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Chapter 1

Introduction

The use of sensor systems in combination with machine

learning and computational science to make data-driven

decisions is increasing at an unprecedented rate. The

challenge has shifted from simply acquiring data to

acquiring high-quality, valuable data. Not all data are

equally valuable, and this is especially true for sensor data,

which can be flawed and have a low signal-to-noise ratio. If

high- and low-quality data are processed and then used

jointly and equally in decision-making algorithms, it can

result in incorrect and potentially harmful conclusions for

infrastructure and mission-critical applications, such as

building design, that can impact lives, the environment, and

the economy.

One important way to assess the value of data is to

conduct uncertainty analysis, which aims to determine the

range of possible values for a physical quantity’s true value.

This practice has been given great importance for many

decades by professionals such as metrologists,

instrumentation engineers, and measurement device

practitioners. In recent years, however, it has become

increasingly important for designers in various engineering

fields to produce high-quality design solutions for complex

engineering systems. Chapter 2 of this book examines some

of the methods used for uncertainty evaluation.

Incorporating uncertainties into the design process and

solution for a complex system is a challenging task, as the



relationship between the output of interest and the input

variables is often unclear. A well-designed technical system

should not only operate effectively, but also be the most

resource-efficient solution that complies with its design

constraints. This is a difficult optimisation problem, as it

requires a set of parameters to be found that optimises the

system’s performance while satisfying conflicting

constraints, such as sustainability and affordability.

Additionally, each system parameter comes with its own

uncertainties. Within the domain of probabilistic design

optimisation, the uncertainties are incorporated by including

an additional procedure of reliability and/or robustness

analyses into the framework. There are several approaches

to achieving this. Chapter 3 covers the general methods and

formulations.

The authors of this monograph believe that it is

important to go a step further and incorporate the

propagation of uncertainty into the probabilistic design

optimisation process.

The statistical properties of any given system input are

generally known (through incoming signal measurements,

manufacturer specifications, a priori assumptions, etc). The

known uncertainties at the input then propagate through

the system, allowing the derivation of probability density

functions or cumulative distribution functions of the design

constraints imposed on the system, i.e. to characterise the

uncertainties. This, in turn, facilitates the system analysis (if

and where it is needed).

Mathematical expressions are used to model the world

through conceptual representations of physical quantities

together with their corresponding measurement methods

and scales. Using mathematical operations, the interactions

between different quantities are numerically encoded.

These models form the foundation upon which our

understanding of the physical world is built. They allow

scientists and engineers to predict what would happen in



(1.1

)

the real world if they were to design and deploy a particular

system.

Model equations are extremely important in the field of

measurement. While some physical quantities can be

directly measured, others are inferred by applying the

appropriate model equations together with measurements

of other physical quantities. A common example is the radar

speed trap, whereby the speed of a vehicle, as described in

equation (1.1), is inferred from the difference between the

transmitted and received frequencies by exploiting

knowledge of the Doppler effect. In this example, speed is

not directly measured; instead, it is inferred from the

frequency of the transmitted radio wave f0 and the change

in frequencies Δf and then related to the vehicle speed 

via knowledge of the angle between the radar and the road 

ϕ, the refractive index of air n, and the speed of light in

vacuum c:

Speed of vehicle, v =
Δf. c

2nf0 cos (ϕ)
.

There are thousands of mathematical models or

equations available today that can be used to infer

unmeasurable or unobservable quantities from observable

ones. To generalise: a chosen measurement equation 

Y = g(X1, … , XN ) describes the indirect measurement of

a quantity of interest Y  and its relationship to the

measurement of known quantities X1, … , XN . This

equation can then be expanded to include the effect of

measurement error in the measured quantities, leading to

an expression known as the propagation of error. This

relates the error in the indirect measurement of the quantity

of interest to the errors of the contributory measurements in



the equation. This is also known as the propagation of

uncertainty.

The Guide to the Expression of Uncertainty in

Measurement (GUM) [1] published by the Bureau

International des Poids et Mesures (BIPM) is one of the most

widely referenced documents in the field of uncertainty

evaluation and uncertainty propagation. It outlines the

above measurement problem alongside the general rules for

the expression and evaluation of measurement uncertainty

that can be applied to a wide range of industrial and

scientific measurements. Here, the quantity of interest Y  or

the ‘quantity intended to be measured’ is referred to as the

measurand [2].

An addendum to the GUM was presented in 2020 that

outlined a process for developing and using measurement

models. This addendum was adopted a year later by the

ISO/IEC [3]. This addendum contains a specific section on

the representation of polynomials. The work outlined in this

monograph follows the GUM framework closely in that it:

1. Examines the estimators that might be applicable for

extending the basic measurement model used to

appraise the measurand using the measured quantity

values of the inputs

2. Provides guidance on the determination of probability

distributions for the quantities appearing in the

measurement model

3. Represents the measurement model by means of

polynomials to facilitate an analytical determination of

the uncertainty

4. Utilises the ‘new’ measurement model and its

corresponding analytical uncertainty expressions within

probabilistic design optimisation procedures

Two methods are commonly used to estimate the

uncertainty of a measurement; these are known as as type



A and type B evaluations. The GUM framework, which is

closely followed in the addendum to the GUM presented in

2020, highlights the importance of estimating measurement

uncertainty in order to ensure the accuracy and reliability of

industrial and scientific measurements. Within the

framework, type A and type B evaluations are used to

estimate the uncertainty of a measurement based on

different sources of information.

Type A evaluations of uncertainty are based on the

statistical analysis of repeated measurements, which are

used to estimate the variability of the measurement. This

type of evaluation is used to estimate the random error

component of the uncertainty and is considered to be a

good representation of the uncertainty when the

measurements are independent and identically distributed.

On the other hand, type B evaluations of uncertainty are

based on information that is not directly related to the

measurement itself. This can include expert judgments,

published data, or data obtained from other sources. Type B

evaluations of uncertainty are used to estimate the

systematic error component of the uncertainty, which is

considered to be a good representation of the uncertainty

when the measurement process is not well understood.

Together, type A and type B evaluations of uncertainty

provide a comprehensive estimate of the total uncertainty

of a measurement that can be used to assess the accuracy

and reliability of the measurement results.

The essential fundamentals in the field of uncertainty are

covered in chapter 3, which outlines those formulated in the

GUM. The immediate and direct practical application of the

GUM for the design optimisation of complex systems is often

problematic, if not impossible. Thus, chapters 4 and 5

address the challenge by introducing a moment-based

analytical approach for the evaluation of standard and

expanded uncertainties, respectively. This technique is then

applied within the probabilistic design optimisation



framework, specifically reliability-based design optimisation

(RBDO), robust design optimisation (RDO) and reliability-

based robust design optimisation (RBRDO), as shown in

figure 1.1. The application-related aspects of the developed

probabilistic design optimisation framework are presented

alongside real-world case studies in chapter 6.

Figure 1.1. The application of moment-based

uncertainty evaluation in reliability and robustness

analysis for design optimisation (chapters 4 and 5).

References

[1] Guides in Metrology Committee: JCGM 2008 Evaluation of measurement

data—guide to the expression of uncertainty in measurement (Sèvres:
BIPM) https://www.bipm.org/en/committees/jc/jcgm/publications JCGM
100:2008

[2] Guides in Metrology Committee: JCGM 2012 International vocabulary of

metrology—basic and general concepts and associated terms (VIM) 3 edn

https://www.bipm.org/en/committees/jc/jcgm/publications


(Sèvres: BIPM) https://www.bipm.org/en/committees/jc/jcgm/publications
JCGM 200:2012. This 3rd edition is also published as an ISO Guide.

[3] ISO/IEC Guide 98–6:2021 2021 Uncertainty of Measurement—Part 6:

Developing and Using Measurement Models (International Organisation for
Standardization)

https://www.bipm.org/en/committees/jc/jcgm/publications


IOP Publishing

Analytical Evaluation of Uncertainty

Propagation for Probabilistic Design

Optimisation

Melanie Po-Leen Ooi, Arvind Rajan, Ye Chow Kuang and

Serge Demidenko



Chapter 2

Uncertainty propagation

Assuming that a measurement model is known, the measurand

can be estimated from the repeated measurement of input

quantities. According to the 2020 Part 6 addendum to the GUM

[1], a measurement model constitutes ‘a relationship between

measurands and input quantities to be involved in the

measurement’. It is always assumed in this monograph that a

measurand cannot be directly measured and that there are

some known theoretical or mathematical relationships between

the inputs and the outputs.

Unfortunately, it is impractical or, in some cases, impossible

to mathematically derive or model the distributions for each

possible system output. In such cases, the distribution can be

determined by measuring input quantities, so that the

relationship between the input and output quantities is known.

This technique enables output uncertainties to be inferred,

given the known uncertainties of the input. The measurement

model may therefore take a broader form than a theoretical

relationship, as it may include an empirical relationship or a

hybrid of the two. For example, the measurement model may

require an extension to its mathematical model to incorporate

temperature or pressure effects, and this now becomes the new

measurement model that a design optimisation procedure

should use.

The first subsection of this chapter summarises three

methods of estimating a measurand. These can be used to

extend the theoretical measurement model by evaluating the

measurand uncertainty after performing measurements of the

input. The four subsequent subsections summarise some of the



methods for the assignment of probability distributions to the

quantities appearing in the measurement model. These are: (1)

first-order linearisation with normal approximation; (2) the

Monte Carlo simulation method; (3) analytical methods that use

mathematical representations of the probability density function

(PDF); and (4) uncertainty evaluation using moments.

In an effort to minimise notational complexity, the

discussions presented in the text denote all outputs as Y  and

their corresponding mathematical functions as Y (⋅) rather than 

g(⋅). The model equations are related to the known quantities 

X = {X1, … , XN }. It should be noted that the GUM [2]

represents the input–output relationship as Y = g(X), where 

g(⋅) denotes the mathematical function.

This chapter omits polynomial chaos theory [3, 4], which is a

full analytic method that is based on the orthogonal

decomposition of the Hilbert space generated by a probability

measure [5]. However, this theory is not within the GUM

framework. A review of the moment method is, however,

comprehensively presented in this chapter, as it leads up to the

discussions in chapter 4.

2.1 Averaging methods for estimating

the measurand in nonlinear models

The GUM outlines two methods for estimating the measurand

(the quantity being measured) in nonlinear models. Method 1

averages the estimates of the input quantities, while Method 2

averages the estimates of the measurand (represented as a

distribution). Method 2 is preferred for nonlinear measurement

functions and in cases in which the definitional uncertainty of

the input quantities outweighs their sample acquisition

uncertainty. A supplementary method, Method 2S, improves

computational efficiency in specific cases. Method 2S requires

the definitional uncertainty to outweigh the acquisition

uncertainty and the measurement function to be known and

modelled in a specific form.



(2.1

)

(2.2

)

The GUM states that an ‘incomplete definition of the

measurand can give rise to a component of uncertainty

sufficiently large that it must be included in the evaluation of

the uncertainty result’. Further in-depth analysis performed in

[6, 7] shows that the effects of the ‘incomplete definition of the

measurand’ that should be taken as a part of the measurand

constitute the definitional uncertainty [8], which is also known

as the ‘intrinsic’ uncertainty in the GUM Section D3.4 [2]. As a

result, the measurand must be expressed as a statistical

distribution and the measured quantity value should be

interpreted as the expected value of the corresponding

distribution [7]. On the contrary, if the definitional uncertainty is

negligible and the measurand is only affected by some

acquisitional uncertainty, then the measured quantity value can

essentially be expressed as a unique value under certain

assumptions, as discussed in [9, 10].

The GUM outlines two estimators that can be used when

repeated independent measurements of the input quantities

X1,…, XN are taken in order to estimate the measurand Y . They

are known as Method 1 and Method 2 in the literature [6, 7, 9,

10] and are shown as Ŷ  and Y  in equations (2.1) and (2.2),

respectively.

Ŷ = g(X 1, … , X N), where X i =
K

∑
k

Xi,k

K

Y =
1

K

K

∑
k=1

Yk =
1

K

K

∑
k=1

g(X1,k, X2,k, … , XN ,k),

where K is the number of observations (or sample size), 

Xi,k is the kth independently observed value of the input

quantity Xi for i = 1, … , N , and N is the number of input

quantities.

¯

¯̄̄

¯



(2.3

)

Method 1 averages the estimates of the input quantities to

minimise the propagation of acquisition uncertainty through the

measurement function, while Method 2 averages the estimates

of the measurand (represented as a distribution) to find its

expected value. The estimators Ŷ  and Y  are generally

nonequivalent, and section 4.1.1 of the GUM states that Method

2 ‘may be preferable’ over Method 1 for nonlinear measurement

functions. This is an important observation, since the focus of

this monograph is the use of uncertainty in the design

optimisation process of complex systems—i.e. those in which

the measurement function could be highly nonlinear.

The investigation in [10] shows that there is no uniformly

preferred method in all of the presented cases, while [6, 7]

suggested that Method 2 is preferred whenever the definitional

uncertainty of the input quantities outweighs the sample

acquisition uncertainty and vice versa. Further work [11]

provides a supplementary method to Method 2, known as

Method 2S, shown in equations (2.3) and (2.4). It produces a

mean square error that is smaller than that of Method 2 while

improving the computational efficiency whenever the

measurement function involves multiplicative operations

between independent random variables.

The two conditions for the application of Method 2S are:

Condition 1: the definitional uncertainty of the measured

input quantities outweighs the acquisition uncertainty

Condition 2: the measurement function is exactly known

and is modelled using the sum-of-product form shown in

equation (2.3):

Y =
R

∑
r

Qr⩽N

∏
q

Pqr(XIqr
),

whereby Pqr(⋅) is the qth factor that makes up the rth

summation term and XIqr
 is its corresponding set of

uncorrelated input quantities. The sets XIqr
 with different q but

¯
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the same summation term r are mutually exclusive subsets of

the N  input quantities X1, … , XN , which are assumed to be

statistically independent. Hence, the subscript Iqr refers to sets

of positive integers that are mutually exclusive for the same r.

Y̌ =
R

∑
r

Qr⩽N

∏
q

(
1

K

K

∑
k=1

Pqr(XIqr,k))

Here XIqr,k denotes the kth independently observed values

of XIqr
.

The only difference between Method 2 and Method 2S is that

the former performs the averaging of the independent product

terms after the multiplication, while the latter does the

averaging before the multiplication. The same paper [11] shows

that Method 2S allows more efficient use of the available

measurement data for a specific class of problem. This is

especially useful in Type-A evaluations in which the uncertainty

is determined by experimental (and therefore physical and/or

financial) constraints that can often limit the number of

samples.

2.2 First-order linearisation and the

normality assumption

The first-order linearisation method is illustrated in figure 2.1.

This is a procedure that finds the standard deviation of Y  based

on the first-order Taylor series approximation (or linearization)

of a function Y (⋅), given Nr random input quantities 

X = {X1, … , XNr
}:

σY =
Nr

∑
i=1

[
∂Y

∂Xi
σXi

]
2

,

⎷



(2.5

)

where 
∂Y
∂Xi

 is the sensitivity coefficient, which is the partial

derivative operator for the expectations of Xi, and σXi
 is

the standard deviation of the ith input variable Xi. The

sensitivity coefficient is the result of a local linear

approximation.

Figure 2.1. Framework of the first-order linearisation

method used to evaluate the standard uncertainty of Y .

The PDF of Y  is obtained by fitting a normal distribution to

the expectation of Y  as the mean and σY  as the standard

deviation. This PDF can then be used to infer the uncertainty of 

Y  given the known uncertainties of X. This approach only

requires the mean and standard deviation of the input

quantities. It is thus the easiest and the most efficient method

for uncertainty evaluation. It was consequently proposed as the

standard for uncertainty evaluation by the International

Organization for Standardization (ISO) [12].

Equation (2.5) is an analytical expression that provides the

explicit relationship between the standard deviation of the

output variable and the uncertainties of various input

quantities. Its simplicity and analytic nature make it especially

useful in design improvement and sensitivity analysis. As a

result, this method has seen widespread adoption in numerous



measurement and instrumentation applications, especially in

cases in which the outputs of interest have low variance.

Despite its popularity, the use of linearization has an

inherent deficiency in that it can be inaccurate when the

variances are non-negligible with respect to the model’s

nonlinearity [13, 14]. In such cases, the GUM advocates that the

higher-order Taylor series terms must be included to find the

standard deviation of Y .

Highly nonlinear functions are often encountered in the

design of engineering systems nearing their reliability limits.

Unfortunately, the GUM does not outline a framework for

variance estimation via higher-order Taylor series terms. In any

case, this method inherently forces a normality assumption that

unfortunately ignores high-order statistics such as skewness (a

measure of asymmetry) and kurtosis (a measure of ‘tailedness’

or ‘peakedness’) [15]. As a result, this method is unreliable

when there is a significant deviation from the normality

assumption [16–18] (figure 2.2).

Figure 2.2. The plate rolling of steel, in which the

flattening effect ΔH is measured from the system model,

which includes the statistical properties of the material, the

operational temperature, the roller size, the speed of

rotation, and the steel plate thickness and movement [19].



By way of example, consider a case in which a manufacturer

needs to flatten steel plates from the initial thickness of h0 to a

desired thickness of h1 via a flat rolling process [19]. The

maximum change in the material thickness, denoted by ΔH, is

measured using a system model. Using the statistical properties

of ΔH reported in [19], the estimated PDF of ΔH is generated

using the normality assumption (represented by the dotted blue

line in figure 2.3). Another PDF that considers higher-order

statistics (skewness and kurtosis) is also generated, which is

represented as the continuous red line in the same figure. If

manufacturers were to use the normal approximation approach

with 99% confidence, they would have concluded that the

maximum reduction in the material thickness is at least 1.21 cm

per pass. However, such an analysis would be grossly incorrect.

Referring to the PDF obtained with higher-order statistics, it is

clear that the thickness can be reduced by at least 3.23 cm per

pass with the same confidence level.

Figure 2.3. A comparison of PDF estimations for the

maximum change in a material’s thickness per pass ΔH.

The dotted line is obtained using the normal

approximation, whereas the continuous line shows the



approximation obtained when higher-order statistics such

as skewness and kurtosis are also considered.

Based on this analysis, the number of passes through the

plate-rolling machine can be reduced by 2.66 times. This would

be hugely advantageous to the manufacturers, as it could

potentially more than double the manufacturing yield of their

steel plates without sacrificing the quality of their end product

or requiring additional investment in more plate-rolling

machines.

The use of the normal approximation technique in such

applications is therefore inadequate, and the decision-making

arising from its use could have a substantial impact on cost,

safety, and quality. In addition, if the standard deviation were

wrongly approximated using local linearisation, the

misrepresentation of the system would magnify this effect.

2.3 The Monte Carlo method

To address the limitations of first-order approximation, the

Monte Carlo (MC) method has been utilised for uncertainty

propagation [20]. The MC method simulates many independent

realisations of the input quantities using the a priori probability

distributions of the input quantities. The distributions are then

propagated through Y (⋅) to find the output probability

distribution from a histogram. Assuming that a sufficient

number of trials are used, the MC method can reliably estimate

the distribution of the output via simulation.

The MC simulation method is a very powerful approach and

is immensely popular for uncertainty estimation due to the

availability of cheap computational power and large memory

resources. It enables the generation of any imaginable statistics

about the output quantity, including the uncertainty, even in

highly nonlinear systems. As a result, this method is valid for

wider classes of uncertainty estimation problems compared to

the first-order linearisation method with the normality



assumption. Not only can the MC method model any output

distribution, but its accuracy can also be increased reliably

simply by increasing its sample size.

However, the MC method requires a sufficiently high number

of realisations to achieve good probability convergence, and in

turn, a reliable uncertainty estimation. More precisely, the

variance in uncertainty estimation reduces in proportion to 

M −1, where M  is the sample size [21, 22]. Furthermore, unlike

the previous approach, the MC uncertainty evaluation procedure

is a purely numerical simulation process that does not produce

an analytic expression of uncertainty; i.e. there is no explicit

equation that describes the uncertainty of the output in terms

of the inputs. This limits its use in the design optimisation

process, which will be discussed further in section 3.2.2.

2.4 The use of a mathematical

representation of the probability

density function

The third method is based on analytical derivations that use the

PDF. Various sources (e.g. [21, 23–26]) acknowledged the

benefits of obtaining expressions for the output uncertainty in

terms of the input uncertainties via this approach. However,

within the context of design optimisation presented in this

monograph, it is often excessively complex to derive the PDF of

the output. Most engineers and designers would not be

interested in spending precious development time deriving

mathematical definitions for each possible model of their

system.

Therefore, while this approach is more accurate compared to

the first two methods outlined above, it remains a relatively

unpopular one. To the best of the authors’ knowledge, there has

been no significant work to extend the analytical approach to

uncertainty evaluation in general terms. This is perhaps

because the majority of the reported cases are severely

restrictive to a specific type of propagation equation and the

particular distributions that can be used in those cases.
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Examples in the literature include the linear sum of normal or

uniform distributions, the logarithmic transform of monotonous

PDF [27], and the sum of the squares of normally distributed

variables [20]. An approximate analytical treatment has also

been reported for trapezoidal distributions [27, 28].

2.5 Uncertainty evaluation using

moments

In cases in which the full PDF of an output Y  cannot be directly

expressed, it can instead be represented by its moments. This is

especially convenient for standard uncertainty evaluation,

which is defined in the GUM as the square root of the second-

order central moment of a given measurement distribution [2].

According to this definition, only the first and second (raw)

moments of Y are used to evaluate the standard uncertainty,

given by equations (2.6) and (2.7).

The mean is given by:

μ = E[X].

The standard deviation (or standard uncertainty) is given

by:

σ = √E[X 2] − (E[X])2.

Under the GUM framework, extended uncertainty is an

extension of standard uncertainty to meet commercial,

industrial, and regulatory requirements [2]. It can be obtained

using a large fraction of the distribution of values that can

reasonably be attributed to the measurand. Out of practical

consideration, the concept of a coverage factor is introduced, in

which the expanded uncertainty can be determined by

multiplying the standard uncertainty by a corresponding

coverage factor. While the GUM suggests that the coverage

factor derived from the normal distribution is sufficient under
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most circumstances, this assumption of sufficiency is rather

subjective, as shown in [16–18].

In particular, the work presented in [18] uses Monte Carlo

simulation on selected realistic measurement scenarios to

demonstrate the bias or underestimation of the expanded

uncertainty under this normality assumption. Furthermore,

Fotowicz [17] shows that the quality of the expanded

uncertainty estimation is unsatisfactory even when the

coverage factors derived from simple distributions such as

normal, trapezoidal, and uniform are used.

The assumption of a normal (or close to normal) distribution

can be challenged when the underlying PDF has a high skew, a

long tail, or both. In these cases, therefore, it is insufficient to

use just the first two moments to characterise the PDF. Instead,

the first four moments should be used [29], so that the

skewness

Ω =
E[X 3] − 3μE[X 2] + 2μ3

σ3

and kurtosis

Ψ =
E[X 4] − 4μE[X 3] + 6μ2E[X 2] − 3μ4

σ4

are used in addition to the mean and the standard deviation

shown in equations (2.6) and (2.7).

These higher-order moments E[X n] are fed into various

algorithmic estimations of parametric distributions, such as the

normal [2], Cornish–Fisher expansion [30], extended generalised

lambda [31], Tukey’s gh [32], Pearson [33], Johnson [34], and

maximum entropy [35] distributions. The confidence intervals

can also be non-parametrically quantified using these moments.

The use of parametric distribution fitting methods is a rather

standard practice in applied statistics and engineering [36].
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Although different distribution fitting techniques are

available, comparing their goodness of fit (or fitting accuracy) is

difficult without a common benchmarking platform. Section 5.2

introduces a set of benchmarking test distributions that can be

used to assess the respective performances of these methods

for reliability estimation in the probabilistic design optimisation

procedure. The following subsections introduce some of the

most well-known parametric fitting methods.

2.5.1 The normal distribution

As mentioned in the previous subsection, it is assumed in this

method that the normal (Gaussian) distribution is a reasonably

good fit to the data, and thus only the first two moments have

to be included in the equation:

FX(x) =
1

2
(1 + erf(

x − μX

σX√2
)),

where μX and σX are the mean and the standard deviation

of input X. This is the method advocated by the GUM. It is also

a theoretical basis that underpins the concept of a coverage

factor. However, since the normal distribution is not skewed (

Ω = 0), it has been shown to perform poorly when the

underlying distribution is skewed [29].

2.5.2 The Cornish–Fisher expansion

The Cornish–Fisher (CF) expansion originates from the classical

mathematical probability theory [37] developed to describe a

probability distribution that cannot be satisfactorily described

by the normal distribution [38]. The CF fitting process starts

with the normal distribution and then adjusts the distribution

using additional information extracted from higher-order

moments. This capability enables the approximation of

distributions that do not significantly deviate from the normal

distribution.
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It should be noted that the CF approximation is not limited to

four moments, even though that is the most common situation.

The authors of this monograph examine the use of higher

moments in the goodness-of-fit evaluation. In theory, if a

moment can be computed from the parameters of a specific

distribution, the maximum number of moments that can be

used is restricted by the floating-point precision of the

computer. However, a CF approximation implemented in 2015

utilised moments higher than the fourth order, as described in

[30], but it failed to demonstrate a significant improvement in

performance, as noted in [29]. Therefore, the discussion of CF

approximation in this monograph is limited to the use of four

moments only.

2.5.3 The extended generalised lambda

distribution

The generalised lambda distribution (GLD) is a four-parameter

continuous distribution [39]. The percentile function of the GLD

is parameterised by λ1, λ2, λ3, and λ4, as shown in equation

(2.11), where λ1 represents the location parameter, λ2
represents the scale parameter, and λ3 and λ4 control the

behaviour of the left and right ‘tails’, respectively, while

everything in between is a smooth interpolation of these two

extremes.

FX
−1(x) = λ1 +

xλ3 − (1 − x)λ4

λ2
.

Equation (2.11) is designed to fit a wide variety of curve

shapes [40] while remaining simple enough to be manipulated

directly to find the values of the λi parameters for i = 1, … , 4.

The GLD has been widely employed since its introduction, and

various improvements have been made, such as efficient

parameter estimation and its application to reliability estimation

[31, 40–43].
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Although the GLD is capable of describing many important

distributions of interest, a study [31] has shown that the GLD is

unable to provide a high goodness of fit for distributions with

high skew and low kurtosis. It went on to introduce the

generalised beta distribution (GBD) to the GLD, resulting in a

more powerful tool known as the extended generalised lambda

distribution (EGLD). The GBD is a compact support distribution

defined by its four-parameter PDF as:

fX(x) =
(x − λ1)λ3(λ1 + λ2 − x)λ4

β(λ3 + 1, λ4 + 1)λ2
λ3+λ4+1

.

The EGLD is simpler, as it has only two distribution classes

(GLD and GBD), while its parameter determination is much

simpler. The parameters λi of the EGLD for i = 1, … , 4 can

easily be obtained from the table provided in [31] for the

corresponding third- and fourth-order moments of the

distribution.

The study described in [44] proposed another version of

extended generalised lambda distributions (or XGLD)

represented by:

FX
−1(x) = α0 + α1xλ1 + α2(x − c)λ2 − α3(1 − x)λ3 ,

where the distribution parameters α0, α1, α2, λ1, λ2, λ3,

and c in expression (2.13) can be obtained using the moment

matching method. The ith raw moment of X in the XGLD is

given by:

E[X i] = ∫
1

0
(α0 +

2

∑
j=1

αj(x − cj)
λi)

i

dx

for c1 = 0, c2 = c, and c3 = 1 [44].
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The XGLD is a more accurate approximation than the GLD if

the initial condition is chosen correctly. Its improved accuracy is

mainly attributed to a larger degree of freedom inherent in the

model.

However, unlike the GLD, the parameter space of the XGLD

is not well characterised. The XGLD formulation requires the use

of numerical optimisation to perform the mapping from the

moments to the distribution parameters. Thus, it causes

significant interaction between the parameters and could quite

likely lead to multiple local minima, making the XGLD

unsuitable for uncertainty estimation.

2.5.4 Tukey’s gh distribution

Tukey’s gh distribution [45] is largely used to model the

probability of extremely rare events, i.e. those corresponding to

the tails of distributions [46], as well as other types of statistical

modelling [47].

