

About This eBook

ePUB is an open, industry-standard format for eBooks.
However, support of ePUB and its many features varies across
reading devices and applications. Use your device or app
settings to customize the presentation to your liking. Settings
that you can customize often include font, font size, single or
double column, landscape or portrait mode, and figures that
you can click or tap to enlarge. For additional information
about the settings and features on your reading device or app,
visit the device manufacturer’s Web site.

Many titles include programming code or configuration
examples. To optimize the presentation of these elements, view
the eBook in single-column, landscape mode and adjust the font
size to the smallest setting. In addition to presenting code and
configurations in the reflowable text format, we have included
images of the code that mimic the presentation found in the
print book; therefore, where the reflowable format may
compromise the presentation of the code listing, you will see a
“Click here to view code image” link. Click the link to view the
print-fidelity code image. To return to the previous page
viewed, click the Back button on your device or app.

Red Hat RHCSA™ 9 Cert Guide

EX200

Sander van Vugt

Red Hat RHCSA™ 9 Cert Guide: EX200

Copyright © 2023 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced,
stored in a retrieval system, or transmitted by any means,
electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent
liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and author assume
no responsibility for errors or omissions. Nor is any liability
assumed for damages resulting from the use of the information
contained herein.

ISBN-13: 978-0-13-809627-4

ISBN-10: 0-13-809627-9

Library of Congress Cataloging-in-Publication Data Is On File

ScoutAutomatedPrintCode

Trademarks

All terms mentioned in this book that are known to be
trademarks or service marks have been appropriately

capitalized. Pearson IT Certification cannot attest to the
accuracy of this information. Use of a term in this book should
not be regarded as affecting the validity of any trademark or
service mark.

Red Hat and RHCSA are registered trademarks of Red Hat, Inc.
in the United States and other countries.

Pearson IT Certification and Sander van Vugt have no affiliation
with Red Hat, Inc. The RED HAT and RHCSA trademarks are
used for identification purposes only and are not intended to
indicate affiliation with or approval by Red Hat, Inc.

Warning and Disclaimer

Every effort has been made to make this book as complete and
as accurate as possible, but no warranty or fitness is implied.
The information provided is on an “as is” basis. The author and
the publisher shall have neither liability nor responsibility to
any person or entity with respect to any loss or damages arising
from the information contained in this book.

Special Sales

For information about buying this title in bulk quantities, or for
special sales opportunities (which may include electronic

versions; custom cover designs; and content particular to your
business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
intlcs@pearson.com.

Vice President, IT Professional

Mark Taub

Acquisitions Editors

Harry Misthos
Denise Lincoln

Development Editor

Ellie Bru

Managing Editor

Sandra Schroeder

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com

Senior Project Editor

Tonya Simpson

Copy Editor

Bill McManus

Indexer

Erika Millen

Proofreader

Jen Hinchliffe

Technical Editors

John McDonough
William “Bo” Rothwell

Publishing Coordinator

Cindy Teeters

Cover Designer

Chuti Prasertsith

Compositor

codeMantra

Pearson’s Commitment to Diversity,
Equity, and Inclusion

Pearson is dedicated to creating bias-free content that reflects
the diversity of all learners. We embrace the many dimensions
of diversity, including but not limited to race, ethnicity, gender,
socioeconomic status, ability, age, sexual orientation, and
religious or political beliefs.

Education is a powerful force for equity and change in our
world. It has the potential to deliver opportunities that improve
lives and enable economic mobility. As we work with authors to
create content for every product and service, we acknowledge
our responsibility to demonstrate inclusivity and incorporate
diverse scholarship so that everyone can achieve their potential
through learning. As the world’s leading learning company, we
have a duty to help drive change and live up to our purpose to
help more people create a better life for themselves and to
create a better world.

Our ambition is to purposefully contribute to a world where

Everyone has an equitable and lifelong opportunity to
succeed through learning

Our educational products and services are inclusive and
represent the rich diversity of learners
Our educational content accurately reflects the histories and
experiences of the learners we serve
Our educational content prompts deeper discussions with
learners and motivates them to expand their own learning
(and worldview)

While we work hard to present unbiased content, we want to
hear from you about any concerns or needs with this Pearson
product so that we can investigate and address them.

Please contact us with concerns about any potential bias at
https://www.pearson.com/report-bias.html.

https://www.pearson.com/report-bias.html

Contents at a Glance

Introduction
Part I Performing Basic System Management Tasks

CHAPTER 1 Installing Red Hat Enterprise Linux
CHAPTER 2 Using Essential Tools
CHAPTER 3 Essential File Management Tools
CHAPTER 4 Working with Text Files
CHAPTER 5 Connecting to Red Hat Enterprise Linux 9
CHAPTER 6 User and Group Management
CHAPTER 7 Permissions Management
CHAPTER 8 Configuring Networking

Part II Operating Running Systems
CHAPTER 9 Managing Software
CHAPTER 10 Managing Processes
CHAPTER 11 Working with Systemd
CHAPTER 12 Scheduling Tasks
CHAPTER 13 Configuring Logging
CHAPTER 14 Managing Storage
CHAPTER 15 Managing Advanced Storage

Part III Performing Advanced System Administration Tasks
CHAPTER 16 Basic Kernel Management
CHAPTER 17 Managing and Understanding the Boot
Procedure

CHAPTER 18 Essential Troubleshooting Skills
CHAPTER 19 An Introduction to Automation with Bash
Shell Scripting

Part IV Managing Network Services
CHAPTER 20 Configuring SSH
CHAPTER 21 Managing Apache HTTP Services
CHAPTER 22 Managing SELinux
CHAPTER 23 Configuring a Firewall
CHAPTER 24 Accessing Network Storage
CHAPTER 25 Configuring Time Services
CHAPTER 26 Managing Containers
CHAPTER 27 Final Preparation
CHAPTER 28 Theoretical Pre-Assessment Exam

Part V RHCSA 9 Practice Exams
RHCSA Practice Exam A
RHCSA Practice Exam B

APPENDIX A: Answers to the “Do I Know This Already?”
Quizzes and Review Questions
APPENDIX B: Red Hat RHCSA 9 Cert Guide: EX200 Exam
Updates
Glossary
Index

Online Elements
RHCSA Practice Exam C

RHCSA Practice Exam D
APPENDIX C: Memory Tables
APPENDIX D: Memory Tables Answer Key
APPENDIX E: Study Planner
Glossary

Table of Contents

Introduction
Part I Performing Basic System Management Tasks

pter 1 Installing Red Hat Enterprise Linux
“Do I Know This Already?” Quiz
Foundation Topics
Preparing to Install Red Hat Enterprise Linux

What Is Red Hat Enterprise Linux 9 Server?
Getting the Software

Using Red Hat Enterprise Linux
Using CentOS Stream
Other Distributions

Understanding Access to Repositories
Setup Requirements
Cert Guide Environment Description

Performing an Installation
Summary
Exam Preparation Tasks
Review All Key Topics
Define Key Terms
Review Questions
End-of-Chapter Lab
Lab 1.1

pter 2 Using Essential Tools
“Do I Know This Already?” Quiz
Foundation Topics
Basic Shell Skills

Understanding Commands
Executing Commands
I/O Redirection
Using Pipes
History
Bash Completion

Editing Files with vim
Understanding the Shell Environment

Understanding Variables
Recognizing Environment Configuration Files
Using /etc/motd and /etc/issue

Finding Help
Using --help
Using man
Finding the Right man Page
Updating mandb
Using info
Using /usr/share/doc Documentation Files

Summary
Exam Preparation Tasks

Review All Key Topics
Complete Tables and Lists from Memory
Define Key Terms
Review Questions
End-of-Chapter Lab
Lab 2.1

pter 3 Essential File Management Tools
“Do I Know This Already?” Quiz
Foundation Topics
Working with the File System Hierarchy

Defining the File System Hierarchy
Understanding Mounts

Managing Files
Working with Wildcards
Managing and Working with Directories
Working with Absolute and Relative
Pathnames
Listing Files and Directories
Copying Files and Directories
Moving Files and Directories
Deleting Files and Directories

Using Links
Understanding Hard Links
Understanding Symbolic Links

Creating Links
Removing Links

Working with Archives and Compressed Files
Managing Archives with tar

Creating Archives with tar
Monitoring and Extracting tar Files

Using Compression
Summary
Exam Preparation Tasks
Review All Key Topics
Complete Tables and Lists from Memory
Define Key Terms
Review Questions
End-of-Chapter Lab
Lab 3.1

pter 4 Working with Text Files
“Do I Know This Already?” Quiz
Foundation Topics
Using Common Text File–Related Tools

Doing More with less
Showing File Contents with cat
Displaying the First or Last Lines of a File with
head and tail
Filtering Specific Columns with cut

Sorting File Contents and Output with sort
Counting Lines, Words, and Characters with wc

A Primer to Using Regular Expressions
Using Line Anchors
Using Escaping in Regular Expressions
Using Wildcards and Multipliers
Using Extended Regular Expressions

Using grep to Analyze Text
Working with Other Useful Text Processing Utilities
Summary
Exam Preparation Tasks
Review All Key Topics
Complete Tables and Lists from Memory
Define Key Terms
Review Questions
End-of-Chapter Lab
Lab 4.1

pter 5 Connecting to Red Hat Enterprise Linux 9
“Do I Know This Already?” Quiz
Foundation Topics
Working on Local Consoles

Logging In to a Local Console
Switching Between Terminals in a Graphical
Environment

Working with Multiple Terminals in a
Nongraphical Environment
Understanding Pseudo Terminal Devices
Booting, Rebooting, and Shutting Down
Systems

Using SSH and Related Utilities
Accessing Remote Systems Using SSH
Using Graphical Applications in an SSH
Environment
Securely Transferring Files Between Systems

Using scp to Securely Copy Files
Using sftp to Securely Transfer Files
Using rsync to Synchronize Files

Configuring Key-Based Authentication for SSH
Using Passphrases or Not?

Summary
Exam Preparation Tasks
Review All Key Topics
Complete Tables and Lists from Memory
Define Key Terms
Review Questions
End-of-Chapter Labs
Lab 5.1
Lab 5.2

pter 6 User and Group Management
“Do I Know This Already?” Quiz
Foundation Topics
Understanding Different User Types

Users on Linux
Working as Root
Using su
sudo
PolicyKit

Creating and Managing User Accounts
System Accounts and Normal Accounts
Creating Users

Modifying the Configuration Files
Using useradd
Home Directories
Default Shell

Managing User Properties
Configuration Files for User Management
Defaults
Managing Password Properties
Creating a User Environment

Creating and Managing Group Accounts
Understanding Linux Groups
Creating Groups

Creating Groups with vigr
Using groupadd to Create Groups

Managing Group Properties
Summary
Exam Preparation Tasks
Review All Key Topics
Complete Tables and Lists from Memory
Define Key Terms
Review Questions
End-of-Chapter Labs
Lab 6.1
Lab 6.2

pter 7 Permissions Management
“Do I Know This Already?” Quiz
Foundation Topics
Managing File Ownership

Displaying Ownership
Changing User Ownership
Changing Group Ownership
Understanding Default Ownership

Managing Basic Permissions
Understanding Read, Write, and Execute
Permissions
Applying Read, Write, and Execute Permissions

Managing Advanced Permissions
Understanding Advanced Permissions
Applying Advanced Permissions

Setting Default Permissions with umask
Working with User-Extended Attributes
Summary
Exam Preparation Tasks
Review All Key Topics
Complete Tables and Lists from Memory
Define Key Terms
Review Questions
End-of-Chapter Lab
Lab 7.1

pter 8 Configuring Networking
“Do I Know This Already?” Quiz
Foundation Topics
Networking Fundamentals

IP Addresses
IPv6 Addresses
IPv4 Network Masks
Binary Notation
MAC Addresses
Protocol and Ports

Managing Network Addresses and Interfaces

Validating Network Configuration
Validating Network Address Configuration
Validating Routing
Validating the Availability of Ports and Services

Managing Network Configuration with nmtui and
nmcli

Required Permissions to Change Network
Configuration
Configuring the Network with nmcli
Configuring the Network with nmtui
Working on Network Configuration Files

Setting Up Hostname and Name Resolution
Hostnames
DNS Name Resolution

Summary
Exam Preparation Tasks
Review All Key Topics
Complete Tables and Lists from Memory
Define Key Terms
Review Questions
End-of-Chapter Lab
Lab 8.1

Part II Operating Running Systems
pter 9 Managing Software

“Do I Know This Already?” Quiz
Foundation Topics
Managing Software Packages with dnf

Understanding the Role of Repositories
Registering Red Hat Enterprise Linux for
Support
Managing Subscriptions
Specifying Which Repository to Use
Understanding Repository Security
Creating Your Own Repository

Using dnf
Using dnf to Find Software Packages
Getting More Information About Packages
Installing and Removing Software Packages
Showing Lists of Packages

Updating Packages
Working with dnf Package Groups
Using dnf History

Managing Package Modules
Understanding dnf Modules
Managing Modules

Managing Software Packages with rpm
Understanding RPM Filenames
Querying the RPM Database

Querying RPM Package Files
Using repoquery

Summary
Exam Preparation Tasks
Review All Key Topics
Complete Tables and Lists from Memory
Define Key Terms
Review Questions
End-of-Chapter Labs
Lab 9.1

pter 10 Managing Processes
“Do I Know This Already?” Quiz
Foundation Topics
Introduction to Process Management
Managing Shell Jobs

Running Jobs in the Foreground and
Background
Managing Shell Jobs
Understanding Parent–Child Relations

Using Common Command-Line Tools for Process
Management

Understanding Processes and Threads
Using ps to Get Process Information
Understanding Process Priorities

Exploring Relations Between Slices
Managing Process Priorities

Sending Signals to Processes with kill, killall,
and pkill
Killing Zombies

Using top to Manage Processes
Using tuned to Optimize Performance
Summary
Exam Preparation Tasks
Review All Key Topics
Complete Tables and Lists from Memory
Define Key Terms
Review Questions
End-of-Chapter Lab
Lab 10.1

pter 11 Working with Systemd
“Do I Know This Already?” Quiz
Foundation Topics
Understanding Systemd

Understanding Systemd Unit Locations
Understanding Systemd Service Units
Understanding Systemd Mount Units
Understanding Systemd Socket Units
Understanding Systemd Target Units

Managing Units Through Systemd
Managing Dependencies
Managing Unit Options

Summary
Exam Preparation Tasks
Review All Key Topics
Complete Tables and Lists from Memory
Define Key Terms
Review Questions
End-of-Chapter Lab
Lab 11.1

pter 12 Scheduling Tasks
“Do I Know This Already?” Quiz
Foundation Topics
Understanding Task Scheduling Options in RHEL
Using Systemd Timers
Configuring cron to Automate Recurring Tasks

Managing the crond Service
Understanding cron Timing
Managing cron Configuration Files
Understanding the Purpose of anacron
Managing cron Security

Configuring at to Schedule Future Tasks
Summary

Exam Preparation Tasks
Review All Key Topics
Define Key Terms
Review Questions
End-of-Chapter Lab
Lab 12.1

pter 13 Configuring Logging
“Do I Know This Already?” Quiz
Foundation Topics
Understanding System Logging

Understanding the Role of systemd-journald
and rsyslogd
Reading Log Files
Understanding Log File Contents
Live Log File Monitoring
Using logger

Working with systemd-journald
Using journalctl to Find Events
Preserving the Systemd Journal

Configuring rsyslogd
Understanding rsyslogd Configuration Files
Understanding rsyslog.conf Sections
Understanding Facilities, Priorities, and Log
Destinations

Rotating Log Files
Summary
Exam Preparation Tasks
Review All Key Topics
Complete Tables and Lists from Memory
Define Key Terms
Review Questions
End-of-Chapter Lab
Lab 13.1

pter 14 Managing Storage
“Do I Know This Already?” Quiz
Foundation Topics
Understanding MBR and GPT Partitions

Understanding the MBR Partitioning Scheme
Understanding the Need for GPT Partitioning
Understanding Storage Measurement Units

