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Chapter 1. Introduction

Docker was first introduced to the world—with no pre-
announcement and little fanfare—by Solomon Hykes, founder
and CEO of a company then called dotCloud, in a five-minute
lightning talk at the Python Developers Conference in Santa
Clara, California on March 15, 2013. At the time of this
announcement, only about 40 people outside of dotCloud had
been given the opportunity to play with Docker.

Within a few weeks of this announcement, there was a
surprising amount of press. The project was quickly open-
sourced and made publicly available on GitHub, where anyone
could download and contribute to the project. Over the next
few months, more and more people in the industry started
hearing about Docker and how it was going to revolutionize the
way software was built, delivered, and run. And within a year,
almost no one in the industry was unaware of Docker, but
many were still unsure what it was exactly, and why people
were so excited about it.

Docker is a tool that promises to easily encapsulate the process
of creating a distributable artifact for any application,
deploying it at scale into any environment, and streamlining

https://youtu.be/wW9CAH9nSLs
https://us.pycon.org/
https://github.com/moby/moby


the workflow and responsiveness of agile software
organizations.

The Promise of Docker

Initially, many people who were unfamiliar with Docker viewed
it as some sort of virtualization platform, but in reality, it was
the first widely accessible tool to build on top of a much newer
technology called containerization. Docker and Linux
containers have had a significant impact on a wide range of
industry segments that include tools and technologies like
Vagrant, KVM, OpenStack, Mesos, Capistrano, Ansible, Chef,
Puppet, and so on. There is something very telling about the list
of products that have had their market share directly impacted
by Docker, and maybe you’ve spotted it already. Looking over
this list most engineers would recognize that these tools span a
lot of different use cases, yet all of these workflows have been
forever changed by Docker. This is largely because Docker has
significantly altered everyone’s expectations of how a CI/CD
workflow should function. Instead of each step involving a
time-consuming process managed by specialists, most people
expect a DevOps pipeline to be fully automated and flow from
one step to the next without any human intervention. The
technologies in that list are also generally acclaimed for their
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ability to improve productivity, and that’s exactly what has
given Docker so much buzz. Docker sits right in the middle of
some of the most enabling technologies of the last decade and
can bring significant improvements to almost every step of the
pipeline.

If you were to do a feature-by-feature comparison of Docker
and the reigning champion in any of these individual areas (e.g.
configuration management), Docker would very likely look like a
middling competitor. It’s stronger in some areas than others,
but what Docker brings to the table is a feature set that crosses
a broad range of workflow challenges. By combining the ease of
application testing and deployment tools like Vagrant and
Capistrano with the ease of administrating virtualization
systems, and then providing interfaces that make workflow
automation and orchestration easy to implement, Docker
provides a very enabling feature set.

Lots of new technologies come and go, and a dose of skepticism
about the newest rage is always healthy. When Docker was a
new technology it would have been easy to dismiss Docker as
just another technology that solves a few very specific problems
for developers or operations teams. If you look at Docker as a
pseudo-virtualization or deployment technology alone, it might



not seem very compelling. But Docker is much more than it
seems on the surface.

It is hard and often expensive to get communication and
processes right between teams of people, even in smaller
organizations. Yet we live in a world where the communication
of detailed information between teams is increasingly required
to be successful. Discovering and implementing a tool that
reduces the complexity of that communication while aiding in
the production of more robust software is a big win. And that’s
exactly why Docker merits a deeper look. It’s no panacea, and
the way that you implement Docker within your organization
requires some critical thought, but Docker and Linux
containers provide a good approach to solving some real-world
organizational problems and helping to enable companies to
ship better software faster. Delivering a well-designed Linux
container workflow can lead to happier technical teams and
real savings for the organization’s bottom line.

So where are companies feeling the most pain? Shipping
software at the speed expected in today’s world is hard to do
well, and as companies grow from one or two developers to
many teams of developers, the burden of communication
around shipping new releases becomes much heavier and
harder to manage. Developers have to understand a lot of



complexity about the environment they will be shipping
software into, and production operations teams need to
increasingly understand the internals of the software they ship.
These are all generally good skills to work on because they lead
to a better understanding of the environment as a whole and
therefore encourage the designing of robust software, but these
same skills are very difficult to scale effectively as an
organization’s growth accelerates.

The details of each company’s environment often require a lot
of communication that doesn’t directly build value for the
teams involved. For example, requiring developers to ask an
operations team for release 1.2.1 of a particular library slows
them down and provides no direct business value to the
company. If developers could simply upgrade the version of the
library they use, write their code, test with the new version, and
ship it, the delivery time would be measurably shortened and
fewer risks would be involved in deploying the change. If
operations engineers could upgrade software on the host
system without having to coordinate with multiple teams of
application developers, they could move faster. Docker helps to
build a layer of isolation in software that reduces the burden of
communication in the world of humans.



Beyond helping with communication issues, Docker is
opinionated about software architecture in a way that
encourages more robustly crafted applications. Its architectural
philosophy centers on atomic or throwaway containers. During
deployment, the whole running environment of the old
application is thrown away with it. Nothing in the environment
of the application will live longer than the application itself,
and that’s a simple idea with big repercussions. It means that
applications are not likely to accidentally rely on artifacts left
by a previous release. It means that ephemeral debugging
changes are less likely to live on in future releases that picked
them up from the local filesystem. And it means that
applications are highly portable between servers because all of
the state has to be included directly into the deployment artifact
and be immutable, or sent to an external dependency like a
database, cache, or file server.

All of this leads to applications that are not only more scalable
but more reliable as well. Instances of the application container
can come and go with little impact on the uptime of the
frontend site. These are proven architectural choices that have
been successful for non-Docker applications, but the design
choices enforced by Docker mean that containerized
applications are required to follow these best practices. And
that’s a very good thing.



Benefits of the Docker Workflow

It’s hard to cohesively categorize all of the things Docker brings
to the table. When implemented well, it benefits organizations,
teams, developers, and operations engineers in a multitude of
ways. It makes architectural decisions simpler because all
applications essentially look the same on the outside from the
hosting system’s perspective. It makes tooling easier to write
and share between applications. Nothing in this world comes
with benefits and no challenges, but Docker is surprisingly
skewed toward the benefits. Here are some more of the benefits
you get with Docker and Linux containers:

Packaging software in a way that leverages the skills
developers already have
Many companies have had to create positions for release and
build engineers in order to manage all the knowledge and
tooling required to create software packages for their
supported platforms. Linux tools like rpm , mock , dpkg , and
pbuilder  can be complicated to use, and each one must be
learned independently. Docker wraps up all your
requirements together into one packaging format, known as
the Open Container Image (OCI) standard.

https://opencontainers.org/


Bundling application software and required OS filesystems
together in a single standardized image format
In the past, you typically needed to package not only your
application but also many of the dependencies that it relied
on, including libraries and daemons. However, you could
never ensure that 100 percent of the execution environment
was identical. For natively compiled code, this meant that
your build system needed to have exactly the same versions
of shared libraries as your production environment. All of
this made packaging difficult to master, and hard for many
companies to accomplish reliably. Often someone running
Scientific Linux would resort to trying to deploy a
community package tested on Red Hat Enterprise Linux,
hoping that the package was close enough to what they
needed. With Docker, you deploy your application along with
every single file required to run it. Docker’s layered images
make this an efficient process that ensures that your
application is running in the expected environment.

Using packaged artifacts to test and deliver the exact same
artifact to all systems in all environments
When developers commit changes to a version control
system, a new Docker image can be built, which can go
through the whole testing process and be deployed to

https://scientificlinux.org/
https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux


production without having to be recompiled or repackaged
at any step in the process, unless that is specifically desired.

Abstracting software applications from the hardware without
sacrificing resources
Traditional enterprise virtualization solutions like VMware
are typically used when people need to create an abstraction
layer between the physical hardware and the software
applications that run on it, at the cost of resources. The
hypervisors that manage the VMs and each VM’s running
kernel use a percentage of the hardware system’s resources,
which are then no longer available to the hosted
applications. A container, on the other hand, is just another
process that typically talks directly to the underlying Linux
kernel and therefore can utilize more resources, up until the
system or quota-based limits are reached.

When Docker was first released, Linux containers had been
around for quite a few years, and many of the other
technologies that Docker is built on are not entirely new.
However, Docker’s unique mix of strong architectural and
workflow choices combines into a whole that is much more
powerful than the sum of its parts. Docker single-handedly
made Linux containers, which have been publicly available
since 2008, approachable and useful for all computer engineers.



Docker fits containers relatively easily into the existing
workflow and processes of real companies. And the problems
discussed earlier have been felt by so many people that interest
in the Docker project accelerated much faster than anyone
could have reasonably expected.

From a standing start in 2013, Docker has seen rapid iteration
and now has a huge feature set and is deployed in a vast
number of production infrastructures across the planet. It has
become one of the foundation layers for any modern
distributed system and has inspired many others to expand on
the approach. A large number of companies now leverage
Docker and Linux containers as a solution to some of the
serious complexity issues that they face in their application
delivery processes.

What Docker Isn’t

Docker can be used to solve a wide range of challenges that
other categories of tools have traditionally been enlisted to fix;
however, Docker’s breadth of features often means that it lacks
depth in specific functionality. For example, some organizations
will find that they can completely remove their configuration
management tool when they migrate to Docker, but the real



power of Docker is that although it can replace some aspects of
more traditional tools, it is also usually compatible with them or
even enhanced in combination with them. In the following list,
we explore some of the tool categories that Docker doesn’t
directly replace but that can often be used in conjunction to
achieve great results:

Enterprise virtualization platform (VMware, KVM, etc.)
A container is not a virtual machine in the traditional sense.
Virtual machines contain a complete operating system,
running on top of a hypervisor that is managed by the
underlying host operating system. Hypervisors create virtual
hardware layers that make it possible to run additional
operating systems on top of a single physical computer
system. This makes it very easy to run many virtual
machines with radically different operating systems on a
single host. With containers, both the host and the containers
share the same kernel. This means that containers utilize
fewer system resources but must be based on the same
underlying operating system (e.g. Linux).

Cloud platform (OpenStack, CloudStack, etc.)
Like enterprise virtualization, the container workflow shares
a lot of similarities— on the surface— with more traditional
cloud platforms. Both are traditionally leveraged to allow



applications to be horizontally scaled in response to changing
demand. Docker, however, is not a cloud platform. It only
handles deploying, running, and managing containers on
preexisting Docker hosts. It doesn’t allow you to create new
host systems (instances), object stores, block storage, and the
many other resources that are often managed with a cloud
platform. That being said, as you start to expand your Docker
tooling, you should start to experience more and more of the
benefits that one traditionally associates with the cloud.

Configuration management (Puppet, Chef, etc.)
Although Docker can significantly improve an organization’s
ability to manage applications and their dependencies, it
does not directly replace more traditional configuration
management. Dockerfiles are used to define how a container
should look at build time, but they do not manage the
container’s ongoing state, and cannot be used to manage the
Docker host system. Docker can, however, significantly lessen
the need for complex configuration management code. As
more and more servers simply become Docker hosts, the
configuration management codebase that a company uses
can become much smaller, and Docker can be used to ship
the more complex application requirements inside of
standardized OCI images.



Deployment framework (Capistrano, Fabric, etc.)
Docker eases many aspects of deployment by creating
container images that encapsulate all the dependencies of an
application in a manner that can be deployed, in all
environments, without changes. However, Docker can’t be
used to automate a complex deployment process by itself.
Other tools are usually still needed to stitch together the
larger workflow. That being said, because Docker and other
Linux container toolsets, like Kubernetes, provide a well-
defined interface for deployment, the method required to
deploy containers will be consistent on all hosts, and a single
deployment workflow should suffice for most, if not all, of
your Docker-based applications.

Development environment (Vagrant, etc.)
Vagrant is a virtual machine management tool for developers
that is often used to simulate server stacks that closely
resemble the production environment in which an
application is destined to be deployed. Among other things,
Vagrant makes it easy to run Linux software on macOS and
Windows-based workstations. Virtual machines managed by
tools like Vagrant, assist developers in trying to avoid the
common “It worked on my machine” scenario that occurs
when the software runs fine for the developer but does not
run properly elsewhere. However, as with many of the



previous examples, when you start to fully utilize Docker,
there is a lot less need to mimic a wide variety of production
systems in development, since most production systems will
simply be Linux container servers, which can easily be
reproduced locally.

Workload management tool (Mesos, Kubernetes, Swarm, etc.)
An orchestration layer (including the built-in Swarm mode)
must be used to coordinate work across a pool of Linux
container hosts, track the current state of all the hosts and
their resources, and keep an inventory of running
containers. These systems are designed to automate the
regular tasks that are needed to keep a production cluster
healthy, while also providing tools that help make the highly-
dynamic nature of containerized workloads easier for
human beings to interact with.

Each of the above sections point out an important function that
Docker and Linux containers disrupted and improved. Linux
containers provide a way to run software in a controlled and
isolated environment, while the easy-to-use CLI  tooling and
container image standard that Docker introduced, made
working with containers much easier, and ensured that there
was a repeatable way to build software across the whole fleet.
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Important Terminology

Here are a few terms that we will continue to use throughout
the book and whose meanings you should become familiar
with:

Docker client
This is the docker  command used to control most of the
Docker workflow and talk to remote Docker servers.

Docker server
This is the dockerd  command that is used to start the Docker
server process that builds and launches containers via a
client.

Docker or OCI images
Docker and OCI images consist of one or more filesystem
layers and some important metadata that represent all the
files required to run a containerized application. A single
image can be copied to numerous hosts. An image typically
has a repository address, a name, and a tag. The tag is
generally used to identify a particular release of an image
(e.g. docker.io/superorbital/wordchain:v1.0.1). A Docker image
is any image that is compatible with the Docker toolset, while
an OCI image is specifically an image that meets the Open



Container Initiative standard and is guaranteed to work with
any OCI-compliant tool.

Linux container
A container that has been instantiated from a Docker or OCI
image. A specific container can exist only once; however, you
can easily create multiple containers from the same image.
The term Docker container is a misnomer since Docker
simply leverages the operating system’s container
functionality.

Atomic or immutable host
An atomic or immutable host is a small, finely tuned OS
image, like Fedora CoreOS, that supports container hosting
and atomic OS upgrades.

Wrap-Up

Completely understanding Docker can be challenging when you
are coming at it without a strong frame of reference. In the next
chapter, we will lay down a broad overview of Docker: what it
is, how it is intended to be used, and what advantages it brings
to the table when implemented with all this in mind.

https://getfedora.org/en/coreos
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Chapter 2. The Docker Landscape

Before you dive into configuring and installing Docker, a broad
survey is in order to explain what Docker is and what it brings
to the table. It is a powerful technology, but not a tremendously
complicated one at its core. In this chapter, we’ll cover the
generalities of how Docker and Linux containers works, what
makes them powerful, and some of the reasons you might use
them. If you’re reading this, you probably have your reasons to
use containers, but it never hurts to augment your
understanding before you jump in.

Don’t worry—this chapter should not hold you up for too long.
In the next chapter, we’ll dive right into getting Docker installed
and running on your system.

Process Simplification

Because Docker is a piece of software, it may not be obvious
that it can also have a big positive impact on company and team
processes if it is adopted and implemented well. So, let’s dig in
and see how Docker and Linux containers can simplify both
workflows and communication. This usually starts with the
deployment story. Traditionally, the cycle of getting an



application to production often looks something like the
following (illustrated in Figure 2-1):

1. Application developers request resources from operations
engineers.

2. Resources are provisioned and handed over to developers.
3. Developers script and tool their deployment.
4. Operations engineers and developers tweak the deployment

repeatedly.
5. Additional application dependencies are discovered by

developers.
6. Operations engineers work to install the additional

requirements.
7. Loop over steps 5 and 6 n more times.
8. The application is deployed.



Figure 2-1. A traditional deployment workflow (without Docker)

Our experience has shown that when you are following
traditional processes, deploying a brand new application into
production can take the better part of a week for a complex
new system. That’s not very productive, and even though
DevOps practices work to alleviate many of the barriers, it often
still requires a lot of effort and communication between teams
of people. This process can be both technically challenging and
expensive, but even worse, it can limit the kinds of innovation
that development teams will undertake in the future. If
deploying new software is hard, time-consuming, and
dependent on resources from another team, then developers



may just build everything into the existing application in order
to avoid suffering the new deployment penalty, or even worse
they may simply avoid solving problems that require new
development efforts.

Push-to-deploy systems like Heroku have shown developers
what the world can look like if you are in control of your
application and a majority of your dependencies. Talking with
developers about deployment will often turn up discussions of
how easy things are on Heroku or similar systems. If you’re an
operations engineer, you’ve probably heard complaints about
how much slower your internal systems are compared with
deploying on “push-button” solutions like Heroku, which are
built on top of Linux container technology.

Heroku is a whole environment, not just a container engine.
While Docker doesn’t try to be everything that is included in
Heroku, it provides a clean separation of responsibilities and
encapsulation of dependencies, which results in a similar boost
in productivity. Docker also allows even more fine-grained
control than Heroku by putting developers in control of
everything, down to the exact files and package versions that
ship alongside their application. Some of the tooling and
orchestrators that have been built on top of Docker (e.g.,
Kubernetes, Docker Swarm mode, and Mesos) aim to replicate

https://www.heroku.com/


the simplicity of systems like Heroku. But even though these
platforms wrap more around Docker to provide a more capable
and complex environment, a simple platform that uses only
Docker still provides all of the core process benefits without the
added complexity of a larger system.

As a company, Docker adopts an approach of “batteries
included but removable.” This means that they want their tools
to come with everything most people need to get the job done,
while still being built from interchangeable parts that can
easily be swapped in and out to support custom solutions.

By using an image repository as the hand-off point, Docker
allows the responsibility of building the application image to be
separated from the deployment and operation of the container.
What this means in practice is that development teams can
build their application with all of its dependencies, run it in
development and test environments, and then just ship the
exact same bundle of application and dependencies to
production. Because those bundles all look the same from the
outside, operations engineers can then build or install standard
tooling to deploy and run the applications. The cycle described
in Figure 2-1 then looks somewhat like this (illustrated in
Figure 2-2):



1. Developers build the Docker image and ship it to the registry.
2. Operations engineers provide configuration details to the

container and provision resources.
3. Developers trigger deployment.

Figure 2-2. A Docker deployment workflow

This is possible because Docker allows all of the dependency
issues to be discovered during the development and test cycles.
By the time the application is ready for its first deployment, that
work has already been done. And it usually doesn’t require as
many handoffs between the development and operations
teams. In a well-refined pipeline, this can completely alleviate
the need for anyone other than the development team to be



involved in the creation and deployment of a new service.
That’s a lot simpler and saves a lot of time. Better yet, it leads to
more robust software through testing of the deployment
environment before release.

Broad Support and Adoption

Docker is well supported, with the majority of the large public
clouds offering some direct support for it. For example, Docker
and Linux containers have been used in AWS via multiple
products like Elastic Container Service (ECS), Elastic Kubernetes
Service (EKS), Fargate, and Elastic Beanstalk. Linux containers
can also be used on Google AppEngine, Google Kubernetes
Engine, Red Hat OpenShift, IBM Cloud, Microsoft Azure, and
many more. At DockerCon 2014, Google’s Eric Brewer
announced that Google would be supporting Docker as its
primary internal container format. Rather than just being good
PR for these companies, what this meant for the Docker
community was that a lot of money began to back the stability
and success of the Docker platform.

Further building its influence, Docker’s image format for Linux
containers has become the lingua franca between cloud
providers, offering the potential for “write once, run anywhere”



cloud applications. When Docker released their libswarm
development library, an engineer from Orchard demonstrated
deploying a Linux container to a heterogeneous mix of cloud
providers at the same time. This kind of orchestration had not
been easy before because every cloud provider provided a
different API or toolset for managing instances, which were
usually the smallest item you could manage with an API. What
was only a promise from Docker in 2014 has since become fully
mainstream as the largest companies continue to invest in the
platform, support, and tooling. With most providers offering
some form of Docker and Linux container orchestration as well
as the container runtime itself, Docker is well-supported for
nearly any kind of workload in common production
environments. If all of your tooling is built around Docker and
Linux containers then your applications can be deployed in a
cloud-agnostic manner, allowing for new flexibility that was not
previously possible.

In 2017 Docker donated their containerd runtime to the Cloud
Native Computing Foundation (CNCF) and in 2019 it was
elevated to the graduated project status.

Today the use of Linux containers in development, delivery, and
production is bigger than ever. In 2022, we can see that Docker
has started to lose a share of the server market to the newest

https://thenewstack.io/docker-donate-container-runtime-containerd-cloud-native-computing-foundation/
https://www.cncf.io/


versions of Kubernetes which no longer require the Docker
daemon, but even these releases of Kubernetes rely very
heavily on the containerd runtime, which was initially
developed by Docker. Docker also continues to have a very
strong presence in many developer and CI/CD workflows.

So, what about OS vendor support and adoption? The Docker
client runs directly on most major operating systems, and the
server can run on Linux or Windows Server. The vast majority
of the ecosystem is built around Linux servers, but other
platforms are increasingly being supported. The beaten path is
and will likely continue to revolve around Linux servers
running Linux containers.

NOTE

It is possible to run Windows containers natively (without a VM) on 64-bit versions of
Windows Server 2016+. However, 64-bit versions of Windows 10+ Professional still
require Hyper-V to provide the Windows Server kernel that is used for Windows
containers. We will dive into a little more detail about this in “Windows Containers”.

It is also worth noting here that Windows can run Linux containers outside a virtual
machine, by leveraging WSL 2 (Windows Subsystem for Linux, version 2).

To support the growing demand for Docker tooling in
development environments, Docker has released easy-to-use



implementations for macOS and Windows. These appear to run
natively but are still utilizing a small Linux virtual machine to
provide the Docker server and Linux kernel. Docker has
traditionally been developed on the Ubuntu Linux distribution,
but most Linux distributions and other major operating systems
are now supported where possible. RedHat, for example, has
gone all-in on containers and all of their platforms have first-
class support for Docker. With the near-ubiquity of containers
in the Linux realm, we now have distributions like Red Hat’s
Fedora CoreOS, which is built entirely for Linux container
workloads.

In the first years after Docker’s release, a set of competitors and
service providers voiced concerns about Docker’s proprietary
image format. Containers on Linux did not have a standard
image format, so Docker, Inc., created its own according to the
needs of its business.

Service providers and commercial vendors were particularly
reluctant to build platforms that might be subject to the whims
of a company with overlapping interests to their own. Docker as
a company faced some public challenges in that period as a
result. To gain some goodwill and support wider adoption in the
marketplace, Docker, Inc., decided to help sponsor the Open
Container Initiative (OCI) in June of 2015. The first full

https://www.opencontainers.org/


specification from that effort was released in July 2017 and was
based in large part on version 2 of the Docker image format. It
is now possible to apply for OCI certification for both container
images and container runtimes.

The primary high-level OCI-certified runtime is:

containerd, which is the default high-level runtime in
modern versions of Docker and Kubernetes.

These lower-level OCI-certified runtimes can be used by
containerd to manage and create containers:

runC, is often used as the default lower-level runtime by
containerd.
crun, which is written in C, and designed to be fast and have
a small memory footprint.
Kata Containers from Intel, Hyper, and the OpenStack
Foundation, is a virtualized runtime, that can run a mix of
containers and virtual machines.
gVisor from Google, is a sandboxed runtime, implemented
entirely in user space.
and Nabla Containers, provide another sandboxed runtime
designed to significantly reduce the attack surface of Linux
containers.

https://containerd.io/
https://github.com/opencontainers/runc
https://github.com/containers/crun
https://katacontainers.io/
https://github.com/google/gvisor
https://nabla-containers.github.io/


The space around deploying containers and orchestrating
entire systems of containers continues to expand, too. Many of
these are open source and available both on-premise and as
cloud or SaaS  offerings from various providers, either in their
clouds or yours. Given the amount of investment continuing to
pour into the Linux container space, it’s likely that Docker will
continue to have an important role in the modern internet.

Architecture

Docker is a powerful technology, and that often indicates both
tools and processes that come with a high level of complexity.
And, under the hood, Docker is fairly complex; however, its
fundamental user-facing structure is indeed a simple
client/server model. Several pieces are sitting behind the
Docker API, including containerd  and runc , but the basic
system interaction is a client talking over an API to a server.
Underneath this simple exterior, Docker heavily leverages
kernel mechanisms such as iptables, virtual bridging, cgroups ,
namespaces , Linux capabilities, secure computing mode,
various filesystem drivers, and more. We’ll talk about some of
these in Chapter 11. For now, we’ll go over how the client and
server work and give a brief introduction to the network layer
that sits underneath a Linux container in Docker.

1
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Client/Server Model

It’s easiest to think of Docker as consisting of two parts: the
client and the server/daemon (see Figure 2-3). Optionally there
is a third component called the registry, which stores Docker
images and their metadata. The server does the ongoing work
of building, running, and managing your containers, and you
use the client to tell the server what to do. The Docker daemon
can run on any number of servers in the infrastructure, and a
single client can address any number of servers. Clients drive
all of the communication, but Docker servers can talk directly
to image registries when told to do so by the client. Clients are
responsible for telling servers what to do, and servers focus on
hosting and managing containerized applications.

Figure 2-3. Docker client/server model

https://bit.ly/1Bttd5s


Docker is a little different in structure from some other
client/server software. It has a docker  client and a dockerd
server, but rather than being entirely monolithic, the server
then orchestrates a few other components behind the scenes on
behalf of the client, including containerd-shim-runc-v2 ,
which is used to interact with runc  and containerd . Docker
cleanly hides any complexity behind the simple server API,
though, so you can just think of it as a straight-forward client
and server for most purposes. Each Docker host will normally
have one Docker server running that can manage any number
of containers. You can then use the docker  command-line tool
to talk to the server, either from the server itself or, if properly
secured, from a remote client. We’ll talk more about that
shortly.

Network Ports and Unix Sockets

The docker  command-line tool and dockerd  daemon can talk
to each other over Unix sockets and network ports. Docker, Inc.,
has registered three ports with the Internet Assigned Numbers
Authority (IANA) for use by the Docker daemon and client: TCP
ports 2375 for unencrypted traffic, port 2376 for encrypted SSL
connections, and port 2377 for Docker Swarm mode. Using a
different port is easily configurable for scenarios where you

https://www.iana.org/


need to use different settings. The default setting for the Docker
installer is to only use a Unix socket for communication with
the local Docker daemon. This ensures that the system defaults
to the most secure installation possible. This is also easily
configurable, but it is highly recommended that network ports
are not used with Docker, due to the lack of user authentication
and role-based-access controls within the Docker daemon. The
Unix socket can be located in different paths on different
operating systems, but in most cases, it can be found here:
/var/run/docker.sock. If you have strong preferences for a
different location, you can usually specify this at install time or
simply change the server configuration afterward and restart
the daemon. If you don’t, then the defaults will probably work
for you. As with most software, following the defaults will save
you a lot of trouble if you don’t need to change them.

Robust Tooling

Among the many things that have led to Docker’s strong
adoption is its simple and powerful tooling. Since its initial
release, its capabilities have been expanding ever wider, thanks
to efforts from the Docker community at large. The tooling that
Docker ships with supports building Docker images, basic
deployment to individual Docker daemons, a distributed mode



called Swarm mode, and all the functionality needed to manage
a remote Docker server. Beyond the included Swarm mode,
community efforts have focused on managing whole fleets (or
clusters) of Docker servers and scheduling and orchestrating
container deployments.

NOTE

When we talk about Docker Swarm or Swarm mode, in the book, we are referring to
the built-in Swarm functionality in the Docker client and server, which leverages
another underlying library called Swarmkit. When searching for articles on the
Internet, you may find references to an older standalone version of Docker Swarm,
which is often referred to as Docker Swarm “Classic”, nowadays.

Docker has also launched its own orchestration toolset,
including Compose, Docker Desktop and Swarm mode, which
creates a cohesive deployment story for developers. Docker’s
offerings in the production orchestration space have been
largely overshadowed by Google’s Kubernetes, although it
should be noted that Kubernetes relied heavily on Docker until
v1.24 was released in early 2022. But Docker’s orchestration
tools remain useful, with Compose being particularly handy for
local development.

Because Docker provides both a command-line tool and a
remote REST API, it is easy to add further tooling in any

https://docs.docker.com/engine/swarm/
https://github.com/docker-archive/classicswarm
https://github.com/docker/compose
https://www.docker.com/products/docker-desktop/
https://docs.docker.com/engine/swarm/
https://kubernetes.io/blog/2020/12/02/dockershim-faq/


language. The command-line tool lends itself well to shell
scripting and anything the client can do can also be done
programmatically via the REST API. The docker CLI  is so well
known that many other Linux container CLI tools, like podman
and nerdctl, mimic its arguments for compatibility and easy
adoption.

Docker Command-Line Tool

The command-line tool docker  is the main interface that most
people will have with Docker. The Docker client is a Go program
that compiles and runs on all common architectures and
operating systems. The command-line tool is available as part of
the main Docker distribution on various platforms and also
compiles directly from the Go source. Some of the things you
can typically do with the Docker command-line tool include, but
are not limited to:

Building a container image.
Pulling images from a registry to a Docker daemon or
pushing them up to a registry from the Docker daemon.
Starting a container on a Docker server either in the
foreground or background.
Retrieving the Docker logs from a remote server.
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Interactively running a command inside a running container
on a remote server.
Monitoring statistics about your container.
Getting a process listing from your container.

You can probably see how these can be composed into a
workflow for building, deploying, and observing applications.
But the Docker command-line tool is not the only way to
interact with Docker, and it’s not necessarily the most powerful.

Docker Engine API

Like many other pieces of modern software, the Docker daemon
has an application programming interface (API). This is in fact
what the Docker command-line tool uses to communicate with
the daemon. But because the API is documented and public, it’s
quite common for external tooling to use the API directly. This
enables all manners of tooling, from mapping deployed Linux
containers to servers, to automated deployments, to distributed
schedulers. While it’s very likely that beginners will not initially
want to talk directly to the Docker API, it’s a great tool to have
available. As your organization embraces Docker over time, you
will increasingly find the API to be a good integration point for
this tooling.



Extensive documentation for the API is on the Docker site. As
the ecosystem has matured, robust implementations of Docker
API libraries have emerged for all popular languages. Docker
maintains SDKs for Python and Go, there are additional
libraries maintained by third parties that are worth
considering. For example, over the years we have used these Go
and Ruby libraries, and have found them to be both robust and
rapidly updated as new versions of Docker are released.

Most of the things you can do with the Docker command-line
tooling are supported relatively easily via the API. Two notable
exceptions are the endpoints that require streaming or terminal
access: running remote shells or executing the container in
interactive mode. In these cases, it’s often easier to use one of
these solid client libraries or the command-line tool.

Container Networking

Even though Linux containers are largely made up of processes
running on the host system itself, they usually behave quite
differently from other processes at the network layer. Docker
initially supported a single networking model, but now
supports a robust assortment of configurations that handle
most application requirements. Most people run their

https://dockr.ly/2wxCHnx
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containers in the default configuration, called bridge mode. So
let’s take a look at how it works.

To understand bridge mode, it’s easiest to think of each of your
Linux containers as behaving like a host on a private network.
The Docker server acts as a virtual bridge and the containers
are clients behind it. A bridge is just a network device that
repeats traffic from one side to another. So you can think of it
like a mini–virtual network with each container acting like a
host attached to that network.

The actual implementation, as shown in Figure 2-4, is that each
container has a virtual Ethernet interface connected to the
Docker bridge and an IP address allocated to the virtual
interface. Docker lets you bind and expose individual or groups
of ports on the host to the container so that the outside world
can reach your container on those ports. The traffic is largely
managed by the vpnkit library .

Docker allocates the private subnet from an unused RFC 1918
private subnet block. It detects which network blocks are
unused on the host and allocates one of those to the virtual
network. That is bridged to the host’s local network through an
interface on the server called docker0 . This means that, by
default, all of the containers are on a network together and can

https://github.com/moby/vpnkit
https://bit.ly/2C6F46C


talk to each other directly. But to get to the host or the outside
world, they go over the docker0  virtual bridge interface.

Figure 2-4. The network on a typical Docker server

There is a dizzying array of ways in which you can configure
Docker’s network layer, from allocating your own network
blocks to configuring your own custom bridge interface. People
often run with the default mechanisms, but there are times
when something more complex or specific to your application is
required. You can find much more detail about Docker
networking in the documentation, and we will cover more
details in the Chapter 11.

https://dockr.ly/2otp461


NOTE

When developing your Docker workflow, you should get started with the default
networking approach. You might later find that you don’t want or need this default
virtual network. Networking is configurable per container, and you can switch off
the whole virtual network layer entirely for a container using the --net=host
switch to docker container run . When running in that mode, Linux containers use
the host’s own network devices and addresses and no virtual interfaces or bridges
are provisioned. Note that host networking has security implications you might need
to consider. Other network topologies are possible and discussed in Chapter 11.

Getting the Most from Docker

Like most tools, Docker has a number of great use cases, and
others that aren’t so good. You can, for example, open a glass jar
with a hammer. But that has its downsides. Understanding how
to best use the tool, or even simply determining if it’s the right
tool, can get you on the correct path much more quickly.

To begin with, Docker’s architecture is aimed squarely at
applications that are either stateless or where the state is
externalized into data stores like databases or caches. Those are
the easiest to containerize. Docker enforces some good
development principles for this class of application, and we’ll
talk later about how that’s powerful. But this means doing
things like putting a database engine inside Docker is a bit like



swimming against the current. It’s not that you can’t do it, or
even that you shouldn’t do it; it’s just that this is not the most
obvious use case for Docker, so if it’s the one you start with, you
may find yourself disappointed early on. Databases that run
well in Docker are often now deployed this way, but this is not
the simple path. Some good applications for beginning with
Docker include web frontends, backend APIs, and short-
running tasks like maintenance scripts that might normally be
handled by cron.

If you focus first on building an understanding of running
stateless or externalized-state applications inside containers,
you will have a foundation on which to start considering other
use cases. We strongly recommend starting with stateless
applications and learning from that experience before tackling
other use cases. The community is continuously working on
how to better support stateful applications in Docker, and there
are likely to be many developments in this area.

Containers Are Not Virtual Machines

A good way to start shaping your understanding of how to
leverage Docker is to think of Linux containers not as virtual
machines but as very lightweight wrappers around a single
Unix process. During actual implementation, that process might



spawn other processes, but on the other hand, one statically
compiled binary could be all that’s inside your container (see
“Outside Dependencies” for more information). Containers are
also ephemeral: they may come and go much more readily than
a traditional virtual machine.

Virtual machines are by design a stand-in for real hardware
that you might throw in a rack and leave there for a few years.
Because a real server is what they’re abstracting, virtual
machines are often long-lived in nature. Even in the cloud
where companies often spin virtual machines up and down on
demand, they usually have a running lifespan of days or more.
On the other hand, a particular container might exist for
months, or it may be created, run a task for a minute, and then
be destroyed. All of that is OK, but it’s a fundamentally different
approach than the one virtual machines are typically used for.

To help drive this differentiation home, if you run Docker on a
Mac or Windows system you are leveraging a Linux virtual
machine to run dockerd , the Docker server. However, on
Linux, dockerd  can be run natively and therefore there is no
need for a virtual machine to be run anywhere on the system
(see Figure 2-5).



Figure 2-5. Typical Docker installations

Limited Isolation

Containers are isolated from each other, but that isolation is
probably more limited than you might expect. While you can
put limits on their resources, the default container
configuration just has them all sharing CPU and memory on the
host system, much as you would expect from co-located Unix
processes. This means that unless you constrain them,
containers can compete for resources on your production
machines. That might be fine for your use case, but it impacts
your design decisions. Limits on CPU and memory use are
encouraged through Docker, but in most cases, they are not the
default like they would be with a virtual machine.



It’s often the case that many containers share one or more
common filesystem layers. That’s one of the more powerful
design decisions in Docker, but it also means that if you update
a shared image, you may also need to rebuild and redeploy
containers that are still utilizing the older image.

Containerized processes are just processes on the Docker server
itself. They are running on the same instance of the Linux
kernel as the host operating system. All container processes
show up in the normal ps  output on the Docker server. That is
utterly different from a hypervisor, where the depth of process
isolation usually includes running an entirely separate instance
of the operating system kernel for each virtual machine.

This light containment can lead to the tempting option of
exposing more resources from the host, such as shared
filesystems to allow the storage of state. But you should think
hard before further exposing resources from the host into the
container unless they are used exclusively by the container.
We’ll talk about the security of containers later, but generally,
you might consider helping to enforce isolation further by
applying SELinux  or AppArmor policies rather than
compromising the existing barriers.
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WARNING

By default, many containers use UID 0 to launch processes. Because the container is
contained, this seems safe, but in reality, it isn’t very safe. Because everything is
running on the same kernel, many types of security vulnerabilities or simple
misconfiguration can give the container’s root  user unauthorized access to the
host’s system resources, files, and processes. Refer to “Security” for a discussion of
how to mitigate this.

Containers Are Lightweight

We’ll get more into the details of how this works later, but
creating a new container can take up very little disk space. A
quick test reveals that a newly created container from an
existing image takes a whopping 12 kilobytes of disk space.
That’s pretty lightweight. On the other hand, a new virtual
machine created from a golden image might require hundreds
or thousands of megabytes, since at a minimum it requires a
full operating install to exist on that disk. The new container, on
the other hand, is so small because it is just a reference to a
layered filesystem image and some metadata about the
configuration. By default, there is no copy of the data allocated
to the container. Containers are just processes on the existing
system that may only need to read information from the disk,
so there may not be a need to copy any data for the exclusive



use of the container, until a time when it needs to write data
that is unique to that container instance.

The lightness of containers means that you can use them for
situations where creating another virtual machine would be too
heavyweight or where you need something to be truly
ephemeral. You probably wouldn’t, for instance, spin up an
entire virtual machine to run a curl  command to a website
from a remote location, but you might spin up a new container
for this purpose.

Toward an Immutable Infrastructure

By deploying most of your applications within containers, you
can start simplifying your configuration management story by
moving toward an immutable infrastructure, where
components are replaced entirely rather than being changed in
place. The idea of an immutable infrastructure has gained
popularity in response to how difficult it is, in reality, to
maintain a truly idempotent configuration management
codebase. As your configuration management codebase grows,
it can become as unwieldy and unmaintainable as large,
monolithic legacy applications.



With Docker, it is possible to deploy a very lightweight Docker
server that needs almost no configuration management, or in
many cases, none at all. You handle all of your application
management simply by deploying and redeploying containers
to the server. When the server needs an important update to
something like the Docker daemon or the Linux kernel, you can
simply bring up a new server with the changes, deploy your
containers there, and then decommission or reinstall the old
server.

Container-based Linux distributions like Red Hat’s Fedora
CoreOS are designed around this principle. But rather than
requiring you to decommission the instance, Fedora CoreOS can
entirely update itself and switch to the updated OS. Your
configuration and workload largely remain in your containers
and you don’t have to configure the OS very much at all.

Because of this clean separation between deployment and
configuration of your servers, many container-based
production systems are using tools such as HashiCorp’s Packer
to build cloud virtual server images and then leveraging Docker
to nearly or entirely avoid configuration management systems.

Stateless Applications

https://getfedora.org/en/coreos
https://www.packer.io/intro/index.html


A good example of the kind of application that containerizes
well is a web application that keeps its state in a database.
Stateless applications are normally designed to immediately
answer a single self-contained request and have no need to
track information between requests from one or more clients.
You might also run something like ephemeral memcached
instances in containers. If you think about your web
application, though, it probably has some local state that you
rely on, like configuration files. That might not seem like a lot of
state, but if you bake that configuration into your images, it
means that you’ve limited the reusability of your image and
made it more challenging to deploy into different
environments, without maintaining multiple images for
different deployment targets.

In many cases, the process of containerizing your application
means that you move configuration state into environment
variables that can be passed to your application at runtime.
Rather than baking the configuration into the container, you
apply the configuration to the container when it is deployed.
This allows you to easily do things like use the same container
to run in either production or staging environments. In most
companies, those environments would require many different
configuration settings like the connection URLs for various
external services that the application utilizes.

https://memcached.org/


With containers, you might also find that you are always
decreasing the size of your containerized application as you
optimize it down to the bare essentials required to run. We
have found that thinking of anything that you need to run in a
distributed way as a container can lead to some interesting
design decisions. If, for example, you have a service that
collects some data, processes it, and returns the result, you
might configure containers on many servers to run the job and
then aggregate the response on another container.

Externalizing State

If Docker works best for stateless applications, how do you best
store state when you need to? Configuration is typically passed
by environment variables, for example. Docker supports
environment variables natively, and they are stored in the
metadata that makes up a container configuration. This means
that restarting the container will ensure that the same
configuration is passed to your application each time. It also
makes the configuration of the container easily observable
while it’s running, which can make debugging a lot easier,
although there are some security concerns around exposing
secrets in environment variables. It is also possible to store and



retrieve your application configuration inside an external
datastore, like consul or postgres.

Databases are often where scaled applications store state and
nothing in Docker interferes with doing that for containerized
applications. Applications that need to store files, however, face
some challenges. Storing things to the container’s filesystem is
not performant, will be limited by space, and will not preserve
state when a container is re-created. If you re-deploy a stateful
service without utilizing storage external to the container, you
will lose all of that state. Applications that need to store
filesystem state should be considered carefully before you put
them into Docker. If you decide that you can benefit from Linux
containers in these cases, it’s best to design a solution where the
state can be stored in a centralized location that could be
accessed regardless of which host a container runs on. In
certain cases, this might mean using a service like Amazon S3,
OpenStack Swift, a local block store, or even mounting EBS
volumes or iSCSI disks inside the container. Docker volume
plug-ins provide some additional options and are briefly
discussed in Chapter 11.

https://www.consul.io/
https://www.postgresql.org/
https://docs.docker.com/engine/extend/plugins_volume/


TIP

Although it is possible to externalize state on the host’s local filesystem, it is not
generally encouraged by the community and should be considered an advanced use
case. It is strongly recommended that you start with applications that don’t need
persistent state. There are multiple reasons why this is typically discouraged, but in
almost all cases it is because it introduces dependencies between the container and
the host that interfere with using Docker as a truly dynamic, horizontally scalable
application delivery service. If your container maintains state on the local host
filesystem, then it can only be deployed to the system that houses that local
filesystem. Remote volumes that can be dynamically attached are a good solution, but
also an advanced use case.

The Docker Workflow

Like many tools, Docker strongly encourages a particular
workflow. It’s a very enabling workflow that maps well to how
many companies are organized, but it’s probably a little
different than what you or your team are doing now. Having
adapted our own organizations’ workflows to the Docker
approach, we can confidently say that this is a change that can
have a wide-reaching positive impact on many teams in your
organization. If the workflow is implemented well, it can help
realize the promise of reduced communication overhead
between teams.

Revision Control



The first thing that Docker gives you out of the box is two forms
of revision control. One of them is used to track the filesystem
layers that each Docker image is comprised of and the other is a
tagging system for those images.

Filesystem layers

Linux containers are made up of stacked filesystem layers, each
identified by a unique hash, where each new set of changes
made during the build process is laid on top of the previous
changes. That’s great because it means that when you do a new
build, you only have to rebuild the layers that follow the change
you’re deploying. This saves time and bandwidth because
containers are shipped around as layers and you don’t have to
ship layers that a server already has stored. If you’ve done
deployments with many classic deployment tools, you know
that you can end up shipping hundreds of megabytes of the
same data to a server over and over, with each deployment.
That’s incredibly inefficient, and worse, you can’t be sure
exactly what changed between deployments. Because of the
layering effect, and because Linux containers include all of the
application dependencies, with Docker you can be more
confident about the changes that you are shipping to
production.



To simplify this a bit, remember that a Docker image contains
everything required to run your application. If you change one
line of code, you certainly don’t want to waste time rebuilding
every dependency that your code requires into a new image.
Instead, by leveraging the build cache, Docker can ensure that
only the layers affected by the code change are rebuilt.

Image tags

The second kind of revision control offered by Docker makes it
easy to answer an important question: what was the previous
version of the application that was deployed? That’s not always
easy to answer. There are a lot of solutions for non-
containerized applications, from Git tags for each release to
deployment logs, to tagged builds for deployment, and many
more. If you’re coordinating your deployment with Capistrano,
for example, it will handle this for you by keeping a set number
of previous releases on the server and then using symlinks to
make one of them the current release.

But what you find in any scaled production environment is that
each application has a unique way of handling deployment
revisions. Many of them do the same thing, but some may be
different. Worse, in heterogeneous language environments, the
deployment tools are often entirely different between

https://capistranorb.com/


applications and very little is shared. So the question of “What
was the previous version?” can have many answers depending
on whom you ask and about which application. Docker has a
built-in mechanism for handling this: it provides image tagging
a standard build step. You can easily leave multiple revisions of
your application on the server so that performing a rollback is
trivial. This is not rocket science, and it’s not functionality that
is hard to find in other deployment tooling, but with container
images, it can easily be made standard across all of your
applications, and everyone can have the same expectations
about how things will be tagged for all applications. This makes
communication easier between teams and it makes tooling
much simpler because there is one source of truth for
application releases.



WARNING

In many examples on the internet and in this book, you will see people use the
latest  tag for a container image. This is useful when you’re getting started and
when you’re writing examples, as it will always grab the most recent build of an
image. But since this is a floating tag, it is a really bad idea to use latest  in most
production workflows, as your dependencies can get updated out from under you,
and it is impossible to roll back to latest  because the old version is no longer the
one tagged latest . It also makes it hard to verify if the same image is running on
different servers. The rule of thumb is: don’t use the latest  tag in production. It’s
not even a good idea to use the latest  tag from upstream images, for the same
reasons.

It is highly recommended that you tag your CI/CD builds with something that
uniquely identifies the exact source code commit that was used to build them. In a
git  workflow, this could be the git hash related to the commit. Once you are ready
to release an image, the recommendation is that you use semantic versioning, and
provide your image with tags, like 1.4.3, 2.0.0, etc.

Pinning versions requires a bit more work to keep them current, but it will also avoid
many unfortunate and poorly timed surprises during builds and deployments.

Building

Building applications is a black art in many organizations,
where a few people know all the levers to pull and knobs to
turn to spit out a well-formed, shippable artifact. Part of the
heavy cost of getting a new application deployed is getting the
build just right. Docker doesn’t solve all of these problems, but

https://semver.org/


it does provide a standardized tool configuration and toolset for
builds. That makes it a lot easier for people to learn how to
build your applications and to get new builds up and running.

The Docker command-line tool contains a build  flag that will
consume a Dockerfile and produce a Docker image. Each
command in a Dockerfile generates a new layer in the image, so
it’s easy to reason about what the build is going to do by looking
at the Dockerfile itself. The great part of all of this
standardization is that any engineer who has worked with a
Dockerfile can dive right in and modify the build of any other
application. Because the Docker image is a standardized
artifact, all of the tooling behind the build will be the same
regardless of the development language or base image that is
being used or the number of layers needed. The Dockerfile is
usually checked into a revision control system, which also
means tracking changes to the build is simplified. Modern
multi-stage Docker builds also allow you to define the build
environment separately from the final artifact image. This
provides huge configure-ability for your build environment just
like you’d have for a production container.

Many Docker builds are a single invocation of the docker
image build  command and generate a single artifact, the
container image. Because it’s usually the case that most of the



logic about the build is wholly contained in the Dockerfile, it’s
easy to create standard build jobs for any team to use in build
systems like Jenkins. As a further standardization of the build
process, many companies—eBay, for example—have
standardized Linux containers to do the image builds from a
Dockerfile. SaaS build offerings like Travis CI and Codeship also
have first-class support for Docker builds.

It is also possible to automate the creation of multiple images
that support different underlying compute architectures, like
x86 and ARM, by utilizing the newer BuildKit support in
Docker.

Testing

While Docker itself does not include a built-in framework for
testing, the way containers are built lends some advantages to
testing with Linux containers.

Testing a production application can take many forms, from
unit testing to full integration testing in a semi-live
environment. Docker facilitates better testing by guaranteeing
that the artifact that passed testing will be the one that ships to
production. This can be guaranteed because we can either use

https://jenkins-ci.org/
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the Docker SHA for the container, or a custom tag to make sure
we’re consistently shipping the same version of the application.

Since, by design, containers include all of their dependencies,
tests run on containers are very reliable. If a unit test
framework says tests were successful against a container
image, you can be sure that you will not experience a problem
with the versioning of an underlying library at deployment
time, for example. That’s not easy with most other technologies,
and even Java WAR (Web application ARchive) files, for
example, don’t include testing of the application server itself.
That same Java application deployed in a Linux container will
generally also include an application server like Tomcat, and
the whole stack can be smoke-tested before shipping to
production.

A secondary benefit of shipping applications in Linux
containers is that in places where there are multiple
applications that talk to each other remotely via something like
an API, developers of one application can easily develop against
a version of the other service that is currently tagged for the
environment they require, like production or staging.
Developers on each team don’t have to be experts in how the
other service works or is deployed just to do development on
their own application. If you expand this to a service-oriented



architecture with innumerable microservices, Linux containers
can be a real lifeline to developers or QA engineers who need to
wade into the swamp of inter-microservice API calls.

A common practice in organizations that run Linux containers
in production is for automated integration tests to pull down a
versioned set of Linux containers for different services,
matching the current deployed versions. The new service can
then be integration-tested against the very same versions it will
be deployed alongside. Doing this in a heterogeneous language
environment would previously have required a lot of custom
tooling, but it becomes reasonably simple to implement because
of the standardization provided by Linux containers.

Packaging

Docker builds produce an image that can be treated as a single
build artifact, although technically they may consist of multiple
filesystem layers. No matter which language your application is
written in or which distribution of Linux you run it on, you get
a layered Docker image as the result of your build. And it is all
built and handled by the Docker tooling. That build image is the
shipping container metaphor that Docker is named for: a single,
transportable unit that universal tooling can handle, regardless
of what it contains. Like oceanic cargo ships that package



everything into steel containers, your Docker tooling will only
ever have to deal with one kind of package: the Docker image.
That’s powerful, because it’s a huge facilitator of tool reuse
between applications, and it means that someone else’s off-the-
shelf container tools will work with your build images.

Applications that traditionally took a lot of custom
configuration to deploy onto a new host or development system
become very portable with Docker. Once a container is built, it
can easily be deployed on any system with a running Docker
server on the same architecture.

Deploying

Deployments are handled by so many kinds of tools in different
shops that it would be impossible to list them here. Some of
these tools include shell scripting, Capistrano, Fabric, Ansible,
and in-house custom tooling. In our experience with multi-team
organizations, there are usually one or two people on each
team who know the magical incantation to get deployments to
work. When something goes wrong, the team is dependent on
them to get it running again. As you probably expect by now,
Docker makes most of that a non-issue. The built-in tooling
supports a simple, one-line deployment strategy to get a build
onto a host and up and running. The standard Docker client

https://capistranorb.com/
https://www.fabfile.org/
https://www.ansible.com/


handles deploying only to a single host at a time, but there are a
large array of tools available that make it easy to deploy into a
cluster of Docker or other compatible Linux container hosts.
Because of the standardization Docker provides, your build can
be deployed into any of these systems, with low complexity on
the part of the development teams.

The Docker Ecosystem

Over the years, a wide community has formed around Docker,
driven by both developers and system administrators. Like the
DevOps movement, this has facilitated better tools by applying
code to operations problems. Where there are gaps in the
tooling provided by Docker, other companies and individuals
have stepped up to the plate. Many of these tools are also open
source. That means they are expandable and can be modified
by any other company to fit their needs.

NOTE

Docker is a commercial company that has contributed much of the core Docker
source code to the open-source community. Companies are strongly encouraged to
join the community and contribute back to the open-source efforts. If you are looking
for supported versions of the core Docker tools, you can find out more about its
offerings at the Docker website.

https://www.docker.com/support


Orchestration

The first important category of tools that adds functionality to
the core Docker distribution and Linux container experience
contains orchestration and mass deployment tools. Early mass
deployment tools like New Relic’s Centurion, Spotify’s Helios,
and the Ansible Docker tooling still work largely like traditional
deployment tools but leverage the container as the distribution
artifact. They take a fairly simple, easy-to-implement approach.
You get a lot of the benefits of Docker without much complexity,
but many of these tools have been replaced by more robust and
flexible tools, like Kubernetes.

Fully automatic schedulers like Kubernetes or Apache Mesos
with the Marathon scheduler are more powerful options that
take nearly complete control of a pool of hosts on your behalf.
Other commercial entries are widely available, such as
HashiCorp’s Nomad, Mesosphere’s DCOS, and Rancher.  The
ecosystems of both free and commercial options continue to
grow rapidly.

Immutable atomic hosts

One additional idea that you can leverage to enhance your
Docker experience is immutable atomic hosts. Traditionally,

6

https://github.com/newrelic/centurion
https://github.com/spotify/helios
https://docs.ansible.com/ansible/latest/collections/community/docker/docsite/scenario_guide.html#ansible-collections-community-docker-docsite-scenario-guide
https://kubernetes.io/
https://mesos.apache.org/
https://mesosphere.github.io/marathon
https://www.nomadproject.io/
https://dcos.io/
https://rancher.com/


servers and virtual machines are systems that an organization
will carefully assemble, configure, and maintain to provide a
wide variety of functionality that supports a broad range of
usage patterns. Updates must often be applied via non-atomic
operations, and there are many ways in which host
configurations can diverge and introduce unexpected behavior
into the system. Most running systems are patched and updated
in place in today’s world. Conversely, in the world of software
deployments, most people deploy an entire copy of their
application, rather than trying to apply patches to a running
system. Part of the appeal of containers is that they help make
applications even more atomic than traditional deployment
models.

What if you could extend that core container pattern down into
the operating system? Instead of relying on configuration
management to try to update, patch, and coalesce changes to
your OS components, what if you could simply pull down a
new, thin OS image and reboot the server? And then if
something breaks, easily roll back to the exact image you were
previously using?

This is one of the core ideas behind Linux-based atomic host
distributions, like Red Hat’s Fedora CoreOS, Bottlerocket OS, and
others. Not only should you be able to easily tear down and

https://getfedora.org/en/coreos
https://github.com/bottlerocket-os/bottlerocket


redeploy your applications, but the same philosophy should
apply for the whole software stack. This pattern helps provide
very high levels of consistency and resilience to the whole
stack.

Some of the typical characteristics of an immutable or atomic
host are a minimal footprint, a design focused on supporting
Linux containers and Docker, and atomic OS updates and
rollbacks that can easily be controlled via multi-host
orchestration tools on both bare-metal and common
virtualization platforms.

In Chapter 3, we will discuss how you can easily use these
immutable hosts in your development process. If you are also
using these hosts as deployment targets, this process creates a
previously unheard-of amount of software stack symmetry
between your development and production environments.

Additional tools

Docker is not just a standalone solution. It has a massive feature
set, but there is always a case where someone needs more than
it can deliver on its own. There is a wide ecosystem of tools to
either improve or augment Docker’s functionality. Some good
production tools leverage the Docker API, like Prometheus for

https://bit.ly/2BZr6U3
https://prometheus.io/


monitoring and Ansible for simple orchestration. Others
leverage Docker’s plug-in architecture. Plug-ins are executable
programs that conform to a specification for receiving and
returning data to Docker.

WARNING

Many of the Docker plugins are considered legacy and are being replaced with better
approaches. Ensure that you do adequate research before deciding on a plugin that
you are going to utilize, to ensure that it is the best option and is not going to be
unsupported or quickly replaced.

There are many more good tools that either talk to the API or
run as plug-ins. Many of these have sprung up to make life with
Docker easier on the various cloud providers. These help with
seamless integration between Docker and the cloud. As the
community continues to innovate, the ecosystem continues to
grow. There are new solutions and tools available in this space
on an ongoing basis. If you find you are struggling with
something in your environment, look to the ecosystem!

Wrap-Up

There you have it: a quick tour through Docker. We’ll return to
this discussion later on with a slightly deeper dive into the

https://www.ansible.com/


architecture of Docker, more examples of how to use the
community tooling, and an exploration of some of the thinking
behind designing robust container platforms. But you’re
probably itching to try it all out, so in the next chapter, we’ll get
Docker installed and running.

Software as a Service

Linux Control Groups

Linux Namepsaces

Command Line Interface

Security-Enhanced Linux

Some of these commercial offerings have free editions of their
platforms.



Chapter 3. Installing Docker

We’re now at the point where you hopefully understand
roughly what Docker is and what it isn’t, and it’s time for some
hands-on work. Let’s get Docker installed so we can work with
it. The steps required to install Docker vary depending on the
platform you use for development and the Linux distribution
you use to host your applications in production.

In this chapter, we discuss the steps required to get a fully
working Docker development environment set up on most
modern desktop operating systems. First, we’ll install the
Docker client on your native development platform, and then
we’ll get a Docker server running on Linux. Finally, we’ll test
out the installation to make sure it works as expected.

Although the Docker client can run on Windows and macOS to
control a Docker server, Linux containers can only be built and
launched on a Linux system. Therefore, non-Linux systems will
require a virtual machine or remote server to host the Linux-
based Docker server. Docker Community Edition, Docker
Desktop, and Vagrant, which are all discussed later in this
chapter, provide some approaches to address this issue. It is
also possible to run Windows containers natively on Windows



systems, and we will specifically discuss this in “Windows
Containers”, but most of the book’s focus will be on Linux
containers.

NOTE

The Docker ecosystem is changing very rapidly as the technology evolves to become
more robust and solve a broader range of problems. Some features discussed in this
book and elsewhere may become deprecated. To see what has been tagged for
deprecation and eventual removal, refer to the documentation.

TIP

We assume that you are using a traditional Unix shell in most of the code
examples in the book. You can use Powershell, but be aware that some commands
will need adjusting to work in that environment.
If you are in an environment that requires you to use a proxy, make sure that it is
properly configured for docker.

Docker Client

The Docker client natively supports 64-bit versions of Linux,
Windows, and macOS.

The majority of popular Linux distributions can trace their
origins to either Debian or Red Hat. Debian systems utilize the

https://docs.docker.com/engine/deprecated
https://docs.docker.com/network/proxy/


deb package format and Advanced Package Tool (apt) to install
most prepackaged software. On the other hand, Red Hat
systems rely on rpm (Red Hat Package Manager) files and
Yellowdog Updater, Modified (yum), or Dandified yum (dnf) to
install similar software packages. Alpine Linux, which is often
used in environments that require a very small Linux footprint,
relies on the Alpine package manager (apk) to manage software
packages.

On macOS and Microsoft Windows, native GUI installers
provide the easiest method to install and maintain prepackaged
software. Homebrew for macOS and Chocolatey for Windows
are also very popular options among technical users.

WARNING

We will be discussing a few approaches to installing Docker in this section. Make sure
that you pick the first one in this list that best matches your needs. Installing more
than one may cause you problems if you are not well-versed in how to switch
between them properly.

Choose one of these: Docker Desktop, Docker Community Edition, OS package
manager, or vagrant .

https://wiki.debian.org/AptCLI
https://en.wikipedia.org/wiki/Yum_(software)
https://goo.gl/TdkGRS
https://wiki.alpinelinux.org/wiki/Package_management
https://brew.sh/
https://chocolatey.org/


NOTE

You can always find the most recent installation documentation on the Docker
website.

Linux

It is strongly recommended that you run Docker on a modern
release of your preferred Linux distribution. It is possible to
run Docker on some older releases, but stability may be a
significant issue. Generally, a 3.8 or later kernel is required, and
we advise you to use the newest stable version of your chosen
distribution. The following directions assume you are using a
recent stable release of the Ubuntu or Fedora Linux
distributions.

TIP

Although we are not covering it here, Docker Desktop for Linux has been released
and can be used on Linux if you would prefer running the Docker daemon on a local
virtual machine instead of directly on your system.

Ubuntu Linux 22.04 (64-bit)

Let’s take a look at the steps required to install Docker the 64-bit
version of Ubuntu Linux 22.04.

https://docs.docker.com/get-docker/
https://docs.docker.com/desktop/linux/install/


NOTE

For up-to-date instructions or coverage of other versions of Ubuntu, see the Docker
Community Edition for Ubuntu.

These first two commands will ensure that you aren’t running
older versions of Docker. The packages have been renamed a
few times, so you’ll need to specify several possibilities here:

NOTE

It is safe to ignore apt-get  errors that say "Unable to locate package" or that the
"Package is not installed“.

Next, you will need to add the required software dependencies
and apt repository for Docker Community Edition. This lets us
fetch and install packages for Docker and validate that they are
signed.

$ sudo apt-get remove docker docker.io containerd run
$ sudo apt-get remove docker-engine

$ sudo apt-get update 
$ sudo apt-get install \

    ca-certificates \

https://dockr.ly/2NwNbuw


Now that you have the repository set up, run the following
commands to install Docker:

$ sudo apt-get update 
$ sudo apt-get install \
    docker-ce \
    docker-ce-cli \
    containerd.io \
    docker-compose-plugin

Assuming you don’t get any error messages, you now have
Docker installed!

    curl \
    gnupg \
    lsb-release 
$ sudo mkdir -p /etc/apt/keyrings 
$ curl -fsSL https://download.docker.com/linux/ubuntu
    sudo gpg --dearmor -o /etc/apt/keyrings/docker.gp
$ sudo chmod a+r /etc/apt/keyrings/docker.gpg 
$ echo \
    "deb [arch=$(dpkg --print-architecture) \
    signed-by=/etc/apt/keyrings/docker.gpg] \
    https://download.docker.com/linux/ubuntu \
    $(lsb_release -cs) stable" |\
    sudo tee /etc/apt/sources.list.d/docker.list > /d



Fedora Linux 36 (64-bit)

Now let’s take a look at the steps needed to install Docker on the
64-bit version of Fedora Linux 36.

NOTE

For up-to-date instructions or coverage of other versions of Fedora, see the Docker
Community Edition for Fedora.

This first command will ensure that you aren’t running older
versions of Docker. As on Ubuntu systems, the package has
been renamed a few times, so you’ll need to specify several
possibilities here:

$ sudo dnf remove -y \
    docker \
    docker-client \
    docker-client-latest \
    docker-common \
    docker-latest \
    docker-latest-logrotate \
    docker-logrotate \
    docker-selinux \
    docker-engine-selinux \
    docker-engine

https://dockr.ly/2NwNdTa


Next, you will need to add the required software dependencies
and dnf repository for Docker Community Edition.

Now you can install the current version of Docker Community
Edition.

$ sudo dnf install -y \
    docker-ce \
    docker-ce-cli \
    containerd.io \
    docker-compose-plugin

macOS, Mac OS X

To install Docker on macOS, you should use the official Docker
Desktop installer.

GUI installer

$ sudo dnf -y install dnf-plugins-core 
$ sudo dnf config-manager \
    --add-repo \
    https://download.docker.com/linux/fedora/docker-c



Download the latest Docker Desktop for Mac installer and then
double-click on the downloaded program icon. Follow all of the
installer’s prompts until the installation is finished.

Docker Desktop for macOS relies on the xhyve project and
Apple’s Hypervisor.framework to provide a native lightweight
virtualization layer for the Linux server component, which is
required to launch Linux virtual machines that can build
Docker images and run containers.

Homebrew installation

You can also install the Docker CLI tools using the popular
Homebrew package management system for macOS. If you take
this approach, you should consider installing Vagrant for
creating and managing your Linux VM. We’ll discuss that
shortly in “Non-Linux VM-Based Server”.

Microsoft Windows 11

Below, you will find the steps required to install Docker Desktop
on Windows 11.

https://dockr.ly/2wyTpCO
https://github.com/machyve/xhyve
https://developer.apple.com/documentation/hypervisor
https://docs.brew.sh/Installation


TIP

It is highly recommended that you set up the Windows Subsystem for Linux (WSL2)
before installing Docker Desktop and then select any available options in the Docker
Desktop installer to enable and default to WSL2.

Docker Desktop for Windows can leverage Hyper-V, to provide a native virtualization
layer for the Linux server components, but the Windows Subsystem for Linux
(WSL2), should provide you with the smoothest experience when working with
Linux containers.

Download the latest Docker Desktop for Windows installer and
then double-click on the downloaded program icon. Follow all
of the installer prompts until the installation is finished.

https://docs.microsoft.com/en-us/windows/wsl/install
https://bit.ly/2MBux8t
https://docs.microsoft.com/en-us/windows/wsl/install
https://dockr.ly/2C0n7H0


TIP

By default, your Docker Desktop installation on Windows should be set up for Linux
containers, but if you ever get a message that says something like "no matching
manifest for windows/amd64“, then Docker Desktop is likely configured for Windows
containers.

Linux containers are still the most common type of Linux container and this book
requires Linux container support. You can easily change your Windows setup by
right-clicking on the Docker icon in the Windows taskbar, and selecting "Switch to
Linux containers…“, as shown in Figure 3-1 and Figure 3-2



FIGURE 3-1. SWITCH TO LINUX CONTAINERS



FIGURE 3-2. SWITCH TO LINUX CONTAINERS CONFIRMATION

You can easily switch back and forth if you need to use both Linux and Windows
containers.

Chocolatey installation

You can also install the Docker CLI tools using the popular
Chocolatey package management system for Windows. If you
take this approach, you should consider installing Vagrant for
creating and managing your Linux VM. We’ll discuss that
shortly in “Non-Linux VM-Based Server”.

NOTE

Installation directions for additional environments can be found online.

Docker Server

https://docs.chocolatey.org/en-us/choco/setup
https://docs.docker.com/engine/install/


The Docker server is a separate binary from the client and is
used to manage most of the work that Docker is typically used
for. Next we will explore the most common ways to manage the
Docker server.

NOTE

Docker Desktop and Docker Community Edition already set up the server for you, so
if you took that route, you do not need to do anything else besides ensuring that the
server ( dockerd ) is running.. On Windows and macOS this typically just means
starting the Docker application. On Linux, you may need to run the systemctl
commands listed below to start the server.

systemd-Based Linux

Current Fedora and Ubuntu releases use systemd  to manage
processes on the system. Because you have already installed
Docker, you can ensure that the server starts every time you
boot the system by typing:

$ sudo systemctl enable docker

This tells systemd  to enable the docker  service and start it
when the system boots or switches into the default run level. To
start the Docker server, type the following:

https://bit.ly/1Gj3KQT


$ sudo systemctl start docker

Non-Linux VM-Based Server

If you are using Microsoft Windows or macOS in your Docker
workflow, you will need a virtual machine so that you can set
up a Docker server for testing. Docker Desktop is convenient
because it sets up this VM for you using the native
virtualization technology on these platforms. If you are running
an older version of Windows or cannot use Docker Desktop for
other reasons, you should investigate Vagrant to help you create
and manage your Docker server Linux VM.

In addition to Vagrant, it is also possible to use other
virtualization tools, like Lima on macOS or any standard
hypervisor, to set up a local Docker server, depending on your
preferences and needs.

WARNING

The example below is not secure and is not intended to be a recommendation.
Instead, it is simply a demonstration of the basic requirements needed to set up a
remote Docker server VM and make use of it. Securing the server is of critical
importance.

Using Docker Desktop for development, is often a better option, when possible.

https://www.vagrantup.com/
https://github.com/lima-vm/lima


Vagrant

Vagrant provides support for multiple hypervisors and can
often be leveraged to mimic even the most complex
environments.

A common use case for leveraging Vagrant during Docker
development is to support testing on images that match your
production environment. Vagrant supports everything from
broad distributions like RedHat Enterprise Linux and Ubuntu to
finely focused atomic host distributions like Fedora CoreOS.

You can easily install Vagrant on most platforms by
downloading a self-contained package from vagrantup.com.

You will need to have a hypervisor, like one of the following,
fully installed on your system.

VirtualBox (free/multiplatform/x86-only)
VMware Workstation Pro/Fusion (paid/multiplatform/most-
architectures)
HyperV (free/Windows/most-archs)
or KVM (free/Linux/most-architectures)

By default, Vagrant assumes that you are using the VirtualBox
hypervisor, but you can change it by using the --provider flag

https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux
https://ubuntu.com/
https://getfedora.org/en/coreos
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
https://www.vmware.com/products/workstation-pro.html
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/quick-start/enable-hyper-v
https://www.linux-kvm.org/page/Main_Page
https://learn.hashicorp.com/tutorials/vagrant/getting-started-providers


when using the vagrant  command.

In the following example, you will create a Ubuntu-based
Docker host running the Docker daemon.

Then create a host directory with a name similar to docker-
host  and move into that directory:

$ mkdir docker-host 
$ cd docker-host

To use Vagrant you need to find a Vagrantbox (VM Image) that
is compatible with your provisioner and architecture. In this
example, we will use a Vagrantbox for the Virtualbox
hypervisor.

NOTE

Virtualbox only works on Intel/AMD x86(64) systems and the Vagrantbox that we are
using is specifically built for AMD64 systems.

Go ahead and create a new file called Vagrantfile  with the
following contents in it:

puts (<<-EOT)
  ---------------------------------------------------

https://app.vagrantup.com/boxes/search


  [WARNING] This exposes an unencrypted Docker TCP po
 

  This is NOT secure and may expose your system to si
  if left running and exposed to the broader network.
  ---------------------------------------------------
 
EOT 
 
$script = <<-SCRIPT
echo \'{"hosts": ["tcp://0.0.0.0:2375", "unix:///var/
sudo tee /etc/docker/daemon.json
sudo mkdir -p /etc/systemd/system/docker.service.d
echo -e \"[Service]\nExecStart=\nExecStart=/usr/bin/d
sudo tee /etc/systemd/system/docker.service.d/docker.
sudo systemctl daemon-reload
sudo systemctl restart docker
SCRIPT 
 
Vagrant.configure(2) do |config| 
 
  # Pick a compatible Vagrantbox
  config.vm.box = 'bento/ubuntu-20.04' 
 
  # Install Docker if it is not already on the VM ima
  config.vm.provision :docker 
 
  # Configure Docker to listen on an unencrypted loca
  config.vm.provision "shell",

$



You can retrieve a complete copy of the above file by running:

NOTE

You may need to remove the “\” in the git clone  command above and re-assemble
the URL into a single line. It is there because the command is too long for the
standard printed page, and this should work in a standard Unix shell as long as there
are no leading or trailing spaces in either line.

    inline: $script,
    run: "always" 

 
  # Port-forward the Docker port to
  # 12375 (or another open port) on our host machine
  config.vm.network "forwarded_port",
    guest: 2375,
    host: 12375,
    protocol: "tcp",
    auto_correct: true 
 
end

$ git clone https://github.com/bluewhalebook/\ 
docker-up-and-running-3rd-edition.git --config core.a
$ cd docker-up-and-running-3rd-edition/chapter_03/vag
$ ls Vagrantfile



Ensure that you are in the directory with the Vagrantfile  and
then run the following command to start the Vagrant VM:

WARNING

This setup is provided as a simple example. It is not secure and should not be left
running without ensuring that the server can not be accessed from the broader
network.

Docker maintains documentation on how to secure your Docker endpoint with SSH
or TLS client certificates and some additional information on the attack surface of
the Docker daemon.

$ vagrant up 
… 

Bringing machine 'default' up with 'virtualbox' provi
==> default: Importing base box 'bento/ubuntu-20.04'…
==> default: Matching MAC address for NAT networking…
==> default: Checking if box 'bento/ubuntu-20.04' ver
==> default: A newer version of the box 'bento/ubuntu
==> default: available! You currently have version '…
==> default: '202206.03.0'. Run `vagrant box update` 
==> default: Setting the name of the VM: vagrant_defa
==> default: Clearing any previously set network inte
…
==> default: Running provisioner: docker…
    default: Installing Docker onto machine…
==> default: Running provisioner: shell…

https://docs.docker.com/engine/security/protect-access/
https://docs.docker.com/engine/security/#docker-daemon-attack-surface


TIP

On macOS you may see an error like this:

VBoxManage: error: Details: code NS_ERROR_FAILURE (0x80004005), component
MachineWrap, interface IMachine

This is due to the security features in macOS. A quick search should lead you to an
online post that describes the fix.

Once the VM is running, you should be able to connect to the
Docker server, by running the following command, and telling
the docker client where it should connect to with the -H
argument:

$ docker -H 127.0.0.1:12375 version 
Client:
 Cloud integration: v1.0.24
 Version:           20.10.14
 API version:       1.41 
… 

    default: Running: inline script
    default: {"hosts": ["tcp://0.0.0.0:2375", "unix:/
    default: [Service]
    default: ExecStart=
    default: ExecStart=/usr/bin/dockerd

https://scriptcrunch.com/solved-vboxmanage-error-component-machinewrap/


 
Server: Docker Engine - Community
 Engine:
  Version:          20.10.17
  API version:      1.41 (minimum version 1.12) 
…

The output will provide you with version information about the
various components that make up the Docker client and server.

Passing in the IP address and port every time you want to run a
Docker command, is not ideal, but luckily Docker can be set up
to know about multiple Docker servers, using the docker
context  command. To start let’s check and see what context is
currently in use. Take note of the entry that has an asterisk (*)
next to it, which designates the current context.

$ docker context list 
NAME       TYPE … DOCKER ENDPOINT             … 
default *  moby … unix:///var/run/docker.sock … 
…

You can create a new context for the Vagrant VM and then
make it active by running the following sequence of commands:

$ docker context create vagrant --docker host=tcp://1



If you re-list all the contexts now you should see something like
this:

$ docker context list 
NAME       TYPE … DOCKER ENDPOINT             … 
default    moby … unix:///var/run/docker.sock … 
vagrant *  moby … tcp://127.0.0.1:12375       … 
…

With your current context set to vagrant , running docker
version , without the additional -H  argument, will still connect
to the correct Docker server and return the same information
as before.

To connect to a shell on the Vagrant-based virtual machine, you
can run:

vagrant 

Successfully created context "vagrant" 
 
$ docker context use vagrant 
vagrant

$ vagrant ssh 
… 

l b ( / i



Until you have time to secure this setup, it is best to go ahead
and shut down the VM and set your context back to its’ original
state.

TIP

If you are using macOS, you might want to take a look at colima which makes it very
easy to spin up and manage a flexible Docker or Kubernetes virtual machine.

Testing the Setup

Welcome to Ubuntu 20.04.3 LTS (GNU/Linux 5.4.0-91-gen
… 
vagrant@vagrant:~$ exit

$ vagrant halt 
…
==> default: Attempting graceful shutdown of VM… 
 
$ docker version 
Cannot connect to … daemon at tcp://127.0.0.1:12375. 
 
$ docker context use default 
default

https://github.com/abiosoft/colima


Once you have a working client and server set up, you are
ready to test that everything is working. You should be able to
run any one of the following commands on your local system to
tell the Docker daemon to download the latest official container
for that distribution and then launch it with a running Unix
shell process.

This step is important to ensure that all the pieces are properly
installed and communicating with each other as expected. It
also shows off one of the features of Docker: we can run
containers based on any Linux distribution we like. In the next
few steps, we’ll run Linux containers based on Ubuntu, Fedora,
and Alpine Linux. You don’t need to run them all to prove that
this works; running one of them will suffice.

NOTE

If you are using the docker client on a Linux system, you may need to prepend each
docker  command with sudo  since the root user may be the only one with docker
access, by default.

Most Docker installs create a docker  group that can be used to manage who has
access to the dockerd  Unix socket, you can add your user to that group, so that you
no longer need to use the sudo command.

Ubuntu

https://man7.org/linux/man-pages/man8/sudo.8.html


Let’s try launching a container using the latest Ubuntu Linux
base image.

TIP

Using docker container run  is functionally the same as using docker run .

Fedora

In this next example, we will launch a container using the latest
Fedora Linux base image.

Alpine Linux

And then finally, we can test launching a container using the
latest Alpine Linux base image.

$ docker container run --rm -ti docker.io/ubuntu:late
 
root@aa9b72ae1fea:/#

$ docker container run --rm -ti docker.io/fedora:late
 
[root@5c97201e827b /]# exit



NOTE

docker.io/ubuntu:latest , docker.io/fedora:latest , and
docker.io/alpine:latest  all represent a Docker image repsitory, followed by an
image name and an image tag.

Exploring the Docker Server

Although the Docker server is often installed, enabled, and run
automatically, it’s useful to see that running the Docker daemon
manually on a Linux system can be as simple as typing
something like this:

$ sudo dockerd -H unix:///var/run/docker.sock \
  --config-file /etc/docker/daemon.json

$ docker container run --rm -ti docker.io/alpine:late
 
/ # exit

https://docs.docker.com/engine/reference/commandline/dockerd/


NOTE

This section assumes that you are on the actual Linux server or VM that is running
the Docker daemon. If you are using Docker Desktop on a Windows or Mac, you
won’t be able to easily interact with the dockerd  executable, as it is intentionally
hidden from the end user, but we’ll show you a trick in just a moment.

This command starts the Docker daemon, creates and listens to
a Unix domain socket ( -H unix:///var/run/docker.sock ) and
reads in the rest of the configuration from
/etc/docker/daemon.json . You’re not likely to have to start
the Docker server yourself, but that’s what going on behind the
scenes. On non-Linux systems, you will typically have a Linux-
based virtual machine that hosts the Docker server. Docker
Desktop sets up this virtual machine for you in the background.