In common with the CF fitting technique, Tukey’s gh fitting

method starts with the standard normal distribution. The fitting

is done by transforming the realisations x in (2.10) to z in:

z =
exp(gx) − 1

g
exp(

hx2

2
),

where g and h are constant values of a real type.

The parameter g controls the skewness of the distribution

with respect to the direction and the magnitude, while h
controls the ‘tail weight’ of the distribution. Therefore, for

symmetrical distributions, g = 0 and only h has to be

determined. The ith uncorrected moment of X is E[X i], which

can be given by [48]:

E[X i] = (gi√1 − ih)
−1 i

∑
j=0

(−1)j(
i

j
) exp(

(i − j)2
g2

2(1 − ih)
).
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The skewness and kurtosis of X can be obtained by substitution

into equations (2.8) and (2.9). In so doing, the values of g
and h can be found by simultaneously solving for Ω and K with

specific values of skewness and kurtosis [48]. Due to the high

nonlinearity of the simultaneous equations, g and h have to be

found using root-finding functions.

The downside of using Tukey’s gh distribution is that it only

accounts for h > 0. In other words, it can only transform the

standard normal distribution into a heavier tail distribution

(larger kurtosis), but not into a distribution with lower kurtosis.

As a result, the performance of this method is expected to be

similar to that of the normal approximation method for low

kurtosis cases. Furthermore, the use of root-finding methods to

solve for g and h imposes a high computational cost. Hence, to

speed up the search for optimal g and h, a lookup table is

provided in appendix A.

2.5.5 The Pearson distribution

Pearson was the first to introduce the use of skewness and

kurtosis to characterise probability distributions in 1895 [49]. He

then improved their definitions [50], and [51]. The Pearson PDF

is defined by:

fX′(x)

fX(x)
=

x − a

λ0 + λ1x + λ2 x2
,

where a, λ0, λ1, and λ2 are the distribution parameters.

The system of Pearson distributions is the most well-known

family of distributions. It covers many important unimodal

distributions, including the normal distribution [36, 47]. It is a

family of continuous probability distributions that are derived

from a differential equation related to the normal density

function.

The modern Pearson system contains seven distinct classes

of distribution that can be determined based on the index value

[47]:
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κ =
λ1 (λ2 + 3)2

4(2λ2 − 3λ1 − 6)(4λ2 − 3λ1)
.

The PDFs of all seven types of Pearson distributions and

their corresponding parameter criteria for classification are

summarised in [36, 47]. The three main types of Pearson

distribution are Type I, Type IV, and Type VI because they

occupy areas in the (λ1, λ2) space, whereas the other types are

represented by lines or points. Note that the normal distribution

is a special case in the Pearson family of distributions where 

κ = 0, λ1 = 0, and λ2 = 3.

One of the attractive features of the Pearson distribution is

that its parameters can be analytically determined from the first

four moments. A combination of the parameters, in turn, selects

a suitable distribution that best fits the observed moments.

2.5.6 The Johnson distribution

Just like Tukey’s gh distribution, Johnson distributions [34, 52]

use mathematical transformation functions to transform the

realisations x into z, as follows:

z = λ1 + λ2g(
x − λ3

λ4
),

where g(⋅) is a function of simple form, λ1 and λ2 are the

shape parameters, λ3 is the location parameter, and λ4 is the

scale parameter. Here, the transformation is performed based

on one of the three functions shown in equations (2.20)–(2.22).

They are lognormal

z = λ1 + λ2 ln(
x − λ3

λ4
)

for x ⩾ λ3, bounded

( )



(2.2

1)

(2.2

2)

(2.2

3)

(2.2

4)

z = λ1 + λ2 ln(
x − λ3

λ4 + λ3 − x
)

for λ3 ⩽ x ⩽ λ3 + λ4, and unbounded

z = λ1 + λ2 sinh−1(
x − λ3

λ4
)

for −∞ < y < ∞. For the sake of completeness, an

identity transformation was added for the normal distribution;

thus, the fourth transformation is:

z = λ1 + λ2(
x − λ3

λ4
)

for −∞ < y < ∞.

Here, the type of distribution that a set of moments belongs

to is first determined using the skewness and kurtosis based on

the Johnson curve [34]. Then, the first four statistical

parameters of X are substituted into the general PDF:

fX(x) =
λ2

√2π
g′(x) exp{−

1

2
[λ1 + λ2g(

x − λ3

λ4
)]}.

As in the Pearson distribution, the first four moments

determine the analytical PDF from the family of distributions.

Therefore, the Johnson distribution can be regarded as a

crossover between Tukey’s gh method and Pearson method.

2.5.7 The maximum entropy method

For a random variable X whose realisation x takes all values

over an interval of real numbers with a unique PDF fX(x), the

Shannon entropy S [53] is defined as:
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S = −∫ fX(x) ln[fX(x)]dx.

The maximum entropy algorithm [35] uses monomials (i.e. 

xi) as the basis functions in expressions (2.26)–(2.30). In the

moment-based maximum entropy method, the information

entropy S is maximised subject to (2.25) for i = 0, … , Nm

[54]. Using the method of Lagrange multipliers [55], the

optimisation problem with Nm + 1 constraints (considering the

zeroth moment) is then reduced to the optimisation of the

unconstrained function:

L(φ) = ∫ exp(
Nm

∑
i=0

φix
i)dx −

Nm

∑
i=0

φix
i,

where φ = {φ0, λφ1, … , φNm
} is the Lagrange multiplier.

Expression (2.26) has a closed-form solution for fX(x):

fX(x) = exp(
Nm

∑
i=0

φix
i).

All the optimal maximum entropy distributions are achieved

when ∂L/∂φ ≅0, which automatically satisfies the moment

constraints in (2.25) and takes the general form fX(x) in (2.27).

Note that since x0 = 1 (for i = 0) in (2.30), φ0 can be found

using the explicit function:

φ0 = − ln∫
R

exp(
Nm

∑
i=1

φix
i)dx.

The gradient (∇L)i
 and the elements Hij of the Hessian

matrix H of the Lagrangian function in (2.26) are given,
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respectively, by:

(∇L)i =
δL

δφi
= ∫

R

xifX(x)dx − xi,

Hij = ∫
R

xi+jfX(x)dx

According to the principle of maximum entropy [56], all

likelihoods are to be considered based on the information

available in the data, which in this case is the set of truncated

moments associated with the distribution of interest. The

maximum entropy distribution is the one with the largest overall

uncertainty out of all possible distributions with the same

moment sequence. Theoretically, the higher the number of

moments used in the maximum entropy method, the closer the

estimated PDF is to the actual distribution, since more

information from the moments diminishes the uncertainty in the

maximum entropy distribution.

However, as the number of moments increases (especially

when Nm > 5), the procedure becomes highly sensitive to any

numerical imbalance in the moments, an ill-conditioned

gradient or Hessian matrix, and insufficient arithmetic precision

[57, 58]. To address these shortcomings, advanced and

numerically stable algorithms were developed using different

basis functions, such as the shifted Chebyshev polynomials [57]

and the Fup functions [58]. The work described in [59] further

extends the improvements to multidimensional problems using

generalised orthogonal polynomials (GOPoly).

A final shortcoming of these algorithms is that they assume

that the range of the distribution is known. Convergence is not

guaranteed in an automatic application of the procedures if the

limit of integration is not (at least approximately) known

beforehand [57–59]. This limitation will be addressed in chapter

5.



2.6 Summary

This chapter on uncertainty propagation has covered three

methods for estimating the measurand and evaluating

uncertainty in nonlinear models: Method 1, Method 2, and

Method 2S. These methods focus on assigning probability

distributions to quantities in the measurement model. This

chapter explored the common methods used in uncertainty

evaluation: first-order linearisation with normal approximation,

Monte Carlo simulation, analytical methods using mathematical

PDF representations, and uncertainty evaluation using

moments. It provided a detailed examination of distribution

fitting methods such as the normal, Cornish–Fisher, extended

generalised lambda, Tukey’s gh, Pearson, Johnson, and

maximum entropy methods.
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Chapter 3

Probabilistic design optimisation

Design optimisation is an iterative process used to determine the design parameters of

a system that maximise the performance of the design while meeting a set of

prescribed physical constraints. Traditional methods of design optimisation were

generally deterministic and did not consider the uncertainties in the design parameters

[1]. Figure 3.1(a) is an illustration of a generic optimisation framework. An optimisation

algorithm is implemented to iteratively update the design point in Step 4.

Figure 3.1. Comparison of (a) deterministic and (b) probabilistic design

optimisation frameworks, highlighting the role of uncertainty propagation.

In today’s modern competitive technological market, there is a push to produce

more economical and sustainable designs that meet increasingly stringent safety and

quality requirements. For example, for the sensors produced today, the parameter

variations due to manufacturing uncertainties must be accounted for, otherwise their

manufacturers risk producing large amounts of non-compliant products, leading to

either a loss of sales or the risk of incurring additional costs due to non-compliance [2].

In more mission-critical applications such as structural systems, design engineers must

simultaneously adhere to engineering building codes while also ensuring the use of

minimal resources to meet financial and sustainability goals [3].

Reliability and/or robustness analysis is increasingly employed within design

optimisation procedures to ensure that uncertainties are considered within the design

loop—especially so when health and safety factors (e.g. structural buildings and

bridges [4]) or large-scale component manufacture (e.g. sensors and actuators [5]) are

involved. This comes in the form of additional steps in the design optimisation



framework that performs probabilistic analyses of reliability and robustness (figure

3.1(b)). Here, all design parameter uncertainties and their propagation through the

system are considered by computing the probabilistic constraint of the design point in

that iteration. In so doing, the resultant design should be the most economical design

that maximises performance and meets the physical constraints at a specified level of

confidence (reliability) and its susceptibility to uncertainty (robustness). This allows the

system designer or engineer to ensure that the resultant design is compliant with the

specified reliability and safety requirements.

Figure 3.1 highlights the key differences between the deterministic and probabilistic

design optimisation strategies. What is perhaps not as obvious from figure 3.1 is that

the optimisation algorithm sits within Step 4. Different optimisation algorithms can be

deployed with different levels of convergence efficiency. This topic itself is still an active

research field and falls outside the scope of this book. Instead, this book uses state-of-

the-art general-purpose optimisation algorithms such as sequential quadratic

programming [6] and genetic algorithms [7]. It focuses solely on the formulation of the

design optimisation framework, how uncertainty propagation can be incorporated into

it more effectively, how the parameters are computed (Step 2), and how the optimum

design is determined (Step 3).

Design optimisation typically requires the specification of two classes of parameter,

which are the objective function(s) and the physical constraint functions. In probabilistic

design optimisation, the constraints of a system’s performance are represented using

performance functions. In general, the desired reliability is predetermined within the

optimisation formulation based on safety, regulatory, or compliance standards. The

robustness of a chosen constraint may either be omitted or optimised together with the

design objective. The reliability limit assigned to each performance function is known

as the reliability constraint [8]. The biggest challenge in probabilistic design

optimisation is to evaluate these probabilistic constraints in a way that is

simultaneously efficient and accurate. In general, the exact computation of these

reliability constraints is too complex to be performed for multivariate nonlinear

systems. Instead, numerical approximations are employed, such as computing only the

first- and second-order derivatives of the performance functions, thus sacrificing

accuracy for efficiency.

The differences between reliability and robustness analyses are shown in figure 3.2.

In this figure, y denotes the realisation of output Y  and there is a constraint function of 

Y ⩽ 0. At every iteration within the optimisation procedure, a new design point is

obtained. These are shown as Y1,Y2,Y3, and Y4 (each is a distinct design variation of 

Y ). For reliability analysis, the probability of Y ⩽ 0 must be verified at every design

point during the iterative optimisation procedure. Figure 3.2(a) shows a comparison of

the probability density functions (PDFs) of two design iterations Y1 and Y2. Observing

that the peak of the PDF of Y2 is further to the left of the Y = 0 constraint than that of

the PDF of Y1, it is clear that the design parameters corresponding to Y2 have a higher

probability of meeting the Y ⩽ 0 constraint function compared to those of Y1. In short,

one can surmise that the parameters of Y2 produce a more reliable design.



Figure 3.2. A comparison of the PDFs of output Y  for (a) reliable and (b) robust

designs. Pr[⋅] denotes the probability operator, σ denotes the standard deviation,

and y denotes the realisation of Y .

The robustness is determined based on the spread of the PDF. A smaller spread of

the distribution demonstrates its lower susceptibility to uncertainties in the design

parameters. This means that the corresponding design would have a more consistent

output. Figure 3.2(b) shows the PDFs for two design iterations Y3 and Y4. It can be seen

that Y3 has a larger spread than that of Y4; therefore, it can be concluded that the

design parameters corresponding to Y4 result in a more robust design compared to

those of Y3.

The constraint functions themselves can be difficult to establish. This challenge

originates from the complexity of the system and is especially prevalent in numerous

engineering applications where the output of interest Y  is a conceptual construct that

cannot be directly measured. This means that its uncertainty cannot be determined via

measurement. Instead, a model-based determination Y (X) is used. This allows Y  to be

determined using the estimates of a set of Nr random variables X = {X1, … ,XNr
}

through a known (or assumed) mathematical function Y (⋅). In most realistic scenarios,

the function Y (⋅) may be defined implicitly. This will be elaborated with real-world

examples in chapter 6.

The statistical properties of X can be established in several ways. They can be

determined via measurements, obtained from the manufacturer’s specification

documents, derived from a physical understanding, or even deduced from a priori

assumptions. The known uncertainties of X can be then propagated through function 

Y (⋅) to find the PDF or cumulative distribution function (CDF) of the constraint

functions; consequently, the uncertainties in Y  can be evaluated. The uncertainties can

then be used to perform reliability and robustness analyses in Step 2 of the

probabilistic design optimisation shown in figure 3.1(b).

Obtaining the PDFs or CDFs of the constraint functions is therefore crucial for

evaluating their uncertainties and in turn performing reliability and robustness analyses

in probabilistic optimisation. However, as discussed in chapter 2, it is impractical if not

impossible to mathematically derive all of the probability distributions for each possible

system output analytically. Therefore, an effective method for approximating the

probability distributions of Y  is needed. The propagation of uncertainty [9], i.e. the



(3.1

)

process of inferring output uncertainties (typically from the PDF or CDF of Y ) given

known input uncertainties was extensively discussed in the previous chapter.

In a deterministic design optimisation problem in which the inherent uncertainties

are not considered, the design problem can be expressed mathematically as:

where C(⋅) is the objective function to be minimised, d = {d1, … , dNd
} is a vector

of the Nd design variables with a lower bound d
L

 and an upper bound d
U

, Gi(⋅) is the 

ith constraint function (which represents the physical performance criterion to be

satisfied), and Nc is the number of constraint functions. Some examples of C(⋅) include

the weight of a structure, the cost of the product, the performance variance, etc.

The probabilistic design optimisation paradigms that are commonly used in

engineering design are: (1) robust design optimisation (RDO); (2) reliability-based

design optimisation (RBDO); and (3) reliability-based robust design optimisation

(RBRDO), which combines the first two frameworks. The following subsections present

brief descriptions of each of these formulations.

3.1 Robust design optimisation

A product or system designed by a robust design optimisation framework is expected

to be insensitive to external noise or tolerances [10]. Since all materials and processes

come with their associated uncertainty (such as modulus, thickness, density, noise, and

vibration), the robust design optimisation framework includes sensitivity analysis within

the optimisation procedure. It does so by minimising the sensitivity of the design

objectives to such variations within each design iteration. Figure 3.3 shows the different

types of performance variations.

Figure 3.3. A depiction of different types of performance variation within a

system [11].

minimise : C(d),

subject to : Gi(d) ⩽ 0 for i = 1, … ,Nc,

where : d
L ⩽ d ⩽ d

U ,



(3.4

)

(3.2

)

(3.3

)

The moment-based method [12–15] of assessing system robustness is more likely to

be employed than other techniques such as the percentile difference-based method

[16] or the hybrid quality loss functions-based method [17] due to its superior accuracy

and computational efficiency [13]. Moment-based robust design optimisation is

essentially a modified version of the notation in (3.1), given by:

where the objective function C(⋅) from equation (3.1) is modified to express the

performance function K(d, X) in terms of its mean μK  and variance σK
2
.

The performance function quantifies the capability of a system under design with

respect to the design variables d and random variables X. Often, one of the constraint

functions is chosen to be the performance function. For example, in the assessment of

vehicle side impact crashworthiness [18], the post-impact lower rib area deflection of

the dummy is the performance function as well as the constraint function. In the case

of this example, a safer design can be obtained by minimising the variance of the rib

area deflection in addition to meeting the required safety standards.

The mean and variance of the performance function can be calculated from the first

two moments. The ith-order moments of K(d, X), denoted by E[K i], can be

calculated using the multidimensional integral:

E[K i] = ∫ ⋯∫ K i(d, X)fX(x)dx,

where x = {x1, … ,xNr
} denotes realisations of the random variables X and 

fX(x) is the joint PDF of X expressed in terms of x. Here, the vector d may be either

independent of, or linked to the random variable vector X. In most design problems, 

d = E[X], where E[X] is the expectation of the random variable X.

There are two mainstream computational methods for decomposing the

performance function K(⋅) in equation (3.3), which are the univariate dimension

reduction method and the performance moment integration method.

3.1.1 The univariate dimension reduction method

A performance function K(X) with Nr-dimensional input random variables X can be

additively decomposed into one-dimensional functions using the univariate dimension

reduction method shown in (3.4) [12]:

K(X) ≅
nrv

∑
i=1

h(μX1
, … ,μXi−1

,Xi,μXi−1
, … ,μXNr

) − (Nr − 1)h(μX1
, … ,μXNr

),

where Nr is the number of random variables, and μXi
 denotes the mean of

random variable Xi for arbitrary i.

Decomposition (3.4) is valid for all functions of K(⋅) with a convergent Taylor series

expansion centered at origin (i.e, 0). [15]. As a result of this decomposition, the

minimise : C(μK,σK
2),

subject to : Gi(d) ⩽ 0 for i = 1, … ,Nc,

where : d
L ⩽ d ⩽ d

U ,



(3.5

)

(3.7

)

(3.8

)

(3.6

)

multidimensional integration in (3.4) is reduced to Nr one-dimensional integrations,

which are then numerically calculated using the moment-based integration rule (MBIR).

Paper [15] outlines the MBIR procedure used to calculate the required weights w
j
i
 and

quadrature points x
j
i
 depending on the distribution type and the number of quadrature

points Nq. In short, the general expression for evaluating the mean and the variance of

the performance function K(⋅) using the univariate DRM method can be written as

(3.5) and (3.6), respectively:

μK ≅
Nq

∑
j=1

Nr

∑
i=1

w
j
iK(μ1, … ,μXi−1 ,x

j
i ,μXi−1 , … ,μXNr

)− (Nr − 1)K(μ1, … ,μXNr
)

.

3.1.2 The performance moment integration method

The performance moment integration method uses the Rosenblatt transformation [19]

to rewrite the multidimensional integral of equation (3.3) as a one-dimensional integral

[14]:

E[K i] = ∫ K i(t;𝛍X)Φ(t)dt,

where Φ(⋅) is the normal cumulative distribution function and t is the distance from

the origin to the most probable point (MPP) in the normalised u-space.

It then makes use of weights and quadrature points to evaluate the transformed

integral in equation (3.7). Since t follows the standard normal distribution in the u-

space, the weights and quadrature points for Nq = 3 are used to further reduce

equation (3.7) to the expression shown in (3.8).

Using special algorithms such as the hybrid mean value [20] and conjugate

gradient analysis [21] methods, each term in equation (3.8) can be approximated.

Using equation (3.8), the mean μK = E[K] and variance σK
2 = E[K 2] − (E[K])2

 of

the performance function then can be calculated for robustness analysis.

3.2 Reliability-based design optimisation

Reliability-based design optimisation considers the design objectives for a given set of

probabilistic constraints for the constraint functions G(⋅) at every iteration. The RBDO

problem can be mathematically expressed as a modification of equation (3.1):

σK
2 ≅

Nq

∑
j=1

Nr

∑
i=1

w
j
iK

2(μ1, … ,μXi−1 ,x
j
i ,μXi−1 , … ,μXNr

)

− (Nr − 1)K 2(μ1, … ,μXNr
) − μK

2

E[K i] ≅ 1
6 K

i(t1;𝛍X)∣t1=−√3 + 4
6 K

i(t2;𝛍X)∣t2=0 + 1
6 K

i(t3;𝛍X)∣t3=√3

= 1
6 K

i(−√3;𝛍X)+ 4
6 K

i(0;𝛍X) + 1
6 K

i(√3;𝛍X)



(3.1

1)

(3.9

)

(3.1

0)

where C(⋅) is the objective function, Φ(⋅) is the standard normal cumulative

distribution function, Pr[⋅] is the probability operator, and βi is the ith target reliability

index corresponding to the performance function Gi(⋅). The probability expression 

Pr[Gi(d, X) ⩽ 0] in (3.9) can be explicitly expressed as:

Pr[Gi(d, X) ⩽ 0] = ∫ … ∫

Gi(d,X)⩽0

fX(x)dx,

where fX(x) is the joint probability density function of X. As discussed earlier in

this chapter, numerical approximations are popularly used in reliability analysis

because of their mathematical complexity. These include techniques such as:

Most probable point (MPP)-based methods [4, 22, 23], which are considered state of

the art because of their simplicity and efficiency;

Metamodels (or surrogate models) [24–28] that approximate the input–output

relationship using direct sampling methods such as the MC method [24] and

importance sampling [25];

Moment-based methods [29–33] calculate statistical moments up to the 4th order.

This book will expand the moment-based method given in section 3.2.4 to describe

a new RBDO technique which combines a high-order analytical moments method

based on the Mellin transform, local response surface modelling using polynomial

genetic programming, and a moment-constrained entropy method.

3.2.1 Most probable point-based methods

The MPP can be interpreted as the most likely point of failure conforming to a reliability

index β, which in turn corresponds to the standard normal inverse cumulative

distribution with a known probability. For example, for a probability of 0.9987 (or

99.87%), the value of β is 3. MPP-based approaches such as the first- and second-order

reliability methods (FORM and SORM, respectively) [18, 19, 45, 46] bypass the

uncertainty evaluation by applying a probabilistic transformation such as the

Rosenblatt transformation [19] to transform the realisation of every non-normal random

variable from an original x-space into a standardised normal distribution space known

as the u-space. According to the transformation, for a point x, the equivalent point in u
-space is found by solving:

FX(x) = Φ(u),

where FX(⋅) is the CDF of X defined with respect to realisations x and 

u = {u1, … ,uNr
} denotes the realisation of the vector of standard normal variables 

U = {U1, … ,UNr
}.

Figure 3.4 illustrates how the MPP-based methods work. Given a function Y (∙) with

random variables X = {X1,X2}, these two random variables are transformed to 

U = {U1,U2} using the transformation shown in equation (3.11). This brings them to a

minimise : C(d),

subject to : Pr[Gi(d, X) ⩽ 0] > Φ(βi) for i = 1, … ,Nc

where : d
L ⩽ d ⩽ d

U ,



(3.1

2)

new u-space with a common centre point. The point on the line Y (u) = 0 that has the

shortest distance from the centre is known as the MPP, where u = {u1,u2} are

realisations of U = {U1,U2}, and the Euclidean distance between these two points

corresponds to the reliability index β. This allows the original probabilistic formulation

of uncertainty to be replaced by an approximated formulation that searches for the

most probable point by computing the shortest distance between the origin and 

Y (u) = 0 to find the β of the current design point.

Figure 3.4. The most probable point in the normalised u-space for an arbitrary

function Y (∙) with two random variables X1 and X2. The symbol u denotes the

realisations of U; U denotes the normalised vector of random variables X.

Accordingly, for a given point X, β can be found from the optimisation problem:

where u = {u1, … ,uNr
} and G(⋅) is the constraint function in (3.1). The search

for the MPP is also iterative and can be realised in three broadly different ways: the

double-loop, decoupled-loop, and single-loop techniques, as illustrated in figure 3.5.

minimise : β = √uTu,

subject to : G(u) = 0,



Figure 3.5. Different ways to deploy MPP-based RBDO methods: (a) represents a

double-loop approach, (b) represents a decoupled-loop approach, and (c)

represents a single-loop approach.

The FORM has been considered the mainstream classical uncertainty propagation

method for RBDO since the 1980s [34], and further extensions have been made since

the early 1990s [35, 36]. The SORM can be interpreted as an extension of the FORM

using second-order approximation. This means that it uses the second-order partial

derivatives of the function at the MPP [37, 38]. Since it has additional information, the

SORM is generally more accurate. However, the use of second-order derivatives results

in lower robustness compared to the FORM. Depending on the application, the FORM

can be more desirable than the SORM, especially when the derivative information is

numerically computed from finite element method (FEM) models.

Although the FORM and the SORM significantly reduce the computational complexity

by transforming the uncertainty evaluation problem from the nested integral problem,

they have several shortcomings. First, they may reduce the accuracy of the reliability

estimation [39–42]. For example, [43] reports under- and overestimation of the

reliability for concave and convex functions in the neighbourhood of the MPPs,

respectively, which could potentially lead to unreliable designs. Figure 3.4, for instance,

shows the MPP in the vicinity of a concave function [43]. Although the study went on to

propose an MPP-based dimension reduction method that addressed this shortcoming,

the results showed that it could only minimise the severity of under- or overestimations

but not eliminate them.

Second, the convergence becomes poor in the search for MPPs representing high

system reliability [23] and the possible existence of non-unique MPPs may lead to

inaccurate reliability analysis [44]. Various attempts have been made to improve MPP-

based uncertainty analysis; however, the whole class of techniques depends on finding

the MPP reliably and efficiently. Therefore, it is still challenging to perform uncertainty

analysis for some highly nonlinear problems containing highly skewed random

variables.

3.2.1.1 The performance measure approach

Referring again to figure 3.5, the search for the MPP can be achieved via some

innovative numerical methods, each of which achieves a different level of accuracy and
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computational efficiency. The double-loop strategy shown in figure 3.5(a) was first

developed using the reliability index approach (RIA) [36] with Karush–Kuhn–Tucker

optimisation conditions [45]. A sequential approximate programming strategy, known

as the performance measure approach (PMA) [20, 46], was then proposed to replace

the original problem of finding the reliability index in the RIA with a new formulation.

The RBDO problem is represented using the PMA by equation (3.13). The target

reliability is evaluated using inverse reliability analysis. In this analysis, the MPP is the

failure point that corresponds to the lowest performance level that satisfies βi, which is

represented by (3.14).

,

where Gi(∙) is the ith performance measure function that corresponds to the

target reliability index βi, d is the vector of design variables with lower bounds d
L and

upper bounds d
U , and X is the vector of random variables.

The reliability problem in (3.14) can be solved using algorithms such as the

advanced mean value (AMV), the conjugate mean value (CMV), and the hybrid mean

value (HMV) [46]. In general, the HMV method is considered the superior method, as it

adaptively combines the AMV and CMV methods for a more robust MPP search [13, 47].

3.2.1.2 Sequential optimisation and reliability assessment

To further improve the computational efficiency, the PMA formulation was then inverted

[48], and the MPP search was decoupled from the design optimisation loop as shown in

figure 3.5(b). This method is widely known as sequential optimisation and reliability

assessment (SORA) [49]. In SORA, deterministic optimisation is carried out in each

cycle. The optimisation is shifted to a feasible region by changing the design vector d

based on the MPP obtained in a previous cycle. The optimisation problem for SORA is

represented by (3.15), where k is the current cycle of iteration and s is the shift vector

that can be obtained from s
k+1 = d

k − X
k
MPP

. The MPPs denoted by XMPP  in (3.15)

are obtained using the inverse reliability strategy [48].

