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Preface 

Presently, the notion of function is not 
as finally crystallized and definitely 
established as it seemed at the end of 
the 19th century; one can say that at 
present this notion is still in evolution, 
and that the dispute concerning the 
vibrating string is still going on only, 
of course, in different scientific 
circumstances, involving other 
personalities and using other terms. 

Luzin (1935) 

It is symbolic that in that same year of 1935, S. L. Sobolev, who was 26 years old at 
that time, submitted to the journal Matematicheskii Sbornik (Sbornik: Mathematics) 
his famous paper Sobolev (1936), published at the same time in its brief form in 
Doklady AN SSSR (Doklady Mathematics) (Sobolev 1935). This work established the 
foundation of a completely new outlook on the concept of function, unexpected even 
for N. N. Luzin—here we speak about the generalized functions. It is also symbolic 
that Sobolev’s work was devoted to the Cauchy problem for hyperbolic equations 
and, particularly, to the vibrating string problem. There is no doubt that the above 
Luzin’s statement about the concept of a function will be relevant for a long time, 
and the incentive for the development of this fundamental concept of mathematics 
will be, as before, the equations of mathematical physics. This special role of the 
equations of mathematical physics (in other words, partial differential equations, 
which are closely related to natural phenomena) can be explained by the fact that 
they express the mathematical essence of fundamental laws of the natural sciences 
and consequently provide a source and stimulus for the development of fundamental 
mathematical concepts and theories. In the present book, we give fundamentals of the 
main ideas, concepts, and results of equations of mathematical physics in the context 

vii



viii Preface

of various theories of generalized functions (including, of course, L. Schwartz’s 
theory of distributions). 

The crucial role in the appearance of the theory of generalized functions (in the 
sense the theory of distributions) was played by J. Hadamard,1 K. O. Friedrichs, 
S. Bochner, and especially by L. Schwartz, who published, in 1944–1948, a series of 
remarkable papers on generalized functions, and in 1950–1951 the two-volume book 
(Schwartz 1950–1951), which immediately became classical. Being a masterpiece 
and oriented to a wide circle of specialists, this book attracted the attention of 
many people to the theory of generalized function.2 A substantial contribution to 
its development was also made by such prominent mathematicians as I. M. Gelfand, 
M. I. Vishik, L. Hörmander, V. S. Vladimirov, V P. Maslov, and many others. As 
a result, the theory of generalized functions has changed all modern analysis and, 
in the first place, the entire theory of partial differential equations. Therefore, the 
foundations of the theory of distributions became necessary for general education of 
physicists and mathematicians. 

Thus, it is not surprising that a number of excellent monographs and text-
books (see, in particular, Schwartz (1950–1951); Sobolev (2008); Gelfand et al. 
(1958–1966); Lions and Magenes (1968); Tréves (1980); Hörmander (1983–1985); 
Shubin (1987); Gilbarg and Trudinger (1983); Palamodov (1991); Kanwal (1998); 
Taylor (1974); Reed and Simon (1972); Vladimirov (1971); Oleinik (2007); Vekua 
(1962); Courant (1992); Shilov (1965); Godunov (1979); Mikhailov (1978)) are de-
voted to the equations of mathematical physics and distributions. However, most of 
them are intended for rather well-prepared readers. As for the present book, I hope it 
will be clear even to undergraduates majoring in physics and mathematics and will 
serve as a starting point for a deeper study of the above-mentioned books and papers.

1 See the footnote on p. 148. 
2 As one of the referees of the present book noted, “Sobolev defined completely distributions in 
his paper of 1936. However, he did not get much credit for his remarkable results. Sobolev’s paper 
was published in French, but Laurent Schwartz referred to it only in a minuscule footnote. In two 
papers, Kiselman (2007, 2019), possible reasons behind this neglect are briefly mentioned.” The 
referee also points out the following phrase of Jesper Lützen, who has written a most interesting 
book Lützen (1982) on the prehistory of the theory of distributions: “It is not enough to do 
something important; you must also say that you have done something important.” Schwartz’s 
substantial contribution was application of the Fourier transform for the Sobolev spaces . W p,m

in the case .p = 2. In this Hilbert case, the Parseval identity holds for the Fourier transform. 
This significantly simplified the involved proofs in the theory of general Sobolev spaces, which 
promoted the active development and popularization of generalized functions in linear problems 
and led to the introduction of other important spaces of generalized functions. In turn, general 
Sobolev spaces .W p,m , Sobolev–Slobodetskii spaces, and their generalizations are very important 
in the study of nonlinear problems, approximation problems, optimal control problems, etc. (see, 
in particular, Vishik (1961, 1963); Dubinskii (1968); Lions (1969); Ladyzhenskaya and Ural’tseva 
(1968); Ladyzhenskaya et al. (1988); Besov et al. (1978); Temam (1979); Pokhozhaev (1983); 
Vishik and Fursikov (1988); Babin and Vishik (1992); Fursikov (1999); Chepyzhov and Vishik 
(2001); Tikhomirov (1990); Arestov (1996); Besov (2013); Malykhin (2016); Vasil’eva (2020); 
Alimov and Tsar’kov (2021); Konyagin (2022)). 
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The contents of the book are reflected in the table of contents. In short, the book 
provides an interrelated presentation of a number of basic ideas, concepts, and results 
of the theory of generalized functions and equations of mathematical physics. 

Chapter 1 introduces the reader to the initial elements of the language of gener-
alized functions in the context of classical equations of mathematical physics (the 
Laplace equations, the heat equation, the string equation). Here we also present the 
basics of the theory of the Lebesgue integral and introduce the Riesz spaces of inte-
grable functions. In the section devoted to the heat equation, the reader will be able 
to get acquainted with the method of dimension and similarity, which is usually not 
presented for mathematical students, and which is very useful at the initial stage of 
understanding the mathematical physics. Many useful results can be easily obtained 
using the concept of a .δ-sequence on some or other space of test functions (see . §2). 
In particular, in this way, we obtain the theorem on the inverse Fourier transform for 
functions from the Sobolev class .W1,n(Rn) (see . §17). 

Chapter 2 is devoted to elements of the theory of generalized functions in the sense 
of Schwartz (distributions in the sense of Schwartz). We believe that our presentation 
may be interesting also to specialists. In particular, in . §16 we prove that the topology 
in the space . D′ of Schwartz distributions, which is usually postulated as something 
given from heaven, is actually uniquely determined from the following two natural 
requirements: first, the space . D′ must contain the space . D� of Sobolev derivatives 
(i.e., derivatives of finite order of locally integrable functions), and second, any linear 
functional on . C∞

0 with point support and which is continuous in this topology should 
be representable as a linear combination of the .δ-function and its derivatives. (This 
linear combination is necessarily finite thanks to one important theorem of É. Borel, 
which is proved in . §15.)
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Chapter 3 introduces the reader to some modern methods of studying the equations 
of mathematical physics that are related in one way or another related to the Fourier 
transform. Here we give the fundamentals of the theory of Sobolev spaces, the 
theory of pseudo-differential operators, and the theory of elliptic problems. We 
also give in §23 applications of these theories to the inverse problems of magneto-
electroencephalography. In §24, we derive explicit numerically realizable formulas 
for solutions of elliptic (in particular, quasi-linear) equations with Cauchy data on 
analytic boundary. These formulas are based on Lemma 24.3 on a conformal and 
isometric transformation of an analytic closed curve to a circle. This lemma is also 
a key ingredient in construction of numerically realizable formulas for Poincaré– 
Steklov operators in §25. In §26, questions related to the Fourier–Hörmander integral 
operator and the canonical Maslov operator are discussed. 

In recent years, Luzin’s statement that the dispute over the concept of function 
is still ongoing has received a new confirmation. Once again, the incentive was 
mathematical physics. So, in the theory of superstrings and nanoscopic systems, the 
problem of construction of the theory of p-adic generalized functions was put forward
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(see, for example, Vladimirov (1988) and Volovich and Kozyrev (2009)). The actual 
problem of multiplication of generalized solutions of equations of mathematical 
physics was considered, in particular, in Livchak (1969); Colombeau (1985); Egorov 
(1990); Danilov et al. (1998); Oberguggenberger et al. (2003); Albeverio et al. (2005); 
Shelkovich (2008); Abreu et al. (2016); Shao and Huang (2017). One of the most 
important achievements here was Egorov (1990), and the main ideas and results of 
this paper are given in Appendix A. In Appendix B, A. B. Antonevich described the 
general method of construction of mnemonic function algebras.3 In Appendix C, 
S. N. Samborski presents his very promising theory on the extension of the classical 
differentiation operator and nonlinear operators with partial derivatives. These three 
valuable appendices complete the presentation of the book. 

A few remarks on the style of presentation are worth making. Part of the material is 
given in the “definition–theorem–proof” form, which is convenient for presentation 
of the results in a clear and concentrated form. However, it seems reasonable to allow 
the student not only to study a priori given (“from above”) definitions and proofs 
of theorems, but also to open them when thinking about the questions that arise. 
A number of sections serve this purpose. In addition, some material is given in the 
form of exercises and problems, which are printed in petit and labelled by the letter P 
(with possible reference to “Parking for thinking and solving the problem”). So, 
sometimes the reading does require some effort. However, more difficult problems 
are provided with hints or references. 

There are a lot of footnotes in the book, which is not too typical for mathe-
matical literature, although there are some significant exceptions, for example, the 
book Anosov (2018). The importance of the footnotes can be partially explained by 
V. F. Dyachenko’s humorous remark: “The most important thing should be written 
in footnotes. They are the only ones that are read.” But speaking seriously, most 
of the footnotes are introduced so that when reading a book (which sometimes re-
quires some effort), the reader can take a little break and feel the “faces” of familiar 
(and sometimes unfamiliar) names—authors of theorems, concepts, etc. (the sto-
ries of many of them are truly amazing and inspiring). And I believe that even the 
sophisticated reader will find something interesting and unknown here. For example, 

(1) Why solutions to the Laplace equation are called harmonic functions? 
(2) Why a transformation that Laplace did not even think about is named after 

him? 
In addition, some details of the relationship between the great ones are often 

helpful in understanding the continuity of some ideas, and so the “picture” becomes 
more complete when it is clear who learned from whom. 

I will also clarify the meaning of the term “generalized functions” used in the 
book—these are not only elements of the space . D� of Sobolev derivatives, but 
also elements of the space . D′ of (Schwartz) distributions or of the space .D#(Ω). By  
generalized functions, we will also mean Mikio Sato hyperfunctions and Antonevich

3 Mnemonics in ancient Greek is the art of memorization. I believe that the term mnemonic 
function, which was introduced by A. B. Antonevich, reflecting the need to remember the method 
of approximation of a singularity by smooth functions, will be adopted in the scientific literature. 
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mnemonic function, etc. In short, this is all what develops the concept of a function, 
which N. N. Luzin prophetically wrote about. 

The theorems, lemmas, definitions, exercises, etc. are numbered as . k .m, where 
k is the section number and m is the number of the subsection in this section. 

The present book Equations of Mathematical Physics, Generalized Functions and 
Historical Notes is a new substantially revised and significantly expanded version of 
the author’s book Generalized Functions in Mathematical Physics. Main Ideas and 
Concepts, which was published in Russian in 2020 by Moscow Center for Continuous 
Mathematical Education. In turn, the 2020 edition is a reworked (extended and edited) 
version of the two author’s books with the same title (the first edition (in Russian) was 
published by Moscow State University (1992) and its translation, by Nova Science 
Publishers, New York (2001)). 

I am extremely grateful to Yu. V. Egorov, A. B. Antonevich, and S. N. Samborski, 
who kindly responded to my request to write their three significant appendices 
to the main text of the book. I deeply acknowledge the useful discussions with 
M. S. Agranovich, M. I. Vishik, A. I. Komech, S. V. Konyagin, V. P. Palamodov, 
V. M. Tikhomirov, and M. A. Shubin and their critical remarks that helped improve 
the text of the first and second editions (in 1972 and 2001). My special thanks go to 
D. E. Shcherbakov, who initiated the work on this revised edition and provided great 
assistance in preparing it for publication in 2020. I am also grateful to E. D. Kosov 
for his careful editing of the book, which made it possible to eliminate many typos 
and inaccuracies. 

I am grateful to my good friend Alexey Alimov for the high-quality translation of 
this book. Just look at one masterpiece “with the directness of a Roman (!!!),” which 
vividly and bluntly characterizes Poincaré, who unexpectedly and bluntly credited 
the Laplace transform to Laplace, who, in the actual fact, did not even think about 
this transform. Many thanks also to Donna Chernyk, an Editor of Mathematics at 
Springer Nature, who supplied able assistance in matters pertaining to publication. 
The author is also grateful to Collections l’Ècole polytechnique—Palaiseau and Sofia 
Broström (the daugther of Lars Hörmander) for the photos provided.
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Basic Notation 

.N = {1, 2, 3, . . .}, .Z = {0,±1,±2, . . .} and .Z+ = {0, 1, 2, . . .}—the sets of all natural, 
integer, and nonnegative integer numbers. 

. R and . C—the sets of all real and complex numbers .C � z = Rez + iImz. 

. R and . C—the extended . R and . C. 

.X × Y—the Cartesian product of sets X and Y . 

.X1 = X , . Xn = Xn−1 × X . 
i—the imaginary unit; .i2 = −1; .̊ı = 2πi—the imaginary . 2π. 
.x < y, .x ≤ y, .x > y, .x ≥ y—the order relation in . R. 
.a � 1—a real number .a ∈ R is sufficiently large. 
.{x ∈ X : P}—the set of elements from X satisfying condition P. 
.]a, b] = {x ∈ R : a < x ≤ b}; .[a, b], .]a, b[ and .[a, b[ are defined similarly .]a, b]. 
. {an}—a sequence .{an}∞n=1 = {a1, a2, a3, . . .}. 
. f : X � x 	→ f (x) ∈ Y—the mapping . f : X → Y associating with an .x ∈ X its 

image . f (x) ∈ Y . Sometimes, we will write . f (x) in place of f in cases where it 
is clear that f is meant rather than its value . f (x). 

.A � Ω— See Definition 3.10 on page 7. 

. 1A—the characteristic function of a set .A ⊂ X; in other words, .1A = 1 in A 
and .1A = 0 outside A (i. e., in .X \ A). 

. ⇒—the necessity sign. 

. ⇐⇒—if and only if. 

. 
def
=—by definition. 
.(x |y)—the inner product of elements x and y in a Hilbert space.

xv



Chapter 1
Introduction to Problems of
Mathematical Physics

1 Temperature at a Point? No! In Volumes Contracting to the
Point

Temperature. We know this word from our childhood. The temperature can be mea-
sured by a thermometer. This first impression concerning the temperature is, in a
sense, nearer to the essence of matter than the representation of the temperature as a
function of a point in space and time. Why? Because the concept of the temperature
as a function of a point arose as an abstraction in connection with the conception of
continuous medium. Actually, a physical parameter of the medium under considera-
tion (for instance, its temperature) is first measured by a device in a “large” volume
containing a fixed point .ξ, after which it is measured using a device with better
resolution in a smaller volume (containing the same point), and so on. As a result,
we obtain a (finite) sequence of numbers .(a1, . . . , aM )—the values of the physical
parameter in the sequence of embedded volumes containing the point .ξ. We next
idealize the medium by assuming that the construction of such a numerical sequence
is possible for an infinite nested system of volumes contracting to the point .ξ. This
gives us an infinite numerical sequence .{am}. If we assume (this is the crux of the
conception of the continuous medium1) that such a sequence exists and has a limit
(which does not depend on the choice of the system of nested in domains), then this

1 In some problems of mathematical physics, first of all in nonlinear ones, it is reasonable (see
Appendices A and B) to consider a more general conception of the continuous medium in which
a physical parameter (say, temperature, density, velocity,. . . ) is characterized not by the values
measured by one or another set of “devices,” in other words, not by a functional of these “devices,”
but by a “convergent” sequence of such functionals, which define, as in nonstandard analysis
(Zvonkin and Shubin 1984) (or infinitesimal analysis (Gordon et al. 2013)) a fine structure of
a neighborhood of one or another point of the continuous medium. In this regard, we also note the
paper Malyshev V.A. and Malyshev S.V. (2022), which develops a purely deterministic (without
any stochastic) approach to derivation of macro-laws of continuum mechanics from the micro-laws
of point particles. This reveals the presence of multiple scales in the transition to the continuum.
For more on this subject, see also the journal “Structure of Mathematical Physics,” Editor-in-Chief
V.A. Malyshev (now late, former address: Moscow State University, Moscow, Russia).
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limit is considered as the value of the physical parameter (for instance, temperature)
of the medium at the point .ξ.

Thus, the concept of continuous medium occupying a domain2
.Ω assumes that

the numerical characteristic f of a physical parameter considered in this domain .Ω

is a function in the usual sense: a mapping from the domain .Ω into the real line .R

or the complex plane .C. Moreover, the function f is assumed to have the following
property:

.〈 f , ϕξm〉 = am, m = 1, . . . ,M . (1.1)

Here .am are the above numbers, and the left-hand side of (1.1), which is defined3 by

.〈 f , ϕξ 〉 =
∫

f (x)ϕξ (x) dx,

which is the “average” value of the function f measured near the point .ξ ∈ Ω by using
a “device,” which we will denote by .〈·, ϕξ 〉. The “resolving power” of the “device”
depends on the “device (test) function” .ϕξ : Ω→ R. This function is normalized as
follows:

.

∫
ϕξ (x) dx = 1.

Let us note that more physical are “devices,” in which .ϕξ has the form of a “cap”
in the .ρ-neighborhood of the point .ξ, i.e., .ϕξ (x) = ϕ(x − ξ) for .x ∈ Ω, where the
function .ϕ : Rn � x = (x1, . . . , xn) �→ ϕ(x) ∈ R has the following properties:

.ϕ ≥ 0,
∫
ϕ = 1, and ϕ(x) = 0 for |x | def

=

√
x2

1 + . . . + x2
n > ρ, (1.2)

and .ρ ∈ ]0, 1] is such that .{x ∈ Ω | |x − ξ | < ρ} ⊂ Ω. It can be frequently assumed
that the “device” measures f uniformly in the domain .ω ∈ Ω. In this case, .ϕ = 1ω

|ω | ,
where .1ω is the characteristic function of the domain .ω (i.e., .1ω = 1 in .ω, and
.1ω = 0 outside .ω), and .|ω| is the volume of the domain .ω (i.e., .|ω| =

∫
1ω). In

particular, if .Ω = Rn and .ω = {x ∈ Rn : |x | < α}, then

.ϕ(x) =
⎧⎪⎪⎨
⎪⎪⎩

α−n

|Bn |
for |x | ≤ α,

0 for |x | > α,
(1.3)

where .|Bn | is the volume of the unit ball .Bn
def
= {x ∈ Rn : |x | < 1} in .R

n.

P 1.1 There is a popular phrase to remember the first 9 figures in .π: “May, I have a large container
of coffee beans.” Indeed, writing down in succession the number of letters in this phrase, we get
the first 9 figures in .π: .π ≈ 3.14159265. The exact value of .π is given by the well-known formula

2 In what follows, unless otherwise stated, a domain .Ω is an open connected subset of .Rn with
sufficiently smooth or piecewise smooth .(n − 1)-dimensional boundary .∂Ω.
3 Integration of a function g over a fixed (in this context) domain will be often written without
indication of the domain of integration and sometimes simply as .

∫
g.
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.π = |B2 | (or by the formula . |B3 | = 4π/3). Try to evaluate . |Bn | for .n > 3 (this value will be
required in what follows).

Hint It is clear that . |Bn | = σn/n, where .σn is the surface area of the unit .(n − 1)-dimensional
sphere in .Rn , because

. |Bn | =
∫ 1

0
rn−1σn dr .

If the calculation of .σn for .n > 3 seems to be difficult or uninteresting, consider the following
short and unexpectedly beautiful solution.
Solution We have

.

(∫ ∞

−∞
e−t

2
dt

)n
=

∫
R
n
e−|x |

2
dx =

∫ ∞

0
e−r

2
rn−1σn dr =

σn

2
Γ

( n
2

)
, (1.4)

where .Γ is the Euler function defined for .Reλ > 0 by

.Γ(λ) =
∫ ∞

0
tλ−1e−t dt . (1.5)

For .n = 2, the right-hand side of (1.4) is .π. Hence

.

∫ ∞

−∞
e−t

2
dt =

√
π. (1.6)

Thus, .σn = 2πn/2Γ−1(n/2). Taking .n = 3, we obtain .2Γ(3/2) =
√
π. Using the well-known

formula .Γ(λ + 1) = λ · Γ(λ) (which can be derived from (1.5) by integration by parts), from which
it follows that .Γ(n + 1) = n!, we find that .Γ(1/2) =

√
π. As a result,

.σ2k =
2πk

(k − 1)!, σ2k+1 =
2πk(

k − 1
2
)
·
(
k − 3

2
)
· . . . · 3

2 ·
1
2
. (1.7)

2 The δ-Sequence and the δ-Function

In the preceding section, the idea was indicated that the definition of a function
. f : Ω→ R (or of a function . f : Ω→ C) as a mapping from a domain .Ω ⊂ Rn in .R

(or in .C) is equivalent to evaluation of its “average” values

.〈 f , ϕ〉 =
∫
Ω

f (x)ϕ(x) dx, ϕ ∈ Φ, (2.1)

where .Φ is a sufficiently “rich” set of functions on .Ω. A fairly general result in this
regard is given in § 10. Here, we prove a simple but useful lemma involving a domain
.Ω ⊂ Rn, a point .ξ ∈ Ω, and a function .δε : Rn � x �→ δε(x) ≥ 0, satisfying the
condition

.

∫
R
n
δε(x) dx = lim

σ→0

∫
|x−ξ | ≤σ

δε(x − ξ) dx = 1, (2.2)

where .ε = σ or .ε = 1
σ . If .ε = σ (see Fig. 1.1), then as .δε one can take, for example,

the function
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Fig. 1.1: δ-function via a δ-shaped sequence

.x �→ δε(x) =
ϕ(x/ε)
εn
,

where .ϕ ≥ 0, .ϕ = 0 outside .Bn = {|x | < 1}, and .
∫
ϕ = 1.

Lemma 2.1 Let . f ∈ C(Ω). Then

. f (ξ) = lim
σ→0

∫
Ω

f (x)δε(x − ξ) dx, ξ ∈ Ω, ε = σ or ε = 1/σ, (2.3)

i.e., the value . f (ξ) of a continuous function f can be recovered from the family of
“average values”

.

{∫
f (x)δε(x − ξ) dx

}
0<σ�1

.

Proof For any .η > 0, there exists .σ > 0 such that .| f (x) − f (ξ)| ≤ η if .|x − ξ | ≤ σ.
Hence the absolute value of the expression

.

(
lim
σ→0

∫
Ω

f (x)δε(x − ξ) dx
)
− f (ξ) = lim

σ→0

∫
Ω

( f (x) − f (ξ))δε(x − ξ) dx

is majorized by .η, because .limσ→0
∫
|x−ξ | ≤σ δε(x − ξ) dx = 1, and

. lim
σ→0

∫
|x−ξ | ≤σ

| f (x) − f (ξ)|δε(x − ξ) dx ≤ η lim
σ→0

∫
|x−ξ | ≤σ

δε(x − ξ) dx.

Definition 2.2 Let .Φ be a subspace in the space .C(Ω), and let .ξ ∈ Ω. Also let
.ν → ν0 ∈ R. Consider a sequence of functions .δν: .x �→ δν(x − ξ) such that

. f (ξ) = lim
ν→ν0

∫
Ω

f (x)δν(x − ξ) dx, ξ ∈ Ω, (2.4)
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for any function . f ∈ C(Ω) (for any . f ∈ Φ). Then the mapping .ν �→ δν(x − ξ), where
.x ∈ Ω, is called a .δ-sequence (on the space .Φ) concentrated near the point .ξ. The
last words are usually skipped.

In § 4, we will give example of .δ-sequences on certain subspaces .Φ ⊂ C(Ω), from
which some important results will be obtained. Some examples of such subspaces .Φ

will be given in § 3.

Definition 2.3 The .δ-function in other words the Dirac function4 concentrated at
a point .ξ is defined on .C(Ω) by a (linear) space of functions is a (linear) mapping
from this function space into a real line.

.δξ : C(Ω) � f �→ f (ξ) ∈ R (or C), ξ ∈ Ω, (2.5)

The following notation for the .δ-function defined by (2.5) is also used: .δ(x − ξ),
and its evaluation on a function . f ∈ C(Ω) is denoted by

.〈 f (x), δ(x − ξ)〉 = f (ξ) or 〈δ(x − ξ), f (x)〉 = f (ξ),

or by
.〈 f , δξ 〉 = f (ξ) or 〈δξ, f 〉 = f (ξ).

The Dirac function can be interpreted as a measuring instrument at a point (a “ther-
mometer” measuring the “temperature” at a point) or as a point source (see, for
example, Demidov et al. (2016). If .ξ = 0, then one simply writes .δ or .δ(x).

Definition 2.4 Let .Γ =
⋃n−1

k=0 Γk be a subset of .R
n, where .Γk is either the empty

set or a piecewise-smooth surface of dimension k (for .k = 0 this is a finite number
of points .xj , and for .k = 1 this is a finite number of disjoint curves). The linear
functional

.δ
��
Γ

: C(Rn) � f �→
∫
Γ

f (ξ) dξ =
n−1∑
k=0

∫
Γk

f (ξ) dξ, (2.6)

where .
∫
Γ0

f (ξ) dξ =
∑

j f (xj), is the .δ-function concentrated on .Γ.

This concept is used in many problems of mathematical physics (see, for example,
Demidov (1975b, 1977, 1978a,b, 2000, 2002, 2004, 2006, 2010a,b); Demidov ane
Badjadi (1983); Demidov and Moussaoui (2004); Demidov et al. (1996, 2012, 2013,
2016); Bezrodnykh and Demidov (2011)).

P 2.5 Let .ω be a bounded simply connected domain in .R2 with smooth boundary .γ of length . |γ |.
Let

. fε (x) =
1

ε |γ | χ(x)e
−r (x)/ε, x ∈ ω, 1/ε � 1,

4 Paul Dirac (1902–1984) was the English theoretical physicist, one of the founders of quantum
mechanics, laureate of the Nobel Prize in physics in 1933. In his paper “The quantum theory
of the emission and absorption of radiation” (Dirac 1927), the concept of the .δ-function played
an important role (note that this important function was used earlier “behind the scenes”; see
footnote 69 on p. 50).
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where .r(x) is the distance from a point .x ∈ ω to .γ. Suppose that .χ ∈ C∞(ω), .χ = 1 near .γ and
.χ = 0 outside some large neighborhood of .γ. Verify that

.(1) For any .r0 > 0, .η > 0 there exists .ε0 > 0 such that . fε (x) ≤ η for .r(x) ≥ r0 and .1/ε ≥ 1/ε0.

.(2) .limε→0
∫
ω
fε (x) dx = 1,

and then prove that . fε (x) → δ
��
γ

as .ε → 0.

3 Some Spaces of Smooth Functions: Partition of Unity

The spaces of smooth functions, which will be introduced in this section, play a very
important role in the analysis. In particular, they give examples of the space .Φ in the
“averaging” formula (2.1).

Definition 3.1 Let .Ω be an open set in .R
n and . ¯̄Ω be the closure of .Ω in .R

n, and let
.m ∈ Z+ = {0, 1, 2, . . .}, i.e., m is an integer nonnegative number.5

3.2 .Cm(Ω) is the space of functions .ϕ : Ω → C which are m times continuously
differentiable; in other words, .∂αϕ is continuous in .Ω for .|α | ≤ m. Here and in what
follows,

.∂αϕ(x) = ∂ |α |ϕ(x)
∂xα1

1 . . . ∂x
αn
n

, |α | = α1 + . . . + αn, αj ∈ Z+.

The vector .α = (α1, . . . , αn) is called a multiindex.

By .Cm
b
(Ω), we denote the subspace of bounded functions in .Cm(Ω).

3.3 .Cm( ¯̄Ω) = Cm(Rn)|Ω, i.e.,6 .Cm( ¯̄Ω) is the restriction of the space .Cm(Rn) to .Ω.
In other words, .ϕ ∈ Cm( ¯̄Ω) means that there exists a function .ψ ∈ Cm(Rn) such that
.ϕ(x) = ψ(x) for .x ∈ Ω.

3.4 .PCm(Ω) is the space of functions m times piecewise continuously differentiable
in .Ω; this means that .ϕ ∈ PCm(Ω) if and only if the following two conditions are
satisfied. First, .ϕ ∈ Cm(Ω \ K0) for some compact set7 .K0 ⊂ Ω. Second, for any
compact set .K ⊂ ¯̄Ω, there exists a finite number of domains .Ωj ⊂ Ω, . j = 1, . . . , N ,
each of which is the intersection of a finite number of domains with smooth boundary,
such that .K ⊂

⋃N
j=1

¯̄Ωj and .ϕ|ω ∈ Cm( ¯ω̄) for any connected component .ω of the set

.

( N⋃
j=1
Ωj

)
\
( N⋃
j=1
∂Ωj

)
.

5 These definitions of spaces of functions defined on a domain .Ω can be obviously extended to the
case when the functions are defined on a (smooth or piecewise smooth) boundary of the domain.
In the notation of the spaces defined below, the index .m = 0 is usually omitted.
6 The space .Cm( ¯̄Ω) is in general different from the space of functions m times continuously
differentiable up to the boundary. However, these spaces are equal if the boundary of the domain
is sufficiently smooth.
7 A set .K ⊂ Rn is a compact set (or is compact) if and only if it is bounded and closed.
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By .PCm
b
(Ω) we denote the subspace of bounded functions in .PCm(Ω).

3.5 The support .supp ϕ of a function .ϕ ∈ C(Ω) is the smallest closed in .Ω set
outside of which the function .ϕ is zero. In other words, .supp ϕ is the closure in .Ω of
the set .{x ∈ Ω : ϕ(x) � 0}.

3.6 Cm
0 ( ¯̄Ω) = {ϕ ∈ C

m( ¯̄Ω) : supp ϕ is a compact set}.

3.7 .Cm
0 (Ω) = {ϕ ∈ C

m
0 ( ¯̄Ω) : supp ϕ ⊂ Ω}.

3.8 The intersection with respect to m of the above function spaces is denoted
by the same symbol with m replaced by .∞. In particular, .C∞(Ω) =

⋂
m Cm(Ω),

.C∞( ¯̄Ω) =
⋂

mCm( ¯̄Ω), .C∞0 (Ω) =
⋂

m Cm
0 (Ω).

3.9 If .ϕ ∈ Cm
0 (Ω) (or .ϕ ∈ C∞0 (Ω)) and .supp ϕ ⊂ ω, where .ω is a subdomain of the

domain .Ω, then the function .ϕ is identified with its restriction to .ω. In this case, we
write .ϕ ∈ Cm

0 (ω) (or .ϕ ∈ C∞0 (ω)).

Definition 3.10 A set A is compactly embedded in .Ω if its closure . ¯Ā is compact and
. ¯Ā ⊂ Ω. In this case, we write .A � Ω.

It is clear that .Cm
0 (Ω) = {ϕ ∈ C

m(Ω) : supp ϕ � Ω}, and

.Cm
0 (Ω) � Cm

0 ( ¯̄Ω) � Cm( ¯̄Ω) � Cm(Ω) � PCm(Ω),

where the first and third inclusions become equalities if .Ω = Rn.

Example 3.11 It is clear that the function

.ϕm : R � x �→ ϕm(x) =
{

0 for x ≤ 0,
xm+1 for x > 0

lies in .Cm(R). Next, .limx↓0 xm+1 e−
1
x = 0, and hence the function

.ϕ∞ : R � x �→ ϕ∞(x) =
{

0 for x ≤ 0,

e−
1
x for x > 0

lies in .C∞(R).

Example 3.12 The function

.ϕ : Rn � x �→ ϕ(x) =
⎧⎪⎪⎨
⎪⎪⎩

exp
( 2
(|x |2 − 1)

)
for |x | < 1,

0 for |x | ≥ 1

lies in .C∞0 (R
n) qua the product of the functions .ϕ∞(1 + |x |) and .ϕ∞(1 − |x |).



8 1 Introduction to Problems of Mathematical Physics

Example 3.13 Let .ε > 0. We set

.ϕε(x) = ϕ(x/ε), (3.1)

where .ϕ is the function from Example 3.12. Then the function

.δε : Rn � x �→ ϕε(x)∫
R
n ϕε(x) dx

(3.2)

lies in .C∞0 (R
n), and besides

.

δε(x) ≥ 0 for any x ∈ Rn,

δε(x) = 0 for |x | > ε, and
∫
R
n
δε(x) dx = 1.

(3.3)

Example 3.14 Let .g(t) = δε(t+1+ε)−δε(t−1−ε), where .δε satisfies conditions (3.3).
Then (see Figs. 1.2 and 1.3)

.C∞0 (R) � ϕ : t �→ ϕ(t) =
∫ t

−∞
g(τ) dτ, 0 ≤ ϕ ≤ 1,

and .ϕ(t) = 1 for .|t | ≤ 1.

Example 3.15 Let .(x1, . . . , xn) ∈ Rn be the Euclidean coordinates of a point .x ∈ Rn.
For .ϕ from Example 3.14, we set

.ψν(x) =
∑
|k |=ν
ϕ(x1 + 2k1) · . . . · ϕ(xn + 2kn),

k j ∈ Z, |k | = |k1 | + . . . + |kn |.

Then the family .{ϕν}∞ν=0 of functions

.ϕν(x) = ψν(x)
/( ∞∑

ν=0
ψν(x)

)

Fig. 1.2: The function .g = dϕ/dx, .ϕ ∈ C∞0
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Fig. 1.3: The function .ϕ =
∫
g satisfying (3.3)

forms a partition of unity in .Ω = Rn, i.e., .ϕν ∈ C∞0 (Ω), and moreover,
.(1) For any compact set .K ⊂ Ω, only a finite number of functions .ϕν is nonzero

in K .
.(2) .0 ≤ ϕν(x) ≤ 1 and .

∑
ν ϕν(x) = 1 for all .x ∈ Ω.

Proposition 3.16 For any domain .ω � Ω, there exists a function .ϕ ∈ C∞0 (Ω) such
that .0 ≤ ϕ ≤ 1 and .ϕ(x) = 1 for .x ∈ ω.

Proof Let .ε > 0 be such that .3ε is smaller than the distance from .ω to .∂Ω = ¯̄Ω \Ω.
Let .ωε be the .ε-neighborhood of .ω. Then the function

.x �→ ϕ(x) =
∫
ωε

δε(x − y) dy, x ∈ Ω,

has the required properties, where the function .δε is defined by (3.2). �

Definition 3.17 Given a domain .Ω, let .Ω =
⋃
Ων , where .Ων � Ω. If each compact

set .K � Ω has nonempty intersection only with a finite number of domains .Ων , then
by definition the family .{Ων} forms a locally finite cover of the domain .Ω.

Theorem 3.18 (On Partition of Unity) Let .{Ων} be a locally finite cover of .Ω. Then
there exists a partition of unity subordinate to a locally finite cover, i.e., there exists
a family of functions .ϕν ∈ C∞0 (Ων) satisfying conditions 1–2 of Example 3.15.

The proof is quite clear (see, for example, Vladimirov (1994, p. 19)). The partition
of unity is a very common and convenient tool with the help of which some problems
for the whole domain .Ω can be reduced to problems for subdomains covering .Ω (see,
in particular, §11, 20, 22, and 26).

4 Examples of δ-Sequences

The examples in this section are given in the form of exercises. Exercise 4.1 will be
used below in the derivation of the Poisson formula for the solution of the Laplace
equation (see §5), and Exercise 4.2 will be used in the derivation of the Poisson
formula for the solution of the heat equation (see §6). Exercise 4.3 will be used in
the proof of the theorem on the inversion of the Fourier transform (see §17), and
using Exercise 4.4, one can easily verify (see §19) the famous Weierstrass theorem
on approximation of continuous functions by polynomials.
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P 4.1 Verify that the sequence .{δy }y→+0 of functions

.δy (x) =
1
π

y

x2 + y2 ,

where .x ∈ R, is a .δ-sequence on the space .Cb (R) (see §3.2) but is not a .δ-sequence on .C(R).

P 4.2 Verify that the sequence .{δt }t→+0 of functions

.δt (x) =
1

2
√
πt

e−x
2/(4t ),

where .x ∈ R, is not a .δ-sequence on .C(R), but is a .δ-sequence on the space .Φ ⊂ C(R) of functions
such that, for any .ϕ ∈ Φ, there exists an .a > 0 such that . |ϕ(x) exp(−ax2) | → 0 as . |x | → ∞.

P 4.3 Verify that the sequence .{δν }ν→∞ of functions

.δν : R � x �→ δν (x) =
sinνx
πx

is a .δ-sequence on the space of functions .ϕ such that

.

∫
R

|ϕ(x) | dx < ∞,
∫
R

|ϕ′(x) | dx < ∞.

P 4.4 Considering the polynomials .δk (x) = k√
π

(
1 − x2

k

)k3
, where .x ∈ R and .k ∈ N, show that

the sequence .{δk }k→∞ is a .δ-sequence on the space .C0(R) but is not a .δ-sequence on .Cb (R) (cf.
Exercise 4.1).

Remark 4.5 When solving 4.1–4.4, it is useful to draw sketches of graphs of the
corresponding functions. Exercises 4.1 and 4.2 are simple, while Exercises 4.3
and 4.4 are more difficult, because the corresponding functions are alternating.
In § 13, we will prove Lemma 13.11, using which one can easily solve Exercises 4.3
and 4.4. For Exercises 4.2–4.4, one should use the well-known equalities

.

∫ ∞

−∞
e−y

2
dy

(1.6)
=
√
π,

∫ ∞

−∞

sin x
x

dx = π, lim
ν→∞
(1 − a/ν)ν = e−a .

It seems that the simplest proof of the second equality here is as follows. Setting

.
1
x
=

∫ ∞

0
e−xy dy,

we have
.

∫ ∞

0

sin x
x

dx =
∫ ∞

0

( ∫ ∞

0
sin xe−xy dx

)
dy.

By twice integrating by parts, we see that the inner integral is .
1

1+y2 . As a result,

.

∫ ∞

0

sin x
x

dx =
∫ ∞

0

1
1 + y2 dy = arctan x

���∞
0
=
π

2
.
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5 On the Laplace Equation

In analogy to the title “Three pearls of number theory” of the well-known book
Khinchin (1998),8 the three classical equations in partial derivatives—the Laplace
equation, the heat equation, and the string equation—can be named the three pearls
of mathematical physics. One of these pearls was found by Laplace,9 when he was
analyzing the Newton gravitation law.10

8 Alexander Yakovlevich Khinchin (1894–1959) was the corresponding member of the USSR
Academy of Sciences (1939), one of the founders of modern probability theory.
9 Pierre-Simon Laplace (1749–1827), was a French mathematician, physicist, and mechanician.
In 1773, he proved that the orbits of planets are stable. For this paper, Laplace was elected as
an associate member of French Academy of Sciences at age 24. In 1785, he was elected as
Member of French Academy of Sciences. In the same year, 1785, in one of the exams to the
military school, Laplace highly appreciates the knowledge of the 17-year-old applicant Bonaparte.
Laplace and Bonaparte always maintained warm relationship. In 1799, Laplace published first
two volumes of his classical “Celestial Mechanics,” in which, in particular, he concluded that the
Saturnian rings cannot be continuous, for otherwise it would be unstable. (On Saturnian rings,
see the recent fundamental studies (Zelikin 2015, 2019)). Laplace was one of the founders of
probability theory. In his “Théorie analytique des probabilités” (1812), he introduced addition and
multiplication of probabilities and defined the expectation. He also used the generating function
.z �→ G(z) =

∑
n≥0 anz

n corresponding to the sequence .{an }n≥0—this concept was repeatedly
used by Euler since 1741 in his works on number theory. (The use of generating functions for the
Bessel function was proved instrumental in obtaining the efficient formula (21.8) and the unexpected
formula (21.11) for the eigenfunction of the two-dimensional Fourier transform). A simple algebra
shows that to the sequence .{e−nsan+1/s}n≥0, where .s > 0, there corresponds the generating
function defined by .

∫ ∞
0 e−sx f (x) dx, . f (x) =

∑
0≤x<n an , i.e., the so-called Laplace transform (of

which Laplace did not even think about; see Remark 18.1 below).
It should be noted that Laplace proved an important limit theorem—the so-called de Moivre–

Laplace theorem (a particular case of which was presented in the first book on probability written
by de Moivre (1667–1754), a student and assistant of Newton). Laplace also published papers
on capillarity theory (1806), continued Newton’s studies on the velocity of sound in vacuum,
gave a barometric formula for evaluation of the air density as a function of altitude above the
Earth surface. In addition, Laplace was engaged with problems of electrodynamics and developed
mathematical foundations of potential theory. Laplace’s name was included in the list of 72 greatest
scientists of France, placed on the ground floor of the Eiffel Tower. For more on Laplace personality
and works, see, for example, Bell (1937).
10 This is what Albert Einstein (see Zu Isaak Newton 200. Todestage. Nord und Süd, 1927, 50,
36–40.) writes on the Newton gravitation law: “But how could Newton find the forces acting on
celestial bodies? It is clear that a correct expression for these forces cannot be merely extemporize.
He had no choice but to act in the reverse order and find these forces from the known motions of the
planets and the Moon. Having obtained these motions, he evaluated the acceleration, and knowing
them, he was able to find the forces. He did all this, being a 23-year-old young man and being in
a village solitude.” Newton also obtained a formula for the gravity force between celestial bodies
and postulated it as a working conjecture for any bodies. This is a general physical law derived from
empirical observations by what Isaac Newton called inductive reasoning. The first test of Newton’s
theory of gravitation between masses in the laboratory was the Cavendish experiment conducted
by the British scientist Henry Cavendish in 1798 (approximately 71 years after Newton’s death).
Newton gave credit in his Principia to two people: Bullialdus (who wrote without proof that there
was a force on the Earth towards the Sun) and Borelli (who wrote that all planets were attracted
towards the Sun). In 1692, in his third letter to Bentley, he wrote “That one body may act upon
another at a distance through a vacuum without the mediation of anything else, by and through
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According to Godunov (1979, §1), Laplace proposed to get rid of the obvious
formula for the gravity force between bodies and replace it by the differential equation
.
∂2u
∂x2

1
+ ∂2u

∂x2
2
+ ∂2u

∂x2
3
= 0 satisfied by the potential u of the gravity force .F = −∇u

everywhere outside these bodies.

Definition 5.1 A function .u ∈ C2(Ω) is called harmonic11 on an open set .Ω ⊂ Rn if
it satisfies in .Ω the Laplace equation .Δu = 0, where by the Greek letter .Δ (“delta”)
we denote the Laplace operator12 or the Laplacian defined by the formula

.Δu(x) def
=
∂2u

∂x2
1
+ · · · + ∂

2u

∂x2
n

, (5.1)

where .x1, .. . ., .xn are the Euclidean coordinates of a point .x ∈ Ω ⊂ Rn.

Laplace’s idea mentioned by S. K Godunov turned out to be very fruitful and
gave a great impetus to the development of mathematical physics and, in particular,
of electrostatics and magnetism. This is why the equation .Δu = 0, which holds for
the potential of the gravity forces outside the points at which they are concentrated,
is rightfully called after Laplace. It is also worth pointing out that already in 1757
Euler13 in his memoir “General motion laws of liquids” derives the Laplace equation
.Δu = 0 for the potential u of the velocity .V = ∇u of vortex-free flow of inviscid
liquid, i.e., .div V = 0, where the operators .∇ (gradient) and .div(divergence) were
introduced by Hamilton (see footnote 81 on page 68). And even earlier, in 1752,

which their action and force may be conveyed from one another, is to me so great an absurdity that,
I believe, no man who has in philosophic matters a competent faculty of thinking could ever fall
into it.” How does this mysterious force manifest itself outside bodies? The question here was given
by Laplace.

A certain disappointment here is that Laplace, who considered himself the best mathematician
of France, did not refer to the brilliant and modest Lagrange (see footnote 36 on the page 31), who,
among many important achievements, had also shown that the gravity force is potential.
11 Stefan Nemirovski (a corresponding member of the Russian Academy of Science) kindly in-
formed me about the website https://math.stackexchange.com/a/4300729, which says that the term
harmonic function was first used (in the sense of Definition 5.1) by Poincaré in his memoir “Sur
les équations de la physique mathématique” (1894) https://link.springer.com/content/pdf/10.1007/
BF03012493.pdf. In this memoir, Poincaré calls (see pp. 87 and p. 153) harmonic the functions
which vanish on the boundary of the domain and satisfy either the Helmholtz equation .Δu+k2u = 0
or the Laplace equation in the domain, or the biharmonic equation). However, even earlier in the
paper Dynamical Problems regarding Elastic Spheroidal Shells and Spheroids of Incompressible
Liquid” (1863), William Thomson called the solutions of equation (5.1) in the three-dimensional
case spherical harmonics. It is clear why spherical, but why harmonics? In this regard, I think that
the answer comes from the ancient and medieval teachings about the musical and mathematical
structure of the cosmos (the harmony of spheres (luminaries)). Cf. Aristotle “De Caelo” (“On the
Heavens”): “. . . the theory that the movement of the stars produces a harmony, i.e., that the sounds
they make are concordant, in spite of the grace and originality with which it has been stated, is
nevertheless untrue” (The Complete Works of Aristotle, Princeton, New Jersey, 1984).
12 An operator is a mapping . f : X → Y , where X and Y are function spaces.
13 Leonhard Euler (1707–1783) was a Swiss, Prussian, and Russian mathematician and mechani-
cian, one of the greatest mathematicians of all times.

https://link.springer.com/content/pdf/10.1007/BF03012493.pdf
https://link.springer.com/content/pdf/10.1007/BF03012493.pdf
https://link.springer.com/content/pdf/10.1007/BF03012493.pdf
https://link.springer.com/content/pdf/10.1007/BF03012493.pdf
https://link.springer.com/content/pdf/10.1007/BF03012493.pdf
https://link.springer.com/content/pdf/10.1007/BF03012493.pdf
https://link.springer.com/content/pdf/10.1007/BF03012493.pdf
https://link.springer.com/content/pdf/10.1007/BF03012493.pdf
https://link.springer.com/content/pdf/10.1007/BF03012493.pdf
https://link.springer.com/content/pdf/10.1007/BF03012493.pdf
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the Laplace equation appears in the D’Alembert’s studies14 and in 1755 in Euler’s
studies related to the so-called Cauchy–Riemann conditions15

In the next section, we will see that in the absence of internal sources or sinks
of heat in a body, the steady temperature in it is a harmonic function.16 It is clear
that such a steady temperature depends on the thermal regime at the boundary of
the body. An important example of such regimes is given by the so-called Dirichlet
conditions,17 when a fixed temperature is maintained at the boundary of the body
(possibly depending on the boundary point). The corresponding problem

.Δu = 0 in Ω, u = f on ∂Ω, (5.2)

is known as the Dirichlet problem for the Laplace equation (in the domain .Ω). This
problem, which is also called the first boundary-value problem, has various inter-
pretations. Below, we shall also deal with other important boundary-value problems:
the second boundary-value problem .

∂u
∂ν

��
∂Ω
= f , with the derivative along the normal

.ν to the boundary (the Neumann problem; see footnote 31 on p. 125), and the third
boundary-value problem with the condition .au+ b∂u

∂ν = f , where .ab ≥ 0, .a+ b � 0,

14 Jean D’Alembert (1717–1783) was a French polymath, widely known as a philosopher, mathe-
matician, and mechanician.
15 Augustin-Louis Cauchy (1789–1857) was a French mathematician and mechanician. He made
remarkable contributions to analysis, algebra, mathematical physics, and many other areas of
mathematics, one of the founders of continuum mechanics. His name is included in the list of the
greatest scientists in France.
Bernhard Riemann (1826–1866) was a German mathematician, mechanicist, and physicist. During
his short life, he laid the foundation for the geometric direction of the theory of analytic functions;
he introduced the so-called Riemann surfaces, developed the theory of conformal maps, and in this
connection gave the basic ideas of topology. Riemann found the relation between the distribution of
primes and the properties of the zeta function, in particular, with the distribution of its zeros in the
complex domain. The corresponding Riemann Hypothesis (one of the seven so-called Millennium
Problems selected by the Clay Mathematics Institute in 2000) states that all non-trivial zeros of the
zeta function have a real part equal to 1/2. In a number of works, he investigated the problem of
expansion of functions into trigonometric series and, in this connection, determined necessary and
sufficient conditions for integrability in the Riemannian sense, which was important for the theory
of sets and functions of a real variable. The so-called Riemannian geometry he created was the
precursor of the general relativity theory.
16 If in a body .Ω, there is an internal source or sink of heat . f : Ω � x �→ f (x), then the steady
temperature u in it satisfies the equation .Δu = f , known as the Poisson equation (see footnote 19
on p. 16).
17 Johann Peter Gustav Lejeune Dirichlet (1805–1859) was a German mathematician. His ancestors
were natives of the Belgian town of Richelet (De Richelet, in French), which explains the origin of
the unusual surname for the German language. Part of it, namely “Lejeune” (the young man (Le
Jeune, in French)), has a similar origin—the grandfather was called “a young man from Richelieu.”
In 1855, Dirichlet became, as a successor of F. Gauss, a professor of higher mathematics at the
University of Göttingen. Novel Dirichlet’s works mainly deal with number theory, series theory,
integral calculus, and some problems of mathematical physics

In 1831, Dirichlet married the sister of the famous composer and conductor Jakob Ludwig Felix
Mendelssohn Bartholdy. Dirichlet died of a heart attack a few months after the death of his wife.
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which is frequently called the Robin problem in honor of the French mathematician
Victor Robin (1855–1897) and also called the Newton problem.18

Of particular importance is also the Cauchy problem for elliptic equations (includ-
ing the Laplace equation), which appear in the study of important applied problems.
The explicit numerically realizable formulas for solving these problems are presented
in §24. They can serve as a test for construction of numerical algorithms for solution
of ill-posed problems.

P 5.2 It can be shown that if a function f in problem (5.2) is constant and .Ω is a ball or a circular
cylinder, then u (and the domain itself) is completely characterized by the polar radius, i.e.,
.u(x) = v(ρ), where

.ρ =
√
x2

1 + . . . + x2
k
,

.k = 3 in the case of a ball and .k = 2 in the case of a circular cylinder. Verify that .Δu also depends
on .ρ, and besides,

.Δu =
∂2v(ρ)
∂ρ2 +

k − 1
ρ

∂v(ρ)
∂ρ

. (5.3)

Remark 5.3 Consideration of problem (5.2) in model domains such as a ball, a cir-
cular cylinder, or a half-space can be useful in the analysis of this problem in quite
general domains.

Consider the simplest case when .Ω is the half-plane .R
2
+ = {(x, y) ∈ R2 : y > 0}.

Let us find a function .u ∈ C2(R2
+) that satisfies the Laplace equation .uxx + uyy = 0

in .R
2
+ and the boundary (or, as some people put it, the boundary-value) condition

. lim
y→+0

u(x, y) = f (x), (5.4)

where x is a point of continuity of a piecewise continuous bounded(!) function f .
The required function u is a harmonic function of two variables. Such functions

are closely related to analytic functions of a single complex variable, i.e., to functions

18 This boundary operator, bearing the name of V. Robin, arose much earlier in I. Newton’s works
(where he studied the process of heat transfer). But not without reason the French Academy of
Sciences twice awarded Robin the Prix Francœur (1893 and 1897), as well as the Prix Ponsel
(1895). After all, Robin, considering the problem of the distribution of the skinned (i.e., surface)
current density in a conductor, reduced it to an integral equation (long before the appearance
of the theory of integral equations) and, in the case of a convex conductor, found a solution to
this equation by the method of successive approximations. Note also that the Dirichlet boundary
condition, as well as the corresponding boundary-value problem, is named after Dirichlet since the
solvability of the Laplace equation with this boundary condition was first proved by Dirichlet in
his lectures, following the intuitively correct assumption made by Gauss that there is the integral
of the square of the gradient of a function attains its minimum value. This assumption, known
as Dirichlet’s principle, was rigorously proved 30 years later by Hilbert. But even before that, the
German mathematician Carl Gottfried Neumann (1832–1925) was able to prove the solvability
of the Dirichlet problem, as well as a boundary-value problem with Neumann boundary operator
named after him, using the representation the desired solution in the form of the so-called simple
and double layer potentials.
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.w(z) = u(x, y) + iv(x, y), z = x + iy ∈ C,

for which u and v are twice differentiable and satisfy the Cauchy–Riemann conditions

.ux − vy = 0, vx + uy = 0. (5.5)

Here, the subscript denotes the derivative with respect to the corresponding variable
(i.e.„ .ux = ∂u

∂x , .. . ., .uyy = ∂2u
∂y2 , .. . .). From (5.5), we get

.uxx + uyy = (ux − vy)x + (vx + uy)y = 0, vxx + vyy = 0.

So, the real and imaginary parts of an analytic function .w(z) = u(x, y) + iv(x, y) are
harmonic functions.

According to Exercises 5.13 and 5.17 that follow, our problem has at most one
bounded solution. To find this solution, we note that the imaginary part of the analytic
function

. ln(x + iy) = ln |x + iy | + i arg(x + iy), (x, y) ∈ R2
+,

coincides with .arccot(x/y) ∈ ]0, π[. Therefore, this function is harmonic in .R
2
+.

Besides,

. lim
y→+0

arccot
x
y
=

{
π for x < 0,
0 for x > 0.

Using these properties of .arccot x
y , we can construct functions harmonic in .R

2
+ and

having piecewise constant boundary values. In particular, the function

.ϕa,b : R2
+ = Rx × R+ � (x, y) �→

1
π

[
arccot

x − b
y
− arccot

x − a
y

]

is harmonic in .R
2
+ (this function is the “angle” subtended of the interval .[a, b] ⊂ Rx

at the point .(x, y)). For .y → +0, this function becomes the characteristic function of
this interval. The harmonic function

.R
2
+ � (x, y) �→ Pε(x, y) =

1
2πε

[
arccot

x − ε
y
− arccot

x + ε
y

]

satisfies the boundary condition

. lim
y→+0

Pε(x, y) = δε(x) for |x | � ε,

where the function .δε is defined by (1.3). On the other hand, if x is a point of
continuity of f , then by Lemma 2.1

. f (x) = lim
ε→ 0

∫ ∞

−∞
δε(ξ − x) f (ξ) dξ.

This allows us to assume that the function
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.R
2 � (x, y) �→ lim

ε→ 0

∫ ∞

−∞
Pε(ξ − x, y) f (ξ) dξ (5.6)

is equal (at points of continuity of f ) to . f (x) as .y → +0 and that this function is
harmonic in .R

2 because

.

( ∂2

∂x2 +
∂2

∂y2

) ( N∑
k=1

Pε(ξk − x, y) f (ξk)(ξk+1 − ξk)
)
=

=

N∑
k=1

f (ξk)(ξk+1 − ξk))
[( ∂2

∂x2 +
∂2

∂y2

)
Pε(ξk − x, y)

]
= 0.

Making formally .ε → 0 in (5.6), we get the Poisson integral, or the Poisson formula19

.u(x, y) =
∫ ∞

−∞
f (ξ)P(x − ξ, y) dξ, where P(x, y) = 1

π

y

x2 + y2 , (5.7)

because
. lim
ε→ 0

Pε(x, y) = −
1
π

∂

∂x

(
arccot

x
y

)
=

1
π

y

x2 + y2 .

Note that condition (5.4) holds in view of Exercise 4.1. We also note that the
function u is bounded. Indeed,

.|u(x, y)| =
∫ ∞

−∞
| f (ξ)|P(x − ξ, y) dξ ≤ C

∫ ∞

−∞
P(x − ξ, y) dy = C.

Let us now show that the function u is harmonic in .R
2
+. Differentiating (5.7), we get

.
∂ j+ku(x, y)
∂x j∂yk

=

∫ ∞

−∞
f (ξ) ∂

j+k

∂x j∂yk
P(x − ξ, y) dξ (5.8)

for all . j ≥ 0 and .k ≥ 0. Here the differentiation under the integral is possible,
because

.

���∂ j+kP(x − ξ, y)
∂x j∂yk

��� ≤ C

1 + |ξ |2
(5.9)

for .|x | < R and .
1
R < y < R, where C depends only on . j ≥ 0, .k ≥ 0, and .R > 1. In

view of (5.8), we have

.Δu(x, y) =
∫ ∞

−∞
f (ξ)ΔP(x − ξ, y) dξ.

But .ΔP(x − ξ, y) = ΔP(x, y), and .ΔP(x, y) = 0 in .R
2
+, inasmuch as

19 Simón Denis Poisson (1781–1840) was a famous French mathematician, mechanicist, and
physicist. With his name important mathematical objects are associated: the Poisson distribution in
probability theory, the Poisson brackets in differential geometry, and the Poisson coefficient in the
theory of elasticity.



5 On the Laplace Equation 17

.P(x, y) = − 1
π

∂

∂x

(
arccot

x
y

)
, Δ

(
arccot

x
y

)
= 0, Δ

∂

∂x
=
∂

∂x
Δ.

So, we have shown that the Poisson integral (5.7) gives a bounded solution of
problem (5.2) in .R

2
+.

P 5.4 Prove estimate (5.9).

Remark 5.5 The function .P = P
R

2
+
, as defined by (5.7), is known as the Poisson

kernel (in .R
2
+). It can be interpreted as a solution of the problem .ΔP = 0 in .R

2
+,

.P(x, 0) = δ(x), where .δ(x) is the .δ-function.20

Remark 5.6 Note that (in the sense of the above definition), under the boundary
condition (5.4), the Poisson kernel .P = P

R
2
+

is an unbounded (in .R
2
+) solution of

problem (5.2) if . f (x) = 0 for .x � 0 and if . f (0) is equal, say, to 1. On the other hand,
for this (piecewise continuous) boundary function f , there is a bounded solution
.u(x, y) ≡ 0.

P 5.7 Find an unbounded solution .u ∈ C∞(R2
+) of problem (5.2)–(5.4) for . f (x) ≡ 0.

P 5.8 Let .k ∈ R and let u be a solution of problem (5.2) in .R2
+ given by (5.7). Find .limy→+0(x0 +

ky, y) in two cases:
.(1) The function f is continuous.
.(2) The function f has a discontinuity of the first kind at the point .x0.

P 5.9 Let .u : (x, y) �→ u(x, y) be a harmonic function in a domain .ω ⊂ R2 � C and let

.z : Ω � ζ = ξ + iη �→ z(ζ) = x(ξ, η) + iy(ξ, η), where Ω ⊂ R2 � C,

be an analytic function of a complex variable .ζ with values in .ω. Verify that the formula

.U(ξ, η) = u(x(ξ, η), y(ξ, η)), (ξ, η) ∈ Ω,

defines a harmonic function in .Ω.

Hint Verify that .Uξ ξ +Uηη = |z′(ζ) |2(uxx + uyy ).

20 Formula (5.7), which gives a solution of the problem .Δu = 0 in .R2
+, .u(x, 0) = f (x), can be

clearly interpreted as follows. The field is excited by the source function . f (x), which is the “sum”
with respect to .ξ of the point sources . f (ξ)δ(x − ξ). One point source .δ(x − ξ) generates the field
.P(x−ξ, y), and hence, since the problem is linear, the “sum” of these sources will generate the field,
which is the “sum” (i.e., the integral) with respect to .ξ of the fields of the form . f (ξ)P(x − ξ, y).
Physicists usually say that there is a superposition of fields generated by point sources. This principle
of superposition can be traced in many formulas for solutions of linear problems in mathematical
physics (see in this connection (5.14), (6.18), (7.17), .. . . ). Mathematicians usually use the term
“convolution” in such cases (see §19).
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Theorem 5.10 (On the Mean Value) Let .u(x) be a function harmonic in a domain
.Ω ⊂ Rn. Then the value of u at the center of any ball .B(a, R) = {x ∈ Rn : |x − a| <
R} � Ω is equal to the mean value of u on the boundary of the ball .B = B(a, R) and
is also equal to the mean value of u over the entire ball .B = B(a, R), i.e.,

.u(a) = 1
|S |

∫
S

u(s) ds = 1
|B|

∫
B

u(x) dx, (5.10)

where .|S | (1.7)
= σnRn−1 is the area of the .(n − 1)-dimensional sphere .S = ∂B(a, R)

and .|B| =
∫ R

0 σnρ
n−1 dρ = σn

n Rn is the volume of the ball B.

Proof For .n = 2, Theorem 5.10 follows from the Cauchy integral formula for the
analytic function .w = u + iv (see, for example, Lavrent’ev and Shabat (1977)).
Indeed,

.w(0) = 1
2πi

∫
|ζ |=R

w(ζ) dζ
ζ

⇒ u
��
ζ=0=

1
2π

∫ 2π

0
u(eiτ) dτ. (5.11)

For .n = 1, the result is clear (the graph of u is a straight line). For an arbitrary
.n ≥ 2, we will use the Gauss integral formula for a harmonic function u:

.

∫
Γ=∂Ω

∂u
∂ν

dΓ = 0. (5.12)

Here .ν is the normal vector to .Γ. Formula (5.12), which will be proved in § 7
(see (7.7)), expresses the following remarkable fact: the total flow of the gradient of
a harmonic function across the boundary of any body is zero. Let us apply (5.12) to
the ball .B(a, ρ), where .ρ ∈]0, R]. Introducing the polar coordinates .r = |x − a| and
.ω = x−a

r , we get

.0 (5.12)
=

∫
∂B(a,ρ)

∂u
∂r
(s) ds = ρn−1

∫
|ω |=1

∂u
∂r
(a + ρω) dω

= ρn−1 ∂

∂ρ

∫
|ω |=1

u(a + ρω) dω = ρn−1 ∂

∂ρ

[
ρ1−n

∫
∂B(a,ρ)

u(s) ds
]
.

Hence, recalling that .|∂B(a, ρ)| = σnρn−1, we find that

.R1−n
∫
∂B(a,R)

u(s) ds = ρ1−n
∫
∂B(a,ρ)

u(s) ds
ρ→0
→ σnu(a),

which shows that .u(a) = 1
|S |

∫
∂B(a,R) u(s) ds. �

P 5.11 Use (5.11) to derive formulas for the solution of the Dirichlet problem in the disk and in the
half-plane.21

21 In what follows, we will obtain formulas for the solution of the Dirichlet problem in a ball and
in a half-space on any dimension.
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Hint Given a point .a = reiψ in the disk .{ |z | < 1} and the function .u : z �→ u(z) =U(ζ(z)) (for
the mapping .z �→ ζ(z) = z−a

1− ¯āz of the disk .{ |z | < 1} to the disk .{ |ζ | < 1}), note that

.u(a) (5.11)
=

1
2π

∫ 2π

0
U(eiτ ) dτ,

and then verify that from the formula

.{ |z | = 1} � eiθ �→ eiτ =
eiθ − reiψ

1 − re−iψeiθ
∈ { |ζ | = 1}, (5.13)

which relates the boundary points of the disks, one gets the equality

.dτ =
1 − r2

1 − 2r cos(θ − ψ) + r2 dθ,

because

.

{
ieiθ

1 − re−i(θ−ψ)

[1 − rei(θ−ψ)]

}
= i

eiθ − reiψ

1 − rei(θ−ψ)
(5.13)
= ieiθ = (ieiθ )′τ

(5.13)
=

( eiθ − reiψ

1 − re−iψeiθ
)′
θ

dθ

dτ
,

and

.

( eiθ − reiψ

1 − re−iψeiθ
)′
θ
= ieiθ

1 − r2

[1 − rei(θ−ψ)]2
1 − re−i(θ−ψ)

1 − re−i(θ−ψ)

{
ieiθ

1 − re−i(θ−ψ)

[1 − rei(θ−ψ)]

} 1 − r2(
1 − rei(θ−ψ)

) (
1 − re−i(θ−ψ)

) .

Hence, in the disk .D = {reiψ : r < R, ψ ∈ R/(2π)}, we have

.u(r, ψ) =
∫ 2π

0
u(R, θ)PD (r, ψ − θ) dθ, (5.14)

where
.PD (r, ϕ) =

1
2π

R2 − ρ2

R2 + ρ2 − 2Rρ cosϕ
. (5.15)

To derive (5.7) from (5.11), one should note that if .z �→ ζ(z) = z−a
z− ¯ā is the mapping of the

half-plane .C+ � a = x + iy to the unit disk .{ |ζ | < 1} and if the boundary points .t ∈ R and
.eiτ = t−a

t− ¯ā are identified, then

.u(a) (5.11)
=

1
2π

∫ 2π

0
U(eiτ ) dτ

for the function .u(z) =U(ζ(z)), and .dτ =
2y dt

(t−z)(t− ¯¯z) =
2y dt

(t−x)2+y2 .

P 5.12 Interpret function (5.15) similarly to the function .P
R

2
+

in Remark 5.5.

P 5.13 Using Theorem 5.14 (see below), show that problem (5.2) has a unique solution under the
assumption that f is continuous.

Theorem 5.14 (Maximum Principle) If a function u is harmonic in a domain .Ω,
then .supΩ u = sup

Ω
u.
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Theorem 5.14 is a direct corollary of the following strong maximum (minimum)
principle.

Theorem 5.15 (Strong Maximum Principle22) If a function harmonic in a domain
.Ω takes the value .supΩ u (or .infΩ u), at some point .a ∈ Ω, then .u = const.

Proof Let .M = supΩ u and let .ΩM = {x ∈ Ω : u(x) = M}. The set .ΩM is closed
in .Ω, because the function u is continuous. To prove the required equality .ΩM = Ω,
it remains to show that .ΩM is open in .Ω. But this is so, because the neighborhood
.B(a, ρ) ⊂ Ω of any point .a ∈ ΩM lies in .ΩM . Indeed, .u

��
B(a,ρ) = M , because

.0 ≤ u(a) − M
(5.10)
=

1
|B|

∫
B

(u(x) − M) dx ≤ 0.

Theorem 5.16 Let u be a continuous function in a domain .Ω ⊂ Rn. Then u is
harmonic if and only if the mean value property (5.10) is satisfied in any ball
.B ⊂ Ω.

Proof We need to check the converse of Theorem 5.10. According to Exercise 5.11,
for any ball .B ⊂ Ω, there exists a function v harmonic in B such that .v = u on .∂B.
The difference .w = u − v satisfies the mean value property for any ball lying in B.
Therefore, the uniqueness result can be applied to w (the proof of this result depends
only on the mean value property). Hence .w = 0 in .Ω, and therefore, the function u
is harmonic.23 �

P 5.17 Using Theorem 5.18 (see below), verify the uniqueness of a bounded solution of prob-
lem (5.2) in the case of a piecewise continuous function f . Cf. Exercise 5.13.

Theorem 5.18 (On the Discontinuous Majorant) Let .Ω be a bounded domain in
.R

2 with boundary .∂Ω and let F be a finite point set .xk ∈ ¯̄Ω, .k = 1, . . . , N . Next, let
.u(x) and .v(x) be two functions harmonic in .Ω \ F and continuous in . ¯̄Ω \ F. Suppose
that there exists a constant M such that .|u(x)| ≤ M and .|v(x)| ≤ M for all .x ∈ ¯̄Ω\F.
If .u(x) ≤ v(x) for any .x ∈ ∂Ω \ F, then .u(x) ≤ v(x) for all .x ∈ ¯̄Ω \ F.

Proof We first note that the function .ln |x |, where .x ∈ R2 \ {0}, is harmonic. We set

.wε(x) = u(x) − v(x) −
N∑
k=1

2M
ln(d/ε) ln

d
|x − xk |

.

22 This result for some second-order elliptic equations more general than the Laplace equation
was first proved in 1927 by Eberhard Frederich Ferdinand Hopf (1902–1983), who was a German
and American mathematician, one of the founders of the ergodic theory. See also Lemma 5.19,
Eq. (11.27), Theorem 11.23, and the footnote on the Wiener–Hopf factorization on p. 131.
23 French mathematician Jean Frédéric Delsarte (1903–1968) was one of the founders of the
Bourbaki group. According to Delsart (1958), at least in .R3, a continuous function u is harmonic
if the mean value property for this function is satisfied only for any two balls with center at each
point .a ∈ R3.
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Here .0 < ε < d, where d is the diameter of .Ω. Hence .ln
(

d
|x−xk |

)
≥ 0. Let .Ωε be

the domain obtained from .Ω by cutting disks of radius .ε with centers at .xk ∈ F,
.k = 1, . . . , N . It is clear that the function .wε is harmonic in .Ωε and is continuous
in . ¯̄Ωε , and .wε(x) ≤ 0 for .x ∈ ∂Ωε = ¯̄Ωε \Ωε . By the maximum principle, .wε(x) ≤ 0
for .x ∈ Ωε . It remains to make .ε → 0. �

From Theorem 5.15 it follows that the inequality .∂u/∂ν |x=x0 ≥ 0 holds at a bound-
ary point .x0 ∈ ∂Ω at which a function u harmonic in .Ω attains its maximum, where
.ν is the outer normal vector to .Ω. This assertion also holds for domains with piecewise
smooth boundary, and in particular, for a square (in a square, a harmonic function
that attains its maximum at a corner point has the zero derivative in any direction). If
the boundary of a domain is sufficiently smooth, then this boundary can be touched
from inside by some ball. Hence the following substantial and very useful extension
of Theorem 5.15 holds.

Lemma 5.19 (Giraud–Hopf–Oleinik Theorem on the Boundary Derivative24)
Let .Γ be a smooth .(n − 1)-dimensional boundary of a domain .Ω � Rn and let .ai j ,
.bk , and c be smooth functions in . ¯̄Ω, .c(x) ≤ 0, and

.

∑
i, j

ai j(x)ξiξj ≥ α |ξ |2,

where .|ξ |2 =
∑

1≤ j≤n ξ
2
j and .α > 0. Next, let .u(x) be continuous in . ¯̄Ω function

satisfying in .Ω the equation25

.

∑
i, j

ai j(x)uxi x j +
∑
k

bk(x)uxk + c(x) = 0, x ∈ Ω.

Suppose that .x0 ∈ Γ and .u(x0) > u(x) for any .x ∈ Ω. Then26

This lemma (which holds, in particular, for the Laplace equation) was proved
in Giraud (1932). In the case where the continuous are only coefficients, the
lemma was independently proved by Hopf (1952) for .c = 0 and Oleinik (1952) for
.c ≥ 0. However, both proofs (Hopf and Oleinik) hold only when the coefficients are
bounded. For a detailed account of the problem, see Apushkinskaya and Nazarov
(2022).

P 5.20 Prove Lemma 5.19 for the Laplace operator.27 This is not so difficult.

24 Georges Julien Giraud (1889–1943) was a French mathematician, a specialist in differential
and singular integral equations. Olga Arsenievna Oleinik (1925–2001) was a prominent specialist
in differential equations, mathematical physics and its applications, Academician of the USSR
Academy of Sciences. On Hopf, see the footnote on p. 20.
25 This is the same (mentioned in the footnote on p. 20) second-order linear elliptic equation, for
which the 25-year-old E. Hopf proved the strengthened maximum principle.
26 Since the boundary .Γ is smooth, at any point .x0 ∈ Γ there exists the outer normal derivative
.∂u/∂ν |x=x0 . The crux of the theorem is that this derivative is not zero. For the principal ideas of
the proof, see Problem P 5.20.



22 1 Introduction to Problems of Mathematical Physics

Hint For .n > 2, the proof is the same as for .n = 2, but for .n = 2 the idea is
more transparent, because in this case one can draw a portion .γ of the smooth
boundary of the planar domain .Ω. On .γ, we mark a point .x◦ and draw the annulus
.K = {R/2 ≤ r = |x − x∗ | ≤ R} ⊂ Ω, which touches .γ at the point .x◦. One should
show that . ∂u∂r

��
r=R
> 0. By the strengthened maximum principle, .u(x)−u(x◦) < 0 inK ,

excluding the point .x◦. Hence, by adding to .u(x)−u(x◦) the term .εv(r), where .ε > 0 is
very small, and .v(r) = ear

2−eaR2
> 0 everywhere, excluding the point .x◦, we will get

that .w(x) = u(x)−u(x◦)+εv(r) ≤ 0 on .∂K . Moreover, .Δv(r) = ear
2 [4a2−2na

]
> 0

for .a � 1. Hence .Δw = εΔv > 0 in the annulus K . It is easily checked that this
implies the inequality .

∂w
∂r

���
r=R
≥ 0. Thus, .

∂w
∂r =

∂u
∂r + ε

∂v
∂r

���
r=R
≥ 0, which implies

.
∂u
∂r + ε

∂v
∂r

���
r=R
≥ 0, i.e., . ∂u∂r

���
r=R
≥ −ε ∂v∂r

���
r=R
> 0.

The proof of Lemma 5.19 in the general case is similar.

6 On the Heat Equation

In order to heat a body occupying a domain .Ω ⊂ R3 from a temperature .u0 = const
to a temperature .u1 = const, it requires to supply it with energy (in the form of
heat) .C · (u1 − u0) · |Ω|, where .|Ω| is the volume of .Ω and C is the (positive)
coefficient known as the specific heat capacity. Let .u(x, t) be the temperature at
a point .x = (x1, x2, x3) ∈ Ω at time t. Let us derive the differential equation satisfied
by the function u. We will assume that the physical model of the real process is such
that the functions considered below in connection with this process (the thermal
energy, the temperature, and the heat flow) are sufficiently smooth. The variation of
the thermal energy in the parallelepiped

.Π = {x ∈ R3 : x◦k < x < x◦k + hk, k = 1, 2, 3}

over time .τ (starting from time .t◦) can be written as

.C · [u(x◦, t◦ + τ) − u(x◦, t◦)] · |Π | + o(τ · |Π |)
= C · [ut (x◦, t◦) · τ + o(τ)] · |Π | + o(τ · |Π |), (6.1)

where .|Π | = h1 · h2 · h3, and .o(A) is considered for .A ∈ R as .A→ 0.
27 In the case of the two-dimensional Laplace equation, the conclusion of Lemma 5.19 holds even
in the case where the boundary of the domain .Ω cannot be touched from inside by a disk, but
near the point .x0 the tangent to the boundary (as a function of the natural parameter) satisfies the
Hölder condition. Indeed, if a function harmonic in a disk is not a constant, then at a point of its
maximum its normal derivative is nonzero. But this derivative differs from . ∂u∂ν

���
x=x0

only by the

factor . f ′(z)
��
z= f −1(x0), which is nonzero according to one result of Kellogg (1931) on a conformal

mapping . f : z �→ f (z) of the disk onto.Ω. Oliver Dimon Kellogg (1878–1932) was an American
mathematician. He died on 27 August 1932 of a heart attack while climbing Doubletop Mountain
near Greenville, Maine.
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This change in thermal energy is associated with the presence of a heat flow across
the boundary of the parallelepiped .Π. According to the Fourier law, the heat flow
passing through a certain area in the normal direction to this area in a unit of time
is proportional to the (negative) proportionality coefficient .−k of the temperature
derivative along this normal vector. The coefficient of proportionality .k > 0 is called
the coefficient of thermal conductivity. Thus, the amount of thermal energy entered
during the time .τ in the parallelepiped .Π through the plate .x1 = x◦1 + h1 is

.k(x◦1 + h1, x
◦
2, x
◦
3) ·
∂u
∂x1
(x◦1 + h1, x

◦
2, x
◦
3 ; t◦) · τ · h2 · h3 + o(τ · |Π |),

and the amount of energy released during the same time through the plate .x1 = x◦1
is equal to

.k(x◦1, x
◦
2, x
◦
3) ·
∂u
∂x1
(x◦1, x

◦
2, x
◦
3; t◦) · τ · h2 · h3 + o(τ · |Π |).

Therefore, the variation of the thermal energy in .Π due to the heat flow along the
.x1-axis is equal to

.

[ ∂
∂x1
(k(x◦) ∂u

∂x1
(x◦, t◦))h1 + o(h1)

]
· τ · h2 · h3 + o(τ · |Π |).

It is clear that the sum of the variations of the thermal energy in .Π in all three
directions is equal to the total change in thermal energy in .Π, which is (6.1). Dividing
this equality by .τ · |Π | and making .τ, .h1, .h2, and .h3 to 0, we get the heat equation

.C
∂u
∂t
=
∂

∂x1

(
k
∂u
∂x1

)
+
∂

∂x2

(
k
∂u
∂x2

)
+
∂

∂x3

(
k
∂u
∂x3

)
. (6.2)

If the coefficients C and k are constant, then (6.2) can be written as

.
∂u
∂t
= a

( ∂2u

∂x2
1
+
∂2u

∂x2
2
+
∂2u

∂x2
3

)
, a =

k
C
> 0.

Remark 6.1 If the temperature distribution is independent of time (i.e., .ut = 0),
the temperature u satisfies the Laplace equation (if .k = const). Thus, the Dirichlet
problem for the Laplace equation (see §5) can be interpreted as the problem on the
distribution of the steady (stationary) temperature in the body if a time-independent
distribution of temperature is set on the surface of the body. This is also true for more
involved problems, for example, for problems dealing with heat and mass transfer
(Demidov and Yatsenko 1994).

If one is interested in the distribution of the temperature inside the body, where
(for some time) the effect of boundary conditions is not very significant, then the
situation is idealized and the following problem is considered:
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.C
∂u
∂t
= div(k∇u), (x, y, z) ∈ R3, t > 0, u|t=0 = f (x, y, z),

where f is the temperature distribution (in a body without boundary, i.e., in .R
3)

at time .t = 0. This problem is sometimes called the Cauchy problem for the heat
equation.

Assume that f and k and, therefore, u are independent of y and z. Then u is
a solution of the problem

.C
∂u
∂t
=
∂

∂x

(
k
∂u
∂x

)
, (x, t) ∈ R2

+ = {x ∈ R, t > 0}, (6.3)

u|t=0 = f (x). (6.4)

Working Conjecture 6.2 The method by which problem (5.2) was solved in .R
2
+

suggests28 that in the case of problem (6.3), (6.4), its solution can apparently be
expressed by the formula

.u(x, t) =
∫ ∞

−∞
f (ξ)v(x − ξ, t) dξ;

here v is the solution of (6.3) satisfying condition

. lim
t→+0

v(x, t) = δ(x), (6.5)

where .δ is the .δ-function.

Below (see Theorem 6.5) it will be shown that this conjecture is true and that
the function v can be explicitly written down. This function satisfies the following
conditions:

.C
∂v

∂t
=
∂

∂x

(
k
∂v

∂x

)
,

∫ ∞

−∞
Cv dx = Q; (6.6)

here Q is the total amount of heat. So, v is some function G of five independent
variables, x, t, C, k, and Q, i.e.,

.v = G(x, t,C, k,Q). (6.7)

Remark 6.3 The method by which the function v will be found has its origins in
mechanics (Sedov 1959) and is called the method of transition to dimensionless
parameters (variables).

Let .{p} be the value of a dimensional quantity in the “original” system of units,
and let .{p∗} be its value in a “different” system of units. If .[p] is the dimension of this
quantity in the “original” system and .[p∗] is its dimension in the “different” system,
then

.{p}[p] = {p∗}[p∗]. (6.8)

For example, if .[t] is measured in seconds and .[t∗] in minutes, then .
{t }
{t∗ } = 60. So,

28 See footnote 20 on p. 17.
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.{p∗} = {p} [p][p∗] ⇒ {p∗} = {p}[p] if [p∗] = 1. (6.9)

Note that, in the SI system of units, v, x, t, andQ are measured in units: .[v] = K, .[x] =
m, .[t] = s, .[Q] = J. In view of conditions (6.6), we have .[C][v]/[t] = [k][v]/[x]2
and .[C][v][x] = [Q]. Hence the dimensions of the quantities C and k are expressed
by the formulas29

.[C] = J/(m · K), [k] = J ·m/(s · K).

Since C, k, and Q play the role of parameters of the function .v(x, t), it is preferable
to express the units for the function v and one of its arguments, for example x, in
terms of the dimensions of the quantities t, C, k, and Q, which are naturally called
“base” parameters. We have

.[x] =
√
[t] · [k]/[C], [v] = [Q]/

√
[t] · [k] · [C]. (6.10)

If we take as a new system of units the one in which the “base” parameters are
taken as units, then in this new system of units they become dimensionless .[t∗] = 1,
.[C∗] = 1, .[k∗] = 1, and .[Q∗] = 1, their numerical values .t∗, .C∗, .k∗, and .Q∗ are equal
to 1. Hence, in accordance with (6.8) in this new system of units, we have

.[t] = 1
{t} , [C] =

1
{C} , [k] =

1
{k} , [Q] =

1
{Q} , (6.11)

in the same way as .[t] = min. = hr.
60 =

t∗

{t } =
1
{t } . In the new system of units, the

other parameters are also dimensionless in view of (6.10), and hence by (6.8) they
are equal to their numerical values. Hence

.

x∗= {x∗} (6.9)
= {x}[x] (6.10)

= {x}
√
[t] · [k]/[C] (6.11)

=
{x}

√
{C}√

{t}{k}
,

v∗= {v∗} (6.9)
= {v}[v] (6.10)

= {v}
√
[t] · [k]/[C] (6.11)

=
{v}

√
{t}{k}{C}
{Q} .

(6.12)

We now note that the dependence .v
(6.7)
= G(x, t,C, k,Q) expresses the law, which

does not depend on the choice of the system of units. So, .v∗ = G(x∗, t∗,C∗, k∗,Q∗),
and hence since .t∗ = C∗ = k∗ = Q∗ = 1, we get

.v(x, t) = Q
√
kCt

g
(√C

kt
· x

)
, where g(y) = G(y, 1, 1, 1, 1). (6.13)

29 If we talk about a real three-dimensional physical object, the integral in (6.6) would be over a three-
dimensional domain. Therefore, in the real three-dimensional physical world, .[C] = J/(m3 ·K) and
.[k] = J/(m · s · K).
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Remark 6.4 One can get (6.13) from purely mathematical considerations. Namely,
changing the variables

.t∗ =
t
σt
, C∗ =

C
σC
, k∗ =

k
σk
, Q∗ =

Q
σQ
, x∗ =

x
σx
, v∗ =

v

σv

and requiring that .v∗ be equal to .G(x∗, t∗,C∗, k∗,Q∗), i.e., requiring that

.C∗ · ∂v
∗

∂t∗
=
∂

∂x∗

(
k∗ · ∂v

∗

∂x∗

)
,

∫ ∞

−∞
C∗v∗ dx = Q∗,

from (6.6), we get that .σx =
√

σtσk

σC
and .σv =

σQ√
σtσkσC

. Using (6.8) and taking the
scale coefficients .σt =

[t∗]
[t] , .σC =

[C∗]
[C] , .σk =

[k∗]
[k] , and .σQ =

[Q∗]
[Q] , we again arrive

at (6.13).
However, the use of dimension considerations can be helpful. First, this allows

one to test the correctness of the occurrence of certain parameters when setting the
problem: the dimensions in both parts of any equality should be consistent. And
second, it allows one to find a necessary replacement of variables (not necessarily
related only to scale factors). All this allows one to automatically (and therefore
easily) get rid of the “extra” parameters and thereby facilitate both the analysis and
calculations.30 In addition, a transition to dimensionless parameters allows one to
apply similarity considerations, which sometimes significantly facilitate the solution
of both very difficult problems (see, for example, Sedov (1959)) and problems like

30 Consider, for example, the problem of the temperature field of an infinite plate of thickness 2S
with initial temperature .T0 = const, when there is a heat exchange between the surface of the plate
(with the heat transfer coefficient .α) and the medium of temperature of .T1 = const. In other words,
consider the problem

.
∂T

∂τ
= a

∂2T

∂ξ2 , τ > 0, |ξ | < S; ∓k ∂T
∂ξ

���
ξ=±S

= α(T −T1) |ξ=±S ; T |τ=0 = T0.