NOTE

If you already have Docker running, executing the daemon again will fail because it
can’t use the same network port twice.

In most cases, it is very easy to SSH into your new Docker
server and take a look around, but the seamless experience of
Docker Desktop on a non-Linux system means it is often not
apparent that Docker Desktop is leveraging a local virtual
machine to run the Docker daemon on. Because The Docker



Desktop VM is designed to be very small and very stable, it does
not run an SSH daemon and is, therefore, a bit tricky to access.

If you are curious or just ever have a need to access the
underlying VM, you can do it, but it requires a little advanced
knowledge. We will talk about the command nsenter  in much
more detail in “nsenter”, but for now, if you would like to see
the virtual machine (or underlying host) you can run these
commands:

$ docker container run --rm -it --privileged --pid=ho
  nsenter -t 1 -m -u -n -i sh 
 
/ # cat /etc/os-release
PRETTY_NAME="Docker Desktop" 
 
/ # ps | grep dockerd
 1540 root      1:05 /usr/local/bin/dockerd
                      --containerd /var/run/desktop-c
                      --pidfile /run/desktop/docker.p
                      --swarm-default-advertise-addr=
                      --host-gateway-ip 192.168.65.2 
 
/ # exit



This command uses a privileged Debian container that contains
the nsenter  command to manipulate the Linux kernel
namespaces so that we can navigate the filesystem of the
underlying virtual machine or host.

WARNING

This container is privileged to allow us to navigate the underlying host, but you
should not get into the habit of using privileged containers when adding individual
capabilities or system call privileges will suffice. We discuss this more in “Security”.

If you can use a Docker server endpoint, this command will give you access to the
underlying host.

The Docker daemon configuration is typically stored in
/etc/docker/daemon.json , but you may notice that it exists
somewhere like
/containers/services/docker/rootfs/etc/docker/daemon.j

son  in the Docker Desktop VM. Docker uses sane defaults for all
its settings, so this file may be very small or even completely
absent. If you are using Docker Desktop, you can edit this file by
clicking on the Docker icon and selecting Preferences… →
Docker Engine, as shown in Figure 3-3.



Figure 3-3. Docker Desktop server configuration

Wrap-Up

Now that you have a running Docker setup, you can start to
look at more than the basic mechanics of getting it installed. In
the next chapter, you’ll explore how to build and manage
Docker images, which provide the basis for every container you
will ever launch with Docker.

TIP

In the rest of the book, when you see docker  on the command line, assume you will
need to have the correct configuration in place either as a Docker context,
environment variables or via the -H  command-line flag to tell the docker  client
how to connect to the dockerd  server process.



Chapter 4. Working with Docker
Images

Every Linux container is based on an image. Images are the
underlying definition of what gets reconstituted into a running
container, much like a virtual disk becomes a virtual machine
when you start it up. Docker or Open Container Image (OCI)
images provide the basis for everything that you will ever
deploy and run with Docker. To launch a container, you must
either download a public image or create your own. You can
think of the image as a single asset that primarily represents
the filesystem for the container. However, in reality, every
image consists of one or more linked filesystem layers that
generally have a direct one-to-one mapping to each build step
used to create that image.

Because images are built up from individual layers, they put
special demands on the Linux kernel, which must provide the
drivers that Docker needs to run the storage backend. For
image management, Docker relies heavily on this storage
backend, which communicates with the underlying Linux
filesystem to build and manage the multiple layers that
combine into a single usable image. The primary storage
backends that are supported include:

https://opencontainers.org/


overlay2
btrfs
and device-mapper

Each storage backend provides a fast copy-on-write (CoW)
system for image management. We discuss the specifics of
various backends in Chapter 11. For now, we’ll use the default
backend and explore how images work, since they make up the
basis for almost everything else that you will do with Docker,
including:

Building images
Uploading (pushing) images to an image registry
Downloading (pulling) images from an image registry
Creating and running containers from an image

Anatomy of a Dockerfile

To create a custom Docker image with the default tools, you will
need to become familiar with the Dockerfile. This file describes
all the steps that are required to create an image and would
usually be contained within the root directory of the source
code repository for your application.

https://bit.ly/1zFjGhH
https://bit.ly/1PCwkQw
https://bit.ly/1evughM


A typical Dockerfile might look something like the one shown
here, which creates a container for a Node.js-based application:

FROM node:18.13.0 
 
ARG email="anna@example.com"
LABEL "maintainer"=$email
LABEL "rating"="Five Stars" "class"="First Class" 
 
USER root 
 
ENV AP /data/app
ENV SCPATH /etc/supervisor/conf.d 
 
RUN apt-get -y update 
 
# The daemons
RUN apt-get -y install supervisor
RUN mkdir -p /var/log/supervisor 
 
# Supervisor Configuration
COPY ./supervisord/conf.d/* $SCPATH/ 
 
# Application Code
COPY *.js* $AP/ 
 
WORKDIR $AP 
 



RUN npm install 
 
CMD ["supervisord", "-n"]

Dissecting this Dockerfile will provide some initial exposure to a
number of the possible instructions for controlling how an
image is assembled. Each line in a Dockerfile creates a new
image layer that is stored by Docker. This layer contains all of
the changes that are a result of that command being issued.
This means that when you build new images, Docker will only
need to build layers that deviate from previous builds: you can
reuse all the layers that haven’t changed.

Although you could build a Node instance from a plain, base
Linux image, you can also explore Docker Hub for official
images for Node. The Node.js community maintains a series of
Docker images and tags that allow you to quickly determine
what versions are available. If you want to lock the image to a
specific point release of Node, you could point it at something
like node:18.13.0 . The base image that follows will provide
you with an Ubuntu Linux image running Node 11.11.x.

FROM docker.io/node:18.13.0

https://bit.ly/1evujdF
https://bit.ly/1evumGb


The ARG  parameter provides a way for you to set variables and
their default values, which are only available during the image
build process.

ARG email="anna@example.com"

Applying labels to images and containers allows you to add
metadata via key/value pairs that can later be used to search for
and identify Docker images and containers. You can see the
labels applied to any image using the docker image inspect
command. For the maintainer label, we are leveraging the
value of the email  build argument that was defined in the
previous line of the Dockerfile. This means that this label can be
changed anytime that we build this image.

LABEL "maintainer"=$email
LABEL "rating"="Five Stars" "class"="First Class"

By default, Docker runs all processes as root  within the
container, but you can use the USER  instruction to change this:

USER root



CAUTION

Even though containers provide some isolation from the underlying operating
system, they still run on the host kernel. Due to potential security risks, production
containers should almost always be run in the context of an unprivileged user.

Unlike the ARG  instruction, the ENV  instruction allows you to
set shell variables that can be used by your running application
for configuration, in addition to being available during the
build process. The ENV  and ARG  instructions can be used to
simplify the Dockerfile and help keep it DRYer:

ENV AP /data/app
ENV SCPATH /etc/supervisor/conf.d

In the following code, you’ll use a collection of RUN  instructions
to start and create the required file structure that you need and
install some required software dependencies.

RUN apt-get -y update 
 
# The daemons
RUN apt-get -y install supervisor
RUN mkdir -p /var/log/supervisor

1



WARNING

While we’re demonstrating it here for simplicity, it is not recommended that you run
commands like apt-get -y update  or dnf -y update  in your application’s
Dockerfile. This is because it requires crawling the repository index each time you
run a build, which means that your build is not guaranteed to be repeatable since
package versions might change between builds. Instead, consider basing your
application image on another image that already has these updates applied to it and
where the versions are in a known state. It will be faster and more repeatable.

The COPY  instruction is used to copy files from the local
filesystem into your image. Most often this will include your
application code and any required support files. Because COPY
copies the files into the image, you no longer need access to the
local filesystem to access them once the image is built. You’ll
also start to use the build variables you defined in the previous
section to save you a bit of work and help protect you from
typos.

# Supervisor Configuration
COPY ./supervisord/conf.d/* $SCPATH/ 
 
# Application Code
COPY *.js* $AP/



TIP

Remember that every instruction creates a new Docker image layer, so it often makes
sense to combine a few logically grouped commands onto a single line. It is even
possible to use the COPY  instruction in combination with the RUN  instruction to copy
a complex script to your image and then execute that script with only two commands
in the Dockerfile.

With the WORKDIR  instruction, you change the working
directory in the image for the remaining build instructions and
the default process that launches with any resulting containers:

WORKDIR $AP 
 
RUN npm install

CAUTION

The order of commands in a Dockerfile can have a very significant impact on ongoing
build times. You should try to order commands so that things that change between
every single build are closer to the bottom. This means that adding your code and
similar steps should be held off until the end. When you rebuild an image, every
single layer after the first introduced change will need to be rebuilt.

And finally, you end with the CMD  instruction, which defines
the command that launches the process that you want to run
within the container:



CMD ["supervisord", "-n"]

NOTE

Though not a hard and fast rule, it is generally considered a best practice to try to run
only a single process within a container. The core idea is that a container should
provide a single function so that it remains easy to horizontally scale individual
functions within your architecture. In the example, you are using supervisord  as a
process manager to help improve the resiliency of the node application within the
container and ensure that it stays running. This can also be useful for
troubleshooting your application during development so that you can restart your
service without restarting the whole container.

You could also achieve a similar effect by using the --init  command-line argument
to docker container run , which we discuss in “Controlling Processes”.

Building an Image

To build your first image, go ahead and clone a Git repo that
contains an example application called docker-node-hello, as
shown here:

$ git clone https://github.com/spkane/docker-node-hel
    --config core.autocrlf=input 
Cloning into 'docker-node-hello'… 
remote: Counting objects: 41, done. 
remote: Total 41 (delta 0), reused 0 (delta 0), pack-

2



NOTE

Git is frequently installed on Linux and macOS systems, but if you do not already
have Git available, you can download a simple installer from git-scm.com.

The --config core.autocrlf=input  option we use helps ensure that the line
endings are not accidentally altered from the Linux standard that is expected.

This will download a working Dockerfile and related source
code files into a directory called docker-node-hello. If you look at
the contents while ignoring the Git repo directory, you should
see the following:

$ tree -a -I .git 
. 
├── .dockerignore 
├── .gitignore 
├── Dockerfile 
├── index.js 
├── package.json 
└── supervisord
    └── conf.d

Unpacking objects: 100% (41/41), done. 
$ cd docker-node-hello

https://git-scm.com/downloads


        ├── node.conf
        └── supervisord.conf

Let’s review the most relevant files in the repo.

The Dockerfile should be the same as the one you just reviewed.

The .dockerignore file allows you to define files and directories
that you do not want to upload to the Docker host when you are
building the image. In this instance, the .dockerignore file
contains the following lines:

.git

This instructs docker image build  to exclude the .git
directory, which contains the whole source code repository,
from the build. The rest of the files reflect the current state of
your source code on the checked-out branch. You don’t need the
contents of the .git directory to build the Docker image, and
since it can grow quite large over time, you don’t want to waste
time copying it every time you do a build. package.json defines
the Node.js application and lists any dependencies that it relies
on. index.js is the main source code for the application.



The supervisord directory contains the configuration files for
supervisord  that you will use to start and monitor the
application.

NOTE

Using supervisord  in this example to monitor the application is overkill, but it is
intended to provide a bit of insight into some of the techniques you can use in a
container to provide more control over your application and its running state.

As we discussed in Chapter 3, you will need to have your
Docker server running and your client properly set up to
communicate with it before you can build a Docker image.
Assuming that this is all working, you should be able to initiate
a new build by running the upcoming command, which will
build and tag an image based on the files in the current
directory.

Each step identified in the following output maps directly to a
line in the Dockerfile, and each step creates a new image layer
based on the previous step. The first build that you run will take
a few minutes because you have to download the base node
image. Subsequent builds should be much faster unless a new
version of our base image tag has been released.

http://supervisord.org/


NOTE

The output below is from the new BuildKit included in Docker. If you see
significantly different output, then you are likely still using the older image building
code.

You can enable BuildKit in your environment by setting the DOCKER_BUILDKIT
environment variable to 1 .

More details can be found on the Docker website.

At the end of the build command, you will notice a period. This
refers to the build context, which tells Docker what files it
should upload to the server so that it can build our image. In
many cases, you will simply see a .  at the end of a build
command, since a single period represents the current
directory. This build context is what the .dockerignore file is
filtering so that we don’t upload more than we need.

TIP

Docker assumes that the Dockerfile is in the current directory, but if it is not, you can
point directly to it using the -f  argument.

Let’s run the build:

$ docker image build -t example/docker-node-hello:lat

https://docs.docker.com/build/buildkit/


 
 => [internal] load build definition from Dockerfile
 => => transferring dockerfile: 37B
 => [internal] load .dockerignore
 => => transferring context: 34B
 => [internal] load metadata for docker.io/library/no
 => CACHED [1/8] FROM docker.io/library/node:18.13.0@
 => [internal] load build context
 => => transferring context: 233B
 => [2/8] RUN apt-get -y update
 => [3/8] RUN apt-get -y install supervisor
 => [4/8] RUN mkdir -p /var/log/supervisor
 => [5/8] COPY ./supervisord/conf.d/* /etc/supervisor
 => [6/8] COPY *.js* /data/app/
 => [7/8] WORKDIR /data/app
 => [8/8] RUN npm install
 => exporting to image
 => => exporting layers

 => => writing image sha256:991844271ca5b984939ab49d8
 => => naming to docker.io/example/docker-node-hello:



TIP

To improve the speed of builds, Docker will use a local cache when it thinks it is safe.
This can sometimes lead to unexpected issues because it doesn’t always notice that
something changed in a lower layer. In the preceding output, you will notice lines
like ` ⇒ [2/8] RUN apt-get -y update`. If instead, you see ` ⇒ CACHED [2/8] RUN apt-get -
y update`, you know that Docker decided to use the cache. You can disable the cache
for a build by using the --no-cache  argument to the docker image build
command.

If you are building your Docker images on a system that is used
for other simultaneous processes, you can limit the resources
available to your builds by using many of the same cgroup
methods that we will discuss in Chapter 5. You can find detailed
documentation on the docker image build  arguments in the
official documentation.

TIP

Using docker image build  is functionally the same as using docker build .

If you have any issues getting a build to work correctly you may
want to skip ahead and read the “Multi-stage builds” and
“Troubleshooting Broken Builds” sections of this chapter.

Running Your Image

https://docs.docker.com/engine/reference/commandline/image_build/


Once you have successfully built the image, you can run it on
your Docker host with the following command:

The preceding command tells Docker to create a running
container in the background from the image with the
example/docker-node-hello:latest  tag, and then map port
8080 in the container to port 8080 on the Docker host. If
everything goes as expected, the new Node.js application should
be running in a container on the host. You can verify this by
running docker container ls . To see the running application
in action, you will need to open up a web browser and point it
at port 8080 on the Docker host. You can usually determine the
Docker host IP address by examining the entry from docker
context list  that is marked with an asterisk or checking the
value of the DOCKER_HOST  environment variable if it happens to
be set. If the DOCKER ENDPOINT  is set to a Unix socket then the
IP address is most likely 127.0.0.1 .

$ docker context list 
NAME      TYPE … DOCKER ENDPOINT             … 
default * moby … unix:///var/run/docker.sock … 
…

$ docker container run --rm -d -p 8080:8080 example/d



Get the IP address and enter something like
http://127.0.0.1:8080/ (or your remote Docker address if it’s
different than that) into your web browser address bar or use a
command-line tool like curl . You should see the following text:

Hello World. Wish you were here.

Build Arguments

If inspect the image that we built, you will be able to see that
the maintainer label was set to anna@example.com.

If we wanted to change the maintainer label we could simply
re-run the build, and provide a new value for the email  ARG
via the --build-arg  command line argument, like so:

$ docker inspect example/docker-node-hello:latest | g
                "maintainer": "anna@example.com",

$ docker image build --build-arg email=me@example.com
 
…
 => => naming to docker.io/example/docker-node-hello:

http://127.0.0.1:8080/


After the build has finished, we can check the results by re-
inspecting the new image.

The ARG  and ENV  instructions can help make _Dockerfile_s
very flexible, while also avoiding a lot of repeated values that
can be hard to keep up-to-date.

Environment Variables as Configuration

If you read the index.js file, you will notice that part of the file
refers to the variable $WHO , which the application uses to
determine who the application is going to say Hello to:

$ docker inspect example/docker-node-hello:latest | g
                "maintainer": "me@example.com",

var DEFAULT_WHO = "World";
var WHO = process.env.WHO || DEFAULT_WHO; 
 
app.get('/', function (req, res) { 
  res.send('Hello ' + WHO + '. Wish you were here.\n'
});



Let’s quickly cover how you can configure this application by
passing in environment variables when you start it. First, you
need to stop the existing container using two commands. The
first command will provide you with the container ID, which
you will need to use in the second command:

NOTE

You can format the output of docker container ls  by using a Go template so that
you see only the information that you care about. In the preceding example you
might decide to run something like docker container ls --format "table
{{.ID}}\t{{.Image}}\t{{.Status}}"  to limit the output to the three fields you care
about. Additionally, running docker container ls --quiet  with no format options
will limit the output to only the container ID.

And then, using the container ID from the previous output, you
can stop the running container by typing:

$ docker container stop b7145e06083f 
b7145e06083f

$ docker container ls 
CONTAINER ID  IMAGE                             STATU
b7145e06083f  example/centos-node-hello:latest  Up 4 

https://developer.hashicorp.com/nomad/tutorials/templates/go-template-syntax


TIP

Using docker container ls  is functionally equivalent to using docker container
list , docker container ps , or docker ps .

Using docker container stop  is also functionally equivalent to using docker stop .

As seen below, you can then restart the container, after adding
a single instance of the --env  argument to the previous
docker container run  command:

If you reload your web browser, you should see that the text on
the web page now reads:

Hello Sean and Karl. Wish you were here.

$ docker container run --rm -d \
    --publish mode=ingress,published=8080,target=8080
    --env WHO="Sean and Karl" \
    example/docker-node-hello:latest



NOTE

You could shorten the above docker  command to the following if you wanted:

$ docker container run --rm -d -p 8080:8080 -e WHO="Sean and Karl" \
    example/docker-node-hello:latest

You can go ahead and stop this container now, using the same
method from above.

Custom Base Images

Base images are the lowest-level images that other Docker
images will build upon. Most often, these are based on minimal
installs of Linux distributions like Ubuntu, Fedora, or Alpine
Linux, but they can also be much smaller, containing a single
statically compiled binary. For most people, using the official
base images for their favorite distribution or tool is a great
option.

However, there are times when it is preferable to build your
own base images rather than using an image created by
someone else. One reason to do this would be to maintain a
consistent OS image across all your deployment methods for
hardware, VMs, and containers. Another would be to get the



image size down substantially. There is no need to ship around
an entire Ubuntu distribution, for example, if your application
is a statically built C or Go application. You might find that you
only need the tools you regularly use for debugging and some
other shell commands and binaries. Making the effort to build
such an image could pay off in better deployment times and
easier application distribution.

A common middle-ground between these two approaches is to
build images using Alpine Linux, which is designed to be very
small and is popular as a basis for Docker images. To keep the
distribution size very small, Alpine Linux is based on the
modern, lightweight musl standard library, instead of the more
traditional GNU libc. In general, this is not a big issue, since
many packages support musl, but it is something to be aware of.
It has the largest impact on Java-based applications and DNS
resolution. It’s widely used in production, however, because of
its diminutive image size. Alpine Linux is highly optimized for
space, which is the reason that it ships with /bin/sh, instead of
/bin/bash, by default. However, you can also install glibc and
bash in Alpine Linux if you need it, and this is often done in the
case of JVM containers.

In the official Docker documentation, there is some good
information about how you can build base images on the

https://musl.libc.org/
https://www.gnu.org/software/libc


various Linux distributions.

Storing Images

Now that you have created a Docker image that you’re happy
with, you’ll want to store it somewhere so that it can be easily
accessed by any Docker host that you want to deploy it to. This
is also the normal hand-off point between building images and
storing them somewhere for future deployment. You don’t
normally build the images on a production server and then run
them. This process was described when we talked about
handoff between teams for application deployment. Ordinarily,
deployment is the process of pulling an image from a repository
and running it on one or more Linux servers. There are a few
ways you can go about storing your images into a central
repository for easy retrieval.

Public Registries

Docker provides an image registry for public images that the
community wants to share. These include official images for
Linux distributions, ready-to-go WordPress containers, and
much more.

https://dockr.ly/2N1FZcU
https://registry.hub.docker.com/


If you have images that can be published on the internet, the
best place for them is a public registry, like Docker Hub.
However, there are other options. When the core Docker tools
were first gaining popularity, Docker Hub did not exist. To fill
this obvious void in the community, Quay.io was created. Since
then, Quay.io has gone through a few acquisitions and is now
owned by Red Hat. Cloud vendors like Google and Software-as-
a-Service companies like GitHub also have their own registry
offerings. Here we’ll just talk about the two of them.

Both Docker Hub and Quay.io provide centralized Docker image
registries that can be accessed from anywhere on the internet,
and provide a method to store private images in addition to
public ones. Both have nice user interfaces and the ability to
separate team access permissions and manage users. Both also
offer reasonable commercial options for private SaaS hosting of
your images, much in the same way that GitHub sells private
registries on their systems. This is probably the right first step if
you’re getting serious about Docker but are not yet shipping
enough code to need an internally hosted solution.

For companies that use Docker heavily, one of the biggest
downsides to these registries is that they are not local to the
network on which the application is being deployed. This
means that every layer of every deployment might need to be

https://hub.docker.com/
https://quay.io/


dragged across the internet to deploy an application. Internet
latencies have a very real impact on software deployments, and
outages that affect these registries could have a very
detrimental impact on a company’s ability to deploy smoothly
and on schedule. This is mitigated by good image design where
you make thin layers that are easy to move around the internet.

Private Registries

The other option that many companies consider is to host some
type of Docker image registry internally, which can interact
with the Docker client to support pushing, pulling, and
searching images. The open-source Distribution project
provides the basic functionality that most other registries build
upon.

Other strong contenders in the private registry space include
Harbor and Red Hat Quay. In addition to the basic Docker
registry functionality, these products have solid GUI interfaces
and many additional features, like image verification.

Authenticating to a Registry

Communicating with a registry that stores container images is a
part of daily life with Docker. For many registries, this means

https://github.com/distribution/distribution
https://goharbor.io/
https://www.redhat.com/en/technologies/cloud-computing/quay


you’ll need to authenticate to gain access to images. But Docker
also tries to make it easy to automate things so it can store your
login information and use it on your behalf when you request
things like pulling down a private image. By default, Docker
assumes the registry will be Docker Hub, the public repository
hosted by Docker, Inc.

TIP

Although a bit more advanced, it is worth noting that you can also configure the
Docker daemon to use a custom registry mirror or a pull-through image cache.

Creating a Docker Hub account

For these examples, you will create an account on Docker Hub.
You don’t need an account to download publicly shared images,
but you will need to be logged in to avoid rate limits and upload
any containers that you build.

To create your account, use a web browser of your choice to
navigate to Docker Hub.

From there, you can log in via an existing account or create a
new login based on your email address. When you create your
account, Docker Hub sends a verification email to the address
that you provided during sign-up. You should immediately log

https://docs.docker.com/registry/recipes/mirror/#configure-the-docker-daemon
https://docs.docker.com/registry/recipes/mirror/#run-a-registry-as-a-pull-through-cache
https://hub.docker.com/


in to your email account and click the verification link inside
the email to finish the validation process.

At this point, you have created a public registry to which you
can upload new images. The Account Settings option under
your profile picture has a Default Privacy  section that will
allow you to change your registry default visibility to private
if that is what you need.

WARNING

For much better security, you should create and log in to Docker Hub with a limited-
privilege personal access token.

Logging into a registry

Now let’s log in to the Docker Hub registry using our account:

$ docker login 
Login with your Docker ID to push and pull images fro
don't have a Docker ID, head over to https://hub.dock
Username: <hub_username> 

Password: <hub_password/token> 
Login Succeeded

https://hub.docker.com/settings/default-privacy
https://docs.docker.com/go/access-tokens/


NOTE

The command docker login  is functionally the same command as docker login
docker.io .

When you get Login Succeeded  back from the server, you
know you’re ready to pull images from the registry. But what
happened behind the scenes? It turns out that Docker has
written a dotfile for us in our home directory to cache this
information. The permissions are set to 0600 as a security
precaution against other users reading your credentials. You
can inspect the file with something like:

On Linux you will see something like this:

{
    "auths": {
    "https://index.docker.io/v1/": {
      "auth":"cmVsaEXamPL3hElRmFCOUE=",
      "email":"someuser@example.com"

$ ls -la ${HOME}/.docker/config.json 
-rw-------@ 1 …  158 Dec 24 10:37 /Users/someuser/.do
 
$ cat ${HOME}/.docker/config.json



    }
  }
}

NOTE

Docker is constantly evolving and has added support for many OS native secret
management systems like the macOS Keychain or Windows Credential Manager. So,
your config.json file might look significantly different than the example. There is also
a set of credentials managers for different platforms that can make your life easier
here.

WARNING

The auth  value in the Docker client config file is only base64 encoded. It is NOT
encrypted. This is typically only a significant issue on multi-user Linux systems,
because there is not a default system-wide credential manager that just works, and
other privileged users on the system can likely read your docker client config file and
access those secrets. It is possible to configure gpg  pr pass  to encrypt these files on
Linux.

Here you can see the ${HOME}/.docker/config.json file contains
docker.io  credentials for the user someuser@example.com  in
JSON. This configuration file supports storing credentials for
multiple registries. In this case, you just have one entry, for
Docker Hub, but you could have more if you needed it. From
now on, when the registry needs authentication, Docker will

https://bit.ly/2wzLHZe


look in ${HOME}/.docker/config.json to see if you have
credentials stored for this hostname. If so, it will supply them.
You will notice that one value is completely lacking here: a
timestamp. These credentials are cached forever or until you
tell Docker to remove them, whichever comes first.

As with logging in, you can also log out of a registry if you no
longer want to cache the credentials:

{
  "auths": {
  }
}

Here you have removed the cached credentials and they are no
longer stored by Docker. Some versions of Docker may even
remove this file if it is empty. If you were trying to log in to
something other than the Docker Hub registry, you could supply
the hostname on the command line:

$ docker logout 
Removing login credentials for https://index.docker.i
$ cat ${HOME}/.docker/config.json



$ docker login someregistry.example.com

This would then add another auth entry into our
${HOME}/.docker/config.json file.

Pushing images into a repository

The first step required to push your image is to ensure that you
are logged into the Docker repository you intend to use. For this
example we will focus on Docker Hub, so ensure that you are
logged into Docker Hub with your preferred credentials.

Once you are logged in, you can upload an image. Earlier you
used the command docker image build -t example/docker-
node-hello:latest .  to build the docker-node-hello  image.

$ docker login 
Login with your Docker ID to push and pull images fro
don't have a Docker ID, head over to https://hub.dock
Username: <hub_username> 
Password: <hub_password/token> 
Login Succeeded 
 

Logging in with your password grants your terminal co
your account.



In reality, the Docker client and, for compatibility reasons,
many other container tools actually interpret example/docker-
node-hello:latest  as docker.io/example/docker-node-
hello:latest . docker.io  signifies the image registry
hostname and example/docker-node-hello  is the repository
inside the registry that contains the images in question.

When you are building an image locally, the registry and
repository name can be anything that you want. However,
when you are going to upload your image to a real registry, you
need that to match the login.

You can easily edit the tags on the image that you already
created by running the following command and replacing
${<myuser>}  with your Docker Hub username:

If you need to rebuild the image with the new naming
convention or simply want to give it a try, you can accomplish
this by running the following command in the docker-node-hello
working directory that was generated when you performed the
Git checkout earlier in the chapter.

$ docker image tag example/docker-node-hello:latest \
    docker.io/${<myuser>}/docker-node-hello:latest



NOTE

For the following examples, you will need to replace ${<myuser>}  in all the
examples with the user that you created in Docker Hub. If you are using a different
registry then you will also need to replace docker.io  with the hostname of the
registry you are using.

On the first build, this will take a little time. If you rebuild the
image, you may find that it is very fast. This is because most, if
not all, of the layers already exist on your Docker server from
the previous build. We can quickly verify that our image is
indeed on the server by running docker image ls
${<myuser>}/docker-node-hello :

$ docker image build -t docker.io/${<myuser>}/docker-
…

$ docker image ls ${<myuser>}/docker-node-hello 
REPOSITORY                 TAG      IMAGE ID       CR
myuser/docker-node-hello   latest   f683df27f02d   Ab



TIP

It is possible to format the output of docker image ls  to make it more concise by
using the --format  argument, like this: docker image ls --format="table
{{.ID}}\t{{.Repository}}" .

At this point you can upload the image to the Docker repository
by using the docker image push  command:

If this image was uploaded to a public repository, anyone in the
world can now easily download it by running the docker
image pull  command.

TIP

If you uploaded the image to a private repository, then users must log in with
credentials that have access to those repositories using the docker login  command
before they will be able to pull the image down to their local system.

$ docker image push ${<myuser>}/docker-node-hello:lat
Using default tag: latest 
The push refers to repository [docker.io/myuser/docke
5f3ee7afc69c: Pushed 
… 
5bb0785f2eee: Mounted from library/node 
latest: digest: sha256:f5ceb032aec36fcacab71e468eaf0b



Exploring images in Docker Hub

In addition to simply using the [Docker Hub website]
(https://hub.docker.com/) to explore what images are available,
you can also use the docker search  command to find images
that might be useful.

Running docker search node  will return a list of images that
contain the word node in either the image name or the
description.

$ docker image pull ${<myuser>}/docker-node-hello:lat
Using default tag: latest 
latest: Pulling from myuser/docker-node-hello 
Digest: sha256:f5ceb032aec36fcacab71e468eaf0ba8a832cf

Status: Image is up to date for myuser/docker-node-he
docker.io/myuser/docker-node-hello:latest

$ docker search node 
NAME                     DESCRIPTION                 
node                     Node.js is a JavaScript-ba… 
mongo-express            Web-based MongoDB admin in… 
nodered/node-red         Low-code programming for e… 
nodered/node-red-docker  Deprecated - older Node-RE… 
i l i/ d N d j i J S i t b

https://hub.docker.com/


The OFFICIAL header tells you that the image is one of the
[official curated images](https://docs.docker.com/docker-
hub/o�cial_images/) on Docker Hub. This typically means that
the image is maintained by the company or official
development community that oversees that application.
AUTOMATED denotes that the image is automatically built and
uploaded by a CI/CD process trigged via commits to the
underlying source code repository. Official images are always
automated.

Running a Private Registry

In keeping with the spirit of the open-source community,
Docker encourages the community to share Docker images via
Docker Hub by default. There are times, however, when this is

circleci/node            Node.js is a JavaScript-ba… 
kindest/node             sigs.k8s.io/kind node imag… 
bitnami/node             Bitnami Node.js Docker Ima… 
cimg/node                The CircleCI Node.js Docke… 
opendronemap/nodeodm     Automated build for NodeOD… 
bitnami/node-exporter    Bitnami Node Exporter Dock… 
appdynamics/nodejs-agent Agent for monitoring Node.… 
wallarm/node             Wallarm: end-to-end API se… 
…

https://docs.docker.com/docker-hub/official_images/


not a viable option due to commercial, legal, image retention, or
reliability concerns.

In these cases, it makes sense to host an internal private
registry. Setting up a basic registry is not difficult, but for
production use, you should take the time to familiarize yourself
with all the available configuration options for the open-source
Docker Registry (Distribution).

For this example, we are going to create a very simple secure
registry using SSL and HTTP basic auth.

First, let’s create a few directories and files on our Docker
server. If you are using a virtual machine or cloud instance to
run your Docker server, then you will need to SSH to that
server for the next few commands. If you are using Docker
Desktop or Community Edition, then you should be able to run
these on your local system.

TIP

Windows users: You may need to download additional tools, like htppaswd , or alter
the non-Docker commands to accomplish the same tasks on your local system.

First let’s clone a Git repository that contains the basic files
required to set up a simple, authenticated Docker registry.

https://docs.docker.com/registry/


Once you have the files locally, you can change directories and
examine the files that you have just downloaded.

The Dockerfile simply takes the upstream registry image from
Docker Hub and copies some local configuration and support
files into a new image.

For testing, you can use some of the included sample files, but
do not use these in production.

If your Docker server is available via localhost (127.0.0.1), then
you can use these files unmodified by simply copying each of

$ git clone https://github.com/spkane/basic-registry 
  --config core.autocrlf=input 
Cloning into 'basic-registry'… 
remote: Counting objects: 10, done. 
remote: Compressing objects: 100% (8/8), done. 
remote: Total 10 (delta 0), reused 10 (delta 0), pack
Unpacking objects: 100% (10/10), done.

$ cd basic-registry 
$ ls 
Dockerfile          config.yaml.sample  registry.crt.
README.md           htpasswd.sample     registry.key.



them like this:

$ cp config.yaml.sample config.yaml 
$ cp registry.key.sample registry.key 
$ cp registry.crt.sample registry.crt 
$ cp htpasswd.sample htpasswd

If, however, your Docker server is on a remote IP address, then
you will need to do a little additional work.

First copy config.yaml.sample to config.yaml.

$ cp config.yaml.sample config.yaml

Then edit config.yaml and replace 127.0.0.1  with the IP
address of your Docker server so that:

http:
  host: https://127.0.0.1:5000

becomes something like this:

http:
  host: https://172.17.42.10:5000



NOTE

It is easy to create a registry using a fully qualified domain name (FQDN), like my-
registry.example.com , but for this example working with IP addresses is easier
because no DNS is required.

Next, you need to create an SSL keypair for your registry’s IP
address:

One way to do this is with the following OpenSSL command.
Note that you will need to set the IP address in this portion of
the command /CN=172.17.42.10  to match your Docker
server’s IP address.

Finally, you can either use the example htpasswd  file by
copying it:

$ cp htpasswd.sample htpasswd

or you can create your own username and password pair for
authentication by using a command like the following,

$ openssl req -x509 -nodes -sha256 -newkey rsa:4096 \
  -keyout registry.key -out registry.crt \
  -days 14 -subj '{/CN=172.17.42.10}'



replacing ${<username>}  and ${<password>}  with your
preferred values.

If you look at the directory listing again, it should now look like
this:

If any of these files are missing, review the previous steps, to
ensure that you did not miss one, before moving on.

If everything looks correct, then you should be ready to build
and run the registry.

$ docker container run --rm --entrypoint htpasswd g \
  -Bbn ${<username>} ${<password>} > htpasswd

$ ls 
Dockerfile          config.yaml.sample  registry.crt 
README.md           htpasswd            registry.crt.
config.yaml         htpasswd.sample     registry.key

$ docker image build -t my-registry . 
$ docker container run --rm -d -p 5000:5000 --name re

$ docker container logs registry



TIP

If you see errors like docker: Error response from daemon: Conflict. The
container name "/registry" is already in use , then you need to either change
the container name above or remove the existing container with that name. You can
remove the container by running docker container rm registry .

Testing the private registry

Now that the registry is running, you can test it. The very first
thing that you need to do is authenticate against it. You will
need to make sure that the IP address in the docker login
matches the IP address of your Docker server that is running
the registry.

NOTE

myuser  is the default username, and myuser-pw!  is the default password. If you
generated your own htpasswd , then these will be whatever you choose.

$ docker login 127.0.0.1:5000 
Username: <registry_username> 
Password: <registry_password> 
Login Succeeded



WARNING

This registry container has an embedded SSL key and is not using any external
storage, which means that it contains a secret and when you delete the running
container, all your images will also be deleted. This is by design.

In production, you will want to have your containers pull secrets from a secrets
management system and use some type of redundant external storage, like an object
store. If you want to keep your development registry images between containers, you
could add something like --mount type=bind,source=/tmp/registry-
data,target=/var/lib/registry  to your docker container run  command to store
the registry data on the Docker server.

Now, let’s see if you can push the image you just built into your
local private registry.

TIP

In all of these commands, ensure that you use the correct IP address for your registry.

$ docker image tag my-registry 127.0.0.1:5000/my-regi
$ docker image push 127.0.0.1:5000/my-registry 
Using default tag: latest 
The push refers to repository [127.0.0.1:5000/my-regi
f09a0346302c: Pushed 
… 
4fc242d58285: Pushed 
latest: digest: sha256:c374b0a721a12c41d5b298930d11e6



You can then try to pull the same image from your repository.

TIP

It’s worth keeping in mind that both Docker Hub and Docker Distribution expose an
API endpoint that you can query for useful information. You can find out more
information about the API via the official documentation.

If you have not encountered any errors, then you have a
working registry for development and could build on this
foundation to create a production registry. At this point, you
may want to stop the registry for the time being. You can easily
accomplish this by running:

$ docker container stop registry

$ docker image pull 127.0.0.1:5000/my-registry 
Using default tag: latest 
latest: Pulling from my-registry 
Digest: sha256:c374b0a721a12c41d5b298930d11e658fbd37f
Status: Image is up to date for 127.0.0.1:5000/my-reg
127.0.0.1:5000/my-registry:latest

https://github.com/distribution/distribution/blob/main/docs/spec/api.md


TIP

As you become comfortable with Docker Distribution, you may also want to consider
exploring the CNCF  open source project, called Harbor, which extends the Docker
Distribution with a lot of security and reliability-focused features.

Optimizing Images

After you have spent a little bit of time working with Docker,
you will quickly notice that keeping your image sizes small and
your build times fast can be very beneficial in decreasing the
time required to build and deploy new versions of your
software into production. In this section, we will talk a bit about
some of the considerations you should always keep in mind
when designing your images, and a few techniques that can
help achieve these goals.

Keeping Images Small

In most modern businesses, downloading a single 1 GB file from
a remote location on the internet is not something that people
often worry about. It is so easy to find software on the internet
that people will often rely on simply re-downloading it if they
need it again, instead of keeping a local copy for the future. This
may often be acceptable when you truly need a single copy of
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https://goharbor.io/


this software on a single server, but it can quickly become a
scaling problem when you need the same software on 100+
nodes and you deploy new releases multiple times a day.
Downloading these large files can quickly cause network
congestion and slower deployment cycles that have a real
impact on the production environment.

For convenience, a large number of Linux containers inherit
from a base image that contains a minimal Linux distribution.
Although this is an easy starting place, it isn’t required.
Containers only need to contain the files that are required to
run the application on the host kernel, and nothing else. The
best way to explain this is to explore a very minimal container.

Go is a compiled programming language that can easily
generate statically compiled binary files. For this example, we
are going to use a very small web application written in Go that
can be found on GitHub.

Let’s go ahead and try out the application so that you can see
what it does. Run the following command and then open up a
web browser and point it to your Docker host on port 8080 (e.g.,
http://127.0.0.1:8080 for Docker Desktop and Community
Edition):

$ docker container run --rm -d -p 8080:8080 spkane/sc

https://github.com/spkane/scratch-helloworld
http://127.0.0.1:8080/


If all goes well, you should see the following message in your
web browser: Hello World from Go in minimal Linux
container . Now let’s take a look at what files this container
comprises. It would be fair to assume that at a minimum it will
include a working Linux environment and all the files required
to compile Go programs, but you will soon see that this is not
the case.

While the container is still running, execute the following
command to determine what the container ID is. The following
command returns the information for the last container that
you created:

You can then use the container ID that you obtained from
running the previous command to export the files in the
container into a tarball, which can be easily examined.

$ docker container run rm d p 8080:8080 spkane/sc

$ docker container ls -l 
CONTAINER ID IMAGE                     COMMAND       
ddc3f61f311b spkane/scratch-helloworld "/helloworld" 

$ docker container export ddc3f61f311b -o web-app.tar



Using the tar  command, you can now examine the contents of
your container at the time of the export.

The first thing you might notice here is that there are almost no
files in this container, and almost all of them are zero bytes in
length. All of the files that have a zero-length are required to
exist in every Linux container and are automatically bind-
mounted from the host into the container when it is first
created. All of these files, except for .dockerenv, are critical files

$ tar -tvf web-app.tar 
-rwxr-xr-x  0 0      0           0 Jan  7 15:54 .dock
drwxr-xr-x  0 0      0           0 Jan  7 15:54 dev/ 
-rwxr-xr-x  0 0      0           0 Jan  7 15:54 dev/c
drwxr-xr-x  0 0      0           0 Jan  7 15:54 dev/p
drwxr-xr-x  0 0      0           0 Jan  7 15:54 dev/s
drwxr-xr-x  0 0      0           0 Jan  7 15:54 etc/ 
-rwxr-xr-x  0 0      0           0 Jan  7 15:54 etc/h
-rwxr-xr-x  0 0      0           0 Jan  7 15:54 etc/h
lrwxrwxrwx  0 0      0           0 Jan  7 15:54 etc/m

-rwxr-xr-x  0 0      0           0 Jan  7 15:54 etc/r
-rwxr-xr-x  0 0      0     3604416 Jul  2  2014 hello
drwxr-xr-x  0 0      0           0 Jan  7 15:54 proc/
drwxr-xr-x  0 0      0           0 Jan  7 15:54 sys/

https://bit.ly/2PgmZEY


that the kernel needs to do its job properly. The only file in this
container that has any actual size and is related to our
application is the statically compiled helloworld  binary.

The takeaway from this exercise is that your containers are
only required to contain exactly what they need to run on the
underlying kernel. Everything else is unnecessary. Because it is
often useful for troubleshooting to have access to a working
shell in your container, people will often compromise and build
their images from a very lightweight Linux distribution like
Alpine Linux.

TIP

If you find yourself exploring image files a lot, you might want to take a look at the
tool [dive](https://github.com/wagoodman/dive), which provides a CLI nice interface
for understanding what an image contains.

To dive into this a little deeper, let’s look at that same container
again so that we can dig into the underlying filesystem and
compare it with the popular alpine  base image.

Although we could easily poke around in the alpine  image by
simply running docker container run -ti alpine:latest
/bin/sh , we cannot do this with the spkane/scratch-
helloworld  image, because it does not contain a shell or SSH.

https://github.com/wagoodman/dive


This means that we can’t use ssh , nsenter , or docker
container exec  to examine it, though there is a advanced trick
discussed in “Debugging Shell-less Containers”. Earlier, we took
advantage of the docker container export  command to
create a .tar file that contained a copy of all the files in the
container, but this time around we are going to examine the
container’s filesystem by connecting directly to the Docker
server and then looking into the container’s filesystem itself. To
do this, we need to find out where the image files reside on the
server’s disk.

To determine where on the server our files are actually being
stored, run docker image inspect  on the alpine:latest
image:

$ docker image inspect alpine:latest

[
    {
        "Id": "sha256:3fd…353",
        "RepoTags": [
            "alpine:latest"
        ],
        "RepoDigests": [
            "alpine@sha256:7b8…f8b"

],



And then on the spkane/scratch-helloworld:latest  image:

        ],
…
        "GraphDriver": {
            "Data": {
                "MergedDir":
                "/var/lib/docker/overlay2/ea8…13a/mer
                "UpperDir":
                "/var/lib/docker/overlay2/ea8…13a/dif
                "WorkDir":
                "/var/lib/docker/overlay2/ea8…13a/wor
            },
            "Name": "overlay2"
…
        }
    }
…
]

$ docker image inspect spkane/scratch-helloworld:late

[
    {
        "Id": "sha256:4fa…06d",
        "RepoTags": [



            "spkane/scratch-helloworld:latest"
        ],
        "RepoDigests": [
            "spkane/scratch-helloworld@sha256:46d…a1d
        ],
…
        "GraphDriver": {
            "Data": {
                "LowerDir":
                "/var/lib/docker/overlay2/37a…84d/dif
                /var/lib/docker/overlay2/28d…ef4/diff
                "MergedDir":
                "/var/lib/docker/overlay2/fc9…c91/mer
                "UpperDir":
                "/var/lib/docker/overlay2/fc9…c91/dif
                "WorkDir":
                "/var/lib/docker/overlay2/fc9…c91/wor
            },
            "Name": "overlay2"
…
        }
    }
…
]



NOTE

In this particular example, we are going to use Docker Desktop running on macOS,
but this general approach will work on most Docker servers. However, you can
access your Docker server via whatever method is easiest.

Since we are using Docker Desktop, we need to use our
nsenter  trick to enter the SSH-less virtual machine and
explore the filesystem.

Inside the VM, we should now be able to explore the various
directories listed in the GraphDriver  section of the docker
image inspect  commands.

In this example, if we look at the first entry for the alpine
image will see that it is labeled MergedDir  and lists the folder
/var/lib/docker/overlay2/ea86408b2b15d33ee27d78ff44f82104705
286221f055ba1331b58673f4b313a/merged. If we list that
directory we will get an error, but from listing the parent

$ docker container run --rm -it --privileged --pid=ho
  nsenter -t 1 -m -u -n -i sh 
 
/ #



directory we quickly discover that we actually want to look at
the diff directory.

/ # ls -lFa /var/lib/docker/overlay2/ea…3a/merged 
 
ls: /var/lib/docker/overlay2/ea..3a/merged: No such f
 
/ # ls -lF /var/lib/docker/overlay2/ea…3a/ 
 
total 8 
drwxr-xr-x   18 root     root          4096 Mar 15 19
-rw-r--r--    1 root     root            26 Mar 15 19
 
/ # ls -lF /var/lib/docker/overlay2/ea…3a/diff 
 

total 64 
drwxr-xr-x    2 root     root          4096 Jan  9 19
drwxr-xr-x    2 root     root          4096 Jan  9 19
drwxr-xr-x   15 root     root          4096 Jan  9 19
drwxr-xr-x    2 root     root          4096 Jan  9 19
drwxr-xr-x    5 root     root          4096 Jan  9 19
drwxr-xr-x    5 root     root          4096 Jan  9 19
drwxr-xr-x    2 root     root          4096 Jan  9 19
dr-xr-xr-x    2 root     root          4096 Jan  9 19
drwx------    2 root     root          4096 Jan  9 19
drwxr-xr-x    2 root     root          4096 Jan  9 19
drwxr-xr-x    2 root     root          4096 Jan  9 19
drwxr-xr-x    2 root     root          4096 Jan  9 19



Now, alpine  happens to be a very small base image, weighing
in at only 4.5 MB, and it is ideal for building containers on top
of. However, we can see that there is still a lot of stuff in this
container before we have started to build anything from it.

Now, let’s take a look at the files in the spkane/scratch-
helloworld  image. In this case, we want to look at the first
directory from the LowerDir  entry of the docker image
inspect  output, which you’ll notice also ends in a directory
called diff.

drwxr-xr-x    2 root     root          4096 Jan  9 19
drwxrwxrwt    2 root     root          4096 Jan  9 19
drwxr-xr-x    7 root     root          4096 Jan  9 19
drwxr-xr-x   11 root     root          4096 Jan  9 19
 
/ # du -sh  /var/lib/docker/overlay2/ea…3a/diff
4.5M    /var/lib/docker/overlay2/ea…3a/diff

/ # ls -lFh /var/lib/docker/overlay2/37…4d/diff 
 
total 3520 
-rwxr-xr-x    1 root     root        3.4M Jul  2  201

 
/ # exit



You’ll notice that there is only a single file in this directory and
it is 3.4 MB. This helloworld binary is the only file shipped in
this container and is smaller than the starting size of the
alpine  image before any application files have been added to
it.

NOTE

It is possible to run the helloworld  application right from that directory on your
Docker server because it does not require any other files. You really don’t want to do
this on anything but a development box, but it can help drive the point home about
how useful these types of statically compiled applications can be.

Multi-stage builds

There is a way you can constrain containers to an even smaller
size in many cases: multi-stage builds. This is how we
recommend that you build most production containers. You
don’t have to worry as much about bringing in extra resources
to build your application, and can still run a lean production
container. Multi-stage containers also encourage doing builds
inside of Docker, which is a great pattern for repeatability in
your build system.



As the original author of the scratch-helloworld application has
written about, the release of multi-stage build support in
Docker itself has made the process of creating small containers
much easier than it used to be. In the past, to do the same thing
that multi-stage delivers for nearly free, you were required to
build one image that compiled your code, extract the resulting
binary, and then build a second image without all the build
dependencies that you would then inject that binary into. This
was often difficult to set up and did not always work out of the
box with standard deployment pipelines.

Today, you can now achieve similar results using a Dockerfile as
simple as this one:

# Build container
FROM docker.io/golang:alpine as builder
RUN apk update && \
    apk add git && \
    CGO_ENABLED=0 go install -a -ldflags '-s' github.
 
# Production container
FROM scratch
COPY --from=builder /go/bin/scratch-helloworld /hello
EXPOSE 8080
CMD ["/helloworld"]

https://bit.ly/2wwOdj4


The first thing you’ll notice about this Dockerfile is that it looks a
lot like two _Dockerfile_s that have been combined into one.
Indeed this is the case, but there is more to it. The FROM
command has been extended so that you can name the image
during the build phase. In this example, the first line, which
reads FROM docker.io/golang as builder , means that you
want to base your build on the golang  image and will be
referring to this build image/stage as builder .

On the fourth line, you’ll see another FROM  line, which was not
allowed before the introduction of multi-stage builds. This
FROM  line uses a special image name, called scratch , that tells
Docker to start from an empty image, which includes no
additional files. The next line, which reads COPY --
from=builder /go/bin/scratch-helloworld /helloworld ,
allows you to copy the binary that you built in the builder image
directly into the current image. This will ensure that you end up
with the smallest container possible.

The +EXPOSE 8080+line is documentation that is intended to
inform users which port(s) and protocols (TCP is the default
protocol) the service listens on.

Let’s try to build this and see what happens. First, create a
directory where you can work and then, using your favorite



text editor, paste the content from the preceding example into a
file called Dockerfile.

$ mkdir /tmp/multi-build 
$ cd /tmp/multi-build 
$ vi Dockerfile

TIP

You can download a copy of this Dockerfile from bluewhalebook/docker-up-and-
running-3rd-edition.

We can now start the multi-stage build.

$ docker image build .
[+] Building 9.7s (7/7) FINISHED
 => [internal] load build definition from Dockerfile
 => => transferring dockerfile: 37B
 => [internal] load .dockerignore
 => => transferring context: 2B
 => [internal] load metadata for docker.io/library/go
 => CACHED [builder 1/2] FROM docker.io/library/golan
 => [builder 2/2] RUN apk update && apk add git && CG
 => [stage-1 1/1] COPY --from=builder /go/bin/scratch
 => exporting to image
 => => exporting layers
 => => writing image sha256:bb853f23418161927498b9631

https://github.com/bluewhalebook/docker-up-and-running-3rd-edition/blob/main/chapter_04/multistage/Dockerfile


You’ll notice that the output looks like most other builds and
still ends by reporting the successful creation of our final, very
minimal image.

WARNING

If you are compiling binaries on your local system that use shared libraries, you need
to be careful to ensure that the correct version of those shared libraries are also
available to the process inside the container.

You are not limited to two stages, and in fact, none of the stages
need to even be related to each other. They will be run in order.
You could, for example, have a stage based on the public Go
image that builds your underlying Go application to serve an
API, and another stage based on the Angular container to build
your frontend web UI. The final stage could then combine
outputs from both.

TIP

As you start to build more complex images, you may find that being limited to a
single build context is challenging. The docker-buildx  plugin which we discuss near
the end of this chapter is capable of supporting multiple build contexts, which can be
used to support some very advanced workflows.

g g

https://www.docker.com/blog/dockerfiles-now-support-multiple-build-contexts/


Layers Are Additive

Something that is not apparent until you dig much deeper into
how images are built is that the filesystem layers that make up
your images are strictly additive by design. Although you can
shadow/mask files in previous layers, you cannot delete those
files. In practice, this means that you cannot make your image
smaller by simply deleting files that were generated in earlier
steps.

NOTE

If you enable experimental features on your Docker server, it is possible to squash a
bunch of layers into a single layer using docker image build --squash  . This will
deleted files actually disappear and will therefore often recover some wasted space,
but it also means that the whole layer must be downloaded by every system that
requires it, even when only a single line of source code was updated, so there are
real tradeoffs to using this approach.

The easiest way to explain the additive nature of image layers is
by using some practical examples. In a new directory download
or create the following file, which will generate an image that
launches the Apache web server running on Fedora Linux:

FROM docker.io/fedora
RUN dnf install -y httpd

https://github.com/bluewhalebook/docker-up-and-running-3rd-edition/blob/main/chapter_04/additive/


CMD ["/usr/sbin/httpd", "-DFOREGROUND"]

and then build it like this:

Let’s go ahead and tag the resulting image so that you can easily
refer to it in subsequent commands:

Now let’s take a look at our image with the docker image
history  command. This command will give us some insight
into the filesystem layers and build steps that our image uses.

$ docker image build .
[+] Building 63.5s (6/6) FINISHED
 => [internal] load build definition from Dockerfile
 => => transferring dockerfile: 130B
 => [internal] load .dockerignore
 => => transferring context: 2B
 => [internal] load metadata for docker.io/library/fe
 => [1/2] FROM docker.io/library/fedora
 => [2/2] RUN dnf install -y httpd
 => exporting to image
 => => exporting layers
 => => writing image sha256:543d61c956778b8ea3b32f1e0

$ docker image tag sha256:543d61c956778b8ea3b32f1e09a



You’ll notice that three of the layers added no size to our final
image, but two of them increase the size a great deal. The layer
that is 163 MB makes sense, as this is the base Fedora image
that includes a minimal Linux distribution; however, the 273
MB layer is surprising. The Apache web server shouldn’t be
nearly that large, so what’s going on here, exactly?

If you have experience with package managers like apk , apt ,
dnf , or yum , then you may know that most of these tools rely
heavily on a large cache that includes details about all the
packages that are available for installation on the platform in
question. This cache uses up a huge amount of space and is
completely useless once you have installed the packages you
need. The most obvious next step is to simply delete the cache.
On Fedora systems, you could do this by editing your Dockerfile
so that it looks like this:

$ docker image history size1 
IMAGE        CREATED            CREATED BY           
543d61c95677 About a minute ago CMD ["/usr/sbin/httpd
<missing>    About a minute ago RUN /bin/sh -c dnf in
<missing>    6 weeks ago        /bin/sh -c #(nop)  CM
<missing>    6 weeks ago        /bin/sh -c #(nop) ADD
<missing>    3 months ago       /bin/sh -c #(nop)  EN
<missing>    15 months ago      /bin/sh -c #(nop)  LA



FROM docker.io/fedora
RUN dnf install -y httpd
RUN dnf clean all
CMD ["/usr/sbin/httpd", "-DFOREGROUND"]

and then building, tagging, and examining the resulting image:

If you look carefully at the output from the docker image
history  command, you’ll notice that you have created a new
layer that adds 71.8kB to the image, but you have not decreased

$ docker image build .
[+] Building 0.5s (7/7) FINISHED 
…
 => => writing image sha256:b6bf99c6e7a69a1229ef63fc0
 
$ docker image tag sha256:b6bf99c6e7a69a1229ef63fc086
IMAGE        CREATED            CREATED BY           
b6bf99c6e7a6 About a minute ago CMD ["/usr/sbin/httpd
<missing>    About a minute ago RUN /bin/sh -c dnf cl
<missing>    10 minutes ago     RUN /bin/sh -c dnf in
<missing>    6 weeks ago        /bin/sh -c #(nop)  CM
<missing>    6 weeks ago        /bin/sh -c #(nop) ADD

<missing>    3 months ago       /bin/sh -c #(nop)  EN
<missing>    15 months ago      /bin/sh -c #(nop)  LA



the size of the problematic layer at all. What is happening
exactly?

The important thing to understand is that image layers are
strictly additive in nature. Once a layer is created, nothing can
be removed from it. This means that you cannot make earlier
layers in an image smaller by deleting files in subsequent
layers. When you delete or edit files in subsequent layers,
you’re simply masking the older version with the modified or
removed version in the new layer. This means that the only
way you can make a layer smaller is by removing files before
you save the layer.

The most common way to deal with this is by stringing
commands together on a single Dockerfile line. You can do this
very easily by taking advantage of the &&  operator. This
operator acts as a Boolean AND  statement and basically
translates into English as “and if the previous command ran
successfully, run this command.” In addition to this, you can
also take advantage of the /  operator, which is used to indicate
that a command continues after the newline. This can help
improve the readability of long commands.

With this knowledge in hand, you can rewrite the Dockerfile
like this:



FROM docker.io/fedora
RUN dnf install -y httpd && \
    dnf clean all
CMD ["/usr/sbin/httpd", "-DFOREGROUND"]

Now you can rebuild the image and see how this change has
impacted the size of the layer that includes the http  daemon:

In the first two examples, the layer in question was 273 MB in
size, but now that you have removed many unnecessary files
that were added to that layer, you can shrink the layer down to
44.8 MB. This is a very large saving of space, especially when

$ docker image build .
[+] Building 0.5s (7/7) FINISHED 
…
 => => writing image sha256:14fe7924bb0b641ddf11e08d3
$ docker image tag sha256:14fe7924bb0b641ddf11e08d3dd
IMAGE        CREATED            CREATED BY           
14fe7924bb0b About a minute ago CMD ["/usr/sbin/httpd
<missing>    About a minute ago RUN /bin/sh -c dnf in
<missing>    6 weeks ago        /bin/sh -c #(nop)  CM
<missing>    6 weeks ago        /bin/sh -c #(nop) ADD

<missing>    3 months ago       /bin/sh -c #(nop)  EN
<missing>    15 months ago      /bin/sh -c #(nop)  LA



you consider how many servers might be pulling the image
down during any given deployment.

Utilizing the Layer Cache

The final building technique that we will cover here is related
to keeping build times as fast as possible. One of the important
goals of the DevOps movement is to keep feedback loops as tight
as possible. This means that it is important to try to ensure that
problems are discovered and reported as quickly as possible so
that they can be fixed when people are still completely focused
on the code in question and haven’t moved on to other
unrelated tasks.

During any standard build process, Docker uses a layer cache to
try to avoid rebuilding any image layers that it has already built
and that do not contain any noticeable changes. Because of this
cache, the order in which you do things inside your Dockerfile
can have a dramatic impact on how long your builds take on
average.

For starters let’s take the Dockerfile from the previous example
and customize it just a bit so that it looks like this:



TIP

Like the other examples, you can also find these files at
github.com/bluewhalebook/docker-up-and-running-3rd-edition.

FROM docker.io/fedora
RUN dnf install -y httpd && \
    dnf clean all
RUN mkdir -p /var/www && \
    mkdir -p /var/www/html
ADD index.html /var/www/html
CMD ["/usr/sbin/httpd", "-DFOREGROUND"]

Now, in the same directory, let’s also create a new file called
index.html that looks like this:

<html> 
  <head> 
    <title>My custom Web Site</title> 
  </head> 
  <body> 
    <p>Welcome to my custom Web Site</p> 
  </body>
</html>

https://github.com/bluewhalebook/docker-up-and-running-3rd-edition/blob/main/chapter_04/cache/


For the first test, let’s time the build without using the Docker
cache at all, by using the following command:

$ time docker image build --no-cache .
time docker image build --no-cache .
[+] Building 48.3s (9/9) FINISHED
 => [internal] load build definition from Dockerfile
 => => transferring dockerfile: 238B
 => [internal] load .dockerignore
 => => transferring context: 2B
 => [internal] load metadata for docker.io/library/fe
 => CACHED [1/4] FROM docker.io/library/fedora
 => [internal] load build context
 => => transferring context: 32B
 => [2/4] RUN dnf install -y httpd &&     dnf clean a
 => [3/4] RUN mkdir -p /var/www &&     mkdir -p /var/
 => [4/4] ADD index.html /var/www/html
 => exporting to image
 => => exporting layers
 => => writing image sha256:7f94d0d6492f2d2c0b8576f0f
 
real  1m21.645s 
user  0m0.428s 
sys   0m0.323s



TIP

Windows users should be able to run this command in a WSL2 session or use the
PowerShell Measure-Command  function to replace the Unix time  command used in
these examples.

The output from the time  command tells us that the build
without the cache took about a minute and 21 seconds and only
pulled the base image from layer cache. If you rebuild the
image immediately afterward and allow Docker to use the
cache, you will see that the build is very fast.

$ time docker image build .
[+] Building 0.1s (9/9) FINISHED
 => [internal] load build definition from Dockerfile
 => => transferring dockerfile: 37B
 => [internal] load .dockerignore
 => => transferring context: 2B

 => [internal] load metadata for docker.io/library/fe
 => [1/4] FROM docker.io/library/fedora
 => [internal] load build context
 => => transferring context: 32B
 => CACHED [2/4] RUN dnf install -y httpd &&     dnf 
 => CACHED [3/4] RUN mkdir -p /var/www &&     mkdir -
 => CACHED [4/4] ADD index.html /var/www/html
 => exporting to image
 => => exporting layers

https://bit.ly/2MDcONZ


Since none of the layers changed, and the cache could be fully
leveraged for all four build steps, the build took only a fraction
of a second to complete. Now, let’s make a small improvement
to the index.html file so that it looks like this:

<html> 
  <head> 
    <title>My custom Web Site</title> 
  </head> 
  <body> 
    <div align="center"> 
      <p>Welcome to my custom Web Site!!!</p> 
    </div> 
  </body>
</html>

and then let’s time the rebuild again:

 => => writing image sha256:0d3aeeeeebd09606d99719e0c
 
real  0m0.416s 
user  0m0.120s 
sys   0m0.087s

$ time docker image build .
[+] Building 0.1s (9/9) FINISHED
> [i t l] l d b ild d fi iti f D k fil



If you look at the output carefully, you will see that the cache
was used for most of the build. It wasn’t until step 4/4 when
Docker needed to copy index.html, that the cache was
invalidated and the layers had to be recreated. Because the
cache could be used for most of the build, the build still did not
exceed a second.

 => [internal] load build definition from Dockerfile
 => => transferring dockerfile: 37B
 => [internal] load .dockerignore
 => => transferring context: 2B
 => [internal] load metadata for docker.io/library/fe
 => [internal] load build context

 => => transferring context: 214B
 => [1/4] FROM docker.io/library/fedora
 => CACHED [2/4] RUN dnf install -y httpd &&     dnf 
 => CACHED [3/4] RUN mkdir -p /var/www &&     mkdir -
 => [4/4] ADD index.html /var/www/html
 =>  ADD index.html /var/www/html
 => exporting to image
 => => exporting layers
 => => writing image sha256:daf792da1b6a0ae7cfb2673b2
 
real  0m0.456s 
user  0m0.120s 
sys   0m0.068s



But what would happen if you changed the order of the
commands in the Dockerfile so that they looked like this:

FROM docker.io/fedora
RUN mkdir -p /var/www && \
    mkdir -p /var/www/html
ADD index.html /var/www/html
RUN dnf install -y httpd && \
    dnf clean all
CMD ["/usr/sbin/httpd", "-DFOREGROUND"]

Let’s quickly time another test build without the cache to get a
baseline:

$ time docker image build --no-cache .
[+] Building 51.5s (9/9) FINISHED 
…
 => => writing image sha256:1cc5f2c5e4a4d1cf384f6fb3a
 
real  0m51.859s 
user  0m0.237s 
sys   0m0.159s



In this case, the build took 51 seconds to complete, as since we
used the --no-cache  argument we know that nothing was
pulled from the layer cache, except for the base image. The
difference in time from the very first test is entirely due to
fluctuating network speeds and has nothing to do with the
changes that you have made to the Dockerfile.

Now, let’s edit index.html again like so:

<html> 
  <head> 
    <title>My custom Web Site</title> 
  </head> 
  <body> 
    <div align="center" style="font-size:180%"> 
      <p>Welcome to my custom Web Site</p> 
    </div> 
  </body>
</html>

And now, let’s time the image rebuild, while using the cache:

$ time docker image build .
[+] Building 43.4s (9/9) FINISHED
 => [internal] load build definition from Dockerfile
 => => transferring dockerfile: 37B
 => [internal] load .dockerignore



The first time that you rebuilt the image, after editing the
index.html file, it took only .456 seconds, but this time it took
43.695 seconds, almost exactly as long as it took to build the
whole image without using the cache at all.

This is because you have modified the Dockerfile so that the
index.html file is copied into the image very early in the process.
The problem with doing it this way is that the index.html file
changes frequently and will often invalidate the cache. The

[ ] g
 => => transferring context: 2B
 => [internal] load metadata for docker.io/library/fe
 => [1/4] FROM docker.io/library/fedora
 => [internal] load build context
 => => transferring context: 233B
 => CACHED [2/4] RUN mkdir -p /var/www &&     mkdir -
 => [3/4] ADD index.html /var/www/html
 => [4/4] RUN dnf install -y httpd &&     dnf clean a

 => exporting to image
 => => exporting layers
 => => writing image sha256:9a05b2d01b5870649e0ad1d7a
 
real  0m43.695s 
user  0m0.211s 
sys   0m0.133s



other issue is that it is unnecessarily placed before a very time-
consuming step in our Dockerfile: installing the Apache web
server.

The important lesson to take away from all of this is that order
matters, and in general, you should always try to order your
Dockerfile so that the most stable and time-consuming portions
of your build process happen first and your code is added as
late in the process as possible.

For projects that require you to install dependencies based on
your code using tools like npm  and bundle , it is also a good
idea to do some research about optimizing your Docker builds
for those platforms. This often includes locking down your
dependency versions and storing them along with your code so
that they do not need to be downloaded for each and every
build.

Directory Caching

One of the many features that BuildKit adds to the image-
building experience is directory caching. Directory caching is
an incredibly useful tool for speeding up build times without
saving a lot of files that are unnecessary for the runtime into
your image. In essence, it allows you to save the contents of a



directory inside your image in a special layer that can be bind-
mounted at build-time and then unmounted before the image
snapshot is made. This is often used to handle directories where
tools like, Linux software installers ( apt , apk , dnf , etc.), and
languages dependency managers ( npm , bundler , pip , etc.),
download their databases and archive files.

TIP

If you are unfamiliar with bind mounts and what they are, you can find a [bind
mount overview](https://docs.docker.com/storage/bind-mounts/) in the Docker
documentation.

To make use of directory caching, you must have BuildKit
enabled. In most circumstances, this should already be the case,
but you can force it from the client-side, by setting ht
environment variable DOCKER_BUILDKIT= to +1 .

$ export DOCKER_BUILDKIT=1

Let’s explore directory caching by checking out the following git
repository and seeing how utilizing directory caching can
significantly improve consecutive builds while still keeping the
resulting image sizes smaller.

$ it l htt // ith b / k / t i d

https://docs.docker.com/storage/bind-mounts/


FROM python:3.9.15-slim-bullseye
RUN mkdir /app
WORKDIR /app
COPY . /app
RUN pip install -r requirements.txt
WORKDIR /app/mastermind
CMD ["python", "mastermind.py"]

This codebase has a very generic Dockerfile checked into the
repo. Let’s go ahead and see how long it takes to build this
image, with and without the layer cache, and let’s also examine
how large the resulting image is.

$ git clone https://github.com/spkane/open-mastermind
  --config core.autocrlf=input 
 
$ cd open-mastermind 
$ cat Dockerfile

$ time docker build --no-cache -t docker.io/spkane/op
 
[+] Building 67.5s (12/12) FINISHED 
…
 => => naming to docker.io/spkane/open-mastermind:lat
 

real 0m28.934s



From this output, we can see that this image takes just under 29
seconds to build without the layer cache, and takes just under 2
seconds to build when it can fully utilize the layer cache. The
resulting image size is 293MB in total.

real    0m28.934s 
user    0m0.222s 
sys     0m0.248s 
 
$ docker image ls --format "{{ .Size }}" spkane/open-
293MB 
 
$ time docker build -t docker.io/spkane/open-mastermi
 
[+] Building 1.5s (12/12) FINISHED 
…
 => => naming to docker.io/spkane/open-mastermind:lat
 
real    0m1.083s 
user    0m0.098s 
sys     0m0.095s



TIP

BuildKit finally has support for modifying or completely disabling the colors used for
the output. This is particularly nice for anyone who uses a dark background in their
terminal. You can configure these colors by setting something like this export
BUILDKIT_COLORS=run=green:warning=yellow:error=red:cancel=cyan  in your
environment, or you can completely disable the colors by setting export
NO_COLOR=true .

Note, that the BuildKit version used in various docker  components and 3rd party
tools is still being updated, so it might not work yet in every situation.

If you want to test the build, go ahead and run it.

This will launch a terminal-based open source version of the
Mastermind game. There are on-screen directions for the game
and as a fallback, you can always exit by typing [Control-C] .

Since this is a Python application, it uses requirements.txt to list
all of the libraries that the application requires, and then the
pip  application is used in _Dockerfile+ to install these
dependencies.

$ docker container run -ti --rm docker.io/spkane/open

https://github.com/moby/buildkit#color-output-controls
https://github.com/philshem/open-mastermind


NOTE

We are installing some unnecessary dependencies simply to make the benefits of
directory caching more obvious.

Go ahead and open up the requirements.txt file and add a line
that reads “log-symbols”, so that it looks like this:

Let’s rerun the build now.

colorama 
# These are not required - but are used for demonstra
pandas 

flask 
log-symbols

$ time docker build -t docker.io/spkane/open-mastermi
  --progress=plain . 
 
#1 [internal] load build definition from Dockerfile 
…
#9 [5/6] RUN pip install -r requirements.txt
#9 sha256:82dbc10f1bb9fa476d93cc0d8104b76f46af8ece799
#9 1.954 Collecting colorama
#9 2.058   Downloading colorama-0.4.5-py2.py3-none-an
… 
real 0m16 379s



If you look at the full output for step “5/6”, you will notice that
all the dependencies are downloaded again, even though pip
would normally have most of those dependencies cached in
/root/.cache. This inefficiency is because the builder sees that we
have made a change that impacts this layer, and therefore
completely recreates the layer, so we lose that cache, even
though we had it stored in the image layer.

Let’s go ahead and improve this situation. To do this we need to
leverage the BuildKit directory cache, and to do that we need to
make a few changes to the Dockerfile, so that it looks like this:

real    0m16.379s 

user    0m0.112s 
sys     0m0.082s

# syntax=docker/dockerfile:1
FROM python:3.9.15-slim-bullseye
RUN mkdir /app
WORKDIR /app
COPY . /app
RUN --mount=type=cache,target=/root/.cache pip instal
WORKDIR /app/mastermind
CMD ["python", "mastermind.py"]

https://github.com/moby/buildkit/blob/master/frontend/dockerfile/docs/reference.md#run---mounttypecache


There are two important changes in there. First, we added the
line:

# syntax=docker/dockerfile:1

This tells Docker that we are going to use a newer version of the
Dockerfile frontend, which provides us with access to BuildKit;s
new features.

Then we edited the RUN line to look like this:

This line tells BuildKit to mount a caching layer into the
container at /root/.cache for the duration of this one build step.
This will accomplish two goals for us. It will remove the
contents of that directory from the resulting image, and it will
also be re-mounted and available to pip  in consecutive builds.

Let’s go ahead and do a full rebuild of the image with these
changes, to generate the initial cache directory contents. If you
follow the output you will see that pip downloads all the
dependencies, exactly as before.

RUN --mount=type=cache,target=/root/.cache pip instal

https://hub.docker.com/r/docker/dockerfile


So, now let’s open up the requirements.txt file and add a line
that reads “py-events”.

This is where the changes pay off. When we rebuild the image
now, we will see that py-events  and its’ dependencies are the
only things that are downloaded, everything else uses the
existing cache from our previous build, which has been
mounted into the image for this build step.

$ time docker build --no-cache -t docker.io/spkane/op
 
[+] Building 15.2s (15/15) FINISHED 
…
 => => naming to docker.io/spkane/open-mastermind:lat
… 
real    0m15.493s 
user    0m0.137s 
sys     0m0.096s

colorama 
# These are not required - but are used for demonstra
pandas 
flask 
log-symbols 
py-events



The build time has shrunk since there is no longer a need to re-
download everything each time and the image size is also 32MB
smaller, even though we have added new dependencies to the

$ time docker build -t docker.io/spkane/open-mastermi
  --progress=plain . 
 
#1 [internal] load build definition from Dockerfile 
…
#14 [stage-0 5/6] RUN --mount=type=cache,target=/root
#14 sha256:9bc72441fdf2ec5f5803d4d5df43dbe7bc6eeef88e
#14 1.711 Collecting colorama
#14 1.714   Using cached colorama-0.4.5-py2.py3-none-
…
#14 2.236 Collecting py-events
#14 2.356   Downloading py_events-0.1.2-py3-none-any.
…
#16 DONE 1.4s 
 
real    0m12.624s 
user    0m0.180s 
sys     0m0.112s 
 

$ docker image ls --format "{{ .Size }}" spkane/open-
261MB



image. This is simply because the cache directory is no longer
stored directly in the image that contains the application.

BuildKit and the new Dockerfile frontends bring a lot of very
useful features to the image-building process that you will want
to be aware of. We highly recommend that you take the time to
read through the reference guide and become acquainted with
all the available capabilities.

Troubleshooting Broken Builds

We normally expect builds to just work, especially when we’ve
scripted them, but in the real world things go wrong. Let’s
spend a little bit of time discussing what you can do to
troubleshoot a Docker build that is failing.. In this section, we
will explore two options. One that works with the pre-BuildKit
approach to image building and one that works with BuildKit.

For this demonstration, we are going to reuse the docker-
hello-node  repo from earlier in the chapter. If required, you
can clone it again, like this:

$ git clone https://github.com/spkane/docker-node-hel
    --config core.autocrlf=input 
Cloning into 'docker-node-hello'… 

t C ti bj t 41 d

https://github.com/moby/buildkit/blob/master/frontend/dockerfile/docs/reference.md


Debugging Pre-BuildKit Images

We need a patient for the next set of exercises, so let’s create a
failing build. To do that, edit the Dockerfile so that the line that
reads:

RUN apt-get -y update

now reads:

RUN apt-get -y update-all

remote: Counting objects: 41, done. 
remote: Total 41 (delta 0), reused 0 (delta 0), pack-
Unpacking objects: 100% (41/41), done. 
$ cd docker-node-hello



WARNING

If you are using Powershell on Windows you will likely need to set the environment
variable that disables BuildKit before running docker image build  command
below and then reset it afterward.

If you try to build the image now, you should get the following
error:

PS C:\> $env:DOCKER_BUILDKIT = 0
PS C:\> docker image build -t example/docker-node-hello:latest --no-cach
PS C:\> $env:DOCKER_BUILDKIT = 1

$ DOCKER_BUILDKIT=0 docker image build -t example/doc
  --no-cache . 
 
Sending build context to Docker daemon  9.216kB 
Step 1/14 : FROM docker.io/node:18.13.0
 ---> 9ff38e3a6d9d 
… 

Step 6/14 : ENV SCPATH /etc/supervisor/conf.d
 ---> Running in e903367eaeb8 
Removing intermediate container e903367eaeb8
 ---> 2a236efc3f06 
Step 7/14 : RUN apt-get -y update-all
 ---> Running in c7cd72f7d9bf 
E: Invalid operation update-all 
The command '/bin/sh -c apt-get -y update-all' return



So, how can we troubleshoot this, especially if we are not
developing on a Linux system? The real trick here is to
remember that almost all Docker images are layered on top of
other Docker images and that you can start a container from
any image. Although the meaning is not obvious on the surface,
if you look at the output for step 6, you will see this:

Step 6/14 : ENV SCPATH /etc/supervisor/conf.d 
 ---> Running in e903367eaeb8 
Removing intermediate container e903367eaeb8 
 ---> 2a236efc3f06

The first line that reads Running in e903367eaeb8  is telling
you that the build process has started a new container, based
on the image created in step 5. The next line, which reads
Removing intermediate container e903367eaeb8 , is telling
you that Docker is now removing the container, after having
altered it based on the instruction in step 6. In this case, it was
simply adding a default environment variable via ENV SCPATH
/etc/supervisor/conf.d . The final line, which reads --→
2a236efc3f06 , is the one we really care about because this is
giving us the image ID for the image that was generated by step

p g y p



6. You need this to troubleshoot the build because it is the image
from the last successful step in the build.

With this information, it is possible to run an interactive
container so that you can try to determine why your build is not
working properly. Remember that every container image is
based on the image layers below it. One of the great benefits of
that is that we can just run the lower layer as a container itself,
using a shell to look around!

From inside the container, you can now run any commands
that you might need to determine what is causing your build to
fail and what you need to do to fix your Dockerfile.

$ docker container run --rm -ti 2a236efc3f06 /bin/bas
root@b83048106b0f:/#

root@b83048106b0f:/# apt-get -y update-all 
E: Invalid operation update-all 
 
root@b83048106b0f:/# apt-get --help 
apt 1.4.9 (amd64) 
… 
 
Most used commands:
  update - Retrieve new lists of packages 



Once the root cause has been determined, the Dockerfile can be
fixed, so that RUN apt-get -y update-all  now reads RUN
apt-get -y update , and then rebuilding the image should
result in success.