3.2.1.3 The single-loop approach

The single-loop approach (SLA) was introduced in [50, 51] to replace the reliability

constraints with approximated deterministic constraints using the normalised gradient

vector of the individual performance function 𝛂i = {α1, … ,αNc
} and the target

reliability index βt
i
 for i = 1, … ,Nc. With reference to figure 3.5(c), the SLA introduces

no additional MPP search iterations or loops within the design optimisation iteration;

minimise : C(d),

subject to : Gi(d,X) ⩾ 0, for i = 1, … ,m

d
L

⩽ d ⩽ d
U

minimise : Gi(u),

subject to : ∥u∥ = βi

minimise : C(d
k),

subject to : Gi(d
k − s

k−1, X
k−1
MPP) ⩾ 0, for i = 1, … ,m

d
L

⩽ d ⩽ d
U .
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consequently, it substantially improves the computational efficiency of the MPP search

to a level comparable to that of the deterministic optimisation. Unfortunately, this is a

‘pseudo-MPP’ search which is not always guaranteed to satisfy nonlinear reliability

constraints; thus, it leads to poorer convergence than those of the PMA and the SORA

approaches.

The modern SLA [52] is represented by equation (3.16).

where k is the current iteration cycle, X
k
i
 is the vector of the approximated MPP of

the ith performance function, 𝛍k
X

 is the vector of mean values, and 𝛔X is the vector of

standard deviations.

Additional incremental improvements have been introduced for FORM-based

uncertainty analysis in design optimisation over the last decade in order to find the MPP

more efficiently and accurately [4, 53, 54].

3.2.2 The Monte Carlo method

The Monte Carlo method was presented in section 2.3 as one of the methods

advocated for use by the GUM for uncertainty propagation of systems that cannot be

adequately addressed by first-order linearisation [55]. It is used to simulate many

independent realisations of the input quantities using the a priori probability

distributions of the input quantities. The distributions are then propagated through Y (⋅)
to find the output probability distribution from a histogram. Thus, the distribution of the

output quantity can be reliably estimated if a sufficient number of simulations or trials

is used. The resultant distribution can then be used to perform reliability and

robustness assessments of the output Y  (see figure 3.6).

Figure 3.6. Framework of the Monte Carlo method for robustness and reliability

assessments.

minimise : C(d
k), ,

subject to : Gi(d
k, X

k) ⩾ 0, for i = 1, … ,m

d
L ⩽ d ⩽ d

U

X
k
i = 𝛍k

X − 𝛂k
i𝛔Xβ

t
i

𝛂k
i =

𝛔X∇XGi(d
k,Xk−1

i )

∥𝛔X∇XGi(dk,Xk−1
i )∥
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However, the use of the MC method within an iterative procedure leads to two

significant problems. The first problem is the lengthy computational time. This issue is

very well documented in the engineering design optimisation literature [8, 12, 23, 56].

The second problem, however, is a subtler one. The MC method produces some

simulation noise that can affect the stability or convergence of the iterative

search/optimisation procedure. Both these problems are elaborated below by the use of

examples.

First, on the matter of computational time, consider a lighting retrofit measurement

and verification (M&V) project [57–59] in which a large number of inefficient lamps

were replaced by energy-efficient ones. The M&V methodology is used to quantify the

savings realised over several years using measurement instruments such as surveys

and on-site energy meters. The uncertainty of the reported savings must fall within a

given set of bounds to be eligible for the incentive programs of the funding body.

Increasing the sample size would reduce the estimation uncertainty at the

disadvantage of higher cost. Therefore, the goal is to design an optimal annual

sampling/measurement plan in a manner which satisfies the uncertainty requirements

at a minimal cost. In the design stage, the energy saving Y  is computed at each time

step as:

Y = aX1X2(X3 − 1),

where a is the number of lamps retrofitted.

One of the uncertainty sources, namely the lamp survival X1, is beta distributed,

while the others, such as the mean annual energy usage X2 and the ratio of power

consumption X3, are normally distributed. In one study, the genetic algorithm (GA) was

used with integer linear programming [57] to design an appropriate sampling plan so

that the M&V project results could satisfy the uncertainty requirement at the minimum

sample size (cost). On a 64-bit Intel Core i7 quad-core CPU with 8 GB of memory

running Linux Ubuntu 16.04 and Python 3.3 (Numpy), the use of the genetic algorithm

with an MC trial size of 107, fifty individuals, and evolution over 50 generations took

320 min.

The computational speed becomes even more critical in the design optimisation of

modern and complex engineering systems, e.g. structural, mechanical, and even

electronic systems, in which the nonlinear model output (3.17) is replaced by the

output from a model built using finite-element (FE) modeling [60]. FE models help to

predict the dynamic interactions of a static or dynamic system and to compute the

value of the parameter of interest conforming to the variable input parameters. In [61],

for instance, one execution of the structural finite element model could take hours to

complete, in which case the generation of 106 samples would have been practically

impossible. Moreover, the computational burden increases exponentially when

uncertainty evaluation has to be carried out iteratively, thus making design

optimisation all the more impractical.

Second, consider the problem of optimiser stability. Optimisers can find solutions

that are close to (while not violating) a specified coverage interval. The intersimulation

variation between MC realisations means that the MC method can create a design that

adheres to the constraints most of the time, but it can occasionally generate outliers

that violate the constraints. Figure 3.7 illustrates this phenomenon. Let us assume that

point O should fall within the 96th percentile. The MC method sometimes failed to

satisfy this constraint (in MC realisation 1) due to simulation noise. When a new

simulation was performed (in MC realisation 2), it seemed to fully satisfy the constraint.



These ‘false positives’ or ‘false negatives’ happen rarely. However, if they occur, the

logical consistency of the optimisation search is broken by the MC simulation noise. The

optimiser often terminates while failing to determine the reason for the constraint

violation that randomly occurs. Unless the complete MC realisation is kept for a post-

mortem inspection, the user is left with no indication as to why the optimisation

algorithm randomly fails. The frequency of these occurrences increases with the

complexity of the sampling plan and the target reliability (or confidence). In the worst-

case scenario, some of the non-viable solutions can survive the optimisation process as

viable ones due to the MC noise.

Figure 3.7. The cumulative distribution of a random variable X following the

standard normal distribution obtained using the moment method (solid line) and

the MC method (realisations 1 and 2), where x denotes the realisations of X and

point O should cover less than the 96th percentile.

Alternatively, the frequency of occurrence may be reduced through the use of a

larger MC trial size. However, doing so results in a significant increase in computation

load without fundamentally addressing the root cause. Furthermore, only a marginal

benefit may be derived from an increased trial size, since most of the additional trials

are located in the high-mass regions of the PDF and not in the tails of the distribution

which are of the main interest for reliability analysis. Alternatively, the MC method can

be employed with importance sampling [62] for a marginal reduction in the required

sample size and the simultaneous generation of more samples in the tail sections of

the output PDF for better optimiser stability. In importance sampling, it is often

necessary to find a sampling (or proposal) PDF with a ‘reasonably small’ variance. This

is often a tricky task, and a wrong choice of sampling distribution has a detrimental

effect on stability and accuracy [63, 64].

As a comparison, the method of uncertainty evaluation using moments (section 2.5)

was also implemented (solid line) and this showed that it can satisfy this requirement

consistently.

Due to its poor computational efficiency, poor constraint-adherence consistency

throughout the optimisation process, and the availability of alternative uncertainty

evaluation methods such as moment-based approaches, the use of the MC method

(even with importance sampling) is less desirable for engineering design optimisation

in which repeated uncertainty evaluation is required.



3.2.3 Metamodels with direct sampling methods

In a different line of development in the recent design optimisation literature,

metamodels (or surrogate models) are employed to approximate the dynamic

behaviour of output–inputs to improve the computational efficiency when implicit

constraint and performance functions are evaluated using FE models [65]. This adds an

additional step, which builds a metamodel of functions, between Steps 1 and 2 of the

probabilistic optimisation framework shown in figure 3.1(b).

Metamodel-based probabilistic optimisations can be further categorised into global

and local approximations. The former approach builds the metamodel for the entire

design region before the optimisation process begins. The latter approach builds a new

metamodel at every design point. Consequently, the global modelling approach is

typically more computationally efficient, while the local modelling approach gives a

more accurate representation of the functions [25]. Various innovative sampling

schemes for metamodelling have been proposed to find the best trade-off between the

accuracy and the efficiency of building metamodels. These are techniques such as Latin

hypercube sampling [66], constraint boundary sampling [67], local adaptive sampling

[24], sequential sampling [68], and selective interaction sampling [69].

The models that are normally used for metamodelling include: multivariate

polynomials [69], polynomial chaos expansion [70], the radial basis function [27],

artificial neural networks [26], and the Kriging method [28, 71]. The radial basis

function provides an accurate global metamodel of functions, but it has the tendency to

overfit, which leads to larger errors for optimisation under uncertainty [72]. Artificial

neural networks are suitable for highly nonlinear and complex problems, but the

computational expense of training a neural network is usually high [73]. Polynomial

chaos expansion, on the other hand, is considered to be accurate, and the high-order

moments of polynomial models can be analytically computed from the orthogonal

polynomials [71]. As a full analytic method, polynomial chaos has been used in

different niche areas for uncertainty propagation [74–77]. However, its computational

efficiency and complexity heavily depend on the design of experiments, the optimal

basis polynomial, the choice of that polynomial’s degree, and the convergence [71].

Some of the well-known polynomial metamodelling methods are the polynomial

dimensional decomposition [78], polynomial support vector machine [79, 80], high-

order polynomial approximation [81], second-order polynomial using the least-squares

approximation [82], and polynomial genetic programming [83, 84].

It is crucial to note that the development and assessment of effective sampling and

polynomial modelling techniques are outside the scope of this book. This book focuses

on the analytical computation of high-order moments of the multivariate polynomial

models and finding the PDF of the corresponding moments. The effectiveness of the

developed techniques will be demonstrated primarily by application to probabilistic

engineering design optimisation, in which the choice of sampling and polynomial

modelling technique is at the users’ discretion.

This book embarks on finding the high-order moments analytically for all

multivariate polynomials of arbitrary order in section 4.1. The reasons are discussed

below.

Regarding the use of polynomials, the GUM has a dedicated section on the

representation of polynomials [85], stating that ‘polynomials are sometimes thought to

be of very limited use because of problems of numerical reliability. In fact, it is their

representation (that is parametrization) in terms of the monomial basis functions that

leads to such problems, rather than polynomials per se’ [85]. Thus, while it justifies the

use of polynomials, it cautions that the choice of the polynomials could lead to

subsequent difficulty when they are expressed as monomials.
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Regarding the use of multivariate polynomials, the comparative studies [86, 87]

recommend multivariate polynomials as the preferred metamodel among all the

metamodelling techniques, as they have a good balance of accuracy, robustness, and

computational efficiency. The use of multivariate polynomials is not a restrictive

assumption, because the Stone–Weierstrass theorem [88] states that every continuous

function defined in a compact space can be uniformly approximated as closely as

desired by a polynomial function.

The subsequent subsections describe the commonly used multivariate polynomials.

3.2.3.1 Low-order polynomials

The use of low-order polynomials up to their second order is one of the most efficient

and commonly used techniques for metamodelling in engineering design, and it is

commonly known as the response surface methodology (RSM) [73, 89–91]. The least-

squares approach [82] is commonly used to find the polynomial coefficients. This

approach includes many variations such as the recursive least squares, partial least

squares, weighted least squares, segmented least squares, and moving least squares

[92].

Low-order polynomials struggle to accurately approximate moderate to highly

nonlinear functions over a large region [73, 93]. This limits their use in global

approximations such as the estimation of reliability or robustness for complex,

nonlinear systems. Nonetheless, their efficiency makes them suitable for some types of

local approximation, as shown in [91].

3.2.3.2 The Taylor series expansion

The Taylor series is a well-known power series expansion [94]. It is commonly used to

approximate a continuous function Y (X) by expanding the series to the desired order,

where the choice of higher-order approximations generally results in a more accurate

representation of Y (X). The univariate Taylor series expansion of Y (X) around a point

a is obtained by taking the sum of its derivatives, as shown in expression (3.18).

∞

∑
n=0

Y (n)(a)

n!
(X − a)n

In (3.18), Y (n)(a) is the nth derivative of Y (X) at the point a.

In probabilistic analyses, the series is normally expanded around the expected value

(or mean) of the random variable X, i.e. a = E[X]. For multivariate performance

functions, a multivariate Taylor series [95] may be more applicable.

3.2.3.3 High-order approximation using Chebyshev polynomials

Historically, high-order polynomials have not been employed, as they have been shown

to result in ill-conditioned systems of equations that have significant differences

between the approximated and true limit state functions outside the domain of the

sample points [96, 97]. However, in 2008, a three-step method [81] was proposed to

overcome these limitations through the use of Chebyshev polynomials:

1. Identify the highest order of the polynomial using Chebyshev orthogonal

polynomials [98].

2. Determine the number and type of mixed terms in the polynomial.



3. Obtain the coefficient values of the polynomial using singular value decomposition

[99].

Software that implements this method together with a full example of its use are

provided in [100]; the software is written in the MATLAB programming language [101].

3.2.3.4 Polynomial genetic programming

Genetic programming is an approach inspired by biological evolution. An evolutionary

algorithm is a set of model parameters that evolve to optimise the objective function.

The use of genetic programming for metamodelling was first reported in [102] in 1998,

followed by a 2001 paper [103] that extended it by using polynomials as the node

functions in genetic programming.

In 2005, Yeun et al [83] introduced a more accurate and efficient polynomial genetic

programming algorithm for response surface modelling and went on to demonstrate its

reliable modelling capabilities for highly nonlinear functions. Their method was

subsequently validated for use in the RBDO of structural systems in combination with

MPP-based reliability analysis [84].

A decade later, in 2015, a symbolic genetic programming algorithm was presented

[104] that took advantage of the availability of a free and open source program.

3.2.3.5 Polynomial support vector machines

Support vector machines (SVMs) constitute a classical machine learning approach with

widespread applications in pattern recognition [105, 106]. A variation of the SVM is

used as a metamodelling tool [80, 107] and has been shown to outperform other non-

polynomial metamodels such as the Kriging [28] and radial basis function [26]

approaches for RBDO applications.

3.2.3.6 Polynomial dimensional decomposition

Dimensional decomposition partitions a multivariate function into a finite sum of

simpler component functions with respect to the input variables [108]. Taking

advantage of this strategy, [78] proposed a metamodelling approach using the classical

orthogonal polynomial expansion [109] with dimension reduction integration to

calculate the coefficients of the expansions. Although the statistical moment can be

analytically calculated from orthogonal polynomials, [110] reports that the convergence

of the higher-order moments is not guaranteed using this approach. This is the same

limitation as that encountered by the polynomial chaos expansion method [111].

To address this limitation, chapter 4 introduces an analytical computation method

for higher-order moments for any polynomial expansion.

3.2.4 Moment-based methods for RBDO

Methods based on moments proceed by first calculating the high-order statistical

moments of the output. While the variance for robustness assessment is computed

from the first two moments, the PDF of the output for reliability assessment is

approximated using a parametric distribution-fitting algorithm. The use of moments for

uncertainty evaluation was previously presented in chapter 2. This section reviews the

theoretical basis and the viability of the moment method within the context of reliability

analysis.

The ith-order raw moment E[X i] of a random variable X is defined as:



(3.1

9)

E[X i] = ∫ xifX(x)dx,

where fX(⋅) denotes the PDF of X and x denotes the realisation of X.

The use of known moments to determine the corresponding underlying probability

distribution is known as the moment problem [112]. The early studies in this field were

done in the first half of the 20th century. They were mainly devoted to the existence

conditions and uniqueness of the solutions. These classical investigations, summarised

in [112, 113], considered cases in which a complete and possibly infinite sequence of

moments was available. In practice, however, finding the complete moment sequence

is not achievable except in certain special cases. Therefore, it is crucial to extend the

findings of the traditional moment problem to the truncated moment problem, which

considers a finite sequence of moments.

Recent findings in statistics have established the practical usefulness of solving the

truncated moment problem. Instead of determining conditions that guarantee the

uniqueness of a solution (or the probability distribution), attention has shifted to finding

the tightest bounds for an appropriate probability distribution space in which all valid

solutions of a given moment sequence can be found. This, in turn, quantifies the

uncertainty of the potential distribution that can be obtained from the given set of

moments.

Intuitively, this implies that the distributions must be like each other to some extent

in order to generate identical first few moments. Furthermore, a longer moment

sequence is indicative of tighter bounds; hence, there is potentially a smaller variation

between different distributions obtained from this same set of moments. The types of

bounds in the truncated moment problem and their properties are discussed in great

detail in [114, 115]. They can be categorised as being of a global type [116], in which

the largest discrepancies between all possible solutions over the full domain are

sought, or of a local type [114, 115, 117], in which only the largest discrepancy at a

particular point of interest is sought.

The global-type bounds tend to be more difficult to find because the information

encoded in the moments concentrates on the tails of the distributions [114].

Furthermore, only the local-type bounds are required for reliability estimation [114,

115]. Note that this investigation excludes local-type bounds, such as the

Markov/Chebyshev inequality, Chernoff’s bound [118], the moment bound [119], and

the fractional moment bound [120], as these bounds rely on moment-generating

functions that assume the availability of a complete sequence of moments.

The findings reported in [114, 115] demonstrated that inferring the tails of a

distribution from a finite sequence of moments is both robust and reliable with

quantifiable uncertainty. Since the evaluation of reliability analysis concerns only the

upper and sometimes the lower tails, the truncated moment method is well suited for

the task. For example, Lindsay and Basak [114] showed that distribution fitting using n
moments exhibited a good asymptotic approximation to the CDF tails with a worst-case

convergence rate of x−Nm , where Nm denotes the number of moments, in the

allowable distribution space. In addition, Racz et al [115] reported procedures for

estimating the local distribution bounds that quantify the largest possible discrepancy

of all possible distributions based on the finite moment sequence at a particular point

of interest. Both studies concluded that the bounds would improve asymptotically as a

result of increasing: (1) the number Nm of known moments; or (2) the distance

between x and the mean, regardless of the distribution (provided that it exists).



To illustrate this point, figure 3.8(a) shows the upper and lower bounds of the CDFs

of X, denoted by FX(x), where x is the realisation of X, for which the first four

moments (dashed blue line) and first eight moments (dotted red line) are identical to

those of the standard normal distribution. In other words, figure 3.8(a) illustrates the

theoretical worst-case deviations of the possible CDFs that can be obtained from these

moments in comparison to the actual CDF of the standard normal distribution. It is

important to emphasise that the obtained bounds are independent of the distribution-

fitting technique used. Figure 3.8(b), on the other hand, shows the bound gap (the

difference between the upper and lower bound) of X, denoted by ρX(x). It is evident

from the figures that the permissible distribution space shrinks when: (1) the number of

the moments Nm increases; or (2) x moves further from the mean.

Figure 3.8. (a) The bounds of the permissible CDF of X, denoted by FX(⋅); the

solid line represents the CDF of a standard normal distribution, while the dotted

lines represent the bound/envelope of the theoretically most extreme deviation

from the normal distribution, given identical first Nm = 4,8 moments; and (b) the

bound gap of X, denoted by ρX(⋅), on a logarithmic scale.

These findings demonstrate the excellent reliability of the truncated moment

method, provided that the moments of a sufficiently large order Nm are available.

Unfortunately, it is uncommon to find the use of Nm > 4 moments in the scientific

literature. This is regrettable, since there is a smaller admissible distribution space for 

Nm > 4. For example, the dashed line in figure 3.8(b) shows that the admissible

distribution space at x ≈ 3.75 for Nm = 4 moments is larger than that of Nm = 8
moments by the factor of ten. Therefore, the uncommon use of more than four

moments in the published literature may lead to the misguided perception that the

moment approach is somewhat unreliable.

3.3 Reliability-based robust design optimisation

Formally, reliability-based robust design optimisation or RBRDO [12, 13] is a unified

framework that combines: (a) the reliability-based design optimisation (RBDO), which

optimises the design objectives for a given set of probabilistic (or reliability)

constraints; and (b) the robust design optimisation (RDO), which increases the
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robustness of a designed system by minimising the sensitivity of the design objectives

to process variabilities. The integration of RDO and RBDO offers a complete solution

that assesses the best compromise between cost, reliability, and robustness. By

incorporating both formulations, i.e. (3.2) and (3.9), a typical RBRDO problem can be

mathematically represented as follows:

Although this method is predominantly used in the field of structural and

mechanical design, in recent years, it has become increasingly popular in other fields of

engineering, such as magnetics, manufacturing, microelectronics, micromachining, etc

[121–123] due to the increasingly competitive market conditions, stringent safety

requirements, and the ability of this method to deliver designs that are insensitive to

uncontrollable variations [122].

It should be noted that while the incorporation of robustness analysis into the RBDO

framework could lead to better-quality designs, it incurs a high computational

load/time. Therefore, such frameworks are often characterised by an inherent trade-off

between accuracy and computational complexity.

3.4 Summary

Reliability-based robust design optimisation is a framework that combines reliability-

based design optimisation and robust design optimisation where RBDO optimises

design objectives based on probabilistic constraints, while RDO increases the

robustness of a design by minimising its sensitivity to process variations. RBRDO offers

a compromise between cost, reliability, and robustness and is widely used in various

fields of engineering, such as structural and mechanical engineering, magnetics,

manufacturing, microelectronics, and micromachining. However, incorporating

robustness analysis into RBDO incurs a high computational cost, resulting in a trade-off

between accuracy and computational complexity.
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Chapter 4

Moment-based standard uncertainty in design

optimisation

The use of high-order moments (those with large Nm) improves the estimation of

probability distribution, as discussed in chapters 2 and 3. However, the extensive literature

on this method has shown that the reliable computation of the high-order moments,

especially Nm ⩾ 4, is numerically challenging. The truncated moment problem is an

ongoing topic of active research, in which innovative methods are still being developed to

compute high-order moments effectively.

While the MPP-based methods have been widely reported in the literature, the use of

high-order (Nm ⩾ 4) moment-based methods for uncertainty or reliability analysis is

unfortunately scarce. The first introduction of this approach was described in [1] in the

early 1960s. Since then, more computationally efficient approximations of the high-order

moments have been developed for engineering applications. For example, fewer samples

for system response approximation based on second-order polynomial models were used in

[2] for moment calculation; a numerical quadrature rule was proposed in [3], which was

later coupled with the Kriging response surface method [4]; a dimension reduction strategy

[5, 6] and orthogonal polynomial strategies [7] were introduced to find the high-order

moments more efficiently; and some developments [8, 9] have advocated the use of

moment-based methods by employing the third- and fourth-moment reliability index.

For the variance computation in moment-based robustness analysis discussed in section

3.1, performance moment integration (PMI) [10] and the univariate dimension reduction

method (DRM) [11] are normally used. These improvements are strictly based on the first

four moments and/or the use of numerical approximations, which are susceptible to

sampling and approximation errors with increasing orders [12]. Furthermore, for reliability

analysis, section 3.2 showed that accurately calculated moments result in a more accurate

computation with increasing orders of moments. These studies favour the use of moment-

based methods in reliability analysis on the condition that an accurate tool for moment

calculation is available. In addition to these advantages, the confidence interval of the

reliability estimation can also be quantified non-parametrically using the available exact

moments. These characteristics are highly valuable to the design and regulation of safety-

critical engineering systems, thus making the moment-based approach a viable candidate

for reliability analysis.

As stated in the previous chapters, this book takes the approach of using just one line of

approximation for uncertainty propagation through moments, which is to represent (or

approximate) the output of interest using a polynomial function. This chapter presents an

analytical moment evaluation framework for multivariate polynomials that employs a

mathematical transform known as the Mellin transform [13] in section 4.1. It assumes that

the function is already in the form of a polynomial. If this is not the case, section 4.1

presents a method that can be used to accurately estimate any given function using

polynomials; the method is compatible with the analytical moment-based standard

uncertainty evaluation presented here. Section 4.2 introduces an open-source toolbox that

can be used to calculate the standard uncertainty using the moments based on the

methodology in section 4.1, followed by some case studies of its application in section 4.3.



Its incorporation into the probabilistic design optimisation framework is then presented in

section 4.4.

4.1 The derivation of the analytical moments of

multivariate polynomials

The biggest obstacle to analytically deriving high-order moments is the complex

mathematical operations involving the application of Cauchy’s integral theorem to evaluate

Fox’s H-function [14]. The use of the Mellin transform [13] to analytically calculate the

standard uncertainty of a multivariate polynomial was first presented in 2013 [15]. This

paper showed that the general form of the output PDF fY (⋅) after Mellin transformation can

be expressed as an instance of Fox’s H-function, provided that it is initially expressed as a

multivariate polynomial. Once fY (⋅) is obtained, it can be used to perform reliability

analysis in optimisation, and the high-order moments can be derived to perform robustness

analysis.

Figure 4.1 presents a procedural analytical moment derivation framework of arbitrary

order to guide the practical calculations. It takes advantage of the constraints imposed by

the analytical moment derivation problem to simplify the H-function derivation. A

mathematical proof of this simplification procedure is presented in section 4.1.1. It is then

used in conjunction with a specially derived Mellin transform lookup table as a replacement

for the complex mathematical derivations typically required by the analytical approach.

Figure 4.1. The analytical moment calculation method using the Mellin transform for

multivariate polynomials.

First, the output function Y (⋅) must be known and expressed as a multivariate

polynomial function of the input variables X = {X1, … ,XNr
}. Next, the terms of Y i(⋅)

are expressed, with i = 1, … ,Nm denoting the desired order of the moments. The ith-
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order moment of Y  is denoted by E[Y i]. Section 4.1.2 demonstrates that moment

evaluation does not require the computation of the PDF of Y  and that it is reducible to the

moment estimation of its monomials. Therefore, the problem of evaluating E[Y i] is

reduced to the problem of finding E[Xi
m], where i = 1, … ,Nr and m is an integer.

Section 4.1.3 goes on to demonstrate that the evaluation of E[Xi
m] can easily be

accomplished using a Mellin transform lookup table accompanied by the formulations listed

in sections 4.1.3 and 4.1.4, depending on the the sign of the integer m, i.e., whether m is

positive or negative. The high-order moments E[Y i] can finally be expressed in terms of

the statistical parameters of the inputs.

4.1.1 The Mellin transform and the product of independent random

variables

Let Y  be represented by a set of independent and positive random variables Xi as shown

in equation (4.1) with known probability density functions fXi
(⋅). Consider that V  is a type

of random variable Xi that has a closed-form Mellin transform expression and therefore

has a standard tabulated distribution; the PDF fY (y) of output Y  can then be deduced

from equation (4.2), where M[⋅] and M−1[⋅] are the Mellin transform and its inverse as

defined by equations (4.3) and (4.4), respectively [16].

Y = ∏
i

Xi.

fY (y) = M
−1[∏

i

M[fV (vi)]]

Mvi(s) = M[fV (vi)](s) = ∫
∞

0
vi

s−1fVi
(vi)dvi

M
−1[Mvi(s)](vi) =

1
2πj

c+j∞

∫

c−j∞

vi
−sMvi(s)ds.

The function  is the Mellin-transformed1 PDF of the random variable V  that has a

closed-form Mellin transform expression, . It is generally holomorphic in the strip 

a < Re (s) < b. The variable c in (4.4) is a fixed number between a and b that forms the

integral path within the strip [13]. If the Bromwich integral conditions [17] are satisfied,

then c does not affect the results.

Expression (4.2) is also known as a multiplicative convolution of distributions because its

effect is similar to performing a Fourier transform on a linear convolution [18]. Historically,

there was a limitation in applying (4.2), because the original Mellin transform was only

applicable for positive random variables. However, this problem was resolved by [19],

which introduced techniques that can be used to transform random variables in any

location on the line in the real domain. This extends the applicability of the Mellin transform

to any probability distribution.

The PDF function with realisation  can be divided into two parts such that 

, where , , and H(⋅) represents the
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Heaviside function [18]2. The Mellin transforms of these functions are shown in equations

(4.5) and (4.6).

M +
Vi

(s) = M[f+
Vi

(v)](s)

M −
Vi

(s) = M[f−
Vi

(−v)](s)

Since the PDF  of Vi is known, M +
Vi

(s) and M −
Vi

(s) can be calculated. Both terms

can then be used to obtain the Mellin transform of the output Y  from equation (4.7) [19].