Problems of this kind arise, for example, when selecting the parameters k and .α which charac-
terize the mode of quenching of some or other grade of steel (characterized by the parameter a).
In this example, an infinite steel plate of thickness 2S can be interpreted (as is sometimes done in
practice) as a localization of critical parts of an article (for example, the race of a bearing).

The function .T = f (τ, ξ, a, S, k, α, T1, T0) depends a priori on eight parameters. Tabulating
the values of such a function (for which each of the parameters takes at least 10 values) is clearly
impractical, since it would require analyzing a million pages. But by changing to the dimensionless
parameters

.u = (T −T1)/(T1 −T0), x = ξ/S, t = aτ/S2, σ = k/(αS),

the problem is reduced to the problem

.
∂u

∂t
=

∂2u

∂x2 , t > 0, |x | < 1;
(
u ± σ ∂u

∂x

)���
x=±1

= 0; u |t=0 = 1, (6.14)

whose solution .u = u(t, x, σ) can be represented (and this is important in applications) in the form
of a compact table (one page for each value of .σ ≥ 0).



6 On the Heat Equation 27

the following one. A channel of length L is drilled through the center of the ball.
Find the volume of the remaining part of the ball.31

Let us return to formula (6.13). In order to find the function v, we substitute its
expression (6.13) in the heat Eq. (6.2). As a result, we get

.Q

√
C

kt3

[g(y)
2
+ y

g′(y)
2
+ g′′(y)

]
= 0,

i.e.,
.
(yg(y))′

2
+ g′′(y) = 0.

So, the function g satisfies the linear equation

.g′(y) + yg(y)
2
= const . (6.15)

If g is odd, i.e., .g(−y) = g(y), then .g′(0) = 0, and hence g satisfies the homogeneous
equation (6.15), whose solution is clearly given by .g(y) = Ae−y

2/4. The constant A
can be found from the second condition in formula (6.6):

.Q =
∫ ∞

−∞
Cv dx =

ACQ
√
kCt

∫ ∞

−∞
e−Cx2/4kt dx = 2AQ

∫ ∞

−∞
e−ξ

2
dξ,

i.e., .A (1.6)
= 1/(2

√
π). Therefore,

.v(x, t) = Q

2
√
kCπt

e−Cx2/(4kt). (6.16)

Theorem 6.5 Assume that, for some .σ ∈ [1, 2[, .a > 0 and .M > 0,

.| f (x)| ≤ M exp(a|x |σ) for any x ∈ R (6.17)

for a function . f ∈ C(R). Then the function .u : {(x, t) ∈ R2 : t > 0} → R, as defined
by

.u(x, t) =
∫ ∞

−∞
f (ξ)P(x − ξ, t) dξ, P(x, t) = 1

2
√
πt

e−x
2/(4t), (6.18)

is a solution to the heat equation

31 At first, it may seem that in this problem, which was posed by the American mathematician
and popularizer of science Martin Gardner (1914–2010), it is required to calculate the integral that
expresses the volume of the drilled channel. But since the radius of the ball is not set, it may seem
that the problem is set incorrectly. However (see Rybakov 2014), the required volume V should
be proportional to the cube of a given linear size, i.e., .V = kL3, where k is some dimensionless
constant. It does not depend on the radius of the ball, and hence it is the same if the length L is
equal to 2R, where R is the radius of the ball. In this problem, .V = 4

3πR
3. Hence .k = π

6 , solving
the problem.
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.
∂u
∂t
=
∂2u

∂x2 (6.19)

in .R
2
+ = {(x, t) ∈ R2 : t > 0}. This solution is infinitely differentiable and satisfies

the initial condition (or, as some say, the Cauchy condition)

. lim
t→+0

u(x, t) = f (x). (6.20)

Besides, for any .T > 0, there exists a .C(T) > 0 such that

.|u(x, t)| ≤ C(T)e(2a |x |)σ (6.21)

for all .x ∈ R and .t ∈ [0,T].

Proof From the construction of the function (6.16), it follows that the function
.P(x, t) = (4πt)−1/2 exp

(
− x2

4t
)

satisfies (6.6) with .C = k = Q = 1. Hence (6.20)
follows from Exercise 4.2, while (6.19), as well as the smoothness of the function u,
is secured by the well-known theorem on the differentiation of integrals with respect
to a parameter (see, for example, Zorich (2016)), because the corresponding integral
converges uniformly. Indeed, for all .R > 1 and .λ > 0, there exists an .N > 1 such
that

.

∫
|ξ |>N

��� ∂ j+k
∂x j∂tk

( f (ξ)P(x − ξ, t))
��� dξ < λ (6.22)

for .x ∈ [−R, R], .t ∈ [1/R, R], because for such x and t the integrand in (6.22) is
estimated in terms of .CR | f (ξ)|P(x − ξ, t) if . j + k > 0.

Let us now verify estimate (6.21). Note that, for .σ ∈ [1, 2[ and some .ε > 0 and
.Cε > 0,

.|ξ |σ ≤ 2σ(|x |σ + |ξ − x |σ), |ξ − x |σ ≤ ε(ξ − x)2 + Cε |ξ − x |.

We choose .ε so as to have .1 − 4T · aσ · ε > 0, where .aσ = a · 2σ . Hence, for .t ≤ T
(cf. Godunov 1979, p. 42), we have

.|u(x, t)| ≤ M

2
√
π

∫
ea |ξ |

σ · e−(x−ξ)2/(4t) dξ√
t

≤ M1e
(2a |x |)σ

∫
ea(2 |ξ−x |)

σ · e−((x−ξ)/(2
√
t))2 dξ

2
√
t

≤ M1e
(2a |x |)σ

∫
e−(1−4Taσε)(x−ξ)2/(4t) · eaσCε ( |x−ξ |/(2

√
t))2
√
t dξ

2
√
t
.

Putting .η = (ξ − x)(1 − 4Taσε)1/2/(2
√
t), we find that

.|u(x, t)| ≤ C(T)e(2a |x |)σ
∫

e−η
2+α |η | ·2

√
t dη.

This implies estimate (6.21), because



6 On the Heat Equation 29

.

∫ ∞

0
e−η

2+αη ·2
√
t dη = eα

2t

∫ ∞

0
e−(η−α

√
t) dη ≤ eα

2t

∫ ∞

0
e−ζ

2
dζ .

Remark 6.6 In general, there exists a solution to problem (6.19), (6.20), which is
different from (6.18). So, for example, the solution of problem (6.19), (6.20) for
. f = 0 is given by the series

.u(x, t) =
∞∑

m=0
ϕ(m)(t) · x2m/(2m)!, (x, t) ∈ R2

+, (6.23)

with .ϕ ∈ C∞(R) satisfying the conditions

. supp ϕ ⊂ [0, 1], |ϕ(m)(t)| ≤ (γm)! for any m ∈ Z+, (6.24)

where .1 < γ < 2. (The condition .γ < 2 is needed for the uniform (with respect to x
and t, .|x | ≤ R < ∞) convergence of both the series (6.23) and its derivatives.) This
simple but important fact was noticed in 1935 by A. N. Tikhonov32 in Tychonoff
(1935), who in the construction of the series (6.23) used a nontrivial result of
Carleman33 (see Carleman 1926) on the existence of a nonzero function .ϕ with
properties (6.24). It is worth pointing out that the nonzero solution (6.23) (satisfying
the condition .u(x, 0) = 0) of the heat equation constructed by Tikhonov grows
faster as .|x | → ∞ than .exp(Cx2) for any .C > 0 (and slower than .exp(Cxσ), where
.σ = 2/(2−γ) > 2). On the other hand, based on the maximum principle for solutions
of the heat equation (see, for example, Godunov (1979); Mikhailov (1978); Tychonoff
(1935); Friedman (1964)), it can be shown that the solution of problem (6.19), (6.20)
is unique if condition (6.21) is satisfied. The uniqueness theorem in a broader class
of functions was proved in 1924 by Holmgren34 in Holmgren (1924).

The next theorem follows from Remark 6.6.

Theorem 6.7 If a function . f ∈ C(R) satisfies condition (6.17), then formula (6.18)
represents a solution of problem (6.19), (6.20), and this solution is unique in the
class (6.21).

32 Andrey Nikolaevich Tikhonov (1906–1993) was a mathematician and geophysicist, an Aca-
demician of the USSR Academy of Sciences, who proposed a method for regularizing ill-posed
problems.
33 Torsten Carleman (1892–1949) was a Swedish mathematician, an outstanding analyst. His main
works were devoted to integral equations and the theory of functions.
34 Erik Albert Holmgren (1872–1943) was a Swedish mathematician. T. Carleman, who was his
pupil, exceeded his master. But Holmgren is also considered a classic—in 1901 he proved an
important uniqueness theorem in the class of smooth functions (not necessarily analytic, as in the
Cauchy–Kovalevskaya theorem) for the solution of the Cauchy problem for differential equations
with analytic coefficients. No less significant was Holmgren’s idea of the proof, in which the
solvability of the conjugate problem was tested. An example of the application of his idea is
presented in the proof of Theorem 11.9.
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7 The Ostrogradsky–Gauss Formula: The Green Formulas and
the Green Function

We start with the clear formula .
∫ b

a
g(x) dx = −

∫ a

b
g(x) dx, which clearly follows

from the definition of the integral over an interval .]a, b[, which is defined as the
limit of the corresponding integral sums over oriented small intervals whose length
tends to zero. The orientation of the small intervals is induced by the orientation
of the interval .(a, b), which corresponds to the direction from a to .b > a. In the n-
dimensional setting, the integral .

∫
Ω
g(x1, . . . , xn) dx1 . . . dxn over a bounded domain

.Ω ⊂ Rn is also the limit of the sum of terms of the form .g(x)dx1 ∧ . . .∧ dxn, where

.x ∈ Ω, and

.dx1 ∧ . . . ∧ dxn = det
�   
!

dx1 0 . . . 0
0 dx2 . . . 0
. . . . . .

0 0 . . . dxn

"###
$

is the oriented volume of the parallelepiped with “infinitely small” edges .dxk . If you
swap some two edges, then in the mirror one can see the former parallelepiped. So
the permutation of two edges is similar to the transition from the integral .

∫ b

a
g(x) dx

to the integral .
∫ a

b
g(x) dx. In other words, the oriented volume will change the sign.

Hence
.dx1 ∧ . . . ∧ dxn = (−1)mdxj1 ∧ . . . ∧ dxjn ,

where m is the signum of a permutation .

(
1 2 . . . n
j1 j2 . . . jn

)
, i.e., the number of pairs of

elements (not necessarily neighboring) at which the succeeding element has smaller
number than the previous one. In particular, .dx1 ∧ dx3 ∧ dx2 = −dx1 ∧ dx2 ∧ dx3,
and .dx3 ∧ dx1 ∧ dx2 = dx1 ∧ dx2 ∧ dx3.

Now we note that the Newton–Leibniz formula .
∫ b

a
f ′(x) dx = f (b) − f (a) can be

written in the form .
∫
(a,b) f

′(x) dx = f (b)α(b) + f (a)α(a). Here the points a and b

constitute the boundary .Γ
def
= ∂(a, b) of the interval .(a, b), and .α(x) is the cosine of

the angle between the outer normal vector .ν to the interval .(a, b) at a point .x ∈ Γ
and the coordinate x-axis, i.e., .α(b) = 1, .α(a) = −1.

The extension of the Newton–Leibniz formula to the case when .Ω is a bonded
domain in .R

n with smooth .(n−1)-dimensional boundary .∂Ω, and . f = ( f1, . . . , fn) is
a vector function with components . fk ∈ C(Ω̄) such that .∂ fk/∂xk ∈ PC(Ω) is known
as the Ostrogradsky–Gauss formula

.

∫
Ω

div f (x) dx =
∫
∂Ω

n∑
k=1

fk(x)αk dΓ, (7.1)

where .αk = αk(x) is the cosine of the angle between the outward normal vector .ν
to .Γ = ∂Ω at a point .x ∈ Γ and the kth coordinate axis, and .dΓ is the “area
element” of .Γ, i.e., the undirected (positive) .(n − 1)-dimensional volume of the
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parallelepiped .dΓ = ds1∧. . .∧dsn−1. This means that the local system of coordinates
.(s1, . . . , sn−1 ,−ν), where .ν is the outer normal vector to .Γ, has the same orientation
as the system of coordinates .(x1, . . . , xn−1 , xn). Formula (7.1) was first published
Ostrogradsky35 in 1831 (Note sur les intégrales définies, Mem. l’Acad.) and much
later by Gauss36 in a somewhat specialized form that does not contain an expression
for divergence. However, in 1813 Gauss obtained this formula in a special case, and
an even more special case was considered by Lagrange,37 in 1762. Formula (7.1)
is a particular case of the well-known Stokes–Poincaré theorem on integration of
differential forms on a manifold with boundary (see, for example, Zorich (2016),
which is expressed by an easy-to-remember formula:38

.

∫
Ω

dω =
∫
∂Ω
ω. (7.2)

This formula implies (7.1) with

.ω =
∑
k

(−1)k−1 fk(x) dx1 ∧ . . . ∧ dxk−1 ∧ dxk+1 ∧ . . . ∧ dxn,

because
.dω =

∑ ∂ fk(x)
∂xk

dx, and ω|∂Ω =
∑

fk(x)αk dΓ.

If . fk(x) = Ak(x)v(x), where .v ∈ PC2(Ω) ∩ C1( ¯̄Ω), then from (7.1) it follows that

.

∫
Ω

v
( n∑
k=1

∂Ak

∂xk

)
dx = −

∫
Ω

n∑
k=1

Ak
∂v

∂xk
dx +

∫
∂Ω

v

n∑
k=1

Akαk dΓ. (7.3)

Putting .Ak =
∂u
∂xk

, where .u ∈ PC2(Ω) ∩ C1( ¯̄Ω), we get the first Green formula39 for
the Laplace operator,

35 Mikhail Vasilyevich Ostrogradsky (1801–1862) was the recognized leader of mathematicians of
the Russian Empire of the mid-nineteenth century.
36 Johann Carl Friedrich Gauss (1777–1855) was a German mathematician, physicist, astronomer,
and geodesist, one of the greatest mathematicians of all times.
37 Joseph Louis Lagrange (1736–1813) was a French mathematician, physicist, and mechanician
of Italian origin, one of the greatest mathematicians of the eighteenth century, and the author of
the classical “Analytic mechanics.” He made enormous contributions to calculus, number theory,
probability theory, and numerical methods. Legendre is one of the founders of variational calculus.
38 Formula (7.2), which for .ω = a1 dx1 + a2 dx2 + a3 dx3 coincides with the classical Stokes
formula, was obtained in 1889 Henri Poincaré (1854–1912) in Vol. III of his “New Methods of
Celestial Mechanics.” The classical Stokes formula itself first appeared as a postscript to a letter
from Sir William Thomson (1824–1907), Lord Kelvin, to his equally famous colleague Sir George
Stokes (1819–1903). Stokes published it in 1854 as an exam question for Cambridge University
students. The form .(−1)kdx1 ∧ . . . ∧ dxk−1 ∧ dxk+1 ∧ . . . ∧ dxn is an oriented area of the
.(n − 1)-dimensional parallelogram with sides .dx1, . . . , .dxk−1, .dxk+1, . . . , .dxn , with the same
orientation as the standard .Rn-orientation of the element .dx = dx1 ∧ . . . ∧ dxn .
39 George Green (1793–1841) was an English mathematician and physicist.
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.

∫
Ω

vΔu dx =
∫
∂Ω

v
∂u
∂ν

dΓ −
∫
Ω

n∑
k=1

∂u
∂xk

∂v

∂xk
dx, (7.4)

where .Δ is the Laplace operator (see §5). Subtracting from (7.4) Eq. (7.4) with
swapped u and v, we get the second Green formula for the Laplace: operator

.

∫
Ω

(vΔu − uΔv) dx =
∫
∂Ω

(
v
∂u
∂ν
− u ∂v
∂ν

)
dΓ. (7.5)

Setting .v ≡ 1 in (7.5), we get the following remarkable corollary:

.

∫
Ω

Δu dx =
∫
∂Ω

∂u
∂ν

dΓ. (7.6)

In particular, if a function .u ∈ C1( ¯̄Ω) is harmonic in .Ω, then40

.

∫
∂Ω

∂u
∂ν

dΓ = 0. (7.7)

This is the integral Gauss formula. We rewrite (7.5) in the form

.

∫
Ω

u(y)Δv(y) dy =
∫
Ω

v(y)Δu(y) dy +
∫
∂Ω

[
u(y)∂v
∂ν
(y) − v(y)∂u

∂ν
(y)

]
dΓ, (7.8)

take a point .x ∈ Ω, and replace in (7.8) the function v by the function .Eα(x, ·) ∈
PC2(Ω), which depends on x as a parameter and satisfies the equation

.ΔyEα(x, y) ≡
n∑

k=1

∂2

∂y2
k

Eα(x, y) = δα(x − y), (7.9)

where .δα is defined in (1.3) and .1/α � 1. Taking into account Exercise 7.1 (see
below), we make .α to 0. As a result, using Lemma 2.1, we get

.u(x) =
∫
Ω

E(x − y)Δu(y) dy +
∫
∂Ω

[
u(y)∂E(x − y)

∂ν
− E(x − y)∂u(y)

∂ν

]
dy, (7.10)

where

.E(x) =
⎧⎪⎪⎨
⎪⎪⎩

1
2π
· ln |x | for x � 0, n = 2,

− |x |2−n/((n − 2)σn) for x � 0, n ≥ 3.
(7.11)

P 7.1 Taking into account Exercise 5.2 and Theorem 5.14, show that the general solution of (7.9), which
depends only on . |x − y |, can be written in the form .Eα(x − y) + const, where for . |x | ≥ α the
function .Eα ∈ C1(Rn) coincides with the function (7.11), and the estimate . |Eα(x) | ≤ |E(x) |
holds for . |x | < α. By .σn we denote (see Exercise 1.1) the area of the unit sphere in .Rn .

40 Formula (7.6) expresses the important fact: the total gradient flow of a harmonic function through
the boundary of any body is zero (this is quite clear from everyday experience if one takes into
account that the Laplace equation is the stationary heat equation).
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Hint The function . fα : ρ �→ fα =
dEα (ρ)

dρ is continuous and .ρ
d fα
dρ + (n − 1) fα

=

{
0 for ρ ≥ α

ρ
αn |Bn | for 0 ≤ ρ ≤ α .

Changing .ρ = ln t, .g(t) = fα(ρ(t)), we arrive at the equation

.g′ + (n − 1)g =
{

0 for ρ = et ≥ α
et

αn |Bn | for 0 ≤ ρ = et ≤ α .
Since . fα is continuous, we get

. fα(ρ) =
{
Cρ−(n−1) for ρ ≥ α

Cα−(n−1) + ρ
nαn |Bn | for 0 ≤ ρ ≤ α

and hence

.Eα(ρ) =
⎧⎪⎪⎨
⎪⎪⎩

C
∫
ρ−(n−1) dρ for ρ ≥ α

Eα(α) + ρ
nαn |Bn | for 0 ≤ ρ ≤ α .

From (7.6) and (1.3), we have

.

∫
|x |=α

∂Eα

∂ν
dΓ =

∫
|x |<α

ΔEα dx = 1. (7.12)

Now it remains to invoke (7.12) and (7.6).
In particular, for .n = 2, we have .Eα(ρ) = C ln ρ +D. By the assumption .Eα ∈ C1, and hence

.
dEα(ρ)

dρ

���
ρ=α+0

=
dEα(ρ)

dρ

���
ρ=α−0

=
C

α
.

As a result, the multiplicative constant C is . 1
2π , i.e., .Eα(ρ) = 1

2π ln ρ + D, because

.1 =
∫
|x |<α

ΔEα dx =

∫
√

x2
1+x

2
2=α

dEα

dρ

���
|x |=α

dx =

∫ 2π

0
d ϕ

∫ α

0

C

α
dρ =

C

α
2πα = 2πC .

Let .x ∈ Ω. Consider41 the function .g(x, ·) : ¯̄Ω � y �→ g(x, y), which is a solution
of the following Dirichlet problem for the homogeneous Laplace equation with the
special boundary condition:

.Δyg(x, y) = 0 in Ω, g(x, y) = −E(x − y) for y ∈ Γ = ∂Ω. (7.13)

Next, we substitute the function .g(x, ·) in (7.8) in place of v and add the resulting
equality to (7.10). As a result, we get the following integral representation of the
function .u ∈ PC2(Ω) ∩ C1( ¯̄Ω):

.u(x) =
∫
Ω

G(x, y)Δu(y) dy +
∫
∂Ω

∂G(x, y)
∂ν

u(y) dΓ; (7.14)

here
.G(x, y) = E(x − y) + g(x, y). (7.15)

The function (7.15) is called the Green function of the Dirichlet problem for the
Laplace equation

41 In § 22 (see Corollary 22.33), we give a theorem on solvability of problems much more general
than problem (7.13). In § 22, we also give a theorem on smoothness of solutions.
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.Δu = f in Ω, u = ϕ on ∂Ω. (7.16)

This name is appropriate here, because by (7.14) the solution of problem (7.16),
where . f ∈ PC(Ω), .ϕ ∈ C(∂Ω), can be represented via the function G in the form

.u(x) =
∫
Ω

f (y)G(x, y) dy +
∫
∂Ω
ϕ(y)∂G(x, y)

∂ν
dΓ. (7.17)

Formula (7.17) is frequently called the Green formula.

P 7.2 Let .Ω = Rn+ , where .Rn+ =
{
x = (x′, xn) ∈ Rn : x′ ∈ Rn−1, xn > 0

}
, and .x′ =

(x1, . . . , xn−1) ∈ Rn−1. Let .x∗ = (x′, −xn) be the reflection of the point x about the hyperplane
.xn = 0. Verify that .G(x, y) = E(x, y) − E(x∗, y). Check (cf. formula (5.7)) that

. − ∂G(x, y)
∂yn

���
yn=0

=
2
σn

xn

[(x1 − y1)2 + . . . + (xn−1 − yn−1)2 + xn]n/2
.

Remark 7.3 For sufficiently general domains, it is quite difficult to evaluate and/or
analyze the solution of, say, the Dirichlet problem with the use of the Green for-
mula (7.14). However, this difficulty can be circumvented, to some extent, using the
machinery of the so-called double layer potentials (see, for example, Maz’ya (1988)).

8 The Lebesgue Integrals

With the light hand of E. B. Dynkin,42 who was the first to read the theory of the
Lebesgue integral to the 2nd year mathematics students of the Faculty of Mechanics
and Mathematics of Moscow State University in the fall of 1964 as part of the
Calculus mandatory course, now the theory of the Lebesgue integral is usually
included in the curriculum for junior mathematics students. However, perhaps some
readers are not familiar with this topic, and for them we give the necessary results in
this and the next sections. At the first reading, one can quickly read the definitions and
results in these sections and then proceed further. Here at least two facts are worth
noting: .(1) if a function f is piecewise continuous in .Ω � Rn, then it is Riemann
integrable and .(2) a Riemann integrable function is also Lebesgue integrable and
its Riemann integral coincides with its Lebesgue integral (see Lemma 8.21). As
necessary (when it comes to limit transitions under the sign of the integral, changing
the order of integration, etc.), it will be advisable to return to a more careful reading
of §8 and 9 and the cited textbooks.

In §§1 and 2, we outlined the idea of representation (definition) of a function
by its “averages.” This idea is related to the concept of the integral. According to
Cauchy, with any function f continuous on .[a, b], one may associate the number

42 Evgeny Borisovich Dynkin (1924–2014) was a Soviet and American mathematician. He is known
for his works in group theory and Lie algebras, as well as in probability theory, member of the
US National Academy of Sciences, and honorary member of the Moscow Mathematical Society
(1995).
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known as the integral of f over .Ω =]a, b[. It is denoted by .
∫ b

a
f (x) dx and it is

defined as the limit of the so-called integral sums. Namely, for any .k = 1, . . . , N ,
for each .ξk ∈]ak, bk[=]ak, ak+1[⊂]a, b[, where .a1 = a, .bN = b, there exists the
limit .limN→∞

∑N
k=1 f (ξk)(bk − ak) as the diameter of the partition of .]a, b[ into

subintervals .]ak, bk[ tends to zero an .N →∞, i.e., .max1≤k≤N (bk − ak) → 0.
Clearly, for a continuous function f , the above Cauchy definition of the integral

.
∫ b

a
f (x) dx is equivalent to saying that as .N → ∞ the so-called lower Darboux

sum43

.S−N ( f ) =
N∑
k=1

m−k ( f )(bk − ak) , m−k ( f ) = inf
x∈[ak,bk ]

f (x)

and the upper Darboux sum

.S+N ( f ) =
N∑
k=1

m+k ( f )(bk − ak) , m+k ( f ) = sup
x∈[αk,βk ]

f (x)

have the property that .S−N ( f ) ↑ S−( f ), .S+N ( f ) ↓ S+( f ) and .S−( f ) = S+( f ) =∫ b

a
f (x) dx.

This property is not satisfied by the famous Dirichlet function, which is discon-
tinuous everywhere

.D(x) =
{

1, x ∈ Q,
0, x ∈ R\Q.

(8.1)

P 8.1 Verify that the limits of the lower and upper Darboux sums for the Dirichlet function are
different. Hence this function is not Riemann integrable. Note that the Dirichlet function is different
from some other (!) continuous (which functions?) on a nullset, and this function is not almost
everywhere continuous. Moreover, .D(x) is everywhere discontinuous.

In connection with Dirichlet and Riemann’s development of the concept of a func-
tion as a pointwise map to a numerical line, the question arose about the class of
functions integrable in the Cauchy sense. The answer was given by Riemann, and
this is why the integral introduced by Cauchy is called the Riemann integral. Namely,
Riemann proved (see Lemma 8.16) that the limit of the Cauchy integral sums exists
and is finite if and only if the function f is bounded and continuous almost every-
where. The phrase “almost everywhere” (abbreviated a.e.) means that some property
.P(x), which depends on a point .x ∈ Ω ⊂ Rn, holds everywhere except a set .A ⊂ Ω
of zero measure .μ(A). In the case .Ω ⊂ R, this means that, for any .ε > 0, there
exists a union of intervals .E =

⋃∞
k=1 Πk , .Πk =]ak, bk[ such that (1) .A ⊂ E and

(2).
∑∞

k=1 μ(Πk) < ε , where .μ(Πk) = bk − ak .

P 8.2 Give the meaning in the n-dimensional case to the phase: “the measure of a set .A ⊂ Ω ⊂ Rn
is zero” (the n-dimensional measure of the set A is zero).

43 Jean Gaston Darboux (1842–1917) was a French mathematician. He worked in the field of
calculus and differential geometry.
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Hint See the definitions that follow.

Definition 8.3 A set .E ⊂ Rn is elementary if it is a union of a finite or countable
number of parallelepipeds

.Πk = {x = (x1, . . . , xn) ∈ Rn : xj ∈]ajk , bjk [ }, k ∈ N.

Definition 8.4 A set .A ⊂ Rn is a nullset or has measure zero (more precisely, its
n-dimensional measure is zero) if, for any .ε > 0, there exists an elementary set
.E =

⋃∞
k=1 Πk such that .(1) .A ⊂ E and .(2) .

∑∞
k=1 μ(Πk) < ε, where .μ(Πk) =∏n

j=1(bjk − ajk ) is the measure (the volume) of the parallelepiped .Πk .

P 8.5 Verify that .A =
⋃

j≥1 A j is a nullset if and only if so is any .A j . Prove as a corollary that the
set of rational numbers .Q is a nullset in .R, and the measure of the set of irrational numbers lying
in a closed interval .[a, b] is .b − a.

Hint Use the equality .
∑

j≥1
ε
2 j = ε.

Definition 8.6 The Cantor44 set .C0 is a subset of the interval .[0, 1] obtained from
the interval .[0, 1] by sequentially throwing out at the kth iteration step (.k ≥ 0)
.2k intervals from the middle of the .2k closed intervals remaining in the .(k − 1)st
iteration step, and the length of each interval to be thrown out is .

1
3 of the length of

the corresponding closed interval. So, the interval .
] 1

3,
2
3
[

is thrown out of the closed
interval .[0, 1] at the zeroth step, two middle intervals of length .

( 1
3
)2 are thrown out

of the remaining two closed intervals at the first step, and so on.

P 8.7 Verify that set .C0 has the cardinality of a continuum, i.e., there exists a one-to-one corre-
spondence between .C0 and .[0, 1], and hence between .C0 and the entire real line .R. Verify that the
set .C0 is a nullset (despite the fact that .C0 is in a one-to-one correspondence with .[0, 1]); in other
words, the measure of all the removed intervals (i.e., their total length) is 1.
Hint The points of the set .C0 (the end points of the removed intervals) are in a one-to-one
correspondence with the representations of numbers in the ternary number system (in which only
the digits 0, 1, and 2 are used) and, therefore, with the binary representations of numbers that use
only the digits 0 and 1. But such infinite binary representations are in a one-to-one correspondence
with the points from the closed interval .[0, 1] ⊃ C0.

Remark 8.8 An interval .]α, β[⊂ [c, d] is called the middle interval if its midpoint
coincides with the midpoint of .[c, d]. If the middle interval of length .

a
2 , where

.0 < a < 1, is thrown out of the interval .[0, 1], and the throw the middle intervals of
length .

a
8 out of the remaining two closed intervals, and continue this procedure by

throwing out at the nth step the middle intervals of length .
a

22n+1 from the remaining
.2n closed intervals, we get the set .Ca by throwing out from the .[0, 1] a countable
number of intervals of total length .a < 1. This shows that .Ca is not a nullset, but
this set, as well as .C0, is nowhere dense in .[0, 1] and closed.
44 Georg Ferdinand Ludwig Philipp Cantor (1845–1918) was a German mathematician. He was
born in Saint Petersburg, Russia. Cantor’s first works were devoted to Fourier series. In these
studies, he created the theory of irrational numbers, which received wide recognition. In 1874,
Cantor proved that the set of real numbers is uncountable.
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Of course, in the case of discontinuous functions, the difference between .m−
k
( f ) =

infx∈[αk,βk ] f (x) and .m+
k
( f ) = supx∈[αk,βk ] f (x) at the boundary points of the inter-

vals .]ak, bk[ does not vanish, in general, when making .N → ∞. However, a set A
on which difference may appear is a nullset (according to Problem 8.5). Hence the
above difference between .m−

k
( f ) and .m+

k
( f ) has no effect on the Darboux sums of

the function f satisfies

. f = f − = f + almost everywhere in Ω =]a, b[ , (8.2)

and45
. f −N ↑ f − a.e., . f +N ↓ f + a.e., where46

. f ±N (x) =
∑N

k=1 m
±
k
· 1[ak,bk ](x). In

this case47 a function . f : Ω → R is called Riemann integrable, and the number
.S−( f ) = S+( f ) is called the Riemann integral of the function f and is denoted as
.
∫
Ω
f (x) dx (or as .

∫ b

a
f (x) dx if .Ω =]a, b[⊂ R).

P 8.9 Verify that the Riemann function48

.R(x) =
{

1/n if x = m/nis an irreducible fraction,
0 otherwise (i.e., at irrational points)

(8.3)

.(1) Is continuous a.e.; more precisely, it is discontinuous at any rational x and continuous at any
irrational x

.(2) Is Riemann integrable, i.e., .S−(R) = S+(R)

Hint
.1. Let .N ∈ N and let .MN ⊂ [−N, −N + 1] ∪ [N − 1, N ] be the set of points of the form .mn ,

where .n ≤ 2N+1. Then .R(x) < 2−(N+1) at the remaining points.
.2. Let us compose the upper Darboux sum corresponding to a partition of the real line which

involves the union .O =
⋃

ON of intervals .ON containing the points of the set .MN ; .μ(ON ) < 2−N .
We have .supx∈R\O R(x) < 2−N . Hence .S+(R) < 2

2N (because .R ≤ 1). Hence .S+(R) = 0, since N
is arbitrary. )

The above construction of the Riemann integral can be easily carried over to the
multivariate case, where .Ω � Rn is a domain, i.e., if its boundary .∂Ω is piecewise-
smooth. To this end, one should, in place of the system of vector .]ak, bk[, construct
a system of disjoint parallelepipeds

45 The notation . fN ↑ f a.e. means that the nondecreasing sequence of functions . fN : Ω → R
converges almost everywhere (a.e.) to a function . f : Ω→ R, i.e., for almost all .x ∈ Ω,

. f1(x) ≤ f2(x) ≤ . . . ≤ fN (x) ≤ . . . and lim
N→∞

fN (x) = f (x) .

The convergence . fN ↓ f a.e. is defined similarly.
46 Here, as everywhere, .1A is the characteristic function of a set A, i.e., .1A = 1 on A and .1A = 0
outside A.
47 So by a function one means any function that differs from the given one on a nullset (a set of
measure zero).
48 To imagine the graph of this function, look from the origin at an array of one-dimensional “trees”
of unit height planted at the lattice points in one quadrant of a square lattice (http://users.livejournal.
com/-winnie/456636.html).

http://users.livejournal.com/-winnie/456636.html
http://users.livejournal.com/-winnie/456636.html
http://users.livejournal.com/-winnie/456636.html
http://users.livejournal.com/-winnie/456636.html
http://users.livejournal.com/-winnie/456636.html
http://users.livejournal.com/-winnie/456636.html
http://users.livejournal.com/-winnie/456636.html
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.Πk = {x = (x1, . . . , xn) ∈ Rn , where ajk < xj < bjk }, k ∈ N,

such that the closure of their union is connected and the volume49 of the domain
.ΩΠ = Ω \ {

⋃
1≤k≤N Πk} tends to zero as .N →∞.

Definition 8.10 By a step function in a domain .Ω ⊂ Rn, we mean a function . f : Ω→
R which in .Ω is a finite linear combination of the characteristic functions of some
parallelepipeds .Πk ⊂ Ω, .k = 1, . . . , N , where .N ∈ N, i.e.,

. f (x) =
N∑
k=1

ck · 1Πk
(x), ck ∈ R, x ∈ Ω. (8.4)

In this case the sum .
∑N

k=1 ck · μ(Πk) is called the integral of a step function (8.4). We
denote this sum by .

∫
Ω
f (x) dx, or shortly by .

∫
f (x) dx, or sometimes simply by .

∫
f .

Definition 8.11 Let .{Π} = {Πk}Nk=1 be a system of disjoint parallelepipeds. Assume
that the closure of their union is connected and that the volume of the domain
.ΩΠ = Ω \

{⋃
1≤k≤N Πk

}
does not tend to zero as .N →∞.

We say that .{Π} = {Πk}Nk=1 is a partition .∂{Π} def
=

⋃N
k=1 ∂Πk of .Ω in cells of

scale .‖ΔΠ ‖
def
= max1≤k≤N

(
max1≤ j≤n(bjk − ajk )

)
. We say that a partition .∂{Π2} =⋃N2

k=1 ∂Π
2
k

is embedded in .∂{Π1} =
⋃N1

j=1 ∂Π
1
j , i.e., .∂{Π1} ⊇ ∂{Π2} if, for any .Π2

k
,

there exists a .Π1
j such that .Π1

j ⊇ Π
2
k
.

P 8.12 Reformulate in terms of the elements of the set .R the previous definition with .n = 1 and
.Ω =]a, b[⊂ R.

Definition 8.13 Let .∂Π =
⋃N

k=1 ∂Πk be a partition of a set .Ω ⊂ Rn in cells, and let
a function f be bounded (.| f (x)| ≤ const for any .x ∈ Ω). The numbers

.S+Π =
N∑
k=1

m+k μ(Πk) and S−Π =
N∑
k=1

m−k μ(Πk),

where .m+
k
= supx∈Πk

f (x), .m−
k
= infx∈Πk

f (x), are called, respectively, the upper
and lower Darboux sums of the function f with respect to the partition .∂Π.

P 8.14 (a) Let50 .∂{Π1 } ⊇ . . . ⊇ ∂{Πn } . . . Verify that .
⋃

n≥1 ∂{Πn } is a nullset. Show that the
sequence of the corresponding lower (upper) Darboux sums of a bounded function f is monotone

49 Here, we use the fact that .∂Ω is piecewise-smooth. In the general case of an open set .Ω, its
volume (or measure) can be defined if one can find families of inscribed and circumscribed unions
of parallelepiped such that the volume of their (set-theoretic) difference can be arbitrarily small; in
this case one says that .Ω is measurable, and its measure (volume) is defined as the limit of inscribed
(and, therefore, circumscribed) families of unions of parallelepipeds.
50 See Definition 8.11.
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nondecreasing (nonincreasing), and hence the limits .limn→∞ S−
Πn and .limn→∞ S+

Πn exist. Besides,
the limits

.S−( f ) = lim
n→∞

S−Πn, S+( f ) = lim
n→∞

S+Πn

of these monotone sequences .S−
Πn (↑) and .S+

Πn (↓) are independent of the choice of a sequence
.{∂Πn }n≥1 partitions if .limn→∞ ‖ΔnΠ ‖ = 0 (i.e., if all linear sizes of the partition cells .∂{Πn } tend
to zero).

(b) Verify that the upper .S+
Πn and lower .S−

Πn Darboux sums of a function f with respect to
a partition .∂{Πn } =

⋃Nn

k=1 ∂Π
n
k

are equal, respectively, to the integrals of the following step
functions:

. f ±Πn : Ω � x �→ f ±Π (x) =
Nn∑
k=1

m±k · 1Πn
k
(x); (8.5)

besides, . f −
Πn ↑ a.e. and . f +

Πn ↓ a.e. if .limn→∞ ‖ΔnΠ ‖ = 0.
(c) Verify that .S−( f ) = S+( f ) if . f −

Πn ↑ f a.e. and . f +
Πn ↓ f a.e. if .limn→∞ ‖ΔnΠ ‖ = 0.

The following definition is suggested by assertion (c) of Exercise 8.14.

Definition 8.15 Assume that . f −
Πn ↑ f − a.e. and . f +

Πn ↓ f + a.e. if .limn→∞ ‖ΔnΠ ‖ = 0
and

. f = f − = f + a.e. in Ω. (8.6)

Then the function . f : Ω → R is called Riemann integrable, and .S−( f ) = S+( f ) is
called the (definite) Riemann integral of the function f (written .

∫
Ω
f (x) dx).

Lemma 8.16 A function . f : Ω→ R is Riemann integrable if and only if it is bounded
and continuous almost everywhere.

Proof If step functions (8.5) are such that . f −
Πm (x) ↑ f (x) and . f +

Πm (x) ↓ f (x) for
a.e. x, and if .x0 is a point of continuity of the step functions . f −

Πm and . f +
Πm (note

that the other points form a nullset), then this point .x0 is also a point of continuity
of f , and hence .| f (x0)| < ∞. Conversely, if f is almost everywhere continuous, then
. f −
Πm (x0) ↑ f (x0) and . f +

Πm (x0) ↓ f (x0) at each point .x0 of continuity of the function f .
Hence .S−( f ) = S+( f ). �

Thus, the space of Riemann integrable functions is very large. However, this space
is incomplete with respect to the convergence defined by the Riemann integral, in
the same way as the set of rational numbers (unlike the real numbers) is incomplete
with respect to the Euclidean distance on the real line51

Indeed, setting

. fn(x) =
{
x−1/2 for x ∈ ]1/n, 1],
0 for x ∈ ]0, 1/n],

(8.7)

we note that .
∫ 1
0 | fm(x) − fn(x)| dx → 0 as m and .n → ∞, i.e., .{ fk} is a Cauchy

sequence with respect to the convergence defined by the Riemann integral. Moreover,
51 The adjective “complete,” referring to the concept of a complete metric space (a space is complete
if any Cauchy sequence in this space converges to some element of this space; see, for example,
Shilov (1965)) emphasizes that this space is free from even smallest “holes” (it is completely filled,
like a vessel with water). However, mechanicists talk about continuous media, rather than complete
media.
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for any point .x ∈]0, 1[, we have . fk(x) ↑ f (x) = x−1/2 and .
∫ 1
0 fk(x) dx ≤ 2. From

Theorem 8.26 (see below), it follows that the function . f : x �→ x−1/2 is the only
limit for the Cauchy sequence .{ fk}, but this function is bounded, and hence for it
the upper Darboux sum is infinite (see Definition 8.13), i.e., this function f is not
Riemann integrable.

Thus, the space of Riemann integrable functions is incomplete with respect to
the convergence defined by the Riemann integral (see also Exercise 8.33). This and
a number of other serious reasons prompted (see, for example, Tumanov (1975))
the development of the concept of the integral. A special role is played here by the
Lebesgue integral. In 1901, 26-year-old Lebesgue52 introduced (see Definition 8.18)
the space .L(Ω) of Lebesgue integrable functions defined on an open set .Ω ⊂ Rn.
He also introduced the integral that now bears his name. He defined this integral
axiomatically as a functional .

∫
: L(Ω) � f �→

∫
f ∈ R, which for .Ω = ]a, b[ is

denoted in the standard way and has the following consistent (as it was proved by
Lebesgue) six properties:

.(1) .
∫ b

a

f (x) dx =
∫ b+h

a+h

f (x − h) dx for any a, b and h.

.(2) .
∫ b

a

f (x) dx +
∫ c

b

f (x) dx +
∫ a

c

f (x) dx = 0 for any a, b and c.

.(3) .
∫ b

a

[ f (x) + g(x)] dx =
∫ b

a

f (x) dx +
∫ b

a

g(x) dx for any a and b.

.(4) .
∫ b

a

f (x) dx ≥ 0 if . f ≥ 0 and .b > a.

.(5) .
∫ 1

0
1 · dx = 1.

.(6) If, for any x, . fn(x) converges increasingly to . f (x), then the integral of . fn tends
to the integral of f .

To quote from Lebesgue (1904, § XII,1): “condition (6) plays a special role. It
is not as simple or as necessary as the first five conditions.” Nevertheless, it was
condition (6) that became the cornerstone of Lebesgue’s construction of his theory
of integration.

Below we give an explicit construction of the Lebesgue integral, mainly following
the scheme of P. J. Daniell53 (see also Shilov and Gurevich (2013))54 and Shilov
(2016)).

52 Henri Léon Lebesgue (1875–1941) was a prominent French mathematician. He is best known as
the author of the theory of integration. He also worked on dimension theory, theory of functions,
theory of differentiation, and much more (see Tumanov 1975).
53 Percy John Daniell (1889–1946) was a British mathematician. The scheme of construction of
the Lebesgue integral, which was proposed by him in 1918 and which is equivalent to the Lebesgue
construction, has advantages in generalizing the integral to objects more involved than functions (for
example, linear functionals). He also obtained important results in the theory of random processes.
54 Georgi Evgen’evich Shilov (1917–1974) was a professor at Moscow State University, a prominent
specialist in theory of functions and partial differential equations, the author of world-famous
monographs and textbooks.
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P 8.17 Let . f kn ↑ f k a.e. and .
∫
f kn ≤ const for .k = 1 and .k = 2. Verify that the numbers

.
∫
f 1 = limn→∞

∫
f 1
n and .

∫
f 2 = limn→∞

∫
f 2
n are well defined.

Definition 8.18 A function f is called Lebesgue integrable in a domain .Ω (written
. f ∈ L(Ω)) if

. f = f 1 − f 2 almost everywhere in Ω, (8.8)

where . f 1 and . f 2 are the limits of almost everywhere nondecreasing sequences of
step functions with bounded integrals, i.e., . f kn ↑ f k a.e. and .

∫
f kn ≤ const for .k = 1

and .k = 2. The number .
∫
Ω
f (x) dx =

∫
f 1 −

∫
f 2, where .

∫
f k = limn→∞

∫
f kn , is

called the Lebesgue integral of the function f .55

Remark 8.19 A function . f : Ω → R is measurable if .| f | < ∞ a.e. and if f is the
limit of an almost everywhere converging sequence of step functions. It can be shown
(see, for example, Shilov (2016)) that a bounded measurable function is Lebesgue
integrable.

P 8.20 Let .(x, y) ∈ Ω =]0, 1[×]0, 1[ and let

. f 1(x, y) = y2

(x2 + y2)
, f 2(x, y) = x2

(x2 + y2)
.

Verify that the function . f = f 1 − f 2 is Lebesgue integrable.

Lemma 8.21 A Riemann integrable function is also Lebesgue integrable; its Rie-
mann integral coincides with its Lebesgue integral

Proof By the assumption, . f −
Πn ↑ f − = f = f + ≤ f +

Π1 a.e. in .Ω and .S−( f ) = S+( f ).
We have .

∫
f −
Πn ≤

∫
f +
Π1 < ∞, and hence, putting . f 1 = f , . f 2 = 0, we verify (8.8)

and the equality .S+( f ) =
∫

f . �

P 8.22 Prove the following results:
.1. If . f ∈ L(Ω), then the functions .max{ f , 0} and .min{− f , 0}, and hence . | f | = max{ f , 0} −

min{ f , 0}, are Lebesgue integrable.
.2. A function f is Lebesgue integrable if . | f | ∈ L(Ω).

Hint If . fn is a step function, . fn ↑ f a.e. and .
∫
fn ≤ const, then the functions .max{ fn, 0} are step

functions. Besides,

. max{ fn, 0} ↑ max{ f , 0} a.e. and
∫

max{ f , 0} ≤ const .

Corollary 8.23 Let f and .g ∈ L(Ω). Then .max{ f , g} and .min{ f , g} are Lebesgue
integrable, because

. max{ f , g} = 1
2
[( f + g) + | f − g |] and min{ f , g} = −max{− f ,−g}.

55 One can verify that the so-defined integral does not depend either on the choice of difference of
. f 1 and . f 2 or on the choice of approximating sequences . f kn .
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P 8.24 Verify that the Dirichlet function (8.1) is Lebesgue integrable. Find its integral.

P 8.25 Give an example of a sequence of functions . fn ∈ L(Ω) for which .
∫
Ω
fn(x) dx �→ 0, but

. fn(x) → 0 for any .x ∈ Ω.

The next two important results on the taking the limit under the integral sign i will
be helpful in proving the completeness of the space .L = L(Ω). For simple proofs of
these results, see, for example, Shilov (2016).

Theorem 8.26 (Beppo Levi56) Let .{ fn} be a sequence of functions . fn ∈ L = L(Ω)
and . fn+1(x) ≥ fn(x) for any .n ∈ N and each .x ∈ Ω. If there is a constant C such
that .

∫
fn ≤ C for any n, then the limit . f (x) = limn→∞ fn(x) exists and is finite, and

besides, . f ∈ L and .limn→∞
∫

fn =
∫

f .

Lemma 8.27 (P. Fatou57) Let .gn ∈ L, .gn ≥ 0 and .gn → g a.e. If .
∫
gn ≤ C < ∞

for any n, then .g ∈ L and .0 ≤
∫
g ≤ C.

P 8.28 Show by examples the importance of each condition in Beppo Levi’s and Fatou’s lemmas.

Considering the completeness of the space .L = L(Ω), the natural distance between
two functions f and g in this space is as follows:

.‖ f − g‖ def
=

∫
Ω

| f (x) − g(x)| dx. (8.9)

P 8.29 Verify that the functional

.‖ · ‖ : L � f �→ ‖ f ‖ (8.9)
=

∫
Ω

| f (x) | dx (8.10)

is a norm, i.e., it has the following properties: .‖ f ‖ > 0 for . f � 0 ∈ L, .‖0‖ = 0, .‖λ f ‖ = |λ | · ‖ f ‖
for any .λ ∈ R, .‖ f + g ‖ ≤ ‖ f ‖ + ‖g ‖.

Definition 8.30 The norm convergence . fn → f as .n → ∞ in a normed space X
equipped with a norm .‖ · ‖ is defined as .‖ fn − f ‖ → 0.

Definition 8.31 A normed space is complete if, for any Cauchy sequence .{ fn}n≥1
(this means that .‖ fn − fm‖ → 0 as .n,m → ∞), there exists an . f ∈ X such that
.‖ fn − f ‖ → 0. A complete normed linear space is called a Banach space.58

56 Unlike the French mathematicians Maurice Lévy (1838–1910) and Paul Pierre Lévy (1886–
1971), Beppo Levi (1875–1961) was an Italian mathematician. In addition to his works on the
Lebesgue integral, B. Levy made a great contribution to the theory of the resolution of singularities
of algebraic surfaces.
57 Pierre Fatou (1878–1929) was a French mathematician. He made important contributions to
the theory of the Lebesgue integral and to the development of iterations of rational functions of
a complex variable, which led to Mandelbrot sets.
58 Stefan Banach (1892–1945) was a Polish mathematician. He gave the definition of a normed
space and obtained fundamental results for linear operators on Banach spaces.
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Theorem 8.32 (The Riesz–Fischer Completeness Theorem59) The space L
equipped with the norm .‖ϕ‖ =

∫
|ϕ| is a Banach space.

Proof Let .‖ϕn − ϕm‖
def
=

∫
|ϕn − ϕm | → 0 as n, .m → ∞. Then there exists an

increasing sequence of indexes .{nk}k≥1 such that .‖ϕn − ϕnk ‖ ≤ 2−k for all .n > nk .
We set

. fN (x) =
N−1∑
k=1
|ϕnk+1 (x) − ϕnk (x)|.

The sequence .{ fN }∞N=2 is increasing and .
∫

fN ≤ 1. By Beppo Levi’s theorem,
. f = limN→∞ fN ∈ L(Ω). Therefore, the series

.

∞∑
k=1
|ϕnk+1 (x) − ϕnk (x)|

converges almost everywhere. Hence the series .
∑∞

k=1
(
ϕnk+1 (x) − ϕnk (x)

)
also con-

verges almost everywhere. In other words, for almost all x, there exists the limit60

.ϕ(x) def
= limm→∞ ϕnm (x). We claim that .ϕ ∈ L and .limn→∞ ‖ϕn − ϕ‖ = 0. For any

.ε > 0, there exists an .N ≥ 1 such that .
∫
|ϕnm (x) − ϕnk (x)| dx ≤ ε for .nm ≥ N ,

.nk ≥ N . Using Fatou’s lemma and setting .gnm (x) = |ϕnm (x) − ϕnk (x)|, we make

.nm → ∞. As a result, we get .|ϕ − ϕnk | ∈ L and .
∫
|ϕ(x) − ϕnk (x)| dx ≤ ε. By

Exercise 8.22, we have .ϕ − ϕnk ∈ L. Hence .ϕ ∈ L and .‖ϕ − ϕnk ‖ → 0 as .k → ∞.
It follows that .‖ϕ − ϕn‖ → 0 as .n→∞, because

.‖ϕ − ϕn‖ ≤ ‖ϕ − ϕnk ‖ + ‖ϕnk − ϕn‖.

P 8.33 Construct an example of a Cauchy sequence with respect to the convergence defined by
the Riemann integral, but which has no limit with respect to this convergence, and which, unlike
sequence (8.7), is bounded.

Solution The sequence of characteristic functions of the closed intervals remaining after the nth
step in the construction of the Cantor set .Ca of positive measure a (see Remark 8.8) is monotone
decreasing. Hence by Beppo Levy’s theorem and Lemma 8.21, it converges to the characteristic
function of the set .Ca . But this limit function, which is Lebesgue integrable, is not Riemann
integrable, because any upper Darboux sum is .a > 0, whereas its lower Darboux sum is zero
(because the set .Ca is nowhere dense).

59 In 1907, two important theorems were published in vol. 144 of C. R. Acad. Sci. Paris. The
first theorem was proved by Frigyes Riesz (1880–1956), a Hungarian mathematician, one of the
founders of functional analysis. Namely, he proved that the boundedness of the norm .‖ f ‖2

def
=(∫

| f (x) |2 dx
)1/2 of a function f (i.e., the condition . | f |2 ∈ L) is equivalent to saying that the

Fourier series of f converges in the norm .‖ · ‖2.
The second theorem to the effect that the space .L2 is complete was proved by the Austrian

mathematician Ernst Sigismund Fischer (1875–1954), a specialist in analysis and algebra. As
a corollary of his theorem on completeness of .L2, Fischer derived the above Riesz theorem.
60 So, a Cauchy sequence in L contains a subsequence converging almost everywhere. We will use
this fact in the proof of Corollary 9.7. (See also Lemma 10.2.)
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The next theorem on taking the limit under the integral sign is one of the most
important theorems of the theory of Lebesgue integral.

Theorem 8.34 (The Lebesgue Dominated Convergence Theorem) Let . fn ∈ L(Ω)
and let . fn(x) → f (x) a.e. in .Ω. If there exists a function .g ∈ L(Ω) (called a majorant)
such that .| fn(x)| ≤ g(x) for all .n ≥ 1, then . f ∈ L(Ω) and .

∫
f = limn→∞

∫
fn.

Proof Let .L(g) = {ϕ ∈ L(Ω) | −g ≤ ϕ ≤ g}. This set is closed with respect
to taking monotone limits, because (by Beppo Levi’s theorem) if .ϕn ∈ L(g) and
.ϕn ↑ ϕ+ or .ϕn ↓ ϕ−, then the limit functions .ϕ+ and .ϕ− lie in .L(g). Note that, as
.k →∞,

.L(g) � max{ fn, fn+1, . . . , fn+k} ↑ F+n
def
= sup{ fn, fn+1, . . .}

and
.L(g) � min{ fn, fn+1, . . . , fn+k} ↓ F−n

def
= inf{ fn, fn+1, . . .}.

Hence .F±n ∈ L(g). It is clear that .F+n ↓ and .F−n ↑. So, for almost all .x ∈ Ω (namely,
for .x ∈ Ω at which . fn(x) → f (x)), we have

.F+n (x) = sup{ fn(x), fn+1(x), . . .} ↓ f (x)

and
.F−n (x) = inf{ fn(x), fn+1(x), . . .} ↑ f (x).

Since .L(g) is closed with respect to monotone limits, we find that . f ∈ L(g) ⊂ L. And
since .F−n (x) ≤ fn(x) ≤ F+n (x) for almost all .x ∈ Ω, we have .

∫
F−n ≤

∫
fn ≤

∫
F+n .

Now .limn→∞
∫

fn =
∫

f since .
∫
F±n →

∫
f . �

Remark 8.35 It can be shown that if a function f is Lebesgue integrable, then the
characteristic function .1{ f ≤a} of the set

.{ f ≤ a} def
= {x ∈ Ω | f (x) ≤ a}

is also Lebesgue integrable.

P 8.36 Verify that the functions .1{a< f ≤b} , .1{ f >b} , .1{ f =c} , which are defined similarly to .1{ f ≤a} ,
are Lebesgue integrable.
Hint Use the equality .1{a< f ≤b} = 1{ f ≤b} − 1{ f ≤a} .

Definition 8.37 If the characteristic function .1A of a set .A ⊂ Ω is integrable, then
the set A is called measurable; the number .μ(A) =

∫
1A is called the (Lebesgue)

measure of A.

Remark 8.38 It can be shown that a bounded open or closed set is measurable.
A countable intersection of measurable sets is also measurable. And if a countable
union of measurable sets is bounded, then this union is also measurable.
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Below we will construct a set .A ⊂]0, 1[⊂ R which is not (Lebesgue) measurable
(i.e., the characteristic function of this set is not Lebesgue integrable).

The following two properties of the Lebesgue measure .μ will be needed in the construction:
.(1) The measure is invariant under translations, i.e., .μ(A+ x) = μ(A) for any point .x ∈ R and

any set .A ⊂ R of finite measure .μ(A).
.(2)The measure is countably additive, i.e., .μ(A) =

∑∞
j=1 μ(A j ) if .A =

⋃∞
j=1 A j , where .{A j }∞j=1

is a pairwise disjoint family of sets .A j of finite measure.
Now to construct the required set .A ⊂]0, 1[ suffices to choose from the interval .]0, 1[ a countable

set of disjoint subsets .A j such that .μ(A j ) = μ(A) > 0 and .A =
⋃∞

j=1 A j . In this case, assuming
the integrability of the characteristic function of the set A, we will get the contradiction: .μ(A) =∑∞

j=1 μ(A j ) = ∞.
We define the set A (using the so-called axiom of choice of set theory) as the set of representatives

of the cosets of the half-open interval .]0, 1], whose points are identified if they differ by a rational
number. We take one representative from each coset. For example, denoting by .{x } = x − [x]
the fractional part of a number x, we can take .

√
2 as a representative of the coset .{

√
2 + Q}. Let

.r1, r2, . . . be the sequence of all rational numbers. Now we defined the set .A j as the set of numbers
of the form .{xA + rj }, where .xA ∈ A.

Proposition 8.39 If a function f is Lebesgue integrable and bounded (.m ≤ f (x) ≤
M), then the Lebesgue integral .

∫
f (x) dx is .limσ→0 Sσ( f ), where .σ = maxk(yk −

yk−1), .m = y0 < y1 < . . . < yNσ
= M , and

.Sσ( f ) = y0 μ{x : f (x) = y0} +
Nσ∑
k=1

yk μ{x : yk−1 < f (x) ≤ yk},

i.e.,

.

∫
f (x) dx = lim

σ→0

∫ [
y0 1{ f (x)=y0 } +

Nσ∑
k=1

yk 1{yk−1< f (x)≤yk }

]
dx. (8.11)

Proof Assume first that .Nσ = 1. By (8.8), the function

.F1
def
=

[
m 1{ f (x)=y0 } + M 1{m< f (x)≤M }

]

can be written as .ϕ1−ψ1, and besides, .ϕk1 ↑ ϕ1 a.e. and .ψk1 ↑ ψ1 a.e., where .ϕk1 and
.ψk1 are step functions. We will augment the partition with points from the closed
interval .[m,M], thereby increasing the number .N = Nσ . We will first show that the
function

.FNσ = y0 1{ f (x)=y0 } +
Nσ∑
k=1

yk 1{yk−1< f (x)≤yk }

can be written as .ϕN − ψN , and .ϕkN ↑ ϕN a.e. and .ψkN ↑ ψN a.e., where .ϕkN
and .ψkN are step functions. To this end, we assume (without loss of generality) that
.m = y0 ≥ 0, and we add a new partition point .̂yk such that .yk−1 < ŷk < yk . Hence
.F(N+1)σ = ϕN+1 − ψN+1, and besides .ϕk(N+1) ↑ ϕN+1 ≥ ϕN a.e. and .ψk(N+1) ↑
ψN+1 ≥ ψN a.e., where .ϕk(N+1) and .ψk(N+1) are step functions, because
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.ϕN+1 = ϕN + ŷk 1{ŷk< f (x)≤ŷk },

and
.ψN+1 = ψN +

[ (
yk − ŷk

)
1{yk−1< f (x)≤ŷk } + ŷk 1{ŷk< f (x)≤yk }

)]
.

So, .ϕN ↑ ϕ a.e., .ψN ↑ ψ a.e. and .
∫
ϕN ≤ const and .

∫
ψN ≤ const . Hence by

Beppo Levi’s theorem, .ϕ ∈ L, .
∫
ϕN →

∫
ϕ, and .ψ ∈ L, .

∫
ψN →

∫
ψ. Therefore,

.FNσ = ϕN −ψN → ϕ−ψ ∈ L.Note that .|FNσ | ≤ 2|ϕ−ψ | and .yk 1{yk−1< f (x)≤yk } →
yk 1{ f (x)=yk } as .σ → 0. Hence .

∫
FNσ →

∫
f by Theorem 8.34 (the Lebesgue

dominated convergence theorem). �

P 8.40 Applying Proposition 8.39 and setting .yk =
(
k
n

)2, calculate

.

∫ 1

0
x2 dx.

Example 8.41 Let us evaluate the integral .A =
∫ ∞
−∞ e−x

2
dx. The squared integral is

.

�
R

2

e−(x
2+y2) dxdy

(8.11)
= lim

σn=
1

2n→0

k=2n∑
k=1

k
2n
μ
{ k
2n
≤ e−(x

2+y2) <
k + 1
2n

}
.

Here .μ
{

k
2n ≤ e−(x

2+y2) < k+1
2n

}
is the area of the annulus .{r2

2 ≥ x2 + y2 > r2
1 }, where

.r2
2 = − ln kσn, and .r2

1 = − ln (k + 1)σn. So,

.μ
{ k
2n
≤ e−(x

2+y2) <
k + 1
2n

}
= π

[
ln(k + 1)σn − ln kσn

]
= π ln

(
1 +

1
k

)
.

Next, see 61 and so

. lim
n→∞

k=2n∑
k=1

ck
2n
= C , where C = lim

k→∞
ck . (8.12)

As a result,

.A2 = lim
n→∞

k=2n∑
k=1

k
2n

[
π ln(1 + 1

k
)
]
= π ⇒

∫ ∞

−∞
e−x

2
dx =

√
π.

61 Here is a simple proof of equality (8.12), which was shown to me by A. L. Pyatnitsky. Since
.limk→∞ ck < ∞, it follows that . |ck | < L for some .L > 0 and so for any .ε > 0 there exists a .k0 > 0
such that . |ck −C | < ε if .k > k0. Next,

.

���
k=2n∑
k=1

ck

2n
−C

��� =
���
k=2n∑
k=1

ck −C
2n

��� ≤
���
k=k0∑
k=1

ck −C
2n

��� +
���
k=2n∑
k=k0

ck −C
2n

��� ≤ L + |C |
2n

k0 + ε.

Hence .lim supn→∞ |
∑k=2n

k=1
ck

2n −C | ≤ ε, and since .ε is arbitrary, we arrive at the required equality
.lim supn→∞ |

∑k=2n
k=1

ck

2n −C | = 0.



8 The Lebesgue Integrals 47

Theorem 8.42 (Fubini62) Let .Ωx be an open set in .R
k and .Ωy be an open set

in .R
m. If . f : Ω � (x, y) �→ f (x, y) is an integrable function in the direct product

.Ω = Ωx ×Ωy , then
.(1) For almost all .x ∈ Ωx (respectively, .y ∈ Ωy), the function

. f (·, y) : Ωx � x �→ f (x, y)

(respectively, . f (x, ·) : Ωy � y �→ f (x, y)) lies in the space .L(Ωx) (respectively, in
.L(Ωy)).

.(2) .
(∫
Ωx

f (x, ·) dx
)
∈ L(Ωy) and .

(∫
Ωy

f (·, y) dy
)
∈ L(Ωx).

.(3) .
∫
Ω
f (x, y) dx dy =

∫
Ωy

[∫
Ωx

f (x, y) dx
]
dy =

∫
Ωx

[∫
Ωy

f (x, y) dy
]
dx.

For a proof, see, for example, Shilov (2016).

Remark 8.43 The existence of the two repeated integrals

.

∫
Ωy

[∫
Ωx

f (x, y) dx
]
dy and

∫
Ωx

[∫
Ωy

f (x, y) dy
]
dx

does not in general imply that they are equal or that the function f is integrable
in .Ω = Ωx ×Ωy . This follows from the example of the function

. f : ]0, 1[×]0, 1[� (x, y) �→ f (x, y) = y2 − x2

(x2 + y2)2
. (8.13)

P 8.44 Verify directly that the function (8.13), unlike the function appearing in Exercise 8.20, is
not Lebesgue integrable.

The next lemma is an analogue of the well-known theorem on permutation of
repeated series with nonnegative terms.

P 8.45 Verify directly that the function (8.13), unlike the function appearing in Exercise 8.20, is
not Lebesgue integrable.

The next lemma is an analogue of the well-known theorem on permutation of
repeated series with nonnegative terms.

Lemma 8.46 Let f be a measurable63 and nonnegative function on .Ω = Ωx × Ωy .
Assume that there exists the repeated integral

.

∫
Ωx

[∫
Ωy

f (x, y) dx
]
dy = A.

Then . f ∈ L(Ω), and hence property .(3) of Theorem 8.42 holds.
62 Guido Fubini (1879–1943) was an Italian mathematician. The main topic of his research was
differential geometry.
63 See Remark 8.19 on p. 41.
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Proof The function f is measurable and bounded, . fn = min( f , n) ∈ L(Ω). In view
of Fubini’s theorem, .

∫
fn =

∫
Ωx

[∫
Ωy

fn(x, y) dx
]
dy ≤ A. Note that . fn ↑ f . Hence

by Beppo Levi’s theorem, . f ∈ L(Ω). �

Theorem 8.47 (see Shilov 2016) Let . f ∈ L(R), .g ∈ L(R) and let

.F(x) =
∫ x

0
f (t) dt, G(x) =

∫ x

0
g(t) dt .

Then

.

∫ b

a

F(x)g(x) dx +
∫ b

a

f (x)G(x) dx = F(b)G(b) − F(a)G(a).

Moreover, the function F has, for almost all .x ∈ R, the derivative

.F ′(x) = lim
h→0

(
F(x + h) − F(x)

)
/h

and
.F ′(x) = f (x).

9 The Riesz Spaces Lp and Lp
loc

Definition 9.1 Let 1 ≤ p < ∞. The space Lp(Ω) (or simply Lp) of integrable
(or pth power summable) functions is the complex linear space of complex-valued
functions64 f defined on Ω and such that65 | f |p ∈ L(Ω). If f ∈ L1(Ω), then the
integral of f is defined by

.

∫
f =

∫
Re f + i

∫
Im f .

Lemma 9.2 Let p ∈ [1,∞). Then the mapping

.‖ · ‖p : Lp � f �→ ‖ f ‖p =
(∫
Ω

| f (x)|p dx
)1/p
, (9.1)

which will be sometimes denoted by ‖ · ‖Lp , is a norm.

Proof We need to verify the triangle inequality, i.e.,

.‖ f + g‖p ≤ ‖ f ‖p + ‖g‖p . (9.2)

64 More precisely, the space of classes of functions { f } : Ω → C, where g ∈ { f } ⇐⇒ g = f
almost everywhere.
65 The space Lp is frequently called the Riesz space, referring to Frigyes Riesz (see p. 43), who
introduced this space and established its basic properties. His younger brother Marcel Riesz (1886–
1969) was also a mathematician; his works related to Fourier series, Dirichlet series, mathematical
physics, and Clifford algebra.
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In the case of norm (9.1), this inequality is known as the Minkowski inequality66.
For p = 1, this inequality is clear. Let us prove it for p > 1 based on the well-known
(see, for example, Shilov (2016) and/or Kolmogorov and Fomin (1980) Hölder
inequality67

.‖ f · g‖1 ≤ ‖ f ‖p · ‖g‖q, where 1/p + 1/q = 1, p > 1. (9.3)

We have

.

∫
| f + g |p ≤

∫
| f + g |p−1 | f | +

∫
(| f + g |p−1 |g |)

≤
[∫
| f + g |(p−1)·q

]1/q {[∫
| f |p

]1/p
+

[∫
|g |p

]1/p}
.

However,
.

[∫
| f + g |(p−1)·q

]1/q
=

[∫
| f + g |p

]1−(1/p)
.

Remark 9.3 The function (9.1) is not a norm for p < 1. Indeed if f (x) = 1 for
0 < x < 1, f (x) = 0 for −1 < x < 0, and g(x) = 1 − f (x), then

.‖ f + g‖p = 2
1
p > ‖ f ‖p + ‖g‖p = 2.

The proof of the following result is similar to that of Theorem 8.32.

Lemma 9.4 Let 1 ≤ p < ∞. The space Lp , equipped with the norm (9.1), is a Banach
space.

Lemma 9.5 The complexification of the space of step functions68 is dense in Lp ,
1 ≤ p < ∞.

Proof It suffices to show that, for any f ∈ Lp , f ≥ 0, there exists a sequence {hk}
of step functions such that

66 Hermann Minkowski (1864–1909) was a German mathematician, who developed the geometric
theory of numbers and the geometric four-dimensional model of the theory of relativity, which was
instrumental in a deep mathematical interpretation of the properties of the electromagnetic field.
67 Otto Ludwig Hölder (1859–1937) was a German mathematician. He worked on the convergence
of Fourier series and in 1884 discovered an inequality named after him. His name appears in
the Hölder continuity condition, which is important in the analysis. Hölder’s contribution to group
theory is also significant. In particular, he proved the theorem (known as the Jordan–Hölder theorem)
on uniqueness of factor groups in a composition series. In his obituary, van der Waerden writes
“. . . to read Hölder’s papers over and over again is a profound intellectual pleasure.” (“Nachruf auf
Otto Hölder,” Mathematische Annalen 1939. V. 116. pp. 157–165). At the same time, Hölder, like
another major German mathematician Bieberbach (who solved Hilbert’s 18th problem), actively
supported Nazism. In 1933, he signed the oath of allegiance of German professors to Adolf Hitler
and the National Socialist state.
68 The complexification of a real linear space X is the complex linear space of elements of the form
f = g + ih, where g and h ∈ X.
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.‖ f − hk ‖p → 0 as k →∞. (9.4)

In the case p = 1, we use Definition 8.18 and take a sequence {hk}∞k=1 such that
hk ↑ f ∈ L and

∫
hk →

∫
f . As a result, we get (9.4). For 1 < p < ∞, consider the

set
.En =

{
x ∈ Ω :

1
n
≤ f (x) ≤ n

}

and define fn(x) = 1En (x) · f (x), where 1En is the characteristic function of the
set En. We have fn ↑ f , and hence ( f − fn)p ↓ 0. By Beppo Levi’s theorem,

. lim
n→∞
‖ f − fn‖pp =

∫
Ω

| f (x) − fn(x)|p dx → 0.

Hence, for any ε > 0, there exists an n ≥ 1 such that ‖ f − fn‖p < ε
2 . We fix this n.

Note that
.

∫
1En =

∫
1p
En
≤

∫
np | f |p < ∞.

By Hölder inequality,

.

∫
fn =

∫
1En f ≤

(∫
1qEn

)1/q (∫
f p

)1/p
< ∞.

Since fn ∈ L(Ω) and fn(x) ∈ [0, n] for any x ∈ Ω, in Ω there exists a sequence {hk}
of step functions with values in [0, n] such that limk→∞

∫
| fn − hk | = 0. It follows

that

.‖ fn − hk ‖p =
[∫
| fn − hk |p

]1/p
=

[∫ (
| fn − hk |p−1 | fn − hk |

)]1/p

≤ n1−(1/p)
[∫
| fn − hk |

]1/p
→ 0 as k →∞.

Choosing a K such that ‖ fn − hk ‖p < ε/2 for k ≥ K , we have

.‖ f − hk ‖p ≤ ‖ f − fn‖p + ‖ fn − hk ‖p < ε ∀k ≥ K .

Theorem 9.6 Let f ∈ L1(Ω), let f = 0 almost everywhere outside some K � Ω,
and let ρ > 2ε > 0 be the distance between K and ∂Ω. Next, let δε ∈ C∞0 (R

n),
δε(x) ≥ 0, δε(x) = 0 for |x | > ε and

∫
δε = 1. Then the function69

69 By the proposal of Nikolai Maximovich Günther (1871–1941), a Corresponding Member of the
USSR Academy of Sciences, the function Rε ( f ) is called the Steklov regularization of a function f .
This regularization was introduced in 1907 by Vladimir Andreevich Steklov (1864–1926) in his
studies on the justification of the Fourier method for solving the main problems of mathematical
physics with the help of the potential theory developed by him and in his proof of the closedness of
the respective systems of eigenfunctions. Thus, by applying formula (9.5) in his studies, Steklov
used the concept of the δ-function (see footnote 4 on p. 5) 20 years before P. Dirac. Soon Steklov’s
idea was developed by N. M. Günther, who created the theory of functions of domains, which was
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.Rε( f ) = fε : Ω � x �→ fε(x) =
∫

f (y)δε(x − y) dy (9.5)

lies in the space C∞0 (Ω). Moreover,

. lim
ε→0
‖ f − fε ‖p = 0, 1 ≤ p < ∞. (9.6)

Proof It is clear that fε ∈ C∞0 (Ω). Let us prove equality (9.6). By Lemma 9.5 for
any η > 0, there exists a function h = h1 + ih2, where h1 and h2 are step functions,
such that ‖ f − h‖p < η. We have

.‖ f − fε ‖p ≤ ‖ f − h‖p + ‖h − Rε(h)‖p + ‖Rε( f − h)‖p .

Let us show that ‖Rε(g)‖p ≤ ‖g‖p . Since
∫
Ω
δε(x − y) dx = 1, for p = 1, we have

.

∫
Ω

[∫
Ω

|g(y)| · δε(x − y) dy
]
dx =

∫
Ω

[∫
Ω

δε(x − y) dx
]
|g(y)| dy = ‖g‖1,

and for p > 1 we get

.‖Rε(g)‖pp =
∫
Ω

|gε(x)|p dx

=

∫
Ω

[∫
Ω

(δε(x − y))(p−1)/p)(δε(x − y)1/p |g(y)|) dy
] p

dx

(9.3)
≤

∫
Ω

[(∫
Ω

δε(x − y) dy
) (p−1)/p

·
(∫
Ω

δε(x − y)|g(y)|p dy
)1/p] p

dx

=

∫
Ω

[∫
Ω

δε(x − y)|g(y)|p dy
]
dx =

∫
Ω

[∫
Ω

δε(x − y) dx
]
|g(y)|p dy,

i.e., ‖Rε(g)‖pp ≤
∫
Ω
|g(y)|p dy. So, ‖ f − fε ‖p ≤ 2η + ‖h − Rε(h)‖p . Since

h =
∑N

k=1 ck · 1Πk
, where ck ∈ C, and since

[
1Πk
− Rε(1Πk

)
]
= 0 outside the

ε-neighborhood of the parallelepiped Πk , we find that

the forerunner of generalized functions, the brainchild of S. L. Sobolev, who became the student of
N. M. Günther under the following circumstances.

In his lecture for second year students, Günther made a reference to Saltykov’s theorems.
The student Sobolev, who was listening to the lecture, approached Günther after the lecture and
expressed doubts about the validity of Saltykov’s theorems, which he had just heard at the lecture.
Günther did not pay much attention to what has been said. But a week later, Sobolev brought a 22-
page manuscript (which became his first scientific work, published 90 years later in the appendix
to the book Soboleva and Chechkin (2017)), where counterexamples to Saltykov’s theorems were
constructed. After that, Sobolev became a student of Günther.

V. A. Steklov made important contributions in mechanics, quadrature formulas, and asymptotic
methods. He was the initiator of the creation in 1921 and the first director of the Physical and
Mathematical Institute of the Russian Academy of Sciences, which in 1934 was divided into two
world-famous institutes: the Lebedev Physical Institute and the Steklov Mathematical Institute.
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.‖h − Rε(h)‖pp =
���
∫
Ω

N∑
k=1

ck · (1Πk
− Rε(1Πk

))
���p dx

≤
( N∑
k=1
|ck |

)p
max
k

∫
Ω

���1Πk
− Rε(1Πk

)
��� dx ≤ C · ε.

For ε < ηp/C, we get ‖h − Rε(h)‖p < η. �

From Theorem 9.6, we have the following important corollary.

Corollary 9.7 The space C∞0 (Ω) is dense in Lp(Ω), 1 ≤ p < ∞.

Proof Let g ∈ Lp(Ω). Note that, for any η > 0, there exists a K � Ω such that
‖g − g · 1K ‖p < η, and by Theorem 9.6 there exists an ε > 0 such that ‖g · 1K −
Rε(g · 1K )‖p < η. �

P 9.8 Let u ∈ C( ¯̄Ω), i.e., u is continuous in ¯̄Ω. Verify that

.‖u − Rε (u)‖C
def
= sup

x∈Ω

�� (u − Rε (u)
)
(x)

��→ 0 as ε → 0.

Definition 9.9 Let p ∈ [1,∞[. By Lp
loc(Ω) (or Lp

loc), we denote the space of functions
f : Ω → C that are pth power locally integrable, i.e., f · 1K ∈ Lp(Ω) for all
K � Ω. The space Lp

loc(Ω) is equipped with the convergence: fj → f in Lp
loc(Ω) if

‖1K · ( fj − f )‖p → 0 as j →∞ for all K � Ω.

Definition 9.10 L∞(Ω) is the space of essentially bounded functions in Ω, i.e., the
space of f ∈ L1

loc(Ω) satisfying

.‖ f ‖∞ = inf
ω∈Ω

sup
x∈ω
| f (x)| < ∞, μ(Ω \ ω) = 0. (9.7)

Condition (9.7) means that the function f is almost everywhere bounded, i.e., there
exists an M < ∞ such that | f (x)| ≤ M almost everywhere. We also set ‖ f ‖∞ =
inf M .

P 9.11 Verify that formula (9.7) defines a norm in the space L∞(Ω) in which this space is a Banach
space.

Remark 9.12 The use of the subscript∞ in the notation of the space and norm (9.7)
is justified by the fact that ‖ f ‖∞ = limp→∞ ‖ f ‖p if Ω � Rn.

P 9.13 Verify that, for 1 < r < s < ∞,

.C � L∞ � Ls
loc � Lr

loc � L1
loc.

Definition 9.14 Let X be a normed space with norm ‖ · ‖. By X ′ we denote the space
of continuous linear functionals on X . The space X ′ is called the dual space of X .
Sometimes the dual of X is also denoted by L(X;R) and L(X;C) (in this notation it
is clear whether ′X ′ is real or complex).
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P 9.15 Verify that (Rn)′ = L(Rn ;R) is isomorphic to Rn .
Hint Any continuous linear functional (function) on R acts by the formula R � x �→ ax, where
a is a real number. On the other hand, any real number a defines a continuous linear functional
R � x �→ ax ∈ R.

P 9.16 Verify that the space X′ with the norm

.‖ f ‖′ = sup
x∈X

| 〈 f , x 〉 |
‖x ‖ ,

where 〈 f , x 〉 is the value of f on x ∈ X, is a Banach space.
Hint Here it is not necessary that the normed space X be complete. However, in the proof we need
the completeness of the real line.

Theorem 9.17 (F. Riesz) If 1 ≤ p < ∞, then (Lp)′ = Lq , where 1
p +

1
q = 1 (q = ∞

for p = 1). More precisely,
(1) For any f ∈ Lq(Ω), there exists F ∈ (Lp(Ω))′, i.e., a continuous linear

functional F on Lp(Ω), such that

.〈F, ϕ〉 =
∫
Ω

f (x)ϕ(x) dx ∀ϕ ∈ Lp(Ω). (9.8)

(2) For any F ∈ (Lp(Ω))′, there exists a unique element (function) f ∈ Lq(Ω) for
which equality (9.8) holds.
(3) The correspondence I : (Lp)′ � F �→ f ∈ Lq is an isometric isomorphism,

i.e., I is a linear bijection and ‖IF‖q = ‖F‖′p .

Proof Assertion (1) and the estimate ‖F‖′p ≤ ‖ f ‖q are clear for p = 1. For p > 1,
the Hölder inequality should be applied. The proof of assertion (2) and the estimate
‖F‖′p ≥ ‖ f ‖q require more work (see, for example, Yosida (1965)). �
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0 (Ω)

The idea outlined in §§1 and 2 on representation of a function by its “averages” can
now be formalized in a general form as the following theorem.

Theorem 10.1 Any function . f ∈ L1
loc(Ω) is uniquely recovered (as an element of

.L1
loc(Ω)) from the linear functional

.〈 f , ·〉 : C∞0 (Ω) � ϕ �→ 〈 f , ϕ〉 =
∫
Ω

f (x)ϕ(x) dx ∈ C, (10.1)

i.e., from the set of numbers .〈 f , ϕ〉, where .ϕ ∈ C∞0 (Ω).

Proof Assume that to one functional there correspond two different functions . f1 and
. f2. Then .

∫
( f1 − f2)ϕ = 0 for all .ϕ ∈ C∞0 . Now the next Lemma 10.2 implies that

. f1 = f2 almost everywhere. �
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Lemma 10.2 Let . f ∈ L1
loc(Ω). If .

∫
Ω
f (x)ϕ(x) dx = 0 for all .ϕ ∈ C∞0 (Ω), then . f = 0

almost everywhere.

Proof If .ω � Ω, then .| f | · 1ω = f · g, where .g(x) = 1ω · exp[−i arg f (x)]. In
particular, .g(x) = sgn f (x) · 1ω(x) for a real function f . As noted in the footnote on
p. 43, there exists a sequence of functions .ϕn ∈ C∞0 (Ω) such that . f · ϕn → f · g
almost everywhere in .Ω as .n→ ∞, and besides, .|ϕn | ≤ 1. By Lebesgue’s theorem,
.
∫
Ω
f · g = limn→∞

∫
Ω
f · ϕn. Next, .

∫
ω
| f | =

∫
Ω
f · g, and so .

∫
ω
| f | = 0, because

.
∫
Ω
f · ϕn = 0. This shows that . f = 0 almost everywhere in .ω. Now . f = 0 almost

everywhere in .Ω, since .ω � Ω is arbitrary. �

11 Simplest Hyperbolic Equations: Generalized Sobolev
Solutions

In this section, on an example of the simplest partial differential equation .ut + ux =
0, which is sometimes called the transfer equation, we illustrate one of the main
achievements of the theory of generalized functions. Here, we are talking about
a new understanding of a solution of a differential equation, more precisely, about
a new (expanded) understanding of the differential equations. With this proviso, one
can consider important problems of mathematical physics, which have no solution
in the usual sense. This new understanding of equations of mathematical physics and
their solutions, as formulated by S. L. Sobolev70 in 1935 (see, for example, Sobolev
(2008) under the name “generalized solutions,” allows one, in particular, to prove
the existence and uniqueness of the generalized solution of the Cauchy problem

.Lu ≡ ut + ux = 0, (x, t) ∈ R2
+ = {(x, t) ∈ R2 : t > 0}, (11.1)

.u
��
t=0 = f (x), x ∈ R, (11.2)

for Eq. (11.1) for any function . f ∈ PC(R) (and even for . f ∈ L1
loc; see Theorem 11.3).

Here, we also mention (see Exercise 11.10) the theorem on continuous dependence
of the solution of this problem on . f ∈ L1

loc(R).

70 Sergey L’vovich Sobolev (1908–1989) was one of the greatest mathematicians of the twen-
tieth century. At the age of 24, he became a corresponding member, and at the age of 30, an
Academician of the USSR Academy of Sciences. In 1945, he was involved in the work on the cre-
ation of the atomic bomb, and in 1951, for outstanding achievements in this work, he was awarded
the title of Hero of Socialist Labor. S. L. Sobolev was very gentle, benevolent person. In exams,
he almost always gave excellent grades, very rarely good grades. But once he gave a bad grade on
an exam in mathematical physics. According to M. I. Zelikin, the following story happened. When
asked by one student to allow him to answer an exam question by simply reading out the relevant
pages of Sobolev’s textbook, Sobolev replied briefly: “Read, please.” The student began to read.
Sobolev listened approvingly, but suddenly at some point expressed doubt about the validity of
what the student said. The latter eagerly began to say: “Well, it’s quite obvious, because it’s written
here.” Sobolev’s response was: “Unfortunately, there is a typo here. I have to give you a bad grade.”
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Let us explain the essence of the problem. Equation (11.1) is equivalent to the
system

.ut + ux ·
dx
dt
= 0,

dx
dt
= 1.