Managing Partitions and File Systems
Creating MBR Partitions with fdisk
Using Extended and Logical Partitions on MBR
Creating GPT Partitions with gdisk
Creating GPT Partitions with parted
Creating File Systems
Changing File System Properties

Managing Ext4 File System Properties

Managing XFS File System Properties
Adding Swap Partitions
Adding Swap Files

Mounting File Systems
Manually Mounting File Systems
Using Device Names, UUIDs, or Disk Labels
Automating File System Mounts Through
/etc/fstab
Using Systemd Mounts

Summary
Exam Preparation Tasks
Review All Key Topics
Complete Tables and Lists from Memory
Define Key Terms
Review Questions
End-of-Chapter Lab
Lab 14.1

pter 15 Managing Advanced Storage
“Do I Know This Already?” Quiz
Foundation Topics
Understanding LVM

LVM Architecture
LVM Features

Creating LVM Logical Volumes

Creating the Physical Volumes
Creating the Volume Groups
Creating the Logical Volumes and File Systems
Understanding LVM Device Naming

Resizing LVM Logical Volumes
Resizing Volume Groups
Resizing Logical Volumes and File Systems
Reducing Volume Groups

Configuring Stratis
Understanding Stratis Architecture
Creating Stratis Storage
Managing Stratis

Summary
Exam Preparation Tasks
Review All Key Topics
Complete Tables and Lists from Memory
Define Key Terms
Review Questions
End-of-Chapter Labs
Lab 15.1
Lab 15.2

Part III Performing Advanced System Administration Tasks
pter 16 Basic Kernel Management

“Do I Know This Already?” Quiz

Foundation Topics
Understanding the Role of the Linux Kernel

Understanding the Use of Kernel Threads and
Drivers
Analyzing What the Kernel Is Doing

Working with Kernel Modules
Understanding Hardware Initialization
Managing Kernel Modules
Checking Driver Availability for Hardware
Devices
Managing Kernel Module Parameters

Upgrading the Linux Kernel
Summary
Exam Preparation Tasks
Review All Key Topics
Complete Tables and Lists from Memory
Define Key Terms
Review Questions
End-of-Chapter Lab
Lab 16.1

pter 17 Managing and Understanding the Boot Procedure
“Do I Know This Already?” Quiz
Foundation Topics
Managing Systemd Targets

Understanding Systemd Targets
Working with Targets
Understanding Target Units
Understanding Wants
Managing Systemd Targets
Isolating Targets
Setting the Default Target

Working with GRUB 2
Understanding GRUB 2
Understanding GRUB 2 Configuration Files
Modifying Default GRUB 2 Boot Options

Summary
Exam Preparation Tasks
Review All Key Topics
Define Key Terms
Review Questions
End-of-Chapter Labs
Lab 17.1
Lab 17.2

pter 18 Essential Troubleshooting Skills
“Do I Know This Already?” Quiz
Foundation Topics
Understanding the RHEL 9 Boot Procedure
Passing Kernel Boot Arguments

Accessing the Boot Prompt
Starting a Troubleshooting Target

Using a Rescue Disk
Restoring System Access Using a Rescue Disk
Reinstalling GRUB Using a Rescue Disk
Re-creating the Initramfs Using a Rescue Disk

Fixing Common Issues
Reinstalling GRUB 2
Fixing the Initramfs
Recovering from File System Issues
Resetting the Root Password

Summary
Exam Preparation Tasks
Review All Key Topics
Complete Tables and Lists from Memory
Define Key Terms
Review Questions
End-of-Chapter Lab
Lab 18.1

pter 19 An Introduction to Automation with Bash Shell Scripting
“Do I Know This Already?” Quiz
Foundation Topics
Understanding Shell Scripting Core Elements
Using Variables and Input

Using Positional Parameters
Working with Variables

Using Conditional Loops
Working with if … then … else
Using || and &&
Applying for
Understanding while and until
Understanding case
Bash Shell Script Debugging

Summary
Exam Preparation Tasks
Review All Key Topics
Define Key Terms
Review Questions
End-of-Chapter Lab
Lab 19.1

Part IV Managing Network Services
pter 20 Configuring SSH

“Do I Know This Already?” Quiz
Foundation Topics
Hardening the SSH Server

Limiting Root Access
Configuring Alternative Ports
Modifying SELinux to Allow for Port Changes

Limiting User Access
Using Other Useful sshd Options

Session Options
Connection Keepalive Options

Configuring Key-Based Authentication with
Passphrases
Summary
Exam Preparation Tasks
Review All Key Topics
Complete Tables and Lists from Memory
Define Key Terms
Review Questions
End-of-Chapter Lab
Lab 20.1

pter 21 Managing Apache HTTP Services
“Do I Know This Already?” Quiz
Foundation Topics
Configuring a Basic Apache Server

Installing the Required Software
Identifying the Main Configuration File
Creating Web Server Content

Understanding Apache Configuration Files
Creating Apache Virtual Hosts
Summary

Exam Preparation Tasks
Review All Key Topics
Define Key Terms
Review Questions
End-of-Chapter Lab
Lab 21.1

pter 22 Managing SELinux
“Do I Know This Already?” Quiz
Foundation Topics
Understanding SELinux Working Modes
Understanding Context Settings and the Policy

Monitoring Current Context Labels
Setting Context Types
Finding the Context Type You Need

Restoring Default File Contexts
Managing Port Access
Using Boolean Settings to Modify SELinux Settings
Diagnosing and Addressing SELinux Policy Violations

Making SELinux Analyzing Easier
Summary
Exam Preparation Tasks
Review All Key Topics
Complete Tables and Lists from Memory
Define Key Terms

Review Questions
End-of-Chapter Lab
Lab 22.1

pter 23 Configuring a Firewall
“Do I Know This Already?” Quiz
Foundation Topics
Understanding Linux Firewalling

Understanding Previous Solutions
Understanding Firewalld
Understanding Firewalld Zones
Understanding Firewalld Services

Working with Firewalld
Summary
Exam Preparation Tasks
Review All Key Topics
Complete Tables and Lists from Memory
Define Key Terms
Review Questions
End-of-Chapter Lab
Lab 23.1

pter 24 Accessing Network Storage
“Do I Know This Already?” Quiz
Foundation Topics
Using NFS Services

Understanding NFS Security
RHEL NFS Versions
Setting Up NFS
Mounting the NFS Share

Mounting Remote File Systems Through fstab
Mounting NFS Shares Through fstab

Using Automount to Mount Remote File Systems
Understanding Automount
Defining Mounts in Automount
Configuring Automount for NFS
Using Wildcards in Automount

Summary
Exam Preparation Tasks
Review All Key Topics
Define Key Terms
Review Questions
End-of-Chapter Lab
Lab 24.1

pter 25 Configuring Time Services
“Do I Know This Already?” Quiz
Foundation Topics
Understanding Local Time
Using Network Time Protocol
Managing Time on Red Hat Enterprise Linux

Using date
Using hwclock
Using timedatectl
Managing Time Zone Settings
Configuring Time Service Clients

Summary
Exam Preparation Tasks
Review All Key Topics
Complete Tables and Lists from Memory
Define Key Terms
Review Questions
End-of-Chapter Lab
Lab 25.1

pter 26 Managing Containers
“Do I Know This Already?” Quiz
Foundation Topics
Understanding Containers

Container Host Requirements
Containers on RHEL 9
Container Orchestration

Running a Container
Working with Container Images

Using Registries
Finding Images

Inspecting Images
Performing Image Housekeeping
Building Images from a Containerfile

Managing Containers
Managing Container Status
Running Commands in a Container
Managing Container Ports
Managing Container Environment Variables

Managing Container Storage
Running Containers as Systemd Services
Summary
Exam Preparation Tasks
Review All Key Topics
Complete Tables and Lists from Memory
Define Key Terms
Review Questions
End-of-Chapter Lab
Lab 26.1

pter 27 Final Preparation
General Tips

Verifying Your Readiness
Registering for the Exam
On Exam Day

During the Exam

The Nondisclosure Agreement
pter 28 Theoretical Pre-Assessment Exam

Part V RHCSA 9 Practice Exams
RHCSA Practice Exam A
RHCSA Practice Exam B

pendix A: Answers to the “Do I Know This Already?” Quizzes and
Review Questions

pendix B: Red Hat RHCSA 9 Cert Guide: EX200 Exam Updates
Glossary
Index

e Elements:
RHCSA Practice Exam C
RHCSA Practice Exam D

pendix C: Memory Tables
pendix D: Memory Tables Answer Key
pendix E: Study Planner

Glossary

About the Author

Sander van Vugt is an independent Linux trainer, author, and
consultant living in the Netherlands. Sander is the author of the
best-selling Red Hat Certified System Administrator (RHCSA)
Complete Video Course and the Red Hat Certified Engineer
(RHCE) Complete Video Course. He has also written numerous
books about different Linux-related topics and many articles for
Linux publications around the world. Sander has been teaching
Red Hat, Linux+, and LFCS classes since 1994. As a consultant,
he specializes in Linux high-availability solutions and
performance optimization. You can find more information
about Sander on his website at
https://www.sandervanvugt.com.

For more information about RHCSA certification and additional
resources, visit the author’s Red Hat Certification page at
https://www.rhatcert.com/.

https://www.sandervanvugt.com/
https://www.rhatcert.com/

Acknowledgments

This book could not have been written without the help of all
the people who contributed to it. I want to thank the people at
Pearson, Denise Lincoln, Harry Misthos, and Ellie Bru in
particular. We’ve worked a lot together over the years, and this
book is another milestone on our road to success!

About the Technical Reviewers

John McDonough is a cloud architect/cloud DevOps engineer at
Fortinet, delivering innovative cloud deployment and
automation solutions to global customers. Prior to Fortinet,
John was a Developer Advocate for Cisco Systems’ DevNet.
During his almost 35-year career, John has contributed to open
source projects, Ansible, and OpenStack, has been a
distinguished speaker at more than 20 Cisco Live events, and
has spoken about open source contribution and data center and
cloud automation at many industry events, including
HashiConf, SXSW, Devopsdays, Cisco Live, Apidays, and more.

William “Bo” Rothwell, at the impressionable age of 14,
crossed paths with a TRS-80 Micro Computer System
(affectionately known as a Trash 80). Soon after, the adults
responsible for Bo made the mistake of leaving him alone with
the TRS-80. He immediately dismantled it and held his first
computer class, showing his friends what made this “computer
thing” work.

Since this experience, Bo’s passion for understanding how
computers work and sharing this knowledge with others has
resulted in a rewarding career in IT training. His experience
includes Linux, Unix, IT security, DevOps, and programming

languages such as Perl, Python, Tcl, and Bash. Bo is the founder
and lead instructor of One Course Source, an IT training
organization.

Bo is an author of several books, including Linux for Developers:
Jumpstart Your Linux Programming Skills, Linux Essentials for
Cybersecurity, and LPIC-2 Cert Guide. He can be reached on
LinkedIn: https://www.linkedin.com/in/bo-rothwell/.

https://www.linkedin.com/in/bo-rothwell/

We Want to Hear from You!

As the reader of this book, you are our most important critic
and commentator. We value your opinion and want to know
what we’re doing right, what we could do better, what areas
you’d like to see us publish in, and any other words of wisdom
you’re willing to pass our way.

We welcome your comments. You can email or write to let us
know what you did or didn’t like about this book—as well as
what we can do to make our books better.

Please note that we cannot help you with technical problems
related to the topic of this book.

When you write, please be sure to include this book’s title and
author as well as your name and email address. We will
carefully review your comments and share them with the
author and editors who worked on the book.

Email: community@informit.com

mailto:community@informit.com

Reader Services

Register your copy of Red Hat RHCSA 9 Cert Guide: EX200 at
www.pearsonitcertification.com for convenient access to
downloads, updates, and corrections as they become available.
To start the registration process, go to
www.pearsonitcertification.com/register and log in or create an
account*. Enter the product ISBN 9780138096274 and click
Submit. When the process is complete, you will find any
available bonus content under Registered Products.

*Be sure to check the box that you would like to hear from us to
receive exclusive discounts on future editions of this product.

http://www.pearsonitcertification.com/
http://www.pearsonitcertification.com/register

Introduction

Welcome to the Red Hat RHCSA 9 Cert Guide: EX200. The Red
Hat exams are some of the toughest in the business, and this
guide will be an essential tool in helping you prepare to take the
Red Hat Certified System Administrator (RHCSA) exam.

As an instructor with more than 20 years of experience
teaching Red Hat Enterprise Linux, I have taken the RHCSA
exam (and the RHCE exam) numerous times so that I can keep
current on the progression of the exam, what is new, and what
is different. I share my knowledge with you in this
comprehensive Cert Guide so that you get the guidance you
need to pass the RHCSA exam.

This book contains everything you need to know to pass the
2022 version of the RHCSA exam. As you will see, the Cert Guide
covers every objective in the exam and comprises 28 chapters,
more than 80 exercises, 4 practice exams, an extensive glossary,
and hours of video training. This Cert Guide is the best resource
you can get to prepare for and pass the RHCSA exam.

Goals and Methods

To learn the topics described in this book, it is recommended
that you create your own testing environment. You cannot

become an RHCSA without practicing a lot. Within the exercises
included in every chapter of the book, you will find all the
examples you need to understand what is on the exam and
thoroughly learn the material needed to pass it. The exercises in
the chapters provide step-by-step procedures that you can
follow to find working solutions so that you can get real
experience before taking the exam.

Each chapter also includes one or more end-of-chapter labs.
These labs ask questions that are similar to the questions that
you might encounter on the exam. Solutions are not provided
for these labs, and that is on purpose, because you need to train
yourself to verify your work before you take the exam. On the
exam, you also have to be able to verify for yourself whether
the solution is working as expected. Please be sure to also go to
this book’s companion website, which provides additional
practice exams, appendixes, and video training—all key
components to studying for and passing the exam.

To make working with the assignments in this book as easy as
possible, the complete lab environment is Bring Your Own. In
Chapter 1 you’ll learn how to install Red Hat Enterprise Linux 9
in a virtual machine, and that is all that is required to go
through the labs.

This book contains everything you need to pass the exam, but if
you want more guidance and practice, I have a number of video
training titles available to help you study, including the
following:

Linux Fundamentals, Second Edition
Red Hat Certified System Administrator (RHCSA) RHEL 9

Apart from these products, you might also appreciate my
website, https://rhatcert.com. Through this website, I provide
updates on anything that is useful to exam candidates. I
recommend that you register on the website so that I can send
you messages about important updates that I’ve made
available. Also, you’ll find occasional video updates on my
YouTube channel, rhatcert. I hope that all these resources
provide you with everything you need to pass the Red Hat
Certified System Administrator exam in an affordable way.
Good luck!

Who Should Read This Book?

This book is written as an RHCSA exam preparation guide. That
means that you should read it if you want to increase your
chances of passing the RHCSA exam. A secondary use of this
book is as a reference guide for Red Hat system administrators.

https://rhatcert.com/

As an administrator, you’ll like the explanations and procedures
that describe how to get things done on Red Hat Enterprise
Linux.

So, why should you consider passing the RHCSA exam? That
question is simple to answer: Linux has become a very
important operating system, and qualified professionals are in
demand all over the world. If you want to work as a Linux
professional and prove your skills, the RHCSA certificate really
helps and is one of the most sought-after certificates in IT.
Having this certificate dramatically increases your chances of
becoming hired as a Linux professional.

How This Book Is Organized

This book is organized as a reference guide to help you prepare
for the RHCSA exam. If you’re new to the topics, you can just
read it cover to cover. You can also read the individual chapters
that you need to fine-tune your skills in this book. Every
chapter starts with a “Do I Know This Already?” quiz that asks
questions about ten topics that are covered in that chapter and
provides a simple tool to check whether you’re already familiar
with the topics covered in the chapter.