MY (s) =
Nr

∏
i=1

[M +
Vi

(s) + M −
Vi

(s)]

The next step is to expand the finite product of sums to obtain the finite sum of

products. The product terms can be collected into two groups: those with a positive parity

and those with a negative parity. Positive parity terms are produced by the product of even

numbers of M +
Vi

(s) and even numbers of M −
Vi

(s). Those terms that do not satisfy the

condition of positive parity are classed as having negative parity. By applying the inverse

Mellin transform to the positive and negative parity sums, respectively, f+
Y (y) andf

—y
Y

 are

obtained, where y is the realisation of the random output variable Y . Finally, the PDF of Y
is obtained by adding f+

Y (y) and f
—y
Y

.

To keep the following discussions in this section succinct, only f+
Y (y) is discussed below.

The same procedure is equally valid for f
—y
Y

. All the transformed PDFs listed in [13], which

covers most textbook distributions, can be expressed as products and quotients of gamma

functions, denoted by Γ(⋅) in the form:

M(s) = Cη−s

m

∏
i=1

Γ(bi + Bis)
n

∏
i=1

Γ(1 − ai −Ais)

p

∏
i=n+1

Γ(ai +Ais)
q

∏
i=m+1

Γ(1 − bi − Bis)

,

where C and η are the appropriate constants to be determined.

A remarkable property of equation (4.8) is that it is a closed form under multiplication

and division [14]. This means that after taking a product of two Mellin-transformed PDFs as

shown in equation (4.2), the result still has the same form as equation (4.8). In other words,

taking the product of any combination of distributions does not change the form of the final

result. Another important observation is that (4.8) is the exact form of the Mellin transform

of Fox’s H-function, denoted by H(⋅) [14]. In other words, f+
Y (y) can be expressed using

the H-function as shown in equation (4.9). Equation (4.10) shows a more succinct notation

for the H-function that is commonly used.
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f+
Y (y) =

C

2πj

c+j∞

∫

c−j∞

[ηy]−s

m

∏
i=1

Γ(bi + Bis)
n

∏
i=1

Γ(1 − ai −Ais)

p

∏
i=n+1

Γ(ai +Ais)
q

∏
i=m+1

Γ(1 − bi − Bis)

ds,

f+
Y (y) = CHmn

pq (ηy ∣ ).

Depending on the values of the parameters, the integral representation of the H-

function in (4.9) can be greatly simplified in most situations by using the Cauchy’s residue

theorem [20]. However, the application of the theorem can be very complex. As a result,

the evaluation of the H-function should be performed using software with symbolic

mathematic capabilities such as Mathematica by Wolfram [21] or MATLAB by MathWorks

[22]. This can be a time-consuming task for design engineers, and therefore it has had

limited usage within the professional community.

4.1.2 Applying the Mellin transform to analytical moments of

multivariate polynomials

In 2014, the authors of [15] used the Mellin transform method on the moments of

multivariate polynomial distributions instead of transforming the PDFs directly.

The known moments for multivariate monomials can be applied to evaluate the

moments of multivariate polynomials. The corresponding operation used to deduce the

moments of a monomial in equation (4.11) from the knowledge of the higher moments of

independent input variables Xi
mi  can easily be inferred to be equation (4.12) following the

definition and multiplicative convolution of independent variables [23].

Y = ∏
i

Xi
mi

E[Y ] = ∏
i

E[Xi
mi ]

The case of a polynomial is more tedious, but it follows the same line of reasoning. A

multivariate polynomial P  can be expressed as equation (4.13), where the set of its

constituent multivariate monomials is shown in equation (4.14).

P(X) =
Nr

∑
j=0

ajGj(X)

Gj(X) = ∏
i∈Ij

Xi
mi

The kth power of P , denoted by P k
, can then be expressed as:

P k(X) =
kNr

∑
j=0

ajGj(X)

(a1,A1), ⋯ , (ap,Ap)

(b1,B1), ⋯ , (bq,Bq)
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for some appropriate value aj and monomials Gj. The indexing variables i and j as well as

the values of mi and aj are not important in this discussion, and therefore they are

kept in an abstract form here.

By exploiting the linearity of the expectation operator and multiplicative convolution of

independent variables [23], the kth-order moment of the multivariate polynomial P  can

therefore be further simplified to:

E[P k] =
kNr

∑
j=0

aj ∏
i∈Ij

E[Xi
mi ] .

Equation (4.16) is significant because it allows the calculation of E[P k] through purely

algebraic operations via the expectation of the higher-order moments to the mth order of

the independent input variables Xi
mi .

Rewriting equations (4.5) and (4.6) gives:

M +
V (s) = M[f+

V (v)](s)

=

∞

∫

0

vs−1f+
V (v)dv

and

M −
V (s) = M[f−

V (−v)](s)

=

∞

∫

0

vs−1f−
V (−v)dv⋅

Assume that  such that z is a subset of real values z ∈ R, and m is a subset of a

set of integers m ∈ Z. The PDF of z can be found directly through the change of variable

technique. There are two cases to consider.

1. When m is an odd integer,  is a one-to-one and monotonic mapping; therefore, 

f+
Z (z) and f−

Z (z) can be rewritten as equations (4.19) and (4.20).

f+
Z (z) = ∣

dv
dz

∣f+
V (v)∣

v=z
1
m

=
1
m

z
1−m
m f+

V (z
1
m )

f−
Z (z) = ∣

dv
dz

∣f−
V (v)∣

v=z
1
m

=
1
m

z
1−m
m f−

V (z
1
m ).

⎛

⎝

⎞

⎠
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2. When m is an even integer,  is a two-to-one mapping , and therefore

f+
Z (z) and f−

Z (z) can be rewritten as equations (4.21) and (4.22).

f+
Z (z) = ∣

dv
dz

∣f+
V (v)∣

v=z
1
m

+ ∣
dv
dz

∣f−
V (v)∣

v=−z
1
m

=
1
m

z
1−m
m (f+

V (z
1
m )+ f−

V (−z
1
m ))

f−
Z (z) = 0.

Generalising, the expectation of  is:

E[vp] = ∫
∞

0
zf+

Z (z)dz + ∫
0

−∞
zf−

Z (z)dz

= ∫
∞

0
vmf+

V (v)dv + (−1)m ∫
∞

0
vmf−

V (−v)dv

= M +
V (m + 1) + (−1)mM −

V (m + 1).

This allows  to be defined separately for each type of distribution. For example,

1. Symmetrical distributions: due to symmetry, , so that M +
V (s) = M −

V (s). If 

m is odd, E[V m] = 0, and if m is even, E[V m] = 2M +
V (m + 1).

2. One-sided distributions: the half-distribution is multiplied by two to ensure that the area

under the PDF is unity. If  (positive support) ⇒ M −
V (s) = 0, 

E[V m] = 2M +
V (m + 1). And if  (negative support) ⇒ M +

V (s) = 0, 

E[V m] = (−1)m2M −
V (m + 1).

 

Therefore, by making use of equation (4.23), E[Xm] can be predefined for m under

different constraints through the creation of a so-called ‘Mellin transform lookup table’

containing the Mellin-transformed PDFs of standard distributions from [13]. This table is

given in appendix B.

To replace the complex evaluation of the Fox’s H-function, equation (4.10) is rewritten

so that the general-form PDF of a random variable V which follows a standard tabulated

distribution with realisation  can be represented by:

fV (v) = CHmn
pq (ηv ∣ ),

where C and η are the corresponding constants and the other notations are kept in

abstract form.

Using the ith-order raw moment E[X i] of a random variable X from equation (3.19)

discussed in the previous chapter, the rth-order moment of  can be written as:

(a1,A1), ⋯ , (ap,Ap)

(b1,B1), ⋯ , (bq,Bq)
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∫ vrfV (v)dv =

Cη−(r+1)
m

∏
i=1

Γ(bi + Bi(r + 1))
n

∏
i=1

Γ(1 − ai −Ai(r + 1))

p

∏
i=n+1

Γ(ai +Ai(r + 1))
q

∏
i=m+1

Γ(1 − bi − Bi(r + 1))

.

Equation (4.25) has the same form of expression as those of the Mellin-transformed

PDFs given in appendix B. This similarity is not a coincidence, since the definition of the

Mellin transform in equation (4.3) is almost identical to the definition of moments, except

for the range of integration. Therefore, when the Mellin transform function has the form of

equation (4.25), this means that the rth moment of V  with PDF  can be determined by

substituting s = r + 1 into equation (4.8). This is true even for the sum and/or products of

multiple random variables V = {V1, … ,VNr
} that follow the standard tabulated

distributions.

In other words, if Y  is expressed as a multivariate polynomial of the form shown in

equation (4.13), its high-order analytical moments can be obtained without evaluating the

PDF explicitly. Instead, it suffices to look up the corresponding expression in appendix B.

The next two subsections relate the random variables X and V  to support the appropriate

use of the Mellin transform lookup table.

4.1.3 Moment calculation for positive-order variables, m ∈ Z+

The preceding subsections showed that the mth-order moment of X, E[Xm], is an

important intermediate quantity in the calculation used to determine the high-order

analytical moments of a polynomial. It has also been established that E[X] = E[V ] can be

deduced from M[fX](s) by substituting a suitable value for s with m + 1.

The following discussions outline the process of calculating E[Xm]. Note that the term

‘standard distributions’ refers to the distributions listed in appendix B, where the direct

Mellin transform has been predefined. Random variables distributed according to standard

distributions are denoted by V  and their realisation by .

4.1.3.1 Standard distributions

E[V m] cannot be evaluated by a direct application of multiplicative convolution, because 

V  is fully correlated to itself, thus violating the independence assumption. Hence, 

E[V ]m ≠ E[V m]. By applying equation (4.23), E[V m],  and m ∈ Z+
 can be inferred

given the knowledge of the Mellin transform M[V ], where R and Z+
 denote the set of real

numbers and positive integers, respectively.

Almost all standard distributions listed [13, 16, 24–26] belong to either symmetrical or

one-sided distributions. Therefore, the simplified expressions for these special cases are

included in table 4.1. All odd-order moments of symmetrical distributions vanish, resulting

in significant simplification.

Table 4.1. The expectation E[V m] for  and m ∈ Z+
 where R and Z+

 denote the set of real numbers and

positive integers, respectively.

Distribution type E[V m]

Any distribution M +
V (m + 1) + (−1)mM −

V (m + 1)
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Distribution type E[V m]

Any distribution M +
V

(m + 1) + (−1)mM −
V

(m + 1)

Symmetrical distribution m is odd 0

m is even 2M +
V (m + 1)

One-sided distribution Positive support 2M +
V (m + 1)

Negative support (−1)m2M −
V (m + 1)

4.1.3.2 Translated standard distributions

When the Mellin transform is applied to the distribution of realistic random variables such

as a translated normal distribution, its limitation becomes apparent. The Mellin transform

of the central normal distribution shown in appendix B is invalid if the distribution is

translated.

In general, any measurement can be modelled by X = τ + V , where τ  represents the

translation value of the measurement while V  represents a random variable that follows

the standard distribution to describe the uncertainty of X. Note that τ  is equivalent to the

mean if the underlying distribution is symmetrical. Using binomial expansion:

Xm =
m

∑
p=0

( )τm−pV p

for m > 1 gives an expression for E[Xm], as follows:

E[Xm] =
m

∑
p=0

( )τm−pE[V p].

The convention E[V 0] = 1 is adopted here. Thus, E[Xm] can be found by algebraic

manipulation because E[V p] can be calculated from appendix B and table 4.1 for any

degree m ∈ Z+.

4.1.4 Moment calculation for negative-order variables, m ∉ Z+

The constraint m ∈ Z+
 in the previous subsection covers the class of all polynomial

functions. This subsection considers the extension of m ∉ Z+, where the evaluation of

high-order moments can be done analytically. This is possible because the initial

formulation of the Mellin transform only requires that m be a real number. Therefore, the

use of the proposed framework can be extended to a more general class of functions than

multivariate polynomials.

4.1.4.1 Standard distributions

Negative-order variables restrict the set of distributions for which the moment can be

calculated analytically, because equation (4.26) cannot be applied for a translated

distribution when m ∉ Z+
. Thus, only the moments from standard distributions can be

m

p

m

p



analytically determined when m ∉ Z+
. The calculation of E[Xm] follows directly from the

evaluation of E[V m], which is obtained from the one-sided distribution in table 4.1. Table

4.2 shows admissible combinations of m and X, excluding cases in which the evaluation of

Xm
 would result in a complex number or division by zero.

Table 4.2. The expectation E[Xm] for a wider class of functions for m ∉ Z+
, where Z+

 denotes the set of

positive integers.

Set of m Admissible X E[Xm]

Negative integer, m ∈ Z− X > 0 2M +
V (m + 1)

X < 0 (−1)m2M −
V (m + 1)

Non-integer real number, m ∈ RZ X > 0 2M +
V (m + 1)

4.1.4.2 Exceptions for distributions with compact support

The previous subsection stated that the evaluation of E[Xm] for m ∉ Z+
 is only possible

for random variables with standard distributions. However, there are exceptions to this

limitation. Specifically, if either X > 0 or X < 0, then the Mellin transform for random

variables with compact support distributions can be expressed in closed form for any real

value m, even when it is a translated distribution. This is a very important exception

because compact support distributions represent some of the most commonly used

distributions in uncertainty evaluation, such as uniform, beta, Weibull, or lognormal

distributions, etc.

In short, provided that X > 0 or X < 0, E[Xm] for m ∉ Z+ for uniform, beta, Weibull,

and lognormal distributions can be derived from equation (3.19).

4.1.4.3 No exceptions for distributions with global support

Strictly speaking, E[Xm] for m ∉ Z+ where (m < −1) cannot be modelled by a normal

distribution (or any other distributions that have global support) because various moments

of the output function Y  would be undefined, leading to hidden logical contradictions

within the analysis. The mathematical proof is given below.

Let the variable X be normally distributed. The higher-order moments of X−1
 can be

expressed as E[X−m] = ∫ ∞
−∞ x−mfX(x)dx, where fX(x) represents the PDF of X.

Without loss of generality, we assume that X ∼ 1
σ√2π

exp(− (x−μ)2

2σ2 ), where μ > 0, σ > 0,

and m > 0. The proofs for odd and even m are slightly different.

In the case where m is even, x−m is positive definite,

E[X−m] =
1

σ√2π
∫

∞

−∞
x−m exp(−

(x − μ)2

2σ2
)dx

=
1

σ√2π
∫

0

−∞
x−m exp(−

(x − μ)2

2σ2 )dx +
1

σ√2π
∫

∞

0
x−m exp(−

(x − μ)2

2σ2 )dx

2



(4.2

8)

(4.2

9)

⩾

exp(− μ2

2σ2 )

σ√2π
∫

2μ

0
x−mdx

=
exp(− μ2

2σ2 )

σ√2π(−m + 1)
x−m+1∣

2μ
0 .

The function x−m+1∣2μ
0  does not converge to any finite value for any even number 

m > 1, hence E[X−m] does not exist.

In the case where m is odd,

E[X−m] =
1

σ√2π
∫

∞

−∞
x−m exp(−

(x − μ)2

2σ2 )dx

=
1

σ√2π
∫

0

−∞
x−m exp(−

(x − μ)2

2σ2
)dx +

1

σ√2π
∫

∞

0
x−m exp(−

(x − μ)2

2σ2
)dx

=
1

σ√2π
∫

∞

0
x−m[exp(−

(x − μ)2

2σ2 ) − exp(−
(x + μ)2

2σ2 )]dx

=
2 exp(− μ2

2σ2 )

σ√2π
∫

∞

0
x−m exp(−

x2

2σ2 ) sinh (
μx

σ2 )dx,

E[X−m] converges only when m < 2. In other words, the integral does not converge

for all odd m > 2. A similar argument applies to other global support distributions, such as

Student’s t distribution and the Laplace distribution.

4.1.5 Extension to high-dimensional correlated variables

The previous subsections assume that the random variables are uncorrelated. In cases

where correlated variables are involved, eigentransformation can be used to map these

dependent variables into an equivalent set of independent variables, the underlying

mathematics of which are identical to those of principal component analysis [27].

For engineering applications, a covariance matrix is commonly used to define the

correlation between variables because there is typically insufficient information to explicitly

establish the joint PDF. This is especially true in the case of high-dimensional correlation.

The eigenvectors of the covariance matrix are used to form a linear transformation

matrix A of size Nr × Nr [28]. By applying the orthogonal transformation, equation (4.30)

forms a set of statistically uncorrelated random variables Z = {Z1, … ,ZNr
} in which all

random variables Z are normally distributed [28, 29].

⩾ 1
σ√2π

{∫
0

−∞ x−m exp(− (x−μ)2

2σ2 )dx + exp(− μ2

2σ2 ) ∫
2μ

0 x−mdx

+, ∫ ∞
2μ ,x−m exp(− (x−μ)2

2σ2 )dx}
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Z = AX = X = ,

The joint PDF can also be approximated using a Gaussian copula [29], after which the

Nataf transformation [30] is applied to convert the correlated input variables X into

correlated standard normal variables. Once this has been achieved, the standard linear

transformation is performed to obtain uncorrelated standard normal distributions Z, as

elaborately described in [29]. This method results in the transformation matrix A as the

lower triangular matrix from Cholesky factorisation [31] of the covariance matrix of

correlated normal distributions.

Both of these approaches have been reported to produce the same results [29].

Employing either of these methods allows high-dimensional correlated variables to be

expressed as uncorrelated standard normal distributions, which in turn facilitates the

applicability of the moment evaluation described in the previous subsections.

4.2 A toolbox for moment-based standard uncertainty

evaluation

To streamline the process of computing standard uncertainty using the methods described

in section 4.1, this subsection introduces a user-friendly toolbox called the Analytical

Uncertainty Calculator (ANUNCEATOR), which is now freely available at

http://polymoment.com/Analytical_Uncertainty_Calculator. It uses Python’s symbolic

mathematical library [32] to enable rapid and reliable calculation of the variance. The

toolbox simplifies the process of calculating the output variance through three simple

steps.

First, a user starts by selecting a number of inputs to their system using the ‘Add’

button. The user can adjust the statistical properties, i.e. the distribution and symmetry

type, of every input by clicking on it (see figure 4.2).

⎡⎢⎣ a11 ⋯ a1Nr

⋮ ⋱ ⋮

aNr1 ⋯ aNrNr

⎤⎥⎦ ⎡⎢⎣ a11X1 + … + a1Nr
XNr

⋮
aNr1X1 + … + aNrNr

XNr

⎤⎥⎦

http://polymoment.com/Analytical_Uncertainty_Calculator
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Figure 4.2. Adjusting the statistical properties (the distribution and symmetry type)

of a variable in the ANUNCEATOR user interface.

After all the inputs have been added, the system model is added into the text box.

Figure 4.3 shows this step for an example system:

Figure 4.3. A system modelled as a polynomial Y = X1
2 + X2

2
 is added into the

ANUNCEATOR toolbox.

Y = X1
2 + X2

2,

where both the random inputs follow the normal distribution within their respective

standard deviations (scale parameters) of s1 and s2 with their respective means (location

parameter) of m1 and m2.

The variance u2[Y ] is evaluated and simplified (as shown in figure 4.4) as:

Figure 4.4. ANUNCEATOR displaying the variance of system Y = X1
2 + X2

2
.

u2[Y ] = 4m12s12 + 4m22s22 + 2s14 + 2s24.

Upon calculation, the result output from the toolbox can be copied into a file (using the

copy–paste function) for future reference. The toolbox also features additional functions to



evaluate the skewness and kurtosis of the system by clicking on the ‘Skewness’ and

‘Kurtosis’ buttons, respectively, as shown in figures 4.5(a) and (b). Alternatively, users can

compute moments up to the 10th raw moment of the output Y  by selecting the moment

order and clicking on the ‘Moment’, as illustrated in figure 4.5(c).

Figure 4.5. ANUNCEATOR displaying the output for system Y = X1
2 + X2

2
,

including: (a) skewness; (b) kurtosis; and (c) third-order moment.

4.3 Case studies for moment-based analytical standard

uncertainty evaluation

4.3.1 Case study 1—monomial: magnetic force microscope
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A magnetic force microscope reports the magnetic properties of a given material by

measuring the change in a cantilever’s oscillation frequency via the measurement function

shown in equation (4.33).

Δf =
πMd3

6c
,

where Δf is the frequency shift, M is the saturation magnetisation, d is the diameter of

the nanoparticles, and c is a tip calibration factor adjusted for different heights of the tip

from the sample. The variable c−1 belongs to the class of functions described in section

4.1.4, where m ∉ Z+
.

The authors of [33] calibrated this microscope using the set of expected values and

ranges of each variable. However, the paper did not specify any distribution. Hence, the

distributions that fit the given descriptions are assumed and listed in table 4.3, where c is

assumed to be calibrated at a lift height of 50 nm. Since μd has been fixed, the shape

parameter of the gamma distribution is calculated from β = U[d]μd/σd.

Table 4.3. Variables for the magnetic force microscope example.

Variable, X PDF Expected value (μ)U[X] Range

M Uniform 25×10−5 A nm−1

√ σ2
M

3
0 < σM < 1 × 10−5

d Gamma, positive only 17 nm √μdσd 1 < σd < 3

c Uniform 1.14 A nm2 Hz−1

√ σ2
c

3
0.01 < σc < 0.33

Using the GUM linear approximation method given in section 2.2 [34], the standard

uncertainty UG is computed as shown in equation (4.34), with G denoting the GUM

method.

UG[Δf] =
π

6
√(

μd
3

μc
)

2

U 2[M] + (
3μMμd

2

μc
)

2

U 2[d] + (−
μMμd

3

μc
2 )

2

U 2[c]

=
π

6
√(

μd
3

μc
)

2
σM

2

3
+ (

3μMμd
2

μc
)

2

μdσd + (−
μMμd

3

μc
2 )

2
σc

2

3
.

Next, using the procedure outlined in figure 4.1, the standard uncertainty UA is

computed using the analytical moment-based method. First, (Δf)2
 is determined in terms

of the inputs by expanding from equation (4.33):

(Δf)2 =
π2M 2d6

36c2 .
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The standard uncertainty UA[Δf] can be obtained by substituting equation (4.35) into

equation (2.8) from section 2.5:

UA[Δf] = √E[(Δf)2]− E 2[Δf]

=
π

6
√E[M 2]E[d6] E[c−2] − (E[M]E[d3]E[c−1])2.

Equation (4.36) allows the standard uncertainty UA[Δf] to be directly computed from

the terms E[M 2], E[d6], E[c−2], E[M], E[d3], and E[c−1]. Given that all these terms

have the form E[Xm], the procedure in figure 4.1 can easily be followed.

1. The input variable M is uniformly distributed (table 4.3) with positive-order variables,

m ∈ Z+. Thus equation (4.27) and row 2 of table 4.1 are applied.

2. The input variable d is a one-sided gamma distribution with positive-order variables, 

m ∈ Z+
, thus equation (4.27) and row 3 of table 4.1 are applied.

3. The input variables c−1
 and c−2

 have negative-order variables, m ∉ Z+
. Both are

uniformly distributed; therefore, they require the use of table 4.2.

 

Using the Mellin transform lookup table in appendix B, the appropriate F +
V (m + 1) are

then obtained and substituted into equation (4.36) to obtain equation (4.37):

UA[Δf] =
π

6
[μ2

M +
σ2
M

3
]

σ6
d(

μd

σd
+ 5)

6

μ2
c − σ2

c

−
μ2
Mσ6

d

4σ2
c

[(
μd

σd
+ 2)

3
]

2

log2(
μc + σc

μc − σc

These procedures for obtaining UA[Δf] can be achieved using the toolbox described in

section 4.2. Thus, although the derivation appears to be more tedious compared to that of 

UG[Δf], it is not more difficult to accomplish.

The variances of the inputs, σd, σc and σM  can be independently varied for a more

thorough analysis. Figure 4.6(a) shows an example of a one-dimensional sampling curve in 

σd–σc–σM  space in which the sampled points are indexed from one to 20, forming the

horizontal axis of figure 4.6(b). Figure 4.6(b) shows the standard uncertainties obtained via

the GUM linear approximation method UG[Δf] and the analytical moment-based standard

uncertainty estimation framework UA[Δf] benchmarked against the MC method.

⎷ ⎡⎢⎣ ⎤⎥⎦
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Figure 4.6. (a) Test points 1–20 in the σd–σc–σM  space. (b) Comparing standard

uncertainty obtained through: MC—Monte Carlo, UG[Δf]—GUM and UA[Δf]—analytic

methods.

The uncertainty of the measured frequency shift Δf of the magnetic force microscope is

consistently underestimated. Accordingly, the GUM [34] advocates that the MC simulation

method from section 2.3 should be applied instead. However, the advantage of using the

analytical moment-based method as outlined in figure 4.1 is that the exact analytical

expression of standard uncertainty UA[Δf] is obtained, which the MC method does not

produce. In this example, equation (4.37) provides an insight into the interplay and relative

contributions of different input factors to the final uncertainty of the frequency shift. If

sampling is involved in the determination of distribution parameters (Type A evaluation), it

can be explicitly included in the final expression of uncertainty, which is especially useful

for high-precision scientific measurements.

4.3.2 Case study 2—simple polynomial: microwave meter calibration

The calibration measurement of microwave devices is a well-known example from

Supplement 1 of the GUM [35]. It shows the advantage of the MC simulation method over

the linear approximation method [34]. The measurement function is:

δY = X 2
1 + X 2

2 ,

where δY  measures the quality of the microwave power meter that is calibrated with

respect to the standard microwave power meter. X1 and X2 are the real and imaginary

components of the reflection coefficient of the power meter to be calibrated. Units of

measurement are not required for these variables.

Table 4.4 shows the distributions and parameter values from [35]. The standard

uncertainty UG is computed from equation (4.34) using the GUM linear approximation

method:

UG[δY ] = √2μX1
U 2[X1] + 2μX2

U 2[X2]

= √[2μX1σX1 ]
2 + [2μX2σX2 ]

2.

The standard uncertainty UA for multivariate polynomials is next calculated using

figure 4.1, as follows:

UA[δY ] = √E[(δY )2]− E 2[δY ]

= √E[X1
4] + E[X2

4] − E 2[X1
2] − E 2[X2

2]

= √2σX1
2(2μX1

2 + σX1
2) + 2σX2

2(2μX2
2 + σX2

2).

Table 4.4. The variables for the microwave meter calibration example [35]



Table 4.4. The variables for the microwave meter calibration example [35].

Variable,

X
PDF

Expected value

(μ)

Standard uncertainty,

U[X]
Range

Test

1

X1 Normal 0.000 σx1 0 < σx1 < 0.05

X2 Normal 0.000 σx2 0 < σx2 < 0.05

Test

2

X1 Normal 0.010 σx1 0 < σx1 < 0.05

X2 Normal 0.000 σx2 0 < σx2 < 0.05

Test

3

X1 Normal 0.050 σx1 0 < σx1 < 0.05

X2 Normal 0.000 σx2 0 < σx2 < 0.05

Figure 4.7 shows the sampling curve and a comparison between the MC, linear

approximation, and analytical moment methods, respectively, for the three tests outlined

in Supplement 1 of the GUM [35]. In all three tests, UG[δY ] failed to accurately estimate

the standard uncertainties, because it does not consider the higher-order terms σX1
4
 and 

σX2
4
. This resulted in a significant underestimation of error when σXi

 was comparable to 

μXi
, which became increasingly severe as μXi

→ 0. In contrast, the analytical moment-

based method UA[δY ] performed comparably to the MC simulation method and offered the

advantage of having an explicit expression for its standard uncertainty.

Figure 4.7. (a) Test points 1–20 in σ1–σ2 space for the tests from [35]: (b) Test 1, (c)

Test 2, and (d) Test 3 obtained using: MC—Monte Carlo, UG[Δf]—GUM, and UA[Δf]—
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analytic methods.

4.3.3 Case study 3—high-order Taylor series approximation: eddy

current measurement

The thickness of a metal coating can be non-destructively determined through the

measurement of the voltage that is induced by eddy currents via the measurement

function in equation (4.41) [36]:

T = −T0 log(
V

Vk

),

where T  is the thickness of the metallic layer, V  is the measured voltage, and T0 and 

Vk are constants for the measurement system to be calibrated during the characterisation

phase, such that Vk > V .

Equation (4.41) is further simplified to (4.42) by setting the normalisation constant 

T0 = 1 and introducing a new variable R = V
Vk

− 1 whose range is −1 < R < 0. Table 4.5

shows the three independent test cases at different mean operating points μR of the

measurements with the standard uncertainty of σR set to less than 1%.