Debugging BuildKit Images

  update  Retrieve new lists of packages 
… 
 
root@b83048106b0f:/# apt-get -y update 
Get:1 http://security.debian.org/debian-security stre
… 
Reading package lists… Done 
 
root@b83048106b0f:/# exit
exit

$ DOCKER_BUILDKIT=0 docker image build -t example/doc
Sending build context to Docker daemon  15.87kB 
… 
Successfully built 69f5e83bb86e 
Successfully tagged example/docker-node-hello:latest



When using BuildKit we have to take a slightly different
approach to get access to the point where the build fails,
because none of the intermediate build layers are exported
from the build container to the Docker daemon.

The options for debugging BuildKit will almost certainly evolve
as we move forward, but let’s take a look at one approach that
works now.

Assuming that the Dockerfile has been reverted to its’ original
state, let’s change the line that reads:

RUN npm install

so, that it now reads:

RUN npm installer

and then attempt to build the image:

TIP

Make sure that you have BuildKit enabled!

$ docker image build -t example/docker-node-hello:deb



We see an error as we expected, but how are we going to get
access to that layer, so that we can troubleshoot this?

One approach that works is to leverage multi-stage builds and
the --target  argument of docker image build .

Let’s start by modifying the Dockerfile in two places. Change this
line:

 
[+] Building 51.7s (13/13) FINISHED
 => [internal] load build definition from Dockerfile 
…
 => [7/8] WORKDIR /data/app                          
 => ERROR [8/8] RUN npm installer                    
______
 > [8/8] RUN npm installer:
#13 0.399
#13 0.399 Usage: npm <command> 
…
#13 0.402 Did you mean one of these?
#13 0.402     install
#13 0.402     install-test
#13 0.402     uninstall 
______ 
executor failed running [/bin/sh -c npm installer]: e



FROM docker.io/node:18.13.0

so that it now reads:

FROM docker.io/node:18.13.0 as deploy

and then immediately before the line that causes the error, we
are going to add a new FROM line:

FROM deploy
RUN npm installer

By doing this we are creating a multi-stage build, where the first
stage contains all of the steps that we know are working and
the second stage starts with our problematic step.

If we try to rebuild this using the same command as before it
will still fail.

$ docker image build -t example/docker-node-hello:deb
 
[+] Building 51.7s (13/13) FINISHED 
… 
executor failed running [/bin/sh -c npm installer]: e



So, instead of doing that, let’s tell Docker that we only want to
build the first image in our multi-stage Dockerfile.

Now, we can create a container from this image and do
whatever testing we require.

$ docker image build -t example/docker-node-hello:deb
 
[+] Building 0.8s (12/12) FINISHED
 => [internal] load build definition from Dockerfile 
 => => transferring dockerfile: 37B                  
…
 => exporting to image                               
 => => exporting layers                              
 => => writing image sha256:a42dfbcfc7b18ee3d30ace944
 => => naming to docker.io/example/docker-node-hello:

$ docker container run --rm -ti docker.io/example/doc
  /bin/bash 
 
root@17807997176e:/data/app# ls 
index.js  package.json 
 
root@17807997176e:/data/app# npm install 
… 
added 18 packages from 16 contributors and audited 18
…



And then once we understand what is wrong with the
Dockerfile we can revert our debugging changes and fix the
npm  line so that the whole build works as expected.

Multi-Architecture Builds

Since the launch of Docker, the amd64/x86\_64 architecture has
been the primary platform that most containers have targeted.
However, this has started to change significantly. More and
more developers are using systems based on the arm64/aarch64
and cloud companies are starting to make ARM-based virtual
machines available through their platforms, due to the lower-
computing costs associated with the ARM platform.

This can cause some interesting challenges for anyone who
needs to build and maintain images that will target multiple
architectures. How can you maintain a single, streamlined
codebase and pipeline while still supporting all of these
different targets?

… 
 
root@17807997176e:/data/app# exit
exit



Luckily, Docker has released a plugin for the docker  CLI, called
buildx , which can help make this process pretty
straightforward. In many cases, docker-buildx  will already be
installed on your system, and you can verify this like so:

TIP

If you need to install the plugin you can follow the directions from the Github repo.

By default docker-buildx  will leverage QEMU-based
virtualization and binfmt_misc to support architectures that
differ from the underlying system. This may already be set up
on your Linux system, but just in case, it is a good idea to run
the following command when you are first setting up a new
Docker server, just to ensure that the QEMU files are properly
registered and up-to-date.

$ docker buildx version 
github.com/docker/buildx v0.9.1 ed00243a0ce2a0aee7531

$ docker container run --rm --privileged multiarch/qe
    --reset -p yes 
 
Setting /usr/bin/qemu-alpha-static as binfmt interpre
Setting /usr/bin/qemu-arm-static as binfmt interprete

https://github.com/docker/buildx#installing
https://www.qemu.org/
https://docs.kernel.org/admin-guide/binfmt-misc.html


Unlike the original embedded Docker build functionality, which
ran directly on the server, BuildKit can utilize a build container
when it builds images, which means that there is a lot of
functional flexibility that can be delivered with that build
container. In the next step, we are going to create a default
buildx container called builder.

TIP

If you have an existing buildx container by this name, you can either remove it by
running docker buildx rm builder  or you can change the name in the upcoming
docker buildx create  command.

With the next two commands, we are going to create the build
container, set it as the default, and then start it up.

g / / /q p
Setting /usr/bin/qemu-armeb-static as binfmt interpre
… 
Setting /usr/bin/qemu-aarch64-static as binfmt interp
Setting /usr/bin/qemu-aarch64_be-static as binfmt int
…

$ docker buildx create --name builder --driver docker
builder 
 
$ docker buildx inspect --bootstrap



For this example, let’s go ahead and download the wordchain
git repository, which contains a useful tool that can generate
random and deterministic word sequences to help with
dynamic naming needs.

p p
[+] Building 9.6s (1/1) FINISHED
 => [internal] booting buildkit                      
 => => pulling image moby/buildkit:buildx-stable-1   
 => => creating container buildx_buildkit_builder0   
Name:   builder 
Driver: docker-container 
 
Nodes: 
Name:      builder0 
Endpoint:  unix:///var/run/docker.sock 
Status:    running 
Buildkit:  v0.10.5 
Platforms: linux/amd64, linux/amd64/v2, linux/arm64, 

           linux/ppc64le, linux/s390x, linux/386, lin
           linux/mips64, linux/arm/v7, linux/arm/v6

$ git clone https://github.com/spkane/wordchain.git\
  --config core.autocrlf=input 
$ cd wordchain



Let’s go ahead and take a look at the included Dockerfile. You’ll
notice that it is a pretty normal multi-stage Dockerfile and does
not have anything special in it related to the platform
architecture.

FROM golang:1.18-alpine3.15 AS build 
 
RUN apk --no-cache add \
    bash \
    gcc \
    musl-dev \
    openssl 
 
ENV CGO_ENABLED=0 
 
COPY . /build
WORKDIR /build 
 
RUN go install github.com/markbates/pkger/cmd/pkger@l
    pkger -include /data/words.json && \
    go build . 
 
FROM alpine:3.15 AS deploy 
 
WORKDIR /
COPY --from=build /build/wordchain / 
 
USER 500



In the first step, we are going to build our statically-compiled Go
binary, and then in the second step, we are going to package it
up into a small deployment image.

NOTE

The ENTRYPOINT instruction in the Dockerfile is an advanced instruction that allows
you to separate the default process that is run by the container (ENTRYPOINT) from
the command line arguments that are passed to that process (CMD). When
ENTRYPOINT is missing from the Dockerfile the CMD instruction is expected to
contain both the process and all the required command line arguments.

We can go ahead and build this image and sideload it into our
local Docker server by running the following command:

EXPOSE 8080 
 
ENTRYPOINT ["/wordchain"]
CMD ["listen"]

$ docker buildx build --tag wordchain:test --load . 
 
[+] Building 2.4s (16/16) FINISHED
 => [internal] load .dockerignore                    
 => => transferring context: 93B                     
 => [internal] load build definition from Dockerfile 
=> => transferring dockerfile: 461B



We can quickly test out the image by running the following
commands.

 > > transferring dockerfile: 461B                 
…
 => exporting to oci image format                    
 => => exporting layers                              
 => => exporting manifest sha256:4bd1971f2ed820b4f64f
 => => exporting config sha256:ce8f8564bf53b283d486bd
 => => sending tarball                               
 => importing to docker                              

$ docker container run wordchain:test random 
 
witty-stack 
 
$ docker container run wordchain:test random -l 3 -d 
 
odd.goo 
 
$ docker container run wordchain:test --help 
 
wordchain is an application that can generate a reada
  of customizable words for naming things like

  containers, clusters, and other objects. 
…



As long as you got some random word pairs back with the first
two commands, then everything is working as expected.

Now, to build this image for multiple architectures, we need to
simply add the --platform  argument to our build.

NOTE

Typically we would also replace --load  with --push , which would push all the
resulting images to the tagged repository, but in this case, we need to simply remove
--load , because the Docker server can not load images for multiple platforms at the
moment, and we do not have a repository setup to push these images to. If we did
have a repository and we tagged the images correctly, then we could very easily build
and push all the resulting images in one step, with a command like this:

docker buildx build --platform linux/amd64,linux/arm64 --tag
docker.io/spkane/wordchain:latest --push .

Building this image for both the linux/amd64 and the
linux/arm64 platforms can be accomplished like this:

$ docker buildx build --platform linux/amd64,linux/ar
    --tag wordchain:test . 
 
[+] Building 114.9s (23/23) FINISHED 
…
 => [linux/arm64 internal] load metadata for docker.i

[li / d64 i t l] l d t d t f d k i



NOTE

Due to the emulation that is required when building images for non-native
architectures you may notice that some steps take much longer than normal. This is
to be expected due to the additional computational overhead from the emulation.

It is possible to set up Docker so that it will build each image on a worker with a
matching architecture, which should speed things up significantly in many cases. You
can find some information about this within this Docker blog article.

In the output for the build you will notice lines that start with
something like ⇒ \[linux/amd64 *\] or ⇒ \[linux/arm64 *\]. Each
of these lines represents the builder working on this build step
for the stated platform. Many of these steps will run in parallel,

 => [linux/amd64 internal] load metadata for docker.i
 => [linux/arm64 internal] load metadata for docker.i
 => [linux/amd64 internal] load metadata for docker.i
…
 => CACHED [linux/amd64 build 5/5] RUN go install git
 => CACHED [linux/amd64 deploy 2/3] COPY --from=build
 => [linux/arm64 build 5/5] RUN go install github.com
 => [linux/arm64 deploy 2/3] COPY --from=build /build
WARNING: No output specified with docker-container dr
         only remain in the build cache. To push resu
         use --push or to load image into docker use 

https://www.docker.com/blog/speed-up-building-with-docker-buildx-and-graviton2-ec2/


and due to caching and other considerations, each build might
progress at differing speeds.

Since we did not add --push  to our build, you will also notice
that we received a warning at the end of the build. This is
because the docker-container driver that the builder is using
just left everything in the build cache, which means that we
can’t run the resulting images, at this point, we can only feel
confident that the build is working.

TIP

There are a few build arguments that are automatically set by Docker which can be
especially helpful to leverage inside your Dockerfile when you are doing multi-
architecture builds. As an example, TARGETARCH is frequently used, to make sure
that a given build step downloads the correct pre-built binary for the current image’s
platform.

So, when we upload this image to a repository, how does Docker
know which image to use for the local platform? This
information is provided to the Docker server, through
something called an image manifest. We can look at the
manifest for docker.io/spkane/workdchain by running:

$ docker manifest inspect docker.io/spkane/wordchain:
 
{

https://docs.docker.com/engine/reference/builder/#automatic-platform-args-in-the-global-scope


If you look through the output you will see that there are
blocks, which identify the image that is required for every
platform that the image supports. This is accomplished via the

{
   "schemaVersion": 2,
   "mediaType": "application/vnd.docker.distribution.
   "manifests": [
      {
         "mediaType": "application/vnd.docker.distrib
         "size": 739,
         "digest": "sha256:4bd1…bfc0",
         "platform": {
            "architecture": "amd64",
            "os": "linux"
         }
      },

      { 
…
         "platform": {
            "architecture": "arm64",
            "os": "linux"
         }
      }, 
…
   ]
}



individual digest entries that are then paired with a platform
block. This manifest file is downloaded by the server when it
requires an image, and then after referencing the manifest, the
server will download the correct image for the local platform.
This is why our Dockerfile works at all. Each FROM line lists a
base image that we want to use, but it is the Docker server that
utilizes this manifest file to determine exactly which image to
download for each platform that the build is targeting.

Wrap-Up

At this point, you should feel comfortable pretty comfortable
with image creation for Docker and have a solid understanding
of many of the core tools and functionality that you can
leverage to streamline your build pipeline. In the next chapter,
we will start to dig into how you can use your images to create
containerized processes for your projects.

Don’t Repeat Yourself.

This code was originally forked from GitHub.

Cloud Native Computing Foundation

https://github.com/opencontainers/image-spec/blob/main/descriptor.md#digests
https://github.com/enokd/docker-node-hello


Chapter 5. Working with Containers

In the previous chapter, we learned how to build a Docker
image and the very basic steps required for running the
resulting image within a container. In this chapter, we’ll first
take a look at the history of container technology and then dive
deeper into running containers and exploring the Docker
commands that control the overall configuration, resources,
and privileges that your container receives.

What Are Containers?

You might be familiar with virtualization systems like VMware
or KVM that allow you to run a complete Linux kernel and
operating system on top of a virtualized layer, commonly
known as a hypervisor. This approach provides very strong
isolation between workloads because each virtual machine
hosts its own operating system kernel that sits in a separate
memory space on top of a hardware virtualization layer.

Containers are fundamentally different since they all share a
single kernel, and isolation between workloads is implemented
entirely within that one kernel. This is called operating system
virtualization.



The libcontainer  README provides a good, short definition
of a container:

A container is a self-contained execution environment that
shares the kernel of the host system and which is
(optionally) isolated from other containers in the system.

One of the major advantages of containers is resource efficiency
because you don’t need a whole operating system instance for
each isolated workload. Since you are sharing a kernel, there is
one less layer of indirection between the isolated task and the
real hardware underneath. When a process is running inside a
container, there is only a little bit of code that sits inside the
kernel managing the container. Contrast this with a virtual
machine where there would be a second layer running. In a
VM, calls by the process to the hardware or hypervisor would
require bouncing in and out of privileged mode on the
processor twice, thereby noticeably slowing down many calls.

NOTE

[libcontainer](https://github.com/opencontainers/runc/tree/main/libcontainer) is a Go
library that is designed to provide a standard interface for managing Linux
containers from applications.

https://github.com/opencontainers/runc/blob/main/libcontainer/README.md
https://github.com/opencontainers/runc/tree/main/libcontainer


But the container approach does mean that you can only run
processes that are compatible with the underlying kernel. For
example, unlike hardware virtualization provided by
technologies like VMware or KVM, Windows applications
cannot run natively inside a Linux container on a Linux host.
Windows applications can, however, run inside Windows
containers on a Windows host. So containers are best thought
of as an OS-specific technology where you can run any of your
favorite applications or daemons that are compatible with the
container server’s kernel. When thinking of containers, you
should try very hard to throw out what you might already
know about virtual machines and instead conceptualize a
container as a wrapper around a normal process that runs on
the server.

NOTE

In addition to being able to run containers inside virtual machines, it is completely
feasible to run a virtual machine inside a container. If you do this, then it is indeed
possible to run a Windows application inside a Windows VM that is running inside a
Linux container.

History of Containers



It is often the case that a revolutionary technology is an older
technology that has finally arrived in the spotlight. Technology
goes in waves, and some of the ideas from the 1960s are back in
vogue. Similarly, Docker is a newer technology and it has an
ease of use that has made it an instant hit, but it doesn’t exist in
a vacuum. Much of what underpins Docker comes from work
done over the last 30 years in a few different areas. We can
easily trace the conceptual evolution of containers from a
simple system call that was added to the Unix kernel in the late
1970s to the modern container tooling that powers many huge
internet firms, like Google, Twitter, and Facebook. It’s worth
taking some time for a quick tour through how the technology
evolved and led to the creation of Docker because
understanding this helps you place it within the context of
other things that you might be familiar with.

Containers are not a new idea. They are a way to isolate and
encapsulate a part of the running system. The oldest technology
in this area includes the very first batch processing systems.
When using these early computers, the system would only run
one program at a time, switching to run another program once
the previous program had finished or a pre-defined time span
had elapsed. With this design there was enforced isolation: you
could make sure your program didn’t step on anyone else’s
program because it was only possible to run one thing at a time.



Although modern computers still switch tasks constantly, it is
incredibly fast and completely unnoticeable to most users.

We would argue that the seeds for today’s containers were
planted in 1979 with the addition of the chroot  system call to
Version 7 Unix. chroot  restricts a process’s view of the
underlying filesystem to a single subtree. The chroot  system
call is commonly used to protect the operating system from
untrusted server processes like FTP, BIND, and Sendmail, which
are publicly exposed and susceptible to compromise.

In the 1980s and 1990s, various Unix variants were created with
mandatory access controls for security reasons.  This meant
you had tightly controlled domains running on the same Unix
kernel. Processes in each domain had an extremely limited
view of the system that precluded them from interacting across
domains. A popular commercial version of Unix that
implemented this idea was the Sidewinder firewall built on top
of BSDI Unix, but this was not possible with most mainstream
Unix implementations.

That changed in 2000 when FreeBSD 4.0 was released with a
new command, called jail , which was designed to allow
shared-environment hosting providers to easily and securely
create a separation between their processes and those that

1



belonged to each of their customers. FreeBSD jail  expanded
chroot ’s capabilities and also restricted everything a process
could do with the underlying system and other jailed processes.

In 2004, Sun released an early build of Solaris 10, which
included Solaris containers, which later evolved into Solaris
Zones. This was the first major commercial implementation of
container technology and is still used today to support many
commercial container implementations. In 2005  OpenVZ for
Linux was released by the company Virtuozzo, followed in 2007
by HP’s Secure Resource Partitions for HP-UX, which was later
renamed HP-UX containers.

Companies, like Google, which had to deal with scaling
applications for broad internet consumption and/or hosting
untrusted user code, started pushing container technology in
the early 2000s to facilitate distributing their applications
across global data centers reliably and securely. A few
companies maintained their own patched Linux kernels with
container support for internal use, but as the need for these
features became more evident within the Linux community,
Google contributed some of its work supporting containers into
the mainline Linux kernel, and in 2008, Linux containers (LXC)
were released in version 2.6.24 of the Linux kernel. The
phenomenal growth of Linux containers across the community



did not truly start to grow until 2013 with the inclusion of user
namespaces in version 3.8 of the Linux kernel and the release
of Docker one month later.

Nowadays, containers are used almost everywhere. Docker and
OCI images provide the packaging format for a significant and
growing amount of the software that is delivered into
production environments and provide the basis for many
production systems, including, but not limited to Kubernetes
and most “serverless” cloud technologies.

NOTE

So-called, serverless technologies, are not actually serverless, they simply rely on
other people’s servers to get work done, so that the application owner does not have
to worry themselves with managing the hardware and operating system.

Creating a Container

So far we’ve started containers using the handy docker
container run  command. But docker container run  is really
a convenience command that wraps two separate steps into
one. The first thing it does is create a container from the
underlying image. We can accomplish this separately using the
docker container create  command. The second thing



docker container run  does is execute the container, which
we can also do separately with the docker container start
command.

The docker container create  and docker container start
commands both contain all the options that pertain to how a
container is initially set up. In Chapter 4, we demonstrated that
with the docker container run  command you could map
network ports in the underlying container to the host using the
-p/--publish  argument, and that -e/--env  could be used to
pass environment variables into the container.

This only just begins to touch on the array of things that you
can configure when you first create a container. So let’s take a
look at some of the options that docker  supports.

Basic Configuration

Let’s start by exploring some of the ways we can tell Docker to
configure our container when we create it.

Container name

When you create a container, it is built from the underlying
image, but various command-line arguments can affect the final



settings. Settings specified in the Dockerfile are always used as
defaults, but you can override many of them at creation time.

By default, Docker randomly names your container by
combining an adjective with the name of a famous person. This
results in names like ecstatic-babbage and serene-albattani. If
you want to give your container a specific name, you can use
the --name  argument.

After creating this container, you could then start it by using the
docker container start awesome-service . It will
automatically exit after 120 seconds, but you could stop it
before then by running docker container stop awesome-
service . We will dive a bit more into each of these commands
a little later in the chapter.

WARNING

You can only have one container with any given name on a Docker host. If you run
the preceding command twice in a row, you will get an error. You must either delete
the previous container using docker container rm  or change the name of the new
container.

$ docker container create --name="awesome-service" ub

https://bit.ly/1DUe0vi


Labels

As mentioned in Chapter 4, labels are key/value pairs that can
be applied to Docker images and containers as metadata. When
new Linux containers are created, they automatically inherit all
the labels from their parent image.

It is also possible to add new labels to the containers so that you
can apply metadata that might be specific to that single
container.

You can then search for and filter containers based on this
metadata, using commands like docker container ls .

You can use the docker container inspect  command to see
all the labels that a container has.

$ docker container run --rm -d --name has-some-labels
  -l deployer=Ahmed -l tester=Asako \
  ubuntu:latest sleep 1000

$ docker container ls -a -f label=deployer=Ahmed 
CONTAINER ID  IMAGE         COMMAND       … NAMES 
845731631ba4  ubuntu:latest "sleep 1000"  … has-some-



$ docker container inspect has-some-labels 
…

        "Labels": {
            "deployer": "Ahmed",
            "tester": "Asako"
        },

…

This container runs the command sleep 1000 , so after 1,000
seconds it will stop running.

Hostname

By default, when you start a container, Docker copies certain
system files on the host, including /etc/hostname, into the
container’s configuration directory on the host,  and then uses a
bind mount to link that copy of the file into the container. We
can launch a default container with no special configuration
like this:

$ docker container run --rm -ti ubuntu:latest /bin/ba

2



This command uses the docker container run  command,
which runs docker container create  and docker container
start  in the background. Since we want to be able to interact
with the container that we are going to create for
demonstration purposes, we pass in a few useful arguments.
The --rm  argument tells Docker to delete the container when it
exits, the -t  argument tells Docker to allocate a pseudo-TTY,
and the -i  argument tells Docker that this is going to be an
interactive session, and we want to keep STDIN open. If there is
no ENTRYPOINT defined in the image, then the final argument
in the command is the executable and command line
arguments that we want to run within the container, which in
this case is the ever-useful /bin/bash . If there is an
ENTRYPOINT defined in the image, then the final argument is
passed to the ENTRYPOINT process as a list of command line
arguments to that command.

NOTE

You might have noticed that the above paragraph talks about -i  and -t , but the
command is using the argument -ti . There is a lot of Unix history that explains why
this is, but a quick overview can be found online if you are curious.

If we now run the mount  command from within the resulting
container, we’ll see something similar to this:

https://nullprogram.com/blog/2020/08/01/


NOTE

When you see any examples with a prompt that looks something like root@hashID, it
means that you are running a command within the container instead of on the local
host. - There are occasions when a container will have been configured with a
different hostname instead (e.g., using --name  on the CLI), but in the default case, it’s
the container ID hash. - It is also possible to change the user that is used inside the
container using --user , but by default, it will be root.

root@ebc8cf2d8523:/# mount 
overlay on / type overlay (rw,relatime,lowerdir=…,upp
proc on /proc type proc (rw,nosuid,nodev,noexec,relat
tmpfs on /dev type tmpfs (rw,nosuid,mode=755) 
shm on /dev/shm type tmpfs (rw,nosuid,nodev,noexec,re
mqueue on /dev/mqueue type mqueue (rw,nosuid,nodev,no
devpts on /dev/pts type devpts (rw,nosuid,noexec,rela
sysfs on /sys type sysfs (ro,nosuid,nodev,noexec,rela
/dev/sda9 on /etc/resolv.conf type ext4 (rw,relatime,
/dev/sda9 on /etc/hostname type ext4 (rw,relatime,dat
/dev/sda9 on /etc/hosts type ext4 (rw,relatime,data=o
devpts on /dev/console type devpts (rw,nosuid,noexec,
proc on /proc/sys type proc (ro,nosuid,nodev,noexec,r
proc on /proc/sysrq-trigger type proc (ro,nosuid,node
proc on /proc/irq type proc (ro,nosuid,nodev,noexec,r

proc on /proc/bus type proc (ro,nosuid,nodev,noexec,r
tmpfs on /proc/kcore type tmpfs (rw,nosuid,mode=755) 
root@ebc8cf2d8523:/#



There are quite a few bind mounts in a container, but in this
case, we are interested in this one:

While the device number will be different for each container,
the part we care about is that the mount point is /etc/hostname.
This links the container’s /etc/hostname to the hostname file that
Docker has prepared for the container, which by default
contains the container’s ID and is not fully qualified with a
domain name.

We can check this in the container by running the following:

root@ebc8cf2d8523:/# hostname -f 
ebc8cf2d8523 
root@ebc8cf2d8523:/# exit

NOTE

Don’t forget to exit  the container shell to return to the local host when finished.

To set the hostname specifically, we can use the --hostname
argument to pass in a more specific value.

/dev/sda9 on /etc/hostname type ext4 (rw,relatime,dat



Then, from within the container, we’ll see that the fully
qualified hostname is defined as requested.

root@mycontainer:/# hostname -f 
mycontainer.example.com 
root@mycontainer:/# exit

Domain Name Service

Just like /etc/hostname, the resolv.conf file that configures
Domain Name Service (DNS) resolution is managed via a bind
mount between the host and container.

By default, this is an exact copy of the Docker host’s resolv.conf
file. If you didn’t want this, you could use a combination of the

$ docker container run --rm -ti --hostname="mycontain
    ubuntu:latest /bin/bash

/dev/sda9 on /etc/resolv.conf type ext4 (rw,relatime,

[Details about the resolve.conf file](https://sslhow.



--dns  and --dns-search  arguments to override this behavior
in the container:

NOTE

If you want to leave the search domain completely unset, then use --dns-search=.

Within the container, you would still see a bind mount, but the
file contents would no longer reflect the host’s resolv.conf,
instead, it would now look like this:

root@0f887071000a:/# more /etc/resolv.conf 
nameserver 8.8.8.8 
nameserver 8.8.4.4 
search example1.com example2.com 
root@0f887071000a:/# exit

MAC address

$ docker container run --rm -ti --dns=8.8.8.8 --dns=8
    --dns-search=example1.com --dns-search=example2.c
    ubuntu:latest /bin/bash



Another important piece of information that you can configure
is the media access control (MAC) address for the container.

Without any configuration, a container will receive a calculated
MAC address that starts with the 02:42:ac:11 prefix.

If you need to specifically set this to a value, you can do so by
running something similar to this:

Normally you will not need to do that. But sometimes you want
to reserve a particular set of MAC addresses for your containers
to avoid conflicting with other virtualization layers that use the
same private block as Docker.

WARNING

Be very careful when customizing the MAC address settings. It is possible to cause
ARP contention on your network if two systems advertise the same MAC address. If
you have a strong need to do this, try to keep your locally administered address
ranges within some of the official ranges, like x2-xx-xx-xx-xx-xx, x6-xx-xx-xx-xx-xx, xA-
xx-xx-xx-xx-xx, and xE-xx-xx-xx-xx-xx (with x being any valid hexadecimal character).

$ docker container run --rm -ti --mac-address="a2:11:
  ubuntu:latest /bin/bash



Storage Volumes

There are times when the default disk space allocated to a
container, or the container’s ephemeral nature, is not
appropriate for the job at hand, so you’ll need storage that can
persist between container deployments.

WARNING

Mounting storage from the Docker host is not generally advisable because it ties your
container to a particular Docker host for its persistent state. But for cases like
temporary cache files or other semi-ephemeral states, it can make sense.

For times like this, you can leverage the --mount/-v  command
to mount directories and individual files from the host server
into the container. It is important that you use fully-qualified
paths in the --mount/-v  argument. The following example
mounts /mnt/session_data to /data within the container:

$ docker container run --rm -ti \
  --mount type=bind,target=/mnt/session_data,source=/
  ubuntu:latest /bin/bash 
root@0f887071000a:/# mount | grep data 
/dev/sda9 on /data type ext4 (rw,relatime,data=ordere
root@0f887071000a:/# exit



TIP

For bind mounts specifically, you can use the -v  argument to shorten the command.
When using the -v  argument you will notice below that the source and target
files/directories are separated by a colon(:).

It is also important to note that volumes are mounted read-write by default. You can
easily make docker  mount the file or directory read-only by adding ,readonly  to
end the of the --mount  arguments or by :ro  to the end of the -v  arguments.

$ docker container run --rm -ti -v /mnt/session_data:/data:ro \
  ubuntu:latest /bin/bash

Neither the host mount point nor the mount point in the
container needs to preexist for this command to work properly.
If the host mount point does not exist already, then it will be
created as a directory. This could cause you some issues if you
were trying to point to a file instead of a directory.

In the mount options, you can see that the filesystem was
mounted read-write on /data as expected.



SELINUX AND VOLUME MOUNTS

If you have SELinux enabled on your Docker host, you may get
a “Permission Denied” error when trying to mount a volume
into your container. You can handle this by using one of the z
options to the Docker command for mounting volumes:



The lowercase z  option indicates that the bind mount
content is shared among multiple containers.
The uppercase Z  option indicates that the bind mount
content is private and unshared.

If you are going to share a volume between containers, you can
use the z  option to the volume mount:

However, the best option is actually the Z  option to the volume
mount command, which will set the directory with the exact
MCS label (e.g., chcon … -l s0:c1,c2) that the container will be
using. This provides for the best security and will allow only a
single container to mount the volume:

$ docker container run --rm -v /app/dhcpd/etc:/etc/dh

$ docker container run --rm -v /app/dhcpd/etc:/etc/dh



WARNING

Use extreme caution with the z  options. Bind-mounting a system
directory such as /etc or /var with the Z  option will very likely render
your system inoperable and require you to use SELinux tools to [relabel
the host machine](https://www.thegeekdiary.com/understanding-selinux-
file-labelling-and-selinux-context/) manually.

If the container application is designed to write into /data, then
this data will be visible on the host filesystem in
/mnt/session_data and will remain available when this
container stops and a new container starts with the same
volume mounted.

It is possible to tell Docker that the root volume of your
container should be mounted read-only so that processes
within the container cannot write anything to the root
filesystem. This prevents things like log files, which a developer
may be unaware of, from filling up the container’s allocated
disk in production. When it’s used in conjunction with a
mounted volume, you can ensure that data is written only into
expected locations.

In the previous example, we could accomplish this simply by
adding --read-only=true  to the command.

https://www.thegeekdiary.com/understanding-selinux-file-labelling-and-selinux-context/


If you look closely at the mount options for the root directory,
you’ll notice that they are mounted with the ro  option, which
makes it read-only. However, the /session_data mount is still
mounted with the rw  option so that our application can
successfully write to the one volume to which it’s designed to
write.

Sometimes it is necessary to make a directory like /tmp
writeable, even when the rest of the container is read-only. For
this use case, you can use the --mount type=tmpfs  argument
with docker container run , so that you can mount a tmpfs
filesystem into the container. A tmpfs  filesystem is completely
in-memory. They will be very fast, but they are also ephemeral
and will utilize additional system memory. Any data in these
tmpfs directories will be lost when the container is stopped. The

$ docker container run --rm -ti --read-only=true -v /
    ubuntu:latest /bin/bash 
root@df542767bc17:/# mount | grep " / " 
overlay on / type overlay (ro,relatime,lowerdir=…,upp
root@df542767bc17:/# mount | grep data 
/dev/sda9 on /data type ext4 (rw,relatime,data=ordere
root@df542767bc17:/# exit



following example shows a container being launched with a
256MB tmpfs filesystem mounted at /tmp:

WARNING

Containers should be designed to be stateless whenever possible. Managing storage
creates undesirable dependencies and can easily make deployment scenarios much
more complicated.

Resource Quotas

When people discuss the types of problems they must often
cope with when working in the cloud, the “noisy neighbor” is
often near the top of the list. The basic problem this term refers
to is that other applications running on the same physical

$ docker container run --rm -ti --read-only=true \
  --mount type=tmpfs,destination=/tmp,tmpfs-size=256M
  ubuntu:latest /bin/bash 
root@25b4f3632bbc:/# df -h /tmp 
Filesystem      Size  Used Avail Use% Mounted on 
tmpfs           256M     0  256M   0% /tmp 
root@25b4f3632bbc:/# grep /tmp /etc/mtab 
tmpfs /tmp tmpfs rw,nosuid,nodev,noexec,relatime,size
root@25b4f3632bbc:/# exit



system as yours can have a noticeable impact on your
performance and resource availability.

Virtual machines have the advantage that you can easily and
very tightly control how much memory and CPU, among other
resources, are allocated to the virtual machine. When using
Docker, you must instead leverage the cgroup functionality in
the Linux kernel to control the resources that are available to a
Linux container. The docker container create  and docker
container run  commands directly support configuring CPU,
memory, swap, and storage I/O restrictions when you create a
container.

NOTE

Constraints are normally applied at the time of container creation. If you need to
change them, you can use the docker container update  command or deploy a new
container with the adjustments.

There is an important caveat here. While Docker supports
various resource limits, you must have these capabilities
enabled in your kernel for Docker to take advantage of them.
You might need to add these as command-line parameters to
your kernel on startup. To figure out if your kernel supports



these limits, run docker system info . If you are missing any
support, you will get warning messages at the bottom, like:

WARNING: No swap limit support

NOTE

The details regarding getting cgroup support configured for your kernel are
distribution-specific, so you should consult the Docker documentation if you need
help configuring things.

CPU shares

Docker has several ways to limit CPU usage by applications in
containers. The original method, and one still commonly used,
is the concept of cpu shares. Below we’ll present other options
as well.

The computing power of all the CPU cores in a system is
considered to be the full pool of shares. Docker assigns the
number 1024 to represent the full pool. By configuring a
container’s CPU shares, you can dictate how much time the
container gets to use the CPU. If you want the container to be
able to use at most half of the computing power of the system,
then you would allocate it 512 shares. These are not exclusive

https://docs.docker.com/engine/install/linux-postinstall/#your-kernel-does-not-support-cgroup-swap-limit-capabilities


shares, meaning that assigning all 1024 shares to a container
does not prevent all other containers from running. Rather, it’s
a hint to the scheduler about how long each container should
be able to run each time it’s scheduled. If we have one
container that is allocated 1024 shares (the default) and two
that are allocated 512, they will all get scheduled the same
number of times. But if the normal amount of CPU time for each
process is 100 microseconds, the containers with 512 shares will
run for 50 microseconds each time, whereas the container with
1024 shares will run for 100 microseconds.

Let’s explore a little bit how this works in practice. For the
following examples, we’ll use a new Docker image that contains
the stress  command for pushing a system to its limits.

When we run stress  without any cgroup constraints, it will
use as many resources as we tell it to. The following command
creates a load average of around 5 by creating two CPU-bound
processes, one I/O-bound process, and two memory allocation
processes. For all of the following examples, we are running on
a system with two CPUs.

Note, that in the command below, everything following the
container image name is related to the stress  command, not
the docker  command.

https://linux.die.net/man/1/stress


WARNING

This should be a reasonable command to run on any modern computer system, but
be aware that it is going to stress the host system. So, don’t do this in a location that
can’t take the additional load, or even a possible failure, due to resource starvation.

If you run the top  or htop  command on the Docker host, near
the end of the two-minute run, you can see how the system is
affected by the load created by the stress  program.

$ docker container run --rm -ti spkane/train-os \
  stress -v --cpu 2 --io 1 --vm 2 --vm-bytes 128M --t

$ top -bn1 | head -n 15 
top - 20:56:36 up 3 min,  2 users,  load average: 5.0
Tasks:  88 total,   5 running,  83 sleeping,   0 stop
%Cpu(s): 29.8 us, 35.2 sy, 0.0 ni, 32.0 id, 0.8 wa, 1
KiB Mem:   1021856 total,   270148 used,   751708 fre
KiB Swap:        0 total,        0 used,        0 fre
 
  PID USER      PR  NI    VIRT    RES    SHR S  %CPU 
  810 root      20   0    7316     96      0 R  44.3 
  813 root      20   0    7316     96      0 R  44.3 

  812 root      20   0  138392  46936    996 R  31.7 
  814 root      20   0  138392  22360    996 R  31.7 
  811 root      20   0    7316     96      0 D  25.3 



NOTE

Docker Desktop users on non-Linux systems may discover that Docker has made the
VM filesystem read-only and it does not contain many useful tools for monitoring the
VM. For these demos where you want to be able to monitor the resource usage of
various processes, you can work around this by doing something like this:

$ docker container run --rm -it --pid=host alpine sh 
/ # apk update 
/ # apk add htop 
/ # htop -p $(pgrep stress | tr '\n' ',') 
/ # exit

Be aware that the preceding htop  command will give you an error unless stress  is
actively running when you launch htop , since no processes will be returned by the
pgrep  command.

You will also want to exit and re-run htop  each time you run a new stress
instance.

If you want to run the same stress  command again, with only
half the amount of available CPU time, you can do so like this:

    1 root      20   0  110024   4916   3632 S   0.0 
    2 root      20   0       0      0      0 S   0.0 
    3 root      20   0       0      0      0 S   0.0 

$ docker container run --rm -ti --cpu-shares 512 spka
stress -v --cpu 2 --io 1 --vm 2 --vm-bytes 128M --t



The --cpu-shares 512  is the flag that does the magic,
allocating 512 CPU shares to this container. The effect of this
argument might not be noticeable on a system that is not very
busy. That’s because the container will continue to be scheduled
for the same time-slice length whenever it has work to do
unless the system is constrained for resources. So in our case,
the results of a top  command on the host system will likely
look the same, unless you run a few more containers to give the
CPU something else to do.

WARNING

Unlike virtual machines, Docker’s cgroup-based constraints on CPU shares can have
unexpected consequences. They are not hard limits; they are relative limits, similar
to the nice  command. An example is a container that is constrained to half the CPU
shares but is on a system that is not very busy. Since the CPU is not busy, the limit on
the CPU shares would have only a limited effect because there is no competition in
the scheduler pool. When a second container that uses a lot of CPU is deployed to the
same system, suddenly the effect of the constraint on the first container will be
noticeable. Consider this carefully when constraining containers and allocating
resources.

CPU pinning

  stress -v --cpu 2 --io 1 --vm 2 --vm-bytes 128M --t



It is also possible to pin a container to one or more CPU cores.
This means that work for this container will be scheduled only
on the cores that have been assigned to this container. That is
useful if you want to hard-shard CPUs between applications or
if you have applications that need to be pinned to a particular
CPU for things like cache efficiency.

In the following example, we are running a stress container
pinned to the first of two CPUs, with 512 CPU shares.

WARNING

The --cpuset-cpus  argument is zero-indexed, so your first CPU core is 0. If you tell
Docker to use a CPU core that does not exist on the host system, you will get a Cannot
start container  error. On a two-CPU example host, you could test this by using --
cpuset-cpus=0-2 .

If you run top  again, you should notice that the percentage of
CPU time spent in user space ( us ) is lower than it previously

$ docker container run --rm -ti \
  --cpu-shares 512 --cpuset-cpus=0 spkane/train-os \

  stress -v --cpu 2 --io 1 --vm 2 --vm-bytes 128M --t



was, since we have restricted two CPU-bound processes to a
single CPU.

NOTE

When you use CPU pinning, additional CPU sharing restrictions on the container only
take into account other containers running on the same set of cores.

Using the CPU CFS (Completely Fair Scheduler) within the Linux
kernel, you can alter the CPU quota for a given container by
setting the --cpu-quota  flag to a valid value when launching
the container with docker container run .

Simplifying CPU quotas

While CPU shares were the original mechanism in Docker for
managing CPU limits, Docker has evolved a great deal since and
one of the ways that it now makes users’ lives easier is by
greatly simplifying how CPU quotas can be set. Instead of trying
to set CPU shares and quotas correctly, you can now simply tell
Docker how much CPU you would like to be available to your

%Cpu(s): 18.5 us, 22.0 sy, 0.0 ni, 57.6 id, 0.5 wa, 1



container, and it will do the math required to set the underlying
cgroups correctly.

The --cpus  command can be set to a floating-point number
between 0.01 and the number of CPU cores on the Docker
server.

If you try to set the value too high, you’ll get an error message
from Docker (not the stress  application) that will give you the
correct range of CPU cores that you have to work with.

The docker container update  command can be used to
dynamically adjust the resource limits of one or more
containers. You could adjust the CPU allocation on two
containers simultaneously, for example, like so:

$ docker container run --rm -ti --cpus=".25" spkane/t
  stress -v --cpu 2 --io 1 --vm 2 --vm-bytes 128M --t

$ docker container run --rm -ti --cpus="40.25" spkane
  stress -v --cpu 2 --io 1 --vm 2 --vm-bytes 128M --t
docker: Error response from daemon: Range of CPUs is 
    0.01 to 4.00, as there are only 4 CPUs available.
See 'docker container run --help'.



TIP

Docker sees CPUs the same way that Linux sees them. Hyper-Threading and cores are
interpreted by Linux and exposed via the special file /proc/cpuinfo . When you use
the --cpus  command in Docker you are referring to how many of the entries in this
file you want the container to have access to, whether they refer to a standard core
or a hyper-threaded core.

Memory

We can control how much memory a container can access in a
manner similar to constraining the CPU. There is, however, one
fundamental difference: while constraining the CPU only
impacts the application’s priority for CPU time, the memory
limit is a hard limit. Even on an unconstrained system with 96
GB of free memory, if we tell a container that it may have access
only to 24 GB, then it will only ever get to use 24 GB regardless
of the free memory on the system. Because of the way the
virtual memory system works on Linux, it’s possible to allocate
more memory to a container than the system has actual RAM.
In this case, the container will resort to using swap, just like a
normal Linux process.

$ docker container update --cpus="1.5" 092c5dc85044 9



Let’s start a container with a memory constraint by passing the
--memory  option to the docker container run  command:

When you use the --memory  option alone, you are setting both
the amount of RAM and the amount of swap that the container
will have access to. So by using --memory 512m  here, we’ve
constrained the container to 512 MB of RAM and 512 MB of
additional swap space. Docker supports b , k , m , or g ,
representing bytes, kilobytes, megabytes, or gigabytes,
respectively. If your system somehow runs Linux and Docker
and has multiple terabytes of memory, then unfortunately
you’re going to have to specify it in gigabytes.

If you would like to set the swap separately or disable it
altogether, you need to also use the --memory-swap  option.
This defines the total amount of memory and swap available to
the container. If we rerun our previous command, like so:

$ docker container run --rm -ti --memory 512m spkane/
  stress -v --cpu 2 --io 1 --vm 2 --vm-bytes 128M --t

$ docker container run --rm -ti --memory 512m --memor
    spkane/train-os stress -v --cpu 2 --io 1 --vm 2 -
    --timeout 10s



Then we’re telling the kernel that this container can have access
to 512 MB of memory and 256 MB of additional swap space.
Setting the --memory-swap  option to -1  will disable the swap
completely within the container.

WARNING

Again, unlike CPU shares, memory is a hard limit! This is good because the constraint
doesn’t suddenly have a noticeable effect on the container when another container is
deployed to the system. But it does mean that you need to be careful that the limit
closely matches your container’s needs because there is no wiggle room. An out-of-
memory container causes the kernel to behave just like it would if the system were
out of memory. It will try to find a process to kill so that it can free up space. This is a
common failure case where containers have their memory limits set too low. The
telltale sign of this issue is a container exit code of 137 and kernel out-of-memory
(OOM) messages in the Docker server’s dmesg  output.

So, what happens if a container reaches its memory limit? Well,
let’s give it a try by modifying one of our previous commands
and lowering the memory significantly:

$ docker container run --rm -ti --memory 100m spkane/
  stress -v --cpu 2 --io 1 --vm 2 --vm-bytes 128M --t



While all of our other runs of the stress  container ended with
a line like this:

stress: info: [17] successful run completed in 10s

We see that this run quickly fails with a line similar to this:

stress: FAIL: [1] (451) failed run completed in 0s

This is because the container tries to allocate more memory
than it is allowed, and the Linux out-of-memory (OOM) killer is
invoked and starts killing processes within the cgroup to
reclaim memory. In this case, our container has a single-parent
process that has spawned a few children processes, and when
the OOM killer kills one of the children processes the parent
process cleans everything up and exits with an error.

WARNING

Docker has features that allow you to tune and disable the Linux OOM killer by using
the --oom-kill-disable  and the --oom-score-adj  arguments to docker
container run , but they are not recommended for almost any use cases.

If you access your Docker server, you can see the kernel
message related to this event by running dmesg . The output



will look something like this:

[ 4210.403984] stress invoked oom-killer: gfp_mask=0x
[ 4210.404899] stress cpuset=5bfa65084931efabda59d9a7
[ 4210.405951] CPU: 3 PID: 3429 Comm: stress Not tain
[ 4210.406624] Hardware name:   BHYVE, BIOS 1.00 03/1
… 
[ 4210.408978] Call Trace: 
[ 4210.409182]  [<ffffffff94438115>] ? dump_stack+0x5

…. 
[ 4210.414139]  [<ffffffff947f9cf8>] ? page_fault+0x2
[ 4210.414619] Task in /docker-ce/docker/5…3 
killed as a result of limit of /docker-ce/docker/5…3 
[ 4210.416640] memory: usage 102380kB, limit 102400kB
[ 4210.417236] memory+swap: usage 204800kB, limit 204
[ 4210.417855] kmem: usage 1180kB, limit 900719925474
[ 4210.418485] Memory cgroup stats for /docker-ce/doc
cache:0KB rss:101200KB rss_huge:0KB mapped_file:0KB d
writeback:11472KB swap:102420KB inactive_anon:50728KB
active_anon:50472KB inactive_file:0KB active_file:0KB
… 
[ 4210.426783] Memory cgroup out of memory: Kill proc
[ 4210.427544] Killed process 3429 (stress) total-vm:
anon-rss:44028kB, file-rss:900kB, shmem-rss:0kB 
[ 4210.442492] oom_reaper: reaped process 3429 (stres
anon-rss:0kB, file-rss:0kB, shmem-rss:0kB



This out-of-memory event will also be recorded by Docker and
viewable via docker system events .

Block I/O

Many containers are just stateless applications and won’t need
block I/O restrictions. But Docker also supports limiting block
I/O in a few different ways via the cgroups mechanism.

The first way is applying some prioritization to a container’s
use of block device I/O. You enable this by manipulating the
default setting of the blkio.weight  cgroup attribute. This
attribute can have a value of 0 (disabled) or a number between
10 and 1000, the default being 500. This limit acts a bit like CPU
shares, in that the system will divide all of the available I/O
between every process within a cgroup slice by 1000, with the
assigned weights impacting how much available I/O is available
to each process.

$ docker system events
2018-01-28T15:56:19.972142371-08:00 container oom \
    d0d803ce32c4e86d0aa6453512a9084a156e96860e916ffc2
    (image=spkane/train-os, name=loving_franklin)



To set this weight on a container, you need to pass the --blkio-
weight  to your docker container run  command with a valid
value. You can also target a specific device using the --blkio-
weight-device  option.

As with CPU shares, tuning the weights is hard to get right in
practice, but we can make it vastly simpler by limiting the
maximum number of bytes or operations per second that are
available to a container via its cgroup. The following settings let
us control that:

You can test how these impact the performance of a container
by running some of the following commands, which use the
Linux I/O tester bonnie .

--device-read-bps     Limit read rate (bytes per seco
--device-read-iops    Limit read rate (IO per second)
--device-write-bps    Limit write rate (bytes per sec
--device-write-iops   Limit write rate (IO per second

$ time docker container run --rm -ti spkane/train-os:
    -u 500:500 -d /tmp -r 1024 -s 2048 -x 1 
… 
real  0m27.715s 
user  0m0.027s 
sys 0m0 030s

https://www.coker.com.au/bonnie


TIP

Powershell users should be able to use the Measure-Command  function to replace the
Unix time  command used in these examples.

In our experience, the --device-read-iops  and --device-
write-iops  arguments are the most effective way to set block
I/O limits and are the ones we recommend.

ulimits

Before Linux cgroups, there was another way to place a limit on
the resources available to a process: the application of user

sys   0m0.030s 
 
$ time docker container run -ti --rm --device-write-i
    spkane/train-os:latest bonnie++ -u 500:500 -d /tm
… 
real  0m58.765s 
user  0m0.028s 
sys   0m0.029s 
 
$ time docker container run -ti --rm --device-write-b
    spkane/train-os:latest bonnie++ -u 500:500 -d /tm
…

https://bit.ly/2MDcONZ


limits via the ulimit  command. That mechanism is still
available and still useful for all of the use cases where it was
traditionally used.

The following code is a list of the types of system resources that
you can usually constrain by setting soft and hard limits via the
ulimit  command:

$ ulimit -a 
core file size (blocks, -c) 0 
data seg size (kbytes, -d) unlimited 
scheduling priority (-e) 0 
file size (blocks, -f) unlimited 
pending signals (-i) 5835 
max locked memory (kbytes, -l) 64 
max memory size (kbytes, -m) unlimited 
open files (-n) 1024 
pipe size (512 bytes, -p) 8 
POSIX message queues (bytes, -q) 819200 
real-time priority (-r) 0 
stack size (kbytes, -s) 10240 
cpu time (seconds, -t) unlimited 
max user processes (-u) 1024 
virtual memory (kbytes, -v) unlimited 
file locks (-x) unlimited

https://bit.ly/2N3DJlm


It is possible to configure the Docker daemon with the default
user limits that you want to apply to every container. The
following command tells the Docker daemon to start all
containers with a soft limit of 50 open files and a hard limit of
150 open files:

$ sudo dockerd --default-ulimit nofile=50:150

You can then override these ulimits on a specific container by
passing in values using the --ulimit  argument.

There are some additional advanced commands that you can
use when creating containers, but this covers many of the more
common use cases. The Docker client documentation lists all the
available options and is updated with each Docker release.

Starting a Container

Before we got into the details of containers and constraints, we
created our container using the docker container create
command. That container is just sitting there without doing

$ docker container run --rm -d --ulimit nofile=150:30

https://dockr.ly/2ME0ygi


anything. There is a configuration, but no running process.
When we’re ready to start the container, we can do so using the
docker container start  command.

Let’s say that we needed to run a copy of Redis, a common
key/value store. We won’t do anything with this Redis
container, but it’s a lightweight, long-lived process and serves as
an example of something we might do in a real environment.
We could first create the container:

The result of the command is some output, the last line of which
is the full hash that was generated for the container. We could
use that long hash to start it, but if we failed to note it down, we
could also list all the containers on the system, whether they
are running or not, using:

$ docker container create -p 6379:6379 redis:2.8 
Unable to find image 'redis:7.0' locally
7.0: Pulling from library/redis 
3f4ca61aafcd: Pull complete 
… 
20bf15ad3c24: Pull complete 
Digest: sha256:8184cfe57f205ab34c62bd0e9552dffeb885d2
Status: Downloaded newer image for redis:7.0 
092c5dc850446324e4387485df7b76258fdf9ed0aedcd53a37299



We can confirm the identity of our container by filtering the
output by the image that we used and examining the
container’s creation time. We can then start the container with
the following command:

$ docker container start 092c5dc85044

NOTE

Most Docker commands will work with the container name, the full hash, the short
hash, or even just enough of the hash to make it unique. In the previous example, the
full hash for the container is 092c5dc850446324e…a37299d35fc67a042, but the short
hash that is shown in most command output is 092c5dc85044. This short hash
consists of the first 12 characters of the full hash. In the previous example, running
docker container start 6b7  would have worked just fine.

That should have started the container, but with it running in
the background we won’t necessarily know if something went
wrong. To verify that it’s running, we can run:

$ docker container ls -a --filter ancestor=redis:2.8 
CONTAINER ID IMAGE     COMMAND                CREATED
092c5dc85044 redis:7.0 "docker-entrypoint.s…" 46 seco

$ docker container ls 
CONTAINER ID IMAGE COMMAND ST



And, there it is: running as expected. We can tell because the
status says “Up” and shows how long the container has been
running.

Auto-Restarting a Container

In many cases, we want our containers to restart if they exit.
Some containers are very short-lived and come and go quickly.
But for production applications, for instance, you expect them
to be up and running at all times after you’ve told them to run.
If you are running a more complex system, a scheduler may do
this for you.

In the simple case, we can tell Docker to manage restarts on our
behalf by passing the --restart  argument to the docker
container run  command. It takes four values: no , always , or
on-failure , or unless-stopped . If restart  is set to no , the
container will never restart if it exits. If it is set to always , the
container will restart whenever it exits, with no regard to the
exit code. If restart  is set to on-failure , then whenever the
container exits with a nonzero exit code, Docker will try to

CONTAINER ID  IMAGE      COMMAND                …  ST
092c5dc85044  redis:7.0  "docker-entrypoint.s…" …  Up



restart the container. If we set restart  to on-failure:3  then
Docker will try and restart the container three times before
giving up. unless-stopped  is the most common choice and will
restart the container unless it is intentionally stopped with
something like docker container stop .

We can see this in action by re-running our last memory-
constrained stress container without the --rm  argument, but
with the --restart  argument.

In this example, we’ll see the output from the first run appear
on the console before it dies. If we run a docker container ls
immediately after the container dies, we’ll likely see that
Docker has restarted the container.

$ docker container ls 
…  IMAGE           …  STATUS                … 
…  spkane/train-os …  Up Less than a second …

$ docker container run -ti --restart=on-failure:3 --m
  spkane/train-os stress -v --cpu 2 --io 1 --vm 2 --v
  --timeout 120s



It will continue to fail because we haven’t given it enough
memory to function properly. After three attempts, Docker will
give up and we’ll see the container disappear from the output
of docker container ls .

Stopping a Container

Containers can be stopped and started at will. You might think
that starting and stopping a container is analogous to pausing
and resuming a normal process, but it’s not quite the same in
reality. When stopped, the process is not paused; it exits. And
when a container is stopped, it no longer shows up in the
normal docker container ls  output. On reboot, Docker will
attempt to start all of the containers that were running at
shutdown. If you need to prevent a container from doing any
additional work, without actually stopping the process, then
you can pause the Linux container with docker container
pause  and unpause , which will be discussed in more detail
later. For now, go ahead and stop the Redis container that we
started a little earlier:

$ docker container stop 092c5dc85044 
$ docker container ls 
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES



Now that we have stopped the container, nothing is in the
running container list! We can start it back up with the
container ID, but it would be inconvenient to have to remember
that. So docker container ls  has an additional option (-a)
to show all containers, not just the running ones.

$ docker container ls -a 
CONTAINER ID  IMAGE     STATUS                   … 
092c5dc85044  redis:7.0 Exited (0) 2 minutes ago … 
…

That STATUS  field now shows that our container exited with a
status code of 0 (no errors). We can start it back up with the
same configuration it had before:

$ docker container start 092c5dc85044 
092c5dc85044 
 
$ docker container ls -a 
CONTAINER ID  IMAGE     STATUS        … 
092c5dc85044  redis:7.0 Up 14 seconds … 
…



Voilà, our container is back up and running, and configured just
as it was before.

NOTE

Remember that containers exist as a blob of configuration in the Docker system even
when they are not started. That means that as long as the container has not been
deleted, you can restart it without needing to recreate it. Although memory and
tmpfs contents will have been lost, all of the container’s other filesystem contents
and metadata, including environment variables and port bindings, are saved and
will still be in place when you restart the container.

By now we’ve probably thumped on enough about the idea that
containers are just a tree of processes that interact with the
system in essentially the same way as any other process on the
server. But it’s important to point it out here again because it
means that we can send Unix signals to our process in the
containers that they can then respond to. In the previous
docker container stop  example, we’re sending the container
a SIGTERM  signal and waiting for the container to exit
gracefully. Containers follow the same process group signal
propagation that any other process group would receive on
Linux.

A normal docker container stop  sends a SIGTERM  to the
process. If you want to force a container to be killed if it hasn’t



stopped after a certain amount of time, you can use the -t
argument, like this:

$ docker container stop -t 25 092c5dc85044

This tells Docker to initially send a SIGTERM  signal as before,
but then if the container has not stopped within 25 seconds
(default: 10), to send a SIGKILL  signal to forcefully kill it.

Although stop  is the best way to shut down your containers,
there are times when it doesn’t work and you’ll need to
forcefully kill a container, just as you might have to do with any
process outside of a container.

Killing a Container

When a process is misbehaving, docker container stop
might not cut it. You might just want the container to exit
immediately.

In these circumstances, you can use docker container kill  .
As you’d expect, it looks a lot like docker container stop :

$ docker container start 092c5dc85044 
092c5dc85044 



 
$ docker container kill 092c5dc85044 
092c5dc85044

A docker container ls  command now shows that the
container is no longer running, as expected:

Just because it was killed rather than stopped does not mean
you can’t start it again, though. You can just issue a docker
container start  like you would for a nicely stopped
container. Sometimes you might want to send another signal to
a container, one that is not stop  or kill . Like the Linux kill
command, docker container kill  supports sending any Unix
signal. Let’s say we wanted to send a USR1  signal to our
container to tell it to do something like reconnect a remote
logging session. We could do the following:

$ docker container start 092c5dc85044 
092c5dc85044 
 

$ docker container ls 
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES



$ docker container kill --signal=USR1 092c5dc85044 
092c5dc85044

If our container process was designed to do something with the
USR1  signal, it would now do it. Any standard Unix signal can
be sent to a container using this method.

Pausing and Unpausing a Container

There are a few reasons why we might not want to completely
stop our container. We might want to pause it, leave its
resources allocated, and leave its entries in the process table.
That could be because we’re taking a snapshot of its filesystem
to create a new image, or just because we need some CPU on
the host for a while. If you are used to normal Unix process
handling, you might wonder how this works since
containerized processes are just processes.

Pausing leverages the cgroups  freezer, which essentially just
prevents your process from being scheduled until you unfreeze
it. This will prevent the container from doing anything while
maintaining its overall state, including memory contents.
Unlike stopping a container, where the processes are made
aware that they are stopping via the SIGSTOP  signal, pausing a

https://bit.ly/2wzMhGo


container doesn’t send any information to the container about
its state change. That’s an important distinction. Several Docker
commands use pausing and unpausing internally as well. Here
is how we pause a container:

$ docker container start 092c5dc85044 
092c5dc85044 
 
$ docker container pause 092c5dc85044 
092c5dc85044

NOTE

To pause and unpause containers in Windows, you must be using Hyper-V or WSL2
as the underlying virtualization technology.

If we look at the list of running containers, we will now see that
the Redis container status is listed as (Paused).

Attempting to use the container in this paused state would fail.
It’s present, but nothing is running. We can now resume the

$ docker container ls 
CONTAINER ID  IMAGE     … STATUS                  … 
092c5dc85044  redis:7.0 … Up 25 seconds (Paused)  …



container by using the docker container unpause  command.

$ docker container unpause 092c5dc85044 
092c5dc85044 
 
$ docker container ls 
CONTAINER ID  IMAGE     … STATUS        … 
092c5dc85044  redis:7.0 … Up 55 seconds …

It’s back to running, and docker container ls  correctly
reflects the new state. It shows “Up 55 seconds” now because
Docker still considers the container to be running even when it
is paused.

Cleaning Up Containers and Images

After running all these commands to build images, create
containers, and run them, we have accumulated a lot of image
layers and container folders on our system.

We can list all the containers on our system using the docker
container ls -a  command and then delete any of the
containers in the list. We must stop all containers that are using
an image before removing the image itself. Assuming we’ve



done that, we can remove it as follows, using the docker
container rm  command:

$ docker container stop 092c5dc85044 
092c5dc85044ls 
 
$ docker container rm 092c5dc85044 
092c5dc85044

NOTE

It is possible to remove a running container if you use the -f  or --force  flag with
docker container rm .

We can then list all the images on our system using:

We can then delete an image and all associated filesystem
layers by running:

$ docker image ls 
REPOSITORY       TAG     IMAGE ID      CREATED       
ubuntu           latest  5ba9dab47459  3 weeks ago   
redis            7.0     0256c63af7db  2 weeks ago   
spkane/train-os  latest  78fb082a4d65  4 months ago  



$ docker image rm 0256c63af7db

WARNING

If you try to delete an image that is in use by a container, you will get a Conflict,
cannot delete  error. You should stop and delete the container(s) first.

There are times, especially during development cycles when it
makes sense to completely purge all the images or containers
from your system. The easiest way to do this is by running the
docker system prune  command.

$ docker system prune 
WARNING! This will remove:
        - all stopped containers
        - all networks not used by at least one conta
        - all dangling images
        - all build cache 
Are you sure you want to continue? [y/N] y 
Deleted Containers: 
cbbc42acfe6cc7c2d5e6c3361003e077478c58bb062dd57a230d3
… 
Deleted Images: 
deleted: sha256:bec6ec29e16a409af1c556bf9e6b2ec584c7f
untagged: spkane/squid@sha256:64fbc44666405fd1a02f0ec
… 
Total reclaimed space: 1 385GB



TIP

To remove all unused images, instead of only dangling images, try docker system
prune -a .

It is also possible to craft more specific commands to
accomplish similar goals.

To delete all of the containers on your Docker hosts, use the
following command:

$ docker container rm $(docker container ls -a -q)

And to delete all the images on your Docker host, this command
will get the job done:

$ docker image rm $(docker images -q)

The docker container ls  and docker images  commands
both support a filter  argument that can make it easy to fine-
tune your delete commands for certain circumstances.

Total reclaimed space: 1.385GB



To remove all containers that exited with a nonzero state, you
can use this filter:

And to remove all untagged images, you can type:

NOTE

You can read the official Docker documentation to explore the filtering options. At the
moment there are very few filters to choose from, but more will likely be added over
time.

You can also make your own very creative filters by stringing together commands
using pipes (|) and other similar techniques.

In production systems that see a lot of deployments, you can
sometimes end up with old containers or unused images lying
around and filling up disk space. It can be useful to script the
docker system prune  command to run on a schedule (e.g.,
running under cron  or via a systemd  timer).

$ docker container rm $(docker container ls -a -q --f

$ docker image rm $(docker images -q -f "dangling=tru

https://docs.docker.com/engine/reference/commandline/ps/#filtering


Windows Containers

Up to now we have focused entirely on Docker commands for
Linux containers, since this is the most common use case and
works on all Docker platforms. However, since 2016, the
Microsoft Windows platform has supported running Windows
containers that include native Windows applications and can
be managed with the usual set of Docker commands.

Windows containers are not the focus of this book, since they
still only make up a small portion of production containers and
they aren’t 100%-compatible with the rest of the Docker
ecosystem because they require Windows-specific container
images. However, they’re a growing and important part of the
Docker world, so we’ll take a brief look at how they work. In
fact, except for the actual contents of the containers, almost
everything else works the same as Linux containers. In this
section, we’ll run through a quick example of how you can run
a Windows container on Windows 10+ with Hyper-V and
Docker.

TIP

For this to work, you must be using Docker Desktop on a compatible 64-bit edition of
Windows 10 or newer.



The first thing you’ll need to do is to switch Docker from Linux
containers to Windows containers. To do this, right-click on the
Docker whale icon in your taskbar, select Switch to Windows
Containers… , and then confirm the switch.



Figure 5-1. Switch to Windows Containers



Figure 5-2. Switch to Windows Containers Confirmation

This process might take some time, although usually, it happens
almost immediately. Unfortunately, there is no notification that
the switch has been completed. If you right-click on the Docker
icon again, you should now see Switch to Linux Containers…
in place of the original option.

NOTE

If the first time you right-click on the Docker icon, it reads Switch to Linux
Containers… , then you are already configured for Windows containers.

We can test a simple Windows container by opening up
PowerShell and trying to run the following command:

PS C:\> docker container run --rm -it mcr.microsoft.c
          pwsh -command ` 
          'Write-Host "Hello World from Windows `($Is

https://bit.ly/2NsJnuj


This will download and launch a base container for Powershell
and then use scripting to print Hello World from Windows
(True)  to the screen.

NOTE

If the output from the above command prints Hello World from Windows (false)
then you have not switched over to Windows Container mode, or you are running
this command on a non-Windows platform.

If you want to build a Windows container image that
accomplishes roughly the same task, you can create the
following Dockerfile:

# escape=`
FROM mcr.microsoft.com/powershell
SHELL ["pwsh", "-command"] 
 
RUN Add-Content C:\helloworld.ps1 `
      'Write-Host "Hello World from Windows"' 
 
CMD ["pwsh", "C:\\helloworld.ps1"]

 
Hello World from Windows (True)

https://hub.docker.com/_/microsoft-powershell


When you build this Dockerfile it will base the image on
mcr.microsoft.com/powershell , create a small Powershell
script, and then configure the image to run that script when this
image is used to launch a container.

WARNING

You may have noticed that we had to escape the backslash ( \ ) with an additional
backslash in the preceding Dockerfile’s CMD line. This is because Docker has its roots
in Unix and the backslash has a special meaning in Unix shells. So, even though we
changed the escape character for the Dockerfile to match what is used in Powershell
by default (which we set via the SHELL directive), we still need to escape some
backslashes to ensure that Docker does not misinterpret them.

If you build this Dockerfile now, you’ll see something similar to
this:

PS C:\> docker image build -t windows-helloworld:late
 
Sending build context to Docker daemon  2.048kB
Step 1/4 : FROM mcr.microsoft.com/powershell 
 ---> 7d8f821c04eb
Step 2/4 : SHELL ["pwsh", "-command"] 
 ---> Using cache 
 ---> 1987fb489a3d
Step 3/4 : RUN Add-Content C:\helloworld.ps1 
                 'Write-Host "Hello World from Window

https://docs.docker.com/engine/reference/builder/#escape
https://docs.docker.com/engine/reference/builder/#shell-form-entrypoint-example


And now if you run the resulting image, you’ll see this:

Microsoft maintains good documentation about Windows
containers that also includes an example of building a
container that launches a .NET application.

 ---> Using cache 
 ---> 37df47d57bf1
Step 4/4 : CMD ["pwsh", "C:\\helloworld.ps1"] 
 ---> Using cache 
 ---> 03046ff628e4
Successfully built 03046ff628e4
Successfully tagged windows-helloworld:latest

PS C:\> docker container run --rm -ti windows-hellowo
 
Hello World from Windows

https://bit.ly/2MzEQtL
https://bit.ly/2MzEVxz


TIP

On the Windows platform, it is also useful to know that you can get improved
isolation for your container by launching it inside a dedicated and very lightweight
Hyper-V virtual machine. You can do this very easily, by simply adding the --
isolation=hyperv  option to your docker container create  and docker
container run  commands. There is a small performance and resource penalty for
this, but it does significantly improve the isolation of your container. You can read
more about this in the documentation.

Even if you plan to mostly work with Windows containers, for
the rest of the book you should switch back to Linux containers,
so that all the examples work as expected. When you are done
reading and are ready to dive into building your containers,
you can always switch back.

TIP

Remember that you can re-enable Linux containers by right-clicking on the Docker
icon, and selecting Switch to Linux Containers… .

Wrap-Up

In the next chapter, we’ll continue our exploration of what
Docker brings to the table. For now, it’s probably worth doing a
little experimentation on your own. We suggest exercising some

https://bit.ly/2omoR3u


of the container control commands we covered here so that
you’re familiar with the command-line options and the overall
syntax. Now would even be a great time to try to design and
build a small image and then launch it as a new container.
When you are ready to continue, head on to Chapter 6!

SELinux is one current implementation.

Typically under /var/lib/docker/containers.



Chapter 6. Exploring Docker

Now that you have some experience working with containers
and images, we can explore some of Docker’s other capabilities.
In this chapter, we’ll continue to use the docker  command-line
tool to talk to the running dockerd  server that you’ve
configured while visiting some of the other fundamental
commands.

Docker provides commands to do several additional things
easily:

Printing the Docker version
Viewing the server information
Downloading image updates
Inspecting containers
Entering a running container
Returning a result
Viewing logs
Monitoring statistics
And much more…

Let’s take a look at these and some of the additional community
tooling that augments Docker’s native capabilities.



Printing the Docker Version

If you completed the last chapter, you have a working Docker
daemon on a Linux server or virtual machine, and you’ve
started a base container to make sure it’s all working. If you
haven’t set that up already and you want to try out the steps in
the rest of the book, you’ll want to follow the installation steps
in Chapter 3 before you move on with this section.

The absolute simplest thing you can do with Docker is print the
versions of the various components. It might not sound like
much, but this is a useful tool to have because Docker is built
from a multitude of components whose versions will directly
dictate what functionality is available to you. Knowing how to
show the version will also help you troubleshoot certain types
of connection issues between the client and server. For
example, the Docker client might give you a cryptic message
about mismatched API versions and it’s nice to be able to
translate that into Docker versions so you know which
component needs updating. This command talks to the remote
Docker server, so if the client can’t connect to the server for any
reason, the client will report an error, and then only print out
the client version information. If you find that you are having



connectivity problems, you should probably revisit the steps in
the last chapter.

NOTE

You can always directly log in to the Docker server and run docker  commands from
a shell on the server if you are troubleshooting issues or simply do not want to use
the docker  client to connect to a remote system. On most Docker servers, this will
require either root  privileges or membership in the docker  group to connect to the
Unix domain socket that Docker is listening on.

Since we just installed all of the Docker components at the same
time, when we run docker version , we should see that all of
our versions match:

$ docker version 
Client:
 Cloud integration: v1.0.24
 Version:           20.10.17
 API version:       1.41
 Go version:        go1.17.11
 Git commit:        100c701
 Built:             Mon Jun  6 23:04:45 2022
 OS/Arch:           darwin/amd64
 Context:           default
 Experimental:      true 
 



Notice how we have different sections representing the client
and server. In this case we have a matching client and server
since we just installed them together. But it’s important to note
that this won’t always be the case. Hopefully, in your
production systems, you can manage to keep the same version
running on most systems. But it’s not uncommon for

Server: Docker Desktop 4.10.1 (82475)
 Engine:
  Version:          20.10.17
  API version:      1.41 (minimum version 1.12)
  Go version:       go1.17.11
  Git commit:       a89b842
  Built:            Mon Jun  6 23:01:23 2022
  OS/Arch:          linux/amd64
  Experimental:     false
 containerd:
  Version:          1.6.6
  GitCommit:        10c12954828e7c7c9b6e0ea9b0c02b014
 runc:
  Version:          1.1.2
  GitCommit:        v1.1.2-0-ga916309
 docker-init:
  Version:          0.19.0
  GitCommit:        de40ad0



development environments and build systems to have slightly
different versions.

API clients and libraries will usually work across a large
number of Docker versions, depending on which API version
they require. In the Server  section, we can see that it’s telling
us that the current API version is 1.41 and the minimum API it
will serve is 1.12. This is useful information when you’re
working with third-party clients and now you know how to
verify this information.

Server Information

We can also find out a lot about the Docker server via the
Docker client. Later we’ll talk more about what all of this
means, but you can find out which filesystem backend the
Docker server is running, which kernel version it is on, which
operating system it is running on, which plug-ins are installed,
which runtime is being used, and how many containers and
images are currently stored there. docker system info  will
present you with something similar to this, which has been
shortened for brevity:

$ docker system info 
Client: 



…
 Plugins:
  buildx: Docker Buildx (Docker Inc., v0.8.2)
  compose: Docker Compose (Docker Inc., v2.6.1)
  extension: Manages Docker extensions (Docker Inc., 
  sbom: View the packaged-based Software Bill Of Mate
  scan: Docker Scan (Docker Inc., v0.17.0) 
 
Server:
 Containers: 11 
…
 Images: 6
 Server Version: 20.10.17
 Storage Driver: overlay2 

…
 Plugins:
  Volume: local
  Network: bridge host ipvlan macvlan null overlay
  Log: awslogs fluentd gcplogs gelf journald json-fil
…
 Runtimes: io.containerd.runc.v2 io.containerd.runtim
 Default Runtime: runc 
…
 Kernel Version: 5.10.104-linuxkit
 Operating System: Docker Desktop
 OSType: linux
 Architecture: x86_64 
…



Depending on how your Docker daemon is set up, this might
look somewhat different. Don’t be concerned about that; this is
just to give you an example. Here we can see that our server is a
Docker Desktop release running the 5.10.104 Linux kernel and
backed with the overlay2 filesystem driver. We also have a few
images and containers on the server. With a fresh install, this
number should be zero.

The information about plug-ins is worth pointing out here. It’s
telling us about all the things this installation of Docker
supports. On a fresh install, things will look more or less like
this, depending on which new plug-ins are distributed with
Docker. Docker itself is made up of many different plug-ins all
working together. This is powerful because it means it’s also
possible to install several other plug-ins contributed by
members of the community. It’s useful to be able to see which
are installed even if you just want to make sure Docker has
recognized one that you recently added.

In most installations, /var/lib/docker will be the default root
directory used to store images and containers. If you need to
change this, you can edit your Docker startup scripts to launch
the daemon, with the --data-root  argument pointing to a new



storage location. To test this by hand, you could run something
like this:

$ sudo dockerd \
    -H unix:///var/run/docker.sock \
    --data-root="/data/docker"

NOTE

By default, the configuration file for the Docker server can be found in
/etc/docker/daemon.json. Most of the arguments that we discuss passing directly to
dockerd  can be permanently set in this file. If you are using Docker Desktop, you are
advised to modify this file in the Docker Desktop UI.

We will talk more about runtimes later, but here you can see
that we have three runtimes installed. The runc  runtime is the
default Docker runtime. If you think of Linux containers, you
are usually thinking about the type of container that runc
builds. On this server, we also have the
io.containerd.runc.v2  and
io.containerd.runtime.v1.linux  runtimes installed. We’ll
talk more about some other runtimes in Chapter 11.

Downloading Image Updates

https://docs.docker.com/engine/reference/commandline/dockerd/#daemon-configuration-file


We’re going to use an Ubuntu base image for the following
examples. Even if you have already grabbed the
ubuntu:latest  base image once, you can pull  it again and it
will automatically pick up any updates that have been
published since you last ran it.

This is because latest  is a tag that, by convention, is supposed
to represent the latest build of the container. However, the
latest  tag is controversial, since it is not permanently pinned
to a specific image and can have different meanings across
different projects. Some people use it to point to the most recent
stable release, some people use it to point to the last built
produced by their CI/CD system, and others simply refuse to tag
any of their images with latest . That being said, it is still in
wide use and can be useful in pre-production environments
where the convenience of using it outweighs the lack of
assurances that a real version provides.

Invoking +pull+ will look like this:

$ docker image pull ubuntu:latest 
 
latest: Pulling from library/ubuntu 
405f018f9d1d: Pull complete 
Digest: sha256:b6b83d3c331794420340093eb706a6f152d9c1



That command pulled down only the layers that have changed
since we last ran the command. You might see a longer or
shorter list, or even an empty list, depending on when you last
pulled the image, what changes have been pushed to the
registry since then, and how many layers the target image
contains.

TIP

It’s good to remember that even though you pulled latest , Docker won’t
automatically keep the local image up to date for you. You’ll be responsible for doing
that yourself. However, if you deploy an image based on a newer copy of
ubuntu:latest , the Docker client will download the missing layers during the
deployment just like you would expect. Keep in mind that this is the behavior of the
Docker client, and other libraries or API tools may not behave this way. It’s highly
recommended that you always deploy production code using a fixed version tag
rather than the latest  tag. This helps guarantee that you get the version you expect
and there are no unexpected surprises.

In addition to referring to items in the registry by the latest
tag or another version number tag, you can also refer to them
by their content-addressable tag. Which look like this:
sha256:b6b83d3c331794420340093eb706a6f152d9c1fa51b262d9

bf34594887c2c7ac . These are generated as a hashed sum of the

Status: Downloaded newer image for ubuntu:latest 
docker.io/library/ubuntu:latest



contents of the image and are a very precise identifier. This is
by far the safest way to refer to Docker images where you need
to make sure you are getting the exact version you expect
because these can’t be moved like a version tag. The syntax for
pulling them from the registry is very similar, but note the @  in
the tag.

Unlike most Docker commands where you may shorten the
hash, you cannot do that with SHA256 hashes. You must use the
full hash here.

Inspecting a Container

Once you have a container created, running or not, you can
now use docker  to see how it was configured. This is often
useful in debugging, and also has some other information that
can be useful for identifying a container.

For this example, go ahead and start up a container:

$ docker image pull ubuntu@sha256:b6b83d3c33179442034

$ docker container run --rm -d -t ubuntu /bin/bash 
3c4f916619a5dfc420396d823b42e8bd30a2f94ab5b0f42f05235



We can list all our running containers with docker container
ls  to ensure everything is running as expected, and to copy the
container ID.

In this case, our ID is 3c4f916619a5 . We could also use
angry_mestorf , which is the dynamic name assigned to our
container. Many underlying tools need the unique container ID
though, so it’s useful to get into the habit of looking at that first.
As we mentioned earlier, the ID as shown is the truncated (or
short) version, but Docker treats these interchangeably with the
long versions. As is the case in many version control systems,
this hash is just the prefix of a much longer hash. Internally, the
kernel uses a 64-byte hash to identify the container. But that’s
painful for humans to use, so Docker supports the shortened
hash.