The book also provides two RHCSA practice exams; these are an
essential part of readying yourself for the real exam
experience. You might be able to provide the right answer to
the multiple-choice chapter questions, but that doesn’t mean
that you can create the configurations when you take the exam.
The companion website includes two extra practice exams, two
hours of video from the Red Hat Certified System Administrator
(RHCSA) RHEL 9, and additional appendixes. The following
outline describes the topics that are covered in the chapters:

Part I: Performing Basic System Management Tasks

Chapter 1: Installing Red Hat Enterprise Linux: In this
chapter, you learn how to install Red Hat Enterprise Linux
Server (RHEL). It also shows how to set up an environment
that can be used for working on the labs and exercises in this
book.
Chapter 2: Using Essential Tools: This chapter covers some
of the Linux basics, including working with the shell and
Linux commands. This chapter is particularly important if
you’re new to working with Linux.
Chapter 3: Essential File Management Tools: In this
chapter, you learn how to work with tools to manage the
Linux file system. This is an important skill because
everything on Linux is very file system oriented.

Chapter 4: Working with Text Files: In this chapter, you
learn how to work with text files. The chapter teaches you
how to create text files, but also how to look for specific
content in the different text files.
Chapter 5: Connecting to Red Hat Enterprise Linux 9: This
chapter describes the different methods that can be used to
connect to RHEL 9. It explains both local login and remote
login and the different terminal types used for this purpose.
Chapter 6: User and Group Management: On Linux, users
are entities that can be used by people or processes that need
access to specific resources. This chapter explains how to
create users and make user management easier by working
with groups.
Chapter 7: Permissions Management: In this chapter, you
learn how to manage Linux permissions through the basic
read, write, and execute permissions, but also through the
special permissions and access control lists.
Chapter 8: Configuring Networking: A server is useless if it
isn’t connected to a network. In this chapter, you learn the
essential skills required for managing network connections.

Part II: Operating Running Systems

Chapter 9: Managing Software: Red Hat offers an advanced
system for managing software packages. This chapter teaches

you how it works.
Chapter 10: Managing Processes: As an administrator, you
need to know how to work with the different tasks that can
be running on Linux. This chapter shows how to do this, by
sending signals to processes and by changing process
priority.
Chapter 11: Working with Systemd: Systemd is the standard
manager of services and more in RHEL 9. In this chapter, you
learn how to manage services using Systemd.
Chapter 12: Scheduling Tasks: In this chapter, you learn
how to schedule a task for execution at a time that fits you
best.
Chapter 13: Configuring Logging: As an administrator, you
need to know what’s happening on your server. The rsyslogd
and systemd-journald services are used for this purpose. This
chapter explains how to work with them.
Chapter 14: Managing Storage: Storage management is an
important skill to master as a Linux administrator. This
chapter explains how hard disks can be organized in
partitions and how these partitions can be mounted in the
file system.
Chapter 15: Managing Advanced Storage: Dividing disks in
partitions isn’t very flexible. If you need optimal flexibility,
you need LVM logical volumes, which are used by default

while you’re installing Red Hat Enterprise Linux. This
chapter shows how to manage those logical volumes. You’ll
also learn how to work with the Stratis and VDO storage
techniques.

Part III: Performing Advanced System Administration Tasks

Chapter 16: Basic Kernel Management: The kernel is the
part of the operating system that takes care of handling
hardware. This chapter explains how that works and what
an administrator can do to analyze the current configuration
and manage hardware devices in case the automated
procedure doesn’t work well.
Chapter 17: Managing and Understanding the Boot
Procedure: Many things are happening when a Linux server
boots. This chapter describes the boot procedure in detail
and zooms in on vital aspects of the boot procedure,
including the GRUB 2 boot loader and the Systemd service
manager.
Chapter 18: Essential Troubleshooting Skills: Sometimes a
misconfiguration can cause your server to no longer boot
properly. This chapter teaches you some of the techniques
that can be applied when normal server startup is no longer
possible.

Chapter 19: An Introduction to Automation with Bash
Shell Scripting: Some tasks are complex and need to be
performed repeatedly. Such tasks are ideal candidates for
optimization through shell scripts. In this chapter, you learn
how to use conditional structures in shell scripts to automate
tasks efficiently.

Part IV: Managing Network Services

Chapter 20: Configuring SSH: Secure Shell (SSH) is one of
the fundamental services that is enabled on RHEL 9 by
default. Using SSH allows you to connect to a server remotely.
In this chapter, you learn how to set up an SSH server.
Chapter 21: Managing Apache HTTP Services: Apache is
the most commonly used service on Linux. This chapter
shows how to set up Apache web services, including the
configuration of Apache virtual hosts.
Chapter 22: Managing SELinux: Many Linux administrators
only know how to switch off SELinux, because SELinux is
hard to manage and is often why services cannot be
accessed. In this chapter, you learn how SELinux works and
what to do to configure it so that your services are still
working and will be much better protected against possible
abuse.

Chapter 23: Configuring a Firewall: Apart from SELinux,
RHEL 9 comes with a firewall as one of the main security
measures, which is implemented by the firewalld service. In
this chapter, you learn how this service is organized and
what you can do to block or enable access to specific services.
Chapter 24: Accessing Network Storage: While you’re
working in a server environment, managing remote mounts
is an important skill. A remote mount allows a client
computer to access a file system offered through a remote
server. These remote mounts can be made through a
persistent mount in /etc/fstab, or by using the automount
service. This chapter teaches how to set up either of them
and shows how to configure an FTP server.
Chapter 25: Configuring Time Services: For many services,
such as databases and Kerberos, it is essential to have the
right time. That’s why as an administrator you need to be
able to manage time on Linux. This chapter teaches you how.
Chapter 26: Managing Containers: Containers have
revolutionized datacenter IT. Where services not so long ago
were running directly on top of the server operating system,
nowadays services are often offered as containers. Red Hat
Enterprise Linux 9 includes a complete platform to run
containers. In this chapter, you learn how to work with it.

Chapter 27: Final Preparation: In this chapter, you get some
final exam preparation tasks. It contains many tips that help
you maximize your chances of passing the RHCSA exam.
Chapter 28: Theoretical Pre-Assessment Exam: This
chapter provides an RHCSA theoretical pre-assessment exam
to help you assess your skills and determine the best route
forward for studying for the exam.

Part V: RHCSA 9 Practice Exams

This part supplies two RHCSA practice exams so that you can
test your knowledge and skills further before taking the exams.
Two additional exams are on the companion website.

How to Use This Book

To help you customize your study time using this book, the core
chapters have several features that help you make the best use
of your time:

“Do I Know This Already?” Quizzes: Each chapter begins
with a quiz that helps you determine the amount of time you
need to spend studying that chapter and the specific topics
that you need to focus on.
Foundation Topics: These are the core sections of each
chapter. They explain the protocols, concepts, and

configuration for the topics in that chapter.
Exam Preparation Tasks: Following the “Foundation Topics”
section of each chapter, the “Exam Preparation Tasks” section
lists a series of study activities that you should complete.
Each chapter includes the activities that make the most sense
for studying the topics in that chapter. The activities include
the following:

Review All Key Topics: The Key Topic icon is shown next
to the most important items in the “Foundation Topics”
section of the chapter. The Review All Key Topics activity
lists the key topics from the chapter and their
corresponding page numbers. Although the contents of the
entire chapter could be on the exam, you should definitely
know the information listed in each key topic.
Complete Tables and Lists from Memory: To help you
exercise your memory and memorize some facts, many of
the more important lists and tables from the chapter are
included in a document on the companion website. This
document offers only partial information, allowing you to
complete the table or list.
Define Key Terms: This section lists the most important
terms from the chapter, asking you to write a short
definition and compare your answer to the glossary at the
end of this book.

Review Questions: These questions at the end of each
chapter measure insight into the topics that were discussed
in the chapter.
End-of-Chapter Labs: Real labs give you the right
impression of what an exam assignment looks like. The end-
of-chapter labs are your first step in finding out what the
exam tasks really look like.

Other Features

In addition to the features in each of the core chapters, this
book, as a whole, has additional study resources on the
companion website, including the following:

Two practice exams: Red Hat RHCSA 9 Cert Guide: EX200
comes with four practice exams. You will find two in the
book and two additional exams on the companion website;
these are provided as PDFs so you can get extra practice
testing your skills before taking the exam in the testing
facility.
More than an hour of video training: The companion
website contains more than an hour of instruction from the
best-selling Red Hat Certified System Administrator (RHCSA)
RHEL 9 Complete Video Course.

Exam Objective to Chapter Mapping

Table 1 details where every objective in the RHCSA exam is
covered in this book so that you can more easily create a
successful plan for passing the exam.

Table 1 Coverage of RHCSA Objectives

Objective Chapter Title Chapter

Understand and use essential tools

Access a shell prompt and issue
commands with correct syntax

Using Essential Tools 2

Use input-output redirection (>, >>, |, 2>,
etc.)

Using Essential Tools 2

Use grep and regular expressions to
analyze text

Working with Text
Files

4

Access remote systems using SSH Connecting to Red
Hat Enterprise Linux
9

5

Objective Chapter Title Chapter

Log in and switch users in multiuser
targets

Connecting to Red
Hat Enterprise Linux
9

5

Archive, compress, unpack, and
uncompress files using tar, star, gzip, and
bzip2

Essential File
Management Tools

3

Create and edit text files Working with Text
Files

4

Create, delete, copy, and move files and
directories

Essential File
Management Tools

3

Create hard and soft links Essential File
Management Tools

3

List, set, and change standard ugo/rwx
permissions

Permissions
Management

7

Locate, read, and use system
documentation including man, info, and
files in /usr/share/doc

Using Essential Tools 2

Objective Chapter Title Chapter

Create simple shell scripts

Conditionally execute code (use of: if,
test, [], etc.)

An Introduction to
Automation with
Bash Shell Scripting

19

Use Looping constructs (for, etc.) to
process file, command line input

An Introduction to
Automation with
Bash Shell Scripting

19

Process script inputs ($1, $2, etc.) An Introduction to
Automation with
Bash Shell Scripting

19

Processing output of shell commands
within a script

An Introduction to
Automation with
Bash Shell Scripting

19

Operate running systems

Boot, reboot, and shut down a system
normally

Connecting to Red
Hat Enterprise Linux
9

5

Objective Chapter Title Chapter

Boot systems into different targets
manually

Essential
Troubleshooting
Skills

18

Interrupt the boot process in order to
gain access to a system

Essential
Troubleshooting
Skills

18

Identify CPU/memory intensive
processes and kill processes

Managing Processes 10

Adjust process scheduling Managing Processes 10

Manage tuning profiles Managing Processes 10

Locate and interpret system log files and
journals

Configuring Logging 13

Preserve system journals Configuring Logging 13

Objective Chapter Title Chapter

Start, stop, and check the status of
network services

Configuring
Networking

8

Securely transfer files between systems Connecting to Red
Hat Enterprise Linux
9

5

Configure local storage

List, create, and delete partitions on
MBR and GPT disks

Managing Storage 14

Create and remove physical volumes Managing Advanced
Storage

15

Assign physical volumes to volume
groups

Managing Advanced
Storage

15

Create and delete logical volumes Managing Advanced
Storage

15

Objective Chapter Title Chapter

Configure systems to mount file systems
at boot by universally unique ID (UUID)
or label

Managing Storage 14

Add new partitions and logical volumes,
and swap to a system nondestructively

Managing Storage 14

Create and configure file systems

Create, mount, unmount, and use vfat,
ext4, and xfs file systems

Managing Storage 14

Mount and unmount network file
systems using NFS

Accessing Network
Storage

24

Configure autofs Accessing Network
Storage

24

Extend existing logical volumes Managing Advanced
Storage

15

Objective Chapter Title Chapter

Create and configure set-GID directories
for collaboration

Permissions
Management

7

Diagnose and correct file permission
problems

Permissions
Management

7

Deploy, configure, and maintain systems

Schedule tasks using at and cron Scheduling Tasks 12

Start and stop services and configure
services to start automatically at boot

Working with
Systemd

11

Configure systems to boot into a specific
target automatically

Managing and
Understanding the
Boot Procedure

17

Configure time service clients Configuring Time
Services

25

Objective Chapter Title Chapter

Install and update software packages
from Red Hat Network, a remote
repository, or from the local file system

Managing Software 9

Modify the system bootloader Managing and
Understanding the
Boot Procedure

17

Manage basic networking

Configure IPv4 and IPv6 addresses Configuring
Networking

8

Configure hostname resolution Configuring
Networking

8

Configure network services to start
automatically at boot

Configuring
Networking

8

Restrict network access using firewall-
cmd/firewall

Configuring a
Firewall

23

Objective Chapter Title Chapter

Manage users and groups

Create, delete, and modify local user
accounts

User and Group
Management

6

Change passwords and adjust password
aging for local user accounts

User and Group
Management

6

Create, delete, and modify local groups
and group memberships

User and Group
Management

6

Configure superuser access User and Group
Management

6

Manage security

Configure firewall settings using
firewall-cmd/firewalld

Configuring a
Firewall

23

Manage default file permissions

Objective Chapter Title Chapter

Configure key-based authentication for
SSH

Configuring SSH 20

Set enforcing and permissive modes for
SELinux

Managing SELinux 22

List and identify SELinux file and
process context

Managing SELinux 22

Restore default file contexts Managing SELinux 22

Manage SELinux port labels

Use Boolean settings to modify system
SELinux settings

Managing SELinux 22

Diagnose and address routine SELinux
policy violations

Managing SELinux 22

Manage containers

Objective Chapter Title Chapter

Find and retrieve container images from
a remote registry

Managing Containers 26

Inspect container images Managing Containers 26

Perform container management using
commands such as podman and skopeo

Managing Containers 26

Build a container from a Containerfile Managing Containers 26

Perform basic container management
such as running, starting, stopping, and
listing running containers

Managing Containers 26

Run a service inside a container Managing Containers 26

Configure a container to start
automatically as a systemd service

Managing Containers 26

Attach persistent storage to a container Managing Containers 26

Where Are the Companion Content Files?

Register this print version of Red Hat RHCSA 9 Cert Guide:
EX200 to access the bonus content online.

This print version of this title comes with a website of
companion content. You have online access to these files by
following these steps:

1. Go to www.pearsonitcertification.com/register and log in or
create a new account.

2. Enter the ISBN: 9780138096274.
3. Answer the challenge question as proof of purchase.
4. Click the Access Bonus Content link in the Registered

Products section of your account page to be taken to the page
where your downloadable content is available.

Please note that many of the companion content files can be
very large, especially image and video files.

If you are unable to locate the files for this title by following the
steps, please visit www.pearsonitcertification.com/contact and
select the Site Problems/Comments option. A customer service
representative will assist you.

http://www.pearsonitcertification.com/register
http://www.pearsonitcertification.com/contact

This book also includes an exclusive offer for 70 percent off the
Red Hat Certified System Administrator (RHCSA) RHEL 9
Complete Video Course.

Figure Credits

Cover image: eniegoite/Shutterstock

Figure 1-1 through Figure 1-12, Figure 5-1, Figure 5-2, Figure 8-
1, Figure 8-2, Figure 8-4, Figure 8-5, Figure 10-1, Figure 18-1
through Figure 18-5: Red Hat, Inc

Figure 8-3: GNOME Project

Part I

Performing Basic System Management
Tasks

Chapter 1

Installing Red Hat Enterprise Linux

The following topics are covered in this chapter:

Preparing to Install Red Hat Enterprise Linux
Performing an Installation

This chapter covers no exam objectives.

To learn how to work with Red Hat Enterprise Linux (RHEL) as
an administrator, you first need to install it. This chapter
teaches you how to set up an environment in which you can
perform all exercises in this book.

On the Red Hat Certified System Administrator (RHCSA) exam,
you do not need to install Red Hat Enterprise Linux. However,
because you need to install an environment that allows you to
test all items discussed in this book, you start by installing Red
Hat Enterprise Linux in this chapter. This chapter describes all
steps that you will encounter while performing an installation
of RHEL 9. It also discusses how to set up an environment in
which you can perform all exercises in this book.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess
whether you should read this entire chapter thoroughly or
jump to the “Exam Preparation Tasks” section. If you are in
doubt about your answers to these questions or your own
assessment of your knowledge of the topics, read the entire
chapter. Table 1-1 lists the major headings in this chapter and
their corresponding “Do I Know This Already?” quiz questions.
You can find the answers in Appendix A, “Answers to the ‘Do I
Know This Already?’ Quizzes and Review Questions.”