T = − log (1 + R)

Table 4.5. The tests and variables for the eddy current measurement.

Test Variable,

X
PDF

Expected

value (μ)

Standard

uncertainty, U[X]
Range

Test

1

R Normal −0.1 σR 0 < σR < 1 × 10−3

Test

2

R Normal −0.3 σR 0 < σR < 1 × 10−3

Test

3

R Normal −0.5 σR 0 < σR < 1 × 10−3

As in the previous two case studies, the standard uncertainty UG for this measurement

is shown in equation (4.43), which was obtained using equation (4.34).

UG[T ] =
σR

1 + μR

Since the measurement function is nonlinear, a polynomial approximation is required in

order to apply the analytical moment-based method. A simple third-order Taylor series
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expansion was therefore chosen, as shown in equation (4.44). The analytical moment-

based estimation of standard uncertainty for the third-order Taylor approximation is shown

in (4.45).

T ≈ −R +
1
2
R2 −

1
3
R3

 

UA[T ] = √E[(T )2]− E 2[T ]

= E[(−R +
1
2
R2 −

1
3
R3)

2

] − [E(−R +
1
2
R2 −

1
3
R3)]

2

= √
5
3
σR

6 + (4μR
2 − 4μR +

5
2
)σR

4 + (μR
4 − 2μR

3 + 3μR
2 − 2μR + 1)σR

2

 

Figure 4.8(a) compares the third-order approximation accuracy against the original

function, along with the fifth-order Taylor series expansion. Here, it can be observed that a

higher-order approximation is required to maintain the same level of accuracy as the

operating point R approaches −∞. Nonetheless, even under this limitation, figures 4.8(b)

and (c) show that the standard uncertainty estimation obtained using the analytical

moment-based method, UA, is consistently better than the estimation UG while remaining

in close agreement with the results of the MC simulation method. The approximation error

increases in Test 3 shown in figure 4.8(d), which can be overcome by selecting the fifth-

order approximation.

⎷
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Figure 4.8. (a) Test points 1–20 in T-R space. (b) Test 1, (c) Test 2, and (d) Test 3 of

table 4.5 through: MC—Monte Carlo, UG[Δf]—GUM, and UA[Δf]—analytic methods.

4.4 A general framework for analytical moment-based

reliability and robustness analysis

As a result of using the analytical moments calculated using the Mellin transform, the

outputs from the analytical moment-based standard uncertainty estimation from figure 4.1

become the inputs of the probabilistic design optimisation framework in figure 4.9. The

moment-based approach to robustness analysis is implemented by finding the variance (or

standard deviation) of the output Y , which is denoted by σY . Only E[Y ] and E[Y 2] need

to be computed, and they are represented as functions of the statistical parameters of

input random variables X. For example, assuming that Y  is represented by the

multivariate polynomial P , the definition of standard deviation in (2.8) from section 2.5

represents the variance as equation (4.46) by exploiting the linearity of the expectation

operator and the multiplicative convolution of independent variables:

σY
2 =

2Nr

∑
j=0

aj(∏
i

E[Xi
pi ]) − (

Nr

∑
j=0

bj(∏
i

E[Xi
qi ]))

2

,

where the indexing variables i and j, as well as the values of pi, qi, aj, and bi are kept

in an abstract form, as they are not important in this discussion.



Figure 4.9. A unified framework for moment-based reliability and robustness

analyses using the analytical moments derived using the Mellin transform.

In reliability analysis, it is necessary to estimate the PDF or CDF of the output function Y
using one of the distribution-fitting functions outlined in section 2.5. To accurately describe

higher-order statistics such as skewness and kurtosis, it is recommended to approximate Y
using at least the first four moments.

The maximum entropy distribution algorithms in section 2.5.7 are capable of computing

up to the sixth-order moment of Y  with a stable numerical convergence, and the use of the

automated analytical moment toolboxes in section 4.2 can significantly enhance estimation

accuracy while reducing the computational burden on the user. However, the choice of any

fitting algorithm remains at the discretion of the user.

Once the probability distribution of Y  has been estimated, the reliability analysis can be

performed using the CDF. For example, the reliability Pr[Y < 0] can be directly obtained

from FY (y = 0), where y denotes the realisation of Y . The ANUNCEATOR described in

section 4.2 can then be utilised to calculate the standard uncertainty and the moments up

to the fourth order.

It is important to note that the general framework provided in Figure 4.9 should be

customised to the intended application. Chapter 6 presents several real-world applications,

each accompanied by specific probabilistic design optimisation methods.

4.5 Summary

In this chapter, a novel method for evaluating the higher-order moments of multivariate

polynomials using the Mellin transform was presented. This method was applied to three

case studies in the fields of magnetic force microscopy, microwave meter calibration, and

eddy current measurements. The chapter also described an online toolbox, ANUNCEATOR,

which allows users to easily compute the analytical moments and standard uncertainty.

The chapter concluded by providing a general framework for analytical moment-based

reliability and robustness analysis.

References and further reading

[1] Zhao Y-G and Ono T 2001 Moment methods for structural reliability Struct. Saf. 23 47–75
[2] Lee S H and Kwak B M 2006 Response surface augmented moment method for efficient reliability analysis Struct.

Saf. 28 261–72
[3] Seo H S and Kwak B M 2002 Efficient statistical tolerance analysis for general distributions using three-point

information Int. J. Prod. Res. 40 931–44

http://dx.doi.org/10.1016/S0167-4730(00)00027-8
http://dx.doi.org/10.1016/j.strusafe.2005.08.003
http://dx.doi.org/10.1080/00207540110095709


[4] Ju B and Lee B 2008 Reliability-based design optimization using a moment method and a kriging metamodel Eng.

Optim. 40 421–38
[5] Zhang X and Pandey M D 2013 Structural reliability analysis based on the concepts of entropy, fractional moment

and dimensional reduction method Struct. Saf. 43 28–40
[6] Zhang X, Pandey M D and Zhang Y 2014 Computationally efficient reliability analysis of mechanisms based on a

multiplicative dimensional reduction method J. Mech. Des. 136 061006
[7] Eldred M 2009 Recent advances in non-intrusive polynomial chaos and stochastic collocation methods for

uncertainty analysis and design 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials

Conf. (Reston, VA: American Institute of Aeronautics and Astronautics)
[8] Lu Z-H, Cai C-H and Zhao Y-G 2017 Structural reliability analysis including correlated random variables based on

third-moment transformation J. Struct. Eng. 143 04017067
[9] Lu Z-H, Hu D-Z and Zhao Y-G 2016 Second-order fourth-moment method for structural reliability J. Eng. Mech. 143

06016010
[10] Youn B D, Choi K K and Yi K 2005 Performance moment integration (PMI) method for quality assessment in

reliability-based robust design optimization Mech. Based Des. Struct. Mach. 33 185–213
[11] Lee I, Choi K K, Du L and Gorsich D 2008 Dimension reduction method for reliability-based robust design

optimization Comput. Struct. 86 1550–62
[12] Xu J and Lu Z-H 2017 Evaluation of moments of performance functions based on efficient cubature formulation J.

Eng. Mech. 143 06017007
[13] Bertrand J, Bertrand P and Ovarlez J-P 2000 The Mellin transform The Transforms and Applications Handbook 2 edn

(Boca Raton, FL/Piscataway, NJ: CRC Press/IEEE Press)
[14] Mathai A M, Saxena R K and Haubold H J 2009 The H-Function: Theory and Applications (New York, NY: Springer)
[15] Kuang Y C, Rajan A, Ooi M P-L and Ong T C 2014 Standard uncertainty evaluation of multivariate polynomial

Measurement 58 483–94
[16] Springer M D and Thompson W E 1966 The distribution of products of independent random variables SIAM J. Appl.

Math. 14 511–26
[17] Sidi A 2003 Practical Extrapolation Methods: Theory And Applications (Cambridge: Cambridge University Press)
[18] Zemanian A H 1965 Distribution Theory and Transform Analysis: An Introduction to Generalized Functions, with

Applications (New York: McGraw-Hill)
[19] Cox M G and Harris P M 2006 Software support for metrology best practice guide no. 6: uncertainty and statistical

modelling DEM-ES 011 National Physical Laboratory https://eprintspublications.npl.co.uk/3879/
[20] Agarwal R P, Perera K and Pinelas S 2011 Cauchy’s residue theorem An introduction to Complex Analysis (Boston,

MA: Springer) pp 207–14
[21] MATHEMATICA version 13.2, 2023 (Champaign, IL: Wolfram Research Inc)
[22] MATLAB version 9.1.0.441655 (R2016b), 2016 (Natick, MA: The MathWorks Inc.)
[23] Peebles P Z, Read J and Read P 2001 Probability, Random Variables, and Random Signal Principles (New York:

McGraw-Hill)
[24] Lomnicki Z A 1967 On the distribution of products of random variables J. R. Stat. Soc. B 29 513–24
[25] Springer M D 1979 The Algebra of Random Variables (New York, NY: Wiley)
[26] Weisstein E W 2002 CRC Concise Encyclopedia of Mathematics (New York, NY: Chapman & Hall/CRC)
[27] Wold S, Esbensen K and Geladi P 1987 Principal component analysis Chemometr. Intell. Lab. Syst. 2 37–52
[28] Madsen H O, Krenk S and Lind N C 2006 Methods of Structural Safety (Mineola, NY: Dover Publications)

https://store.doverpublications.com/0486445976.html
[29] Noh Y, Choi K K and Du L 2009 Reliability-based design optimization of problems with correlated input variables

using a Gaussian Copula Struct. Multidisc. Optim. 38 1–16
[30] Ditlevsen O and Madsen H O 1996 Structural Reliability Methods (Chichester: Wiley)
[31] Schnabel R B and Eskow E 1990 A new modified Cholesky factorization SIAM J. Sci. Stat. Comput. 11 1136–58
[32] Meurer A et al 2017 SymPy: symbolic computing in Python PeerJ Comput. Sci. 3 e103
[33] Sievers S et al 2012 Quantitative measurement of the magnetic moment of individual magnetic nanoparticles by

magnetic force microscopy Small 8 2675–9
[34] Guides in Metrology Committee: JCGM 2008 Evaluation of measurement data—guide to the expression of

uncertainty in measurement (Sèvres: BIPM) https://www.bipm.org/en/committees/jc/jcgm/publications JCGM
100:2008(E)

[35] Guides in Metrology Committee: JCGM 2008 Supplement 1 – Propagation of distributions using a Monte Carlo

method (2008) (Sèvres: BIPM) https://www.bipm.org/en/committees/jc/jcgm/publications JCGM 101:2008
[36] Ribeiro A S, Alves e Sousa J, Costa C O, Castro M P and Cox M G 2008 Uncertainty evaluation and validation of a

comparison methodology to perform in-house calibration of platinum resistance thermometers using a Monte Carlo
method Int. J. Thermophys. 29 902–14

1The notation M refers to the Mellin transform equation, while M refers to the Mellin-transformed function.
2Readers should take note not to confuse the Heaviside function, denoted by H(⋅), with Fox’s H-function, denoted as 
H(⋅).

http://dx.doi.org/10.1080/03052150701743795
http://dx.doi.org/10.1016/j.strusafe.2013.03.001
http://dx.doi.org/10.1115/1.4026270
http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0001801
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0001199
http://dx.doi.org/10.1081/SME-200067066
http://dx.doi.org/10.1016/j.compstruc.2007.05.020
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0001248
http://dx.doi.org/10.1016/j.measurement.2014.09.022
http://dx.doi.org/10.1137/0114046
https://eprintspublications.npl.co.uk/3879/
http://dx.doi.org/10.1007/978-1-4614-0195-7_31
http://dx.doi.org/10.1111/j.2517-6161.1967.tb00713.x
http://dx.doi.org/10.1016/0169-7439(87)80084-9
https://store.doverpublications.com/0486445976.html
http://dx.doi.org/10.1007/s00158-008-0277-9
http://dx.doi.org/10.1137/0911064
http://dx.doi.org/10.7717/peerj-cs.103
http://dx.doi.org/10.1002/smll.201200420
https://www.bipm.org/en/committees/jc/jcgm/publications
https://www.bipm.org/en/committees/jc/jcgm/publications
http://dx.doi.org/10.1007/s10765-008-0409-x


IOP Publishing

Analytical Evaluation of Uncertainty

Propagation for Probabilistic Design

Optimisation

Melanie Po-Leen Ooi, Arvind Rajan, Ye Chow Kuang

and Serge Demidenko



Chapter 5

Moment-based expanded

uncertainty evaluation in design

optimization

Traditionally, infinite sequences of moments were studied to

find the existence and uniqueness of a solution (or

distribution). However, finding the complete moment

sequence is not practical in most cases. Thus, a finite

moment sequence is often used in practice. The problem of

finding the cumulative distribution function (CDF) or the

PDF, given a finite sequence of moments, is known as the

truncated moment problem [1], and these moment-

constrained maximum entropy methods were discussed

earlier in section 2.5.7. These algorithms were developed for

better numerical convergence and stability; however, they

assume that the range of the PDF is known. Unfortunately,

this is not possible for most engineering systems, thus

limiting their applicability for reliability analysis.

Furthermore, the solution to the truncated moment problem

is not unique and is highly sensitive to the moment values

[2]. These challenges have led to the widespread

misconception that the truncated moment approach is

unreliable for the evaluation of expanded uncertainty.

To overcome these limitations, the authors of [3]

proposed an improved maximum entropy (MaxEnt)

algorithm to approximate the lower and upper limits of the

distribution to ensure the convergence of the maximum



entropy algorithm. This is achieved by approximating the

integral limits and simplifying the multidimensional GOPoly

algorithm [4] to a one-dimensional algorithm. These

improvements simplify and enhance the numerical stability

of the GOPoly algorithm for constraint reliability analysis in

probabilistic design optimisation.

This chapter first presents the simplified and numerically

stable moment-constrained maximum entropy method

given in [3]. In section 5.2, a set of analytically derived

benchmark test distributions is established along with a

performance assessment framework for various distribution-

fitting algorithms. Finally, in section 5.3, the performance

assessment framework is applied with the MaxEnt algorithm

along with the other mainstream distribution-fitting

techniques for reliability analysis. The applications of this

approach include unimodal and multimodal distributions

with a wide range of skewness and kurtosis as well as

different numbers of moments.

5.1 The improved moment-

constrained maximum entropy

method

The maximum entropy algorithm was presented earlier in

section 2.5.7, which showed the Lagrange multipliers 

φ = {φ0,φ1, … ,φNm
} in equation (2.27) along with their

closed-form solution in equation (2.28). This subsection

presents the improved moment-constrained maximum

entropy algorithm with enhanced numerical stability, known

as the MaxEnt algorithm, shown in figure 5.1, which is used

to find these Lagrange multipliers in conjunction with with

some supporting expressions provided in sections 5.1.1–

5.1.3.



Figure 5.1. The improved moment-constrained

maximum entropy algorithm with enhanced numerical

stability. Steps 5 and 6 are repeated until ∇𝓛 ≅0 is

reached while keeping the condition number of the

inverse Hessian within a threshold value.

The MaxEnt algorithm consists of seven steps:

Step 1: Precondition the moments E[X i] for 

i = 0, … ,Nm by setting a zero mean and unit variance

(elaborated in section 5.1.1). The preconditioned

moment is denoted by m̃i and the corresponding

Lagrange multiplier is φ̃i.

Step 2: Generate a set of random linearly independent

polynomials ak(x) of the order Nm, where 

k = 1, … , (Nm + 1). The Lagrange multipliers of the

new basis ak(x) are denoted by γk. Mathematically, 

{xi,φI} for i = 0, … ,Nm is transformed to 

{ak(x), γk} for k = 1, … , (Nm + 1).

Step 3: Using the preconditioned moments m̃i for 

i = 0, … ,Nm and the new polynomial basis ak(x),

calculate the starting set of Lagrange multipliers γk for 



k = 1, … , (Nm + 1) corresponding to the moments of

the standard normal distribution.

Step 4: Find the approximated integral limits (elaborated

in section 5.1.2). The estimation considers the tail

characteristics of the distribution based on the

information provided by the moment values.

Step 5: Re-orthogonalise the set of polynomials ak(x)
for k = 1, … , (Nm + 1) using the modified Gram–

Schmidt algorithm [5] by following algorithm 5.1 in

section 5.1.3 for the current iteration. The orthogonal

polynomial corresponding to ak(x) is denoted by pk(x).

Recompute the set of Lagrange multipliers γk for pk(x).

Step 6: Apply Newton’s method [6] until the gradient 

∇𝓛 ≅0 is reached or the inverse Hessian matrix H−1

becomes too ‘ill-conditioned’ [4]. The inverse Hessian is

deemed ill-conditioned if the condition number of the

matrix χH exceeds a threshold value (in this book, it is

predefined as 20). Compute ∇𝓛 and H using

expressions (2.30) and (2.31) respectively (from section

2.5.7).

Step 7: If the gradient ∇𝓛 ≅0 is reached, compute the

Lagrange multipliers φ̃i of the preconditioned moments 

m̃i from γk and pk(x). Section 5.1.1 shows the method

used to compute a standard set of Lagrange multipliers 

φi for the original moments E[X i] from φ̃i. If the

threshold is exceeded, i.e. χH ⩾ 20, return to step 5.

The polynomials are re-orthogonalised to prevent the

loss of their orthogonality, which could negatively affect

the convergence of Newton’s method.

 

The convergence of the MaxEnt algorithm shown in

figure 5.1 greatly depends on the accuracy of the

calculation of the integrals (2.29)–(2.31) as well as (5.5).

The Gauss–Hermite quadrature rule given in [4] can be used



(5.1

)

(5.2

)

to compute the integrals effectively. This book provides a

toolbox for the MaxEnt algorithm, which is described in

section 5.4.

5.1.1 Setting the zero mean and unit variance

The moments E[X i] for i = 0, … ,Nm are conditioned to a

zero mean and unit variance distribution using the following

transformation:

m̃i =
1

(√E[X 2])
i

i

∑
j=0

(
i

j
)(−1)jE[X i−j]E[X 0]

j
,

where m̃i denotes the transformed moment value. The

inverse transformation of the Lagrange multipliers φ̃i of the

preconditioned moments m̃i to the Lagrange multipliers φi

of the original moments E[X i] is given by:

φi =
n

∑
j=0

(
j

i
)(−1)j−i

φ̃jE[X 1].

5.1.2 Finding integral limits

The integral limits can be approximated using the

theoretical findings reported in [7]. First, use linear

transformation to shift the original moments E[X i] for 

i = 0, … ,Nm to the point of interest C:

ḿi =
i

∑
j=0

(
i

j
)(−C)i−jE[X j],



(5.3

)

(5.4

)

where ḿi is the linearly shifted moment.

Then, find the maximal mass ϕ at zero using

equation (5.4). In this book, ϕ = 10−(ń+1)
 is used to solve

expression (5.4) in the real coordinate space for C. The

solutions are used as the upper and lower limits of the

integrals (2.29)–(2.31) and (5.5).

ϕ =

∣ ∣

∣ ∣

,

where ń = ⌊ Nm

2 ⌋.

5.1.3 The modified Gram–Schmidt algorithm for

polynomial orthogonalisation

The maximum entropy method proposed in [4] uses the

modified Gram–Schmidt orthogonalisation method given in

[8], which was designed for the polynomial basis pk(x) for 

k = 1, … , (Nm + 1). This is presented in algorithm 5.1,

which uses the function Q(⋅) shown in equation (5.5).

ḿ0 ḿ1

ḿ1 ḿ2

⋯ ḿń

⋯ ḿń+1

⋮ ⋮

ḿń ḿń+1

⋱ ⋮

⋯ ḿ2ń

ḿ2 ḿ3

ḿ3 ḿ4

⋯ ḿń+1

⋯ ḿń+2

⋮ ⋮

ḿń+1 ḿń+2

⋱ ⋮

⋯ ḿ2ń
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)

Q(g) = ∫ g exp(
Nm+1

∑
i=1

γipi(x))dx,

where g is a multivariate polynomial.

Algorithm 5.1. An algorithm to perform modified Gram–Schmidt

orthogonalisation.

Input: Linearly independent nth-order polynomials 

ak(x) and their Lagrange multipliers γk for all 

k = 1, … , (Nm + 1)

Output: Orthogonalised nth-order polynomials pk(x)
and their corresponding γk for all 

k = 1, … , (Nm + 1)
1. Initialise the square matrix a of size (Nm + 1),

where each column vector corresponds to the

coefficients of the polynomial ak(x); vector 

g = {γ1, … , γNm+1} has a size of (Nm + 1)
corresponding to all values of γk; ginitial = g; and

ainitial = a.

2. for k = 1 to Nm + 1 do

3.    for l = 1 to 2 do

4.      for m = 1 to k − 1 do

5.        ak(x) = ak(x) − Q[ak(x)pm(x)]pm(x).

6.        Update matrix a.

7.        G= a−1(ainitialginitial).

8.      end for

9.    end for

10.    pk(x) = Q([ak(x)]2)
− 1

2
ak(x)



11. end for

12. Initialise the square matrix p of size (Nm + 1),

where each column vector corresponds to the

coefficients of polynomial pk(x)
13. 𝛄 = p−1(ainitialginitial)
14. return pk(x) and γk for all k

5.2 Test distributions for

benchmarking and performance

analysis

Section 2.5 provided a summary of different distribution-

fitting algorithms available in the literature that can be used

for reliability analysis, namely normal or Gaussian [9],

Cornish–Fisher (CF) [10], extended generalised lambda

distribution (EGLD) [11], Tukey’s gh (TGH) [12], the Pearson

system [13, 14], and Johnson distribution [15, 16]. Each of

the presented algorithms was tested on a different set of

test distributions, thus making it challenging to evaluate

their relative performances. Furthermore, many of the test

distributions used in these works provided limited coverage

of distributions with high skewness, high kurtosis, or both.

It is not possible to provide a fair performance

comparison of different fitting techniques without a set of

benchmark test distributions. This makes it, therefore,

impossible to provide a recommendation for expanded

uncertainty or reliability assessment of real-world systems.

For example, figure 5.2 shows the output distributions

(marked in red ‘×’) used in three different research papers

that investigated different fitting techniques [14, 17, 18] on

a skewness–kurtosis plot. It can be seen that these



distributions covered a relatively small range of skewness

and kurtosis.

Figure 5.2. Comparisons of the skewness and kurtosis

coverage in the test distributions. Points denoted by ×

are reported in the literature [14, 17, 18], while the

points denoted by ○  represent the 130 unimodal and

multimodal test distributions shown in this book. The

dashed line defines the mathematical limit between

skewness and kurtosis such that no distribution can

occupy the region below the line [11].

The study in [19] proposed a more comprehensive set of

benchmark test distributions (marked as blue ‘○’ symbols in

figure 5.2), which provided wider coverage across the

skewness–kurtosis plot. However, it should be noted that

finite moments do not determine the distribution uniquely.

Hence, no matter how large the set of test distributions, it is

insignificant compared to the possible space of all

distributions. Therefore, the methods used to develop the

test distributions are provided in sections 5.2.1–5.2.3 to



support expansion efforts by readers of this book. The

dashed line in figure 5.2 defines the mathematical limit

which prevents distributions from occupying the region

below the line [11]. These test distributions provide a

common reference for anyone who intends to assess the

performance of new distribution-fitting techniques or other

reliability estimation frameworks.

5.2.1 Unimodal distributions

The benchmark test distributions selected for this study are

those for which the confidence intervals can be analytically

derived from their CDFs. Distributions generated using the

Pearson system, the EGLD, Tukey’s gh, or the CF expansion

were not considered, as they would give an unfair

advantage to the originating method. However, the normal

and uniform distributions are included because of their

practical importance.

Parametric distribution-fitting methods can adjust to

changes in mean and standard deviation without affecting

accuracy, so the mean and standard deviation of a

distribution are not used to describe it. Instead, skewness

and kurtosis are used as characterising features. If several

distributions have similar skewness and kurtosis values, only

one representative value is chosen. The original test

distributions are listed in table 5.1; those above the dashed

line are symmetrical, while the rest are skewed

distributions. Additional test distributions are created by

convolving a symmetrical distribution with a skewed

distribution; the CDF of the new distribution is analytically

derived or numerically approximated. Tables 5.2 and 5.3

present the expressions for PDF and cumulative distribution

function for the original distribution set.



Table 5.1. A list of original test distributions used. The dashed horizontal

line separates the symmetrical and asymmetrical distributions. The

additional test distributions are derived by convolving random variables

from symmetrical distributions with another random variable from skewed

distributions. The PDFs and CDFs for each distribution can be found by

matching the Code to those in tables 5.2 and 5.2, respectively. Ω and Ψe
denote the skewness and excess kurtosis, respectively.

Distribution name and

definition
Code Ω Ψe

1 Uniform distribution

between [0, 1]

U01 0 −1.20

2 Symmetrical triangular

distribution between −1

and 1

T 0 −0.60

3 Exponential type, shape 

ω = 3
E3 0 −0.58

4 Normal distribution E2 0 0.00

5 Student’s t, degree of

freedom ω = 10
ST 0 1.00

6 Exponential type, shape 

ω = 1.1
E11 0 2.28

7 Laplace distribution E3 0 3.00

8 Exponential type, shape 

ω = 0.9
E09 0 4.03

9 Exponential type, shape 

ω = 0.8
E08 0 5.57



Distribution name and

definition
Code Ω Ψe

10 Product of two exponential-

type distributions, shape 

ω = 2

E22 0 6.00

11 Product of two exponential-

type distributions, shape 

ω = 1.9

E192 0 6.66

12 Product of two exponential-

type distributions, shape 

ω = 1.8

E182 0 7.45

13 Product of three

independent triangular

distributions

T3 0 10.82

14 Weibull distribution, scale

parameter δ = 1, shape 

ω = 3

W3 0.17 −0.27

15 Weibull distribution, scale

parameter δ = 1, shape 

ω = 2

W2 0.63 0.25

16 Product of two independent

uniform distributions

U012 0.97 0.15

17 Product of three

independent uniform

distributions

U013 1.80 3.39



(5.6

)

(5.7

)

Distribution name and

definition
Code Ω Ψe

18 Weibull distribution, scale

parameter δ = 1, shape 

ω = 1

W1 2.00 6.00

19 Weibull distribution, scale

parameter δ = 1, shape 

ω = 0.8

W08 2.81 12.74

For example, assume that the variable X1 follows a

Weibull distribution with the shape parameter ω = 1, while

the variable X2 follows an exponential distribution with the

shape parameter ω = 2. From tables 5.1 and 5.3, the CDF of

X1 is fX1(x) = 1 − exp(−x1). Furthermore, the PDF of X2
can be found from tables 5.1 and 5.2; it is 

fX2(x) = 0.5 exp(−∣x∣). A new random variable is created,

namely Z = X1 + X2, and the CDF of Z can then be

derived using the convolution integral:

FZ(z) = ∫ FX1(
z − bx2

a
)fX2(x2)dx2

with a = 1 and b = 1, which gives:

FZ(v) =
1
2
(erf(z) − e

1
4 −z erfc(

1
2

− z) + 1).

Subsequently, the ith-order moment of Z can be

analytically derived from the moment definition in equation

(3.19) from chapter 3. In this example, the Weibull

distribution has an absolute skewness of 2.00 and an excess



kurtosis of 6.00, while the exponential distribution has an

excess kurtosis of 6.00 but no skewness. The resultant

distribution, however, has a skewness of 1.09 and a kurtosis

of 2.67, which falls in between its two input distributions on

the skewness–kurtosis plot. This scenario is common in

metrology when multiple random variables propagate

through nonlinear systems with a single output.

Table 5.2. PDF expressions for the original distributions for σ = 1 for all

distributions and parameter ω shown in table 5.1.