Hence the equality .
d
dt u(t + a, t) = 0 holds along the line .x = t + a, where a is

a real parameter. From this equality, we have .u(t + a, t) = u(a, 0) for any t. Moreover,
. f (x) = limt→+0 u(x, t), and hence71

.u(x, t) = f (x−t). This formula defines a solution
of problem (11.1), (11.2) if f is a differentiable function. The same formula shows
that problem (11.1), (11.2) has no solution (differentiable or even continuous) if f
is discontinuous, for example, if . f (x) = θ(x), where .θ : R � x �→ θ(x) ∈ R is the
Heaviside function,72 which is defined as

.θ(x) = 1 for x ≥ 0 and θ(x) = 0 for x < 0. (11.3)

However, problem (11.1), (11.2) with the initial function (11.3) appears (at least at
the formal level) in the study of propagation of plane sound waves. The corresponding
process is described by the so-called system of differential acoustic equations

.ut +
1
ρ
px = 0, pt + ρ · c2ux = 0, ρ > 0, c > 0. (11.4)

Here .ρ is the density, c is the characteristics of the compressible medium, and
.u = u(x, t) and .p = p(x, t) are, respectively, the velocity and pressure at time t at the
point x. Setting

.α = u + p/(ρ · c), β = u − p/(ρ · c),

we get the equivalent system .αt + cαx = 0, .βt − cβx = 0 of two transfer equations.
So, problem (11.1), (11.2) with the initial function (11.3) can be considered as the

71 This formula implies that for each fixed t the graph of the function .x �→ u(x, t) can be obtained
by translating by t the graph of the function f to the right along the x-axis. This is why Eq. (11.1)
is called the transfer equation.
72 Oliver Heaviside (1850–1925) was an English autodidactic electrical engineer, mathematician,
and physicist. In 1892, he published works on the application of the symbolic calculus (formal
operations with the symbol p of the differential operator .d/dt), which was popular in the middle of
the nineteenth century, to solving problems on the theory of the propagation of electrical vibrations
in wires. Unlike his predecessors, Heaviside defined the inverse operator unambiguously, setting
. 1p f (t) =

∫ t

0 f (u) du and assuming that . f (u) = 0 for .u < 0. So, replacing the differentiation .d/dt
in the equation . !x − x = 1 by the multiplication by p, we get after formal transformations

.x =
1

p − 1
=

1
p

(
1 +

1
p
+

1
p2 +

1
p3 + . . .

)
,

and hence, considering what has been said about the symbol . 1p and assuming that .x(t) = 0 for
.t < 0, we get

.x(t) =
∫ t

0

(
1 + t +

t2

2
+ . . .

)
= et − 1.
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problem of propagation of acoustic waves with initial velocity .u(x, t) = θ(x) and
zero initial pressure.

P 11.1 Verify that any .C1-solution of system (11.4) can be written as

.

u(x, t) = ϕ(x − ct) + ψ(x + ct)
2

,

p(x, t) = ϕ(x − ct) − ψ(x + ct)
2

, where ϕ ∈ C1, ψ ∈ C1.

(11.5)

P 11.2 Prove the following theorem.

Theorem 11.3 For any functions . f ∈ C1(R), .F ∈ C(R2
+), the Cauchy problem

.ut + ux = F(x, t) in R2
+, u

��
t=0 = f (x), x ∈ R,

has a unique solution .u ∈ C1(R2
+).

As already mentioned, for . f (x) = θ(x), problem (11.1), (11.2) has no regular
solution (i.e., a solution in the usual sense). However, the argument leading to the
formula .u(x, t) = f (x − t) (and the formula itself) suggests that the function . f (x − t)
should be called a solution to problem (11.1), (11.2) for any function . f ∈ PC(R)
(and even for . f ∈ L1

loc(R)). Moreover, the following lemma holds.

Lemma 11.4 Let . f ∈ L1
loc(R), and let .{ fn} be a sequence of functions . fn ∈ C1(R)

such that73

. fn → f in L1
loc(R) as n→∞.

Then the function .u : R2
+ � (x, t) �→ u(x, t) = f (x − t) lies in .L1

loc(R
2
+), and besides,

.u = limn→∞ un in .L1
loc(R

2
+), where .u(x, t) = f (x − t), and .un(x, t) satisfies Eq. (11.1)

and the initial condition .un
��
t=0 = fn(x).

Proof It suffices to consider case . f ≥ 0, because . f = f 1 + i f 2, and . f k = f k+ − f k− ,
where . f k± = max(± f k, 0). Putting .y = x − t, we change the variables .(x, t) �→ (y, t).
Note that .u(x, t) = f (y) and

.

∫ b

a

(∫ d

c

u(x, t) dx
)
dt ≤

∫ b

a

(∫ d−a

c−b
f (y) dy

)
dt < ∞

for any a, b, c, d such that .0 < a < b, .c < d. Hence, by Lemma 8.46, we have
.u ∈ L1

loc(R
2
+). Next, for the same a, b, c, d,

.

∫ b

a

∫ d

c

|un(x, t) − u(x, t)| dx dt ≤ (b − a)
∫ d−a

c−b
| fn(y) − f (y)| dy → 0

as .n→∞. �
73 As the editor of the book E. D. Kosov noted, here one may take . fn ∈ C∞0 ( |x | < n) such that
.‖ f − fn ‖L1(|x |<n) < 1/n.
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Of course, one can simply define the solution of problem (11.1), (11.2) by the
formula .u(x, t) = f (x − t) even for . f ∈ L1

loc. However, this definition has a major
drawback: using a concrete formula one can determine the solution only for a narrow
class of problems. Lemma 11.4

Fig. 1.4: The support .supp ϕ of .ϕ lies in .Ω

suggests an approximative definition devoid of this
drawback.

Definition 11.5 Let . f ∈ L1
loc(R). We say that a function .u ∈ L1

loc(R
2
+) is a generalized

solution of problem (11.1), (11.2) if there exists a sequence of solutions .un ∈ C1(R2
+)

of Eq. (11.1) such that

.un → u in L1
loc(R

2
+) and un

��
t→0 → f in L1

loc(R)

as .n→∞.

The approximative approach to the definition of a generalized solution can be
applied to a wide class of problems. So, this method was used above (without
explicitly mentioning), for example, when constructing a generalized solution to the
equation .ΔE(x) = δ(x) (see formula (7.13)), and also the generalized solutions of the
problem .ΔP = 0 in .R

2
+, .P(x, 0) = δ(x) (see Remark 5.5). However, the approximative

definition, despite its technical convenience, has a significant drawback: it does not
reveal the real mathematical object, the “generalized” differential equation, whose
direct solution is the “generalized solution” to be defined.

It is reasonable to search for a suitable definition of the generalized solution of
differential equations (and the corresponding “generalized” differential equations) by
analyzing the derivation of equations of mathematical physics (within the framework
of a particular concept of a continuous medium). The analysis conducted in §§1 and 2
(see Lemma 10.2) and also the Ostrogradsky–Gauss formula (7.3) suggest (as will
be seen from Proposition 11.7) the following definition.

Definition 11.6 Let . f ∈ L1
loc(R). A function .u ∈ L1

loc(R
2
+) is called a generalized

solution of problem (11.1), (11.2) if it satisfies the integral identity

.

∫
R

2
+

(ϕt + ϕx)u(x, t) dx dt +
∫
R

ϕ(x, 0) f (x) dx = 0 ∀ϕ ∈ C1
0 (R2

+). (11.6)
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Proposition 11.7 If .u ∈ C1(R2
+), then condition (11.6) is equivalent to prob-

lem (11.1), (11.2) in its classical sense.

Proof Let .ϕ ∈ C1
0 (R

2
+), and let .Ω be a bounded domain in .R

2
+ with boundary .Γ = ∂Ω.

From (7.3), it follows that

.

∫
Ω

[
(ut + ux)ϕ + (ϕt + ϕx)u

]
dx dt =

∫
∂Ω
(ϕ · u)[cos(ν, t) + cos(ν, x)]dΓ. (11.7)

If .supp ϕ ⊂ ¯̄Ω and (see Fig. 1.4)

.(supp ϕ ∩ ∂Ω) ⊂ Rx = {(x, t) ∈ R2 : t = 0},

then (11.7) can be written as

.

∫
R

2
+

(ut + ux)ϕ dx dt +
∫
R

2
+

(ϕt + ϕx)u dx dt = −
∫
R

(ϕu)
��
t=0 dx. (11.8)

From (11.6) and (11.8), we get the equality

.

∫
R

2
+

(ut + ux)ϕ dx dt =
∫
R

[ f (x) − u(x, 0)]ϕ(x, 0) dx,

which holds for any function .ϕ ∈ C1
0 (R

2
+) and, in particular, for any function .ϕ ∈

C1
0 (R

2
+). Hence

.(11.1) ⇔
∫
R

2
+

(ut + ux)ϕ dx dt = 0 ∀ϕ ∈ C1
0 (R

2
+),

and therefore,

.(11.2) ⇔
∫
R

f (x)ϕ(x, 0)dx =
∫
R

u
��
t=0 · ϕ(x, 0)dx ∀ϕ ∈ C1

0 (R2
+).

Hence by Lemma 10.2 we have the implication .(11.6)⇔ (11.1), (11.2). �

Proposition 11.7 shows that Definition 11.6 is consistent with the definition of the
usual (differentiable, or regular) solution of problem (11.1), (11.2). The following
Theorem 11.9 justifies what is new in Definition 11.6 and also shows that the integral
identity (11.6) is the “generalized” differential equation discussed above.

Remark 11.8 The proof of Proposition 11.7 goes back to the Lagrangian derivation
of the Euler–Lagrange equation and the transversality conditions in the calculus of
variations (see Shilov 2016; Gindikin 2007).

Theorem 11.9 For any function . f ∈ L1
loc(R), problem (11.1), (11.2) has a general-

ized solution .u ∈ L1
loc(R

2
+), and this solution is unique.
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Proof Let us first prove the existence. The function

.un : R2
+ � (x, t) �→ un(x, t) = fn(x − t)

is a regular solution of Eq. (11.1)) satisfying the initial condition .un
��
t=0 = fn(x).

Hence, by Proposition 11.7, we have

.

∫
R

2
+

(ϕt + ϕx) · un dx dt +
∫
R

fn(x)ϕ(x, 0) dx = 0 ∀ϕ ∈ C1
0 (R2

+). (11.9)

On the other hand, by Lemma 11.4, the sequence .{un}∞n=1 converges in .L1
loc(R

2
+)

to a function u such that .u(x, t) = f (x − t). It remains to check that this function
.u ∈ L1

loc(R
2
+) satisfies (11.6). To this end, we note that, for any function .ϕ ∈ C1

0 (R
2
+),

there exist .aϕ > 0 and .bϕ > 0 such that

. supp ϕ ⊂ {(x, t) ∈ R2 : |x | ≤ aϕ, 0 ≤ t ≤ bϕ}.

Hence

.

����
∫
R

2
+

(un(x, t) − u(x, t))(ϕt + ϕx) dx dt
����

≤ [max
(x,t)
|ϕt + ϕx |] ·

∫ bϕ

0

(∫ aϕ

−aϕ

| fn(x − t) − f (x − t)| dx
)
dt

≤ Mϕ · bϕ
∫
|x | ≤aϕ+bϕ

| fn(x) − f (x)| dx → 0 as n→∞.

Now (11.6) follows from (11.9).
Let us prove the uniqueness. Let .u1 and .u2 be two generalized solutions of

problem (11.1), (11.2). Then their difference .u = u1 − u2 satisfies the relation
.
∫
R

2
+
(ϕt + ϕx)u dx dt = 0 for any function .ϕ ∈ C1

0 (R
2
+). Let us show that .u(x, t) = 0

almost everywhere. By Lemma 10.2, it suffices to show that the equation

.ϕt + ϕx = g(x, t), (x, t) ∈ R2
+, (11.10)

has a solution .ϕ ∈ C1
0 (R

2
+) for any function .g ∈ C∞0 (R

2
+). Let .T > 0 be such that

.g(x, t) ≡ 0 if .t ≥ T . Setting

.ϕ(x, t) =
∫ t

T

g(x − t + τ, τ) dτ,

it is clear (see Fig. 1.5) that .ϕ ∈ C1
0 (R

2
+) and .ϕ is a solution of Eq. (11.10). �
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Fig. 1.5: .supp ϕ is a shift of .supp g along the characteristic of Eq. (11.10)

P 11.10 Verify that the generalized solution of problem (11.1), (11.2) depends continuously
in .L1

loc(R
2
+) on the initial function . f ∈ L1

loc(R).

P 11.11 By analyzing the proof of Theorem 11.9, show that Definition 11.6 is equivalent to Defi-
nition 11.5.

P 11.12 Using Definition 11.6, verify that the solution of problem (11.1), (11.2) is given by
.u(x, t) = θ(x − t) if . f (x) = θ(x).

In the following exercises, .Q = {(x, t) ∈ R2 : x > 0, t > 0}.

P 11.13 Consider the problem (see Fig. 1.6)

.ut + ux = 0 in Q, (11.11)

u
��
t=0 = f (x), x > 0, (11.12)

u
��
x=0 = h(t), t > 0. (11.13)

This problem is called mixed, because it simultaneously involves the initial condition (11.12) and the
boundary condition (11.13). Verify that problem (11.11)–(11.13) has a unique solution .u ∈ C1( ¯Q̄)
if and only if . f ∈ C1(R+), .h ∈ C1(R+), and . f (0) = h(0), . f ′(0) = −h′(0)

Fig. 1.6: The characteristics of the
equation .ut + ux = 0

Fig. 1.7: The characteristics of the equa-
tion .ut − ux = 0

.

P 11.14 Verify that the problem (see Fig. 1.7)

.ut − ux = 0 in Q, (11.14)

u
��
t=0 = f (x), x > 0, (11.15)
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has a unique solution .u ∈ C1( ¯Q̄) if and only if . f ∈ C1(R+). Cf. problem (11.11)–(11.13). Compare
the characteristics, i.e., the families of lines .dx/dt = 1 and .dx/dt = −1 (see the figure) along
which the solutions of Eqs. (11.11) and (11.14) are constant.

P 11.15 Consider the mixed problem for the system of acoustic equations

.ut + (1/ρ)px = 0, pt + ρc
2ux = 0, (x, t) ∈ Q, (11.16)

u
��
t=0 = f (x), p

��
t=0 = g(x), x > 0, (11.17)

p
��
x=0 = h(t), t > 0, (11.18)

where f , g, and h are functions from .C1(R+).
.1. Draw the level lines of the functions .u ± 1

ρc p.
.2. Verify that problem (11.16)–(11.18) has a unique solution .u ∈ C1( ¯Q̄), .p ∈ C1( ¯Q̄) if and

only if

.h(0) = g(0) and f ′(0) + 1
ρc2 h

′(0) = 0. (11.19)

Verify that this solution .(u, p) is given by (11.5), where

.ϕ(y) = f (y) + 1
ρc

g(y), ψ(y) = f (y) − 1
ρc

g(y) if y > 0, (11.20)

and
.ϕ(y) = 2

ρc
h(−y/c) + f (−y) − 1

ρc
g(−y) if y ≤ 0. (11.21)

Remark 11.16 Frequently, instead of the system (11.4) of acoustic equations, one
considers the second-order equation

.ptt − c2 pxx = 0. (11.22)

This equation, which clearly follows from system (11.4) if .p ∈ C2, .u ∈ C2, is called
the equation of the string because the graph of the function p can be interpreted
as small vibrations of a string (a one-dimensional object). The oscillations of an
n-dimensional body are described by the wave equation

.ptt − c2Δp = 0, p = p(x, t), x ∈ Rn, t > 0. (11.23)

Here .Δ is the Laplace operator. For .n = 2, the wave equation describes the vibrations
of a membrane, and for .n = 3, the vibrations of a three-dimensional medium.

P 11.17 Following the constructions that follow from (11.5), show that the general solution of the
equation of the string (11.22) has the form

.p(x, t) = f (x − ct) + g(x + ct) . (11.24)

Express f andg in terms of the initial form and the initial velocity of the string given by .p
��
t=0 = ϕ(x)

and .p
��
t=0 = ψ(x). Verify the formula

.p(x, t) = ϕ(x + ct) + ϕ(x − ct)
2

+
1

2c

∫ x+ct

x−ct
ψ(ξ) dξ , (11.25)

which was first discovered by Euler in 1748 (but which is commonly called the d’Alembert’s
formula, since d’Alembert proved (11.24) in 1747).
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Given .ϕ(x) = 0, .ψ(x) =
{
|x | − 1 if |x | < 1
0 if 1 < |x |

draw the graph of the function .x �→ u(t, x) for

various t and compare with what you can see when a pebble is thrown into a calm pond.

Remark 11.18 The equation of the string was the first partial differential equation
appeared in mathematics (thanks to B. Taylor).74 This equation was the source of
a lengthy but extremely fruitful discussion (see Narasimhan 1990; Luzin 1935), in
which the concept was maturated (by such classics as d’Alembert, Euler, D. Bernoulli,
Fourier, Riemann, and many others).

Let us return to problem (11.16)–(11.18). Consider the case . f = g = 0, .h = 1,
in which initially (at .t = 0) the velocity u and the pressure p are zero, and on the

Fig. 1.8: The solution of problem (11.16)–(11.18) for . f = g = 0 and .h = 1

boundary .x = 0 the pressure .p = 1 is maintained. From (11.5), (11.20), (11.21), we
get (see Fig. 1.8)

.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u = 0, p = 0 if t <
x
c
,

u =
1
ρc
, p = 1 if t ≥ x

c
.

(11.26)

The functions u and p are discontinuous, which is not surprising, since condi-
tion (11.19) is violated. But on the other hand, formulas (11.26) correspond well to
physical processes.

P 11.19 Give an appropriate definitions of generalized solutions for the following problems:
.(1) .ut + ux = F(x, t) in .Q = {(x, t) ∈ R2 : x > 0, t > 0}.

.u
��
t=0 = f (x), .x > 0. .u

��
x=0 = h(t), .t > 0.

.(2) .ut + (1/ρ)px = F(x, t), pt + ρ · c2ux = G(x, t) in Q.
.u
��
t=0 = f (x), .p

��
t=0 = g(x), .x > 0; .u

��
x=0 = h(t), .t > 0.

74 Brook Taylor (1685–1731) was an English mathematician, best known for the Taylor formula.
His extended memoir “Methodus Incrementorum Directa et Inversa” (1715) (“Direct and Indirect
Methods of Incrementation”) in addition to his well-known formula contains the foundations of the
theory of oscillations of strings. He was also the first to theoretically study the refraction of light
rays in the Earth atmosphere.
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.(3) .pt t − c2pxx = F(x, t) in the half-strip .Ω = {(x, t) ∈ R2
+ : 0 < x < 1}.

.p
��
t=0 = f (x), .pt

��
t=0 = g(x), .0 < x < 1;

.p
��
x=0 = h0(x), .p

��
x=1 = h1(x), .t > 0.

Under what conditions on the functions f , g, h, F , G the solutions of these problems lie,
say, in the space .C1, .PC1 or .L1

loc. Prove the theorems on existence, uniqueness, and continuous
dependence (cf. Exercise 11.10).

As a “seed” preceding the topic of questions to which §26 and all three appendices
to this book are devoted, we conclude this section with the nonlinear equation

.ut + (u2/2)x + gx(x, t) = εuxx, u = u(x, t), (11.27)

where .ε ≥ 0, and g is a given function. This equation (with .g = 0) was first
appeared in 1948 in the paper of Burgers75 (Adv. Appl. Mech. 1948. vol. 1, pp. 171–
199). This equation is usually known as the Burgers equation and sometimes as
the Hopf equation (although Hopf’s paper appeared 2 years later; see the footnotes
on p. 65 and on p. 20). To be fair, Eq. (11.27) should be called the Burgers–Florin
equation, because in the same year 1948 Florin76 (1948) studied more general partial
differential equations with several spatial variables and, in particular, the equation

.St + (Sx)2/2 + g = εSxx (11.28)

for a function S, which can be written as the integral

.S(x, t) =
∫ (x,t)

(0,0)
P dx +Q dt, (11.29)

where P and Q are given in terms of the solution u of Eq. (11.27):

.P(x, t) = u(x, t), Q(x, t) = −u2(x, t)/2 + εux(x, t) − g(x, t).

So, .Pt = ut , .Qx = −u · ux + εuxx − gx(x, t), which implies the condition .Pt = Qx

ensuring the correctness of formula (11.29). Note that .u(x, t) = Sx(x, t).
In hydrodynamics, the Burgers–Florin Eq. (11.27) is a model equation for .ε > 0

for the Navier–Stokes system,77 and for .ε = 0, for the Euler system (see Rozhdestven-
ski and Yanenko 1983).
75 Johannes (Jan) Martinus Burgers (1895–1981) was a Dutch physicist. In addition to the Burgers
equation, the Burgers vector in the dislocation theory and the Burgers material in the theory of
viscoelasticity are also associated with his name.
76 Viktor Anatol’evich Florin (1899–1960) was a Corresponding Member of the USSR Academy
of Sciences, hydraulic engineer, the head of the scientific school of Soil Mechanics in Leningrad.
77 Claude-Louis Navier (1785–1836) was a French mechanical engineer. After graduating from
the Corps of Bridges and Roads (Corps des Ponts et Chaussées), he supervised the construction
of bridges in the Seine department, in particular, the pedestrian bridge to the Île de la Cité in
Paris. Navier is considered one of the founders of the modern theory of elasticity. But he is known
primarily for the fact that, based on the model of molecular forces, he was the first to derive the
Navier–Stokes equation for an incompressible fluid in 1822 in “Memoire sur les lois du mouvement
des fluides” (published in 1827 in Memoires de l’Academie des sciences de l’Institut de France).
The case of compressible fluid was considered by O. Cauchy in 1828, S. Poisson in 1829 and
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We first consider Eq. (11.27) for .ε = 0 and .g ≡ 0. In this problem, a regular
(.C1-smooth) solution of this equation satisfies the system .

dx
dt = u, . dudt = 0. So, along

the curve defined by the equation .
dx
dt = u(x, t) and known as the characteristic, the

solution is constant, and hence .u(x, t) = u(x, 0) along this curve. Therefore, the above
curve is in the actual fact the straight line .x = a+ f (a)t, where the function f defines
the initial data for the solution, i.e., .u(x, 0) = f (x). If f is a decreasing function, for
example,

. f (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 for x ≤ −1,
− x for |x | ≤ 1,
− 1 for x ≥ 1,

then the characteristics form the family of straight lines

.x(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t + a for a ≤ −1,
a(1 − t) for |a| ≤ 1,
− t + a for a ≥ 1

parameterized by the points a of theOx-axis, from which they emerge. They intersect
on the line .γ = {x = 0, t ≥ 1}. And up to this line, the desired solution u takes the
value . f (a) along the characteristic originating from the point .(a, 0).

P 11.20 Let . f (x) = − tanh(x/h), where .h > 0. Verify that the solution .u = uh of the problem

.ut + (u2/2)x = 0 in R2
+, u

��
t=0 = f (x), x ∈ R, (11.30)

has a discontinuity on the line
.γ = {x = 0, t ≥ h}.

Find .limh→0 uh .

As Exercise 11.20 shows, the Cauchy problem (11.30) may fail to have a continu-
ous solution in .R

2
+, even for analytic initial data. This effect, which is well known in

hydrodynamics, is associated with the appearance of so-called shock waves charac-
terized by a sudden change in density, velocity, etc. As we can see, physics suggests
that the solution of problem (11.30) should be sought as a generalized solution from
the class .PC1.

On the other hand, the solution of problem (11.30) may be continuous even for
discontinuous initial data. For example, if

. f (x) = sgn(x),

then the characteristics fan out, and as one readily verifies,

A. de Saint-Venant in 1843. However, only J. Stokes in 1845, consistently proceeding from the
continuum concept, derived these equations for viscous (and, in particular, compressible) liquids in
the paper “On the theories of internal friction of fluids in motion, and of the equilibrium and motion
of elastic solids,” which was published in 1849 in Transactions of the Cambridge Philosophical
Society.
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.u(x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 1 for x ≤ −1,
x/t for |x | ≤ 1,
1 for x ≥ 1.

This is a continuous but not differentiable solution. Its graph has a kink along the
characteristics .t = ±x > 0. This type of solutions corresponds to a rarefaction wave
in hydrodynamics.

P 11.21 Assume that the generalized solution u of problem (11.30) has a discontinuity along the
curve

.γ =
{
(x, t) ∈ R2 : x = λ(t), λ ∈ C1[α, β]

}
.

Prove (see the hint in Exercise 12.6) that along this line .γ, which is known as the discontinuity line,
the Rankine–Hugoniot condition78

.
dλ(t)
dt

=
u(λ(t) + 0, t) + u(λ(t) − 0, t)

2
. (11.31)

Remark 11.22 Note that the parameter q in Eq. (11.27) is usually interpreted as the
flow viscosity coefficient. The viscosity smooths out the shock waves, and this is
the basis of the so-called vanishing viscosity method. In this method, a generalized
(discontinuous) solution of Eq. (11.27) with .ε = 0 is constructed as the limit as
.ε → 0 of the classical (smooth) solution of Eq. (11.27) with .ε > 0.

In particular, for .g ≡ 0 and .ε > 0, Eq. (11.27) can, surprisingly, be reduced to the
well-studied heat equation. Moreover, the following theorem holds.

Theorem 11.23 (Florin–Hopf–Cole79) The solution of Eq. (11.27) is given by .u =
−2ε(lnG)x , where G is the solution of the linear parabolic equation

.Gt = εGxx +
g(x, t)

2ε
G. (11.32)

Proof Let u be a solution of (11.27) and let the function S be given by (11.29).
Putting .G = exp

[
− S

2ε
]
, we find that G is a solution of (11.32), and .u = −2ε(lnG)x ,

because .u = Sx . �

11.24 Let us now consider the situation when the characteristics of Eq. (11.27)
intersect not on a curve, but at a point. Namely, consider the Cauchy problem for
Eq. (11.27) (denoting the function u by p) for .ε = 0, . f (x) = 1, and .g(x) = x2

2 , i.e.,
the problem80

78 William John Macquorn Rankine (1820–1872) was a Scottish mechanical engineer and physicist,
one of the founders of engineering thermodynamics. In 1849, independently of Clausius, he obtained
the general equations of thermodynamics, which express the ratio between the amount of heat
and mechanical energy. In his studies of shock waves, in 1870 he was the first to obtain the
condition (11.31), which was independently found in 1885 by Pierre Henri Hugoniot (1851–1887),
a French professor of mechanics and ballistics, in the process of studying the expansion of gases
associated with artillery gun firing.
79 Florin V. A., some of the simplest nonlinear problems of the consolidation of a water-saturated
earth medium (Florin 1948; Hopf 1950; Cole 1951).
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.pt + (p2/2)x + x = 0 in R2
+, p

��
t=0 = 1, x ∈ R. (11.33)

For this problem, the characteristics, which are given by the conditions

.xt − p = 0 in R2
+, x

��
t=0 = x◦, x◦ ∈ R, (11.34)

are no longer straight lines. What is more, the regular solution of problem (11.30) is
not constant on these lines but is given by the ratio

.
d
dt

p(x(t), t) = −x(t). (11.35)

Hence . #x + x = 0, .x(0) = x◦, . !x(0) = p(0) = 1 and so

.x(t) = x(x◦, t), where x(x◦, t) = sin t + x◦ cos t. (11.36)

Formula (11.36) defines a family of characteristics that for .t ∈ [0,T] fill the set

.Ω =
(
R × [0,T]

)
\ {|x − xk | > 0, t = tk, k ≥ 1}, (11.37)

where the points .(xk, tk) =
(
(−1)k−1, π2 (2k − 1)

)
are the points of intersection of the

characteristics. Note that

.x◦(x, t) (11.36)
=

x − sin t
cos t

for t � tk . (11.38)

From the equation .
d
dt p(x(t), t)

(11.35)
= −x(t) (11.36)

= − sin t − x◦ cos t, it follows that

.p(x(x◦, t), t) = cos t − x◦ sin t
(11.38)
⇒ p(x, t) = 1 − x sin t

cos t
. (11.39)

Since .x(x◦, tk) = xk , we find that .limt→tk p(x(x◦, t), t) = (−1)k x◦ ∈ R, i.e., for .t = tk
the quantity .p(x(x◦, t), t) is not single-valued. Let’s say more precisely, noting first
that the graph of the function (11.39) is a ruled surface formed by straight lines of
the form

.p = λt (x − sin t) + cos t, λt = − tan t, (11.40)

which are inclined to the Ox-axis at an angle .θ(t) = −t are inclined to the Ox axis
at an angle .(x(0, t), t) �→ cos t.

80 The solution of problem (11.33) is discussed in §26 in connection with the short-wave asymptotics
for a quantum mechanical oscillator defined by the equation

.ihψt +
1
2
h2ψxx =

x2

2
ψ for 1/h � 1

for the wave function .ψ : (x, t) �→ ψ(x, t) = ϕ(x, t)e i
h S(x, t ), where .S(x, 0) = x.
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Fig. 1.9: The Lagrangian manifold (see Definition 26.22) representing the solution
of problem (11.33)

Taking the set of all such lines for .t ∈ [0,T], we get the two-dimensional smooth
surface .Λ2

[0,T ] ⊂ R
3 = Rx × Rt × Rp in the coordinate space .(x, p, t) (see Fig. 1.9).

The projection of the surface .Λ2
[0,T ] onto the plane .Rx ×Rt is precisely the set .Ω,

and hence the manifold .Λ2
[0,T ] can be associated with the graph of the “generalized”

solution .p : (x, t) �→ p(x, t) of problem (11.33). Hence, on .Ω (for .t � tk), the
differential form

.ω = p dx − H(p, x, t) dt, where H(p, x, t) = p2 + x2

2
, (11.41)
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is well defined. Note that in terms of the function H, Eqs. (11.33) and (11.34) can be
written as a canonical Hamilton system (in the Hamiltonian form):81

.xt − Hp(p(x, t), x, t) = 0, pt + Hx(p(x, t), x, t) = 0. (11.42)

In view of Eqs. (11.42), the differential

.dω = −
[
pt + Hx(p(x, t), x, t)

]
dx ∧ dt

of the form .ω is zero. Hence, in the simply connected domains,

.Ωk = Ω
⋂{

tk < t < tk+1 =
π

2
(2k + 1)

}
, k ≥ 0, (11.43)

the integral of .ω does not depend on a path connecting the start and end points of
the integration.

Lemma 11.25 The function .S : Ω � (x, t) �→ S(x, t) def
=

∫ (x,t)
(0,0) ω is continuous,

vanishes at the points .(xk, tk) for any .k ≥ 1, and such that

.S(x, t) = sin 2t
4
+

1
cos t
(x − sin t) − tan t

2
(x2 − sin2 t). (11.44)

Proof Assume first that .(x, t) ∈ Ω0. Since the integral .
∫ (x,t)
(0,0) ω is independent of the

choice of an integration path .γ ⊂ Ω0 between .(0, 0) and .(x, t) and since . !x = p, it can
be written as the sum of two integrals

.I1 =
∫ t

0

p2(x(0, τ), τ) − x2(0, τ)
2

dτ and I2 =
∫ x

x(0,t)
p(ξ, t)dξ.

Since .p(ξ, t) (11.39)
=

1−ξ sin t
cos t , .x(0, t) (11.36)

= sin t, .p(0, t) = cos t, we find that

.I1 =
1
2

∫ t

0
cos 2τ dτ, I2 =

∫ x

sin t

1 − ξ sin t
cos t

dξ.

As a result, we arrive at (11.44) for .t < π
2 , or, what is the same,82

.S(x, t) = − x
2 + 1
2

tan t +
x

cos t
. (11.45)

81 William Rowan Hamilton (1805–1865) was an Irish mathematician and physicist. In his works
of 1834–1835 on “Hamiltonian mechanics,” the variational principle of least action was formu-
lated, which proved to be a universal and highly effective tool in mathematical models of physics,
especially in quantum mechanics and general relativity. He also proposed the system of hypercom-
plex numbers (the so-called quaternions). Hamilton also laid the foundations of vector analysis,
including its symbolism. The main operations of vector analysis .grad (gradient), .div (divergence),
.rot (rotor), as well as the Laplace operator are expressed in terms of the operator .∇ introduced by
him in 1853 (this operator is called “nabla” because of its similarity to the skeleton of the ancient
Assyrian musical instrument nabla, related to the harp).
82 The representation of .S(x, t) by (11.45) can be found in the book Bagrov et al. (2004, p. 126).
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Despite the apparent singularity of the function S at .t = tk (since .cos tk = 0), the
function does not actually have it. Indeed,

.x(x◦, t) − sin t (11.36)
= x◦ cos t,

and hence

. lim
t→tk

S(x, t)
���
x=x(x◦,t)

(11.44)
= x◦

(
1 − xk + sin tk

2
)
sin tk = 0. (11.46)

Assume now that .(x, t) ∈ Ω1. Representing .S(x, t) =
∫ (x,t)
(x1,t1)

ω as the sum of two
integrals

.

∫ t

t1

p2(x(0, τ), τ) − x2(0, τ)
2

dτ and
∫ x

x(0,t)
p(ξ, t) dξ,

we arrive at (11.44) for .(x, t) ∈ Ω1. The proof of the lemma, including the formula

.S(xk, tk) = 0 for any k ≥ 1 (11.47)

concludes by induction on .k ≥ 1. �

Remark 11.26 From formula (11.45) and the equality .p
��
t=0

(11.33)
= 1, it follows that

the function S is a solution of the problem

.St +
1
2
(x2 + S2

x) = 0, S(x, 0) = x. (11.48)



Chapter 2 
The SpacesD�,D� andD′: Elements of 
the Distribution 

. . 

Theory 
. 

(Generalized 
Functions in the Sense of Schwartz) 

12 The SpaceD� of Sobolev Derivatives 

The definition of the generalized solution .u ∈ L1
loc to one or another problem of 

mathematical physics, as given by Sobolev (1936), and, in particular, Definition 11.6 
is based on Theorem 10.1 and the Ostrogradsky–Gauss formula (7.3). Recall that 
Theorem 10.1 asserts the equivalence of the two following representations of an 
element .u ∈ L1

loc, i.e., 

. Ω � x �→ u(x) ⇔ C∞
0 (Ω) � ϕ �→

∫
Ω

u(x)ϕ(x) dx,

and formula (7.3) implies that, for the differential operator . ∂α = ∂ |α |/∂xα1
1 . . . ∂x

αn
n

and any function .u ∈ C |α | (Ω), we have  

. 

∫
Ω

(
∂αu(x))ϕ(x) dx = (−1) |α |

∫
Ω

u(x)∂αϕ(x) dx ∀ϕ ∈ C∞
0 (Ω).

So, the functional 
.∂αu : C∞

0 (Ω) � ϕ �→ 〈∂αu, ϕ〉, (12.1) 

where 
. 〈∂αu, ϕ〉 = (−1) |α |

∫
Ω

u(x)∂αϕ(x) dx ∀ϕ ∈ C∞
0 (Ω),

defines the function .∂αu(x) if .u ∈ C |α | (Ω). Functional (12.1) is also defined for 
.u ∈ L1

loc(Ω). Hence, following Sobolev, we give the following definition. 

Definition 12.1 Let .α = (α1, . . . , αn) be a multiindex. The derivative of order . α of 
a function .u ∈ L1

loc(Ω) is the functional . ∂αu defined by (12.1). 

Using Theorem 10.1, formula  (7.3), and the identity 
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. 

∫
Ω

a(x)
(
∂αu(x)

)
ϕ(x) dx = (−1) |α |

∫
Ω

u(x)∂α
(
a(x)ϕ(x)

)
dx,

u ∈ C |α | (Ω), ϕ ∈ C∞
0 (Ω),

which is valid for any function .a ∈ C∞(Ω), we introduce the multiplication of the 
functional . ∂αu, where .u ∈ L1

loc(Ω), by a function .a ∈ C∞(Ω) as follows: 

.a∂αu : C∞
0 (Ω) � ϕ �→ (−1) |α |

∫
Ω

u(x)∂α(a(x)ϕ(x)) dx ∈ C. (12.2) 

Definition 12.2 The space of Sobolev derivatives is the space .D�(Ω) of functionals 

. 

∑
|α |<∞

∂αuα, where u ∈ L1
loc(Ω),

equipped with the operation of multiplication (12.2). 

Example 12.3 Consider the function .x+ ∈ L1
loc(R) defined by .x+ = x for .x > 0, 

.x+ = 0 for .x < 0. Let us find its derivatives. We have 

. 〈x ′+, ϕ〉 = −〈x+, ϕ′〉 = −
∫
R

x+ϕ
′(x) dx = −

∫
R+

xϕ′(x) dx

= −xϕ(x)��∞0 +

∫ ∞

0
ϕ(x) dx =

∫
R

θ(x)ϕ(x) dx = 〈θ, ϕ〉,

i.e., .x ′+ = θ is the Heaviside function defined by (11.3). Let us find . x ′′+ , i.e., . θ ′. We  
have 

.〈θ ′, ϕ〉 = −〈θ, ϕ′〉 = −
∫ ∞

0
ϕ′(x) dx = −ϕ(x)��∞0 = ϕ(0) = 〈δ, ϕ〉, (12.3) 

i.e., .θ ′ = δ(x) is the .δ-Dirac function. Note also that 

.〈δ(k), ϕ〉 = (−1)k 〈δ, ϕ(k)〉 = (−1)kϕ(k)(0) (12.4) 

and hence, for any .l ≥ k ≥ 1 and also, for any .m ∈ N, we have  

.|〈δ(k−1), ϕ〉| = |〈θ(k), ϕ〉| ≤ C‖ϕ‖C l (R) ∀ ϕ ∈ C∞
0 (R) (12.5) 

and 
.|〈δ(m), ϕ〉| ≤ C‖ϕ‖C0(R) ∀ ϕ ∈ C∞

0 (R \ {0}). (12.6) 

P 12.4 Let .θε ∈ C∞(R), .0 ≤ θε (x) ≤ 1, and  let .θε (x) ≡ 1 for .x > ε and .θε (x) ≡ 0 for .x < −ε. 
We set .δε (x) = θ′ε (x). Verify that  

. lim
ε→0

〈δ(k)
ε , ϕ〉 = (−1)kϕ(k)(0) ∀ϕ ∈ C∞

0 (R) and ∀k ≥ 0.

Remark 12.5 Using (12.4) it becomes possible to extend the functional . δ(k) from the 
function space .C∞

0 (R) to the space of functions k times continuously differentiable
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at the point .x = 0 (cf. Definition 2.2). On the other hand, formula (12.3) has no sense 
in the space .C(R), because the functional . θ is not defined on .C(R). 

Consider the function .θ± : Rn � x �→ θ±(x) defined by 

.θ±(x) = 1Q±(x), x ∈ Rn, (12.7) 

where .Q± = {x = (x1, . . . , xn) ∈ Rn : ± xk > 0 ∀k}. If  .n = 1, then .θ+ = θ is the 
Heaviside function, and .θ− = 1 − θ+. 

P 12.6 (cf. Exercise 11.21) Let .F ∈ C1(R), .λ ∈ C1(R), .u± ∈ C1(R2), . u(x, t) = u+(x, t)θ+(x −
λ(t))+u−(x, t)θ−(x−λ(t)) for .(x, t) ∈ Ω ⊂ R2. Find .ut

def
= ∂tu(x, t) and .

(
F(u)) x def

= ∂x (F(u(x, t)), 
by noting that 

. F
(
u(x, t))= F

(
u+(x, t)

)
θ+(x − λ(t)) + F

(
u−(x, t)

)
θ−(x − λ(t)).

Verify that .ut +
(
F(u)) x= g almost everywhere in . Ω if and only if, first, .ut +

(
F(u)) x≡ g in .Ω \γ, 

where .γ = {(x, t) ∈ R2 | x = λ(t)}, and second, the Rankine–Hugoniot condition 

.
dλ(t)
dt

− F
(
u(λ(t) + 0, t))−F (

u(λ(t) − 0, t))
u(λ(t) + 0, t) − u(λ(t) − 0, t) = 0 (12.8) 

holds on the line . γ. The left-hand side of (12.8) is the coefficient multiplying the .δ-function in the 
expression .ut +

(
F(u)) x−g. 

P 12.7 Verify that . ∂n

∂x1 . . .∂xn
θ+ = δ(x). 

P 12.8 Verify that the function .(x, t) �→ E(x, t) = θ(t − |x |)/2 is the fundamental solution of the 
string operator, i.e., 

. 
(
∂2/∂t2 − ∂2/∂x2)E(x, t) = δ(x, t).

Here .δ(x, t) is the .δ-function in . R2: .〈δ(x, t), ϕ〉 = ϕ(0, 0) for any function .ϕ ∈ C∞
0 (R × R). 

P 12.9 Having noted that 

. lim
ε→0

[∫
|x |>ε

ln |x | · ϕ′(x) dx
]
= lim

ε→0

[
ln ε(ϕ(−ε) − ϕ(ε)) −

∫
|x |>ε

ϕ(x)
x

dx
]

for any .ϕ ∈ C∞
0 (R), show that . ddx ln |x | = v. p. 1

x , i.e., .
〈

d
dx ln |x |, ϕ〉 = v. p.

∫ ∞
−∞

ϕ(x)
x dx, where  

.v. p.
∫ ∞
−∞ x−1ϕ(x) dx is the so-called principal value (valeur principale in French) of the integral 

.
∫ ∞
−∞ x−1ϕ(x) dx, which is defined by the formula 

.v. p.
∫ ∞

−∞
x−1ϕ(x) dx = lim

ε→0

∫
|x |>ε

x−1ϕ(x) dx. (12.9) 

P 12.10 Having noted that 

. lim
ε→+0

ln(x ± iε) = [ln |x | ± iπθ(−x)],

prove the simplest variant of the Sochocki–Plemelj formulas1 

1 Formula (12.10) was first proved in the thesis of Julian Vasil’evich Sochocki (1842–1927), 
a professor of Mathematics at St. Petersburg University, in 1873, i.e., in the year of birth of Josip 
Plemelj (1873–1967), a Slovene mathematician, who reproved these formulas in (1908, Monats. 
Mathem. Physik, Bd. 19. 205–210).
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.
1

x ∓ i0
= v. p.

1
x
± iπδ(x), (12.10) 

which are frequently used in mathematical physics, i.e., . limε→+0
∫ ∞
−∞

ϕ(x) dx
x∓iε = v. p.

∫ ∞
−∞

ϕ(x)
x dx±

iπϕ(0) for any function .ϕ ∈ C∞
0 (R). 

Remark 12.11 From (12.10) it follows that 

.δ(x) = f (x − i0) − f (x + i0), where f (x + iy) = 1
2πi

(x + iy)−1, (12.11) 

i.e., the .δ-function (qua an element of the space .D�(R)) can be written as the differ-
ence of two boundary values on . R of two functions which are analytic, respectively, 
in . C+ and in . C−, where .C± = {z = x + iy ∈ C : ± y > 0}. This simple observation 
has deep generalizations in the theory of hyperfunctions (see, for example, Schapira 
(1970) and Chap. 9 in Hörmander (1958); Hörmander (1965)). 

Remark 12.12 Any continuous function .F ∈ C(R) (qua an element of the space . L1
loc) 

has the Sobolev derivative .F ′ ∈ D�(R). If this derivative is locally integrable (in 
other words if .F(x) =

∫ x

a
f (y) dy+F(a), where . f ∈ L1

loc(R)), then by Theorem 8.47 

.F ′(x) = lim
h→0

h−1(F(x + h) − F(x)) for almost all x ∈ R. (12.12) 

Besides, formula (12.12) completely defines the Sobolev derivative . F ′. It is worth  
pointing out that the last assertion ceases to hold (even under the assumption 
that (12.12) holds) if .F ′ � L1

loc(R). So, for example, the Cantor function (see Kol-
mogorov and Fomin (1980) or Shilov (2016)), which corresponds to the Cantor set of 
nonzero measure (see Remark 8.8), i.e., continuous a monotone function . K ∈ C[0, 1]
which is equal to .(2k − 1) · 2−n on the kth .(k = 1, . . . , 2n−1) interval .In =]akn, bkn[ of 
rank n, has, for almost all .x ∈ [0, 1], the zero derivative, but its Sobolev derivative . K ′
is nonzero. Namely, 

.K ′ =
∞∑
n=1

2n−1∑
k=1

(2k − 1) · 2−n
(
δ(x − bkn) − δ(x − akn)

)
. (12.13) 

P 12.13 Prove (12.13). 

13 The SpaceD of Generalized Functions # 

Elements of the space . D� were defined as finite linear combinations of the functionals 
.∂αuα, i.e., the derivatives of functions .uα ∈ L1

loc. If we neglect the concrete form of 
the functionals, i.e., consider an arbitrary linear functional 

. f : C∞
0 (Ω) � ϕ �→ 〈 f , ϕ〉 ∈ C, (13.1)
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then we get an element of the space .D#(Ω), which we will call a generalized function 
(in the domain . Ω). We give the precise definition. 

Definition 13.1 .D#(Ω) is the space of all linear functionals (13.1). In this space, 
the operations of differentiation . ∂α and multiplication by a function .a ∈ C∞(Ω) are 
introduced by the formulas: 

.〈∂α f , ϕ〉 = (−1) |α | 〈 f , ∂αϕ〉, 〈a f , ϕ〉 = 〈 f , aϕ〉, (13.2) 

here . ϕ is any function from .C∞
0 (Ω). 

Definition 13.2 Let . f ∈ D#(Ω), .K = ¯K̄ ⊂ Ω, let  

.|〈 f , ϕ〉| ≤ C‖ϕ‖C l (Ω) ∀ ϕ ∈ C∞
0 (Ω) (13.3) 

for any .l ≥ k ≥ 1 (cf. (12.5), (12.6)), and let 

.|〈∂α f , ϕ〉| ≤ C‖ϕ‖C0(Ω) ∀ ϕ ∈ C∞
0 (Ω \ K) (13.4) 

for any . α such that .|α | ≤ m ∈ Z+. Then the number k is the order of singularity of 
the generalized function f , and the number .m = |α | is the order of smoothness of the 
generalized function . f ∈ D#(Ω) on an open set .Ω \ K . 

P 13.3 Let . f =
∑∞

k=0 δ
(k)(x − k), .x ∈ R, i.e., 

. 〈 f , ϕ〉 =
∞∑
k=0

(−1)kϕ(k)(k) ∀ϕ ∈ C∞
0 (R).

Verify that .D�(Ω) � D#(Ω) by checking that . f ∈ D#(R), but . f � D�(R). Find the order of 
singularity of the function f . 

The following result holds, even though .D�(Ω) � D#(Ω). 
Lemma 13.4 (du Bois- ) 2 Reymond If . f ∈ D#(R) and . f ′ = 0, then . f = const. 
Hence . f ∈ D�(R)
Proof We have .〈 f ′, ϕ〉 = 〈 f , ϕ′〉 = 0 for any function .ϕ ∈ C∞

0 (R). Consider 
a function .ϕ0 ∈ C∞

0 (R) such that .
∫
ϕ0 = 1. Any function .ϕ ∈ C∞

0 (R) can 
be written in the form .ϕ = ϕ1 +

(∫
ϕ
)
ϕ0, where .ϕ1 = ϕ − (∫

ϕ
)
ϕ0. Note  

that .
∫
ϕ1 = 0. Let  .ψ(x) =

∫ x

−∞ ϕ1(ξ)dξ. We have  .ψ ∈ C∞
0 (R) and .ψ ′ = ϕ1. 

Hence .〈 f , ϕ〉 = 〈 f , ψ ′〉 + 〈 f , (∫ ϕ)ϕ0〉. Now, because .〈 f , ψ ′〉 = 0, we find that 
.〈 f , ϕ〉 = C

∫
ϕ, where .C = 〈 f , ϕ0〉. �

2 Paul David Gustave du Bois-Reymond (1831–1889) was a German mathematician, whose parents 
were of French descent (his mother was the daughter of a French representative in Berlin). Du Bois-
Reymond is known for his works on the theory of functions of a real variable. He constructed the 
first example of a continuous function whose Fourier series diverges at some point. Of course, du 
Bois-Reymond’s lemma stated here was proved by him in a different formulation: if . f ∈ C1(R) and 
.
∫
R
f ′(x)ϕ(x) dx = 0 for any function .ϕ ∈ C∞

0 (R), then . f = const. 
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Generalizing the notion of a .δ-sequence we introduce 
Definition 13.5 A sequence of functionals . fν ∈ D# is said to weakly converge 
to . f ∈ D# in the space .Φ ⊃ C∞

0 if .limν→∞ 〈 fν, ϕ〉 = 〈 f , ϕ〉 for any function .ϕ ∈ Φ. 
If .Φ = C∞

0 , then the words “in the space . C∞
0 ” are usually omitted. 

Definition 13.6 We say that a subspace X of the space . D# is weakly sequentially 
complete if, for any sequence .{ fν}∞ν=1 of functionals . fν ∈ X such that 

. 〈 fν − fμ, ϕ〉 → 0 ∀ϕ ∈ C∞
0 as ν, μ→ ∞,

there exists an . f ∈ X such that . fν → f in . D#. 
P 13.7 Verify that . D� is not weakly sequentially complete. 

P 13.8 Verify that . D# is weakly sequentially complete. 

Lemma 13.9 If . fν → f in . D# on the space .Φ ⊃ C∞
0 , then .∂α fν → ∂α f in . D# on 

the space . Φ for any . α. 
Proof We have .〈∂α fν, ϕ〉 = (−1) |α | 〈 fν, ∂αϕ〉 → (−1) |α | 〈 f , ∂αϕ〉 = 〈∂α f , ϕ〉. �
Example 13.10 Let .〈 fν, ϕ〉 =

∫
R

sinνx
ν ϕ(x) dx. Then . f ′ν = cos νx, . f ′′ν = −ν·sin νx, . . .

Hence .〈 fν, ϕ〉 → 0 for any function .ϕ ∈ C∞
0 as .ν → ∞. So, .cos νx → 0 in . D#, 

.ν sin νx → 0 in . D#, and so on. 
Lemma 13.11 Let .a = (a1, . . . , an) and .b = (b1, . . . , bn), .bk < ak for any k, lie in 
.Ω ⊂ Rn, and let 

. Π = {x = (x1, . . . , xn) ∈ Rn : 0 < |xk − ak | < σk ∀k} ⊂ Ω.
Assume that a sequence .{ fν}∞ν=1 of functions . fν ∈ L1

loc(Ω) is such that the function 

. Fν(x) =
∫ x1

b1

. . .

∫ xn

bn

fν(y) dy1 . . . dyn

has the following two properties: 
(1) .|Fν(x)| ≤ G(x), .x ∈ Ω, where .G ∈ L1

loc(Ω). 
(2) .Fν(x) → θ+(x − a) v. p. in . Ω, where the function . θ+ is defined in (12.7). 
Then . fν weakly converges to .δ(x − a) in the space 

.Φ =
{
ϕ ∈ C(Ω) : ϕ ∈ L1(Ω), ∂nϕ/∂x1 . . . ∂xn ∈ L1(Ω)}. (13.5) 

Proof In view of Theorems 8.34, 8.42, and 8.47, for any function .ϕ ∈ Φ, we have  

.〈 fν, ϕ〉 = 〈 ∂nFν
∂x1 . . . ∂xn

, ϕ〉 = (−1)n〈Fν, ∂nϕ

∂x1 . . . ∂xn
〉

= (−1)n
∫
Ω

Fν(x) ∂
nϕ(x)

∂x1 . . . ∂xn
dx → (−1)n

∫ ∞

a1

. . .

∫ ∞

an

∂nϕ(x) dx
∂x1 . . . ∂xn

= −(−1)n
∫ ∞

a2

. . .

∫ ∞

an

∂n−1ϕ(x) dx
∂x2 . . . ∂xn

dx2 . . . dxn = ϕ(a).
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P 13.12 Solve Problems 4.3 and 4.4 with the help of Lemma 13.11. 

Let us generalize the notion of the support of a function (see § 3). To this aim, we 
give an exact meaning to the phrase common in physics: “.δ(x) = 0 for .x � 0”. 

Definition 13.13 Let . f ∈ D#(Ω) and . ω be an open subset of . Ω. We say that f is 
zero . (vanishes. ) on . ω (written . f |ω = 0 or . f (x) = 0 for .x ∈ ω) if .〈 f , ϕ〉 = 0 for any 
function .ϕ ∈ C∞

0 (ω). 
Definition 13.14 By the null set of a functional . f ∈ D#(Ω) we mean the maximum 
open set .Ω0 = Ω0( f ) ⊂ Ω on which f vanishes, i.e., . f |Ω0 = 0, and besides, the 
condition . f |ω = 0 implies that .ω ⊂ Ω0. 

It is clear that .Ω0( f ) is the union of all .ω ⊂ Ω such that . f |ω = 0. 

Definition 13.15 Let . f ∈ D#(Ω). The  support .supp f of a functional f is the 
complement of the null set .Ω0( f ), i.e., the set .Ω\Ω0( f ). 
P 13.16 Let . f ∈ D#(Ω). Verify that .x ∈ supp f if and only if, for any neighborhood .ω ⊂ Ω of the 
point x, there exists a function .ϕ ∈ C∞

0 (ω) such that .〈 f , ϕ〉 � 0. Also show that Definition 13.15 
is equivalent to Definition 3.5 if . f ∈ C(Ω). 
P 13.17 Find .supp δ(α)(x) and .supp[(x1 + . . . + xn)δ(α)(x)]. 
P 13.18 Let . f ∈ D#(Ω) and let .a ∈ C∞ such that .a(x) = 1 for .x ∈ supp f . Is it true that .af = f ? 

P 13.19 Let . ω be an open set in . Ω such that .ω ⊃ supp f , . f ∈ D#(Ω). Verify that  .af = f if 
.a(x) = 1 for .x ∈ ω. 

P 13.20 Let . f ∈ D#(Ω) be a generalized function with compact support and let .ψ ∈ C∞
0 (Ω) and 

.ψ ≡ 1 on an open set .ω ⊃ supp f . Verify that the formula .〈F, ϕ〉 = 〈 f , ψϕ〉 for any function 

.ϕ ∈ C∞(Ω) defines the extension of the functional f to the space .C∞(Ω), i.e., F is a linear 
functional on .C∞(Ω) such that .〈F, ϕ〉 = 〈 f , ϕ〉 for any function .ϕ ∈ C∞

0 (Ω). 

14 Functions Not Locally Integrable as Generalized 

The idea of representability of a function . f : Ω→ Cwith the help of its “averaging” 
functional (10.1) was applied above only to locally integrable functions. However, 
in many problems of analysis, an important role is played by functions which are not 
locally integrable. This leads to the so-called regularization problem of diverging 
integrals:3 let .g : Ω � x �→ g(x) be a function locally integrable everywhere in . Ω
except a subset .N ⊂ Ω. It is required to find functionals . f ∈ D# such that 

.〈 f , ϕ〉 =
∫
Ω

g(x)ϕ(x) dx ∀ϕ ∈ C∞
0 (Ω \ N). (14.1)

3 In vol. 1 of Gelfand et al. (1958–1966) the authors write: “we assign credit for the concept of the 
regularization of a divergent integral to Hadamard and to M. Riesz, although Cauchy had already 
dealt with it (in defining the gamma function outside the region of convergence of the integral), and 
even Euler no doubt made use of similar considerations in his calculations.” 
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In this case one says that the functional f regularizes the (divergent) integral 
.
∫
Ω
g(x) dx. 
It is clear that functionals f satisfying (14.1) can be represented in the form 

. f = f0 + f1, f0 ∈ F0,

where . f1 is a solution of the particular regularization problem (i.e., . f1 satisfies the 
condition (14.1)), and . F0 is the linear subspace of functionals . f0 ∈ D#(Ω) such that 

.〈 f0, ϕ〉 = 0 ∀ϕ ∈ C∞
0 (Ω\N). (14.2) 

The problem of the description of the subspace . F0 is connected only with the set 
.N ⊃ supp f0. In the case .N = x0 ∈ Ω, this question, i.e., the problem of the general 
form of functionals with point support, is considered in § 15. As for the particular 
regularization problem, we will give one example and for problems P14.2–P14.5 in 
the single real variable setting. 

Example 14.1 Consider the regularization of the function . 1/x. In other words, let us 
find a functional . f ∈ D#(R) such that .x f = 1. Note that (see (12.9))4 

. 

〈
v. p.

1
x
, ϕ

〉
=

∫ ∞

−∞
1
x
ϕ(x) dx ∀ϕ ∈ C∞

0 (R\0).

So, the functional .v. p.(1/x) regularizes the function . 1/x. Since .〈δ, ϕ〉 = 0 for any 
function .ϕ ∈ C∞

0 (R\0), we find that 

. v. p.
( 1
x

)
+ C · δ(x),

where .C ∈ C, and hence (see (12.10)) the functionals .1/(x ± i0) also regularize the 
function . 1/x. 

P 14.2 Verify that 

. 

〈
v. p.

1
x
, ϕ

〉
=

∫ ∞

−∞
ϕ(x) − ϕ(−x)

2x
dx ∀ϕ ∈ C∞

0 (R).

P 14.3 Let .m ≥ 1 and let .a ∈ C∞
0 (R). For .k ≥ 2, consider the functional 

. v. p.
( 1
xk

)
∈ D#(R)

defiled by 

. 

〈
v. p.

1
xk

, ϕ
〉
=

∫ ∞

0

1
xk

{
ϕ(x) + ϕ(−x) − 2

[
ϕ(0) + . . . +

xk−2

(k − 2)!ϕ
(k−2)(0)

]}
dx

for .k = 2m and by

4 The notation v. p. (principal meaning derived from the French “valeur principale”) was introduced 
by Cauchy. 
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. 

〈
v. p.

1
xk

, ϕ
〉
=

∫ ∞

0

1
xk

{
ϕ(x) + ϕ(−x) − 2

[
xϕ′(0) + . . . +

xk−2

(k − 2)!ϕ
(k−2)(0)

]}
dx

for .k = 2m + 1. 
Verify that the functional .v. p.

( 1
xk

)
regularizes the function . 1

xk . 

P 14.4 Let P be a polynomial of .x ∈ R. Find a functional . f ∈ D#(R) satisfying the equation 
.P(x) f = 1. In other words, regularize the integral 

. 

∫ ∞

−∞
P−1(x)ϕ(x) dx.

P 14.5 Let .e−1
+ (x) =

{
e−1(x) = e−1/x x > 0
e−1(x) = 0 x ≤ 0 where .x ∈ R. Find a functional . f ∈ D#(R) satisfy-

ing the equation .e−1
+ (x) f = 1. Compare with P 16.25. See also (Gelfand et al. 1958–1966, Vol 2), 

which indicates spaces of test functions for which the regularization of functions with arbitrarily 
strong singularities meaning. 

15 Generalized Functions with Point Support: The Borel 
Theorem 

As shown in § 14, the problem of regularization of a function locally integrable 
everywhere in .Ω ⊂ Rn, except at a point .ξ ∈ Ω, leads to the problem of the general 
form of a functional . f ∈ D#(Ω) concentrated at the point . ξ, i.e., satisfying the 
condition .supp f = ξ. It is clear that (see 13.17) a finite sum of a .δ-function and its 
derivatives concentrated at the point . ξ, i.e., the sum 

.

∑
|α | ≤N

cαδ
(α)(x − ξ), cα ∈ C, N ∈ N, (15.1) 

is an example of such a functional. 
But does the sum (15.1) provide the general form of a functional . f ∈ D# supported 

at the point . ξ? It can be shown (see the remark at the end of this section) that the 
answer to this question is negative. However, the following theorem holds. 

Theorem 15.1 If . f ∈ D# and . f =
∑

α cαδ(α)(x − ξ), then .cα = 0 for .|α | > Nf for 
some . Nf . 

Proof According to the Borel theorem that follows5 Borel (1895) there exists a func-
tion .ϕ ∈ C∞

0 (Ω) such that, for any . α,

5 Félix Édouard Justin Émile Borel (1871–1956) was a French mathematician, one of the most 
famous mathematicians of the twentieth century. Together with his student Henri Lebesgue he was 
one of the founders of measure theory and its applications in probability theory. From 1934 he was 
president of the French Academy of Sciences. During the Second World War, he participated in the 
French Resistance. 
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. ∂αϕ(x)��
x=ξ

= (−1) |α |/cα, if cα � 0,

∂αϕ(x)��
x=ξ

= 0, if cα = 0.

For such function . ϕ we have .〈∑α cαδ(α)(x − ξ), ϕ〉 = ∑
α 1, where the sum is taken 

over . α such that .cα � 0. �
Theorem 15.2 (É. Borel) For any set of numbers .aα ∈ C, where . α = (α1, . . . , αn)
is a multiindex, and for any point .ξ ∈ Ω ⊂ Rn, there exists a function . ϕ ∈ C∞

0 (Ω)
such that .∂αϕ

��
x=ξ

= aα for any . α. 

Proof Without loss of generality, we can assume that .ξ = 0 ∈ Ω. If the coefficients 
. aα grow “not too fast” as .|α | → ∞ (more precisely, if there exist .M > 0 and 
.ρ > 0 such that .

∑
|α |=k aα ≤ Mρ−k for any .k ∈ N), then the existence of the required 

function is clear. Indeed, in our case, the series .
∑

α aαxα/α!, where .α! = α1!·. . .·αn!, 
converges in the ball .Bρ = {x ∈ Rn : |x | < ρ}, and hence we can take 

. ϕ(x) = ψ(x/ρ)
∑
α

aαx
α/α! ∈ C∞

0 (Bρ) ⊂ C∞
0 (Ω)

as the required function, where 

. ψ ∈ C∞
0 (Rn), ψ = 0 for |x | > 1, ψ = 1 for |x | < 1

2
.

However, in the general case, the series .
∑

α aαxα/α! can diverge in . Bρ. What is 
the reason of the divergence? Obviously, because it is impossible to guarantee the 
sufficiently fast decrease of the function .aαxα/α! as .|α | → ∞ for all x lying in 
a fixed ball . Bρ. One can try to improve the situation by considering the series 

.

∑
α

ψ(x/ρα) · aαxα/α!, (15.2) 

where . ρα converges sufficiently fast to zero as .|α | → ∞. If it occurs that the 
series (15.2) converges to a function .ϕ ∈ C∞, then, as one can easily see, . ϕ ∈ C∞

0 (Ω)
and .∂αϕ

��
x=0 = aα. Indeed, setting .γ = (γ1, . . . , γn) ≤ β = (β1, . . . , βn) if . γk ≤ βk

for any k, and .β − γ = (β1 − γ1, . . . , βn − γn), we have  

. ∂αϕ
��
x=0 =

∑
β

aβ
β!

(∑
γ≤α

α!
γ!(α − γ)!

(
∂a−γψ

)��
x=0

(
∂γxβ

)��
x=0

)

=
∑
β

aβ
β!

(
∂αxβ

��
x=0

)
=
∑
β�α

aβ
β!

(
∂αxβ

��
x=0

)
+ aα = aα .

It remains to show that the series (15.2) converges to .ϕ ∈ C∞(Ω). Note that since 
.
∑

α =
∑

|α | ≤k +
∑

|α |>k , it is sufficient to verify that there exist numbers .ρα < 1 such 
that 

.

∑
j>k

∑
|α |=j
ψ(x/ρα)aαxα/α! ∈ Ck(Ω) ∀k .
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Let us try to find .ρα = ρj depending only on . j = |α |. If we can show that 

.
��∂β(ψ(x/ρ |α | )aαxα/α!

�� ≤ Cαρα (15.3) 

for any . β such that .|β| ≤ k, where .Cα = Cα(ψ) < ∞, then by taking . ρj =

2−j
(∑

|α |=j Cα

)−1 we obtain 

. 

∑
j>k

∑
|α |=j

��∂β(ψ(x/ρ |α | )aαxα/α!
�� ≤ ∑

j>k

[
ρj

∑
|α |=j

Cα

]
≤ 1.

So, it remains to prove inequality (15.3). For .|α | > k ≥ |β| we have 

. 

���∂βx
(
ψ
( x
ρ |α |

) aαxα
α!

)��� ≤ |aα |
α!

∑
γ≤β

β!
γ!(β − γ)!

���∂γxψ
( x
ρ |α |

)��� · |∂β−γxα |

≤ |aα |
α!

∑
γ≤β

β!
γ!(β − α)!

( 1
ρ |α |

) |γ | ·
���∂γt ψ(t)

��
t=x/ρ|α |

· xα−β+γ
��� · α!

≤ |aα |
∑
γ≤β

β!
γ!(β − α)! ·

���∂γt ψ(t)
��
t=x/ρ|α |

��� · ρ |α |,

where the last inequality holds because .ψ(t) = 0 for .|t | > 1. �

Now let us return to the question on the general form of a generalized function 
. f ∈ D#(Ω)with support at a point .ξ = 0 ∈ Ω. We note, first of all (see Problem 13.20) 
that 

. 〈 f , ϕ〉 = 〈 f , aϕ〉 ∀ϕ ∈ C∞(Ω)
for any function .a ∈ C∞

0 (Ω) such that .a ≡ 1 in some neighborhood of the point 
.ξ = 0. In particular, the functional f is defined on polynomials. Putting . cα =

(−1) |α | 〈 f , xα/α!〉, we find that 

. 〈 f , ϕ〉 =
∑

|α |<N

cα〈δ(α), ϕ〉 + 〈 f , rN 〉 ∀N,

where 

.rN (x) = a
( x
εN

) [
ϕ(x) −

∑
|α |<N

ϕ(α)(0)xα/α!
]
, 0 < εN < 1. (15.4) 

It is rather tempting to assume that 

.〈 f , rN 〉 → 0 as N → ∞ (15.5) 

for an appropriate sequence .{εN }∞N=1, .0 < εN < 1, because in this case from 
Theorem 15.1 we have the following lemma. 

Lemma 15.3 If . f ∈ D#(Ω), .supp f = 0 ∈ Ω and if condition (15.5) is met, then 
there exists an .N ∈ N such that . f =

∑
|α |<N cαδ(α).
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However, condition (15.5) may fail to hold if . f ∈ D#. The corresponding example 
can be constructed using the Hamel basis6 (see, for example, Kolmogorov and Fomin 
(1980)). 

16 The spaceD′ of distributions (Schwartz generalized 
functions) 

It seems natural to have a theory of generalized functions in which condition (15.5) 
is satisfied, and therefore, the conclusion of Lemma 15.3 holds. This modest wish 
(leading, as one can see below, to the theory of Schwartz7 distributions) unwittingly 
suggests the following program: 

(1) Introduce a convergence in the space .C∞
0 (Ω) such that 

. lim
N→∞ rN = 0 ∈ C∞

0 (Ω) (16.1) 

in the sense of this convergence, where . rN is defined by (15.4). 
(2) Consider only the functionals . f ∈ D#(Ω) that are continuous with respect to 

this convergence. 
It is clear that one can introduce different convergences according to which 

.rN → 0 as .N → ∞. Which one should be chosen? Considering this question, 
one should take into account that the choice of a convergence also determines the 
subspace of those linear functionals on . C∞

0 that are continuous with respect to this 
convergence. Hence it seems reasonable to augment the above conditions (1) and (2) 
with the following requirement: 

(3) The subspace of functionals continuous with respect to this convergence 
should include the space . D� of Sobolev derivatives (because this space, as has been 
shown, plays a very important role in the problems of mathematical physics). 

According to Theorem 16.1 that follows, requirement (3) uniquely determines 
the convergence in the space . C∞

0 ; moreover (in view of Lemma 16.10, see below) 
condition (16.1) will also be satisfied. 

Theorem 16.1 Let .{ϕj} be a sequence of functions .ϕj ∈ C∞
0 (Ω). Then the following 

two conditions are equivalent: 
.(1◦) .〈 f , ϕj〉 → 0 as . j → ∞ for any function . f ∈ D�. 
. (2◦) There exists a compact set .K ⊂ Ω such that .supp ϕj ⊂ K for any j, and 

.max x∈Ω |∂αϕj(x)| → 0 as . j → ∞ for any . α.

6 Georg Hamel (1877–1954) was a German mathematician and mechanicist. His works on the 
foundations of mathematics and axiomatic in mechanics are particularly well known. In 1905, he 
published a paper in which he proposed a clear and detailed approach to the use of the axiom of 
choice in construction of a basis of integers, later called the Hamel basis, as a vector space over the 
rationals. 
7 Laurent Schwartz (1915–2002) was a famous French mathematician, Fields Prize winner in 1950, 
a member of the “Nicolas Bourbaki group” (as well as his legendary student, one of the greatest 
mathematicians of the twentieth century, Alexander Grothendieck (1928–2014)). 
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Proof The implication .2◦ → 1◦ is clear. The converse assertion follows from Lem-
mas 16.2–16.5. 

Lemma 16.2 For any . α, there exists a . Cα such that 

. max
x∈Ω

|∂αϕj(x)| ≤ Cα for any j .

Proof For any . α, consider the sequence of functionals 

. ϕ
(α)
j : L1(Ω) � f �→

∫
Ω

f (x)∂αϕj(x) dx, j ≥ 1.

It is clear that these functionals are linear and continuous, because .∂αϕj ∈ C∞
0 (Ω). 

By . 1◦, we have  .〈ϕ(α)j , f 〉 → 0 as . j → ∞ for any function . f ∈ L1. Hence by the 
Banach–Steinhaus theorem8 there exists a constant . Cα such that . ‖∂αϕj ‖(L1(ω))′ =
‖∂αϕj ‖∞ ≤ Cα for any j, where the equality of the norms follows from Riesz’s 
Theorem 9.17. �

Lemma 16.3 For any . α and any .x0 ∈ Ω, 

. ∂αϕj(x0) → 0 as j → ∞.

Proof Since .δ(α)(x − x0) ∈ D�(Ω), we have  

. ∂αϕj(x0) = 〈δ(α)(x − x0), (−1) |α |ϕj(x)〉 → 0.

Lemma 16.4 There exists a compact set .K ⊂ Ω such that .supp ϕj ⊂ K for any j. �

8 The Banach–Steinhaus theorem (1927) asserts the following. Let X be a Banach space and let 
.{ϕ j } be a family of continuous linear functionals on X. If, for any .x ∈ X, there exists a . Cx < ∞
such that . | 〈ϕ j, x 〉 | ≤ Cx for any j, then there exists a constant .C < ∞ such that . | 〈ϕ j, x 〉 | ≤ C
for .‖x ‖ ≤ 1 for any j. 

Proof Assume the contrary. If the sequence of functionals . ϕ j were not bounded for .‖x ‖ ≤ 1, then it  
would not be bounded on any ball .Br (a) = {x ∈ X : ‖x − a ‖ ≤ r }. Consider a point .x1 ∈ B1(0), 
a functional . ϕk1 , and a number .r1 < 1 such that . | 〈ϕk1, x 〉 | > 1 for .x ∈ Br1 (x1) ⊂ B1(0). 
(Such . r1 and . x1 exist by the hypothesis and since the functionals . ϕ j are continuous.) Next, take 
a point .x2 ∈ Br1 (x1), a functional . ϕk2 , and a number .r2 < r1 such that . | 〈ϕk2, x 〉 | > 2 for 
.x ∈ Br2 (x) ⊂ Br1 (x1). Continuing this construction, we obtain a sequence of closed nested balls 
.Brk (xk ) whose radii tend to zero. In this case, . | 〈ϕkj , x0 〉 | > j for .x0 ∈ ∩Brk (the intersection 
.∩Brk is nonempty since X is complete). �

Hugo Steinhaus (1887–1972), one of the founders of L’vov mathematical school. In the spring 
of 1916, thanks to a lucky chance, he dramatically changed the life of 24-year-old Stefan Banach 
(see p. 42), an unemployed man who had completed two courses of the Polytechnic University 
before the war and earned a living as a tutor. Soon their joint paper appeared, the first for Banach 
(who in 1924 was elected a corresponding member of the Polish Academy of Sciences). 
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Proof Assume the contrary. We set .Kj =
⋃

k< j supp ϕk . It can be assumed that the 
intersection .(supp ϕj)⋂(Ω\K) is nonempty. Therefore, there exists an . xj ∈ Ω\Kj

such that .ϕj(xj) � 0. For each j, we choose a .λj > 0 such that 

.
|ϕj(x)|
|ϕj(xj)| >

1
2

∀x ∈ Vj = {|x − xj | < λj} ⊂ Mj = supp ϕj\Kj . (16.2) 

Since the intersection .Vj
⋂
Vk is empty for . j � k, consider the function . f ∈ L1

loc(Ω), 
which is zero outside .

⋃
j≥1 Vj and such that 

. f (x) = aj |ϕj(xj)|−1 exp[−i arg ϕj(x)] for x ∈ Vj, j ≥ 1, (16.3) 

where .aj > 0 constants, which we will now select so that to prove the inequality9 

.

����
∫
Ω

f ϕj dx

����≥ j (16.4) 

from which the lemma follows. We have .supp f ϕj ⊂ (Vj
⋃

Kj), because . supp ϕj ⊂
(Mj

⋃
Kj). Hence the last integral in the equality 

. 

∫
Ω

f ϕj dx =

∫
Vj

f ϕj dx +
∫
(supp fϕ j )\Vj

f ϕj dx

is estimated as 
. 

���
∫
K j

f ϕj dx
��� ≤ max

Ω
|ϕj |

∫
K j

| f | dx ≤ Aj,

where .Aj = C
∑

k< j |ak | · μ(Vk). Taking .aj = 2(Aj + j), we arrive at estimate (16.4), 
because the inequality .

∫
Vj

f ϕj dx ≥ aj/2 holds in view of (16.2), (16.3). �

Lemma 16.5 For any multiindex . α, any .ε > 0, and any point .x0 ∈ Ω, there exist 
.λ > 0 and .ν ≥ 1 such that .|ϕ(α)j (x)| < ε for .|x − x0 | < λ and . j ≥ ν. �

Proof Assume the contrary. Then there exist . α, .ε0 > 0, .x0 ∈ Ω such that, for any j, 
there exists an .xj ∈ {x ∈ Ω : |x − x0 | < 1/ j} satisfying .|ϕ(α)j (xj)| ≥ ε0. But on the 
other hand, 

. |ϕ(α)j (xj)| ≤ |ϕ(α)j (xj) − ϕ(α)j (x0)| + |ϕ(α)j (x0)| → 0,

and hence 

. |ϕ(α)j (xj) − ϕ(α)j (x0)| ≤ C |xj − x0 | → 0, and ∂αϕj(x0) → 0

by Lemmas 16.2 and 16.3. �

This completes the proof of Theorem 16.1. �

9 Inequality (16.4) contradicts the original condition . 1◦.
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Remark 16.6 In fact, a little more has been proved than was announced in Theo-
rem 16.1. Namely, condition . 2◦ follows from the fact .〈 f , ϕj〉 → 0 as . j → ∞ for any 
function . f ∈ L1

loc(Ω) and for any Sobolev derivative . f = ∂αg, where .g ∈ L1(Ω). 
Now we can define the spaces . D and . D′ introduced by Schwartz (see Schwartz 

1950–1951). 

Definition 16.7 The space .D(Ω), which is sometimes called the space of test func-
tions (cf. § 1), is the space .C∞

0 (Ω) equipped with the following convergence of 
sequence of function .ϕj ∈ C∞

0 (Ω) to a function .ϕ ∈ C∞
0 (Ω): 

(a) There exists a compact set K such that .supp ϕj ⊂ K for any j. 
(b) For any .β = (β1, . . . , βn) and for any .σ > 0, there exists an . N = N(β, σ) ∈ N

such that 
. |∂βϕj(x) − ∂βϕ(x)| < σ ∀x ∈ Ω for j ≥ N .

In this case we write .ϕj
D→ ϕ as . j → ∞ (or .limj→∞ ϕj = ϕ in . D). 

Remark 16.8 It is clear that .D(Ω) =
⋂

s≥0 Ds(Ω), where .Ds(Ω) is the function 
space .Cs

0 (Ω) equipped with the convergence, which differs from the one introduced 
in Definition 16.7 only by the fact that the multiindex . β in condition (b) satisfies the 
condition .|β| ≤ s. It can be shown (see Exercise 16.23) that 

. D�(Ω) =
⋃
s≥0

D′
s(Ω)

(i.e., . f ∈ D�
. ⇔ there exists an .s ≥ 0 such that . f ∈ D′

s), where .D′
s(Ω) is the space of 

linear functionals on .Ds(Ω) which are continuous with respect to this convergence 
in .Ds(Ω). The  spaces . Ds and . D′

s were introduced by Sobolev (see Sobolev 1936). 

Definition 16.9 The space .D′(Ω) of Schwartz distributions (also called the space 
of Schwartz generalized functions) is the space of continuous linear functionals 
on .D(Ω), i.e., linear functionals on .D(Ω) which are continuous with respect to the 
convergence on .D(Ω). 
Lemma 16.10 There exists a sequence . εN (from which . rN is defined by (15.4)) such 
that 

. lim
N→∞ rN

D→ 0.

Proof By the Taylor formula 

. rN (x) = a
( x
εN

) ∑
|α |=N+1

N + 1
α!

xα
∫ 1

0
(1 − t)Nϕ(α)(t x)dt .

Hence by the Leibniz formula we get 

. |∂βrN (x)| ≤ CN (εN )N+1−|β | ≤ (1/2)N/2

for .N ≥ 2|β| if .εN ≤ 1
2C

− 2
N+2

N . �
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The next result follows from Lemmas 15.3 and 16.10. 

Theorem 16.11 (L. Schwartz) Let . f ∈ D′(Ω) and let .supp f = 0 ∈ Ω. Then there 
exist .N ∈ N and .cα ∈ C such that 

. f =
∑

|α | ≤N
cαδ

(α).

P 16.12 Let . fk ∈ D′(R), where .k = 0 or .k = 1, and  let .x · fk (x) = k. Show (cf. Example  14.1) 
that . f0(x) = Cδ(x), . f1(x) = v. p. 1

x +Cδ(x), where .C ∈ C. 

The following series of Exercises 16.13–16.25 concerns the question on the 
structure (general form) of distributions. Some hints are given at the end of the 
section. 

P 16.13 Verify that the following assertions are equivalent: 
(a) f is a distribution with compact support, i.e., . f ∈ D′(Ω) and .supp f is a compact set in . Ω. 
(b) . f ∈ E′(Ω); this means that  f is a continuous linear functional on .E(Ω), i.e., 

. lim
j→∞ϕ j = ϕ in E ⇐⇒ lim

j→∞ aϕ j = aϕ in D ∀a ∈ C∞
0 (Ω)

on the space .C∞(Ω) with this convergence. 

P 16.14 Verify that . f ∈ D′(Ω) if and only if . f ∈ D#(Ω) and, for any compact set .K ⊂ Ω, there  
exist constants .C = C(K, f ) > 0 and .N = N (K, f ) ∈ N such that 

. | 〈 f , ϕ〉 | ≤ C · pK,N (ϕ) (16.5) 

for any function .ϕ ∈ C∞
0 (K, Ω) = {ψ ∈ C∞

0 (Ω) : suppψ ⊂ K }, where  

.pK,N (ϕ) =
∑

|α |≤N

sup
x∈K

|∂αϕ(x) |. (16.6) 

P 16.15 (Cf. Exercise 16.14) 
Let .

⋃
M≥1 KM = Ω, where  .KM are compact sets in . Rn . Verify that  . f ∈ E′(Ω) (see Exer-

cise 16.13) if and only if . f ∈ D#(Ω) and there exist constants .C = C( f ) > 0 and . N = N ( f ) ≥ 1
such that . | 〈 f , ϕ〉 | ≤ C · pN (ϕ) for any function .ϕ ∈ C∞

0 (Ω), where  

.pN (ϕ) =
∑

|α |≤N

sup
x∈KN

|∂αϕ(x) |. (16.7) 

P 16.16 (Continuation) Let . f ∈ E′(Ω), .supp f ⊂ ω � Ω ⊂ Rn . Using equality (16.7) and the 
inequality 

. |ψ(x) | ≤
∫
Ω

��� ∂n

∂x1 . . . ∂xn
ψ(x)

��� dx ∀ψ ∈ C∞
0 (Ω),

show that there exist numbers .C > 0 and .m ≥ 1 such that 

. | 〈 f , ϕ〉 | ≤ C

∫
Ω

��� ∂nm

∂xm
1 . . . ∂xm

n
ϕ(x)

��� dx ∀ϕ ∈ C∞
0 (ω). (16.8) 

P 16.17 (Continuation) Checking that the function .ϕ ∈ C∞
0 (ω) can be uniquely recovered from its 

derivative .ψ =
∂nmϕ

∂xm
1 . . .∂xm

n
, show that the linear functional .l : ψ �→ 〈 f , ϕ〉, which is defined on the 

subspace
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. Y =
{
ψ ∈ C0(ω) : ψ =

∂nm

∂xm
1 . . . ∂xm

n
ϕ, ϕ ∈ C∞

0

}

of the space .L1(ω), is continuous. 

P 16.18 (Continuation) Applying the Hahn–Banach theorem on the continuation of linear con-
tinuous functionals (see Kolmogorov and Fomin 1980, p. 169), show that there exists a function 
.g ∈ L∞(ω) such that 

. 

∫
ω
g(x) ∂nm

∂xm
1 . . . ∂xm

n
ϕ(x) dx = 〈 f , ϕ〉 ∀ϕ ∈ C∞

0 (ω).

P 16.19 (Continuation) Show that the following theorems hold. 

Theorem 16.20 (On the General Form of Compactly Supported Distributions 
. f ∈ E′) Let . f ∈ E′(Ω). Then there exist a function .F ∈ C0(Ω) and a number . M ≥ 0
such that . f = ∂αF, where .α = (M, . . . ,M), i.e., 

. 〈 f , ϕ〉 = (−1) |α |
∫
Ω

F(x)∂αϕ(x) dx ∀ϕ ∈ C∞
0 (Ω).

Theorem 16.21 (On the General Form of Distributions . f ∈ D′) Let . f ∈ D′(Ω). 
Then there exists a sequence of functions .Fα ∈ C(Ω) parameterized by .α ∈ Zn+ such 
that . f =

∑
α ∂

αFα. More precisely, .Fα =
∑∞

j=1 Fαj , .Fαj ∈ C(Ω), and 
.(1) .supp Fαj ⊂ Ωj , where .{Ωj}j≥1 is a locally finite cover of . Ω. 
. (2) for any . j ≥ 1 there exists an .Mj ≥ 1 such that .Fαj = 0 for .|α | > Mj . 

P 16.22 (Peetre 196010 ) Let .A: D(Ω) → E′(Ω) be a continuous linear with localization property, 
i.e., 

. supp Au ⊂ suppu ∀u ∈ D(Ω). (16.9) 
Verify that A is a differential operator, more precisely, for any compact set .K ⊂ Ω, there  exists  an  
.N (K) < ∞ and a family .{cα }α∈Zn+ of functions .cα ∈ C∞(Ω) such that, for any .u ∈ D(Ω) and 
.x ∈ K , 

. (Au)(x) =
∑

|α |≤m(x)
cα(x)∂αu(x),

where .m(x) ≤ N (K) for any compact set .K ⊂ Ω. 

P 16.23 (See Remark 16.8) Verify that .D�(Ω) = ⋃
s D′

s (Ω). 

Remark 16.24 By Definition 13.2, a functional . f ∈ D′ has a finite order of sin-
gularity if there exist .k ≥ 1 and functions . fα ∈ L1

loc, where .|α | ≤ k, such that 
. f =

∑
|α |=k ∂α fα. The least k for which such a representation of f is possible, is 

called its order of singularity. In these terms, the space of Sobolev derivatives . D�

is, according to Definition 12.2, the space of all distributions with finite order of 
singularity.