Table 1-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Preparing to Install Red Hat Enterprise Linux 1, 2, 6

Performing an Installation 3–5, 7–10

. You want to install a test environment to practice for the RHCSA
exam. Which of the following distributions should you avoid?

1. The most recent Fedora version
2. CentOS Stream
3. AlmaLinux

4. Rocky Linux

. Which of the following features is available in both RHEL and
CentOS Stream?

1. Hardware certification
2. Software certification
3. The right to make support calls
4. Software updates

. Why should you install the server with a GUI installation
pattern?

1. To prepare for RHCSA, you need some tools that run in a GUI
only.

2. The minimal installation is incomplete.
3. If you do not install a GUI immediately, it is hard to add it

later.
4. The Server with GUI is the default installation that is

recommended by Red Hat.

. Which is the default file system that is used in RHEL 9?

1. Ext3
2. Ext4
3. XFS

4. Btrfs

. Which feature is supported in Ext4 but not in XFS?

1. The ability to shrink the file system
2. Snapshots
3. File system quota
4. A maximum size that goes beyond 2 TB

. Which of the following is not a reason why Fedora should be
avoided?

1. Fedora contains features that may or may not be available in
future RHEL releases.

2. Fedora distributions show a much later state of development
than RHEL.

3. Fedora software is not stable.
4. Software in Fedora may differ from the same software in

RHEL.

. Which of the following options is not available from the
Installation Summary screen?

1. Time & Date
2. Keyboard
3. Language Support

4. Troubleshoot an Existing Installation

. After setting the root password that you want to use, you
cannot proceed in the installation. What is the most likely
reason?

1. The password is unsecure, and unsecure passwords are not
accepted.

2. The password does not meet requirements in the password
policy.

3. You also need to create a user.
4. If an unsecure password is used, you need to click Done

twice.

. Which statement about the system language is not true?

1. You can change the system language from the Installation
Summary screen.

2. You can change the system language directly after booting
from the installation media.

3. When setting the installation language, you can also select a
keyboard layout.

4. After installation, you cannot change the language settings.

. When installing a server that uses LVM logical volumes, you’ll
get at least three storage volumes (partitions or LVM). Which of

the following is not part of them?

1. /boot
2. /var
3. /
4. swap

Foundation Topics

Preparing to Install Red Hat Enterprise Linux

Before you start installing Red Hat Enterprise Linux, a bit of
preparation is helpful, as discussed in this section. You first
learn what exactly Red Hat Enterprise Linux is. Then you learn
how you can get access to the software. We then discuss the
setup requirements. After you know all about these, you move
on to the next section, where you learn how to install Red Hat
Enterprise Linux.

What Is Red Hat Enterprise Linux 9 Server?

RHEL 9 is a Linux distribution. As you probably know, Linux
is a free operating system. That means that the source code of
all programs is available for free. However, some enterprise
Linux distributions are sold as commercial products, with
bundled support and maintenance, which is the case for RHEL

9. To use RHEL 9 for free you can register for a free Red Hat
developer subscription at https://developers.redhat.com. With
this subscription, you can run up to 16 unsupported instances
of RHEL in any environment you’d like.

To use RHEL 9, you need a subscription. Only if you use a valid
subscription can you get access to free patches and updates.
When you pay for Red Hat Enterprise Linux, Red Hat offers
you a supported Enterprise Linux operating system, which has
some key benefits that are a normal requirement in corporate
environments:

Monitored updates and patches that have gone through a
thorough testing procedure
Different levels of support and help, depending on which
type of subscription you have purchased
A certified operating system that is guaranteed to run and to
be supported on specific hardware models
A certified platform for running enterprise applications such
as SAP middleware, Oracle Database, and many more
Access to the Red Hat Customer Portal at
https://access.redhat.com, where you can find much detailed
documentation that is available to customers only

https://developers.redhat.com/
https://access.redhat.com/

Red Hat understands that not all potential customers are
interested in these enterprise features. That is why Red Hat is
involved in two free alternatives also:

CentOS Stream
Fedora

Apart from these, there are also two community initiatives to
provide free alternatives to RHEL, which contain the same
software but without the Red Hat branding:

Rocky Linux
AlmaLinux

You learn more about these free alternatives in the upcoming
sections of this chapter.

Getting the Software

There are different ways to get the software required to
perform all exercises in this book. In this section, you learn
what your options are.

Using Red Hat Enterprise Linux

If you want to learn how to work with the different programs,
tools, and services that are provided in Red Hat Enterprise

Linux 9, the easiest way is to use the developer program that
Red Hat offers. Go to https://developers.redhat.com to register
for the free developer program. This program gives you access
to Red Hat Enterprise Linux for free, which allows you to work
with RHEL in your own test environment without having to
purchase it.

The most important thing that you get in the official RHEL 9
Server release is access to the Red Hat Customer Portal.
Through this portal, you have access to a wide variety of
information regarding RHEL, in addition to updates provided
through Red Hat Network (RHN). In particular, the Red Hat
knowledge base is invaluable; you can use it to find answers to
many common problems that have been posted there by Red
Hat consultants.

Using CentOS Stream

CentOS is the Community Enterprise Operating System. CentOS
started as a recompiled version of RHEL, with all items that
were not available for free removed from the RHEL software.
Basically, just the name was changed and the Red Hat logo
(which is proprietary) was removed from all the CentOS
software packages. Before 2020, CentOS provided a good and
completely free alternative to RHEL.

https://developers.redhat.com/

In the past years, Red Hat has acquired CentOS and changed its
policy. Nowadays CentOS is provided as CentOS Stream. CentOS
Stream is a Linux distribution where new features that will be
released in the next version of RHEL are introduced. In the
RHEL development cycle, new features are introduced in
Fedora. After testing in Fedora, some features are introduced in
CentOS Stream, which is used as the last testing platform before
the features are included in RHEL. New features are
continuously integrated in CentOS Stream, and for that reason,
it doesn’t know any sub-versions such as RHEL 9.1. This makes
CentOS Stream not a good candidate for production
environments.

Other Distributions

Another Linux distribution closely related to Red Hat
Enterprise Linux is Fedora, a completely open source Linux
distribution that is available for free. Red Hat has a lot of staff
dedicated to contributing to the Fedora project, because Red
Hat uses Fedora as the development platform for RHEL. The
result is that Fedora offers access to the latest and greatest
software, which in most cases is much more recent than the
thoroughly tested software components of RHEL (which is why
you should not use Fedora to prepare for the RHCSA exam).
Fedora is also used by Red Hat as a testing ground for new

features that might or might not be included in future RHEL
releases. If you were to choose Fedora, you would be working
with items that are not available in RHEL, which means that
you would have to do things differently on the exam. So, don’t
use it!

AlmaLinux and Rocky Linux are community distributions that
provide the same software as in RHEL, but without any license
restrictions or support. These distributions are independently
developed and in no way supervised by Red Hat. If you want to
use a 100 percent compatible alternative for RHEL without
being bound by any license conditions, both AlmaLinux and
Rocky Linux are good alternatives.

Understanding Access to Repositories

An important difference between RHEL and the other
distributions is the access to repositories. A repository is the
installation source used for installing software. If you are using
free software such as AlmaLinux, correct repositories are
automatically set up, and no further action is required. If you
are using Red Hat Enterprise Linux with a subscription, you’ll
need to use the Subscription Manager software to get access to
repositories.

Tip

If you install Red Hat from the RHEL 9 installation
disc but do not register it, you will not have access
to a repository, which is why you need to know
how to set up a repository access manually.
Manually setting up a repository is a key skill that
you should master on the exam. In Chapter 9,
“Managing Software,” you learn how to do this.

Setup Requirements

RHEL 9 can be installed on physical hardware and on virtual
hardware. For the availability of specific features, it does not
really matter which type of hardware is used, as long as the
following minimal conditions are met:

1 GiB of RAM
A 10-GiB hard disk
A network card

Tip

One GB is 1000 × 1000 × 1000 bytes. With hardware
vendors it is common to work with multiples of

1000; however, that doesn’t correspond with how a
computer works, which is why most computer
software works with KiB, MiB, and GiB instead. In
this context, one GiB is 1024 × 1024 × 1024 bytes
(which is 1.07 GB).

The preceding requirements allow you to run a minimal
installation of RHEL, but if you want to create an environment
that enables you to perform all exercises described in this book,
make sure to meet the following minimal requirements:

64-bit platform support, either Intel based or ARM
2 GiB of RAM
A 20-GiB hard disk
A DVD drive, either virtual or physical
A network card

Note

Some resources on the Internet mention different
minimal requirements. This is not a big deal for the
RHCSA exam.

Cert Guide Environment Description

To set up an environment to work your way through this book, I
suggest you start by installing one RHEL 9 server, following the
instructions in the next section. For the chapters in Part IV,
“Managing Network Services,” it is useful if you have a second
server as well. This second server doesn’t have any specific
requirements.

To set up the Cert Guide environment, I recommend that you
use a solution for desktop virtualization, such as VMware
Workstation (or VMware Fusion if you are on Mac), Microsoft
Hyper-V, or Oracle VM VirtualBox. Using one of these solutions
has the benefit that you can use snapshots, which enables you
to easily revert to a previous state of the configuration. Other
virtualization solutions, such as KVM, are supported as well, but
because KVM runs on Linux, you’ll need to have some Linux
knowledge already if you’d like to start with KVM. You can also
install on real hardware, but that solution will be less flexible.

Tip

In all chapters, you’ll find step-by-step exercises
that tell you exactly what to do to configure specific
services. At the end of all chapters, you’ll find end-
of-chapter labs that provide assignments that are
very similar to the types of assignments that you

will encounter on the exam. To get the most out of
the end-of-chapter labs, it is a good idea to start
from a clean environment. The most efficient way
to do this is by creating snapshots of the state of
your virtual machines when you are starting the
chapter. This allows you to revert to the state your
virtual machines were in when you started
working on the chapter, while still keeping all the
work that you have done in previous chapters.

Performing an Installation

Even if RHEL 9 can be installed from other media such as an
installation server or a USB key, the most common installation
starts from the installation DVD or, when you are working in a
virtual machine, from the installation DVD ISO file. So, take
your installation DVD (or its ISO) and boot the computer on
which you want to install the software. The following steps
describe how to proceed from the moment you see the
installation DVD boot screen:

1. After booting from DVD, you’ll see the RHEL 9 boot menu.
From this menu, you can choose from different options:

Install Red Hat Enterprise Linux 9.0: Choose this for a
normal installation.
Test This Media & Install Red Hat Enterprise Linux 9.0:
Select this if before installing you want to test the installation
media. Note that testing will take a significant amount of time
and should not be necessary in most cases.
Troubleshooting: Select this option for some
troubleshooting options. This option is useful if you cannot
boot normally from your computer’s hard drive after RHEL
has been installed on it.

When the installation program starts, you can pass boot options
to the kernel to enable or disable specific features. To get access
to the prompt where you can add these options, press Tab from
the installation menu. This shows you the kernel boot line that
will be used and offers an option to change boot parameters.

2. To start a normal installation, select the Install Red Hat
Enterprise Linux 9.0 boot option (see Figure 1-1). Note that the
exact sub-version will change if you install a later version of
RHEL 9.

Figure 1-1 Select Install Red Hat Enterprise Linux 9.0 to Start the Installation

3. Once the base system from which you will perform the
installation has loaded, you see the Welcome to Red Hat
Enterprise Linux 9.0 screen. From this screen, you can select
the language and the keyboard setting. For the RHCSA exam, it
makes no sense to choose anything but English. If you are
working on a non-U.S. keyboard, from this screen you can select
the keyboard setting. Make sure to select the appropriate
keyboard setting, after which you click Continue to proceed
(see Figure 1-2).

Figure 1-2 Select the Appropriate Language and Keyboard Setting Before Continuing

4. After selecting the keyboard and language settings, you’ll see
the Installation Summary screen (see Figure 1-3). From this
screen, you specify all settings you want to use. On this screen,
you have several different options:

Keyboard: Used to change the keyboard disposition.

Language Support: Used to add support for additional
languages.
Time & Date: Used to specify the current time and date, as
well as the time zone.
Root Password: Used to enable or disable the root user, and
if this user is enabled, to set a password.

Figure 1-3 Specify the Complete Configuration of Your Server from the Installation
Summary Screen

User Creation: Used to create a non-root user account and,
optionally, mark this user as an administrator.
Connect to Red Hat: Used to register your system with Red
Hat before starting the installation. Notice that all exercises
in this book assume that your system is not installed with
Red Hat!
Installation Source: Used to specify where to install from.
Typically, you’ll install from the installation DVD, which is
referred to as Local Media.
Software Selection: Offers different installation patterns, to
easily install a default set of packages.
Installation Destination: Used to identify to which disk(s) to
copy the files during the installation.
KDUMP: Allows you to use a KDUMP kernel. This is a kernel
that creates a core dump if anything goes wrong.
Network & Host Name: Allows you to set IP address and
related settings here.
Security Profile: Offers a limited set of security policies,
enabling you to easily harden a server.

From this Installation Summary screen, you can see whether
items still need to be configured—these items are marked with
an exclamation mark and a description in red text. As long as
any issues exist, you cannot click the Begin Installation button
(that is, it is disabled). You will not have to change settings for

each option in all cases, but for completeness, the following
steps describe the different settings available from the
Installation Summary screen, with recommended changes
where appropriate.

5. Click the Keyboard option to view the settings to configure the
keyboard layout. From this screen, you can also select a
secondary keyboard layout, which is useful if your server is
used by administrators using different keyboard layouts. Not
only are different language settings supported, but also
different hardware layouts. If many administrators are using an
Apple Mac computer, for instance, you can select the standard
keyboard layout for Mac in the appropriate region.

After adding another keyboard layout, you can also configure
layout switching options. This is a key sequence that is used to
switch between different kinds of layout. Select Options to
specify the key combination you want to use for this purpose.
After specifying the configuration you want to use, click Done
to return to the Installation Summary screen.

6. The Language Support option on the Installation Summary
screen is the same as the Language Support option that you
used in step 3 of this procedure. If you’ve already configured

the language settings to be used, you do not need to change
anything here.

7. Click Time & Date to see a map of the world on which you can
easily click the time zone that you are in (see Figure 1-4).
Alternatively, you can select the region and city you are in from
the corresponding drop-down list boxes. You can also set the
current date and time, and after setting the network, you can
specify the Network Time Protocol (NTP) to be used to
synchronize time with time servers on the Internet. This option
is not accessible if the network is not accessible—you’ll have to
set up your network connection first to access this option.
When using network time, you can add the network time
servers to be used by clicking the configuration icon in the
upper-right part of the screen. After specifying the settings you
want to use, click Done in the upper-left corner of the screen to
write the settings.

Figure 1-4 Selecting Time & Date Settings

8. In the User Settings section, select Root Password. This opens
the screen that you can see in Figure 1-5. By default, the root
user account is disabled. If you want to be able to work as root,
you need to set a password here. Enter the same password
twice, and next click Done to continue.

Figure 1-5 Setting the Root User Password

9. After you have set a password for the root user, scroll down to
get access to the User Creation option. Click to open it, so that
you can see the screen shown in Figure 1-6. In this screen, enter
student in the Full Name and User Name fields and set a
password. Also, select the option Make This User
Administrator and then click Done to continue.

Figure 1-6 Creating an Administrator User

0. In the Software section of the Installation Summary screen,
click Installation Source to see the screen shown in Figure 1-7.
If you have booted from a regular installation disc, there is
nothing to specify. If you have booted from a minimal boot
environment, you can specify the network URL where
additional packages are available, as well as additional
repositories that need to be used. You do not have to do this for
the RHCSA exam, but if ever you are setting up an installation
server, it is useful to know that this option exists. Click Done.

Figure 1-7 Selecting the Installation Source

1. Click Software Selection to access an important part of the
installation procedure (see Figure 1-8). From here, you select
the base environment and choose additional software available
for the selected environment. The Minimal Install option is very
common. This base environment allows you to install RHEL on
a minimal-size hard disk, providing just the essential software
and nothing else. For this book, I assume that you install the
server with the Server with GUI option. To perform the tasks
that need to be performed on the RHCSA exam, some easy-to-

use graphical tools are available, so it does make sense to install
a server with a graphical user interface (GUI), even if you
would never do this in a production environment. All
additional packages can be added later. At this point, you do not
have to select any additional packages. Click Done.