Code PDF expressions

U01 [H(x) − H(x − 1)]

U012 log( 1
x )

U013 [log( 1
x )]

2

2

W ω(x)ω−1
e−(x)ω

E
ω

2Γ( 1
ω
)

exp(−∣x∣ω)

ST Γ( ω+1
2 )

√ωπΓ( ω
2 )
(1 + 1

ω (x)2)
ω+1

2

T (1 − ∣x∣), ∣x∣ ⩽ 1

T3

2(−12(−1 + ∣x∣) − 6(1 + ∣x∣) log( 1
∣x∣ ) − (−1 +



Code PDF expressions

E2
ω

Γ2( 1
ω
)
K0(2[√∣x∣]

2
)

Table 5.3. Cumulative distribution function expressions of the original

distributions for σ = 1 for all distributions and parameter ω shown in

table 5.1.

Code Cumulative distribution function expressions

U01 x[H(x) − H(x − 1)]

U012 x(1 − log(x))

U013 x(2+(−2+log(x)) log(x))
2

W 1 − e−(x)ω

E

ST xΓ( ω+1
2 )2F 1(

1
2 , ω+1

2 ;
3
2 ;− x2

ω
)

√π√ωΓ( ω
2 )

+ 1
2

T

2Γ( 1
ω
)−Γ( 1

ω
,xω)

2Γ( 1
ω
)

x ⩾ 0

γ( 1
ω

,(−x)ω)

2Γ( 1
ω
)

x < 0

−x2+2x+1
2 0 < x ⩽ 1

(x+1)2

2 − 1 < x ⩽ 0



Code Cumulative distribution function expressions

T3

E2 x

∫
−∞

ωK0(2∣x∣
ω
2 )

Γ( 1
ω
)

2 dx

Using this convolution method, a wider range of test

distributions on the skewness–kurtosis plot was obtained. In

addition to these, other test distributions were derived for 

Z = aX1 + bX2 using various combinations of a and b for

integers within the interval [1, 4] and the convolution

integral in equation (5.6). The resultant distributions were

then shortlisted such that they were reasonably spread out

in the region 0 ⩽ ∣Ω∣ ⩽ 2 and −2 ⩽ Ψe ⩽ 8 (table 5.3).

This resulted in 124 test distributions as listed in table 5.4.

Table 5.4. A list of benchmark test distributions used in the study and

their statistical properties.

No. Dist. No. Dist. No. Dist. No

1 E3 32 T+W1 63 1*E1+2*U012 94

2 U01 33 E2+W3 64 1*E1+4*U012 9

3 T 34 E2+W2 65 1*E1 + 2*W1 9

1
2 (−31x2 + 32x + 1) − (x − 2)xlog2 x + x(7x +

(x+1)2

2



No. Dist. No. Dist. No. Dist. No

3 T 34 E2+W2 65 1 E1 + 2 W1 9

4 E2 35 E2+U012 66 1*E1 + 3*W1 9

5 S10 36 E2+U013 67 2*E1 + 3*W1 9

6 E11 37 E2+W1 68 3*E1 + 2*W1 9

7 E1 38 S10+W3 69 4*E1 + 3*W1 1

8 E09 39 S10+W2 70 1*E1 + 4*W1 1

9 E08 40 S10+U012 71 3*E1 +

1*W08

1

10 E22 41 S10+U013 72 3*E1 + 4*W1 1

11 E192 42 S10+W1 73 4*E1 +

1*W08

1

12 E182 43 S10+W08 74 2*E1 +

1*W08

1



No. Dist. No. Dist. No. Dist. No

1 W08

13 W3 44 E1+W3 75 3*E22 +

2*W2

1

14 W2 45 E1+W2 76 3*E1 +

2*W08

1

15 U012 46 E1+U012 77 3*E22 +

4*W2

1

16 U013 47 E1+U013 78 2*E1 +

3*W08

1

17 W1 48 E1+W1 79 3*E22 +

1*W1

1

18 E3+W3 49 E1+W08 80 4*E1 +

3*W08

1

19 E3+W2 50 E22+W3 81 3*E1 +

4*W08

1

20 E3+U012 51 E22+W2 82 4*E22 +

1*W1

1

21 E3+U013 52 E22+U012 83 1*E22 +2*W2 1

22 E3+W1 53 E22+U013 84 1*E22 +3*W2 1

23 U01+W3 54 E22+W1 85 2*E22 +3*W2 1



No. Dist. No. Dist. No. Dist. No

23 U01+W3 54 E22+W1 85 2*E22 +3*W2 1

24 U01+W2 55 T3+W3 86 1*E22 +4*W2 1

25 U01+U012 56 T3+W2 87 3*T3 + 1*W2 1

26 U01+U013 57 T3+U012 88 2*E22 +

1*W1

1

27 U01+W1 58 T3+U013 89 1*E22 +

2*W1

1

28 T+W3 59 T3+W1 90 4*T3 + 1*W2 1

29 T+W2 60 1*E1+2*W2 91 3*E22 +

2*W1

1

30 T+U012 61 1*E1+3*W2 92 3*T3 + 2*W2 1

31 T+U013 62 1*E1+4*W2 93 1*E22 +

3*W1

1

5.2.2 Multimodal distributions



(5.8

)

(5.9

)

(5.1

0)

Multimodal distributions correspond well to the operations of

many real-world systems. For example, bimodal

distributions are used to characterise systems such as the

power loss of a V6 gasoline engine [13] and the diffusion

concentrations resulting from hazardous releases [20].

Unfortunately, while unimodal distributions are widely

available in the literature, multimodal test distributions can

hardly be found. The test distribution generation

methodology that was presented in section 5.2.1 is not valid

for the generation of multimodal distributions, because the

modality of the resultant distribution cannot be guaranteed.

Instead, six additional multimodal distributions from

papers [13, 20–23] are included in the set of 124 unimodal

test distributions in section 5.2.1. The PDFs of the

distributions are listed below in equations (5.8)–(5.13); their

high-order moments were analytically determined using the

moment definition given by chapter 3, equation (3.19).

f(x) =
x7

3ω(8,1)
+

x15

3ω(16,1)
+

x63(1 − x)− 1
2

3ω(64, 1
2 )

f(x) =
0.5 exp(− (x+4)2

32 )

√32π
+

0.5 exp(− (x−4)2

18 )

√18π

f(x) =
0.4 exp(− (x+1)2

0.32σ2 ) + 0.6 exp(− (x−1)2

0.32σ2 )

√0.32π

f(x) =
0.4 exp(− x2

2 ) + 0.6 exp(− (x−3)2

2 )

√2π

2



(5.1

1)

(5.1

2)

(5.1

3)

f(x) =
0.4 exp(− x2

2 ) + 0.6 exp(− (x−25)2

2 )

√2π

f(x) =
(x + 1)23(1 − x)11 + (x + 1)11(1 − x)23

236ω(64, 1
2 )

5.2.3 A performance assessment framework

that uses the benchmark test distributions

The performance assessment framework presented in figure

5.3 utilises the CDFs and moments of the test distributions

shown in table 5.4 and equations (5.8)–(5.13). These are

obtained by deriving the analytical solution for a set of

distributions in the ranges 0 ⩽ ∣Ω∣ ⩽ 2 and 1 ⩽ Ψe ⩽ 11.

These test distributions, which include unimodal and

multimodal distributions, are represented by the circles in

figure 5.2. For convenience, these test distributions together

with their analytical solutions can be downloaded from

http://polymoment.com/.

http://polymoment.com/


Figure 5.3. A framework for analysing the

performances of reliability estimation techniques. The

formulation strategy and a list of the test distributions

are presented in sections 5.2.1 and 5.2.2.

Although only moment-based parametric distribution

fitting is reported in this monograph, it should be noted that

the benchmark distributions with known CDFs can also be

used to assess any reliability estimation technique that

conforms to the classical probabilistic framework.

The framework shown in figure 5.3 is used in four simple

steps:

1. A test distribution is selected from the set of benchmark

test distributions.

2. The required information is derived from the PDF. This

book advocates moment-based approaches. Therefore,

it directly extracts the expressions for the high-order

moments of the selected test distribution. This enables



(5.1

4)

a trustworthy assessment of the fitting techniques for

reliability analysis.

3. The reliability is estimated from the expanded

uncertainty using the technique under test. For the

moment-based technique, the obtained moments are

fed into the maximum entropy method in section 5.1 as

well as the distribution-fitting techniques listed in

section 2.5. Once the distribution is obtained, the

reliability is estimated.

4. The estimated reliability is then compared against the

actual reliability values derived from the analytical CDF

solution for the selected distribution.

 

In this study, steps 1–4 are repeated for all 130

benchmark test distributions.

The reliability estimation performance can be then be

measured using two different methods. Given that x is the

realisation of X, the estimation performance can be

determined via the discrepancy in the value of x for a given

percentile level, which can be calculated using the relative

error:

ε =
∣(x−μX)−(x′−μX)∣

σ

(x−μX)
σX

=
∣x − x′∣
x − μX

,

where x′
 denotes the estimated value, x denotes the

actual value, σX denotes the standard deviation of X, and 

μX denotes the mean of X. Since the reported values of x
and x′

 are always normalised with respect to σX, ε can also

be viewed as a percentage error in the coverage factor [24,

25] estimation.

It is reasonable to expect that reliability estimation

concerns the large and small percentiles which correspond



to the tails of a distribution. In this respect, the reliability

evaluation is different from the standard distribution fitting,

which requires the fitting to be good over the full range of

the input space. In fact, some distribution-fitting

applications specifically emphasise the importance of a

good fit around the mean.

For example, figure 5.4 shows the x value estimation

error across the entire percentile level of the Weibull

distribution with the shape parameter ω = 2. The right and

left tails of a distribution are interpreted as the percentiles

higher than 90% and lower than 10%, respectively, in figure

5.4. Note that the estimation error of x is higher at the high

and low percentile levels. This means that even though a

distribution-fitting technique may show a good fit over the

full distribution range, it may not necessarily perform well in

the reliability estimation.

Figure 5.4. The approximation error of x for a Weibull

distribution with shape parameter ω = 2 fitted using

the EGLD, Pearson, CF, and TGH fitting techniques.
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Since the estimation accuracy is concentrated at the tails

of the distribution, two estimation metrics are defined as

follows: ε90 reports the mean error of the x value estimation

in the 90% to 99.999% range, while ε10 reports the mean

error of the x value estimation in the 0.001% to 10% range.

The performance metric can be further consolidated as εmax
:

εmax = max (ε10, ε90).

5.3 Reliability analysis of

parametric distribution-fitting

techniques: from unimodal to

multimodal distributions

In this section, the performance assessment framework and

benchmark test distributions from section 5.2 are

implemented together with the following distribution-fitting

methods: normal, Cornish–Fisher expansion, extended

generalised lambda, Tukey’s gh, Pearson, Johnson, and the

improved maximum entropy from section 5.1. They are

denoted as Normal, CF, EGLD, TGH, Pearson, Johnson, and

MaxEnt respectively in the subsequent subsections.

To provide a comprehensive discussion, the performance

assessment is divided as follows:

Unimodal distributions with four moments

Unimodal distributions with more than four moments

Multimodal distributions

 

Furthermore, following the assessment results, section

5.3.4 proceeds to recommend a reliable region of

application for some Tukey’s gh and the Cornish–Fisher

techniques.



5.3.1 Unimodal distributions with four

moments

Consider only the 124 unimodal distributions shown in

section 5.2.1. First, the exact high-order moments up to 

Nm = 4 are calculated using the analytical expressions for

the 124 distributions. Then, seven sets of distributions are

obtained using the Normal, CF, EGLD, TGH, Pearson,

Johnson, and MaxEnt distributions. The distributions are

then used to estimate the values of ε10, ε90, and

subsequently εmax using the actual values of x computed

from the analytical distributions.

Figure 5.5 shows a scatter plot for the error metric εmax
with respect to absolute skewness and excess kurtosis for

the aforementioned seven sets of distributions. The colour

bar in the figure indicates the range of values for εmax in

terms of percentage. The MC simulation method is shown in

figure 5.5(a), which consistently provided the lowest εmax.

Note that this method does not provide an analytical

expression of uncertainty. It is used as a benchmark for all

other distribution-fitting methods.



Figure 5.5. Scatter plots of εmax with respect to

absolute skewness and excess kurtosis for the (a) MC,

(b) Johnson, (c) Pearson, (d) MaxEnt, (e) TGH, (f) CF, (g)

Normal, and (h) EGLD techniques. The colour bar shows

the range of values for εmax.

The normal approximation method in figure 5.5(g) is well-

known to be reliable for normal and almost-normal

distributions, or in other words, distributions that fall around



the origin of the plot. It can be observed that εmax becomes

‘dark red’, which represents 100%, particularly towards the

upper right, which represents both high absolute skewness

and high excess kurtosis.

Perhaps the most surprising result is the performance of

the EGLD, which is a popular distribution-fitting method and

is advocated by some researchers for use in reliability

estimation. Figure 5.5(h) shows that its overall εmax is worse

than that of the normal approximation technique, and it

struggles even with mildly skewed distributions. Referring to

chapter 2’s equations (2.12) and (2.13), the EGLD is

designed to fit the tails of distributions using the λ3 and λ4
parameters. However, it appears that the form of the

parametric equation in the EGLD is unable to appropriately

model the power-law behaviours or compact support

distributions, leading to its dismal performance on the

benchmark test distributions.

The performances of the Johnson and the Pearson

distributions are presented in figures 5.5(a) and (b). Their

estimation errors εmax are consistently lower than those

produced by the MaxEnt distribution-fitting method. Figure

5.6 presents the results for the Johnson, Pearson, MaxEnt,

TGH, and CF techniques to clearly distinguish their

performances by rescaling the colour bar to 50%. It can be

seen that there are many instances in which the

approximation error drops to almost zero due to good

approximation.



Figure 5.6. Scatter plots of εmax with respect to

absolute skewness and excess kurtosis for the (a)

Johnson, (b) Pearson, (c) MaxEnt, (d) TGH, and (e) CF

techniques. The rescaled colour bar shows the range of

values for εmax. The red transparent region

encompasses distributions for which the TGH and CF



techniques can be reliably applied within a 20% error

range.

It should be noted that the Johnson and Pearson methods

are systems of distributions (refer to sections 2.5.5 and

2.5.6). The MaxEnt method, on the other hand, does not

have a set of distributions to choose from, unlike the

Johnson and Pearson methods. Yet despite this stark

difference, figure 5.5(c) shows that the MaxEnt method can

perform at a level comparable to those of the Johnson and

Pearson distributions for reliability estimation. The MaxEnt

estimation worsens when the distributions have increasing

skewness and increasing kurtosis. This is a somewhat

expected result because only four moments are considered

in this subsection, which limits the information for the tails

of the distribution. It is expected that the true potential of

the MaxEnt method could be demonstrated by using an

increased number of moments, which will be discussed in

the following subsection.

The TGH and CF were designed to modify the normal

distribution based on additional information given by the

third and fourth moments (refer to sections 2.5.2 and 2.5.4

respectively for their background). With such an approach, it

is expected that these two techniques should outperform

the normal approximation when the distribution deviates

slightly from the normal. Figures 5.5(e) and (f) show that the

TGH and CF algorithms offer significant and consistent

improvement over the normal approximation, especially for

highly skewed distributions. However, further observation of

figures 5.6(d) and (e) shows that there is a region of reliable

reliability estimation within 20% of error for these two

methods which covers most of the symmetrical and slightly

skewed distributions while disregarding distributions with

high kurtosis. Following on from this observation, section



5.3.4 presents the conditions under which the TGH and CF

can be reliably applied.

The skewness–kurtosis plots shown in figures 5.5 and 5.6

allow for a qualitative discussion of the estimation

performances of each type of distribution-fitting method.

However, these results do not reflect the consistency of the

reliability estimation techniques in a quantifiable manner. To

do so, a confidence plot is required, which is determined by

the number of distributions falling within the intervals of

reliability estimation error. In this confidence plot, the faster

the line reaches the maximum, the more dependable the

corresponding technique is.

Figures 5.7(a)–(c) show confidence plots for ε10, ε90, and 

εmax, respectively. As expected from the previous results,

the Johnson and Pearson distribution-fitting methods shown

in figure 5.7(a) and (b) are the most dependable for

reliability estimation at both ends of the distribution ‘tails’,

closely followed by the MaxEnt method. The TGH and CF

techniques produce comparable results to those of the TGH

method and slightly outperform the CF method. Figures

5.7(a) and (b) show that the EGLD performs worse than the

normal approximation method. Therefore, this book

recommends that the EGLD should not be used for reliability

estimation.



Figure 5.7. Reliability estimation confidence plots for

(a) ε90, (b) ε10, and (c) εmax obtained using the

Johnson, Pearson, MaxEnt, TGH, CF, normal, and EGLD

techniques. The fastest technique to reach the

maximum reliability is the most dependable one.

Figure 5.7(c) is useful in ranking the distribution-fitting

techniques. For example, at 90% confidence, the average

errors εmax obtained using the TGH, CF, and normal

techniques are 30%, 35% and 60%, respectively, while the

error of the EGLD method cannot be deduced, as it exceeds



100% in figure 5.7(c). Interestingly, the confidence plots in

figure 5.7(b) stabilise relatively faster than the plots in

figure 5.7(a), indicating that the x value estimation for the

upper tail section is more reliable than for the lower tail

section.

Many distributions do not have the same tail

characteristics at both ends. For example, the lower tail

could be a finite support, while the upper tail could be an

infinite support. Thus, modelling such a distribution with an

infinite support distribution at both ends would be

advantageous for the upper tail, but not for the lower one.

This would result in a less accurate reliability estimation for

the lower tail, leading a higher magnitude of error compared

to that of the upper tail.

5.3.2 Unimodal distributions with more than

four moments

The previous subsection ultimately limited the performance

of the MaxEnt algorithm because of the use of just four

moments. Since the MaxEnt algorithm uses a relatively new

analytical moments toolbox, it is able to accommodate

higher-order moments without burdening the user.

Accordingly, the exact high-order moments up to Nm = 12
were calculated from the analytical expressions of the 124

distributions. Then, five sets of 124 MaxEnt distributions

based on Nm = 4, 6, 8, 10, 12 moments, respectively, were

obtained from the MaxEnt algorithm.

Figure 5.8 presents a scatter plot on the skewness–

kurtosis plane. Its colour bar is limited to 30% error for

better clarity. Figure 5.9 presents the reliability plots, which

are similar to the plots presented in the previous subsection.

Table 5.5 presents the means and standard deviations of 

εmax for the 124 test distributions. In addition, the table also

reports the average computation time for each distribution

(except for the Johnson and Pearson methods, as they do



not require an optimisation algorithm for their deployment).

Note that all computations were performed by a computer

with a 64-bit Intel Core i5-3470 CPU and 8 GB of RAM.



Figure 5.8. Scatter plots of εmax with respect to

absolute skewness and excess kurtosis for the (a)

Johnson, (b) Pearson, (c) MaxEnt-4, (d) MaxEnt-6, (e)

MaxEnt-8, (f) MaxEnt-10, and (g) MaxEnt-12 methods.

The colour bar shows the range of values for εmax.

Figure 5.9. Reliability estimation confidence plots of 

εmax  produced using the Johnson, Pearson, and MaxEnt

methods (for the MaxEnt method, Nm = 4, 6, 8, 10, 12).

The fastest technique to reach the maximum reliability

is the most reliable one.



Table 5.5. Mean and standard deviations of the reliability estimation

errors and average computation times of the distribution-fitting algorithms

based on 124 unimodal test distributions.

Method Mean

(%)

Standard

deviation (%)

Average

computation time

(s)

Johnson 7.23 9.01 –

Pearson 8.22 11.30 –

MaxEnt—4

moments

10.99 12.27 0.4157

MaxEnt—6

moments

6.99 8.84 1.2676

MaxEnt—8

moments

5.63 7.32 2.8269

MaxEnt—10

moments

4.43 5.73 43.6925

MaxEnt—12

moments

3.72 4.98 63.6472

As anticipated, the scatter plots in figures 5.8(c)–(g) show

that reliability assessment using the MaxEnt algorithm

improves with the number of moments, i.e. with increasing

information about the tails of the distributions. Figure 5.9

and table 5.5 further validate this outcome. It can be

observed from figure 5.9 that the confidence plot reaches

the maximum value faster for increasing numbers of

moments.

Table 5.5 shows that the means and standard deviations

of εmax for the MaxEnt method improve with the order of



moments. However, the same table shows that these

performance enhancements come at the expense of

additional computational time. For example, the average 

εmax using MaxEnt—6 moments is 6.99%, while the average

εmax MaxEnt—12 moments is 3.72%, which comes at the

cost of 50 times the computational delay, i.e. 0.4157 s

versus 63.6472 s. Nevertheless, processor design and

technology continue to advance and with them comes

increasingly faster computational speed. Thus, this trade-off

continues to reduce in severity with the advancement of

technologies such as more efficient numerical integration

methods for higher Nm, better computer hardware,

precompiled codes, parallel processing, and different

programming platforms.

5.3.3 Multimodal distributions

Most mainstream reliability estimation techniques focus on

unimodal distributions because multimodal distributions are

comparatively rarer. Although less frequently encountered,

they are still relevant, especially in the cases described in

section 5.2.2. It should be noted that the MaxEnt algorithm

is capable of handling multimodal distributions because it

does not impose an assumption of unimodality, unlike the

other methods.

The PDFs of the multimodal test distributions are listed in

section 5.2.2; their high-order moments were calculated

analytically using equation (3.19). The reliability estimation

error εmax was then obtained using equation (5.15). Table

5.6 presents the means and standard deviations of εmax as

well as the average computation time for the approximation

of the six multimodal test distributions. To keep the

discussion succinct, the proposed MaxEnt algorithm was

employed with Nm = 4,8,12, and its performances were

benchmarked against the results obtained using the Johnson

and Pearson methods.



Table 5.6. The means and standard deviations of the reliability

estimations and average computation times of the distribution-fitting

algorithms based on six multimodal test distributions.

Method Mean

(%)

Standard

deviation (%)

Average

computation time

(s)

Johnson 10.12 9.74 –

Pearson 11.46 10.77 –

MaxEnt—4

moments

3.55 4.20 1.3768

MaxEnt—8

moments

1.00 1.73 3.3671

MaxEnt—12

moments

0.34 0.58 72.8133

With four moments, i.e. Nm = 4, the Johnson and

Pearson distribution methods, which were the best for

unimodal distributions, already show less promise compared

to MaxEnt—4 moments when they are used estimate the

multimodal distributions. Table 5.6 shows that MaxEnt

method for multimodal distributions becomes increasingly

accurate as the number of moments increases—the average

error εmax falls to 0.34%. The computation time for the

MaxEnt method increases with the number of moments,

which is similar to the observations made for the unimodal

distributions.

It is important to note that the mean and standard

deviation values of εmax for multimodal distributions are



(5.1

6)

lower than those of the unimodal distributions (from table

5.5) because of the inclusion of challenging distributions

with extreme skewness and kurtosis in the unimodal

benchmark set. No such distributions are present in the

multimodal benchmark set.

5.3.4 Reliable regions for Tukey’s gh method

and the Cornish–Fisher technique

Figures 5.6(d) and (e) from the earlier subsections show that

Tukey’s gh and the Cornish–Fisher technique are unstable

for distributions with high skewness, high kurtosis, or both.

However, a reliable region for the use of Tukey’s gh and the

Cornish–Fisher technique for uncertainty estimation can be

defined based on their performances in the benchmark test

distribution set. For example, Tukey’s gh can be reliably

applied for distributions with parameters of absolute

skewness ∣Ω∣ and excess kurtosis Ψe that adhere to the

following constraints:

Ψe ⩾ 0 and Ψe + 5∣Ω∣ ⩽ 4.

This limits the range of applicability of Tukey’s gh
technique for reliability estimation. For ease of use, a lookup

table is presented in appendix A. It is ready to be used by

practitioners to solve for the parameters g and h, provided

that the parameters ∣Ω∣ and Ψe fulfil the conditions above

(5.16).

Due to the limitation of Tukey’s gh for distributions with

shorter tails than those of the normal distribution, Tukey’s

method is only reliable for distributions that have positive

excess kurtosis. The Cornish–Fisher method does not have

such a limitation; thus, it can be used on distributions that

have negative excess kurtosis. Consequently, the condition



(5.1

7)

for the uncertainty estimation using the Cornish–Fisher

technique is:

Ψe + 5∣Ω∣ ⩽ 4.

5.4 A toolbox for the MaxEnt

algorithm

This section presents a toolbox that can be used to compute

the MaxEnt PDF using equation (2.28) given a set of raw

moments. The toolbox, shown in figure 5.10 and accessible

at http://polymoment.com/Maximum_Entropy_Distribution

uses SymPy [26], SciPy [27], and NumPy [28], which are

Python libraries for symbolic mathematical computation,

optimisation, and array operations respectively, to compute

the optimum Lagrange multipliers in equation (2.28) with

respect to the supplied moment values.

http://polymoment.com/Maximum_Entropy_Distribution


Figure 5.10. The Maximum Entropy (MaxEnt) toolbox

used to compute the MaxEnt PDF from raw moment

values.

To get started, simply enter the raw moment values into

the provided table. Note that at least two moment values

must be supplied, and the zeroth moment value is always

set to 1.0 (see figure 5.10). Once the moment values have

been entered, click on the ‘Compute’ button to initiate the

calculation of the distribution limits and the optimised

Lagrange multipliers as defined by equation (2.28). The

results will be displayed in a neatly formatted JSON file, and

the corresponding PDF distribution will be plotted for

reference. This can help the user validate the shape of the

resulting PDF against the values of the moments.



For example, figure 5.11 shows an instance in which the

moment values of a Weibull distribution have been entered

into the table up to the eighth order: [1.0, 0.8862, 1.0,

1.329, 2.0, 3.3234, 6.0, 11.6317, 24.0]. When the user clicks

on the ‘Compute’ button, the MaxEnt toolbox calculates the

optimum values of the Lagrange multipliers and displays the

results as shown in figure 5.12(a). The distribution limits and

Lagrange multipliers are also shown under the keys

‘bounds’ and ‘phis’, respectively, in figure 5.12(b), which

can be copied and pasted into a different program of choice

to plot the same distribution.



Figure 5.11. The MaxEnt toolbox; moment values for a

Weibull distribution have been supplied up to the eighth

order.



Figure 5.12. Example output from the MaxEnt toolbox:

(a) is a plot of the PDF and (b) shows the bounds and



Lagrange multipliers of the MaxEnt distribution given in

(2.28).

5.5 Summary

This chapter presented a moment-constrained maximum

entropy method that approximates the lower and upper

limits of the distribution for expanded uncertainty

evaluation. This method overcomes the limitations of

traditional truncated moment approaches, providing a

simplified and numerically stable algorithm for probabilistic

design optimisation. The chapter included a performance

assessment framework for various distribution-fitting

algorithms and introduced a toolbox for computing the

MaxEnt algorithm, which can be applied to unimodal and

multimodal distributions with a range of skewness and

kurtosis.
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Chapter 6

Real-world design optimisation problems:

applications and usefulness

Moment-based uncertainty propagation methods sidestep the complications of

finding the MPP that become apparent in the FORM. Furthermore, the moment

approach provides optimiser stability (or convergence) compared to the MC

method. Therefore, by utilising the analytical high-order moments accompanied

by one of the parametric distribution fitting techniques, an arbitrary system

response can be sustained through the use of robust design optimisation (RDO),

reliability-based design optimisation (RBDO), or reliability-based robust design

optimisation (RBRDO). Such an approach overcomes the limitations of the MPP

methods as well as those of other moment-based approaches, thus providing

more dependable results in probabilistic design optimisation.

This chapter applies the moment-based uncertainty evaluation method to

several real-world examples to show its applicability in generating dependable

and sturdy engineering systems.

6.1 The framework for probabilistic design

optimisation

Figure 6.1 presents the unified moment-based probabilistic optimisation

framework, which will be referred to as the polynomial moment (PolyMoment) -

based approach in the following discussions. This framework is generic and can

be simplified depending on the optimisation paradigm employed, i.e. RDO,

RBDO, or RBRDO. The steps used to apply the PolyMoment approach are

elaborated in this section, which makes reference to the previous chapters of this

book. The remainder of this chapter presents real-world applications of

PolyMoment.



Figure 6.1. The framework of the polynomial moment (PolyMoment)-based

probabilistic optimisation for RDO, RBDO, and RBRDO.