10 Jaak Peetre (1935–2019), was a Swedish mathematician of Estonian origin. In 1944, he arrived 
in Sweden with his family. In 1963, he was appointed professor at Lund University. Member of 
the Royal Swedish Academy of Sciences since 1983. Main areas of research: partial differential 
equations, operator interpolation, differential geometry, functional analysis. 
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P 16.25 Resolve the following paradox. On the one hand, the discontinuous function 

. f (x, y) = {
{

Re
(
e−1/z4 ) for z � 0, z = x + iy ∈ C,

0 for z = 0
(16.10) 

(being the real part of a function analytic in . C\0 with zero second derivatives with respect to x and y 
at the origin) is a solution of the Laplace equation on the plane. On the other hand, by Theorem 16.21 
and the a priori estimate (21.7) from § 22 we have: if . f ∈ D′(Ω) and .Δ f ≡ 0 in . Ω, then . f ∈ C∞(Ω). 
The first proof of this fact, which was given by Schwartz in Schwartz (1950–1951) (see also  the  
book by Gelfand11 and Shilov (Gelfand et al.  1958–1966, Vol 2), depends on Theorem 5.10 on the 
arithmetic mean of harmonic functions. 

P 16.26 Verify that . E is metrizable, while . D is not. 

Remark 16.27 One can introduce in . D (respectively, in . E) the structure of a so-called 
(see Kolmogorov and Fomin 1980; Robertson 1980) linear locally convex topological 
space12 such that the convergence in this space coincides with the one introduced 
above. For example, a neighborhood of the origin in . D can be defined with the

11 Academician Israel Moiseevich Gelfand (1913–2009) was one of the greatest mathematicians 
of the twentieth century, author of many theoretical studies and applied research papers in which 
mathematical methods are applied in the field of physics, seismology, biology, neurophysiology, 
medicine. Born in Okny, Kherson Governorate, Russian Empire. After finishing only nine classes 
of school, a year later he came to Moscow and, working as a monitor in the Lenin library, engaged in 
self-education. By a lucky chance, he found himself in the field of view of A. N. Kolmogorov, who 
immediately appreciated his talent and was able to overcome the formal difficulties for enrolling 
I. M. in his graduate school. In 1938, I. M. presented, and in 1940 defended his doctoral thesis. He 
is the recipient of numerous national and international awards; honorary Doctor of seven foreign 
universities, including Harvard and Oxford; honorary foreign member of the American Academy of 
Arts and Sciences. A very informative and interesting article about I. M. can be found in Wikipedia. 

Here is what A. A. Kirillov writes (https://www.math.upenn.edu/~kirillov/): “Theworld-famous 
Gelfand seminar on functional analysis was intended for high elementary school students interested 
in mathematics, capable students, excellent graduate students, and outstanding professors. This 
seminar was a kind of “window into the real world” not only for novice mathematicians but also 
for many established scientists. In 1964, with the help I. G. Petrovskii, the rector of Moscow 
State University, Gelfand founded the famous All-Union Correspondence Mathematical School. 
An analogue of such a school was established in the USA in 1990. I believe that the effect of this 
modest enterprise, existing on private donations, exceeds what has been achieved by several US 
presidents with multibillion dollar investments in the improvement of mathematics education. In 
my opinion, this is one of the greatest services of I. M. to humanity.” 

For the Gelfand biological seminar and on the typical Gelfand style of conducting seminars, 
see, for example, http://iitp.ru/ru/userpages/325/103.htm. 

I will also cite here a little-known fact related to Gelfand’s activities in the atomic project in 
the early 1950s. He was in charge of calculations there. In those years, computer programs were 
written in machine code, and machines worked only at night. An emergency happened once: the 
computer stopped. Formally, Gelfand was responsible for the code. They came for him urgently and 
brought him to sort it out. And he, who has never written this code, figured it out! According to 
V.M. Tikhomirov (see his book “We remember them,” Izd. Popech. Soveta Mech. Math. Faculty of 
MSU, 2017): “This is one of the most remarkable testimonies to the genius of an outstanding man 
in my entire life.”) 
12 A linear space X is called a locally convex topological space if it is a topological (Kolmogorov 
and Fomin 1980) space, the operations of addition and multiplication by a number are continuous 
and, moreover, any neighborhood of the origin in X contains a convex neighborhood of the origin. 

https://www.math.upenn.edu/~kirillov/
https://www.math.upenn.edu/~kirillov/
https://www.math.upenn.edu/~kirillov/
https://www.math.upenn.edu/~kirillov/
https://www.math.upenn.edu/~kirillov/
https://www.math.upenn.edu/~kirillov/
http://iitp.ru/ru/userpages/325/103.htm
http://iitp.ru/ru/userpages/325/103.htm
http://iitp.ru/ru/userpages/325/103.htm
http://iitp.ru/ru/userpages/325/103.htm
http://iitp.ru/ru/userpages/325/103.htm
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help of any finite set of everywhere positive functions .γm ∈ C(Ω) .(m = 0, 1, . . . ,M; 
.M ∈ Z+) as the set of all functions .ϕ ∈ C∞

0 (Ω) such that .|∂αϕ| < γ |α | if .|α | ≤ M . 
The topology in . E can be introduced from the distance defined by the formula in 
the hint to Exercise 16.26. Thus, . E is a Fréchet13 space, i.e., a complete metric 
linear locally convex topological space. The Banach–Steinhaus theorem also holds 
in Fréchet spaces (see, for example, Robertson (1980)): the space of continuous linear 
functionals on a Fréchet space (in particular, the space . E′) is weakly sequentially 
complete. Although . D is not a Fréchet (see Exercise 16.26), the space . D′ is also 
weakly sequentially complete (for a direct proof, see, for example, Gelfand et al. 
(1958–1966), Vol. 1, Addendum). 

Hints to Exercises P. 16.13–P. 16.26. 

.16.13. If (a) were not implied by (a), then there would exist a sequence of points 
. xk such that .xk → ∂Ω, and . f � 0 in the neighborhood of . xk . 

.16.14. If . f ∈ D′, but estimate (16.5) were false, then there would exist a . K =
¯K̄ ⊂ Ω such that, for any .N ≥ 1, there would exist a function .ϕN ∈ C∞

0 (Ω) satisfying 
the condition .supp ϕN ⊂ K , and besides, 

. |〈 f , ϕN 〉| ≥ N
∑

|α | ≤N
sup
K

|ϕ(α)N |.

Hence .ψN = ϕN · |〈 f , ϕN 〉|−1 → 0 in . D, but .|〈 f , ψN 〉| = 1. 
.16.15. Since .〈 f , ϕ〉 = 〈 f , ρϕ〉, where .ρ ∈ C∞

0 , .ρ ≡ 1 on .supp f one can put . KN =

supp ρ. Warning: in general .KN � supp f . Indeed, following the book (Schwartz 
1950–1951, v. 1, p. 94) consider a functional . f ∈ E′(R) such that 

. 〈 f , ϕ〉 = lim
m→∞

[(∑
ν≤m
ϕ
(1
ν

))
− mϕ(0) − (lnm)ϕ′(0)

]
.

It is clear that .supp f is the set of points . 1ν , .ν ≥ 1, together with their limit point 
.x = 0. Consider a sequence of functions .ϕj ∈ C∞

0 (R) such that .ϕj(x) = 0 for .x ≤ 1
j+1 , 

.ϕj(x) = 1√
j

for .
1
j ≤ x ≤ 1. Taking .K = supp f in (16.6), we get .pK,N (ϕj) → 0 as 

. j → ∞ for any .N ≥ 1, whereas .〈 f , ϕ〉 = j/√ j → ∞. 
.16.16. Use the inequality 

. sup
K

|∂αϕ(x)| ≤ Cj(K) sup
K

��� ∂
∂x
∂αϕ(x)

���.

13 René Maurice Fréchet (1878–1973) was a French mathematician. In 1906, he introduced such 
fundamental concepts of analysis as compactness, completeness, and metric space; he also worked 
in the field of probability theory. His name is associated with such concepts as Fréchet derivative, 
Fréchet filter, Fréchet surface, etc. 
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.16.17. Apply inequality (16.8). 

.16.18. By Riesz’s theorem 9.17 we have .(L1)′ = L∞. 

.16.20. Extend g outside . ω by zero (see Exercise 16.18) and put . F(x) =

(−1)mn
∫
y<x

g(y) dy. 
.16.21. Let .

∑
ψj ≡ 1 be a partition of unity. Then 

. 〈 f , ϕ〉 =
∑
j

〈ψj f , ϕ〉 =
∑
j

∑
|α | ≤Mj

〈∂αFαj , ϕ〉 =
∑
α

〈∂α
∑
j

Fαj , ϕ〉.

.16.22. Since .A : D(Ω) → E′(Ω) and since . supp Au
(16.9)
� Ω, for any . a ∈ K � Ω

one can define the functional .Aa ∈ E′ such that .〈Aa, u〉 = (Au)(x)��
x=a

. We have  
.supp Aa = a, and hence by Theorem 16.11, 

. Aa : E � u �→ Au
��
x=a

=
∑

|α | ≤m(a)

(
aα(x)∂αu(x)

) ��
x=a
.

We have .supu |〈Aa, u〉| ≤ Cm(a) < ∞ ∀a ∈ K . Hence by applying the Banach– 
Steinhaus theorem for the space .E(Ω), which is a Fréchet space (see Remark 16.27), 
we get .supu |〈Aa, u〉| ≤ C < ∞, which implies (by Borel’s Theorem 15.1) that 
.supa∈K |m(a)| < ∞ for any .K = K ⊂ Ω. Using Exercise 13.19 and applying A to 
.
(a−x)α

α! , we ind that .cα ∈ C∞(Ω). .16.23. Apply Theorem 16.21. 
.16.25. The function (16.10) does not lie in . D′ (i.e., it cannot be regularized 

in . D′). The same is true for any function . f ∈ C∞(R\0) which fails to satisfy the 
estimate .| f (x)| ≤ C |x |−m for any .m ∈ N and .C > 0 for .0 < |x | < ε, where .1/ε � 1. 
The last fact can be proved, by constructing a sequence of numbers .εj > 0 such 
that .

∫
R
n f (x)ϕ j(x) dx → ∞ as . j → ∞ for the function .ϕj(x) = εjϕ( j x), where 

.ϕ ∈ C0(R), .ϕ = 0 outside the domain .{1 < |x | < 4}, .
∫
ϕ = 1, but .ϕj → 0 in . D as 

. j → ∞. 
.16.26. The space . E can be endowed with the distance .ρ(ϕ, ψ) = d(ϕ − ψ), where 

.d(ϕ) =
∑∞

1 2−N min(pN (ϕ), 1), and . pN is defined in (16.7). The space . D is not 
metrizable, because the sequence .ϕk,m(x) = ϕ(x/m)/k, where .ϕ ∈ D(R), fails to 
satisfy the following metric space property: if .ϕk,m → 0 as .k → ∞, then, for any m, 
there exists .k(m) such that .ϕk(m),m → 0 as .m → ∞.
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In 1807, Jean-Baptiste Fourier1 had his say in the famous (going from the beginning 
of the XVIII century) dispute about the sounding string (Narasimhan 1990, Ch. XII). 
According to Luzin (1935),2 he made a discovery that “caused the greatest perplexity 
and confusion among all mathematicians.” It overturned all concepts and became 
a source of new deep ideas for the development of such concepts as function, integral, 
and trigonometric series. . . Fourier’s discovery (strange as it may seem at first glance) 
consists in a formal rule for calculating the coefficients 

.ak =
1
p

∫ p/2

−p/2
u(y)e−ı̊(k/p)y dy, ı̊ = 2πi, i =

√
−1, k ∈ Z, (17.1) 

which are represented (for .k � 0) in terms of the numbers 

1 Jean-Baptiste Joseph Fourier (1768–1830) was a French mathematician and physicist, whose 
name appears on the first floor of the Eiffel Tower in the list of the greatest scientists in France He, 
the son of a tailor, became president of the local Revolutionary Committee in 1794 but did not get 
along with Robespierre. It was only thanks to the Coup d’État of 9 Thermidor (July 27, 1794) that 
he was not executed. Favored by Napoleon, Fourier received from him the title of baron and was 
awarded the Legion of Honor In 1804, to fulfill the duties of the prefect of the department, Fourier 
moved to Grenoble (where the university now bears his name). There, he becomes the Fourier that 
the entire mathematical world knows: he deduced the heat equation and invented the method of 
separation of variables—one of the most common methods for solving problems in mathematical 
physics, which he used to find a solution to the mixed problem for the heat equation (see (17.18)). 
And most importantly, Fourier presented the initial function as a trigonometric series with explicitly 
given coefficients. 
2 Nikolai Nikolaevich Luzin (also spelled Lusin), (1883–1950) was an Academician of the USSR 
Academy of Sciences, founder of the Moscow Mathematical school. Among his pupils we men-
tion A. N. Kolmogorov, M. A. Lavrentiev, L. A. Lyusternik, A. A. Lyapunov, D. E. Men’shov, 
P. S. Novikov, M. Ya. Suslin, P. S. Uryson, A. Ya. Khinchin, L. G. Shnirelman. For Luzitania, a loose 
group of young Moscow mathematicians, see Lyusternik, “The early years of the Moscow Mathe-
matics School” (Russian Math. Surveys, 22:1 (1967), 133–157). 
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. ck = ak + a−k, dk = i[ak − a−k], k ≥ 1,

and which are called the Fourier coefficients in the “expansion” 

.u(x) ∼
∞∑

k=−∞
ake

ı̊(k/p)x = a0 +
∑
k≥1

[
ck cos

(
2π

k
p
x
)
+ dk sin

(
2π

k
p
x
)]

(17.2) 

of an “arbitrary” function .u : Ω =
]− p

2 ,
p
2
[ � x �→ u(x) ∈ C in harmonics 

.eı̊(k/p)x = cos
(
2π

k
p
x
)
+ i sin

(
2π

k
p
x
)
, k ∈ Z. (17.3) 

The trigonometric series (17.2) is called the Fourier series of the function u (in the 
system of functions3 (17.3)). 

It should be borne in mind that for a randomly chosen continuous function (such 
a function, as a rule, is not differentiable everywhere), its Fourier series will almost 
certainly diverge at a given point. The first result concerning the convergence of 
the Fourier series was obtained by 24 years old L. Dirichlet (see, for example, 
Zorich 2016): if a function u is piecewise continuous on .

[− p
2 ,

p
2
]

and if the number 
of its intervals of monotonicity is finite, then the Fourier series of the function u 
converges to u at every point of continuity of u, and moreover, if u is continuous 
and .u

(− p
2
)
= u

( p
2
)
, then the series (17.2) converges to u uniformly. A substantially 

stronger result of C. Jordan,4 which was published in 1881, is known as the Dirichlet– 
Jordan theorem. 

Theorem 17.1 (Dirichlet–Jordan) Let . u(x) be a piecewise continuous function on 
.
[− p

2 ,
p
2
]

of bounded variation.5 Then the Fourier series of this function converges to 
this function uniformly on each compact set not containing its discontinuity points; 
at each discontinuity point the Fourier series of .u(x) converges to the arithmetic 
mean of its limit values at this point. 

The Fourier coefficients (17.1) are defined for any function .u ∈ L1. However,  
the Fourier series may diverge at some points even for continuous functions (see the 
footnote on p. 75, and Shilov 2016, Kolmogorov and Fomin 1980, and also Exer-
cise 17.11). Concerning the integrable functions, 19-year-old A. N. Kolmogorov6 

3 In this regard, see (17.19), (17.20).
4 Marie Ennemond Camille Jordan (1838–1922), was a French mathematician who made funda-
mental contributions to group theory. His theorems on reducing a matrix to a Jordan normal form, 
on a Jordan curve, and Jordan’s lemma on estimating the integral along an arc on the complex plane 
are widely known. The Jordan measure was the forerunner of the Lebesgue measure. 
5 Such functions .u(x) can be written as the difference of two monotone (nondecreasing) functions; 
their derivative .u′(x) is almost everywhere finite, and their graphs on a closed interval .[a, b] have 
finite length .

∫ b

a

(
1 + [u′(x)]2)1/2 dx. In particular (as is easily seen), the function . [0, 1] � x �→

xα sin 1
x has a bounded variation for .α > 1, unlike in the case .α ≤ 1. 

6 Andrey Nikolayevich Kolmogorov (1903–1987) was one of the most outstanding mathematicians 
of XX century. His book “Foundations of the Theory of Probability” (1933) had laid the foun-
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constructed in 1922 (see Tikhomirov 1991) his famous example of a function . u ∈ L1

whose Fourier series diverges almost everywhere (later he also constructed an exam-
ple of an integrable function whose Fourier series diverges everywhere). In 1990, the 
Salem Prize was awarded to Konyagin (1988) for the solution (1988) of the famous 
Luzin (Louzine) problem of the theory of trigonometric series. Namely, Konyagin 
shown that a trigonometric series cannot converge to infinity on a set of positive 
measure. 

The following theorem on convergence of Fourier series in the space . L2 (see, for 
example, Shilov 2016) is important: for any function 

. u ∈ L2(Ω), where Ω =
]
− p

2
,
p
2

[
,

the series (17.2) converges to u in .L2(Ω), i.e., 

.‖u −
∑
|k | ≤N

akek ‖L2 → 0 as N →∞, (17.4) 

where 
.ek : Ω � x �→ ek(x) = exp

(
ı̊
k
p
x
)
. (17.5) 

This theorem reveals the transparent geometric meaning of the Fourier coefficients. 
Indeed, consider the complex-valued functional 

. L2(Ω) × L2(Ω) � (u, v) �→ (u|v) =
∫ p/2

−p/2
u(x)v̄(x) dx,

where . v̄ is the complex conjugate of the function v. It is clear that this functional 
defines the inner product.7 The space .L2(Ω) with respect to which functions (17.5) 
are orthogonal (as can be easily checked), i.e., 

.(ek |em) = 0 for k � m. (17.6) 

dation for modern probability theory, based on the theory of measure. He obtained fundamental 
results in topology, geometry, mathematical logic, classical mechanics, turbulence theory, algo-
rithm complexity theory, information theory, function theory, trigonometric series theory, measure 
theory, approximation of functions, set theory, differential equations, dynamical systems, functional 
analysis, and in a number of other areas of mathematics and its applications. 
7 This means that functional .(u, v) �→ (u |v) is linear in the first argument, and in addition, . (u |u) > 0
if .u � 0, and  .(u |v) = (v |u), where the bar means complex conjugation. Note that the function 
.u �→ ‖u ‖ = √(u |u) is a norm, and moreover, 

. |(u |v) | ≤ ‖u ‖ · ‖v ‖
(cf. formula (9.3) for .p = 2). In his work on integral equations, David Hilbert (1862–1943) 
introduced the function spaces which are complete with respect to the norm generated by the inner 
product. Such spaces are called Hilbert spaces in honor of this great mathematician. In particular, 
.L2(Ω) is a Hilbert space.



94 3 Pseudo-Differential Operators and Fourier Operators

Hence choosing .N ≥ |m| and multiplying the function 

. 

(
u −

∑
|k | ≤N

akek
)

by . em (via the inner product), we obtain 

. 

���
(
u −

∑
|k | ≤N

akek |em
)��� ≤

���u − ∑
|k | ≤N

akek
���
L2
‖em‖L2 .

Now by (17.4) 

.am =
(u|em)
(em |em), m ∈ Z. (17.7) 

So, the coefficient . ak is the algebraic value of the orthogonal projection of the vector 
.u ∈ L2(Ω) to the direction of the vector . ek . 

Now that the geometric meaning of the Fourier coefficients has become clear, it 
may seem surprising that, as N. N. Luzin writes, “neither the subtle analytical mind 
of d’Alembert, nor the creative efforts of Euler, D. Bernoulli and Lagrange,”8 were 
able to solve this most difficult question,9 i.e., the question about formulas for the 
coefficients . ak in formula (17.2). However, we should not forget that the geometric 
transparency of the above formulas (17.7) was made possible only because the 
Fourier formulas (17.1) put on the agenda issues, whose solution made it possible to 
give the precise meaning to such words as “function,” “representation of a function 
by a trigonometric series,” and much, much more. 
Remark. As for the “most difficult question” mentioned by N. N. Luzin, its appearance is related to 
the problem of a sounding string (see Narasimhan 1990, Luzin 1935), which is the first system with 
infinite number of degrees of freedom which was mathematically investigated. Already in 1753, 
D. Bernoulli came to the conclusion that the most general motion of a string can be obtained 
by summing the principal oscillations. In other words, the general solution .u = u(x, t) of the 

8 There is an abundant literature about the great classics Jean D’Alembert (1717–1783), Leonhard 
Euler (1707–1783), Daniel Bernoulli (1700–1782), and Joseph Louis Lagrange (1736–1813). 
9 Even though the expansion . π2 − x

2 =
∑

k≥1
sin kx

k in a trigonometric series (converging for 
.0 < x < 2π) was first put forward by Euler himself (in 1744); later he in 1752 derived the 
formula . x

2

4 − π2

12 =
∑

k≥1(−1)k cos kx
k2 , which holds for . |x | ≤ π and gives (for .x = π) the famous 

equality .
∑

k≥1
1
k2 = π2

6 . However, Euler (as well as D. Bernoulli and Lagrange) believed that 
the solution to this problem surpassed the possibilities of calculus (Yushkevich 1968). However 
(surprisingly!), in his paper of 1777 (published after his death in 1798) Euler derived the desired 
formula .ak = 2

π

∫ π

0 f (x) cos kx dx, (which, however, was found earlier in 1759 in the work of 
A. Clairaut, unknown to Euler) for the coefficients of the expansion 

. f (x) = a0
2

+
∑
k≥1

ak cos kx

in cosines (and noted a similar possibility for the sine expansion). He did this by applying the 
now well-known technique: multiplying by .cosmx (by .sinmx) both parts of the expansion and 
then integrating termwise. Only after 30 years, Fourier, without referring to Euler (apparently 
not knowing about his work of 1777), closed this question, by taking into account “only” the 
orthogonality of the sine and cosine.



17 Fourier Series and Fourier Transform. The Spaces S and S′ 95

differential equation of a string 

.ut t − uxx = 0, |x | < p

2
, t > 0, (17.8) 

which satisfies, for instance, the periodicity condition 

.u
(
− p

2
, t
)
− u

( p
2
, t
)
= 0, ux

(
− p

2
, t
)
− ux

( p
2
, t
)
= 0, (17.9) 

can be represented as the sum of harmonics propagating to the right and to the left (along the 
characteristics .x ± t = 0, cf.  §11), more precisely, 

.u(x, t) =
∑
k∈Z

(
a+
ke

iλk (x+t ) + a−ke
iλk (x−t )), (17.10) 

where .a±
k
∈ C, and .λk = 2πk/p. Indeed, Eq. (17.8) and the boundary conditions (17.9) are linear 

and homogeneous. Hence a linear combination of functions satisfying (17.8), (17.9) also satisfies 
these equations. This fact suggests an idea to find the general solution of problem (17.8), (17.9) 
by summing (with indeterminate coefficients) the particular solutions of Eq. (17.8) satisfying the 
periodicity conditions (17.9). Equation (17.8) is an equation for which there exists an infinite series 
of particular solutions with separated variables—these are nonzero solutions of the form .ϕ(x)ψ(t). 
Indeed, substituting this function in (17.8), we obtain .ϕxx (x)ψ(t) = ϕ(x)ψt t (t). As a result, 

.ϕxx (x)/ϕ(x) = ψt t (t)/ψ(t) = const . (17.11) 

The periodicity condition (17.9) implies that .ϕ ∈ X, where  

.X =
{
ϕ ∈ C2(Ω) ∩C1( ¯̄Ω) : ϕ

(
− p

2

)
= ϕ

( p
2

)
, ϕ′

(
− p

2

)
= ϕ′

( p
2

)}
. (17.12) 

Hence the function . ϕ is necessarily (see formula (17.11)) an  eigenfunction of the operator 

. − d2/dx2 : X → L2(Ω), Ω =]−p/2, p/2[. (17.13) 

This means that . ϕ is a nonzero function of X satisfying the condition 

. − d2ϕ

dx2 = μ · ϕ (17.14) 

with some constant .μ ∈ C, which is known as the eigenvalue of operator (17.13). Since .ϕ ∈ X, 
it follows that the number . μ can be only positive (because otherwise .ϕ ≡ 0). We denote . μ by . λ2. 
Now condition (17.14) implies that 

. ϕ(x) = aeiλx, λ ∈ R, a ∈ C\{0}.
Obviously, this formula is consistent with the condition .ϕ ∈ X if and only if .λ = λk = 2kπ/p, 
.k ∈ Z. Thus, taking into account (17.11), we obtain 

. ϕk (x)ψk (t) = a+
ke

iλk xeiλk t + a−ke
iλk xe−iλk t, α±k ∈ C,

thereby verifying D. Bernoulli’s formula (17.10). 
The Bernoulli formula brought into use the principle of composition of oscillations as well as 

many serious mathematical problems. One of them is connected with finding of the coefficients . a±
k

in (17.10) for any specific oscillation (cf. Exercise 11.19) that is determined by the initial conditions 

.u(x, 0) = f (x), ut (x, 0) = g(x), (17.15)
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i.e., by the initial deviation of the string from the equilibrium position and by the initial velocity of 
the motion of its points. In other words, D. Bernoulli’s formula posed the question of finding the 
coefficients . a±

k
from the conditions 

. 
∑
k∈Z

(a+
k + a−k )eiλk x = f (x),

∑
k∈Z

iλk (a+
k − a−k )eiλk x = g(x).

It is curious that in 1759, i.e., 6 years after the work of D. Bernoulli, formulas (17.1), which  
give an answer to this question, were almost found by the 23-year-old Lagrange. All that remained 
for him to do in his research was to rearrange the limits in order to obtain these formulas. However, 
as Luzin writes in Luzin (1935), “Lagrange’s thought was directed in a different way and he, 
almost touching the discovery, so little realized it that he flung about D. Bernoulli the remark “It is 
disappointing that such a witty theory is inconsistent.” 

As has been said, half a century later the answer to this question was given by Fourier who wrote 
formulas (17.1). This is the reason why the method, whose scheme was presented on the example 
of solution of problem (17.8), (17.9), (17.15), is called the Fourier method (see, for instance, 
Vladimirov 1971, Godunov 1979). (For obvious reasons, this method is also called the method of 
separation of variables.) This method is quite popular in mathematical physics. 

P 17.2 Use the Fourier method to find the solution of the equation of the string 

.ut t − uxx = 0 , |x | < L , t > 0 , (17.16) 

satisfying the conditions 

.u
���|x |=L = 0 , u

���
t=0

=

{
1 − |x | if |x | < 1
0 if 1 < |x | < L

, ut

���
t=0

= 0 . (17.17) 

Show that, for . t < L − 1

. u(t, x) = 1
2
[
u(0, x + t) + u(0, x − t)] .

Compare this result with formula (11.25). Hint: . 2 cos(λk t) cos(λk x) = cosλk (x+t)+cosλk (x−t).

The reader can easily find by the Fourier method the solution of the Dirichlet problem for the 
Laplace equation in a rectangle, by preliminary considering the special case 

. Δu
��(x,y)∈]0,1[2= 0, u

��
x=0 = u

��
x=1 = 0, u

��
y=0 = f (x), u

��
y=1 = g(x).

It is also easy to obtain, by the Fourier method, the solution 

.u(x, t) = uN (x, t) +
∑
k>N

2 sinλk

λk [1 + σ sin2 λk ]
e−λ

2
k
t cosλk x, N ≥ 0, u0 ≡ 0, (17.18) 

to problem (6.14) for the heat equation. In formula (17.18), . λ2
k

is the kth (.k ∈ N) eigenvalue of the  
operator 

. − d2/dx2 : Y → L2(Ω), Ω =] − 1, 1[,
defined on the space 

. Y = {ϕ ∈ C2(Ω) ∩C1(Ω̄) : (ϕ ± σϕ′)��
x=±1 = 0},

where .σ ≥ 0 is the parameter of problem (6.14), and .λk ∈](k−1)π, (k−1/2)π] is thekth root of the 
equation .cotλ = σλ. The eigenfunctions .ϕk (x) = cosλk x of the operator . −d2/dx2 : Y → L2(Ω)
satisfy (cf. (17.6)) the orthogonality condition
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.(ϕk, ϕm) =
∫ 1

−1
ϕk (x)ϕm(x) dx = 0 for k � m. (17.19) 

Indeed, integrating by parts (applying the Ostrogradsky–Gauss formula in the multivariate case), 
taking into account the boundary conditions .(ϕ ± σϕ′)��

x=±1 = 0, and using .−ϕ′′
k
= λ2

k
ϕk , we get  

. (λ2
k − λ2

m)(ϕk, ϕm) =
∫ 1

−1
(ϕkϕ

′′
m − ϕmϕ′′k ) dx

= ϕkϕ
′
m

��1−1 −
∫ 1

−1
ϕ′kϕ

′
m − ϕmϕ′k

��1−1 +

∫ 1

−1
ϕ′kϕ

′
m = 0.

It can be shown (see, for example, Vladimirov 1971) that the eigenfunctions . ϕk , .k ∈ N from 
(cf. (17.4)) a  complete system in .L2 = ¯̄Y . This means that, for any .u ∈ L2 and .ε > 0, there  exist  
.N ≥ 1 and numbers .a1, . . . , aN such that .‖u − ∑N

k=1 akϕk ‖L2 < ε. Hence (cf. (17.2)–(17.7)), 
the formal series 

.

∞∑
k=1

(u, ϕk )
(ϕk, ϕk )ϕk (17.20) 

converges to u in . L2. The  series  (17.20) is called the Fourier series of the function u in the 
orthogonal (see (17.19)) system of functions . ϕk . The reader can easily verify that . (1, ϕk )/(ϕk, ϕk ) =
2 sinλk/(λk [1+σ sin2 λk ]), as well as that series (17.18) converges uniformly together with all its 
derivatives for .t ≥ ε for any .ε > 0 and gives a smooth (except the angular points .(x, t) = (±1, 0)), 
and unique (see, for example, Friedman 1964) solution of problem (6.14). 

Another fact is worth mentioning. The series (17.18) converges rapidly for large t. It can be 
shown that, for any .k ≥ 1, 

. |u(x, t) − uN (x, t) | < 10−k/N for t > k/(4.3N2). (17.21) 

However, for small t, series (17.18) converges very slowly. Hence, for small t, it is advisable to use 
a different representation of the solution of problem (6.14), which will be derived in §18 using the 
dimensionality considerations (see §6) and the so-called Laplace transform. 

Substituting formally (17.1) in (17.2), we get  

.u(x) =
∞∑

k=−∞

1
p
eı̊(k/p)x

∫ p/2

−p/2
e−ı̊(k/p)yu(y) dy. (17.22) 

Making .p → ∞ in (17.22), we get, for an “arbitrary” function .u : R → C the 
following (formal!) expression: 

.u(x) =
∫ ∞

−∞
eı̊xξ

(∫ ∞

−∞
e−ı̊yξu(y) dy

)
dξ. (17.23) 

Let us complete the formal calculations and give a precise definition 

Definition 17.3 Let .ξ ∈ R
n, .x ∈ R

n, .xξ =
∑n

k=1 xkξk , i.e., .xξ = (x |ξ) is the inner 
product of x and . ξ. A mapping 

.F : L1(Rn) � u �→ ũ = Fu ∈ C,
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where10 

.̃u(ξ) =
∫
R
n
e−ı̊xξu(x) dx, ı̊ = 2πi, (17.24) 

is called the Fourier transform, and .̃u = Fu is called the Fourier image of a function 
.u ∈ L1(Rn). 
Lemma 17.4 If .u ∈ L1(Rn), then .Fu ∈ C(Rn) and .‖Fu‖C ≤ ‖u‖L1 . 
Proof From Theorem 8.34 (the Lebesgue dominated convergence theorem) it fol-
lows that .̃u = Fu ∈ C(R); moreover, .|ũ(ξ)| ≤

∫
R
n |u(x)| dx. �

Example 17.5 Let .u±(x) = θ±(x)e∓ax , where .x ∈ R, .a > 0, and . θ± is defined 
in (12.7). Then .̃u±(ξ) = 1

a±ı̊ξ . Note that .̃u± � L1, even though .u± ∈ L1. We also note  
that the function . ̃u± extends analytically to the complex half-plane . C∓. 

In Theorem 17.8 we will give sufficient conditions under which the formal ex-
pression (17.23) acquires the exact meaning of one of the most important formulas 
in analysis. We first need the following definition. 
Definition 17.6 Let .p ≥ 1 and let .k ∈ Z. A function .u ∈ Lp(Ω) is an element of 
the Sobolev space .W p,k(Ω) if all the Sobolev derivatives . ∂αu, where .|α | ≤ k, lie in 
.Lp(Ω). The convergence in the space .W p,k is measured in the norm 

.‖u‖W p,k =
∑
|α | ≤k

‖∂αu‖Lp , (17.25) 

i.e., .u j → u in .W p,k as . j →∞ if .‖u − u j ‖W p,k → 0 as . j →∞. 
It is easily checked that .W p,k is a Banach space. 

Lemma 17.7 The following embedding holds11 
.W1,n(Rn) ⊂ C(Rn), i.e., for any 

.{u} ∈ W1,n, there exists a unique function .u ∈ C that coincides almost everywhere 
with any representative of . {u}, and besides, .‖u‖C ≤ ‖{u}‖W 1,n . 
Proof From Theorem 8.42 (Fubini) and Theorem 8.47 it follows that the function u 
can be written as 

. u(x) =
∫ x1

−∞

[∫ x2

−∞
. . .

[∫ xn

−∞
∂nu(y1, . . . yn)
∂y1∂y2 . . . ∂yn

dyn
]
. . . dy2

]
dy1,

x = (x1, . . . , xn),

which implies its continuity and the estimate .‖u‖C ≤
∫ ��� ∂nu(x) dx

∂x1...∂xn

���. �

10 Formula (17.24), in contrast to other formulas, for example, given by the integral 
.
( 1

2π
)n/2 ∫

R
n e

−ixξu(x) dx, with  i in place of . ı̊ in the exponential, is preferable in two respects: 
(1) there is no need to keep in mind the appropriate constant before the integral, (2) formula (17.24) 
can be extended to the case .n = ∞.
11 Lemma 17.7 is a simple special case of the Sobolev embedding theorem (see, for example, 
Sobolev 2008, Lions and Magenes 1968, Besov  2001). Note that the embedding . W p,k (Rn) ⊂
C(Rn), which holds for .n/p < k, is violated if .p > 1 and .n/p = k (see, in particular, Exercise 20.6, 
where the case .p = 2 is considered). 



17 Fourier Series and Fourier Transform. The Spaces S and S′ 99

Theorem 17.8 If .u ∈ W1,n(Rn), then, for any .x ∈ R
n, 

.u(x) = lim
N→∞ uN (x), where uN (x) =

∫ N

−N
. . .

∫ N

−N
eı̊xξ ũ(ξ)dξ1 . . . dξn; (17.26) 

here .̃u = Fu is the Fourier transform of the function . u(x). 
Proof Note that the function u is continuous by Lemma 17.7. From Fubini’s theorem 
it follows that 

. uN (x) =
∫ ∞

−∞

(
. . .

(∫ ∞

−∞
u(y)∂θN (y1 − x1)

∂y1
dy1

)
. . .

)
∂θN (yn − xn)
∂yn

dyn,

where .θN (σ) =
∫ σ

−1 δN (s)ds, and .δN (s) =
∫ N

−N eı̊sξdξ = sin 2πNs
πs . Note that (cf. 

Exercises 4.3 and 13.12) .θN (σ) → θ(σ), .σ ∈ R, and .|θN (σ)| ≤ const for any . N ∈
N. Indeed, let .λk =

∫ (k+1)/2N
k/2N δN (σ)dσ for .k ∈ Z+. Then . λk does not depend on N 

and .|λk | ↓ 0 as .k →∞, and besides, .λ2k > −λ2k+1 and .2
∑∞

k=0 λk =
∫ ∞
−∞

sin x
πx dx = 1. 

So, .θN (σ) → θ(σ) and .|θN (σ)| ≤ 2λ0. Next, one should integrate by parts (as in 
the proof of Lemma 13.11), apply Lebesgue’s theorem, and get .uN (x) → u(x). �

Remark 17.9 The above proof of Theorem 17.8, which contains, in particular, the 
solution to Exercises 4.3 and 13.12, shows (in view of the proof of Lemma 17.7) 
that the assertion of Theorem 17.8 also holds under broader assumptions: it suffices 
to require that both the function u and n its derivatives .

∂ku
∂x1∂x2...∂xk

, .k = 1, . . . , n, be  
integrable in . R

n. 

Remark 17.10 The conclusion of Theorem 17.8 has sense, of course, only for . u ∈
L1 ∩ C. The next exercise demonstrates; however, this necessary condition is not 
sufficient for relations (17.26) to hold. 

P 17.11 Construct (cf. Kolmogorov and Fomin 1980) a sequence of functions . ϕN ∈ L1(R)∩C(R)
such that 

. 

∫ ∞

−∞
ϕN (y) sin Ny

y
dy →∞

(as .N →∞) and .‖ϕN ‖L1 + ‖ϕN ‖C ≤ 1. 
Hint Apply the Banach–Steinhaus theorem (see the footnote 8 on p. 83) to show that there exists 
a function .ϕ ∈ L1(R) ∩C(R) for which equality (17.26) violates in at least one point .x ∈ R. 

The formal expression (17.23) and Theorem 17.8 suggest the feasibility of intro-
ducing the transformation 

. F−1 : L1(R) � ũ �→ F−1ũ ∈ C,

which is defined by the formula 

.(F−1ũ)(x) =
∫
R
n
eı̊xξ ũ(ξ)dξ, ı̊ = 2πi, x ∈ R

n. (17.27)
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This formula differs from (17.24) by the sign of the exponent. The transformation 
. F−1 is called the inverse Fourier transform, because .u = F−1Fu if .u ∈ W1,n(Rn), 
and .Fu ∈ L1(R). Following Schwartz (1950–1951), we define the space of rapidly 
converging functions .S = S .(Rn) ⊂ W1,n(Rn). In the space . S (see Theorem 17.18), 
the transformations . F−1 and . F are automorphisms (i.e., linear invertible maps of . S
onto itself). 

Definition 17.12 The space .S(Rn) consists of the functions .u ∈ C∞(Rn) satisfying 
the following condition: for any multiindexes .α = (α1, . . . , αn) and .β = (β1, . . . , βn), 
there exists a number .Cαβ < ∞ such that, for any .x = (x1, . . . , xn) ∈ R

n, 

. |xα∂βx u(x)| ≤ Cαβ, where xα = xα1
1 . . . x

αn
n , ∂

β
x =

∂ |β |

∂xβ1
1 . . . ∂x

βn
n

.

Under this condition, one says that the sequence of functions .u j ∈ S converges in . S
to . u (.u j → u in . S) as . j → ∞ if, for any .ε > 0 and .m ∈ N, there exists . j0 ∈ N such 
that .pm(u j − u) ≤ ε for any . j ≥ j0, where 

. pm(v) = sup
x∈Rn

(
(1 + |x |)m

∑
|α | ≤m

|∂αv(x)|
)
.

It is clear that .e−x2 ∈ S(R), but .e−x2 sin(ex2) � S(R). 
P 17.13 Verify that . S is a Fréchet space (see Remark 16.27) in which the distance . ρ can be defined 
by 

. ρ(u, v) = d(u − v), where d(ϕ) =
∞∑

m=1
2−m inf(1, pm(ϕ)).

P 17.14 Verify that .D(Rn) ⊂ S(Rn) ⊂ E(Rn) (see Exercise 16.13.P). In particular, show that the 
convergence in . D (in . S) implies the convergence in . S (in . E). Verify that . D is dense in . S, and . S
is dense in . E. 

P 17.15 Integrate by parts to verify the following lemma. 

Lemma 17.16 For any multiindex . α, . β and any .u ∈ S, 

.(−ı̊)|β |F[∂α
x (xβu(x))](ξ) = (ı̊)|α |ξα∂

β
ξ ũ(ξ), ũ = Fu. (17.28) 

Corollary 17.17 The following embedding holds: .FS ⊂ S, i.e., .Fu ∈ S if .u ∈ S. 

Proof Since .u ∈ S, for any fixed .N ∈ N and any .α, β ∈ Z
n
+, there exists . dαβ > 0

such that .|∂αx (xβu(x))| ≤ dαβ

(1+ |x |)N . Hence by Lemma 17.16 we have 

.|ξα∂βξ ũ(ξ)| ≤ ‖F[∂αx (xβu)]‖C ≤ dαβ

∫
(1 + |x |)−N dx, (17.29) 

which shows that .̃u ∈ S. �
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Theorem 17.18 The mappings .F : S → S and .F−1 : S → S are continuous auto-
morphisms of the space . S, and hence they are inverses of each other. 

Proof The mapping . F is linear and, in addition, by Theorem 17.8, is monomorphic. 
Let us check that, for any .̃u ∈ S, there exists a .u ∈ S such that .Fu = ũ. We  
set .u0 = Fũ. Since .u0 ∈ S, from Theorem 17.8 we have .̃u = F−1Fũ = F−1u0. 
Consider the function .u(x) = u0(−x). We have .̃u = F−1u0 = Fu. Inequality (17.29) 
immediately implies that .Fu j → 0 in . S if .u j → 0 in . S. The same arguments also 
hold for . F−1. �

Theorem 17.19 (Plancherel12 ) If f , .g ∈ S(Rn), then 

.(F f ,Fg)L2 = ( f , g)L2 . (17.30) 

In addition, 

.〈F f , g〉 = 〈 f ,Fg〉, i.e.,
∫
R
n
f̃ (ξ)g(ξ) dξ =

∫
R
n
f (x)g̃(x) dx. (17.31) 

Proof From Fubini’s theorem we have equality (17.31), because 

. 

∫
R
n
f (x)g̃(x) dx =

∫
R
n

∫
R
n
f (x)e−ı̊xξg(ξ) dx dξ =

∫
R
n
f̃ (ξ)g(ξ) dξ.

Let .h = Fg. Then .g = Fh, inasmuch as 

. g(ξ) = (F−1 h̄)(ξ) =
∫

eı̊xξ h̄(x) dx =

∫
e−ı̊xξ h(x) dx = (Fh)(ξ).

Substituting .g(ξ) = h̃(ξ) and .̃g(x) = h̄(x) in (17.31), we arrive at  (17.30). �

Note that both sides of equality (17.31) define the following linear continuous 
functionals on . S: 

. f : S � g̃ �→
∫

f (x)g̃(x) dx, f̃ : S � g �→
∫

f̃ (ξ)g(ξ) dξ.

In this connection, (following L. Schwartz) we give two definitions. 

Definition 17.20 .S′(Rn) is the space of tempered generalized functions, i.e., the 
space continuous linear functionals . f : S(Rn) → C equipped with the operation 
of differentiation .〈∂α f , ϕ〉 = (−1) |α | 〈 f , ∂αϕ〉, where .α ∈ Z

n
+, and the operation 

of multiplication .〈a f , ϕ〉 = 〈 f , aϕ〉 by any tempered function a, i.e., a function 

12 This theorem was proved in 1910 by the Swiss mathematician Michel Plancherel (1885–1967). 
The analogue of (17.30) for periodic functions, which extends the Pythagorean theorem (the sum 
of the squared Fourier coefficients of a function .u ∈ L2(0, 1) is equal to its squared norm) for 
formulated in 1799 by the French mathematician Marc-Antoine Parseval (1755–1836). Hence 
Theorem 17.19 is frequently called the Parseval identity.
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.a ∈ C∞(Rn) satisfying the condition: for any . α, there exists a .Cα < ∞, for  which  
there exists an .Nα < ∞ such that .|∂αa(x)| ≤ Cα(1 + |x |)Nα . 

Definition 17.21 Let . f ∈ S′, .g ∈ S′. Then the formulas 

.〈F f , ϕ〉 = 〈 f ,Fϕ〉 ∀ϕ ∈ S and 〈F−1g, ψ〉 = 〈g,F−1ψ〉 ∀ψ ∈ S (17.32) 

define the generalized functions . f̃ = F f ∈ S′ and .F−1g ∈ S′, which are called, 
respectively, the Fourier transform of the generalized function . f ∈ S′ and the inverse 
Fourier transform of the generalized function .g ∈ S′. 

Remark 17.22 Using the embedding .L2 ⊂ S′, we can speak about the Fourier 
transform . f̃ of a function . f ∈ L2(R). In any way, from Theorem 17.19 it follows that 
.‖ f̃ − f̃N ‖L2 → 0, where . fN = 1[−N,N ] f . 

Example 17.23 It is clear that .δ ∈ S′, .1 ∈ S′. Let us find . Fδ and . F1. We have  

. 〈Fδ, ϕ〉 = 〈δ,Fϕ〉 = ϕ̃(0) = lim
ξ→0

∫
e−ı̊xξϕ(x) dx =

∫
ϕ(x) dx = 〈1, ϕ〉,

i.e., .Fδ = 1. Similarly, .F−1δ = 1. Next, we have 

. 〈F1, ϕ〉 = 〈1,Fϕ〉 = 〈F−1δ,Fϕ〉 = 〈δ,F−1Fϕ〉,

i.e., .F1 = δ. Similarly, .F−11 = δ. 
P 17.24 Verify (cf. Exercise 17.13) that .E′(Rn) ⊂ S′(Rn) ⊂ D′(Rn). 
P 17.25 Prove (cf. Exercise 16.19 and Shilov 1965) that . f ∈ S′(Rn) if and only if there exists a finite 
sequence .{ fα }|α |≤N of functions . fα ∈ C(Rn), satisfying the condition . | fα(x) | ≤ C(1+ |x |)m and 
such that . f =

∑
|α |≤N ∂α fα . Hence .S′ ⊂ D′. 

P 17.26 Verify that the mappings .F : S′ → S′ and .F−1 : S′ → S′ are reciprocal automorphisms 
of the space . S′ which are continuous relatively the weak convergence in . S′, i.e., if .ν →∞, then  

. 〈Fν, ϕ〉 → 〈F, ϕ〉 ∀ϕ ∈ S ⇐⇒ 〈 fν, ϕ〉 → 〈 f , ϕ〉 ∀ϕ ∈ S.
P 17.27 Putting .1[a,b] = θ(x − a) − θ(x − b) and considering, for .ν →∞, the sequences . δν (x) =
2ν · 1[−1/ν,1/ν](x) and .1ν (x) = 1[−ν,ν](x), evaluate . Fδ and . F1 (cf. Example 17.23). 

P 17.28 Verify that the Fourier transform of the function . θ±, which is defined by (12.7), is given  
by .θ̃±(ξ) = ± 1

ı̊ ξ±0 . 
Hint Consider . fν (x) = θ±(x)e∓x/ν as .ν →∞. 

Remark 17.29 The space . S′ is complete with respect to the weak convergence, since 
. S is a Fréchet space (see Exercise 17.13 and Remark 16.27). 
P 17.30 Verify that formula (17.28) holds for any .u ∈ S′. 
Lemma 17.31 Let13 

. f ∈ E′(Rn). Then . f̃ = F is a tempered function (see Defini-
tion 17.20), and besides, 

. f̃ (ξ) = 〈 f (x), e−ı̊xξ 〉. (17.33)
13 Recall that the space . E′ is defined in Exercise 16.13. 
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Proof By Theorem 16.20, we have . f = ∂αg, where .g ∈ C0(Rn). Hence 

. 〈 f̃ (ξ), ϕ(ξ)〉 = 〈∂αx g(x), (Fϕ)(x)〉 = (−1) |α | 〈g(x), ∂αx ϕ̃(x)〉
= (ı̊) |α | 〈g(x),F[ξαϕ(ξ)](x)〉 = (ı̊) |α |

∫
g(x)

[∫
e−ı̊xξξαϕ(ξ)dξ

]
dx.

Since .g(x)e−ı̊xξξαϕ(ξ) ∈ L1(Rn
x × R

n
ξ ), an appeal to Fubini’s theorem shows that 

. 〈 f̃ (ξ), ϕ(ξ)〉 =
∫ [∫

(ı̊) |α |g(x)eı̊xξξα dx
]
ϕ(ξ) dξ

=

∫
〈g(x), (∂x)αe−ı̊xξ 〉ϕ(ξ)dξ =

∫
〈 f (x), e−ı̊xξ 〉ϕ(ξ)dξ.

Thus by Exercise 13.20 we have . f̃ (ξ) = 〈 f (x), e−ı̊xξ 〉. Similarly, 

.∂β f̃ (ξ) = 〈 f (x), (−ı̊x)βe−ı̊xξ 〉. (17.34) 

Since . f ∈ E′ ⊂ S′, from Definition 17.12 it follows that there exists an .N ≥ 1 such 
that 

. |〈 f (x), ψ(x)〉| ≤ N sup
x∈Rn

∑
|α | ≤N

(1 + |x |)N · |∂αψ(x)| ∀ψ ∈ S.

Hence .|∂β f̃ (ξ)| = |〈 f (x), (−ı̊x)βe−ı̊xξ 〉| ≤ C(1 + |ξ |)N . �

18 The Fourier–Laplace Transform. The Paley–Wiener Theorem 

Formula (17.28) from §17 (which holds for .u ∈ S′, see Exercise 17.30) contains the 
following important property of the Fourier transform, which is often expressed in 
the following words: “The composition of the Fourier transform and the differenti-
ation operator acts as the multiplication of the original function by the independent 
variable.” More precisely, we have 

.F(Dα
x u(x)) = ξαũ(ξ), where Dα

x = (ı̊)−|α |∂αx , and ũ = Fu, u ∈ S′. (18.1) 

Property (18.1) allows one to reduce, in a sense, problems involving linear differential 
equations to algebraic ones. For example, applying the Fourier transformation to the 
differential equation 

.A(Dx)u(x) ≡
∑
|α | ≤m

aαD
α
x u(x) = f (x), aα ∈ C, f ∈ S′, (18.2) 

we obtain an equivalent “algebraic” equation
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.A(ξ)ũ(ξ) ≡
( ∑
|α | ≤m

aαξ
α
)
ũ(ξ) = f̃ (ξ), f̃ ∈ S′. (18.3) 

According to Hörmander (1958)14 and Łojasiewicz (1959),15 Eq. (18.3) always 
has a solution .̃u ∈ S′ (see Remark 19.2). Hence the function .F−1ũ is well defined. 
This function is a solution of the differential equation (18.2), because 

. f (x) = F−1( f̃ (ξ)) = F−1(A(ξ)ũ(ξ)) (18.1), (18.3) 
= A(Dx)F−1(ũ(ξ)). 

The above idea of constructing a solution to a linear differential equation using 
the Fourier transform is in many ways similar to the idea employed in operational 
calculus (see, for example, Gordon et al. 2013), which uses the so-called Laplace 
transform, which was first introduced in science by Niels Abel (see the footnote 9 
on the page 11). The Laplace transform sends a function f , which depends on the 
argument .t ∈ R+ and integrable “with weight” . e−st for any .s > 0, to the function 

.L[ f ](s) =
∫ ∞

0
e−st f (t)dt, s > 0. (18.4) 

Remark 18.1 “The concept of generating functions, which was mentioned in foot-
note 9 on p. 11, appeared for the first time in the papers by N. Bernoulli and 
J. Stirling. Later this concept was used by Euler in his works on number theory, and 
then, 70 years later, by Laplace. According to Knuth (1997), “A similar concept, 
which has become known as the “Laplace transform,” was actually introduced by 
another mathematician N. Abel16 in the memoir Sur les fonctions génératrices et 
leurs déterminantes, Oeuvres Completes de N. H. Abel (Ed. B. Holmboe17 ) Tome  
Second (Christiania: Grondahl, 1839), 77–88. Indeed, Abel starts his memoir with 
the phrase: Soit .ϕ(x, y, z, . . .) une fonction quelconque. . . On peut toujours trouver 
une fonction . f (u, v, p, . . .) telle que

14 Lars Valter Hörmander (1931–2012) was an outstanding Swedish mathematician, one of the 
founders of the modern general theory of linear partial differential equations and pseudo-differential 
operators, who was awarded the Fields Prize (1962), the Wolf Prize (1988), and the Steele Prize 
(2006). 
15 Stanislaw Łojasiewicz (1926–2002) was a Polish mathematician. In the early 1950s, at the 
invitation of L. Schwartz, he worked in France, where he established the famous inequality that 
gives an upper bound for the distance from a point of an arbitrary compact set to the zero-level set 
of a real multivariate analytic function. This inequality has found applications in various branches 
of mathematics, including real algebraic geometry, analysis, and theory of differential equations. 
16 Niels Abel (1802–1829), a Norwegian genius, who was little-know during his lifetime. Abel died 
at the age of 26 from tuberculosis. Niels Henrik Abel “had left mathematicians such a rich legacy 
that they will have something to do in the next 150 years.” So said Charles Hermite (1822–1901), 
the leader of the French mathematicians of the second half of the XIX century. The monetary size 
of the prestigious Abel Prize for mathematicians is comparable to that of the Nobel Prize. 
17 Bernt Michael Holmboe (1795–1850) was a mathematics teacher at the Christiania Cathedral 
School, where he taught Abel mathematics both at school and privately. The two became friends 
and remained so until Abel’s early death. In the preface, Holmboe writes: “Tous les memoires 
contenus dans ce volume ont été écrits avant que notre auteur commencer ses voyages.” This shows 
that this Abel work was written before 1825. 
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. ϕ(x, y, z, . . .) =
∫

exu+yv+zp+... f (u, v, p, . . .)dxdydz . . . ,

i.e., Abel introduces a fairly general integral transform including, as a particular, 
case transformation (18.4). Then he establishes a number of useful properties of 
this mapping in the context of differential equations and applies them to general 
examples of generating functions. 

“The Development of the Laplace Transform, 1737–1937: I. Euler to Spitzer, 
1737–1880” is the name of the paper Deakin (1985), which describes sometimes 
impolite discussion involving many participants who in the second part of the XIX 
century wished to give the palm to some or other mathematician for introduction of 
transformation (18.4). This discussion was unexpected terminated by A. Poincaré. 
Let me give a few comments on this. Poincaré begins his memoir “Sur les équations 
linéaires aux différentielles ordinaires et aux différences finies,” Am. J. Math. 7 
(1885), 1–56 as follows (p. 203): “Les résultats que je vais chercher à démontrer 
dans le présent mémoire et qui se rapportent tant à certaines équations différentielles 
linéaires qu’ à des équations analogues, mais à différences finies, ont déjà été énoncés 
les uns dans un mémoire que j’ai présenté à l’Académie des Sciences pour le concours 
du Grand Prix des Sciences Mathématiques le 1-er Juin 1880 et qui est resté inédit, 
les autres dans une communication verbale faite ła Société Mathématique de France 
en Novembre 1882 et dans une note insérée aux Comptes Rendus de l’Académie des 
Sciences le 5 Mars 1883.” A possible translation is as follows. “The results, that I will 
try to demonstrate in this memoir, and which pertain both to some linear differential 
equations and to similar finite-difference equations, have already been announced in 
my memoir presented to the French Academy of Sciences for the Grand Prix contest 
on 15 June 1880 (still unpublished), in my oral communication given at Société 
Mathématique de France in 1882, and in the note published in Proceedings of the 
Academy of Sciences on 5 March 1883. 

Next on pp. 217–218 he writes: “Revenons maintenant aux equations différen-
tielles. Nous avons vu dans le §1 que si l’on envisage l’intégrale générale Y de 
l’équation .

∑
Pk

dkY
dxk

= 0, étudiée dans ce paragraphe, la dérivée logarithmique tend 
vers une certaine limite a, mais qu’on n’en pouvait pas conclure immédiatement 
que y .e−αx tend vers une limite finie et déterminée. C’est pourtant ce qui a lieu en 
général; mais pour le démontrer, nous serons forcés d’employer la transformation 
de Bessel. Voici en quoi consiste cette transformation. On pose .Y =

∫
vezxdz v 

étant une fonction de z qu’il reste à déterminer et l’intégrale étant prise le long d’un 
chemin imaginaire convenablement choisi. L’intégration par parties donne . . . .:  Le  
chemin d’intégration devra être choisi de telle façon que le terme tout connu de cette 
intégration par parties soit nul, sans cependant que l’intégrale y le soit elle-même. 
On aura ensuite . . . ” A possible translation is as follows: “Let us return now to dif-
ferential equations. In §1, we saw that if one considers the general integral Y of the 
equation .

∑
Pk

dkY
dxk

= 0, which we study in this section, then the logarithmic deriva-
tive tends to some limit A. However, one cannot directly conclude that . Y = e−αx
tends to a finite limit. However, this is what usually takes place in the general case. 
But for a proof of this fact we are forced to invoke the Bessel transform, which is
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defined as follows. Let .Y =
∫
vezxdz, where v is the unknown function of z, and 

the integral is taken over an appropriate path.” (Here, as I think, Poincaré implicitly 
speaks about the inverse Laplace transform defined by the integral over some path 
in the complex plane.) “Integrating by part, we get. . . The integration path should 
be taken so that the known term of this integration by parts be zero, but the integral 
would not vanish. As a result, we get. . . 

Poincaré completes his memoir on p. 258 with the directness of a Roman(!!!): 
“Paris, 10 novembre 1884. Noter. Dans les mémoires antérieurs, le nom de Bessel 
doit être remplacé partout par le nom de Laplace” (“In my previous memoirs the 
name of Bessel should be replaced everywhere by Laplace’). ’ So, without warning, 
straight from the shoulder, only in his last 4th memoir Poincaré mentions (at the very 
end) for the first time Laplace’s name, thereby completing with his authority all the 
discussions about the name of the transform, of which Laplace did not even think 
about, and which in all his four memoirs Poincaré always attributed to the name of 
Bessel without giving any arguments and any references), most likely for a greater 
effect of anticipatorily unexpected change of Bessel for the name of his compatriot 
(which happened against the backdrop of the defeat of France in the Franco-German 
war of 1870). 

Let us illustrate the above idea of operational calculus by the example of problem (6.14), where  
we consider only the case .σ = 0. In other words, consider the problem 

.ut = uxx, t > 0, |x | < 1; u
��
x=±1 = 0; u

��
t=0 = 1. (18.5) 

As already noted in §17, the series (17.18), which was constructed by the Fourier method and which 
gives a solution to this problem, converges very slowly for small t. This, however, could have been 
foreseen in advance, since the Fourier series slowly converges for discontinuous functions and at 
the corner points of the half-strip .{ |x | < 1, t > 0} the function .u(x, t) has a discontinuity. In this 
regard, we first consider the problem 

.
∂T

∂τ
= a

∂2T

∂ξ2 , ξ > 0, τ > 0; T
��
ξ=0 = T1; T

��
τ=0 = T0, (18.6) 

which simulates the temperature distribution near the corner point 
Changing to the dimensionless parameters in the standard way (see §6) 

. r = ξ/√aτ, u = (T −T1)/(T0 −T1),
from (18.6) we get .u(τ, ξ) = f (r), where the function f satisfies the conditions 

. f ′′(r) + r

2
f ′(r) = 0, f (0) = 0, f (∞) = 1.

It follows that .u(τ, ξ) = erf(ξ/(2√aτ)) = 1 − erfc(ξ/(2√aτ)), where  

. erf(y) = 2√
π

∫ y

0
e−η

2
dη, erfc(y) = 1 − erf(y).

These preliminary arguments suggest that for small t the solution .u(x, t) of problem (18.5) is well 
approximable by the following sum 

.1 −
[
erfc

( 1 − x

2
√
t

)
+ erfc

( 1 + x

2
√
t

)]
. (18.7)
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This hint will allow us to obtain a representation of the solution of problem (18.5) in the form of 
a series rapidly converging for small t with the help of the Laplace transform. Denoting by . v(s, x)
the function .L[u(·, x)](s), where  u is the solution of problem (18.5), and taking into account the 
two following obvious properties of the Laplace transform 

.L[1](s) = 1/s, L[ f ′](s) = s · L[ f ](s) − f (0), (18.8) 

we rewrite problem (18.5) in the (“algebraic” in the variable s) form  

. (s · v(s, x) − 1) − vxx (s, x) = 0, v(s, x)��
x=±1 = 0, s > 0.

This problem can be solved explicitly. Obviously, its solution is the function 

. v(s, x) = 1
s
− 1

s
· cosh(√sx)

cosh(√s) .

So, the solution u of problem (18.5) satisfies the relation 

.L[u(·, x)](s) = 1
s
− 1

s
· cosh(√sx)

cosh(√s) . (18.9) 

Formulas (18.7) and (18.9) suggest that in order to obtain the representation of the solution of 
problem (18.5) in the form of a series rapidly converging for small t, we should 

. (1) Find the Laplace transform of the function . fy (t) = erfc
( y

2
√
t

)
. 

. (2) Represent the right-hand side of formula (18.9) in the form of a series whose members are 
function of the form .L[ fy ]. 

Below we shall show that 
.L[ fy ](s) = 1

s
exp(−y√s). (18.10) 

On the other hand, expressing .cosh in terms of . exp and representing .(1 + q)−1, where  . q =

exp(−2
√
s) < 1, as the  series .1 − q + q2 − q3 + . . ., we obtain 

.
cosh(√sx)
s · cosh

√
s
=

∞∑
n=0

(−1)n exp[−√s(2n + 1 − x)] + exp[−√s(2n + 1 + x)]
s

. (18.11) 

From (18.8)–(18.11) it follows that the solution of problem (18.5) can be written as the series 

.u(x, t) = 1 +
[ N∑
n=0

(−1)n+1an

]
+ rn, (18.12) 

where .an = erfc
(

2n+1−x
2
√
t

)
+ erfc

(
2n+1+x

2
√
t

)
, and .rN =

∑
n>N (−1)n+1an . 

P 18.2 Verify that 

. |rN | ≤ 2
N

√
t

π
exp(−N2/t). (18.13) 

P 18.3 By comparing estimate (18.13) with estimate (17.21), show that, for .t ≤ 1
4 , it is more  

convenient to use the representation of the solution of problem (18.5) in the form (18.12), and  for  
.t ≥ 1

4 , in the  form  (17.18). 

Let us show that (18.10) follows from the formula 

.L[( fy )′](s) = exp(−y√s) (18.14)
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and the second formula in (18.8), because . fy (0) = 0, .( fy )′(t) = y
2 π

−1/2t−3/2e−y2/(4t ). In view of  
Exercise 18.4 formula (18.14) it can be proved as follows: 

. L[ f ′y ](s) =
y

2
√
π

∫ ∞

0
t−3/2 · e−y2/(4t )dt =

2√
π

∫ ∞

0
e−[η

2+(y2s)/(4η2)]dη

=
2
π
e−y

√
s

∫ ∞

0
e−(η−a/η)

2
dη = e−y

√
s . (Replace:η =

y

2
√
t
, a =

y

2
√
s.)

P 18.4 Let .F(a) =
∫ ∞
0 exp[−(η − a

η )2] dη, where .a > 0. Verify that .F ≡
√
π
2 . 

Hint Use the relation .F′(a) ≡ 0. 

There is a close relation between the Fourier and Laplace transforms, which can 
be found by analyzing the equality 

. ∂β f̃ (ξ) = 〈 f (x), (−ı̊x)βe−ı̊xξ 〉, f ′ ∈ E′(Rn), β ∈ Z
n
+,

which was proved in Lemma 17.31. The right-hand side of this equality is meaningful 
for any complex .ξ ∈ C

n and any .β ∈ Z
n
+ and is a continuous function in . C

n. Thus, 
as is known from the theory of functions of a complex variable, the function 

. f̃ : Cn � ξ �→ f̃ (ξ) = 〈 f (x), e−ı̊xξ 〉 ∈ C

is analytic and can be treated as the Fourier transform in the complex domain. 
This function is sometimes called the Fourier–Laplace transform. This name can 
be justified by the fact that, for instance, for the function . f = θ+ f ∈ L1(R) (cf. 
Example 17.5), the function 

. C− � ξ �→
∫ ∞

−∞
e−ı̊xξ f (x) dx =

∫ ∞

0
e−ı̊xξ f (x) dx ∈ C,

which is analytic in the lower half-plane . C−, is, for real . ξ (respectively, for imaginary 
.ξ = − is

2π , where .s > 0), the Fourier transform (respectively, the Laplace transform) 
of the function f . 

The important role of the Fourier-Laplace transformation consists in the fact that, 
due to the so-called Paley–Wiener18 theorems, certain properties of this analytic

18 Norbert Wiener (1894–1964) was an American scientist, outstanding mathematician and philoso-
pher, founder of cybernetics and the theory of artificial intelligence. his autobiographical book “I am 
mathematician” he writes about his co-author, the English mathematician Raymond Paley (1907– 
1933): “. . . He was the leader of the young generation of British mathematicians, and if he had not 
come to an untimely end he would be the mainstay of British mathematics at the present moment.” 
And further: “My role was primarily that of suggesting problems and the broad lines on which 
they might be attacked, and it was generally left to Paley to draw the strings tight. He brought me a 
superb mastery of mathematics as a game and a vast number of tricks that added up to an armament 
by which almost any problem could be attacked, yet he had almost no sense of the orientation of 
mathematics  among  the  other  sciences. . . One  interesting problem  which  we  attacked together  was  
that of the conditions restricting the Fourier transform of a function vanishing on the half line. 
This is a sound mathematical problem on its own merits, and Paley attacked it with vigor, but what 
helped me and did not help Paley was that it is essentially a problem in electrical engineering. It had 
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function allow one to determine whether this function is the Fourier–Laplace trans-
form of the function f and to characterize the properties of this function f . In §22, 
we shall use (cf. Example 17.5) the following theorem. 

Theorem 18.5 (Paley–Wiener) Let . f̃ be an analytic function in . C− and let 

. sup
η>0

∫ ∞

−∞
| f̃ (ξ − iη)|2dξ < ∞.

Then . f̃ is the Fourier transform of the function . f = θ+ f ∈ L2(R). 
For a proof, see, for example, Yosida (1965). 

19 Fundamental Solutions. Convolution 

At the beginning of §18 it was noted that the differential equation 

.A(Dx)u(x) ≡
∑
|α | ≤m

aα∂
α
x u(x) = f (x), aα ∈ C, f ∈ E′, (19.1) 

has a solution .u ∈ S′. In contrast to Eq. (18.2), the function f in (19.1) belongs 
to .E′ ⊂ S′. This fact allows us to give an “explicit” formula for the solution of 
Eq. (19.1), in which the role of the function f is emphasized. In this connection, we 
note that the formula 

.u(x) = 1
4π

∫
R

3
f (y)exp(−q |x − y |)

|x − y | dy, q ≥ 0, f ∈ E′ ∩ PCb, (19.2) 

gives (see Example 21.6 below) the solution of the equation .−Δu+q2u = f . But this 
formula ceases to be meaningful for .q = 0 if .supp f is not compact (for example, if 
. f = 1). 

In order to deduce the desired “explicit” formula for the solution u of Eq. (19.1), 
we represent the function .̃u = Fu in the form .̃u(ξ) = f̃ (ξ)ẽ(ξ), where .ẽ ∈ S′ is the 
solution of the equation .A(ξ) · ẽ(ξ) = 1 (see Remark 19.2). Once this is done, it will 
remain to express the function .u = F−1( f̃ · ẽ) in terms of . f = F−1 f̃ and the function 
.e = F−1ẽ, which (in view of the relation .A(ξ) ẽ(ξ) ≡ 1 and Example 17.23) satisfies 
the equation 

been known for many years that there is a certain limitation on the sharpness with which an electric 
wave filter cuts a frequency band off, but the physicists and engineers had been quite unaware of 
the deep mathematical grounds for these limitations. In solving what was for Paley a beautiful 
and difficult chess problem, completely contained within itself, I showed at the same time that the 
limitations under which the electrical engineers were working were precisely those which prevent 
the future from influencing the past.” With these final words, Wiener hints that the answer they are 
interested in about the properties of a function should have been formulated as an opportunity to 
analytically extend this function to some region of the complex plane.
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.A(Dx) e(x) = δ(x). (19.3) 

Definition 19.1 We say that .E ∈ D′ is a fundamental solution of the operator . A(Dx)
if19 

.A(Dx) E(x) = δ(x). 
Remark 19.2 Any differential operator with constant coefficients has (see Hörmander 
1958, Łojasiewicz 1959) a fundamental solution from the class . S′. However, the 
appearance of the space . D′ in Definition 19.1 is justified by the fact that, for some 
differential operators, in . D′ it is possible (as was shown by Hörmander) to construct 
a fundamental solution which is locally more smooth than the fundamental solution 
from . S′. (Note that two fundamental solutions . E1 and . E2 of the operator . A(Dx)
differ by the function .v = E1 − E2 satisfying the equation .A(Dx)v = 0.) 

If .A(ξ) � 0 for any .ξ ∈ R
n, then the formula .E(x) = F−1(1/A(ξ)), obviously, 

gives a fundamental solution of the operator .A(Dx). In this case .E ∈ S′, because 
.1/A(ξ) ∈ S′. In the general case, a fundamental solution can be constructed, for 
instance, by regularizing the integral .

∫
ϕ̃(ξ)dξ/A(ξ) (cf. Exercise 14.4), which can 

be most simply effected for .ϕ ∈ D, because in this case the regularization (by virtue 
of analyticity of the function .ϕ̃ = Fϕ) is possible by extending (with respect to . ξ) to  
the complex domain, where .A(ξ) � 0 (see, for example, Shilov 1965). 

19.3 Let us give examples of fundamental solutions. From Exercise 7.1 it follows that 
the function (7.11) is a fundamental solution of the Laplace operator. The function 
.(x, t) �→ E(x, t) = θ(t − |x |)/2 is a fundamental solution of the string operator (see 
Exercise 12.8). For the heat operator .∂t − ∂xx , the fundamental solution is given by 
the formula .E(x, t) = θ(t)P(x, t), where the function P is defined by (6.18). Indeed, 
by the properties of the function P (see §6), for any function .ϕ ∈ D(R2), we have  

. 〈Et − Exx, ϕ〉 = −〈E, ϕt + ϕxx〉 = − lim
ε→+0

∫ ∞

ε

∫
R

(ϕt + ϕxx)E dx dt

= lim
ε→+0

[∫ ∞

ε

∫
R

(Pt − Pxx)ϕ dx dt +
∫ ∞

−∞
P(x, t)ϕ(x, t)dx

]
= ϕ(x, t)��

x=t=0.

Prior to representing the solution of Eq. (19.1) in terms of . f ∈ E′ and the 
fundamental solution .e ∈ S′ of the operator .A(Dx), we give the definition of the 
convolution of two functions (which has already implicitly appeared in the footnote 
on p. 17). 

Assume first that . ϕ and . ψ lie in .L(Rn). In this problem, 

. 

∫
R
n

[∫
R
n
|ϕ(y)| dy

]
|ψ(z)|dz Lemma 8.46 

= 

∫ 

R
2n 
|ϕ(y)ψ(z)| dy dz < ∞. 

Consider the product of the Fourier transforms of these functions, i.e., 

19 The fundamental solution of the string operator is given in Exercise 12.8, and for the Laplace 
operator, is given by formula (7.11). The function defined by (6.16) for .Q = 1 is called the 
fundamental solution of the Cauchy problem (6.3)–(6.4) for the heat equation, because it satisfies 
Eq. (6.3) and because equality (6.5) holds.
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. 

∫
R
n
e−ı̊yξϕ(y) dy

∫
R
n
e−ı̊zξψ(z) dz =

∫
R

2n
e−ı̊(y+z)ξϕ(y)ψ(z) dy dz.

Putting .y + z = x, we get  

.ϕ̃(ξ) · ψ̃(ξ) =
∫
R
n
e−ı̊ξx

[∫
R
n
ϕ(y)ψ(x − y) dy

]
dξ. (19.4) 

Definition 19.4 The function20 
.R

n � x �→ (ϕ ∗ ψ)(x), which is represented by the 
inner integral in (19.4), i.e., which is given by the formula 

.(ϕ ∗ ψ)(x) =
∫
R
n
ϕ(y)ψ(x − y) dy, (19.5) 

is called the convolution of the functions .ϕ ∈ L(Rn) and .ψ ∈ L(Rn). 
P 19.5 Verify that .ϕ ∗ ψ = ψ ∗ ϕ, and if .ϕ ∈ C |α |

0 , .ψ ∈ C |α |
0 , then . Dα(ϕ ∗ ψ) =

(Dαϕ) ∗ ψ = ϕ ∗ (Dαψ). 
Definition 19.6 Let . f = Dα fα ∈ E′ and .g = Dβgβ ∈ E′, where by Theorem 16.20 
the functions . fα and . gβ lie in .C0(Rn). The  convolution . f ∗ g of the distributions 
. f = Dα fα ∈ E′ and .g = Dβgβ ∈ E′ is the generalized function .Dα+β( fα ∗ gβ). 

Note that for functions . f ∈ E′ and .g ∈ E′ the product of their Fourier transforms 
is well defined (by Lemma 17.31), and in addition, 

.F−1( f̃ · g̃) = f ∗ g. (19.6) 

Indeed, .F[Da+β( fa ∗ gβ)] = ξa+βF( fa ∗ gβ) = (ξa f̃a)(ξβ g̃β). 
P 19.7 Let . f ∈ E′ and let .g ∈ S′. We set  .gν (x) = ψ

(
x
ν

)
g(x), where  .ψ ∈ C∞

0 (Rn), .ψ ≡ 1 for 
. |x | < 1. Verify that .gν ∈ E′, .gν → g in . S′; . f̃ · g̃ν → f̃ · g̃ in . S′, and  

. 〈 f ∗ gν, ϕ〉 → 〈F−1( f̃ · g̃), ϕ〉 ∀ϕ ∈ S.

The next definition, which generalizes (19.6), is based on Exercise 19.7. 

Definition 19.8 The convolution . f ∗g of distributions . f ∈ E′ and .g ∈ S′ is a function 
from . S′ defined by the formula 

. f ∗ g = F−1( f̃ · g̃).

(Note that . f̃ ∈ C∞, .̃g ∈ S′.) 

P 19.9 (Cf. Exercise 19.7) Let . f ∈ E′, .g ∈ S′. Verify that . f ∗g = g ∗ f ; . Dα( f ∗g) = (Dα f ) ∗g =

f ∗ (Dαg); .δ ∗ g = g. 

From the above (cf. the footnote 20 on p. 17) we have the following theorem.

20 By Fubini’s theorem, this function is defined for a.e. .x ∈ R
n and belongs to .L(Rn). 
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Theorem 19.10 The desired “explicit” formula for the solution of Eq. (19.1) has the 
form .u = f ∗ e, where .e ∈ S′ is the fundamental solution of the operator .A(Dx). 

P 19.11 Prove the Weierstrass21 theorem on uniform approximation of a continuous function 
. f ∈ C(K) by polynomials on a compact set .K ⊂ R

n : for  any .ε > 0 there exists a polynomial p 
such that .‖ f (x) − p(x)‖C(K ) < ε. 

Let . Ω be a neighborhood of K , .x = (x1, . . . , xn) ∈ Ω. Following the scheme of the proof of 
Lemma 13.11 and taking into account Exercise 4.4, we set  

. p(x) =
∫
Ω

f (y)δν (x − y) dy, where δν (x) =
n∏

m=1

[ ν√
π

(
1 − 1

ν
x2
m

)ν3 ]
.

However, you can do it more gracefully, assuming 

. δν (x) cf. (4.2) 
=

( ν 
4π

)n/2 
e−ν |x |

2/4 

and using the fact that an entire (i.e., analytic with respect to .x ∈ R
n) function is uniformly 

approximable by polynomials on any compact set. 

Lemma 19.12 Let .u ∈ L1, .v ∈ L2. Then .u ∗ v ∈ L2 and 

.‖u ∗ v‖L2 ≤ ‖u‖L1 · ‖v‖L2 . (19.7) 

Proof We have 

. 

���
∫

u(ξ − η)v(η)dη
���2 ≤

(∫
|u(ξ − η)|dη

)
· A(ξ) = ‖u‖L1 · A(ξ),

where .A(ξ) =
∫
|u(ξ−η)| · |v(η)|2dη. But .

∫
A(ξ)dξ=‖v‖2

L2 · ‖u‖L1 by Lemma 8.46. �

20 On the Spaces Hs 

The study of generalized solutions of equations of mathematical physics leads in a 
natural way to the family of Banach spaces .W p,m introduced by Sobolev. For . p ≥ 1
and .m ∈ Z+ the space .W p,m(Ω) is the Banach space of the functions .u ∈ Lp(Ω) with 
finite norm

21 Oddly enough, Prussian bureaucracy promoted maturation of the greatest German mathematician 
Karl Theodor Wilhelm Weierstrass (1815–1897). V.I. Arnold, referring to A. Poincaré obituary of 
Weierstrass, writes (see Arnold 2008 and Arnold 2003): “Weierstrass began his career as a physical 
education teacher at school. He was particularly successful in teaching his high school students to 
work on parallel bars. But the Prussian rules required a gymnasium teacher to submit a written 
work at the end of the year proving his professional aptitude. And Weierstrass presented an essay 
on elliptic functions and integrals. No one in the gymnasium could understand this essay, so it was 
sent to the university for evaluation. And very soon he was transferred to the university, where he 
quickly became one of the most outstanding and famous mathematicians of the century, both in 
Germany and in the world.” 
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.‖u‖W p,m(Ω) =
(∫
Ω

∑
|α | ≤m

|∂αu|p dx
)1/p

(20.1) 

(see Definition 17.6). Here .∂αu = v is the generalized derivative of the function u, 
i.e., 

.

∫
Ω

v ϕ dx = (−1) |α |
∫
Ω

u∂αϕ dx ∀ϕ ∈ C∞
0 (Ω). (20.2) 

The function v satisfying conditions (20.2) was called by Sobolev the weak derivative 
of order . α of the function u. Maybe, this is the reason, why the letter W appeared in 
the designation of Sobolev spaces. 

For .p = 2, the spaces .W p,m are Hilbert spaces (see the footnote 7 on p. 93). 
They are denoted (apparently, in honor of Hilbert) by . Hm. These spaces play a very 
important role in modern analysis. For their role in elliptic equations, see §22. 
A detailed account of the theory of these spaces can be found, for instance, in the 
book Besov et al. (1978) and in the paper Volevich and Paneah (1965). 

We present some elements of the theory of .Hs-spaces in the form of a series of 
definitions, problems, and observations. 
P 20.1 Using formula (18.1), verify that for .m ∈ Z+ the space .Hm(Rn) is the space of all 
.u ∈ S′(Rn) such that .(1 + |ξ |)m(Fu)(ξ) ∈ L2(Rn). 

Definition 20.2 Let .s ∈ R. The  space .Hs = Hs(Rn) consists of . u ∈ S′ = S′(Rn)
with finite norm22 

.‖u‖s = ‖〈ξ〉s · ũ(ξ)‖L2(Rn ), where 〈ξ〉 = 1 + |ξ |, and ũ = Fu. (20.3) 

P 20.3 Verify that .S ⊂ Hα ⊂ Hβ ⊂ S′ if .α > β, the embedding operators is continuous, and the 
embedded spaces are dense in the enveloping spaces. 

Theorem 20.4 (Sobolev Embedding Theorem) If .s > n
2 + m, then . Hs(Rn) ⊂

Cm
b
(Rn), and besides, there exists a constant .C < ∞ such that 

.‖u‖(m) ≤ C‖u‖s ∀u ∈ Hs, (20.4) 

where . ‖u‖(m) def
=
∑
|α | ≤m supx∈Rn |∂αu(x)|.

Proof Note that, for any .ϕ ∈ S(Rn), 

. |ϕ(x)| =
���
∫
ϕ̃(ξ)〈ξ〉s · 〈ξ〉−seı̊xξdξ

��� ≤ ‖ϕ‖s
(∫

〈ξ〉−2sdξ
)1/2
.

This implies inequality (20.4). For a given .u ∈ Hs , we choose .un ∈ S such that 
.‖un−u‖s → 0. In view of  (20.4), .{un} is a Cauchy sequence in .Cm

b
(Rn). Hence there 

exists a function .v ∈ Cm
b
(Rn) such that .‖un−v‖(m) → 0. As a result, . ‖un−v‖L2(Ω) →

0 .∀Ω � R
n. Now, we have .u = v a. e., since .‖un − v‖L2(Ω) ≤ ‖un − u‖s → 0. �

22 In what follows, the norm of the space . Lp will be denoted by .‖ · ‖Lp . 
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P 20.5 Let .u(x) = ϕ(r) ln(− ln r), where .x ∈ R
2, .r = |x |, .ϕ ∈ C∞

0 (R2), and .ϕ(r) = 1 for . r < 1
3

.ϕ(r) = 0 for .r > 2
3 . Verify that  .u ∈ H1(R2). This shows that .Hn/2(Rn) cannot be embedded 

into .C(Rn). 

P 20.6 Verify that .δ ∈ H s (Rn) for .s < − n
2 . 

Theorem 20.7 (Sobolev Trace Theorem) 
Let .s > 1

2 . Then, for any function .u(x) ∈ Hs(Rn) (which is in general discontinu-
ous), the trace .γu ∈ Hs−1/2(Rn−1) is defined, which (for a continuous .u(x)) coincides 
with the restriction .u

��
xn=0 of . u(x) to the hypersurface .xn = 0. Moreover, there exists 

a .C < ∞ such that 
.‖γu‖′s−1/2 ≤ C‖u‖s ∀u ∈ Hs(Rn), (20.5) 

where .‖ · ‖′σ is the norm in the space .Hσ(Rn−1). 
Proof Let .x = (x ′, xn) ∈ R

n−1 × R. For .u ∈ S(Rn), we have  

. u(x ′, 0) =
∫
R
n−1

eı̊x
′ξ′
[∫

R

ũ(ξ ′, ξn)dξn
]
dξ ′.

Hence 
. 

(
‖γu‖′s−1/2

)2
=

∫
R
n−1
〈ξ ′〉2s−1

���
∫
R

ũ(ξ ′, ξn)dξn
���2dξ ′,

and so 
. 

���
∫

ũ(ξ ′, ξn) dξn
���2 ≤

∫
〈ξ〉−2sdξn

∫
〈ξ〉2s |ũ(ξ)|2 dξn.

Further, .
∫
〈ξ〉−2sdξn ≤ Cs 〈ξ ′〉−s+1/2, and .Cs = C

∫
(1 + z2)−sdz < ∞ for .s > 1

2 ; 
(.z = ξn(1 + |ξ ′ |2)−1/2). Hence .‖γu‖′

s−1/2 ≤ C‖u‖s for .u ∈ S. If  .u ∈ Hs(Rn) and 
.limn→∞ ‖un − u‖s = 0, where .un ∈ S, then there exists a .w ∈ Hs−1/2(Rn−1) such 
that .‖γun − w‖′

s−1/2 → 0; moreover, w is independent of the choice of the sequence 
. {un}. By definition, .γu = w, and so (20.5) holds. �

Definition 20.8 Let . Ω be a domain in . R
n. The operator 

. P = PΩ : D′(Rn) → D′(Ω),

satisfying .〈P f , ϕ〉 = 〈 f , ϕ〉 for any function .ϕ ∈ D(Ω) is called the restriction 
operator of distributions from .D′(Rn) to the domain . Ω. 