Figure 1-8 Make Sure You Select Server with GUI for Every Server You Are Going to
Use for the Exercises in This Book

Note

Some people say that real administrators do not
use the Server with GUI installation pattern.
Preparing for the RHCSA exam is not about being a
real administrator. The big advantage of using the
Server with GUI installation pattern is that it
provides an easy-to-use interface. Some tools
discussed in this book only run on a GUI. Also,
when using a server with a GUI, you can use
multiple terminal windows simultaneously, and
that makes working with the RHEL command line
really easy!

2. After installing the software, you need to specify where you
want to install to. Click Installation Destination on the
Installation Summary screen. By default, automatic partitioning
is selected, and you only need to approve the disk device you
want to use for automatic partitioning (see Figure 1-9). Many
advanced options are available as well. You can install using the
Automatic option under Storage Configuration to ensure that no
matter how your server is started, everything is configured to
have it boot correctly and your file systems are configured with
the default XFS file system.

Figure 1-9 Click Done to Proceed and Automatically Create the Storage Configuration

3. The next part of the Installation Summary screen enables you
to set up networking. Notice that you must configure
something. If you do not do anything, your server might not be
able to connect to any network. Click Network & Host Name to
set up networking. This opens the screen that you see in Figure
1-10.

Figure 1-10 On the Network & Host Name Screen, Ensure the Network Card Is
Connected

After switching on the network connection (if it wasn’t already),
set the hostname to server1.example.com. Next, you could
click Configure to add further configuration. Networking is
discussed in detail in Chapter 8, “Configuring Networking,” so
you do not have to do that now and can just leave the default
settings that get an IP address from the Dynamic Host
Configuration Protocol (DHCP) server. Click Done when finished
to return to the main screen.

4. The Security Profile option does not need any change.

5. After specifying all settings from the Installation Summary
screen options, you can click Begin Installation to start the
installation. This immediately starts the installation procedure
and displays the screen shown in Figure 1-11.

Figure 1-11 Starting the Installation

6. When the installation has completed, you’ll see the screen
shown in Figure 1-12. You’ll now need to click Reboot System
to restart the computer and finalize the installation.

Figure 1-12 Reboot to Finalize the Installation

7. After rebooting, you have to go through a couple of additional
setup steps to set up your user environment. First, you’ll be
prompted to take a tour. Feel free to select No Thanks to skip

this tour, which otherwise would introduce you to the workings
of the GNOME graphical desktop. Next you will see a prompt
mentioning that your system is not registered. Click to dismiss
this prompt; you should NOT register your system at this
moment because that will complicate all the exercises about
repository management that you’ll find in Chapter 9.

Summary

In this chapter, you learned what Red Hat Enterprise Linux is
and how it relates to some other Linux distributions. You also
learned how to install Red Hat Enterprise Linux 9. You are now
ready to set up a basic environment that you can use to work
on all the exercises in this book.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the
Introduction, you have several choices for exam preparation:
the end-of-chapter labs; the memory tables in Appendix C;
Chapter 27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the
Key Topic icon in the margin of the page. Table 1-2 lists a
reference of these key topics and the page number on which
each is found.

Table 1-2 Key Topics for Chapter 1

Key Topic Element Description Page

List How to perform a RHEL 9 installation 10

Define Key Terms

Define the following key terms from this chapter and check
your answers in the glossary:

distribution

Linux

Red Hat

CentOS

Fedora

AlmaLinux

Rocky Linux

Review Questions

The questions that follow are meant to help you test your
knowledge of concepts and terminology and the breadth of
your knowledge. You can find the answers to these questions in
Appendix A.

. You do not want to buy a RHEL license, but you want to create
an environment to practice for the exam. Which distribution
should you use?

. What happens to the network configuration if you don’t specify
anything during the installation?

. You want to install a minimal system. How much RAM do you
need?

. Why is it a good idea to have Internet access on all servers you
are installing?

. You want to install a virtual machine on a computer that does
not have an optical disk drive. What is the easiest alternative to
perform the installation?

. Why is it a good idea to install a GUI?

. What is the default file system on RHEL 9?

. Can you install RHEL if you do not have Internet access?

. What is the most important benefit of using Subscription
Manager to register your RHEL 9 installation?

. Which installation pattern should you use if you have a very
limited amount of disk space available?

End-of-Chapter Lab

In this chapter, you learned how to set up Red Hat Enterprise
Linux. At this point, you should have one server up and
running. For exercises in later chapters in this book, one
additional server is needed.

Lab 1.1

Repeat the procedure “Performing an Installation” to install one
more server. Details about the additional configuration on this

server follow in exercises in later chapters. For now, it is
sufficient to ensure that the following conditions are met:

Use the server name server2.example.com.
Set the network configuration to obtain an IP address
automatically.
Install this server using the Minimal Installation pattern.

Chapter 2

Using Essential Tools

The following topics are covered in this chapter:

Basic Shell Skills
Editing Files with vim
Understanding the Shell Environment
Finding Help

The following RHCSA exam objectives are covered in this
chapter:

Use input-output redirection (>, >>, |, 2>, etc.)
Access a shell prompt and issue commands with correct
syntax
Create and edit text files
Locate, read, and use system documentation including man,
info, and files in /usr/share/doc

This chapter is dedicated to coverage of the basic Linux skills
that everyone should have before attempting to take the RHCSA
exam.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess
whether you should read this entire chapter thoroughly or
jump to the “Exam Preparation Tasks” section. If you are in
doubt about your answers to these questions or your own
assessment of your knowledge of the topics, read the entire
chapter. Table 2-1 lists the major headings in this chapter and
their corresponding “Do I Know This Already?” quiz questions.
You can find the answers in Appendix A, “Answers to the ‘Do I
Know This Already?’ Quizzes and Review Questions.”

Table 2-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Basic Shell Skills 1, 3–7

Editing Files with vim 8

Understanding the Shell Environment 2, 9

Finding Help 10

. Which of the following commands enables you to redirect
standard output as well as standard error to a file?

1. 1&2> file
2. > file 2>&1
3. >1&2 file
4. 1>2& file

. You want to set a local variable that will be available for every
user in every shell. Which of the following files should you use?

1. /etc/profile
2. /etc/bashrc
3. ~/.bash_profile
4. ~/.bashrc

. A user has created a script with the name myscript. The user
tries to run the script using the command myscript, but it is not
started. The user has verified that the script permissions are set
as executable. Which of the following is the most likely
explanation?

1. An internal command is preventing the startup of the script.
2. Users are not allowed to run scripts.
3. The directory that contains the script is not in the $PATH

variable.

4. The script does not have appropriate permissions.

. You need the output of the command ls to be used as input for
the less command. Which of the following examples will do
that for you?

1. ls > less
2. ls >> less
3. ls >| less
4. ls | less

. A user by accident has typed a password, which now shows as
item 299 in history. Which of the following do you recommend
to ensure the password is not stored in history?

1. Remove the ~/.bash_history file and type history -c.
2. Type history -c.
3. Remove the ~/.bash_history file.
4. Type history -d 299.

. Which of the following is not a valid method to repeat a
command from history?

1. Press Ctrl-r and start typing a part of the command.
2. Type ! followed by the first letters in the command.

3. Type ! followed by the number of the command as listed in
history.

4. Press Ctrl-x followed by the number in history.

. For which of the following items can Bash completion be used?

1. Commands
2. Files
3. Variables
4. All of the above

. Which of the following commands enables you to replace every
occurrence of old with new in a text file that is opened with
vim?

1. :%s/old/new/g
2. :%r/old/new/
3. :%s/old/new/
4. r:/old/new

. Which approach works best if during the login process you
want to show a message to all users who have just logged in to a
shell session on your server?

1. Put the message in /etc/issue.
2. Put the message in /etc/motd.

3. Put the message in /etc/profile.
4. Put the message in /etc/bashrc.

. You are using man -k user, but you get the message “nothing
appropriate.” Which of the following solutions is most likely to
fix this for you?

1. Type sudo updatedb to update the mandb database.
2. Type sudo makewhatis to update the mandb database.
3. Type sudo mandb to update the mandb database.
4. Use man -K, not man -k.

Foundation Topics

Basic Shell Skills

The shell is the default working environment for a Linux
administrator. It is the environment where users and
administrators enter commands that are executed by the
operating system. Different shells for Linux are available, but
Bash is the most common shell. So, when we are talking about
“the shell” in this book, we are actually talking about the Bash
shell. This chapter provides an overview of some of the items
that you will encounter when working with the shell.

Understanding Commands

Working with the shell is all about working with command
syntax. Typically, command syntax has three basic parts: the
command, its options, and its arguments.

The command is the command itself, such as ls. This command
shows a list of files in the current directory. To modify the
behavior of the command, you can use options. Options are a
part of the program code, and they modify what the command
is doing. For instance, when you use the -l (lowercase letter l,
not number 1) option with the ls command, a long listing of
filenames and properties is displayed.

The word argument is a bit confusing. Generally speaking, it
refers to anything that the command addresses, so anything you
put after the command is an argument (including the options).
Apart from the options that can be used as an argument,
commands can have other arguments as well, which serve as a
target to the command.

Let’s have a look at an example: the command ls -l /etc. This
command has two different arguments: -l and /etc. The first
argument is an option, modifying the behavior of the
command. The second argument is a target, specifying where
the command should do its work. You’ll find these three

elements in nearly all commands you work with in a Linux
environment.

Executing Commands

The purpose of the Linux shell is to provide an environment in
which commands can be executed. The shell takes care of
interpreting the command that a user has entered correctly. To
do this, the shell makes a distinction between three kinds of
commands:

Aliases
Internal commands
External commands

An alias is a command that a user can define as needed. Some
aliases are provided by default; type alias on the command line
to get an overview. To define an alias, use alias
newcommand=‘oldcommand’ (as in the default alias ll=‘ls -l --
color=auto’ that has already been created on your system).
Aliases are executed before anything else. So, if you have an
alias with the name ll but also a command with the name ll, the
alias will always take precedence for the command, unless a
complete pathname like /usr/bin/ls is used.

An internal command is a command that is a part of the shell
itself and, as such, doesn’t have to be loaded from disk
separately. An external command is a command that exists as
an executable file on the disk of the computer. Because it has to
be read from disk the first time it is used, it is a bit slower.
When a user executes a command, the shell first looks to
determine whether it is an internal command; if it is not, it
looks for an executable file with a name that matches the
command on disk. To find out whether a command is a Bash
internal command or an executable file on disk, you can use the
type command. Use for instance type pwd to find out that the
pwd command that will be executed is really an alias.

To change how external commands are found by the shell, use
the $PATH variable. This variable defines a list of directories
that is searched for a matching filename when a user enters a
command. To find out which exact command the shell will be
using, you can use the which command. For instance, type
which ls to find out where the shell will get the ls command
from. An even stronger command is type, which will also work
on internal commands and aliases.

You should notice that, for security reasons, the current
directory is not in the $PATH variable and Linux does not look
in the current directory to see whether a specific command is

available from that directory. That is why you need to start a
command that is in the current directory but nowhere in the
$PATH by including ./ in front of it. The dot stands for the
current directory, and by running it as ./, you tell Bash to look
for the command in the current directory. Although running
commands this way is not very common, you will have to do it
to run scripts that you’ve created in your current directory.

The $PATH variable can be set for specific users, but in general,
most users will be using the same $PATH variable. The only
exception to this is the user root, who needs access to specific
administration commands. In Exercise 2-1, you learn some of
the basics about working with commands.

Exercise 2-1 Using Internal and External Commands from the
Shell

1. Authenticate on the server1 server that you created in
Chapter 1, “Installing Red Hat Enterprise Linux,” as the user
that you also created in Chapter 1 when installing your
server.

2. Click Activities. In the Search bar that appears, type term
and click the terminal icon that shows to open a terminal. All
exercises in this book are intended to be executed in a
terminal.

3. Type time ls. This executes the ls command where the Bash
internal time shows information about the time it took to
complete this command.

4. Type which time. This shows the filename /usr/bin/time that
was found in the $PATH variable.

5. Type time, which shows that time is a shell keyword.
6. Type echo $PATH to show the contents of the $PATH

variable. You can see that /usr/bin is included in the list, but
because there also is an internal command time, the time
command from the path will not be executed unless you tell
the shell specifically to do so—the command in step 2 has
executed the internal command for you because of
command precedence.

7. Type /usr/bin/time ls to run the /usr/bin/time command
when executing ls. You’ll notice that the output differs
completely. Ignore the meaning of the output; we get back to
that later. What matters for now is that you realize that these
are really two different commands.

I/O Redirection

By default, when a command is executed, it shows its results on
the screen of the computer you are working on. The computer
monitor is used as the standard destination for output, which is

also referred to as STDOUT. The shell also has default standard
destinations to send error messages to (STDERR) and to accept
input (STDIN). Table 2-2 gives an overview of all three.

Table 2-2 Standard Input, Output, and Error Overview

Name Default
Destination

Use in
Redirection

File Descriptor
Number

STDIN Computer
keyboard

< (same as 0<) 0

STDOUT Computer
monitor

> (same as 1>) 1

STDERR Computer
monitor

2> 2

So if you run a command, that command would expect input
from the keyboard, and it would normally send its output to the
monitor of your computer without making a distinction
between normal output and errors. Some commands, however,
are started in the background and not from a current terminal
session, so these commands do not have a monitor or console

session to send their output to, and they do not listen to
keyboard input to accept their standard input. That is where
redirection comes in handy. Redirection is also useful if you
want to work with input from an alternative location, such as a
file.

Programs started from the command line have no idea what
they are reading from or writing to. They just read from what
the Linux kernel calls file descriptor 0 if they want to read from
standard input, and they write to file descriptor number 1 to
display non-error output (also known as “standard output”) and
to file descriptor 2 if they have error messages to be output. By
default, these file descriptors are connected to the keyboard
and the screen. If you use redirection symbols such as <, >, and
|, the shell connects the file descriptors to files or other
commands. Let’s first look at the redirectors < and >. Later we
discuss pipes (the | symbol). Table 2-3 shows the most common
redirectors that are used from the Bash shell.

Table 2-3 Common Bash Redirectors

Redirector Explanation

Redirector Explanation

> (same as
1>)

Redirects STDOUT. If redirection is to a file, the current contents
of that file are overwritten.

>> (same
as 1>>)

Redirects STDOUT in append mode. If output is written to a file,
the output is appended to that file.

2> Redirects STDERR.

2>&1 Redirects STDERR to the same destination as STDOUT. Notice that
this has to be used in combination with normal output
redirection, as in ls whuhiu > errout 2>&1.

< (same as
0<)

Redirects STDIN.

In I/O redirection, files can be used to replace the default STDIN,
STDOUT, and STDERR. You can also redirect to device files. A
device file on Linux is a file that is used to access specific
hardware. Your hard disk, for instance, can be referred to as
/dev/sda in most cases, the console of your server is known as
/dev/console or /dev/tty1, and if you want to discard a

command’s output, you can redirect to /dev/null. Note that to
access most device files, you need to have root privileges.

Using Pipes

Whereas an I/O redirector is used as an alternative for a
keyboard and computer monitor, a pipe can be used to catch
the output of one command and use that as input for a second
command. If a user runs the command ls, for instance, the
output of the command is shown onscreen, because the screen
is the default STDOUT. If the user uses ls | less, the commands
ls and less are started in parallel. The standard output of the ls
command is connected to the standard input of less. Everything
that ls writes to the standard output will become available for
reading from standard input in less. The result is that the
output of ls is shown in the less pager, where the user can
browse up and down through the results easily.

As a Linux administrator, you will use pipes a lot. Using pipes
makes Linux a flexible operating system; by combining multiple
commands using pipes, you can create “super” commands that
make almost anything possible. In Exercise 2-2, you use I/O
redirectors and pipes.

Exercise 2-2 Using I/O Redirection and Pipes

1. Open a shell as user student and type cd without any
arguments. This ensures that the home directory of this user
is the current directory while working on this exercise. Type
pwd to verify this.