As shown in the flowchart, once the probabilistic optimisation problem has

been formulated by identifying the objective, performance, and constraint

functions according to (3.2), (3.9), or (3.20), the following five steps are

executed:

Step 1: Find the deterministic optimum design using the formulation shown

in (3.1) and use it as the initial design d
k=0

 of the moment-based

probabilistic optimisation; d
k
 denotes the design point at the kth iteration.

Step 2: Model the response surface of the constraint function Gi(⋅) for 

i = 1, … ,Nc (for RBDO/RBRDO) and the performance function K(⋅) (for

RDO/RBRDO) using a polynomial (refer section 6.1) around design point d
k

using the surface region constant ζs and the vector of standard deviation of

the random variables 𝛔X; then determine the design window for selective

sampling using the design window constant ζd and 𝛔X (refer to section

6.1.2).



Step 3: For RBDO and RBRDO, find the closed-form expressions of the high-

order moments E[G̃i

j
] for i = 1, … ,Nc and j = 1, … ,Nm using the

analytical moment propagation framework introduced in chapter 4. For RDO

and RBRDO, find E[K̃] and E[K̃ 2]. Here, G̃i(⋅) and K̃(⋅) denote the

approximated Gi(⋅) and K(⋅), respectively. Evaluate the numerical values of

the moments.

Step 4: For RBDO and RBRDO, find the probability distribution of the

performance functions using one of the moment-based distribution fitting

methods studied in chapter 5. For RDO and RBRDO, compute the variance of 

K̃ using σ
K̃

2 = E[K̃ 2]− (E[K̃])
2
.

Step 5: Finally, ensure that the constraints Pr[Gi(d, X) ⩽ 0] > Φ(βi) are

met using the estimated probability distribution (for RBDO and RBRDO) and

that the objective function C(⋅) has been minimised. If either of the

conditions is not met, update design point d
k
 for k = k + 1 using the chosen

optimiser and go to step 2 if the design window exceeds the response region;

or step 3 otherwise (refer to section 6.1.2).

6.1.1 Local response surface modelling using multivariate

polynomials

In problems whose large-scale optimisation would involve the use of costly

simulations, metamodels (or surrogate models) are used instead of actual

simulations to assess the performance and constraints [1]. Polynomial

metamodels are a popular choice for this purpose [2, 3]. Studies [2, 4] have

shown that the use of polynomial metamodels can significantly reduce the cost

of probabilistic optimisation, even when functional relationships between

performance functions and input variables are available. Section 3.2.3 covers

techniques commonly used to express system responses using multivariate

polynomials. The choice of model for the PolyMoment framework given in figure

6.1 is up to the user.

Although polynomial metamodels can greatly improve computational

efficiency, using them as a global approximation sacrifices accuracy when the

constraint and performance functions are highly nonlinear. Therefore, local

approximations of the responses can be made at every iteration. Local

approximations using second-order polynomials are some of the most commonly

used approaches, even in MPP-based optimisation methods [2, 4]. The results of

these studies have demonstrated that this strategy significantly improves both

the computational efficiency and the accuracy of the RBDO computation. The

next subsection presents a selective sampling technique introduced in [2] for the

surface reconstruction procedure, which is a way of further boosting the

computational efficiency.

6.1.2 The selective sampling technique



(6.1

)

Selective sampling, as proposed by [2], balances global and local modelling by

determining the need for a new local response surface based on a mechanism

that uses a surface region and a design window (explained below). This approach

improves computational efficiency by only constructing a new local response

surface when deemed necessary.

As shown in figure 6.1, the PolyMoment-based optimisation starts by finding

the deterministic optimum d
k=0

; then, the response surface is locally

approximated around the intervals:

d
k ± ζs𝛔X.

The value of the surface region constant ζs is typically selected based on a

multiplicative factor of 1.2–1.5 times the target reliability index β used in the

optimisation problem.

For example, 1.2β is used for moderately nonlinear problems and 1.5β is used

for highly nonlinear ones [5]. The design window constant ζd is a smaller value (

ζd < ζs) used for the selective sampling technique. The mechanism of the

technique is illustrated in figure 6.2 using the highly nonlinear Rosenbrock

function [6].

Figure 6.2. An illustration of the selective sampling technique using the

highly nonlinear Rosenbrock function [6]. The figure shows the situation in

which a new model is required when the design point’s design window

exceeds the surface region and vice versa.

Consider the case in which a local response surface (depicted by dashed lines)

is constructed around d
k using the intervals (6.1). In the next iteration, the

design point d
k+1 is changed and a decision about the need for a new model is

made using the design window, which is defined as d
k+1 ± ζd𝛔X (depicted by



dotted lines). As shown in figure 6.2, when the design window around d
k+1

exceeds the boundaries of the existing surface region, a new local response

surface is constructed around d
k+1

. On the other hand, if the design window

remains within the existing surface region, the current model is used. As a result

of implementing the selective sampling technique, the local response surface

does not have to be created at every iteration, thus improving the overall

efficiency of the probabilistic optimisation process.

6.2 Lithium-ion batteries: a reliability-based

design optimisation framework

In complex engineering systems, the relationship between the output of interest

and the input variables is not always clear, so numerical algorithms such as the

finite element method are used to calculate the output variables. The input–

output relationship in an FE model can only be approximately calculated using

basic mathematical models, which are then locally evaluated for further

examination including uncertainty evaluation. A prime example is the modelling

of the mechanical strength of lithium-ion batteries when they are subjected to

sudden impact [7]. The goal is to understand the relationship between the

mechanical strength of the battery and three inputs: displacement, surrounding

temperature, and strain rate. The model should consider uncontrolled factors,

such as manufacturing tolerances, shocks, and vibrations, which affect the

battery strength estimation. The purpose of the model is to study the behaviour

of the battery’s mechanical strength and determine optimal input values that

result in the minimum or maximum mechanical force.

Modelling the mechanical strength of a lithium-ion battery (LIB) when it is

subjected to sudden impact is a complex task due to various variables such as

stochastic and dynamic loads, variations in material properties, and interactions

among elements. The force developed in an LIB during a crash is an important

factor in determining its resistance to tensile impact and serves as a basis for its

new mechanical design.

To obtain accurate results, the uncertainties of the inputs and their impact on

the mechanical strength must be considered using an uncertainty evaluation

toolbox, as discussed in previous chapters of the book. An FE model is used as an

initial step to analyse the mechanical forces experienced by the battery in

relation to its inputs through the use of surface plots or optimisation algorithms.

However, there are two challenges associated with this method. First, repeating

the FE model’s execution for uncertainty analysis in the generation of surface

plots or optimisation significantly increases the computational load. Second, the

output mechanical force calculated using the FE model does not account for the

uncertainties of the inputs.

A Monte Carlo simulation was considered but discarded, even though it is the

most robust and effective method for this type of uncertainty evaluation. MC

simulation involves the generation of multiple independent realisations of input

quantities using known probability distributions, which are then used to calculate

the output probability distribution. The mean and standard deviation of the

output can also be obtained. However, the computational time required to run



the MC simulation can be prohibitively long if the FE model takes 10 min per

execution and 104 realisations are required to obtain a single distribution.

Instead, this case study employs an artificial neural network (ANN) to obtain a

global model of the battery’s mechanical strength and applies the PolyMoment-

based approach (see figure 6.3) to reduce the computational load. This approach

considers variations in the inputs and provide high-order statistics such as the

mean, standard deviation, skewness, and kurtosis, as well as the probability

distribution of the mechanical force.

Figure 6.3. A framework for RBDO that utilises moment-based uncertainty

evaluation with an FE Model of the 18650 LIB to obtain the probability

distribution and statistical properties of its mechanical strength.

6.2.1 The finite element model of the lithium-ion battery

The ABAQUS/Explicit version 6.14 software [8] is used to model the mechanics of

the lithium-ion battery with fully coupled thermal stress analysis to understand

the interaction effects of various factors on the maximum crushing load of the

battery pack. The model, described in [7], includes components such as the



battery casing, jelly roll, composites, and isolators. Smaller components are

ignored, as their deformation is largely insignificant according to [9].

It should be noted that studies such as [10–12] have developed constitutive

mechanical models for the failure assessment of battery packs. In this study, the

battery casing, which is made of steel, and the jelly roll, modelled as crushable

foam, undergo significant plastic deformation during mechanical loading and are

considered in the analysis. This study uses a homogenised mechanical model of

the jelly roll from [10] to reduce computational time, while still accurately

replicating the load and displacement of the 18650 LIB. This allows for finer

meshing and more accurate deformation and failure mechanism predictions in

response to the applied load.

The FE model was validated by comparing simulation results with

experimental data, which showed good agreement. The force–displacement plot,

force–temperature plot, and force–strain rate plot were compared for the results

of the simulation and the experiment; the comparison revealed similar levels of

accuracy. The FE model was used to obtain compressive force data for variations

in displacement, strain rate, and temperature. The FE model snapshots (see

examples on the left-hand side of figure 6.3) showed the effect of compression

loading on the battery structure.

6.2.2 Incorporating moment-based uncertainty evaluation

In this study, data samples were collected from the finite element model using

Latin hypercube sampling [13] and an ANN was trained using 70% of the

collected data to build a global model of the mechanical force in a lithium-ion

battery, as shown in [7]. The temperature values ranged from 10 °C to 50 °C

with an interval of 10 °C, the displacement ranged from 2mm to 8mm with an

interval of 2mm, and the strain rate ranged from 0.05 to 0.20 mm s−1 with an

interval of 0.05 mm s−1. The ANN model showed high prediction accuracy with a

coefficient of determination (R2) of 0.999 74 (figure 6.4).

Figure 6.4. A comparison between the mechanical force predicted by the

ANN model and the actual experimental data obtained from the finite
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element (FE) model. Reprinted from [7], Copyright 2018, with permission

from Elsevier.

To consider the uncertainties in the inputs and obtain the statistical properties

and probability distribution of the mechanical force, the model-based uncertainty

evaluation described in section 4.2 was performed on the ANN model. This

evaluation required the use of a multivariate polynomial to represent the

relationship between the inputs and the outputs, and therefore a local model of

the mechanical force Fl was established using a general three-variable second-

order polynomial equation:

Fl(X) = a00 +
N

∑
i=1

a0iXi +
N

∑
i=1

aiiX
2
i +

N

∑
i=1

N

∑
j=i+1

aijXiXj + ϵ,

where X = {X1, … ,XN} denotes the input variables, N = 3 is the

number of variables, {a00, a0i, aii, aij} is the set of model coefficients, and ϵ is
the modelling (or approximation) error.

The symbolic expressions for the higher-order statistics of the mechanical

force were then computed using a toolbox described in section 4.2. It is

important to note that only the finite element runs used to train the ANN model

were needed to compute the probability distribution of the mechanical force. No

additional finite element simulations were required, as the changes in the

response surface model were captured in the coefficients. However, the form of

the model remained unchanged.

Next, the coefficients of the polynomial model were obtained using the Box–

Behnken design approach for the design of experiments and the least-squares

method [14]. The data samples were collected for the design of experiments to

obtain the numerical values of the higher-order statistics. The local model was

constructed within a range of ±3σX, where σX is the standard deviation vector

of the input variables.

The least-squares method was employed to build the model, making it

possible to assume that the error term ϵ followed a normal distribution with zero

mean and standard deviation σϵ [14]. This additional random variable was

incorporated when using the toolbox from section 4.2 to compute the higher-

order statistics, considering the modelling error of Fl when calculating its

uncertainty. The calculated higher-order statistics were then used with the

Pearson system (described in section 2.5.5) to approximate the distribution of

the mechanical force.

6.2.3 The resultant design

The probability distributions obtained through the PolyMoment-based RBDO

method are compared to those obtained through Monte Carlo simulation using

finite element simulation data in figure 6.5. The comparison is made for a



displacement of 5mm, a temperature of 30 °C, a strain rate of 0.125 mm s−1,

and with coefficients of variation of 0.01 and 0.05. The histogram of the Monte

Carlo simulation was generated with a sample size of 500. The results in figure

6.5 demonstrate that the distributions obtained from the proposed framework

are in good agreement with the Monte Carlo simulation. In addition, the figure

shows that as the coefficient of variation of the inputs increases, the spread of

the mechanical strength distribution also increases. Although the study assumes

normal distributions for the inputs, the proposed method is capable of handling

non-normal distributions as well.

Figure 6.5. A comparison of the probability distributions produced by

PolyMoment-based RBDO and a Monte Carlo simulation using the FE data for

a displacement of 5mm, a temperature of 30 °C, and a strain rate of 0.125

mm s−1 with coefficients of variance (COVs) of 0.01 and 0.05. Reprinted

from [7], Copyright 2018, with permission from Elsevier.

PolyMoment is capable of performing probabilistic analyses under various

uncertainty conditions, including different distributions and input uncertainties,

without requiring additional ANN model building or FE simulation evaluations.

This capability is of significant value, especially when FE models require high

computational times for each execution or when design optimisation algorithms

necessitate repeated evaluations of output probability distributions or

sensitivities.

The mean mechanical force computed by the PolyMoment framework was

used to generate the three surface plots in figure 6.6, which illustrate the

influence of inputs on the mechanical force experienced by the battery. By

keeping one of the inputs constant, it is possible to observe the trend in figure



6.6. This trend remains consistent regardless of the constant values used,

allowing one to infer the sensitivity of the force experienced by the battery force

with respect to its inputs.

Figure 6.6. A depiction of the relationship between the input variables and

the mean mechanical strength of an LIB; one input is held constant in each

plot. (a) A constant strain rate of 0.19 mm s−1, (b) a constant displacement

of 7.66 mm, and (c) a constant temperature of 10.47 °C. The input variables

are assumed to follow a normal distribution with a coefficient of variation of

0.01. Reprinted from [7], Copyright 2018, with permission from Elsevier.

The surface plots in figure 6.6 demonstrate that the mechanical strength of

the battery increases with increasing strain rate and displacement, but decreases

with increasing temperature. These results are aligned with experimental results,

which show that larger external impacts result in higher mechanical stresses and

strains. Higher temperatures decrease battery strength due to decreased

hardness and toughness. The sequential quadratic programming algorithm [15]

and other advanced optimisation methods (genetic algorithm [16], stepwise

optimisation [17, 18]) show that the maximum mean mechanical strength (7530
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N) can be achieved at displacement of 8 mm, a temperature of 10 °C, and a

strain rate of 0.2 mm s−1.

From the plots, it can be concluded that: (1) the proposed probabilistic

framework accurately predicts the probability distribution of the LIB’s mechanical

strength; (2) lower displacement and temperature result in higher battery

strength; (3) displacement and temperature have equal impacts on battery

strength, while the strain rate has a lower impact.

The application of the PolyMoment framework offers a probabilistic method for

battery design that takes account of uncertainties both inside and outside the

battery, which is vital for battery dependability and security. These findings are

especially relevant to battery manufacturers who aim to meet safety regulations

and prevent accidents in electric vehicles.

6.3 Vehicle design based on side-impact

crashworthiness: the application of a reliability-

based robust design optimisation problem

This section examines a vehicle side-impact crashworthiness study [19], which is

an optimisation problem with nine design variables, eleven random variables,

and ten constraint functions and is commonly used as a benchmark for new

probabilistic optimisation methods. The aim is to reduce the weight of the vehicle

W(X) and the variance of the performance function K(X) while improving side-

impact crash protection for passenger safety. To achieve this, the European

Enhanced Vehicle-Safety Committee side-impact procedure [20] is utilised to

establish the reliability constraints of the performance functions.

6.3.1 Problem formulation

The problem formulation (from [19]) is:

where w1 = 0.5 and w2 = 0.5 are the weights, W0 = 29.05 kN is the initial

weight, and K0 = 1.4781 mm is the initial variance of the performance function

based on the original design points given in [19]. The constraint and

minimize : C = (X) = w1
W

W0
+ w1

σ2
K

σ2
0

,

subject to : abdomenload < 1 kN,

upper / middle /lower viscous criteria < 0.32 ms−1,

upper / middle /lower rib deflection < 32 mm,

pubicsymphysisforce < 4 kN,

velocity of B − pillar at middle point < 9.9 mm ms−1,

velocity of front door at B − pillar < 15.7 mm ms−1,

where : d
L ⩽ d ⩽ d

U , and β = 1.282,



performance functions, initial design points, statistical information, and details of

the random variables are given in [19]. The target reliability index for all

constraint functions is β = 1.282.

6.3.2 Resultant design

The performance function that represents the safety component of the design

objective in this RBRDO problem is the lower rib deflection. To assess its

robustness and reliability, we adopt a combination of moment-based robustness

analysis using univariate DRM and PMI (from section 3.1) and reliability analysis

using PMA (from section 3.2). The results are compared with those obtained from

the PolyMoment-based RBRDO method, as depicted in figure 6.1, which provides

a comprehensive framework for performing both probabilistic analyses. The final

design outputs are tabulated in table 6.1.

Table 6.1. The performance of the robustness analysis of the PMI, DRM, and proposed PolyMoment

methods in vehicle side-impact crashworthiness evaluation. FEV denotes the function evaluation

counts [21].

Method

Optimum design

W  (kN)
Calculated σK

(mm2)

Actual σK

(mm2)

Total FEV

counts

PMI and PMA 28.7780 0.0618 0.6254 4590

DRM and

PMA

25.8685 0.4144 0.4645 4940

PolyMoment 27.6034 0.1633 0.1635 1526

In addition to the total number of function evaluations and the accuracy of

meeting the probability constraints, the accuracy with which σK is computed is

also considered as a performance metric. Unlike the previous examples, the

actual reliabilities computed by the MC method are presented in a radar chart in

figure 6.7. Since the failure probability is 10% (β = 1.282), the ideal solution is a

radar line that stays within the two outermost polygon regions. Any radar line

that crosses the second outermost boundary towards the centre indicates a

design violation for that specific reliability constraint.



Figure 6.7. The probability of satisfying the constraint functions for the

vehicle side-impact crashworthiness problem. Reproduced from [21], CC BY

3.0.

Table 6.1 compares the results of three RBRDO techniques in terms of side-

impact crashworthiness. All three methods offer a significant reduction in vehicle

weight and lower rib cage deflection variance. However, the PolyMoment method

outperforms the others by yielding optimal results three times faster.

The PolyMoment method also produces a design that offers a good balance of

vehicle weight and safety, while the variance estimations produced by the MC

method reveal that the DRM and PMI methods underestimate the variance. This

results in lighter but less safe designs. For example, if the DRM is used, the

variance is underestimated at 0.4144 mm2, which might be overlooked by the

designer, as the true value is 0.4645 mm2. Increasing the quadrature points or

using bivariate DRM could improve accuracy, but at the cost of increased

function evaluations. The PMI method has an even greater variance

underestimation.

Although the PMA with DRM appears to be the best option for weight

optimisation based on table 6.1, the radar chart in figure 6.7 indicates that this

design is unreliable and fails to meet safety standards when validated using the

MC method. This aligns with the literature [22], which states that multiple MPP

iterations can lead to unreliable designs. However, the design solution produced

by the PolyMoment method always satisfies the failure probability constraint of

less than 10%.

6.4 Fuel cells: parameter optimisation for reliable

and robust operation



Hydrogen fuel cells are seen as a promising energy storage technology due to

their environmental friendliness and efficiency compared to traditional

combustion technologies. The polymer electrolyte membrane (PEM) fuel cell is

considered one of the most promising types due to its high power output, low

operating temperature, efficiency, high current density, and structural safety

[23–26]. These benefits make PEM fuel cells suitable for small-scale power

generation and for use in the automobile industry.

The operation of a PEM fuel cell is shown in figure 6.8. It consists of an

electrolyte sandwiched between two electrodes (the anode and cathode), with

bipolar plates on both sides that distribute hydrogen and oxygen gases and

serve as current collectors. Hydrogen gas flows to the anode, where it is

separated into protons and electrons by a catalyst; the protons flow through the

membrane to the cathode and the electrons flow through an external circuit to

generate electricity. On the cathode side, oxygen reacts with the hydrogen ions

to form water, and the exothermic reaction generates heat [27].

Figure 6.8. The polymer electrolyte membrane (PEM) fuel cell. Reprinted

from [28], Copyright 2018, with permission from Elsevier.

Research has been conducted on PEM fuel cells to optimise their efficiency.

The first fuel cell models date back to the early 1990s [27]. More comprehensive

models were later developed, including a dynamic model that incorporated six

submodels [29]. Other studies optimised operational parameters using novel

algorithms [30, 31], a battery–capacitor hybrid system [32], and stochastic

dynamic programming [33]. However, no study has considered the uncertainties

in the operating parameters and their propagation to output uncertainties in PEM

fuel cell optimisation.
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This subsection utilises a PolyMoment framework that incorporates

uncertainty evaluation into the design optimisation loop of a PEM fuel cell. This

approach will result in a more robust and cost-efficient PEM fuel cell, taking into

account factors such as manufacturing variations, material variations, and

uncontrollable operating environments [34–38].

6.4.1 Problem formulation

The problem statement focuses on optimising the output power of a PEM fuel cell

described in [29] while considering the hydrogen mass flow rate (equation (6.4))

in an economical design. The study uses a dynamic fuel cell model made up of

six components and considers the hydrogen mass flow rate to be an important

parameter. The output power of the fuel cell is dependent on five inputs, and the

study aims to analyse the uncertainty of the outputs (fuel cell power and

hydrogen flow rate) and perform a sensitivity analysis to identify the optimal

parameters for a reliable and robust design. The PolyMoment framework is

proposed to perform the analysis in an accurate and efficient manner.

WH2
=

Ist

2F
MH2

nλan,

where Ist is the stack current, F  is the Faraday constant, MH2
 is the

molecular mass of hydrogen, n is the number of cells, and λan is the hydrogen

excess rate.

The efficiency of the fuel cell’s output power is influenced by various

parameters, such as the stack current Ist, the stack temperature T , the oxygen

excess ratio λca, the hydrogen excess ratio λan,, and the inlet air humidity φca,in

(refer to figure 6.9). These operating conditions are usually optimised for

maximum output power efficiency and minimum hydrogen consumption. To

assist this optimisation process, response surface methodology (RSM) is used to

describe the relationship between the output and the inputs of the system. This

study takes account of the uncertainties in fuel cell output power and hydrogen

consumption in the optimisation process, as illustrated in figure 6.10.
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Figure 6.9. The relationships and modelling of variables in the optimisation

of PEM fuel cell design with a focus on optimising power subject to a low

hydrogen mass flow rate. Reprinted from [28], Copyright 2018, with

permission from Elsevier.

Figure 6.10. The framework used to apply PolyMoment to determine the

statistical properties of the PEM fuel cell. Reprinted from [28], Copyright

2018, with permission from Elsevier.

The response surface of the PEM fuel cell’s output power is constructed using

a second-order polynomial model:

G(X) = a00 +
N

∑
i=1

a0iXi +
N

∑
i=1

aiiXi
2 +

N−1

∑
i=1

N

∑
j=i+1

aijXiXj + ε.

Here, G(⋅) denotes the output response, X denotes the vector of design

variables, N  denotes the number of design variables, and {a00, a0i, aii, aij} is

the set of model coefficients. Table 6.2 presents the lower and upper bounds of

the input stack current, stack temperature, oxygen excess ratio, hydrogen excess

ratio, and inlet air humidity.

Table 6.2. The minimum and maximum values of the design variables used to construct the RSM

model of PEM fuel cell output power and the statistical properties (probability distribution and

coefficient of variation) attributed to the respective design variables for probabilistic analysis.

Design variable Minimum

l

Median

l

Maximum

l

Probability

di t ib ti

Coefficient of

i ti



g
value value value distribution variation

Design variable Minimum

value

Median

value

Maximum

value

Probability

distribution

Coefficient of

variationStack current, 

Ist (A)

36.0 43.0 50.0 Uniform 0.01

Stack

temperature, T
(°C)

55.0 60.0 65.0 Uniform 0.01

Oxygen excess

ratio, λca

1.5 2.5 3.5 Normal 0.01

Hydrogen

excess ratio, λan

1.1 1.3 1.5 Normal 0.01

Inlet air

humidity, ϕca,in

0.6 0.8 1.0 Uniform 0.01

The first step is to derive symbolic expressions for the high-order moment of 

G(⋅) using the toolbox in section 4.2. The next step involves substituting the

numerical values of the model coefficients and the other parameters of X to

obtain the statistical parameters of G(⋅). The optional third step is a sensitivity

or robustness analysis.

6.4.2 Sensitivity analysis

This study aims to find the optimal combination of design variables that results in

the highest output power P  and the lowest hydrogen mass flow rate WH2
 for a

PEM fuel cell. To ensure economical operation, it is crucial to minimise WH2
. To

determine the design’s robustness, the sensitivities of the mean and standard

deviation of P  and WH2
 with respect to the stack current Ist and the hydrogen

excess ratio λan are analysed using the 3D surface plot shown in figure 6.11.



Figure 6.11. Surface plots showing the influence of the stack current Ist
and hydrogen excess ratio λan on the (a) mean and (b) standard deviation of

the output power P as well as (c) on the mean and (d) standard deviation of

the hydrogen mass flow rate. The other parameters are kept constant, as

follows: the stack temperature is 60 °C, the oxygen excess ratio is 2.5, and

the air humidity ratio is 0.8. All the parameters are assumed to have distinct

probability distributions with a coefficient of variation of 0.01. Reprinted

from [28], Copyright 2018, with permission from Elsevier.

The other parameters were kept constant and were assumed to have a

coefficient of variation of 0.01. As can be seen in figures 6.11(a) and (b), the

mean and standard deviation of the output power are more sensitive to changes

in Ist than to changes in λan. However, both Ist and λan have an equal impact on

the mean and standard deviation of WH2
, as shown in figures 6.11(c) and (d).

6.4.3 Determination of the optimal operating conditions for

RBDO and RBRDO

There are two ways to optimise the design of a PEM fuel cell for optimal power

output while maintaining a low hydrogen flow rate of 3e−5 kg s−1: (1) reliability-

based optimisation with a 99% confidence constraint and (2) reliability-based

robust optimisation, which also minimises the standard deviation of the output

power and the hydrogen flow rate.
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The objectives and constraints are set using a sequential quadratic

programming algorithm [39], and the PolyMoment framework is used to calculate

the reliability and the standard deviation. The Pearson system of distributions is

used for approximation. The output power is represented by equation (6.5) with 

N = 5, and the hydrogen mass flow rate is given by equation (6.4).

For this case study, the problem of reliability-based optimisation can be

mathematically formulated as:

where d
L
 and d

U
 are the lower and upper bounds of the vector of design

variables d, respectively.

Based on the optimisation results, the highest mean output power of 1329.56

W can be achieved with the following parameters: a stack current of 42.16 A, a

stack temperature of 63.98 °C, an oxygen excess ratio of 3.50, a hydrogen

excess ratio of 1.10, and an inlet relative air humidity of 0.63. These values also

ensure, with 99% confidence, that the hydrogen flow rate stays below 3e−5 kg

s−1. The results are even consistent with those of other advanced optimisation

algorithms, such as the genetic algorithm [16] and stepwise optimisation [17,

18].

Figure 6.12 compares the results of the PolyMoment framework with Monte

Carlo simulations that include and exclude uncertainties in the hydrogen mass

flow rate. The Monte Carlo simulations, which are considered to represent the

current state of the art in the field but are computationally intensive,

demonstrate close agreement with the results from PolyMoment. Furthermore,

PolyMoment offers a more computationally efficient approach than the Monte

Carlo simulations.

Maximise : μG(d,X),

subject to : WH2(d, X) ⩽ 3e−5 kg,

where : d
L ⩽ d ⩽ d

U and d = E[X],
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Figure 6.12. A comparison between the probability distribution obtained

from the PolyMoment framework and those obtained using Monte Carlo

simulations for the optimal parameter values that lead to the maximum

output power. Reprinted from [28], Copyright 2018, with permission from

Elsevier.

However, the Monte Carlo simulation that excludes uncertainties in the

hydrogen mass flow rate has a 50% chance of exceeding the design constraint

for the hydrogen mass flow rate, which could lead to increased hydrogen

consumption and cost. This highlights the importance of considering

uncertainties when optimising for the power output in this field. The maximum

power output that can be attained without considering uncertainties is 1545.25

W, as reported in [29].