The output to docker container inspect  is pretty verbose, so
we’ll cut it down in the following code block to a few values

$ docker container ls 
CONTAINER ID  IMAGE         COMMAND     … STATUS     
3c4f916619a5  ubuntu:latest "/bin/bash" … Up 31 secon



worth pointing out. You should look at the full output to see
what else you think is interesting:

$ docker container inspect 3c4f916619a5

[{
    "Id": "3c4f916619a5dfc420396d823b42e8bd30a2f94ab5
    "Created": "2022-07-17T17:26:53.611762541Z",

    …
    "Args": [],
    …
    "Image": "sha256:27941809078cc9b2802deb2b0bb6feed
    …
    "Config": {
        "Hostname": "3c4f916619a5",
        …
        "Env": [
          "PATH=/usr/local/sbin:/usr/local/bin:/usr/s
        ],
        "Cmd": [
            "/bin/bash"
        ],
        …
        "Image": "ubuntu",
        …
    },
    …



Note that long "Id"  string. That’s the full unique identifier of
this container. Luckily we can use the short version, even if
that’s still not especially convenient. We can also see the exact
time when the container was created is much more precise
than what docker container ls  gives us.

Some other interesting things are shown here as well: the top-
level command in the container, the environment that was
passed to it at creation time, the image on which it’s based, and
the hostname inside the container. All of these are configurable
at container creation time if you need to do so. The usual
method for passing configuration to containers, for example, is
via environment variables, so being able to see how a container
was configured via docker container inspect  can reveal a lot
when you’re debugging.

You can go ahead and stop the current container by running
something like docker container stop 3c4f916619a5 .

Exploring the Shell

}]



Let’s get a container running with just an interactive bash  shell
so we can take a look around. We’ll do that, as we did before, by
just running something like:

That will run an Ubuntu 22.04 LTS container with the bash shell
as the top-level process. By specifying the 22.04  tag, we can be
sure to get a particular version of the image. So, when we start
that container, what processes are running?

Wow, that’s not much, is it? It turns out that when we told
docker  to start bash , we didn’t get anything but that. We’re
inside a whole Linux distribution image, but no other processes
started for us automatically. We only got what we asked for. It’s
good to keep that in mind going forward.

$ docker container run --rm -it ubuntu:22.04 /bin/bas

root@35fd1ad27228:/# ps -ef 
UID        PID  PPID  C STIME TTY          TIME CMD 
root         1     0  0 17:45 pts/0    00:00:00 /bin/
root         9     1  0 17:47 pts/0    00:00:00 ps -e



WARNING

Linux containers don’t, by default, start anything in the background as a full virtual
machine would. They’re a lot lighter weight than that and therefore don’t start an
init  system. You can, of course, run a whole init  system if you need to, or the tini
init system that is built into Docker, but you have to ask for it. We’ll talk about that
more in Chapter 7.

That’s how we get a shell running in a container. You should
feel free to poke around and see what else looks interesting
inside the container. You might have a pretty limited set of
commands available. You’re in a base Ubuntu distribution,
though, so you can fix that by using apt-get update , followed
by apt-get install …  to download more packages. However,
these applications are only going to be around for the life of this
container. You’re modifying the top layer of the container, not
the base image! Containers are by nature ephemeral, so
anything you do inside this container won’t outlast it.

When you are done in the container make sure and exit  the
shell, which will then naturally stop the container.

root@35fd1ad27228:/# exit

Returning a Result

https://github.com/krallin/tini


How inefficient would it be to spin up a whole virtual machine
to run one command and get the results? You usually wouldn’t
want to do this because it would be very time-consuming and
require booting a whole operating system to simply execute one
command. But Docker and Linux containers do not work the
same way as virtual machines: containers are very lightweight
and don’t have to boot up like an operating system. Running
something like a quick background job and waiting for the exit
code is a normal use case for a Linux container. You can think
of it as a way to get remote access to a containerized system and
have access to any of the individual commands inside that
container with the ability to pipe data to and from them and
return exit codes.

This can be useful in lots of scenarios: you might, for instance,
have system health checks run this way remotely, or have a
series of machines with processes that you spin up via Docker
to process a workload and then return. The docker  command-
line tools proxy the results to the local machine. If you run the
remote command in foreground mode and don’t specify doing
otherwise, docker  will redirect its stdin to the remote process,
and the remote process’s stdout and stderr to your terminal.
The only things we have to do to get this functionality are to
run the command in the foreground and not allocate a TTY on



the remote. This is also the default configuration! No command-
line options are required.

When we run these commands, Docker creates a new
container, executes the command that we requested inside the
container’s namespaces and cgroups, removes the container
and then exits, so that nothing is left running or taking up
unnecessary disk space between invocations. The following
code should give you an idea of the types of things that you can
do:

$ docker container run --rm ubuntu:22.04 /bin/true 
$ echo $?
0

$ docker container run --rm ubuntu:22.04 /bin/false 
$ echo $?
1

$ docker container run --rm ubuntu:22.04 /bin/cat /et
 
root:x:0:0:root:/root:/bin/bash 
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin 



Here we executed /bin/false  on the remote server, which
will always exit with a status of 1. Notice how docker  proxied
that result to us in the local terminal. Just to prove that it
returns other results, we also run /bin/true , which will
always return a 0. And there it is.

Then we actually ask docker  to run cat /etc/passwd  on the
remote container. What we get is a printout of the /etc/passwd
file contained inside that container’s filesystem. Because that’s
just regular output on stdout, we can pipe it into local
commands just like we would anything else.

… 

nobody:x:65534:65534:nobody:/nonexistent:/usr/sbin/no
_apt:x:100:65534::/nonexistent:/usr/sbin/nologin 
 
$ docker container run --rm ubuntu:22.04 /bin/cat /et
 
19



WARNING

The previous code pipes the output into the local wc  command, not a wc  command
in the container. The pipe itself is not passed to the container. If you want to pass the
whole command, including the pipes, to the server, you need to invoke a complete
shell on the remote side and pass a quoted command, like bash -c "<your command>
| <something else>" . In the previous code, that would be: docker container run
ubuntu:22.04 /bin/bash -c "/bin/cat /etc/passwd | wc -l" .

Getting Inside a Running Container

You can pretty easily get a shell running in a new container,
based on almost any image, as we demonstrated earlier with
docker container run . But it’s not the same as getting a new
shell inside an existing container that is actively running your
application. Every time you use docker container run , you
get a new container. But if you have an existing container that
is running an application and you need to debug it from inside
the container, you need something else.

Using docker container exec  is the Docker-native way to get
a new interactive process in a container, but there is also a
more Linux-native way to do it, called nsenter . We will take a
look at docker container exec  below and cover nsenter
later in “nsenter”.



NOTE

You may be wondering why you would ever want to do this. In development, this can
be very useful when you are actively building and testing your application. This is
the mechanism that development containers use in IDEs like Visual Studio Code.

In production, it is not considered good practice to SSH into your production servers,
and this is roughly the same thing, but there are times when it is really important to
see what is going on inside the actual environment and this can help you out in those
situations.

docker container exec

First, let’s take a look at the easiest and best way to get inside a
running container. The dockerd  server and docker  command-
line tool support remotely executing a new process in a running
container via the docker container exec  command. So let’s
start up a container in background mode, and then enter it
using docker container exec  and invoking a shell. The
command you invoke doesn’t have to be a shell: it’s possible to
run individual commands inside the container and see their
results outside it using docker container exec . But if you
want to get inside the container to look around, a shell is the
easiest way to do that.

To run docker container exec , we’ll need our container’s ID.
For this demo, let’s create a container that will just run the

https://containers.dev/
https://code.visualstudio.com/docs/devcontainers/containers


sleep  command for 600 seconds.

The short ID for this container is 9f09ac4bcaa0. We can now use
that to get inside the container with docker container exec .
The command line for that, unsurprisingly, looks a lot like the
command line for docker container run . We request an
interactive session and a pseudo-TTY with the -i  and -t  flags:

$ docker container exec -it 9f09ac4bcaa0 /bin/bash 
root@9f09ac4bcaa0:/#

Note that we got a command line back that tells us the ID of the
container we’re running inside. That’s pretty useful for keeping
track of where we are. We can now run a normal Linux ps  to
see what else is running inside our container. We should see the
sleep  process that was created when the container was
originally started.

$ docker container run -d --rm  ubuntu:22.04 sleep 60
9f09ac4bcaa0f201e31895b15b479d2c82c30387cf2c8a46e4879

root@9f09ac4bcaa0:/# ps -ef 
UID        PID  PPID  C STIME TTY          TIME CMD 
root         1     0  0 20:22 ?        00:00:00 sleep
root         7     0  0 20:23 pts/0    00:00:00 /bin/



You should type exit  to get out of the container when you are
done.

WARNING

You can also run additional processes in the background via docker container
exec . You use the -d  option just like with docker container run . But you should
think hard about doing that for anything but debugging because you lose the
repeatability of the image deployment if you depend on this mechanism. Other
people would then have to know what to pass to docker container exec  to get the
desired functionality. If you’re tempted to do this, you would probably reap bigger
gains from rebuilding your container image to launch both processes in a repeatable
way. If you need to signal to the software inside the container to take some action like
rotating logs or reloading a configuration, it is cleaner to leverage docker container
kill -s <SIGNAL>  with the standard Unix signal name to pass information to the
process inside the container.

docker volume

Docker supports a volume  subcommand that makes it possible
to list all of the volumes stored in your root directory and then
discover additional information about them, including where
they are physically stored on the server.

p / / /
root        15     7  0 20:23 pts/0    00:00:00 ps -e



These volumes are not bind-mounted, but instead, they are
special data containers that provide a useful method for
persisting data.

If we run a normal docker  command that bind mounts a
directory, we’ll notice that it does not create any Docker
volumes.

However, you can easily create a new volume with a command
like this:

$ docker volume create my-data

$ docker volume ls 
DRIVER              VOLUME NAME 
 
$ docker container run --rm -d -v /tmp:/tmp ubuntu:la
6fc97c50fb888054e2d01f0a93ab3b3db172b2cd402fc1cd61685
 
$ docker volume ls 
DRIVER              VOLUME NAME



If you then list all your volumes, you should see something like
this:

$ docker volume ls 
 
DRIVER              VOLUME NAME
local               my-data 
 
$ docker volume inspect my-data

Now you can start a container with this data volume attached to
it, by running the following:

[
    {
        "CreatedAt": "2022-07-31T16:19:42Z",
        "Driver": "local",
        "Labels": {},
        "Mountpoint": "/var/lib/docker/volumes/my-dat
        "Name": "my-data",
        "Options": {},
        "Scope": "local"
    }
]



 $ docker container run --rm \
     --mount source=my-data,target=/app \
     ubuntu:latest touch /app/my-persistent-data

That container created a file in the data volume and then
immediately exited.

If we now mount that data volume to a different container, we
will see that our data is still there.

And finally, you can delete the data volume when you are done
with it by running:

$ docker volume rm my-data 
 
my-data

$ docker container run --rm \
    --mount source=my-data,target=/app \
    fedora:latest ls -lFa /app/my-persistent-data 
 
-rw-r--r-- 1 root root 0 Jul 31 16:24 /app/my-persist



NOTE

If you try to delete a volume that is in use by a container (whether it is running or
not), you’ll get an error like this:

Error response from daemon: unable to remove volume: 
    remove my-data: volume is in use - [ 
    d0763e6e8d79e55850a1d3ab21e9d…, 
    4b40d52978ea5e784e66ddca8bc22…]

These commands should help you to explore your containers in
great detail. Once we’ve explained namespaces more in
Chapter 11, you’ll get a better understanding of exactly how all
these pieces interact and combine to create a container.

Logging

Logging is a critical part of any production application. When
things go wrong, logs can be a critical tool in restoring service,
so they need to be done well. There are some common ways in
which we expect to interact with application logs on Linux
systems, some better than others. If you’re running an
application process on a box, you might expect the output to go
to a local log file that you could read through. Or perhaps you
might expect the output to simply be logged to the kernel buffer
where it can be read from dmesg . Or, as on many modern



Linux distributions with systemd , you might expect logs to be
available from journalctl . Because of the container’s
restrictions and how Docker is constructed, none of these will
work without at least some configuration on your part. But
that’s OK because logging has first-class support in Docker.

Docker makes logging easier in a few critical ways. First, it
captures all of the normal text output from applications in the
containers it manages. Anything sent to stdout  or stderr  in
the container is captured by the Docker daemon and streamed
into a configurable logging backend. Secondly, like many other
parts of Docker, this system is pluggable and there are lots of
powerful options available to you as plug-ins. But let’s not dive
into the deep end just yet.

docker container logs

We’ll start with the simplest Docker use case: the default logging
mechanism. There are limitations to this mechanism, which
we’ll explain in a minute, but for the simple case it works well,
and it’s very convenient. If you are running Docker in
development, this is probably the only logging strategy you’ll
use there. This logging method has been there from the very
beginning and is well understood and supported. The



mechanism is the json-file  method. The docker container
logs  command exposes most users to this.

As is implied by the name, when you run the default json-
file  logging plug-in, your application’s logs are streamed by
the Docker daemon into a JSON file for each container. This lets
us retrieve logs for any container at any time.

We can display some logs, by starting an nginx  container:

and then :

This is nice because Docker allows you to get the logs remotely,
right from the command line, on demand. That’s very useful for
low-volume logging.

$ docker container run --rm -d --name nginx-test --rm

$ 
…
2022/07/31 16:36:05 [notice] 1#1: using the "epoll" e
2022/07/31 16:36:05 [notice] 1#1: nginx/1.23.1
2022/07/31 16:36:05 [notice] 1#1: built by gcc 10.2.1
2022/07/31 16:36:05 [notice] 1#1: OS: Linux 5.10.104-
…



NOTE

To limit the log output to more recent logs, you can use the --since  option to display
only logs after a specified RFC 3339 date (e.g., 2002-10-02T10:00:00-05:00), Unix
timestamp (e.g., 1450071961), standard timestamp (e.g., 20220731), or Go duration
string (e.g., 5m45s). You may also use --tail  followed by the number of lines you
would like to tail.

The actual files backing this logging are on the Docker server
itself, by default in /var/lib/docker/containers/ <container_id> /
where the <container_id>  is replaced by the actual container
ID. If you take a look at the file named <container_id>-
json.log , you’ll see that it’s a file with each line representing a
JSON object. It will look something like this:

That log  field is exactly what was sent to stdout  on the
process in question; the stream  field tells us that this was
stdout  and not stderr , and the precise time that the Docker
daemon received it is provided in the time  field. It’s an
uncommon format for logging, but it’s structured rather than
just a raw stream, which is beneficial if you want to do anything
with the logs later.

{"log":"2022/07/31 16:36:05 [notice] 1#1: using the \
  "stream":"stderr","time":"2022-07-31T16:36:05.18923



Like a log file, you can also tail the Docker logs live with docker
container logs -f :

This looks identical to the usual docker container logs , but
the client then blocks, waiting on and displaying any new logs
to appear, much like the Linux command line tail -f . You
can type [Control-C]  to exit the logs stream at any time.

--- 
$ docker container stop nginx-test 
---

TIP

By configuring the tag log option similar to --log-opt tag="
{{.ImageName}}/{{.ID}}" , it is possible to change the default log tag (which every
log line will start with) to something more useful. By default, Docker logs will be
tagged with the first 12 characters of the container ID.

$ docker container logs -f nginx-test 
…
2022/07/31 16:36:05 [notice] 1#1: start worker proces
2022/07/31 16:36:05 [notice] 1#1: start worker proces
2022/07/31 16:36:05 [notice] 1#1: start worker proces
2022/07/31 16:36:05 [notice] 1#1: start worker proces



For single-host logging, this mechanism is pretty good. Its
shortcomings are around log rotation, access to the logs
remotely once they’ve been rotated, and disk space usage for
high-volume logging. Despite being backed by a JSON file, this
mechanism performs well enough that most production
applications can log this way if that’s the solution that works for
you. But if you have a more complex environment, you’re going
to want something more robust, and with centralized logging
capabilities.

WARNING

The default settings for dockerd  do not currently enable log rotation. You’ll want to
make sure you specify the --log-opt  max-size  and --log-opt  max-file  settings
via the command line or the deamon.json  configuration file if you are running in
production. Those settings limit the largest file size before rotation and the maximum
number of logfiles to keep, respectively. max-file  does not do anything unless
you’ve also set max-size  to tell Docker when to rotate the logs. When this is enabled,
the docker container logs  mechanism will return data only from the current
logfile.

More Advanced Logging

For those times when the default mechanism isn’t enough—and
at scale, it’s probably not—Docker also supports configurable
logging backends. This list of plug-ins is constantly growing.



Currently supported are the json-file  we described earlier,
as well as syslog , fluentd , journald , gelf , awslogs ,
splunk , gcplogs , local  and logentries , which are used for
sending logs to various popular logging frameworks and
services.

That’s a big list of plug-ins we just threw out there. The
supported option that currently is the simplest for running
Docker at scale is the option to send your container logs to
syslog  directly from Docker. You can specify this on the
Docker command line with the --log-driver=syslog  option
or set it as the default in the daemon.json file for all containers.

TIP

The daemon.json file is the configuration for the dockerd  server. It can usually be
found in the /etc/docker/ directory on the server. For Docker Desktop, this file can be
edited in Preferences → Docker Engine from the UI. If you change this file, you will
need to restart Docker Desktop or the dockerd  daemon.

There are also several third-party plug-ins available. We’ve seen
mixed results from third-party plug-ins, primarily because they
complicate installing and maintaining Docker. However, you
may find that there is a third-party implementation that’s
perfect for your system, and it might be worth the installation
and maintenance hassle.



WARNING

Some caveats apply to all of the logging drivers. For example, Docker supports only
one at a time. This means that you can use the syslog  or gelf  logging driver, but
not along with the json-file  driver. Unless you run json-file  or journald , you
will lose the ability to use the docker container logs  command! This may not be
expected and is a big consideration when you are changing the driver.

Some plugins are designed to send the logs to a remote endpoint and keep a local
JSON copy for the docker container logs  command, but you will need to
determine if the plugin that you want to use supports this. There are too many
gotchas to go through for each driver, but you should keep in mind the tradeoff
between guaranteed delivery of logs and the potential for breaking your Docker
deployment. UDP-based solutions or other nonblocking options are recommended.

Traditionally, most Linux systems have some kind of syslog
receiver, whether it be syslog , rsyslog , or any of the many
other options. This protocol in its various forms has been
around for a long time and is fairly well supported by most
deployments. When migrating to Docker from a traditional
Linux or Unix environment, many companies already have
syslog infrastructure in place, which means this is often the
easiest migration path as well.

NOTE

Many newer Linux distributions are based on the systemd  init system and therefore
use journald  for logging by default, which is different from syslog .



While syslog is a traditional solution, it has its problems. The
Docker syslog driver supports TLS, TCP, and UDP connection
options, which sounds great, but you should be cautious about
streaming logs from Docker to a remote log server over TCP or
TLS. The problem with this is that they are both run on top of
connection-oriented TCP sessions, and Docker tries to connect
to the remote logging server at the time of container startup. If
it fails to make the connection, it will block trying to start the
container. If you are running this as your default logging
mechanism, this can strike at any time on any deployment.

This is not a particularly usable state for production systems
and thus it is recommended that you use the UDP option for
syslog logging if you intend to use the syslog  driver. This does
mean your logs are not encrypted and do not have guaranteed
delivery. There are various philosophies around logging, and
you’ll need to balance your need for logs against the reliability
of your system. We tend to recommend erring on the side of
reliability, but if you run in a secure audit environment you
may have different priorities.



TIP

You can log directly to a remote syslog-compatible server from a single container by
setting the log option syslog-address  similar to this: --log-opt syslog-
address=udp://192.168.42.42:123 .

One final caveat to be aware of regarding most of the logging
plug-ins: they are blocking by default, which means that logging
back-pressure can cause issues with your application. You can
change this behavior by setting --log-opt mode=non-
blocking , and then setting the maximum buffer size for logs to
something like --log-opt max-buffer-size=4m . Once these
are set, the application will no longer block when that buffer
fills up. Instead, the oldest loglines in memory will be dropped.
Again, reliability needs to be weighed here against your
businesses need to receive all the logs.

WARNING

Some third-party libraries and programs write to the filesystem for various (and
sometimes unexpected) reasons. If you are trying to design clean containers that do
not write directly into the container filesystem, you should consider utilizing the --
read-only  and --mount type=tmpfs  options to docker container run  that we
discussed in Chapter 4. Writing logs inside the container is not recommended. It
makes them hard to get to, prevents them from being preserved beyond the
container lifespan, and can wreak havoc with the Docker filesystem backend.



Monitoring Docker

Among the most important requirements for production
systems is that they are observable and measurable. A
production system where you are blind to how it’s behaving
won’t serve you well. In modern operations environments, we
want to monitor everything meaningful and report as many
useful statistics as we can. Docker supports container health
checks and some nice, basic reporting capabilities via docker
container stats  and docker system events . We’ll show you
those and then look at a community offering from Google that
does some nice graphing output, and a—currently experimental
—feature of Docker that exports container metrics to the
Prometheus monitoring system.

Container Stats

Let’s start with the CLI tools that ship with Docker itself. The
docker  CLI has an endpoint for viewing important statistics of
running containers. The command-line tool can stream from
this endpoint and every few seconds report back on one or
more listed containers, giving basic statistics information about
what’s happening. docker container stats , like the Linux
top  command, takes over the current terminal and updates the



same lines on the screen with the current information. It’s hard
to show that in print so we’ll just give an example, but this
updates every few seconds by default.

Command-line stats

Start an active container:

Then run the stats  command to look at the new container:

You can type [Control-C]  to exit the stats stream at any time.

TIP

You can use the --no-stream  option to get a single point in time set of statistics that
will not update and will return you back to the command line after the command
completes.

$ docker container run --rm -d --name stress \
    docker.io/spkane/train-os:latest \
    stress -v --cpu 2 --io 1 --vm 2 --vm-bytes 128M -

$ docker container stats stress 
CONTAINER ID NAME   CPU %   MEM USAGE/LIMIT   MEM % N
1a9f52f0855f stress 476.50% 36.09MiB/7.773GiB 0.45% 1



Let’s break that rather dense output down into some
manageable chunks. What we have is:

1. The container ID (but not the name).
2. The amount of CPU it’s currently consuming. 100% is

equivalent to one whole CPU core.
3. The amount of memory it has in use is followed by the

maximum amount it’s allowed to use.
4. Network and block I/O statistics.
5. The number of active processes inside the container.

Some of these will be more useful than others for debugging, so
let’s take a look at what you can do with them.

One of the more helpful pieces of output here is the percentage
of memory used versus the limit that was set for the container.
One common problem with running production containers is
that overly aggressive memory limits can cause the Linux
kernel’s OOM (out of memory) killer to stop the container over
and over again. The stats  command can help you identify and
troubleshoot these types of issues.

Concerning I/O statistics, if you run all of your applications in
containers, then this summary can make it very clear where



your I/O is going from the system. Before containers, this was
much harder to figure out!

The number of active processes inside the container helps
debug as well. If you have an application that is spawning
children without reaping them, this can expose it pretty quickly.

One great feature of docker container stats  is that it can
show not just one container, but all of them in a single
summary. That can be pretty revealing, even on boxes where
you think you know what they are doing.

That is all useful and easy to digest because it’s human
formatted and available on the command line. But there is an
additional endpoint on the Docker API that provides a lot more
information than is shown in the client. We’ve steered away
from directly utilizing the API in this book so far, but in this
case, the data provided by the API is so much richer than the
client, that we’ll go ahead and use curl  to make an API request
and see what our container is doing. It’s nowhere near as nice
to read, but there is a lot more detail.



NOTE

Remember that basically everything that the docker  client can do can be done
directly through the Docker APIs. This means that you can programmatically do very
similar things in your applications if there is a need.

The example below is a good intro to calling the API directly.

Stats API endpoint

The /stats/  endpoint that we’ll hit on the API will continue to
stream stats to us as long as we keep the connection open. Since
as humans, we can’t easily parse the JSON, we’ll just ask for one
line and then use the tool jq  to “pretty-print” it. For this
command to work, you’ll need to have jq  installed (version 2.6
or later). If you don’t and you still want to see the JSON output,
you can skip the pipe to jq , but you’ll get plain, ugly JSON
back. If you already have a favorite JSON pretty printer, you
should feel free to use that instead.

Most Docker daemons will be installed with the API available
only on the Unix domain socket and not published on TCP. So
we’ll use curl  from the Docker server host itself to call the API.
If you plan to monitor this endpoint in production, you would
need to expose the Docker API on a TCP port, usually over SSL
and requiring credentials. This is not something that we



recommend, but the Docker documentation will walk you
through this.

NOTE

If you are not on the Docker server or using Docker Desktop locally, you may need to
inspect the contents of the DOCKER_HOST  environment variable, using something like
echo $DOCKER_HOST , to discover the hostname or IP address of the Docker server
that you are using.

First, start up a container that you can read stats from:

Now that the container is running, you can get an ongoing
stream of statistics about the container in JSON format by
running something like curl  with your container’s name or
hash.

NOTE

In the following examples, we are running curl  against the Docker socket, but you
could just as easily run it against the Docker port if it is available.

$ docker container run --rm -d --name stress \
    docker.io/spkane/train-os:latest \
    stress -v --cpu 2 --io 1 --vm 2 --vm-bytes 128M -

https://dockr.ly/2Lzuox2


NOTE

This JSON stream of statistics will not stop on its own. So for now, we can use the
[Control-C] key combination to stop it.

To get a single group of statistics, we can run something similar
to this:

And finally, if we have [jq](https://stedolan.github.io/jq/) or
another tool capable of pretty-printing JSON, we can make this
output human-readable, as shown here:

$ curl --no-buffer -XGET --unix-socket /var/run/docke
    http://docker/containers/stress/stats

$ curl -s -XGET --unix-socket /var/run/docker.sock \
    http://docker/containers/stress/stats | head -n 1

$ curl -s -XGET --unix-socket /var/run/docker.sock \
    http://docker/containers/stress/stats | head -n 1

{
  "read": "2022-07-31T17:41:59.10594836Z",

https://stedolan.github.io/jq/


  "preread": "0001-01-01T00:00:00Z",
  "pids_stats": {
    "current": 6,
    "limit": 18446744073709552000
  },
  "blkio_stats": {
    "io_service_bytes_recursive": [
      {
        "major": 254,
        "minor": 0,
        "op": "read",
        "value": 0
      },
…
    ]
  },
  "num_procs": 0,
  "storage_stats": {},
  "cpu_stats": {
    "cpu_usage": {
      "total_usage": 101883204000,
      "usage_in_kernelmode": 43818021000,
      "usage_in_usermode": 58065183000
…
    },
  },
  "memory_stats": {
    "usage": 183717888,



There is a lot of information in there. We’ve cut it down to
prevent wasting any more trees or electrons than necessary, but
even so, there is a lot to digest. The main idea is to let you see
how much data is available from the API about each container.
We won’t spend much time going into the details, but you can
get quite detailed memory usage information, as well as block
I/O and CPU usage information.

    "stats": {
      "active_anon": 0,
      "active_file": 0,
…
    },
    "limit": 8346021888
  },
  "name": "/stress",
  "id": "9be7c9de26864ac97e07fc3d8e3ffb5bb52cc2ba49f5
  "networks": {
    "eth0": {
      "rx_bytes": 1046,
      "rx_packets": 9,
…
    }
  }
}



If you are doing your own monitoring, this is a great endpoint
to hit as well. A drawback, however, is that it’s one endpoint per
container, so you can’t get the stats about all containers from a
single call.

Container Health Checks

As with any other application, when you launch a container it is
possible that it will start and run, but never actually enter a
healthy state where it could receive traffic. Production systems
also fail and your application may become unhealthy at some
point during its life, so you need to be able to deal with that.

Many production environments have standardized ways to
health-check applications. Unfortunately, there’s no clear
standard for how to do that across organizations and so it’s
unlikely that many companies do it in the same way. For this
reason, monitoring systems have been built to handle that
complexity so that they can work in a lot of different
production systems. It’s a clear place where a standard would
be a big win.

To help remove this complexity and standardize on a universal
interface, Docker has added a health-check mechanism.
Following the shipping container metaphor, Linux containers



should really look the same to the outside world no matter what
is inside the container, so Docker’s health-check mechanism not
only standardizes health checking for containers, but also
maintains the isolation between what is inside the container
and what it looks like on the outside. This means that
containers from Docker Hub or other shared repositories can
implement a standardized health-checking mechanism and it
will work in any other Docker environment designed to run
production containers.

Health checks are a build-time configuration item and are
created with a HEALTHCHECK  definition in the Dockerfile. This
directive tells the Docker daemon what command it can run
inside the container to ensure the container is in a healthy
state. As long as the command exits with a code of zero (0),
Docker will consider the container to be healthy. Any other exit
code will indicate to Docker that the container is not in a
healthy state, at which point appropriate action can be taken by
a scheduler or monitoring system.

We will be using the following project to explore Docker
Compose in a few chapters. But, for the moment, it includes a
useful example of Docker health checks. Go ahead and pull
down a copy of the code and then navigate into the rocketchat-
hubot-demo/mongodb/docker/ directory:



In this directory, you will see a Dockerfile and a script called
docker-healthcheck . If you view the Dockerfile, this is all that
you will see:

It is very short because we are basing this on the upstream
Mongo image, and our image inherits a lot of things from that
including the entry point, default command, and port to expose:

$ git clone https://github.com/spkane/rocketchat-hubo
    --config core.autocrlf=input 
$ cd rocketchat-hubot-demo/mongodb/docker

FROM docker.io/bitnami/mongodb:4.4
# Approxiamate Upstream Dockerfile:
# https://github.com/bitnami/bitnami-docker-mongodb/
# blob/879452aa052d33744384d43949958a3204ad5d29/4.4/d
 
COPY docker-healthcheck /usr/local/bin/ 
 
# Useful Information:
# https://docs.docker.com/engine/reference/builder/#h
# https://docs.docker.com/compose/compose-file/#healt
HEALTHCHECK CMD ["docker-healthcheck"]

https://github.com/bitnami/bitnami-docker-mongodb/blob/879452aa052d33744384d43949958a3204ad5d29/4.4/debian-10/Dockerfile#L27


NOTE

Be aware that docker will forward traffic to a container’s ports even when the
container and underlying processes are still spinning up.

So, in our Dockerfile we are only adding a single script that can
health-check our container, and defining a health-check
command that runs that script.

You can build the container like this:

EXPOSE 27017
ENTRYPOINT [ "/opt/bitnami/scripts/mongodb/entrypoint
CMD [ "/opt/bitnami/scripts/mongodb/run.sh" ]

$ docker image build -t mongo-with-check:4.4 .
 => [internal] load build definition from Dockerfile 
 => => transferring dockerfile: 37B                  
 => [internal] load .dockerignore                    
 => => transferring context: 2B                      
 => [internal] load metadata for docker.io/bitnami/mo
 => [internal] load build context                    
 => => transferring context: 40B                     
 => CACHED [1/2] FROM docker.io/bitnami/mongodb:4.4@s
 => [2/2] COPY docker-healthcheck /usr/local/bin/    
 => exporting to image                               



And then run the container and looking at the docker
container ls  output:

You should notice that the STATUS column now has a health
section in parentheses. Initially, this will display health:
starting  as the container is starting up. You can change the
amount of time that Docker waits for the container to initialize
using the --health-start-period  argument to docker
container run . The status will change to healthy  once the
container is up and the health check is successful. It might take
this container 40+ seconds to transition into a healthy state.

 => => exporting layers                              
 => => writing image sha256:a6ef…da808               
 => => naming to docker.io/library/mongo-with-check:4

$ docker container run -d --rm --name mongo-hc mongo-
5a807c892428ab0641232c82bd477fc8d1142c9e15c27d5946b8b
 
$ docker container ls 
… IMAGE                   … STATUS                   
… mongo-with-check:4.4 … Up 1 second (health: startin



You can query this status directly, using the docker container
inspect  command.

{
  "Status": "healthy",
  "FailingStreak": 0,
  "Log": [
    …
  ]
}

If your container began failing its health check, the status
would change to unhealthy  and you could then determine
how to handle the situation.

$ docker container ls 
… IMAGE                   … STATUS               PORT
… mongo-with-check:4.4 … Up 32 seconds (healthy) 2701

$ docker container inspect --format='{{.State.Health.
healthy 
 
$ docker container inspect --format='{{json .State.He



At this point, you can stop the container by simply running
docker container stop mongo-hc .

TIP

As with most systems, you can configure a lot of details about your health checks,
including how often Docker checks the health ( --health-interval ), how many
failures are required to cause the container to be marked unhealthy ( --health-
retries ), and more. You can even disable the health check completely ( --no-
healthcheck ) if needed.

This feature is very useful, and you should strongly consider
using it in all of your containers. This will help you improve
both the reliability of your environment and the visibility you
have into how things are running in it. It is also supported by
many production schedulers and monitoring systems, so it
should be easy to implement.

WARNING

As always, the usefulness of a health check is largely determined by how well-written
it is, and how good a job it does at accurately determining the state of the service.

$ docker container ls 
… IMAGE                   … STATUS                POR
… mongo-with-check:4.4 … Up 9 minutes (unhealthy) 270



docker system events

The dockerd  daemon internally generates an events stream
around the container lifecycle. This is how various parts of the
system find out what is going on in other parts. You can also tap
into this stream to see what lifecycle events are happening for
containers on your Docker server. This, as you probably expect
by now, is implemented in the docker  CLI tool as another
command-line argument. When you run this command, it will
block and continually stream messages to you. Behind the
scenes, this is a long-lived HTTP request to the Docker API that
returns messages in JSON blobs as they occur. The docker  CLI
tool decodes them and prints some data to the terminal.

This events stream is useful in monitoring scenarios or in
triggering additional actions, like wanting to be alerted when a
job completes. For debugging purposes, it allows you to see
when a container died even if Docker restarts it later. Down the
road, this is a place where you might also find yourself directly
implementing some tooling against the API.

In one terminal go ahead and run the events  command:

$ docker system events



You will notice that nothing happens.

In another terminal do ahead and launch the following short-
lived container:

In the original terminal that is running the events  command,
you should now see something like this:

You can type [Control-C]  to exit the events stream at any
time.

$ docker container run --rm --name sleeper debian:lat

…09:59.606… container create d6… (image=debian:latest
…09:59.610… container attach d6… (image=debian:latest
…09:59.631… network connect ea… (container=d60b…, nam
…09:59.827… container start d6… (image=debian:latest,
…10:04.854… container die d6… (exitCode=0, image=debi
…10:04.907… network disconnect ea… (container=d60b…, 
…10:04.922… container destroy d6… (image=debian:lates



TIP

As with the Docker statistics, you can access the docker system events via curl  using
a command like curl --no-buffer -XGET --unix-socket /var/run/docker.sock
http://docker/events .

In this example, we ran a short-lived container that simply
counted 5 seconds and then exited.

The container create, container attach, network connect, and
container start events are all the steps required to get the
container into a running state. When the container exits, the
events stream logs a container die, network disconnect, and
container destroy message. Each one of these marks a step in
completely tearing down the container. Docker also helpfully
tells us the ID of the image that the container is running on.
This can be useful for tying deployments to events, for example,
because a deployment usually involves a new image.

If you have a server where containers are not staying up, the
docker system events  stream is pretty helpful in seeing
what’s going on and when. But if you’re not watching it at the
time, Docker very helpfully caches some of the events and you
can still get at them for some time afterward. You can ask it to
display events after a time with the --since  option, or before
with the --until  option. You can also use both to limit the

http://docker/events


window to a narrow scope of time when an issue you are
investigating may have occurred. Both options take ISO time
formats like those in the previous example (e.g., 2018-02-
18T14:03:31-08:00).

TIP

There are a few specific event types that you should go out of your way to monitor.
These include:

container oom
Appears when a container runs out of memory.
container exec_create, container exec_start, container exec_die
Appear when someone has used docker container exec  to enter a container,
which could signal a security incident.

cAdvisor

docker container stats  and docker system events  are
useful but don’t yet get us graphs to look at. And graphs are
pretty helpful when we’re trying to see trends. Of course, other
people have filled some of this gap. When you begin to explore
the options for monitoring Docker, you will find that many of
the major monitoring tools now provide some functionality to
help you improve the visibility into your containers’
performance and ongoing state.



In addition to the commercial tooling provided by companies
like DataDog, GroundWork, and New Relic, there are plenty of
options for free, open-source tools like Prometheus or even
Nagios. We’ll talk about Prometheus in the next section. Soon
after Docker was introduced, Google released their internal
container monitoring tool as a well-maintained open source
project on GitHub, called cAdvisor. Although cAdvisor can be
run outside of Docker, by now you’re probably not surprised to
hear that the easiest implementation of cAdvisor is to simply
run it as a Linux container.

To install cAdvisor on most Linux systems, all you need to do is
run this code:

WARNING

This command is intended to be run directly on a Linux Docker server. It will not
work properly when run from a Windows or macOS system.

$ docker container run \
  --volume=/:/rootfs:ro \
  --volume=/var/run:/var/run:ro \
  --volume=/sys:/sys:ro \
  --volume=/var/lib/docker/:/var/lib/docker:ro \
  --volume=/dev/disk/:/dev/disk:ro \
  --publish=8080:8080 \

https://github.com/google/cadvisor


NOTE

On RHEL-based systems, you may need to add the following line to the docker
container run  command shown here: --volume=/cgroup:/cgroup \ .

Once you have done this, you will be able to navigate to your
Docker host on port 8080 to see the cAdvisor web interface (e.g.,
http://172.17.42.10:8080/) and the various detailed charts it has
for the host and individual containers (see Figure 6-1).

  --detach=true \
  --name=cadvisor \
  --privileged \
  --rm \
  --device=/dev/kmsg \
  gcr.io/cadvisor/cadvisor:latest 
 
Unable to find image 'cadvisor/cadvisor:latest' local
Pulling repository cadvisor/cadvisor 
f0643dafd7f5: Download complete 
… 
ba9b663a8908: Download complete 
Status: Downloaded newer image for cadvisor/cadvisor:
f54e6bc0469f60fd74ddf30770039f1a7aa36a5eda6ef5100cddd

http://172.17.42.10:8080/


Figure 6-1. cAdvisor CPU graphs

cAdvisor provides a REST API endpoint, which can easily be
queried for detailed information by your monitoring systems:

$ curl http://172.17.42.10:8080/api/v2.1/machine/



You can find details about the cAdvisor API via the official
documentation.

The amount of detail provided by cAdvisor should be sufficient
for many of your graphing and monitoring needs.

Prometheus Monitoring

The Prometheus monitoring system has become a popular
solution for monitoring distributed systems. It works largely on
a pull model, where it reaches out and gathers statistics from
endpoints on a timed basis. Docker has an endpoint that was
built for Prometheus and makes it easy to integrate your
container stats into a Prometheus monitoring system. At the
time of this writing, the endpoint is currently experimental and
not enabled in the dockerd  server by default. Our brief
experience with it shows that it seems to work well, and it’s a
pretty slick solution, as we’ll show you. We should point out
that this solution is for monitoring the dockerd  server, in
contrast to the other solutions, which exposed information
about the containers.

To export metrics to Prometheus, we need to reconfigure the
dockerd  server to enable the experimental features, and

https://github.com/google/cadvisor/blob/master/docs/api_v2.md
https://prometheus.io/


additionally to expose the metrics listener on a port of our
choice. This is nice because we don’t have to expose the whole
Docker API on a TCP listener to get metrics out of the system—a
security win at the expense of a little more configuration. To do
that, we can either provide the --experimental  and --
metrics-addr=  options on the command line, or we can put
them into the daemon.json file that the daemon uses to
configure itself. Because many current distributions run
systemd  and changing configurations there is highly
dependent on your installation, we’ll use the daemon.json
option since it’s more portable. We’ll demonstrate this on
Ubuntu Linux 22.04 LTS. On this distribution, the file is usually
not present to begin with. So let’s put one there using your
favorite editor.

TIP

As previously mentioned, the daemon.json file for Docker Desktop can be edited in
Preferences → Docker Engine from the UI. If you change this file, you will need to
restart Docker Desktop or the dockerd  daemon.

Adjust or add the following lines to the daemon.json file:

{
  "experimental": true,



  "metrics-addr": "0.0.0.0:9323"
}

You should now have a file that contains only what you just
pasted and nothing else.

WARNING

Any time you make a service available on the network, you need to consider what
security risks you might introduce. We believe the benefit of making metrics
available is worth the tradeoff, but you should think through the repercussions in
your scenario. For example, making them available on the public internet is probably
not a good idea in almost all cases.

When we restart Docker we’ll now have a listener on all
addresses on port 9323. That’s where we’ll have Prometheus
connect to get our metrics. But first, we need to restart the
dockerd  server. Docker Desktop automatically takes care of the
restart for you, but if you are on the Linux Docker server, then
you can run something like sudo systemctl restart docker
to restart the daemon. You should not get any errors returned
from the restart. If you do, you likely have something set
incorrectly in the daemon.json file.

Now you can test the metrics endpoint with curl .

$ curl s http://localhost:9323/metrics | head 15



If you run this locally, you should get very similar output. It
might not be identical, and that’s OK as long as you get
something that is not an error message.

So now we have a place where Prometheus can get to our
statistics. But we need to have Prometheus running somewhere,
right? We can easily do that by spinning up a container. But

$ curl -s http://localhost:9323/metrics | head -15 
 
# HELP builder_builds_failed_total Number of failed i
# TYPE builder_builds_failed_total counter 
builder_builds_failed_total{reason="build_canceled"} 
builder_builds_failed_total{reason="build_target_not_
builder_builds_failed_total{reason="command_not_suppo

builder_builds_failed_total{reason="dockerfile_empty_
builder_builds_failed_total{reason="dockerfile_syntax
builder_builds_failed_total{reason="error_processing_
builder_builds_failed_total{reason="missing_onbuild_a
builder_builds_failed_total{reason="unknown_instructi
# HELP builder_builds_triggered_total Number of trigg
# TYPE builder_builds_triggered_total counter 
builder_builds_triggered_total 0
# HELP engine_daemon_container_actions_seconds The nu
# takes to process each container action
# TYPE engine_daemon_container_actions_seconds histog



first, we need to write a simple config. We’ll put it in
/tmp/prometheus/prometheus.yaml. You can use your favorite
editor to put the following into the file:

NOTE

For Docker Desktop, you can also use host.docker.internal:9323  or
gateway.docker.internal:9323  in place of the 172.17.0.1:9323  shown here. Both
of these hostnames will point to the container’s IP address.

As noted in the file, you should use the IP address of your
docker0  bridge here, or the IP address of your ens3  or eth0

# Scrape metrics every 5 seconds and name the monitor
global:
  scrape_interval: 5s
  external_labels:
    monitor: 'stats-monitor' 
 
# We're going to name our job 'DockerStats' and we'll
# bridge address to get the stats. If your docker0 ha
# then use that instead. 127.0.0.1 and localhost will
scrape_configs:
  - job_name: 'DockerStats'
    static_configs:
    - targets: ['172.17.0.1:9323']



interface since localhost and 127.0.0.1  are not routable from
the container. The address we used here is the usual default for
docker0 , so it’s probably the right one for you.

Now that we’ve written that out, we need to start up the
container using this config:

That will run the container and volume mount the config file
we made into the container so that it will find the settings we
need it to have to monitor our Docker endpoint. If it starts up
cleanly, you should now be able to open your browser and
navigate to port 9090 on your host. There you will get a
Prometheus window something like Figure 6-2.

$ docker container run --rm -d -p 9090:9090 \
    -v /tmp/prometheus/prometheus.yaml:/etc/prometheu
    prom/prometheus --config.file=/etc/prometheus.yam



Figure 6-2. Prometheus event graph

Here we’ve selected one of the metrics, the
engine_daemon_events_total , and graphed it over a short
period. You can easily query any of the other metrics in the
drop-down. Further work and exploration with Prometheus
would allow you to define alerts and alerting policies based on
these metrics as well. And it is easy to monitor so much more
than just the dockerd  server. You can also expose metrics for
Prometheus from your applications. If you’re intrigued and
want to look at something more advanced, you might take a
look at DockProm, which leverages Grafana to make nice

https://github.com/stefanprodan/dockprom


dashboards and also queries your container metrics like those
in the Docker API /stats  endpoint.

Exploration

This should give you all the basics that you need to start
running containers. It’s probably worth downloading a
container or two from the Docker Hub registry and exploring a
bit on your own to get used to the commands we just learned.
There are many other things you can do with Docker, including
but not limited to:

Copying files in and out of the container with docker
container cp

Saving an image to a tarball with docker image save
Loading an image from a tarball with docker image import

Docker has a huge feature set that you will likely grow into over
time. Each new release adds more functionality as well. We’ll
get into a lot more detail later on about many of the other
commands and features, but keep in mind that Docker’s whole
feature set is very large.

Wrap-Up



In the next chapter, we will dive into some of the more
technical details about how Docker works and how you can use
this knowledge to debug your containerized applications.



Chapter 7. Debugging Containers

Once you’ve shipped an application to production, there will
come a day when it’s not working as expected. It’s always nice
to know ahead of time what to expect when that day comes. It’s
also important to have a good understanding of debugging
containers before moving on to more complex deployments.
Without debugging skills, it will be difficult to see where
orchestration systems have gone wrong. So let’s take a look at
debugging containers.

In the end, debugging a containerized application is not all that
different from debugging a normal process on a system except
that the tools are somewhat different. Docker provides some
pretty nice tooling to help you out! Some of these map to
regular system tools, and some go further.

It is also critical to understand that your application is not
running in a separate system from the other Docker processes.
They share a kernel, and depending on your container
configuration, they may share other things like a storage
subsystem and network interfaces. This means that you can get
a lot of information about what your container is doing from
the system.



If you’re used to debugging applications in a virtual machine
environment, you might think you would need to enter the
container to inspect an application’s memory or CPU use, or to
debug its system calls. However, this is not so! Despite feeling in
many ways like a virtualization layer, processes in containers
are just processes on the Linux host itself. If you want to see a
process list across all of the Linux containers on a machine, you
could log in to the server and run ps  with your favorite
command-line options. However, you can use the docker
container top  command from anywhere, to see the list of
processes running in your container from the viewpoint of the
underlying Linux kernel. Let’s take a more detailed look at
some of the things that you can do when debugging a
containerized application that do not require the use of either
docker container exec  or nsenter .

Process Output

One of the first things you’ll want to know when debugging a
container is what is running inside it. As we mentioned above,
Docker has a built-in command for doing just that: docker
container top . This is not the only way to see what’s going on
inside a container, but it is by far the easiest to use. Let’s see
how that works:



To run docker container top , we need to pass it the name or
ID of our container, and then we receive a nice listing of what is
running inside our container, ordered by PID just as we’d
expect from Linux ps  output.

There are some oddities here, though. The primary one is the
name-spacing of user IDs and filesystems.

$ docker container run --rm -d --name nginx-debug --r
796b282bfed33a4ec864a32804ccf5cbbee688b5305f094c6fbaf
 
$ docker container top nginx-debug 
 
UID   PID  PPID C STIME TTY TIME  CMD 
root  2027 2002 0 12:35 ?   00:00 nginx: master proce
uuidd 2085 2027 0 12:35 ?   00:00 nginx: worker proce
uuidd 2086 2027 0 12:35 ?   00:00 nginx: worker proce
uuidd 2087 2027 0 12:35 ?   00:00 nginx: worker proce
uuidd 2088 2027 0 12:35 ?   00:00 nginx: worker proce
uuidd 2089 2027 0 12:35 ?   00:00 nginx: worker proce
uuidd 2090 2027 0 12:35 ?   00:00 nginx: worker proce
uuidd 2091 2027 0 12:35 ?   00:00 nginx: worker proce
uuidd 2092 2027 0 12:35 ?   00:00 nginx: worker proce
 
$ docker container stop nginx-debug



It is important to understand that the username for a particular
user ID (UID) can be completely different between each
container and the host system. It is even possible that a specific
UID has no named user in the container or host’s /etc/passwd
file associated with it at all. This is because Unix does not
require a UID to have a named user associated with it and
Linux namespaces, which we discuss much more in
“Namespaces”, provide some isolation between the container’s
concept of valid users and those on the underlying host.

Let’s look at a more concrete example of this. Let’s consider a
production Docker server running Ubuntu 22.04 and a
container running on it that has an Ubuntu distribution inside.
If you run the following commands on the Ubuntu host, you
would see that UID 7 is named lp :

$ id 7 
 
uid=7(lp) gid=7(lp) groups=7(lp)

NOTE

There is nothing special about the UID number we are using here. You don’t need to
take any particular note of it. It was chosen simply because it is used by default on
both platforms but represents a different username.



If we then enter the standard Fedora container on that Docker
host, you will see that UID 7 is set to halt  in /etc/passwd. By
running the following commands, you can see that the
container has a completely different perspective of who UID 7
is:

If we then run ps aux  on the theoretical Ubuntu Docker server
while that container was running as UID 7 ( -u 7 ), we would
see that the Docker host would show the container process as
being run by lp  instead of halt :

$ docker container run --rm -it fedora:latest /bin/ba
 
root@c399cb807eb7:/# id 7
uid=7(halt) gid=0(root) groups=0(root) 

 
root@c399cb807eb7:/# grep x:7: /etc/passwd 
halt:x:7:0:halt:/sbin:/sbin/halt 
 
root@409c2a8216b1:/# exit

$ docker container run --rm -d -u 7 fedora:latest sle
 
55…c6 
 
$ | l



This could be particularly confusing if a well-known user like
nagios  or postgres  were configured on the host system but
not in the container, yet the container ran its process with the
same ID. This namespacing can make the ps  output look quite
strange. It might, for example, look like the nagios  user on
your Docker host is running the postgresql  daemon that was
launched inside a container, if you don’t pay close attention.

TIP

One solution to this is to dedicate a nonzero UID to your containers. On your Docker
servers, you can create a container  user as UID 5000 and then create the same user
in your base container images. If you then run all your containers as UID 5000 ( -u
5000 ), not only will you improve the security of your system by not running
container processes as UID 0, but you will also make the ps  output on the Docker
host easier to decipher by displaying the container  user for all of your running
container processes. Some systems use the nobody  or daemon  user for the same
purpose, but we prefer container  for clarity. There is a little more detail about how
this works in “Namespaces”.

Likewise, because the process has a different view of the
filesystem, paths that are shown in the ps  output are relative

$ ps aux | grep sleep 
 
lp          2388  0.2  0.0   2204   784 ?     … 0:00 
vagrant     2419  0.0  0.0   5892  1980 pts/0 … 0:00 



to the container and not the host. In these cases, knowing it is in
a container is a big win.

So that’s how you use the Docker tooling to look at what’s
running in a container. But that’s not the only way, and in a
debugging situation, it might not be the best way. If you hop
onto a Docker server and run a normal Linux ps  to see what’s
running, you get a full list of everything containerized and not
containerized just as if they were all equivalent processes.
There are some ways to look at the process output to make
things a lot clearer. For example, you can facilitate debugging
by looking at the Linux ps  output in tree form so that you can
see all of the processes descended from Docker. Here’s what
that might look like when you use the BSD command-line flags
to look at a system that is currently running two containers;
we’ll chop the output to just the part we care about:

NOTE

Docker Desktop’s virtual machine contains minimal versions of most Linux tools, and
some of these commands may not produce the same output that you will get if you
use a standard Linux server, as the Docker daemon host.

$ ps axlfww 
 
… /usr/bin/containerd 



NOTE

Many of the ps  commands in the preceding example work only on Linux
distributions with the full ps  command. Some stripped-down versions of Linux, like
Alpine, run the Busybox shell, which does not have full ps  support and won’t show
some of this output. We recommend running a full distribution on your host systems
like Ubuntu or Fedora CoreOS.

Here you can see that we’re running one instance of
containerd , which is the main container runtime used by the
Docker daemon. dockerd  has two docker-proxy  sub-processes
running at the moment, which we will discuss in more detail in
“Network Inspection”.

/ / /
… 
… /usr/bin/dockerd -H fd:// --containerd=/run/contain
… \_ /usr/bin/docker-proxy -proto tcp -host-ip 0.0.0.
       -container-ip 172.17.0.2 -container-port 8080 
… \_ /usr/bin/docker-proxy -proto tcp -host-ip :: -ho
       -container-ip 172.17.0.2 -container-port 8080 
… 
… /usr/bin/containerd-shim-runc-v2 -namespace moby -i
… \_ sleep 120 
… 
… /usr/bin/containerd-shim-runc-v2 -namespace moby -i



Each process that is using containerd-shim-runc-v2
represents a single container and all of the processes that are
running inside that container. In this example, we have two
containers. They show up as containerd-shim-runc-v2
followed by some additional information about the process,
including the container ID. In this case, we are running one
instance of Google’s cadvisor , and one instance of sleep  in
another container. Each container that has ports mapped, will
have at least one docker-proxy  process that is used to map the
required network ports between the container and the host
Docker server. In this example both docker-proxy  processes
are related to cadvisor . One is mapping the ports for IPv4
addresses and the other is mapping ports for IPv6  addresses.

Because of the tree output from ps , it’s pretty clear which
processes are running in which containers. If you’re a bigger
fan of Unix SysV command-line flags, you can get a similar, but
not as nice-looking, tree output with ps -ejH :

$ ps -ejH 
 
… containerd 
… 
… dockerd 
…   docker-proxy 



…   docker-proxy 
… 
… containerd-shim 
…   cadvisor 
… 
… containerd-shim 
…   sleep

You can get a more concise view of the docker  process tree by
using the pstree  command. Here, we’ll use pidof  to scope it
to the tree belonging to docker :

$ pstree `pidof dockerd` 
 
dockerd─┬─docker-proxy───7*[{docker-proxy}]
        ├─docker-proxy───6*[{docker-proxy}]
        └─10*[{dockerd}]

This doesn’t show us PIDs and therefore is useful only for
getting a sense of how things are connected. But this is
conceptually clear output when there are a lot of processes
running on a host. It’s far more concise and provides a nice
high-level map of how things connect. Here we can see the
same containers that were shown in the previous ps  output,
but the tree is collapsed so we get multipliers like 7*  when
there are 7 duplicate processes.



We can get a full tree with PIDs if we run pstree , as shown
here:

$ pstree -p `pidof dockerd` 
 
dockerd(866)─┬─docker-proxy(3050)─┬─{docker-proxy}(30
             │                    ├─{docker-proxy}(30
             │                    ├─{docker-proxy}(30
             │                    ├─{docker-proxy}(30
             │                    ├─{docker-proxy}(30
             │                    ├─{docker-proxy}(30
             │                    └─{docker-proxy}(30
             ├─docker-proxy(3055)─┬─{docker-proxy}(30
             │                    ├─{docker-proxy}(30

             │                    ├─{docker-proxy}(30
             │                    ├─{docker-proxy}(30
             │                    ├─{docker-proxy}(30
             │                    └─{docker-proxy}(30
             ├─{dockerd}(904)
             ├─{dockerd}(912)
             ├─{dockerd}(913)
             ├─{dockerd}(914)
             ├─{dockerd}(990)
             ├─{dockerd}(1014)
             ├─{dockerd}(1066)
             ├─{dockerd}(1605)
             ├─{dockerd}(1611)

└─{dockerd}(2228)



This output provides us with a very good look at all the
processes attached to Docker and what they are running.

If you wanted to inspect a single container and its processes
then you could determine the container’s main process ID and
then use pstree  to see all the related sub-processes.

             {dockerd}(2228)

$ ps aux | grep containerd-shim-runc-v2 
root    3072  … /usr/bin/containerd-shim-runc-v2 -nam
root    4489  … /usr/bin/containerd-shim-runc-v2 -nam
vagrant 4651  … grep --color=auto shim 
 
$ pstree -p 3072 
containerd-shim(3072)─┬─cadvisor(3092)─┬─{cadvisor}(3
                      │                ├─{cadvisor}(3
                      │                ├─{cadvisor}(3
                      │                ├─{cadvisor}(3
                      │                ├─{cadvisor}(3
                      │                ├─{cadvisor}(3
                      │                ├─{cadvisor}(3
                      │                ├─{cadvisor}(3
                      │                └─{cadvisor}(3
                      ├─{containerd-shim}(3073)
                      ├─{containerd-shim}(3074)
                      ├─{containerd-shim}(3075)

├─{containerd-shim}(3076)



Process Inspection

If you’re logged in to the Docker server, you can inspect
running processes using all of the standard debugging tools.
Common debugging tools like strace  work as expected. In the
following code, we’ll inspect an nginx  process running inside a
container:

                      ├ {containerd shim}(3076)
                      ├─{containerd-shim}(3077)
                      ├─{containerd-shim}(3078)
                      ├─{containerd-shim}(3079)
                      ├─{containerd-shim}(3080)
                      ├─{containerd-shim}(3121)
                      └─{containerd-shim}(3267)

$ docker container run --rm -d --name nginx-debug --r
 
$ docker container top nginx-debug 
 
UID      PID   PPID  … CMD 
root     22983 22954 … nginx: master process nginx -g
systemd+ 23032 22983 … nginx: worker process 
systemd+ 23033 22983 … nginx: worker process 
 



WARNING

If you run strace  you will need to type [Control-C]  to exit the strace  process.

You can see that we get the same output that we would from
non-containerized processes on the host. Likewise, an lsof
shows us that the files and sockets open in a process work as
expected:

$ sudo strace -p 23032 
 
strace: Process 23032 attached 
epoll_pwait(10,

$ sudo lsof -p 22983 
COMMAND   PID USER … NAME 
nginx   22983 root … / 
nginx   22983 root … / 

nginx   22983 root … /usr/sbin/nginx 
nginx   22983 root … /usr/sbin/nginx (stat: No such f
nginx   22983 root … /lib/aarch64-linux-gnu/libnss_fi
nginx   22983 root … /lib/aarch64-linux-gnu/libc-2.31
nginx   22983 root … /lib/aarch64-linux-gnu/libz.so.1
nginx   22983 root … /usr/lib/aarch64-linux-gnu/libcr
nginx   22983 root … /usr/lib/aarch64-linux-gnu/libss
nginx 22983 root /usr/lib/aarch64-linux-gnu/libpc



Note that the paths to the files are all relative to the container’s
view of the backing filesystem, which is not the same as the
host view. Therefore, the host might not be able to find a file of
the file version on the host might not match the one the
container sees. In this case, it’s probably best to enter the
container using docker container exec  to look at the files
with the same view that the processes inside it have.

nginx   22983 root … /usr/lib/aarch64 linux gnu/libpc
nginx   22983 root … /lib/aarch64-linux-gnu/libcrypt.
nginx   22983 root … /lib/aarch64-linux-gnu/libpthrea
nginx   22983 root … /lib/aarch64-linux-gnu/libdl-2.3
nginx   22983 root … /lib/aarch64-linux-gnu/ld-2.31.s
nginx   22983 root … /dev/zero 
nginx   22983 root … /dev/null 
nginx   22983 root … pipe 
nginx   22983 root … pipe 
nginx   22983 root … pipe 
nginx   22983 root … protocol: UNIX-STREAM 
nginx   22983 root … pipe 
nginx   22983 root … pipe 
nginx   22983 root … protocol: TCP 
nginx   22983 root … protocol: TCPv6 
nginx   22983 root … protocol: UNIX-STREAM 
nginx   22983 root … protocol: UNIX-STREAM 
nginx   22983 root … protocol: UNIX-STREAM



It’s possible to run the GNU debugger ( gdb ) and other process
inspection tools in the same manner as long as you’re root  and
have proper permissions to do so.

It is worth mentioning here that it is also possible to run a new
debugging container that can see the processes of an existing
container and therefore provide additional tools to debug
issues. We will discuss the underlying details of this command
later, in the “Namespaces” and “Security” sections.

$ docker container run -ti --rm --cap-add=SYS_PTRACE 
    --pid=container:nginx-debug spkane/train-os:lates
 
[root@e4b5d2f3a3a7 /]# ps aux 
USER PID %CPU %MEM … TIME COMMAND 
root   1  0.0  0.2 … 0:00 nginx: master process nginx
101   30  0.0  0.1 … 0:00 nginx: worker process
101   31  0.0  0.1 … 0:00 nginx: worker process 
root 136  0.0  0.1 … 0:00 bash 
root 152  0.0  0.2 … 0:00 ps aux 
 
[root@e4b5d2f3a3a7 /]# strace -p 1 
strace: Process 1 attached 
rt_sigsuspend([], 8 

 
[Control-C] 
strace: Process 1 detached



WARNING

You will need to type [Control-C]  to exit the strace  process.

Controlling Processes

When you have a shell directly on the Docker server, you can,
in many ways, treat containerized processes just like any other
process running on the system. If you’re remote, you might
send signals with docker container kill  because it’s
expedient. But if you’re already logged in to a Docker server for
a debugging session or because the Docker daemon is not
responding, you can just kill  the process like you would any
other.

Unless you kill the top-level process in the container (PID 1
inside the container), killing a process will not terminate the
container itself. That might be desirable if you were killing a

strace: Process 1 detached 
<detached …> 
 
[root@e4b5d2f3a3a7 /]# exit 
 
$ docker container stop nginx-debug



runaway process but it might leave the container in an
unexpected state. Developers probably expect that all the
processes are running if they can see their container in docker
container ls  and it could also confuse a scheduler like Mesos
or Kubernetes or any other system that is health-checking your
application. Keep in mind that containers are supposed to look
to the outside world like a single bundle. If you need to kill off
something inside the container, it’s best to replace the whole
container. Containers offer an abstraction that tools
interoperate with. They expect the internals of the container to
be predictable and remain consistent.

Terminating processes is not the only reason to send signals.
And since containerized processes are just normal processes in
many respects, they can be passed the whole array of Unix
signals listed in the manpage for the Linux kill  command.
Many Unix programs will perform special actions when they
receive certain predefined signals. For example, nginx  will
reopen its logs when receiving a SIGUSR1  signal. Using the
Linux kill  command, you can send any Unix signal to a
container process on the local server.



TIP

Unless you run an orchestrator like Kubernetes that can handle multiple containers
in a larger abstraction like a pod, we consider it a best practice to run some kind of
process control in your production containers. Whether it be [tini]
(https://github.com/krallin/tini), [upstart](https://upstart.ubuntu.com/), [runit]
(http://smarden.org/runit/), [s6](https://skarnet.org/software/s6/), or something else,
this approach allows you to treat containers atomically even when they contain more
than one process. You should, however, try very hard not to run more than one thing
inside your container, to ensure that your container is scoped to handle one well-
defined task and does not grow into a monolithic container.

In either case, you will want docker container ls  to reflect the presence of the
whole container so that you don’t need to worry about whether an individual
process inside it has died. If you can assume that the presence of a container and
absence of error logs means that things are working, you can treat docker
container ls  output as the truth about what’s happening on your Docker systems. It
also means any orchestration system you use can do the same.

It is also a good idea to ensure that you understand the complete behavior of your
preferred process control service, including memory or disk utilization, Unix single
handling, and so on, since this can impact your container’s performance and
behavior. Generally, the lightest-weight systems are the best.

Because containers work just like any other process, it’s
important to understand how they can interact with your
application in less than helpful ways. There are some special
needs in a container for processes that spawn background
children—that is, anything that forks and daemonizes so the
parent no longer manages the child process lifecycle. Jenkins

https://github.com/krallin/tini
https://upstart.ubuntu.com/
http://smarden.org/runit/
https://skarnet.org/software/s6/


build containers are one common example where people see
this go wrong. When daemons fork into the background, they
become children of PID 1 on Unix systems. Process 1 is special
and is usually an init  process of some kind.

PID 1 is responsible for making sure that children are reaped.
In your container, by default, your main process will be PID 1.
Since you probably won’t be handling the reaping of children
from your application, you can end up with zombie processes
in your container. There are a few solutions to this problem.
The first is to run an init system in the container of your own
choosing— one that is capable of handling PID 1 responsibilities.
s6 , runit , and others described in the preceding note can be
easily used inside the container.

But Docker itself provides an even simpler option that solves
just this one case without taking on all the capabilities of a full
init system. If you provide the --init  flag to docker
container run , Docker will launch a very small init process
based on the tini project that will act as PID 1 inside the
container on startup. Whatever you specify in your Dockerfile
as the CMD  is passed to tini  and otherwise works in the same
way you would expect. It does, however, replace anything you
might have in the ENTRYPOINT  section of your Dockerfile.

https://github.com/krallin/tini


When you launch a Linux container without the --init  flag,
you get something like this in your process list:

$ docker container run --rm -it alpine:3.16 sh 
/ # ps -ef 
 
PID   USER     TIME   COMMAND
    1 root       0:00 sh
    5 root       0:00 ps -ef 
 
/ # exit

Notice that in this case, the CMD  we launched is PID 1. That
means it is responsible for child reaping. If we are launching a
container where that is important, we can pass --init  to make
sure that when the parent process exits, children are reaped.

$ docker container run --rm -it --init alpine:3.16 sh
/ # ps -ef 
 

PID   USER     TIME   COMMAND
    1 root       0:00 /sbin/docker-init -- sh
    5 root       0:00 sh
    6 root       0:00 ps -ef 
 
/ # exit



Here, you can see that the PID 1 process is /sbin/docker-init .
That has in turn launched the shell binary for us as specified on
the command line. Because we now have an init system inside
the container, the PID 1 responsibilities fall to it rather than the
command we used to invoke the container. In most cases, this is
what you want. You may not need an init system, but it’s small
enough that you should consider having at least tini  inside
your containers in production.

In general, you probably only need an init process inside your
container, if you are running multiple parent processes, or you
have processes that do not respond to Unix signals properly.

Network Inspection

Compared to process inspection, debugging containerized
applications at the network level can be more complicated.
Unlike traditional processes running on the host, Linux
containers can be connected to the network in multiple ways. If
you are running the default setup, as the vast majority of
people are, then your containers are all connected to the
network via the default bridge network that Docker creates.
This is a virtual network where the host is the gateway to the



rest of the world. We can inspect these virtual networks with
the tooling that ships with Docker. You can get it to show you
which networks exist by calling the docker network ls
command:

$ docker network ls 
 
NETWORK ID     NAME      DRIVER    SCOPE 
f9685b50d57c   bridge    bridge    local 
8acae1680cbd   host      host      local 
fb70d67499d3   none      null      local

Here we can see the default bridge network: the host network,
which is for any containers running in host  network mode,
where containers share the same network namespace as the
host; and the none network, which disables network access
entirely for the container. If you use docker compose  or other
orchestration tools, they may create additional networks here
with different names.

But seeing which networks exist doesn’t make it any easier to
see what’s on those networks. So, you can see which containers
are attached to any particular named network with the docker
network inspect  command. This produces a fair amount of
output. It shows you all of the containers that are attached to



the specified network and a number of details about the
network itself. Let’s take a look at the default bridge network:

$ docker network inspect bridge

[
    {
        "Name": "bridge",

        …
        "Driver": "bridge",
        "EnableIPv6": false,
        …
        "Containers": {
            "69e9…c87c": {
                "Name": "cadvisor",
                …
                "IPv4Address": "172.17.0.2/16",
                "IPv6Address": ""
            },
            "a2a8…e163": {
                "Name": "nginx-debug",
                …
                "IPv4Address": "172.17.0.3/16",
                "IPv6Address": ""
            }
        },

"Options": {



We’ve excluded some of the details here to shrink the output a
bit. But what we can see is that there are two containers on the
bridge network, and they are attached to the docker0  bridge
on the host. We can also see the IP addresses of each
container( IPv4Address  and IPv6Address ), and the host
network address they are bound to ( host_binding_ipv4 ). This
is useful when you are trying to understand the internal
structure of the bridged network. If you have containers on
different networks, they may not have connectivity to each
other, depending on how the networks were configured.

        Options : {
            "com.docker.network.bridge.default_bridge
            …
            "com.docker.network.bridge.host_binding_i
            "com.docker.network.bridge.name": "docker
            …
        },
        "Labels": {}
    }
]



TIP

In general, we recommend leaving your containers on the default bridge network
until you have a good reason not to or are running docker compose  or a scheduler
that manages container networks on its own. In addition, naming your containers in
some identifiable way helps here because we can’t see the image information. The
name and ID are the only references we have in this output that can tie us back to a
docker container ls  listing. Some schedulers don’t do a good job of naming
containers, which is too bad because it can be really helpful for debugging.

As we’ve seen, containers will normally have their own
network stack and their own IP address, unless they are
running in host networking mode, which we will discuss
further in “Networking”. But what about when we look at them
from the host machine itself? Because containers have their
own network and addresses, they won’t show up in all netstat
output on the host. But we know that the ports you map to your
containers are bound to the host. Running netstat -an  on the
Docker server works as expected, as shown here:

$ sudo netstat -an 
 
Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address           Foreign A
tcp        0      0 0.0.0.0:8080            0.0.0.0:*
tcp        0      0 127.0.0.53:53           0.0.0.0:*
tcp        0      0 0.0.0.0:22              0.0.0.0:*
t 0 0 192 168 15 158 22 192 168 1



Here we can see all of the interfaces that we’re listening on. Our
container is bound to port 8080 on IP address 0.0.0.0. That
shows up. But what happens when we ask netstat  to show us
the process name that’s bound to the port?

tcp        0      0 192.168.15.158:22       192.168.1
tcp6       0      0 :::8080                 :::*     
tcp6       0      0 :::22                   :::*     
udp        0      0 127.0.0.53:53           0.0.0.0:*
udp        0      0 192.168.15.158:68       0.0.0.0:*
raw6       0      0 :::58                   :::*     
…

$ sudo netstat -anp 
 
Active Internet connections (servers and established)
Proto  … Local Address           Foreign Address     
tcp    … 0.0.0.0:8080            0.0.0.0:*           
tcp    … 127.0.0.53:53           0.0.0.0:*           
tcp    … 0.0.0.0:22              0.0.0.0:*           
tcp    … 192.168.15.158:22       192.168.15.120:63920
tcp6   … :::8080                 :::*                
tcp6   … :::22                   :::*                
udp    … 127.0.0.53:53           0.0.0.0:*           
udp    … 192.168.15.158:68       0.0.0.0:*           
raw6   … :::58                   :::*                



We see the same output, but notice what is bound to the port:
docker-proxy . That’s because, in its default configuration,
Docker has a proxy written in Go that sits between all of the
containers and the outside world. That means that when we
look at this output, all containers running via Docker will be
associated with docker-proxy . Notice that there is no clue here
about which specific container docker-proxy  is handling.
Luckily, docker container ls  shows us which containers are
bound to which ports, so this isn’t a big deal. But it’s not
obvious, and you probably want to be aware of it before you’re
debugging a production failure. Still, passing the p  flag to
netstat  is helpful in identifying which ports are tied to
containers.

NOTE

If you’re using host networking in your container, then this layer is skipped. There is
no docker-proxy , and the process in the container can bind to the port directly. It
also shows up as a normal process in netstat -anp  output.

Other network inspection commands work largely as expected,
including tcpdump , but it’s important to remember that
docker-proxy  is there, in between the host’s network interface
and the container, and that the containers have their own
network interfaces on a virtual network.



Image History

When you’re building and deploying a single container, it’s easy
to keep track of where it came from and what images it’s sitting
on top of. But this rapidly becomes unmanageable when you’re
shipping many containers with images that are built and
maintained by different teams. How can you tell what layers
are actually underneath the one your container is running on?
Your container’s image version hopefully shows you which
build you’re running of the application, but that doesn’t reveal
anything about the images it’s built on. docker image history
does just that. You can see each layer that exists in the inspected
image, the sizes of each layer, and the commands that were
used to build it:

$ docker image history redis:latest 
 
IMAGE        … CREATED BY                            
e800a8da9469 … /bin/sh -c #(nop)  CMD ["redis-server"
<missing>    … /bin/sh -c #(nop)  EXPOSE 6379        
<missing>    … /bin/sh -c #(nop)  ENTRYPOINT ["docker
<missing>    … /bin/sh -c #(nop) COPY file:e873a0e3c1
<missing>    … /bin/sh -c #(nop) WORKDIR /data       
<missing>    … /bin/sh -c #(nop)  VOLUME [/data]     
<missing>    … /bin/sh -c mkdir /data && chown redis:
<missing> … /bin/sh -c set -eux; savedAptMark="$



Using docker image history  can be useful, for example, when
you are trying to determine why the size of the final image is
much larger than expected. The layers are listed in order, with
the first one at the bottom of the list and the last one at the top.

Here we can see that the command output has been truncated
in a few cases. For long commands, adding the --no-trunc
option to the preceding command will let you see the complete
command that was used to build each layer. Just be aware that
--no-trunc  will make the output much larger and more
difficult to visually scan in most cases.

Inspecting a Container

<missing>    … /bin/sh c set eux;   savedAptMark $
<missing>    … /bin/sh -c #(nop)  ENV REDIS_DOWNLOAD_
<missing>    … /bin/sh -c #(nop)  ENV REDIS_DOWNLOAD_
<missing>    … /bin/sh -c #(nop)  ENV REDIS_VERSION=7
<missing>    … /bin/sh -c set -eux;  savedAptMark="$(
<missing>    … /bin/sh -c #(nop)  ENV GOSU_VERSION=1.
<missing>    … /bin/sh -c groupadd -r -g 999 redis &&
<missing>    … /bin/sh -c #(nop)  CMD ["bash"]       
<missing>    … /bin/sh -c #(nop) ADD file:6039adfbca5



In Chapter 4, we showed you how to read the docker
container inspect  output to see how a container is
configured. But underneath that is a directory on the host’s disk
that is dedicated to the container. Usually this is
/var/lib/docker/containers. If you look at that directory, it
contains very long SHA hashes, as shown here:

That’s a bit daunting. But those are just the container IDs in
long form. If you want to look at the configuration for a

$ sudo ls /var/lib/docker/containers 
 
106ead0d55af55bd803334090664e4bc821c76dadf231e1aab779
28970c706db0f69716af43527ed926acbd82581e1cef5e4e6ff15
3c4f916619a5dfc420396d823b42e8bd30a2f94ab5b0f42f05235
589f2ad301381b7704c9cade7da6b34046ef69ebe3d6929b9bc24
959db1611d632dc27a86efcb66f1c6268d948d6f22e81e2a22a57

a1e15f197ea0996d31f69c332f2b14e18b727e53735133a230d54
bad35aac3f503121abf0e543e697fcade78f0d30124778915764d
bc8c72c965ebca7db9a2b816188773a5864aa381b81c3073b9d3e
daa75fb108a33793a3f8fcef7ba65589e124af66bc52c4a070f64
e2ac800b58c4c72e240b90068402b7d4734a7dd03402ee2bce324
e8085ebc102b5f51c13cc5c257acb2274e7f8d1645af7baad0cb6
f8e46faa3303d93fc424e289d09b4ffba1fc7782b9878456e0fe1



particular container, you just need to use docker container
ls  to find its short ID, and then find the directory that matches:

You can view the short ID from docker container ls , then
match it to the ls /var/lib/docker/containers  output to see
that you want the directory beginning with c58bfeffb9e6 .
Command-line tab completion is helpful here. If you need exact
matching, you can do a docker container inspect
c58bfeffb9e6  and grab the long ID from the output. This
directory contains some pretty interesting files related to the
container:

$ docker container ls 
 
CONTAINER ID   IMAGE                                 
c58bfeffb9e6   gcr.io/cadvisor/cadvisor:v0.44.1-test 

$ cd /var/lib/docker/containers/\ 
c58bfeffb9e6e607f3aacb4a06ca473535bf9588450f08be46baa
 
$ ls -la 
 
total 48 
drwx--x---  4 root root 4096 Aug 20 10:38 . 
drwx--x--- 30 root root 4096 Aug 20 10:25 .. 
-rw-r----- 1 root root 635 Aug 20 10:34 c58bf…f1d6-



As we discussed in Chapter 5, this directory contains some files
that are bind-mounted directly into your container, like hosts,
resolv.conf, and hostname. If you are running the default
logging mechanism, then this directory is also where Docker
stores the JSON file containing the log that is shown with the
docker container logs  command, the JSON configuration
that backs the docker container inspect  output
(config.v2.json), and the networking configuration for the
container (hostconfig.json). The resolv.conf.hash file is used by
Docker to determine when the container’s file has diverged
from the current one on the host so it can be updated.

This directory can also be really helpful in the event of severe
failure. Even if we’re not able to enter the container, or if
docker  is not responding, we can look at how the container

rw r   1 root root  635 Aug 20 10:34 c58bf…f1d6
drwx------  2 root root 4096 Aug 20 10:24 checkpoints
-rw-------  1 root root 4897 Aug 20 10:38 config.v2.j
-rw-r--r--  1 root root 1498 Aug 20 10:38 hostconfig.