2. Type ls. You’ll see the ls command output onscreen.
3. Type ls > /dev/null. This redirects STDOUT to the null device,

with the result that you will not see it.
4. Type ls ilwehgi > /dev/null. This command shows a “no such

file or directory” message onscreen. You see the message
because it is not STDOUT, but rather an error message that is
written to STDERR.

5. Type ls ilwehgi 2> /dev/null. Now you will no longer see the
error message.

6. Type ls ilwehgi /etc 2> /dev/null. This shows the contents of
the /etc folder while hiding the error message.

7. Type ls ilwehgi /etc 2> /dev/null > output. In this command,
you still write the error message to /dev/null while sending
STDOUT to a file with the name output that will be created in
your home directory.

8. Type cat output to show the contents of this file.
9. Type echo hello > output. This overwrites the contents of

the output file. Verify this by using cat output again.
10. Type ls >> output. This appends the result of the ls

command to the output file. Type cat output to verify.

11. Type ls -R /. This shows a long list of files and folders
scrolling over your computer monitor. (You might want to
press Ctrl-C to stop [or wait some time]).

12. Type ls -R /. | less. This shows the same result, but in the less
pager, where you can scroll up and down using the arrow
keys on your keyboard.

13. Type q to close less. This will also end the ls program.
14. Type ls > /dev/tty1. This gives an error message because you

are executing the command as an ordinary user, and
ordinary users cannot address device files directly (unless
you were logged in to tty1). Only the user root has
permission to write to device files directly.

History

A convenient feature of the Bash shell is the Bash history. Bash
is configured by default to keep the last 1,000 commands a user
used. When a shell session is closed, the history of that session
is updated to the history file. The name of this file is
.bash_history and it is created in the home directory of the user
who started a specific shell session. Notice that the history file is
written to only when the shell session is closed; until that
moment, all commands in the history are kept in memory.

The history feature makes it easy to repeat complex commands.
There are several ways of working with history:

Type history to show a list of all commands in the Bash
history.
Press Ctrl-r to open the prompt from which you can do
backward searches in commands that you have previously
used. Just type a string and Bash will look backward in the
command history for any command containing that string as
the command name or one of its arguments. Press Ctrl-r
again to repeat the last backward search.
Type !number to execute a command with a specific number
from history.
Use history -d number to delete a specific command from
history. Notice that this command will renumber all other
lines in history: if you’ve removed line 31, the line previously
numbered as line 32 will now be line 31.
Type !sometext to execute the last command that starts with
sometext. Notice that this is a potentially dangerous
command because the command that was found is executed
immediately!

In some cases it might be necessary to wipe the Bash history.
This capability is useful, for instance, if you’ve typed a
password in clear text by accident. If that happens, you can type

history -c to clear the current history. Commands from this
session won’t be written to the history file when you exit the
current session. If you want to remove both the current history
and the contents of the .bash_history file, then type history -w
immediately after running the history -c command.
Alternatively, use history -d number to remove a specific
command from history.

Exercise 2-3 guides you through some history features.

Exercise 2-3 Working with History

1. Make sure that you have opened a shell as user student.
2. Type history to get an overview of commands that you have

previously used.
3. Type some commands, such as the following:

ls

pwd

cat /etc/hosts

ls –l

The goal is to fill the history a bit.
4. Open a second terminal on your server. To do so, click

Activities in the upper-left corner, and in the Search bar,
type term. Next, click the terminal window to start it.

5. Type history from this second terminal window. Notice that
you do not see the commands that you just typed in the other
terminal. The reason is that the history file has not been
updated yet.

6. From the first terminal session, press Ctrl-r. From the prompt
that opens now, type ls. You’ll see the last ls command you
used. Press Ctrl-r again. You’ll now see that you are looking
backward and that the previous ls command is highlighted.
Press Enter to execute it.

7. Type history | grep cat. The grep command searches the
history output for any commands that contain the text cat.
Note the command number of one of the cat commands you
have previously used.

8. Type !nn, where nn is replaced by the number you noted in
step 7. You’ll see that the last cat command is repeated.

9. Close this terminal by typing exit.
10. From the remaining terminal window, type history -c. This

wipes all history that is currently in memory. Close this
terminal session as well.

11. Open a new terminal session and type history. The result
may be a bit unexpected, but you’ll see a list of commands
anyway. The reason is that history -c clears the in-memory
history, but it does not remove the .bash_history file in your
home directory.

Bash Completion

Another useful feature of the Bash shell is command-line
completion. This feature helps you to find the command that
you need, and it also works on variables and filenames.

Bash completion is useful when you’re working with
commands. Just type the beginning of a command and press the
Tab key. If there is only one option for completion, Bash will
complete the command automatically for you. If there are
several options, you need to press Tab once more to get an
overview of all the available options. In Exercise 2-4, you learn
how to work with these great features.

Exercise 2-4 Using Bash Completion

1. Still from a user shell, type gd and press Tab. You’ll see that
nothing happens.

2. Press Tab again. Bash now shows a short list of all
commands that start with the letters gd.

3. To make it clear to Bash what you want, type i (so that your
prompt at this point shows the command gdi). Press Tab
again. Bash now completes the command to gdisk. Press
Enter to launch it, and press Enter again to close it.

4. Use cd /etc to go to the /etc directory.

5. Type cat ps and press Tab. Because there is one file only that
starts with pas, Bash knows what to do and automatically
completes the filename to passwd. Press Enter to execute the
command.

Editing Files with vim

Managing Linux often means working with files. Most things
that are configured on Linux are configured through files. To
complete administrative tasks, you often need to change the
contents of a configuration file with a text editor.

Over the years, many text editors have been created for Linux.
One editor really matters, though, and that is vi. Even if some
other text editors are easier to use, vi is the only text editor that
is always available. That is why as a Linux administrator you
need to know how to work with vi. One common alternative is
vim, or “vi improved”; it is a complete rewrite of vi with a lot of
enhancements that make working with vi easier, such as syntax
highlighting for many configuration files, which makes it easy
to recognize typing errors that you have made. Everything that
you learn in this section about vim works on vi as well.

An important concept when working with vim is that it uses
different modes. Two of them are particularly important:

command mode and input mode. These modes often cause
confusion because in command mode you can just enter a
command and you cannot edit the contents of a text file. To
change the contents of a text file, you need to get to input mode.

The challenge when working with vim is the vast number of
commands that are available. Some people have even produced
vim cheat sheets, listing all available commands. Do not use
them. Instead, focus on the minimal number of commands that
are really important. Table 2-4 summarizes the most essential
vim commands. Use these (and only these) and you’ll do fine on
the RHCSA exam.

Tip

Do not try to work with as many commands as
possible when working with vim. Just use a
minimal set of commands and use them often.
You’ll see; you’ll get used to these commands and
remember them on the exam. Also, you may like
the vimtutor command. (You may have to use dnf
install vim-enhanced to install it; Chapter 9,
“Managing Software,” provides more details about
software installation.) This command opens a vim

tutorial that has you work through some nice
additional exercises.

Table 2-4 vim Essential Commands

vim
Command Explanation

Esc Switches from input mode to command mode. Press this key
before typing any command.

i, a Switches from command mode to input mode at (i) or after
(a) the current cursor position.

o Opens a new line below the current cursor position and goes
to input mode.

:wq Writes the current file and quits.

vim
Command Explanation

:q! Quits the file without applying any changes. The ! forces the
command to do its work. Add the ! only if you really know
what you are doing.

:w filename Writes the current file with a new filename.

dd Deletes the current line and places the contents of the
deleted line into memory.

yy Copies the current line.

p Pastes the contents that have been cut or copied into
memory.

v Enters visual mode, which allows you to select a block of text
using the arrow keys. Use d to cut the selection or y to copy
it.

u Undoes the last command. Repeat as often as necessary.

vim
Command Explanation

Ctrl-r Redoes the last undo. (Cannot be repeated more than once.)

gg Goes to the first line in the document.

G Goes to the last line in the document.

/text Searches for text from the current cursor position forward.

?text Searches for text from the current cursor position backward.

^ Goes to the first position in the current line.

$ Goes to the last position in the current line.

!ls Adds the output of ls (or any other command) in the current
file.

vim
Command Explanation

:%s/old/new/g Replaces all occurrences of old with new.

Now you know the most essential commands for working with
vim. Exercise 2-5 gives you the opportunity to test them.

Exercise 2-5 vim Practice

1. Type vim ~/testfile. This starts vim and opens a file with the
name testfile in ~, which represents your current home
directory.

2. Type i to enter input mode and then type the following text:

 cow

 sheep

 ox

 chicken

 snake

 fish

 oxygen

3. Press Esc to get back to command mode and type :w to write
the file using the same filename.

4. Type :3 to go to line number 3.
5. Type dd to delete this line.
6. Type dd again to delete another line.
7. Type u to undo the last deletion.
8. Type o to open a new line.
9. Enter some more text at the current cursor position:

 tree

 farm

10. Press Esc to get back into command mode.
11. Type :%s/ox/OX/g and note the changes to the line that

contained ox.
12. Type :wq to write the file and quit. If for some reason that

does not work, use :wq!

Understanding the Shell Environment

When you are working from a shell, an environment is created
to ensure that all that is happening is happening the right way.
This environment consists of variables that define the user
environment, such as the $PATH variable discussed earlier. In

this section, you get a brief overview of the shell environment
and how it is created.

Understanding Variables

The Linux shell environment consists of many variables.
Variables are fixed names that can be assigned dynamic
values. An example of a variable is $LANG, which in my shell is
set to en_US.UTF-8. This value (which may differ on your
system) ensures that I can work in the English language using
settings that are common in the English language (think of how
date and time are displayed).

The advantage of working with variables for scripts and
programs is that the program only has to use the name of the
variable without taking interest in the specific value that is
assigned to the variable. Because different users have different
needs, the variables that are set in a user environment will
differ. To get an overview of the current variables defined in
your shell environment, type the env command, which will
show environment variables that are used to set important
system settings. Example 2-1 shows some lines of the output of
this command.

Example 2-1 Displaying the Current Environment

Click here to view code image

[user@server1 ~]$ env

MAIL=/var/spool/mail/user

PATH=/usr/local/bin:/bin:/usr/bin:/usr/local/sbi

user/.local/bin:/home/user/bin

PWD=/home/user

LANG=en_US.UTF-8

HISTCONTROL=ignoredups

SHLVL=1

HOME=/home/user

LOGNAME=user

LESSOPEN=||/usr/bin/lesspipe.sh %s

_=/bin/env

OLDPWD=/etc

As you can see from Example 2-1, to define a variable, you type
the name of the variable, followed by an equal sign (=) and the
value that is assigned to the specific variable. To read the value
of a variable, you can use the echo command (among others),
followed by the name of the variable, as in echo $PATH, which
reads the current value of the $PATH variable and prints that to
STDOUT. For now, you do not have to know much more about
variables. You can read about more advanced use of variables

in Chapter 19, “An Introduction to Automation with Bash Shell
Scripting.”

Recognizing Environment Configuration Files

When a user logs in, an environment is created for that user
automatically. This happens based on the following four
configuration files, where some script code can be specified and
where variables can be defined:

/etc/profile: This is the generic file that is processed by all
users upon login.
/etc/bashrc: This file is processed when subshells are started.
~/.bash_profile: In this file, user-specific login shell variables
can be defined.
~/.bashrc: In this user-specific file, subshell variables can be
defined.

As you have seen, in these files a distinction is made between a
login shell and a subshell. A login shell is the first shell that is
opened for a user after the user has logged in. From the login
shell, a user may run scripts, which will start a subshell of that
login shell. Bash allows for the creation of a different
environment in the login shell and in the subshell, but to make

sure the same settings are used in all shells, it’s a good idea to
include subshell settings in the login shell as well.

Using /etc/motd and /etc/issue

To display messages during the login process, Bash uses the
/etc/motd and the /etc/issue files. Messages in /etc/motd display
after a user has successfully logged in to a shell. (Note that users
in a graphical environment do not see its contents after a
graphical login.) Using /etc/motd can be a convenient way for
system administrators to inform users about an issue or a
security policy, for example.

Another way to send information to users is by using /etc/issue.
The contents of this file display before the user logs in from a
text-based console interface. Using this file provides an
excellent means of specifying login instructions to users who
are not logged in yet.

In Exercise 2-6, you can practice the topics that have been
discussed in this section.

Exercise 2-6 Managing the Shell Environment

1. Open a shell in which you are user student.

2. Type echo $LANG to show the contents of the variable that
sets your system keyboard and language settings.

3. Type ls --help. You’ll see that help about the ls command is
displayed in the current language settings of your computer.

4. Type LANG=es_ES.UTF-8. This temporarily sets the language
variable to Spanish. Type ls --help again to verify.

5. Type exit to close your terminal window. Because you have
not changed the contents of any of the previously mentioned
files, when you open a new shell, the original value of the
LANG variable will be used.

6. Open a shell as user again.
7. Verify the current value of the LANG variable by typing

echo $LANG.
8. Type vim .bashrc to open the .bashrc configuration file.
9. In this file, add the line COLOR=red to set a variable with

the name COLOR and assign it the value red. Notice that this
variable doesn’t really change anything on your system; it
just sets a variable.

10. Close the user shell and open a new user shell.
11. Verify that the variable COLOR has been set, by using echo

$COLOR. Because the .bashrc file is included in the login
procedure, the variable is set after logging in.

Finding Help

On an average Linux system, hundreds of commands are
available—way too many to ever be able to remember all of
them, which is why using the help resources on your computer
is so very important. The man command is the most important
resource for getting help about command syntax and usage.
Apart from that, you can show a compact list of command
options by using command --help.

Using --help

The quickest way to get an overview of how to use a command
is by running the command with the --help option. Nearly all
commands will display a usage summary when using this
option. In this summary you’ll see all options that can be used
with the command. Notice that there is no strict order for the
options; you can use them in any order you’d like.

The list of options that is shown in this way is of use mainly
when you already have a generic understanding of how to use
the command and need a quick overview of options available
with the command—it doesn’t give detailed information that
will help users who don’t know the command yet.

Tip

Nearly all commands provide a short overview of
help when the option --help is used. Some
commands do not honor that option and consider
it erroneous. Fortunately, these commands will be
so friendly as to show an error message, displaying
valid options with the command, which effectively
means that you’ll get what you needed anyway.

Using man

When using the Linux command line, you will at some point
consult man pages. The man command is what makes working
from the command line doable. If you do not know how a
command is used, the man page of that command will provide
valuable insight. This section covers a few man essentials.

To start with, the most important parts of the man page in
general are at the bottom of the man page. Here you’ll find two
important sections: In many cases there are examples; if there
are no examples, there is always a “See Also” section. The topics
you find here are related man pages, which is useful if you have
just not hit the right man page. To get to the bottom of the man
page as fast as possible, use the G command. You can also type

/example to search the man page for any examples. Figure 2-1
shows what the end of a man page may look like.

Figure 2-1 Sample man Page Contents

Finding the Right man Page

To find information in man pages, you can search the mandb
database by using apropos or man -k. If the database is
current, getting access to the information you need is easy. Just
type man -k, followed by the keyword you want to search for.
This command looks in the summary of all man pages that are
stored in the mandb database. If you get “nothing appropriate”
when running this command, consult the section “Updating

mandb” later in this chapter. Example 2-2 shows a partial result
of this command.

Example 2-2 Searching man Pages with man –k

Click here to view code image

[root@server1 ~]# man -k partition

addpart (8) - simple wrapper around the "a

cfdisk (8) - display or manipulate disk p

cgdisk (8) - Curses-based GUID partition

manipulator

delpart (8) - simple wrapper around the "d

fdisk (8) - manipulate disk partition ta

fixparts (8) - MBR partition table repair

gdisk (8) - Interactive GUID partition t

manipulator

iostat (1) - Report Central Processing Un

and in...

kpartx (8) - Create device maps from part

mpartition (1) - partition an MSDOS hard di

os-prober (1) - Discover bootable partitio

system

partprobe (8) - inform the OS of partition

partx (8) - tell the Linux kernel about

numbering...

pvcreate (8) - initialize a disk or partit

p p

pvresize (8) - resize a disk or partition

resizepart (8) - simple wrapper around the

ioctl

sfdisk (8) - partition table manipulator

sgdisk (- Command-line GUID partition t

manipulator fo...

systemd-efi-boot-generator (8) - Generator for a

the EFI...

systemd-gpt-auto-generator (8) - Generator for a

discovering and ..

