virtual relational 
table, which is comparable to the idea of views in SQL. Depending on the 
implementation, there are numerous ways to access the virtual RDF graph 
(Bizer & Seaborne, 2004).

8.7.2 Triplify (SQL Mapping Language)

Triplify (Auer et al., 2009) is a mapping language that is based on creating a 
configuration file that can be manually changed and improved by reusing 
terms from existing ontologies (Wood et al., 2014).



182 Semantic AI in Knowledge Graphs

8.7.3 R2O

R2O is a stand-alone high-level language that may be used with any DB that 
adheres to the SQL standard. R2O is designed to be sufficiently expressive to 
handle difficult mapping (Barrasa et al., 2004).

8.7.4 Relational.OWL

Relational.OWL is introduced by de Laborda and Conrad (2005). It defines 
an OWL Full ontology using as input the schema and data of an RDB. The 
goal of this mapping is data exchange in peer-to-peer databases. It defines 
mapping rules for tables, columns either as primary or foreign keys, and data 
types (McGuinness & Van Harmelen, 2004).

8.7.5 Virtuoso RDF Views (Meta Schema Language)

The Virtuoso RDF Views feature provides capability similar to D2RQ. The 
Virtuoso RDF Views feature provides capability similar to D2RQ. In the for-
mer, an RDFS ontology is created following the basic approach, while in the 
latter, a mapping expressed in the proprietary Virtuoso Meta-Schema lan-
guage is manually defined (Erling & Mikhailov, 2010).

8.7.6 eD2R

eD2R could handle normalized and non-normalized databases. It supports 
complex transformation on attribute values based on techniques such as key-
word search, regex matching, NLP (natural language processing), etc. The 
mappings have relied on SQL queries that extract instances from the RDB 
and transformation functions that can be applied to the constructed values 
(Barrasa et al., 2003).

8.7.7 R2RML

R2RML is used in the development of many RDB-to-RDF tools. It is based on 
mapping document called R2RML mapping graph. This document is written 
in RDF with the Turtle syntax serialization. R2RML supports both transfor-
mative mapping and the direct mapping. Furthermore, it supports virtual 
mapping and data materialization (de Medeiros et al., 2015).

8.7.8 RML

The RDF Mapping Language (RML) is an improved version of R2RML 
(World Wide Web Consortium, 2012) that can support not only RDB but also 
other data formats such as CSV, TSV, XML, JSON (Dimou et al., 2014).
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8.8 Mapping Languages Comparison Criteria

To create an effective comparison between the mappings languages described 
above, we introduced a set of criteria. These criteria represent a set of features 
that each mapping language supports (Table 8.3). We can enumerate 15 fea-
tures (Hert et al., 2011).

8.8.1 Comparison Criteria

F1. Logical Table to Class: The RDF statements are constructed from 
RDB due to an SQL query. This SQL query could be a view that is 
already embedded in RDB or could be the base table. Therefore, the 
result of the SQL query is called a Logical Table (Neto et al., 2013).

F2. Many-To-Many Relationships: To describe Many-To-Many rela-
tionships between tables in RDBs, a unique construct known as join 
tables is required. Therefore, RDF properties should be used to map 
join tables that are resulted from a many-to-many relationship (Hert 
et al., 2011).

F3. Project Attributes: Some attributes may be irrelevant or sensitive 
such as a password. In this case, the mechanism of project attributes 
should be applied to filter data and select only the relevant portion 
(Neto et al., 2013).

F4. Select Conditions: Some data may be outdated and should not be 
transformed into RDF representation. For this reason, the mecha-
nism of applying conditions is created to filter only relevant pieces of 
information (Hert et al., 2011).

F5. User-Defined Instance IRIs: Instances from RDB are transformed 
into RDF instances with IRIs as their identifiers. This feature allows 

TABLE 8.3

Mapping Languages Comparison 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

Direct mapping Y N N N N N N N N N N N N N Y
Relational.owl Y N Y N N N N N Y N Y Y N N Y
Virtuoso Y Y Y Y Y Y Y Y Y Y Y Y N Y N
D2RQ Y Y Y Y Y Y Y Y Y N Y Y Y Y N
Triplify Y Y Y Y Y Y Y Y Y N N Y N Y N
R2RML Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
RML Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
eD2R Y Y Y Y Y Y Y Y Y N Y Y N Y N
R2O Y N Y Y Y Y Y Y Y N Y Y N Y N

Source: Adopted from Hert et al. (2011).
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the user to identify the form of the IRI. At the same time, the user 
could create these IRIs relying on the RDB schema and instances 
(Hert et al., 2011).

F6. Literal to IRI: The possibility of creating IRIs from literal values is 
ensured thanks to this feature (Hert et al., 2011).

F8. Transformation Functions: Some attributes that resided in RDB may 
demand specific treatments before converting them into RDF repre-
sentation such as temperature that can be in Centigrade inside RDB 
but the RDF requirements want it as Fahrenheit value. Therefore, to 
ensure this functionality, a set of functions are constructed to per-
form the desired transformation (Hert et al., 2011).

F9. Data Types: This feature allows data typing such as int, float, dou-
ble, etc. Thanks to this feature, the process of mapping the data types 
from RDB to RDF is achieved (Hert et al., 2011).

F10. Named Graphs: RDF data sets may have numerous named graphs. 
Therefore, a mapping may assign particular RDB components to a 
specific named graph (Hert et al., 2011).

F11. Blank Nodes: According to Antoniou and Van Harmelen (2004) 
blank nodes are a type of existential quantification that is used in 
RDF to describe instances that lack an RDF URI reference identifier 
(Hert et al., 2011).

F12. Integrity Constraints: This feature is helpful to identify mapping 
rules that are responsible to distinguish between RDB constraints 
(PK, FK, etc.) and RDF constraints (Hert et al., 2011).

F13. Static Metadata: This feature is helpful to track the source of data 
(provenance) and how the data should be used (licensing informa-
tion) (Hert et al., 2011).

F14. A Table to Many Classes: In the cases where the RDB is not nor-
malized. The table could be mapped multiple times and each time 
with a different set of attributes (Hert et al., 2011).

F15. Write Support: The mapping languages should support write 
access (Hert et al., 2011).

8.9 Conclusion

In this chapter, we have presented a detailed state-of-art of construction 
ontology from RDB. In fact, three main steps have been presented over the 
last years to enable the construction of ontology from the RDB. These steps 
are automatic mapping, semi-automatic mapping, and manual mapping. 
We then highlighted the main methods that we can face when we deal with 
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an RDB as a source of information to build ontology. Independently of the 
way a transformation is implemented, the migration of the instances from 
the RDB to the ontology can be retrieved using two main methods: static 
 transformation and dynamic transformation. We then described how the 
resulted can be exploited by sending a query to a query processing engine 
or using the linked data paradigm. The choice of the appropriate method 
largely depends on how the data should be exploited.

In order to make the transformation process solid and respect standards, 
a set of mapping languages are proposed in the literature. In this context, 
we presented the main languages that we can use to convert the RDB to KG. 
W3C recognized this gap and proposed R2RML language as a representa-
tion language for RDB to KG mapping. R2RML is currently under develop-
ment, it is expected to be adopted by software tools in the near future. Other 
languages are presented and a relevant comparison is created in order to 
show the robustness of the R2RML language. More precisely, we enumerate 
15 features that each mapping language covered.
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