-rw-r--r--  1 root root   13 Aug 20 10:24 hostname 
-rw-r--r--  1 root root  174 Aug 20 10:24 hosts 
drwx--x---  2 root root 4096 Aug 20 10:24 mounts 
-rw-r--r--  1 root root  882 Aug 20 10:24 resolv.conf
-rw-r--r--  1 root root   71 Aug 20 10:24 resolv.conf



was configured. It’s also pretty useful to understand where
those files are mounted from inside the container. Keep in mind
that it’s not a good idea to modify these files. Docker expects
them to contain reality, and if you alter that reality, you’re
asking for trouble. But it’s another avenue for information on
what’s happening in your container.

Filesystem Inspection

Docker, regardless of the backend actually in use, has a layered
filesystem that allows it to track the changes in any given
container. This is how the images are assembled when you do a
build, but it is also useful when you’re trying to figure out if a
Linux container has changed anything and, if so, what. A
common problem with containerized applications is that they
may continue to write things into the container’s filesystem.
Normally you don’t want your containers to do that, to the
extent possible, and it can help debugging to figure out if your
processes have been writing into the container. Sometimes this
is helpful in turning up stray logfiles that exist in the container
as well. As with most of the core tools, this kind of inspection is
built into the docker  command-line tooling and is also exposed
via the API. Let’s take a look at what this shows us. Let’s launch
a quick container and use its name to explore this.



Each line begins with either A or C, which is shorthand for
added or changed, respectively. We can see that this container
is running nginx , that the nginx  configuration file has been
written to, and that some temporary files have been created in

$ docker container run --rm -d --name nginx-fs nginx:
1272b950202db25ee030703515f482e9ed576f8e64c926e4e535b
 
$ docker container diff nginx-fs 
C /run 
A /run/nginx.pid 
C /var 

C /var/cache 
C /var/cache/nginx 
A /var/cache/nginx/scgi_temp 
A /var/cache/nginx/uwsgi_temp 
A /var/cache/nginx/client_temp 
A /var/cache/nginx/fastcgi_temp 
A /var/cache/nginx/proxy_temp 
C /etc 
C /etc/nginx 
C /etc/nginx/conf.d 
C /etc/nginx/conf.d/default.conf 
 
$ docker container stop nginx-fs 
nginx-fs



a new directory named /var/cache/nginx . Being able to find
out how the container filesystem is being used can be very
useful when you are trying to optimize and harden your
container’s filesystem usage.

Further detailed inspection requires exploring the container
with docker container export , docker container exec  or
nsenter  and the like, to see exactly what is in the filesystem.
But docker container diff  gives you a good place to start.

Wrap-Up

At this point, you should have a good idea of how to deploy and
debug individual containers in development and production,
but how do you start to scale this for larger application
ecosystems? In the next chapter, we’ll take a look at one of the
simpler Docker orchestration tools: Docker Compose. This tool
is a nice bridge between a single Linux container and a
production orchestration system. It delivers a lot of value in
development environments and throughout the DevOps
pipeline.



Chapter 8. Exploring Docker
Compose

At this point, you should have a good feel for the docker
command and how to use it to build, launch, monitor, and
debug your applications. Once you are comfortable working
with individual containers it won’t be long before you’ll want to
share your projects and start building more complex projects
that require multiple containers to function properly. This is
particularly the case in development environments, where
having a whole stack of containers running can easily simulate
many production environments on your local machine.

If you’re running a whole stack of containers, however, every
container needs to be run with the proper setup to ensure that
the underlying application is configured correctly and will run
as expected. Getting these settings correct every time can be
challenging, especially when you are not the person who
originally wrote the application. To help with this during
development, people often resort to trying to write shell scripts
that can build and run multiple containers consistently.
Although this works, it can become difficult to understand for a
newcomer and hard to maintain as the project changes over
time. It’s also not necessarily repeatable between projects.



To help address this problem, Docker, Inc. released a tool
primarily aimed at developers called Docker Compose. This tool
is included with Docker Desktop, but you can also install it by
following the online installation directions.

NOTE

Docker Compose was originally a separate application written in Python, that was
run using the command docker-compose . This command is referred to as Docker
Compose version 1 and has recently been replaced with Docker Compose version 2.
Docker Compose v2 was completely rewritten in Go, as a Docker client plugin. If
docker compose version  returns a result then you have the plugin installed. If not,
we highly recommend that you take a little time to install it now.

Docker Compose is an incredibly useful tool that can streamline
all sorts of development tasks that have traditionally been very
cumbersome and error-prone. It can easily be leveraged to help
developers quickly spin up complicated application stacks,
compile applications without the need for setting up complex
local development environments, and much more.

In this chapter, we’ll do a run-through of how to use Compose
to its best advantage. We’ll be using a GitHub repository in all of
the following examples. If you want to run the examples as we
go through them, you should run the following command to
download the code, if you didn’t already do that in Chapter 6:

https://docs.docker.com/compose/install


NOTE

In the example, shell script and docker-compose.yaml files below some lines have
been truncated to fit in the margins. Make sure that you use the files from the
preceding git repository if you plan to try these examples yourselves.

This repository contains the configuration we’ll need to launch
a complete web service that includes a MongoDB datastore, the
open source RocketChat communications server, a Hubot
chatops bot, and a zmachine-api  instance for a little surprise
entertainment value.

Configuring Docker Compose

Before we dive into using the docker compose  command, it is
useful to see the kind of ad hoc tooling it replaces. So, let’s take
a moment to look at a shell script that could be used to build
and deploy a local copy of our service for development and
local testing via Docker. This output is long and detailed, but it’s
important to prove the point about why Docker Compose is a
huge leap over shell scripting.

$ git clone https://github.com/spkane/rocketchat-hubo
    --config core.autocrlf=input

https://goo.gl/hKT3QW


WARNING

We do not recommend running this shell script. It is simply an example and in your
environment, it may not work or leave things in an odd state.

#!/bin/bash 
 
# This is here just to keep people from really runnin
exit 1 
 
# The actual script

#
# Note: This has not been updated to directly mirror 
#       since it is just intended to make a point. 
 
set -e
set -u 
 
if [ $# -ne 0 ] && [ ${1} == "down" ]; then
  docker rm -f hubot || true
  docker rm -f zmachine || true
  docker rm -f rocketchat || true
  docker rm -f mongo-init-replica || true
  docker rm -f mongo || true
  docker network rm botnet || true
  echo "Environment torn down…"
  exit 0
fi



fi 
 
# Global Settings
export PORT="3000"
export ROOT_URL="http://127.0.0.1:3000"
export MONGO_URL="mongodb://mongo:27017/rocketchat"
export MONGO_OPLOG_URL="mongodb://mongo:27017/local"
export MAIL_URL="smtp://smtp.email"
export RESPOND_TO_DM="true"
export HUBOT_ALIAS=". "
export LISTEN_ON_ALL_PUBLIC="true"
export ROCKETCHAT_AUTH="password"

export ROCKETCHAT_URL="rocketchat:3000"
export ROCKETCHAT_ROOM=""
export ROCKETCHAT_USER="hubot"
export ROCKETCHAT_PASSWORD="bot-pw!"
export BOT_NAME="bot"
export EXTERNAL_SCRIPTS="hubot-help,hubot-diagnostics
export HUBOT_ZMACHINE_SERVER="http://zmachine:80"
export HUBOT_ZMACHINE_ROOMS="zmachine"
export HUBOT_ZMACHINE_OT_PREFIX="ot" 
 
docker build -t spkane/mongo:4.4 ./mongodb/docker 
 
docker push spkane/mongo:4.4 
docker pull spkane/zmachine-api:latest 
docker pull rocketchat/rocket.chat:5.0.4 
docker pull rocketchat/hubot-rocketchat:latest 



 
docker rm -f hubot || true 
docker rm -f zmachine || true 
docker rm -f rocketchat || true 
docker rm -f mongo-init-replica || true 
docker rm -f mongo || true 
 
docker network rm botnet || true 
 
docker network create -d bridge botnet 
 
docker container run-d \

  --name=mongo \
  --network=botnet \
  --restart unless-stopped \
  -v $(pwd)/mongodb/data/db:/data/db \
  spkane/mongo:4.4 \
  mongod --oplogSize 128 --replSet rs0 
sleep 5 
docker container run-d \
  --name=mongo-init-replica \
  --network=botnet \
  spkane/mongo:4.4 \
  'mongo mongo/rocketchat --eval "rs.initiate({ _id: 
sleep 5 
docker container run-d \
  --name=rocketchat \
  --network=botnet \

restart unless stopped \



  --restart unless-stopped  \
  -v $(pwd)/rocketchat/data/uploads:/app/uploads \
  -p 3000:3000 \
  -e PORT=${PORT} \
  -e ROOT_URL=${ROOT_URL} \
  -e MONGO_URL=${MONGO_URL} \
  -e MONGO_OPLOG_URL=${MONGO_OPLOG_URL} \
  -e MAIL_URL=${MAIL_URL} \
  rocketchat/rocket.chat:5.0.4 
docker container run-d \
  --name=zmachine \
  --network=botnet \

  --restart unless-stopped  \
  -v $(pwd)/zmachine/saves:/root/saves \
  -v $(pwd)/zmachine/zcode:/root/zcode \
  -p 3002:80 \
  spkane/zmachine-api:latest 
docker container run-d \
  --name=hubot \
  --network=botnet \
  --restart unless-stopped  \
  -v $(pwd)/hubot/scripts:/home/hubot/scripts \
  -p 3001:8080 \
  -e RESPOND_TO_DM="true" \
  -e HUBOT_ALIAS=". " \
  -e LISTEN_ON_ALL_PUBLIC="true" \
  -e ROCKETCHAT_AUTH="password" \
  -e ROCKETCHAT_URL="rocketchat:3000" \

e ROCKETCHAT ROOM "" \



At this point, you can probably follow most of this script pretty
easily. As you may already have noticed, this is a hassle to read,
is not very flexible, will be a pain to edit, and might fail in
several places unexpectedly. If we were to follow shell script
best practices and handle all the possible errors here in an
effort to guarantee that it was repeatable, it would also be two
to three times as long as it already is. Without a lot of work
extracting common functionality for error handling, you’d also
have to rewrite much of that logic every time you have a new
project like this. This is not a very good way to approach a
process that you need to work every time you use it. This is
where good tooling comes in. You can accomplish the same
thing with Docker Compose, while also making it significantly
more repeatable and easier to read, understand, and maintain.

  -e ROCKETCHAT_ROOM=  \
  -e ROCKETCHAT_USER="hubot" \
  -e ROCKETCHAT_PASSWORD="bot-pw!" \
  -e BOT_NAME="bot" \
  -e EXTERNAL_SCRIPTS="hubot-help,hubot-diagnostics,h
  -e HUBOT_ZMACHINE_SERVER="http://zmachine:80" \
  -e HUBOT_ZMACHINE_ROOMS="zmachine" \
  -e HUBOT_ZMACHINE_OT_PREFIX="ot" \
  rocketchat/hubot-rocketchat:latest
echo "Environment setup…"
exit 0



In contrast to this messy shell script, which is very repetitive
and prone to easily breaking, Docker Compose is typically
configured with a single, declarative YAML file for each project,
named docker-compose.yaml. This configuration file is very easy
to read and will work in a very repeatable fashion so that each
user has the same experience when they run it. Here you can
see an example docker-compose.yaml file that could be used to
replace the preceding brittle shell script:

version: '3'
services:
  mongo:
    build:
      context: ../mongodb/docker
    image: spkane/mongo:4.4
    restart: unless-stopped
    environment:
      MONGODB_REPLICA_SET_MODE: primary
      MONGODB_REPLICA_SET_NAME: rs0
      MONGODB_PORT_NUMBER: 27017
      MONGODB_INITIAL_PRIMARY_HOST: mongodb
      MONGODB_INITIAL_PRIMARY_PORT_NUMBER: 27017
      MONGODB_ADVERTISED_HOSTNAME: mongo
      MONGODB_ENABLE_JOURNAL: "true"
      ALLOW_EMPTY_PASSWORD: "yes"
    # Port 27017 already exposed by upstream
    # See:

https://yaml.org/


    # https://github.com/bitnami/bitnami-docker-mongo
    # 879452aa052d33744384d43949958a3204ad5d29/4.4/de
    networks:
      - botnet
  rocketchat:
    image: rocketchat/rocket.chat:5.0.4
    restart: unless-stopped

    labels:
      traefik.enable: "true"
      traefik.http.routers.rocketchat.rule: Host(`127
      traefik.http.routers.rocketchat.tls: "false"
      traefik.http.routers.rocketchat.entrypoints: ht
    volumes:
      - "../rocketchat/data/uploads:/app/uploads"
    environment:
      ROOT_URL: http://127.0.0.1:3000
      PORT: 3000
      MONGO_URL: "mongodb://mongo:27017/rocketchat?re
      MONGO_OPLOG_URL: "mongodb://mongo:27017/local?r
      DEPLOY_METHOD: docker
    depends_on:
      mongo:
        condition: service_healthy
    ports:
      - 3000:3000
    networks:
      - botnet
  zmachine:

image: spkane/zmachine api:latest



    image: spkane/zmachine-api:latest
    restart: unless-stopped
    volumes:
      - "../zmachine/saves:/root/saves"
      - "../zmachine/zcode:/root/zcode"
    depends_on:
      - rocketchat

    expose:
      - "80"
    networks:
      - botnet
  hubot:
    image: rocketchat/hubot-rocketchat:latest
    restart: unless-stopped
    volumes:
      - "../hubot/scripts:/home/hubot/scripts"
    environment:
      RESPOND_TO_DM: "true"
      HUBOT_ALIAS: ". "
      LISTEN_ON_ALL_PUBLIC: "true"
      ROCKETCHAT_AUTH: "password"
      ROCKETCHAT_URL: "rocketchat:3000"
      ROCKETCHAT_ROOM: ""
      ROCKETCHAT_USER: "hubot"
      ROCKETCHAT_PASSWORD: "bot-pw!"
      BOT_NAME: "bot"
      EXTERNAL_SCRIPTS: "hubot-help,hubot-diagnostics
      HUBOT_ZMACHINE_SERVER: "http://zmachine:80"

HUBOT ZMACHINE ROOMS: "zmachine"



The docker-compose.yaml file makes it easy to describe all the
important requirements for each of your services and how they
need to communicate with each other. And we get a lot of
validation and checking logic for free that we didn’t even have
time to write into our shell script and which we’d probably get
wrong on occasion, no matter how careful we were.

So, what did we tell Compose to do in that YAML file? The first
line of our file simply tells Docker Compose what version of the
Compose configuration language this file was designed for.

version: '3'

      HUBOT_ZMACHINE_ROOMS: zmachine
      HUBOT_ZMACHINE_OT_PREFIX: "ot"
    depends_on:
      - zmachine
    ports:
      - 3001:8080
    networks:

      - botnet
networks:
  botnet:
    driver: bridge

https://docs.docker.com/compose/compose-file


The rest of our document is divided into two sections:
services  and networks .

For starters, let’s take a quick look at the networks  section. In
this docker-compose.yaml file, we are defining a single named
Docker network.

networks:
  botnet:
    driver: bridge

This is a very simple configuration that tells Docker Compose to
create a single network, named botnet , using the (default)
bridge driver, which will bridge the Docker network with the
host’s networking stack.

The services  section is the most important part of the
configuration and tells Docker Compose what applications you
want to launch. Here the services  section defines five
services: mongo , mongo-init-replica , rocketchat ,
zmachine , and hubot . Each named service then contains
sections that tell Docker how to build, configure, and launch
that service.



If you take a look at the mongo  service, you will see that the
first subsection is called build  and contains a context  key.
This informs Docker Compose that it can build this image and
that the files required for the build are located in the
../../mongodb/docker directory, which is two levels above the
directory containing the docker-compose.yaml file.

    build:
      context: ../../mongodb/docker

If you look at the Dockerfile in the mongodb/docker  directory
you will see this:

Take a moment to look at the HEALTHCHECK  line. This tells
Docker what command should be run to check the health of the
container. Docker will not take action based on this health

FROM mongo:4.4 
 
COPY docker-healthcheck /usr/local/bin/ 
 
# Useful Information:
# https://docs.docker.com/engine/reference/builder/#h
# https://docs.docker.com/compose/compose-file/#healt
HEALTHCHECK CMD ["docker-healthcheck"]



check, but it will report the health so that other things can make
use of this information. If you are curious, feel free to take a
look at the docker-healthcheck  script in the mongodb/docker
directory.

The next setting, image , defines the image tag that you want
either to apply to your build or to download (if you’re not
building an image) and then run.

    image: spkane/mongo:4.4

With the restart  option, you tell Docker when you want it to
restart your containers. In most cases, you’ll want Docker to
restart your containers any time that you have not specifically
stopped them.

    restart: unless-stopped

Next, you will see an environment  section. This is where you
can define any environment variables that you want to pass
into your container.

    environment:
      MONGODB_REPLICA_SET_MODE: primary
      MONGODB_REPLICA_SET_NAME: rs0



      MONGODB_PORT_NUMBER: 27017
      MONGODB_INITIAL_PRIMARY_HOST: mongodb
      MONGODB_INITIAL_PRIMARY_PORT_NUMBER: 27017
      MONGODB_ADVERTISED_HOSTNAME: mongo
      MONGODB_ENABLE_JOURNAL: "true"
      ALLOW_EMPTY_PASSWORD: "yes"

The final subsection for the mongo  service, networks , tells
Docker Compose which network this container should be
attached to.

    networks:
      - botnet

At this point, let’s jump down to the rocketchat  service. This
service does not have a build  subsection, instead, it only
defines an image tag that tells Docker Compose that it cannot
build this image and must instead try to pull and launch a pre-
existing Docker image with the defined tag.

The first new subsection that you will notice in this service is
called volumes .

A lot of services have at least some data that should be persisted
during development, despite the ephemeral nature of
containers. To accomplish this, it is easiest to mount a local



directory into the containers. The volumes  section allows you
to list all the local directories that you would like to have
mounted into a container, and define where they go. This
command will bind mount ../rocketchat/data/uploads into
/app/uploads inside the container.

    volumes:
      - "../rocketchat/data/uploads:/app/uploads"

WARNING

You may have noticed that we do not define a volume  for MongoDB, which might
seem a bit counterintuitive. Although a bind-mounted volume would be useful to
store the database files in, MongoDB will fail to write to the native Windows
filesystem, so we leave this out to achieve the broadest compatibility, and instead, let
the database write into the container for this development use case.

The primary result of this is that when you delete the container using a command
like docker compose down , all of the data in the MongoDB instance will be lost.

We could easily solve this MongoDB storage problem, by using a [data volume]
(https://docs.docker.com/storage/volumes/#create-and-manage-volumes) container, but
this example is specifically using bind mounts for the volumes.

https://docs.docker.com/storage/volumes/#create-and-manage-volumes


TIP

In almost all cases, you should not use host-based local storage for containers in
production. This can be very convenient in development since you are using a single
host, but in production, your containers will often be deployed to whatever node has
space and resources, and therefore there they will lose access to files stored on a
single host’s filesystem. In production, if you need stateful storage, you have to
leverage things like network-based storage, Kubernetes Persistent Volumes, etc.

In the environment  section for the rocketchat  service, you
will see that the value for the MONGO_URL  does not use an IP
address or fully qualified domain name. This is because all of
these services are running on the same Docker network and
Docker Compose configures each container so that it can find
the others via their service names. This means that we can
easily configure URLs like this to simply point at the service
name and internal port for the container we need to connect to.
And, if we rearrange things, these names will continue to point
to the right container in our stack. They are also nice because
they make it quite explicit to the reader what the dependency is
for this container.

    environment:
      …
      MONGO_URL: "mongodb://mongo:27017/rocketchat?re
      …



TIP

The docker-compose.yaml file can also refer to environment variables using the
${<VARIABLE_NAME>}  format, which makes it possible to pull in secrets without
actually storing them in this file. Docker Compose also support an .env file, which can
be very useful for handling secrets and environment variables that change between
developers, for example.

The depends_on  section defines a container that must be
running before this container can be started. By default docker
compose  ensures only that the container is running, not that it
is healthy; however, you can leverage the HEALTHCHECK
functionality in Docker, and the condition statement in Docker
Compose to require that the dependent service be healthy
before Docker Compose brings the new service up. It is
important to remember, that this only impacts how startup,
Docker will report services that become unhealthy later on, but
it does not take any action to correct the situation, unless the
container exits, in which case, Docker will restart the container,
if it is configured to do so.

    depends_on:
      mongo:
        condition: service_healthy

https://docs.docker.com/compose/env-file


NOTE

We discuss Docker’s health-check functionality in more detail in “Container Health
Checks”. You can also find more information in the documentation for Docker and
Docker Compose.

The ports  subsection allows you to define all the ports that
you want to be mapped from the container to the host.

    ports:
      - 3000:3000

The zmachine  service uses only one new subsection, called
expose . This section allows us to tell Docker that we want to
expose this port to the other containers on the Docker network,
but not to the underlying host. This is why you do not provide a
host port to map this port to.

    expose:
      - "80"

You might notice at this point that, while we expose a port for
zmachine , we didn’t expose a port in the mongo  service. It
wouldn’t have hurt anything to expose the mongo  port, but we
didn’t need to because it is already exposed by the upstream

https://dockr.ly/2MYnLZL
https://dockr.ly/2wt366J


mongo Dockerfile. This is sometimes a little opaque. docker
image history  on the built image can be helpful here.

Here we’ve used an example that is complex enough to expose
you to some of the power of Docker Compose, but it is by no
means exhaustive. There is a great deal else that you can
configure in a docker-compose.yaml file, including security
settings, resource quotas, and much more. You can find a lot of
detailed information about configuration for Compose in the
official Docker Compose documentation.

Launching Services

We configured a set of services for our application in the YAML
file. That tells Compose what we’re going to launch and how to
configure it. So, let’s get it up and running! To run our first
Docker Compose command, we need to be sure that we are in
the same directory as the docker-compose.yaml file.

$ cd rocketchat-hubot-demo/compose

Once you are in the correct directory, you can confirm that the
configuration is correct by running:

https://bit.ly/2okkFBn
https://docs.docker.com/compose/compose-file


$ docker compose config

If everything is fine, the command will print out your
configuration file. If there is a problem, the command will print
an error with details about the problem, like so:

You can build any containers that you need by using the build
option. Any services that use images will be skipped.

services.mongo Additional property builder is not all

$ docker compose build 
 
 => [internal] load build definition from Dockerfile 
 => => transferring dockerfile: 32B                  
 => [internal] load .dockerignore                    
 => => transferring context: 2B                      
 => [internal] load metadata for docker.io/bitnami/mo
 => [auth] bitnami/mongodb:pull token for registry-1.
 => [internal] load build context                    
 => => transferring context: 40B                     
 => [1/2] FROM docker.io/bitnami/mongodb:4.4@sha256:9
 => CACHED [2/2] COPY docker-healthcheck /usr/local/b
 => exporting to image                               

 => => exporting layers                              



You can start up your web service in the background by
running the following command:

Docker Compose prefixes the network and container names
with a project name. By default, this is the name of the
directory that contains your docker-compose.yaml file. Since this
command was run in a directory named compose, you can see
that everything starts with compose as the project name.

 => => writing image sha256:a6ef…da808               
 => => naming to docker.io/spkane/mongo:4.4          

$ docker compose up -d 
 
[+] Running 5/5
 ⠿ Network compose_botnet                  Created   
 ⠿ Container compose-mongo-1               Healthy   
 ⠿ Container compose-rocketchat-1          Started   
 ⠿ Container compose-zmachine-1            Started   
 ⠿ Container compose-hubot-1               Started   



WARNING

Windows users: When you first bring up the services, Windows may prompt you to
authorize vpnkit, and Docker Desktop for Windows may also prompt you to share
your disk. You must click both the “Allow access” and the “Share it” buttons for the
network and volume shares to work and everything to come up properly.

Once everything comes up, we can take a quick look at the logs
for all of the services:(Figure 8-1)

$ docker compose logs

Figure 8-1. docker compose logs output

You can’t see it well in print here, but if you’re following along
note that all of the logs are color-coded by service and
interlaced by the time Docker received the log lines. This makes
it a lot easier to follow what’s happening, even though several
services are logging messages at once.

It can take RocketChat a little while to set up the database and
be ready to accept connections. Once the RocketChat logs print



a line that contains SERVER RUNNING, things should be ready
to go.

At this point, we have successfully launched a reasonably
complex application that makes up a stack of containers. We’ll
take a look at this simple application now so that you can see
what we built and get a more complete understanding of the
Compose tooling. While this next section does not strictly have
anything to do with Docker itself, it is intended to show you
how easy it is to use Docker Compose to set up complex and
fully functioning web services.

Exploring RocketChat

NOTE

In this section, we’re going to diverge from Docker for a moment and take a look at
RocketChat. We’ll spend a few pages on it so that you know enough about it that you
can hopefully start to appreciate how much easier it is to set up a complex
environment using Docker Compose. Feel free to skip down to “Exercising Docker
Compose”, if you would like.

$ docker compose logs rocketchat | grep "SERVER RUNNI
 
compose-rocketchat-1  | |                SERVER RUNNI



We’ll shortly dig further into what’s happening behind the
scenes of our setup. But to do that effectively, we should now
take a brief moment to explore the application stack we built.
RocketChat, the primary application we launched with Docker
Compose, is an open-source chat client/server application. To
see how it works, let’s launch a web browser and navigate to
http://127.0.0.1:3000.

When you get there, you are prompted with an Admin Info
screen for RocketChat (Figure 8-2).

http://127.0.0.1:3000/
https://rocket.chat/


Figure 8-2. RocketChat Admin Info screen

Fill out the form like this:

Full name: student

Username: student



Email: student@example.com

Password: student-pw!

Then click the blue button, labeled “Next” (Figure 8-3).

You are prompted with an Organization Info screen.



Figure 8-3. RocketChat Organization Info screen

The specifics of this form are not critical, but you can fill it in
something like this:



Organization name: training

Organization type: Community

Organization industry: Education

Organization size: 1-10 people

Country: United States

Then click the blue button, labeled “Next” (Figure 8-4).

At this point, You will be prompted with the Register Your
Server screen.



Figure 8-4. RocketChat Register Your Server screen

You can simply delete and uncheck everything and then click
the small blue Continue as standalone  link(Figure 8-5).



Figure 8-5. RocketChat Standalone Server Confirmation screen

On the Standalone Server Confirmation screen, go ahead and
click the blue Confirm  button.

WARNING

If you are using localhost  or something other than 127.0.0.1  to reach RocketChat
in your browser, you may get a popup window asking if you would like to update the
SITE_URL. In most cases, you should go ahead and let it update that value, so that it
matches what you are using.

Congratulations—you are now logged into a fully functional
chat client, but you aren’t done yet. The Docker Compose
configuration launched an instance of a hubot chat assistant
and the mysterious zmachine, so let’s take a look at those.

https://hubot.github.com/


Since the RocketChat server is brand new, it does not have a
user yet that our bot can use. Let’s remedy that.

Start by clicking the top of the left sidebar, where you see a
purple box with the letter S in it. This will make a menu pop up,
within which you should be able to click “Administration”
(Figure 8-6).

Figure 8-6. RocketChat administration sidebar

The left sidebar is now replaced by the Administration panel. In
the Administration panel, click “Users” (Figure 8-7).



Figure 8-7. RocketChat User screen

On the top far right side of the screen, click the “New” button to
add a user, and then fill out the form as follows(Figure 8-8):

Name: hubot
Username: hubot
Email: hubot@example.com
Click: Verified  (Blue)
Password: bot-pw!
Roles: bot
Disable: Send welcome email  (Grey)



Figure 8-8. RocketChat Add User screen



Click “Save” at the bottom to create the user.(Figure 8-9)

To ensure that the bot can log in, we also need to disable two-
factor authentication, which is enabled by default. To do this,
click on “Settings” at the bottom of the Administration sidebar
on the left side of your browser.



Figure 8-9. RocketChat Administration settings



In the new text search bar type “totp” and then click the “Open”
button under the box marked “Accounts”.(Figure 8-10)

Figure 8-10. RocketChat Account settings

You should now be presented with a long list of settings. Scroll
down to the section titled “Two Factor Authentication”, open up
that section and then de-select the “Enable Two Factor
Authentication” option.

Once you have done this, go ahead and click “Save changes”.
(Figure 8-11)



Figure 8-11. RocketChat TOTP settings

At the top of the left side Administration panel, click the X to
close the panel (Figure 8-12).

Figure 8-12. RocketChat close Administration panel

In the left side panel under channels, click “general” (Figure 8-
9).



Figure 8-13. RocketChat General channel

And finally, if you don’t already see a message in the channel
that "hubot Has joined the channel“, go ahead and tell Docker
Compose to restart the hubot container, which will force hubot
to try and login to the chat server again, now that there is a user
for the service to use.

$ docker compose restart hubot 
Restarting unix_hubot_1 … done

If everything went according to plan, you should now be able to
navigate back to your web browser and send commands to
hubot in the chat window.



NOTE

Hubot should auto-join the General channel when it logs into the server, but just in
case, you can send the following message in the General channel to explicitly invite
hubot.

/invite @hubot

You may get a message from the internal admin rocket.cat  that says @hubot is
already in here . This is perfectly fine.

The environment variables used to configure hubot defined it’s
alias as a period. So you can now try typing . help  to test that
the bot is responding. If everything is working you should get a
list of commands that the bot understands and will respond to.

Finally, try typing:

> . help 
. adapter - Reply with the adapter 
. echo <text> - Reply back with <text> 
. help - Displays all of the help commands that this 
. help <query> - Displays all help commands that matc
. ping - Reply with pong 
. time - Reply with current time 
…



. ping

Hubot should respond with “PONG”.

If you type:

. time

Then hubot will tell you what the time is set to one the server.

So, for one last diversion, try creating a new chat channel by
typing /create zmachine  in the chat window. You should now
be able to click on the new zmachine  channel in the left
sidebar and invite hubot with the chat command /invite
@hubot .

NOTE

When you do this, hubot might say:

There's no game for zmachine!

This is nothing to be concerned about.



Next try typing the following commands into the chat window
to play a chat-based version of the famous game, Colossal Cave
Adventure:

. z start adventure 
 
more 
look 
go east 
examine keys 
get keys 
 
. z save firstgame 
. z stop 
. z start adventure 
. z restore firstgame 
 
inventory

https://bit.ly/2NBOgRK


WARNING

Interactive fiction can be addictive and a huge time-sink. You have been warned…
That being said, if you aren’t already familiar with it and are interested in learning
more, take a look at some of these resources.

Definiton of Interactive Fiction
Emulator
Development
Games
Competition

You’ve now seen how easy it can be to configure, launch, and
manage complex web services that require multiple
components to accomplish their jobs using Docker Compose. In
the next section, we will explore a few more of the features that
Docker Compose includes.

NOTE

You could avoid much of the RocketChat setup by providing MongoDB with a pre-
configured rocketchat database, but it felt important to remove any magic from this
example, to make it clearer how everything fits together.

Exercising Docker Compose

https://bit.ly/2PRkLNJ
https://davidgriffith.gitlab.io/frotz/
https://ganelson.github.io/inform-website/
https://bit.ly/2LCI5LL
https://ifcomp.org/


Now that you have that running and understand what the
application is doing, we can dig in to get a little more insight
into how the services are running. Some of the common Docker
commands are also exposed as Compose commands, but for a
specific stack rather than a single container or all of the
containers on a host. You can run docker compose top  to see
an overview of your containers and the processes that are
running in them.

$ docker compose top 
 
compose-hubot-1 

UID  PID   … CMD
1001 73342 … /usr/bin/qemu-x86_64 /bin/sh /bin/sh -c 
1001 73459 … /usr/bin/qemu-x86_64 /usr/local/bin/node
 
compose-mongo-1 
UID  PID   … CMD
1001 71243 … /usr/bin/qemu-x86_64 /opt/bitnami/mongod
 
compose-rocketchat-1 
UID   PID   … CMD
65533 71903 … /usr/bin/qemu-x86_64 /usr/local/bin/nod
 
compose-zmachine-1 
UID  PID   … CMD 
root 71999 … /usr/bin/qemu-x86 64 /usr/local/bin/node



Similarly to how you would normally enter a running Linux
container using the docker container exec  command, you
can run commands inside containers via the Docker Compose
tooling using the docker compose exec  command. Because
docker compose  is a newer tool, it provides some convenient
shortcuts over the standard docker  commands. In the case of
docker compose exec  you do not need to pass in -i -t  and
you can use the Docker Compose service name, instead of
trying to remember the container ID or name.

/ / /q _ / / / /
root 75078 … /usr/bin/qemu-x86_64 /root/src/../frotz/

$ docker compose exec mongo bash 
 
I have no name!@0078134f9370:/$ mongo 
MongoDB shell version v4.4.15 
connecting to: mongodb://127.0.0.1:27017/?compressors
Implicit session: session { "id" : UUID("daec9543-bb9
MongoDB server version: 4.4.15 
… 
rs0:PRIMARY> exit 
bye 
I have no name!@0078134f9370:/$ exit
exit



TIP

docker compose logs  and docker compose exec  are probably the most useful
commands for troubleshooting. If Docker Compose cannot build your image or start
your container at all, you will need to fall back to the standard docker  commands to
debug your image and container, like we discussed in “Troubleshooting Broken
Builds” and “Getting Inside a Running Container”.

You can also use Docker Compose to start  and stop  and, in
most environments, pause  and unpause  either a single
container or all of your containers, depending on what you
need.

$ docker compose stop zmachine
[+] Running 1/1
 ⠿ Container compose-zmachine-1  Stopped             
$ docker compose start zmachine
[+] Running 2/2
 ⠿ Container compose-mongo-1     Healthy             
 ⠿ Container compose-zmachine-1  Started             
$ docker compose pause
[+] Running 4/0
 ⠿ Container compose-mongo-1       Paused            
 ⠿ Container compose-zmachine-1    Paused            
 ⠿ Container compose-rocketchat-1  Paused            
 ⠿ Container compose-hubot-1       Paused            
$ docker compose unpause
[+] Running 4/0



Finally, when you want to tear everything down and delete all
the containers created by Docker Compose, you can run the
following command:

WARNING

When you delete the MongoDB container using the docker compose down
command, all data in the MongoDB instance will be lost.

Managing Configuration

 ⠿ Container compose-zmachine-1    Unpaused          
 ⠿ Container compose-hubot-1       Unpaused          
 ⠿ Container compose-rocketchat-1  Unpaused          
 ⠿ Container compose-mongo-1       Unpaused          

$ docker compose down
[+] Running 5/5
 ⠿ Container compose-hubot-1       Removed           

 ⠿ Container compose-zmachine-1    Removed           
 ⠿ Container compose-rocketchat-1  Removed           
 ⠿ Container compose-mongo-1       Removed           
 ⠿ Network compose_botnet          Removed           



Docker Compose offers a few important capabilities that can
help you significantly improve the flexibility of your docker-
compose.yaml files. In this section, we will explore how you can
avoid hard-coding many configuration values into your docker-
compose.yaml files while still making them easy to use by
default.

Default Values

If we take a look at the services:rocketchat:environment section
of the docker-compose.yaml file we will see something like this:

    environment:
      RESPOND_TO_DM: "true"
      HUBOT_ALIAS: ". "
      LISTEN_ON_ALL_PUBLIC: "true"
      ROCKETCHAT_AUTH: "password"
      ROCKETCHAT_URL: "rocketchat:3000"
      ROCKETCHAT_ROOM: ""
      ROCKETCHAT_USER: "hubot"
      ROCKETCHAT_PASSWORD: "bot-pw!"

      BOT_NAME: "bot"
      EXTERNAL_SCRIPTS: "hubot-help,hubot-diagnostics
      HUBOT_ZMACHINE_SERVER: "http://zmachine:80"
      HUBOT_ZMACHINE_ROOMS: "zmachine"
      HUBOT_ZMACHINE_OT_PREFIX: "ot"



Now, if we look at the docker-compose-defaults.yaml inside the
same directory, we will see that this same section looks like this:

This is using a technique called variable interpolation that
Docker Compose has borrowed directly from many common
Unix shells, like bash .

In the original file, the environment variable
ROCKETCHAT_PASSWORD  is hard-coded to the value “bot-pw!”:

    environment:
      RESPOND_TO_DM: ${HUBOT_RESPOND_TO_DM:-true}
      HUBOT_ALIAS: ${HUBOT_ALIAS:-. }
      LISTEN_ON_ALL_PUBLIC: ${HUBOT_LISTEN_ON_ALL_PUB
      ROCKETCHAT_AUTH: ${HUBOT_ROCKETCHAT_AUTH:-passw
      ROCKETCHAT_URL: ${HUBOT_ROCKETCHAT_URL:-rocketc
      ROCKETCHAT_ROOM: ${HUBOT_ROCKETCHAT_ROOM:-}
      ROCKETCHAT_USER: ${HUBOT_ROCKETCHAT_USER:-hubot
      ROCKETCHAT_PASSWORD: ${HUBOT_ROCKETCHAT_PASSWOR
      BOT_NAME: ${HUBOT_BOT_NAME:-bot}
      EXTERNAL_SCRIPTS: ${HUBOT_EXTERNAL_SCRIPTS:-hub
                          hubot-diagnostics,hubot-zma
      HUBOT_ZMACHINE_SERVER: ${HUBOT_ZMACHINE_SERVER:
      HUBOT_ZMACHINE_ROOMS: ${HUBOT_ZMACHINE_ROOMS:-z
      HUBOT_ZMACHINE_OT_PREFIX: ${HUBOT_ZMACHINE_OT_P

https://docs.docker.com/compose/compose-file/#interpolation


      ROCKETCHAT_PASSWORD: "bot-pw!"

By using this new approach we are stating that we want
ROCKETCHAT_PASSWORD  to be set to the value of the
HUBOT_ROCKETCHAT_PASSWORD  variable if it is set in the user’s
environment, and if it is not, then ROCKETCHAT_PASSWORD
should be set to the default value of “bot-pw!”.

This provides us with a great deal of flexibility since we can
now make almost everything configurable, while still providing
reasonable defaults for the most common use case. We can
easily test this out by running docker compose up  with the
new file.

      ROCKETCHAT_PASSWORD: ${HUBOT_ROCKETCHAT_PASSWOR

$ docker compose -f docker-compose-defaults.yaml up -
 
[+] Running 5/5
 ⠿ Network compose_botnet          Created           
 ⠿ Container compose-mongo-1       Healthy           
 ⠿ Container compose-rocketchat-1  Started           
 ⠿ Container compose-zmachine-1    Started           
 ⠿ Container compose-hubot-1       Started           



By default, this will result in the exact same stack, that we had
spun up earlier. However, we could easily make changes to it
now, by simply setting one or more environment variables in
our terminal before running our docker compose  commands.

$ docker compose -f docker-compose-defaults.yaml down
… 
 
$ docker compose -f docker-compose-defaults.yaml conf
    grep ROCKETCHAT_PASSWORD 
 
      ROCKETCHAT_PASSWORD: bot-pw! 
 
$ HUBOT_ROCKETCHAT_PASSWORD="my-unique-pw" docker com
    -f docker-compose-defaults.yaml config | \
    grep ROCKETCHAT_PASSWORD 
 
      ROCKETCHAT_PASSWORD: my-unique-pw



TIP

In the examples here, Docker Compose will treat an empty environment variable
exactly the same as one that is set to an empty string. If an empty string is a valid
value in your use-case, then you will want to modify the format of the variable
substitution line, so that it looks like this ${VARIABLE_NAME-default-value} . We
recommend reading through the documentation for this feature so that you
understand all the possibilities.

This is pretty nice, but what if we don’t want to provide a
default value at all, and instead want to force the user to set
something? We can do this pretty easily as well.

WARNING

Some readers might be uncomfortable with the fact that we are passing in the
password as part of the command line since those passwords might be viewable in
the system process list, etc, but don’t worry, we will address that in just a few
minutes.

Mandatory Values

To set a mandatory value, we simply need to alter the variable
substitution line a bit. It seems like a bad idea to pass in a
default password, so let’s go ahead and make that value
required.

https://docs.docker.com/compose/compose-file/#interpolation


In the docker-compose-defaults.yaml file,
ROCKETCHAT_PASSWORD is defined like this:

In the newer, docker-compose-env.yaml file, we can see that it is
defined like this:

Instead of containing a default value, this approach defines an
error string if the variable is not set to a non-empty string in the
environment. If we try to simply spin up these services now, we
will get an error message.

      ROCKETCHAT_PASSWORD: ${HUBOT_ROCKETCHAT_PASSWOR

      ROCKETCHAT_PASSWORD:
        ${HUBOT_ROCKETCHAT_PASSWORD:?HUBOT_ROCKETCHAT

$ docker compose -f docker-compose-env.yaml up -d 
 
invalid interpolation format for
  services.hubot.environment.ROCKETCHAT_PASSWORD. 
You may need to escape any $ with another $. 
required variable HUBOT_ROCKETCHAT_PASSWORD is missin
  HUBOT_ROCKETCHAT_PASSWORD must be set!



The output gives us a few hints about what might be wrong, but
the last two lines are pretty clear, and the final message is the
exact error message that we defined, so it can be set to
whatever makes the most sense in the situation.

If we go ahead and pass in our own password, then everything
spins up just fine.

The dotenv File

$ HUBOT_ROCKETCHAT_PASSWORD="a-b3tt3r-pw" docker comp
    -f docker-compose-env.yaml up -d 
 
[+] Running 5/5
 ⠿ Network compose_botnet          Created           
 ⠿ Container compose-mongo-1       Healthy           
 ⠿ Container compose-rocketchat-1  Started           
 ⠿ Container compose-zmachine-1    Started           
 ⠿ Container compose-hubot-1       Started           
 
$ docker compose -f docker-compose-env.yaml down 
…



Passing in a single environment variable is not that difficult, but
if you need to pass in a lot of custom values, or even one real
secret, then setting them in the local terminal isn’t ideal. This is
where the .env (dotenv) file can come in very useful.

The .env file is a special file standard that is intended to be
parsed by programs that need additional configuration
information that is specific to the local environment.

In the above use case, we must set a password to spin up our
Docker Compose environment. We can pass in the environment
every time, but this isn’t ideal for at least a few reasons. It
would be nice if we could set it in a way that was reasonably
secure for a single-user environment, while also making our
lives a bit easier and less error-prone.

In essence, a .env file is simply a list of key-value pairs. Since
this file is intended to be unique to the local environment and
will often contain at least one secret, we should start by
ensuring that we will never accidentally commit these files into
our revision control system. To do this with git , we can simply
make sure that out .gitignore file includes .env, which, in this
case, it already does.

https://www.dotenv.org/docs/security/env


$ grep .env ../.gitignore 
.env

Assuming that we are on a single-user system, we can now
safely create a .env file in the same directory that contains our
docker-compose.yaml file(s).

For this example let’s go ahead and make the contents of our
.env file look like this:

HUBOT_ROCKETCHAT_PASSWORD=th2l@stPW!

We could add many more key-value pairs to this file, but to keep
things simple, we are only focusing on this one password. If you
run git status  after creating this file, you should notice that
git  is completely ignoring the new file, which is exactly what
we want.

$ git status 
On branch main 
Your branch is up to date with 'origin/main'. 
 
nothing to commit, working tree clean



NOTE

A .env file is not a Unix shell script. There are subtle, but important differences
between this format and how you might define variables in a standard shell script.
The most important one is that, in most circumstances, you should not surround
values with quotation marks.

In the previous section, when we ran docker compose -f
docker-compose-env.yaml up -d  without setting the
HUBOT_ROCKETCHAT_PASSWORD we got an error, but if we
try this again after creating the .env file things should work just
fine.

Let’s confirm that the value that has been assigned to
ROCKETCHAT_PASSWORD is what we set it to in the_.env_ file.

$ docker compose -f docker-compose-env.yaml up -d 
 
[+] Running 5/5
 ⠿ Network compose_botnet          Created           
 ⠿ Container compose-mongo-1       Healthy           
 ⠿ Container compose-rocketchat-1  Started           
 ⠿ Container compose-zmachine-1    Started           
 ⠿ Container compose-hubot-1       Started           



$ docker compose \
    -f docker-compose-env.yaml config | \
    grep ROCKETCHAT_PASSWORD 
 
      ROCKETCHAT_PASSWORD: th2l@stPW!

We can see that the value is indeed set to what we defined in
the .env file. This is because Docker Compose will always read
in the key-value pairs that are defined in a +.env_ file that lives
in the same directory as the docker-compose.yaml file that we
are using.

It is important to understand the precedence that is in effect
here. The very first thing that Docker Compose does is read all
the defaults that are set in the docker-compose.yaml file. It then
reads the .env file and overrides any of the defaults, which
values defined in the file. Then it finally looks at any
environment variables that are set in the local environment
and overwrites values previous defined with these.

This means that the default in the file, should be the most
common settings, and then each user can define their common
changes in the local .env file, and finally, they can rely on local
environment variables when they need to make an unusual
change for a specific use case. Using these features with Docker



Compose helps ensure that you can build a very repeatable
process that still contains enough flexibility to cover most
common workflows.

TIP

There are additional features of Docker Compose that we do not cover, like override
files. As you start to use Docker Compose more, it is worth your time to review the
documentation so that you are aware of any additional features that might be useful
for your projects.

Wrap-Up

You should now have a very good feel for the types of things
you can accomplish with Docker Compose and how this tool can
be used to decrease the toil and increase the repeatability of
your development environments.

In the next chapter, we will explore some of the tools that are
available to help you scale Docker inside your data center and
in the cloud.

https://docs.docker.com/compose/extends/
https://docs.docker.com/compose


Chapter 9. The Path to Production
Containers

Now that we’ve explored tooling for bringing up a stack of
containers on a single host, we need to look at how we’d do this
in a large-scale production environment. In this chapter, our
goal is to show you how you might take containers to
production based on our own experiences. There is a myriad of
ways in which you will probably need to tailor this to your
applications and environments, but this all should provide you
with a solid starting point to help you understand the Docker
philosophy in practical terms.

Getting to Production

Getting an application from the point where it is built and
configurable to the point where it is running on production
systems is one of the most mine-ridden steps in going from zero
to production. This has traditionally been complicated but is
vastly simplified by the shipping container model. If you can
imagine what it was like to load goods into a ship to take across
the ocean before shipping containers existed, you have a sense
of what most traditional deployment systems look like. In that



old shipping model, randomly-sized boxes, crates, barrels, and
all manner of other packages were all loaded by hand onto
ships. They then had to be manually unloaded by someone who
could tell which pieces needed to be unloaded first so that the
whole pile wouldn’t collapse like a Jenga puzzle.

Shipping containers changed all that: we now have a
standardized box with well-known dimensions. These
containers can be packed and unloaded in a logical order and
whole groups of items arrive together when expected. The
shipping industry built machinery to manage them very
efficiently. The Docker deployment model is very similar. All
Linux containers support the same external interface, and the
tooling just drops them on the servers they are supposed to be
on without any concern for what’s inside.

In the new model, when we have a running build of our
application, we don’t have to write much custom tooling to kick
off deployment. If we only want to ship it to one server, the
docker  command-line tooling will handle most of that for us. If
we want to send it to more servers, then we will have to look at
some of the more advanced tooling from the broader container
ecosystem. In either case, there are things your application will
need to be aware of and concerns you will need to consider
before taking your containerized application to production.

https://en.wikipedia.org/wiki/Jenga


There is a progression you will follow while getting your
applications to production with Docker:

1. Locally build and test a Docker image on your development
box.

2. Build your official image for testing and deployment, usually
from a CI or build system.

3. Push the image to a registry.
4. Deploy your Docker image to your server, then configure and

start the container.

As your workflow evolves, you will eventually collapse all of
those steps into a single fluid workflow:

1. Orchestrate the building, testing, and storage of images and
the deployment of containers to production servers.

But there is a lot more to the story than that. At the most basic
level, a production story must encompass three things:

1. It must be a repeatable process. Each time you invoke it, it
needs to do the same thing. Ideally, it will do the same thing
for all your applications.

2. It needs to handle configuration for you. You must be able to
define your application’s configuration in a particular



environment and then guarantee that it will ship that
configuration on each deployment.

3. It must deliver an executable artifact that can be started.

To accomplish that, there are several things you need to think
about. We’ll try to help with that by presenting a framework
you can use to think about your application in its environment.

Docker’s Role in Production
Environments

We’ve covered a lot of capabilities that Docker brings to the
table, and talked about some general production strategies.
Before we dive deeper into production containers, let’s look at
how Docker fits into both a traditional and more modern
production environment. If you are moving to Docker from a
more traditional system, you can pick and choose which pieces
you will delegate to Docker, to a deployment tool, to a larger
platform like Kubernetes or a cloud-based container system, or
perhaps even decide to leave it on your more traditional
infrastructure. We have successfully transitioned multiple
systems from traditional deployments to containerized systems,
and there is a wide spectrum of good solutions. But
understanding the required components and what makes up



the modern and more traditional variants will put you on the
right path to making good choices.

In Figure 9-1 we describe several concerns that need to be filled
in a production system, the modern components that fill them,
and the systems they might replace in a more traditional
environment. We divide these up into concerns that are
addressed by Docker itself, and those we ascribe to what we call
the “platform.” The platform is a system that usually wraps
around a cluster of servers and presents a common interface
for Linux container management. This might be a unified
system like Kubernetes or Docker Swarm, or it might consist of
separate components that combine to form a platform. During
the transition to a fully containerized system with a scheduler,
the platform might be more than one thing at a time. So let’s
take a look at each of these concerns and see how they fit
together.



Figure 9-1. Docker’s role in a production system

In the diagram, you can see that the application is sitting on the
top of the stack. It relies on all of the concerns below it in a
production system. In some cases, your environment may call
these concerns out specifically, and in others, they may be
addressed by something you don’t necessarily think of as filling
that concern. But your production applications will rely on
most of these in one way or another, and they will need to be
addressed in your production environment. If you want to
transition from an existing environment to a Linux Container-
based environment, you’ll want to think about how you are



providing these today and how they might be addressed in the
new system.

We’ll start with familiar territory, and then go from the bottom
to the top. That familiar territory is your application. Your
application is on the top! Everything else is there to deliver
functionality to your application. After all, it’s the application
that delivers business value and everything else is there to
make that possible, to facilitate doing it at scale and reliably,
and to standardize how it works across applications. While the
order of the items underneath your application is intentional,
it’s not the case that each layer provides functionality to the one
above. They are all providing that functionality to the
application itself.

Because Linux containers and Docker can facilitate a lot of this
functionality, containerizing your system will make many of
these choices easier. As we get closer to the platform part of the
stack, we’ll have more to think about, but understanding
everything that lies below there will make that much more
manageable.

Let’s start with application job control.

Job Control



Job control is a fundamental requirement for a modern
deployment. This is part of the blue block in the drawing of
concerns. You basically can’t have a system of any kind without
job control. It’s something we have more traditionally left to the
operating system, or one of the Linux init systems ( systemd ,
System V init , runit , BSD rc  scripts, etc.) more specifically.
We tell the operating system about a process we want to have
running and then we configure how the behavior should be
when restarting it, reloading its configuration, and managing
the lifecycle of the application. When we want to start or stop
the application, we rely on these systems to handle that. We
also rely on them in some cases to keep the application running
more robustly by, for example, restarting it when it fails.
Different applications require different job control. In a
traditional Linux system, you might use cron  to start and stop
jobs on a timed basis. systemd  might be responsible for
restarting your application if it crashes. But, how the system
does so is down to the specifics of that system, and there are
many different implementations to deal with, which is not
great.

If we’re moving to the shipping container model, we want to be
able to treat all jobs more or less the same way from the
outside. We might need a little more metadata about them to
get them to do the right thing, but we don’t want to look inside



the container. The Docker engine provides a strong set of
primitives around job control—for example, docker container
start , docker container stop , docker container run , and
docker container kill —which map to most of the critical
steps in the lifecycle of an application. All of the platforms that
are built around Docker containers, including Kubernetes,
follow these lifecycle behaviors as well. We’ve placed this at the
bottom of the stack of concerns because it’s fundamentally the
lowest abstraction that Docker provides for your application.
Even if we didn’t use any other part of Docker, this would be a
big win because it’s the same for all applications, and for all the
platforms that run Docker containers.

Resource Limits

Sitting above job control are resource limits. In Linux systems,
it is possible to use Linux control groups (cgroups) directly to
manage resource limits if we want to, and some production
environments have done exactly that. But more traditionally we
have relied on things like ulimit and the different settings of
application runtime environments like the Java, Ruby, or
Python virtual machines. In cloud systems, one of the early
wins was that we could spin up individual virtual servers to
limit the resources around a single business application. This

https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://linuxconfig.org/limit-user-environment-with-ulimit-linux-command


was a nice innovation: no more noisy neighbor applications.
Compared to containers, however, that is a pretty coarse-
grained control.

With Linux containers, you can easily apply a wide set of
resource controls to your containers via cgroups. It’s up to you
to decide whether or not you’ll restrict your application’s access
to things like memory, disk space, or I/O when running in
production. However, we highly recommend that you take the
time to do this once you’re comfortable with the needs of your
application. If you don’t, you won’t be able to take advantage of
one of the core features of containerized applications: running
multiple applications on the same machine, largely without
interference. As we’ve discussed, Docker gives this to you for
free and it’s a core part of what makes a container valuable. You
can review the specific arguments that Docker uses to manage
these resources in Chapter 5.

Networking

There is a lot of detail about Docker networking in Chapter 11,
so we won’t touch on it too heavily here, but your containerized
system will need to manage connecting your applications on
the network. Docker provides a rich set of configuration options
for networking. You should decide on one mechanism to use in



your production environment and standardize that across
containers. Trying to mix them is not an easy path to success. If
you are running a platform like Kubernetes, then some of these
decisions will be made for you. But the good part is that
generally, the complexity of how the network is constructed is
outside the concern of the application in the container.
Consider that Docker or your bigger platform will provide this
to you and your application can work the same way inside the
container on a local machine as it would in production as long
as you follow a few rules:

1. Rely on Docker or your platform to map your ports
dynamically and tell your application what they are mapped
to. This often is provided to the application in the form of an
environment variable.

2. Avoid protocols like FTP or RTSP that map random ports for
return traffic. This is very difficult to support in a
containerized platform.

3. Rely on the DNS provided to your container by Docker or
your production runtime.

If you follow these rules, then generally your application can be
quite agnostic about where it is deployed. Most production
environments will provide you the ability to define the actual
configuration and apply them at runtime. Docker Compose,



Docker Swarm-mode, Kubernetes, and cloud provider runtimes,
like ECS, all do this for you.

Configuration

All applications need to somehow have access to their
configuration. There are two levels of configuration for an
application. The lowest level is how it expects the Linux
environment around it to be configured. Containers handle this
by providing a Dockerfile that we can use to build the same
environment repeatably. In a more traditional system, we might
have used a configuration management system like Chef,
Puppet, or Ansible to do this. You may still use those systems in
a containerized world, but you are usually not using them to
provide dependencies to applications. That job belongs to
Docker and the Dockerfile. Even if the contents of the Dockerfile
are different for different applications, the mechanism and
tooling are all the same—and that’s a huge win.

The next level of configuration is the configuration directly
applied to the application. We talked earlier about this in detail.
Docker’s native mechanism is to use environment variables,
and this works across all modern platforms. Some systems,
notably, make it easier to rely on more traditional configuration
files. Kubernetes, in particular, makes it relatively easy to rely



on files, but we recommend against it if you truly want a
portable, container-native application. We find that this can
significantly impact the observability of the application and
discourage you from relying on that crutch. There is more
about the reasoning behind environment variables in
Chapter 13.

Packaging and Delivery

We’ll lump packaging and delivery together in our discussion
here. This is an area where a containerized system has major
advantages over a traditional one. Here we don’t have to stretch
our imaginations to see the parallels to the shipping container
model: we have a consistent package, the container image, and
a standardized way to get them places—Docker’s registry and
the image pull  and image push  facilities. In more traditional
systems we would have built handcrafted deployment tooling,
some of which we hopefully standardized across our
applications. But if we needed to have a multi-language
environment, this would have been trouble. In your
containerized environment, you’ll need to consider how you
handle packaging your applications into images and how you
store those images.



The easiest path for the latter is a paid subscription to a hosted,
commercial image registry. If that’s acceptable to your
company, then you should consider that. Several cloud
providers, including Amazon, have image-hosting services that
you can deploy inside your environment, which is another good
option. You can, of course, also build and maintain an internal
private registry as we talked about in “Running a Private
Registry”. But there is a broad ecosystem of providers available
to you and you should survey your options

Logging

Logging sits on the boundary of concerns that you can rely on
Docker to provide in your containerized environment and
concerns that the platform needs to manage. That’s because, as
we detailed in Chapter 6, Docker can collect all the logs from
your containers and ship them somewhere. But by default, that
somewhere is not even off of the local system. That might be
great for a limited-size environment, and you could stop
considering it there if local host storage is good enough for you.
But your platform will be responsible for handling logs from
lots of applications on lots of systems, so you’ll probably want to
centralize these logs into a system that significantly improves
visibility and simplifies troubleshooting. When designing this,



refer back to Chapter 6 for more details on logging. Some
systems, like Kubernetes, are opinionated about the collecting
of logs. But from the application’s standpoint, you only need to
make sure it sends them to stdout  or stderr  and let Docker
or the platform handle the rest.

Monitoring

The first part of the system not neatly tied up in a bow by
Docker or Linux containers in general is still improved by the
standardization that Docker brings to the table. The ability to
health-check applications in a standardized way, as discussed in
Chapter 6, means that the process for monitoring application
health is simplified. In many systems the platform itself handles
monitoring, and the scheduler will dynamically shut down
unhealthy containers and potentially move the workload to a
different server or restart the workload on the same system. In
older systems, containers are often monitored by existing
systems like Nagios, Zabbix, or other traditional monitoring
systems. As we showed in Chapter 6, there are also newer
options, including systems like Prometheus. The Application
Performance Monitoring (APM) vendors, like New Relic,
Datadog, or Honeycomb all have first-class support for
containers and containerized applications, as well. So if your



application is already monitored by one of them, chances are
that you don’t need to change much.

In older systems, it is generally engineers who are paged and
respond to issues and make decisions about how to handle
failed applications. In dynamic systems, this work generally
moves into more automated processes that belong inside the
platform. In a transitional period, your system may have both
while moving more and more to an automated system where
engineers are paged only when the platform really can’t
intervene. In any case, a human will still need to be the final
line of defense. But the containerized system is much easier to
handle when things do go wrong because the mechanisms are
standardized across applications.

Scheduling

How do you decide which services run on which servers?
Containers are easy to move around because Docker provides
such good mechanisms for doing so. And that opens up lots of
possibilities for better resource usage, better reliability, self-
healing services, and dynamic scaling. But something has to
make those decisions.



In older systems, this was often handled with dedicated servers
per service. You often configured a list of servers into the
deployment scripts and the same set of servers would receive
the new application on each deployment. One-service-per-
server models drove early virtualization in private data centers.
Cloud systems encouraged the one-service-per-server model by
making it easy to slice and dice servers into commodity virtual
servers. Autoscaling in systems like AWS handled part of this
dynamic behavior. But if you move to containers, where many
services may be running on the same virtual server, then
scaling and dynamic behaviors at the server level do not help
you.

Distributed schedulers

Distributed schedulers leverage Docker to let you reason about
your entire network of servers almost as if it were a single
computer. The idea here is that you define some policies about
how you want your application to run, and you let the system
figure out where to run it and how many instances of it to run.
If something goes wrong on a server or with the application,
you let the scheduler start it up again on any available healthy
resource that meets the application’s requirements. This fits
more into Docker, Inc. founder Solomon Hykes’s original vision
for Docker: a way to run your application anywhere without

https://www.linkedin.com/in/solomonhykes


worrying about how it gets there. Generally, zero downtime
deployment in this model is done in the blue-green style, where
you launch the new generation of an application alongside the
old generation, and then slowly migrate work from the old
stack to the new one.

Using the metaphor now made famous by Kelsey Hightower,
the scheduler is the system that plays Tetris for you, placing
services on servers for the best fit, on the fly.

While it was not the first—that honor goes to platforms like
Mesos and Cloud Foundry—today Kubernetes, which came out
of Google in 2014, is the undoubted leader when it comes to
container-based schedulers. The early releases of Kubernetes
took the lessons that Google learned from their own internal
Borg system, and brought those to the open-source community.
It was built on Docker and Linux containers from the beginning
and not only supports Docker’s containerd  but also a few of
the other container runtimes—all of which use Docker
containers. Kubernetes is a big system with a lot of moving
pieces. There are many different commercial and cloud-based
distributions of Kubernetes. The Cloud Native Computing
Foundation provides certifications to ensure that each
distribution meets certain standards within the broader
Kubernetes community. This space continues to change rapidly

https://bit.ly/1Gph4FZ
https://youtu.be/HlAXp0-M6SY?t=10m23s
https://kubernetes.io/
https://kubernetes.io/blog/2015/04/borg-predecessor-to-kubernetes/
https://landscape.cncf.io/members?category=certified-kubernetes-distribution,certified-kubernetes-hosted,certified-kubernetes-installer&grouping=category


and while Kubernetes is really powerful, it’s an actively
evolving target that can be hard to stay on top of. If you are
building a brand-new system from scratch, you will probably
want to strongly consider Kubernetes. In the absence of other
experience, if you are running on a cloud, your provider’s
implementation will likely be the easiest path to follow. While
we encourage you to consider it for any complex system,
Kubernetes is not the only option.

Docker Swarm mode came out of Docker, Inc. in 2015 and is
built as a Docker native system from the ground up. It might be
an attractive option if you are looking for a very simple
orchestration tool that stays completely within the Docker
platform and is supported by a single vendor. Docker Swarm
mode has not seen much adoption in the market, and since
Docker is integrating Kubernetes so heavily into its tooling, this
is probably not as clear a path as it once was.

Orchestration

When we talk about schedulers, we often talk about not just
their ability to match jobs to resources but their orchestration
capabilities as well. By that, we mean the ability to command
and organize applications and deployments across a whole
system. Your scheduler might move jobs for you on the fly or



allow you to run tasks on each server specifically. This was
more commonly handled in older systems by specific
orchestration tools.

In most modern container systems, all the orchestration tasks,
including scheduling are handled by the core cluster software,
whether it be Kubernetes, Swarm, a cloud provider’s bespoke
container-management system or something else.

Of all the features delivered by the platform, scheduling is
undoubtedly the most powerful. It also has the most impact on
applications when moving them into containers. Many
traditional applications are not designed to have service
discovery and resource allocation change underneath them and
require a significant number of changes to work well in a truly
dynamic environment. For this reason, your move to a
containerized system may not necessarily encompass moving to
a scheduled platform initially. Often the best path to production
containers lies in containerizing your applications while
running inside the traditional system and then moving on to a
more dynamic, scheduled system. This might mean initially
running your applications as containers on the same servers
they are currently deployed to, and then once that is working
well, you can introduce a scheduler to the mix.



Service Discovery

You can think of service discovery as the mechanism by which
the application finds all the other services and resources it
needs on the network. Rare is the application that has no
dependency on anything else. Stateless, static websites are
perhaps one of the only systems that may not need any service
discovery. Nearly everything else needs to know something
about the surrounding system and requires a way to find out
that information. Most of the time this involves more than one
system, but they are usually tightly coupled.

You might not think of them this way, but in traditional systems,
load balancers were one of the primary means for service
discovery. Load balancers are used for reliability and scaling,
but they also keep track of all of the endpoints associated with a
particular service. This is sometimes manually configured and
sometimes more dynamic, but the way other systems find
endpoints for a service is by using a known address or name for
the load balancer. That’s a form of service discovery, and load
balancers are a common way to do this in older systems. They
often are used for this in modern environments, too, even if
they don’t look much like traditional load balancers. Other
means for service discovery in older systems are static database
configurations or application configuration files.



As you can see back in Figure 9-1, Docker does not address
service discovery in your environment, except when using
Docker Swarm mode. For the vast majority of systems, service
discovery is left to the platform. This means it’s one of the first
things you’ll need to resolve in a more dynamic system.
Containers are by nature easily moved, and that can break
traditional systems easily if they were built around more
statically deployed applications. Each platform handles this
differently and you’ll want to understand what works best with
your system.

NOTE

Docker Swarm (classic Swarm) and Docker Swarm mode are not the same things. We
will discuss Docker Swarm mode in more detail in Chapter 10.

Some examples of service discovery mechanisms you might be
familiar with include:

Load balancers with well-known addresses
Round-robin DNS
DNS SRV records
Dynamic DNS systems
Multicast DNS
Overlay networks with well-known addresses

https://github.com/docker-archive/classicswarm
https://docs.docker.com/engine/swarm


Gossip protocols
Apple’s Bonjour protocol
Apache Zookeeper
HashiCorp’s Consul
Etcd

That’s a big list and there are a lot more options than that. Some
of these systems also do a lot more than just service discovery,
which can confuse the issue. An example of service discovery
that may be closer to hand while you’re trying to understand
this concept is the linking mechanism used by Docker Compose
in Chapter 8. This mechanism relies on a DNS system that the
dockerd  server supplies, which allows one service in Docker
Compose to reference another peer service’s name and get the
correct container IP address returned. Kubernetes, at its
simplest, also has a system that works like this, with injected
environment variables. But, these are the simplest forms of
discovery on modern systems.

Often you find that the interface to these systems relies on
having well-known names and/or ports for a service. You might
call out to http://service-a.example.com to reach service A on a
well-known name. Or you might call out to
http://services.example.com:service-a-port to reach the same
service on a well-known name and port. Modern environments

https://en.wikipedia.org/wiki/Bonjour_(software)
https://zookeeper.apache.org/
https://www.consul.io/
https://etcd.io/
http://service-a.example.com/


often handle this differently. Usually, within a new system, this
process will be managed and fairly seamless. And it’s frequently
easy for new applications to call out of the platform to more
traditional systems, but sometimes it’s not as easy going the
other way. Often the best initial system (though not necessarily
longer-term) is a system where you present dynamically
configured load balancers that are easily reachable by systems
in your older environment. Kubernetes provides for this in the
form of Ingress  routes and might be one path to consider if
you are using that platform.

Examples of this include:

Kubernetes’ Ingress  controllers, including Traefik or
Contour among others
Linkerd service mesh
Standalone Sidecar service discovery with Lyft’s Envoy proxy
Istio service mesh and Lyft’s Envoy

If you are running a blended modern and traditional system,
getting traffic into the newer containerized system is generally
the harder problem to solve and the one you should think
through first.

Production Wrap-Up

https://bit.ly/2vgpMsX
https://doc.traefik.io/traefik/providers/kubernetes-ingress/
https://projectcontour.io/
https://linkerd.io/
https://github.com/NinesStack/sidecar
https://github.com/envoyproxy/envoy
https://istio.io/


Many people will start by using simple Docker orchestration
tools. However, as the number of containers and frequency
with which you deploy containers grows, the appeal of
distributed schedulers will quickly become apparent. Tools like
Kubernetes allow you to abstract individual servers and whole
data centers into large pools of resources in which to run
container-based tasks.

There are undoubtedly many other worthy projects out there in
the deployment space. But these are the most commonly cited
and have the most publicly available information at the time of
this writing. It’s a fast-evolving space, so it’s worth taking a look
around to see what new tools are being shipped.

In any case, you should start by getting a Linux container
infrastructure up and running and then look at outside tooling.
Docker’s built-in tooling might be good enough for you. We
suggest using the lightest-weight tool for the job, but having
flexibility is a great place to be, and Linux containers are
increasingly supported by more and more powerful tooling.

Docker and the DevOps Pipeline



So once we have considered and implemented all of that
functionality, we should have our production environment in
robust shape. But how do we know it works? One of the key
promises of Docker is the ability to test your application and all
of its dependencies in exactly the operating environment it
would have in production. It can’t guarantee that you have
properly tested external dependencies like databases, nor does
it provide any magical test framework, but it can make sure
that your libraries and other code dependencies are all tested
together. Changing underlying dependencies is a critical place
where things go wrong, even for organizations with strong
testing discipline. With Docker, you can build your image, run it
on your development box, and then you can test the same
image in your continuous-integration pipeline, before shipping
it to production servers.

Testing your containerized application is not much more
complicated than testing your application itself, as long as your
test environment is designed to manage Linux container
workloads. Next, let’s cover one example of how you might do
this.

Quick Overview



Let’s draw up an example production environment for a
fictional company. We’ll try to describe something similar to the
environment at a lot of companies, with Docker thrown into the
mix for illustration purposes.

Our fictional company’s environment has a pool of production
servers that run Docker daemons, and an assortment of
applications deployed there. There are multiple build and test
workers that are tied to the pipeline coordination server. We’ll
ignore deployment for now and talk about it once we have our
fictional application tested and ready to ship.

Figure 9-2 shows what a common workflow looks like for
testing containerized applications, including the following
steps:

1. A build is triggered by some outside means—for example
from a webhook call from a source code repository, or a
manual trigger by a developer.

2. The build server kicks off a container image build.
3. The image is created on the local server.
4. The image is tagged with a build or version number, or

commit hash.
5. A new container, based on the newly built image, is

configured to run the test suite.



6. The test suite is run against the container and the result is
captured by the build server.

7. The build is marked as passing or failing.
8. Passed builds are shipped to an image registry or other

storage mechanism.

You’ll notice that this isn’t too different from common patterns
for testing applications. At a minimum, you need to have a job
that can kick off a test suite. The steps we’re adding here are
just to create a container image first and invoke the test suite
inside of the container.

Figure 9-2. Docker testing workflow chart



Let’s look at how this works for the application we’re deploying
at our fictional company. We just updated our application and
pushed the latest code to our Git repository. We have a post-
commit hook that triggers a build on each commit, so that job is
kicked off on the build server, which is also running the
dockerd  daemon. The job on the build server assigns the task
to a test worker. The worker doesn’t have dockerd  running,
but it has the docker  command-line tool installed. So we run
our docker image build  against the remote dockerd  daemon,
generating a new image on the remote Docker server.

NOTE

You should build your container image exactly as you’ll ship it to production. If you
need to make concessions for testing, they should be externally provided switches,
either via environment variables or through command-line arguments. The whole
idea is to test the exact build that you’ll ship, so this is a critical point.

Once the image has been built, our test job will create and run a
new container based on our new production image. Our image
is configured to run the application in production, but we need
to run a different command for testing. That’s OK! Docker lets
us do that simply by providing the command at the end of the
docker container run  command. In production, our
imaginary container would start supervisor , which in turn



would start up an nginx  instance and some Ruby unicorn web
server instances behind that. But for testing, we don’t need that
nginx  and we don’t need to run our web application. Instead,
our build job invokes the container like this:

We called docker container run , but we did a couple of extra
things here, too. We passed a couple of environment variables
into the container: ENVIRONMENT  and API_KEY . These can
either be new or overrides for the ones Docker already exports
for us. We also asked for a particular tag—in this case,
version1 . That will make sure we build on top of the correct
image even if another build is running simultaneously. Then we
override the command that our container was configured to
start in the Dockerfile’s CMD line. Instead, we call our test script,
/opt/awesome_app/test.sh. Although it is not necessary in this
example, you should note that in some cases you will need to
override the Dockerfile’s ENTRYPOINT  ( --entrypoint ) to run
something other than the default command for that container.

$ docker container run -e ENVIRONMENT=testing -e API_
    -it awesome_app:version1 /opt/awesome_app/test.sh



TIP

Always pass the precise Docker tag (usually a version or commit hash) for your
image into the test job. If you always use latest , then you won’t be able to
guarantee that another job has not moved that tag just after your build was kicked
off. If you use the most precise tag possible, then you can be sure you’re testing the
right build of the application.

A critical point to make here is that docker container run
will exit with the exit status of the command that was invoked
in the container. That means we could just look at the exit
status to see if our tests were successful. If your test suite is
properly designed, this is probably all you need. If you need to
run multiple steps, or the exit code can’t be relied on, one way
to handle this is to capture all of the output of the test run into a
file and then sift through the output to look for status messages.
Our fictional build system does just that. We write out the
output from the test suite and our test.sh echoes either Result:
SUCCESS!  or Result: FAILURE!  on the last line to signify if our
tests passed. If you need to rely on this mechanism, be sure to
look for some output string that won’t appear by happenstance
in your normal test suite output. If we need to look for
“success,” for example, we should limit it to looking at the last
line of the file, and maybe also ensure that the whole line
matched the exact output we would normally expect. In this



case, we look at just the last line of the file and find our success
string, so we mark the build as passed.

There is one more container-specific step. We want to take our
passed build and push that image to our registry. The registry is
the interchange point between builds and deployments. It also
allows us to share the image with our peers and other builds
that might be built on top of it. But for now, let’s just think of it
as the place where we put and tag, successful builds. Our build
script will now do a docker image tag  to give the image the
right build tag(s), potentially including latest , and then
perform a docker image push  to push the build to the registry.

That’s it! As you can see, there is not much to this compared
with testing a normal application. We take advantage of the
client/server model of Docker to invoke the test on a different
server from our primary test server, and we wrapped up our
tests into a consolidated shell script to generate our output
status. Overall it is very similar to most other modern build
system approaches.

The most critical takeaway is that our fictional company’s
system makes sure that they only ship applications whose test
suites have passed on the same Linux distribution, with the
same libraries and the same build settings. That container



might then also be tested against any outside dependencies like
databases or caches without having to mock them. None of this
guarantees success, but it gets us a lot closer to that than the
dependency roulette often experienced by production
deployment systems that are not built on container technology.

NOTE

If you use Jenkins for continuous integration or are looking for a good way to test
scaling Docker, there are many plug-ins for Docker, Mesos, and Kubernetes that are
worth investigating. Many hosted, commercial platforms now provide containerized
CI environments as well, including CircleCI and GitHub Actions

Outside Dependencies

But what about those external dependencies that we glossed
over? Things like the database, or Memcache or Redis instances
that we need to run our tests against our container? If our
fictional company’s application needs a database to run, or a
Memcache or Redis instance, we need to solve that external
dependency to have a clean test environment. It would be nice
to use the container model to support that dependency. With
some work, you can do this with tools like Docker Compose,
which we described in detail in Chapter 8. In Docker Compose,

https://bit.ly/1gZvZW1
https://circleci.com/
https://github.blog/2022-02-02-build-ci-cd-pipeline-github-actions-four-steps/
https://github.com/docker/compose


our build job could express some dependencies between
containers, and then Compose will connect them seamlessly.

Being able to test your application in an environment that looks
like where it will live is a huge win. Compose makes this pretty
easy to set up. You’ll still need to rely on your own language’s
testing framework for the tests, but the environment is really
easy to orchestrate.

Wrap-Up

Now that we’ve surveyed how a containerized application
interacts with the outside environment, and where the
boundaries lie in each of those areas, we’re ready to explore
how Docker clusters can be built to support the global, always-
on, on-demand nature of many modern technology operations.



Chapter 10. Containers at Scale

A major strengths of containers is their ability to abstract away
the underlying hardware and operating system so that your
application is not constrained to any particular host or
environment. It facilitates scaling a stateless application not just
horizontally within your data center, but also across cloud
providers without many of the traditional barriers you would
encounter. True to the shipping container metaphor, a
container on one cloud looks like a container on another.

Many organizations find turnkey cloud deployments of Linux
containers appealing because they can gain many of the
immediate benefits of a scalable container-based platform
without needing to completely build something in-house. Even
though this is true, the barrier is actually pretty low for
building your own platform in the cloud or in your own data
center, and we’ll cover some options for doing that shortly.

The major public cloud providers have all worked to support
Linux containers natively in their offerings. Some of the largest
efforts to support Linux containers in the public cloud include:

Amazon Elastic Container Service
Google Cloud Run

https://aws.amazon.com/ecs
https://cloud.google.com/run


Azure Container Apps

Many of the same companies also have robust hosted
Kubernetes offerings like:

Amazon Elastic Kubernetes Service
Google Kubernetes Engine
Azure Kubernetes Service

It’s trivial to install Docker on a Linux instance in one of the
public clouds. But getting Docker onto the server is usually just
one step in the creation of a full production environment. You
could do this completely on your own, or you could avail
yourself of the many tools available from the major cloud
providers, Docker, Inc., and the broader container community.
Much of the tooling will work equally well in either a public
cloud or your own data center.

In the realm of schedulers and more complex tooling systems,
we have plenty of choices for systems that replicate much of the
functionality you would get from a public cloud provider. Even
if you run in a public cloud, there are some compelling reasons
why you might choose to run your own Linux container
environment rather than use one of the off-the-shelf offerings.

https://azure.microsoft.com/en-us/services/container-apps
https://aws.amazon.com/eks
https://cloud.google.com/kubernetes-engine
https://azure.microsoft.com/en-us/services/kubernetes-service


In this chapter, we’ll cover some options for running Linux
containers at scale, first going through the much simpler
Docker Swarm mode, and then diving into some more
advanced tools like Kubernetes and some of the larger cloud
offerings. All of these examples should give you a view of how
you can leverage Docker to provide an incredibly flexible
platform for your application workloads.