Based on the information that man -k is giving you, you can
probably identify the man page that you need to access to do
whatever you want to accomplish. Be aware, however, that
man -k is not perfect; it searches only the short summary of
each command that is installed. If your keyword is not in the
summary, you’ll find nothing and get a “nothing appropriate”
error message.

Tip

Instead of using man -k, you can use the apropos
command, which is equivalent to man -k.

When using man -k to find specific information from the man
pages, you’ll sometimes get a load of information. If that
happens, it might help to filter down the results a bit by using
the grep command. But if you want to do that, it is important
that you know what you are looking for.

Man pages are categorized in different sections. The most
relevant sections for system administrators are as follows:

1: Executable programs or shell commands
5: File formats and conventions
8: System administration commands

There are also sections that provide in-depth details about your
Linux system, such as the sections about system calls and
library calls. When using man -k, you’ll get results from all of
these sections. To limit the results that display, it makes sense to
use grep to show only those sections that are relevant for what
you need. So, if you are looking for the configuration file that
has something to do with passwords, use man -k password |
grep 5, or if you are looking for the command that an

administrator would use to create partitions, use man -k
partition | grep 8.

Another useful man option is -f. The command man -f
<somecommand> displays a short description of the item as
found in the mandb database. This description may help you
when deciding whether this man page contains the information
you are looking for.

Updating mandb

As previously mentioned, when you use the man -k command,
the mandb database is consulted. This database is automatically
created through a scheduled job. Occasionally, you might look
for something that should obviously be documented, but all you
get is the message “nothing appropriate.” If that happens, you
might need to update the mandb database manually. Doing that
is easy: Just run the mandb command as root without any
arguments. It will see whether new man pages have been
installed and update the mandb database accordingly.

Tip

Do not try to memorize all the commands that you
need to accomplish specific tasks. Instead,
memorize how to find these commands and find

which man page to read to get more information
about the command. In Exercise 2-7, you see how
that works.

Assume that you are looking for a command, using man -k, but
all you get is the message “nothing appropriate” and you do not
remember how to fix it. Exercise 2-7 shows what you can do in
such cases.

Exercise 2-7 Using man -k

1. Make sure you are logged in as the student account.
2. Because man -k does not give the expected result, it makes

sense to look in the man page for the man command for
additional information about man -k. Type man man to
open the man page of man. Once in the man page, type /-k to
look for a description of the -k option. Type n a few times
until you get to the line that describes the option. You’ll see
that man -k is equivalent to apropos and that you can read
the man page of apropos for more details. So type q to exit
this man page.

3. Type man apropos and read the first paragraphs of the
description. You’ll see that the database searched by
apropos is updated by the mandb program.

4. Type man mandb. This man page explains how to run
mandb to update the mandb database. As you’ll read, all you
need to do is type mandb, which does the work for you.

5. Type sudo mandb to update the mandb database. Notice
that you won’t see many man pages being added if the
mandb database was already up to date.

Using info

Apart from the information that you’ll find in man pages,
another system provides help about command usage. This is the
info system. Most commands are documented in man pages, but
some commands have their main documentation in the info
system and only show a short usage summary in the man page.
If that is the case, the “See Also” section of the man page of that
command will tell you that “The full documentation for…is
maintained as a Texinfo manual.” You then can read the info
page using the command pinfo or info. Both commands work,
but in pinfo, special items such as menu items are clearly
indicated, which is why using pinfo is easier.

When working with info, take a look at the top line of the
viewer. This shows the current position in the info document.
Particularly interesting are the Up, Next, and Previous

indicators, which tell you how to navigate. Info pages are
organized like web pages, which means that they are organized
in a hierarchical way. To browse through that hierarchy, type n
to go to the next page, p to go to the previous page, or u to move
up in the hierarchy.

In an info page, you’ll also find menus. Each item that is marked
with an asterisk (*) is a menu item. Use the arrow keys to select
a specific menu item. This brings you down one level. To get
back up again, type u. This brings you back to the original
starting point in the pinfo hierarchy. Figure 2-2 shows what an
info page looks like.

Figure 2-2 Getting More Command Usage Information Using pinfo

Exercise 2-8 shows an example of such a command, and in this
exercise you learn how to get the information out of the info
page.

Exercise 2-8 Using info

1. Type man ls. Type G to go to the end of the man page and
look at the “See Also” section. It tells you that the full
documentation for ls is maintained as a Texinfo manual that
can be shown with the info command. Quit the man page by
pressing q.

2. Type pinfo ‘(coreutils) ls invocation’. This shows the
information about ls usage in the pinfo page. Read through
it and press q when done. Alternatively, you can use the info
command, but pinfo shows nicer formatting.

Using /usr/share/doc Documentation Files

A third source of information consists of files that are
sometimes copied to the /usr/share/doc directory. These files are
available in particular for services and larger systems that are a
bit more complicated. You will not typically find much
information about a command like ls, but some services do
provide useful information in /usr/share/doc.

Some services store very useful information in this directory,
like rsyslog, bind, Kerberos, and OpenSSL. For some services,
even sample files are included.

Summary

In this chapter, you read about essential Linux administration
tasks. You learned about some of the important shell basics,
such as redirecting I/O, working with history, and managing the
environment. You also learned how to edit text files with the
vim editor. In the last part of this chapter, you learned how to
find information using man and related commands.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the
Introduction, you have several choices for exam preparation:
the end-of-chapter labs; the memory tables in Appendix C;
Chapter 27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the
Key Topic icon in the margin of the page. Table 2-5 lists a

reference of these key topics and the page number on which
each is found.

Table 2-5 Key Topics for Chapter 2

Key Topic Element Description Page

Table 2-4 vim Essential Commands 38

List Significant sections in man 46

Complete Tables and Lists from Memory

Print a copy of Appendix C, “Memory Tables” (found on the
companion website), or at least the section for this chapter, and
complete the tables and lists from memory. Appendix D,
“Memory Tables Answer Key,” includes completed tables and
lists to check your work.

Define Key Terms

Define the following key terms from this chapter and check
your answers in the glossary:

shell

Bash

internal command

external command

$PATH

STDIN

STDOUT

STDERR

redirection

file descriptor

device file

pipe

environment

variable

login shell

subshell

Review Questions

The questions that follow are meant to help you test your
knowledge of concepts and terminology and the breadth of
your knowledge. You can find the answers to these questions in
Appendix A.

. What is a variable?

. Which command enables you to find the correct man page
based on keyword usage?

. Which file do you need to change if you want a variable to be
set for user bob when this user logs in?

. When analyzing how to use a command, you read that the
documentation is maintained with the Techinfo system. How
can you read the information?

. What is the name of the file where Bash stores its history?

. Which command enables you to update the database that
contains man keywords?

. How can you undo the last modification you have applied in
vim?

. What can you add to a command to make sure that it does not
show an error message, assuming that you do not care about
the information that is in the error messages either?

. How do you read the current contents of the $PATH variable?

. How do you repeat the last command you used that contains
the string dog somewhere in the command?

End-of-Chapter Lab

You have now learned about some of the most important basic
skills that a Linux administrator should have. Apply these skills
by doing the following end-of-chapter lab. End-of-chapter labs
have no solutions; you should be able to complete the end-of-
chapter labs without any additional help.

Lab 2.1

1. Modify your shell environment so that on every subshell that
is started, a variable is set. The name of the variable should
be COLOR, and the value should be set to red. Verify that it is
working.

2. Use the appropriate tools to find the command that you can
use to change a user password. Do you need root permissions
to use this command?

3. From your home directory, type the command ls -al wergihl
* and ensure that errors as well as regular output are
redirected to a file with the name /tmp/lsoutput.

Chapter 3

Essential File Management Tools

The following topics are covered in this chapter:

Working with the File System Hierarchy
Managing Files
Using Links
Working with Archives and Compressed Files

The following RHCSA exam objectives are covered in this
chapter:

Create, delete, copy, and move files and directories
Archive, compress, unpack, and uncompress files using tar,
star, gzip, and bzip2
Create hard and soft links

Linux is a file-oriented operating system. That means that many
things an administrator has to do on Linux can be traced down
to managing files on the Linux operating system. Also, when
using hardware devices, files are involved. This chapter
introduces you to essential file management skills. You learn
how the Linux file system is organized and how you can work

with files and directories. You also learn how to manage links
and compressed or uncompressed archives.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess
whether you should read this entire chapter thoroughly or
jump to the “Exam Preparation Tasks” section. If you are in
doubt about your answers to these questions or your own
assessment of your knowledge of the topics, read the entire
chapter. Table 3-1 lists the major headings in this chapter and
their corresponding “Do I Know This Already?” quiz questions.
You can find the answers in Appendix A, “Answers to the ‘Do I
Know This Already?’ Quizzes and Review Questions.”

Table 3-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Working with the File System Hierarchy 1–4

Managing Files 5–7

Foundation Topics Section Questions

Using Links 8–9

Working with Archives and Compressed Files 10

. Under which directory would you expect to find temporary files
that have been dynamically created since the last time you’ve
booted?

1. /boot
2. /bin
3. /sbin
4. /run

. Under which directory would you expect to find log files?

1. /proc
2. /run
3. /var
4. /usr

. When /home is mounted on a different device, additional
mount options can be provided to enhance security. Which of
the following are examples of these options?

1. ro
2. nodev
3. noexec
4. nosuid

. Which of the following commands would give the most
accurate overview of mounted disk devices (without showing
much information about mounted system devices as well)?

1. mount
2. mount -a
3. df -hT
4. du -h

. Which command enables you to show all files in the current
directory so that the newest files are listed last?

1. ls -lRt
2. ls -lrt
3. mls -alrt
4. ls -alr

. Which command enables you to copy hidden files as well as
regular files from /home/$USER to the current directory?

1. cp -a /home/$USER
2. cp -a /home/$USER/*
3. cp -a /home/$USER/.
4. cp -a home/$USER.

. Which command enables you to rename the file myfile to
mynewfile?

1. mv myfile mynewfile
2. rm myfile mynewfile
3. rn myfile mynewfile
4. ren myfile mynewfile

. Which statement about hard links is not true?

1. Hard links cannot be created to directories.
2. Hard links cannot refer to files on other devices.
3. The inode keeps a hard link counter.
4. If the original hard link is removed, all other hard links

become invalid.

. Which command creates a symbolic link to the directory /home
in the directory /tmp?

1. ln /tmp /home
2. ln /home /tmp
3. ln -s /home /tmp
4. ln -s /tmp /home

. Which tar option enables you to update an existing tar
archive?

1. -a
2. -A
3. -r
4. -u

Foundation Topics

Working with the File System Hierarchy

To manage a Linux system, you should be familiar with the
default directories that exist on almost all Linux systems. This
section describes these directories and explains how mounts
are used to compose the file system hierarchy.

Defining the File System Hierarchy

The file system on most Linux systems is organized in a similar
way. The layout of the Linux file system is defined in the File

system Hierarchy Standard (FHS), and this file system
hierarchy is described in man 7 file-hierarchy. Table 3-2 shows
an overview of the most significant directories that you’ll
encounter on a Red Hat Enterprise Linux (RHEL) system, as
specified by the FHS.

Table 3-2 FHS Overview

Directory Use

/ Specifies the root directory. This is where the file system tree
starts.

/boot Contains all files and directories that are needed to boot the Linux
kernel.

/dev Contains device files that are used for accessing physical devices.
This directory is essential during boot.

/etc Contains configuration files that are used by programs and
services on your server. This directory is essential during boot.

Directory Use

/home Used for local user home directories.

/media,
/mnt

Contain directories that are used for mounting devices in the file
system tree.

/opt Used for optional packages that may be installed on your server.

/proc Used by the proc file system. This is a file system structure that
gives access to kernel information.

/root Specifies the home directory of the root user.

/run Contains process and user-specific information that has been
created since the last boot.

/srv May be used for data by services like NFS, FTP, and HTTP.

/sys Used as an interface to different hardware devices that are
managed by the Linux kernel and associated processes.

Directory Use

/tmp Contains temporary files that may be deleted without any
warning during boot.

/usr Contains subdirectories with program files, libraries for these
program files, and documentation about them.

/var Contains files that may change in size dynamically, such as log
files, mail boxes, and spool files.

Understanding Mounts

To understand the organization of the Linux file system, you
need to understand the important concept of mounting. A
mount is a connection between a device and a directory. A
Linux file system is presented as one hierarchy, with the root
directory (/) as its starting point. This hierarchy may be
distributed over different devices and even computer systems
that are mounted into the root directory.

In the process of mounting, a device is connected to a specific
directory, such that after a successful mount this directory gives
access to the device contents.

Mounting devices makes it possible to organize the Linux file
system in a flexible way. There are several disadvantages to
storing all files in just one file system, which gives several good
reasons to work with multiple mounts:

High activity in one area may fill up the entire file system,
which will negatively impact services running on the server.
If all files are on the same device, it is difficult to secure
access and distinguish between different areas of the file
system with different security needs. By mounting a separate
file system, you can add mount options to meet specific
security needs.
If a one-device file system is completely filled, it may be
difficult to make additional storage space available.

To avoid these pitfalls, it is common to organize Linux file
systems in different devices (and even shares on other
computer systems), such as disk partitions and logical volumes,
and mount these devices into the file system hierarchy. By
configuring a device as a dedicated mount, you also are able to
use specific mount options that can restrict access to the device.
Some directories are commonly mounted on dedicated devices:

/boot: This directory is often mounted on a separate device
because it requires essential information your computer

needs to boot. Because the root directory (/) is often on a
Logical Volume Manager (LVM) logical volume, from which
Linux cannot boot by default, the kernel and associated files
need to be stored separately on a dedicated /boot device.
/boot/EFI: If a system uses Extensible Firmware Interface
(EFI) for booting, a dedicated mount is required, giving
access to all files required in the earliest stage of the boot
procedure.
/var: This directory is often on a dedicated device because it
grows in a dynamic and uncontrolled way (for example,
because of the log files that are written to /var/log). By
putting it on a dedicated device, you can ensure that it will
not fill up all storage on your server.
/home: This directory often is on a dedicated device for
security reasons. By putting it on a dedicated device, you can
mount it with specific options, such as noexec and nodev, to
enhance the security of the server. When you are reinstalling
the operating system, it is an advantage to have home
directories in a separate file system. The home directories
can then survive the system reinstall.
/usr: This directory contains operating system files only, to
which normal users normally do not need any write access.
Putting this directory on a dedicated device allows
administrators to configure it as a read-only mount.

Apart from these directories, you may find servers that have
other directories that are mounted on dedicated partitions or
volumes also. After all, it is up to the discretion of the
administrator to decide which directories get their own
dedicated devices.

To get an overview of all devices and their mount points, you
can use different commands:

The mount command gives an overview of all mounted
devices. To get this information, the /proc/mounts file is read,
where the kernel keeps information about all current
mounts. It shows kernel interfaces also, which may lead to a
long list of mounted devices being displayed. Example 3-1
shows sample output of this command.