Definition 20.9 We denote by .Hs(Ω) the space .PΩHs(Rn) equipped with the norm 

.‖ f ‖s,Ω = inf ‖L f ‖s, f ∈ Hs(Ω), (20.6) 

where the infimum is taken over all extensions .L f ∈ Hs(Rn) of the function . f ∈
Hs(Ω) (i.e., .PΩL f = f ). If it is clear from the context that . f ∈ Hs(Ω), then we may 
omit the index . Ω and simply write .‖ f ‖s in place of .‖ f ‖s,Ω.
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Definition 20.10 The space .Hs(Γ), where .Γ = ∂Ω is a smooth boundary of a domain 
.Ω � R

n, is the completion of the space .C∞(Γ) in the norm 

.‖ρ‖′s,Γ =
K∑
k=1

‖ϕk ρ‖′s . (20.7) 

Here .‖ · ‖′s is the norm of the space .Hs(Rn−1), .∑K
k=1 ϕk ≡ 1 is the partition of unity 

(see §3) subordinate to the finite cover .
⋃K

k=1 Γk = Γ, where .Γk = Ωk ∩ Γ, and . Ωk is 
the n-dimensional domain in which the normal vectors to . Γ do not intersect. Next, 
the function .ϕk ρ ∈ C∞

0 (Rn−1) is defined by the formula 

. (ϕk ρ)(y′) = ϕk(σ−1
k (y′)) · ρ(σ−1

k (y′)),

where . σk is a diffeomorphism of . R
n (affine outside some ball) which “unbends” . Γk . 

This means that if .x ∈ Ωk , then the nth coordinate .yn = yn(x) of the point . y =

(y′, yn) = σk(x) is equal to the coordinate of this point on the inward normal vector 
to . Γ. If it is clear from the context that .ρ ∈ Hs(Γ), then in parallel with .‖ρ‖′s,Γ we 
will sometimes write . ‖ρ‖′s . 
Remark 20.11 Definition 20.10 of the space .Hs(Γ) is correct, i.e., it does not depend 
on the choice of the cover, the partition of unity, and the diffeomorphism . σk . In the  
book Shubin (1987), this fact is elegantly proved with the help of the machinery of 
pseudo-differential operators (which we will consider in the next section). 

P 20.12 Verify that the operator .C( ¯̄Ω) ∩ H s (Ω) � u �→ u |Γ ∈ C(Γ) extends to a continuous 
operator .γ : H s (Ω) → H s−1/2(Γ) if .s > 1

2 . 

Remark 20.13 The function .γu ∈ Hs−1/2(Γ), where .s > 1
2 , is called the boundary 

value of a function .u ∈ Hs(Ω). One can easily show that .Hs−1/2(Γ), where .s > 1
2 , is  

the space of boundary values of functions from .Hs(Ω) (see, for example, Volevich 
and Paneah 1965). The condition .s > 1

2 is essential that follows from the example of 
the function .u ∈ H1/2(R+) considered in Exercise 20.5. 

Remark 20.14 The well-known Arzelà’s theorem23 (see, for example, Kolmogorov 
and Fomin 1980, Yosida  1965) asserts that if a family . { f } of functions . f ∈ C( ¯̄Ω), 
defined on .Ω � R

n, is uniformly bounded (i.e., .‖ f ‖ = M < ∞ for any function f ) 
and equicontinuous (for any .ε > 0, there exists a .δ > 0 such that .| f (x)− f (y)| < ε for 
any function f whenever .|x − y | < δ), then this family . { f } contains a subsequence 
converging in .C( ¯̄Ω). 

In the case .Ω = [0, 1], this theorem is proved as follows (the general case is 
similar). Let .εk = M/2k+1, and let . δk be such that .| f (x) − f (y)| < εk for any 
function f whenever .|x − y | < δk . Assume first that .k = 1. Consider the columns 
.Pj = { jδ1 ≤ x ≤ ( j+1)δ1}. We have .| f | ≤ const for any function f , and hence in the 
column . P1 there exists infinitely many functions from the family . { f } whose graphs 
lie in some two neighboring rectangles of height . ε1. In the column . P2, these graphs

23 Cesare Arzelà (1847–1912) was an Italian mathematician. 
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may continue only into the four neighboring rectangles of height . ε1. In addition, 
at least two neighboring rectangles of height . ε1 contain the graphs of an infinitely 
many functions from . { f }. Continuing this process, we get a “trail” . S1 of width . 2ε1
containing the graphs of an infinite subset of functions from the family . { f }. We  
denote this subset of functions by .{ f1} and fix one of these functions . f ∗1 . Similarly, 
from the family of functions .{ f1} we single out an infinite subset of functions . { f2}
whose graphs lie in the “trail” . S2 of width . 2ε2. Among such functions, we fix one 
function . f ∗2 . Proceeding in this way, we will construct . f ∗3 , f

∗
4 , . . . By construction, 

the graphs of these functions . f ∗n lie in the “trail” . Sn of width . 2εn. It remains to note 
that 

. max
x∈Ω

| f ∗n (x) − f ∗m(x)| ≤ 2εn for any m > n.

Analogues of Arzelà’s theorem also hold for the Sobolev spaces . Hs and their 
generalizations (see, for example, Besov 2001 and the references cited there). In 
particular, the following theorem holds. 

Theorem 20.15 (On Compactness of the Embedding) Assume that a sequence 
of functions .un ∈ Hs(Ω) (respectively, .un ∈ Hs(∂Ω)), where .Ω � R

n, is such that 
.‖un‖s ≤ 1 (respectively, .‖un‖′s ≤ 1). Then this sequence contains a subsequence 
converging in .Ht (Ω) (respectively, in .Ht (∂Ω)) if . t < s. 

21 On Pseudo-Differential Operators 

The class of pseudo-differential operators (PsDO),24 which is wider than the class 
of differential operators, includes the operators of the form 

.Au(x) =
∫
Ω

K(x, x − y)u(y) dy, u ∈ C∞
0 (Ω). (21.1) 

Here .K ∈ D′(Ω × R
n) and .K ∈ C∞(Ω × (Rn\0)). In particular, if 

. K(x, x − y) =
∑
|α | ≤m

aα(x) · δ(α)(x − y),

then .Au(x) = ∑
|α | ≤m aα(x)∂αu(x). Another example of PsDO is given by singular 

integral operators (Mikhlin 1965). However, the exclusive place in modern mathe-
matical physics occupied by the theory of PsDO (which took shape in the mid-1960s, 
see Vishik and Eskin 1964, Kohn and Nirenberg 1965,25 Hörmander 1965) is deter-
mined not only by specific important examples. The actual fact is that PsDO provide

24 One of the referees of the present book recommended to get rid of the abbreviation “PDO,” which 
is widely used in Russian mathematical literature (see, for example, Arutyunov and Mishchenko 
2013) in order to have no unnecessary association with Partial Differential Operators. 
25 Thanks to good graces of Kohn and Nirenberg (1965), the term “pseudo-differential operators” 
is now widely accepted. 
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a powerful and convenient tool for studying linear differential operators (primarily, 
elliptic ones), because the pseudo-differential operators form an algebra—one can 
not only add and multiply such operators (and take their compositions) but also 
“divide” by nonzero operators. So, solutions of some differential equations can be 
written down in terms of PsDO. 

Before giving the corresponding definitions and results, we will briefly explain the 
main idea underlying the application of the PsDO by proving an important theorem 
on the smoothness of solutions to the elliptic differential equation with constant 
coefficients 

.a(D)u ≡
∑
|α | ≤m

aαD
αu = f . (21.2) 

The ellipticity means that 

. am(ξ) ≡
∑
|α |=m

aαξ
α � 0 for |ξ | � 0.

This is equivalent to the condition 

.|a(ξ)| ≡
��� ∑
|α | ≤m

aαξ
α
���≥ C |ξ |m for |ξ | ≥ M � 1. (21.3) 

Theorem 21.1 Let condition (21.3) be satisfied and let . f ∈ Hs−m for some s. Then 
a solution . u(x) of Eq. (21.1) lies in . Hs if .u(x) ∈ Hs−N for some .N > 0. 

Proof Of course, this result can be established by constructing a fundamental solu-
tion of the operator .a(D) and by examining its properties (see, for example, Hörman-
der 1983–1985). However, instead of solving the difficult problem of regularizing 
the function .1/a(ξ), where .ξ ∈ R

n (this problem will appear after application of the 
Fourier transform to Eq. (21.1) written in the form .F−1a(ξ)Fu = f ), it is enough to 
“just notice” two facts. First, using inequality (21.3), it is possible to “remove” the 
singularity of the function . 1/a using a factor .ρ ∈ C∞ such that .ρ ≡ 1 for .|ξ | ≥ M+1, 
.ρ ≡ 0 for .|ξ | ≤ M . Second, 

.(F−1(ρ/a)F)(F−1aF)u = u + (F−1rF)u, where r = ρ − 1. (21.4) 

Hence, in view of the obvious inequalities 

.|ρ(ξ)/a(ξ)| ≤ C(1 + |ξ |)−m, |r(ξ)| ≤ CN (1 + |ξ |)−N ∀N ≥ 1, (21.5) 

which imply the inequalities 

.‖(F−1(ρ/a)F) f ‖s ≤ C‖ f ‖s−m, ‖(F−1rF)u‖s ≤ C‖u‖s−N, (21.6) 

we get as a result the so-called a priori estimate 

.‖u‖s ≤ C
(‖ f ‖s−m + ‖u‖s−N

)
, f = a(D)u, u ∈ Hs, (21.7)
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where C does not depend on u. From inequality (21.7) we get the above result on 
smoothness of solutions of the elliptic equation (21.1). �

The name “a priori” for estimate (21.7) of the solution of Eq. (21.1) is due to 
the fact that it can be established (see the above) before clarifying the solvability of 
Eq. (21.1), i.e., in the a priori  form. 

The simplicity of the above derivation of the a priori estimate (21.1) shows the 
important role of operators of the form .F−1aF. Such operators are called pseudo-
differential operators constructed from the symbol .a = a(ξ). We will denote such 
operators also by .Op(a(ξ)) or . a(D). The class of PsDO deepens of the class of 
symbols considered. If .a(x, ξ) = ∑

aα(x)ξα, then 

. a(x,D)u(x) = Op(a(x, ξ))u(x) =
∑

aα(x)Dα
x u(x).

If .a(x, ξ) is a function which is positive homogeneous and having zero order with 
respect to . ξ, i.e., .a(x, tξ) = a(x, ξ) for .t > 0, then .a(x,D) = Op(a(x, ξ)) is a singular 
integral operator (Mikhlin 1965), namely 

. Op(a(x, ξ))u(x) = b(x)u(x) + lim
ε→0

∫
|x−y |>ε

c(x, x − y)
|x − y |n u(y) dy.

Here .c(x, tz) = c(x, z) for .t > 0 and .
∫
|z |=1 c(x, z) dz = 0. In particular, in the 

one-dimensional case, when .a(ξ) = a+θ+(ξ) + a−θ−(ξ), where . θ+ is the Heaviside 
function and .θ− = 1 − θ+, we have  

. Op(a(x, ξ))u =
a+ + a−

2π
u(x) + i

2π
v.p.

∫
a+ − a−
x − y

u(y) dy,

which follows from Exercise 17.28 and relation (12.10). 
If .n = 2, then the x-representation of the operator .Op(a(ξ)) can be derived from 

the two following propositions. 

Proposition 21.2 Let .x1 = r cos 2πθ, .x2 = r sin 2πθ, and let . U(r, θ) def
= u(x1, x2) =∑

m∈ZUm(r)eı̊mθ , .Um(r) ∈ C. Then 

.Fx→ξ u(x) =
∑
n∈Z

(−i)neı̊ωn

∫ ∞

0
rUn(r)Jn(2π |ξ |r) dr . (21.8) 

Here .x = (x1, x2), .ξ = (ξ1, ξ2), .ξ1 = |ξ | cos 2πω, .ξ2 = |ξ | sin 2πω, and 

. Jn : R � a �→ Jn(a) def
=

1
π

∫ π

0
cos(nt − a sin t) dt

is the Bessel26 function of nth order.

26 Friedrich Wilhelm Bessel (1784–1846), a German astronomer, born in Westphalia, the son 
of a poor government employee. At the age of 15, he entered an export-import firm. During his 
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Proof We have .Fx→ξ u(x) =
∫ ∞
0 r

(∫ 1
0 U(r, θ)e−ı̊ |ξ |r cos 2π(θ−ω)dθ

)
dr , and27 

.e−ı̊ |ξ |r cos 2π(θ−ω) =
∑
n∈Z

Jn(−2π |ξ |r)ineı̊n(θ−ω). (21.9) 

This implies (21.8), because 

. 

∫ 1

0
eı̊(n−m)θdθ =

{
0 for m � n,

1 for m = n

and .J−n(−a) = Jn(a). �

The proof of the following result is similar. 

Proposition 21.3 Let 

. ξ1 = |ξ | cos 2πω, ξ2 = |ξ | sin 2πω,

Ṽ(|ξ |, ω) def
= ṽ(ξ1, ξ2) =

∑
m∈Z

Ṽm(|ξ |)e−ı̊mω, Ṽm(ρ) ∈ C.

Then28 

.F−1
ξ→x ṽ(ξ) =

∑
n∈Z

ine−ı̊ϕn
∫ ∞

0
|ξ |Ṽn(|ξ |)Jn(2π |ξ |ρ) d |ξ |, (21.10) 

apprenticeship, dreaming of travel, he studied languages, geography, the habits of distant peoples, 
and the principles of navigation, which led him to astronomy and mathematics. In 1804 he wrote 
a paper on Halley’s Comet in which he calculated the orbit from observations made in 1607. He 
sent it to the German astronomer Wilhelm Olbers, who was so impressed that he arranged it its 
publication the same year in the important German technical journal Monatliche Correspondenz 
and proposed Bessel as an assistant at the Lilienthal observatory of the celebrated lunar observer 
J. H. Schröter. Bessel, who was liked and appreciated by his commercial firm, was obliged to choose 
between a position of relative affluence if he remained in it and poverty and the stars if he left it. 
He decided for the latter. 

Bessel was a scientist whose works laid the foundations for a better determination than any 
previous method had allowed of the scale of the universe and the sizes of stars, galaxies, and clusters 
of galaxies. In addition, he made fundamental contributions to accurate positional astronomy, the 
exact measurement of the positions of celestial bodies; to celestial mechanics, dealing with their 
movements; and to geodesy, the study of Earth’s size and shape. Further, he enlarged the resources of 
pure mathematics by his introduction and investigation of what are now known as Bessel functions 
(see, for example, Watson 1995, Whittaker and Watson 2020), which he used first in 1817 to 
investigate the very difficult problem of determining the motion of three bodies moving under 
mutual gravitation. Seven years later he developed Bessel functions more fully for the treatment of 
planetary perturbations. Much credit for the final establishment of a scale for the universe in terms 
of solar system and terrestrial distances, which depends vitally on accurate measurement of the 
distances of the nearest stars from Earth, must go to Bessel. 
27 The generating function for .Jn(μ), i.e., the formal power series .

∑
n∈Z Jn(μ) tn , is .e

μ
2 (t− 1

t ) (see, 
for example, Lavrent’ev and Shabat 1977). Putting .t = ie ı̊(θ−ω), we get  (21.9). 
28 .F−1

ξ→x ṽ(ξ) =
∫ ∞
0 |ξ | (∫ 1

0 Ṽ ( |ξ |, ω)e ı̊ρ |ξ | cos 2π(ω−ϕ)dω
)
d |ξ | and (cf. (21.9)) we have  

.e ı̊ρ |ξ | cos 2π(ω−ϕ) =
∑

n∈Z Jn(2πρ |ξ |)ine ı̊n(ω−ϕ).
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where .ξ = (ξ1, ξ2), .x = (x1, x2), .x1 = ρ cos 2πϕ, .x2 = ρ sin 2πϕ. 

The following corollary is also useful. 

Corollary 21.4 If .n = 2, then 

.F−1
ξ→x

1
|ξ | =

∫ ∞

0
|ξ | 1
|ξ | J0(2π |x | |ξ |) d |ξ | = 1

2π |x | . (21.11) 

An important class of symbols in the theory of PsDO is given in the next definition. 

Definition 21.5 A .C∞-function 

.a : Rn × R
n � (x, ξ) �→ a(x, ξ) = a0(x, ξ) + a1(ξ) (21.12) 

is a symbol of the class .Sm = Sm(Rn), where .m ∈ R if, for any multiindexes . α and 
. β, there exist .Cαβ ∈ S(Rn) and .Cβ ∈ R such that 

.|∂αx ∂βξ a0(x, ξ)| ≤ Cαβ(x) · 〈ξ〉m−|β |, |∂βξ a1(ξ)| ≤ Cβ 〈ξ〉m−|β |, (21.13) 

where .〈ξ〉 = 1 + |ξ |. In this case, we write .a ∈ Sm. 

Example 21.6 Let .a(ξ) = ε2 + 1/(|ξ |2 + q2), .ε ≥ 0, .q > 0. Then .a ∈ S0(Rn) for 
.ε > 0 and .a ∈ S−2(Rn) for .ε = 0. If .n = 3, then (cf. (19.2)) 

.a(D)u(x) = ε2u(x) + π
∫
R

3

e−2πq |x−y |

|x − y | u(y) dy, u ∈ C∞
0 . (21.14) 

Indeed, we set . f =
(

1
|ξ |2+q2 )u, which is equivalent to the equation .u = (|D|2 + q2) f , 

i.e., .−Δ f + (2πq)2 f = 4π2u. In view of the estimate .‖ f ‖s ≤ C‖u‖s+2, the solution 
of the last equation is unique in . Hs . This solution can be written in the form 
. f = 4π2G ∗ u, where Vladimirov (1971) (cf. Exercise  7.1) 

. G(x) = exp(−2πq |x |)/4π |x | ∈ H0

is a fundamental solution of the operator .−Δ + (2πq)2. 

Lemma 21.7 (On Continuity) Let .a ∈ Sm. Then, for any .s ∈ R, there exists 
a constant .C > 0 such that 

.‖a(x,D)u‖s−m ≤ C‖u‖s ∀u ∈ C∞
0 (Rn). (21.15) 

In other words, the operator .a(x,D), which is defined by the formula 

.Op(a(x, ξ))u(x) =
∫

eı̊xξa(x, ξ)ũ(ξ)dξ, ũ = Fu, (21.16) 

with symbol .a ∈ Sm, and which is clearly defined on . C∞
0 , extends to a continuous 

mapping from .Hs(Rn) into .Hs−m(Rn).
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Proof If .a(x, ξ) = a1(ξ), then estimate (21.15) is clear. Hence it suffices to establish 
this estimate for . a

(21.12) 
= a0. Setting .A0v = a0(x,D)v, we note that 

. (Ã0v)(ξ) =
∫ (∫

eı̊(x,η−ξ)a0(x, η) dx
)
ṽ(η)dη.

Taking into account inequalities (21.13) and Lemma 17.16, we find that 

. |(Ã0v)(ξ)| ≤ Cα

∫
〈η〉m〈ξ − η〉−|α | |̃v(η)|dη, |α | � 1.

From the Peetre inequality (Peetre 1962)29 

.〈ξ〉s ≤ Cs 〈η〉s 〈ξ − η〉 |s |, (21.17) 

which follows from the triangle inequality .|ξ | ≤ |η | + |ξ − η |, we get  

. 〈ξ〉s−m |(Ã0v)(ξ)| ≤ Cα,s

∫
〈η〉s 〈ξ − η〉 |s−m |− |α | |̃v(η)|dη.

It remains to employ inequality (19.7). �

Definition 21.8 Let .a ∈ Sm. The operator .Op(a(x, ξ)) is called elliptic if (cf. (21.3)) 
there exist .M > 0 and .C > 0 such that 

.|a(x, ξ)| ≥ C |ξ |m ∀x ∈ R
n and |ξ | ≥ M . (21.18) 

P 21.9 Following the above proof of estimate (21.7) and using Lemma 21.10 (on composition), 
which is given below, prove the a priori estimate 

.‖u ‖s ≤ C(‖a(x, D)‖s−m + ‖u ‖s−N ) ∀u ∈ H s, C = C(s, N ), N ≥ 1 (21.19) 

for the elliptic operator .Op(a(x, ξ)) with symbol . a ∈ Sm

Hint Taking into account inequality (21.18) and setting .R = Op
(

ρ(ξ )
a(x, ξ )

)
, where .ρ ∈ C∞, . ρ = 1

for . |ξ | ≥ M + 1, .ρ = 0 for . |ξ | ≤ M , show that 

. R · Op(a(x, ξ))u = u + Op(r(x, ξ))u, where r ∈ Sm−N .

Lemma 21.10 (On Composition) Let .a ∈ Sk , .b ∈ Sm. Then, for any .N ≥ 1, the  
generalized Newton–Leibniz formula holds 

. a(x,D) · Op(b(x, ξ)) =
∑
|α |<N

Op
[(∂αξ a(x, ξ))(Dα

x b(x, ξ))
]/α! + TN ;

here .‖TN v‖s+N−(k+m) ≤ C‖v‖s for any .v ∈ Hs , and C does not depend on v. 

For a proof, see, for example, Vishik and Eskin (1965), Kohn and Nirenberg 
(1965).

29 See Remark 10 on p. 87. 
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Definition 21.11 An operator .T : C∞
0 → S′ is called a smoothing operator if, for any 

.N ≥ 1 and .s ∈ R, there exists a .C > 0 such that .‖Tu‖s+N ≤ C‖u‖s for any .u ∈ Hs . 
P 21.12 Consider a sequence of functions .a j ∈ Smj , where .j ∈ N, and .m j ↓ −∞ as .j ↑ +∞. Then  
there exists a function .a ∈ Sm1 such that 

.(a −
∑
j<N

a j ) ∈ SmN ∀N > 1. (21.20) 

Hint Following the idea of the proof of Borel’s theorem (see Theorem 15.2), define 

. a(x, ξ) =
∞∑
j=1

ϕ(ξ/tj )a j (x, ξ),

where .ϕ ∈ C∞(Rn), .ϕ(ξ) = 0 for . |ξ | ≤ 1
2 , .ϕ(ξ) = 1 for . |ξ | ≥ 1, and choose . tj that converge 

to . +∞ as .j →∞ so rapidly that the inequality 

. 
��∂α

ξ D
β
x (ϕ(ξ/tj )a j (x, ξ))

�� ≤ 2− j 〈ξ 〉mj−1

holds for . |x | ≤ 1 and . |α | + |β | + 1 ≤ j. 
For a solution, see, for example, Shubin (1987). 

Definition 21.13 The operator .A : C∞
0 → S′ is called a pseudo-differential operator 

of class L if .A = Op(a(x, ξ))+T , where .a ∈ Sm for some .m ∈ R, andT is a smoothing 
operator. Any function .σA ∈ Sm such that .(σA−a) ∈ S−N for any N is called a symbol 
of the operator .A ∈ L. 
P 21.14 By applying Lemma 21.10, show that the operator .A ∈ L has (cf. Exercise 16.22) the  
pseudolocality property; in other words, if .ϕ, ψ ∈ C∞

0 , .ψ = 1 on .suppϕ, then  .ϕA(1 − ψ) is 
a smoothing operator. 

Remark 21.15 The class L is invariant not only with respect to the composition 
operation but also with respect to a replacement of variables. The corresponding 
theorem, which will be given in the next section, is quite important. Initially (in 
1964), it was implicitly announced in a series of notes by M.I. Vishik and G.I. Eskin 
(see, for example, Vishik and Eskin 1964) on boundary-value problems for elliptic 
pseudo-differential equations, the study of which was associated with a replacement 
of variables that locally straighten the boundary of the domain. The proof of this 
theorem was given in their paper Vishik and Eskin (1965). What is essential in 
this theorem is not only the formula for transformation of the symbol of a PsDO 
with replacement of the variables but also the fact that it implies the possibility of 
an invariant definition of a pseudo-differential operator, i.e., setting it in terms that 
are not related to any coordinates. Such invariant definition was given in the same 
year 1965 by Hörmander in Hörmander (1965). We will return to this definition of 
Hörmander in §26. 

Theorem 21.16 (On Change of Variables) Let .a ∈ Sm. Then, in the coordinate 
system defined by a diffeomorphism (affine outside some ball) .σ : x �→ y = σ(x), 
for any .N ≥ 1, the operator .a(x,Dx) can be represented in the form 

.

∑
|α |<N

Op
[
ϕα(y, η)(∂αξ a(x, ξ)

��
ξ=tσ′(x)η; x=σ−1(y)

]
+ TN, (21.21)
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where .
tσ′(x) is the matrix transpose to .σ′(x) = ∂σ

∂x , and .ϕα(y, η) is a polynomial 
in . η of degree at most .|α |/2 given by the formula 

. ϕα(y, η) = 1
α!

Dα
z exp

{
ı̊(σ(z) − σ(x) − σ′(x)(h − x), η)}��

z=x, x=σ−1(y).

Moreover, .‖TN v‖s+[N/2+1]−m ≤ C‖v‖s for any .v ∈ Hs . 

22 On Elliptic Problems 

In §5, we considered (for some domain . Ω) the simplest elliptic problem, viz., the 
Dirichlet problem for the Laplace equation. To this problem, one can reduce another 
important elliptic problem—the problem with oblique derivative in the disk . Ω =

{(x, y) ∈ R
2 : x2 + y2 < 1} for the Laplace equation: 

.Δu = 0 in Ω,
∂u
∂λ

= f on Γ = ∂Ω, f ∈ C∞(Γ). (22.1) 

Here .
∂
∂λ =

(
a ∂
∂x −b∂u

∂y

)
is the differentiation along the direction . λ (which is possibly 

slanted with respect to the normal vector to the boundary of . Γ). This direction 
depends on the smooth vector field 

. σ : Γ � s �→ σ(s) = (a(s), b(s)) ∈ R
2, a2(s) + b2(s) � 0 ∀s ∈ Γ.

We identify a point s of the unit circle . Γ with its polar angle .ϕ ∈ [0, 2π]. If  
.σ(ϕ) = (cos ϕ,− sin ϕ), then .λ = ν is the (outer) normal vector to . Γ; if  . σ(ϕ) =
−(sin ϕ, cos ϕ), then .λ = τ is the tangent vector to . Γ. All these and other cases are 
important in applications However, our interest in problem (22.1) is primarily due 
to the fact that it vividly illustrates the problems related to general elliptic problems 

It turns out (see Exercises 22.1–22.4) that the solvability of problem (22.1) de-
pends on the degree of the mapping . σ with respect to the origin, which is the integer 
number 

. N = {arg[a(2π) + ib(2π)] − arg[a(0) + ib(0)]}/(2π).
It is clear that N the number of signed rotations made by the point .σ(ϕ) around the 
origin when moving along the closed curve .σ : R/(2π) � ϕ �→ σ(ϕ) = (a(ϕ), b(ϕ)). 

If .N < 0, then for the solvability of problem (22.1) it is necessary and sufficient 
that the right-hand side f be “orthogonal” to some subspace of dimension . βN =

2|N | − 1. More precisely, there exist .(2|N | − 1) linearly independent functions . Φj ∈
L2(Γ) such that problem (22.1) is solvable if and only if 

. 

∫
Γ

fΦjdΓ = 0 ∀ j = 1, . . . , β = 2|N | − 1.

Note that the dimension . αN of the space of solutions of the homogeneous problem 
is 1.
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For .N ≥ 0, the dimension . βN of the subspace to which the right-hand side f 
is orthogonal is zero, i.e., problem (22.1) is always solvable. But this solvability is 
nonunique: the dimension . αN of the space of solutions of the homogeneous problem 
is .2N + 2. 

So, for problem (22.1) we have .αN − βN = 2N + 2 for any N . Regarding the 
numbers . αN and . βN , the following series of exercises will help to understand why 
they are equal to the values that were announced above. 

P 22.1 Setting .U = ux , .V = −uy , show that the solution u of problem (22.1) gives the solution W 
of the following Riemann–Hilbert problem:30 find an analytic function .W =U+iV in . Ω, continuous 
in . ¯̄Ω, and satisfying the boundary condition .aU + bV = f for a, b and f which are continuous 
on . Γ. Verify that the converse of this result is also true: the solution W of this Riemann–Hilbert 
problem defines, up to an additive constant, the solution u of problem (22.1). 

P 22.2 (Continuation.) Verify that the continuous function .g(ϕ) = arg[a(ϕ) + ib(ϕ)] − Nϕ is 
defined on .Γ = {z = exp(iϕ)}. Construct the analytic function .p + iq on .Ω = { |z | < 1} from 
the solution of the Dirichlet problem .Δq = 0 in . Ω, .q = g on . Γ, and show that the function 
.c(z) = zN · exp(p(x, y) + iq(x, y)), which is analytic on . Ω, where .z = x + iy, satisfies on . Γ the 
condition .c = ρ(a + ib), where .ρ = ep/ |a + ib | > 0. 

P 22.3 (Continuation.) Let .N ≥ 0, and  let .ζ = ξ + iη be an analytic function on . Ω such that 

. Re ζ = ρ f / |c |2 on Γ. (22.2) 

Putting .U(x, y) + iV (x, y) = c(z)ζ(z), verify that  

. ρ(aU + bV ) = (Re c)U + (Im c)V = |c |2 Re(U + iV )/ζ = ρ f on Γ,

i.e., .(aU + bV ) = f on . Γ. Verify that for .N ≥ 0 the general solution of the Riemann–Hilbert 
problem can be written in the form .c(z)[ζ(z) + W0(z)], where  .W0 = 0 for . |z | = 1, and  the  
function . W0 is analytic for .0 < |z | < 1 and has a pole for .z = 0 of multiplicity at most N . Using  
Theorem 5.18, show that 

. W0(z) = iμ0 +

−1∑
k=−N

[(λk + iμk )zk − (λk − iμk )z−k ], where λk ∈ R, μk ∈ R,

i.e., .W0(z) is a linear combination of .2N + 1 linearly independent functions.

30 Riemann in his famous thesis (see Narasimhan 1990) identified two different problems, which 
later became called the Riemann-Hilbert problem. The assumption about the solvability of one of 
these Riemann problems was formulated by D. Hilbert in 1900 as the 21st problem in his list of 
the so-called 23 Hilbert problems. After the long efforts of many mathematicians, the final point in 
the study of the 21st problem was put by A. A. Bolibruch in 1989 (see, for example, http://www. 
mccme.ru/free-books/globus/globus1.pdf/). Another problem of Riemann was formulated by him 
as follows: find in a domain an analytic function .W = U + iV satisfying on the boundary of the 
domain a relation of the form .F(U,V ) = 0. However, Riemann himself expressed only general 
considerations about the solvability of such a problem and the method of its solution. In reality, the 
problem of solvability was first investigated (with some inaccuracies) by D. Hilbert in the work of 
1904 in the case of a simply connected domain and .F(U,V ) = aU +bV = f with continuous a, b 
and f . Later, numerous important generalizations were obtained (see, for example, Bezrodnykh and 
Demidov 2011, Bezrodnykh 2017, 2018, Bezrodnykh and Vlasov 2016, Bezrodnykh and Vlasov 
2021, Bezrodnykh 2022a and Bezrodnykh 2022b). 

http://www.mccme.ru/free-books/globus/globus1.pdf/
http://www.mccme.ru/free-books/globus/globus1.pdf/
http://www.mccme.ru/free-books/globus/globus1.pdf/
http://www.mccme.ru/free-books/globus/globus1.pdf/
http://www.mccme.ru/free-books/globus/globus1.pdf/
http://www.mccme.ru/free-books/globus/globus1.pdf/
http://www.mccme.ru/free-books/globus/globus1.pdf/
http://www.mccme.ru/free-books/globus/globus1.pdf/
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P 22.4 (Continuation.) Let .N < 0. Verify that if  .U + iV is a solution of the Riemann–Hilbert 
problem, then condition (22.2) is satisfied for the function .ζ = (U + iV )/c. Next, writing the 
function . Re ζ , which is harmonic for . |z | < 1, as the Poisson integral (5.7) and expanding into a 
Fourier series .Re ζ for . |z | = 1, prove that .ζ(z) = (λ0/2 + ic) + ∑∞

k=1(λn − iμn)zn for . |z | < 1, 
where .c ∈ R, and  

. λn =
1
π

∫ 2π

0
f (ϕ)ρ(ϕ) cos(nϕ)dϕ

a2(ϕ) + b2(ϕ) , μn =
1
π

∫ 2π

0
f (ϕ)ρ(ϕ) sin(nϕ)dϕ

a2(ϕ) + b2(ϕ) .

Based on this result and using the fact that the function . ζ has for .z = 0 a zero of multiplicity 
. |N | ≥ 1, show that for .N < 0, there do not exist more than one solution of the Riemann–Hilbert 
problem, and besides, show that a necessary and sufficient condition for the solvability of the 
Riemann–Hilbert problem for .N < 0 is the condition .λ0 = . . . = λ|N |−1 = μ1 = . . . = μ|N |−1 = 0, 
i.e., the “orthogonality” of the function f to the .(2 |N | − 1)-dimensional space. 

Remark 22.5 For a solution of Problems 22.1–22.4, see, for example, §24 in the textbook Godunov 
(1979). 

The particular case of problem (22.1), where .λ = ν is the normal vector to . Γ, is  
called the Neumann problem31 for the Laplace equation. In this problem .N = −1, 
because .a(ϕ) + ib(ϕ) = exp(−iϕ). The Neumann problem is solvable if and only if 
.
∫
Γ
f dΓ = 0; besides, the solution is defined up to an additive constant. In the fact, if 

.
∫
Γ
f dΓ = 0, then the continuous function 

. g(s) = g(s0) +
∫ s

s0

f (ϕ)dϕ

is defined on . Γ. From the function g, we construct the solution v of the Dirichlet 
problem .Δv = 0 in . Ω, .v = g on . Γ. The real part of the analytic function .u + iv, i.e., 
the function u (which is defined up to an additive constant), is the solution of the 
Neumann problem under study, because .

∂u
∂ν = ∂v

∂τ = f , where . 
∂
∂τ is the differentiation 

along the tangent to . Γ. Conversely, if u is a solution to the Neumann problem, then

31 It should be borne in mind that physically it is justified not to set the normal derivative at the 
points of the boundary, but to set the flow through the boundary, i.e., the functional on smooth 
functions, which can even be a generalized function. This remark made by Mark Iosifovich Vishik 
(1921–2012), a major expert on the equations of mathematical physics (see http://www.jip.ru/ 
2012/155-157-2012.pdf), about whom academician S. P. Novikov wrote in 2011 as an outstanding 
mathematician and one of his teachers, was formalized in the joint paper of together Vishik and 
Sobolev in the Reports of the USSR Academy of Sciences (Doklady: Mathematics) (Vishik and 
Sobolev 1956). Their brief note (only three pages long) served as the basis for a well-known three-
volume monograph (Lions and Magenes 1968) by two correspondence students of Vishik. One of 
them, Jacques-Louis Lions (1928–2001), the President of the French Academy of Sciences from 
1997 to 1998, repeatedly (along with Laurent Schwartz, Lars Hörmander, Louis Nirenberg and 
many other major mathematicians, including Academicians of the Russian Academy of Sciences 
I. M. Gelfand, V. E. Zakharov, A. M. Il’in, S. V. Konyagin, V. P. Maslov, S. P. Novikov, and 
A. T. Fomenko) gave talks at the M. I. Vishik’s seminar at Moscow State University. Vishik’s second 
correspondence student was Enrico Magenes (1923–2010), president of the Italian Mathematical 
Union from 1973 to 1975. It was he who invited the author of these lines to the Free Boundary 
Problems seminar in Pavia for the report (Demidov 1980) who told that his villa in Pavia was built 
on the money received for the monograph (Lions and Magenes 1972-1973), which developed the 
ideas outlined in the note by Vishik and Sobolev. 

http://www.jip.ru/2012/155-157-2012.pdf
http://www.jip.ru/2012/155-157-2012.pdf
http://www.jip.ru/2012/155-157-2012.pdf
http://www.jip.ru/2012/155-157-2012.pdf
http://www.jip.ru/2012/155-157-2012.pdf
http://www.jip.ru/2012/155-157-2012.pdf
http://www.jip.ru/2012/155-157-2012.pdf
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the “orthogonality” condition .
∫
Γ
f dΓ = 0 is satisfied, which can be readily seen32 

from the Gauss formula (7.6). Next, from the first Green formula (7.4) (under the 
additional condition .u ∈ C2( ¯̄Ω)) it follows that33 if . u1, . u2 are two solutions of the 
Neumann problem, then .u = u1 − u2 = const, because 

. 

∫
Ω

(u2
x + u2

y) dx dy = 0, i. e., ux = uy ≡ 0 ⇐⇒ u = const .

22.6 Consider now the general elliptic differential equation 

.a(x,D)u ≡
∑
|α | ≤m

aα(x)Dαu = f (22.3) 

in a domain .Ω � R
n with smooth boundary . Γ. The ellipticity means that (cf. 

formula (21.3)) 

.

∑
|α |=m

aα(x)ξα � 0 for x ∈ ¯̄Ω and |ξ | � 0. (22.4) 

The example of the problem with oblique derivative shows that it makes sense to 
ask the following question. Find how many boundary conditions 

.bj(x,D)u
��
Γ
≡

∑
|β | ≤m j

bjβ(x)Dβu
��
Γ
= gj on Γ, j = 1, . . . , μ, (22.5) 

should be specified (i.e., what is the number . μ) and what must be the boundary 
operators34 

. bj to satisfy the following two conditions: 
. (1) the solution u of problem (22.3)–(22.5) is defined uniquely up to some finite-

dimensional subspace .X0 ⊂ Hs(Ω); 
. (2) problem (22.3)–(22.5) is solvable for any right-hand side 

.h = ( f , g1, . . . , gμ) ∈ Hs,M def
= Hs−m(Ω) ×

μ∏
j=1

Hs−m j−1/2(Γ), (22.6) 

which is possibly orthogonal to some finite-dimensional subspace .Y0 ⊂ Hs,M? Here  
.Hs,M is a Banach space of functions .h = ( f , g1, . . . , gμ) with the norm 

. ‖h‖s,M = ‖ f ‖s−m +

μ∑
j=1

‖gj ‖′s−m j−1/2.

32 Under the additional condition .u ∈ C2( ¯̄Ω). This condition holds for . f ∈ C∞(Γ) by the a priori 
estimates for elliptic problems (see below). 
33 However, both results are true (see, for example, Petrovsky 1967, §28 and §35) also without the 
additional assumption that .u ∈ C2( ¯̄Ω). 
34 The example of the problem .Δu = f in . Ω, .Δu = g on . Γ, shows that one cannot specify arbitrary 
boundary operators (22.5).



22 On Elliptic Problems 127

Definition 22.7 A boundary-value problem (22.3)–(22.5) is called elliptic if the 
boundary-value (in other words, boundary) conditions (22.5) for the elliptic equa-
tion (22.3) are such that conditions 1 and 2 from the previous section are satisfied. 

One of the most important goals of this section is to show that Definition 22.7, 
which characterizes the functional properties of the operator . A, is equivalent (at 
least for .n ≥ 3) to the Definition 22.23 (see below) for the ellipticity of the prob-
lem (22.3)–(22.5), which is formulated in algebraic terms for the highest symbols of 
the operator . A. 

Considering problem (22.3)–(22.5) in the form of the equation .Au = h for the 
operator 

.A : Hs(Ω) � u �→ Au ∈ Hs,M, (22.7) 

where .Au ≡ (a(x,D)u, γb1(x,D)u, . . . , γbμ(x,D)u), and . γ is the boundary-value 
operator on . Γ (see (20.5)), we will use the following standard notation. If X and Y 
are linear spaces and A is a linear operator from X into Y , then 

. Ker A def
= {x ∈ X : Ax = 0}, Coker A def

= Y/Im A,

where .Im A = {y ∈ Y : y = Ax, x ∈ X} is the range of the operator A, and . Y/Im A
is the quotient space of Y modulo . Im A, i.e., the linear space of cosets modulo . Im A
(see Kolmogorov and Fomin 1980). Recall that the linear spaces .Ker A and . Coker A
are called, respectively, the kernel and the cokernel of the operator A. If  X and Y are 
Banach spaces, then by .L(X,Y ) we denote the space of continuous linear operators 
from X into Y . 

The next lemma has important applications. 

Lemma 22.8 Let .A ∈ L(X,Y ), and let .dim Coker A < ∞. Then the set .Im A is closed 
in Y . 

Explanation Consider an example. Let A be the embedding operator of . X = C1[0, 1]
into .Y = C[0, 1]. It is clear that .Im A � Y = Im A. From Lemma 22.8 it follows that 
.dim Coker A = ∞. This can readily be understood directly. Indeed, let .ϕα(t) = |t−α |, 
where .α ∈]0, 1[, .t ∈ [0, 1]. We have  .ϕα � Im A, .ϕα − ϕβ � Im A for .α � β, i.e., 
the elements . ϕα are representatives of linear independent vectors in .Y/Im A. So, 
.dim(Y/Im A) = ∞. 

Proof By the condition, .dim Y/Im A < ∞. Hence .Y = Im A �+L (the direct sum of 
linear spaces), where .dim L < ∞, and hence L, as equipped with the norm .‖ · ‖L , 
is a Banach space. Consider the operator . A1 acting from the Banach space35 

. X1 =

X/Ker A× L into the Banach space .Y = Im A �+L by the formula .A1({x}, l) = Ax + l. 
The inverse operator of . A1 exists, because the kernel of . A1 is zero. It is easily 
checked that the operator . A1 is continuous. The operator A is a surjection. By the

35 The norm in the direct product .X/Ker A×L is defined by .‖({x }, l)‖X1 = ‖ {x } ‖X/Ker A+ ‖l ‖L , 
where .‖ {x } ‖X/Ker A = infa∈Ker A ‖x + a ‖X is the norm on the quotient space .X/Ker A of cosets 
of the linear space X over .Ker A. The quotient space is complete in this norm (see, for example, 
Kolmogorov and Fomin 1980). 
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Banach theorem36 the operator . A−1
1 is continuous. It remains to note that .Im A is 

the preimage of the closed set .X/Ker A × {0} ⊂ X1 under the continuous mapping 
.A−1

1 : Y = Im A �+L → X/Ker A × L, and hence .Im A is closed. �

In the case of the operator equation . Au
(22.7) 
= h ∈ Y , .Y = Hs,M is a Hilbert space. 

In this problem, the condition .ImA = ImA is equivalent to saying that .CokerA is 
isomorphic to the orthogonal complement .ImA in .Hs,M . 

Definition 22.9 An operator .A ∈ L(X,Y ) is called a Fredholm operator37 if the 
dimensions of its kernel and cokernel are equal. The operator .A ∈ L(X,Y ) is called 
a Noetherian operator38 if 

.α = dim Ker A < ∞, β = dim Coker A < ∞. (22.8) 

The number .ind A = α− β ∈ Z is called the index of the operator A. Condition (22.8) 
is frequently written in the short form: .ind A < ∞. 

According to Definition 22.7, the operator 

. A : Hs(Ω) � u �→ Au ∈ Hs,M

of the elliptic problem (22.3)–(22.5), is a Noetherian operator. The following result is 
one of the most important theorems in the theory of Noetherian (and hence elliptic) 
operators. 

Theorem 22.10 (On the Stability of Index) If a family of Noetherian operators 
.At : X → Y is continuous with respect to .t ∈ [0, 1], i.e.,

36 Let X and Y be Banach spaces, .A ∈ L(X,Y). If  .Ker A = 0, then  .A−1 : Im A → X exists. 
However, the operator . A−1 may fail to be continuous (for example, see the comment to Lemma 22.8.). 
The Banach theorem (see Kolmogorov and Fomin 1980) asserts that . A−1 is continuous if .Im A = Y . 
37 Erik Ivar Fredholm (1866–1927) was a Swedish mathematician. His paper “Sur une classe 
d’équations fonctionnelles” (1903) in Acta Mathematica was one of the most important milestones 
in the creation of the operator theory. David Hilbert developed the concept of Hilbert space, in 
particular in connection with the study of Fredholm integral equations. 
38 In honor of a famous German mathematician Fritz Alexander Ernst Noether (1884–1941). 
Until 1933, we was a professor of mathematics in Wrocław (Breslau) University of Science and 
Technology. In his paper “Uber eine Klasse singularer Integralgleichungen” (Math. Ann. 1921m 
vol. 82, pp. 42–63) he gave an example of a linear one-dimensional singular integral operator with 
different (unlike Fredholm operators) dimensions of the kernel and cokernel. After Hitler came 
to power, Fritz and his distinguished sister Amalie Emmy Noether (1882–1935), best known for 
her contributions to abstract algebra and theoretical physics, emigrated: she to the United States, 
where she became a teacher at a women’s college in Pennsylvania, while he, through the mediation 
of the Society for the Assistance of German Scientists, was invited to Tomsk University (USSR), 
where as a professor he worked as a head of the department of mathematical physics and theoretical 
mechanics. His articles were published in Soviet scientific journals. In September 1935, Fritz came 
to Moscow as an honorary guest of a special session of the Moscow Mathematical Society dedicated 
to the memory of his great sister, who died in the spring of the same year. But in November 1937, 
Fritz was accused of espionage and sentenced to 25 years in prison, and in September 1941, he was 
shot. Rehabilitated in 1988 by the Supreme Court of the USSR. 
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. ‖Atu − Aτu‖Y ≤ C(t, τ)‖u‖X,

where .C(t, τ) → 0 as .t → τ, then .ind A0 = ind A1. 

This first proof of this theorem was given by F. Atkinson39 in Atkinson (1951) 
(for extensions, see also Gokhberg and Krein 1957). In the proof, which is based on 
Atkinson’s theorem (Atkinson 1951) on the index of the product of two Noetherian 
operators . A1 and . A2, .ind A0A1 = ind A0 + ind A1, one constructs the left and right 
regularizers of a Noetherian operator .A : X → Y , i.e., operators . Rl and . Rr , for  
which .Rl A = IX +T and .A Rr = IY + S, where .IX +T : X → X and . IY + S : Y → Y
are completely continuous operators, and which, therefore, have zero index by the 
well-known Fredholm alternative (Kolmogorov and Fomin 1980). Regularizers of 
this kind will be constructed below in Lemma 22.15 for the elliptic boundary-value 
problem (22.3)–(22.5). For this purpose, we shall also need the result of the following 
exercise. 

P 22.11 Verify that, for any (!) .s ∈ R, there exists a continuous extension operator . Φ : H s (Ω) →
H s (Rn). Verify that operator (22.7) is continuous for .s > max j (m j ) + 1/2. 
Hint For .Ω = R

n
+ , as . Φ we can take the operator 

. Φ f = Op(〈ξ−〉−s )θ+Op(〈ξ−〉s )L f , Op
(
a(ξ)) (21.16) 

= F−1a(ξ)F, (22.9) 

where .〈ξ−〉 = ξ− + 1, .ξ− = −iξn + |ξ′ |, .L : H s (Ω) → H s (Rn) is any extension operator, 
and . θ+ is the characteristic function of . Rn

+ . In view of Theorem 18.5 (Paley–Wiener), the function 
.θ+Op(〈ξ−〉s )L f does not depend on L, because the function .〈ξ−〉s (L̃1 f −L̃2 f ) extends analytically 
with respect to . ξn into . C+. It follows that .Op(〈ξ−〉s )(L1 f − L2 f ) = θ−g ∈ L2. Hence 

. ‖Φ f ‖s,Rn ≤ C inf
L
‖θ+Op(〈ξ−〉s )L f ‖0,Rn ≤ C inf

L
‖L f ‖s,Rn = C ‖ f ‖s,Rn

+
.

If . ¯̄Ω is a compact set in . Rn , then  

. Φ f = ϕ · f +
K∑
k=0

ψk · Φk (ϕk · f ),

where .
∑K

k=0 ϕk ≡ 1 in . Ω, .ϕk ∈ C∞
0 (Ωk ), .⋃K

k=1 Ωk is a covering of the domain . Ω such that 

. 

K⋃
k=1
Ωk ⊃ Γ = ∂Ω; ψk ∈ C∞

0 (Ωk ), ψkϕk = ϕk,

and . Φk is the operator defined by (22.9) in the local coordinates, which “unbend” .Γ = ∂Ω.

39 Frederick Valentine Atkinson (1916–2002) was educated at Oxford, and in 1939 he defended his 
doctoral thesis on average values of the Riemann zeta function, carried out under the supervision of 
Edward Titchmarsh. Then he spent three years in India, deciphering Japanese codes. He was fluent 
in Latin, Ancient Greek, Urdu, German, Hungarian, and Russian. He returned to Oxford in 1946, 
and from 1948 to 1955 was Professor of Mathematics at University College, Nigeria. During his 
stay in Nigeria, in September 1948, we presented his paper Atkinson (1951) to the editorial office 
of the Sbornik:Mathematics, which was published in 1951. In this paper, he modestly wrote that 
he was actually studying from an abstract point of view the known properties of singular integral 
equations. From 1955 until the end of his life, F. Atkinson lived in Canada. From 1989 to 1991, he 
was president of the Canadian Mathematical Society. 



130 3 Pseudo-Differential Operators and Fourier Operators

Lemma 22.12 If .indA < ∞, then the so-called elliptic a priori estimate holds: 

.‖u‖s ≤ C(‖Au‖s,M + ‖u‖s−1) ∀u ∈ Hs(Ω); (22.10) 

here C does not depend on u. 

Proof Let . X1 be the orthogonal complement of .X0 = KerA in . Hs . We have . A ∈
L(X1,Y1), where .Y1 = ImA, and . A is the isomorphism of the spaces . X1 and . Y1. 
The space . Y1 is closed (Lemma 22.8), and hence is a Banach space. By the Banach 
theorem, .A−1 ∈ L(Y1, X1). Let  p be the orthogonal projection of X onto . X0. We have  

. ‖u‖s ≤ ‖pu‖s + ‖(1 − p)u‖s = ‖pu‖s + ‖A−1A(1 − p)u‖s ≤
≤ ‖pu‖s + C1‖A(1 − p)u‖s,M ≤ ‖pu‖s + C1‖Au‖s,M + C2‖pu‖s .

It remains to observe that .‖pu‖s ≤ C‖u‖s−1. But this is indeed so, because .pu ∈ X0, 
.dim X0 < ∞, and hence .‖pu‖s ≤ C‖pu‖s−1 (since the continuous function .‖v‖s is 
bounded on the finite-dimensional sphere .‖v‖s−1 = 1, .v ∈ X0). �

Lemma 22.13 Inequality .(22.10) implies that .dim KerA < ∞. 

Proof If .dim KerA = ∞, then .X0 = KerA possesses an orthonormal system of 
vectors .{u j}∞j=1. We have .‖uk − um‖2

s = 2. From  (22.10) we get . ‖uk − um‖s =
√

2 ≤
C‖uk − um‖s−1, because .A(uk − um) = 0. Hence .‖uk − um‖s−1 ≥ √

2/C. There-
fore, the sequence . {u j}, which is bounded in .Hs(Ω), does not have a subsequence 
converging in .Hs−1(Ω). But this contradicts the compactness of the embedding of 
.Hs(Ω) into .Hs−1(Ω) (see Theorem 20.15). �

Remark 22.14 Lemmas 22.12 and 22.13 reveal the role of the a priori  esti-
mate (22.10), which will be proved below in Theorem 22.26. The way towards 
its proof is suggested by the proof of the a priori estimate (21.19) in . R

n (see the hint 
to Exercise 21.9), and also following lemma. 

Lemma 22.15 Let .R ∈ L(Hs,M,Hs), and let 

.RAu = u + Tu, ‖Tu‖s+1 ≤ C‖u‖s and (22.11) 
A Rh = h + Sh, ‖Sh‖s+1,M ≤ C‖h‖s,M . (22.12) 

Then .indA < ∞. 

Proof By the assumption, .R ∈ L(Hs,M,Hs). Hence (22.11) implies inequal-
ity (22.10), and therefore, .dim KerA < ∞. Next,  .S : Hs,M → Hs,M is a compact 
(or completely continuous) operator (Kolmogorov and Fomin 1980), i.e., S maps 
any bounded subset of .Hs,M into a compact set. This follows from relations (22.12) 
and since the embedding of .Hs+1,M into .Hs,M is compact (Theorem 20.15). Now 
the Fredholm theorem (see Shilov 2016, Kolmogorov and Fomin 1980) implies 
that .dim Coker(1 + S) < ∞. And since .ImA ⊃ Im(1 + S), we finally have 
.dim CokerA < ∞. �
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An operator R satisfying conditions (22.11) and (22.12) is known as a regular-
izator of the operator . A. 

Definition 22.16 Let .Γ = ∂Ω, where .Ω � R
n+1. A pseudo-differential operator40 

.A : Hs(Γ) → Hs−m(Γ) of class . Lm on a closed manifold . Γ is called elliptic if its 
symbol a satisfies (cf. inequality (21.3)) the condition 

.|a(x, ξ)| ≥ C |ξ |m for x ∈ Γ and |ξ | � 1. (22.13) 

P 22.17 Verify that .ind A < ∞. 
Hint Let .

∑
ϕk ≡ 1 be a partition of unity subordinate to a finite covering .∪Γk = Γ, and  . ψk ∈

C∞
0 (Γk ), .ψkϕk = ϕk . Show (cf. the hint to Exercise 21.9) that the operator 

.Rf =
∑

ψkOp(ρk (ξ)/ak (x, ξ))ϕk f , f ∈ H s−m(Γ), (22.14) 

where .ρ ∈ C∞(Rn), .ρ = 1 for . |ξ | ≥ M + 1 and .ρ = 0 for . |ξ | ≤ M , is a regularizator for A. 

22.18 Let us continue the study of the boundary-value problem (22.3)–(22.5). In  
what follows, it is assumed that the leading coefficients of the operator .a(x,D) are 
real if .dimΩ = 2. 

Lemma 22.19 The principal symbol .am(x, ξ) =
∑
|α |=m aα(x)ξα of the operator 

.a(x,D) always admits a factorization41 i.e. (see Vishik and Eskin 1965), the function 

.am(y, η) =
∑
|α |=m

aα(x)ξα
��
ξ=tσ′(x)η; x=σ−1(y), (22.15) 

where . σ is defined in Theorem 21.16, can be written in the form 

.am(y, η) = a+(y, η) a−(x, η), η = (η′, ηn) ∈ R
n−1 × R. (22.16)

40 Let .ξ = (ξ1, . . . , ξn) ∈ R
n be the coordinate representation of a linear functional v on the tangent 

space to . Γ at a point .p ∈ Γ with local coordinates .x = (x1, . . . , xn). The functional (vector) v 
is called a cotangent functional (vector). The set of all such vectors, which is denoted by . T ∗

pΓ, is  
isomorphic to . Rn . The  value of  v on the tangent vector .∇x = (∂/∂x1, . . . , ∂/∂xn) is given by the 
formula .(ξ, ∇x ) = ξ1∂/∂x1 + . . . + ξn∂/∂xn . If .y = σ(x) is a different local coordinate system 
of the same point .p ∈ Γ and if .η = (η1, . . . , ηn) is the corresponding coordinate representation 
of the cotangent vector v, then from the equality .(ξ, ∇x ) = (η, ∇y ) we have .ξ = tσ′(x)η, where  
.tσ′(x) is defined in Theorem 21.16. The set .∪p∈ΓT ∗

pΓ is equipped with the natural structure of 
a smooth manifold. This manifold is called the cotangent bundle. Let a function . a ∈ C∞(T ∗

pΓ)
be such that, for points from .Γk ⊂ Γ with local coordinates x, the function a coincides with 
some function .ak ∈ Sm . Let .

∑
ϕk ≡ 1 be a partition of unity subordinate to the cover .∪Γk = Γ, 

and let .ψk ∈ C∞
0 (Γk ), .ψkϕk = ϕk . From Theorem 21.16 on the change of variables it follows 

that the formula .A: H s (Γ) � u �→ Au =
∑
ϕkOp(ak (x, ξ))ψku ∈ H s−m(Γ) defines uniquely, 

up to an operator .T ∈ L(H s (Γ), H s−m+1(Γ)), a continuous linear operator, which is called the 
pseudo-differential operator of class . Lm with symbol a. 
41 The equation in convolutions on the half-axis .

∫ ∞
0 K(x, x − y)u(y) dy = f (x), which  was  

examined by N. Wiener and E. Hopf (see Wiener and Hopf 1931) in their study of problem of 
radiation equilibrium inside stars, was successfully solved by them using their idea of factorization 
of the symbol .Fz→ξK(x, z) of the integral operator. 
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Here the function . a±, as well as the function . a−1± , is continuous for .η � 0, and in 
addition, for any .η′ � 0 it extends analytically with respect to . ηn in the complex 
half-plane . C∓. Moreover, 

. a±(y, tη) = tμa±(y, η) for t > 0, (η′, ηn) ∈ R
n−1 × C∓,

where the number . μ is integer,42 and .m = 2μ. 

Proof If the coefficients .aα(x) for .|α | = m are real, then, for .η′ � 0, the equation 
.am(y, η) = 0 has only .m = 2μ complex conjugate roots .ηn = ±iλk(y, η′) ∈ C± for . ηn, 
and 

.a±(y, η) = c±(y)
μ∏

k=1
(±ηn − iλk(y, η′)), c±(x) � 0. (22.17) 

For .n ≥ 3, (22.17) always holds. Indeed, the function .am(u, η) is homogeneous with 
respect to . η, and hence, for .ηn � 0, to each root .ηn = ±iλ(y, η′) ∈ C± of the equation 
.am(u, η) = 0, where .η = (η′, ηn), there corresponds the root .ηn = ∓iλ(y,−η′) ∈ C∓. 
It remains to note that the function .λ(y, η′) is continuous with respect to .η′ � 0, and 
hence, since the sphere .|η′ | = 1 is connected for .n ≥ 3 and in view of the condition 
.ηn � 0, we have .∓λ(y,−η′) ∈ C∓ for any .η′ � 0. �

Remark 22.20 It is clear that the symbol . |η |2 of the Laplace operator admits the 
factorization .|η |2 = η+η−, where .η± = ±iηn + |η′ |. However, the symbol of the 
operator .(∂/∂y2+i∂/∂y1)m cannot be factored, since .(ηn+iη′)−m extends analytically 
with respect to . ηn into . C+ (into . C−) only for .η′ > 0 (.η′ < 0). This example explains 
the necessity of the constraint formulated in §22.18. 

22.21 Let us formulate the Shapiro–Lopatinskii condition,43 which is also known 
as the complementing condition (Agmon et al. 1959), on symbols of the boundary 
operators .bj(x,D). We fix a point .x0 ∈ Γ and single out the leading terms of the 
symbols of the operators .a(x0,D) and .bj(x0,D), which are written in the coordinates 
.y = (y′, yn) ∈ R

n−1 × R, which locally “unbend” . Γ. This means that near . x0 the 
boundary of . Γ is given by the equation .yn = 0, where . yn is the inner normal vector 
to . Γ. Taking into account that 
42 We shall see below that the number . μ, which is equal to the degree of homogeneity of the 
function .a+(y, η) with respect to . ηn , and which is called the index of factorization of the symbol 
. am , is not accidentally indicated by the same letter as the desired number of boundary operators 
.b j (x, D) in problem (22.3)–(22.5).
43 In 1945/46, I. M. Gelfand at his seminar at Moscow State University formulated the problem of 
finding well posed boundary-value problems, for example, for linear elliptic differential equations. 
A couple of years later, the editorial office of the journal “Sbornik: Mathematics” received the paper 
Shapiro (1951) by his wife, Zorya Yakovlevna Shapiro (1914–2013), which answered this problem 
in algebraic terms for some elliptic linear systems in the case of the Dirichlet problem. Conditions 
for the coefficients of a linear elliptic system and the coefficients of the boundary-value operators, 
which were sufficient (and, as it later turned out, necessary) for reducing the boundary-value 
problem to a system of regular integral equations of the Fredholm type, were found in the papers of 
1952–1953 (see Lopatinskii 1953) written by Yaroslav Borisovich Lopatinskii (1906–1981), who 
was elected a corresponding member in 1951, and in 1965, an academician of the Academy of 
Sciences of the Ukrainian SSR. 
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. am(x0, η) (22.16) 
= a+(x0, η)a−(x0, η), 

we consider the polynomials 

.ηn �→
μ∑

k=1
bjk(η′)ηkn ≡ bm j (x0, η) mod a+(x0, η), (22.18) 

i.e., the remainders on division of the polynomials 

. ηn �→ bm j (x0, η) =
∑
|β |=m j

bjβ(x0)ξβ
��
ξ=tσ′(x0)η, j = 1, . . . ,

m
2
,

by the polynomial .ηn �→ a+(x0, η). The Shapiro–Lopatinskii condition means that 
the polynomials (22.18) are linearly independent, i.e., 

. det(bjk(x, η′)) � 0 ∀x ∈ Γ, ∀η′ � 0. (22.19) 

In other words, the principal symbols .bm j (x, η) of the boundary operators, which are 
considered as polynomials of . ηn, are linearly independent modulo the polynomial 
.ηn �→ a+(x0, η). 
Remark 22.22 In the case of a differential operator .a(x,D) or a pseudo-differential 
operator .a(x,D) with rational symbol, for example, as in Example 21.6, we have  

. a+(η′, ηn) = (−1)μa−(−η′,−ηn).

Hence the function .a+(x0, η) in Condition (22.19) can be replaced by .a−(x0, η). By  
the same reason, in these cases it is unessential whether . yn is the inward or outward 
normal vector to . Γ. 

According to Theorem 22.26 (see below), Definition 22.7 of ellipticity of prob-
lem (22.3)–(22.5), which was formulated in terms of functional properties of an 
operator . A, is equivalent to the following definition, which is given in algebraic 
terms and related to higher-order symbols of the operator . A. 

Definition 22.23 Problem (22.3)–(22.5) and the corresponding operator . A are called 
elliptic if Conditions (22.4) and (22.19) are satisfied. 

Example 22.24 Let .a(x,D) be an elliptic operator of order .m = 2μ. Let . Bj(x,D) =
∂ j−1/∂ν j−1 + . . ., . j = 1, . . . , μ, where . ν is the normal vector to . Γ, and dots denote an 
operator of order . j − 1. Then .det(bjk(x, η′)) = 1. So, in this case, problem (22.3)– 
(22.5) is elliptic. 

P 22.25 Let . λ be a smooth vector field on .Γ = ∂Ω, where . ¯̄Ω is a compact set in . Rn . Verify that the 
Poincaré problem 

.a(x, D)u ≡
∑
|α |≤2

aα(x)Dαu = f in Ω, ∂u/∂λ + b(x)u = g on Γ (22.20)
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for an elliptic operator.a(x, D) is elliptic for .n ≥ 3 if and only if the field . λ is not tangent to . Γ
at any point of the curve . Γ . Verify also that in the  case .n = 2 problem (22.20) is elliptic (under 
Condition (22.13)) for any nondegenerate field . λ. 

Theorem 22.26 Assume that the operator .A : Hs(Ω) → Hs,M (Ω) corresponding to 
problems (22.3)–(22.5), i.e., to the problem 

. a(x,D)u ≡
∑
|α | ≤m

aα(x)Dαu = f in Ω � R
n,

bj(x,D)u
��
Γ
≡

∑
|β | ≤m j

bjβ(x)Dβu
��
Γ
= gj on Γ, j = 1, . . . , μ = m/2,

is elliptic in the sense of Definition 22.23. Let .s > maxj(mj)+ 1/2. Then . indA < ∞
and 

.‖u‖s ≤ C
(
‖a(x,D)u‖s−m +

μ∑
j=1

‖bj(x,D)u
��
Γ
‖′s−m j−1/2 + ‖u‖s−1

)
. (22.21) 

Proof We give only a sketch of the proof (for details, see the paper Vishik and Eskin 
1965 and the books Agmon et al. 1959, Eskin 1973). Using the partition of unity (as 
has been suggested in hints to to Exercises 22.11 and 22.17) and taking into account 
Exercise 21.9, we can reduce the problem of construction of the regularizer R for 
the operator . A to the case when .Ω = R

n
+, and the symbols .a(x, ξ) and .bj(x, ξ) are 

independent of x. In this case, we define the operator .R : Hs,M → Hs by the formula 

.RF = P+Op(r+/a+)θ+Op(r−/a−)L f +
μ∑
j=1

P+Op(cj)(gj − fj). (22.22) 

Here .P+ : D(Rn) → D(Rn
+) is the restriction operator to . R

n
+; 

. L : Hs(Rn
+) → Hs(Rn)

denotes some (any) extension operator. Next, .r± = ξ
μ
±/〈ξ±〉μ. These functions “re-

move” the singularities of the symbols .1/a± at the point .ξ = 0, since .ξ± = ±iξn+ |ξ ′ |, 
and .〈ξ±〉 = ξ± + 1. Note that (in contrast to the similar function . ρ in (21.4)), the 
functions . r± extend analytically with respect to .ξn ∈ C∓. Finally, 

. cj(ξ) =
μ∑

k=1
cjk(ξ ′)(ξk−1

n /a+(ξ)),

where .(ck j(ξ ′)) is the inverse matrix (see (22.19)) of .(bjk(ξ ′)), and 

. fj = γBj(D) · R0 f , where R0 f = P+Op(r+/a+)θ+Op(r−/a−)L f .
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Using Theorem 18.5 (Paley–Wiener), one can easily show that the function . R0 f
does not depend on L (cf. Exercise 22.11) and vanishes at .xn = 0, together with the 
derivatives with respect to . xn of order . j < μ. 

Note that .Au = P+Op(a−)Op(a+)u+, where by .u+ ∈ H0(Rn) we denote the 
extension by zero for .xn < 0 of the function .u ∈ Hs(Rn). In view of the Paley– 
Wiener theorem 

. θ+Op(r−/a−)Op(a−) f− = 0 ∀ f− ∈ H0(Rn)

if .P+ f− = 0. Hence 

. R0Au = P+Op(r+/a+)θ+Op(r−/a−)Op(a−)Op(a+)u+ =

= P+Op(r+/a+)θ+Op(a+)u+ + T1u = u + T2u,

where .‖Tju‖s+1 ≤ C‖u‖s . The operator . R0 is a regularizator for the operator corre-
sponding to the Dirichlet problem with zero boundary conditions. A similar analysis 
shows that in this case of a half-space, operator (22.22) is a regularizator for . A. �

The following corollary follows from estimate (22.21). 

Corollary 22.27 Let .u ∈ Hs−1(Ω), .Au ∈ Hs,M (Ω). Then .u ∈ Hs(Ω). In particular, 
if .u ∈ Hs(Ω) is a solution of problem (22.3)–(22.5), and . f ∈ C∞( ¯̄Ω), .gj ∈ C∞(Γ), 
then .u ∈ C∞( ¯̄Ω). 
Proposition 22.28 Under the hypotheses of Theorem 22.26, .KerA, .CokerA, and 
hence .indA do not depend on s. 

Proof By Corollary 22.27, we have .u ∈ Ht for any .t > s if .u ∈ Hs and .Au = 0. So, 
.KerA does not depend on s. We further note that .Hs,M is the direct sum .A(Hs) �+Q, 
where Q is a finite-dimensional subspace. Besides, .Ht,M is dense in .Hs,M for 
.t > s. Hence (see Lemma 2.1 in Gokhberg and Krein 1957) .Q ⊂ Ht,M . So by  
Corollary 22.27 we get 

. Ht,M = Ht,M ∩ Hs,M = Ht,M ∩ A(Hs) �+Ht,M ∩Q = A(Ht,M ) �+Q,

i.e., .CokerA does not depend on s. �

Remark 22.29 Even though .KerA and .CokerA do not depend on s, but . dim KerA
and .dim CokerA may vary if the operator . A is perturbed by an operator of lower 
order or by an operator with arbitrarily small norm.44 This can be easily seen 
even in the one-dimensional case. Nevertheless, .indA does not depend on these 
perturbations by Theorem 22.10. 

Remark 22.30 Theorem 22.10 gives us a convenient method for investigation of 
solvability of elliptic equations .Au = F. Indeed, assume that, for a family of elliptic 
operators

44 The elliptic theory was constructed with the help of such operators. 
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. At = (1 − t)A + tA1 : Hs → Hs,M

it is known that .indA1 = 0. Then .indA = 0. If, in addition, we can establish that 
.KerA = 0, then the equation .Au = F is uniquely solvable. If .dim KerA = 1, then 
the equation .Au = F is solvable for any function F orthogonal in .Hs,M to some 
nonzero function, and the solution itself is uniquely defined up to a one-dimensional 
.KerA. 

Example 22.31 Let us give (following Agranovich and Vishik 1964) an example  of  
an elliptic operator of a quite general form with zero index 

. A1 = (a(x,D), b1(x,D)
��
Γ
, . . . , bμ(x,D)

��
Γ
) : Hs(Ω) → Hs,M (Ω)

for an elliptic boundary-value problem in a domain .Ω � R
n with smooth boundary . Γ. 

For this operator, .indA1 = 0. It is assumed that 

. a(x, ξ) =
∑

|α |+k≤2μ
aα(x)ξαqk, bj(x, ξ) =

∑
|β |+l≤m j

bjβ(x)ξβql,

where .q ≥ 0. It is also assumed that the .a(x,D) is elliptic with parameter, that is, 

. a2μ(x, ξ, q) =
∑

|α |+k=2μ
aα(x)ξαqk � 0 ∀(ξ, q) � 0, ∀x ∈ ¯̄Ω.

In this problem .a2μ(x, η, q) can be factored as . a2μ(x, η, q) = a+(x, η, q)a−(x, η, q)
(see Lemma 22.19). It is also assumed that the following analogue of the Shapiro– 
Lopatinskii condition is satisfied: for any .x ∈ Γ, the principal symbols 

. bj(x, ξ) =
∑

|β |+l≤m j

bjβ(x)ξβql
��
ξ=tσ′(x)η, j = 1, . . . , μ,

of the boundary operators, considered as polynomials in . ηn, are linearly independent 
modulo the function .a+(x, η, q), considered as a polynomial with respect to . ηn. 

Under these assumptions. we can now repeat the proof of Theorem 22.26. We first  
replace .〈ξ〉 = 1+ |ξ | in the definition of the norm of the space . Hs by .〈ξ〉 = 1+q+ |ξ |. 
Using the obvious inequality, we have 

. ‖(1 + q + |ξ |)sũ(ξ)‖L2(Rn ) ≤
1
q
‖(1 + q + |ξ |)s+1‖L2(Rn)

and hence the regularizator R of the operator . A1 (see the proof of Theorem 22.26) 
satisfies the relations 

.R · A1u = u + Tu, ‖Tu‖s ≤ 1
q
‖u‖s,

A1 · RF = F + T1F, ‖T1F‖s,M ≤ 1
q
‖F‖s,M .
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Therefore, for .q � 1, the operators s .1 + T and .1 + T1 are automorphisms of the 
corresponding spaces, and the equation .A1u = F for .q � 1 is uniquely solvable. 
This shows that .indA1 = 0. 

The following proposition easily follows from Remark 22.30 and Example 22.31. 

Proposition 22.32 Let .A : Hs → Hs,M be the operator corresponding to the prob-
lem from Example 22.24. Then .indA = 0. (In particular, this result holds for the 
Dirichlet problem for an elliptic operator .a(x,D) satisfying condition 22.18 and for 
the elliptic Poincaré problem considered in Exercise 22.25). 

Corollary 22.33 The Dirichlet problem45 

. Δu = f ∈ Hs−2(Ω), u = g ∈ Hs−1/2(Γ), s ≥ 1,

for the Poisson equation in a domain .Ω � R
n with sufficiently smooth boundary . Γ

is uniquely solvable. Moreover, 

.‖u‖s ≤ C(‖ f ‖s−2 + ‖g‖′s−1/2). (22.23) 

Proof By the maximum principle (Theorem 5.14), .KerA = 0. Hence .CokerA = 0, 
because .indA = 0. Furthermore, since .KerA = 0, from the general elliptic es-
timate (22.21) we have (22.23). Indeed, arguing by contradiction, consider a se-
quence .{un} such that .‖un‖s = 1, and .‖Aun‖s,M → 0. Since the embedding of 
.Hs(Ω) into .Hs−1(Ω) is compact, and using (22.21) we can assume that . un converges 
in . Hs to .u ∈ Hs . Since .‖un‖s = 1, we have  .‖u‖s = 1. But  .‖u‖s = 0, because 
.‖Au‖s,M = lim ‖Aun‖s,M = 0. �

Corollary 22.34 The Neumann problem 

.Δu = f ∈ Hs−2(Ω), ∂u
∂ν

= g ∈ Hs−3/2(Γ), s > 3/2, (22.24) 

in a domain .Ω � R
n with sufficiently smooth boundary . Γ is solvable if and only if 

.

∫
Ω

f (x) dx −
∫
Γ

g(γ)dΓ = 0, (22.25) 

In this case, the solution . u(x) is determined up to a constant. 

Proof The necessity of condition (22.25) is immediate the Gauss formula (7.7). 
From the first Green formula (or the Giraud–Hopf–Oleinik Lemma 5.19) it follows 
that .KerA consists of constants. Hence, .dim CokerA = 1, inasmuch as .indA = 0. 
Hence problem (22.24) is solvable if the right-hand side .F = ( f , g) satisfies one 
and (only one) orthogonality condition. So, the necessary condition (22.25) is also 
sufficient for solvability of problem (22.24). �

45 This pertains, in particular, to problem (7.13).
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Remark 22.35 The method of Remark 22.30 for investigating the solvability of el-
liptic equations can also be applied in more general cases, for example, for problems 
with conjugation conditions on the surfaces of discontinuity of coefficients (Demidov 
1969). 

Remark 22.36 The theory of elliptic boundary-value problems for differential op-
erators considered in this section can be naturally extended to pseudo-differential 
operators (see Vishik and Eskin 1965, Eskin  1980). 

In particular, the following theorem was proved in Demidov (1973), Demidov 
(1975a) (see also Eskin  1973). 

Theorem 22.37 Let . Ω be a bounded domain in . R
3 with smooth boundary .Γ = ∂Ω, 

and let . f ∈ Hs(Ω), where .s > 3/2. Then the integral equation 

.ε2u(x) + 1
4π

∫
Ω

e−q |x−y |

|x − y | u(y) dy = f (x), q ≥ 0, ε ≥ 0, (22.26) 

has a solution, and this solution is unique. Namely, for .ε = 0 the solution is given by 

.u = u0 + ρ0 δ
��
Γ
, u0 ∈ Hs−2(Ω), ρ0 ∈ Hs−1(Γ), (22.27) 

where . δ
��
Γ

is the .δ-function concentrated on . Γ. More precisely, .u(x) lies in the 
function space .H(−1)

s−2 (which was introduced in Demidov 1973), in which . u0 and . ρ0
are related.46 

If .ε > 0, then 

.u(x) = u0(x) + 1
ε
ρ0(y′)ϕ e−yn/ε + r0(x, ε), (22.28) 

where .‖r0‖L2 ≤ C
√
ε, . yn is the distance along the normal vector from x to .y′ ∈ Γ, 

and .ϕ ∈ C∞( ¯̄Ω), .ϕ ≡ 1 in a small neighborhood of the curve . Γ, and .ϕ ≡ 0 outside 
a neighborhood of slightly larger radius. Besides, 

. 
1
ε
ρ0(y′)ϕ e−yn/ε → ρ0 δ

��
Γ
, if ε → 0.

In next section (in §23.7) we describe a method for finding the component . u0 of 
the sought-for solution u. From the knowledge of this component, one can easily 
find the solution (22.28) of Eq. (22.26) for .ε > 0, and hence, the density . ρ0. 
Hint In order to understand why formula (22.27) gives a solution of Eq. (22.26) for 
.ε = 0, we first consider a slightly different integral equation of the first kind, namely 

.

∫
R

3
+

e−2πλ |x−y |u(y)dy
|x − y | = f (x), where λ > 0, x ∈ R

3
+. (22.29) 

46 This relation is reflected in formulas (22.31), (22.32) (see below).
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In this equation, the kernel of the corresponding operator involves an additional factor 
.e−2πλ |x−y | , where .λ > 0. Following, for example, (22.9), and taking into account 
that . f+

��
R

3
+
= f and . f−

��
R

3
+
= 0, we consider the continuous extension . Φ f = f+ + f−

of the function f and note that Eq. (22.29) can be written as 

.Op
( 1
|ξ |2 + λ2

)
u+ = Φ f , u+(y) =

{
u, if y ∈ R

3
+,

0 otherwise.
(22.30) 

Indeed, .(22.30) ⇔ (−Δ + (2πλ)2)Φ f = 4π2u+, where . Δ is the Laplace operator. 
The solution . Φ f of the last equation can be written as the convolution . 4π2G ∗ u+
of the function . u+ with the fundamental solution .G(x) = exp(−2πλ |x |)/4π |x | of the 
operator .−Δ+(2πλ)2 (see Vladimirov 1971, cf. (7.11)). Let .|ξ ′ |2λ

def
= ξ21 +ξ

2
2 +(2πλ)2, 

and let . θ(y) be the characteristic function of the half-space . R
3
+. Then the solution of 

Eq. (22.30) is given by the formula47 

. u+(x) = Op
(
iξ3 + |ξ ′ |λ

)
θ(x)Op

( − iξn + |ξ ′ |λ
)
Φ f .

Next, using .Op(iξ3 + |ξ ′ |λ)Op(−iξ3 + |ξ ′ |λ) = 1
(2π)2

(−Δ + (2πλ)2) and . Op(iξ3) =
1

2π
∂
∂x3

, we find that .u+(x) = u0(x) + ρ0(x′)δ(x ′), where 

.u0(x) = θ(x)
(
− 1
(2π)2Δ + λ

2
)
f , (22.31) 

ρ0(x′) = − 1 
4π2 

∂ 
∂x3 

f (x1, x2, x3)
��
x3=0 + 

1 
2π

Op(|ξ ′ |λ) f (x1, x2, 0). (22.32) 

The condition .λ > 0 in Eqs. (22.29) and (22.30) is essential (because for . λ = 0
the corresponding operators are not defined). However, if the domain Y is bounded, 
then using the partition of unity and applying the general elliptic theory (and, in 
particular, Theorem 22.10 on stability of the index of elliptic operators), it proved 
possible (see Demidov 1973) to show that the operator .I : u �→ Iu =

∫
Y

u(y) dy
|x−y | is an 

isomorphism of appropriate function spaces. Moreover, in this way, formula (22.27) 
can also be established. 

23 The Direct, Inverse, and Central Problems of 
Magneto-Electroencephalography 

23.1 Magneto-electroencephalography is a non-invasive (not even disturbing the 
skin) method of brain imaging The direct MEEG-problem calls for evaluation of

47 According to Theorem 18.5 (Paley–Wiener), .θ(x)Op
( − iξn + |ξ′ |λ

)
f− = 0, and hence . u+(x)

is independent of . f−. Note that the condition . f ∈ H s (Ω) from Theorem 22.37, where  .s > 3/2, 
appears because .Op

( − iξn + |ξ′ |λ
)
Φ f ∈ H s−1, and since the operator . θ : H t � g �→ θ · g ∈ H t

is bounded (see Stein 1957) if and only if . |t | < 1/2. 
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the electromagnetic field from some explicit formulas (including the Biot–Savart 
formula) by using the volume density of electric charges and the so-called current 
dipoles q : Y → R3 (current dipole moments Hämäläinen et al. 1993) caused by 
synchronous activity of large masses of neurons in the brain, which occupies a set 
Y ⊂ R3. In contrast to the direct problem, the inverse MEEG-problem, according to 
the terminology accepted among biophysicists, is the search for the distribution of 
current dipoles based on the measurement data of electric induction D = εE and 
the magnetic induction B = μH at a large number of points xk on the surface X , 
which is the inside of the helmet covering the patient’s head (Hämäläinen et al. 
1993; Stroganova et al. 2011; Ichkitidze et al. 2014; Boto et al. 2018) 48 

Fig. 3.1: The direct and inverse MEEG-problems 

ByH and E 
we denote the intensities of the magnetic and electric fields, which are functions of 

(x, t) ∈  R3×R+, where t is time, and μ = μ(x) > 0 and ε = ε(x) > 0 are, respectively, 
the magnetic and dielectric permittivity, which are assumed to be independent of t 
(Fig. 3.1). 

Since the 1980s, when active studies of the inverse MEEG-problem (in the above 
sense) have begun, the opinion about its ill-posedness has become widespread in 
scientific and popular science literature (see, for example, Sheltraw and Coutsias 
2003, Shestakova et al. 2012 and the literature cited there). Often an appeal was 
made to the authority of Helmholtz, who allegedly (see Helmholtz 1853) expressed 
this opinion. However, the authors of such claims either (as in the case of Shestakova 
et al. 2012) never read this Helmholtz’s article or interpreted it too straightforwardly.

48 Synchronous neural currents induce very weak magnetic fields that are more than 104 times 
weaker than the Earth’s magnetic field. Therefore, they are measured by ultra-sensitive mag-
netometers. So far, the most common magnetometers are the so-called SQUID magnetometers 
(Superconducting Quantum Interference Device), whose sensors are accommodated in the helmet 
in the form of a fixed flask covering the patient’s head. SQUID magnetometers are very expensive 
(there are only two or three dozen of them in the modern world). The fact is that quantum sensors 
function only at ultra-low temperatures. In addition, SQUID magnetometers are installed in special 
rooms shielded from external magnetic signals, including the Earth’s magnetic field. Perhaps in 
the near future, SQUID magnetometers will be partially replaced by SERF magnetometers (Spin 
Exchange Relaxation Free), which have recently been studied in experiments involving portable 
individual 3D helmets (Boto et al. 2018). 
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In the actual fact, in the second part of Helmholtz (1853) in the section “Theorem von 
der gleichen gegenseitigen Wirkung zweier elektromotorischen Flächenelemente,” 
Helmholtz in details (see pp. 353–359) showed that the distribution of the current 
inside the conductor cannot be uniquely recovered only from the direct knowledge 
of the electromagnetic field outside the conductor. But this is no surprise of course: 
supporting examples can be easily constructed in the spherically symmetric case 
(see, for example, Hämäläinen et al. 1993, p. 430). 

Nevertheless, this does not mean that the inverse MEEG problem is ill-posed if 
it is understood in the sense that it pinpoints and reveals the main difficulty, and 
does not obscure it, namely as the search for the distribution of current dipoles 
(and, possibly, the volume density of electric charges) based on the solution of the 
main central MEEG problem, i.e., a priori  essentially different49 electromagnetic 
fields in Y are possible, which are found from experimental data of measuring the 
electromagnetic field at a finite set of points outside the domain Y or on just two 
surfaces X1 and X2, which are the inner parts of the helmet on the patient’s head. The 
latter circumstance would allow us to know on Xj not only the approximate value of 
the electromagnetic field but also the gradients of its components. 

Below it will be shown (see also Demidov 2018) that (with the knowledge of 
the electromagnetic field, whose recovery is discussed in §23.7), the inverse MEEG 
problem is absolutely correct: it has a solution (stable with respect to perturbations), 
which is unique, but this solution lies in a special class of functions unknown to bio-
physicists.50 The solution has the form q = q0 +p0δ

��
∂Y

, where q0 is a usual function 
defined in the domain Y occupied by the brain, and p0δ

��
∂Y 

(see Definition 2.4) is the  
δ-function on the boundary of the domainY with some density p0. Moreover, p0 and 
q0 are interrelated, as pointed out in Theorem 22.37. 