The standard deviations of the output power and the hydrogen flow rate of

the PEM fuel cell can be reduced to improve the quality of the design. This results

in a robust design that is less affected by external factors and more consistent in

its output. PolyMoment can be used to calculate the standard deviation and

minimise it as an additional objective for a robust fuel cell design.

Mathematically, the minimisation of these additional parameters can be added

into the optimisation algorithm as follows:

where G0 and W 0
H2

 denote the initial values of the output power and

hydrogen flow rate, respectively, and {w1,w2,w3} are weights assigned by the

design engineer based on design priorities such that w1 + w2 + w3 = 1. The

standard deviations of both G(⋅) and WH2(⋅) can be symbolically obtained from

PolyMoment in figure 6.10.

The impacts of setting different priorities in the optimisation problem (6.7)

were studied using three sets of weights {w1,w2,w3}. Table 6.3 shows the

values of three parameters of interest for all three scenarios obtained through

MC simulation. The results show that the three scenarios lead to different fuel

cell designs. The designer can choose the weights in problem (6.7) to balance

the trade-off between maximising the mean power, the robustness of power, and

the hydrogen flow rate. A trade-off and cost–benefit analysis is needed for the

final optimal operating parameters. PolyMoment is a preferable option for

uncertainty evaluation, as it is accurate, computationally efficient, and

straightforward to use for design optimisation regardless of the problem’s

nonlinearity and dimensionality. Incorporating system uncertainties is crucial for

minimize : w1
μG

μG0
+ w2

σG

σG0
+ w3

σWH2

σ
W 0

H2

,

subject to : WH2(d, X) ⩽ 3e−5 kg,

where : d
L ⩽ d ⩽ d

U and d = E[X],



a dependable and high-quality PEM fuel cell design, making it a valuable tool for

design engineers.

Table 6.3. The differences in the mean and the standard deviation of a fuel cell’s output power and

the standard deviation of hydrogen flow rate for different weights in the optimisation problem shown

in (6.7). The results were obtained using MC simulation.

Weights 

{w1,w2,w3}

Mean

output

power, μG

(W)

Standard deviation of

the output power, σG

(kg s−1)

Standard deviation of the

hydrogen flow rate, σWH2

(kg s−1)

{1,0,0} 1329.56 12.32 4.11e−7

{ 1
3 , 1

3 , 1
3 } 1121.32 9.93 3.51e−7

{ 5
9 , 2

9 , 2
9 } 1328.28 12.20 4.10e−7

6.5 Magnetic sensor module design

The design of magnetic sensors often involves the use of computer simulations,

such as the FE modeling, followed by a design optimisation process to determine

the optimal parameters that meet system constraints. However, this approach

can be computationally expensive for high-dimensional systems and does not

account for variations in manufacture that can lead to the production of

noncompliant products. To address these shortcomings, this case study presents

the use of a combined approach that uses the parametric model order reduction

(PMOR) method and the reliability-based design optimisation method within the

PolyMoment framework.

Specifically, it focuses on the design of a magnetic sensor for a linear motor

mover position detector and uses a three-dimensional (3D) model. A new

approach is proposed, incorporating proper orthogonal decomposition with

dynamic mode decomposition (POD-DMD) [40, 41], multiparameter moment

matching, and a response surface moment-based RBDO method that uses the

PolyMoment framework to achieve an accurate and efficient analysis. This

method reduces the risk of noncompliance caused by manufacturing

uncertainties and provides a faster computational process. The design obtained

from the presented method is compared to that obtained from a deterministic

optimisation method to demonstrate its effectiveness.

Figure 6.13(a) displays a 3D view of the magnetic sensor and its placement on

the stator of the linear motor in the xyz plane. The magnetic sensor module

includes a Nd–Fe–B permanent magnet (PM) and three iron cores, labelled I, II,

and III. A Hall integrated circuit is positioned between cores I and II. The PM is

magnetised in the negative Y  direction and the desired magnetic flux density 

BX is measured at the midpoint of the airgap g2 in the X direction.



Figure 6.13. A linear position sensor module located on a stator. (a) The

arrangement of the sensor module arrangement on the stator and (b) the

parameters of the sensor module. PM denotes permanent magnet [42].

The sensor operates by detecting changes in flux density caused by changes

in reluctance. Due to the alternating tooth–slot structure of the linear motor

stator, the flux density distribution at the midpoint of g2 is sinusoidal for a two-

pole pitch displacement. For the Hall integrated circuit to output a minimum of 1

V peak to peak, the sensor’s peak flux density (PFD) must be at least 0.1 T. The

total harmonic distortion (THD) should be less than 1%. To meet these

requirements, the sensor must undergo a thorough parametric study and

optimisation.

6.5.1 Problem formulation

Figure 6.14 shows the PMOR-RBDO framework, which starts with a POD-DMD-

based PMOR method to achieve a computationally efficient result and then uses

an RBDO technique to find the optimal sensor design that takes account of

manufacturing uncertainties. To find the global optimum, this study uses the

genetic algorithm (GA) as a heuristic method instead of gradient-based

optimisers.



Figure 6.14. The flowchart of the PMOR-RBDO Framework. The RBDO

portion of the flowchart, shown in the left half, incorporates the PolyMoment

framework [42].

Equation (6.8) represents the mathematical model of the magnetic sensor

module shown in figure 6.13, which is described as a nonlinear magnetostatic

problem with no external electric source. In this equation, M  and K are square

matrices of size n × n, Y (t) is the state vector, F (t) is the source vector, and 

N(t) is the nonlinearity associated with the system. The equation shows how



(6.8

)

(6.9

)

the magnetic field MY (t) in the module is affected by the derivative of Y (t),

the source vector F (t), and the nonlinearity N(t).

MY (t) +K
dY (t)

dt
= F (t) +N(Y (t))

To make this high-dimensional system more manageable, equation (6.6.1) is

transformed into equation (6.6.2) using a combination of the singular value

decomposition (SVD)-based POD method and the DMD [40, 43].

MrYr(t) +Kr

dYr(t)

dt
= Φ*

F (t) + Φ*ΦDMD diag(ew
DMDt)p,

where p = (ΦDMD)
†
F1, Mr = Φ*MΦ, and Kr = Φ*KΦ. ΦDMD are the

DMD bases for rank k, p is the initial condition, and wi are the eigenvalues. To

include the effects of parameters on the system, multiparameter moment

matching with the Taylor series is used to parameterise the equation. The

magnetic sensor design is optimised using two different scenarios:

1. Deterministic optimisation: in this scenario, only the PMOR model is used,

which does not account for the uncertainties in the design parameters due to

manufacture. This method aims to optimise the peak flux density and total

harmonic distortion without considering their tolerance effects.

2. Response surface moment-based RBDO: in this scenario, the tolerance

effects of the design parameters are considered during the optimisation, with

a near-negligible failure probability of 0.01%. The optimisation takes account

of the uncertainties caused by machines with tolerances of ±0.05 and ±0.1

mm. The actual constraint noncompliance is then calculated using the Monte

Carlo method with 106 samples.

6.5.2 The results of the PolyMoment-based RBDO method

The results are summarised in table 6.4, which shows that the deterministic

design meets the set constraints but has a higher probability of failing to meet

the required PFD constraint than the desired 0.01% because it does not consider

the effects of manufacturing tolerance. Figure 6.15 shows that up to 11% of the

probability distribution of the PFD could fail to meet the desired constraints for

higher manufacturing uncertainties. On the other hand, RBDO avoids this

problem and does not compromise the THD, as shown in table 6.4. The results

also show that using the PMOR model and the proposed PolyMoment-based

RBDO method improves the computational speed significantly compared to using

the full FE model. The proposed method provides a significant improvement in

terms of design noncompliance cost, computational speed, and accuracy, making

it valuable for the production-ready design of magnetic sensors.

Table 6.4. Optimal design of the magnetic sensor and constraint compliance for deterministic

optimisation and RBDO. FEV denotes function evaluation counts.



op sa o  a d O   de o es u c o  e a ua o  cou s

Optimisation

method

Tolerance

(mm)

Optimal

design

Failure

probability
Required

FEV by GA

PMOR

model

calls
PFD

(T)

THD

(%)

PFD

(%)

THD

(%)

Deterministic

(Scenario 1)

±0.05 0.13 0.24 0.63 0.00 2200 2200

±0.1 0.13 0.24 10.97 0.00 2200 2200

RBDO (Scenario

2)

±0.05 0.16 0.24 0.00 0.00 58 600 7020

±0.1 0.20 0.24 0.00 0.00 58 600 6560

Figure 6.15. Probability distributions of the peak flux densities (PFDs)

obtained using the MC method for deterministic and RBDO designs with

manufacturing tolerances of (a) ±0.05 mm and (b) ±0.1 mm.

6.6 A multistorey three-dimensional steel

structure: reliability analysis and optimisation

This section describes a case study in the field of structural design optimisation

that focuses on a complex and challenging engineering problem. The study uses

the PolyMoment-based RBDO method to evaluate uncertainty and ensure safety,

by combining high-order moment-based uncertainty analysis with efficient

response surface modelling. This method outperforms existing methods in terms

of accuracy and computational efficiency, making it a significant case study in

the field.

Figure 6.16 illustrates the finite element model of a five-story steel-framed

modular building consisting of six identical corner-supported modules on each



floor. The modules are 7.2 m long, 3.2 m wide, and 3.0 m high, with parallel-

flange sections for beams and square hollow sections for columns. The floors are

made of 100 mm thick concrete slabs, and all inter-module connections are

assumed to be ideally pinned.

Figure 6.16. A three-dimensional multistorey structure in which (a)

represents the single volumetric module and (b) represents the full

structural model. Reprinted from [44], Copyright 2020, with permission from

Elsevier.

Uncertainties in steel-framed modular buildings often stem from the use of

standardised prefabricated steel modules. When multiple modules are put

together to form a complex frame, it is crucial to consider the overall structural

reliability. This is where the computational efficiency and accuracy of the

PolyMoment method can be highly beneficial for engineers. The successful

application of this method to a complex three-dimensional multistorey steel

structure highlights its importance in understanding the implications of analytical

uncertainty evaluation in engineering design.

6.6.1 Problem formulation

The FE model for the structure shown in figure 6.16 was obtained using the

method outlined in [44]. The model represents a multistorey steel-framed

structure that is subjected to a combination of loads, including self-weight and

superimposed dead load, live load, and wind load. The dead load calculation was

performed using the ANSYS gravity field [45]. The wind load was determined

based on the wind speed for Cyclonic Region C as per the Standards Association

of Australia’s AS1170.2 [46], and the design wind direction was assumed to be

parallel to the global X-direction.



Three performance functions were selected, including G1, which is the inter-

storey drift under SLS loading (AS1170.0 [3]), G2, which is the ULS performance

of columns subjected to combined axial N
*
x and flexural actions M

*
y  and M

*
z

(AS4100 [47]), and G3, which is the ULS performance of beams (AS4100 [47]).

The structure was considered to have failed if any one of the performance

functions was not met. The target reliability index was set at β = 3 for G1 and 

β = 3.8 for G2 and G3, as per ISO 13822 [48].

In the optimisation process, variables such as Mcx and Mcy represent the

member moment capacities in the principal and minor axes, respectively. Ncx is

the column capacity, Zbe and Zce are the section modules for beams and

columns, respectively, Ab and Ac are the cross-sectional areas of beams and

columns, and details such as the material and geometric properties can be found

in table 6.5. The probabilistic models for load variables in this table were

determined based on the Australian Building Codes Board Handbook [49] and the

material models based on the Joint Committee on Structural Safety code [50].

Table 6.5. Properties of the random variables for the three-dimensional multistorey structure

problem; CoV denotes the coefficient of variation.

Description Distribution

Median

CoV
SLS ULS

SIDL Superimposed dead

load (Pa)

Lognormal 1000 0.10

LL Live load (Pa) Lognormal 1500 0.43

wc Width of column (Pa) Normal Not applicable 0.0205

tc Wall thickness of

column (Pa)

Normal Not applicable 0.0362

wfb Flange width of beam

(Pa)

Normal Not applicable 0.0132

dbb Depth of beam (Pa) Normal Not applicable 0.0364

tfb Flange thickness of

beam (Pa)

Normal Not applicable 0.0182

twb Web thickness of

beam (Pa)

Normal Not applicable 0.0151

Es Elastic modulus of

steel (Pa)

Lognormal 206×109 0.03

Ec Elastic modulus of Lognormal 21.8×109 0.15



(6.1

0)

Description Distribution

Median

CoV
SLS ULS

Ec as c odu us o

concrete (Pa)

og o a 21.8×10 0 5

pW Windward wind

pressure (Pa)

Lognormal 169.5040 432.0960 0.16

pL Leeward wind

pressure (Pa)

Lognormal 56.4987 144.0309 0.16

pR Roof wind pressure

(Pa)

Lognormal 169.4961 432.0927 0.16

RouS Density of steel (kg

m−3)

Lognormal 7700 0.01

RouC Density of concrete

(kg m−3)

Lognormal 2400 0.04

fy Yield stress of steel

(Pa)

Lognormal 350×106 0.05

The starting point for the optimisation was set at 

{wc, tc,wfb, dbb, tfb, twb} = {100, 9.0, 133, 202, 7.0, 5.0} mm. The

optimisation of the structure was carried out by minimising the total volume of

the columns and beams and reducing the structural self-weight, as described in

detail below:

6.6.2 The resultant design and benchmarking

Table 6.6 presents the results of the RBDO problem for the complex steel

structure shown in figure 6.16; in this table, reliability analysis based on PMA

from section 3.2 is utilised to compare the outcomes of the PolyMoment method,

which was applied with up to Nm = 4 and Nm = 8 moments. The table reports

find : wc, tc,wfb, dbb, tfb and twb

minimise : f = ∑LcAc + ∑LbAb

subject to: G1 = Δ − H
500 ⩽ 0

G2 = (
M

*
y

Mcy
)

1.4

+ ( M
*
z

Mcz
)

1.4

⩽ 1,

where Mci = Mcs(1 −
N

*
x

Ncx
) for i = x, y,Ncx = αcAcfy and

Mcs = Zcefy

G3 = αmαsMbs, where Mbs = Zbefy,

where : αm = 1.0H = 3 m∑Lc = 720∑Lb = 1248.



the reliability indexes of the final RBDO designs, which were obtained from the

ANSYS model of the structure. The reliability indexes were calculated using the

Monte Carlo method. Only the final reliability index of performance function G1 is

shown in table 6.6, as the reliability indexes of both G2 and G3 are infinite. This

implies that G1 is the only constraint that plays a role in determining the final

design.

Table 6.6. RBDO results for the three-dimensional multistorey structure problem. The reliability

indexes β of G2 and G3 are infinite. The PMA was employed using a recent MPP-based algorithm

provided in [51] for reliability analysis.

Method

Final design
FE

cowc tc wfb dbb tfb twb C

Deterministic 0.0947 0.0050 0.0750 0.2300 0.0120 0.0060 5.0801 1

PMA 0.0988 0.0050 0.0750 0.2300 0.0120 0.0060 5.1828 6

PolyMoment

(Nm = 4)

0.0976 0.0050 0.0750 0.2300 0.0120 0.0060 5.2000 5

PolyMoment

(Nm = 8)

0.0968 0.0050 0.0750 0.2300 0.0120 0.0060 5.1108 5

The results reveal that the PolyMoment-based method requires significantly

fewer function evaluations (540 evaluations) compared to the PMA method (6022

evaluations), leading to an approximately elevenfold increase in computational

efficiency. The design obtained using the PolyMoment method meets the target

reliability index of β = 3 as described in (6.10), while the design obtained using

the MPP-based RBDO method does not meet this target, potentially resulting in

an underdesigned structure.

In addition, the results in table 6.6 show that the use of higher-order moments

improves the accuracy of the reliability analysis and results in a more optimum

final design with a lower total cross-sectional area, without sacrificing the

number of function evaluations. This efficiency and accuracy improvement is due

to the absence of MPP iterations in finding the reliability constraints and the

selective sampling paradigm in finding the local response surface models.

It is important to note that while the localised response surface with selective

sampling mechanism could be used for MPP-based methods, the added

assumptions on top of the MPP transformation and search strategies may

negatively affect its reliability constraint evaluation accuracy. As such, the

PolyMoment-based probabilistic optimisation methodology is a more desirable

choice for complex problems, especially for safety-critical structural designs that

are required to meet building standards and their reliability constraints, such as

wind and earthquakes.



6.7 Summary

This chapter presented a unified moment-based probabilistic optimisation

framework called the PolyMoment-based approach, which is generic and can be

adapted to RDO, RBDO, and RBRDO optimisation paradigms. The methodology

was explained in detail and its use was demonstrated through five real-world

applications: lithium-ion batteries, vehicle side-impact crashworthiness, a

magnetic sensor module, and a multistorey steel structure.
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Appendix A

Lookup table for the parameters g

and h in Tukey’s gh distribution

The entries for the values of g and h in the table below

satisfy their boundary conditions and were obtained using a

genetic algorithm in MATLAB [1]. The symbol ∣Ω∣ represents

absolute skewness and K − 3 represents excess kurtosis.

∣Ω∣ K − 3g h ∣Ω∣ K − 3g h

0.00 0.0 0.0000 0.0000 0.5 0.5 0.0921 0.10

0.05 0.0 0.0091 0.1088 0.55 0.5 0.1026 0.10



∣Ω∣ K − 3g h ∣Ω∣ K − 3g h
0.10 0.0 0.0183 0.1085 0.6 0.5 0.1137 0.10

0.15 0.0 0.0275 0.1079 0.65 0.5 0.1251 0.09

0.20 0.0 0.0370 0.1071 0.7 0.5 0.1372 0.09

0.25 0.0 0.0464 0.1061 0 0.6 0.0000 0.00

0.30 0.0 0.0561 0.1049 0.05 0.6 0.0086 0.11

0.35 0.0 0.0660 0.1034 0.1 0.6 0.0172 0.11

0.40 0.0 0.0762 0.1017 0.15 0.6 0.0258 0.11

0.45 0.0 0.0868 0.0997 0.2 0.6 0.0346 0.11

0.50 0.0 0.0976 0.0974 0.25 0.6 0.0435 0.11

0.55 0.0 0.1090 0.0948 0.3 0.6 0.0525 0.11

0.60 0.0 0.1209 0.0919 0.35 0.6 0.0618 0.11

0.65 0.0 0.1333 0.0887 0.4 0.6 0.0712 0.11

0.70 0.0 0.1463 0.0851 0.45 0.6 0.0810 0.10

0.75 0.0 0.1602 0.0810 0.5 0.6 0.0910 0.10

0.80 0.0 0.1748 0.0766 0.55 0.6 0.1015 0.10

0.00 0.1 0.0000 0.0000 0.6 0.6 0.1124 0.10

0.05 0.1 0.0090 0.1104 0.65 0.6 0.1238 0.10

0.10 0.1 0.0181 0.1101 0 0.7 0.0000 0.00

0 15 0 1 0 0272 0 1096 0 05 0 7 0 0085 0 11



∣Ω∣ K − 3g h ∣Ω∣ K − 3g h

0.15 0.1 0.0272 0.1096 0.05 0.7 0.0085 0.11

0.20 0.1 0.0365 0.1088 0.1 0.7 0.0170 0.11

0.25 0.1 0.0459 0.1078 0.15 0.7 0.0256 0.11

0.30 0.1 0.0554 0.1066 0.2 0.7 0.0342 0.11

0.35 0.1 0.0652 0.1052 0.25 0.7 0.0430 0.11

0.40 0.1 0.0753 0.1035 0.3 0.7 0.0520 0.11

0.45 0.1 0.0857 0.1015 0.35 0.7 0.0612 0.11

0.50 0.1 0.0964 0.0993 0.4 0.7 0.0705 0.11

0.55 0.1 0.1077 0.0968 0.45 0.7 0.0801 0.11

0.60 0.1 0.1193 0.0940 0.5 0.7 0.0901 0.10

0.65 0.1 0.1316 0.0908 0.55 0.7 0.1004 0.10

0.70 0.1 0.1444 0.0873 0.6 0.7 0.1112 0.10

0.75 0.1 0.1580 0.0834 0.65 0.7 0.1223 0.10

0.00 0.2 0.0000 0.0000 0 0.8 0.0000 0.00

0.05 0.2 0.0089 0.1120 0.05 0.8 0.0084 0.12

0.10 0.2 0.0179 0.1117 0.1 0.8 0.0168 0.12

0.15 0.2 0.0269 0.1112 0.15 0.8 0.0253 0.11

0.20 0.2 0.0361 0.1104 0.2 0.8 0.0339 0.11

0 25 0 2 0 0454 0 1095 0 25 0 8 0 0426 0 11



∣Ω∣ K − 3g h ∣Ω∣ K − 3g h

0.25 0.2 0.0454 0.1095 0.25 0.8 0.0426 0.11

0.30 0.2 0.0548 0.1083 0.3 0.8 0.0515 0.11

0.35 0.2 0.0645 0.1069 0.35 0.8 0.0605 0.11

0.40 0.2 0.0745 0.1052 0.4 0.8 0.0698 0.11

0.45 0.2 0.0847 0.1033 0.45 0.8 0.0793 0.11

0.50 0.2 0.0953 0.1011 0.5 0.8 0.0892 0.11

0.55 0.2 0.1063 0.0987 0.55 0.8 0.0993 0.10

0.60 0.2 0.1179 0.0959 0.6 0.8 0.1099 0.10

0.65 0.2 0.1298 0.0929 0 0.9 0.0000 0.00

0.70 0.2 0.1425 0.0894 0.05 0.9 0.0083 0.12

0.75 0.2 0.1558 0.0857 0.1 0.9 0.0167 0.12

0.00 0.3 0.0000 0.0000 0.15 0.9 0.0251 0.12

0.05 0.3 0.0088 0.1135 0.2 0.9 0.0336 0.12

0.10 0.3 0.0177 0.1132 0.25 0.9 0.0422 0.11

0.15 0.3 0.0266 0.1127 0.3 0.9 0.0510 0.11

0.20 0.3 0.0357 0.1120 0.35 0.9 0.0599 0.11

0.25 0.3 0.0448 0.1111 0.4 0.9 0.0691 0.11

0.30 0.3 0.0542 0.1099 0.45 0.9 0.0785 0.11

0 35 0 3 0 0637 0 1085 0 5 0 9 0 0882 0 11



∣Ω∣ K − 3g h ∣Ω∣ K − 3g h

0.35 0.3 0.0637 0.1085 0.5 0.9 0.0882 0.11

0.40 0.3 0.0736 0.1069 0.55 0.9 0.0983 0.11

0.45 0.3 0.0837 0.1050 0.6 0.9 0.1088 0.10

0.50 0.3 0.0942 0.1029 0 1 0.0000 0.00

0.55 0.3 0.1051 0.1005 0.05 1 0.0082 0.12

0.60 0.3 0.1164 0.0978 0.1 1 0.0165 0.12

0.65 0.3 0.1282 0.0949 0.15 1 0.0248 0.12

0.70 0.3 0.1407 0.0915 0.2 1 0.0333 0.12

0.00 0.4 0.0000 0.0000 0.25 1 0.0419 0.12

0.05 0.4 0.0087 0.1150 0.3 1 0.0505 0.11

0.10 0.4 0.0175 0.1147 0.35 1 0.0593 0.11

0.15 0.4 0.0264 0.1142 0.4 1 0.0685 0.11

0.20 0.4 0.0353 0.1135 0.45 1 0.0778 0.11

0.25 0.4 0.0444 0.1126 0.5 1 0.0874 0.11

0.30 0.4 0.0536 0.1115 0.55 1 0.0974 0.11

0.35 0.4 0.0630 0.1101 0.6 1 0.1077 0.10

0.40 0.4 0.0728 0.1085 0 1.1 0.0000 0.00

0.45 0.4 0.0828 0.1067 0.05 1.1 0.0082 0.12

0 50 0 4 0 0931 0 1047 0 1 1 1 0 0164 0 12



∣Ω∣ K − 3g h ∣Ω∣ K − 3g h

0.50 0.4 0.0931 0.1047 0.1 1.1 0.0164 0.12

0.55 0.4 0.1039 0.1023 0.15 1.1 0.0247 0.12

0.60 0.4 0.1150 0.0997 0.2 1.1 0.0330 0.12

0.65 0.4 0.1266 0.0968 0.25 1.1 0.0414 0.12

0.70 0.4 0.1389 0.0935 0.3 1.1 0.0500 0.12

0.00 0.5 0.0000 0.0000 0.35 1.1 0.0588 0.12

0.05 0.5 0.0086 0.1165 0.4 1.1 0.0679 0.11

0.10 0.5 0.0173 0.1162 0.45 1.1 0.0770 0.11

0.15 0.5 0.0261 0.1157 0.5 1.1 0.0866 0.11

0.20 0.5 0.0349 0.1150 0.55 1.1 0.0964 0.11

0.25 0.5 0.0439 0.1141 0 1.2 0.0000 0.00

0.30 0.5 0.0531 0.1130 0.05 1.2 0.0081 0.12

0.35 0.5 0.0624 0.1117 0.1 1.2 0.0162 0.12

0.40 0.5 0.0720 0.1101 0.15 1.2 0.0244 0.12

0.45 0.5 0.0819 0.1083 0.2 1.2 0.0327 0.12

Reference

[1] MATLAB version 9.1.0.441655 (R2016b). Natick, Massachusetts: The
MathWorks Inc., 2016
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Appendix B

Lookup table for the Mellin

transforms of various families of

probability distribution

This appendix contains the Mellin transforms of commonly

used probability distributions. Note that δ, ω, ω1, ω2 > 0 and

− , (a)
n

= a(a − 1) ⋯ (a − n + 1) follow the

Pochhammer notation [1], a‼ denotes the double factorial,

and  denotes the Mellin transform of the

probability density function , whereby V  is a random

variable with a standard tabulated distribution and m is an

integer. Column one defines the positive half of the PDF 



 of V , where ω and δ represent the shape and scale

parameters, respectively. Column two lists the

corresponding Mellin transform  for each

distribution . Only one-sided (positive) transforms are

listed, because this tabulation enables the flexible

evaluation of one-sided, two-sided symmetrical, or two-

sided asymmetrical distributions. The appropriate usage will

be discussed in the following subsections. Columns three

and four list the simplified expressions for the Mellin

transform of , denoted by , which

is crucial in determining E[V m] [2].

Distribution

Simplified form o

For odd m

Normal: 
δs−1[

2(s−3)/2Γ( s

2 )

√π
] δm[

2m/2−1( m−1
2 )!

√π
]

Student’s t:

δs−1[
ω

(s−1)
2 Γ( s

2 )Γ( ω+1
2 − s

2 )

2√πΓ( ω

2 )
] δs−1[

ω
m
2 Γ( m+1

2 )Γ

2√πΓ( ω

2

Triangular:
δs−1[ Γ(s)

Γ(2+s) ] δm[ 1
m2+3m+2 ]

Trapezoidal: 1[
(1−ωs+1) Γ(s) ]

(1 ω
m+2)

⎡ ⎤



Distribution

Simplified form o

For odd m

Trapezoidal:
δs−1[

(1 ω )
(1−ω2)

Γ(s)
Γ(2+s) ]

δm

(1−ω
+ )

(1−ω2)

m2+3m+2

Beta: 
δs−1[ Γ(ω1+ω2)Γ(ω1−1+s)

2Γ(ω1)Γ(ω1+ω2−1+s) ] δm[
(ω1+m−1)

m

2(ω1+ω2+m−1

Uniform: 
δs−1[ Γ(s)

2Γ(1+s) ] δm[
1
2

m+1 ]

Gamma: 
δs−1[ Γ(ω−1+s)

2Γ(ω) ] δm[
(ω+m−1)

m

2 ]

Laplace: 
δs−1[ Γ(s)

2 ] δm[ m!
2 ]

Weibull: δs−1[ ω

2 Γ(1 − 1
ω

+ s

ω
)] δm[

ωΓ( m

ω
+1)

2 ]

Maxwell: 

δs−1[ 2
(s+1)

2

√π
Γ(1 + s

2 )] δm[ 2
m
2 +1

√π
( m+1

2 )

Lognormal: exp( (s−1)2
δ2

2 ) exp( m
2
δ

2

2 )

⎡⎢⎣ ⎤⎥⎦



Distribution

Simplified form o

For odd m
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