Docker Swarm Mode

After building the container runtime in the form of the Docker
engine, the engineers at Docker turned to the problems of
orchestrating a fleet of individual Docker hosts and effectively
packing those hosts full of containers. The first tool that evolved
from this work was called Docker Swarm. As we explained
early on, and rather confusingly, there are now two things
called “Swarm,” both of which come from Docker, Inc.

The original standalone Docker Swarm is now commonly
referred to as Docker Swarm (classic), but there is a second
“Swarm”, implementation which is more specifically called
Swarm mode. Instead of being a separate product, this is built
into the Docker client. The built-in Swarm mode is a lot more
capable than the original Docker Swarm and is intended to

https://github.com/docker-archive/classicswarm
https://docs.docker.com/engine/swarm


replace it entirely., Swarm mode has the major advantage of not
requiring you to install anything separately. You already have
this clustering capability on any of your systems that are
running Docker! This is the Docker Swarm implementation that
we’ll focus on here. Hopefully, now that you know that there
have been two different Docker Swarm implementations, you
won’t get confused by contradictory information on the
internet.

The idea behind Docker Swarm mode is to present a single
interface to the docker  client tool, but have that interface be
backed by a whole cluster rather than a single Docker daemon.
Swarm is primarily aimed at managing clustered computing
resources via the Docker tools. It has grown a lot since its first
release and now contains several scheduler plug-ins with
different strategies for assigning containers to hosts, and it
comes with some basic service discovery built in. But it remains
only one building block of a more complex solution.

Swarm clusters can contain one or more managers that act as
the central management hub for your Docker cluster. It is best
to set up an odd number of managers. Only one manager will
act as the cluster leader at a time. As you add more nodes to
Swarm, you are merging them into a single, cohesive cluster
that can be easily controlled with the Docker tooling.



Let’s get a Swarm cluster up and running. To start, you will
need three or more Linux servers that can talk to each other
over the network. Each of these servers should be running
recent releases of Docker Community Edition from the official
Docker software repositories.

TIP

Refer to Chapter 3 for details on installing the docker-ce  packages on Linux.

For this example, we will use three Ubuntu servers running
docker-ce . The very first thing you’ll need to do is ssh  to the
server that you want to use as the Swarm manager and then
run the swarm init  command using the IP address for your
Swarm manager.

$ ssh 172.17.4.1 
… 
 
ubuntu@172.17.4.1:$ sudo docker swarm init --advertis
 
Swarm initialized: current node (hypysglii5syybd2zew6
 
To add a worker to this swarm, run the following comm



WARNING

There are steps that you must take to secure a Docker Swarm mode cluster, which we
are not covering here. Before you run Docker Swarm mode on any long-lived
systems, make sure that you understand the options, and have taken proper steps to
secure the environment.

TIP

In many of this chapter’s examples, you must use the correct IP addresses for your
manager and worker nodes.

This step will initialize the Swarm manager and give you the
token that is required for nodes that want to join the cluster.
Make note of this token somewhere safe, like a password
manager. Don’t worry too much if you lose this token; you can
always get it again by running the following command on the
manager:

sudo docker swarm join-token --quiet worker

 
    docker swarm join --token SWMTKN-1-14……a4o55z01zq
 
To add a manager to this swarm, run 'docker swarm joi
and follow the instructions.



You can inspect your progress so far by running your local
docker  client pointed at the new manager node’s IP address.

$ docker -H 172.17.4.1 system info 
 
… 
Swarm: active
  NodeID: l9gfcj7xwii5deveu3raf4782
  Is Manager: true
  ClusterID: mvdaf2xsqwjwrb94kgtn2mzsm
  Managers: 1
  Nodes: 1
  Default Address Pool: 10.0.0.0/8
  SubnetSize: 24
  Data Path Port: 4789
  Orchestration:
   Task History Retention Limit: 5
  Raft:
   Snapshot Interval: 10000
   Number of Old Snapshots to Retain: 0
   Heartbeat Tick: 1
   Election Tick: 10
  Dispatcher:
   Heartbeat Period: 5 seconds
  CA Configuration:
   Expiry Duration: 3 months
   Force Rotate: 0



  Autolock Managers: false
  Root Rotation In Progress: false
  Node Address: 172.17.4.1
  Manager Addresses:
   172.17.4.1:2377 
…

You can also list all of the nodes that are currently in the cluster
with the following command:

At this point, you can add the two additional servers as workers
to the Swarm cluster. This is what you’d do in production if you
were going to scale up, and Swarm makes this pretty easy.

$ docker -H 172.17.4.1 node ls 
 
ID      HOSTNAME      STATUS AVAILABILITY MANAGER STA
l9…82 * ip-172-17-4-1 Ready  Active       Leader     

$ ssh 172.17.4.2 \
    "sudo docker swarm join --token SWMTKN-1-14……a4o5
 
This node joined a swarm as a worker. 
 
$ ssh 172.17.4.3 \
    "sudo docker swarm join --token SWMTKN-1-14……a4o5



TIP

Adding additional managers is important, and can be done as easily as the workers.
You just need to pass in the manager join token, instead of the worker join token. You
can get this token by running docker swarm join-token manager  on any of the
active nodes.

If you rerun docker node ls  you should now see that you
have a total of three nodes in your cluster, and only one of them
is marked as the Leader .

This is all that’s required to get a Swarm cluster up and running
in Swarm mode (Figure 10-1)!

 
This node joined a swarm as a worker.

$ docker -H 172.17.4.1 node ls 
 
ID      HOSTNAME      STATUS AVAILABILITY MANAGER STA
l9…82 * ip-172-17-4-1 Ready  Active       Leader     
3d…7b   ip-172-17-4-2 Ready  Active                  
ip…qe   ip-172-17-4-3 Ready  Active                  



Figure 10-1. Simple Docker Swarm mode cluster

The next thing you should do is create a network for your
services to use. There is a default network called ingress  in
Swarm, but it is very easy to create additional ones for better
isolation.

$ docker -H 172.17.4.1 network create --driver=overla
 
ckwh5ph4ksthvx6843ytrl5ik 
 
$ docker -H 172.17.4.1 network ls 
 
NETWORK ID     NAME              DRIVER    SCOPE 
494e1a1bf8f3   bridge            bridge    local 



Up to this point, we’ve just been getting the underlying pieces
running, and so far we haven’t deployed any real business logic.
So let’s launch your first service into the cluster. You can do that
with a command like this:

The service we’re launching with starts containers that host the
Quantum web game. This is a browser-based puzzle game that
uses real quantum mechanics. We hope that this is a more
interesting example than another Hello World!

xqgshg0nurzu   default-net       overlay   swarm 
2e7d2d7aaf0f   docker_gwbridge   bridge    local 
df0376841891   host              host      local 
n8kjd6oa44fr   ingress           overlay   swarm 
b4720ea133d6   none              null      local

$ docker -H 172.17.4.1 service create --detach=true -
    --replicas 2 --publish published=80,target=8080 -
    spkane/quantum-game:latest 
 
tiwtsbf270mh83032kuhwv07c

https://github.com/stared/quantum-game


WARNING

Although we’re using the latest  tag in many of these examples, you shouldn’t ever
use this tag in production. It is convenient for the book since we can easily push out
updates to the code, but this tag floats and cannot be pinned to a specific release over
a long period. That means if you use latest , then your deployments are not
repeatable! It can also easily lead to a situation where you don’t have the same
version of an application running on all the servers.

Let’s see where those containers ended up, by running docker
service ps  against the service name you created:

Swarm mode uses a routing mesh between the nodes to
automatically route traffic to a container that can serve the
request. When you specify a published port in the docker
service create  command, the mesh makes it possible to hit
this port on any of your three nodes and will route you to the
web application. Notice that we said any of the three nodes even
though you only have two instances running. Traditionally, you
would have had to also set up a separate reverse proxy layer to

$ docker -H 172.17.4.1 service ps quantum 
 
ID    NAME      IMAGE       NODE          DESIRED… CU
rk…13 quantum.1 spkane/qua… ip-172-17-4-1 Running  Ru
lz…t3 quantum.2 spkane/qua… ip-172-17-4-2 Running  Ru



accomplish this, but its batteries are included with Swarm
mode.

To prove it, you can test the service now by pointing a web
browser to the IP address of any of your nodes.

http://172.17.4.1/

If everything is working as expected, you should see the first
puzzle board for “The Quantum Game”.

This gives us a summary view of the most commonly needed
information, but sometimes that’s not enough. Docker
maintains a lot of other metadata about services, just like it
does for containers. We can get detailed information about a
service with service inspect :

To get a list of all the services, we can use +servic

$ docker -H 172.17.4.1 service ls 
 
ID    NAME    MODE       REPLICAS IMAGE              
iu…9f quantum replicated 2/2      spkane/quantum-game

https://quantumgame.io/


$ docker -H 172.17.4.1 service inspect --pretty quant
 
ID:    iuoh6oxrec9fk67ybwuikutqa 
Name:    quantum 
Service Mode:  Replicated
 Replicas:  2 
Placement: 
UpdateConfig:

 Parallelism:  1
 On failure:  pause
 Monitoring Period: 5s
 Max failure ratio: 0
 Update order:      stop-first 
RollbackConfig:
 Parallelism:  1
 On failure:  pause
 Monitoring Period: 5s
 Max failure ratio: 0
 Rollback order:    stop-first 
ContainerSpec:
 Image:    spkane/quantum-game:latest@sha256:1f57…4a8
 Init:    false 
Resources: 
Networks: default-net 
Endpoint Mode:  vip 
Ports:
 PublishedPort = 80
Protocol = tcp



There is a lot of info here, so let’s point out some of the more
important things. First, we can see that this is a replicated
service with two replicas, just like we saw in the service ls
command. We can also see that Docker is health-checking the
service at five-second intervals. Running an update to the
service will use the stop-first  method, which means it will
take our service first to N−1 and then spin up a new instance to
take us back to N. You might want to always run in N+1 mode so
that you are never down a node during updates in production.
You can change that with the --update-order=start-first
option to the service update  command. It will exhibit the
same behavior in a rollback scenario, and we can likewise
change that with --rollback-order=start-first .

In a real-world scenario, we not only need to be able to launch
our service but we also need to be able to scale it up and down.
It would be a shame if we had to redeploy it to do that, not to
mention it could introduce any number of additional issues.
Luckily, Swarm mode makes it easy to scale our services with a
single command. To double the number of instances you have
running from two to four, you can simply run this:

  Protocol = tcp
  TargetPort = 8080
  PublishMode = ingress



NOTE

We used --detach=false  in the previous command so that it was easier to see what
was happening.

We can now use service ps  to show us that Swarm did what
we asked. This is the same command we ran earlier, but now
we should have more copies running! But wait, didn’t we ask
for more copies than we have nodes?

$ docker -H 172.17.4.1 service scale --detach=false q
 
quantum scaled to 4 
overall progress: 4 out of 4 tasks
1/4: running   [=====================================
2/4: running   [=====================================
3/4: running   [=====================================

4/4: running   [=====================================
verify: Service converged

$ docker -H 172.17.4.1 service ps quantum 
 
ID    NAME      IMAGE        NODE          DESIRED… C
rk…13 quantum.1 spkane/quan… ip-172-17-4-1 Running  R
lz t3 quantum 2 spkane/quan ip 172 17 4 2 Running R



You’ll notice that you have two services running on the same
host. Did you expect that? This may not be ideal for host
resiliency, but by default Swarm will prioritize ensuring that
you have the number of instances that you requested over
spreading individual containers across hosts when possible. If
you don’t have enough nodes, you will get multiple copies on
each node. In a real-world scenario, you need to think carefully
about placement and scaling. You might not be able to get away
with running multiple copies on the same host when you lose a
whole node. Would your application still serve users at that
reduced scale?

When you need to deploy a new release of your software, you
will want to use the docker service update  command. There
are a lot of options for this command, but here’s one example:

lz…t3 quantum.2 spkane/quan… ip-172-17-4-2 Running  R
mh…g8 quantum.3 spkane/quan… ip-172-17-4-3 Running  R
cn…xb quantum.4 spkane/quan… ip-172-17-4-1 Running  R

$ docker -H 172.17.4.1 service update --update-delay 
    --update-failure-action rollback --update-monitor
    --update-order start-first --update-parallelism 1
    --detach=false \
    --image spkane/quantum-game:latest-plus quantum 
 



Running this command will cause Swarm to update your
service one container at a time, pausing in between each
update. Once this is done you should be able to open up the
service’s URL in a new private or incognito browsing session (to
sidestep the browser’s local cache) and see that the game
background is now green, instead of blue.

Great you have now successfully applied an update, but what if
something were to go wrong? We might need to deploy a
previous release to get back to working order. You could now
roll back to the previous version, with the correct blue
background, by using the service rollback  command, which
we discussed in passing a little bit earlier:

quantum 
overall progress: 4 out of 4 tasks
1/4: running   [=====================================
2/4: running   [=====================================
3/4: running   [=====================================
4/4: running   [=====================================
verify: Service converged

$ docker -H 172.17.4.1 service rollback quantum 
 
quantum 
rollback: manually requested rollback 



That’s about as nice a rollback mechanism as you could ask for
a stateless service. You don’t have to keep track of the previous
version; Docker does that for you. All you need to do is tell it to
roll back and it pulls the previous metadata out of its internal
storage and performs the rollback. Just like during deployment,
Docker can health-check your containers to make sure the
rollback is working correctly.

NOTE

This rollback mechanism will always go back to the last deployed version, so if you
run it multiple times in a row, it will just flip between two versions.

Building on docker service  is a command called docker
stack , which enables you to deploy a specially designed
docker-compose.yaml  file to a Docker Swarm mode or
Kubernetes cluster. If you go back and check out the git repo

y q
overall progress: rolling back update: 4 out of 4 tas
1/4: running   [>                                    
2/4: running   [>                                    
3/4: running   [>                                    
4/4: running   [>                                    
verify: Service converged



that we used in Chapter 8, we can deploy a modified version of
that container stack into our current Swarm mode cluster.

Inside that repository is a directory called stack  which
contains a modified version of the docker-compose.yaml file that
we used earlier.

$ cd rocketchat-hubot-demo/stack

If you wanted to spin up this setup in the Swarm mode cluster,
you could do this by running the following command:

$ git clone https://github.com/spkane/rocketchat-hubo
    --config core.autocrlf=input

$ docker -H 172.17.4.1 stack deploy --compose-file do
 
Creating network rocketchat_default 
Creating service rocketchat_hubot 
Creating service rocketchat_mongo 
Creating service rocketchat_rocketchat 
Creating service rocketchat_zmachine



Now you can list what stacks are in the cluster and then also see
what services were added by the stack.

NOTE

This stack is for basic demonstration purposes and has not been well tested for this
use case, however, it should give the reader an idea of how they could assemble
something similar.

You may notice that it takes a while for all the containers to come up and that hubot
will continue to restart. This is expected since RocketChat has not been configured
yet. The RooketChat setup is covered in Chapter 8.

$ docker -H 172.17.4.1 stack ls 
 

NAME         SERVICES   ORCHESTRATOR 
rocketchat   4          Swarm 
 
$ docker -H 172.17.4.1 service ls 
 
ID    NAME         …  …  IMAGE                       
iu…9f quantum      … 2/2 spkane/quantum-game:latest  
nh…jd …_hubot      … 1/1 rocketchat/hubot-rocketchat:
gw…qv …_mongo      … 1/1 spkane/mongo:4.4 
m3…vd …_rocketchat … 1/1 rocketchat/rocket.chat:5.0.4
lb…91 …_zmachine   … 1/1 spkane/zmachine-api:latest



At this point, you could point your web browser at port 3000 on
one of the Swarm nodes (e.g. http://172.17.4.1:3000/ in these
examples) and you should see the initial setup page for
RocketChat.

You can see all the containers that are managed by the stack,
with docker stack ps :

and then when you are done you can go ahead and tear down
the stack like this:

$ docker -H 172.17.4.1 stack rm rocketchat 
 
Removing service rocketchat_hubot 
Removing service rocketchat_mongo 
Removing service rocketchat_rocketchat 
Removing service rocketchat_zmachine 
Removing network rocketchat_default

$ docker -H 172.17.4.1 stack ps -f "desired-state=run
 
ID    NAME           IMAGE                    NODE … 
b5…1h …_hubot.1      rocketchat/hubot-rocket… …-1  … 
eq…88 …_mongo.1      spkane/mongo:4.4         …-2  … 
5x…8u …_rocketchat.1 rocketchat/rocket.chat:… …-3  … 
r5…x4 …_zmachine.1   spkane/zmachine-api:lat… …-4  … 

http://172.17.4.1:3000/


NOTE

If you try to immediately spin everything back up you might get some unexpected
errors. Just waiting a few moments should fix things, while the cluster finishes
tearing down the old network for the stack, etc.

So, what happens if one of your servers is experiencing an issue
and you need to take it offline? In this case, you can easily drain
all the services off of a single node by using the --
availability  option to the docker node update  command.

Let’s take a look at the nodes that you have in the cluster again:

Let’s also check where our containers are currently running:

 docker -H 172.17.4.1 node ls 
 
ID      HOSTNAME      STATUS AVAILABILITY MANAGER STA
l9…82 * ip-172-17-4-1 Ready  Active       Leader     
3d…7b   ip-172-17-4-2 Ready  Active                  
ip…qe   ip-172-17-4-3 Ready  Active                  

$ docker -H 172.17.4.1 service ps -f "desired-state=r
 
ID    NAME        IMAGE       NODE          DESIRED… 



TIP

In the previous command, we used a filter so that the output showed only the
currently running processes. By default, Docker will also show you the previous
containers that were running in a tree format, so that you can see things like updates
and rollbacks in the output.

If you have determined that the server at 172.17.4.3 needs
downtime, you could drain the tasks of that node and move
them to another host by modifying the availability  state to
drain  in Swarm:

If we inspect the node, we can see that the availability is now
set to drain .

sc…1h quantum.1   spkane/qua… ip-172-17-4-1 Running  
ax…om quantum.2   spkane/qua… ip-172-17-4-2 Running  
p4…8h quantum.3   spkane/qua… ip-172-17-4-3 Running  
g8…tw quantum.4   spkane/qua… ip-172-17-4-1 Running  

$ docker -H 172.17.4.1 node update --availability dra
 
ip-172-17-4-3

$ docker -H 172.17.4.1 node inspect --pretty ip-172-1



$ p p y p
 
ID:      ipohyw73hvf70td9licnls9qe 
Hostname:                ip-172-17-4-3 
Joined at:               2022-09-04 16:59:52.92245134
Status:
 State:      Ready
 Availability:           Drain
 Address:    172.17.4.3 
Platform:

 Operating System:  linux
 Architecture:    x86_64 
Resources:
 CPUs:      2
 Memory:    7.795GiB 
Plugins:
 Log:    awslogs, fluentd, gcplogs, gelf, journald, j
         logentries, splunk, syslog
 Network:    bridge, host, ipvlan, macvlan, null, ove
 Volume:    local 
Engine Version:    20.10.7 
TLS Info:
 TrustRoot: 
… 
 
 Issuer Subject:  …
 Issuer Public Key:  …



You might be wondering what effect that has on the service. We
told one of the nodes to stop running copies of the service, and
they either have to go away or migrate somewhere else. What
did it do? We can look at the details of our service again and see
that all the running containers on that host have been moved to
a different node.

At this point, it is safe to bring down the node and do whatever
work is required to make it healthy again. When you are ready
to add the node back into the Swarm cluster, you can do so by
running:

$ docker -H 172.17.4.1 service ps -f "desired-state=r
 
ID    NAME        IMAGE       NODE          DESIRED… 
sc…1h quantum.1   spkane/qua… ip-172-17-4-1 Running  
ax…om quantum.2   spkane/qua… ip-172-17-4-2 Running  
p4…8h quantum.3   spkane/qua… ip-172-17-4-2 Running  
g8…tw quantum.4   spkane/qua… ip-172-17-4-1 Running  

$ docker -H 172.17.4.1 node update --availability act
 
ip-172-17-4-3



We’ll spare you from re-inspecting the node at the moment, but
you can always rerun the node inspect  command if you want
to see what this looks like.

WARNING

When you add a node back to the cluster, containers will not automatically balance!
However, a new deployment or update should result in the containers being evenly
spread across the nodes.

Once you are done, you can remove your service and network
with the following commands:

$ docker -H 172.17.4.1 service rm quantum 
 
quantum 
 
$ docker -H 172.17.4.1 network rm default-net 
 
default-net

and then verify that they are both indeed completely gone:

$ docker -H 172.17.4.1 service ps quantum 
 
no such service: quantum 



 
$ docker -H 172.17.4.1 network ls 
 
NETWORK ID     NAME              DRIVER    SCOPE 
494e1a1bf8f3   bridge            bridge    local 
2e7d2d7aaf0f   docker_gwbridge   bridge    local 
df0376841891   host              host      local 
n8kjd6oa44fr   ingress           overlay   swarm 
b4720ea133d6   none              null      local

That’s all for now! At this point, you can safely tear down all of
the servers that were a part of your Swarm cluster if you no
longer need them.

That was kind of a whirlwind tour, but covers the basics of
using Swarm mode in Docker Engine and should help get you
started building your own Docker clusters wherever you might
decide to use them.

Kubernetes

Now let’s take some time to look at Kubernetes. Since its release
to the public during DockerCon 2014, Kubernetes has grown
rapidly and is now probably the most widely adopted of the
container platforms. It is not the oldest or most mature product

https://events.docker.com/events/dockercon


today—that distinction goes to Mesos, which first launched in
2009 before containers were in widespread use—but
Kubernetes was purpose-built for containerized workloads, has
a great mix of functionality that is ever evolving, and also
enjoys a very strong community that includes many early
Docker and Linux container adopters. This mix has helped
significantly increase its popularity over the years. At
DockerCon EU 2017, Docker, Inc. announced that Kubernetes
support will be coming to the Docker Engine tooling itself.
Docker Desktop is capable of spinning up a single-node
Kubernetes cluster and the client can deploy container stacks
for development purposes. This provides a nice bridge for
developers who use Docker locally, but deploy to Kubernetes.

Like Linux itself, Kubernetes is available in several
distributions, both free and commercial. There is a wide-variety
of distributions that are available and supported to varying
degrees. Kubernetes widespread adoption means that it now
has some pretty nice tooling for local development installations.



TIP

The Kubernetes coverage in this book is intended to provide some basic guidance on
how readers can integrate their Linux container workflow with Kubernetes, but we
do not go into a lot of detail about the Kubernetes ecosystem here. We highly
recommend reading Kubernetes: Up and Running or any of the other great materials
out there, to familiarize yourself with all the relevant concepts and terminology.

Minikube

Minikube was one of the original tools for managing a local
Kubernetes installation and is the first one that we will be
focussing on here.. Most of the concepts that you’ll learn while
working with Minikube can be applied to any Kubernetes
implementation, including the options that will discuss after
Minikube, so it’s a great place to start.

TIP

There are many other options for running a local Kubernetes cluster. We are starting
with minikube  because the container or virtual machine that it spins up is a pretty
standard single-node Kubernetes install. In addition to the tools that we will be
discussing in this section, we highly recommend exploring k3s, k3d, k0s, and
microk8s as well.

What Is Minikube?

https://www.oreilly.com/library/view/kubernetes-up-and/9781098110192/
https://k3s.io/
https://k3d.io/
https://k0sproject.io/
https://microk8s.io/


Minikube is a whole distribution of Kubernetes for a single
instance. It manages a container or virtual machine on your
computer that presents a working Kubernetes installation and
allows you to use all the same tooling that you would use in a
production system. In scope, it’s a little bit like Docker Compose:
it will let you stand up a whole stack locally. It goes one step
further than Compose, though, in that it has all the production
APIs. As a result, if you run Kubernetes in production, you can
have an environment on your desktop that is reasonably close
in function, if not in scale, to what you are running in
production.

Minikube is fairly unique in that all of the distribution is
controlled from a single binary you download and run locally. It
will autodetect which containerization or virtual machine (VM)
manager you have locally and will set up and run a container
or VM with all of the necessary Kubernetes services in it. That
means getting started with it is pretty simple.

So let’s install it!

Installing Minikube

Most of the installation is the same across all platforms because
once you have the tools installed, they will be your gateway to



the VM running your Kubernetes installation. To get started,
just skip to the section that applies to your operating system.
Once you have the tool up and running, you can follow the
shared documentation.

We need two tools to use Minikube effectively: minikube  and
kubectl . For our simple installation, we’re going to leverage
the fact that both of these commands are static binaries with no
outside dependencies, which makes them easy to install.

NOTE

There are several other ways to install Minikube. We’re going to show you what we
think is the simplest path on each platform. If you have strong preferences about
how to install these applications, you should feel free to use your preferred
approach. On Windows, for example, you might prefer to use the Chocolatey package
manager, or the Snap package system on Linux.

macOS

Just as in Chapter 3, you will need to have Homebrew installed
on your system. If you don’t, go back to Chapter 3 and make
sure you have it set up. Once you do, it’s trivial to install the
minikube  client:

$ brew install minikube

https://chocolatey.org/
https://snapcraft.io/


This will cause Hombrew to install download and install
Minikube. It will look something like this depending, on your
configuration:

==> Downloading https://ghcr.io/v2/homebrew/core/kube
Already downloaded: …/Homebrew/downloads/…kubernetes-
==> Downloading https://ghcr.io/v2/homebrew/core/kube
Already downloaded: …/Homebrew/downloads/…kubernetes-
==> Downloading https://ghcr.io/v2/homebrew/core/mini
Already downloaded: …/Homebrew/downloads/…minikube-1.
==> Downloading https://ghcr.io/v2/homebrew/core/mini
Already downloaded: …/Homebrew/downloads/…minikube--1
==> Installing dependencies for minikube: kubernetes-
==> Installing minikube dependency: kubernetes-cli 
==> Pouring kubernetes-cli--1.25.0.arm64_monterey.bot
🍺  /opt/homebrew/Cellar/kubernetes-cli/1.25.0: 228 f
==> Installing minikube 
==> Pouring minikube--1.26.1.arm64_monterey.bottle.ta
==> Caveats 
Bash completion has been installed to: 
  /opt/homebrew/etc/bash_completion.d 
==> Summary 
🍺  /opt/homebrew/Cellar/minikube/1.26.1: 9 files, 70
==> Running `brew cleanup minikube`… 
Disable this behavior by setting HOMEBREW_NO_INSTALL_
Hide these hints with HOMEBREW_NO_ENV_HINTS (see `man
==> Caveats 
==> minikube 



That’s it! Let’s test to make sure it’s in your path:

$ which minikube 
/opt/homebrew/bin/minikube

NOTE

Homebrew on arm64 systems install into /opt/homebrew/bin instead of /usr/local/bin.

If you don’t get a response, you will need to make sure you have
/usr/local/bin and /opt/homebrew/bin in your PATH  environment
variable. Assuming that passes, you now have the minikube
tool installed.

kubectl  should have been automatically installed since it is a
dependency of minikube , but you can also do it explicitly with
brew  as well. Generally, the version of kubectl in Homebrew
will match the current release of Minikube, so using brew
install  should help prevent mismatches:

$ brew install kubernetes-cli

Bash completion has been installed to: 
  /opt/homebrew/etc/bash_completion.d



We’ll test that the same way we tested minikube :

$ which kubectl 
/opt/homebrew/bin/kubectl

We’re good to go!

Windows

As with installing Docker Desktop on Windows, you may want
to install Hyper-V or another supported virtualization platform
in-order to run a Kubernetes virtual machine. To install
minikube , you’ll simply download the binary and put it in a
place you have in your PATH  so that you can execute it on the
command line. As of this writing, the binary is hosted on
googleapis, which is usually very reliable for maintaining stable
URLs. You’ll want to rename that file to minikube.exe once
you’ve downloaded it; otherwise, you’ll be doing a lot more
typing than you probably want!

TIP

You can find more details about the Windows install process and that binary
executable from the minikube install documentaton.

https://storage.googleapis.com/minikube/releases/latest/minikube-installer.exe
https://minikube.sigs.k8s.io/docs/start/


You then need to get the latest Kubernetes CLI tool, kubectl , to
interact with your distribution. Unfortunately, there is not a
/latest path for downloading that. So, to make sure you have the
latest version, you need to get the latest version from the
website and then plug it into a URL like this:

https://storage.googleapis.com/kubernetes-
release/release/<VERSION>/bin/windows/amd64/kubectl.exe.

Once you’ve downloaded that, you again need to make sure it’s
somewhere accessible from your PATH  to make the rest of our
exploration easier.

Linux

On Linux, you will want to have Docker installed and 

# Download the file, save as 'minikube' 
$ curl -Lo minikube \
  https://storage.googleapis.com/minikube/releases/la

 
# Make it executable 
$ chmod +x minikube 
 
# Move it to /usr/local/bin 

https://storage.googleapis.com/kubernetes-release/release/stable.txt


You’ll need to make sure that /usr/local/bin is in your path. Now
that we have minikube  we also need to fetch kubectl , which
we can do like this:

$ sudo mv minikube /usr/local/bin/

# Get the latest version number 
$ KUBE_VERSION=$(curl -s \
    https://storage.googleapis.com/kubernetes-release
 
# Fetch the executable 
$ curl -LO \
    https://storage.googleapis.com/kubernetes-release
release/$(KUBE_VERSION)/bin/linux/amd64/kubectl 
 
# Make it executable 
$ chmod +x kubectl 
 
# Move it to /usr/local/bin 
$ sudo mv kubectl /usr/local/bin/



NOTE

One of the URLs in the previous example has been continued on the following line so
that it fits in the margins. You may find that you need to re-assemble the URL and
remove the back slashes for the command to work properly in your environment.

That’s it for installation—we’re ready to go.

Running Kubernetes

Now that we have the minikube  tool, we can use it to bootstrap
our Kubernetes cluster. This is normally pretty straightforward.
You usually don’t need to do any configuration beforehand. In
this example you will see that minikube  decided to use the
docker driver, although there are other that could be selected.
To start minikube  go ahead and run the following:

$ minikube start 
 
😄  minikube v1.26.1 on Darwin 12.5.1 (arm64) 
✨  Automatically selected the docker driver. Other c
📌  Using Docker Desktop driver with root privileges 
👍  Starting control plane node minikube in cluster m
🚜  Pulling base image … 
💾  Downloading Kubernetes v1.24.3 preload …
    > preloaded-images-k8s-v18-v1…: 342.82 MiB / 342.



So what did we just do? Minikube packs a lot into that one
command. In this case we launched a single Linux container
that is providing us a functioning Kubernetes installation on
our local system. If we had used one of the virtualization
drivers with minikube  then we would have created a complete
virtual machine running Kubernetes instead on a single
container.

It then runs all of the necessary components of Kubernetes
inside Linux containers on the host. You can easily explore the
minikube  container or virtual machine to see what you got:

    > gcr.io/k8s-minikube/kicbase: 348.00 MiB / 348.0
    > gcr.io/k8s-minikube/kicbase: 0 B [_____________
🔥  Creating docker container (CPUs=2, Memory=4000MB)
🐳  Preparing Kubernetes v1.24.3 on Docker 20.10.17 …
    ▪ Generating certificates and keys …
    ▪ Booting up control plane …
    ▪ Configuring RBAC rules … 
🔎  Verifying Kubernetes components…
    ▪ Using image gcr.io/k8s-minikube/storage-provisi
🌟  Enabled addons: storage-provisioner, default-stor
🏄  Done! kubectl is now configured to use "minikube"
     "default" namespace by default



$ minikube ssh 
 
docker@minikube:~$

On your Kubernetes cluster you probably won’t be SSHing into
the command line that often. But we want to see what’s
installed and get a handle on the fact that when we run
minikube , we’re controlling a environment that is running
many processes. Let’s take a look at what is running on the
Docker instance on our Kubernetes cluster:

docker@minikube:~$ docker container ls 
 
…ID   IMAGE       COMMAND               …  NAMES
48…cf ba…57      "/storage-provisioner" … k8s_storage
4e…8d ed…e8      "/coredns -conf /etc…" … k8s_coredns
1d…3d …pause:3.6 "/pause"               … k8s_POD_cor
82…d3 7a…dc      "/usr/local/bin/kube…" … k8s_kube-pr
27…10 …pause:3.6 "/pause"               … k8s_POD_kub
15…ce …pause:3.6 "/pause"               … k8s_POD_sto
ff…3d f9…55      "kube-controller-man…" … k8s_kube-co
33…c5 …pause:3.6 "/pause"               … k8s_POD_kub

30…97 a9…df      "etcd --advertise-cl…" … k8s_etcd_et
f5…41 53…a6      "kube-apiserver --ad…" … k8s_kube-ap
5b…08 8f…73      "kube-scheduler --au…" … k8s_kube-sc
87…cc …pause:3.6 "/pause"               … k8s_POD_kub
5a 14 pause:3 6 "/pause" k8s POD etc



We won’t dive too much into what each component is, but by
now you should hopefully see how the mechanism works. Also,
it’s pretty easy to upgrade the components since they are just
containers, are versioned, and can be pulled from an upstream
container repository.

Go ahead and exit the shell that you have on the Minikube
system.

docker@minikube:~$ exit

Minikube commands

In the interest of space and time, we won’t go through all of the
commands for minikube . We encourage you to run it without
any options, take a look at the output, and play around with
what’s available. That being said, let’s take a quick look at some
of the most interesting commands. We’ll cover a few more later
in the course of installing an application stack, but here’s a
quick survey.

5a…14 …pause:3.6 /pause                … k8s_POD_etc
6f…0c …pause:3.6 "/pause"               … k8s_POD_kub



To see what was going on inside the system, earlier we used
minikube ssh , which is great for debugging or inspecting the
system directly. Without directly accessing the Minikube
system, we can always check on the cluster status using another
minikube  command:

$ minikube status 
 
minikube 
type: Control Plane 
host: Running 
kubelet: Running 
apiserver: Running 
kubeconfig: Configured

This shows us that everything is looking good. For scripting
purposes, you can retrieve the IP address of the system by
calling minikube ip . At any time in the future, you can check
your version of minikube  against the most recent release by
running minikube update-check . To apply an upgrade you can
simply use the same mechanism you used to install it originally.
Critically, the minikube status  command also shows us that
the kubeconfig is properly configured. We will need this so that
kubectl  knows how to connect to our cluster.



We started the Kubernetes cluster with minikube start . As
you might expect, following the style of Docker CLI arguments,
minikube stop  will stop all the Kubernetes components and
the Linux container or virtual machine. To completely clean up
your environment, you can also delete the cluster by running
minikube delete .

Kubernetes Dashboard

Now that we have Minikube up and running, we don’t just have
the command-line tools to interact with, we have a whole
Kubernetes Dashboard installed that we can explore. We can
reach it via the minikube dashboard  command. Go ahead and
run that—it should launch your web browser pointed to the
correct IP address and port of the Kubernetes dashboard! There
is a lot of stuff on the dashboard and we’re not able to cover it
all, but you should feel free to click around and explore.
Depending on your previous exposure to Kubernetes, some of
the terms in the dashboard’s sidebar will be familiar to you, but
many of them may be completely foreign. If you don’t have a
computer in front of you, Figure 10-2 shows a screenshot of
what an empty Minikube installation looks like from the
Service  link in the dashboard sideboard.



Figure 10-2. Kubernetes dashboard

If you explore the Nodes link under Cluster in the left sidebar,
you should see a single node in the cluster, named minikube .
This is the container or virtual machine that we started, and the
dashboard, like the other components, is hosted in one of the
containers we saw when we connected to the Minikube system
earlier. We’ll take another look at the dashboard when we’ve
deployed something into our cluster.

NOTE

Kubernetes exposes almost everything that you see on the dashboard with the
kubectl  command as well, which makes it very scriptable with shell scripts.

For example, running kubectl get services  or kubectl get nodes  should show
you the same information that you can see in the dashboard.



While clicking around, you may notice that Kubernetes itself
shows up as a component inside the system, just like your
applications will.

NOTE

You will need to type [Control-C]  to exit the minikube dashboard  process and
return back to your terminal prompt.

Kubernetes Containers and Pods

Now that we have a Kubernetes cluster up and running and
you’ve seen how easy that is to do locally, we need to pause to
talk about a concept that Kubernetes adds on top of the
container abstraction. Kubernetes came out of the experiences
that Google had running their massive platform. They
encountered most of the situations you might see in a
production platform and had to work out concepts to make it
easier to understand and solve the kinds of problems you run
into when managing a large installation. In doing so, they
created a complex set of new abstractions. Kubernetes
embraces many of these and thus has a whole vocabulary unto
itself. We won’t try to get into all of these, but it’s important to
understand the most central of these new abstractions— a



concept that sits a layer above the container and is known as a
Pod.

NOTE

The term pod came about because the Docker mascot is Moby, the whale, and a group
of whales, is called a pod.

In Kubernetes parlance, a pod is one or more containers
sharing the same cgroups and namespaces. You can also isolate
the containers themselves from each other inside the same pod
using cgroups and namespaces. A pod is intended to
encapsulate all of the processes or applications that need to be
deployed together to create a functioning unit, which the
scheduler can then manage. All of the containers in the pod can
talk to each other on localhost , which eliminates any need to
discover each other. So why not just deploy a big container with
all the applications inside it? The advantage of a pod over a
massive container is that you can still resource-limit the
individual application separately, and leverage the large library
of public Linux containers to construct your application.

Additionally, Kubernetes administrators often leverage the pod
abstraction to have a container run on pod startup to make sure
things are configured properly for the others, to maintain a



shared resource, or to announce the application to others, for
example. This allows you to make finer-grained containers than
you might if you have to group things into the same container.
Another nice part of the pod abstraction is the ability to share
mounted volumes.

Pods have a lifespan much like a Linux container. They are
essentially ephemeral and can be re-deployed to new hosts
according to the lifecycle of the application or the host it runs
on. Containers in a pod even share the same IP address when
facing the outside world, which means they look like a single
entity from the network level. Just as you would run only one
instance of an application per container, you generally run one
instance of a given container inside a pod. The easiest way to
think about pods is that they are a group of Linux containers
that work together as if they were one container, for most
purposes. If you need only one container, then you still get a
pod deployed by Kubernetes, but that pod contains only one
container. The nice thing about this is that there is only one
abstraction as far as the Kubernetes scheduler is concerned: the
pod. Containers are managed by some of the runtime pieces
that construct the pod and also by the configuration that you
use to define them.



One critical difference between a pod and a container is that
you don’t construct pods in a build step. They are a runtime
abstraction that in defined in a JSON or YAML manifest and
lives only inside Kubernetes. So you build your Linux
containers and send them to a registry, then define and deploy
your pods using Kubernetes. In reality, you don’t usually
directly describe a pod, either; the tools generate it for you
through the concept of a Deployment. But the pod is the unit of
execution and scheduling in a Kubernetes cluster. There is a lot
more to it, but that’s the basic concept and it’s probably easiest
to understand with a simple example. The pod abstraction is
more complicated than thinking of your system in terms of
individual containers, but it can be pretty powerful.

Let’s Deploy Something

When working with pods in Kubernetes, we usually manage
them through the abstraction of a Deployment. A deployment is
just a pod definition with some additional information,
including health monitoring and replication configuration. It
contains the definition of the pod and a little metadata about it.
So let’s look at a basic deployment and get it running.

The simplest thing we can deploy on Kubernetes is a pod that
contains just one container. We are going to use the httpbin

https://httpbin.org/


application to explore the basics of deployment on Kubernetes
and we’ll call our deployment hello-minikube .

We’ve used the minikube  command, but to get things done on
Kubernetes itself, we now need to leverage the kubectl
command we installed earlier.

$ kubectl create deployment hello-minikube \
    --image=kennethreitz/httpbin:latest --port=80 
 
deployment.apps/hello-minikube created

To see what that did for us, we can use the kubectl get all
command to list the most important objects that are now in our
cluster.

$ kubectl get all 
 
NAME                                 READY   STATUS  
pod/hello-minikube-ff49df9b8-svl68   1/1     Running 
 
NAME                 TYPE        CLUSTER-IP   EXTERNA
service/kubernetes   ClusterIP   10.96.0.1    <none> 
 
NAME                             READY   UP-TO-DATE  

deployment.apps/hello-minikube   1/1     1           



With that one command, Kubernetes created a Deployment, a
ReplicaSet to manage scaling, and a Pod. We want to ensure
that our pod shows a STATUS  of Running . If yours isn’t, just
wait and run the command a couple more times until you see
the status change. The service/kubernetes  entry is a running
service that represents Kubernetes itself. But where is our
service? We can’t get to it yet. It’s essentially in the same state a
Linux container would be if you didn’t tell it to expose any
ports. So we need to tell Kubernetes to do that for us:

This has now created a service we can reach and interact with.
A service is a wrapper for one or more deployments of an
application and can tell us how to contact the application. In
this case, we get a NodePort, which exposes a port on every
node in the cluster that will be routed to the underlying pods.
Let’s get Kubernetes to tell us how to get to it:

 
NAME                                       DESIRED   
replicaset.apps/hello-minikube-ff49df9b8   1         

$ kubectl expose deployment hello-minikube --type=Nod
service/hello-minikube exposed

$ k b l i



You might think you could now connect to
http://10.105.184.177:8080 to get to our service. But those
addresses are not reachable from your host system because of
the container or virtual machine in which Minikube is running.
So we need to get minikube  to tell us where to find the service:

$ minikube service hello-minikube --url 
http://192.168.99.100:30616

$ kubectl get services 
 
NAME           TYPE      CLUSTER-IP     EXTERNAL-IP P
hello-minikube NodePort  10.105.184.177 <none>      8
kubernetes     ClusterIP 10.96.0.1      <none>      4

http://10.105.184.177:8080/


TIP

In some configurations, you may see a message like this:

❗  Because you are using a Docker driver on darwin, 
    the terminal needs to be open to run it.

This indicates that transparently wiring the networking from your host to the
Kubernetes services is not possible at the moment and you will need to leave the
command running while you explore your application. You can use a local web
browser or open up another terminal to run commands like curl .

When you are done, you can type [CONTROL-C] in the original terminal session to kill
the minikube service  command.

The nice thing about this command, like many of the other
Kubernetes commands, is that it is scriptable and command-
line-friendly under normal circumstances. If we want to open it
with curl  on the command line, we can often just include the
minikube  command call in our request:

{
  "args": {},
  "headers": {
    "Accept": "*/*",

$ curl -H foo:bar $(minikube service hello-minikube -



    "Foo": "bar",
    "Host": "127.0.0.1:56695",
    "User-Agent": "curl/7.85.0"
  },
  "origin": "172.17.0.1",
  "url": "http://127.0.0.1:56695/get"
}

httpbin  is a simple HTTP request & response API that can be
used to test and confirm HTTP services. Not the world’s most
exciting application, but you can see that we are able to contact
our service and get a response back from it via curl .

This is the simplest use case. We didn’t configure much and
relied on Kubernetes to do the right thing using its defaults. In
the next step, we’ll take a look at something more complicated.
But first, let’s shut down our new service and deployment. It
takes two commands to do that: one to remove the service and
the other to delete it.

$ kubectl delete service hello-minikube 
service "hello-minikube" deleted 
 
$ kubectl delete deployment hello-minikube 



Deploying a Realistic Stack

Let’s now deploy something that looks more like a production
stack. We’ll deploy an application that can fetch PDF documents
from an S3 bucket, cache them on disk locally, and rasterize
individual pages to PNG images on request, using the cached
document. To run this application, we’ll want to write our cache
files somewhere other than inside the container. We want to
have them go somewhere a little more permanent and stable.
And this time we want to make things repeatable, so that we’re
not deploying our application through a series of CLI
commands that we need to remember and hopefully get right
each time. Kubernetes, much like Docker Compose, lets us
define our stack in one or more YAML files that contain all of
the definitions we care about in one place. This is what you
want in a production environment and is similar to what
you’ve seen for the other production tools.

deployment.apps "hello-minikube" deleted 
 
$ kubectl get all 
 
NAME                 TYPE        CLUSTER-IP   EXTERNA
service/kubernetes   ClusterIP   10.96.0.1    <none> 



The service we’ll now create will be called lazyraster  (as in,
“rasterize on demand”), and so each time you see that in the
YAML definition, you’ll know we’re referring to our application.
Our persistent volume will be called cache-data. Again,
Kubernetes has a huge vocabulary that we can’t entirely
address here, but to make it clear what we’re looking at we
need to introduce two more concepts: PersistentVolume  and
PersistentVolumeClaim . A PersistentVolume  is a physical
resource that we provision inside the cluster. Kubernetes has
support for many kinds of volumes, from local storage on a
node to EBS volumes on AWS and similar on other cloud
providers. It also supports NFS and other more modern
network filesystems. A PersistentVolume  stores data whose
lifecycle is independent of our application or deployments. This
lets us store data that persists between application
deployments. For our cache, that’s what we’ll use. A
PersistentVolumeClaim  is a link between the physical
resource of the PersistentVolume  and the application that
needs to consume it. We can set a policy on the claim that
allows either a single read/write claim or many read claims. For
our application we just want a single read/write claim to our
cache-data PersistentVolume .

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.html
https://en.wikipedia.org/wiki/Network_File_System


TIP

If you want more detail about some of the concepts we’ve talked about here, the
Kubernetes project maintains a glossary of all the terms involved in operating
Kubernetes. This can be very helpful. Each entry in the glossary is also linked to
much more in-depth detail on other pages.

You can check out the file we will be using in this section by
running:

NOTE

The URL above has been continued on the following line so that it fits in the margins.
You may find that you need to re-assemble the URL and remove the back slashes for
the command to work properly.

$ git clone \
    https://github.com/bluewhalebook/\ 
docker-up-and-running-3rd-edition.git --config core.a
 
Cloning into 'docker-up-and-running-3rd-edition'… 
… 
 
$ cd docker-up-and-running-3rd-edition/chapter_10/kub

https://kubernetes.io/docs/reference/glossary/?fundamental=true


We will start by looking at the manifest YAML file, called
lazyraster-service.yaml. The full manifest contains multiple
YAML documents separated by --- . We will discuss each
section individually below.

Service Definition

apiVersion: v1
kind: Service
metadata:
  name: lazyraster
  labels:
    app: lazyraster
spec:
  type: NodePort
  ports:
    - port: 8000
      targetPort: 8000
      protocol: TCP
  selector:
    app: lazyraster

The first section defines our Service . The second and third
sections, which we’ll see in a moment, respectively define our
PersistentVolumeClaim  and then our actual Deployment .
We’ve told Kubernetes that our service will be called



lazyraster  and that it will be exposed on port 8000 which
maps to the actual 8000 in our container. We’ve exposed that
with the NodePort  mechanism, which simply makes sure that
our application is exposed on the same port on each host, much
like the --publish  flag to docker container run . This is
helpful with minikube  since we’ll run only one instance, and
the NodePort  type makes it easy for us to access it from our
computer just like we did earlier. As with many parts of
Kubernetes, there are several options other than NodePort ,
and you can probably find a mechanism that’s ideal for your
production environment. NodePort  is good for minikube , but
it might work well for more statically configured load balancers
as well.

So, back to our Service  definition. The Service  is going to be
connected to the Deployment  via the selector, which we apply
in the spec section. Kubernetes widely uses labels as a way to
reason about similar components and to help tie them all
together. Labels are key/value pairs that are arbitrarily defined
and which can then be queried to identify pieces of your
system. Here the selector tells Kubernetes to look for
Deployments  with the label app: lazyraster . Notice that we
also apply the same label to the Service  itself. That’s helpful if
we want to identify all the components together later, but it’s
the selector section that ties the Deployment  to our Service .



So, we now have a Service , but it doesn’t do anything yet. We
need more definitions to make Kubernetes do what we want.

PersistentVolumeClaim Definition

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: cache-data-claim
  labels:
    app: lazyraster
spec:
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: 100Mi

The next section defines our PersistentVolumeClaim  and
likewise the PersistentVolume  that backs it. A
PersistentVolumeClaim  is a way to name a volume and claim
that you have a token to access that particular volume in a
particular way. Notice, though, that we didn’t define the
PersistentVolume  here. That’s because Kubernetes is doing
that work for us using what it calls Dynamic Volume
Provisioning. In our case the use is pretty simple: we want a



read/write claim to a volume and we’ll let Kubernetes put that
in a volume container for us. But you can imagine a scenario
where an application is going be to deployed into a cloud
provider and where dynamic provisioning would truly come
into its own. In that scenario, we don’t want to have to make
separate calls to have our volume created in the cloud for us.
We want Kubernetes to handle that. That’s what Dynamic
Volume Provisioning is all about. Here it will just create a
container for us to hold our persistent data, and mount it into
our pod when we stake our claim. We don’t do a lot in this
section except name it, ask for 100 MB of data, and tell
Kubernetes it’s a read/write mount-once-only volume.

NOTE

There’s a large number of possible volume providers in Kubernetes. Which ones are
available to you is in part determined by which provider or cloud service you are
running on. You should take a look and see which ones make the most sense for you
when you are preparing to head into production.

Deployment Definition

apiVersion: apps/v1
kind: Deployment
metadata:
  name: lazyraster



  labels:
    app: lazyraster
spec:
  selector:
    matchLabels:
      app: lazyraster
  strategy:
    type: RollingUpdate
  template:
    metadata:
      labels:
        app: lazyraster
    spec:
      containers:
      - image: relistan/lazyraster:demo
        name: lazyraster
        env:
        - name: RASTER_RING_TYPE
          value: memberlist
        - name: RASTER_BASE_DIR
          value: /data
        ports:
        - containerPort: 8000
          name: lazyraster
        volumeMounts:
        - name: cache-data
          mountPath: /data
      volumes:



      - name: cache-data
        persistentVolumeClaim:
          claimName: cache-data-claim

The Deployment  creates the pods for us and uses the Linux
container for our application. We define some metadata about
the application, including its name and one label, just like we
did for the other definitions. We also apply another selector
here to find the other resources we’re tied to. In the strategy
section, we say we want to have a RollingUpdate , which is a
strategy that causes our pods to be cycled through one-by-one
during deployment. We could also pick Recreate , which would
simply destroy all existing pods and then create new ones
afterward.

In the template  section, we define how to stamp out copies of
this deployment. The container definition includes the Docker
image name, the ports to map, volumes to mount, and some
environment variables that the lazyraster  application needs.
The very last part of the spec  asks to have our
PersistentVolumeClaim  named cache-data-claim .

And that’s it for the application definition. Now let’s stand it up!



NOTE

There are many more options and a rich set of directives you can specify here to tell
Kubernetes how to handle your application. We’ve walked through a couple of
simple options, but we encourage you to explore the Kubernetes documentation to
learn more.

Deploying the Application

Before we continue, let’s see what’s in our Kubernetes cluster,
using the kubectl  command:

We have only one thing defined at the moment, a service called
service/kubernetes . A naming convention used widely in
Kubernetes is to preface the type of object with the object Kind,
which is sometimes shortened to a two- or three-letter
abbreviation. Sometimes you will see service  represented as
svc . If you are curious, you can see all of the resources and
their short names by running the command kubectl api-
resources . So let’s go ahead and get our service, deployment,
and volume into the cluster!

$ kubectl get all 
 
NAME                 TYPE        CLUSTER-IP   EXTERNA
service/kubernetes   ClusterIP   10.96.0.1    <none> 



$ kubectl apply -f ./lazyraster-service.yaml 
 
service/lazyraster created 
persistentvolumeclaim/cache-data-claim created 
deployment.apps/lazyraster created

That output looks like what we expected: we have a service, a
persistent volume claim, and a deployment. So let’s see what’s
in the cluster now:

$ kubectl get all 
 
NAME                              READY   STATUS    R
pod/lazyraster-644cb5c66c-zsjxd   1/1     Running   0
 
NAME               TYPE      CLUSTER-IP     EXTERNAL-
service/kubernetes ClusterIP 10.96.0.1      <none>   
service/lazyraster NodePort  10.109.116.225 <none>   
 
NAME                         READY   UP-TO-DATE   AVA
deployment.apps/lazyraster   1/1     1            1  
 

NAME                                    DESIRED   CUR
replicaset.apps/lazyraster-644cb5c66c   1         1  



You can see that a bunch more happened behind the scenes.
And also, where is our volume or persistent volume claim? We
have to ask for that separately:

TIP

kubectl get all  does nothing of the sort. It would be more aptly named get all-
of-the-most-common-resources , but there are several other resources you can fetch.
The Kubernetes project hosts a handy cheat sheet to make this more discoverable.

So what about that replicaset.apps  that appeared in the get
all  output? That is a ReplicaSet . A ReplicaSet  is a piece of
Kubernetes that is responsible for making sure that our
application is running the right number of instances all the
time and that they are healthy. We don’t normally have to
worry about what happens inside the ReplicaSet  because the
Deployment  we created manages it for us. You can manage the
ReplicaSet  yourself if need be, but most of the time you won’t
need to or want to.

$ kubectl get pvc 
 
NAME             STATUS VOLUME    CAPACITY ACCESS MOD
cache-data-claim Bound  pvc-1a…41 100Mi    RWO       

https://bit.ly/2PjSHBq


We didn’t tell kubectl  any specific number of instances, so we
got one. And we can see that both the desired and current states
match. We’ll take a look at that in a moment. But first, let’s
connect to our application and see what we’ve got.

$ minikube service --url lazyraster 
http://192.168.99.100:32185

You will probably get a different IP address and port back.
That’s fine! This is very dynamic stuff. And that’s why we use
the minikube  command to manage it for us.

Also, remember that minikube  will warn you if you need to
keep the service  command running while you explore the
lazyraster  service. So grab the address that came back, open
your web browser, and paste it into the URL bar like this:
http://<192.168.99.100:32185>/documents/docker-up-and-
running-public/sample.pdf?page=1. You’ll need to substitute the
IP and port into the URL to make it work for you.

You’ll need to be connected to the internet because the
lazyraster  application is going to go out to the internet, fetch
a PDF from a public S3 bucket, and then render the first page
from the document as a PNG in a process called rasterization. If
everything worked, you should see a copy of the front cover of



an earlier edition of this book! This particular PDF has two
pages, so feel free to try changing the argument to ?page=2 . If
you do that, you may notice it renders much faster than the first
page. That’s because the application is using our persistent
volume to cache the data. You can also specify width=2048 , or
ask for a JPEG instead of a PNG with imageType=image/jpeg .
You could rasterize the front page as a very large JPEG like this:

http://<192.168.99.100:32185>/documents/docker-up-and-
running-public/sample.pdf?
page=1&imageType=image/jpeg&width=2048

If you have a public S3 bucket with other PDFs in it, you can
simply substitute the bucket name for docker-up-and-
running-public  in the URL to hit your bucket instead. If you
want to play with the application some more, check out the
Nitro/lazyraster repo on GitHub.

Scaling Up

In real life you don’t just deploy applications, you operate them
as well. One of the huge advantages of scheduled workloads is
the ability to scale them up and down at will, within the
resource constraints available to the system. In our case, we
only have one Minikube node, but we can still scale up our

https://github.com/Nitro/lazyraster


service to better handle load and provide more reliability
during deployments. Kubernetes, as you might imagine, allows
scaling up and down quite easily. For our service, we will need
only one command to do it. Then we’ll take another look at the
kubectl  output and also at the Kubernetes dashboard we
introduced earlier so we can prove that the service scaled.

In Kubernetes the thing we will scale is not the Service , it’s the
Deployment . Here’s what that looks like:

$ kubectl scale --replicas=2 deploy/lazyraster 
deployment.apps/lazyraster scaled

Great, that did something! But what did we get?

$ kubectl get deployment/lazyraster 
 
NAME         READY   UP-TO-DATE   AVAILABLE   AGE 
lazyraster   2/2     2            2           16m

We now have two instances of our application running. Let’s
see what we got in the logs:

$ kubectl logs deployment/lazyraster 
 
Found 2 pods, using pod/lazyraster-644cb5c66c-zsjxd



We asked for logs for the deployment, but Kubernetes tells us
two pods are running so it simply picked one of them to show
us the logs from. We can see the replica starting up. If we want
to specify a particular instance to look at, we can ask for the
logs for that pod with something like kubectl logs
pod/lazyraster-644cb5c66c-zsjxd , using the output from
kubectl get pods  to find the pod in question.

We now have a couple of copies of our application running.
What does that look like on the Kubernetes dashboard? Let’s
navigate there with minikube dashboard . Once we’re there,
we’ll select Worklaods  - Deployments  from the left sidebar and

Found 2 pods, using pod/lazyraster 644cb5c66c zsjxd 
Trying to clear existing Lazyraster cached files (if 
Launching Lazyraster service…
time="2022-09-10T21:14:16Z" level=info msg="Settings 
time="2022-09-10T21:14:16Z" level=info msg="  * BaseD
time="2022-09-10T21:14:16Z" level=info msg="  * HttpP
…
time="2022-09-10T21:14:16Z" level=info msg="  * Loggi
time="2022-09-10T21:14:16Z" level=info msg="---------
…
time="2022-09-10T21:14:16Z" level=info msg="Listening
…



the click on the layraster  Deployment, which should show us
a screen that looks like Figure 10-3.

Figure 10-3. Lazyraster service dashboard

We encourage you to click around some more in the Kubernetes
dashboard to see what else is presented. With the concepts
you’ve picked up here, there should be a lot that is clearer now
and you can probably figure out some more on your own.
Likewise, kubectl  has a lot of other options available as well,
many of which you’ll need in a real production system. The
cheat sheet we linked earlier is a real lifesaver here!

As always, you can type [Control-C]  at any time to exit the
running minikube dashboard  command.



kubectl API

We haven’t shown you an API yet and, as we’ve discussed with
Docker, it can be really useful to have a simple API to interact
with for scripting, programming, and other general operational
needs. You can write programs to talk directly to the
Kubernetes API, but for local development and other simple
use-cases, you can use kubectl  as a nice proxy to Kubernetes,
and it presents a clean API that is accessible with curl  and
JSON command-line tools. Here’s an example of what you can
do:

$ kubectl proxy 
Starting to serve on 127.0.0.1:8001

We’ve now got kubectl  itself serving up a web API on the local
system! You’ll need to read more about what’s possible, but let’s
get it to show us the individual instances of the lazyraster
application. We can do that by opening the following URL in a
browser, or by using curl  in another terminal window:
http://localhost:8001/api/v1/namespaces/default/endpoints/lazyra
ster.

There is a lot of output here, but the part we care about is the
subsets  section:

http://localhost:8001/api/v1/namespaces/default/endpoints/lazyraster


{
…
  "subsets": [
    {
      "addresses": [
        {
          "ip": "172.17.0.5",
          "nodeName": "minikube",
          "targetRef": {
            "kind": "Pod",
            "namespace": "default",
            "name": "lazyraster-644cb5c66c-zsjxd",
            "uid": "9631395d-7e68-47fa-bb9f-9641d724d
          }
        },
        {
          "ip": "172.17.0.6",
          "nodeName": "minikube",
          "targetRef": {
            "kind": "Pod",
            "namespace": "default",
            "name": "lazyraster-644cb5c66c-pvcmj",
            "uid": "e909d424-7a91-4a74-aed3-69562b74b
          }
        }
      ],
      "ports": [
        {



What’s interesting here is that we can see that both instances
are running on the Minikube host and that they have different
IP addresses. If we were building a cloud-native application
that needed to know where the other instances of the
application were running, this would be a good way to do that.

You can type [Control-C]  at any time to exit the running
kubectl proxy  processes, and then you can remove the
deployment and all of its components by running the following
command. It may take Kubernetes a minute or so to delete
everything and return you to the terminal prompt.

$ kubectl delete -f ./lazyraster-service.yaml 
 
service "lazyraster" deleted 
persistentvolumeclaim "cache-data-claim" deleted 
deployment.apps "lazyraster" deleted

          "port": 8000,
          "protocol": "TCP"
        }
      ]
    }
  ]
}



And then finally, you can go ahead an remove your Minikube
cluster if you are done with everything in it for now.

TIP

Kubernetes is a really big system, with great community involvement. We’ve just
shown you the tip of the iceberg with Minikube, but if you are interested there are
many other Kubernetes distributions and tools to explore.

Docker Desktop-Integrated Kubernetes

Docker Desktop comes with support for an integrated single-
node Kubernetes cluster that can be run, by simply enabling an
option in the application preferences.

The integrated Kubernetes cluster is not easily configurable, but
it does provide a very accessible option for people that simply

$ minikube delete 
 
🔥  Deleting "minikube" in docker … 
🔥  Deleting container "minikube" … 
🔥  Removing /Users/spkane/.minikube/machines/minikub
💀  Removed all traces of the "minikube" cluster.



need to verify some basic functionality against a current
Kubernetes installation.

To enable Docker Desktop’s built-in Kubernetes functionality,
launch Docker Desktop and then open up the Preferences from
the Docker whale icon in your task/menubar. Then select the
Kubernetes tab, click Enable Kubernetes, and finally click the
Apply & Restart button to make the required changes to the
virtual machine. The first time that you do this Docker will
utilize the kubeadm command to set up the Kubernetes cluster.

NOTE

If you are interested in a bit more information about how the Docker Desktop
intergrated Kubernetes is setup, Docker has a good blog post that covers some of
these details.

This will create a new kubectl  context called docker-desktop
and should automatically switch you to this context.

You can confirm which context you are currently set to by
running:

$ kubectl config current-context 
 
docker-desktop

https://kubernetes.io/docs/reference/setup-tools/kubeadm/
https://www.docker.com/blog/how-kubernetes-works-under-the-hood-with-docker-desktop/


If you need to change the current context you can do so, like
this:

and finally, if you want to completely unset the current context,
you can use this command:

$ kubectl config unset current-context 
 
Property "current-context" unset.

Once this cluster is running, you can interact with it just like
any other Kubernetes cluster via the kubectl  command.
Whenever you shut down Docker Desktop this will also shut
down the Kubernetes cluster.

If you want to completely disable this Kubernetes cluster, then
you should go back into the Preferences panel, select the
Kubernetes tab and un-check Enable Kubernetes.

Kind

$ kubectl config use-context docker-desktop --namespa
 
Switched to context "docker-desktop".



The final option that we are going to discuss here is kind , a
very simple, but useful tool, that allows you to manage a
Kubernetes cluster made up of one or more Linux containers
running in Docker. The tool name, kind , is a play on words,
that means “Kubernetes in Docker”, but also refers to the fact
that object types in Kubernetes are identified in the API by a
field called Kind.

NOTE

Due to this clever play on words, you will find that searching for this tool on the web
can be a bit difficult, but you can always find the tool and documentation on its
primary web site.

Kind provides a nice middle ground between the simplistic
Kubernetes cluster that is embedded into the Docker VM and
the minikube  virtual machine, which can be overly complex at
times. Kind is distributed as a single binary and can be installed
with your favorite package manager or by simply navigating to
the Kind project’s releases page and downloading the most
recent release for your system. If you manually download the
binary, make sure that you rename the binary to kind , copy it
to a directory in your path and then ensure that it has the
correct permissions so that users can run it.

https://kind.sigs.k8s.io/
https://github.com/kubernetes-sigs/kind/releases/


Once kind  is installed you can go ahead and try to create your
first cluster with it by running:

$ kind create cluster --name test 
 
Creating cluster "test" …
 ✓ Ensuring node image (kindest/node:v1.25.3) 
 ✓ Preparing nodes 📦
 ✓ Writing configuration 📜
 ✓ Starting control-plane  
 ✓ Installing CNI 🔌
 ✓ Installing StorageClass 💾 
Set kubectl context to "kind-test" 
You can now use your cluster with: 
 
kubectl cluster-info --context kind-test 
 
Thanks for using kind! 😊

By default, this command will spin up a single Docker
container, that represents a one-node Kubernetes cluster, using
the most current stable Kubernetes release that kind  currently
supports.

kind  has already set the Kubernetes current context to point at
the cluster, so we can start running kubectl  commands



immediately.

You can see a redacted version of the information used by
kubectl  to connect to the Kubernetes server by running:

$ kubectl config view --minify 
 
apiVersion: v1 
clusters: 
- cluster:
    certificate-authority-data: DATA+OMITTED
    server: https://127.0.0.1:56499
  name: kind-test 
contexts: 
- context:
    cluster: kind-test
    user: kind-test
  name: kind-test 
current-context: kind-test 

$ kubectl cluster-info 
 
Kubernetes control plane is running at https://127.0.
CoreDNS is running at https://127.0.0.1:56499/api/v1/
 
To further debug and diagnose cluster problems, use '



kind: Config 
preferences: {} 
users: 
- name: kind-test
  user:
    client-certificate-data: REDACTED
    client-key-data: REDACTED

Kind has some advanced features which can generally be
controlled by passing in a configuration file with the --config
argument when spinning up the cluster.

Some of the features that you may find useful include: *
Changing the version of Kubernetes that is used. * Spinning up
multiple worker nodes. * Spinning up multiple control plane
nodes for HA testing. * Mapping ports between Docker and the
local host system. * Enabling and disabling Kubernetes feature
gates. * Exporting control plane component logs with kind
export logs . * and more.

TIP

One thing to remember when using kind  is that Kubernetes is running inside one or
more containers, which are potentially running inside a Linux virtual machine when
you are using something like Docker Desktop. This may mean that you need to set up
some additional port-forwarding when you spin up the cluster. This can be done
using the extraPortMappings setting in the kind  config.

https://kind.sigs.k8s.io/docs/user/quick-start/#advanced
https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/


At this point, you can go ahead and delete the cluster by
running the following command:

$ kind delete cluster --name test 
 
Deleting cluster "test" …

Amazon ECS and Fargate

One of the most popular cloud providers is Amazon via their
AWS offering. Support for running containers natively has
existed in Elastic Beanstalk since mid-2014. But that service
assigns only a single container to an Amazon instance, which
means that it’s not ideal for short-lived or lightweight
containers. EC2 itself is a great platform for hosting your own
Docker environment, though, and because Docker is powerful,
you don’t necessarily need much on top of your instances to
make this a productive environment to work in. But Amazon
has spent a lot of engineering time building a service that treats
containers as first-class citizens: the Elastic Container Service
(ECS). In the last few years they have built upon this support
with products like the Elastic Kubernetes Services (EKS) and
Fargate.

https://amzn.to/2wNa1rL


NOTE

Fargate is simply a marketing label Amazon uses for the feature of ECS that makes it
possible for AWS to automatically manage all the nodes in your container cluster so
that you can focus on deploying your service.

The Elastic Container Service is a set of tools that coordinates
several AWS components. With ECS, you have a choice of
whether or not you will run the Fargate tooling on top. If you
do, then you don’t need to handle as much of the work. If you
don’t, then in addition to the cluster nodes to handle your
workload you will also need to add one or more EC2 instances
to the cluster running Docker and Amazon’s special ECS agent.
If you run Fargate, then the cluster is automatically managed
for you. In either case, you spin up the cluster and then push
your containers into it.

The Amazon ECS agent we just mentioned works with the ECS
service to coordinate your cluster and schedule containers to
your hosts. You will only be directly exposed to this when you
manage a traditional non-Fargate ECS cluster.

Core AWS Setup

The rest of this section assumes that you have access to an AWS
account and some familiarity with the service. You can learn

https://github.com/aws/amazon-ecs-agent


about pricing and create a new account at
aws.amazon.com/free/. Amazon offers a free service tier, which
may be enough for you to experiment with if you don’t already
have a paid account. After you have your AWS account set up,
you will need at least one administrative user, a key pair, a
virtual private cloud (VPC), and a default security group in your
environment. If you do not already have these set up, follow the
directions in the Amazon documentation.

IAM Role Setup

AWS’s Identity and Access Management (IAM) roles are used to
control what actions a user can take within your cloud
environment. We need to make sure we can grant access to the
right actions before moving on with the Elastic Container
Service.

To work with the ECS, you need to create a role called
ecsInstanceRole  that has the
AmazonEC2ContainerServiceRole  managed role attached to it.
The easiest way to do this is by logging into the AWS console
and then navigating to Identity and Access Management.

https://aws.amazon.com/free
https://amzn.to/2FcPDSL
https://console.aws.amazon.com/
https://console.aws.amazon.com/iam/home


TIP

Check to ensure that you don’t already have the proper role. If it already exists, then
you should double-check that it is set up properly, as these directions have changed a
bit over the years.

1. In the left sidebar, click Roles.
2. Then, click the “Create role” button.
3. Under AWS Service, select Elastic Container Service.
4. Under “Select your use case,” select Elastic Container Service.
5. Click Next: Permissions.
6. Click Next: Review.
7. In Role Name, type: ecsInstanceRole .
8. Click “Create role.”

If you are interested in storing container configuration in an S3
object storage bucket, take a look at the Amazon ECS Container
Agent Configuration documentation.

AWS CLI Setup

Amazon supplies command-line tools that make it easy to work
with their API-driven infrastructure. You will need to install a
very recent version of the AWS command-line interface (CLI)
tools. Amazon has detailed documentation that covers the
installation of their tools, but the basic steps are as follows.

https://amzn.to/2PNapOL
https://amzn.to/1PCpPNA


Installation

Here we’ll cover the native installation on a few different OSes,
but be aware that you can also run the [aws CLI via a Docker
container]
(https://docs.aws.amazon.com/cli/latest/userguide/getting-
started-docker.html#cliv2-docker-install)! You can feel free to
skip to the one you care about. If you’re curious or just like
installation instructions, by all means, read them all!

macOS
In Chapter 3, we discussed installing Homebrew. If you
previously did this, you can install the AWS CLI using the
following commands:

$ brew update 
$ brew install awscli

Windows
Amazon provides a standard MSI installer for Windows,
which can be downloaded from Amazon S3 for your
architecture:

32-bit Windows
64-bit Windows

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-docker.html#cliv2-docker-install)
https://s3.amazonaws.com/aws-cli/AWSCLI32.msi
https://s3.amazonaws.com/aws-cli/AWSCLI64.msi


Other
The Amazon CLI tools are written in Python. So on most
platforms, you can install the tools with the Python pip
package manager by running the following from a shell:

$ pip install awscli --upgrade --user

Some platforms won’t have pip  installed by default. In that
case, you can use the easy_install  package manager, like this:

$ easy_install awscli

Configuration

Quickly verify that your AWS CLI version is at least 1.7.0 with
the following command:

To configure the AWS CLI tool, ensure that you have access to
your AWS access key ID and AWS secret access key, and then

$ aws --version 
 
aws-cli/1.14.50 Python/3.6.4 Darwin/17.3.0 botocore/1



run the configure  command. You will be prompted for your
authentication information and some preferred defaults:

At this point, it’s a really good idea to test that the CLI tools are
working correctly before proceeding. We can easily do that by
running the following command to list the IAM users in your
account:

$ aws iam list-users

Assuming everything went according to plan and you chose
JSON as your default output format, you should get something
like this:

$ aws configure 
 
AWS Access Key ID [None]: EXAMPLEEXAMPLEEXAMPLE 
AWS Secret Access Key [None]: ExaMPleKEy/7EXAMPL3/EXa
Default region name [None]: us-east-1 
Default output format [None]: json

{
    "Users": [
        {
            "Path": "/",



Container Instances

The first thing you need to do after installing the required tools
is to create at least a single cluster that your Docker hosts will
register with when they are brought online.

NOTE

The default cluster name is imaginatively named “default.” If you keep this name,
you do not need to specify --cluster-name  in many of the commands that follow.

The first thing you need to do is create a cluster in the container
service. You will then launch your tasks in the cluster once it’s
up and running. For these examples, you should start by
creating a cluster called fargate-testing :

            "UserName": "administrator",
            "UserId": "ExmaPL3ExmaPL3ExmaPL3Ex",
            "Arn": "arn:aws:iam::936262807352:user/my
            "CreateDate": "2021-04-08T17:22:23+00:00"
            "PasswordLastUsed": "2022-09-05T15:56:21+
        }
    ]
}

$ aws ecs create-cluster --cluster-name fargate-testi



Before AWS Fargate was released, you were required to create
AWS EC2 instances running docker  and the ecs-agent  and

g

{
    "cluster": {
        "clusterArn": "arn:aws:ecs:us-east-1:1…2:clus
"clusterName": "fargate-testing",
        "status": "ACTIVE",

        "registeredContainerInstancesCount": 0,
        "runningTasksCount": 0,
        "pendingTasksCount": 0,
        "activeServicesCount": 0,
        "statistics": [],
        "tags": [],
        "settings": [
            {
                "name": "containerInsights",
                "value": "disabled"
            }
        ],
        "capacityProviders": [],
        "defaultCapacityProviderStrategy": []
    }
}



add them to your cluster. You can still use this approach if you
want ( EC2 launch type ), but Fargate makes it much easier to
run a dynamic cluster that can scale fluidly with your
workload.

Tasks

Now that our container cluster is set up, we need to start
putting it to work. To do this, we need to create at least one task
definition. The Amazon Elastic Container Service defines the
term task definition as a list of containers grouped together.

To create your first task definition, open up your favorite editor,
copy in the following JSON, and then save it as webgame-
task.json in your current directory, as shown here:

{
  "containerDefinitions": [
    {
      "name": "web-game",
      "image": "spkane/quantum-game",
      "cpu": 0,
      "portMappings": [
        {
          "containerPort": 8080,
          "hostPort": 8080,



          "protocol": "tcp"
        }
      ],
      "essential": true,
      "environment": [],
      "mountPoints": [],
      "volumesFrom": []
    }
  ],
  "family": "fargate-game",
  "networkMode": "awsvpc",
  "volumes": [],
  "placementConstraints": [],
  "requiresCompatibilities": [
    "FARGATE"
  ],
  "cpu": "256",
  "memory": "512"
}



TIP

You can also check out these files and a few others by running:

git clone \
    https://github.com/bluewhalebook/\ 
docker-up-and-running-3rd-edition.git --config core.autocrlf=input

The URL above has been continued on the following line so that it fits in the margins.
You may find that you need to re-assemble the URL and remove the backslashes for
the command to work properly.

In this task definition, we are saying that we want to create a
task family called fargate-game  running a single container
called web-game  that is based on the Quantum web game. As
you may have seen in an earlier chapter, this Docker image
launches a browser-based puzzle game that uses real quantum
mechanics.

TIP

Fargate limits some of the options that you can set in this configuration, including
networkMode  and the cpu  and memory  settings. You can find out more about the
options in the task definition from the official AWS documentation.

In this task definition, we define some constraints on memory
and CPU usage for the container, in addition to telling Amazon

https://github.com/stared/quantum-game
https://amzn.to/2PkliGR


whether this container is essential to the task. The essential
flag is useful when you have multiple containers defined in a
task, and not all of them are required for the task to be
successful. If essential  is true and the container fails to start,
then all the containers defined in the task will be killed and the
task will be marked as failed. We can also use the task
definition to define almost all of the typical variables and
settings that would be included in a Dockerfile or on the docker
container run  command line.

To upload this task definition to Amazon, you will need to run a
command similar to what is shown here:

$ aws ecs register-task-definition --cli-input-json f

{
    "taskDefinition": {
        "taskDefinitionArn": "arn:aws:ecs:…:task-defi
        "containerDefinitions": [
            {
                "name": "web-game",
                "image": "spkane/quantum-game",
                "cpu": 0,
                "portMappings": [
                    {

"containerPort": 8080



                        containerPort : 8080,
                        "hostPort": 8080,
                        "protocol": "tcp"
                    }
                ],
                "essential": true,
                "environment": [],
                "mountPoints": [],
                "volumesFrom": []
            }
        ],
        "family": "fargate-game",
        "networkMode": "awsvpc",
        "revision": 1,
        "volumes": [],
        "status": "ACTIVE",
        "requiresAttributes": [

            {
                "name": "com.amazonaws.ecs.capability
            },
            {
                "name": "ecs.capability.task-eni"
            }
        ],
        "placementConstraints": [],
        "compatibilities": [
            "EC2",
            "FARGATE"
        ],



We can then list all of our task definitions by running the
following:

$ aws ecs list-task-definitions

Now you are ready to create your first task in your cluster. You
do so by running a command like the one shown next. The
count  argument in the command allows you to define how

        "requiresCompatibilities": [
            "FARGATE"
        ],
        "cpu": "256",
        "memory": "512",
        "registeredAt": "2022-09-05T09:10:18.184000-0
        "registeredBy": "arn:aws:iam::…:user/me"
    }
}

{
    "taskDefinitionArns": [
        "arn:aws:ecs:us-east-1:…:task-definition/farg
    ]
}



many copies of this task you want to be deployed into your
cluster. For this job, one is enough.

You will need to modify the following command to reference a
valid subnet ID and security-group ID from your AWS VPC. You
should be able to find these in the AWS console or by using the
AWS CLI commands aws ec2 describe-subnets  and aws ec2
describe-security-groups . You can also tell AWS to assign
your tasks a public IP address by using a network configuration
similar to this:

awsvpcConfiguration={subnets=[subnet-
abcd1234],securityGroups=[sg-

abcd1234],assignPublicIp=ENABLED} .

Assigning a public IP address may be required if you are using
public subnets.