23.2 We will start from the Maxwell equations 

.
∂tB(x, t) + rot E(x, t) = 0, divB(x, t) = 0,

−ε(x)∂tE(x, t) + rotH(x, t) = Jv(x) + Jp(x), divD(x, t) = ρ, (23.1) 

where ρ is the volume density of electric charges. It is known that for biological 
media, the coefficient μ from the formula B = μH is nearly equal to the constant μ0, 
which is the magnetic permeability of the vacuum. Hence in the case of the MEEG-

49 Two functions are called essentially different (cf. Demidov and Savelyev 2010) if their relative 
difference exceeds, say, 10÷20%, and, in addition, the neighborhood of a point of absolute maximum 
of one of these functions is a neighborhood of a point of absolute minimum of the other function. 
50 Biophysicists usually assume that the solution to the inverse MEEG problem is a certain set 
of point sources at desired points with desired coefficients. In this case, a particular multivariate 
linear algebra problem that appears in a huge number of studies on this topic turned out to be 
ill-posed, in particular, because it was initially considered in function spaces that were inadequate 
for the problem. Numerous attempts to correct the resulting ill-posed problems with the help of 
various approaches (usually via the so-called Tikhonov regularization, which was advertised by 
the “father of regularization of ill-posed problems” and his followers as a cure for all diseases), of 
course, cannot always give a reliable result, since these techniques do not reveal the true causes 
of ill-posedness, but only obscure them, thereby slowing down the real solution to such problems 
(see, for example, Leweke et al. 2022 and the references cited there). 
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problem, we will assume that μ = const. The extension to the case μ � const, which is 
necessary in problems related to scanning magnetic microscopes,51 of reconstruction 
of the magnetization parameters of an engineering object (for example, a ship) from 
the measured values of the magnetic field outside its body, and some others, does 
not present fundamental difficulties. Hence in what follows,52 we will assume that 
μ = 1. 

The current Jv = σE is commonly known as the volume (or ohmic) current 
(more precisely, its density), because it obeys the Ohm law related to the electrical 
conductivity coefficient σ = σ(x) ≥  0, which is assumed to be independent of t. 
The volume current is the result of the action of a macroscopic electric field on the 
charge carriers in the conducting medium of the brain. Neural activity is caused by 
the so-called primary (or main) current Jp , which occurs as a result of dielectric 
polarization and is a combination of the motion of charges inside or near the brain 
cell. The particles with these charges are parts of the molecules. They are displaced 
from their equilibrium positions by the action of an external electric field, but they 
do not leave the molecule in which they are contained. 

It may be frequently assumed that the function σ is piecewise constant, σ |Y± = σ±, 
σ |Y0 = σ0, and 

.σ+ = 0 in Y+, σ0 > 0 in Y0, σ− > σ0 in Y−, (23.2) 

whereY = Y− (i.e., the brain domain),Y0 is the domain occupied by the tissues (skull, 
etc.) lying between Y = Y− and the domain Y = Y+, which corresponds to the air 
around the head. These domains are shown schematically in Fig. 3.2. 

Fig. 3.2: The domains Y = Y− (brain), Y0 (skull X and soft bio-tissues), and Y+ 
(surrounding space)

51 These tools (Martin 1987), which are capable of registering magnetic fields, for example, in 
integrated circuits and in Magnetotactic bacteria, are used in materials science, mineralogy, and 
paleomagnetic analysis (Acuna et al. 2008; Degen 2008; Weiss et al. 2007). 
52 However, some useful formulas for the case μ � const (including the generalized Biot–Savart 
formula) will be given in Remark 23.8. 
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In the inverse problem, it is required to find the dipole distribution of the current 
dipoles q : Y → R3 (first of all, the significant local maxima of the distribution 
components) based on the measurement data of the fields B and E. Here of special 
importance is the fact mentioned in the fundamental paper Hämäläinen et al. (1993) 
and which pertains to the relation between the frequencies ω of oscillations of the 
electromagnetic field H(x, t) = H(x)eiωt , E(x, t) = E(x)eiωt and the frequency of 
electric oscillations in the brain cells. The analysis conducted in Hämäläinen et al. 
(1993, p. 426) shows that, for the system (23.1), a quasi-static approximation corre-
sponding to the main term of the asymptotics asω → 0 is justified. In Hämäläinen et 
al. (1993, p. 426) it is also noted that “A current dipole q„ approximating a localized 
primary current, is a widely used concept in neuromagnetism. . . In EEG and MEG 
applications, a current dipole is used as an equivalent source for the unidirectional 
primary current that may extend over several square centimeters of cortex.” 

23.3 As a result, we get the following equations: 

. rot E = 0, rot H = (σE + q), div B = 0, div D = ρ. (23.3) 

It is known that 

. rot E = 0 ⇔ E = −∇Φ and div B = 0 ⇔ B = rot A. (23.4) 

We have div(εE) = ρ, and hence 

. − εΔΦ − ∇ε∇Φ = ρ. (23.5) 

Physically, the potential Φ of the field E = −∇Φ is constant at infinity and hence 
can be assumed to be zero. For similar reasons, the vector potential A of the field 
B = rot A is also chosen to be zero at infinity. We have rot(rot A) = ∇ div A − ΔA, 
and hence ΔA = − rot B + ∇ div A. But  rot B (23.3) 

= σE + q (because B = H for 
μ = 1), and E = −∇Φ. Hence 

.ΔA(x) = −q(x) + ∇ [σ(x)Φ(x) + div A(x)]−Φ(x)∇σ(x). (23.6) 

The vector potential A is defined up to a potential field. Indeed, rot(A−A∗) = 0 
(23.4) ⇔ 

A−A∗ = ∇ϕ, i.e., A = A∗ +∇ϕ, where ϕ is some function. Taking as ϕ the solution 
of the equation Δϕ = − div A∗ − σΦ, subject to the condition ϕ

��∞ = 0 (because 
A∗��∞ = 0, Φ

��∞ = 0), we find that 

.σ(x)Φ(x) + div A(x) = 0, (23.7) 

and now (23.6) implies 

.ΔA(x) = −F(x), where F(x) = q(x) + Φ(x)∇σ(x). (23.8)
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It is worth pointing out that Eqs. (23.7) and (23.8) are not independent—they are 
equivalent to Eq. (23.3) and hence are related by the implicit relation between A, Φ, 
ρ and q given by the  Eq.  (23.3). 

Equation (23.8) is equivalent to the formula 

.q(x) = −ΔA(x) − Φ(x)∇σ(x). (23.9) 

This formula gives the required solution of the inverse problem, but only when the 
potentials A and Φ are known in Y . However, what is known a priori about them (in 
addition to the fact that they are equal to zero at infinity) is that there are measurement 
data for the fields B = rot A and E = −∇Φ at a finite set of points xk ∈ X (see the 
right-hand side of the figure). Nevertheless, in §23.7 it will be shown that from these 
data and the results of §23.4 one can identify “essentially” different (cf. Demidov 
and Savelyev 2010) approximations of the electromagnetic field, and, moreover, they 
can be identified in the entire(!) space R3 ⊃ Y . And they correspond to the desired 
a priori  possible “essentially” different solutions to the inverse problem 

23.4 Let us show that along the normal vector to S = ∂Y the graphs of the compo-
nents of the potential A, which obeys Eq. (23.8), have in general a corner53 on S. 
Hence ΔA, and therefore, the sought-for solution q contains the δ-function on the 
boundary of the domain Y with some density p0. Let  

. A = (a1, a2, a3), where Δaj(x) = δ(x), aj(∞) = 0,

i.e., aj(x) = − 1 
4π 

1 
|x | . Then 

. ΔA(x) (23.8) 
= − 

∫ 

R
3 
F(y)Δa(x − y) dy = Δ

[
− 
∫ 

R
3 
F(y)a(x − y) dy

]
. 

As a result, 

. A(x) = 1
4π

∫
R

3
F(y) dy

|x − y|
(23.8) 
= 

1 
4π 

∫ 

R
3

(
q(y) + Φ(y)∇σ(y)

) dy 
|x − y| , (23.10) 

because the Laplace equation has a unique solution, which vanishes at infinity (as 
already noted, A

��∞ = 0). 

If a function σ satisfying condition (23.2) is piecewise constant, then 

. 

∫
R

3

Φ(y)∇σ(y)
|x − y | dy = (σ+ − σ0)nX

∫
X

Φ0(yX ) dyX

|x − yX |
+ (σ0 − σ−)nS

∫
S

Φ0(yS ) dyS

|x − yS |
,

where nX and nS are unit normal vectors to X = ∂Y0 ∩ ∂Y+ = ∂Y+ and S = ∂Y0 ∩ ∂Y− = ∂Y . 
As a result, we have the integral equation of the first kind 

.

∫
Y

q(y)dy
|x − y| = f(x), x ∈ Y, (23.11) 

53 In view of (23.5) and (23.7), the potential Φ has a similar singularity.
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where f(x) = 4πA(x) −
∫ 
R

3 
Φ(y)∇σ(y) 
|x−y | dy. According to §22.37 and the comments 

given in this section, we have the following theorem. 

Theorem 23.5 Let54 f ∈ C∞( ¯̄Y ). Then Eq. (23.11) is uniquely solvable and its 
solution has the form 

.q(y) = q0(y) + p0(y′)δ
��
∂Y
, (23.12) 

where δ
��
∂Y 

is the δ-function on ∂Y , and q0 ∈ C∞( ¯̄Y ) and p0 ∈ C∞(∂Y ) are related 
as elements of the space H(−1) 

∞ (Y ) defined in Demidov (1973). 

One more remark is worth making. If the electric field data are not specified, i.e., 
if they are a priori  arbitrary, then the right-hand side of Eq. (23.11) is defined only 
up to ∇ϕ. In this case, the components of the solution of Eq. (23.11) are linearly 
dependent, and hence, there is an infinite-dimensional ambiguity in the choice of 
the solution. In the case Y = R2, this fact was established by various methods in 
Baratchart et al. (2013) and Demidov et al. (2015), in which calculation formulas 
were put forward). 

We also note (see §22.37) that there is a relation between the solution q of (23.11) 
(the integral equation of the first kind) and the solution qη of the integral equation 
of the second kind 

.η2qη(x) +
∫
Y

qη(y)
|x − y| dy = f(x), x ∈ Y, η > 0. (23.13) 

Namely, the following theorem holds (see Demidov 1975a). 

Theorem 23.6 The solution of Eq. (23.13) has the form 

.qη(x) = q0(x) +
1
η
p0(y′)ϕ e−yn/η + r0(x, η), (23.14) 

where ‖r0‖L2 ≤ C√η, yn is the distance along the normal vector from x to y′ ∈ Γ, 
and ϕ ∈ C∞( ¯̄Y ), ϕ ≡ 1 in the small neighborhood of ∂Y and ϕ ≡ 0 outside some 
larger neighborhood. 

23.7 Let us now discuss the above central problem of magneto-electroencepha-
lography on electromagnetic field reconstruction. For simplicity, we will assume that 
the dielectric permeability ε is constant. In this case, Eq. (23.8) for the potential Φ 
has the same form of the inhomogeneous Poisson equation (Δu = g) as the equation 
for the scalar components of the potential A. Besides, by specifying the function g, 

54 If we assume less regularity for the function f, then the components q0 and p0 of the solu-
tion (23.12) are also less regular. The exact smoothness classes in terms of Sobolev spaces are 
given in Demidov  (1973), where it is also shown that the operator 

. I : q �→ Iq =

∫
Y

q(y)dy
|x − y |

is an isomorphism of the corresponding function spaces.
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we simulate the setting of the test values ρ and q. To these values, there corresponds 
the solution of the direct MEEG-problem, which can be represented (in terms of 
the function u) by the potentials Ag = A(ρ, q) and Φg = Φ(ρ, q). So, the central 
MEEG-problem leads to the problem of minimization of the functional 

.G(ρ, q) def
=
∑
k

(
‖B(xk) − rot Ag

���
x=xk

‖2 + ‖E(xk) + ∇Φg

���
x=xk

‖2
)
, (23.15) 

where B(xk) and E(xk) are the known measurement data of the electromagnetic field 
at the points xk ∈ X . As for the potentials Ag and Φg, which are a priori  unknown, 
they can be modeled using their singularity (the corner on S = ∂Y along the normal 
vector to S; see p. 144). At the same time, taking into account numerous works 
on measuring the magnetic field gradient (see, for example, Magnetic field 2002) 
and the possibility of measuring the field on close surfaces,55 we assume that it is 
possible to measure not only the electromagnetic field at a finite set of points on the 
surface X but also, with some accuracy η, to find the gradient of this field, namely 

.

∑
k

(
‖∇B(xk) − αk ‖2 + ‖∇E(xk) − βk ‖2

)
≤ η, (23.16) 

where αk and βk are data of measurement of gradients at the points xk . 
We consider here only the spherical model. In this case, the domains Y = Y− and 

Y+ appearing in (23.2) are such that Y is the ball |x | < R = 1, and Y+ = R3 \ Y . So  
(see the right-hand side of the figure), X = ∂Y = ∂Y+, and Y0 = �. Consider the 
spherical coordinates (r, θ,  ϕ). Let  

. Y±n : (θ, ϕ) �→
n∑

m=0

[
A±nm cos(mϕ) + B±nm sin(mϕ)]P(m)n (cos θ)

be the so-called spherical functions56 parameterized by the coefficients A±nm and 
B±nm. Next, let 

.u(r, θ, ϕ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
n≥0

[∑
k≥2

C−
k r

n+k + D−
nr

n
]
Y−n (θ, ϕ) in Y−,

∑
n≥1

[∑
k≥2

C+
k

(1
r

)n+k
+ D+

n

(1
r

)n]
Y+
n (θ, ϕ) in Y+.

(23.17) 

Note that 

55 See https://ieeexplore.ieee.org/abstract/document/7014222/. 
56 By P(m) 

n we denote the associated Lagrange functions, i.e., 

.P
(m)
n (t) = (1 − t2) m2 dm

dtm
Pn(t), and Pn(t) = 1

2nn!
dn

dtn
[(t2 − 1)m ]

.

https://ieeexplore.ieee.org/abstract/document/7014222/
https://ieeexplore.ieee.org/abstract/document/7014222/
https://ieeexplore.ieee.org/abstract/document/7014222/
https://ieeexplore.ieee.org/abstract/document/7014222/
https://ieeexplore.ieee.org/abstract/document/7014222/
https://ieeexplore.ieee.org/abstract/document/7014222/
https://ieeexplore.ieee.org/abstract/document/7014222/
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.

∑
n≥0

[∑
k≥2

C−
k + D−

n

]
Y−n (θ, ϕ) =

∑
n≥1

[∑
k≥2

C+
k + D+

n

]
Y+
n (θ, ϕ), (23.18) 

which is the continuity condition of the function u. Hence g = Δu (as a function of 
(r, θ,  ϕ)) is given  by  

.g(r, θ, ϕ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
n≥0

∑
k≥2

g−kn(r)rn+k−2Y−n (θ, ϕ) in Y−,

∑
n≥1

∑
k≥2

g+kn(r)
(1
r

)n+k+2
Y+
n (θ, ϕ) in Y+,

(23.19) 

where the functions g± 
kn
(r) = C± 

k
(n+k)(n+k+1)−n(n+1)r2 are related57 by (23.18). 

The problem is linear and hence the measurement data can be reduced basic 
spherical harmonics. For each of such harmonics, function (23.17), which depends 
on the family of numerical parameters N = {C±

n , D±
n }, represents (according to the 

above) the potentials A = AN and Φ = ΦN . In turn, these potentials determine 
the approximations rot AN and ∇ΦN of the quantities rot Ag and ∇Φg, which en-
ter (23.15) and which are not given a priori. So, functional (23.15) is approximated 
by the functional 

. H(N) def
=
∑
k

(
‖B(xk) − rot AN

��
x=xk ‖

2 + ‖E(xk) + ∇ΦN
��
x=xk ‖

2
)
.

By minimizing the latter functional on the elements of N∗ satisfying the condition 

. 

∑
k

(‖∇B(xk) − ∇rotAN∗
��
x=xk ‖

2 + ‖∇E(xk) − ∇∇ΦN∗
��
x=xk ‖

2) (23.16) ≤ η, 

one can identify a priori possible essentially different solutions of the central MEEG-
problem, because, for the potentials A = AN∗ and Φ = ΦN∗ thus obtained, us-
ing (23.9) one can find in the domain Y the component q0 of the required solution 

. q(x) (23.12) 
= q0(x) + p0(y′)δ

��
∂Y 
. 

From the knowledge of this component q0 one can efficiently obtain solution (23.14) 
of Eq. (23.13), and therefore, find p0. 

In the general case, the spherical functions should be replaced by multiparameter 
set of functions corresponding to the domains Y−, Y0, Y+. 

As an alternative to the above method of finding the magnetic field (more precisely, 
essentially different fields) in the spherical case, one may probably consider the 
compression sensing technique (see, for example, Foucart and Rauhut 2013). 

Remark 23.8 Following the footnote 52 on p. 142, we give useful formulas for 
situations where μ � const. 
57 This reflects the aforementioned relation between the components of solution (23.11) of 
Eq. (23.12).
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The first of these formulas reads as: 

.A(x) = 1
4π

∫
Y

(
Q(y) + Φ(y)∇σμ(y) −H(y) × ∇μ(y)

) dy
|x − y| . (23.20) 

This formula extends (23.10) in the case σ � const, μ � const. Here Q = μq, 
σμ = σμ. Since rot F(y) = 0 and ∇ 1 

|x−y | = − x−y 
|x−y |3 , we find that 

. rot
( 1
|x − y|F(y)

)
=

rot F(y)
|x − y| + F(y) × x − y

|x − y|3 = F(y) × x − y
|x − y|3 .

Hence for B = rot A using (23.20) we get the generalized Biot–Savart formula,58 

.

∫
Y

Q(y) × x − y
|x − y|3 dy = Bσμ(x), (23.21) 

where Bσμ = 4πB −
∫ 
Y

(
Φ(y)∇σμ(y) −H(y) × ∇μ(y)

)
× x−y 

|x−y |3 dy. 

24 The Cauchy Problem for Elliptic Equations. Explicit 
Formulas 

24.1 The Dirichlet problem for an elliptic equation (for example, the Laplace equa-
tion Δu = 0) is well-posed in a bounded domain Ω. It is uniquely solvable and 
its solution u is stable under perturbations of the Dirichlet data. However, in many 
important problems of natural science, it is fundamentally impossible to know the 
Dirichlet data on the entire boundary of the Ω. 

For example, some problems of geodesy, thermonuclear reaction in a tokamak, 
magneto-electroencephalography are reduced to the Laplace equation in a doubly 
connected domainΩwith Dirichlet data only on the outer boundary Γ, since there are 
not a priori data on the inner boundary. Therefore, to find the solution u corresponding 
to a real process, they try to use additional experimental data on the part of the 
boundary of Ω accessible to researchers. In the examples above, this is possible only 
on the outer boundary Γ of doubly connected domain Ω. 

As such additional data in the case of second-order equations, the experimental 
data of measuring the gradient u on Γ are used and, consequently, the value of the 
normal derivative of ∂u ∂ν on Γ. As a result, the Cauchy problem for the elliptic equation 
arises. But, as Hadamard59 noted, the slightest high-frequency perturbations of the

58 The formula B(x) = q×(x−y) 
|x−y|3 for the field B induced by the current dipole q was experimentally 

found in 1820 by French physicists Jean-Baptiste Biot (1774–1862) and Félix Savart (1791–1841) 
in the process of observing the effect of the galvanic current running through a conductor on the 
magnetic arrow. 
59 Here we quote from the remarkable and comprehensive book Mazya and Shaposhnikova (1999): 
“This book presents a fascinating story of the long life and great accomplishments of Jacques 
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zero Cauchy data lead to an exponential deviation from the true solution. This has 
led J. Hadamard to his famous example 

.

Uxx +Uyy = 0 , for y > 0 ,

U(x, 0) = 0 , Uy(x, 0) = fε(x) , where fε(x) = e−
1
ε sin

(
x/ε2) (24.1) 

of the Cauchy problem for the Laplace equation, which illustrates the available 
difficulties. Despite the fact that the initial data in (24.1) tend to zero uniformly 
together with all derivatives as ε → 0, the solution of this problem, as given by the 
exact formula 

. U(x, y) = e−
1
ε sin(x/ε2) sinh(y/ε2),

tends to infinity for any y > 0 as  ε → 0. 
Therefore, numerical algorithms for finding a solution must overcome the insta-

bility of the solution due to inevitable random high-frequency errors in the rep-
resentation of numerical data in computer memory. Such problems are referred to 
ill-posed problems (see, for example, Novikoff 1938, Romanov and Kabanikhin 1991, 
Romanov and Kabanikhin 1994, Kabanikhin 2008, Kabanikhin 2011, Bezrodnykh 
and Demidov 2011). Numerical analysis of such problems calls for development 
of special methods and numerical algorithms. Explicit formulas in such problems 
provide a main tool for testing such methods and numerical algorithms. Below, we 
will present such explicit numerically realizable formulas in the form of converging 
series for Cauchy problems for elliptic equations. 

Hadamard (1865–1963), who was once called “the living legend of mathematics.” As one of the 
last universal mathematicians, Hadamard’s contributions to mathematics are landmarks in various 
fields. His life is linked with world history of the twentieth century in a dramatic way. This work 
provides an inspiring view of the development of various branches of mathematics during the 
nineteenth and twentieth centuries. Part I of the book portrays Hadamard’s family, childhood and 
student years, scientific triumphs, and his personal life and trials during the first two world wars. 
The story is told of his involvement in the Dreyfus affair and his subsequent fight for justice and 
human rights. Also recounted are Hadamard’s worldwide travels, his famous seminar, his passion 
for botany, his home orchestra, where he played the violin with Einstein, and his interest in the 
psychology of mathematical creativity. Hadamard’s life is described in a readable and inviting way. 
The authors humorously weave throughout the text his jokes and the myths about him. They also 
movingly recount the tragic side of his life. Stories about his relatives and friends, and old letters 
and documents create an authentic and colorful picture. The book contains over 300 photographs 
and illustrations. Part II of the book includes a lucid overview of Hadamard’s enormous work, 
spanning over six decades. The authors do an excellent job of connecting his results to current 
concerns. While the book is accessible to beginners, it also provides rich information of interest 
to experts. Vladimir Maz’ya and Tatyana Shaposhnikova were the 2003 laureates of the Insitut de 
France’s Prix Alfred Verdaguer. One or more prizes are awarded each year, based on suggestions 
from the Academie francaise, the Academie de sciences, and the Academie de beaux-arts, for the 
most remarkable work in the arts, literature, and the sciences. In 2003, the award for excellence 
was granted in recognition of Maz’ya and Shaposhnikova’s book, Jacques Hadamard, A Universal 
Mathematician, which is both an historical book about a great citizen and a scientific book about 
a great mathematician.” It will be no wonder if the book Mazya and Shaposhnikova (1999) (the  
Russian translation of which appeared in 2008) will become one of the favorite books of many 
mathematicians and physicists.
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24.2 We start with the following simple observation: if some domain Ω ⊂ C, which  
is mapped conformably via 

. f : Ω � z �→ f (z) ∈ D

onto the unit disk D and if the boundary Γ = ∂Ω of the domain Ω is mapped 
isometrically onto the boundary T = ∂D of the disk D. Here, the isometricity60 

means that | d f  (z) dz | ≡  1 for  z ∈ Γ. It turns out that, in this case, the domain Ω is some 
disk be obtained from the disk D by its translation and rotation. Since for an analytic 
function w : Ω � z �→ w(z) = f ′(z) its modulus on Γ is identically equal, this 
function (by virtue of the inverse theorem boundary correspondence) is univalent. 
Thus, the maximum and minimum of |w | are equal to unity at the boundary, and (by 
virtue of the maximum principle) also inside Ω. Consequently, f (z) = eiϕ z + const, 
and hence Γ is the shift and rotation of the circle T. 

However, the situation totally changes if f is assumed to be conformal only on 
the boundary Γ = ∂Ω of a given simply connected domain Ω and if this boundary is 
analytic (of course, of the same length 2π as T = ∂D). 

We note first that on Γ one may introduce the natural parameter s ∈ T def 
= R/2π 

equal to the length of an arc� P0Ps of the curve Γ in the positive direction from some 
fixed point P0 with Cartesian coordinates

(
x(0), y(0)) to a point Ps with coordinates(

x(s), y(s)) . Without loss of generality it can be assumed that
(
x(0), y(0)) = (1, 0). 

As a result, 

. �x(s) = − sin N(s) , x(0) = 1 ; �y(s) = cos N(s) , y(0) = 0 , (24.2) 

where N(s) is the angle measured in radians between the x-axis and the outer normal 
vector ν to Γ at the point Ps ∈ Γ. In view of  (24.2), the curve Γ is closed if and only 
if 

.

∫ 2π

0
sin N(s) ds =

∫ 2π

0
cos N(s) ds = 0 ⇔

∫ 2π

0
eiN (θ)−iθ dθ = 0 . (24.3) 

Since the length of the curve Γ is given, this curve is completely determined by the 
angle function s �→ N(s) and, correspondingly, the 2π-periodic function 

.Q : T = R/2π � s �→ Q(s) def
= N(s) − s . (24.4) 

We denote by Qγ the complex-valued analytic continuation of the real analytic 
function Q to some neighborhood VΓ of the curve Γ ⊂ R2 � C � z = x + iy that 
contains all points lying at distance γ >  0 from  Γ. It is known (see, for example, 
Arnold 1989) that the coefficients Lk and Mk in the Fourier-representation

60 Roughly speaking, isometricity can be visualized as follows: any closed curve Γ, made of  
inextensible and incompressible wire can be deformed to a circle. It i clear that in this case the 
length of Γ is 2π. 
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.Q(s) =
∑
k≥0

(Lk cos ks + Mk sin ks) (24.5) 

of this 2π-periodic analytic Q have the following exponential estimates 

.|Lk | ≤ Ce−kγ , |Mk | ≤ Ce−kγ (24.6) 

with a multiplicative constant R majorizing the modulus of the function Qγ. 

Lemma 24.3 The following results hold. 
(1) There exists a neighborhood VT � ζ = ρeiθ of the unit circle T = {ρ = 1, θ  ∈ 

R/2π} in which the functions A and B, as defined by 

.

A(ρ, θ) =
∑
k≥1

ρk − ρ−k
2

{Mk cos kθ − Lk sin kθ} ,

B(ρ, θ) =
∑
k≥0

ρk + ρ−k

2
{Lk cos kθ + Mk sin kθ} ,

(24.7) 

are harmonically conjugate. 
(2) The mapping 

.z : VT � ζ = ρeiθ �→ z(ζ) = x(ρ, θ) + iy(ρ, θ) ∈ VΓ , (24.8) 

with 
.z(ζ) = 1 +

∫ ζ

1
eA+iB dζ ⇔ A + iB = ln

dz
dζ

(24.9) 

is well defined. 
(3) The mapping (24.8) is univalent and maps isometrically the circle T onto the 

curve Γ, i.e., 
.

����dz(ζ)dζ

���� ≡ 1 for ζ ∈ T . (24.10) 

Proof From (24.6) and (24.7) it follows that the functions A and B are harmonic in 
VT. It is clear that the Cauchy–Riemann conditions 

. 
∂A
∂ρ

=
1
ρ

∂B
∂θ
,
∂B
∂ρ

= − 1
ρ

∂A
∂θ

are satisfied, and hence the function 

. C : VT � ζ = ρeiθ �→ C(ζ) = A(ρ, θ) + iB(ρ, θ)

is analytic in VT. Next, in view of (24.4), (24.5) and (24.7) we have 

.eC(ζ )
���
ζ=eiθ

= eiN (θ)−iθ
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and hence, by (24.3),
∫ 
|ζ |=1 e

C(ζ ) dζ = 0. This shows that both the integral (24.9) 

and the mapping (24.8) are well defined. We have A + iB  (24.9) 
= ln dz dζ and

�� dz 
dζ

��
ζ ∈T = 

eA
��
ρ=1 

(24.7) 
= 1. Next, 1 =

�� dz 
dζ

��
ρ=1 = 

ds(θ) 
dθ . It can be assumed that s(θ) = θ, i.e., 

B
��
ρ=1 

(24.5)−−(24.7) 
= Q

(
s(θ)) (24.5) 

= N(s(θ))− s(θ) = N(θ)−θ. Therefore, arg dz dζ

��
ζ=eiθ = 

B(ρ, θ)��
ρ=1 depends continuously on ζ ∈ T. Using the equality eA

��
ρ=1 

(24.7) 
= 1 and 

the geometrical interpretation of arg dz dζ = arg dz − arg dζ , we get the conclusion of 
the theorem: ζ = ρeiθ �→ z(ζ) is an isometric mapping of T onto Γ. �

Remark 24.4 Using Lemma 24.3 one can reduce the Cauchy problem in any domain 
with analytic boundary to the Cauchy problem in the disk with the same(!) Cauchy 
data and hence represent the solution of the original problem as converging series. 
Lemma 24.3 was applied in some or other sense in Demidov (1996), Demidov 
(2010a), Demidov and Platushchikhin (2010), Demidov (2020), Demidov (2021). 
The results obtained below in this section are based on Lemma 24.3. 

24.5 We will consider here (unlike Demidov 2021) only the case of a simply con-
nected domain Ω with analytic boundary Γ of length 2π. The functions on Γ can be 
considered as functions of the natural parameter s corresponding to a point Ps ∈ Γ. 
Let F : s �→ F(s) and G : s �→ G(s) be real functions satisfying the hypotheses 
of Dirichlet–Jordan’s theorem on Fourier series expansion. By VΓ ⊂ R2 we denote 
a two-sided neighborhood of the curve Γ. Our aim here is to present a construc-
tion of numerically realizable formulas for the solutions in VΓ of the following two 
equations: 

. div
(
α(w)∇w) = 0 in VΓ , (24.11) 

. div
(
β∇w) = 0 in VΓ (24.12) 

with the Cauchy data 

.w(Ps) = F(s) , ∂w

∂ν
(Ps) = G(s) . (24.13) 

Here, α >  0 and β >  0 are differentiable functions (α on R, β in VΓ), and ν is the 
unit normal vector to Γ. 

In the following results we assume that the primitive of the function α is invertible 
and β is a squared harmonic function. 

The change of variables ζ = ρiθ �→ (
x(ρ, θ), y(ρ, θ)) , which is introduced in 

Lemma 24.3 via the univalent mapping z(ζ) = 1 + 
∫ ζ 
1 e

A+iB  dζ ,  gives the following 
equivalences for u(ρ, θ) = w(x, y): 

. div
(
α(w)∇w) (24.11) 

= 0 ⇔ div
(
a(u)∇u) = 0 ⇔ a(u)Δu + a′(u)|∇u|2 = 0 , 

(24.14) 
where a(u) = α(w), and Δ = ∇2 is the Laplace operator.
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Following Polyanin and Zaitsev (2012) (see also §9.4.12 on p. 695), we set 
U 

def 
= 
∫ 
a(u) du. Hence ΔU = a(u)(Δu + a′(u) 

a(u) |∇u|2
)
. This shows that U is harmonic 

in VT. 

Thus, we reach 

Lemma 24.6 The solution u = u(ρ, θ) of the quasi-linear equation 

. div
(
a(u)∇u) = 0 , where a(u) = 1

u2k ,

in a neighborhood VT of the circle T is given by the simple explicit formula 

. u(ρ, θ) = −
(

1
(2k − 1)U(ρ, θ)

) 1
2k−1

,

in terms of the harmonic function U on VT. 

From this clear lemma, we almost readily obtain 

Theorem 24.7 Let the mapping u �→ U(u) = 
∫ 
a(u) du, where a(u) = α(w), be  

invertible (as in Lemma 24.6), i.e., the function u : U �→ u(U) is well defined. Then 
the following two assertions hold. 

(1) The solution w of the original Cauchy problem for the quasi-linear equation 
div

(
α(w)∇w) (24.11) 

= 0 is given by the formula 

.w(x)
���
x=x(ρ, θ)

= u
(
U(ρ, θ)) , (24.15) 

where U is a harmonic function in VT. 
(2) The original Cauchy fata for the function w are transformed to the Cauchy 

data 

.U
���
ρ=1

= ΦU (θ) def
=
∫
a(u) du

����
u=F(θ)

, ∂U
∂ρ

���
ρ=1

= ΨU (θ) def
=

G(θ)
u′(U)

��
U=F (θ )

. (24.16) 

Proof Formula (24.15) is as straightforward as Lemma 24.6. The first of (24.16) is 
a reformulation of the condition w(Ps) (24.13) 

= F(s), and the second one follows from 
the equalities ∂ 

∂ρu
(
U(ρ, θ)) ��

ρ=1 
(24.10) 
= ∂w 

∂ν (Ps) (24.13) 
= G(s). �

Using as above the change of variables ζ = ρiθ �→ (
x(ρ, θ), y(ρ, θ)) , as defined 

by the univalent mapping (24.8) and setting b(ρ, θ) = β(x, y), we obtain 

. div
(
β∇w) (24.12) 

= 0 in  VΓ ⇔ div
(
b∇u) = 0 in  VT (24.17) 

for u(ρ, θ) = w(xρ, θ), yρ, θ)). We apply to (24.17) the Moutard transform (see 
Grinevich and Novikov 2019) in its simplest form, which relates a pair (b, u) to the
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pair (c, v), where c = σ2b, v = u/σ, and σ >  0 is some fixed positive solution of 
the equation div

(
c 
σ2∇w

) (24.12) 
= 0. 

The following result holds. 

Lemma 24.8 Let c = 1, i.e., 1 = σ2b. Then both v and Z def 
= −1/σ are harmonic 

functions, and, moreover, b = Z2. 

Proof We set ∂x = ∂1, ∂y = ∂2, and note that ∂jv = σ2b∂jv = σ2b∂j
(
u 
σ

)
= bσ∂ju− 

bu∂jσ .  Hence ∂j(∂jv) = ∂j[σ(b∂ju) −  u(b∂jσ)] = σ∂j(b∂ju) +(∂jσ)(b∂ju) −  
u∂j(b∂jσ) − (∂ju)(b∂jσ) = {σ∂j(b∂ju) − u∂j(b∂jσ)} + 
+ {(∂jσ)(b∂ju) − (∂ju)(b∂jσ)} = {σ∂j(b∂ju) −  u∂j(b∂jσ)}. 

Summating over j, we get div(∇v) = σ div(b∇u) −  u div(b∇σ). We have 
div(b∇u) = 0 and div(b∇σ) = 0, which gives Δv = 0. Note that u = σv. 

As direct consequence of Lemma 24.6 with k = 1, we see that Z = −1/σ is a 
harmonic function. Finally, the equality b = Z2 follows from the fact that b = 1/σ2 

and σ = −1/Z . �
Theorem 24.9 Let b = Z2, where Z is a harmonic function in VT � (ρ, θ). Then 
the solution u of Eq. (24.17) can be written in the form u = v√

b 
, where Δv = 0. 

Moreover, the original Cauchy data (24.13) for w(x, y) = u(ρ, θ) are transformed to 
the Cauchy data 

.v
��
ρ=1 = Φv(θ) , ∂v

∂ρ

���
ρ=1

= Ψv(θ) (24.18) 

for the function v harmonic in VT, where 

. Φv(θ) = F(θ)Z ��
ρ=1 , Ψ

v(θ) = Z
��
ρ=1

(
G(θ) + 1

2
F(θ)(Z ′ρ/Z )

��
ρ=1

)
.

Proof In view of Lemma 24.8, one has to check that u = −1/Z is a solution of the 
equation div

(
β∇w) (24.12) 

= 0 in  VΓ ⇔ div
(
b∇u) = 0 in  VT , which can be 

written as 
. − Z2Δ

( 1
Z

)
+ 2Z3

���∇
( 1
Z

)���2 = 0 .

We have ∇ ( 1 
Z

)
= − 1 

Z2∇Z and 

. 

���∇
( 1
Z

)���2 =
1
Z4 |∇Z |2 , Δ

( 1
Z

)
=
(
− 1
Z2∇Z

)
=

2
Z3 |∇Z |2 −

1
Z2ΔZ

and hence 
. − Z2Δ

( 1
Z

)
+ 2Z3

���∇
( 1
Z

)���2 = ΔZ = 0 .

Finally, formulas (24.18) are direct consequences of the isometry (see Lemma 24.3) 
between the circle and the curve Γ, which is effected by the mapping (24.8). �

It remains to note that each of the above functions U or v, being harmonic in 
a neighborhood of the unit circle and satisfying the Cauchy data, is represented as 
a series
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. Re
(
ϕ0 + ψ0 ln ρ +

1
2

∑
k≥1

{(
ϕk +

ψk
k

)
ρk +

(
ϕk − ψkk

)
ρ−k

}
eikθ

)
.

25 On the Poincaré–Steklov Operators and Explicit Formulas 

In 1869, Schwartz61 Schwarz (1869) proposed the idea of alternating constructing 
the solution of the Dirichlet problem for the two-dimensional Laplace equation in 
a “complicated” domain consisting of a finite union of “simple” domains (see, for 
example, Courant 1992, Demidov et al. 2005), which uses solutions of the Dirichlet 
problem in “simple” domains . Ωk . Such algorithm is called the Schwartz alternating 
method.62 

The idea of Schwarz’s alternating method was developed in the so-called methods 
of decomposition of a “complicated” domain .Ω = ∪m

k≥1ωk into “simple” domains. 
This algorithm (see, for example, Agoshkov 2020) can be used for effective paral-
lelization of numerical calculations when constructing a solution .u : Ω→ R of the 
boundary-value problem in the original complicated domain. Namely, the desired 
solution u can be constructed by “gluing” the solutions of . uk if one knows a corre-
spondence between the boundary conditions on . uk for the adjacent domains . ωk . In  
some problems (see, for example, Grinberg 1948, Maergoiz 1971) these conditions 
have the form 

.(1 − λ)uk − (1 + λ)u j = 2 f , |λ | ≤ 1, and
∂uk
∂ν

=
∂u j
∂ν
, (25.1) 

here . ν is the normal vector to the boundary of the adjacent domains . ωk and . ωj . In  
many problems such boundary operators arise in the form .akuk +bk

∂uk
∂ν = fk , where 

.akbk ≥ 0, .ak+bk � 0 and . ν is the outer normal to the boundary of the corresponding 
“simple” domain. In particular, we can talk about correspondences between the 
Dirichlet operator .D : u �→ u

��
∂Ω

and the Neumann operator .N : u �→ ∂u
∂ν

��
∂Ω

whose 
alternate compositions .DN : u

��
∂Ω

�→ ∂u
∂ν

��
∂Ω

and .ND : ∂u
∂ν

��
∂Ω

�→ u
��
∂Ω

are called,

61 Carl Hermann Amandus Schwartz (1843–1921) was an outstanding German mathematician, 
a member of the Berlin Academy of Sciences. His supervisor was Weierstrass. H. A. Schwarz is the 
author of remarkable results in various fields of mathematics. Many important concepts are associ-
ated with his name, viz: the Schwartz lemma in complex analysis; Schwarz–Christoffel integral; the  
symmetry principle for analytic continuation of functions; the famous Schwarz example of a poly-
hedral surface inscribed in a cylinder, which has arbitrarily large area (1890) as a counterexample 
to the erroneous definition of the surface area, which was given in his textbook a French academi-
cian Joseph Alfred Serret (1819–1885), one of the authors of the famous formulas Frenet–Serret; 
extremely useful in analysis the Cauchy–Bunyakovsky–Schwarz inequality . |(x | y) | ≤ ‖x ‖ · ‖y ‖
proved by Schwartz in 1884. This inequality appeared in 1821 for the finite-dimensional case in 
Cauchy’s textbook on calculus, and in the case of . L2 in Bounjakowsky (1859) by Victor Bouni-
akowsky (1804–1889), vice-president of the Russian Academy of Sciences, specialist in number 
theory and probability theory. 
62 A similar idea was used in Demidov (1994) and Demidov and Yatsenko (1994) for constructing 
solutions of elliptic boundary-value problems with nonlinear conjugation conditions. 
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respectively, the Dirichlet–Neumann operator and the Neumann–Dirichlet operator. 
The boundary conditions (25.1) and the composition 

. 

(
α1u + β1

∂u
∂ν

)���
∂Ω

�→
(
α2u + β2

∂u
∂ν

)���
∂Ω
, |αk | + |βk | � 0 ,

of the operators .R1 : u �→ (
α1u + β1

∂u
∂ν

) ��
∂Ω

, .R2 : u �→ (
α2u + β2

∂u
∂ν

) ��
∂Ω

, bearing 
Robin’s name, are called (see, for example, Khoromskij and Wittum 2004, Novikov 
and Taimanov 2018) Poincaré–Steklov operators, following V. I. Lebedev63 (Lebe-
dev and Agoshkov 1983). The point is that these operators also arise when solving 
general boundary-value problems by decomposition methods, while Poincaré and 
Steklov obtained fundamental results for such problems. Recall that the search for 
methods for construction of solutions to boundary-value problems, which was ini-
tiated by Euler, who proposed the idea of the method of separation of variables, 
had produced, for a long time, solutions only in very special cases. And it was only 
Poincaré (1896) who, for the first time, raised the question of representing a solu-
tion of general boundary-value problems by eigenfunction series expansions (called 
“fundamental” by Poincaré). This Poincaré’s memoir served as a starting point for 
V. I. Steklov (see, for example, Stekloff 1900, Stekloff 1983, in which a general 
method of separation of variables was rigorously justified for constructing solutions 
to main problems of mathematical physics of the nineteenth century. 

Below we consider the question of constructing explicit numerically realizable 
formulas for the Poincaré–Steklov operators as applied to harmonic functions in 
a simply connected domain . Ω. And this, by virtue of the results of §24, makes it 
possible to obtain explicit numerically realizable formulas for the Poincaré–Steklov 
operators in the case of the equations 

. div
(
α(w)∇w) , div

(
β∇w) = 0 .

Remark 25.1 Let .Ωε ⊂ R
2 be a bounded simply connected domain with .C1-smooth 

boundary .Γε = ∂Ωε . If the domain . Ω differs from . Ωε only in that its boundary 
.Γ = ∂Ω is analytic and in the differs from . Γε in order by at most .ε > 0 in the 
.C1-Hausdorff metric, then the Poincaré–Steklov operators for . Ωε and . Ω differ in the 
.C1-metric by the same order. 

We restrict ourselves here to the construction of numerically realizable explicit 
formulas for the Poincaré–Steklov operator of the form . DR. Consider the problem 

.
∂2u

∂x2 +
∂2u

∂y2 = 0 in Ω, u
��
Ps

= F(s) , Ps =
(
x(s), y(s)) ∈ Γ (25.2) 

for the Laplace equation with Dirichlet boundary condition in the case of a simply 
connected domain .Ω ⊂ R

2 with analytic boundary . Γ and if length .|Γ| = 2π. Here,

63 Vyacheslav Ivaanovich Lebedev (1930–2010) is a prominent specialist in computational mathe-
matics, laureate of the USSR State Prize for research on nuclear reactors (1987), his supervisor in 
graduate school was S.L. Sobolev. 
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as above in §24, .s ∈ T
def
= R/2π is the natural parameter on . Γ defined as the length 

of the arc .� P0Ps of the curve . Γ counted in positive direction from the point . P0 (for 
definiteness, with coordinates .(x, y) = (1, 0)) to the point . Ps , and the function F is 
given by the Fourier series 

.F : T � s �→
∑
k≥0

(ak cos ks + bk sin ks) . (25.3) 

Repeating the construction of §24 leading to Lemma 24.3, we use the conformal 
mapping 

.z : VT � ζ = ρeiθ �→ z(ζ) = x(ρ, θ) + iy(ρ, θ) ∈ VΓ , (25.4) 

with 
. z(ζ) = 1 +

∫ ζ

1
eA+iB dζ ⇔ A + iB = ln

dz
dζ
.

This mapping (25.4) is univalent and maps isometrically the circle . T onto the 
curve . Γ, i.e., 

.

����dz(ζ)dζ

���� ≡ 1 for ζ ∈ T . (25.5) 

Consider the curve .γ = z(C) ⊂ VΓ, where .C = {|ζ | = r < 1}. Let  g be the trace on 
. γ of the solution u to problem (25.2). We put 

. f : T � θ �→ f (θ) = g(z)
���
z=z(reiθ )∈γ

.

The Fourier series of this periodic function has the form 

. f : T � θ �→
∑
k≥0

(ck cos kθ + dk sin kθ) . (25.6) 

Using (25.3) and (25.6), we set .λ0 = c0 and for .k ≥ 1 we put 

. λk = ak − ckrk − akr2k

1 − r2k , μk = bk − dkrk − bkr2k

1 − r2k ,

ϕk =
ck − akrk

1 − r2k , ψk =
dk − bkrk

1 − r2k .

Then the function 

. U(ρ, θ) = λ0 +
∑
k≥1

{
ρk
[
λk cos kθ + μk sin kθ

]
+
( r
ρ

)k [
ϕk cos kθ + ψk sin kθ

]}
,

(25.7) 
which is harmonic in the annulus .VT = {r < ρ < 1; θ ∈ T}, satisfies the boundary 
conditions .U(1, θ) = F(θ) and .U(r, θ) = f (θ).
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Theorem 25.2 (Demidov 2023) 

. DNF(s) def
=
∂u
∂ν

���
Ps=Ps(θ ) ∈Γ

(25.5) 
= 
∂U(ρ, θ) 
∂ρ

���
ρ=1 

=
∑
k≥1 

k
[
(λk − ϕk) cos kθ + (μk − ψk) sin kθ)

]
(25.8) 

and 

. DR(u��
s∈Γ) =

(
αu + β

∂u
∂ν

)���
Ps ∈Γ

(25.7),(25.8) 
= αU(1, s) + β ∂U(ρ, s) 

∂ρ

���
ρ=1 

for the operator . DR. 

The constructions leading to Theorem 25.2 include a formula for . u
��
γ
, where u is 

the solution to the Dirichlet problem (25.2). Let us say a few words here about the 
construction of explicit numerically realizable formulas for this solution u. 

It is known (see Krylov and Bogolyubov 1929 and Kantorovich and Krylov 1962 
that 

. u(x, y) =
∫ 2π

0
μ(t)K(x(t)− x, y(t)− y) dt , where K(ξ(t), η(t)) = η

′(t)ξ − ηξ ′
ξ2 + η2

i.e., .K(ξ(t), η(t)) = d
dt arctan η(t)

ξ(t) , and . μ is the solution of the integral equation 

.μ(τ) + 1
π

∫ 2π

0
μ(t) d

dt
arctan

y(t) − y(τ)
x(t) − x(τ) dt =

1
π
F(τ) . (25.9) 

Approximating the integral in (25.9) by a sum (for more details, see Vlasov and 
Bakushinskii 1963) and taking in sequence .τ = t1, . . . , tn, we obtain a system of 
linear algebraic equations, from which an approximation to . μ (i.e., to the solution of 
the original Dirichlet problem) is found. 

Remark 25.3 Numerical implementation of the Dirichlet-Robin operator can be 
found in Demidov and Samokhin (2023). 

Numerical implementation of the Robin1–Robin2 operator, i.e. operator 

. 

(
α1u + β1

∂u
∂ν

)���
Γ
�→

(
α2u + β2

∂u
∂ν

)���
Γ
, |αk | + |βk | � 0 ,

reduces to the consideration of the above Dirichlet–Robin2 problem using con-
struction (see, for example, Zhou and Cai 2016) solution such a Robin1–Dirichlet 
.γ-problem .

(
α1u + β1 ∂u

∂ν

)���
Γ
�→ u

���
γ
. 

Remark 25.4 Another particular case of the Poincaré–Steklov operator is the Grinberg– 
Maergoiz operator . GM , which  for .−1 ≤ λ < 1 is defined by the conditions 

.(1 − λ)u(P−s ) − (1 + λ)u(P+
s ) = 2F(Ps) , ∂u

∂ν
(P−s ) =

∂u
∂ν
(P+

s ) , (25.10)



26 On the Fourier–Hörmander Operator and the Canonical Maslov Operator 159

where the value of a function at . P+
s (at . P−s , respectively) is defined as the limit of the 

values at .Ps ∈ Γ along the normal . ν from the outer (inner, respectively) side of . Γ. 
Explicit formulas for the traces . u

��
γ

and . u
��
Γ

of the solution of problem (25.10) are given 
above for the Dirichlet problem, i.e., for .λ = −1, and, for .|λ | < 1, Maergoiz (1971) 
gives analogous formulas in terms of potentials with density satisfying a second-
order integral equation. This makes it possible to find .GM(F) (as in Theorem 25.2). 

26 On the Fourier–Hörmander Operator and the Canonical 
Maslov Operator 

Just simple! Can this be said about the canonical operator introduced by V. P. Maslov64 

in 1965 in his Doctoral thesis (Maslov 1965)? After all, even Maslov himself wrote 
Maslov (2006)65 in 2000: “I would like to write my lecture (“Quantization of 
Thermodynamics”—A. D.) in a way that will be understood by both mathemati-
cians and physicists. This is a very challenging task. I tried to solve it once when 
I was writing my first book, “Perturbation Theory and Asymptotic Methods” (i. e. 
Maslov 1965—A. D.), but it turned out that neither of them understood this.”66 

26.1 Nevertheless, in this section we attempt to give a (relatively) simple pre-
sentation of the elements of the theory of the canonical operator using a purely 
methodological approach. In contrast to the usual presentation of the construction 
of this operator, as if “it is given from above,” we will try to identify it in a natural 
way, considering the specific problems of quantum mechanics that are asymptoti-
cally close to classical mechanics problems, on which originally the method of the 
canonical operator was focused. 

But let us start with the first topic, more precisely, with some aspects concerning 
the Fourier–Hörmander67 integral operator. According to Remark 21.15, in Hörman-
64 Viktor Pavlovich Maslov (born 1930) is a Russian physicist and mathematician, a specialist 
in mathematical physics, a member of the Russian Academy of Sciences, a bright personality, 
whose personal characteristics can be seen, for example, from his numerous interviews http:// 
trv-science.ru/2010/07/06/perepletenie-traektorij-zhizni/, dedicated to the memory of V. I. Arnold, 
but mainly in the context of the significance of his own book Maslov (1965).  In the same interview  
in the correspondence discussion with L. Hörmander, he said: “This study (the book Maslov 
(1965)—A. D.) was checked by such subtle and remarkable mathematicians as G. I. Eskin and 
O. A. Ladyzhenskaya, and I answered all their questions exhaustively in the presence of such 
specialists as V. P. Palamodov and S. P. Novikov.” 
65 See also http://www.ega-math.narod.ru/Nquant/Demidov.htm#VPM. 
66 See, however, Remark 99 on p. 182 on a significant and immediate reaction (as an opponent 
of V. P. Maslov’s doctoral dissertation) of V. I. Arnold, who significantly enriched the method of 
canonical operator with his famous article Arnold (1967), which is almost identical to his review of 
1965. The widespread acceptance of Maslov’s method was also promoted by Leray (1972–73), who, 
in particular, initiated the translation of Maslov’s doctoral dissertation “Théorie des Perturbations 
et Méthodes Asymptotiques” (Paris: Dunod, 1972) and Arnold’s paper Arnold (1967). 
67 Hörmander himself, already a recognized classic by the age of 30, modestly called the operators 
introduced by him the Fourier operators in Hörmander (1968)] 
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der (1965) an invariant definition of a pseudo-differential operator on a differentiable 
manifold . Ωwas given; in particular, in a domain .Ω ⊂ R

n. This definition is a natural 
generalization of the following fact pointed out by Hörmander: a differential opera-
tor P of order m with smooth coefficients on a smooth manifold . Ω can be defined as 
a continuous linear operator for which 

.e−ı̊λgP( f eı̊λg) =
m∑
j=0

Pj( f , g)λ j, ı̊ def
= 2πi, (26.1) 

for any . f ∈ C∞
0 (Ω) and .g ∈ C∞(Ω), i.e., the function .e−ı̊λgP( f eı̊λg) is a polynomial 

of . λ of degree m. It is clear that a differential operator P of order m has this property. 
The proof of the converse result is based on the Peetre theorem (see Problem 16.22 
on p. 87 and the hint to this problem on p. 90) to the effect that a continuous linear 
operator .P : D(Ω) → E(Ω) with localization property 

. supp(Pu) ⊂ supp(u) ∀u ∈ C∞
0 (Ω) (26.2) 

is a differential operator. So, we need only to check that (26.1) implies condi-
tion (26.2). To this end, we first assume that the support of some function . u ∈ C∞

0 (Ω)
lies in the neighborhood .O(x ′) of the point . x ′, and a function . f ∈ C∞

0 (Ω) is 1 
in .O(x ′) and . f (x ′′) = 0, where the point .x ′′ = x ′′( f ), not lying in .supp u, as well as  
the point . x ′, lies in an open (not necessarily connected) set .ω ⊂ Ω, in which a local 
coordinate system .x1, . . . , xn is defined. Putting .g(x) = xξ, where .ξ ∈ R

n, we get  

. e−ı̊λxξP( f (x)eı̊λxξ ) =
m∑
j=0

pj(x, ξ)λ j, pj(x ′′, ξ) = 0.

The left-hand side of this equality is infinitely differentiable with respect to .(x, ξ) and 
remains the same if . ξ is replaced by . ξ/t and . λ is replaced by . tλ. Hence the functions 
. pj (which depend parametrically on the chosen function f ) are homogeneous with 
degree j with respect to . ξ and are differentiable with respect to . ξ. Therefore, 

. pj(x, ξ) =
∑
|α |=j

pj(x)ξα,

where .pj ∈ C∞(ω) and .pj(x ′′) = 0. Next, because 

. u(x) = ( f u)(x) (17.27) 
= 

∫
ũ(ξ) f (x)eı̊xξ dξ, ũ(ξ) (17.24) 

= Fx→ξu(x), 

and since .P : D(Ω) → E(Ω) is a continuous operator, we find that
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. (Pu)(x) =
∫

P
(
f (x)eı̊xξ

)
ũ(ξ)dξ =

=

m∑
j=0

∑
|α |=j

∫
eı̊xξ pj(x)ξαũ(ξ)dξ (17.28) 

= 

m∑
j=0

∑
|α |=j 

pj(x)Dα u(x). 

Since .pj(x ′′) = 0, we get .(Pu)(x ′′) = 0. This fact in combination with the partition 
of unity gives the required inclusion (26.2). 

For our purposes it is sufficient to consider the case when the manifold . Ω is 
a domain in . R

n. In this case, .g(x) = xξ, where .ξ ∈ R
n. 

Definition 26.2 (See Hörmander 1965) A continuous linear operator . A : D(Ω) →
E(Ω) is called a pseudo-differential operator if, for .m0 > m1 > m2 > . . .→ −∞ for 
all . f ∈ C∞

0 (Ω) and .g(x) = xξ, the asymptotic expansion 

.e−ı̊λgA( f eı̊λg)  
∞∑
j=0

Aj( f , g)λm j , λ→ +∞, (26.3) 

holds (cf. (26.1)). Namely, for .λ ≥ 1 for each natural N the difference 

. λ−mN

(
e−ı̊λgA( f eı̊λg) −

N−1∑
j=0

Aj( f , g)λm j

)

lies in a bounded subset of .C∞(Ω). 
One can check that .Aj( f , tg) = tm j Aj( f , g) for .t > 0, and 

.(A f )(x) =
∫

eı̊xξa(x, ξ) f̃ (ξ)dξ, (26.4) 

where .a(x, ξ) = e−ı̊λxξ A( f eı̊λxξ ). Moreover, for any .K � Ω there exists a constant 
.CK > 0 such that (cf. (21.20)) 

.
��∂αx ∂βξ

(
a(x, ξ) −

N−1∑
j=0

aj(x, ξ)
) �� ≤ CK |ξ |mN−|β |, x ∈ K, (26.5) 

where 
. aj(x, ξ) def

= e−ı̊λxξ Aj( f eı̊λxξ ) ∈ C∞ (Ω × (Rn \ {0})) .
Operators of the form (26.4) are typical for construction of solutions to elliptic 

problems (cf. formula (22.14)), however, nonelliptic problems involve the operators 

.(A f )(x) =
∫

eı̊σ(x,ξ)a(x, ξ) f̃ (ξ)dξ, a ∈ Sm, (26.6) 

in which the function . σ may be quite general. For example, the solution of the 
Cauchy problem for the wave equation
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.Δu − utt = 0, u
��
t=0 = 0, ut

��
t=0 = f ∈ C∞

0 (Rn) (26.7) 

is expressed for .σ±(x, ξ; t) = xξ ± |ξ |t by the formula 

. u(x, t) =
∫

eı̊σ+(x,ξ ;t) − eı̊σ−(x,ξ ;t)

2ı̊|ξ | f̃ (ξ)dξ.

Formula (26.6) can be (only formally!, as .m0 + n ≥ 0) rewritten in the form 
.Iϕ(a f )(x) = A f (x), where 

.Iϕ(a f )(x) =
�

eı̊ϕ(x,y,ξ)a(x, y, ξ) f (y) dy dξ, (26.8) 

and .ϕ(x, y, ξ) = σ(x, ξ)−yξ is the so-called phase. We will assume that . ϕ : (x, y, ξ) �→
ϕ(x, y, ξ) is a real function which is positively homogeneous in . ξ of degree 1 and 
is smooth for .ξ � 0. In this problem, one can choose coefficients of the differential 
operator .M =

∑
αj

∂
∂ξj

+
∑
βj

∂
∂yj

such that .eı̊ϕ(x,y,ξ) = Meı̊ϕ(x,y,ξ). Hence, for 
.m + n < k, the integral on the right of (26.8) can be understood as the limit 

.Iϕ(a f )(x) = lim
ε→0

�
eı̊ϕ(x,y,ξ)Lk (a(x, y, ξ)χ(εξ) f (y)) dy dξ, (26.9) 

which exists by the Lebesgue theorem 8.34. Here . Lk is the kth power of the operator L 
adjoint to M , and . χ is a .C∞

0 (Rn)-function, which equals 1 in the neighborhood of 
the origin. 

26.3 Taking into account inequality (26.5) and Remark 16.24, we note that the 
distribution .A : D � f �→ Iϕ(a(x, ξ) f has the singularity order .k = m + n + 1. 
Moreover, .Iϕ(a f ) : Ω � x

C∞
�→ Iϕ(a f )x for the points .x ∈ Ω, at which  . ϕ′ξ

def
=

∇ξϕ(x, y, ξ) � 0 for .ξ � 0. The  singular support of a distribution (denoted by 
.sing supp) is the complement of the maximal open set in which the distribution is 
infinitely differentiable. Hence, setting 

. Γϕ = {(x, ξ) : ϕ′ξ = 0}, Cϕ = { (x, ϕ′x) : (x, ξ) ∈ Γϕ },

we get .sing supp A ⊂ {x : ∇ξϕ(x, y, ξ) = 0}, i.e., 

. sing supp A ⊂ proj Γϕ = projCϕ,

where . proj is the projection operator onto . Ω. 
A phase . ϕ is said to be nondegenerate if the differentials .d ∂ϕ

∂ξj
, . j = 1, . . . , n, are  

linearly independent . Γϕ . Hence (by the implicit function theorem) . Γϕ is a manifold 
of dimension n. For problem (26.7), we have  

.ϕ = (x − y)ξ ± |ξ |t, Γϕ = {x − y = ∓t sgn ξ},
proj Γϕ = {(x − y)2 = t2}.
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Therefore, the singularities of the solution to this problem are contained in the light 
cone .|x |2 ≤ t2. 

One of the goals of the theory of Fourier–Hörmander integral operators is to 
study where the singularities of solutions of very general equations of mathematical 
physics are concentrated. Questions of this kind are of considerable interest, in 
particular, for reconstruction of an image from the measurement of scattered waves 
(Krishnan and Quinto 2015), for reconstruction of singularities from bounded X-ray 
computed tomography data (Quinto 2017). 

The next theorem is another important result of the theory of Fourier–Hörmander 
integral operators, which essentially generalizes formula (26.3) for pseudo-differential 
operators. 

Theorem 26.4 (See Hörmander 1972) Let 

. (A f )(x) =
�

eı̊ϕ(x,y,ξ)a(x, y, ξ) f (y) dy dξ, f ∈ C∞
0 (Rn),

where .ϕ(x, ·, ·) is a nondegenerate phase, .a(x, ·, ·) ∈ Sm and vanishes outside the set 

. {(y, λξ) : λ ≥ 1, (y, ξ) ∈ K}

for some compact set K . Let .ψ ∈ C∞(Rn) be a real function and .∇ψ � 0 on .supp f . 
Next, suppose that there is precisely one point .(ys, ξs) for which .ys ∈ supp f , 
.ϕ′ξ (ys, ξs) = 0, .ϕ′y(ys, ξs) = ψ ′y(ys) and .detQ � 0, where 

. Q =

(
ϕ′′ξξ ϕ′′ξx
ϕ′′ξx ϕ

′′
xx − ψ ′′xx

)
.

Then 
. eı̊λψ(ys )(A f e−ı̊λψ − | detQ |−1/2e

1
2 ı̊ sgnQa(ys, λξs) f (ys) ∈ Sm−1.

This theorem has a close connection to the formulas obtained by V. P. Maslov in 
1965 for the canonical operator, to which the reset of this section is devoted. 

26.5 As already mentioned, we will try to identify the construction of the canonical 
operator by considering specific problems of quantum mechanics that are asymp-
totically close to classical mechanics. We shall start with the construction of an 
asymptotic formula for .1/h � 1 of the solution68 

. Ψ : R×R+ � (x, t) �→ Ψ(x, t) ∈ C

of the Cauchy problem for the following variant of the Schrödinger equation:69 

68 In 1930, American mathematician M. Stone (1903–1989) proved a fundamental result (Stone 
1932) on unitary groups .t �→ eitH in . L2. This fact proved instrumental (see, for example, Mackey 
1963, Faddeev and Yakubovskiı̆ 2009, Takhtajan 2008, Berezin and Shubin (2012), and also Reed 
and Simon 1972, Yosida  1965) in the derivation of the existence and uniqueness theorem of the 
solution .Ψ ∈ C1 (

R+; L2(Rn)) to fairy general problems of quantum mechanics, and, in particular, 
for .n = 1 for problem (26.10). The membership of the function . Ψ to the space . C1 (

R+; L2(Rn))
means that the mapping .t �→ Ψ(·, t) is continuously differentiable, and .‖Ψ(·, t)‖L2(Rn ) < ∞.
69 Erwin Rudolf Josef Alexander Schrödinger (1887–1961) was an Austrian physicist, one of the 
founders of quantum mechanics, winner of the Nobel Prize in Physics (1933). 
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.ihΨt +
h2

2
Ψxx =

x2

2
Ψ, Ψ(x, 0)

���
x=x◦

= Φ(x◦)e i
h x◦ . (26.10) 

Here the initial function, which has amplitude .Φ ∈ C∞
0 (R), normalized by70 

.‖Φ‖L2(R) = 1, (26.11) 

is locally a sinusoidal wave emanating from the point .x◦ ∈ R and oscillating with 
frequency .1/h � 1. Over time, the structure of such a “rigid” (X-ray radiation 
type) wave can, of course, change both frequency and amplitude. Therefore, it seems 
natural to look for the first approximation of the asymptotics (depending71 a priori  
on . x◦) in the  form72 

.ψ(x, t) = ϕ(x, t)e i
h S(x,t) (26.12) 

with unknown real functions S and . ϕ. Substituting this function . ψ in Eq. (26.10), we  
get 

.

(
ϕ
[
St +

x2 + S2
x

2

]
−ih

[
ϕt + Sxϕx +

Sxxϕ
2

]
+
h2

2
ϕxx

)
e

i
h S(x,t) = 0, (26.13) 

e 
i 
h S(x,0)ϕ(x, 0) = Φ(x)e i h x . (26.14) 

70 According to V. I Arnold (Arnold 2008): “Not everyone knows how huge the role of H. Weyl was 
in the maturation of quantum mechanics. Schrödinger writes that for some time he was unable to get 
the spectra of atoms observed in the experiment by using the already known “wave–particle” duality, 
even though, in the class of functions he considered for the Schrödinger equation, the spectrum 
was found to be continuous (as in the Fourier integral), which contradicted the observations. This 
is because the domain on which the equation was considered was unbounded. 

However, Weyl, with whom Shrödinger spoke about his difficulties, pointed out that he once 
faced this difficulty in elasticity theory, where he considered oscillations and waves in unbounded 
domains: to obtain a discrete spectrum one should pose boundary conditions at infinity—for ex-
ample, requiring that the .ψ-function should be square integrable. Shrödinger immediately followed 
this suggestion and obtained the required spectrum of hydrogen. As a result, the matrix quantum 
mechanics was rapidly replaced by the wave quantum mechanics.” 
71 This is so, for example, if x is replaced by .ln |x |, i.e., in the case of the equation 

.ihΨt +
h2

2
x

∂

∂x

(
x

∂

∂x
Ψ
)
=

ln2 |x |
2
Ψ.

72 This is the so-called WKB method, named after physicists Gregor Wentzel (1898—1978), Hendrik 
Anthony Kramer (1894–1952), and Léon Brillouin (1889–1969), who all developed it in 1926 for 
problems of quantum mechanics (see, for example, Maslov and Fedoryuk 1976). This method is 
also called the Debye procedure, since it was first applied to partial differential equations by the 
famous Dutch physicist and physical chemist Peter Debye (1884–1966), winner of the Nobel Prize 
in Chemistry (1936), who moved to the United States in 1939. It should be emphasized that the 
WKB method allows one to construct, generally speaking, only the so-called formal asymptotics, 
i.e., it produces one function (a priori there may be several of them), which asymptotically satisfies 
only the equation but may not be asymptotically close to the solution. Usually it is not an easy task 
to justify the asymptotics, i.e., to prove that the formal asymptotics is asymptotically close to the 
solution. It also happens that some or other formal asymptotics is not asymptotically close to the 
solution. 
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Since .1/h � 1, from Eqs. (26.13) and (26.14) we conclude that 

.St +
1
2

(
x2 + S2

x

)
= 0, S(x, 0) = x, (26.15) 

ϕt + Sxϕx + 
1 
2 
Sxxϕ = 0, ϕ(x, 0) = Φ(x). (26.16) 

26.6 Note that problem (26.15) is precisely problem (11.48), whose solution was 
already found and given by formula (11.44). We give this formula again: 

.S(x, t) = sin 2t
4

+
1

cos t
(x − sin t) − tan t

2
(x2 − sin2 t). (26.17) 

Here73 

. (x, t) ∈ Ω (26.67) 
=

(
R × [0,T]) \ {|x − xk | > 0, t = tk, k ≥ 1}, (26.18) 

and .(xk, tk) =
((−1)k−1, π2 (2k−1)) are the points of intersection of the characteristics 

. x(x◦, t) (11.36) 
= sin t + x◦ cos t, x◦ ∈ R, t ∈ [0,T], (26.19) 

(which precisely cover the domain . Ω) pertaining to the Cauchy problem for the 
Hamiltonian system74 

. �p + Hx
(11.33) 
= 0, p(0) = 1, �x − Hp 

(11.34) 
= 0, x(0) = x◦ (26.20) 

with the Hamiltonian .H(p, x, t) = p2+x2

2 . 

Let us give two more previously established formulas, which, however, follow 
from (26.19) and (26.20): 

. x◦(x, t) (11.38) 
= 

x − sin t 
cos t 

for t � tk (26.21) 

and . p(x(x◦, t), t) (11.39) 
= cos t − x◦ sin t. Hence by (26.21) we get 

.x(p, t) = 1 − p cos t
sin t

for t � kπ. (26.22) 

26.7 Let us now consider problem (26.16). Note that 

. Sx(x, t) (26.17) 
= 

1 − x sin t 
cos t 

, Sxx(x, t) = − tan t. (26.23) 

73 Despite the apparent singularity of the function .S : Ω � (x, t) �→ S(x, t) for .t = tk (because 
.cos tk = 0), it actually does not exist. Moreover, .limt→tk S(x, t)

��
x=x(x◦, t ) = 0 according to what 

was said after (11.45) on p. 68.
74 See footnote 81 on p. 68. 
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Hence the characteristic75 
.t �→ y(t) = y(x◦, t) of Eq. (26.16), which subject to the 

conditions .
dy
dt = Sy(y, t) and .y(0) = x◦, is given by the formula 

. y(x◦, t) = x◦ cos t + sin t (26.19) 
= x(x◦, t), (26.24) 

and hence, it coincides with the characteristic of Eq. (11.34). This is not surprising 
because 

. Sx(x, t) (11.39), (26.23) 
= p(x, t). (26.25) 

In turn, the sought-for solution . ϕ of problem (26.16) satisfies the equation 

. 
dϕ
dt

= −1
2
Sxx(x, t)ϕ, i.e.,

dϕ
dt

(26.23) 
= 

tan t 
2 
ϕ, 

and, therefore, in view of the equality .ϕ(x◦, 0) = Φ(x◦), we get76 

. ϕ(x(x◦, t), t) = ϕ(x
◦, 0)√| cos t |

(26.24) 
= Φ

( x(x◦, t) − sin t 
cos t

) 1√| cos t | 
. (26.26) 

We have .
∫ ∞
−∞ f (−μ) dμ =

∫ ∞
−∞ f (μ) dμ (in particular, for .dμ = dx

cos t ), and hence 

. ‖ϕ(·, t)‖L2(R)
(26.26) 
= ‖Φ‖L2(R) 

(26.11) 
= 1 for  t � (2k − 1)π 

2 
. (26.27) 

And since .Φ ∈ C(R) ∩ L2(R), for any .ε > 0 there exists an .aε > 0 such 
that .

∫
|x◦ |>aε

Φ2(x◦) dx◦ =
∫
|x−sin t |
| cos t | >aε

ϕ2(x(x◦, t), t) dx < ε. Hence, taking into ac-
count (26.27), we find that 

. lim
t→(2k−1)π

2

ϕ2(·, t) = δ(x − xk), where xk = (−1)k−1, (26.28) 

and so 
. lim
t→(2k−1)π

2

∫
R

ϕ(x, t)g(x) dx = 0 (26.29) 

for any function .g ∈ C(R). 
Theorem 26.8 For .t ≤ T < π

2 , the function 

. ψ : (x, t) �→ ψ(x, t) (26.12) 
= ϕ(x, t)e i h S(x,t), (26.30) 

where . ϕ and S are defined by (26.17) and (26.26), is the asymptotics in .h → 0 of the 
solution .Ψ ∈ C1(R+; L2(R)) of problem (26.10) corresponding to the initial function 
75 A priori, this characteristic might be different from the characteristic (26.19). Hence their 
designations are different here. 
76 Bearing in mind a generalization to the multivariate setting, we note that the factor . 1√

| cos t |
appearing in (26.26) is .

��det ∂x(x◦, t )
∂x◦

��−1/2.
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.Φ ∈ H2(R). Namely, 

.‖Ψ(·, t) − ψ(·, t)‖L2(R) ≤
h
2

ln
��tan

( t
2
+
π

4

)��·‖Φ′′ ‖L2(R). (26.31) 

However, for any .h > 0, 

. lim
t→ π

2

‖Ψ(·, t) − ψ(·, t)‖L2(R) > 1, (26.32) 

i.e., . ψ is not an asymptotics for . Ψ on the interval .0 ≤ t < π
2 . 

Proof Taking into account (26.13)–(26.16), we insert in Eq. (26.10) first . Z = Ψ−ψ
and then . ¯̄Z def

= Re Z − i Im Z . As a result, we get 

.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ihZt +
1
2
(
h2Zxx − x2Z

)
= − h2

2
e

i
h Sϕxx,

−ih ¯̄Zt +
1
2
(
h2 ¯̄Zxx − x2 ¯̄Z

)
= − h2

2
e−

i
h Sϕxx .

(26.33) 

Multiplying the first of these equations by . ¯̄Z , and the second, by Z , and subtracting, 
this gives 

. ih
( ¯̄ZZt + Z ¯̄Zt

)
+
h2

2
( ¯̄ZZxx − Z ¯̄Zxx

)
= ih2ϕxx · Im

(
e−

i
h SZ

)
.

Next, we divide by ih  and integrate with respect to x, taking into account that 

. 

∫
R

( ¯̄ZZxx − Z ¯̄Zxx

)
dx =

∫
R

( ¯̄ZZx − Z ¯̄Zx

)
x dx = 0.

Hence, denoting by . ‖ · ‖ the norm in .L2(R), we get77 

. 
∂

∂t
‖Z ‖2 = h

∫
R

ϕxx · Im
(
e−

i
h SZ

)
dx

(9.3) ≤ h‖ϕxx ‖ · ‖Z ‖. (26.34) 

We have 

. ‖ϕxx(·, τ)‖2 (26.26) 
= 

1 
cos2 τ 

∫ ∞ 

−∞

(
Φ

′′ (y)��
y= x−sin τ 

cos τ

)2 dx 
| cos τ | =

‖Φ′′ ‖2 
L2(R) 

cos2 τ 
, 

and hence, dividing both parts of inequality (26.34) by . ‖Z ‖ and taking into account 
that .Z

��
t=0= 0, we get .‖Z(·, t)‖ ≤ h

∫ t

0
dτ

2 cosτ ‖Φ
′′ ‖, i.e., inequality (26.31) is satisfied. 

Let us prove inequality (26.32). According to footnote 77, we have  

. ‖Ψ(·, t)‖2 (26.10) 
= ‖Φ(·)‖2. 

77 Applying the same argument to . Ψ in place of .Z = Ψ−ψ we get the system, whose only difference 
from (26.33) is that its right-hand side contains 0. Hence finally we get . ∂∂t ‖Ψ ‖2 = 0.
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Moreover, . ‖Φ(·)‖2 (26.11) 
= 1, . ‖ψ(·, t)‖2 (26.12) 

= ‖ϕ(·, t)‖2 (26.27) 
= 1, and78 

. ‖Ψ(·, t) − ψ(·, t)‖2 = ‖Ψ(·, t)‖2 + ‖ψ(·, t)‖2 − 2 Re
(
Ψ(·, t)��ψ(·, t)) .

Hence 
. lim
t→ π

2

‖Ψ(·, t) − ψ(·, t)‖2 = 2,

because .limt→ π
2

(
Ψ(·, t)��ψ(·, t))= 0. Indeed, 

. 

(
Ψ(·, t)

���ψ(·, t)
)
=
(
Ψ
(
·, π

2

)
− Ψ(·, t)

���ψ(·, t)
)
+
(
Ψ
(
·, π

2

)���ψ(·, t)
)
,

and as .t → π
2 we have 

. 

���
(
Ψ
(
·, π

2

)
− Ψ(·, t)

���ψ(·, t)
)���≤ ‖Ψ

(
·, π

2

)
− Ψ(·, t)‖ → 0,

because .Ψ ∈ C1(R+; L2(R)) and .
(
Ψ
(·, π2

) ��ψ(·, t))→ 0 in view of (26.29). �

The asymptotics of . Ψ in .h → 0 for .t ≤ T for any .T < ∞ will be given in 
Theorem 26.14. Here an important role will be played by the Fourier transform, in 
terms of which one formulates the main axioms of quantum mechanics, which is 
related to the asymptotics of . Ψ as .h → 0 we are interested in. So, in the next two 
subsections we recall some facts from quantum mechanics. 

26.9 In 1926, almost immediately after the publication of the Schrödinger equation, 
M. Born79 suggested a probabilistic interpretation of the wave function, i.e., the 
solution of the Schrödinger equation. Later, this interpretation had become generally 
accepted (though initially only Schrödinger himself did not agree with interpreta-
tion). A year later, N. Bohr80 and W. Heisenberg,81 during their joint work in Copen-
hagen, improved Born’s interpretation. According to its basic principles, quantum 
mechanics is a statistical theory, since the measurement of the initial conditions of 
a micro-object changes its state, which in turn leads to the probabilistic description 
of the wave function, which is also called the position function Here, not the ob-
ject itself is physically significant, but the square of its module, which means the 
probability of finding the micro-object under consideration somewhere in the space. 
Therefore, in quantum mechanics one seeks not the coordinates of a particle and its 
momentum, but the distribution of their probabilities. 

So (in the one-dimensional case under consideration), we have

78 Recall that .(x |y) denotes the inner product of points x and y in a Hilbert space. 
79 Max Born (1882–1970) was a German and British physicist and mathematician, one of the 
founders of quantum mechanics, Born won the 1954 Nobel Prize in Physics. One of his pupils was 
Robert Oppenheimer, the “father of the atomic bomb.” 
80 Niels Henrik David Bohr (1885–1962) was a Danish physicist, one of the creators of modern 
physics. In 1922 Bohr was awarded the Nobel Prize in Physics. 
81 Werner Karl Heisenberg (1901–1976) as a German theoretical physicist and one of the key 
pioneers of quantum mechanics, a Nobel laureate in physics (1932). 
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. (1) the position function .ψ : (x, t) �→ ψ(x, t) = ϕ(x, t)e i
h S(x,t), which obeys the 

Schrödinger equation (26.10) and characterizes the probability . P{a < x < b} =∫ b

a
|ψ(x, t)|2 dx ≤ ‖ψ‖2

L2(R) = 1 for the quantum particle to stay in the interval .]a, b[, 
and 

. (2) the momentum function .ψ̃ : (p, t) �→ ψ̃(p, t), where p is the dual variable to x 
with respect to the Hamiltonian system (26.20). 

At the same time, according to one of the axiomatics of quantum mechanics, the 
momentum function . ψ̃ is (up to some scale coefficients) the Fourier transform of the 
position function. 

By shifting along the x-axis, we can assume that the expectation . M[x] def
=∫ b

a
x |ψ(x, t)|2 dx of the variable x is zero. In this case, the variance . D[x] def

=

M[(x − M[x])2] of the random variable x (its mean square deviation) is 

. D[x] =
∫ ∞

−∞
x2 |ψ(x, t)|2 dx.

Note that a translation along the x-axis does not change .|ψ̃(p, t)|, because 

. 

∫ ∞

−∞
e−ı̊xpψ(x − a) dx = e−ı̊ap

∫ ∞

−∞
e−ı̊xpψ(x) dx.

Hence the expectation of the momentum can also be assumed to be zero. Hence the 
variance of the momentum is 

. D[p] =
∫ ∞

−∞
p2 |ψ̃(p, t)|2 dp.

The following theorem holds. 

Theorem 26.10 (The Uncertainty principle82 ) 
The following inequality holds: 

.D[x] · D[p] ≥ 1
4
. (26.35) 

Proof We have .0 ≤
∫ ∞
−∞

��μxψ(x, t) + ψ ′(x, t)��2 dx = I0μ2 + I1μ + I2. 
Here .I0 =

∫ ∞
−∞ x2 |ψ(x, t |2 dx, i.e., .I0 = D[x]. Next, .I1 = −1, because 

. I1 =

∫ ∞

−∞
x
(
ψ(x, t) ¯̄ψ(x, t)) ′x dx = x

(
ψ(x, t) ¯̄ψ(x, t)) ��∞−∞−‖ψ‖2

L2 .

Finally, using (17.28) and the Parseval identity (17.30) we have 

82 Heisenberg established relation of type (26.35) in 1927 by analyzing the methods of measuring 
the coordinates and momenta of particles. Thus, the evaluation of the coordinate of a particle by 
means of a beam(s) of light directed at it will be the more accurate, the shorter is the wavelength of 
the light wave and, accordingly, the greater is the photon momentum. This also leads to an increase 
in the uncertainty of the momentum of the particle to which the photon transmits a part of its 
momentum.
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. I2 =

∫ ∞

−∞
|ψ ′x(x, t)|2 dx =

∫ ∞

−∞
p2 |ψ̃(p, t)|2 dp = D[p].

So, .D[x]μ2 − μ + D[p] ≥ 0, which is equivalent to inequality (26.35). �

Let us now recall that .ψ(x, t) = ϕ(x, t)e i
h S(x,t). Moreover, 

. S(xk, tk) (11.47) 
= 0, and ϕ2(x, tk) (26.28) 

= δ(x − xk) 

holds at the points .(xk, tk) =
((−1)k−1, π2 (2k − 1)) (and only at these points). Hence 

at these points .(xk, tk) (and only at these points) the position function . ψ is the 
.δ-function. This means that at time points .t = tk the coordinate of the quantum 
particle is uniquely determined (and is equal to .x = xk). Hence by Theorem 26.10 
the momentum .p(tk) is uncertain. However, 

. lim
t→tk

p(x(x◦, t), t) (11.39) 
= lim

t→tk

(
cos t − x◦ sin t

)
= (−1)k x◦. (26.36) 

This fact fully corresponds to the previously noted specifics of the smooth man-
ifold .Λ2

[0,t] ⊂ Rx × Rp × Rt (see p. 67) and which is a ruled surface formed by 
straight lines at .θ(t) = −t to the Ox-axis and sliding along the graph of the function 
.(x(0, t), t) �→ cos t. 

We note also that, in full agreement with Theorem 26.10, for any .x ∈ R the 
momentum p assumes, for .t = kπ, a strictly definite value, namely . p(x, kπ) (11.39) 

= 

(−1)k−1. 

26.11 Let us now return to the question of constructing the asymptotics . Ψ as . h → 0
for .t ≤ T for any .T < ∞ (and not only for the case .t ≤ T < π

2 , which  was  
considered in Theorem 26.8). The construction of asymptotics presented there in 
terms of functions depending on .(x, t) could not be continued up to .t = π

2 , because 
at time .t = π

2 all the characteristics of (26.19) intersect at one point, which is the 
projection of the manifold .Λ2

[0,t]
��
t= π

2
⊂ Rx × Rp onto the x-axis. However, there 

are two circumstances that will help to overcome this difficulty. First, the manifold 
.Λ2
[0,t] ⊂ Rx × Rp × Rt is one-one projected onto the plane .Rp × Rt for .t � kπ, 

and second, according to the previous subsection, the variables x and p are related 
via the Fourier transform. Hence we will construct the asymptotics both in terms 
of functions, depending on .(x, t) for .|t − kπ | < ε < π

2 and in terms of functions 
depending on .(p, t) for .

��t − (2k−1)π
2

�� < ε. In this way, we write down the Schrödinger 
equation in the corresponding variables and match these asymptotics on the common 
time intervals, passing the original initial data as if “on the baton.” 

In particular, for .
��t − π

2
�� < ε < π

2 we need to change to the .(p, t)-variables. To 
this end, we write down Eq. (26.10) in Fourier images by applying the .h-Fourier 
transform, which is given (in the n-dimensional case) by the formula 

.[F̆v](p) =
( 1
2πh

)n/2 ∫
R
n
e−

i
h xpv(x) dx. (26.37)
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Up to the factor . in/2, whose role will be indicated below, the operator . F̆83 appearing 
in this formula is a modification of one of the common forms of the Fourier transform, 
namely .

( 1
2π
)n/2 ∫

R
n e−ixξu(x) dx (see the footnote 10 on p. 98),  where we used the  

equality 
. u(x) cf. (17.23) 

= 

∫ 

R
n 
eixξ

( 1 
2π

)n (∫ 

R
n 
e−iyξ u(y) dy

)
dξ, 

which implies the formula for the inverse .h-Fourier transform 

.[F̆−1
v̆](x) =

( 1
2πh

)n/2 ∫
R
n
e

i
h xp v̆(p) dp, (26.38) 

we made the change .ξ =
p
h . 

Both formula (17.28) and the equalities 

.

(
− i

h

) |β |
F̆[∂αx

(
xβv(x))](p) =

( i
h

) |α |
pα∂βp [F̆v(x)](p) (26.39) 

are clear. Application of these formulas to Eq. (26.10) again transforms it to the 
Schrödinger equation, but now in the variables . (p, t): 

.ihΨ̆t +
1
2
h2Ψ̆pp =

p2

2
Ψ̆, Ψ̆ = F̆Ψ. (26.40) 

As in the case of Eq. (26.10), we shall search the asymptotic solution of Eq. (26.40) 
in the form .ψ̆(p, t) = ϕ̆(p, t)e i

h S̆(p,t), from which we get the system of equations (cf. 
formulas (26.15)–(26.16)): 

.S̆t +
1
2

(
p2 + S̆2

p

)
= 0, ϕ̆t + S̆p ϕ̆p +

1
2
S̆pp ϕ̆ = 0. (26.41) 

Let us write down the Cauchy data for this system. They should match the asymptotics 
of the solution of problem (26.10) for some .t◦ ∈]0, π2 [, in other words, they should 
satisfy the relation84 

.F̆[ϕ(x, t)e i
h S(x,t)] = ϕ̆(p, t)e i

h S̆(p,t) +O(h). (26.42) 

The left-hand side of Eq. (26.42) is .
1√

2πh

∫
R
ϕ(x, t)e i

h [S(x,t)−xp] dx, which is asymp-
totically,85 for .1/h � 1, 

83 Pronounced “Ef breve.” Symbol . ̆ (breve, Ital.) means brevity, what is in agreement with small h. 
84 Here we limit ourselves to constructing the asymptotics of the original problem only up to .O(h). 
85 Formula (26.43) can be proved by the method of stationary phase (Fedoryuk 1987, 1971) by  
reducing the problem to the analysis of the integral .I (h) =

∫ a

0 χ(y)e i
h y2

dy with an appropriate 
function . χ. The asymptotics of . I (h) can be found from evaluation of the Euler integral . 

∫ ∞
0 eiy

2
dy =

√
π
2 ei

π
4 (with integration along the ray spanned by the vector . 1+ i (see Lavrent’ev and Shabat 1977) 

and integration by parts. Next, in order to change to the integral . I (h), one should fix t and p, put 
.g(x) = S(x, t) − xp, . f (x) = ϕ(x, t), and note the principal contribution in the asymptotics as
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.

{ ϕ(x, t)√|Sxx(x, t)| e
i
h [S(x,t)−xp]e

i
h

π
4 sgn Sxx (x,t)

}���
x=x(p,t)

+O(h). (26.43) 

Here and in what follows86 
.x(p, t) is the stationary point of the phase .S(x, t) − xp, 

i.e., .Sx(x, t)
��
x=x(p,t)= p(t). From  (26.42)–(26.43) we have 

.S̆(p, t) =
(
[S(x, t) − xp] + iπ

4
sgn Sxx(x, t)

)���
x=x(p,t)

, (26.44) 

and 
.ϕ̆(p, t) = ϕ(x, t)√|Sxx(x, t)|

����
x=x(p,t)

. (26.45) 

Recalling formula (26.21) for .x◦(x, t) and using the formula 

. x(p, t) (26.22) 
= 

1 − p cos t 
sin t 

for t � kπ, (26.46) 

which also follows from the equalities 

. Sx(x, t) (26.23) 
= 

1 − x sin t 
cos t 

(26.25) 
= p(x, t), 

we get 
.x◦(p, t) def

= x◦(x, t)��
x=x(p,t) =

cos t − p
sin t

. (26.47) 

Next, employing the equivalence (11.45) . ⇔ (26.17) for S, using  (26.26) for . ϕ, 
and taking into account that . Sxx(x, t) (26.23) 

= − tan t, we get  for system  (26.41) the 
following Cauchy data for .t = t◦ ∈ ]

0, π2
[
: 

.S̆(p, t◦) = (1 + p2) cos t◦ − 2p
2 sin t◦

− iπ
4
, ϕ̆(p, t◦) = Φ

(
x◦(p, t◦))√
sin t◦

. (26.48) 

The corresponding solution of system (26.41) for .t ∈]0, π[ is given, up to the order,87 

.O(h) by the formulas:88 

.h → 0 comes from the localization in the neighborhood of the point . x̂, where  .g′(x̂) = 0, and  
where, respectively, the exponent is no longer rapidly oscillating (and hence the positive and 
negative parts of its real part are no longer integrally annihilate each other). Of course, one may 
assume that .x̂ = 0, .g′(x̂) = 0 and .g′′(x̂) > 0. Now by changing the variable .x = λ(y) (so that 
.g(x) = y2, .sgn x = sgn y), we get . I (h), where .χ(y) = f (λ(y))λ′(y). 
86 Of course, in order not to confuse .x(p, t) with .x(x◦, t), we could write .x(p, t) in place of 
.xS (p, t). But we will not deviate here from the notation accepted in the theory of the canonical 
operator. 
87 According to (26.42); see the footnote 84 on p. 171. 
88 These formulas define the solution of system (26.41), which can be easily verified directly. An-
other way is to reduce problem (26.41), (26.48) to the already solved problems (26.15) and (26.16). 
To this end, one should in (26.41) replace p by . −x, write .t − π

2 in place of t, and multiply . ϕ̆ by
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.S̆(p, t) = p2 + 1
2

cos t
sin t

− p
sin t

− iπ
4
, ϕ̆(p, t) = Φ

(
x◦(p, t))√| sin t | . (26.49) 

Hence from (26.46) we get 

.
∂x(p, t)
∂p

= −S̆pp(p, t). (26.50) 

Problem 26.12 Verify the next theorem following the scheme of the proof of Theorem 26.8. 

Theorem 26.13 For .
��t − π

2
�� < ε < π

2 , the function 

.ψ̆ : (p, t) �→ ψ̆(p, t) = ϕ̆(p, t)e i
h S̆(p,t), p ∈ R, (26.51) 

where . S̆ and . ϕ̆ are defined (26.49), is the asymptotics for the solution . Ψ of prob-
lem (26.10). Namely, as .h → 0, we have 

. 

∫
R

���Ψ(x)��x=x(p,t) − ψ̆(p, t)
��2 dp ≤ Cεh

2, where x(p, t) = 1 − p cos t
sin t

.

However, .limt→π ‖Ψ
(
xS(·, t)

) − ψ̆(·, t)‖L2(R) > 1 for any .h > 0, i.e., . ψ̆ is not an 
asymptotics for . Ψ if .t < π. 

As for the subsequent time interval (i.e., the interval .|t − π | < ε < π
2 ), the 

construction of the asymptotics should be carried out (as mentioned above) in terms 
of functions that depend on variables . (x, t), by applying to Eq. (26.40) some or 
other modification of the Fourier transform. If in this way, we consider the mapping 
. F̆−1 given by (26.38). As a result, we get .ihΨt +

1
2 h

2Ψxx = x2

2 Ψ. Taking again the 
sought-for asymptotics in the form .ψ(x, t) = ϕ(x, t)e i

h S(x,t), we get  the system of  
equations (cf. (26.15), (26.16)): 

.St +
1
2
(x2 + S2

x) = 0, ϕt + Sxϕx +
1
2
Sxxϕ = 0. (26.52) 

For this system, for some .t ∈ ]
π
2 , π

[
, we find the Cauchy data matching the asymp-

totics (26.51), or, in other words, satisfying the relation 

.F̆−1[ϕ̆(p, t)e i
h S̆(p,t)] = ϕ(x, t)e i

h S(x,t) +O(h). (26.53) 

The left-hand side of (26.53) is .
1√

2πh

∫
R
ϕ̆(p, t)e i

h [S̆(p,t)+xp] dx, which, for . 1/h � 1
is asymptotically equal to 

.

{
e

i
h [S̆(p,t)+xp]e

iπ
4 sgn S̆pp (p,t) ϕ̆(p, t)√

|S̆pp(p, t)|

} ����
p=p(x,t)

+O(h). (26.54) 

. e
iπ
4 . After that, one should apply the inverse transforms to the solutions of (11.45) and (26.26) of 

problems (26.15) and (26.16).



174 3 Pseudo-Differential Operators and Fourier Operators

Here .p(x, t) is the stationary point of the phase .S̆(p, t) + xp. From  (26.53), (26.54) 
we get 

.S(x, t) =
( [
S̆(p, t) + xp

]
+
iπ
4

sgn S̆pp(p, t)
)���
p=p(x,t)

, (26.55) 

and 
.ϕ(x, t) = ϕ̆(p, t)√

|S̆pp(p, t)|

����
p=p(x,t)

. (26.56) 

Since . S̆p(p, t) (26.49) 
= 

p cos t−1 
sin t , we find that .p(x, t) = 1−x sin t

cos t . Hence employing (26.49) 
for . ϕ̆ and using the equality . S̆pp(p, t) (26.49) 

= cot t, we get the Cauchy data for . t = t◦ ∈]
π
2 , π

[
: 

. S(x, t◦) = − x2 + 1
2

tan t◦ +
x

cos t◦
− 2

iπ
4
, ϕ(x, t◦) =

Φ
(
x−sin t◦
cos t◦

)
√| cos t◦ |

for problem (26.55), (26.56). Hence the solution of Eqs. (26.55) and (26.56) for 
.|t − π | < ε < π

2 corresponding to the Cauchy data is given, up to . O(h), by the  
formulas 

. S(x, t) = − x2 + 1
2

tan t +
x

cos t
− 2

iπ
4
, ϕ(x, t) =

Φ
(
x−sin t
cos t

)
√| cos t |

.

Constructing the asymptotics in succession on the set of intervals 

. Om = {|t − mπ | < ε} and Om+ 1
2
=
{��t − (2m + 1)π

2
�� < ε

}
,

where .m = 0, 1, . . . ,M , .M ∈ N, and .ε ∈ ] 3
8π,

π
2
[
, which cover the closed interval 

.0 ≤ t ≤ T , .T = Mπ, we arrive at the following result. 

Theorem 26.14 Let .Ψ ∈ C1(R+; L2(R)) be a solution of problem (26.10) corre-
sponding to the initial function .Φ ∈ H2(R), .T = Mπ, .M ∈ N, and let . K : Φ �→ KΦ
be the operator given by the formula 

.[KΦ](x, t) =
{
αm(t)ψm(x, t) for t ∈ Om,

αm+ 1
2
(t)ψ̆m(p, t) for x = x(p, t), t ∈ Om+ 1

2
.

(26.57) 

Here .αj ∈ C∞
0 (Oj), .2 j ∈ Z+, and .

∑2M+1
m=0 αm

2
(t) ≡ 1 for .0 ≤ t ≤ T ,
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. ψm(x, t) = ϕ(x, t)e i
h Sm(x,t), ψ̆m(p, t) = ϕ̆(p, t)e i

h S̆m(p,t),

x(p, t) = 1 − p cos t
sin t

,

Sm(x, t) = − x2 + 1
2

tan t +
x

cos t
− m

iπ
2
, ϕ(x, t) =

Φ
(
x−sin t
cos t

)
√| cos t |

,

S̆m(p, t) = p2 + 1
2

cos t
sin t

− p
sin t

−
(
m +

1
2

) iπ
2
, ϕ̆(p, t) =

Φ
(

cos t−p
sin t

)
√| sin t | .

Then . KΦ is the asymptotics of the function . Ψ as .h → 0 in the sense that, for 
.t ≤ T < ∞, there exists a .C(T) < ∞ such that 

. ‖KΦ(·, t) − Ψ(·, t)‖L2(R) ≤ C(T)h.

Remark 26.15 By Theorem 26.14, the principal term of the asymptotics satisfies the 
condition 

.[KΦ]
(
x, t +

π

2

)
= e−i

π
2 [KΦ](x, t), (26.58) 

which implies its .2π-periodicity, 

. [KΦ](x, t + 2π) = [KΦ](x, t)

and the variation of the phase by . − π
2 at the points .(xm, tm) =

((−1)m−1, π2 (2m − 1)) , 
at which the characteristics of the Hamiltonian system (26.20) converge and at which 
there is a sharp increase in the radiation intensity. Facts of this kind have long been 
known in optics: the phase jump at the focal points89 belonging to the caustic formed 
by the converging rays of a cylindrical wave (see, for example, §45 of Sommerfeld’s90 

book Sommerfeld 1954), and the concentration of the intensity of light radiation on 
the caustics, thanks to which Archimedes burned up, according to legend, the Roman 
fleet.91 

89 From Latin focalis, focal; caustic, from Latin caustica, burning. A clear example of caustics can 
be seen with a regular mug. Slanting incident light rays reflecting from its interior and intersecting, 
highlight the caustic (its envelope) in the form of a cardioid on the surface of the liquid half poured 
into the mug. The brightest point is the tip of the cardioid—the point at which converge all the rays 
falling into the mug (Arnold 2016). 
90 Arnold Johannes Wilhelm Sommerfeld (1868–1951) was an outstanding German theoretical 
physicist and mathematician. He founded large Munich school of theoretical physics. Among his 
students are Nobel Prize winners W. Pauli, W. Heisenberg, H. Bethe (in physics) and P. Debye and 
L. Pauling (in chemistry). 
91 Francesca Aicardi, a student of V. I. Arnold, drew his attention (see Prasolov and Tsfasman 2004) 
to the fact that Aristophanes in “The Clouds” attributes to Socrates an even earlier use of caustics 
in business matters: he advises his client to choose a sunny place at the court session and, having 
bought a lens at the pharmacy, use the solar caustic to burn his debt obligation shown to the court 
by the opponent. And in our time, the concave configuration of some glazed buildings sometimes 
leads to arson of parked cars; see https://www.autonews.ru/news/5b9b428a9a7947b2d57b7899.

https://www.autonews.ru/news/5b9b428a9a7947b2d57b7899
https://www.autonews.ru/news/5b9b428a9a7947b2d57b7899
https://www.autonews.ru/news/5b9b428a9a7947b2d57b7899
https://www.autonews.ru/news/5b9b428a9a7947b2d57b7899
https://www.autonews.ru/news/5b9b428a9a7947b2d57b7899
https://www.autonews.ru/news/5b9b428a9a7947b2d57b7899
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26.16 Let us proceed to the construction of the asymptotics of the multivariate 
analog of problem (26.10), namely we consider the problem:92 

.ihΨt +
1
2
h2ΔΨ =

1
2
|x |2Ψ, Ψ(x, 0)��

x=x◦ = Φ(x◦)e
i
h x◦1 , (26.59) 

where .x = (x1, x2) ∈ R
2, . Δ is the Laplace operator, . 1h � 1, and .Φ ∈ C∞

0 (R2). 
Substituting .ψ(x, t) = ϕ(x, t)e i

h S(x,t) with the sought-for S and . ϕ in (26.59), and 
arguing as in problem (26.10), we see that, up to an additive summand of order 
.O(h2), we have  

.St +
1
2
(|∇S |2 + |x |2) = 0, S(x, 0) = x1, (26.60) 

ϕt + (∇S |∇ϕ) + 1 
2 
ϕΔS = 0, ϕ(x, 0) = Φ(x). (26.61) 

As in the one-dimensional case, we shall seek S in the form 

. S(x, t) =
∫ (x,t)

(0,0)
ω, where ω cf. (11.41) 

= p dx − H(p, x, t) dt (26.62) 

with the Hamiltonian 

.H(p, x, t) = 1
2
(p2

1 + p2
2 + x2

1 + x2
2) (26.63) 

corresponding .
(
h
i

∂
∂xk

↔ pk
)

to problem (26.59). Hence .St = −H and .
∂S
∂xk

= pk , 
and therefore, . �p + Hx = 0. The corresponding Hamiltonian system . �p + Hx = 0, 
. �x − Hp = 0 takes the form 

. �p1 = −x1, �p2 = −x2, �x1 = p1, �x2 = p2 (26.64) 

with the initial data 

.p1(0) = 1, p2(0) = 0, x1(0) = x◦1, x2(0) = x◦2 (26.65) 

(here we used the relations .S(x, 0) = x1 and .
∂S
∂xk

= pk). 
For .t ∈ [0,T], the characteristics 

. x(t) = x(x◦, t) (11.36) 
=

{
x1(x◦, t) = sin t + x◦ 1 cos t, 
x2(x◦, t) = x◦ 2 cos t 

(26.66) 

of the Cauchy problem (26.64)–(26.65) fill in the entire set 

.Ω =
(
R

2 × [0,T]) \ {|x1 − xk1 | > 0, x2 = xk2 , t = tk, k ≥ 1
}
, (26.67)

92 A similar analysis applies to the case of interaction of heavy and light particles, i.e., when the 
parameter h appears at the derivatives of only some spatial variables, for example, as in the equation 
. ihΨt +

1
2
[
h2Ψx1x1 + Ψx2x2

]
= 1

2 |x |2Ψ.
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while 
.(xk1 , xk2 , tk) =

(
(−1)k−1, 0,

π(2k − 1)
2

)
(26.68) 

are precisely the intersection points of the characteristics. Note that the initial point 
.x◦ = (x◦1, x◦2) ∈ R

2 is reconstructed from .(x, t) for .t � tk . Namely, in view of (26.66) 
we have 

.x◦1(x, t) =
x1 − sin t

cos t
, x◦2(x, t) =

x2
cos t
. (26.69) 

From (26.66), (26.69) and using the equation . �p + Hx = 0, we get  

.p1(x, t) = 1 − x1 sin t
cos t

, p2(x, t) = −x2 tan t . (26.70) 

Hence 
.p1(x◦, t) = cos t − x◦1 sin t, p2(x◦, t) = −x◦2 sin t (26.71) 

and 
.x1(p, t) = 1 − p1 cos t

sin t
, x2(p, t) = −p2 cot t . (26.72) 

Formulas (26.70) (cf. (11.40)) define the mapping of the plane . R
2
x

def
= {x = (x1, x2)}

onto the plane .R2
p(t)

def
=

{
p = (p1(x, t), p2(x, t))

}
. Note that, for .t = tk , the projection 

of the plane .R2
p(t) onto the plane . R2

x is the point .(xk1 , xk2 ) =
((−1)k−1, 0

)
, while for 

the remaining t this projection coincides with the plane . R
2
x . 

The union .
⋃

t∈[0,T ] R2
p(t) of the set of planes .R

2
p(t) forms a smooth three-

dimensional manifold93 

.Λ3
[0,T ] ⊂ R

5 = R
2
x × R

2
p × Rt (26.73) 

in the coordinate space .(x, p, t). The image of the projection of .Λ3
[0,T ] onto . R

2
x × Rt

is precisely the set . Ω ((26.67)), and hence the three-dimensional manifold .Λ3
[0,T ] (for 

the two-dimensional analogue of this manifold, see p. 67) can be associated with the 
“graph” of the solution .p = p(x, t) of system (26.64). 

In view of (26.63), (26.64), the differential 

. dω = −
2∑

k=1

[ �pk + Hxk (p(x, t), x, t)
]
dxk ∧ dt .

of the form 
.ω = p1 dx1 + p2 dx2 − H(p, x, t) dt (26.74) 

is zero. Hence the integral .I(x, t) =
∫ (x,t)
(0,0) ω is defined in the simply connected 

domains 
.Ωk = Ω ∩

{
tk < t < tk+1 =

π

2
(2k + 1)

}
, k ≥ 0, (26.75)

93 With the natural topology. 
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because it is independent of the path between the initial and the final points of 
integration. 

Lemma 26.17 Formula .S(x, t) = I(x, t) defines the solution of problem (26.60). This 
solution .S : Ω � (x, t) �→ S(x, t) is continuous,94 and moreover, .S(x, t) = 0 for .t = tk , 
and for .t � tk and .x = (x1, x2) we have the equality 

.S(x, t) = sin 2t
4

+
x1 − sin t

cos t
− tan t

2
(|x |2 − sin2 t), (26.76) 

i.e., 
. S(x, t) = x1

cos t
− tan t

2
(|x |2 + 1).

Proof The integral .
∫ (x,t)
(0,0) p1(x, t) dx1 + p2(x, t) dx2 − H(p, x, t) dt is independent of 

the choice if the integration path .γ ⊂ Ω0 connecting the points .(0, 0) ∈ R
2
x × Rt and 

. (x, t). Hence, using (26.63) and the equality . �x = p, it can be written as the sum of 
two integrals 

. I1 =

∫ t

0

|p(x(0, τ), τ) |2 − |x(0, τ)|2
2

dτ and I2 =

∫ (x1,x2)

(sin t,0)

2∑
j=1

pj(ξ, t)dξj .

In view of (26.66) and (26.70) we have .|p(x(0, τ), τ)|2 = cos2 τ, .|x(0, τ)|2 = sin2 τ, 
and .p1(ξ, t) = 1−ξ1 sin t

cos t , .p2(ξ, t) = −ξ2 tan t. Hence 

. I1 =
1
2

∫ t

0
cos 2t dt, I2 =

∫ x1

sin t

1 − ξ1 sin t
cos t

dξ1 −
∫ x2

0
ξ2 tan t dξ2.

It follows that (26.76) holds for .t < π
2 , and hence .S(x(x◦, t), t) → 0 as .t ↑ π

2 , because 

. S(x(x◦, t), t) (26.66) 
= 

sin 2t 
4 

+ x◦ 1 − sin t 
2

[
x◦ 1
(
x◦ 1 + 2 sin t

)
+(x◦ 2)2 cos t

]
. 

Assume now that .(x, t) = (x1, x2, t) ∈ Ωk , where .k = 1. Writing 

. S(x, t) =
∫ (x1,x2,t)

(xk1 ,xk2 ,tk )
ω

as the sum of two integrals 

.

∫ t

tk

|p(x(0, τ), τ) |2 − |x(0, τ)|2
2

dτ and
∫ (x1,x2)

(xk1 ,xk2 )

2∑
j=1

pj(ξ, t)dξj,

94 In contrast to the popular opinion that “the function S has singularities at focal points” (see, for 
example, on p. 105 of the book Maslov and Fedoryuk 1976). See also in this regard footnote 73 on 
p. 165. 
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we verify (26.76) for .(x, t) ∈ Ω1. An induction in .k ≥ 1 completes the proof of the 
lemma, including the formula .S(xk1 , xk2 , tk) = 0 for any .k ≥ 1. �

Let us now consider problem (26.61), i.e., the problem 

.ϕt + (∇S |∇ϕ) + 1
2
ϕΔS = 0, ϕ(x, 0) = Φ(x). (26.77) 

As in the one-dimensional case, it is easily checked that the characteristics of 
Eq. (26.77) coincide with the characteristics of (26.66). Along these characteris-
tics, we have 

. 
dϕ

(
x(t), t)
dt

= −1
2
ϕ(x, t)[Sx1x1(x, t) + Sx2x2(x, t)

] ��(x,t)=(x(t),t),

i.e., . dϕdt = sin t
cos t ϕ. Therefore, 

. ϕ(x(x◦, t), t) = ϕ(x
◦, 0)

| cos t |
(26.69) 
= Φ

( x1 − sin t 
cos t 

, x2 
cos t

) 1 
| cos t | . (26.78) 

Problem 26.18 Following the proof of Theorems 26.8, 26.13 and 26.14, verify the next theorem. 

Theorem 26.19 The solution .Ψ ∈ C1(R+; L2(R2)) of problem (26.59) with the initial 
function .Φ ∈ H2(R2) satisfies the asymptotic estimate 

. ‖KΦ(·, t) − Ψ(·, t)‖L2(R) ≤ C(T)h as h → 0,

where .t ≤ T = Mπ, .M ∈ N, and .K : Φ �→ KΦ is the operator defined by 

.[KΦ](x, t) =
{
αm(t)ψm(x, t) for t ∈ Om,

αm+ 1
2
(t)ψ̆m(p, t) for x = x(p, t), t ∈ Om+ 1

2
.

(26.79) 

Here .αj ∈ C∞
0 (Oj), .2 j ∈ Z+, and moreover, .

∑2M+1
m=0 αm

2
(t) ≡ 1 for .0 ≤ t ≤ T , 

. Om = {|t − mπ | < ε}, Om+ 1
2
=
{���t − (2m + 1)π

2

��� < ε}, ε ∈
] 3
8
π,
π

2

[
,

ψm(x, t) = ϕ(x, t)e i
h Sm(x,t), ψ̆m(p, t) = ϕ̆(p, t)e i

h S̆m(p,t),

x = (x1, x2), x1(p, t) = 1 − p1 cos t
sin t

, x2(p, t) = − p2 cos t
sin t

t,

Sm(x, t) = S(x, t) − μm iπ
2
, S(x, t) = x1

cos t
− tan t

2
(|x |2 + 1),

where95 
.μm = 2m. Moreover, by Lemma 26.17 we have

95 In the n-dimensional case, .μm = nm. See  Remark  26.20 and also §26.25 on p. 188, where  
a more general setting is considered. 
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. Sm(x, t) (26.62) 
=

[∫ (x,t) 

(0,0) 
p(x, t) dx − H(p(x, t), x, t) dt

]
− μm 

iπ 
2 

and (see the footnote 76 on p. 166) 

.ϕ(x, t) = Φ
( x1−sin t

cos t ,
x2

cos t
)

| cos t | =
Φ
( x1−sin t

cos t ,
x2

cos t
)

��det ∂x(x◦,t)
∂x◦

��1/2 , (26.80) 

where .x(x◦, t) is given by (26.66), 

. S̆m(p, t) =
p2

1 + p2
2 + 1

2
cos t
sin t

− p1
sin t

− μ(m+ 1
2 )
iπ
2
,

i.e., as follows from . Sxx
(26.76) 
= 2 tan t and the relations (26.44)–(26.48), 

. S̆m(p, t) =
(
[S(x, t) − xp] − iπ

4
sgn Sxx(x, t)

)���
x=x(p,t)

− μm iπ
2
,

ϕ̆(p, t) = Φ
( cos t−p1

sin t ,− p1
sin t

)
| sin t |

cf. (26.80) 
= 

Φ
( cos t−p1 

sin t ,− p1 
sin t

)
��det ∂p(x

◦,t) 
∂x◦

��1/2 , 

where .p(x◦, t) is given by (26.71). 

Remark 26.20 Following the footnote 76 on p. 166 (i.e., with further generalizations 
in mind), it is worth noting that the number . μm appearing in Theorem 26.19 is the 
sum .

∑m
j=1 indj , where .indj is the so-called Morse index96 of the phase trajectory 

.]t ′j, t ′′j [� t �→ x(x◦, t), .t ′j < tj < t ′′j , .|t ′′j − t ′j | $ 1, .det ∂x(x◦,tj )
∂x◦ = 0. In case we 

consider here, . det ∂x(x◦,t)
∂x◦

(26.66) 
= cos2 t, and hence .tj = ( j − 1

2 )π. Moreover,97 

. indj
def
= inerdex

∂x(p, t ′j)
∂p

− inerdex
∂x(p, t ′′j )
∂p

, (26.81) 

where .inerdex ∂x(p,t)
∂p is the number of negative eigenvalues of the symmetric matrix 

.
∂x(p,t)
∂p . In view of Eq.  (26.72) we have 

96 Harold Calvin Marston Morse (1892–1977) was a famous American mathematician, widely 
known primarily for his outstanding results in analysis, calculus of variations, and differential 
topology, describing the relationship of the algebraic/topological properties of a topological space 
with critical points of functionals defined on it. For the Morse theory, see, for example, in Vassiliev 
(2014), Milnor (1963) and Chap. 3 of V. A. Sharafutdinov’s lectures on Riemannian geometry; see 
http://math.nsc.ru/LBRT/d6/chair/study.htm. 
97 In the book Maslov and Fedoryuk (1976), the formula for . ind (on p. 147) is given with the wrong 
sign due to a typo (. t′ and . t′′ were swapped), which arose, most likely, due to the fact that sometimes 
this formula is written out in terms of the matrix . S̆pp , for which (in contrast to p. 20 of the book 
Maslov and Fedoryuk 1976) the equality .S̆pp (p, t) = − ∂x(p, t )

∂p holds (see (26.50) and formula 
(6.6) on p. 135 of the book Maslov and Fedoryuk 1976).

http://math.nsc.ru/LBRT/d6/chair/study.htm
http://math.nsc.ru/LBRT/d6/chair/study.htm
http://math.nsc.ru/LBRT/d6/chair/study.htm
http://math.nsc.ru/LBRT/d6/chair/study.htm
http://math.nsc.ru/LBRT/d6/chair/study.htm
http://math.nsc.ru/LBRT/d6/chair/study.htm
http://math.nsc.ru/LBRT/d6/chair/study.htm
http://math.nsc.ru/LBRT/d6/chair/study.htm
http://math.nsc.ru/LBRT/d6/chair/study.htm
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. 
∂x(p, t)
∂p

=

[− cot t 0
0 − cot t

]
,

which implies that .inerdex
∂x(p,t′j )

∂p = 2 and .inerdex
∂x(p,t′′j )

∂p = 0. As a result, 

. μm
def
=

m∑
j=1

indj = 2m for n = 2.

We also note the following Morse’s result, which will be important in the sequel: 
. indj is the number degenerations (counting multiplicity) of the mapping 

. ]t ′j, t ′′j [� t �→ det
∂x(x◦, t)
∂x◦

(26.66) 
= cos2 t . 

26.21 The above method of the proof of Theorems 26.8 and 26.13 is largely based 
on the classical method of characteristics, which was briefly mentioned in §11. 
Although it is also applicable in a more general setting concerning the topic of 
this section, for example, in relation to problem (26.59) (see Exercise 26.18), it 
is, however, powerless, in particular, in constructing the short-wave asymptotics of 
solutions to those problems in quantum mechanics for which the potential and/or the 
initial phase are not explicitly specified, for example, as in this case 

.
ihΨt +

h2

2
ΔΨ = v(x)Ψ,

Ψ(x, 0)��
x=x◦ = Φ(x◦)e

i
h S0(x◦), Φ ∈ C∞

0 (Rn).
(26.82) 

Here the potential98 
.v ∈ L∞loc(Rn) satisfying the condition .v(x) → ∞ as . |x | → ∞

and the initial phase .S0 : Rn � x
C∞
�→ S0(x) ∈ R are not given explicitly. This does not 

allow us to construct, in analogy with problems (26.10) and (26.59), an asymptotic 
approximation .ϕ(x)e i

h S(x,t) to the solution of problem (26.82) in the absence of 
explicit formulas for S and . ϕ. 

Of course, for specific v and . S0, one can understand (for example, numerically) 
how intersect the characteristics .t → x(x◦, t) that emanate for .t = 0 from the point 
. x◦, i.e., where .det ∂x(x◦,t)

∂x◦ = 0. But what is next? Is there a phase jump on the caustic? 
What is it like? 

Despite the fact that the method of characteristics is no longer capable of providing 
answers to these questions, nevertheless, as a tool for studying the Hamiltonian 
system, it contributed to the development of a general V. P. Maslov’s concept, which 
allowed one not only to answer these questions but also to study various linear 
problems of mathematical physics with small parameter. 

98 In this case, as pointed out in the footnote 68 on p. 163, problem (26.82) is uniquely solvable in 
the space .C1 (

R+; L2(Rn)) .
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The main objects of Maslov’s theory are the so-called Lagrangian99 manifolds 
(see Definition 26.22; for example, the manifold .Λ2

[0,T ] ⊂ Rx × Rt × Rp given on 
p. 67) and the operator . K associated with the Lagrangian manifold (which Maslov 
called the canonical operator) and the so-called Arnold–Maslov index (or simply 
the Maslov index). An example of the operator . K appears in Theorem 26.19, where 
the corresponding Maslov index is the integer number100 

. μm in the formulas for . Sm, 
which characterizes the phase jump on the caustics. 

Definition 26.22 Let . Λn be an n-dimensional manifold embedded in the 2n-
dimensional phase space .R

n
x × R

n
p , and let 

. ω1 =

n∑
k=1

pk dxk

be the associated differential form.101 A manifold .Λ = Λn is a Lagrangian manifold 
if on . Λ the differential .dω1 =

∑n
k=1 dpk ∧ dxk of the form . ω1 is zero. In other words,

99 Arnold, whom Maslov asked to be an opponent (see http://trv-science.ru/2010/07/06/ 
perepletenie-traektorij-zhizni/), in a footnote on the second page of the paper Arnold (1967) 
(almost identical to the report of Arnold-the opponent, which Maslov emphasized in the above 
interview), notes: “The name comes from the “Lagrange brackets” in classical mechanics.” Recall 
that the “Lagrange brackets” are defined by the formula .[u, v]p,x =

∑n
k=1

( ∂xk

∂u
∂pk

∂v − ∂pk

∂u
∂xk

∂v

)
in 

the case when the coordinates .(x, p) ∈ R
2n corresponding to the system of Hamiltonian equations 

. �p = −Hx , . �x = Hp can be defined as functions of the variables .(u, v) ∈ R
2. 

100 In the case considered here, this number is the Morse index, which is defined as the number 
of degenerations (with due account of the multiplicity) of .det ∂r (x◦,τ)

∂x◦ on the phase trajectory 
.[0, t] � τ �→ r(x◦, τ) ∈ Λn+1

[0, t ] (see Remark 26.20 and §26.25). Even before Maslov Maslov 
(1965) in 1965 introduced the concept of the index, now known as the Maslov index, its properties 
were described in the symplectic theory of Sturm’s theorem. This theory was constructed in the 
1930–1950s by Morse (see Morse 1930, Morse 1934 and Victor Borisovich Lidskii Lidskii 1955 
(1924–2008)), a honored professor at the Moscow Institute of Physics and Technology, specialist in 
mathematical physics, theory of differential equations and spectral theory of operators, a participant 
of the Second World War, a hero-scout (see Note 1943), awarded with military orders. For the 
development of the symplectic theory of Sturm’s theorem and its relation to the Maslov index, see, 
in particular, Arnold (1967) and Pushkar’ (1998). 
101 The differential form .p ∧ dx − H dt is denoted by . ω, and the form .p ∧ dx, by  . ω1. Its  
differential .dω1 is a nondegenerate skew-symmetric bilinear form in . R2n of the most simple form: 
.dp∧ dx. This simplest (or symplectic) form (from Latin simplex, simple) takes any nondegenerate 
skew-symmetric bilinear form in the space . R2n in the coordinates .(x, p) (known as the symplectic 
coordinates), whose existence follows from Darboux’s theorem (see, for example, Arnold 1989). 
The space .Rn

x × R
n
p with the structure defined by the differential form .dω1 =

∑n
k=1 dpk ∧ dxk is 

known as the symplectic space. In the context of the corresponding transformation group, this term 
was introduced by Hermann Weyl (1885–1955), an outstanding German mathematician, theoretical 
physicist and philosopher, who in the footnote on p. 165 of this book Weyl (1939) writes:  “The  
name ‘complex group’ formerly advocated by me in allusion to line complexes, as these are defined 
by the vanishing of antisymmetric bilinear forms, has become more and more embarrassing through 
collision with the word ‘complex’ in the connotation of complex number. I therefore propose to 
replace it by the corresponding Greek adjective ‘symplectic.’ ” 

http://trv-science.ru/2010/07/06/ perepletenie- traektorij-zhizni/
http://trv-science.ru/2010/07/06/ perepletenie- traektorij-zhizni/
http://trv-science.ru/2010/07/06/ perepletenie- traektorij-zhizni/
http://trv-science.ru/2010/07/06/ perepletenie- traektorij-zhizni/
http://trv-science.ru/2010/07/06/ perepletenie- traektorij-zhizni/
http://trv-science.ru/2010/07/06/ perepletenie- traektorij-zhizni/
http://trv-science.ru/2010/07/06/ perepletenie- traektorij-zhizni/
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. 

∫
γ=∂Ω

ω1 (7.2) 
= 

∫ 

Ω 
dω1 = 0 

for any closed contour . γ describing a simply connected domain .Ω ⊂ Λ. 

It is shown (see Arnold 1989) that the phase flow 

.(x(0), p(0)) �→ (x(t), p(t)) = gt (x(0), p(0)), gt : Λ→ gtΛ, (26.83) 

as given by the system of Hamiltonian equations102 
. �p = −Hx, �x = Hp under the 

transformation group . gt satisfying the condition .gt1+t2 = gt1gt2 is the canonical 
mapping,103 in other words, .

∫
γ
ω1 =

∫
gtγ
ω1 for any closed contour . γ lying in 

a simply connected subdomain of . Λ. So, a Hamiltonian flow carries one Lagrangian 
manifold into a different one; in our setting, . Λ is mapped into . gtΛ. Moreover, 

. 

∫
γ
p dx − H dt =

∫
gtγ

p dx − H dt, because
∫
gtγ

H dt = 0.

102 This is why this flow is called a Hamiltonian flow. The phase trajectory .t �→ (x(t), p(t)) is 
frequently called a bicharacteristics, and its projections onto . Rn

x , i.e., the characteristic .t �→ x(t), 
is sometimes called a ray. 
103 This concept and the term itself was introduced by Carl Gustav Jacobi (1804–1851), one 
of the greatest mathematicians of the XIX century His contributions to complex analysis, linear 
algebra, dynamics, and other branches of mathematics and mechanics are enormous. Jacobi was 
distinguished by exceptional diligence and a complete absence of vanity and envy: when Abel 
published a new work that largely strengthened Jacobi’s results, he limited himself to the remark: 
“This is above my work and above my praise.” But not everything is so sweet. Jacobi was a human 
being. To quote from O. Ore’s book “Niels Henrick Abel. Mathematician Extraordinary”: “Bessel 
was both a friend and admirer of Jacobi, bet even so felt that he could not conceal the fact 
that the young mathematician was known both for his unusual ability and for his arrogance ‘He 
is undoubtedly very talented, but here he has made almost everyone his enemy since he arrived, 
because he has said something unpleasant to each, and said it in a manner which they cannot forgive. 
However, I hope that these small stupidities soon will not be mentioned anymore; toward me he 
has always been a well-behaved young man.; Jacobi gradually did improve his insolent manners, as 
so many young men have done in the course of time. Even at this stage, in the competition which 
arose between Abel and Jacobi, the two rivals always expressed themselves with courtesy, respect, 
and admiration for the works and discoveries of the other.” An extensive class of integrals was 
named Abelian by Jacobi’s suggestion. His name is associated, in particular, with such important 
concepts in mathematics as the Jacobian, the Jacobi identity, and the Jacobi elliptic functions. He 
proved (see, for example, Arnold 1989) that when it is possible to find a canonical transformation 
.(x, p) �→ (X, P) such that in the coordinates .(X, P) the Hamiltonian does not depend on X, then  
the original Hamiltonian equations can be solved in quadratures if a solution of the equation 

.
∂S

∂t
+ H

( ∂S
∂X

, X, t
)
= 0 (26.84) 

is found (cf. (26.60)). This is why this equation is called the Hamilton–Jacobi equation. Noting the 
power of this method, Arnold writes in his book Arnold (1989) that “many problems solved by 
Jacobi are generally not amenable to solving by other methods.”
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The differential form .ω = p dx − H dt, which appears here and also in (11.41) 
and (26.74), is called the Poincaré–Cartan integral invariant104 (Kozlov 1998). For 
.t ∈ [0,T], with this form one associates the .(n + 1)-dimensional manifold 

.Λn+1
[0,T ] ⊂ R

n
x × R

n
p × Rt (26.85) 

formed by the integral curves of the Hamiltonian equations. Hence this manifold is 
embedded in the extended phase space. From the Hamiltonian equations it follows 
that .dω

��
Λn+1
[0,T ]

= 0 (cf. (26.74)).105 

26.23 Let us now turn to the main purpose of this section: the presentation the basic 
construction of the method of the canonical Maslov operator. We will do this in 
relation to the asymptotics as .h → 0 of the solution to problem (26.82). But first, for 
the particular case of this problem, namely for the problem 

.LtΨ = 0, Ψ(x, 0)��
x=x◦ = Φ(x◦)e

i
h S0(x◦), Φ ∈ C∞

0 (Rn), (26.86) 

where 
. LtΨ

def
= ihΨt +

h2

2
ΔΨ − |x |2

2
Ψ,

we represent formula106 (26.79) for the asymptotics of its solution in a more compact 
form. We will use the terms and notation accepted in the theory of the canonical 
Maslov operator. 

We note first of all that the initial data in this problem define the Lagrangian 
manifold 

. Λn
0 =

{(x, p) ∈ R
n
x × R

n
p, where p : x �→ p(x) = ∇S0(x)

}
,

while the initial data themselves can be represented in the form 

.Ψ(x, 0) = [KΛn
0
Φ](x), (26.87) 

where . Λn
t

(26.83) 
= gt Λn 

0 , and the operator .KΛn
t

is given for .0 ≤ t ≤ T = Mπ, .M ∈ N, 
by the formula

104 Élie Joseph Cartan (1869–1951) was a French a member of the French Academy of Sciences. 
He made a significant contribution to differential geometry (of special importance is the theory of 
external forms), the theory of continuous groups and their representations (mainly, Lie groups, for 
which he laid the foundation of the algebraic theory of Lie groups and described representations 
of semisimple Lie groups), and the theory of differential equations. His son, Henri Paul Cartan 
(1904–2008), was also an outstanding mathematician of the XX century. 
105 .Λn+1

[0,T ] is a Lagrangian manifold in .Rn
x × Rt × R

n
p × Rp0 , where .p0 = −H(x(t), p(t)) (see, for 

example, Maslov and Fedoryuk 1976, pp. 117, 155, 185). 
106 More precisely, its natural extension for an arbitrary n and arbitrary real-valued phase . S0 ∈
C∞(Rn). 
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.[KΛn
t
Φ](x) = α

m+
j
2
(t)ψ̂m(r, t) for t ∈ O

m+
j
2
, j = 0, 1. (26.88) 

Here, .m = 0, . . . ,M ∈ N, .O
m+

j
2
=
{��t− (2m+j)π

2
�� < ε ∈ ] 3

8π,
π
2
[}

is one of the . 2m+1
intervals covering the closed interval .0 ≤ t ≤ T . Next, .αj ∈ C∞

0 (Oj), .2 j ∈ Z+ and 

.
∑2M+1

m=0 αm
2
(t) ≡ 1. By .(r, t)we denote the point on . Λn+1

[0,T ]
(26.85) ⊂ R

n 
x × Rn 

t × Rp whose 
projection onto .Rn

x × Rt for .t ∈ Om is . (x, t), and the projection onto .Rn
p × Rt for 

.t ∈ Om+ 1
2

is .(p(x), t). Finally, .ψ̂m(r, t) = ϕ̂(r, t)e i
h Ŝm(r,t), where107 

. Ŝm(r, t) =
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S(x, t) − μm iπ
2
, t ∈ Om,

[S(x, t) − xp(x)]x=x(p,t) − μ(m+ 1
2 )
iπ
2
, t ∈ O

m+
j
2
,

.μk = nk, and 

.ϕ̂(r, t) = Φ
(
x◦(r, t))√
J(r, t)

, J(r, t) =
��� det
∂r(x◦, t)
∂x◦

��� = dr
dσ(r, t) � 0, (26.89) 

and .dσ(r, t), as follows from the last equality, is a volume element (i.e., the Lebesgue 
measure) on .Λn+1

[0,T ]. 

Using the concepts and formulas from the previous section we can now give 
a general scheme of the method of the canonical Maslov operator in relation to 
the construction of the asymptotics for the solutions of problems similar to prob-
lems (26.79) and (26.86). This scheme is given by the following diagram: 

Ψ(0) = Φe i h S0 �� Λn 
0, Φ 

gt

��

K
��

Λn 
t = g

t Λn 
0, Φ 

K��
Ψ(0) = [KΛn 

0 
Φ] Lt �� [KΛn 

t 
Φ]h → 0 h→0 Ψ(t). 

(26.90) 

Of special importance in this diagram is the Lagrangian manifold . Λ and the 
canonical operator . K on . Λ, which establishes a relation between the sought-for 
asymptotics of the function . Ψ (which is defined on the configuration space) and the 
corresponding function . Φ on . Λ. 

These two objects lay the basis for the method of the canonical Maslov operator 
in relation to numerous various problems, and in particular, to the aforementioned 
problem (26.82), i.e., the problem 

.ihΨt +
h2

2
ΔΨ = v(x)Ψ, Ψ(x, 0)��

x=x◦ = Φ(x◦)e
i
h s(x◦), (26.91) 

107 We have .S(x, t) =
∫ (x, t )
(0,0) p dx − H(p, x, t) dt (see Lemma 26.17 and equality (26.62)), and 

.x(p, t) is a stationary point of the phase .S(x, t) − xp, i.e., .Sx (x, t)
��
x=x(p, t ) = p(t).
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where .Φ ∈ C∞
0 (Rn). Let us use this problem to illustrate the algorithm outlined in 

the next subsection. 

26.24 Algorithm for the Construction of the Maslov Operator. Applying to 
problem (26.91), as in the case of problems (26.10) and (26.59), the WKB method, 
or, in other words, the Debye procedure (see the footnote 72 on p. 164) for searching 
the formal108 asymptotics of the function . Ψ in the form .ψ(x, t) = ϕ(x, t)e i

h S(x,t) with 
sought-for real functions . ϕ and S, we get  

.St +
1
2
|∇S |2 + v(x) = 0, S(x, 0) = s(x), (26.92) 

ϕt + (∇S |∇ϕ) + 1 
2 
ϕΔS = 0, ϕ(x, 0) = Φ(x). (26.93) 

But now, in the absence of specific data on the functions v and s, it is not possible 
to explicitly write down the manifold .Λn+1

[0,T ] woven, for .t ∈ [0,T], from the phase 
trajectories of the corresponding Hamiltonian system . �p+Hx = 0, . �x−Hp = 0, where 
.H(p, x, t) = p2

2 + v(x). Therefore, one has to reason abstractly, assuming that, for 
a locally finite cover by simply connected domains of the manifold .Λn+1

[0,T ] with local 
coordinates 

.(r, t) = (xi1 . . . xik pik+1 . . . pin t), k ≤ n, (26.94) 

it is possible (analytically or numerically) to identify which of these domains can 
be projected onto .R

n
x × Rt (such domains are called regular) and which (singular) 

domains can be projected only onto those .(n + 1)-dimensional planes . Rn
(x,p) × Rt

(such planes are also called singular) for which in (26.94) the strict inequality . k < n
holds. 

A point .A = (r, t) ∈ Λn+1
[0,T ] is a focal point if its neighborhood is projected only onto 

singular .(n + 1)-dimensional planes .R
n
(x,p) × Rt , i.e., if .J(x, t) def

=

��� det ∂x(x◦,t)
∂x◦

��� = 0, 
where .t �→ x(x◦, t) is the characteristic emanating for .t = 0 from the point .x◦ ∈ R

n
x . 

The caustic is the projection of the set of all focal points onto .Rn
x × Rt . In other 

words, this is the set on which all the characteristics (rays) of the Hamiltonian 
system intersect. To the ray .t �→ x(x◦, t) there corresponds the phase trajectory 
.t �→ r(x◦, t) ∈ Λn+1

[0,T ], where .r(x◦, 0) = (x◦, p◦), and .p◦ = ∇s(x). One says that . tj , 
where . j ≥ 1, is the  jth focus on the phase trajectory if .r(x◦, tj) is a focal point. 
For .0 ≤ t < t1, the phase trajectory lies in the regular domain .Ω0 ⊂ Λn+1

[0,t1[. In this  

domain, .J(x, t) def
=

�� det ∂x(x◦,t)
∂x◦

�� � 0, whence we have the dependence . x◦ on . (x, t)
and the following formula (cf. (26.89)) for the formal asymptotics:

108 In contrast to the (true) asymptotics of the solution, which is a function that differs from the 
solution by a value that tends to zero as .h → 0, the formal asymptotics only satisfies the conditions 
of the problem up to a value that tends to zero at .h → 0, but this does not guarantee proximity 
to the solution. A formal asymptotic will be (true) asymptotic if the operator of the problem has 
continuous inverse in the corresponding spaces. However, even when this is the case, it is often 
very difficult to verify this. 
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.Ψ(x, t)  ψ0(x, t) = Φ(x
◦(x, t))√
J(x, t)

e
i
h S0(x,t) for t ∈ [t0, t1[; (26.95) 

here .t0 = 0, and . S0 is the solution of problem (26.92). An obstacle occurs as the focal 
point is approached: .ψ0(x, t) tends to infinity, because .J(x(x◦, t1), t1) = 0. But, as  
mountaineers say, “a smart person will not go up the mountain, a smart person will 
go around the mountain.” It is possible to bypass the focal point due to the fact that its 
presence implies the existence of the domain .Ω1/2 ⊂ Λn+1

|t−t1 |=ε$1 which intersects . Ω0

and which contains, for .t1 ≤ t < t1 + ε, the phase trajectory . t �→ r(x◦, t) ∈ Λn+1
[0,T ]

which can be diffeomorphically projected both onto .R
n
x ×Rt and onto some singular 

plane .R
n
(x,p) × Rt with local coordinates 

.(r, t) = (xi1, . . . , xik , pik+1, . . . , pin, t), k < n. (26.96) 

Hence, as in the proof of Theorem 26.19, one can, for .|t − t1 | $ 1, construct an 
asymptotics of the form .ϕ̆(r, t)e i

h S̆(r,t) in the local variables (26.96) by applying to 
Eq. (26.82) the .h-modification of the Fourier transform (with respect to .xi1 . . . xik ) 

. [F̆kv](p) =
( 1
2πh

)k/2 ∫
R
k
e−

i
h (xi1 pi1+...+xik pik )v(r) dxi1 . . . xik ,

which is agreed in .{t0 < t < t1} ⋂ {|t − t1 | $ 1} with asymptotics (26.95) via the 
relation 

.[F̆kψ0(r, t)](p) = ϕ̆(r, t)e i
h S̆(r,t) +O(h). (26.97) 

Thus, the initial Cauchy data are transmitted, like a “baton,” to the domain . Ω1/2 ⊂
Λn+1
|t−t1 |$1. 
By using the stationary phase method (see the footnote 85 on p. 171) one can 

evaluate the left-hand side of Eq. (26.97), which makes it possible to find in . Ω1/2
the functions . ϕ̆ and . S̆ that correspond to the original Cauchy data. These data can be 
transmitted to the functions . ϕ1 and . S1, which specify the asymptotics of the solution 
in the interval .]t1, t2[ in the standard (for the WKB method) form: .ϕ1(x, t)e i

h S1(x,t). 
The transmission of the initial Cauchy data (the “baton”) is effected on the set 
.{t1 < t < t2} ∩ {|t − t1 | $ 1} via the relation 

. [F̆−1
n ϕ̆(p, t)e

i
h S̆(p,t)](x) = ϕ(x, t)e i

h S(x,t) +O(h).

As a result (arguing in the same way as in the proof of Theorem 26.19), we get the 
asymptotic formula 

.Ψ(x, t)  Φ(x
◦(x, t))√
J(x, t)

e
i
h S1(x,t)− iπ

2 (n−k1) for t ∈]t1, t2[, (26.98) 

which is similar to (26.95). The number .μ1 = n − k1 is the Morse index (see the 
footnote 100 on p. 182), which is equal to the degree of the degeneracy of the 
determinant of the matrix .

∂r(x◦,t1)
∂x◦ , whose rank . k1 was initially denoted by k.



188 3 Pseudo-Differential Operators and Fourier Operators

The algorithm for constructing the canonical Maslov operator, which “essentially 
reduces the original partial differential equation on the configuration space to an 
ordinary differential equation along the trajectories of a Hamiltonian vector field on a 
Lagrangian manifold” (Nazaikinskii 2014) is completed in this case by the procedure 
(repeating the previous constructions) of changing from the interval .]tj−1, tj[ to the 
interval .]tj, tj+1[ and the determination of the function . Sj on this interval. As a result, 
we get the asymptotic formula 

.Ψ(x, t)  Φ(x
◦(x, t))√
J(x, t)

e
i
h S j (x,t)− iπ

2 μ j for t ∈]tj, tj+1[. (26.99) 

Here .μj =
∑j

l=1(n − kl) is the Morse index of the phase trajectory .t �→ r(x◦, t) we 
consider, i.e., the number of focal points on this trajectory counting their multiplici-
ties. This means that .ml = (n− kl) is the degree of the degeneracy of the determinant 
.J(x, t) def

=

��� det ∂x(x◦,t)
∂x◦

��� at the point . tl . 

26.25 The Arnold–Maslov Index.109 The matrix . ∂r(x
◦,t1)

∂x◦ , whose rank is . k1, is  
constructed, as noted above, with the local coordinates (26.96) of the singular 
plane .R

n
(x,p) × Rt onto which the domain .Ω1/2 ⊂ Λn+1

|t−t1 |$1 containing the trajectory 
.t �→ r(x◦, t) ∈ Λn+1

[0,T ] is diffeomorphically projected. But in general the domain 
.Ω1/2 ⊂ Λn+1

|t−t1 |$1 can be projected to a different singular plane, and in this case the 
rank of the corresponding matrix .

∂r(x◦,t1)
∂x◦ can be .̃k1 � k1. The same applies to all the 

numbers . kl . Nevertheless, the exponent .e−
iπ
2 μ j in (26.99) will not change, because 

the following extremely important, but by no means simply provable, although quite 
expected110 fact is true, which was established by Maslov in the book Maslov (1965): 

.the difference k̃l − kl is a multiple of 4. (26.100) 

A detailed proof of this result can be found, for example, in the book Maslov and 
Fedoryuk (1976) (Lemma 6.4 and Proposition 7.3). However, the essence of this fact 
can be easily identified by following the instructions for Problem 26.26 presented 
below. 

As already pointed out above, .μj =
∑j

l=1 ml , where .ml = (n − kl). Morse 
proved (see, for example, § 15 in the book Milnor 1963) that . ml coincides (cf. 

109 V. I. Arnold Arnold (2006) writes: “I’ve involuntarily repeated twice the experience of Poincaré, 
who attributed his result to Lorentz, when I was working on my reports on doctoral dissertations 
of Maslov and Gudkov on symplectic topology and real algebraic geometry. 

Maslov told me that the integer I called the “Maslov index” in my report on his thesis should 
not be attributed to him, because only its residue modulo 4 had a physical importance in the 
quasi-classical theory, while my integer was useless.” 
110 Indeed, the method of constructing the formula was the one from which (see Theorem 26.19) 
the asymptotics for the same problem was constructed in the particular special case: . v(x) = |x |2
and .s(x) = x1. Therefore, there is not much reason to doubt that formula (26.99) is correct. Hence 
formula (26.99) should not change (up to an additive term .O(h)) if . k1 is replaced by . ̃k1, which  is  
equivalent to condition (26.100).
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formula (26.81)) with the number 

. ind γ(r ′, r ′′) def
= inerdex

∂x(r, t ′)
∂p

− inerdex
∂x(r, t ′′)
∂p

, (26.101) 

which is the index111 of the non-self-intersecting curve .γ(r ′, r ′′) parameterized by 
.t ∈ [t ′, t ′′]. This curve, which is a part of the phase trajectory containing the focal 
point .rl = r(tl), connects the initial point .r ′ = r(t ′) and the final point .r ′′ = r(t ′′), 
which are not focal points. Moreover, .inerdex ∂x◦(r,t)

∂p is the negative inertia index of 
the quadratic form corresponding to the symmetric matrix .

∂x◦(r,t)
∂p (in other words, 

the number of its negative eigenvalues). 
Formula (26.101) has sense, of course, for any oriented curve lying on a La-

grangian manifold (not necessarily formed by the phase trajectories of a Hamiltonian 
system). In this general case, (26.101) defines the so-called Maslov index, which was  
introduced by Maslov in the book Maslov (1965). 

The geometric definition of the index and the related algebraic and topological 
aspects were given by V. I. Arnold in his review of Maslov’s doctoral thesis (see the 
footnote 99 on p. 182) and later in his famous paper Arnold (1967), which triggered 
many deep studies (see, for example, Novikov 1970, Vassiliev 1981, Karasev and 
Maslov 1984). Arnold’s definition of the Maslov index can be expressed by the 
formula 

. ind γ(r ′, r ′′) def
= ν+ − ν−, (26.102) 

where . ν± is the number of focal points on .γ(r ′, r ′′) such that the derivative . ∂xik∂pik
changes its sign from . ∓ to . ± as these points are traversed in the direction of increasing 
argument . pik . Here without loss of generality (see Arnold 1967 and Arnold 1989) it is  
assumed that the local coordinates .(xi1, . . . , xik , pik+1 . . . , pin ) can be chosen (and are 
chosen) so that they define (as functions of the variables .(pi1, . . . , pik , xik+1 . . . , xin )) 
a Lagrangian manifold in the neighborhood of the corresponding focal points at 
which .

∂xik
∂pik

= 0. 

Problem 26.26 Verify formula (26.100) and the equality of the right-hand sides in (26.101) 
and (26.102) for the problem112 

.ihΨt +
1
2
h2ΔΨ =

1
2

n∑
m=0

( xm
m

)2
Ψ, Ψ(x, 0)

���
x=x◦

= Φ(x◦)e i
h x◦1, (26.103) 

i.e., problem (26.91), where .v(x) = 1
2
∑n

m=0
( xm

m

)2, and .s(x1, . . . , xn) = x1. 

Hint To begin with, verify that the Lagrangian manifold .Λn+1
[0,T ] corresponding to this problem is 

formed by the phase trajectories .
(
x(x◦, t), p(x◦, t), t ) of the Hamiltonian system with the Hamil-

tonian .H(x, p, t) = 1
2
( |p |2 +∑n

m=1
x2
m

m2

)
emanating from the point .x◦ ∈ R

n . Moreover, 

111 Recall that . (r, t) (26.96) 
= (xi1,  . . . ,  xik , pik+1,  . . . ,  pin, t). 

112 From the previously considered problem (26.59) this problem differs only by the factor . 1
m2

multiplying . x2
m .
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. x1(x◦, t) = sin t + x◦1 cos t and xm(x◦, t) = x◦m cos
t

m
for m ≥ 2.

Next, show that the rank of the matrices .
∂r (x◦, t j )

∂x◦ at the focal points (for .n = 2 they appear in the 
focuses .t′j =

π
2 + π(j − 1) and .t′′j = π + 2π(j − 1)) is .n − 1, and that the neighborhood of the focal 

points is projected to singular planes, of which one is .Rn
p × Rt . 

Returning to formula (26.99), we note that, in general, several rays can come 
to the point .(x, t) from different initial points .x◦1, . . . , x

◦
N of the coordinate space. 

This is possible (for an example, see the footnote 71 on p. 164) if the Lagrangian 
manifold consists (in the language of Riemannian surfaces) of different “sheets,” and 
at the point . (x, t), the points .(x, p1, t), . . . , (x, pN, t) are projected, which lie on these 
“sheets” and into which the corresponding phase trajectories come. In this problem, 
the resulting formula for the asymptotics is the sum of their contributions, of which 
each is given by a formula of the form (26.99). 

The following problem can serve as an illustration of possible applications of the 
canonical operator method to various problems 

26.27 The Scattering Problem. More precisely, the problem of the influence of 
an inhomogeneity of a medium on the propagating high-frequency wave traveling 
in the plane .R2 � x = (x1, x2) in the direction . x1 with velocity .c(x) = √

ρ(x)−1
, 

where the function113 
.ρ ∈ C∞(R2) is known to be 1 a fortiori only for .|x | ≥ 1. This  

problem was first considered by Rayleigh in 1889. However, his assumption about 
molecular scattering in gases was erroneous, as pointed out by L. I. Mandelstam 
in 1907. Modern scattering theory is related to the Schrödinger equation, as well 
as to the Helmholtz equation. From this point of view, the scattering problem was 
considered, in particular, by Vainberg in Chapters V, X and XI of his book Vainberg 
(1982), (for a more general setting, see his earlier papers Vainberg 1975 and Vainberg 
1977. 

The above wave is described by the function 

. U : (x, t) �→ U(x, t) = Ψ(x)e i
h (t−x1),

1
h
� 1,

satisfying the wave equation .Uττ = c2(x)ΔU, where .τ = t − x1. It follows  that . Ψ is 
a solution of the Helmholtz equation114 

113 The quantity .ρ(x) > 0 reflects the properties of the medium (its inhomogeneity), which has an 
effect on the velocity of the wave passing through it. 
114 Hermann Ludwig Ferdinand von Helmholtz (1821–1894) was an outstanding German physicist, 
physician, physiologist, psychologist, acoustics, who made significant contributions in several 
scientific fields like physiological optics and acoustics, electrodynamics and thermodynamics, the 
law of conservation of energy, and the principle of least action, the theory of vortices, etc. One 
circumstance is noteworthy, which in some measure was the reason for the extraordinary breadth 
of Helmholtz’s scientific research. In an after-dinner speech at the celebration of his seventieth 
birthday (1891) he recalls: “Nun sollte ich zur Universität übergehen. Die Physik galt damals noch 
für eine brodlose Kunst. Meine Eltern waren zu grosser Sparsamkeit gezwungen; also erklärte mir 
der Vater, er wisse mir nicht anders zum Studium der Physik zu helfen, als wenn ich das der Medicin 
mit in den Kauf nähme. Ich war dem Studium der lebenden Natur durchaus nicht abgeneigt und 
ging ohne viel Schwierigkeit darauf ein” (Hermann von Helmholtz: Erinnerungen).
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.ΔΨ +
ρ(x)
h2 Ψ = 0, x = (x1, x2) � R

2, (26.104) 

subject to Sommerfeld radiation conditions115 

.Ψ(x) = O(r1/2), ∂Ψ(x)
∂r

− i
h
Ψ(x) = o(r−1/2) as r = |x | → ∞. (26.105) 

Applying the Debye procedure (in other words, the WKB method) of searching the 
asymptotics of the function . Ψ in the form .ψ(x) = ϕ(x)e i

h S(x) with sought-for real 
functions S (the phase) and . ϕ (the amplitude), we get, as in Eqs. (26.60) and (26.61), 
two equations 

.|∇S |2 − ρ(x) = 0, 2(∇S |∇ϕ) + ϕΔS = 0. (26.106) 

The first of these equations116 is the stationary Hamilton–Jacobi equation. To this  
equation there correspond the Hamiltonian equations 

.
dx
ds

= Hp,
dp
ds

= −Hx

H(p,x)= |p |2−ρ(x)
=⇒ dx

ds
= 2|p|, dp

ds
= ∇ρ(x). (26.107) 

We have .ψ(x) = e
i
h x1 near the straight line 

. Λ1
0 = {(x1, x2) = (−2, b), b ∈ R},

because .ρ(x) = 1 for .x < −1. Moreover, .S(x)��
Λ1

0
= −2 and .Sx1(x)

��
Λ1

0
= 1. Hence we 

also get the initial data: 

.x
��
s=0 = (−2, ξ) and p

��
s=0 = (1, 0). (26.108) 

From these data it follows that .H
��
s=0 = 0. And because . 

∂H
∂s = Hp

dp
ds +Hx

dx
ds

(26.107) 
= 0, 

we find that .H ≡ 0, i.e., .|p|2 = ρ(x) ≤ C < ∞. So, 

. |x(s)| ≤ 2Cs + max(2, |ξ |),

and hence for .s ≤ σ < ∞ the solution of problem (26.107), (26.108) is bounded. An 
important conclusion follows: the phase trajectories of system (26.107) emanating 
from the Lagrangian manifold . Λ1

0 form the two-dimensional Lagrangian manifold 
.Λ2
[0,σ] in the phase space .R

2
x × R

2
p . 

Here . ξ and s the (global) coordinates on .Λ2
[0,σ]. Let .rsj = (ξj, sj) be the sequence 

(.s1 < s2 < . . .) of  focal points on .Λ2
[0,σ] (these are the points at which . J def

=�� ∂x(ξ,s)
∂(ξ,s)

��� = 0). The projection onto the plane . R
2
x of all focal points is the caustic, i.e.,

115 These conditions distinguish a unique solution to the Helmholtz equation (see, for example, 
Vladimirov 1971). In particular, .Ψ(x) = e

i
h x1 for .ρ(x) ≡ 1 ⇔ c(x) ≡ 1. 

116 It has a special name—the eikonal equation, from the Greek “eiko” (image). The word “icon” 
has the same origin. 
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the intersection set of the characteristics (rays) of the Hamiltonian system. At the 
points where .J � 0, .S

(
x(ξ, s)) is equal to 

. S
(
x(ξ, 0)) +

∫ s

0
2|p|2dσ = S

(
x(ξ, 0)) + 2

∫ s

0
ρ
(
x(ξ, σ))dσ,

because .dS = p dx (since .Sx = p), and .
dx
ds = 2|p| and .|p|2 = ρ(x). 

For the second of equations (26.106) (the transport equation) a similar argu-
ment gives the initial condition: .ϕ(x)��

Λ1
0
= 1. And since . 2(∇S |∇ϕ) = 2(p|∇ϕ) =(

dx
ds |∇ϕ

)
= d

ds ϕ, the equation itself assumes the form .
d
ds ϕ(x)+ΔS(x)ϕ(x) = 0. One  

can check that 
. ΔS(x(ξ, s)) = 1

2

(
ln

J
2

) ′
s
,

and .J
��
s=0 = 2. As a result, we get .ϕ(x) = √

2/J. 
Next, one should proceed as in the proof of Theorem 26.8. With the exception of 

the caustic neighborhood, the asymptotics of the function . Ψ is given, for . sj < s <
sj+1, in the form almost analogous to (26.99). The justification of the asymptotics 
obtained in this way is presented in the last two chapters of the book Vainberg (1982) 
(and in the papers Vainberg 1975, Vainberg 1977 for a more general situation). 

In addition, we note that in the case where .ρ(x) depends only117 on . |x |, there are 
relatively simple explicit asymptotic formulas obtained in Dobrokhotov et al. (2013) 
(see also Nazaikinskii 2014), which holds even in the neighborhood of focal points 
and caustics. One of these formulas is as follows: 

.Ψ(x) =
( i
2πh

)1/2
a(|x |)J0

(T(|x |)
h

)
+O(h). (26.109) 

Here .a(|x |) = 2π
ρ( |x |)

T ( |x |)
|x | , .T(r) =

∫ r

0 ρ
2(ξ) dξ, and . J0 is the Bessel function. There-

fore, .Ψ(x) for .|x | > R � 1 is asymptotically, as .h → 0, 

. 

( i
2πh

)1/2
a(|x |)J0

( |x | + λx
h

)
, where λx =

∫ R

0

(
ρ2(ξ) − 1

)
dξ.

The proof of (26.109) is based on the ideas developed, in particular, in Dobrokho-
tov et al. (2014), Dobrokhotov et al. (2017), which proved instrumental in effectively 
solving many new problems.

117 Thus, we are talking about a radial wave originating from the origin (or entering it), and 
therefore, the caustic in this case is only .x = 0. 



Appendix A 
New Approach to the Theory of 
Generalized Functions (Yu. V. Egorov) 

1 Drawbacks of the Theory of Distributions 

L. Schwartz’s theory of distributions was created mainly by 1950s and quickly gained 
popularity not only among mathematicians but also among representatives of other 
natural sciences. This is explained to a large extent by the fact that the theory is based 
on fundamental physical principles, and hence it was found to be completely natural. 
On the other hand, the theory of distributions proved instrumental in obtaining many 
wonderful mathematical results in recent years. However, it soon became clear that 
this theory has two significant drawbacks, which seriously hinder its application in 
mathematics and in other natural sciences. 

The first drawback is related to the fact that for distributions it is impossible in the 
general case to define the operation of multiplication so that this operation would be 
associative. This is seen, for example, from the following Schwartz’s arguments: the 
product .(δ(x) · x) ·

( 1
x

)
is defined and is equal to 0 because each distribution can be 

multiplied by an infinitely differentiable function (.δ(x) is multiplied by x and . 
( 1
x

)

by 0). On the other hand, the product .δ(x) ·
(
x ·

( 1
x

) )
is also defined and is equal 

to . δ(x). 
Moreover, L. Schwartz proved the following result. 

Theorem 1.1 Let A be an associative algebra with differentiation (this is a linear 
operator .D : A → A such that .D( f · g) = f ·D(g)+D( f ) · g). Assume that the space 
.C(R) of continuous functions on the real line is a subalgebra in A, and D coincides 
with the ordinary differentiation on the set of continuously differentiable functions, 
and the identically one function, is a unit of the algebra A. Then A cannot contain 
an element .δ � 0 such that .x · δ(x) = 0. 

Let us show that the product . δ · δ is not defined in the space of distributions. Let 
.ω(x) be a .C∞

0 (R)-function such that .
∫
ω(x) dx = 1, .ω(0) = 1. We set .ωε(x) = ω(x/ε)

ε . 
It is natural to put 

. δ · δ = limω2
ε,
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so that .(δ · δ, ϕ) = lim
∫
ω2
ε(x)ϕ(x) dx. However,  

. (ω2
ε, ω) =

∫
ω2
ε(x)ω(x) dx = ε−1

∫
ω2(x)ω(εx) dx → ∞

as .ε → 0, proving the claim. So, the theory of distributions cannot be effectively 
applied for solution of nonlinear problems. 

Another substantial drawback of the theory of distributions stems from the fact 
that even linear equations with infinitely differentiable coefficients, which are “ideal” 
for this theory, may fail to have solutions. For example, this is so for the equation 

. 
∂u
∂x
+
ix∂u
∂y
= f (x, y).

One can find an infinitely differentiable function f with compact support on the .(x, y)-
plane such that this equation would have no solutions in the class of distributions in 
any neighborhood of the origin. In the actual fact, the number of such functions f is 
relatively big—they form a set of second category in .C∞

0 (R2)! 

2 Shock Waves 

The theory of discontinuous solutions of differential equations plays an important 
role in gas dynamics, hydrodynamics, theory of elasticity, and other branches of 
mechanics. Discontinuous solutions appear naturally in the study of shock waves. 
Here we mean the phenomenon when the principal characteristics of the medium 
have different values on different sides of some surface (called the wave front). Even 
though in the actual fact these quantities vary continuously, their gradient in the 
neighborhood of the wave front is substantial and so they can be easily described 
with the help of discontinuous functions. 

For example, in gas dynamics, surges in pressure, density, and other quantities 
take place at distances of order .10−10 m. The gas dynamics equations read as 

. ρt + (ρv)x = 0 (the continuity equation),
(ρv)t + (ρv2 + p)x = 0 (the motion equation),

p = f (ρ,T) (the state equation).

Here . ρ is the gas density, v is the velocity of gas particles, p is the pressure, and 
T is the temperature. The first two equations are in the divergent from, and hence 
generalized solutions can be obtained by integration by parts, as in the theory of 
distributions. Here it is usually assumed that 

.ρ = ρ1 + θ(x − vt)(ρ2 − ρ1), p = p1 + θ(x − vt)(p2 − p1),
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where . θ is the Heaviside function, which equals 0 for negative values of the argument 
and 1 for positive arguments, and the smooth functions . ρ1, . p1, . ρ2, . p2 are values of 
the density and pressure, respectively, to the left and right of the wave front surface. 

A significant drawback of such a description is that here only one (general) 
Heaviside function is used. If we replace it by a smooth function . θε , which changes 
from 0 to 1 on a small interval of length . ε, then the state equation will be violated in 
this transition zone, which may affect the results of the calculations. 

An analysis of this situation suggests the following natural way to circumvent this 
difficulty: to describe the functions . ρ and p, one should use different functions . Θε . 
In the limit, as .ε → 0, these functions tend to a single (common) Heaviside function, 
but for .ε � 0 they should be such that the state equation would be satisfied. 

In fact, this situation appears in applied mathematics quite often: for a correct 
adequate description of a phenomenon with the help of discontinuous functions, 
it is necessary to memorize the method of approximation of these discontinuous 
functions by smooth ones. But the impossibility of such memorization, which is 
principal for the theory of distributions, is the main drawback of this theory, which 
makes it inapplicable in nonlinear problems. 

Let us now describe a new theory involving the theory of distributions and at the 
same time free from the above disadvantage. This theory originates in the works of 
the French mathematician J. F. Colombeau.1 

3 New Definition of Generalized Functions 

No matter how broad is the space of generalized functions, the space of infinitely 
differentiable functions should be dense in it. This fairly natural assumption is 
generally accepted and is justified by practical applications, and we have no reason 
to abandon it. Hence it is natural to define the space of generalized functions as the 
completion of the space of infinitely differentiable functions in some topology (which 
effectively defines the required space). For example, the space of distributions can be 
defined by considering all possible sequences of infinitely differentiable functions 
. { fj} in which each sequence .

∫
fj(x)ϕ(x) dx has finite limit as . j → ∞ if .ϕ ∈ C∞

0 . 
Let . Ω be some domain in the space . Rn. Consider the space of sequences . { fj} of 

infinitely differentiable functions in . Ω. Two sequences . { fj} and .{gj} from this space 
will be called equivalent if, for each compact subset .K ⊂ Ω, there exists an . N ∈ N
such that . fj(x) = gj(x) for . j > N , .x ∈ K . Now  a  generalized function is defined 
as the set of sequences equivalent to . { fj}. The space of generalized functions thus 
defined will be denoted by .G(Ω). 

If a generalized function is such that, for some of its representative . { fj} and each 
function . ϕ from2 

.D(Ω), the limit

1 See, in particular, Colombeau (1983), and also Colombeau (1984). However, close ideas (in 
application to multiplication of distributions) had appeared significantly earlier in the paper Livchak 
(1969). Note by A. S. Demidov. 
2 In this context, .D(Ω) = C∞

0 (Ω). 



196 A Appendix A. New Approach to the Theory of Generalized Functions (Yu. V. Egorov)

. lim
j→∞

∫

Ω

fj(x)ϕ(x) dx

exists, then we can define a distribution corresponding to this generalized function. 
Conversely, to each distribution .g ∈ D′(Ω), one can associate a generalized function 
defined by the representative 

. fj = g · χj ∗ ωε, (3.1) 

where .ε = 1
j , .ωε(x) = ε

−nω(x/ε), and . χj is a function from the space .C∞
0 (Ω) which 

is equal to 1 at the points lying at distance . ≥ 1
j from the boundary of the domain . Ω. 

So, .D′(Ω) ⊂ G(Ω). 
If a generalized function is defined by a representative . { fj}, then by its derivative 

of order . α we mean the generalized function defined by the representative .{Dα fj}. 
The product of two generalized functions defined by representatives .{ fj} and . {gj}
is the generalized function corresponding to the representative .x 	→ { fj(x)gj(x)}. 

If F is an arbitrary smooth function of k real variables, then, for any k generalized 
functions . f1, . . . , fk , the generalized function .F( f1, . . . , fk) is defined. 

It is worth pointing out that in contrast to the theory of distributions, where 
.x · δ(x) = 0 (this fact was used in the above Schwartz’s example), the product 
.x · “δ”(x) is different from 0. 

Generalized functions have the locality property. If . Ω0 is a subdomain of . Ω, then, 
for each generalized function f , the restriction . f

�
�
Ω0

∈ G(Ω0) is defined. Moreover, 
one can define the restriction to each smooth submanifold lying in . Ω and even 
define . f (x) at each point x from . Ω. Here one should only take into account that such 
restriction is a generalized function on the corresponding submanifold. In particular, 
the values of generalized complex-valued functions at a point have sense only as 
generalized complex numbers, which are defined as follows. 

One considers the set of all sequences of complex number s. {cj}. In this set, 
an equivalence relation is defined so that two sequences are equivalent if they are 
equal for large j. The resulting classes of equivalent sequences are called generalized 
complex numbers. 

A generalized function f is equal to 0 in . Ω0 if there exist .N ∈ N and a repre-
sentative .{ fj} such that . fj = 0 in . Ω0 for . j > N . The smallest closed set outside of 
which . f = 0 is called the support of the function f . Note, however, that this leads 
to paradoxes from the point of view of the theory of distributions: it may happen, 
for example, that the support of a function f is a singleton, but the value of f at this 
point is zero. 

If a domain . Ω is covered by a finite or countable family of domains . Ωj and if at 
each of these domains a generalized function . fj is defined such that . fi − fj = 0 on 
the intersection of the domains . Ωi and . Ωj , then the generalized function f is defined 
uniquely such that its restriction to . Ωj coincides with . fj .
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4 The Weak Equality 

In analogy with the theory of distributions, one can introduce the concept of a weak 
equality in the theory of generalized function. Namely, generalized functions f and g 
are said to be weakly equal (written . f ∼ g) if, for some of their representatives . { fj}
and . {gj}, 

. lim
j→∞

∫

Ω

[ fj(x) − gj(x)]ϕ(x) dx = 0,

for any function . ϕ from . C∞
0 . 

In particular, two generalized complex numbers defined by sequences .{aj} and 
.{bj} are weakly equal (written .a ∼ b) if  .lim(aj − bj) = 0 as . j → ∞. It is clear 
that, for distributions, the weak equality coincides with the ordinary one. If . f ∼ g, 
then .Dα f ∼ Dαg for any . α. The next result shows that the weak equality is not “too 
weak.” 

Theorem 4.1 If . f ∈ G(R), . f ′ ∼ 0, and if the limit . limj→∞
∫
R
fj(x)h(x) dx = C

exists and is finite for some function h from .C∞
0 (R) for which .

∫
h(x) dx = a � 0, 

then . f ∼ const. 

Proof By the hypothesis, .limj→∞
∫
R
fj(x)ϕ′(x) dx = 0 for any function . ϕ from 

.C∞
0 (R). Hence 

. lim
j→∞

∫

R

fj(x) ·
[
σ(x) − a−1h(x)

∫

R

σ(y) dy
]
dx = 0

for any function . σ from .C∞
0 (R), i.e., 

. lim
j→∞

∫
fj(x)σ(x) dx = Ca−1

∫
σ(x) dx.

The above theorem implies, for example, that systems of ordinary differential 
equations with constant coefficients have no weak solutions, except the classical 
ones. 

If f and g are functions continuous in a domain . Ω, then their product f g is weakly 
equal to the product of the generalized functions corresponding to the functions f 
and g. The following more general theorem holds: if .F ∈ C∞(Rp) and . f1, . . . , fp are 
continuous functions, then the continuous function .F( f1, . . . , fp) is weakly equal to 
the generalized function .F(g1, . . . , gp), where . gk is the generalized function weakly 
equal to . fk . 

Note that the concept of the weak equality can generate theorems which are 
paradoxical from the point of view of classical mathematics: for example, the system 
of equations 

. y ∼ 0, y2 ∼ 1, 0 < x < 1

is solvable. Among its solutions, we mention, say, the generalized function corre-
sponding to . f (ε, x) = sin(x/ε).
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Consider now the Cauchy problem 

. ∂u/∂t = F(t, x, u, . . . ,Dαu, . . .) for t > 0, u(0, x) ∼ Φ(x).

Here .u = (u1, . . . , uN ) is an unknown vector and F and . Φ are given vectors. It can 
be shown that such problem always has a weak solution in the class of generalized 
functions without any assumptions on the type of equations. Namely, consider some 
representatives .{Φj} and .{Fj} of the classes . Φ and F and consider the Cauchy 
problem 

. 
∂v

∂t
= Fj(t, x, v(t − ε, x), . . . ,Dαv(t − ε, x), . . .) for t > 0,

v(t, x) = Φj(x) for − ε ≤ t ≤ 0,

where .ε = 1/ j. It is clear that 

. v(t, x) = Φj(x) +
∫ t

0
Fj(s, x,Φj(x), . . . ,DαΦj(x), . . .)ds

for .0 < t ≤ ε. Next, the same method produces .v(t, x) for .ε < t ≤ 2ε, and so on. So, 
for each .t = t0 > 0, we get the generalized function .{vj(t0, x)}, which is called the 
weak solution. 

This construction agrees closely with the classical definition of a solution and 
with the definition of a solution in the theory of distributions. If this generalized 
function lies in the class . Cm, where m is the maximal order of derivatives of u on 
the right of the equation, then it also satisfies the equation in the ordinary sense. If 
the function F is linear in u, if its derivatives depend smoothly on t (so that one can 
consider solutions of the Cauchy problem in the class of distributions), and if the 
resulting generalized function is a distribution, then this function will be a solution 
also in the sense of the theory of distributions.



Appendix B 
Algebras of Mnemonic Functions 
(A. B. Antonevich) 

1 Introduction 

As was noted in the main text of the book and in Egorov’s Appendix A, the  im-
possibility of correct definition of the product of distributions is an impediment for 
applications to nonlinear equations, which involve such products. Similar obstacles 
also occur in the study of linear equations with generalized coefficients. A typical 
example here is the equation 

. − Δu + aδu − λu = f ,

which appears in the point interaction theory (Albeverio et al. 1988). In this equation, 
the coefficient are delta functions.1 

In this regard, various approaches to the problem of multiplication of distributions 
were developed: V. K. Ivanov (1972, 1979, 1981), C. Christov and B. Damianov 
(1979), E. Rosinger (2006), V.P. Maslov (1980), S.T. Zavalishin and A.N. Sesekin 
(1991), etc. The greatest resonance in this direction was caused by the works of the 
French mathematician J.-F. Colombeau (1985) and his followers Biagioni (1988) and 
Oberguggenberger (1992). The basic idea here is to build algebras, more precisely, 
differential algebras2 consisting of new objects preserving a series of properties 
of distributions. Such objects were called new generalized functions. In specific 
problems, for an adequate description of a number of phenomena with the help of 
discontinuous or generalized functions, one frequently has to remember the way in 
which they are approximated by smooth functions—this is the approach adopted 
in the theory of new generalized functions (as stated in Egorov’s appendix). Since 
the word “new” loses its semantic load with time, the elements of the constructed 
algebras will be called mnemonic functions, i.e., functions with memory. 

1 The paper Demidov (1970) considers problems with “surge”-type coefficients, whose singularity 
is even stronger than that of the .δ-function. 
2 Here, by a differential algebra, we mean a vector space, in which, for any pair of elements, 
the (associative and commutative) multiplication operation is defined (usually, the symbol “. · ” is  
omitted), the derivation is defined, and the Leibniz rule is satisfied: .( f · g)′ = f ′ · g + f · g′. 
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Egorov’s Appendix A describes the most common (and most simple) algebra of 
this type proposed by him. Below we will describe the general method of construction 
of such algebras (obtained on the basis of analysis of the previous structures pro-
posed in Antonevich and Radyno (1991, 1994)), introduce the algebra of mnemonic 
functions on the circle, and, for this model example, following the approach of An-
tonevich et al. (2018), discuss a number of questions about the algebras of mnemonic 
functions, which have not been addressed before. 

2 General Scheme of Construction of Algebras of Mnemonic 
Functions 

Assume that we have a space . D′ of distributions in a domain . Ω. As an original object 
for construction of the corresponding algebras, we will consider the differential 
algebra .G̃(Ω) consisting of all families . fε of infinitely differentiable functions on . Ω

that depend on the small parameter . ε. Sometimes we will assume that the small 
parameter takes only the values . 1j , i.e., we will consider sequences .{ fj} of such 
functions. 

Let us first discuss relations of such families to distributions. 
One says that a family . fε is associated with a distribution f if it converges 

to f in the space of distributions, i.e., if .〈 fε, ϕ〉 → 〈 fε, ϕ〉 for all test functions . ϕ. 
More detailed information about the properties of the functions . fε can be derived 
by analyzing the asymptotic behavior of the quantities .〈 fε, ϕ〉. In this analysis, one 
frequently encounters cases when this family of functionals admits an asymptotic 
expansion in . D′ in powers of . ε: 

. 〈 fε, ϕ〉 =
∞∑

k=k0

〈uk, ϕ〉εk, where uk ∈ D′, uk0 � 0.

In particular, for .k0 = 0 the family . fε is associated with the distribution . u0, for  
.k0 > 0 it is an infinitely small quantity, and for .k0 < 0 it is an infinitely large quantity. 

We let .Gas(Ω) denote the subspace consisting of all equivalence classes . [ fε]
of families . fε associated with distributions, and by . N0 we denote the subspace of 
equivalence classes of families associated with zero. On .Gas(Ω), the equivalence 
relation generates the map of taking the limit 

. Lim: Gas(Ω) � [ fε] 	→ Lim([ fε])
def
= lim

ε→0
fε ∈ D′(Ω).

Here, with each distribution u, one associates the large set .Lim−1(u) consisting of 
the families associated with u. 