$ aws ecs create-service --cluster fargate-testing --
    fargate-game-service --task-definition fargate-ga
    --launch-type "FARGATE" --network-configuration \
    "awsvpcConfiguration={subnets=[subnet-abcd1234],\
    securityGroups=[sg-abcd1234]}"

{
    "service": {

https://console.aws.amazon.com/vpc/home


{
        "serviceArn": "arn:aws:ecs:…:service/fargate-
        "serviceName": "fargate-game-service",
        "clusterArn": "arn:aws:ecs:…:cluster/fargate-
        "loadBalancers": [],
        "serviceRegistries": [],
        "status": "ACTIVE",
        "desiredCount": 1,

        "runningCount": 0,
        "pendingCount": 0,
        "launchType": "FARGATE",
        "platformVersion": "LATEST",
        "platformFamily": "Linux",
        "taskDefinition": "arn:aws:ecs:…:task-definit
        "deploymentConfiguration": {
            "deploymentCircuitBreaker": {
                "enable": false,
                "rollback": false
            },
            "maximumPercent": 200,
            "minimumHealthyPercent": 100
        },
        "deployments": [
            {
                "id": "ecs-svc/…",
                "status": "PRIMARY",
                "taskDefinition": "arn:aws:ecs:…defin
                "desiredCount": 1,
                "pendingCount": 0,



p g
                "runningCount": 0,
                "failedTasks": 0,
                "createdAt": "2022-09-05T09:14:51.653
                "updatedAt": "2022-09-05T09:14:51.653
                "launchType": "FARGATE",
                "platformVersion": "1.4.0",
                "platformFamily": "Linux",

                "networkConfiguration": {
…
                },
                "rolloutState": "IN_PROGRESS",
                "rolloutStateReason": "ECS deployment
            }
        ],
        "roleArn": "…aws-service-role/ecs.amazonaws.c
        "events": [],
        "createdAt": "2022-09-05T09:14:51.653000-07:0
        "placementConstraints": [],
        "placementStrategy": [],
        "networkConfiguration": {
…
        },
        "schedulingStrategy": "REPLICA",
        "createdBy": "arn:aws:iam::…:user/me",
        "enableECSManagedTags": false,
        "propagateTags": "NONE",
        "enableExecuteCommand": false
    }



TIP

Fargate and the awsvpc  network require that you have a service-linked role for ECS.
In the preceding output, you should see a line that ends like this:

"role/aws-service-role/ecs.amazonaws.com/AWSServiceRoleForECS"

Most of the time this will be autogenerated for you, but you can create it manually
using the following command:

$ aws iam create-service-linked-role \
    --aws-service-name ecs.amazonaws.com

You can now list all of the services in your cluster with the
following command:

$ aws ecs list-services --cluster fargate-testing

}

{
    "serviceArns": [
        "arn:aws:ecs:us-west-2:…:service/fargate-test
    ]
}



To retrieve all the details about your service, run:

$ aws ecs describe-services --cluster fargate-testing
    --services fargate-game-service

{
    "services": [
        {
…
            "deployments": [
                {
                    "id": "ecs-svc/…",
                    "status": "PRIMARY",
                    "taskDefinition": "arn:…:task-def
                    "desiredCount": 1,
                    "pendingCount": 1,
                    "runningCount": 0,
                    "createdAt": "2022-09-05T09:14:51
                    "updatedAt": "2022-09-05T09:14:51
                    "launchType": "FARGATE",
                    "platformVersion": "1.4.0",
                    "platformFamily": "Linux",
                    "networkConfiguration": {
…

                    },
"rolloutState": "IN PROGRESS"



This output will tell you a lot about all the tasks in your service.
In this case, we have a single task running at the moment.

                    rolloutState : IN_PROGRESS ,
                    "rolloutStateReason": "ECS deploy
                }
            ],
            "roleArn": "…role/ecs.amazonaws.com/AWSSe
            "events": [
                {
                    "id": "83bd5c2eed5d4866bb7ec8c3c9
                    "createdAt": "2022-09-05T09:14:54
                    "message": "(…game-service) has s
                }
            ],
…
        }
    ],
    "failures": []
}



NOTE

The task-definition  value is a name followed by a number ( fargate-game:1 ). The
number is the revision. If you edit your task and re-register it with the aws ecs
register-task-definition  command, you will get a new revision, which means
that you will want to reference that new revision in various commands like aws ecs
update-service . If you don’t change that number, you will continue to launch
containers using the older JSON. This versioning makes it very easy to roll back
changes and test new revisions without impacting all future instances.

If you want to see what individual tasks are running in your
cluster, you can run the following:

$ aws ecs list-tasks --cluster fargate-testing

Since you only have a single task in your cluster at the moment,
this list is very small.

To get more details about the individual task, you can run the
following command after substituting the task ID with the

{
    "taskArns": [
        "arn:aws:ecs:…:task/fargate-testing/83bd5c2ee

    ]
}



correct one from your cluster:

$ aws ecs describe-tasks --cluster fargate-testing \
  --task 83bd5c2eed5d4866bb7ec8c3c938666c

{
    "tasks": [
        {
            "attachments": [
                {
…
                    "details": [
…
                        {
                            "name": "networkInterface
                            "value": "eni-00a40225208
                        },
…
                        {
                            "name": "privateIPv4Addre
                            "value": "172.31.42.184"
                        }

                    ]
                }

]



            ],
            "attributes": [
…
            ],
            "availabilityZone": "us-west-2b",
            "clusterArn": "arn:aws:ecs:us-west-2:…:cl
            "connectivity": "CONNECTED",
            "connectivityAt": "2022-09-05T09:23:46.92
            "containers": [
                {
                    "containerArn": "arn:…:container/
                    "taskArn": "arn:…:task/fargate-te
                    "name": "web-game",
                    "image": "spkane/quantum-game",
                    "runtimeId": "83bd…998",
                    "lastStatus": "RUNNING",
                    "networkInterfaces": [
                        {
                            "attachmentId": "ddab…373
                            "privateIpv4Address": "17
                        }
                    ],
                    "healthStatus": "UNKNOWN",
                    "cpu": "0"
                }
            ],

            "cpu": "256",
            "createdAt": "2022-09-05T09:23:42.700000-

"desiredStatus": "RUNNING"



            desiredStatus : RUNNING ,
            "enableExecuteCommand": false,
            "group": "service:fargate-game-service",
            "healthStatus": "UNKNOWN",
            "lastStatus": "RUNNING",
            "launchType": "FARGATE",
            "memory": "512",
            "overrides": {
                "containerOverrides": [
                    {
                        "name": "web-game"
                    }
                ],
                "inferenceAcceleratorOverrides": []
            },
            "platformVersion": "1.4.0",
            "platformFamily": "Linux",
            "pullStartedAt": "2022-09-05T09:59:36.554
            "pullStoppedAt": "2022-09-05T09:59:46.361
            "startedAt": "2022-09-05T09:59:48.546000-
            "startedBy": "ecs-svc/…",
            "tags": [],
            "taskArn": "arn:aws:…:task/fargate-testin
            "taskDefinitionArn": "arn:aws:…:task-defi
            "version": 4,
            "ephemeralStorage": {

                "sizeInGiB": 20
            }

}



If you notice that the lastStatus  key is displaying a value of
PENDING , this most likely means that your service is still
starting up. You can describe the task again to ensure that it has
completed transitioning into a RUNNING  state. After verifying
that the lastStatus  key is set to RUNNING , you should be able
to test your container.

TIP

Depending on the network setup your task may not be able to download the image. If
you see an error like this:

"stoppedReason": "CannotPullContainerError: inspect image has been
retried 5 time(s): failed to resolve ref \"docker.io/spkane/quantum-
game:latest\": failed to do request: Head https://registry-

1.docker.io/v2/spkane/quantum-game/manifests/latest: dial tcp

54.83.42.45:443: i/o timeout"

Then you should read through this troubleshooting guide.

Testing the Task

        }
    ],
    "failures": []
}

https://registry-1.docker.io/v2/spkane/quantum-game/manifests/latest
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_cannot_pull_image.html


You will need a modern web browser installed on your system
to connect to the container and test the web game.

In the previous output, you’ll notice that the
privateIPv4Address  for the example task was listed as
172.31.42.184 . Yours will be different.

TIP

If you need more information about the network setup for your task and the EC2
instance that it is running on, then you can grab the networkInterfaceId  from the
aws ecs describe-tasks  output and then append that into the aws ec2 describe-
network-interfaces --network-interface-ids  command to get everything you
should need including the PublicIp  value if you configured your service for that.

Ensure that you are connected to a network that can reach
either the public or private IP address of your host, then launch
your web browser and navigate to port 8080 on that IP address.

In the example, this private URL would look like this:

http://172.31.42.184:8080/

If everything is working as expected, you should be greeted by
the “The Quantum Game” puzzle board.



The official version of the game can be found at
https://quantumgame.io.

NOTE

We completely understand if you get distracted at this point and stop reading for a
few hours while trying to solve some puzzles and learn a little bit of quantum
mechanics at the same time. The book won’t notice! Put it down, play the puzzles,
and pick it back up later.

Stopping the Task

Right, so we have a running task. Now let’s take a look at
stopping it. To do that, you need to know the task ID. One way to
obtain this is by relisting all the tasks running in your cluster.

$ aws ecs list-tasks --cluster fargate-testing

You can also obtain it from the service information:

{
    "taskArns": [
        "arn:aws:ecs:…:task/fargate-testing/83bd5c2ee
    ]
}

https://quantumgame.io/


Finally, we can stop the task by running the following command
with the correct task ID:

$ aws ecs stop-task --cluster fargate-testing \
    --task 83bd5c2eed5d4866bb7ec8c3c938666c

$ aws ecs describe-services --cluster fargate-testing
    --services fargate-game-service

{
…
                {
                    "id": "6b7f…0384",
                    "createdAt": "2022-09-05T09:59:23
                    "message": "…: (task 83bd5c2eed5d
                }
…
}

{
        "desiredStatus": "STOPPED",
…
        "lastStatus": "RUNNING",



If you describe the task again using the same task ID, you
should now see that the lastStatus  key is set to STOPPED :

{
…
            "desiredStatus": "STOPPED",
…
            "lastStatus": "STOPPED",
…
}

Listing all the tasks in our cluster should return an empty set:

$ aws ecs list-tasks --cluster fargate-testing

…
        "stopCode": "UserInitiated",
        "stoppedReason": "Task stopped by user",
        "stoppingAt": "2022-09-05T10:29:05.110000-07:
…
}

$ aws ecs describe-tasks --cluster fargate-testing \
    --task 83bd5c2eed5d4866bb7ec8c3c938666c



{
    "taskArns": []
}

At this point, you could start creating more complicated tasks
that tie multiple containers together and rely on the ECS and
Fargate tooling to spin up hosts and deploy the tasks into your
cluster as needed.

If you want to tear down the rest of the ECS environment, then
you can run the following commands:

Wrap-Up

In this chapter, we’ve certainly presented you with a lot of
options! It’s unlikely that you’ll ever need to use all of these
since many of them overlap. However, each one has a unique

$ aws ecs delete-service --cluster fargate-testing \
  --service fargate-game-service  --force 
… 
 
$ aws ecs delete-cluster --cluster fargate-testing 
…



perspective on exactly what a production system should look
like and what problems are the most important to solve. After
exploring all of these tools, you should have a pretty good idea
of the wide range of options that you can choose from to build
your production Linux container environment.

Underlying all of these tools is Docker’s highly portable image
format for Linux containers and its ability to abstract away so
much of the underlying Linux system, which makes it easy to
move your applications fluidly between your data center and as
many cloud providers as you want. Now you just have to choose
which approach will work best for you and your organization
and then implement it.

In the meantime, let’s jump into the next chapter and explore
some of the most technical topics in the Docker ecosystem,
including security, networking, and storage.



Chapter 11. Advanced Topics

In this chapter, we’ll do a quick pass through some of the more
advanced topics. We’re going to assume that you have a pretty
good hold on Docker by now and that you’ve already got it in
production or you’re at least a regular user. We’ll talk about
how containers work in detail, and about some of the aspects of
Docker security, Docker networking, Docker plug-ins,
swappable runtimes, and other advanced configuration.

Some of this chapter covers configurable changes you can make
to your Docker installation. These can be useful, but Docker has
good defaults, so as with most software, you should stick to the
defaults on your operating system unless you have a good
reason to change them and have educated yourself on what
those changes mean to you. Getting your installation right for
your environment will likely involve some trial and error,
tuning, and adjustment over time. However, changing settings
from their defaults before understanding them well is not
recommended.

Containers in Detail



Though we usually talk about Linux containers as a single
entity, they are actually implemented through several separate
mechanisms built into the Linux kernel that all work together:
control groups (cgroups), namespaces, Secure Computing Mode
(seccomp), and SELinux or AppArmor, all of which serve to
contain the process. cgroups provide for resource limits,
namespaces allow for processes to use identically named
resources and isolate them from each other’s view of the
system, Secure Computing Mode limits which system calls a
process can use, and SELinux or AppArmor provides additional
strong security isolation for processes. So, to start, what do
cgroups and namespaces do for you?

Before we launch into detail, an analogy might help you
understand how each of these subsystems plays into the way
that containers work. Imagine that the typical computer is like
a large open warehouse, full of workers (processes). The
warehouse is full of space and resources, but it is very easy for
the workers to get in each other’s way and most of the
resources are simply used by whomever gets them first.

When you are running Docker, and using Linux containers for
your workloads, it is like that warehouse has been converted
into an office building, where each worker now has their own
individual office. Each office has all the normal things that the



workers need to accomplish their jobs and in general, they can
now work without worrying much about what other people
(processes) are doing.

Namespaces make up the walls of the office and ensure that
processes cannot interact with neighboring processes in any
ways that they are not specifically allowed to. Control groups
are a bit like paying rent to receive utilities. When the process is
first spun up it is assigned time on the CPU and storage
subsystem that it will be allowed each cycle, in addition to the
amount of memory that it will be allowed to use at any
moment. This helps ensure that the workers (processes) have
the resources they need, without allowing them to use
resources or space reserved for others. Imagine the worst kind
of noisy neighbors and you can suddenly truly appreciate good,
solid barriers between offices. Finally, Secure Computing Mode,
SELinux and AppArmor are a bit like office security, ensuring
that even if something unexpected or untoward happens, it is
unlikely to cause much more than the headache of filling out
paperwork and filing an incident report.

cgroups

Traditional distributed system design dictates running each
intensive task on its own virtual server. So, for example, you



don’t run your applications on the database server because
they have competing resource demands and their resource
usage could grow unbounded and begin to dominate the server,
starving the database of performance.

On real hardware systems, this could be quite expensive and so
solutions like virtual servers are very appealing, in part
because you can share expensive hardware between competing
applications, and the virtualization layer will handle your
resource partitioning. But while it saves money, this is still a
fairly expensive approach if you don’t need all the other
separation provided by virtualization, because running
multiple kernels introduces a reasonable overhead on the
applications. Maintaining virtual machines is also not the
cheapest solution. All the same, cloud computing has shown
that it’s immensely powerful and, with the right tooling,
incredibly effective.

But if the only kind of isolation you needed was resource
partitioning, wouldn’t it be great if you could get that on the
same kernel without running another operating system
instance? For many years, you could assign a “niceness” value
to a process and it would give the scheduler hints about how
you wanted this process to be treated in relation to the others.
But it wasn’t possible to impose hard limits like those that you



get with virtual machines. And niceness is not at all fine-
grained: you can’t give something more I/O and less CPU than
other processes. This fine-grained control, of course, is one of
the promises of Linux containers and the mechanism that they
use to provide that functionality is cgroups, which predate
Docker and were invented to solve just this problem.

Control groups, or cgroups for short, allow you to set limits on
resources for processes and their children. This is the
mechanism that the Linux kernel uses to control limits on
memory, swap, CPU, storage and network I/O resources.
cgroups are built into the kernel and originally shipped back in
2007 in Linux 2.6.24. The official kernel documentation defines
them as “a mechanism to organize processes hierarchically and
distribute system resources along the hierarchy in a controlled
and configurable manner.” It’s important to note that this
setting applies to a process and all of the children that descend
from it. That’s exactly how containers are structured.

NOTE

It is worth mentioning that there have been at least two major releases of Linux
control groups v1 and v2. Make sure that you know which version is being used in
production so that you can leverage all the abilities that it provides.

https://www.kernel.org/doc/Documentation/cgroup-v2.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v2.txt


Every Linux container is assigned a cgroup that is unique to
that container. All of the processes in the container will be in
the same group. This means that it’s easy to control resources
for each container as a whole without worrying about what
might be running. If a container is redeployed with new
processes added, you can have Docker assign the same policy
and it will apply to the whole container and all the process
container within.

We talked previously about the cgroups hooks exposed by
Docker via its API. That interface allows you to control memory,
swap, and disk usage. But there are lots of other things that you
can manage with cgroups, including tagging network packets
from a container so that you can use those tags to prioritize
traffic. You might find that in your environment you need to use
some of these levers to keep your containers under control, and
there are a few ways you can go about doing that. By their very
nature, cgroups need to do a lot of accounting of resources used
by each group. That means that when you’re using them, the
kernel has a lot of interesting statistics about how much CPU,
RAM, disk I/O, and so on your processes are using. So Docker
uses cgroups not just to limit resources but also to report on
them. These are many of the metrics you see, for example, in
the output of docker container stats .



The /sys filesystem

The primary way to control cgroups in a fine-grained manner,
even if you configured them with Docker, is to manage them
yourself. This is the most powerful method because changes
don’t just happen at container creation time—they can be done
on the fly.

On systems with systemd , there are command-line tools like
systemctl  that you can use to do this. But since cgroups are
built into the kernel, the method that works everywhere is to
talk to the kernel directly via the /sys filesystem. If you’re not
familiar with /sys, it’s a filesystem that directly exposes several
kernel settings and outputs. You can use it with simple
command-line tools to tell the kernel how you would like it to
behave.

This method of configuring cgroups controls for containers
works only directly on the Docker server, so it is not available
remotely via any API. If you use this method, you’ll need to
figure out how to script this for your environment.



WARNING

Changing cgroups values yourself, outside of any Docker configuration, breaks some
of the repeatability of a Docker deployment. Unless you implement changes in your
deployment process, settings will revert to their defaults when containers are
replaced. Some schedulers take care of this for you, so if you run one in production
you might check the documentation to see how to best apply these changes
repeatably.

Let’s use an example of changing the CPU cgroups settings for a
container we have just started up. We need to get the long ID of
the container, and then we need to find it in the /sys filesystem.
Here’s what that looks like:

Here, we’ve had docker container run  give us the long ID in
the output, and the ID we want is dcbb…
8e86f1dc0a91e7675d3c93895cb6a6d83371e25b7f0bd62803ed8e8

6 . You can see why Docker normally truncates this.

$ docker container run -d spkane/train-os \
  stress -v --cpu 2 --io 1 --vm 2 --vm-bytes 128M --t
 
dcbb…8e86f1dc0a91e7675d3c93895cb6a6d83371e25b7f0bd628



NOTE

In the examples, we may need to truncate the ID to make it fit into the constraints of
a standard page. But remember that you will need to use the long ID!

Now that we have the ID, we can find our container’s cgroup in
the /sys filesystem. /sys is laid out so that each type of setting is
grouped into a module and that module might be exposed at a
different place in the /sys filesystem. So when we look at CPU
settings, we won’t see blkio  settings, for example. You might
take a look around in the /sys to see what else is there. But for
now we’re interested in the CPU controller, so let’s inspect what
that gives us. You need root  access on the system to do this
because you’re manipulating kernel settings:

TIP

Remember our nsenter  trick the we originally discussed in Chapter 3. You can run
docker container run --rm -it --privileged --pid=host debian nsenter -t 1

-m -u -n -i sh  to get access to the Docker host, even if you can’t SSH into the
server.

$ ls /sys/fs/cgroup/docker/dcbb…8e86 
 
cgroup.controllers        cpuset.cpus.partition     m
cgroup.events             cpuset.mems               m



NOTE

The exact path here may change a bit depending on the Linux distribution your
Docker server is running on and what the hash of your container is.

You can see that under cgroups, there is a docker directory that
contains all of the Linux containers that are running on this
host. You can’t set cgroups for things that aren’t running,
because they apply only to running processes. This is an
important point that you should consider. Docker takes care of
reapplying cgroup settings for you when you start and stop

cgroup.freeze             cpuset.mems.effective     m
cgroup.max.depth          hugetlb.2MB.current       m
cgroup.max.descendants    hugetlb.2MB.events        m
cgroup.procs              hugetlb.2MB.events.local  m
cgroup.stat               hugetlb.2MB.max           m
cgroup.subtree_control    hugetlb.2MB.rsvd.current  m
cgroup.threads            hugetlb.2MB.rsvd.max      m
cgroup.type               io.bfq.weight             m
cpu.max                   io.latency                p
cpu.stat                  io.max                    p
cpu.weight                io.stat                   p
cpu.weight.nice           memory.current            r
cpuset.cpus               memory.events             r
cpuset.cpus.effective     memory.events.local



containers. Without that mechanism, you are somewhat on
your own.

Let’s go ahead and inspect the CPU weight for this container.
Remember that we explored setting some of these CPU values in
Chapter 5 via the --cpus  command line argument to docker
container run . But for a normal container where no settings
were passed, this setting is the default:

$ cat /sys/fs/cgroup/docker/dcbb…8e86/cpu.weight
100

100 CPU weight means we are not limited at all. Let’s tell the
kernel that this container should be limited to half that:

$ echo 50 > /sys/fs/cgroup/docker/dcbb…8e86/cpu.weigh
$ cat /sys/fs/cgroup/docker/dcbb…8e86/cpu.weight
50

https://docs.kernel.org/admin-guide/cgroup-v2.html#cpu-interface-files


WARNING

In production, you should not use this method to adjust cgroups on the fly, but we are
demonstrating it here so that you understand the underlying mechanics that make
all of this work. Take a look at docker container update  if you’d like to adjust these
on a running container. You might also find the --cgroup-parent  option to docker
container run  interesting.

There you have it. We’ve changed the container’s settings on the
fly. This method is very powerful because it allows you to set
any cgroups setting for the container. But as we mentioned
earlier, it’s entirely ephemeral. When the container is stopped
and restarted, the setting reverts to the default:

You can see that the directory path doesn’t even exist anymore
now that the container is stopped. And when we start it back
up, the directory comes back but the setting is back to 100:

$ docker container start dcbb…8e86 
dcbb…8e86 

$ docker container stop dcbb…8e86 
dcbb…8e86 
 
$ cat /sys/fs/cgroup/docker/dcbb…8e86/cpu.weight 
cat: /sys/fs/…/cpu.weight: No such file or directory

https://dockr.ly/2PPC4P1
https://dockr.ly/2PTLaKK


 
$ cat /sys/fs/cgroup/docker/dcbb…8e86/cpu.weight
100

If you were to change these kinds of settings in a production
system via the /sys fileystem directly, you’d want to manage that
directly. A daemon that watches the docker system events
stream and changes settings at container startup, for example,
is a possibility.

NOTE

It is possible to create custom cgroups outside of Docker and then attach a new
container to that cgroup using the --cgroup-parent  argument to docker container
create . This mechanism is also used by schedulers that run multiple containers
inside the same cgroup (e.g., Kubernetes pods).

Namespaces

Inside each container, you see a filesystem, network interfaces,
disks, and other resources that all appear to be unique to the
container despite sharing the kernel with all the other
processes on the system. The primary network interface on the
actual machine, for example, is a single shared resource. But
inside your container, it will look like it has an entire network
interface to itself. This is a really useful abstraction: it’s what



makes your container feel like a machine all by itself. The way
this is implemented in the kernel is with Linux namespaces.
Namespaces take a traditionally global resource and present
the container with its own unique and unshared version of that
resource.

NOTE

Namespaces can not be explored on the filesystem quite as easily as cgroups, but
most of the details can be found under the /proc/*/ns/* and /proc/*/task/*/ns/*
hierarchies. In newer Linux releases, the lsns  command can also be quite useful .

Rather than just having a single namespace, however, by
default containers have a namespace on each of the resources
that are currently namespaced in the kernel: mount, UTS, IPC,
PID, network, and user namespaces, in addition to the partially-
implemented time namespace. Essentially when you talk about
a container, you’re talking about several different namespaces
that Docker sets up on your behalf. So what do they all do?

Mount namespaces
Linux uses these primarily to make your container look like
it has its own entire filesystem. If you’ve ever used a chroot
jail, this is its more robust relative. It looks a lot like a
chroot  jail but goes all the way down to the deepest levels of



the kernel so that even mount  and unmount  system calls are
namespaced. If you use docker container exec  or
nsenter , which we will discuss later in this chapter, to get
into a container, you’ll see a filesystem rooted on /. But we
know that this isn’t the actual root partition of the system. It’s
the mount namespace that makes that possible.

UTS namespaces
Named for the kernel structure they namespace, UTS (Unix
Timesharing System) namespaces give your container its
own hostname and domain name. This is also used by older
systems like NIS to identify which domain a host belongs to.
When you enter a container and see a hostname that is not
the same as the machine on which it runs, it’s this namespace
that makes that happen.

TIP

To have a container use its host’s UTS namespace, you can specify the --uts=host
option when launching the container with docker container run . There are similar
commands for sharing the other namespaces as well.

IPC namespaces
These isolate your container’s System V IPC and POSIX
message queue systems from those of the host. Some IPC



mechanisms use filesystem resources like named pipes, and
those are covered by the mount namespace. The IPC
namespace covers things like shared memory and
semaphores that aren’t filesystem resources but which really
should not cross the container wall.

PID namespaces
We have already shown that you can see all of the processes
in containers in the Linux ps  output on the host Linux
server. But inside the container, processes have a different
PID. This is the PID namespace in action. A process has a
unique PID in each namespace to which it belongs. If you
look in /proc inside a container, or run ps , you will only see
the processes inside the container’s PID namespace.

Network namespaces
This is what allows your container to have its own network
devices, ports, and so on. When you run docker container
ls  and see the bound ports for your container, you are
seeing ports from both namespaces. Inside the container,
your nginx  might be bound to port 80, but that’s on the
namespaced network interface. This namespace makes it
possible to have what seems to be a completely separate
network stack for your container.



User namespaces
These provide isolation between the user and group IDs
inside a container and those on the Linux host. Earlier when
we looked at ps  output outside and then inside the
container, we saw different user IDs; this is how that
happened. A new user inside a container is not a new user on
the Linux host’s main namespace and vice versa. There are
some subtleties here, though. For example, UID 0 ( root ) in a
user namespace is not the same thing as UID 0 on the host,
although running as root  inside the container does increase
the risk of potential security exploits. There are concerns
about security leakage, which we’ll talk about in a bit, and is
why things like rootless containers are growing in popularity.

Cgroup namespaces
This namespace was introduced in Linux kernel 4.6 in 2016
and is intended to hide the identity of the control group of
which the process is a member. A process checking which
control group any process is part of, would see a path that is
relative to the control group set at creation time, hiding its
true control group position and identity.

Time namespaces
Time has historically not been namespaced since it is so
integral to the Linux kernel and providing full namespacing



would be very complex. However, with the release of Linux
kernel 5.6 in 2020, support was added for a time namespace
which allows containers to have their own unique clock
offsets.

NOTE

At the time of this writing, Docker still does not have direct support for setting the
time offset, but like everything else, it can be set directly, if required.

So by combining all of these namespaces Linux can provide the
visual and, in many cases, the functional isolation that makes a
container look like a virtual machine even though it’s running
on the same kernel. Let’s explore what some of the
namespacing that we just described looks like in more detail.

NOTE

There is a lot of ongoing work trying to make containers more secure. The
community is actively looking into ways to improve support for rootless containers,
which enables regular users to create, run, and manage containers locally without
needing special privileges. In Docker this can now be achieved via rootless mode.
New container runtimes like Google gVisor are also trying to explore better ways to
create much more secure container sandboxes without losing most of the advantages
of containerized workflows.

Exploring namespaces

https://man7.org/linux/man-pages/man7/time_namespaces.7.html
https://rootlesscontaine.rs/
https://docs.docker.com/engine/security/rootless/
https://github.com/google/gvisor


One of the easiest namespaces to demonstrate is UTS, so let’s
use docker container exec  to get a shell in a container and
take a look. From within the Docker server, run the following:

$ hostname 
 
docker-desktop

TIP

Again, remember that you can use the docker container run --rm -it --
privileged --pid=host debian nsenter -t 1 -m -u -n -i sh  command that we
originally discussed in Chapter 3++ to get access to the Docker host, even if you can’t
SSH into the server.

and then on your local system run:

That docker container run  command line gets us an
interactive session ( -ti ), and then executes the hostname
command via /bin/bash  inside the container. Since the

$ docker container run -ti --rm ubuntu \
    bash -c 'echo "Container hostname: $(hostname)"' 
 
Container hostname: 4cdb66d4495b



hostname  command is run inside the container’s namespace,
we get back the short container ID, which is used as the
hostname by default. This is a pretty simple example, but it
should clearly show that we’re not in the same namespace as
the host.

Another example that’s easy to understand and demonstrate
involves PID namespaces. Let’s create a new container:

and now let’s get Docker to show us the process IDs from the
host’s perspective:

$ docker container run -d --rm --name pstest spkane/t
6e005f895e259ed03c4386b5aeb03e0a50368cc173078007b6d1b
 
$ docker container exec -ti pstest ps -ef 
 
UID        PID  PPID  C STIME TTY          TIME CMD 

root         1     0  0 15:33 ?        00:00:00 sleep
root        13     0  0 15:33 pts/0    00:00:00 ps -e

$ docker container top pstest 
 
UID   PID    PPID   C  STIME  TTY  TIME      CMD 
root 31396 31370 0 15:33 ? 00:00:00 sleep 24



What we can see here is that from inside our container, the
original command run by Docker is sleep 240  and it has been
assigned PID 1 inside the container. You might recall that this is
the PID normally used by the init  process on Unix systems. In
this case, the sleep 240  command that we started the
container with is the first process, so it gets PID 1. But in the
Docker server’s main namespace, we can see that the PID there
is not 1, but 31396, and it’s a child of process ID 31370.

If you are curious, you can run a command like this to
determine what PID 31370 is:

Now we can go ahead and remove the container we started in
the last example, by running:

 $ docker container rm -f pstest

root  31396  31370  0  15:33 ?     00:00:00  sleep 24

$ docker container run --pid=host ubuntu ps -p 31370 
PID    TTY  TIME      CMD
31370  ?    00:00:00  containerd-shim



The other namespaces work in essentially the same manner,
and you probably get the idea by now. It’s worth pointing out
here that when we were first working with nsenter  back in
Chapter 3, we had to pass what appeared to be some pretty
arcane arguments to the command when we ran it to enter a
container from the Docker server. Let’s go ahead and look at the
nsenter  portion of the command docker container run --rm
-it --privileged --pid=host debian nsenter -t 1 -m -u -

n -i sh .

It turns out that nsenter -t 1 -m -u -n -i sh  is exactly the
same as nsenter --target 1 --mount --uts --net -ipc sh .
So this command really just says, look at PID 1 and then open
up a shell in the same mount, uts, net, and ipc namespaces of
that process.

Now that we’ve explained namespaces in detail, this probably
makes a lot more sense to you. It can also be educational to use
nsenter  to try entering different sets of namespaces in a
throwaway container to see what you get and simply explore
how all of this works in some more detail.

When it comes down to it, namespaces are the primary things
that make a container look like a container. Combine them with



cgroups, and you have reasonably robust isolation between
processes on the same kernel.

Security

We’ve spent a good bit of space now talking about how Docker
provides containment for applications, allows you to constrain
resource utilization, and uses namespaces to give the container
a unique view of the world. We have also briefly mentioned the
need for technologies like Secure Computing Mode, SELinux,
and AppArmor. One of the advantages of containers is the
ability to replace virtual machines in several use cases. So let’s
take a look at what isolation we get by default, and what we
don’t.

You are undoubtedly aware by now that the isolation you get
from a container is not as strong as that from a virtual machine.
We’ve been reinforcing the idea from the start of this book that
containers are just processes running on the Linux server.
Despite the isolation provided by namespaces, containers are
not as secure as you might imagine, especially if you are still
mentally comparing them to lightweight virtual machines.



One of the big boosts in performance for containers, and one of
the things that makes them lightweight, is that they share the
kernel of the Linux server. This is also the source of the greatest
security concern around Linux containers. The main reason for
this concern is that not everything in the kernel is namespaced.
We have talked about all of the namespaces that exist and how
the container’s view of the world is constrained by the
namespaces it runs in. However, there are still lots of places in
the kernel where no real isolation exists and namespaces
constrain the container only if it does not have the power to tell
the kernel to give it access to a different namespace.

Containerized applications are more secure than non-
containerized applications because cgroups and standard
namespaces provide some important isolation from the host’s
core resources. But you should not think of containers as a
substitute for good security practices. If you think about how
you would run an application on a production system, that is
really how you should run all your containers. If your
application would traditionally run as a non-privileged user on
a server, then it should be run in the same manner inside the
container. It is very easy to tell Docker to run your container
processes as a non-privileged user, and in almost all cases, this
is what you should be doing.



TIP

The --userns-remap  argument to the dockerd  command and rootless mode both
make it possible to force all containers to run within a user and group context that is
unprivileged on the host system. These approaches help protect the host from many
potential security exploits.

For more information about userns-remap  read through the official feature and
docker daemon documentation.

You can learn more about rootless mode in the section entitled, “Rootless Mode”.

Let’s look at some common security risks and controls.

UID 0

The first and most overarching security risk in a container is
that, unless you are using rootless mode or the userns-remap
functionality in the Docker daemon, the root  user in the
container is actually the root  user on the system. There are
extra constraints on root  in a container, and namespaces do a
good job of isolating root  in the container from the most
dangerous parts of the /proc and /sys filesystems. But if you are
UID 0 you have root  access, so if you somehow get access to
protected resources on a file mount or outside of your
namespace, then the kernel will treat you as root , and
therefore give you access to the resource. Unless otherwise

https://dockr.ly/2BYfWze
https://dockr.ly/2LE9gG2


configured, Docker starts all services in containers as root ,
which means you are responsible for managing privileges in
your applications just like if you are on any standard Linux
system. Let’s explore some of the limits on root  access and
look at some obvious holes. This is not intended to be an
exhaustive statement on container security, but rather an
attempt to give you a healthy understanding of some of the
classes of security risks.

First, let’s fire up a container and get a bash  shell using the
public Ubuntu image shown in the following code. Then we’ll
see what kinds of access we have, after installing some tools we
want to run.

$ docker container run --rm -ti ubuntu /bin/bash 
 
root@808a2b8426d1:/# apt-get update 
… 
root@808a2b8426d1:/# apt-get install -y kmod 
… 
root@808a2b8426d1:/# lsmod 
Module                             Size  Used by 
xfrm_user                         36864  1 
xfrm_algo                         16384  1 xfrm_user 

shiftfs                           28672  0 
grpcfuse                          16384  0 
vmw vsock virtio transport 16384 2



In Docker Desktop you may only see a few modules in the list,
but on a normal Linux system this list can be very long. Using
lsmod , we’ve just asked the kernel to tell us what modules are
loaded. It is not that surprising that we get this list from inside
our container, since a normal user can always do this. If you
run this listing on the Docker server itself, it will be identical,
which reinforces the fact that the container is talking to the
same Linux kernel that is running on the server. So we can see
the kernel modules; what happens if we try to unload the
floppy  module?

That’s the same error message we would get if we were a non-
privileged user trying to tell the kernel to remove a module.
This should give you a good sense that the kernel is doing its

vmw_vsock_virtio_transport        16384  2 
vmw_vsock_virtio_transport_common 28672  1 vmw_vsock_
vsock                             36864  9 vmw_vsock_

root@808a2b8426d1:/# rmmod shiftfs 
 
rmmod: ERROR: ../libkmod/libkmod-module.c:799 kmod_mo
rmmod: ERROR: could not remove module shiftfs: Operat
 
root@808a2b8426d1:/# exit



best to prevent us from doing things we shouldn’t. And because
we’re in a limited namespace, we can’t get the kernel to give us
access to the top-level namespace either. We are essentially
relying on the hope that there are no bugs in the kernel that
allow us to escalate our privileges inside the container. Because
if we do manage to do that, we are root , which means that we
will be able to make changes if the kernel allows us to.

We can contrive a simple example of how things can go wrong
by starting a bash  shell in a container that has had the Docker
server’s /etc bind-mounted into the container’s namespace.
Keep in mind that anyone who can start a container on your
Docker server can do what we’re about to do any time they like
because you can’t configure Docker to prevent it, so you must
instead rely on external tools like SELinux to avoid exploits like
this:

NOTE

This example assumes that you are running the docker  CLI on a Linux system,
which has an /etc/shadow file. This file will not exist on Windows or macOS hosts
running something like Docker Desktop.

$ docker container run --rm -it -v /etc:/host_etc ubu
 
root@e674eb96bb74:/# more /host etc/shadow 



Here we’ve used the -v  switch to Docker to tell it to mount a
host path into the container. The one we’ve chosen is /etc,
which is a very dangerous thing to do. But it serves to prove a
point: we are root  in the container, and root  has file
permissions in this path. So we can look at the /etc/shadow file
on the Linux server, which contains the encrypted passwords
for all the users. There are plenty of other things you could do
here, but the point is that by default you’re only partly
constrained.

@ / / _ /
root:!:16230:0:99999:7::: 
daemon:*:16230:0:99999:7::: 
bin:*:16230:0:99999:7::: 
sys:*:16230:0:99999:7::: 
… 
irc:*:16230:0:99999:7::: 
nobody:*:16230:0:99999:7::: 
libuuid:!:16230:0:99999:7::: 
syslog:*:16230:0:99999:7::: 
messagebus:*:16230:0:99999:7::: 
kmatthias:$1$aTAYQT.j$3xamPL3dHGow4ITBdRh1:16230:0:99
sshd:*:16230:0:99999:7::: 
lxc-dnsmasq:!:16458:0:99999:7::: 
 
root@e674eb96bb74:/# exit



WARNING

It is a bad idea to run your container processes with UID 0. This is because any
exploit that allows the process to somehow escape its namespaces will expose your
host system to a fully privileged process. You should always run your standard
containers with a non-privileged UID.

The easiest way to deal with the potential problems
surrounding the use of UID 0 inside containers is to always tell
Docker to use a different UID for your container.

You can do this by passing the -u  argument to docker
container run . In the next example, we run the whoami
command to show that we are root  by default and that we can
read the /etc/shadow file that is inside this container.

$ docker container run --rm spkane/train-os:latest wh
root 
 
$ docker container run --rm spkane/train-os:latest ca
root:!locked::0:99999:7::: 
bin:*:18656:0:99999:7::: 
daemon:*:18656:0:99999:7::: 
adm:*:18656:0:99999:7::: 

lp:*:18656:0:99999:7::: 
…



In this example, when you add -u 500 , you will see that we
become a new, unprivileged user and can no longer read the
same /etc/shadow file.

Another highly recommended approach, is to add the USER
directive to your _Dockerfile_s, so that containers created from
them will launch using a non-privileged user by default.

FROM fedora:34
RUN useradd -u 500 -m myuser
USER 500:500
CMD ["whoami"]

If you create this Dockerfile, and then build and run it you will
see that whoami  returns myuser instead of root.

$ docker container run --rm -u 500 spkane/train-os:la
user500 
 

$ docker container run --rm -u 500 spkane/train-os:la
cat: /etc/shadow: Permission denied

$ docker image build -t user-test . 
 
[+] Building 0 5s (6/6) FINISHED



Rootless Mode

One of the primary security challenges with containers is that
they often require some root-privledged processes to launch
and manage them. Even when you use the --userns-remap
feature of the Docker daemon, the daemon itself still runs as a
privileged process, even though the containers that it launches
will not.

[+] Building 0.5s (6/6) FINISHED
 => [internal] load build definition from Dockerfile 
 => => transferring dockerfile: 36B                  
 => [internal] load .dockerignore                    
 => => transferring context: 2B                      
 => [internal] load metadata for docker.io/library/fe
 => [1/2] FROM docker.io/library/fedora:34@sha256:321
 => CACHED [2/2] RUN useradd -u 500 -m myuser        
 => exporting to image                               
 => => exporting layers                              
 => => writing image sha256:4727…30d5                
 => => naming to docker.io/library/user-test         
 
$ docker container run --rm user-test 
myuser



With rootless mode it is possible to run the daemon and all
containers without root priviledges, which can do a great deal
to improve the security of the underlying system.

Rootless mode requires a Linux system, and Docker
recommends Ubuntu, so let’s run through an example using a
new Ubuntu 22.04 system.

NOTE

These steps assume that you are logging in a a regular un-privileged user and that
you already have Docker Engine installed.

The first thing we need to do is make sure that dbus-user-
session  and uidmap  are installed. If dbus-user-session  isn’t
already installed then we need to logout and back in after
running the following command.

$ sudo apt-get install -y dbus-user-session uidmap 
… 
dbus-user-session is already the newest version (1.12
… 

Setting up uidmap (1:4.8.1-2ubuntu2) … 
…

https://docs.docker.com/engine/security/rootless/
https://docs.docker.com/engine/install/ubuntu/


Although, it is not strictly required, if the system-wide Docker
daemon is setup to run, it is a very good idea to disable it and
then reboot.

Once the system is back up, you can SSH back into the server, as
a regular user, and confirm that /var/run/docker.sock is no
longer on the system.

The next step is to run the rootless mode installation script,
which is installed in /usr/bin by the Docker installer.

$ sudo systemctl disable --now docker.service docker.
 
Synchronizing state of docker.service with SysV servi
  /lib/systemd/systemd-sysv-install. 
Executing: /lib/systemd/systemd-sysv-install disable 
Removed /etc/systemd/system/sockets.target.wants/dock
Removed /etc/systemd/system/multi-user.target.wants/d

 
$ sudo shutdown -r now

$ ls /var/run/docker.sock 
ls: cannot access '/var/run/docker.sock': No such fil

$ d k d tl t t l h i t ll



$ dockerd-rootless-setuptool.sh install 
 
[INFO] Creating /home/me/.config/systemd/user/docker.
[INFO] starting systemd service docker.service 
+ systemctl --user start docker.service 
+ sleep 3 
+ systemctl --user --no-pager --full status docker.se
● docker.service - Docker Application Container Engin
     Loaded: loaded (/home/me/.config/systemd/user/do
… 
+ DOCKER_HOST=unix:///run/user/1000/docker.sock /usr/
Client: Docker Engine - Community
 Version:           20.10.18 
… 
Server: Docker Engine - Community
 Engine:
  Version:          20.10.18 

… 
+ systemctl --user enable docker.service 
Created symlink /home/me/.config/systemd/user/default
  docker.service → /home/me/.config/systemd/user/dock
[INFO] Installed docker.service successfully. 
 
[INFO] To control docker.service, run:
         `systemctl --user (start|stop|restart) docke
[INFO] To run docker.service on system startup, run:
         `sudo loginctl enable-linger me` 
 
[INFO] C ti CLI t t " tl "



NOTE

The UID in the DOCKER_HOST variable above should match the UID of the user that
ran the script. In this case, the UID is 1000.

This script ran a few checks to ensure that our system was
ready, and then it installed and started a user-scoped systemd
service file into
${HOME}/.config/systemd/user/docker.service . Each and
every user on the system, could do the same thing, if desired.

The user Docker daemon can be controlled, like most systemd
services. A few basic examples are shown below:

$ systemctl --user restart docker.service 
$ systemctl --user stop docker.service 
$ systemctl --user start docker.service

[INFO] Creating CLI context "rootless" 
Successfully created context "rootless" 
 
[INFO] Make sure the following environment variables 
       (or add them to ~/.bashrc):
export PATH=/usr/bin:$PATH
export DOCKER_HOST=unix:///run/user/1000/docker.sock



To allow the user docker daemon to run when the user is not
logged in, the user needs to use sudo  to enable a systemd
feature called linger and then you can also enable the Docker
daemon to start whenever the system boots up.

$ sudo loginctl enable-linger $(whoami) 
$ systemctl --user enable docker

This would be a good time to go ahead and add those
environment variables to our shell startup files, but at a
minimum we need to go ahead and make sure both of these
environment variables are set in our current terminal.

We can easily run a standard container:

$ export PATH=/usr/bin:$PATH 
$ export DOCKER_HOST=unix:///run/user/1000/docker.soc

$ docker container run --rm hello-world 
 

Hello from Docker! 
This message shows that your installation appears to 
… 
For more examples and ideas, visit:
https://docs docker com/get started/



However, you will notice that some of the more privileged
containers that we have used in earlier sections, will not work
in this environment.

And this is because, in rootless mode the container can not have
more privleges then the user that is running the container, even
though, on the surface, the container appears to still have full
root  privileges.

 https://docs.docker.com/get-started/

$ docker container run --rm -it --privileged --pid=ho
 

docker: Error response from daemon: failed to create 
create failed: runc create failed: unable to start co
during container init: error mounting "proc" to rootf
mount proc:/proc (via /proc/self/fd/7), flags: 0xe: 
operation not permitted: unknown.

$ docker container run --rm spkane/train-os:latest wh
root



Let’s explore this just a little bit more, by launching a small
container that is running sleep 480s .

If we look at the processes iside the container we will see that
they all appear to be running with the user root .

However, if we look at the processes on the Linux system, we
will see that the sleep  command is actually being run by the
local user, named me , and not by root  at all.

$ docker container run -d --rm --name sleep spkane/tr
1f8ccec0a834537da20c6e07423f9217efe34c0eac94f0b0e178f

$ docker container exec sleep ps auxwww 
USER         PID %CPU %MEM    VSZ   RSS TTY      STAT
root           1  0.1  0.0   2400   824 ?        Ss  
root           7  0.0  0.0   7780  3316 ?        Rs  

$ ps auxwww | grep sleep 
me   3509 0.0 0.0  2400  824 ?     Ss 10:51 0:00 slee

me   3569 0.0 0.0 17732 2360 pts/0 S+ 10:51 0:00 grep



The root  user inside a rootless container is actually mapped to
the user themselves. The container processes can not use any
prviledges that the user running the daemon does not already
have and because of this they are a very safe way to allow user
on a multi-user system to run containers without granting any
of them elevated priviledges on the system.

TIP

There are directions to uninstall rootless mode on the Docker website.

Privileged Containers

There are times when you need your container to have special
kernel capabilities that would normally be denied to the
container. These could include mounting a USB drive,
modifying the network configuration, or creating a new Unix
device.

In the following code, we try to change the MAC address of our
container:

$ docker container run --rm -ti spkane/train-os /bin/
 
[root@280d4dc16407 /]# ip link ls
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue

https://docs.docker.com/engine/security/rootless/#uninstall
https://man7.org/linux/man-pages/man7/capabilities.7.html


As you can see, it doesn’t work. This is because the underlying
Linux kernel blocks the nonprivileged container from doing
this, which is exactly what we’d normally want. However,
assuming that we need this functionality for our container to
work as intended, the easiest way to significantly expand a
container’s privileges is by launching it with the --
privileged=true  argument.

WARNING

We don’t recommend running the ip link set eth0 address  command in the next
example, since this will change the MAC address on the container’s network
interface. We show it to help you understand the mechanism. Try it at your own risk.

, , _ q q
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:0
2: tunl0@NONE: <NOARP> mtu 1480 qdisc noop state DOWN
    link/ipip 0.0.0.0 brd 0.0.0.0
3: ip6tnl0@NONE: <NOARP> mtu 1452 qdisc noop state DO
    link/tunnel6 :: brd :: permaddr 12b5:6f1b:a7e9::
22: eth0@if23: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 
    link/ether 02:42:ac:11:00:02 brd ff:ff:ff:ff:ff:f
 
[root@fc4589fb8778 /]# ip link set eth0 address 02:0a
RTNETLINK answers: Operation not permitted 
 
[root@280d4dc16407 /]# exit



In the preceding output, you will notice that we no longer get
the error and the link/ether entry for eth0  has been changed.

The problem with using the --privileged=true  argument is
that you are giving your container very broad privileges, and in

$ docker container run -ti --rm --privileged=true spk
 
[root@853e0ef5dd63 /]# ip link ls
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:0
2: tunl0@NONE: <NOARP> mtu 1480 qdisc noop state DOWN
    link/ipip 0.0.0.0 brd 0.0.0.0
3: ip6tnl0@NONE: <NOARP> mtu 1452 qdisc noop state DO
    link/tunnel6 :: brd :: permaddr 12b5:6f1b:a7e9::
22: eth0@if23: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 
    link/ether 02:42:ac:11:00:02 brd ff:ff:ff:ff:ff:f
 
[root@853e0ef5dd63 /]# ip link set eth0 address 02:0a
 
[root@853e0ef5dd63 /]#  ip link show eth0
26: eth0@if27: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 
    link/ether 02:0a:03:0b:04:0c brd ff:ff:ff:ff:ff:f
 
[root@853e0ef5dd63 /]# exit



most cases, you likely need only one or two kernel capabilities
to get the job done.

If we explore our privileged container some more, we will
discover that we have capabilities that have nothing to do with
changing the MAC address. We can even do things that could
cause issues with both Docker and the host system. In the
following code, we are going to mount a disk partition from the
underlying host system and then list all of the underlying
Docker-based Linux containers on the system and explore some
of their critical files.

$ docker container run -ti --rm --privileged=true spk
 
[root@664a896983d7 /]# mount /dev/vda1 /mnt && \
                         ls -F /mnt/docker/containers
                         head -n 10 
 
047df420f6d1f227a26667f83e477f608298c25b0cdad2e149a78
0888b9f97b1ecc4261f637404e0adcc8ef0c8df291b87c9160426
174ea3ec35cd3a576bed6f475b477b1a474d897ece15acfc46e61
1eddad26ee64c4b29eb164b71d56d680739922b3538dc8aa6c696
22b2aa38a687f423522dd174fdd85d578eb21c9c8ec154a0f9b84
23879e3b9cd6a42a1e09dc8e96912ad66e80ec09949c744d1177a
266fe7da627d2e8ec5429140487e984c8d5d36a26bb3cc36a8829
2cb6223e115c12ae729d968db0d2f29a934b4724f0c9536e377e0

306f00e86122b69eeba9323415532a12f88360a1661f445fc7d64



WARNING

Do not change or delete any of these files. It could have an unpredictable impact on
the containers or the underlying Linux system.

333b85236409f873d07cd47f62ec1a987df59f688a201df744f40
 
[root@664a896983d7 /]# ls -F /mnt/docker/containers/0
 
047df420f6d1f227a26667f83e477f608298c25b0cdad2e149a78
checkpoints/ 
config.v2.json 
hostconfig.json 
hostname 
hosts 
mounts/ 
resolv.conf 
resolv.conf.hash 
 
[root@664a896983d7 /]# cat /mnt/docker/containers/047
 
{"log":"047df420f6d1\r\n","stream":"stdout","time":"2
… 
 
[root@664a896983d7 /]# exit



So, as we’ve seen, people can run commands and get access to
things that they shouldn’t from a fully privileged container.

To change the MAC address, the only kernel capability we need
is CAP_NET_ADMIN . Instead of giving our container the full set of
privileges, we can give it this one privilege by launching our
Linux container with the --cap-add  argument, as shown here:

You should also notice that although we can change the MAC
address, we can no longer use the mount  command inside our
container.

$ docker container run -ti --rm --cap-add=NET_ADMIN s
 
[root@087c02a3c6e7 /]# ip link show eth0
36: eth0@if37: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 
    link/ether 02:42:ac:11:00:02 brd ff:ff:ff:ff:ff:f
 
[root@087c02a3c6e7 /]# ip link set eth0 address 02:0a
 
[root@087c02a3c6e7 /]# ip link show eth0
36: eth0@if37: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 
    link/ether 02:0a:03:0b:04:0c brd ff:ff:ff:ff:ff:f
 
[root@087c02a3c6e7 /]# exit



It is also possible to remove specific capabilities from a
container. Imagine for a moment that your security team
requires that tcpdump  be disabled in all containers, and when
you test some of your containers, you find that tcpdump  is
installed and can easily be run.

$ docker container run -ti --rm --cap-add=NET_ADMIN s
 
[root@b84a06ddaa0d /]# mount /dev/vda1 /mnt 
mount: /mnt: permission denied. 
 
[root@b84a06ddaa0d /]# exit

$ docker container run -ti --rm spkane/train-os:lates
 
dropped privs to tcpdump 
tcpdump: verbose output suppressed, use -v[v]… for fu
listening on eth0, link-type EN10MB (Ethernet), snaps
15:40:49.847446 IP6 fe80::23:6cff:fed6:424f > ff02::1
15:40:49.913977 ARP, Request who-has _gateway tell 56
15:40:49.914048 ARP, Request who-has _gateway tell 56
15:40:49.914051 ARP, Reply _gateway is-at 02:49:9b:d9
15:40:49.914053 IP 5642703bbff2.45432 > 192.168.75.8.
…



You could remove tcpdump  from your images, but there is very
little preventing someone from reinstalling it. The most
effective way to solve this problem is to determine what
capability tcpdump  needs to operate and remove that from the
container. In this case, you can do so by adding --cap-
drop=NET_RAW  to your docker container run  command.

By using both the --cap-add  and --cap-drop  arguments to
docker container run , you can finely control your container’s
Linux kernel capabilities.

NOTE

Be aware that in addition to providing access to system calls there are actually some
other thins that enabling a specific Linux capability can provide. This might include
visibility of all the devices on the system, or the ability to change the time on the
system.

Secure Computing Mode

$ docker container run -ti --rm --cap-drop=NET_RAW sp
  tcpdump -i eth0 
 
tcpdump: eth0: You dont have permission to capture on
(socket: Operation not permitted)

https://man7.org/linux/man-pages/man7/capabilities.7.html


When Linux kernel version 2.6.12 was released in 2005, it
included a new security feature called Secure Computing Mode,
or seccomp  for short. This feature enables a process to make a
one-way transition into a special state, where it will only be
allowed to make the system calls exit() , sigreturn() , and
read()  or write()  to already-open file descriptors.

An extension to seccomp , called seccomp-bpf , utilizes the
Linux version of Berkeley Packet Filter (bpf) rules to allow you
to create a policy that will provide an explicit list of system calls
that a process can utilize while running under Secure
Computing Mode. The Docker support for Secure Computing
Mode utilizes seccomp-bpf  so that users can create profiles
that give them very fine-grained control of which kernel system
calls their containerized processes are allowed to make.

NOTE

By default, all containers use Secure Computing Mode and have the default profile
attached to them. You can read more about Secure Computing Mode and which
system calls the default profile blocks in the documentation. You can also examine
the default policy’s JSON file to see what a policy looks like and understand exactly
what it defines.

To see how you could use this, let’s use the program strace  to
trace the system calls that a process is making when we try to

https://www.kernel.org/doc/Documentation/networking/filter.txt
https://docs.docker.com/engine/security/seccomp/
https://github.com/moby/moby/blob/master/profiles/seccomp/default.json


unmount a filesystem with the umount  command.

WARNING

These examples are here to prove a point, but you obviously shouldn’t be umounting
filesystems out of your container without knowing exactly what is going to happen.

$ docker container run -ti --rm spkane/train-os:lates
umount: /sys/fs/cgroup: must be superuser to unmount.
 
$ docker container run -ti --rm spkane/train-os:lates
  strace umount /sys/fs/cgroup 
 
execve("/usr/bin/umount", ["umount", "/sys/fs/cgroup"
… 
umount2("/sys/fs/cgroup", 0)            = -1 EPERM (O
write(2, "umount: ", 8umount: )                 = 8 
write(2, "/sys/fs/cgroup: must be superuse"…,

      45/sys/fs/cgroup: must be superuser to unmount.
write(2, "\n", 1
)                       = 1 
dup(1)                                  = 3 
close(3)                                = 0 
dup(2)                                  = 3 
close(3)                                = 0 
exit_group(32)                          = ? 
+++ exited with 32 +++



We already know that mount-related commands do not work in
a container with standard permissions, and strace  makes it
clear that the system returns an Operation not permitted error
message when the umount  command tries to use the umount2
system call .

You could potentially fix this by giving your container the
SYS_ADMIN capability, like this:

However, remember that using --cap-add=SYS_ADMIN  will
make it possible for us to do many other things including

$ docker container run -ti --rm --cap-add=SYS_ADMIN s
    strace umount /sys/fs/cgroup 
 
execve("/usr/bin/umount", ["umount", "/sys/fs/cgroup"

… 
umount2("/sys/fs/cgroup", 0)            = 0 
dup(1)                                  = 3 
close(3)                                = 0 
dup(2)                                  = 3 
close(3)                                = 0 
exit_group(0)                           = ? 
+++ exited with 0 +++



mounting system partitions using a command like this:

But you can solve this problem with a more focused approach
by using a seccomp  profile. Unlike seccomp , --cap-add  will
enable a whole set of system calls and some additional
priviledges, and you almost certainly don’t need them all.
CAP_SYS_ADMIN is particularly powerful and provides way
more privileges then any one capability should. With a
seccomp  profile, however, you can be very specific about
exactly what system calls you want to be enabled or disabled.

If we take a look at the default seccomp  profile, we’ll see
something like this:

{
    "defaultAction": "SCMP_ACT_ERRNO",
    "defaultErrnoRet": 1,
    "archMap": [
        {
            "architecture": "SCMP_ARCH_X86_64",
            "subArchitectures": [
                "SCMP_ARCH_X86",

$ docker container run -ti --rm --cap-add=SYS_ADMIN s
  mount /dev/vda1 /mnt



                "SCMP_ARCH_X32"
            ]
        },
…
    ],
    "syscalls": [
        {
            "names": [
                "accept",
                "accept4",
                "access",
                "adjtimex",
…
                "waitid",
                "waitpid",
                "write",
                "writev"
            ],
            "action": "SCMP_ACT_ALLOW"
        },
        {
            "names": [
                "bpf",
                "clone",
…
                "umount2",
                "unshare"
            ],



            "action": "SCMP_ACT_ALLOW",
            "includes": {
                "caps": [
                    "CAP_SYS_ADMIN"
                ]
            }
        },
…
    ]
}

This JSON file provides a list of supported architectures, a
default ruleset, and groups of system calls that fall within the
scope of each capability. In this case, the default action is
SCMP_ACT_ERRNO , and will generate an error if an unspecified
call is attempted.

If you examine the default profile in detail, you’ll notice that
CAP_SYS_ADMIN  controls access to thirty-seven system calls, a
huge number that is even larger then the 4-6 system calls
including in most other capabilities.

In the current use case, we actually need some of the special
fuinctionality provided by CAP_SYS_ADMIN, but we do not need
all of those system calls. To ensure that we are adding only the
one additional system call that we need, we can create our own



Secure Computing Mode policy, based on the default policy that
Docker provides.

First, pull down the default policy and make a copy of it.

NOTE

The URL above has been continued on the following line so that it fits in the margins.
You may find that you need to re-assemble the URL and remove the back slashes for
the command to work properly in your environment.

Then edit the file and remove a bunch of the system calls that
CAP_SYS_ADMIN normally provides. In this case we actually
need to retain 2 system calls to ensure that both strace  and
umount  work correctly.

The section of the file that we are targetting ends with this JSON
block.

$ wget https://raw.githubusercontent.com/moby/moby/ma
profiles/seccomp/default.json 
 
$ cp default.json umount2.json



            "includes": {
                "caps": [
                    "CAP_SYS_ADMIN"
                ]
            }

The below diff  shows the exact changes that need to be made
in this usecase.

$ diff -u -U5 default.json umount2.json

diff -u -U5 default.json umount2.json
--- default.json        2022-09-25 13:23:57.000000000
+++ umount2.json        2022-09-25 13:38:31.000000000
@@ -575,34 +575,12 @@
                                ]
                        }
                },
                {
                        "names": [
-                               "bpf",
                                "clone",
-                               "clone3",
-                               "fanotify_init",
-                               "fsconfig",



-                               "fsmount",
-                               "fsopen",
-                               "fspick",
-                               "lookup_dcookie",
-                               "mount",
-                               "mount_setattr",
-                               "move_mount",
-                               "name_to_handle_at",
-                               "open_tree",
-                               "perf_event_open",
-                               "quotactl",
-                               "quotactl_fd",
-                               "setdomainname",
-                               "sethostname",
-                               "setns",
-                               "syslog",
-                               "umount",
-                               "umount2",
-                               "unshare"
+                               "umount2"
                        ],
                        "action": "SCMP_ACT_ALLOW",
                        "includes": {
                                "caps": [
                                        "CAP_SYS_ADMI



You are now ready to test your new finely tuned seccomp
profile, to ensure that it can run umount  but can not run
mount .

If everything went according to plan, your strace  of the
umount  program should have run perfectly and the mount
command should have been blocked. In the real world it would
be much safer to consider re-deisgning your applications so
that they do not need these special priviledges, but when it can
not be avoided, then you should be able to use these tools to

$ docker container run -ti --rm --security-opt seccom
  --cap-add=SYS_ADMIN spkane/train-os:latest /bin/bas
 
[root@15b8a26b6cfe /]# strace umount /sys/fs/cgroup 
execve("/usr/bin/umount", ["umount", "/sys/fs/cgroup"
close(3)                                = 0 
exit_group(0)                           = ? 
+++ exited with 0 +++ 
 
[root@15b8a26b6cfe /]# mount /dev/vda1 /mnt 
mount: /mnt: permission denied. 
 
[root@15b8a26b6cfe /]# exit



help ensure that your containers remain as secure as possible,
while still doing their jobs.

WARNING

You could completely disable the default Secure Computing Mode profile by setting -
-security-opt seccomp=unconfined , however running a container unconfined is a
very bad idea in general, and is probably only useful when you are trying to figure
out exactly what system calls you may need to define in your profile.

The strength of Secure Computing Mode is that it allows users
to be much more selective about what a container can and can’t
do with the underlying Linux kernel. Custom profiles are not
required for most containers, but they are an incredibly handy
tool when you need to carefully craft a powerful container and
ensure that you maintain the overall security of the system.

SElinux and AppArmor

Earlier we talked about how containers are primarily leverage
cgroups and namespaces for their functionality. SELinux and
AppArmor are security layers in the Linux ecosystem that can
be used to increase the security of containers even further. In
this section we are going to discuss these two systems a bit.
SELinux and AppArmor allow you to apply security controls

https://www.redhat.com/en/topics/linux/what-is-selinux
https://apparmor.net/


that extend beyond those normally supported by Unix systems.
SELinux (Security-Enhanced Linux) originated in the US
National Security Agency, was strongly adopted by Red Hat, and
supports very fine-grained control. AppArmor is an effort to
achieve many of the same goals while being a bit more user-
friendly then SELinux.

Docker ships by default with reasonable profiles enabled on
platforms that support either of these systems. You can further
configure these profiles to enable or prevent all sorts of
features, and if you’re running Docker in production, you
should do a risk analysis to determine if there are additional
considerations that you should be aware of. We’ll give a quick
outline of the benefits you are getting from these systems.

Both systems provide Mandatory Access Control, a class of
security system where a systemwide security policy grants
users (or “initiators”) access to a resource (or “target”). This
allows you to prevent anyone, including root , from accessing a
part of the system that they should not have access to. You can
apply the policy to a whole container so that all processes are
constrained. Many chapters would be required to provide a
clear and detailed overview of how to configure these systems.
The default profiles are performing tasks like blocking access to
parts of the /proc and /sys filesystems that would be dangerous



to expose in the container, even though they show up in the
container’s namespace. The default profiles also provide more
narrowly scoped mount access to prevent containers from
getting hold of mount points they should not see.

If you are considering using Linux containers in production, it
is worth seriously considering going through the effort to
enable AppArmor or SELinux on these systems. For the most
part, both systems are reasonably equivalent. But in the Docker
context, one notable limitation of SELinux is that it only works
fully on systems that support filesystem metadata, which means
that it won’t work with all Docker storage drivers. AppArmor,
on the other hand, does not use filesystem metadata and
therefore works on all of the Docker backends. Which one you
use is somewhat distribution-centric, so you may be forced to
choose a filesystem backend that also supports the security
system that you use.

The Docker Daemon

From a security standpoint, the Docker daemon and its
components are the only completely new risk you are
introducing to your infrastructure. Your containerized
applications are not any less secure and are, at least, a little
more secure than they would be if deployed outside of



containers. But without the containers, you would not be
running dockerd , the Docker daemon. You can run Docker
such that it doesn’t expose any ports on the network. This is
highly recommeneded and the default for most Docker
isntallations.

The default configuration for Docker, on most distributions,
leaves Docker isolated from the network with only a local Unix
socket exposed. Since you cannot remotely administer Docker
when it is set up this way, it is not uncommon to see people
simply add the nonencrypted port 2375 to the configuration.
This may be great for getting started with Docker, but it is not
what you should do in any environment where you care about
the security of your systems. you should not open Docker up to
the outside world at all unless you have a very good reason to
do it. If you do, you should also commit to properly securing it.
Most scheduler systems run their services on each node and
expect to talk to Docker over the Unix domain socke instead of
over a network port.

If you do need to expose the daemon to the network, you can do
a few things to tighten Docker down in a way that makes sense
in most production environments. But no matter what you do,
you are relying on the Docker daemon itself to be resilient
against threats like buffer overflows and race conditions, two of



the more common classes of security vulnerabilities. This is
true of any network service. The risk is a lot higher with the
Docker daemon because it is normally run as root , it can run
anything on your system, and it has no integrated role-based
access controls.

The basics of locking Docker down are common with many
other network daemons: encrypt your traffic and authenticate
users. The first is reasonably easy to set up on Docker; the
second is not as easy. If you have SSL certificates you can use
for protecting HTTP traffic to your hosts, such as a wildcard
certificate for your domain, you can turn on TLS support to
encrypt all of the traffic to your Docker servers, using port 2376.
This is a good first step. The Docker documentation will walk
you through doing this.

Authenticating users is more complicated. Docker does not
provide any kind of fine-grained authorization: you either have
access or you don’t. But the authentication control it does
provide—signed certificates—is reasonably strong.
Unfortunately, this also means that you don’t get a cheap step
from no authentication to some authentication without also
having to set up a certificate authority in most cases. If your
organization already has one, then you are in luck. Certificate
management needs to be implemented carefully in any

https://docs.docker.com/engine/security/protect-access/


organization, both to keep certificates secure and to distribute
them efficiently. So, given that, here are the basic steps:

1. Set up a method of generating and signing certificates.
2. Generate certificates for the server and clients.
3. Configure Docker to require certificates with --tlsverify .

Detailed instructions on getting a server and client set up, as
well as a simple certificate authority, are included in the Docker
documentation.

WARNING

Because it’s a daemon that almost always runs with privilege, and because it has
direct control of your applications, it is a bad idea to expose Docker directly on the
internet. If you need to talk to your Docker hosts from outside your network,
consider something like a VPN or an SSH tunnel to a secure jump host.

Advanced Configuration

Docker has a very clean external interface and on the surface, it
looks pretty monolithic. But there’s actually a lot of things going
on behind the scenes that are configurable, and the logging
backends we described in “Logging” are a good example. You
can also do things like change out the storage backend for

https://docs.docker.com/engine/security/protect-access/


container images for the whole daemon, use a completely
different runtime, or configure individual containers to run on
a different network configuration. Those are powerful switches
and you’ll want to know what they do before turning them on.
First, we’ll talk about the network configuration, then we’ll
cover the storage backends, and finally, we’ll try out a
completely different container runtime to replace the default
runc  supplied with Docker.

Networking

Early on we described the layers of networking between a
Linux container and the real live network. Let’s take a closer
look at how that works. Docker supports a rich set of network
configurations, but let’s start with the default setup. Figure 11-1
shows a drawing of a typical Docker server, where three
containers are running on their private network, shown on the
right. One of them has a public port (TCP port 10520) that is
exposed on the Docker server. We’ll track how an inbound
request gets to the Linux container and also how a Linux
container can make an outbound connection to the external
network.



Figure 11-1. The network on a typical Docker server

If we have a client somewhere on the network that wants to
talk to the nginx  server running on TCP port 80 inside
Container 1, the request will come into the eth0  interface on
the Docker server. Because Docker knows this is a public port, it
has spun up an instance of docker-proxy  to listen on port
10520. So our request is passed to the docker-proxy  process,
which then forwards the request to the correct container
address and port on the private network. Return traffic from
the request flows through the same route.

Outbound traffic from the container follows a different route in
which the docker-proxy  is not involved at all. In this case,
Container 3 wants to contact a server on the public internet. It
has an address on the private network of 172.16.23.1 and its
default route is the docker0  interface 172.16.23.7. So it sends



the traffic there. The Docker server now sees that this traffic is
outbound and it has traffic forwarding enabled. And since the
virtual network is private, it wants to send the traffic from its
public address instead. So the request is passed through the
kernel’s network address translation (NAT) layer and put onto
the external network via the eth0  interface on the server.
Return traffic passes through the same route. Tthe NAT is one-
way, so containers on the virtual network will see real network
addresses in response packets.

You’ve probably noticed that it’s not a simple configuration. It’s
a fair amount of complexity, but it makes Docker seem pretty
transparent. It also contributes to the security posture of the
Docker stack because the containers are namespaced into
individual network namespaces, are on individual private
networks, and don’t have access to things like the main system’s
DBus or IPTables.

Let’s examine what’s happening at a more detailed level. The
interfaces that show up in ifconfig  or ip addr show  in the
Linux container are actually virtual Ethernet interfaces on the
Docker server’s kernel. They are then mapped into the
container’s network namespace and given the names that you
see inside the container. Let’s take a look at what we might see



when running ip addr show  on a Docker server. We’ll shorten
the output a little for clarity and spaces, as shown here:

$ ip addr show 
 
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue

    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:0
    inet 127.0.0.1/8 brd 127.255.255.255 scope host l
       valid_lft forever preferred_lft forever
    inet6 ::1/128 scope host
       valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 q
    link/ether 02:50:00:00:00:01 brd ff:ff:ff:ff:ff:f
    inet 172.16.168.178/24 brd 192.168.65.255 scope g
       valid_lft 4908sec preferred_lft 3468sec
    inet6 fe80::50:ff:fe00:1/64 scope link
       valid_lft forever preferred_lft forever 
…
7: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 150
    link/ether 02:42:9c:d2:89:4f brd ff:ff:ff:ff:ff:f
    inet 172.17.42.1/16brd 172.17.255.255 scope globa
       valid_lft forever preferred_lft forever
    inet6 fe80::42:9cff:fed2:894f/64 scope link
       valid_lft forever preferred_lft forever 
…
185: veth772de2a@if184: <BROADCAST,MULTICAST,UP,LOWER
    link/ether 9a:a9:24:b7:5a:31 brd ff:ff:ff:ff:ff:f
    inet6 fe80::98a9:24ff:feb7:5a31/64 scope link



What this tells us is that we have the normal loopback
interface, our real Ethernet interface eth0 , and then the
Docker bridge interface, docker0 , that we described earlier.
This is where all the traffic from the Linux containers is picked
up to be routed outside the virtual network. The surprising
thing in this output is the veth772de2a  interface. When Docker
creates a container, it creates two virtual interfaces, one of
which sits on the server side and is attached to the docker0
bridge, and one that is attached to the container’s namespace.
What we’re seeing here is the server-side interface. Did you
notice how it doesn’t show up as having an IP address assigned
to it? That’s because this interface is just joined to the bridge.
This interface will have a different name in the container’s
namespace as well.

As with so many pieces of Docker, you can replace the proxy
with a different implementation. To do so, you would use the -
-userland-proxy-path=<path>  setting, but there are probably
not that many good reasons to do this unless you have a very
specialized network. However, the --userland-proxy=false
flag to dockerd  will completely disable the userland-proxy
and instead rely on hairpin NAT functionality to route traffic

p
       valid_lft forever preferred_lft forever

https://www.geeksforgeeks.org/network-address-translation-nat/


between local containers. If you need higher-throughput
services, this might be right for you.

NOTE

A hairpin NAT is typically used to describe services inside a NATed network that
address each other with their public IP addresses. This causes traffic from the source
service to route out to the internet, hit the external interface for the NAT router, and
then get routed back into the original network to the destination service. The trafiic is
shaped like the letter U  or a standard hairpin.

Host networking

As we’ve noted, there is a lot of complexity involved in the
default implementation. You can, however, run a container
without the whole networking configuration that Docker puts in
place for you. And the docker-proxy  can also limit the
throughput for very high-volume data services, by requiring all
the network traffic to pass through the docker-proxy  process
before being received by the container. So what does it look like
if we turn off the Docker network layer? Since the beginning,
Docker has let you do this on a per-container basis with the --
net=host  command-line switch. There are times, like when you
want to run high-throughput applications when you might
want to do this. But you lose some of Docker’s flexibility when
you do it. Let’s examine how this mechanism works.



WARNING

Like others we discuss in this chapter, this is not a setting you should take lightly. It
has operational and security implications that might be outside your tolerance level.
It can be the right thing to do, but you should understand the consequences.

Let’s start a container with --net=host  and see what happens.

$ docker container run --rm -it --net=host spkane/tra
[root@docker-desktop /]# docker container run --rm -i
                         spkane/train-os ip addr show
 
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue
                              default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:0
    inet 127.0.0.1/8 brd 127.255.255.255 scope host l
       valid_lft forever preferred_lft forever
    inet6 ::1/128 scope host
       valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 q
                                           state UP g
    link/ether 02:50:00:00:00:01 brd ff:ff:ff:ff:ff:f
    inet 192.168.65.3/24 brd 192.168.65.255 scope glo
                                            noprefixr
       valid_lft 4282sec preferred_lft 2842sec
    inet6 fe80::50:ff:fe00:1/64 scope link
       valid_lft forever preferred_lft forever 
…
7: docker0: <NO CARRIER BROADCAST MULTICAST UP> mtu 1



That should look pretty familiar. That’s because when we run a
container with the host networking option, the container is
running in both the host server’s network and UTS namespaces.

7: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1
                                                state
    link/ether 02:42:9c:d2:89:4f brd ff:ff:ff:ff:ff:f

    inet 172.17.0.1/16 brd 172.17.255.255 scope globa
       valid_lft forever preferred_lft forever
    inet6 fe80::42:9cff:fed2:894f/64 scope link
       valid_lft forever preferred_lft forever
8: br-340323d07310: <NO-CARRIER,BROADCAST,MULTICAST,U
                                          noqueue sta
    link/ether 02:42:56:24:42:b8 brd ff:ff:ff:ff:ff:f
    inet 172.22.0.1/16 brd 172.22.255.255 scope globa
       valid_lft forever preferred_lft forever
11: br-01f7537b9475: <NO-CARRIER,BROADCAST,MULTICAST,
                                           noqueue st
    link/ether 02:42:ed:14:67:61 brd ff:ff:ff:ff:ff:f
    inet 172.18.0.1/16 brd 172.18.255.255 scope globa
       valid_lft forever preferred_lft forever
    inet6 fc00:f853:ccd:e793::1/64 scope global
       valid_lft forever preferred_lft forever
    inet6 fe80::42:edff:fe14:6761/64 scope link
       valid_lft forever preferred_lft forever
    inet6 fe80::1/64 scope link
       valid_lft forever preferred_lft forever



Our server’s hostname is docker-desktop , and from the shell
prompt, we can tell that our container has the same hostname.

[root@docker-desktop /]# hostname 
docker-desktop

If we run the mount  command to see what’s mounted, though,
we see that Docker is still maintaining our /etc/resolv.conf,
/etc/hosts, and /etc/hostname directories. And as expected, the
/etc/hostname directory simply contains the server’s hostname.

Just to prove that we can see all the normal networking on the
Docker server, let’s look at the output from the ss  to see if we

[root@docker-desktop /]# mount 
 
overlay on / type overlay (rw,relatime,lowerdir=/var/
… 
/dev/vda1 on /etc/resolv.conf type ext4 (rw,relatime)
/dev/vda1 on /etc/hostname type ext4 (rw,relatime) 
/dev/vda1 on /etc/hosts type ext4 (rw,relatime) 
… 
 
[root@docker-desktop /]# cat /etc/hostname 
docker-desktop



can see the sockets that docker is utilizing:

NOTE

If the Docker daemon was listening on an TCP port, like 2375, you could have looked
for that as well. Feel free to look for another TCP port on your server port that you
know is in use.

If you search for docker  in the output of a normal container
within its own namespace, you will notice that you get no
results.

So we are indeed in the server’s network namespace. What all
of this means is that if we were to launch a high-throughput
network service, we could expect network performance from it
that is essentially native. But it also means we could try to bind

root@852d18f5c38d:/# ss | grep docker 
 
u_str  ESTAB  0  0  /run/guest-services/docker.sock  
… 
u_str  ESTAB  0  0  /var/run/docker.sock             

$ docker container run --rm -it spkane/train-os bash 



to ports that would collide with those on the server, so if you do
this you should be careful about how you allocate port
assignments.

Configuring networks

There is more to networking than just the default network or
host networking, however. The docker network  command lets
you create multiple networks backed by different drivers. It
also allows you to view and manipulate the Docker network
layers and how they are attached to containers that are running
on the system.