Another link toward distributions comes from consideration of approximating 
operators. A linear operator R acting from . D′ into .G̃(Ω) is called a method of 
approximation if, for any distribution u, its range is a family of smooth functions
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converging to u. This is equivalent to saying that .Lim R(u) = u, i.e., the operator R 
is the right inverse of the map . Lim and defines an embedding of the original space 
of distributions into .G̃(Ω). 

By using each such embedding, one can define the product of distributions, which 
is an element of .G̃(Ω). Namely, by definition, this product is given by the formula 

.u ⊗R v = R(u)R(v). (2.1) 

If the product .R(u)R(v) is associated with a distribution h, then it is natural to consider 
this distribution h as the product uv generated by the given method of approxima-
tion R. In the general case, the product .R(u)R(v) is not associated with a distribution, 
but information about its properties can be obtained from its asymptotic expansion. 

From Schwartz’s example, it follows that the multiplication given by (2.1) can-
not agree with the multiplication of a distribution by a smooth function, i.e., the 
equality .R(uv) = R(u)R(v) cannot be satisfied for all smooth functions u and all 
distributions v. So, under this approach the multiplication operation is corrected and 
becomes associative. But this change is usually small: the difference . R(uv)−R(u)R(v)
is infinitely small. 

The algebra .G̃(Ω) is quite broad and so it should be naturally used to introduce an 
equivalence relation such that multiplication sends equivalent elements to equivalent 
elements. This can be archived by changing to the factor algebra by some ideal J. 
Under this equivalence relation, each set .Lim−1(u) should split into several equiv-
alence classes because different elements from .Lim−1(u) behave differently under 
multiplication. At the same time, it is desirable that an ideal should be large enough 
in order to minimize the number of such classes. 

Moreover, in some problems, the entire algebra .G̃(Ω) is not used, and it suffices 
to consider some algebras thereof. The subalgebra may have ideals wider than in 
the algebra .G̃(Ω). As a result, equivalence classes may become wider than when 
considering the entire algebra. 

So, the general process of construction of algebras of mnemonic functions is as 
follows: one first fixes some class of methods of approximation R and then chooses 
a subalgebra .Ã(Ω) ⊂ G̃(Ω) containing the ranges of the operators R, after  which an  
ideal J is chosen in .Ã(Ω). Hence the required algebra of mnemonic functions . A(Ω)
is defined as the factor algebra 

.A(Ω) = Ã(Ω)/J . (2.2) 

Usually there are no difficulties in choosing the subalgebra .Ã(Ω), and the main 
difficulty is related to the choice of an ideal J, i.e., the choice of the form of an 
equivalence relation. 

The first condition on the ideal is that the operator R should generate an embedding 
of the original space of distributions in the factor algebra. This condition is satisfied 
if the ideal J is contained in . N0, and in this case this ideal is small in a sense. On 
the other hand, for applications it is more convenient to deal with factor algebras 
involving some equalities not shared by .Ã(Ω).
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For example, Egorov’s construction involves the ideal 

. JE =
{
fε : ∀K � Ω ∃ εK : fε(x) = 0 for x ∈ K, ε < εK

}

and the embeddings R defined by formula (3.1) in Appendix A. Under the action of 
this operator, 

. R( f ′) � R( f )′, but R( f ′) − R( f )′ ∈ JE .

Hence, after changing to equivalence classes, we get the “good” embedding property: 
a derivative is carried to a derivative. 

In the general case, certain equalities in the factor algebra are fulfilled if elements 
of special form lie in the ideal, which implies that the ideal J should be quite large. 

Below, we will give some properties of embeddings of great value for applications; 
on a specific example of an algebra of mnemonic functions on the circle, we will try 
to find out which properties may be possessed by various embedding under a given 
ideal J. It will turn out that sometimes the selected properties are incompatible, and 
in this case more involved algebras should be constructed. 

To compare the algebra of mnemonic functions and the original space of distri-
butions, we note that . D′ is isomorphic to the factor space .Gas(Ω)/N0, i.e., it can be 
constructed by a similar scheme. 

This allows one to identify the following sources of incorrectness in the problem 
of multiplication of classical generalized functions: 

. 1. The space . Gas is not an algebra. As a result, the factor space contains no 
elements which could serve as candidates for the product for an arbitrary pair of 
elements. 

. 2. The subspace . N0 is not an ideal in the algebra .G̃(T1). As a result, products of 
representatives from the same equivalence class go into different classes, and hence 
the product of classes (i.e., distributions) is not defined correctly. 

. 3. The fact that . N0 is not a subalgebra in .G̃(T1) results in statements of the type 
.0 × 0 � 0. 

Note that in conceptual terms the transition from distributions to mnemonic 
functions is similar to that from points of a manifold M to points of its tangent 
bundle. Indeed, the tangent vector at a given point of a manifold can be defined as the 
class of equivalent curves which approach this point in a similar fashion (i.e., in one 
direction), i.e., such class preserves (“stores”) information only about this direction. 
From this point of view, elements from .Lim−1(u) can be looked upon as curves in the 
space of distributions passing through the point u, and the corresponding mnemonic 
functions are classes of equivalent curves that equally (in a sense) approach u. 

3 Algebras of Mnemonic Functions on the Circle 

Let us consider the space of distributions on the circle, construct the corresponding 
algebra of mnemonic functions, and using this example, discuss a series of general 
questions appearing in the construction of algebras of mnemonic functions.
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Let us recall the necessary facts. The space .C∞
2π(R) consists of complex-valued 

infinitely differentiable .2π-periodic functions, and the topology on this space is 
defined by the countable family of norms 

.pm(ϕ) =
m∑

j=0
max
z

|ϕ(j)(z)|, ϕ ∈ C∞(T1). (3.1) 

This space is isomorphic to the space .C∞(T1) of infinitely differentiable functions on 
the circle .T

1 = {z : |z | = 1}, the corresponding isomorphism being given by .z = eit . 
The space of generalized functions (distributions) .D′(T1) is defined as the dual space 
of .C∞(T1), i.e., this space consists of continuous linear functionals on .C∞(T1). 

The space .C(T1) is embedded into .D′(T1). The corresponding embedding is 
given by 

.C(T1) � u → 〈u, ϕ〉 = 1
2π

∫

T
1
u(z)ϕ(z)|dz | = 1

2π

∫ 2π

0
u(eit )ϕ(eit ) dt . (3.2) 

Here, the normalizing factor . 1
2π is introduced so that the resulting formulas would 

be more manageable. 
Each distribution . f ∈ D′(T1) can be represented as a sum of Fourier series 

. f =
∞∑

−∞
Ck z

k, (3.3) 

where the coefficients increase not faster than some power of . |k |. 
In particular, the delta function .〈δξ, ϕ〉 = ϕ(ξ) has the expansion 

. δξ =
1

2π

∞∑

−∞
ξ−k zk .

The distribution .P
( 1
z−1

)
defined by 

. 

〈
P
( 1
z − 1

)
, ϕ

〉
=

∫

T
1

ϕ(z)
z − 1

dz

is of special importance at various places in analysis and, in particular, in the theory of 
analytic functions and in the theory of singular integral equations. Here, the integral 
is understood in the sense of the Cauchy principal value. The Fourier expansion of 
this distribution reads as 

. P
( 1
z − 1

)
= iπ

[ −1∑

−∞
zk −

+∞∑

0
zk
]
.

Suppose that, in accordance with the general scheme, .G̃(T1) is a differential 
algebra consisting of families . fε of smooth functions on the circle. In the choice of
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the subalgebra .Ã(T1) ⊂ G̃(T1), we will start from the fact that, for typical R, the  
approximating families .R(u) = fε satisfy estimates of the form 

. pm( fε) ≤
C
εm+ν

.

The space consisting of the families . fε satisfying such estimates is not an algebra, 
and hence we consider the broader space .Ã(T1) consisting of such families .{ fε} such 
that there exist numbers . μ and . ν for which the following estimate holds: 

. pm( fε) ≤
C
εμm+ν

.

This space with natural operations is a differential algebra. 
Next, consider the set 

. J(T1) = {gε : ∀ p and m ∃C : pm(gε) ≤ Cεp}.

This set is contained in . N0 and is a differential ideal in .Ã(T1); moreover, in a certain 
sense, this ideal is the best one—it is the largest of the ideals in .Ã(T1), which can be 
defined in terms of the growth rate of the norms of .pm( fε). 

The algebra of mnemonic functions on the circle .A(T1) is defined as the factor 
algebra 

. A(T1) = Ã(T1)/J(T1).

This algebra contains the algebra of generalized complex numbers . ̃C generated 
by families of constant . fε (independent of .z = eit ). 

4 Properties of Embedding 

Let us find out which properties are satisfied by embeddings of the space of distri-
butions .D′(T1) into the algebra of mnemonic functions .A(T1). 

1. Invariance under rotations. In the case of a circle, it is natural to suppose that 
the embedding should be invariant under rotations. The invariance property here is 
essential because it is equivalent to the equality 

. R( f ′) = R( f )′,

which means that the embedding commutes with the differentiation. 
Since each operator that commutes with rotations of the circle is the convolution 

operator with some distribution, each rotation-invariant method of approximation 
has the form 

.R( f ) = fε = f ∗ ψε, (4.1) 

where . ∗ is the convolution operation in the space .D′(T1), and . ψε is some family 
of distributions. The convolution operation uses the group structure of the circle,
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and the point 1 is highlighted because it is a neutral element of the group. Hence 
.δ1 ∗ ψε = ψε , and as a result, . ψε is the family of smooth functions converging 
to . δ1. So, under the invariance condition, the method of approximation is uniquely 
determined from approximations . δ1. 

Using expansion (3.3) for f and the Fourier series expansion for . ψε

. ψε(z) =
∑

Ak(ε)zk,

we get 
.R( f ) = fε(z) =

∑
Ak(ε)Ck z

k, (4.2) 

and from the convergence of . ψε to . δ1, it follows  that .Ak(ε) → 1 as .ε → 0. 
The most simple and natural method of approximation is that given by Fourier 

series. Each distribution f expands in a series (3.3), and hence the formula 

.RF ( f ) = fn =
n∑

−n
Ck z

k (4.3) 

defines the embedding .D′(T1) into .Ã(T1) (in this example, by .Ã(T1) we denote the 
algebra of mnemonic functions generated by sequences of smooth functions). 

From the point of view of Fourier theories, formulas of the kind (4.2) define 
summation methods of such series. The issue with summation of series is related, 
for example, with the fact that, for a continuous function f , the sequence of partial 
sums (4.3) may fail to converge uniformly. But there exist summation methods of 
the form (4.2) which improve the convergence: for these methods, . fε(z) converges 
uniformly to f . Similarly, embeddings given by (4.2) may have properties that are 
absent in embedding (4.3). 

Below, we will analyze some properties of embeddings invariant under rotation. 
2. Locality of multiplication. We will say that an embedding R satisfies the 

multiplication locality property if .R( f )R(g) = 0 whenever the supports of the 
distributions g and f are disjoint. 

The supports of two .δ-functions concentrated at different points are disjoint. 
Under a given method of approximation of the form (4.1), the product 

.R(δξ ) × R(δ1) = ψε(z) × ψε(ξz) (4.4) 

is a nonzero element of the algebra .Ã(T1). But if the supports of the functions . ψε(z)
contract to the point 1 as .ε → 0, then, for sufficiently small . ε, the product (4.4) 
is zero and lies in the ideal, and the multiplication locality property is satisfied in 
the factor algebra. Note that this property also holds if the values of .ψε(z) as . z � 1
rapidly converge to zero because in this case the product (4.4) also lies in the ideal 
.J(T1). 

It is easily verified that if the multiplication locality property holds for products 
of .δ-functions, then it also holds for arbitrary distributions.
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Approximations usually considered in spaces of distributions on the line are 
constructed as follows. Let .ψ ∈ D(R) and .

∫
R
ψ(t) dt = 1. Then the family 

.ψε(t) =
1
ε
ψ
( t
ε

)
(4.5) 

converges to . δ0, and the supports of these functions converge to the point 0. The 
corresponding method of approximation is given by expression (4.1), where . ∗ is the 
convolution operation in the space .D′(R). Under this method of approximation, the 
multiplication locality property is satisfied. Here (4.5) is a .δ-like family with given 
profile . ψ. Such approximations can be conveniently studied because the behavior 
of the approximating family . fε is described in terms of the properties of one fixed 
function . ψ. 

In particular, the above method of approximation can be applied to periodic 
distributions and has the multiplication locality property. But here the functions 
(4.5) are not periodic and so a modification of the construction is required in order 
to implement the above approximation via the convolution on the circle. 

Let .ψ0 ∈ D(R), .
∫
R
ψ0(t) dt = 1, and the support lies inside the interval .(−π, π). 

For each . ε, we set .ψε(t) = 1
εψ

(
t
ε

)
for .−π ≤ t ≤ π and extend this function to . R with 

period . 2π, i.e., consider the function 

.ψε(z) =
∑

j

1
ε
ψ0

( t + 2 jπ
ε

)
. (4.6) 

Hence the formula 
.R( f ) = fε = f ∗ ψε, (4.7) 

where . ∗ is the convolution operation in the space .D′(T1), defines the same method 
of approximation with the multiplication locality property. 

But the detailed analysis of this method of approximation on the circle is more 
involved compared with that in the case of the straight line. This is related, for 
example, to the fact that there is no simple relation between the functions . ψε for 
different . ε. 

5 Compatibility of the Embedding with Multiplication in C∞(T1) 

The interest in the works of J. F. Colombeau stems from the fact that he solved the 
problem of construction of an embedding that satisfies the condition of compatibility 
with the multiplication in .C∞(T1). In the case under consideration, Colombeau’s 
problem is formulated as follows: 

Let . R0 be the natural embeddings of the algebra .C∞(T1) into .G(T1), i.e., an 
embedding for which with a function . f ∈ C∞(T1) one associates a stationary (not 
depending on . ε) family . fε = f .
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It is required to construct an embedding R of the space of distributions in the 
differential algebra G which, for infinitely differentiable functions, coincides with 
the natural embedding . R0 into G. 

In the case .G = A(T1), in the Colombeau problem, it is required to construct an 
embedding such that 

.R( f ) − f = fε − f ∈ J(T1) for all f ∈ C∞(T1). (5.1) 

If (5.1) is satisfied, then the space .C∞(T1) embeds into .G(T1) as an algebra, i.e., 

.R( f g) = R( f )R(g) for all f ∈ C∞(T1), g ∈ C∞(T1). (5.2) 

As already noted, the equality 

.R( f g) = R( f )R(g) for all f ∈ C∞(T1), g ∈ D′(T1) (5.3) 

cannot be satisfied for any embedding. Hence in the Colombeau problem, condi-
tion (5.2) should be satisfied; this condition is a relaxation of the impracticable 
condition (5.3). 

Here we are dealing with the case when the natural restrictions on the embedding 
may not be satisfied. Namely, if approximations (4.7) are constructed by convolutions 
with functions of the form (4.6), where . ψ0 is a compactly supported function, then 
the matching conditions (5.1) and (5.2) with multiplication of smooth functions are 
not satisfied. 

This follows from the fact that the expansion of the difference . fε − f starts with . ε
in the power equal to the number of the first nonzero moment of the function . ψ0, 
where the moments are the numbers 

. Mj(ψ) =
∫ +∞

−∞
t jψ(t) dt, j ∈ N.

But any compactly supported function . ψ0 has nonzero moments, and therefore, . fε− f
is not contained in the ideal and, moreover, does not lie in any ideal in the algebra 
.Ã(T1). 

Condition (5.1) means that, for smooth functions, the approximations un-
der consideration should converge fast to f . There exist many such methods of 
approximations—the most natural among them is the one given by (4.3) via the 
Fourier series. From the standard properties of Fourier series, it follows that the 
mapping . RF is an embedding of .D′(T1) in the algebra of mnemonic functions 
.A(T1). For this embedding, the compatibility conditions with multiplications (i.e., 
equalities (5.1) and (5.2)) are satisfied. However, the multiplication locality property 
is not met.
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6 Joint Locality and Compatibility with Multiplication of 
Smooth Functions 

From the results of the previous section, it follows that if one considers embeddings 
into .G(T1) generated by compactly supported functions, then the multiplication 
locality property is met, but there is no compatibility with multiplication, and the 
embedding generated by partial Fourier series is compatible with multiplication, but 
fails to have the locality property. Let us show that there exist embeddings into . G(T1)
satisfying both these properties. 

Consider the Schwartz space .S(R), i.e., the set of functions infinitely differentiable 
and decreasing at infinity faster than any power of . 1t . One difference of this space from 
the space of compactly supported functions is that in .S(T1) there exist functions . ψ
such that 

. M0(ψ) = 1, Mj(ψ) = 0 for j ∈ N.

We choose such a function . ψ0 and construct the following family of periodic 
smooth functions: 

.ψε(t) =
∑

j

1
ε
ψ0

( t + 2 jπ
ε

)
. (6.1) 

A simple algebra shows that for this family . ψε the embedding (4.1) satisfies both 
the compatibility conditions (5.1) and (5.2) and the multiplication locality property. 

In his studies, J. F. Colombeau used only methods of approximation generated 
by compactly supported functions. Hence in order to meet condition (5.1) he had 
to construct more involved algebras than .A(T1). Let us give the most simple variant 
of such an algebra, which will be called the modified Colombeau algebra, because 
it is constructed by singling out the most substantial steps in the more involved 
Colombeau’s construction. 

Consider the families of infinitely differentiable functions .{ fq,ε} depending on 
two parameters . ε and .q ∈ N. We let  .G̃C(T1) denote the set consisting of all such 
families for each of which there exist . μ and . ν satisfying 

.pm( fq,ε) ≤
C
εμm+ν

. (6.2) 

This set is a differential algebra in which the subset 

. JC(T1) =
{
gq,ε : ∃ μ1 and ν1 : pm(gq,ε) ≤ Cεq−μ1m−ν1

}

is a differential ideal. 
The modified Colombeau algebra is defined as the factor space 

. GC(T1) = G̃C(T1)/JC(T1).

To construct an embedding into this algebra, we choose a sequence of compactly 
supported functions . ψq such that their supports lie in the neighborhood of the point 0 
and .Mj(ψq) = 0 for .1 ≤ j < q.
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The mapping .RC : f 	→ fq,ε = f ∗ ψq,ε defines an embedding .D′(T1) into 
.GC(T1) for which both the compatibility condition (5.1) with multiplication of smooth 
functions and the multiplication locality property are satisfied. 

7 Analytic Representations of Distributions 

Consider another method of approximation. This method, which is frequently used 
in analysis, is based on the known analytic representation of a distribution. In the 
case of a circle, this representation is defined as follows. Consider the expansion of 
the distribution f in a Fourier series and write down two series 

. f +(z) =
∞∑

0
Ck z

k, (7.1) 

f −(z) = 
−1∑

−∞ 
Ck z

k . (7.2) 

Here the series (7.1) converges in the disk .|z | < 1 and its sum . f +(z) is an 
analytic function; the series (7.2) converges for .|z | > 1 and its sum is an analytic 
function. This defines the mappings .P± : f 	→ f ± and so the distribution f can be 
identified with the pair .( f +, f −), i.e., with a piecewise analytic function on the plane. 
In particular, we have 

. δξ =
(
− 1
z − ξ ,

1
z − ξ

)
, P

( 1
z − ξ

)
=
( πi
z − ξ ,

πi
z − ξ

)
.

The above analytic representation of a generalized function generates an ap-
proximation of the distribution f by smooth functions via values of the analytic 
representation on the circle of radius .r = 1 − ε and of radius .

1
r =

1
1−ε : 

.Ra( f ) = fε(z) = f +((1 − ε)z) + f −
( z
1 − ε

)
. (7.3) 

Using the representation (4.2), we get  

.Ra( f ) = fε(z) =
∞∑

−∞
Ck(1 − ε) |k |zk, (7.4) 

which corresponds to the Abel method of summation of series. 
For example,
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.Ra(δξ ) = − 1
rz − ξ +

1
z
r − ξ , (7.5) 

Ra

(
P
( 1 
x − ξ

))
= πi 

r z − ξ 
+ πi z 

r 
− ξ 
. (7.6) 

Formula (7.3) defines an invariant embedding of the space .D′(T1) into the algebra 
of mnemonic functions such that equality (5.2) is satisfied for pairs of smooth func-
tions of the form . f = ( f +, 0) and .g = (g+, 0) and also for pairs of smooth functions 
of the form . f = (0, f −) and .g = (0, g−). The multiplication locality property for such 
embedding is not satisfied. 

8 Examples of Multiplications of Schwartz Distributions 

Let us study the products of distributions under approximations (7.3). The result of 
multiplication of distributions . f = ( f +, f −) and .g = (g+, g−) can be written in the 
form 

. Ra( f )Ra(g) =
[
f +((1 − ε)z) + f −

( z
1 − ε

)] [
g+((1 − ε)z) + g−

( z
1 − ε

)]

= f +((1 − ε)z)g+((1 − ε)z) + f −
( z
1 − ε

)
g+((1 − ε)z)

+ f +((1 − ε)z)g−
( z
1 − ε

)
+ f −

( z
1 − ε

)
g−

( z
1 − ε

)
.

Here 

. f +((1 − ε)z)g+((1 − ε)z) + f −
( z
1 − ε

)
g−

( z
1 − ε

)
= Ra(( f +g+, f −g−)),

i.e., the sum of the first and fourth terms is an approximation of the distribution, 
which has the analytic distribution .( f +g+, f −g−) and, naturally, converges to this 
distribution. 

For a fixed . ε, the sum of two remaining terms 

.γε(z) := f −
( z
1 − ε

)
g+((1 − ε)z) + f +((1 − ε)z)g−

( z
1 − ε

)
(8.1) 

is the function analytic in the annulus 

. Kε =
{
z : 1 − ε < |z | < z

1 − ε

}
.

Applying the operators . P±, we get an analytic representation of this function and the 
formula for multiplication of distributions 

.Ra( f )Ra(g) = (h+ε (z), h−ε (z)), (8.2)
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where 

. h+ε (z) = f +(z)g+(z) + P+[γε(z)],
h−ε (z) = f −(z)g−(z) + P−[γε(z)].

In consideration of examples, of special interest are the cases where the product-
mnemonic function (2.1) is associated with a distribution. One usually says that this 
is the case if the smoothness of one factor compensates the singularity of the other 
one. There are only few examples for which the product of distributions with common 
singularities is well defined. But a researcher may draw arbitrarily large numbers 
of such examples. So, for instance, if, for given . f = ( f+, f−) and .g = (g+, g−), 
the condition .γε(z) ≡ 0 satisfies, where .γε(z) is given by (8.1), then the product 
of distributions . f × g is associated with a distribution with analytic representation 
.( f+g+, f−g−). Note that almost all nontrivial examples considered earlier correspond 
to this case. For example, this condition is satisfied for the product of distributions 
. δ1 and .P

( 1
z−1

)
. As a result, 

. δ1 × P
( 1
z − 1

)
=
(
− πi

(z − ξ)2
,
πi

(z − ξ)2
)
.

However, the analysis of the products of distributions . f = ( f+, 0) and . g = (0, g−)
involves difficulties, because in this case it is required to describe the behavior of the 
images .γε(z) under the action of the operators . P±. An explicit description can be 
given in the case of rational . f + and . g−, because for such functions the application 
of the operators . P± reduces to the known partial fraction expansion of a rational 
fraction. The most illustrative example is the product of the distributions . f =

( 1
z−ξ , 0

)

and .g =
(
0, 1

z−η
)
. Here, we get 

.Ra( f )Ra(g) =
1

rz − ξ ·
1

z/r − η = C1(r)Ra( f ) + C2(r)Ra(g), (8.3) 

where .C1(r) = r2

ξ−ηr2 , .C2(r) = − 1
ξ−ηr2 . If  .ξ � η, then there exist finite limits of 

the coefficients .C1(r) and .C2(r) as .r → 1, and the product under consideration is 
associated with a distribution with the analytic representation 

. 

( 1
ξ − η · 1

z − ξ ,−
1
ξ − η · 1

z − η

)
.

And if .ξ = η, i.e., if the factors have singularities at the same point, then as . r =
1 − ε → 1 the coefficients tend to infinity and have the expansions 

. C1(r) =
1

2εξ
− 1

2
+ . . . , C2(r) = − 1

2ε
+

1
2
+ . . .

As a result, we get the asymptotic expansion of the product
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. 

( 1
z − ξ , 0

)
×
(
0,

1
z − ξ

)
∼ 1
ε
δξ +

1
πi

P
( 1
z − ξ

)
+ . . . ,

in which the first term contains an infinitely large coefficient. 
Similar calculations in the analysis of the product .δξδη show that the asymptotic 

expansion of the product of delta functions concentrated at different points is the 
sum of delta functions with infinitely small coefficients, and the square of a delta 
function is a delta function with infinitely large coefficient. 

In relation to this example, we note that the multiplication locality requirement is 
not quite physically justified. For example, a .δ-function is an idealized model of the 
situation when the density of the distribution of the substance in a small neighborhood 
of a given point is so large that the major part of the mass is concentrated in this 
neighborhood, and the density is small outside this neighborhood. The multiplication 
of two such densities corresponding to delta functions concentrated at different point 
results in the product of the large density by the small one, but such product may 
lead to a nonzero density near some points, as is the case with the product . δξδη . 

Note that the product of delta functions with infinitely small coefficients is also 
a delta function with infinitely small coefficient. In other words, the corresponding 
mnemonic functions form a subalgebra. Such a subalgebra was discovered earlier in 
the paper Maslov (1980) from different considerations. 

9 Conclusions 

The above embeddings of the entire space of distributions into the algebra of 
mnemonic function are primarily of theoretical interest, but particular problems 
involve particular questions. 

For example, in one approach to the study of linear differential equations with 
generalized coefficients, one replaces their coefficients by distributions approximat-
ing their mnemonic functions. As a result, the solution of the equation is reduced to 
the investigation of the behavior as .ε → 0 of the solutions of a family of equations 
with smooth coefficients that depend on . ε. Under this approach, different methods 
of approximation may be used for different coefficients. 

Nonlinear equations usually do not involve generalized coefficients, but of special 
interest in such equations are solutions with singularities, for example, discontinuous 
shock wave type solutions, which cannot be substituted in the equation. The main 
approach to obtaining such solutions consists in augmenting the equation with the 
terms containing the small parameter, after which the limit of solutions of the new 
equation as .ε → 0 is declared as a solution. 

In these applied examples, the principal issue is that the original problem is ill-
posed, because the mathematical model of the process under study is too rough and 
the corresponding equation has no solution. The common point in these approaches 
is that the statement of the problem is refined by augmenting the equation with 
infinitely small parameters or by specifying approximations for the coefficients. 
Such a refinement is the introduction of additional information, which is extracted 
from the subject area and is not contained in the originally posed problem.



Appendix C 
Extensions of First-Order Partial 
Differential Operators (S. N. Samborski) 

Analysis and its applications are replete with constructions in which some functions 
are associated with others, and the obvious trend of many recent decades is to express 
these structures as mapping (operators) in suitable function spaces. However, this is 
not always possible, for example, for numerous generalizations of derivatives—this 
topic is the subject of the so-called nonsmooth analysis. This is also the case in 
the definition of nonclassical solutions of equations as functions satisfying some 
or other relations (for example, minimax solutions of game theory equations) or 
a pair of inequalities (as in the case of viscous solutions of Hamilton–Jacobi (and 
more general) equations) or as functions that are limits of solutions of different (for 
example, singularly perturbed) equations. It seems natural and attractive to define 
similar solutions as “ordinary solutions” for suitable extensions of the “correspond-
ing” operators in “corresponding” spaces. And if this does not happen, this suggests 
that there are simply no suitable spaces. 

At this point, it is appropriate to turn to the very concept of a “space.” In the above 
examples, one speaks about sets of functions equipped with classical algebraic struc-
tures (without which it is impossible to even formalize equations of mathematical 
physics) and topological structures. 

Of course, there should be a relation between such structures, and such a relation 
has long been formulated, and, apparently undergone very little revisions since 
then. Here we speak about the continuity of algebraic operations (topological vector 
spaces, K-spaces, etc.). 

Below we will get rid of the requirement of continuity, replacing it with a less 
stringent requirement of closeness (in the sense of closed graphs). For example, for 
the addition operation, this means that 

. if fi → f , gi → g and fi + gi → h, then h = f + g.

Let us give two examples of such spaces. The first space, denoted by . Cae(X)
(continuous almost everywhere), consists of the equivalence classes of Riemann 
integrable (i.e., bounded and continuous almost everywhere) functions on a compact 
set X . The equivalence means the coincidence almost everywhere. Unlike the case 
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of . L1, the elements of this space have “values” at points of X , can be identified 
with some subset of the set of set-valued functions (interval-valued, in the case 
of scalar functions), and feature some classical algebraic structures. The principal 
property of the metric introduced in . Cae is that it preserves the values under limits and 
outside the set of continuous mappings. This value preservation property does not 
hold in the framework of spaces satisfying the condition of continuity of algebraic 
operation. Thanks to this property, the extension by closure of the operator of classical 
differentiation in . Cae inherits the known properties of classical differentiation (for 
example, linearity). Moreover, its domain is stable with respect to the . max and . min
operations, which is important in many practical applications1 (optimization, games, 
etc.). 

The second space, denoted by2 
. S, has the following remarkable property, which 

also does not hold in the framework of spaces with continuous operations. Namely, 
the space . S is the completion of the set of continuous functions with respect to 
a metric so that this space is also a completion in the sense of the partial order. 
Recalling that . R has the same properties with respect to . Q (agreement between the 
Cantor and Dedekind completions), it can be said that . S plays the same role for 
the set C of continuous functions (with uniform convergence) as . R plays for . Q. Of  
course, permitting a slight “abuse of language,” it can be said that these are precisely 
the properties that, for example, are responsible in . R for the intermediate values 
property (which fails to hold in . Q) and similar properties of intermediate values in . S

for partial derivative operators (which do not hold in C). 
These properties of intermediate values will be used (in the “spaces–operator” 

language) for the study of evolution equations. The simplest result of this kind is an 
analogue of the classical Peano’s theorem on local (in time) existence of solutions 
of ordinary differential equations only under the continuity condition of the “right-
hand side,” but now for first-order partial differential equations. In the space . S, we  
construct such extensions of operators with first-order partial derivatives, for which 
the solutions of the equations .H y = f (with a new appropriately extended domain 
for . H ) are the limits as .ε → 0 of the classical solutions . yε of the equations 

. εΔyε +H yε = f .

Regularization of solutions of the original first-order equation .H y = f by per-
turbation of this equation by a smoothing operator (in our setting, by the Laplace 
operator . Δ) with small coefficient . ε tending to zero is commonly called (following 
the hydrodynamic analogy) the vanishing viscosity method. A regularization of this 
kind dates back to E. Hopf (1950), J. D. Cole (1951), and to many other later studies. 
These methods can be applied to define nonclassical (i.e., nondifferentiable and even
1 So, for univariate functions, the values of the “generalized” derivative are closed intervals. For 
example, if . f (x) = |x |, then . f ′(0) = [−1, 1]. So, the derivative of a function is an interval-valued 
function. The sum of intervals is defined (as the set of sums of their points). General interval-valued 
functions do not form a vector space, and hence one cannot speak about linearity of the derivative. 
If .g = − f , then .( f + g)′(0) = 0 � f ′(0)+ g′(0) = [−2, 2]. Meanwhile . Cae is a vector space, and the 
linearity problem becomes correct (in particular, for the above example). 
2 Unlike the space . S, which was introduced by L. Schwartz. 
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discontinuous) solutions of unperturbed equations, which, however, correspond to 
real (and important) physical processes, as well as of equations related to control 
theory, game theory, and various variational problems. Later, many attempts have 
been made to define such solutions without passing to the limit, which gives, for 
example, great advantages in numerical applications. Since the 1990s and to this 
day, the theory of “viscous solutions” has become the most popular. This theory was 
originated in Crandall et al. (1992); Crandall (1996), and in many other studies aimed 
at motivation of the “maximum principle.” The reader familiar with these works will 
see how the definition of a “viscous solution” was reflected in the construction of 
the domain of the extension of operators in the space . S. However, our motivation is 
completely different and is related to expansion of the differentiation in . S. 

1 Preliminaries and Notation 

In what follows, X and Y will denote compact sets in . Rn which coincide with the 
closure of their interior. A set .X0 ⊂ X is said to be nowhere dense if its closure 
does not contain any nonempty open set. A set of first category (or a meager set) is  
a union of countably many nowhere dense sets.3 The class of sets of second category 
consists of complements of sets of first category in X . 

Proposition 1.1 (see Oxtoby 1980) Let . f : X → R
m and let .Cf ⊂ X be the set of 

points of continuity of the mapping f . If . Cf is dense in X , then . Cf is a set of second 
category. 

Recall that a function . f : X → R
⋃

±∞ is called lower (upper) semi-continuous 
at a point .x ∈ X if, for any sequence .xi → x, for  which .limi f (xi) ∈ R

⋃
±∞ exists, 

this limit is not smaller (respectively, not greater) than . f (x), i.e., 

. lim
y→x

inf f (y) ≥ f (x) (respectively lim
y→x

sup f (y) ≤ f (x)).

Definition 1.2 A mapping defined on a dense subset of X and assuming values 
in a set of (possibly infinite) intervals4 from . R will be called an interval-valued 
mapping. 

Let F be an interval-valued mapping. Then 

.F∗(x) = lim inf ξi, F∗(x) = lim sup ξi, (1.1) 
F∗ : X → R ∪ {−∞} and F∗ : X → R ∪ {+∞} (1.2) 

are the (single-valued!) lower (upper) semi-continuous functions defined everywhere 
in X , where the limits .lim inf and .lim sup are taken over all possible sequences

3 For .X = [0, 1], the set of rational points on .[0, 1] is a set of first category.—A.D. 
4 In this appendix, an interval means either open, closed, or half-open interval. 
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.{xi} from the domain F for which .xi → x and over all possible sequences . {ξi} for 
which .ξi ∈ F(xi). Functions (1.1) will be called the semi-continuous envelopes of 
an interval-valued function f . 

Let . f : X → R be a function and let .Cf ⊂ X be the set of points of continuity 
of f . Next, let . Cf be dense in X . Let . f

�
�
C f

be the restriction of the function f to the 
(dense (!) in X) subset . Cf . Consider its semi-continuous envelopes 

. f − = ( f
�
�
C f

)∗ and f + = ( f
�
�
C f

)∗. (1.3) 

These are lower (upper) semi-continuous functions defined everywhere on X . If  
.Cf = X , then . f − = f +. 

Definition 1.3 An interval .[ f −(x), f +(x)] is called the value at a point .x ∈ X of 
a bounded function f defined on a dense subset of X . 

A mapping . F from a metric space A to a metric space B is an operator if 
.F : A → B is defined on a dense subset . D of A. Such a mapping will be denoted by 
.(F ,D) (this notation expresses its domain). 

An operator is called closed if its graph is closed in .A × B (in other words, if 
. fi → f ∈ A and .F fi → F ∈ B, then . f ∈ D and .F f = F). Clearly, any continuous 
mapping is closed (but not otherwise in general). 

An operator is called preclosed if the closure of its graph is a graph of a closed 
operator (this is equivalent to saying that if . fi → f ∈ A, .gi → f ∈ A, .F fi → F, 
.F gi → G, then .F = G). If an operator .(F ,D) is preclosed, then its extension by the 
rule 

.if f = lim fi and ∃ limF fi, then F f
def
= limF fi (1.4) 

is called the extension by closure and denoted by .(F ,D ↑). There can be many closed 
extensions (even in the same space), but the extension by closure differs from other 
extensions by the smallest extension of the domain of a preclosed operator. If,  for  
a sequence of closed operators .(Fi,Di), we have the implication 

. fi ∈ Di, fi → f , Fi fi → F ⇒ f ∈ D and F f = F,

then we will write .(F ,D) ⊂ lim(Fi,Di). 

2 The Space Cae(X , E) 

Definition 2.1 Let E be a finite-dimensional normed space. We let Cae(X, E) de-
note the set of equivalence classes of bounded and almost everywhere continuous 
mappings from X into E , where the equivalence means the coincidence almost 
everywhere. 

Let f ∈ Cae(X, R) and let ϕ ∈ f . Since ϕ is a continuous function on a dense 
subset of X , in accordance with Definition 1.3 with this function one can associate
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an interval-valued function. This interval-valued function does not depend on the 
choice of the representative ϕ in the class f but depends only on the class f itself. 
We will continue to denote this function by f and write f (x) = [ f −(x), f +(x)]. If  f 
and g are different as elements from Cae, then the interval-valued functions f and g 
are also different and vice versa. Let f ∈ Cae(X, Rm), f = ( f1,  . . . ,  fm). We define 
f (x) by the formula 

. f (x) = Co{(ξ1, . . . , ξn) : ξi ∈ fi(x)}, (2.1) 

where Co{A} denotes the convex hull of a set A ⊂ Rm. Recall that, for two compact 
sets A ⊂ Rm and B ⊂ Rm, the formula 

.h(A, B) def
= sup

a∈A,b∈B
{h(a, B), h(b, A)}, where h(a, B) = inf

b∈B
‖a − b ‖, (2.2) 

defines the Hausdorff distance between A and B. 
The set of Lipschitz functions Lipk(X, R) on X with values in R and with Lips-

chitz constant k is a conditionally complete sublattice of the lattice5 of continuous 
functions on X . Hence, for any f ∈ Cae(X, R) and any n ∈ N, 

. f −n = sup{ϕ ∈ Lipn(X,R) : ϕ ≤ f },
f +n = inf{ϕ ∈ Lipn(X,R) : ϕ ≥ f }

are defined. Let f , g ∈ Cae(X, R). Now the formula 

.r( f , g) = sup
n

{h(gr f −n , grg−n ); h(gr f +n , grg+n ); ‖ f −n − g−n ‖; ‖ f +n − g+n ‖}, (2.3) 

where ‖ϕ‖ = 
∫ 
X |ϕ| dμ, defines a metric in the space Cae(X, R)). Indeed, assume 

that r( f , g) = 0. If we assume that f � g, then there exist x ∈ Cf ∩ Cg, numbers 
α, β (α <  β), and a neighborhood of the point x in which f < α  and g > β  (either 
g < α  or f > β). Hence there exists an n ∈ N such that f + 

n � g+ 
n and f −n � g−n , 

a contradiction. 

Theorem 2.2 (see Samborski 2004) The space Cae(X, R) equipped with metric 
(2.3) is complete, and the set of continuous functions C(X, R) is dense in it. 

The next result is easy. 

Proposition 2.3 Let f , g, h ∈ Cae(X, R), and let { fi} and {gi} (i ∈ N) be sequences 
of elements from Cae(X, R). Then 

(1) If fi → f , xi → x in X , ξi ∈ fi(xi), and ξi → ξ in R, then ξ ∈ f (x). 
(2) If fi → f and gi → g and X = Cf

⋃
Cg, then fi+gi → f +g and fi ·gi → f ·g. 

(3) If fi → f , then the condition ξi → f (x) holds for any x ∈ Cf and any 
ξi ∈ fi(x).
5 A lattice is a partially ordered set in which each two-element subset has both least upper bound 
and greatest lower bound. A lattice is conditionally complete if each bounded subset of this lattice 
has east upper bound and greatest lower bound. 
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(4) If the function f is continuous on X , then the convergence fi → f is uniform, 
i.e., for any ε >  0 there exists an N ∈ N such that |ξ − f (x)| < ε  for any i > N, 
ξ ∈ fi(x). 

(5) The addition, multiplication operations, and the min- and max-operations are 
closed, i.e., if fi → f , gi → g, then 

. fi + gi → h ⇒ h = f + g,

fi · gi → h ⇒ h = f · g,
min( fi, gi) → h ⇒ h = min( f , g),
max( fi, gi) → h ⇒ h = max( f , g).

Remark 2.4 The existence of a natural isomorphism between Cae(X, Rm) and 
(Cae(X, R))m under which f ∈ Cae(X, Rm) corresponds to ( f1,  . . . ,  fm), where 
fi ∈ Cae(X, R), makes it possible to endow Cae(X, Rm) with the metric r( f , g) = 
maxi r( fi, gi), for which Cae(X, Rm) is a complete space. 

3 Differentiation in Cae(X , Rm) 

Let .(x1, x2, . . . , xn) be the coordinates in X , and let . Di be the operator of (classical) 
partial differentiation with respect to . xi acting from .Cae(X,Rm) into . Cae(X, (R)∗⊗Rm)
and whose domain consists of the mappings with continuous partial differential. We 
let. D denote the operator of (classical) differentiation acting from .Cae(X,Rm) into the 
space .Cae(X, (Rn)∗ ⊗ Rm) and whose domain consists of continuously differentiable 
functions. 

Theorem 3.1 The operators D and . Di are preclosed. If . D (respectively, . Di) is the 
extension by closure of the operator D (respectively, . Di) and . D (respectively, . Di) is 
its domain, then 

.(1) .D =
⋂

i Di and .D = (D1,D2, . . . ,Dn). 
.(s2) . D and . Di are linear subspaces, and . D and . Di are linear operators. 

Proof It suffices to consider the case .m = 1 by putting . i = 1. Assume on the contrary 
that the operator . D1 is not preclosed. Let .Fi → F and .Gi → F, where . Fi and . Gi are 
continuously differentiable, and .D1Fi → Φ and .D1Gi → Ψ, but .Φ � Ψ. The  last  
inequality implies that there exist an open set .U ⊂ X and numbers . α and . β (.α < β) 
and .N ∈ N such that, for any .x ∈ U, we have .D1Fi(x) < α, .D1Gi(x) > β for .i > N . 
Let .x ′ = (x ′1, x2, . . . , xn), .x ′′ = (x ′′1 and .x2, . . . , xn) be two continuity points in . U of 
the mapping F. Using the property of preservation of values in . Cae under limits (see 
assertion (1) in Proposition 2.3) and changing to subsequences, we get 

. lim
i
Fi(x ′) = lim

i
Gi(x ′) = F(x ′); lim

i
Fi(x ′′) = lim

i
Gi(x ′′) = F(x ′′).
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On the other hand, 

. Fi(x ′) − Fi(x ′′) < α |x ′1 − x ′′1 | ; Gi(x ′) − Gi(x ′′) > β|x ′1 − x ′′1 |.

This contradiction shows that the operator . D1 is preclosed and hence so is the 
operator D. If  .F,G ∈ D1, .Φ = D1F, .Ψ = D1G, then both the Newton–Leibniz 
formula 

. F(x1, y) =
∫ x1

a

Φ(t, y) dt + F(a, y)

for F and for G hold almost everywhere for nearly all .y = (x2, . . . , xn) such that 
.Φ(·, y) and .Ψ(·, y) are continuous. It follows that the operators . D1 and . D are linear. �

Corollary 3.2 Let .Θ = (Θ1, . . . ,Θn) be a unit vector in . Rn, and let .F ∈ D. Then, for 
each .x ∈ X , 

. DF(x) · Θ =
(∑

i

Θi DiF
)
(x)

for convex sets6 in . Rn. 

Among generalizations of the differential in nonsmooth analysis, the most known 
is the Clark differential (Clarke 1983) for Lipschitz function . f : X → R. This  
differential is defined by the formula 

. (DCl f )(x)
def
= CoCl{lim

i
D f (xi)},

where the limit is taken over all possible sequences . xi converging to x and consisting 
of the points of differentiability of the function f . (Here we use Rademacher’s theo-
rem,7 according to which a Lipschitz function is differentiable almost everywhere.) 

We say that a mapping .F ∈ Cae is differentiable (in . Cae) if  .F ∈ D, i.e., the 
differentiation operator . D applies to the mapping F. 

Proposition 3.3 If .F ∈ D, then the mapping F is Lipschitz. A Lipschitz mapping F 
is contained in . D if and only if the mapping .x 	→ DF(x), which is defined at points 
of (classical) differentiability of the mapping F, is continuous almost everywhere. 
The class . DF lies in .Cae(X, (Rn)∗ ⊗ Rm) and contains the mapping .x 	→ DF(x). 
Moreover, .DF(x) = DClF(x) for each .x ∈ X for convex subsets of . Rm. 

The following example shows that a Lipschitz function may fail to lie in . D. 

Example 3.4 Let .K = [0, 1] \
⋃

i Ii be a Cantor set of positive measure, where . {Ii} is 
a countable system of pairwise disjoint intervals such that K is nowhere dense. We 
set .Φ(x) =

∫ x

0 χK dμ, where . χK is the indicator function of K . Then the function .Φ

6 For a convex set .A ⊂ (Rn)∗ ⊗ Rm and a vector .b ∈ Rn , we denote by .A · b the convex subset 
of . Rm consisting of all vectors .α · b, where .α ∈ A. Note that A can be uniquely recovered from 
the sets .{A · b : b ∈ Rn, ‖b ‖ = 1}. 
7 H. Rademacher, Über partielle und totale Differenzierbarkeit I, Math. Ann. 89 (1919), 340–359. 
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is Lipschitz but does not lie in. D because .DClΦ(x) = [0, 1] on a set of nonzero 
measure. 

Note that neither Corollary 3.2 nor the following proposition holds in general for 
the Clarke differential. 

Proposition 3.5 Let .F,G ∈ Cae(X,R) be differentiable. Then 
. (1) The sum .F+λG, where .λ ∈ R, is differentiable, and .D(F+λG) = DF+λDG. 
. (2) The product .F · G is differentiable, and 

. D(F · G) = F · D + G · DF .

. (3) The fraction .1/G is differentiable if .G(x) � 0 for any x, and . D(1/G) =
−DG/G2. 

.(4) .max(F,G) and .min(F,G) are differentiable, and .D(max(F,G)) coincides in 
. Cae with the class containing the mapping 

. x 	→
{

DF(x) if F(x) ≥ G(x),
DG(x) if G(x) > F(x).

Proof Assertion (1) follows from Theorem 3.1. Assertions (2) and (3) follow from 
the application of the chain rule to the composition .ϕ ◦ ψ, where . ϕ is a classically 
differentiable function .(log, exp) and .ψ ∈ D. In view of assertion (1) and the equality 
.max(F,G) = max(F − G, 0) + G, it suffices to consider the case .G = 0. Arguing as 
in the proof of Theorem 3.1, we reduce the problem to the case of a single variable 
.x ∈ X . Let  .A = {x ∈ X : F(x) = 0, .DF(x) � 0}. The function .x 	→ DF(x) is 
continuous almost everywhere, and hence each point .x ∈ A has a neighborhood 
in which .DF(·) preserves the sign. Hence in this neighborhood the function F is 
monotone. Therefore, the measure of A is zero, and .max(F,G) ∈ D. �

Among finite operations over functions that occur in the classical differential 
calculus, it remains to consider the composition of mappings and the chain rule for 
differentials. Let .F ∈ Cae(X, E). A representative .ϕ ∈ F is called regular if the 
set of its points of continuity coincides with the set of points of continuity of the 
function F. For example, if .E = R and .F(x) = [F−(x), F+(x)], then the functions 
. F− and . F+ are regular representatives of the function F. 

Let us define the composition of mappings. Let .F ∈ Cae(X,Rm), .G ∈ Cae(Y,Rk), 
and let .F(X) ⊂ Y . A class .H ∈ Cae(X,Rk) is called a composition of mappings F 
and G (written .G ◦ F) if, for any regular functions, .ϕ ∈ F and .ψ ∈ G the mapping 
.x 	→ ψ(ϕ(x)) is a representative in H. 

Example 3.6 Let .X = [−1, 1], .Y = [−1, 1]2 and .F(x) = (x, ax). Let  B be the class 
containing the mapping 

. (x, y) 	→
{

1 if y > 0,
−1 if y < 0

as a representative. Then the composition .B ◦ F is defined if and only if .a � 0.
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Proposition 3.7 Let .F : X → Y ⊂ Rm and .G : Y → R be differentiable mappings 
in . Cae. Assume that their composition .G ◦ F is differentiable (this is always so for 
.m = 1). Then its differential .D(G ◦ F) defines an element from .Cae(X, (Rn)∗) that 
coincides with .(DG)(F(·))DF(·). 

Example 3.8 Let us return back to Example 3.4. Let . xi be the midpoint of the interval 
. Ii and let . 2ri be its length. We set .Y = [0, 1] × [−1, 1] and define 

. L = Y \
⋃

i

B
(
(xi, 0), ri

)
,

where .B(z, r) is the open ball of radius r with center at z. Then the function 
.G : (x, y) 	→

∫ x

0 χL dμ, where . χL is the indicator function of the set L, is dif-
ferentiable, and its differential is an element from .Cae(X,R). If .F(x) = (x, 0), then F 
and G are differentiable in . Cae, but .G ◦ F is not. 

The next theorem is useful in practical applications of the above differential 
calculus. 

Theorem 3.9 Let .X ⊂ Rn and let a mapping .F : X → Rm be obtained from a finite 
number of real analytic functions via a finite number of operations . λ·, . +, . ·, . 1/·, 
. max, . min, and their compositions .(λ ∈ R). Then F is differentiable in . Cae(X,Rm)
and . DF can be evaluated by the formulas given in Propositions 3.5 and 3.7 and 
Corollary 3.2. 

4 The Space S(X , E) 

Let E be a normed space over . R. By .S
b(X, E), we denote the set of bounded functions 

on X with values in E , each of which is continuous on some dense subset of X . We  
will write . f ∼ g if two functions f and g from .S

b(X, E) coincide on the set . Cf
⋂

Cg

of common points of continuity. It is clear that in this case .g ∼ f , and if in addition 
.g ∼ h, then . f ∼ h (because by Proposition 1.1 the intersection .Cf

⋂
Cg is a set of 

second category in X for any f and g from . Sb). 

Definition 4.1 .S(X, E) is the set of classes of equivalence with respect to . ∼, i.e., 

. S(X, E) = Sb(X, E)/∼ .

This is equivalent to saying that .S(X, E) is the set of classes of equivalent functions 
on X , each of which is continuous on some subset of second category in X , and the 
equivalence means coincidence on a set of second category. 

In cases, where the concrete form of a normed space E and/or a set X plays no 
role, we will write . S in place of .S(X, E). If . f ∈ S, then the set 

.Cf =
⋃

ϕ∈ f
Cϕ,
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which consists of the union of points of continuity for all representatives of an 
element f , will be called the set of points of continuity of an element . f ∈ S. 

If .T : E × E → E is some binary operation in E , then it generates in .S(X, E) the 
corresponding binary operation according to the usual rule: .T( f , g) is the equivalence 
class of the function .x 	→ T(ϕ(x), ψ(x)), where . ϕ (respectively, . ψ) is any represen-
tative of the class f (respectively, g). So, .S(X, E) becomes a vector space over . R, 
and .S(X,R) is a commutative ring (where the multiplication is distributively related 
to the commutative addition). Moreover, .S(X, E) is a modulus over .S(X,R), i.e., over 
this generalization of a vector of the space in which the multiplication by a scalar is 
replaced by that by elements of the ring .S(X,R). Note that .S(X,R) is a lattice,8 and 
the inequality . f ≤ g for elements of the factor space .S(X, E) = Sb(X, E)/∼ means 
that the inequality .ϕ ≤ ψ for some (and hence for any) representatives .ϕ ∈ f and 
.ψ ∈ g holds on a set of second category. 

Theorem 4.2 (see Samborski 2004) The lattice .S(X,R) is conditionally complete, 
and the sublattice .C(X,R) of continuous functions is dense in it (i.e., each element . f ∈
S(X,R) is the supremum of some family of elements from .C(X,R) and simultaneously 
the infimum of a different family of elements from .C(X,R)). 

Let . f ∈ S(X,R), and .ϕ ∈ f . Similarly to the case of the space .Cae(X,R), the  
interval-valued function 

.x 	→ f (x) = [ f −(x), f +(x)], (4.1) 

corresponding to . ϕ, is independent of the choice of . ϕ but depends only on the 
class f . In what follows, we will identify the class . f ∈ S(X,R) and the corresponding 
interval-valued function (4.1). 

Recall that to an interval-valued function . f ∈ S(X,R) there correspond its semi-
continuous envelopes 

. f −
(1.3) 
= ( f

�
�
C f 

)∗ and f + (1.3) 
= ( f

�
�
C f 

)∗. 

Proposition 4.3 The interval-valued function 

. x 	→ [ϕ(x), ψ(x)]

corresponds to some element . f ∈ S(X,R) (i.e., .ϕ = f − and .ψ = f +) if and only if 

.ϕ∗ = ψ and ψ∗ = ϕ. (4.2) 

Proposition 4.4 The interval-valued functions . f ∈ S(X,R) have the following prop-
erties: 

. 1. Separation on open subsets. If f and g lie .S(X,R) and if . f (x0) � g(x0) at 
some point . x0 (for definiteness, . f +(x0) > g+(x0)), then there exist an open subset

8 See the remark on p. 217. 
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.U ⊂ X and numbers . α and .β < α such that the inequalities9 
.ξ > α and .η < β hold 

for any .x ∈ U and any .ξ ∈ f (x), .η ∈ g(x). 
. 2. Compactness of the graph .gr f def

=
{⋃

x∈X,ξ ∈ f (x)(x, ξ)
}
⊂ X × R. 

. 3. Existence of maximum and minimum. The function . f ∈ S(X,R) attains 
on X both its maximum and minimum values. Namely, there exist .x̂ ∈ X and 
.ξ = max f ∈ f (x̂) such that .ξ ≥ η for any .x ∈ X and .η ∈ f (x). The minimum . min f
of the function f is defined similarly. 

. 4. Existence of intermediate values. If .[a, b] ⊂ X , 

. ξ ∈ f (a) = [ f −(a), f +(a)], η ∈ f (b) = [ f −(b), f +(b)],

then, for any .θ ∈ [min(ξ, η),max(ξ, η)], there exists a .c ∈ [a, b] such that .θ ∈ f (c). 
. 5. Recovery on a dense subset. The function . f ∈ S(X,R) is uniquely recovered 

from its values on any (!) dense subset .X0 ⊂ X . 
. 6. Quasicontinuity. If . f ∈ S(X,R), then . f − and . f + are quasicontinuous func-

tions.10 Moreover, on the set .QC(X) of quasicontinuous functions on X , the relation 
.ϕ ∼ ψ, which means that . ϕ coincides with . ψ on some dense subset of X , is an  
equivalence relation. The quotient space .QC(X)/∼ thus obtained can be naturally 
identified with .S(X,R). 

Note that, for any . f ∈ S(X,R) and .n ∈ N, 

. f −n = sup{ϕ ∈ Lipn(X,R) : ϕ ≤ f },
f +n = inf{ϕ ∈ Lipn(X,R) : ϕ ≥ f }

are defined. Let . f , g ∈ S(X,R). The formula 

.s( f , g) def
= sup

n
{h(gr f −n , grg−n ), h(gr f +n , grg+n )}, (4.3) 

defines a metric in the space .S(X,R). 

Theorem 4.5 (see Samborski 2004) The space .S(X,R) equipped with the met-
ric (4.3) is complete, and the set .C(X,R) of continuous functions is dense in it. 

Let . f ∈ S(X,Rm), . f = ( f1, . . . , fm). We define . f (x) (cf. (2.1)) by  

. f (x) = Co{(ξ1, . . . , ξn) : ξi ∈ fi(x)},

where .Co{A} is the convex hull of .A ⊂ Rm. The natural isomorphism between 
.S(X,Rm) and .(S(X,R))m, under which . f ∈ S(X,Rm) corresponds to .( f1, . . . , fm), 
where . fi ∈ S(X,R), enables one to endow .S(X,Rm) with the metric

9 Unlike continuous functions, the open subset .U ⊂ X in general is not a neighborhood of the point 
. x0. Similarly, if . f +(x0) > g+(x0) and . f −(x0) < g−(x0), then there exist U and V such that . f > g
in U and . f < g in V . Moreover, one can choose U and V so that . x0 would lie in the intersection 
of their closures. 
10 Recall that a function .ϕ : X → R is called quasicontinuous if, for any .x ∈ X, .ε > 0, there exists  
an open set U such that .x ∈ ClU and .y ∈ U ⇒ | f (x) − f (y) | < ε. 
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. s( f , g) = max
i

s( fi, gi),

with respect to which .S(X,Rm) is a complete metric space. 

Proposition 4.6 Let . f , g, h ∈ S(X,R), and let .{ fi}, {gi} be sequences of elements 
from .S(X,R). Then 

. (1) If . fi → f in .S(X,R), .xi → x in X , .ξi ∈ fi(xi) and .ξi → ξ in . R, then .ξ ∈ f (x). 

. (2) The convergence . fi → f is uniform if the function f is continuous on X . 

. (3) The addition, multiplication operations, and the . min and . max operations are 
closed, i.e., if . fi → f and .gi → g, then 

. fi + gi → h ⇒ h = f + g,

fi · gi → h ⇒ h = f · g,
min( fi, gi) → h ⇒ h = min( fi, gi),
max( fi, gi) → h ⇒ h = max( fi, gi).

5 Differentiation in S(X , R) 

We will identify . Rn with .(Rn)∗ in the usual way with the help of the inner product 
. 〈·, ·〉. Let .X ⊂ Rn and let .h : X → R be a lower semi-continuous function. Then, for 
any open set .U ⊂ X , there exist .ϕ ∈ C1(X) (the set of continuously differentiable 
functions on X) and .x ∈ U such that .ϕ ≤ h and .ϕ(x) = h(x). Indeed, it suffices to 
“push up” a small ball until it reaches the graph of h. 

Definition 5.1 Let . f ∈ S(X,R), .x ∈ X . The subsets of .(Rn)∗ defined by 

. (D− f )(x) =
{
Dϕ(x) : ϕ ∈ C1, ϕ ≤ f , ϕ(x) = f −(x)

}
,

(D+ f )(x) =
{
Dϕ(x) : ϕ ∈ C1, ϕ ≥ f , ϕ(x) = f +(x)

}

are called, respectively, the subdifferential and the superdifferential of a function f 
at a point x. 

One can easily verify that, for each x, the  sets .(D− f )(x) and .(D+ f )(x) are closed 
and convex (possibly, empty). Moreover, .(D± f )(x) is nonempty if .x ∈ X±, where 
. X+ and . X− are dense in X . 

We will write .ζ ∈ (D± f )(x) assuming that .x ∈ X±. 

Proposition 5.2 Let .X ⊂ R. The operator of classical differentiation D defined on the 
set of continuously differentiable functions is preclosed qua an operator in .S(X,R). 
Let . D be its extension by closure and let . D be the domain of this extension. Then 

. f ∈ D ⇔ D f =
[ (
D− f (·)

)
∗,
(
D+ f (·)

)∗] ∈ S(X,R).

Here, as in Proposition 4.3, the symbol “. ∗” denotes the semi-continuous envelope 
of an interval-valued function defined on a dense subset.
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Proposition 5.3 Let . ξ be a smooth vector field in .X ⊂ Rn. The operator of classical 
differentiation in the direction of the field . ξ, which is defined on mappings continu-
ously differentiable in the direction . ξ, is preclosed qua an operator in .S(X,R). Let  
. Dξ be its extension by closure, and let . Dξ be the domain of this extension. Then 

. f ∈ Dξ ⇔ Dξ f =
[
〈D− f −(·), ξ(·)〉∗, 〈D+ f +(·), ξ(·)〉∗

]
∈ S(X,R).

The total differentiation operator D, which is defined on the set of continuously differ-
entiable functions, is a preclosed operator from .S(X,R) into .S(X,R∗). If . (x1, . . . , xn)
are coordinates in X and . Di and . D are the extensions by closure of the opera-
tors of partial differentiation with respect to . xi and of the total differentiation, then 
.D = (D1 . . . ,Dn). 

Proposition 5.4 Let .F = [F−, F+] ∈ S(X,R), where .X = [a, b] ⊂ R. Let  . Φ be the 
set of measurable functions . ϕ on X such that 

. F−(x) ≤ ϕ(x) ≤ F+(x) for any x ∈ X .

Then the following two conditions are equivalent. :
(1) . f ∈ D and .D f = F. 
(2) There exists a .ϕ ∈ Φ such that . f (x) = f (a) +

∫
[a,x] ϕ dμ (a ∈ X). 

Proposition 5.4 shows that in general . D is not a linear subspace in .S(X,R). The  
corresponding example can be easily constructed with the help of Cantor sets (of first 
category) of positive measure. Hence, without dwelling on the differential calculus 
in .S(X,R), we only note that the complete analogue of Theorem 3.9 holds, in which 
one should replace . Cae by . S. 

We complete this section with the following lemma, which will be repeatedly 
applied in what follows. 

Lemma 5.5 Let .u ∈ S(X,R) and . U be a neighborhood in X . Then there exist .x ∈ U, 
.l ∈ R, .Θ ∈ (Rn)∗, sequences .{x−i } and .{x+i } converging to x in . U, and sequences 
.{Θ−

i } and .{Θ+i } converging to . Θ in .(Rn)∗ such that 

. u−(x−i ) → l, u+(x+i ) → l, Θ−
i ∈ D−u(x−i ), Θ

+
i ∈ D+u(x+i ).

Proof We give only a general scheme of the proof, contenting ourselves for simplicity with the 
case .dim X = 2 (the argument in the case .dim X = 1 is trivial). All the open sets that appear below 
are assumed to be homeomorphic to an open ball. 

If F has in . U a dense set of minimum points, then by an appropriate smooth deformation . ϕ of 
the domain . U one can obtain for . uϕ also a point of local maximum. Taking this point for x and 
using the quasi-continuity of the function . u±, we arrive at the conclusion of the lemma with . θ = 0
for . uϕ. 

In what follows, we will assume that in . U there are no extremum points of the function . u±. 
We let . TU denote the set of connected components of the level sets of the restriction of u to . U. 

If u assumes the value . λ on an element from . TU , then this element will be denoted by . λ̃. The  
set . TU can be endowed with the natural topology: a neighborhood of the point . λ̃ consists of all . μ̃
falling in the neighborhood of the point . λ̃ as a subset of . U (this is an analogue of the well-known 
construction in the case of a continuous u and a closed . U). Assume that the points at which the
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level set passing through such points divides the neighborhood of this point in at least two parts are 
dense in . U. Then it can be easily verified that the result of this lemma is true for .θ = 0. 

So, in what follows, we will assume that the neighborhood . U has the following property: for 
any .x ∈ U, the component of the level set . λ̃ containing x divides . U in precisely two disjoint sets, 
the tree . TU is homeomorphic to an interval, and the function .λ̃ → λ on . TU is strictly increasing. 

Let . u+n and . u−
n be the above Lipschitz majorant and minorant of the function u. We set  

. θ−n
de f
= {x ∈ U : u−

n(x) = u−(x)}, θ+n
de f
= {x ∈ U : u+n(x) = u+(x)}.

If one of these sets (and hence, the other one too) contains an open subset, then on this set the 
function u is Lipschitz, proving the lemma. So, we can assume that . θ±n are closed nowhere dense 
cycle-free subsets. 

Assume there exists a point .x ∈ U such that, in any of its neighborhood V , the set . V \ θ−n
consists of an infinite number of connected components. The same is also true for .V \ θ+n . One  
can construct sequences .{x−i }, .{x

+
i } converging to x (.x−i ∈ V \ θ−n , .x+i ∈ V \ θ+n), sequences 

.{θ−i ∈ D−u−
n(x−i )}, .{θ

+
i ∈ D+u+n(x+i )}, and .‖θ−i − θ+i ‖ → 0, .i → ∞. Since .‖D±u±

i ((x
±
i )‖ ≤ n, 

there exists the limit . θ of two sequences .{θ−i } and .{θ−i }, where .‖θ ‖ ≤ n. 
Now let us assume that .x ∈ θ±n for any .n ∈ N and that, for any neighborhood .V � x, the set 

.V \ θ±n consists of a finite number of connected components. We denote by .{U−
i } the contracting 

system of neighborhoods 
. U−

i =
⋃{

λ̃ : λ ∈]λ′i,−, λ
′′
i,−[

}
,

where . λ̃ is the set of level . u−
n corresponding to . λ. Let  

. t−i = inf { ‖x − y ‖, x ∈ λ′i,−, y ∈ λ′′i,− },

and assume that, for any i, 
. (λ′i,− − λ′′i,−)/t

−
i ≤ K,

where K is a constant independent of i. Similarly, we define . U+i , . t+i with “. −” replaced everywhere 
by “. +,” but with the preservation of K . 

For simplicity, we assume that . θ±n (for all n) is a union of intervals (in . R2) and .D−u−
n (.D+u+n , 

respectively) is constant on the interior of each interval (this assumption changes only very insignif-
icantly the ensemble . D− and . D+ in . U±

i ). Let . I− be the union of intervals I from . θ−n such that the 
estimate .‖D−un(x)‖ ≤ K holds for .x ∈ Int I . In a similar manner, we define . I+ by changing “. −” 
by “. +.” Let . αi be the greatest angle between the intervals from . I−ni

and . I+ni
(in . Ui ). If there exist 

an .α > 0 and an infinite sequence .{ni } such that .αni > α, then there exist sequences .{x−i ∈ I−ni
}, 

.{x+i ∈ I+ni
}, .θi ∈ D−u−

ni
(x−i )

⋂
D+u+ni

(x+i ) .‖θi ‖ ≤ K/sin α
2 . In this case, the proof completes 

by passing to the limit. 
Assume now that .αi → 0. In  . Ui , we choose rectilinear coordinates .(x, y) so that the x-

coordinate (up to . αi ) would be directed along the intervals . I±ni
. For  a fixed  i and neighborhoods 

. V− and . V+ in . Ui , consider the functions 

. Φ−
i (x) = inf

(x,y)∈V −
u−
ni
(x, y), Φ+i (x) = sup

(x,y)∈V +
u+ni

(x, y).

Now let us choose the above neighborhoods . V− and . V+ so as to satisfy the following properties: 
.(1) . Φ±

i are monotone functions with sufficiently close end points of the graphs and such that 
.Φ−

i ≤ Φ+i . 
. (2) If . |D±Φ±

i (x) | ≤ K , then there exist .y±(x) such that 

. Φ±
i (x) = u±

ni
(x, y±(x)).

.(3) . V± be the connected part of the set . U±
i consisting of . λ̃, .λ ∈]λ′i,±, λ

′′
i,±[. 

By Properties 1 and 3, there exist . x− and . x+ such that .D−Φ−
i (x

−) is sufficiently close to 
.D+Φ+i (x

+) and . |D−Φ−
i (x

−) | ≤ K . Now, from Property 2, it follows that .D−u−
i (x

−, y(x−)) and
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.D+u+i (x
+, y(x+)) are sufficiently close and their norms are bounded by the constant K . Hence the 

same is also true for .D−u(x−, y(x−)) and .D+u+(x+, y(x+)). The proof of the lemma completes by 
taking the limit. �

6 Equations with Partial Derivatives 

Let us now give more details about the formula that specifies the domain of the 
extension by closure. To this end, we consider the following examples of operators 
with partial derivatives. 
Example 1. Let .X = [0, 1]2 and .H y = H(Dy), where 

. H
( ∂y
∂x1
,
∂y

∂x2

)
=
∂y

∂x1
− ∂y
∂x2
.

It is easily shown that the domain . DH of the extension in . S by closure of the operator 
.(H,C1 ↑) is as follows: 

. DH =
{
f ∈ S : H f =

(
(H(D− f )

)
∗, (H(D+ f ))∗

)
∈ S

}
.

Note that the action of the operator . H is distinct from that of . f → H(D f ) because 
the latter expression is inapplicable to discontinuous functions. 
Example 2. For nonlinear equations, the desired extensions not always coincide with 
extensions by closure inC of the set of smooth functions. So, the simplest variational 
problem consisting in finding the distance from a point .x ∈ I = [−1, 1] to the nearest 
end point of the interval I leads to the Hamilton–Jacobi equation .H y = |y′ | = 1. 
The solution .y = −|x | + 1 is not smooth and is not the limit in . S (or in C) of smooth  
functions . yi such that .H yi → 1. 

It is easily shown that the domain of the closed extension . H , for which the 
solutions of the equation .H y = F correspond to those of the variational problem 
under consideration, is the set 

. DH =
{
f ∈ S : H f =

(
|D− f |∗, |D+ f |∗

)
∈ S

}
.

Example 3. Consider the so-called singularly perturbed ordinary differential equa-
tion 

. − εy′′ + yy′ = f . (6.1) 

Our aim is to extend in . S the operator .H : y 	→ H(y) = yy′ so that the solutions 
in . S of the equation .H(y) = yy′ would correspond precisely to the limits as . ε →
0 of smooth solutions of Eq. (6.1). Considering the slow–fast field on the plane 
corresponding to Eq. (6.1), one can show that the required extension has the domain 

.DH =
{
f ∈ S :

( (
H(y−,D−y)

)
∗,
(
H(y+,D+y)

)∗)∈ S
}
.
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Note that as in Example 2 this extension is not always an extension by closure from 
the set of smooth functions. Solutions in . S may be discontinuous functions and be 
physical (for example, the solutions . DH for the equation .yy′ = 1 describe stationary 
shock waves). 

In a general setting, let 

. H : X × R × (Rn)∗ → R

be a continuous function. We consider the operator from .S(X,R) into .S(X,R), 
which is defined ab initio on the set of smooth functions as the mapping .y → H y, 
.(H y)(x) = H(x, y(x),Dy(x)). 

Theorem 6.1 
. 1. The operator . H admits the closure in the space .S(X,R). 
. 2. Let .(H,DH) be the extension of the operator . H with domain . DH consisting 

of all . f ∈ S(X,R) for which 

. H f =
( (
H(·, f −(·),D− f (·))

)
∗,

(
H(·, f +(·),D+ f (·))

)∗)∈ S(X,R).

Then the operator .(H,DH) is closed in .S(X,R). 

Proof It suffices to verify assertion (2), from which assertion (1) follows. Let . fi →
f ∈ S, . fi ∈ DH , and .H fi → F = (F−, F+) ∈ S. Note, first of all, that if . fi → f ∈ S, 
then, for any .ε > 0, .ζ ∈ D− f (x), there exists an .N ∈ N such that, for any .n ≥ N , 
there exist . xn and .ηn ∈ D− fn(xn) satisfying the conditions 

. ‖x − xn‖ < ε, | f −n (xn) − f −(x)| < ε, ‖ζ − ηn‖ < ε.

(Analogous properties also hold if “. −” is replaced by “. +.”) 
From this remark, the continuity of H, and the quasi-continuity of . F−, . F+ (see 

property 6 in Proposition 4.4), it follows that there exists a neighborhood . V in which 

.
(
H(·, f −(·),D− f (·))

)
∗≥ F−,

(
H(·, f +(·),D+ f (·))

)∗≤ F+. (6.2) 

Since . f ∈ S, from Lemma 5.5, it follows that 

. 
(
H(·, f −(·),D− f (·))

)
∗≤

(
H(·, f +(·),D+ f (·))

)∗
.

Hence form inequalities (6.2), we get the equality 

. 
( (
H(·, f −(·),D− f (·))

)
∗,
(
H(·, f +(·),D+ f (·))

)∗)
= (F−, F+),

and therefore, . f ∈ DH . �

The next theorem shows that the inclusion of the vanishing viscosity in the 
physical model described by the equation .H y = f , i.e., the addition of the term 
.−ε∇2y (where . ∇2 is the Laplace operator ), gives as .ε → 0 solutions from . DH . It  
is also worth pointing out the stability under perturbations of H.
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Theorem 6.2 
. 1. Let H, .Hε : X × R × (Rn)∗ → R be continuous functions, let .(H,DH) be the 

operator in .S(X,R) defined in Theorem 6.1, and let .Hε y = Hε(·, y(·),Dy(·)). Then 
the operator .y → −ε∇2y +Hε in .S(X,R), which is defined on the class . C2 of twice 
continuously differentiable functions, is preclosed. 

. 2. Let .Hε → H as .ε → 0 uniformly on compact sets. Then 

. lim
ε→0

(−ε∇2 +Hε,C
2 ↑) ⊂ (H,DH).

Proof 
. 1. That the operator is preclosed is proved similarly to the above. 
. 2. Let . DH and .H f = F. Then both functions . f − and . f + satisfy the definition 

of “viscosity solutions” in the sense of Crandall et al. (1992); Crandall (1996) and 
hence share their properties. This implies assertion (2). �

For the closed extension .(H,DH), it is interesting to describe the essential domain 
(which is usually more simple), i.e., the set . D1 such that .(H,DH) = (H,D1 ↑). For  
example, for the operator . Dξ (from Proposition 5.3) as . D1, one can take the set of 
continuously differentiable mappings, and however, this set cannot be used in this 
way in Example  2 (on  p.  227). 

Of course, such more simple essential domain . D1 depends on H. In many prob-
lems, in particular, in approximate calculations, it is useful to know the structure 
of . D1. To illustrate this, we give one particular result of this kind (see Samborski 
2007). 

Proposition 6.3 Let .H : X × (Rn)∗ → R be a uniformly continuous function convex 
in the second argument and . D1 be the set of functions of the form .min(ϕ1, . . . , ϕk), 
where .k ∈ N and the functions .ϕ1, . . . , ϕk are continuously differentiable. Then 

. (H,DH) = (H,D1 ↑).

Let us now consider the problem of existence in . DH of solutions of the equation 
.H y = f . The next theorem establishes the intermediate values property. 

Theorem 6.4 Let .a, b ∈ DH , .a ≤ b and .H(a) ≤ H(b). Then for any . f ∈ S(X,R), 
satisfying inequality 

. H(a) ≤ f ≤ H(b),

there exists a .c ∈ DH , .a ≤ c ≤ b, such that .H(c) = f . 

We will prove a stronger result (and, what is important, this result is more conve-
nient for applications). Let .a, b ∈ S(X,R). We set  

. H+a =
( (
H(·, a+(·),D+a(·)

) )∗
, H−b =

( (
H(·, b−(·),D−b(·)

) )

∗
.

Recall that these functions are defined everywhere in X and have values in .R
⋃

±∞.
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Theorem 6.5 Let .a, b ∈ S(X,R), .a ≤ b. Next, let . f = ( f −, f +) ∈ S(X,R) be such 
that, for each x, 

.H+(a)(x) ≤ f +(x), f −(x) ≤ H−(b)(x). (6.3) 

Then there exists a .c ∈ DH such that .H(c) = f . 

Proof In .S(X,R), consider the set 

. Φ =
{
u ∈ [a, b] : H−(u)(x) ≥ f −(x) ∀x ∈ X

}
.

consisting of all functions bounded from below by a. This set is nonempty because 
.b ∈ Φ. Hence, by Theorem 4.2, there exists 

. c = (c−, c+) = infΦ ∈ S(X,R).

Let us verify the inequalities 

.H+(c)(x) ≤ f +(x), H−(c)(x) ≥ f −(x). (6.4) 

. 1. Let .x ∈ X be such that .D−c(x) � � and .ξ ∈ D−c(x). Then, for any . ε, there 
exist .u ∈ Φ, .x ∈ X , .ξ ′ ∈ D−u(x ′) such that 

. max{ |x − x ′ |, |c−(x) − u−(x ′)|, |ξ − ξ ′ |} < ε.

The function H is continuous and .H(x ′, u−(x ′), ξ ′) ≥ f −(x), and hence, making 
.ε → 0, we arrive at the second inequality in (6.4) for any .x ∈ X . 

. 2. Let .x ∈ X be such that .D+c(x) � � and .ξ ∈ D+c(x). Two cases are possible. 
Case (a): .c+(x) = a+(x). Then, by the conditions of the theorem, 

. H(x, c+(x), ξ) ≤ H+(a)(x) ≤ f +(x).

Case (b): .c+(x) > a+(x). Assume on the contrary that 

. H(x, c+(x), ξ) > f +(x).

Let .ϕ ∈ C1 be a function such that .ϕ ≥ c+, .ϕ(x) = c+(x), and .Dϕ(x) = ξ. For 
a sufficiently small .ε > 0, the quantity .d(x) = min(c, ϕ(x) − ε) has the following 
properties: 

(i) If .x ′ ∈ X is such that .d(x ′) = ϕ(x ′) − ε, then . D−d(x ′) = D−ϕ(x ′) = Dϕ(x ′) =
ξ ′ and . ξ ′ is close to . ξ. 

(ii) .H(x ′, d(x ′),D−d(x ′)) > f −(x ′). 
(iii) At any point . x ′, at which .D−d(x ′) � �, .D−d(x ′) coincides either with . D−c(x ′)

or with .Dϕ(x ′). 
Hence .d ∈ Φ, and since .d(x) < c(x), we get a contradiction with the definition 

of c as .infΦ. So, for any .x ∈ X , we have the first of (6.4). 
Let us now apply Lemma 5.5 to .c = infΦ. In each neighborhood .U ⊂ X , there 

exist (by continuity of H) a point x, sequences .x−i → x, .x+i → x, an element .θ ∈ Rn∗, 
and sequences .θ−i → θ, .θ+i → θ, satisfying the condition
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. lim
i→∞

H(x−i , c
−(x−i ), θ

−
i ) − H(x+i , c

+(x+i ), θ
+
i ) = 0,

where .θ−i ∈ D−c(x−i ) and .θ+i ∈ D+c(x+i ). By inequalities (6.4), we have  

. (H−(c),H+(c)) = ( f −, f +) ∈ S(X,R)

on a dense subset of X . Therefore, .c ∈ DH . �

To apply Theorem 6.5 to boundary-value (boundary) problems, one should choose 
functions a and b so as to satisfy the equalities .a

�
�
Γ
= b

�
�
Γ
= ϕ on the boundary . Γ (or 

on a part of it). Now the solution c thus obtained also satisfies the condition .c
�
�
Γ
= ϕ. 

Let .(t, x) ∈ [0,T] × X , .y = y(t, x), .Dx =
(

∂
∂x1
, . . . , ∂

∂xn

)
. Consider the Cauchy 

problem for the equation 

.F y = f , where F y =
∂

∂t
y + H(·, ·, y(·, ·),Dx y). (6.5) 

Let .(F ,DF) be the closed extension in .S([0,T] × X,R) of the operator . F described 
in Theorem 6.1. The sought-for solution, if it exists, lies in the set . DF in . S. Hence 
the “initial datum” for y at .t = 0 can be taken only from the set (denoted by . D0

F), 
which consists of the pairs .(ϕ−, ϕ+) of two semi-continuous functions obtained by 
the restriction at .t = 0 of the pairs .(u−, u+) of functions from . DF . Note that it does 
not follow, a priori, that .(ϕ−, ϕ+) defines an element from .S(X,R). 

Theorem 6.6 (Analogue of Peano’s Theorem) Let 

. H : [0,T] × X × R × (Rn)∗ → R

be a continuous function, .ϕ ∈ D0
F , . f ∈ S([0,T] × X,R). Then there exist . T ′ ∈ (0,T]

and .y ∈ DF ⊂ S([0,T] × X,R) such that 

. F y = f on [0,T ′] × X and y
�
�
t=0= ϕ.

Proof Since .ϕ ∈ D0
F , there exists a .u ∈ DF such that .u|t=0 = ϕ. Consider . a(t, ·) =

u(t, ·) − Kt, .b(t, ·) = u(t, ·) + Kt .(K > 0). Since u and . f lie in .S([0,T] × X,R), they  
are bounded. Choosing a sufficiently large K and a sufficiently small . T ′ and using 
the continuity of H, we find that 

. F +(a)(t, x) ≤ f +(t, x), f −(t, x) ≤ F −(b)(t, x)

for all .t ∈ [0,T ′] and .x ∈ X . Now an appeal to Theorem 6.5 shows that there exists 
.y ∈ DF such that .F y = f . And since .a(0, ·) = b(0, ·) = ϕ, we find that .y |t=0 = ϕ. �

By combining the trick used in the proof of Theorem 6.6 with the intermediate 
value property, one can obtain existence results for initial-boundary-value problems. 
For such problems, uniqueness is also possible. However, this question will not be 
addressed here. Let us illustrate the above on an example of the evolution Hamilton– 
Jacobi equation.
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Theorem 6.7 Let .H : [0,T] × X × (Rn)∗ → R be a continuous function, .ϕ ∈ D0
F , 

.ψ : [0,T] × ∂X → R. Next, let .a, b ∈ DF , .a ≤ b, and 

. a
�
�
[0,T ]×∂X= b

�
�
[0,T ]×∂X= ψ, a

�
�
{0}×∂X≤ ϕ ≤ b

�
�
{0}×∂X .

Then, for any . f ∈ S([0,T]×X,R) such that .F (a) ≤ f ≤ F (b), there exists a solution 
.y ∈ DF of Eq. (6.5) such that 

. y
�
�
t=0= ϕ and y

�
�
[0,T ]×∂X= ψ.

Proof Consider a function .u ∈ DF such that .u
�
�
t=0= ϕ. Next, we construct the 

functions 
. a1 = max{u − Kt, a}, b1 = min{u + Kt, b}.

After this, for sufficiently large K , we apply Theorem 6.5 to . F and to the interval 
.[a1, b1] in .S([0,T] × X,R). �

7 Compactness in the Space S 

The results on compactness of the kernel, Noetherian property, etc., play an important 
role in the theory of linear operators. The condition that an operator A has finite-
dimensional kernel can be equivalently expressed as follows: for any .M ∈ R, the  set  
of solutions of the equation .Ay = 0 satisfying the inequality .‖y‖ ≤ M is compact. 
In this form, this property can also be considered for nonlinear operators. 

The following compactness test in the space .S(X,R) is an analogue of the classical 
Arzelà–Ascoli theorem for the Banach spaceC. Recall that to each . f ∈ S(X,R) there 
correspond two sequences of Lipschitz functions .{ f −n } and .{ f +n } converging to f 
(see Proposition 4.3), and, therefore, the sequence .{h( f −n , f +n )} converges to zero as 
.n → ∞. 

Theorem 7.1 (Compactness Test) Let . F be a family of elements from .S(X,R). Then 
this family is precompact if and only if the following conditions are satisfied: 

. (1) The family . F is uniformly bounded, i.e., there exists an .M > 0 such that 
. f (x) ∈ [−M,M] for any . f ∈ F , .x ∈ X . 

. (2) The sequences.{h( f −n , f +n )} tend to zero as .n → ∞ equicontinuously with 
respect to . f ∈ F , i.e., for any . ε, there exists an .N ∈ N such that .h( f −n , f +n ) < ε for 
any . f ∈ F and any .n > N . 

To conclude, we give one result (of Noetherian type in the theory of linear 
equations). This result fully uses the language of “spaces–operators,” whose intro-
duction for nonlinear equations was the main purpose of this appendix. As before, 
let .H y = H(x,Dy(·)) and . DH be the domain of the closed extension defined in 
Theorem 6.1.
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Theorem 7.2 (see Samborski 2007) Let .H : X × (Rn)∗ → R be a uniformly con-
tinuous function convex in the second argument (a Hamiltonian). Assume that the 
following conditions are satisfied. :

(1) There exists a .C ∈ R such that, for any .p ∈ (Rn)∗, .(x ′, x ′′) ∈ X × X , 

. |H(x ′, p) − H(x ′′, p)| ≤ C(1 + ‖p‖)‖x ′ − x ′′‖.

(2) For any .x ∈ X , .p ∈ (Rn)∗, .p � 0, the function .λ 	→ H(x, λp) from . R into . R is 
not constant. 

Then, for any closed bounded subset A of .S(X,R), the following assertions hold: 
(1) For any . f ∈ S(X,R), the set of all solutions from A of the equation . H y = f

is compact. 
(2) The image .H(A

⋂
DH) of the set .A

⋂
DH is closed in .S(X,R).
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of factorization, 132 
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measure 
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method 
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operator 
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extension, 129 
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