Listing the networks available from Docker’s perspective is
easily accomplished with the following command:

$ docker network ls 
 
NETWORK ID      NAME      DRIVER    SCOPE 
5840a6c23373    bridge    bridge    local 
1c22b4582189    host      host      local 
c128bfdbe003    none      null      local

You can then find out more details about any individual
network by using the docker network inspect  command
along with the network ID:



$ docker network inspect 5840a6c23373

[
    {
        "Name": "bridge",
        "Id": "5840…fc94",
        "Created": "2022-09-23T01:21:55.697907958Z",
        "Scope": "local",
        "Driver": "bridge",
        "EnableIPv6": false,
        "IPAM": {
            "Driver": "default",
            "Options": null,
            "Config": [
                {
                    "Subnet": "172.17.0.0/16",
                    "Gateway": "172.17.0.1"
                }
            ]
        },
        "Internal": false,
        "Attachable": false,
        "Ingress": false,
        "ConfigFrom": {
            "Network": ""
        },
        "ConfigOnly": false,

"Containers": {}



Docker networks can be created and removed, as well as
attached and detached from individual containers, with the
network  subcommand.

So far, we’ve set up a bridged network, no Docker network, and
a bridged network with hairpin NAT. There are a few other
drivers that you can use to create different topologies using
Docker as well, with the overlay  and macvlan  drivers being
the most common. Let’s take a brief look at what these can do
for you.

overlay

        Containers : {},
        "Options": {

            "com.docker.network.bridge.default_bridge
            "com.docker.network.bridge.enable_icc": "
            "com.docker.network.bridge.enable_ip_masq
            "com.docker.network.bridge.host_binding_i
            "com.docker.network.bridge.name": "docker
            "com.docker.network.driver.mtu": "1500"
        },
        "Labels": {}
    }
]



This driver is used in Swarm mode to generate a network
overlay between the Docker hosts, creating a private network
between all the containers that run on top of the real
network. This is useful for Swarm, but not in-scope for
general use with non-Swarm containers.

macvlan

This driver creates a real MAC address for each of your
containers and then exposes them on the network via the
interface of your choice. This requires that you switch gears
to support more than one MAC address per physical port on
the switch. The result is that all the containers appear
directly on the underlying network. When you’re moving
from a legacy system to a container-native one, this can be a
really useful step. There are drawbacks here, such as making
it harder when debugging to identify which host the traffic is
really coming from, overflowing the MAC tables in your
network switches, excessive ARPing by container hosts, and
other underlying network issues. For this reason the
macvlan  driver is not recommended unless you have a good
understanding of your underlying network and can manage
it effectively.

There are a few sets of configurations that are possible here,
but the basic setup is easy to configure:



$ docker network create -d macvlan \
    --subnet=172.16.16.0/24 \
    --gateway=172.16.16.1  \
    -o parent=eth0 ourvlan 
 
$ docker network ls 
NETWORK ID     NAME            DRIVER    SCOPE 
5840a6c23373   bridge          bridge    local 
1c22b4582189   host            host      local 
c128bfdbe003   none            null      local 
8218c0ecc9e2   ourvlan         macvlan   local 
 
$ docker network rm 8218c0ecc9e2

TIP

You can prevent Docker from allocating specific addresses by specifying them as
named auxiliary addresses --aux-address="my-router=172.16.16.129" .

There is a lot more you can configure with the Docker network
layer. However, the defaults, host networking, and userland
proxyless mode are the ones that you’re most likely to use or
encounter in the wild. Some of the other options you can
configure include the container’s DNS nameservers, resolver
options, and default gateways, among other things. The



networking section of the Docker documentation gives an
overview of how to do some of this configuration.

NOTE

For advanced network configuration of Docker, check out Weave—a well-supported
overlay network tool for spanning containers across multiple Docker hosts, similar to
the overlay  driver but much more configurable, and without the Swarm
requirement. Another offering is Project Calico. If you are running Kubernetes,
which has its own networking configuration, you might also want to familiarize
yourself with the Container Network Interface (CNI) and then take a look at Cilium,
which provides robust eBPF-based networking for containers.

Storage

Backing all of the images and containers on your Docker server
is a storage backend that handles reading and writing all of that
data. Docker has some strenuous requirements on its storage
backend: it has to support layering, the mechanism by which
Docker tracks changes and reduces both how much disk a
container occupies and how much is shipped over the wire to
deploy new images. Using a copy-on-write strategy, Docker can
start up a new container from an existing image without having
to copy the whole image. The storage backend supports that.
The storage backend is what makes it possible to export images
as groups of changes in layers, and also lets you save the state

https://docs.docker.com/network/
https://github.com/weaveworks/weave
https://www.tigera.io/project-calico/
https://www.cni.dev/
https://cilium.io/


of a running container. In most cases, you need the kernel’s
help in doing this efficiently. That’s because the filesystem view
in your container is generally a union of all of the layers below
it, which are not actually copied into your container. Instead,
they are made visible to your container, and only when you
make changes does anything get written to your container’s
filesystem. One place this layering mechanism is exposed to you
is when you upload or download a new image from a registry
like Docker Hub. The Docker daemon will push or pull each
layer separately, and if some of the layers are the same as
others it has already stored, it will use the cached layer instead.
In the case of a push to a registry, it will sometimes even tell
you which image they are mounted from.

Docker relies on an array of possible kernel drivers to handle
the layering. The Docker codebase contains code that can
handle interacting with many of these backends, and you can
configure the decision about which to use on daemon restart. So
let’s look at what is available and some of the pluses and
minuses of each.

Various backends have different limitations that may or may
not make them your best option. In some cases, your choices of
which backend to use are limited by what your distribution of
Linux supports. Using the drivers that are built into the kernel



shipped with your distribution will always be the easiest
approach. It’s generally best to stay close to the well-tested path.
We’ve seen all manner of oddities from various backends since
Docker’s release. And, as usual, the common case is always the
best-supported one. Different backends also report different
statistics through the Docker Remote API (/info endpoint). This
can be very useful for monitoring your Docker systems.
However, not all backends are created equal, so let’s see how
they differ.

Overlay
Overlay (formerly OverlayFS) is a union filesystem where
multiple layers are mounted together so that they appear as a
single filesystem. The Overlay filesystem is the most
recommended choice for Docker storage these days and
works on most major distributions. If you are running on a
Linux kernel older than 4.0 (or 3.10.0-693 for RHEL), then you
won’t be able to take advantage of this backend. The
reliability and performance are good enough that it might be
worth updating your OS for Docker hosts to support it, even
if your company standard is an older distribution. The
Overlay filesystem is part of the mainline Linux kernel and
has become increasingly stable over time. Being in the
mainline means that long-term support is virtually
guaranteed, which is another nice advantage. Docker

https://www.kernel.org/doc/html/latest/filesystems/overlayfs.html


supports two versions of the Overlay backend, overlay  and
overlay2 . As you might expect, you are strongly advised to
use overlay2  as it is faster, more efficient with inode usage,
and more robust.

NOTE

The Docker community is frequently improving support for a variety of filesystem
backends. For more details about the supported filesystems, take a look at the official
documentation.

AuFS
Although at the time of this writing it is no longer
recommended, aufs  is the original backend for Docker.
AuFS is a union filesystem driver with reasonable support on
various popular Linux distributions. It was never accepted
into the mainline kernel, however, and this has limited its
availability on various distributions. It is not supported on
recent versions of Red Hat or Fedora for example. It is not
shipped in the standard Ubuntu distribution but is in the
Ubuntu linux-image-extra  package.

Its status as a second-class citizen in the kernel has led to the
development of many of the other backends now available. If
you are running an older distribution that supports AuFS,

https://docs.docker.com/storage/storagedriver
https://aufs.sourceforge.net/


you might consider it but you should upgrade to a kernel
version that natively supports Overlay or Btrfs, which is
discussed next.

Btrfs
Btrfs is fundamentally a copy-on-write filesystem, which
means it’s a pretty good fit for the Docker image model. Like
aufs  and unlike devicemapper , Docker is using the backend
in the way it was intended. That means it’s both pretty stable
in production and also a good performer. It scales reasonably
to thousands of containers on the same system. A drawback
for Red Hat–based systems is that Btrfs does not support
SELinux. If you can use the btrfs  backend, it is worth
exploring another option, after the overlay2  driver. One
popular way to run btrfs  backends for Linux containers
without having to give over a whole volume to this filesystem
is to make a Btrfs filesystem in a file and loopback-mount it
with something like mount -o loop file.btrs /mnt . Using
this method, you could build a 50 GB Linux container storage
filesystem even on cloud-based systems without having to
give over all your precious local storage to Btrfs.

Device Mapper
Originally written by Red Hat to support their distributions,
which lacked AuFS in Docker’s early days, Device Mapper

https://btrfs.wiki.kernel.org/index.php/Main_Page


became the default backend on all Red Hat–based
distributions of Linux. Depending on the version of Red Hat
Linux that you are using, this may be your only option.
Device Mapper itself has been built into the Linux kernel for
ages and is very stable. The way the Docker daemon uses it is
a bit unconventional, though, and in the past, this backend
was not that stable. This checkered past means that we
recommend picking a different backend when possible. If
your distribution supports only the devicemapper  driver,
then you will likely be fine. But it’s worth considering using
overlay2  or btrfs . By default, devicemapper  utilizes the
loop-lvm  mode, which has zero configuration, and is very
slow and generally only useful for development. If you
decide to use the devicemapper  driver, you must make sure
it is configured to use direct-lvm  mode for all
nondevelopment environments.

NOTE

You can find out more about using the various devicemapper  modes with Docker in
thehttps://docs.docker.com/storage/storagedriver/device-mapper-driver/[official
documentation]. A 2014 blog article also provides some interesting history about the
various Docker storage backends.

VFS

https://developers.redhat.com/blog/2014/09/30/overview-storage-scalability-docker


The Virtual File System ( vfs ) driver is the simplest, and
slowest, to start-up of the supported drivers. It doesn’t
actually support copy-on-write. Instead, it makes a new
directory and copies over all of the existing data. It was
originally intended for use in tests and for mounting host
volumes. The vfs  driver is very slow to create new
containers, but runtime performance is native, which is a
real benefit. Its mechanism is very simple, which means
there is less to go wrong. Docker, Inc., does not recommend it
for production use, so proceed with caution if you think it’s
the right solution for your production environment.

ZFS
ZFS, which was created by Sun Microsystems, is the most
advanced open source filesystem available on Linux. Due to
licensing restrictions, it does not ship in mainline Linux.
However, the ZFS On Linux project has made it pretty easy to
install. Docker can then run on top of the ZFS filesystem and
use its advanced copy-on-write facilities to implement
layering. Given that ZFS is not in the mainline kernel and not
available off the shelf in the major commercial distributions
going this route requires some extended effort. However, if
you are already running ZFS in production, then this may be
your very best option.



WARNING

Storage backends can have a big impact on the performance of your containers. And
if you swap the backend on your Docker server, all of your existing images will
disappear. They are not gone, but they will not be visible until you switch the driver
back. Caution is advised.

You can use docker system info  to see which storage backend
your system is running:

$ docker system info 
…
 Storage Driver: overlay2
  Backing Filesystem: extfs
  Supports d_type: true
  Native Overlay Diff: true
  userxattr: false 
…

As you can see, Docker will also tell you what the underlying or
“backing” filesystem is in cases where there is one. Since we’re
running overlay2  here, we can see it’s backed by an ext
filesystem. In some cases, like with devicemapper  on raw
partitions or with btrfs , there won’t be a different underlying
filesystem.



Storage backends can be swapped via the daemon-json
configuration file or via command-line arguments to dockerd
on startup. If we wanted to switch our Ubuntu system from
aufs  to devicemapper , we could do so like this:

$ dockerd --storage-driver=devicemapper

That will work on pretty much any Linux system that can
support Docker because devicemapper  is almost always
present. The same is true for overlay2  on modern Linux
kernels. However, you will need to have the actual underlying
dependencies in place for the other drivers. For example,
without aufs  in the kernel— usually via a kernel module— 
Docker will not start up with aufs  set as the storage driver,
and the same is true for Btrfs or ZFS.

Getting the appropriate storage driver for your systems and
deployment needs is one of the more important technical points
to get right when you’re taking Docker to production. Be
conservative; make sure the path you choose is well supported
in your kernel and distribution. Historically this was a pain
point, but most of the drivers have reached reasonable
maturity. Remain cautious for any newly appearing backends,
however, as this space continues to change. Getting new



backend drivers to work reliably for production systems takes
quite some time, in our experience.

nsenter

nsenter , which is short for “Namespace Enter,” allows you to
enter any Linux namespace and is part of the core util-linux
package from kernel.org. Using nsenter  we can get into a
Linux container from the server itself, even in situations where
the dockerd  server is not responding and we can’t use docker
container exec . nsenter  can also be used to manipulate
things in a container as root  on the server that would
otherwise be prevented by docker container exec . This can
be truly useful when you are debugging. Most of the time,
docker container exec  is all you need, but you should have
nsenter  in your tool belt.

Most Linux distributions ship with a new enough util-linux
package that it will contain nsenter . If you are on a
distribution that does not have it, the easiest way to get ahold of
nsenter  is to install it via the third-party Linux container.

This container works by pulling a Docker image from the
Docker Hub registry and then running a Linux container that

https://mirrors.edge.kernel.org/pub/linux/utils/util-linux/
https://github.com/jpetazzo/nsenter


will install the nsenter  command-line tool into /usr/local/bin.
This might seem strange at first, but it’s a clever way to allow
you to install nsenter  to any Docker server remotely using
nothing more than the docker  command.

Unlike docker container exec , which can be run remotely,
nsenter  requires that you run it on the server itself, directly or
via a container. For our purposes, we’ll use a specially crafted
container to run nsenter . As with the docker container
exec  example, we need to have a container running.

docker container exec  is pretty simple, but nsenter  is a
little inconvenient to use. It needs to have the PID of the actual
top-level process in your container, which is not obvious to find.
Let’s go ahead and run nsenter  by hand so you can see what’s
going on.

First, we need to find out the ID of the running container,
because nsenter  needs to know that to access it. We can easily
get this using docker container ls :

$ docker container run -d --rm  ubuntu:22.04 sleep 60
fd521174d66dc32650d165e0ce7dd97255c7b3624c34cb1d119d9

$ docker container ls 



The ID we want is that first field, fd521174d66d. With that, we
can now find the PID we need. We can do that like this:

TIP

You can also get the real PIDs of the processes in your container by running the
command docker container top  followed by the container ID. In our example this
would look like this:

$ docker container top fd521174d66d 
 
UID   PID   PPID  C  STIME  TTY  TIME      CMD 
root  2721  2696  0  20:37  ?    00:00:00  sleep 600

Make sure to update the --target  argument in the command
below with the process ID that you got from the previous
command, then go ahead and invoke nsenter :

 
CONTAINER ID  IMAGE          COMMAND      …  NAMES 
fd521174d66d   ubuntu:22.04  "sleep 1000" …  angry_al

$ docker container inspect --format \{{.State.Pid\}} 
2721

$ docker container run --rm -it --privileged --pid=ho



If the result looks a lot like docker container exec , that’s
because it does almost the same thing under the hood!

The command line argument --all  is telling nsenter  that we
want to enter all of the namespaces used by the process
specified with --target .

Debugging Shell-less Containers

If you want to troubleshoot a container that does not have a
Unix shell then things get a little trickier, but it is still possible.
For this example, we can run a container that has a single
executable in it.

$ docker container run rm it privileged pid=ho
    nsenter --target 2721 --all 
 
# ps -ef 
 

UID        PID  PPID  C STIME TTY          TIME CMD 
root         1     0  0 20:37 ?        00:00:00 sleep
root        11     0  0 20:51 ?        00:00:00 -sh 
root        15    11  0 20:51 ?        00:00:00 ps -e
# exit

$ docker container run --rm -d --name outyet-small \
    --publish mode=ingress,published=8090,target=8080



Let’s take a quick look at the processes that are running in this
container.

If you try and launch a Unix shell in the container you will get
an error.

We can then launch a second container which includes a shell
and some other useful tools in a way that the new container can
see the processes in the first container, is using the same

p g p g
    spkane/outyet:1.9.4-small 
4f6de24d4c9c794c884afa758ef5b33ea38c01f8ec9314dcddd9f

$ docker container top outyet-small 
 

UID  PID   PPID  C STIME TTY TIME     CMD 
root 61033 61008 0 22:43 ?   00:00:00 /outyet -versio

$ docker container exec -it outyet-small /bin/sh 
 
OCI runtime exec failed: exec failed: unable to start
  "/bin/sh": stat /bin/sh: no such file or directory:



network stack as the first container, and has some extra
privileges which will be helpful for our debugging.

If you type ls  in this container you will see the file system the
spkane/train-os  image, which contains /bin/sh  and all of
our debugging tools, but it does not contain any of the files from
our outyet-small  container.

However, if you type ps -ef  you will notice that you see all of
the processes from the original container. This is because we
told Docker to attach to use the namespace from the outyet-
small container by passing in --pid=container:outyet-small .

$ docker container run --rm -it --pid=container:outye
  --net=container:outyet-small --cap-add sys_ptrace \
  --cap-add sys_admin spkane/train-os /bin/sh 
 
sh-5.1#

sh-5.1# ls 
 
bin   dev  home  lib64       media  opt   root  sbin 
boot  etc  lib   lost+found  mnt    proc  run   srv  

sh-5 1# ps -ef



And because we are using the same network stack, you can
even curl  the port that the outyet service from the first
container is bound to.

sh-5.1# curl localhost:8080

At this point, you could use strace  or whatever else you
wanted to debug your application and then finally exit  the

sh-5.1# ps -ef 
 
UID  PID PPID C STIME TTY   TIME     CMD 
root   1    0 0 22:43 ?     00:00:00 /outyet -version
root  29    0 0 22:47 pts/0 00:00:00 /bin/sh 
root  36   29 0 22:49 pts/0 00:00:00 ps -ef

<!DOCTYPE html><html><body><center> 
  <h2>Is Go 1.9.4 out yet?</h2> 
  <h1> 
 
    <a href="https://go.googlesource.com/go/&#43;/go1
 
  </h1> 
  <p>Hostname: 155914f7c6cd</p>
</center></body></html>



new debug container, leaving your original container still
running on the server.

WARNING

If you run strace  you will need to type [Control-C]  to exit the strace  process.

You’ll notice that we could not see the file system in this use
case. If you need to view or copy files from the container you
can make use of the docker container export  command to
retrieve a tarball of the container’s filesystem.

You can then use tar  to view or extract the files.

sh-5.1# strace -p 1 
 

strace: Process 1 attached 
futex(0x963698, FUTEX_WAIT, 0, NULL^Cstrace: Process 
 <detached …> 
 
sh-5.1# exit
exit

$ docker container export outyet-small -o export.tar



When you are finished go ahead and delete export.tar and then
stop the outyet-small container with docker container stop
outyet-small .

$ tar -tvf export.tar 
 
-rwxr-xr-x  0 0   0         0 Jul 17 16:04 .dockerenv
drwxr-xr-x  0 0   0         0 Jul 17 16:04 dev/ 
-rwxr-xr-x  0 0   0         0 Jul 17 16:04 dev/consol
drwxr-xr-x  0 0   0         0 Jul 17 16:04 dev/pts/ 
drwxr-xr-x  0 0   0         0 Jul 17 16:04 dev/shm/ 
drwxr-xr-x  0 0   0         0 Jul 17 16:04 etc/ 
-rwxr-xr-x  0 0   0         0 Jul 17 16:04 etc/hostna
-rwxr-xr-x  0 0   0         0 Jul 17 16:04 etc/hosts 
lrwxrwxrwx  0 0   0         0 Jul 17 16:04 etc/mtab -
-rwxr-xr-x  0 0   0         0 Jul 17 16:04 etc/resolv
drwxr-xr-x  0 0   0         0 Apr 24  2021 etc/ssl/ 
drwxr-xr-x  0 0   0         0 Apr 24  2021 etc/ssl/ce
-rw-r--r--  0 0   0    261407 Mar 13  2018 etc/ssl/ce
-rwxr-xr-x  0 0   0   5640640 Apr 24  2021 outyet 
drwxr-xr-x  0 0   0         0 Jul 17 16:04 proc/ 
drwxr-xr-x  0 0   0         0 Jul 17 16:04 sys/



NOTE

You can explore the container’s filesystem from the Docker server by navigating
directly to where the filesystem resides on the server’s storage system. This will
typically look something like /var/lib/docker/overlay/fd5…, but will vary based on the
Docker setup, storage backend, and container hash. You can determine your Docker
root directory by running docker system info .

The Structure of Docker

What we think of as Docker is made of five major server-side
components that present a common front via the API. These
parts are dockerd , containerd , runc , containerd-shim-
runc-v2 , and the docker-proxy  we described in “Networking”.
We’ve spent a lot of time interacting with dockerd  and the API
it presents. It is, in fact, responsible for orchestrating the whole
set of components that make up Docker. But when it starts a
container, Docker relies on containerd  to handle instantiating
the container. All of this used to be handled in the dockerd
process itself, but there were several shortcomings to that
design:

dockerd  had a huge number of jobs.
A monolithic runtime prevented any of the components from
being swapped out easily.



dockerd  had to supervise the lifecycle of the containers
themselves and it couldn’t be restarted or upgraded without
losing all the running containers.

Another one of the major motivations for containerd  was that,
as we’ve just shown, containers are not just a single abstraction.
On the Linux platform, they are processes involving
namespaces, cgroups, and security rules in AppArmor or
SELinux. But Docker also runs on Windows and may even work
on other platforms in the future. The idea of containerd  is to
present a standard layer to the outside world where, regardless
of implementation, developers can think about the higher-level
concepts of containers, tasks, and snapshots rather than
worrying about specific Linux system calls. This simplifies the
Docker daemon a lot and enables platforms like Kubernetes to
integrate directly into containerd  rather than using the
Docker API. Kubernetes relied on a Docker shim for many
years, but nowadays it uses containerd  directly.

Let’s take a look at the components (shown in Figure 11-2) and
see what each of them does:

dockerd

One per server. Serves the API, builds container images, and
does high-level network management including volumes,



logging, statistics reporting, and more.

docker-proxy

One per port forwarding rule. Each instance handles the
forwarding of the defined protocol traffic (TCP/UDP) from the
defined host IP and port to the defined container IP and port.

containerd

One per server. Manages lifecycle, execution, copy-on-write
filesystem, and low-level networking drivers.

containerd-shim-runc-v2

One per container. Handles file descriptors passed to the
container (e.g., stdin / out ) and reports exit status.

runc

Constructs the container and executes it, gathers statistics,
and reports events on lifecycle.



Figure 11-2. Structure of Docker

dockerd  and containerd  speak to each other over a socket,
usually a Unix socket, using a gRPC API. dockerd  is the client in
this case, and containerd  is the server! runc  is a CLI tool that
reads configuration from JSON on disk and is executed by
containerd .

When we start a new container, dockerd  will handle making
sure that the image is present or will pull it from the repository
specified in the image name. (In the future this responsibility
may shift to containerd , which already supports image pulls.)
The Docker daemon also does most of the rest of the setup
around the container, like launching docker-proxy  to setup
port forwarding. It then talks to containerd  and asks it to run
the container. containerd  will take the image and apply the
container configuration passed in from dockerd  to generate an

https://grpc.io/


OCI (Open Container Initiative) bundle that runc  can execute.
It will then execute containerd-shim-runc-v2  to start the
container. This will in turn execute runc  to construct and start
the container. However, runc  will not stay running, and the
containerd-shim-runc-v2  will be the actual parent process of
the new container process.

If we launch a container and then look at the output of ps
axlf  on the docker server we can see the parent/child
relationship between the various processes. PID 1 is
/sbin/init  and is the parent process for containerd ,
dockerd , and the containerd-shim-runc-v2 .

NOTE

Docker Desktop’s virtual machine contains minimal versions of most Linux tools, and
some of these commands may not produce the same output that you will get if you
use a standard Linux server, as the Docker daemon host.

$ docker container run --rm -d \
  --publish mode=ingress,published=8080,target=80 \
  --name nginx-test --rm nginx:latest 
08b5cffed7baaf32b3af50498f7e5c5fa7ed35e094fa6045c205a
 
$ ps axlf 
… PID  PPID COMMAND 

1

https://www.opencontainers.org/


So what happened to runc ? Its job is to construct the container
and start it running, and then it leaves and its children are
inherited by its parent, the containerd-shim-runc-v2 . This
leaves the minimal amount of code in memory necessary to
manage the file descriptors and exit status for containerd .

To help you understand what’s going on here, let’s take a deeper
look at what happens when we start a container. We’ll just
reuse the nginx  container that we already have running for
this since it’s very lightweight and the container stays running
when backgrounded.

… 
… 5171 1    /usr/bin/containerd 
… 5288 1    /usr/bin/dockerd -H fd:// --containerd=/r
… 5784 5288 \_ /usr/bin/docker-proxy -proto tcp -host
… 5791 5288 \_ /usr/bin/docker-proxy -proto tcp -host
… 5807 1    /usr/bin/containerd-shim-runc-v2 -namespa
… 5829 5807  \_ nginx: master process nginx -g daemon
… 5880 5829      \_ nginx: worker process 
… 5881 5829      \_ nginx: worker process 
… 5882 5829      \_ nginx: worker process 
… 5883 5829      \_ nginx: worker process 
…

$ docker container ls 



Let’s use the runc  runtime CLI tool to take a look at its view of
the system. We could see a similar view from ctr , the CLI
client for containerd , but runc  is nicer to work with and it’s
at the lowest level.

We normally need root privileges to run this command. Unlike
with the Docker CLI, we can’t rely on the Docker daemon’s
permissions to let us access lower-level functionality. With
runc  we need direct access to these privileges. What we can
see in the output from runc  is our container! This is the actual
OCI runtime bundle that represents our container, with which
it shares an ID. Notice that it also gives us the PID of the
container; that’s the PID on the host of the application running
inside the container:

 
CONTAINER ID IMAGE        COMMAND        … PORTS     
08b5cffed7ba nginx:latest "/docker-ent…" … 0.0.0.0:80

$ sudo runc --root /run/docker/runtime-runc/moby list
 
ID         PID   …  BUNDLE                           
08b5…53dd  5829  …  …/io.containerd.runtime.v2.task/m

$ ps -edaf | grep 5829 



If we look in the bundle, we’ll see a set of named pipes for our
container:

$ sudo ls -la /run/docker/containerd/08b5…53dd 
 
total 0 
drwxr-xr-x 2 root root 80 Oct  1 08:49 . 
drwxr-xr-x 3 root root 60 Oct  1 08:49 .. 
prwx------ 1 root root  0 Oct  1 08:49 init-stderr 
prwx------ 1 root root  0 Oct  1 08:49 init-stdout

You can find a lot of additional files related to your container
underneath /run/containerd/io.containerd.runtime.v2.task/moby.

 
root      5829  5807  …  nginx: master process nginx 
systemd+  5880  5829  …  nginx: worker process 
systemd+  5881  5829  …  nginx: worker process 
systemd+  5882  5829  …  nginx: worker process 
systemd+  5883  5829  …  nginx: worker process

$ sudo ls -la /run/containerd/io.containerd.runtime.v
 
total 32 
drwx------ 3 root root  240 Oct  1 08:49 . 
drwx--x--x 3 root root   60 Oct  1 08:49 .. 



The config.json file is a very verbose equivalent of what Docker
shows in docker container inspect . We are not going to
reproduce it here due to size, but we encourage you to dig
around and see what’s in the config. You may, for example, note
all the entries for the “Secure Computing Mode” that are
present in it.

If you want to explore runc  some more, you can experiment
with the CLI tool. Most of this is available already in Docker,
usually on a higher and more useful level than the one
available in runc . But it can be useful to explore so that you
can better understand how containers and the Docker stack are
put together. It’s also interesting to watch the events that runc
reports about a running container. We can hook into those with
the runc events  command. During the normal operations of a

-rw-r--r-- 1 root root   89 Oct  1 08:49 address 
-rw-r--r-- 1 root root 9198 Oct  1 08:49 config.json 
-rw-r--r-- 1 root root    4 Oct  1 08:49 init.pid 
prwx------ 1 root root    0 Oct  1 08:49 log 
-rw-r--r-- 1 root root    0 Oct  1 08:49 log.json 
-rw------- 1 root root   82 Oct  1 08:49 options.json
drwx--x--x 2 root root   40 Oct  1 08:49 rootfs 
-rw------- 1 root root    4 Oct  1 08:49 runtime 
-rw------- 1 root root   32 Oct  1 08:49 shim-binary-
lrwxrwxrwx 1 root root  119 Oct  1 08:49 work -> /var



running container, there is not a lot of activity in the events
stream. But runc  regularly reports runtime statistics, which we
can see in JSON format:

To conserve space, we have removed much of the output from
the previous command, but this might look familiar to you now
that we’ve spent some time looking at docker container
stats . Guess where Docker gets those statistics by default.
That’s right, runc .

At this point, you can go ahead and stop the example container
by running docker container stop nginx-test .

Swapping Runtimes

As we mentioned in Chapter 2, there are a few other native OCI-
compliant runtimes that can be substituted in place of runc . As
an example, there is crun, which describes itself as “a fast and
low-memory footprint OCI Container Runtime fully written in

$ sudo runc --root /run/docker/runtime-runc/moby even

{"type":"stats","id":"08b5…53dd","data":{"cpu":{"usag

https://github.com/containers/crun


C”. Some other alternative native runtimes, like railcar  and
rkt  have been deprecated and largely abandoned. In the next
section, we’ll talk about a sandboxed runtime from Google,
called gVisor, which provides a user space runtime for
untrusted code.

TIP

Kata Containers is a very interesting open-source project that provides a runtime
capable of using virtual machines as an isolation layer for containers. At the time of
this writing, version 3 of Kata works with Kubernetes but does not work with Docker.
The Kata developers are working with the Docker developers to try and improve this
situation and get better documentation created. This may be resolved when Docker
22.06 is publicly released.

gVisor

In mid-2018, Google released gVisor, which is a completely new
take on a runtime. It’s OCI compliant and can therefore also be
used with Docker. However, gVisor also runs in user space and
isolates the application by implementing system calls there
rather than relying on Kernel isolation mechanisms. It doesn’t
redirect the calls to the kernel; rather, it implements them itself
using kernel calls. The most obvious win from this approach is
security isolation since gVisor itself is running in user space
and thus isolated from the kernel. Any security issues are still

https://gvisor.dev/
https://github.com/kata-containers
https://github.com/kata-containers/kata-containers/issues/5321


trapped in user space and all of the kernel security controls
we’ve mentioned still apply. The downside is that it typically
performs worse than Kernel or VM-based solutions.

If you have processes that do not require massive scaling but do
require highly secure isolation, gVisor may be an ideal solution
for you. A common use case for gVisor is when your containers
will be running code provided by your end users and you
cannot guarantee that the code is benign. Let’s run a quick
demo so you can see how gVisor works.

Installation is covered in the gVisor documentation. It is written
in Go and so is delivered as a single executable with no
packages required. Once it’s installed, you can start containers
with the runsc  runtime. To demonstrate the different isolation
levels offered by gVisor, we’ll run a shell using it and compare
that to one using a standard container.

First, let’s start a shell on gVisor and look around a bit:

That will drop us into a shell running in an Alpine Linux
container. One very revealing difference is apparent when you

$ docker container run --rm --runtime=runsc -it alpin

https://gvisor.dev/docs/user_guide/quick_start/docker/


look at the output of the mount  command:

There is not very much in there! Compare that with the output
from a traditional container launched with runc :

$ docker container run --rm --runtime=runsc -it alpin
 
none on / type 9p (rw,trans=fd,rfdno=4,wfdno=4,aname=
none on /dev type tmpfs (rw,mode=0755) 
none on /sys type sysfs (ro,noexec,dentry_cache_limit
none on /proc type proc (rw,noexec,dentry_cache_limit
none on /dev/pts type devpts (rw,noexec) 
none on /dev/shm type tmpfs (rw,noexec,mode=1777,size
none on /etc/hosts type 9p (rw,trans=fd,rfdno=7,wfdno
none on /etc/hostname type 9p (rw,trans=fd,rfdno=6,wf

none on /etc/resolv.conf type 9p (rw,trans=fd,rfdno=5
none on /tmp type tmpfs (rw,mode=01777)

$ docker container run --rm -it alpine /bin/sh -c "mo
 

overlay on / type overlay (rw,relatime,…) 
proc on /proc type proc (rw,nosuid,nodev,noexec,relat
tmpfs on /dev type tmpfs (rw,nosuid,size=65536k,mode=
devpts on /dev/pts type devpts (rw,nosuid,noexec,rela
sysfs on /sys type sysfs (ro,nosuid,nodev,noexec,rela



This output was 24 lines long, so we truncated it a lot. It should
be pretty clear that there is a lot of system detail here. That
detail represents the kernel footprint exposed to the container
in one way or another. The contrast with the very short output
from gVisor should give you an idea of the differing level of
isolation. We won’t spend a lot more time on it, but it’s also
worth looking at the output of ip addr show  as well. On
gVisor:

cgroup on /sys/fs/cgroup type cgroup2 (ro,nosuid,node
mqueue on /dev/mqueue type mqueue (rw,nosuid,nodev,no
shm on /dev/shm type tmpfs (rw,nosuid,nodev,noexec,re
/dev/sda3 on /etc/resolv.conf type ext4 (rw,relatime,
… 
devpts on /dev/console type devpts (rw,nosuid,noexec,
proc on /proc/bus type proc (ro,nosuid,nodev,noexec,r
… 
tmpfs on /proc/asound type tmpfs (ro,relatime,inode64
…

$ docker container run --rm --runtime=runsc alpine ip
 
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65522
    link/loopback 00:00:00:00:00:00 brd ff:ff:ff:ff:f
    inet 127.0.0.1/8 scope global dynamic



And in a normal Linux container:

Even the Linux /proc filesystem exposes a lot less in the gVisor
container:

2: eth0: <UP,LOWER_UP> mtu 1500
    link/ether 02:42:ac:11:00:02 brd ff:ff:ff:ff:ff:f
    inet 172.17.0.2/16 scope global dynamic

$ docker container run --rm alpine ip addr show 
 
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:0
    inet 127.0.0.1/8 scope host lo
       valid_lft forever preferred_lft forever
44: eth0@if45: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOW
                                                     
    link/ether 02:42:ac:11:00:02 brd ff:ff:ff:ff:ff:f
    inet 172.17.0.2/16 brd 172.17.255.255 scope globa
       valid_lft forever preferred_lft forever

$ docker container run --rm --runtime=runsc alpine ls
 
1               filesystems     net             sys 



Once more comparing this to a normal Linux container:

cgroups         loadavg         self            threa
cmdline         meminfo         sentry-meminfo  uptim
cpuinfo         mounts          stat            versi

$ docker container run --rm alpine ls -C /proc 
 
1                  fb                 mdstat         
acpi               filesystems        meminfo        
asound             fs                 misc           
bootconfig         interrupts         modules        
buddyinfo          iomem              mounts         
bus                ioports            mpt            
cgroups            irq                mtd            
cmdline            kallsyms           mtrr           
consoles           kcore              net            
cpuinfo            key-users          pagetypeinfo   
crypto             keys               partitions     
devices            kmsg               pressure       
diskstats          kpagecgroup        schedstat      
dma                kpagecount         scsi           
driver             kpageflags         self 
dynamic_debug      loadavg            slabinfo 
execdomains        locks              softirqs



Aside from being more isolated, the experience inside the
gVisor container is interesting because it looks a lot more like
what you might expect to see in an isolated environment.
Sandboxed runtimes like gVisor provide a lot of potential for
securely running untrusted workloads by providing a much
stronger barrier between the application and the underlying
kernel.

Wrap-Up

That’s a quick tour of some of the more advanced concepts of
Docker. Hopefully, it has expanded your knowledge of what is
happening behind the scenes and has opened up some avenues
for you to continue your exploration. As you build and
maintain a production platform, this background should
provide you with a broad enough perspective of Docker to
know where to start when you need to customize the system.

To quote the OCI website: “The Open Container Initiative (OCI) is
a lightweight, open governance structure (project), formed
under the auspices of the Linux Foundation, for the express
purpose of creating open industry standards around container



formats and runtime. The OCI was launched on June 22nd,2015
by Docker, CoreOS and other leaders in the container industry.”



Chapter 12. The Expanding
Landscape

The landscape of tools that are available to interact with Linux
containers is constantly evolving, especially with the significant
adoption that Kubernetes has experienced for many years.

In this chapter, we are going to take a very quick tour of a few
tools that are inspired by Docker but are often focused on
improving specific use cases. This is not intended to be a
comprehensive list but instead is intended to simply give you a
taste of some of the categories and options that are available to
explore.

Client Tools

In this section, we are going to introduce three command line
tools, nerdctl , podman , and buildah . All of these tools might
be useful to anyone familiar with Docker and its common
workflows.

nerdctl



Although crictl is installed by default in many containerd-based
environments, nerdctl  is an easy-to-use Docker-compatible
CLI for containerd, which is worth checking out. This means
that nerdctl  can provide a very easy migration path for
people and scripts that use Docker but need to support
containerd systems that are not running the Docker daemon.

As a quick example, if you spin up a small Kubernetes cluster
with kind , which we discussed in “Kind”, you should end up
with a containerd-based Kubernetes cluster that is not directly
compatible with the docker  CLI.

You should now be inside the kind/Kubernetes container.

NOTE

In the curl command below, you must ensure that you are downloading the correct
version for your architecture. You will need to replace ${ARCH} with either amd64 or
arm64 depending on your system. Also, feel free to try and download the most recent
version of nerdctl .

$ kind create cluster --name nerdctl 
Creating cluster "nerdctl" … 
… 
 
$ docker container exec -ti nerdctl-control-plane /bi

https://github.com/kubernetes-sigs/cri-tools/blob/master/docs/crictl.md
https://github.com/containerd/nerdctl/releases


Once you have edited the curl  command below and re-
assembled it into a single line, you should be able to download
and un-extract the nerdctl  client and then try a few
commands with it.

root@nerdctl-control-plane:/# curl -s -L \
  "https://github.com/containerd/nerdctl/releases/dow
nerdctl-0.23.0-linux-${ARCH}.tar.gz" -o /tmp/nerdctl.
 
root@nerdctl-control-plane:/# tar -C /usr/local/bin -
 
root@nerdctl-control-plane:/# nerdctl namespace list 
 
NAME      CONTAINERS    IMAGES    VOLUMES    LABELS 
k8s.io    18            24        0 
 
root@nerdctl-control-plane:/# nerdctl --namespace k8s
 

CONTAINER ID IMAGE                                  …
07ae69902d11 registry.k8s.io/pause:3.7              …
0b241db0485f registry.k8s.io/coredns/coredns:v1.9.3 …
… 
 
root@nerdctl-control-plane:/# nerdctl --namespace k8s
                              --net=host debian sleep
 
docker.io/library/debian:latest:  resolved       |+++



In most cases, docker  commands can be used with almost no
alteration by nerdctl . The one change that might stand out is
the need to often provide a namespace value. This is due to the
fact that containerd  provides a fully namespaced API and we
need to specify which one we are interested in interacting with.

Once you have exited the kind  container, you can go ahead
and delete it.

$ kind delete cluster --name nerdctl 
 
Deleting cluster "nerdctl" …

podman and buildah

podman and buildah are a set of tools from Red Hat that were
created early on to provide a container workflow that did not

index-sha256:e538…4bff:           done           |+++
manifest-sha256:9b0e…2f7d:        done           |+++
config-sha256:d917…d33c:          done           |+++
layer-sha256:f606…5ddf:           done           |+++
elapsed: 6.4 s                    total:  52.5 M (8.2
 
root@nerdctl-control-plane:/# exit

https://github.com/containerd/containerd/blob/main/docs/namespaces.md
https://podman.io/
https://buildah.io/


rely on a daemon process, like Docker. It is heavily used within
the Red Hat community and rethinks the way that images are
built and containers are run and managed.

TIP

You can find a good introduction to [podman and buildah for Docker users on the
Redhat blog.

TIP

An overview of installing and using kind  can be found in “Kind”.

You should now be inside the kind/Kubernetes container.

$ kind create cluster --name podman 
Creating cluster "podman" … 
… 

 
$ docker container exec -ti podman-control-plane /bin

root@podman-control-plane:/# apt update 
Get:1 http://security.ubuntu.com/ubuntu jammy-securit
… 

https://developers.redhat.com/blog/2019/02/21/podman-and-buildah-for-docker-users


Unlike docker  which interfaces with the Docker daemon and
nerdctl  which interfaces with containerd , podman  skips the
container engine and instead directly interfaces with an
underlying container runtime, like runc .

Although podman build  can be used to build containers as
well, buildah  provides an advanced interface for image
building that makes it possible to script the whole image-
building process and remove the need to rely on the Dockerfile
format (or Containerfile, as podman  calls it).

 
root@podman-control-plane:/# apt install -y podman 
Reading package lists… Done 
… 
 
root@podman-control-plane:/# podman container run -d 
                             --name test debian sleep
9b6b333313c0d54e2da6cda49f2787bc5213681d90dac145a9f64
 
root@podman-control-plane:/# podman container list 
 
CONTAINER ID  IMAGE                            COMMAN
548a2f709785  docker.io/library/debian:latest  sleep 
 
root@podman-control-plane:/# podman container stop te
test



We won’t dig into the details of buildah  here, but you can try a
very simple example in the kind container and if you are
interested in alternatives to the traditional Dockerfile
approach, or the newer alternatives provided by BuildKit’s LBB
interface, you can read more about buildah  online via Github
and the RedHat blog.

To try out a buildah  script in the kind  container go ahead and
run the following commands:

root@podman-control-plane:/# cat > apache.sh <<"EOF"
#!/usr/bin/env bash 
 
set -x 
 
ctr1=$(buildah from "${1:-fedora}") 
 
## Get all updates and install the apache server 
buildah run "$ctr1" -- dnf update -y 
buildah run "$ctr1" -- dnf install -y httpd 
 
## Include some buildtime annotations 
buildah config --annotation "com.example.build.host=$
 
## Run our server and expose the port 

https://github.com/moby/buildkit#exploring-llb
https://github.com/containers/buildah
https://www.redhat.com/sysadmin/building-buildah


Once you have exited the kind  container, you can go ahead
and delete it.

$ kind delete cluster --name podman 
 
Deleting cluster "podman" …

buildah config --cmd "/usr/sbin/httpd -D FOREGROUND" 
buildah config --port 80 "$ctr1" 
 
## Commit this container to an image name 
buildah commit "$ctr1" "${2:-myrepo/apache}" 
EOF 
 
root@podman-control-plane:/# chmod +x apache.sh 
root@podman-control-plane:/# ./apache.sh 
 
++ buildah from fedora 
+ ctr1=fedora-working-container-1 
+ buildah run fedora-working-container-1 -- dnf updat
… 
Writing manifest to image destination 
Storing signatures 
037c7a7c532a47be67f389d7fd3e4bbba64670e080b120d93744e
 
root@podman-control-plane:/# exit



All-in-one Developer Tools

Although Docker Desktop is a very useful tool, changes in
Docker’s licensing and the broader technology landscape, have
led some people and organizations to look for alternative tools.
In this section, we will take a quick look at Rancher Desktop
and Podman Desktop and how they can be used to provide
some of the functionality of Docker Desktop, while also bringing
some interesting features of their own.

Rancher Desktop

Rancher Desktop is designed to provide a very similar
experience to Docker Desktop while focusing specifically on
Kubernetes integration. It uses k3s to provide a certified,
lightweight Kubernetes backend and can use either
containerd  or dockerd  (moby) as the container runtime.

TIP

You should probably quit Docker (and/or Podman) Desktop, if either one is running,
before trying out Rancher Desktop, since they all spin up a virtual machine that will
consume system resources.

https://rancherdesktop.io/
https://k3s.io/


After downloading, installing, and launching Rancher Desktop
you will have a local Kubernetes cluster, which, by default, is
using containerd  and can be interacted with via nerdctl .

NOTE

The exact location where Rancher Desktop installs the nerdctl  binary might vary a
bit depending on which operating system you are using. You should initially try and
make sure that you are using the version that was packaged with the Rancher
Desktop.

Don’t forget to quit Rancher Desktop, when you are down,
otherwise, the virtual machine will stay running and consume
additional resources.

Podman Desktop

$ ${HOME}/.rd/bin/nerdctl --namespace k8s.io image li
 
REPOSITORY     TAG     IMAGE ID      …  PLATFORM     
moby/buildkit  v0.8.3  171689e43026  …  linux/amd64  
moby/buildkit  <none>  171689e43026  …  linux/amd64  
…



Podman Desktop is focused on providing a daemon-less
container tool that still provides the seamless experience that
developers on all of the major operating systems have grown
accustomed to.

TIP

You should probably quit Docker (and/or Rancher) Desktop, if either one is running,
before trying out Podman Desktop, since they all spin up a virtual machine that will
consume system resources.

After downloading, installing, and launching Podman Desktop
you will see an application window popup that should be on the
Home tab. If Podman Desktop does not detect the podman  CLI
on your system then it will prompt you to install it via a button
labeled Install. This should walk you through the installation of
the podman  client. When the Podman Desktop virtual machine,
which can be controlled from the command line via the podman
machine  command, is not started, you should see a switch that
can be enabled, which says Run Podman. If you go ahead and
click the switch, and then wait a few moments, the switch
should disappear, and you should now see a message that says
“Podman is running”.

https://podman-desktop.io/


NOTE

The exact location where Podman Desktop installs the podman  binary might vary a
bit depending on which operating system you are using. You should initially try and
make sure that you are using the version that was installed via Podman Desktop.

To test the system give this a try:

$ podman run quay.io/podman/hello 
 
!… Hello Podman World …! 
 
         .--"--.
       / -     - \
      / (O)   (O) \
   ~~~| -=(,Y,)=- |
    .---. /   \   |~~
 ~/  o  o \~~~~.----. ~~
  | =(X)= |~  / (O (O) \
   ~~~~~~~  ~| =(Y_)=-  |
  ~~~~    ~~~|   U      |~~ 
 
Project:   https://github.com/containers/podman
Website:   https://podman.io
Documents: https://docs.podman.io
Twitter:   @Podman_io



When you are done exploring Podman Desktop, you can go
ahead and shut down the virtual machine, by clicking the
Preferences tab, selecting Resources - Podman - Podman
Machine, and then clicking the Stop button.

At this point, you can go ahead and quit the Podman Desktop
application.

TIP

You can also start and stop the Podman virtual machine, by using the podman
machine start  and podman machine stop  commands.

Wrap-Up

Docker’s place in technology history is well established. There is
no doubt that the introduction of Docker took the existing Linux
container technology, extended it with the image format, and
then made the concepts and technology accessible to engineers
all around the world.

We can argue about whether things are better today than they
were before Linux containers and Docker, and we can debate
about which tools and workflows are better, but in the end,



much of that comes down to how each tool is used and how
those workflows are designed.

No tools will magically solve all your problems, and any tool
can be implemented so poorly that it makes everything much
worse than it was before. This is why it is so important to spend
significant time thinking about the process workflow that you
want to implement from at least three angles. Firstly, what
inputs and outputs do we need the workflow to support?
Secondly, how easy will the workflow be for the people who
need to use it every day or just once a year? And finally, how
easy will it be to run and maintain for the people who must
ensure that the system runs smoothly and securely at all times?

Once you have a good picture of what you are trying to achieve,
then you can start to pick the tools that will help you enable
these goals.



Chapter 13. Container Platform
Design

When implementing any technology in production, you’ll often
gain the most mileage by designing a resilient platform that can
withstand the unexpected issues that will inevitably occur.
Docker can be a powerful tool but requires attention to detail to
get the whole platform right around it. As a technology that is
going through very rapid growth, it is bound to produce
frustrating bugs that crop up between the various components
that make up your container platform.

If instead of simply deploying Docker into your existing
environment, you take the time to build a well-designed
container platform utilizing Docker as one of the core
components, you can enjoy the many benefits of a container-
based workflow while simultaneously protecting yourself from
some of the sharper edges that can exist in such high-velocity
projects.

Like all other technology, Docker doesn’t magically solve all
your problems. To reach its true potential, organizations must
make very conscious decisions about why and how to use it. For
small projects, it is possible to use Docker in a simple manner;



however, if you plan to support a large project that can scale
with demand, it’s crucial that you design your applications and
the platform very deliberately. This ensures that you can
maximize the return on your investment in the technology.
Taking the time to intentionally design your platform will also
make it much easier to modify your production workflow over
time. A well-designed container platform and deployment
process will be as lightweight and straightforward as possible
while still supporting the features required to meet all the
technical and compliance requirements. A well-thought-out
design will help ensure that your software is running on a
dynamic foundation that can easily be upgraded as technology
and company processes develop.

In this chapter, we will explore two open documents, “The
Twelve-Factor App” and “The Reactive Manifesto” (a companion
document to The Reactive Principles) and discuss how they
relate to Docker and to building robust container platforms.
Both documents contain a lot of ideas that should help guide
you through the design and implementation of your container
platform and ensure more resiliency and supportability across
the board.

The Twelve-Factor App

https://12factor.net/
https://www.reactivemanifesto.org/
https://www.reactiveprinciples.org/


In November of 2011, well before the release of Docker, Heroku
co-founder Adam Wiggins and his colleagues released an article
called “The Twelve-Factor App.” This document describes a
series of 12 practices, distilled from the experiences of the
Heroku engineers, for designing applications that will thrive
and grow in a modern container-based Software-as-a-Service
(SaaS) environment.

Although not required, applications built with these 12 steps in
mind are ideal candidates for the Docker workflow. Throughout
this chapter, we will explore each of the steps listed below, and
explain why these practices can, in numerous ways, help
improve your development cycle.

Codebase
Dependencies
Config
Backing services
Build, release, run
Processes
Port binding
Concurrency
Disposability
Dev/prod parity
Logs

https://12factor.net/
https://www.heroku.com/


Admin processes

Codebase

One codebase tracked in revision control.

Many instances of your application will be running at any given
time, but they should all come from the same code repository.
Every single Docker image for a given application should be
built from a single source code repository that contains all the
code required to build the Linux container. This ensures that
the code can easily be rebuilt and that all third-party
requirements are well-defined within the repository, and will
automatically be pulled in during a build.

What this means is that building your application shouldn’t
require stitching together code from multiple source
repositories. That is not to say that you can’t have a dependency
on an artifact from another repo. But it does mean that there
should be a clear mechanism for determining which pieces of
code were shipped when you built your application. Docker’s
ability to simplify dependency management is much less useful
if building your application requires pulling down multiple
source code repositories and stitching pieces together. It also is



not very repeatable if you must know a magic incantation to get
the build to work correctly.

A good test might be to give a new developer in your company a
clean laptop and a paragraph of directions and then see if they
can successfully build your application in under an hour. If
they can’t, then the process probably needs to be refined and
simplified.

Dependencies

Explicitly declare and isolate dependencies.

Never rely on the belief that a dependency will be made
available via some other avenue, like the operating system
install. Any dependencies that your application requires should
be well defined in the codebase and pulled in by the build
process. This will help ensure that your application will run
when deployed, without relying on libraries being installed by
other people or processes. This is particularly important within
a container since the container’s processes are isolated from the
rest of the host operating system and will usually not have
access to anything outside of the host’s kernel and the container
image’s filesystem.



The Dockerfile and language-dependent configuration files like
Node’s package.json or Ruby’s Gemfile should define every non-
external dependency required by your application. This
ensures that your image will run correctly on any system to
which it is deployed. Gone will be the days when you try to
deploy and run your application in production only to find out
that important libraries are missing or installed with the wrong
version. This pattern has huge reliability and repeatability
advantages, and very positive ramifications for system security.
If to fix a security issue, you update the OpenSSL or libyaml
libraries that your containerized application uses, then you can
be assured that it will always be running with that version
wherever you deploy that particular application.

It is also important to note that many Docker base images are
larger than they need to be. Remember that your application
process will be running on a shared kernel, and the only files
that you need inside your image are the ones that the process
will require to run. It’s good that base images are so readily
available, but they can sometimes mask hidden dependencies.
Although people often start with a minimal install of Alpine,
Ubuntu, or Fedora, these images still contain a lot of operating
system files and applications that your process almost certainly
does not need, or possibly some files that your application is
making use of that you aren’t consciously aware of, like



compiling your application using the musl system library in
Alpine, versus the glibc system library in many other base
images. You need to be fully aware of your dependencies, even
when containerizing your application. It is also important to
consider what support tools if any, you are including in your
images, as there can be a fine line between making things
easier to debug and increasing the security attack surface of
your application and environments.

A good way to shed light on what files are required inside an
image is to compare a “small” base image with an image for a
statically linked program written in a language like Go or C.
These applications can be designed to run directly on the Linux
kernel without any additional libraries or files.

To help drive this point home, it might be useful to review the
exercises in “Keeping Images Small”, where we explored one of
these ultra-light containers, spkane/scratch-helloworld , and
then dived into the underlying filesystem a bit and compared it
with the popular alpine  base image.

In addition to being conscientious about how you manage the
filesystem layers in your images, keeping your images stripped
down to the bare necessities is another great way to keep
everything streamlined and your docker image pull



commands fast. Applications written with interpreted
languages will require many more files because of the large
run-times and dependency graphs you often need to install, but
you should try to keep as minimal a base layer as needed for
your use case so that you can reason about your dependencies.
Docker helps you package them up, but you still need to be in
charge of reasoning about them.

Config

Store configuration in environment variables, not in files checked
into the codebase.

This makes it simple to deploy the same codebase to different
environments, like staging and production, without
maintaining complicated configuration in code or rebuilding
your container for each environment. This keeps your codebase
much cleaner by keeping environment-specific information like
database names and passwords out of your source code
repository. More importantly, though, it means that you don’t
bake deployment environment assumptions into the repository,
and thus it is extremely easy to deploy your applications
anywhere that it might be useful. You also want to be able to
test the same image you will ship to production. You can’t do



that if you have to build an image for each environment with
all of its configuration already baked in.

As discussed in Chapter 4, you can achieve this by launching
docker container run  commands that leverage the -e
command-line argument. Using -e APP_ENV=production  tells
Docker to set the environment variable APP_ENV  to the value
“production” within the newly launched container.

For a real-world example, let’s assume we pulled the image for
the chat robot hubot  with the rocket.chat adapter installed.
We’d issue something like the following command to get it
running:

$ docker container run \
  --rm --name hubot -d \
  -e ENVIRONMENT="development" \
  -e ROCKETCHAT_URL='rocketchat:3000' \
  -e ROCKETCHAT_ROOM='general' \
  -e RESPOND_TO_DM=true \
  -e ROCKETCHAT_USER=bot \
  -e ROCKETCHAT_PASSWORD=bot \
  -e ROCKETCHAT_AUTH=password \
  -e BOT_NAME=bot \
  -e EXTERNAL_SCRIPTS=hubot-pugme,hubot-help \
  docker.io/rocketchat/hubot-rocketchat:latest

https://www.rocket.chat/


Here, we are passing a whole set of environment variables into
the container when it is created. When the process is launched
in the container, it will have access to these environment
variables so that it can properly configure itself at runtime.
These configuration items are now an external dependency that
we can inject at runtime.

NOTE

There are many other ways to provide this data to a container, including using
key/value stores like etcd  and consul . Environment variables are simply a
universal option that acts as a very good starting point for most projects. They are the
easy path for container configuration because they are well-supported by the
platform and every programming language in common use. They also aid in the
observability of your applications because the configuration can easily be inspected
with docker container inspect .

In the case of a Node.js application like hubot , you could then
write the following code to make decisions based on these
environment variables:

switch(process.env.ENVIRONMENT){
        case 'development':
            console.log('[INFO] Running in developmen
 
        case 'staging':
            console.log('[INFO] Running in staging');



NOTE

The exact method used to pass this configuration data into your container will vary
depending on the specific tooling that you’ve chosen for your projects, but almost all
of them will make it easy to ensure that every deployment contains the proper
settings for that environment.

Keeping specific configuration information out of your source
code makes it very easy to deploy the exact same container to
multiple environments, with no changes and no sensitive
information committed into your source code repository.
Crucially, it supports testing your container images thoroughly
before deploying to production by allowing the same image to
be used in all environments.

 
        case 'production':
            console.log('[INFO] Running in production
 
        default:
            console.log('[WARN] Environment value is 
    }



TIP

If you need a process for managing secrets that need to be provided to your
containers, you might want to look into the documentation for the docker secret
command, which works with Docker Swarm mode, and HashiCorp’s Vault.

$ docker container stop hubot

https://docs.docker.com/engine/swarm/secrets/
https://www.vaultproject.io/


Backing Services

Treat backing services as attached resources.

Local databases are no more reliable than third-party services
and should be treated as such. Applications should handle the
loss of an attached resource gracefully. By implementing
graceful degradation in your application and never assuming
that any resource, including filesystem space, is available, you
ensure that your application will continue to perform as many
of its functions as it can, even when external resources are
unavailable.

This isn’t something that Docker helps you with directly and
although it is always a good idea to write robust services, it is
even more important when you are using containers. When
using containers, you achieve high availability most often
through horizontal scaling and rolling deployments, instead of
relying on the live migration of long-running processes, like on
traditional virtual machines. This means that specific instances
of a service will often come and go over time and your service
should be able to handle this gracefully.

Additionally, because Linux containers have limited filesystem
resources, you can’t simply rely on having some local storage



available. You need to plan that into your application’s
dependencies and handle it explicitly.

Build, Release, Run

Strictly separate build and run stages.

Build the code, release it with the proper configuration, and
then deploy it. This ensures that you maintain control of the
process and can perform any single step without triggering the
whole workflow. By ensuring that each of these steps is self-
contained in a distinct process, you can tighten the feedback
loop and react more quickly to any problems within the
deployment flow.

As you design your Docker workflow, then, you want to clearly
separate each step in the deployment process. It is perfectly fine
to have a single button that builds a container, tests it, and then
deploys it, assuming that you trust your testing processes—but
you don’t want to be forced to rebuild a container simply to
deploy it to another environment.

Docker supports the 12-factor ideal well in this area because the
image registry provides a clean hand-off point between
building an image and shipping it to production. If your build



process generates images and pushes them to the registry, then
deployment can simply be pulling the image down to servers
and running it.

Processes

Execute the app as one or more stateless processes.

All shared data must be accessed via a stateful backing store so
that application instances can easily be redeployed without
losing any important session data. You don’t want to keep any
critical state on disk in your ephemeral container, nor in the
memory of one of its processes. Containerized applications
should always be considered ephemeral. A truly dynamic
container environment requires the ability to destroy and
recreate containers at a moment’s notice. This flexibility helps
enable the rapid deployment cycle and outage recovery
demanded by modern, Agile workflows.

As much as possible, it is preferable to write applications that
do not need to keep state longer than the time required to
process and respond to a single request. This ensures that the
impact of stopping any given container in your application pool
is very minimal. When you must maintain state, the best
approach is to use a remote datastore like Redis, PostgreSQL,



Memcache, or even Amazon S3, depending on your resiliency
needs.

Port Binding

Export services via port binding.

Your application needs to be addressable by a port specific to
itself. Applications should bind directly to a port to expose the
service and should not rely on an external daemon like inetd
to handle that for them. You should be certain that when you’re
talking to that port, you’re talking to your application. Most
modern web platforms are quite capable of directly binding to
a port and servicing their own requests.

To expose a port from your container, as discussed in Chapter 4,
you can launch docker container run  commands that use the
--publish  command-line argument. Using --publish
mode=ingress,published=80,target=8080 , for example, would
tell Docker to proxy the container’s port 8080 on the host’s port
80.

The statically linked Go Hello World container that we
discussed in “Keeping Images Small” is a great example of this,
because the container contains nothing but our application to



serve its content to a web browser. We did not need to include
any additional web servers, which would require further
configuration, introduce additional complexity, and increase
the number of potential failure points in our system.



Concurrency

Scale out via the process model.

Design for concurrency and horizontal scaling within your
applications. Increasing the resources of an existing instance
can be difficult and hard to reverse. Adding and removing
instances as scale fluctuates is much easier and helps maintain
flexibility in the infrastructure. Launching another container
on a new server is incredibly inexpensive compared to the
effort and expense required to add resources to an underlying
virtual or physical system. Designing for horizontal scaling
allows the platform to react much faster to changes in resource
requirements.

As an example, in Chapter 10, you saw how easy a service could
be scaled using Docker Swarm mode by simply running a
command like this:

$ docker service scale myservice=8

This is where tools like Docker Swarm mode, Mesos, and
Kubernetes truly begin to shine. Once you have implemented a
Docker cluster with a dynamic scheduler, it is very easy to add
three more instances of a container to the cluster as load



increases, and then to be able to easily remove two instances of
your application from the cluster as load starts to decrease
again.

Disposability

Maximize robustness with fast startup and graceful shutdown.

Services should be designed to be ephemeral. We already talked
a little bit about this when discussing external state with
containers. Responding well to dynamic horizontal scaling,
rolling deploys, and unexpected problems require applications
that can quickly and easily be started or shut down. Services
should respond gracefully to a SIGTERM  signal from the
operating system and even handle hard failures confidently.
Most importantly, we shouldn’t care if any given container for
our application is up and running. As long as requests are being
served, the developer should be freed of concerns about the
health of any single component within the system. If an
individual node is behaving poorly, turning it off or redeploying
it should be an easy decision that doesn’t entail long planning
sessions and concerns about the health of the rest of the cluster.

As discussed in Chapter 7, Docker sends standard Unix signals
to containers when it is stopping or killing them; therefore, any



containerized application can detect these signals and take the
appropriate steps to shut down gracefully.



Development/Production Parity

Keep development, staging, and production as similar as possible.

The same processes and artifacts should be used to build, test,
and deploy services into all environments. The same people
should do the work in all environments, and the physical
nature of the environments should be as similar as reasonably
possible. Repeatability is incredibly important. Almost any issue
discovered in production points to a failure in the process.
Every area where production diverges from staging is an area
where risk is being introduced into the system. These
inconsistencies blind you to certain types of issues that could
occur in your production environment until it is too late to
proactively deal with them.

In many ways, this advice essentially repeats a few of the early
recommendations. However, the specific point here is that any
environment divergence introduces risks, and although these
differences are common in many organizations, they are much
less necessary in a containerized environment. Docker servers
can normally be created so that they are identical in all of your
environments, and environment-based configuration changes
should typically impact only which endpoints your service



connects to without specifically changing the application’s
behavior.

Logs

Treat logs as event streams.

Services should not concern themselves with routing or storing
logs. Instead, events should be streamed, unbuffered, to
STDOUT  and STDERR  for handling by the hosting process. In
development, STDOUT  and STDERR  can be easily viewed,
whereas, in staging and production, the streams can be routed
to anything, including a central logging service. Different
environments have different exceptions for log handling. This
logic should never be hardcoded into the application. Streaming
everything to STDOUT  and STDERR  enables the top-level process
manager to handle the logs via whatever method is best for the
environment, allowing the application developer to focus on
core functionality.

In Chapter 6, we discussed the docker container logs
command, which collects the output from your container’s
STDOUT  and STDERR  and records it as logs. If you write logs to
random files within the container’s filesystem, you will not
have easy access to them. It is also possible to configure Docker



to send logs to a local or remote logging system using tools like
rsyslog , journald , or fluentd .

If you use a process manager or initialization system on your
servers, like systemd  or upstart , it is usually very easy to
direct all process output to STDOUT  and STDERR  and then have
your process monitor capture them and send them to a remote
logging host.

Admin Processes

Run admin/management tasks as one-off processes.

One-off administration tasks should be run via the same
codebase and configuration that the application uses. This helps
avoid problems with synchronization and code/schema drift
problems. Oftentimes, management tools exist as one-off scripts
or live in a completely different codebase. It is much safer to
build management tools within the application’s codebase and
utilize the same libraries and functions to perform the required
work. This can significantly improve the reliability of these
tools by ensuring that they leverage the same code paths that
the application relies on to perform its core functionality.



What this means is that you should never rely on random
cron -like scripts to perform administrative and maintenance
functions. Instead, include all of these scripts and functionality
in your application codebase. Assuming that these don’t need to
be run on every instance of your application, you can launch a
special short-lived container, or use docker container exec
with the existing container, whenever you need to run a
maintenance job. This command can trigger the required job,
report its status somewhere, and then exit.

Twelve-Factor Wrap-Up

While “The Twelve-Factor App” wasn’t written as a Docker-
specific manifesto, almost all of this advice can be applied to
writing and deploying applications on a Docker platform. This
is in part because the article heavily influenced Docker’s design,
and in part, because the manifesto itself codified many of the
best practices promoted by modern software architects.

The Reactive Manifesto

Riding alongside “The Twelve-Factor App,” another pertinent
document was released in July of 2013 by Typesafe cofounder
and CTO Jonas Bonér, entitled: “The Reactive Manifesto.” Jonas

https://www.reactivemanifesto.org/


originally worked with a small group of contributors to solidify
a manifesto that discusses how the expectations for application
resiliency have evolved over the last few years, and how
applications should be engineered to react predictably to
various forms of interaction, including events, users, load, and
failures.

“The Reactive Manifesto” states that “reactive systems” are
responsive, resilient, elastic, and message-driven.

Responsive

The system responds in a timely manner if at all possible.

In general, this means that the application should respond to
requests very quickly. Users simply don’t want to wait, and
there is rarely a good reason to make them. If you have a
containerized service that renders large PDF files, design it so
that it immediately responds with a job submitted message so
that users can go about their day, and then provide a message
or banner that informs them when the job is finished and
where they can download the resulting PDF.

Resilient

https://www.lightbend.com/blog/why-do-we-need-a-reactive-manifesto


The system stays responsive in the face of failure.

When your application fails for any reason, the situation will
always be worse if it becomes unresponsive. It is much better to
handle the failure gracefully, and dynamically reduce the
application’s functionality or even display a simple but clear
problem message to the user while reporting the issue
internally.

Elastic

The system stays responsive under varying workload.

With Docker, you achieve this by dynamically deploying and
decommissioning containers as requirements and load
fluctuate so that your application is always able to handle
server requests quickly, without deploying a lot of underutilized
resources.

Message-Driven

Reactive systems rely on asynchronous message passing to
establish a boundary between components that ensures loose
coupling, isolation, and location transparency.



Although not directly addressed by Docker, the idea here is that
there are times when an application can become busy or
unavailable. If you utilize asynchronous message passing
between your services, you can help ensure that your services
will not lose requests and that they will be processed as soon as
possible.

Wrap-Up

All four of the design features in “The Reactive Manifesto”
require application developers to design graceful degradation
and a clear separation of responsibilities in their applications.
By treating all dependencies as properly designed, attached
resources, dynamic container environments allow you to easily
maintain N+2 status across your application stack, reliably scale
individual services in your environment, and quickly replace
unhealthy nodes.

A service is only as reliable as its least reliable dependency, so it
is vital to incorporate these ideas into every component of your
platform.

The core ideas in “The Reactive Manifesto” merge very nicely
with “The Twelve-Factor App” and the Docker workflow. These



documents successfully summarize many of the most important
discussions about the way you need to think and work if you
want to be successful in meeting new expectations in the
industry. The Docker workflow provides a practical way to
implement many of these ideas in any organization in a
completely approachable manner.



Chapter 14. Conclusion

At this point, you have had a solid tour through the Docker
ecosystem, and have seen many examples of how Docker and
Linux containers can benefit you and your organization. We
have tried to map out some of the common pitfalls and impart
some of the wisdom that we have picked up over the many
years that we’ve run Linux containers in production. Our
experience has shown that the promise of Docker is quite
achievable, and we’ve seen significant benefits in our
organizations as a result. Like other powerful technologies,
Docker is not without its compromises, but the net result has
been a big positive for us, our teams, and our organizations. If
you implement the Docker workflow and integrate it into the
processes you already have in your organization, there is every
reason to believe that you can significantly benefit from it as
well.

In the sections below, we will take a moment to consider
Docker’s evolving place in the technology landscape and then
quickly review the problems that Docker is designed to help
you solve and some of the power it brings to the table.

The Road Ahead



There is no doubt that containers are here to stay for a very
long time, but some people have predicted the ultimate demise
of Docker on and off for a long time. Much of this is simply
because the word Docker represents so many things, in so many
people’s minds. Are you talking about the company, which was
sold to Mirantis in 2019, and reported fifty million in annual
recurring revenue (ARR) two years after the restructuring? Or
maybe the docker  client tool whose source code can be
downloaded, modified, and built by anyone who might need it?
It is hard to know. People often like to try and predict the
future, but reality often lies somewhere in the middle, hidden
in the often overlooked details.

In 2020, Kubernetes announced the deprecation of the
Dockershim, which went fully into effect with the release of
Kubernetes v1.24. At the time lots of people took this to mean
that Docker was dead, but the point many people were missing
is that Docker has always primarily been a developer tool, not a
production component. Sure it can be used on a production
system for various reasons, but its true power lies in its ability
to streamline much of the software packaging and testing
workflow into a consolidated toolset. Kubernetes uses the
Container Runtime Interface (CRI) which is not implemented by
Docker and therefore required them to maintain another piece
of wrapper software called the Dockershim , to support using

https://www.tutorialworks.com/difference-docker-containerd-runc-crio-oci/
https://github.com/docker/cli
https://kubernetes.io/blog/2022/02/17/dockershim-faq/
https://kubernetes.io/blog/2016/12/container-runtime-interface-cri-in-kubernetes/


Docker Engine via the CRI. This announcement was not done to
make some statement about Docker’s place in the ecosystem, it
was simply done to make maintaining a large volunteer-driven
open-source project easier. Docker may not run on your
Kubernetes servers, but in most cases, this will have no impact
at all on the development and release cycle for your software.
Unless you are a Kubernetes operator who used the docker  CLI
to directly query the containers running on a Kubernetes node,
you are unlikely to notice any change as this transition occurs.

And as it turns out, Docker’s parent company has developed
and continues to support a new shim, called cri-dockerd, that
allows Kubernetes to continue to interface with Docker for
those who need that workflow to be supported.

Interestingly enough, Docker is also diversifying into non-
container technologies, like WebAssembly (Wasm), that can
complement containers while improving the developer
experience.

So, Docker as a developer-friendly toolset is likely here to stay
for a long while, but that doesn’t mean that there are not any
other tools in the ecosystem that can complement or even
replace it if that is something that you want or need. The beauty
of the various standards that exist, like the Open Container

https://github.com/Mirantis/cri-dockerd
https://docs.docker.com/desktop/wasm/


Initiative (OCI), and their broad adoption, is that many of these
tools can interoperate with the same images and containers
that other tools generate and manage.

The Challenges Docker Addresses

In traditional deployment workflows, there is often a multitude
of required steps that significantly contribute to the overall
pain felt by teams. Every step you add to the deployment
process for an application increases the risk inherent in
shipping it to production. Docker combines a workflow with a
simple toolset that is directly targeted at addressing these
concerns. Along the way, it squarely aims your development
processes toward some of the industry’s best practices, and its
opinionated approach often leads to better communication and
more robustly crafted applications.

Some of the specific problems that Docker and Linux containers
can help mitigate include:

Large divergence between deployment environments.
Requiring application developers to recreate configuration
and logging logic in applications.



Outdated build and release processes that require multiple
levels of handoff between development and operations
teams.
Requiring complex and fragile build and deploy processes.
Managing divergent dependency versions that are required
by applications that need to share the same hardware.
Managing multiple Linux distributions in the same
organization.
Building one-off deployment processes for each application
you put into production.
The need to treat each application as a unique codebase,
when it comes to patching and auditing security
vulnerabilities.
And much more

By using the registry as a handoff point, Docker eases and
simplifies communication between operations and
development teams, or between multiple development teams
on the same project. By bundling all of the dependencies for an
application into one shipping artifact, Docker eliminates
concerns about which Linux distribution developers want to
work on, which versions of libraries they need to use, and how
they compile their assets or bundle their software. It isolates
operations teams from the build process and puts developers in
charge of their dependencies.



The Docker Workflow

Docker’s workflow helps organizations tackle really hard
problems—some of the same problems that DevOps processes
are aimed at solving. A major problem in incorporating DevOps
successfully into a company’s processes is that many people
have no idea where to start. Tools are often incorrectly
presented as the solution to what are fundamentally process
problems. Adding virtualization, automated testing, deployment
tools, or configuration management suites to the environment
often just changes the nature of the problem without delivering
a resolution.

It would be easy to dismiss Docker as just another tool making
unfulfillable promises about fixing your business processes, but
that would be selling it short. Docker’s power in the way that its
natural workflow allows applications to travel through their
whole lifecycle, from conception to retirement, within one
ecosystem. Unlike other tools that often target only a single
aspect of the DevOps pipeline, Docker significantly improves
almost every step of the process. That workflow is often
opinionated, but it simplifies the adoption of some of the core
principles of DevOps. It encourages development teams to
understand the whole lifecycle of their application and allows



operations teams to support a much wider variety of
applications on the same runtime environment. And that
delivers value across the board.

Minimizing Deployment Artifacts

Docker alleviates the pain that is often induced by sprawling
deployment artifacts. It does this by defining the result of a
build as a single artifact, the Docker image, which contains
everything your Linux application requires to run, and it
executes it within a protected runtime environment. Containers
can then be easily deployed on modern Linux distributions. But
because of the clean split between the Docker client and server,
developers can build their applications on non-Linux systems
and still participate in the Linux container environment
remotely.

Leveraging Docker allows software developers to create Docker
images that, starting with the very first proof of concept, can be
run locally, tested with automated tools, and deployed into
integration or production environments without ever having to
be rebuilt. This ensures that the application that is launched in
production is the same as what was tested. Nothing needs to be
recompiled or repackaged during the deployment workflow,



which significantly lowers the risks normally inherent in most
deployment processes. It also means that a single build step
replaces a typically error-prone process that involves compiling
and packaging multiple complex components for distribution.

Docker images also simplify the installation and configuration
of an application. Every single piece of software that an
application requires to run on a modern Linux kernel is
contained in the image, and the dependency conflicts you might
find in a traditional environment are eliminated. This makes it
trivial to run multiple applications that rely on different
versions of core system software on the same server.

Optimizing Storage and Retrieval

Docker leverages filesystem layers to allow containers to be
built from a composite of multiple images. This shaves a vast
amount of time and effort off of many deployment processes by
shipping only significant changes across the wire. It also saves
considerable disk space by allowing multiple containers to be
based on the same lower-level base image and then utilizing a
copy-on-write process to write new or modified files into a top
layer. This also helps in scaling an application by allowing more
copies of an application to be started on the same servers



without the need to push the binaries across the wire for each
new instance.

To support image retrieval, Docker leverages the image registry
for hosting images. While not revolutionary on the face of it, the
registry helps split team responsibilities clearly along the lines
embraced by DevOps principles. Developers can build their
application, test it, ship the final image to the registry, and
deploy the image to the production environment, while the
operations team can focus on building excellent deployment
and cluster management tooling that pulls from the registry,
runs reliably and ensures environmental health. Operations
teams can provide feedback to developers and see the results of
all the test runs at build time rather than waiting to find
problems when the application is shipped to production. This
enables both teams to focus on what they do best without a
multi-phase handoff process.

The Payoff

As teams become more confident with Docker and its workflow,
the realization often dawns that containers create a powerful
abstraction layer between all of their software components and
the underlying operating system. Organizations can begin to



move away from having to create custom physical servers or
virtual machines for most applications, and instead deploy
fleets of identical Docker hosts that can be used as a large pool
of resources to dynamically deploy their applications to, with
an ease that was unheard of previously.

When these process changes are successful, the cultural impact
within a software engineering organization can be dramatic.
Developers gain more ownership of their complete application
stack, including many of the smallest details, which would
typically be handled by a completely different group.
Operations teams are simultaneously freed from trying to
package and deploy complicated dependency trees with little or
no detailed knowledge of the application.

In a well-designed Docker workflow, developers compile and
package the application, which makes it much easier for them
to focus on ensuring that the application is running properly in
all environments, without worrying about significant changes
introduced to the application environment by the operations
teams. At the same time, operations teams are freed from
spending most of their time supporting the application and can
focus on creating a robust and stable platform for the
application to run on. This dynamic creates a very healthy
environment in which teams have clearer ownership and



responsibilities in the application delivery process, and friction
between them is significantly decreased.

Getting the process right has a huge benefit to both the
company and the customers as well. With organizational
friction removed, software quality is improved, processes are
streamlined, and code ships to production faster. This all helps
free the organization to spend more time providing a satisfying
customer experience and delivering directly to the broader
business objectives. A well-implemented Docker-based
workflow can greatly help organizations achieve those goals.

The Final Word

You should now be equipped with the knowledge that can help
you make the transition to a modern, container-based build and
deployment process. We encourage you to experiment with
Docker on a small scale on your laptop or in a virtual machine
to further your understanding of how all of the pieces fit
together and then consider how you might begin to implement
it for your organization. Every company or individual
developer will follow a different path determined by their own
needs and competencies. If you’re looking for guidance on how
to start, we’ve found success in tackling the deployment



problem first with simpler tools, and then moving on to tasks
like service discovery and distributed scheduling. Docker can
be made as complicated as you like, but as with anything,
starting simple usually pays off.

We hope you can now take all of this newfound knowledge and
make good on some of the promises of Docker and Linux
containers for yourself.
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