Example 3-1 Partial mount Command Output

Click here to view code image

[root@server1 ~]# mount

sysfs on /sys type sysfs (rw,nosuid,nodev,noexec

proc on /proc type proc (rw,nosuid,nodev,noexec,

devtmpfs on /dev type devtmpfs (rw,nosuid,seclab

 nr_inodes=227265,mode=755)

securityfs on /sys/kernel/security type security

y y y yp y

 noexec,relatime)

tmpfs on /dev/shm type tmpfs (rw,nosuid,nodev,se

devpts on /dev/pts type devpts (rw,nosuid,noexec

 gid=5,mode=620,ptmxmode=000)

tmpfs on /run type tmpfs (rw,nosuid,nodev,seclab

tmpfs on /sys/fs/cgroup type tmpfs (ro,nosuid,no

 mode=755)

…

/dev/nvme0n1p1 on /boot type xfs (rw,relatime,se

, noquota)

sunrpc on /var/lib/nfs/rpc_pipefs type rpc_pipef

tmpfs on /run/user/42 type tmpfs (rw,nosuid,node

 size=184968k,mode=700,uid=42,gid=42)

tmpfs on /run/user/1000 type tmpfs (rw,nosuid,no

 size=184968k,mode=700,uid=1000,gid=1000)

gvfsd-fuse on /run/user/1000/gvfs type fuse.gvfs

 (rw,nosuid,nodev,relatime,user_id=1000,group_i

/dev/sr0 on /run/media/student/RHEL-9-0-BaseOS-x

(ro,nosuid,nodev,relatime,nojoliet,check=s,map=n

 uid=1000,gid=1000,dmode=500,fmode=400,uhelper=

tmpfs on /run/user/0 type tmpfs (rw,nosuid,nodev

 size=184968k,mode=700))

The df -Th command was designed to show available disk
space on mounted devices; it includes most of the system
mounts. Because it will look on all mounted file systems, it is

a convenient command to use to get an overview of current
system mounts. The -h option summarizes the output of the
command in a human-readable way, and the -T option shows
which file system type is used on the different mounts.
The findmnt command shows mounts and the relationship
that exists between the different mounts. Because the output
of the mount command is a bit overwhelming, you may like
the output of findmnt. Notice that because of width
limitations of the book page, the output that belongs in the
OPTIONS column appears on the left side of the page.

In Exercise 3-1, you use different commands to get an overview
of currently mounted devices.

Exercise 3-1 Getting an Overview of Current Mounts

1. Log in as the student user and type mount. Notice that the
output of the command is quite overwhelming. If you read
carefully, though, you’ll see a few directories from the Linux
directory structure and their corresponding mounts.

2. Type df -hT. Notice that a lot fewer devices are shown. An
example of the output of this command is shown in Example
3-2.

Example 3-2 df -hT Sample Output

Click here to view code image

[root@server1 ~]# df -hT

 Filesystem Type Size Used Ava

 /dev/mapper/centos-root xfs 5.9G 3.9G 2

 devtmpfs devtmpfs 908M 0

 tmpfs tmpfs 918M 144K 917M

 tmpfs tmpfs 918M 21M 897M

 tmpfs tmpfs 918M 0 9

cgroup

 /dev/sda1 xfs 197M 131M

Now that you have entered the mount and df commands, let’s
have a closer look at the output of the df -hT command in
Example 3-2.

The output of df is shown in seven columns:

Filesystem: The name of the device file that interacts with
the disk device that is used. The real devices in the output
start with /dev (which refers to the directory that is used to
store device files). You can also see a couple of tmpfs devices.
These are kernel devices that are used to create a temporary
file system in RAM.
Type: The type of file system that was used.

Size: The size of the mounted device.
Used: The amount of disk space the device has in use.
Avail: The amount of unused disk space.
Use%: The percentage of the device that currently is in use.
Mounted on: The directory the device currently is mounted
on.

Note that when you use the df command, the sizes are reported
in kibibytes. The option -m will display these in mebibytes, and
using -h will display a human-readable format in KiB, MiB, GiB,
TiB, or PiB.

Managing Files

As an administrator, you need to be able to perform common
file management tasks. These tasks include the following:

Working with wildcards
Managing and working with directories
Working with absolute and relative pathnames
Listing files and directories
Copying files and directories
Moving files and directories
Deleting files and directories

The following subsections explain how to perform these tasks.

Working with Wildcards

When you’re working with files, using wildcards can make your
work a lot easier. A wildcard is a shell feature that helps you
refer to multiple files in an easy way. Table 3-3 gives an
overview.

Table 3-3 Wildcard Overview

Wildcard Use

* Refers to an unlimited number of any characters. ls *, for
instance, shows all files in the current directory (except those that
have a name starting with a dot).

? Used to refer to one specific character that can be any character.
ls c?t would match cat as well as cut.

[auo] Refers to one character that may be selected from the range that
is specified between square brackets. ls c[auo]t would match cat,
cut, and cot.

Managing and Working with Directories

To organize files, Linux works with directories (also referred
to as folders). You have already read about some default
directories as defined by the FHS. When users start creating
files and storing them on a server, it makes sense to provide a
directory structure as well. As an administrator, you have to be
able to walk through the directory structure. Exercise 3-2 gives
you practice working with directories.

Exercise 3-2 Working with Directories

1. Open a shell as the student user. Type cd. Next, type pwd,
which stands for print working directory. You’ll see that you
are currently in your home directory; that is, name
/home/<username>.

2. Type touch file1. This command creates an empty file with
the name file1 on your server. Because you currently are in
your home directory, you can create any file you want to.

3. Type cd /. This changes the current directory to the root (/)
directory. Type touch file2. You’ll see a “permission denied”
message. Ordinary users can create files only in directories
where they have the permissions needed for this.

4. Type cd /tmp. This brings you to the /tmp directory, where
all users have write permissions. Again, type touch file2.
You’ll see that you can create items in the /tmp directory

(unless there is already a file2 that is owned by somebody
else).

5. Type cd without any arguments. This command brings you
back to your home directory.

6. Type mkdir files. This creates a directory with the name
files in the current directory. The mkdir command uses the
name of the directory that needs to be created as a relative
pathname; it is relative to the position you are currently in.

7. Type mkdir /home/$USER/files. In this command, you are
using the variable $USER, which is substituted with your
current username. The complete argument of mkdir is an
absolute filename to the files directory that you are trying to
create. Because this directory already exists, you’ll get a “file
exists” error message.

8. Type rmdir files to remove the files directory that you have
just created. The rmdir command enables you to remove
directories, but it works only if the directory is empty and
does not contain any files.

Working with Absolute and Relative Pathnames

In the previous section, you worked with the commands cd and
mkdir. You used these commands to browse through the

directory structure. You also worked with a relative filename
and an absolute filename.

An absolute filename, or absolute pathname, is a complete
path reference to the file or directory you want to work with.
This pathname starts with the root directory, followed by all
subdirectories up to the actual filename. No matter what your
current directory is, absolute filenames will always work. An
example of an absolute filename is /home/lisa/file1.

A relative filename is relative to the current directory as
shown with the pwd command. It contains only the elements
that are required to get from the current directory up to the
item you need. Suppose that your current directory is /home (as
shown by the pwd command). When you refer to the relative
filename lisa/file1, you are referring to the absolute filename
/home/lisa/file1.

When working with relative filenames, it is sometimes useful to
move up one level in the hierarchy. Imagine you are logged in
as root and you want to copy the file /home/lisa/file1 to the
directory /home/lara. A few solutions would work:

Use cp /home/lisa/file1 /home/lara. Because in this
command you are using absolute pathnames, this command
will work at all times.
Make sure your current directory is /home and use cp
lisa/file1 lara. Notice that both the source file and the
destination file are referred to as relative filenames and for
that reason do not start with a /. There is a risk though: if the
directory lara in this example doesn’t exist, the cp command
creates a file with the name lara. If you want to make sure it
copies to a directory, and generates an error message if the
directory doesn’t exist, use cp lisa/file1 lara/.
If the current directory is set to /home/lisa, you could also use
cp file1 ../lara. In this command, the name of the target file
uses .., which means go up one level. The .. is followed by
/lara, so the total name of the target file would be interpreted
as “go up one level” (so you would be in /home), and from
there, look for the /lara subdirectory.

Tip

If you are new to working with Linux,
understanding relative filenames is not always
easy. There is an easy workaround, though. Just
make sure that you always work with absolute
pathnames. Using absolute pathnames involves
more typing, but it is easier, so you’ll make fewer
mistakes.

In Chapter 2, “Using Essential Tools,” you learned how you can
use Bash completion via the Tab key to complete commands.
Using Bash completion makes it a lot easier to work with long
commands. Bash completion works on filenames, too. If you
have a long filename, like my-long-file-name, try typing my- and
pressing the Tab key. If in the current directory, just one file has
a name starting with my-, the filename will automatically be
completed. If there are more files that have a name starting
with my-, you have to press the Tab key twice to see a list of all
available filenames.

Listing Files and Directories

While working with files and directories, it is useful to show the
contents of the current directory. For this purpose, you can use
the ls command. If used without arguments, ls shows the

contents of the current directory. Some common arguments
make working with ls easier. Table 3-4 gives an overview.

Table 3-4 ls Common Command-Line Options

Command Use

ls -l Shows a long listing, which includes information about file
properties, such as creation date and permissions.

ls -a Shows all files, including hidden files.

ls -lrt The -t option shows commands sorted based on modification
date. You’ll see the most recently modified files last in the list
because of the -r option. This is a very useful command.

ls -d Shows the names of directories, not the contents of all
directories that match the wildcards that have been used with
the ls command.

Command Use

ls -R Shows the contents of the current directory, in addition to all of
its subdirectories; that is, it Recursively descends all
subdirectories.

Tip

A hidden file on Linux is a file that has a name that
starts with a dot. Try the following: touch .hidden.
Next, type ls. You will not see the file. Then type ls -
a. You’ll see it.

When using ls and ls -l, you’ll see that files are color-coded. The
different colors that are used for different file types make it
easier to distinguish between different kinds of files. Do not
focus too much on them, though, because the colors that are
used are the result of a variable setting that might be different
in other Linux shells or on other Linux servers.

Copying Files and Directories

To organize files on your server, you’ll often copy files. The cp
command helps you do so. Copying a single file is not difficult:

just use cp /<path to file> /<path to destination>. To copy the
file /etc/hosts to the directory /tmp, for instance, use cp
/etc/hosts /tmp. This results in the file hosts being written to
/tmp.

Tip

If you copy a file to a directory but the target
directory does not exist, a file will be created with
the name of the alleged target directory. In many
cases, that’s not the best solution and it would be
better to just get an error message instead. You can
accomplish this by placing a / after the directory
name, so use cp /etc/hosts /tmp/ and not cp
/etc/hosts /tmp.

With the cp command, you can also copy an entire
subdirectory, with its contents and everything beneath it. To do
so, use the option -R, which stands for recursive. (You’ll see the
option -R with many other Linux commands also.) For example,
to copy the directory /etc and everything in it to the directory
/tmp, you would use the command cp -R /etc /tmp.

While using the cp command, you need to consider permissions
and other properties of the files. Without extra options, you risk

these properties not being copied. If you want to make sure that
you keep the current permissions, use the -a option, which has
cp work in archive mode. This option ensures that permissions
and all other file properties will be kept while copying. So, to
copy an exact state of your home directory and everything
within it to the /tmp directory, use cp -a ~ /tmp.

A special case when working with cp is hidden files. By default,
hidden files are not copied over. There are three solutions to
copy hidden files as well:

cp /somedir/.* /tmp This copies all files that have a name
starting with a dot (the hidden files, that is) to /tmp. It gives
an error message for directories whose name starts with a
dot in /somedir, because the -R option was not used.
cp -a /somedir/ . This copies the entire directory /somedir,
including its contents, to the current directory. So, as a result,
a subdirectory somedir will be created in the current
directory.
cp -a /somedir/. . This copies all files, regular and hidden, to
the current directory (notice the space between the two dots
at the end of this command).

Moving Files and Directories

To move files and directories, you use the mv command. This
command removes the file from its current location and puts it
in the new location. You can also use it to rename a file (which,
in fact, is nothing else than copying and deleting the original
file anyway). Let’s take a look at some examples:

mv myfile /tmp Moves the file myfile from the current
directory to /tmp.
mkdir somefiles; mv somefiles /tmp First creates a
directory with the name somefiles and then moves this
directory to /tmp. Notice that this also works if the directory
contains files.
mv myfile mynewfile Renames the file myfile to a new file
with the name mynewfile.

Deleting Files and Directories

The last common file administration task is file deletion. To
delete files and directories, you use the rm command. When
this command is used on a single file, the single file is removed.
You can also use it on directories that contain files. To do so,
include the -r option, which again stands for recursive.

Note

Many commands have an option that creates
recursive behavior. On some commands you use
the option -R, and on other commands you use the
option -r. That is confusing, but it is just the way it
is.

On RHEL 9, if you use the rm command as root, it prompts for
confirmation. The reason is that through /root/.bashrc, rm is
defined as an alias to rm -i. If you do not like that, you can use
the -f option or remove the alias from /root/.bashrc. Make sure
that you know what you are doing after removing this safety
feature, because you’ll never be warned anymore while
removing files.

In Exercise 3-3, you work with the common file management
utilities.

Note

In this exercise dots are important and used as a
part of the commands. To avoid confusion, if
normally a dot would be used to indicate the end of
a sentence, in this exercise I’ve left it out if it
immediately follows a command.

Exercise 3-3 Working with Files

Figure 3-1 provides an overview of the directory structure you
are working with in this exercise.

1. Open a shell as an ordinary user.
2. Type pwd

You should be in the directory /home/$USER.

Figure 3-1 Sample Directory Structure Overview

3. Type mkdir newfiles oldfiles
Type ls
You’ll see the two directories you have just created, as well
as some other directories that already existed in the user
home directory.

4. Type touch newfiles/.hidden; touch newfiles/unhidden
This creates two files in the directory newfiles.

5. Type cd oldfiles
6. Type ls -al

This shows two items only: ., which refers to the current
directory; and .., which refers to the item above this (the

parent directory).
7. Type ls -al ../newfiles

In this command, you are using a relative pathname to refer
to the contents of the /home/$USER/newfiles directory.

8. Use the command cp -a ../newfiles/ . (notice the space
between the / and the . at the end of the command).

9. Type ls -a
You see that you have created the subdirectory newfiles into
the directory oldfiles.

10. Make sure that you are still in /home/$USER/oldfiles, and
type rm -rf newfiles

11. Now use the command cp -a ../newfiles/* . (notice the space
between the * and .). Type ls -al to see what has been copied
now. You’ll see that the hidden file has not been copied.

12. To make sure that you copy hidden files as well as regular
files, use cp -a ../newfiles/. .

13. Verify the command worked this time, using ls -al
You’ll notice that the hidden files as well as the regular files
have been successfully copied.

Using Links

Links on Linux are like aliases that are assigned to a file. There
are symbolic links, and there are hard links. To understand a

link, you need to know a bit about how the Linux file system
uses inodes for file system administration.

Understanding Hard Links

Linux stores administrative data about files in inodes. The
inode is used to store all administrative data about files. Every
file on Linux has an inode, and in the inode, important
information about the file is stored:

The data block where the file contents are stored
The creation, access, and modification date
Permissions
File owners

Just one important piece of information is not stored in the
inode: the name of the file. Names are stored in the directory,
and each filename knows which inode it has to address to
access further file information. It is interesting to know that an
inode does not know which name it has; it just knows how
many names are associated with the inode. These names are
referred to as hard links. So every file always has one hard link
to start with, which is the name of the file.

When you create a file, you give it a name. Basically, this name
is a hard link. On a Linux file system, multiple hard links can be
created to a file. This is useful if a file with the same contents
needs to be available at multiple locations, and you need an
easy solution to keep the contents the same. If a change is
applied to any one of the hard links, it will show in all other
hard links as well, as all hard links point to the same data
blocks. Some restrictions apply to hard links, though:

Hard links must exist all on the same device (partition,
logical volume, etc).
You cannot create hard links to directories.
When the last name (hard link) to a file is removed, access to
the file’s data is also removed.

The nice thing about hard links is that no difference exists
between the first hard link and the second hard link. They are
both just hard links, and if the first hard link that ever existed
for a file is removed, that does not impact the other hard links
that still exist. The Linux operating system uses links on many
locations to make files more accessible.

Understanding Symbolic Links

A symbolic link (also referred to as a soft link) does not link
directly to the inode but to the name of the file. This makes
symbolic links much more flexible, but it also has some
disadvantages. The advantage of symbolic links is that they can
link to files on other devices, as well as on directories. The
major disadvantage is that when the original file is removed,
the symbolic link becomes invalid and does not work any
longer.

Figure 3-2 gives a schematic overview of how inodes, hard
links, and symbolic links relate to one another.

Figure 3-2 Links and Inodes Overview

Creating Links

Use the ln command to create links. It uses the same order of
parameters as cp and mv; first you mention the source name,
followed by the destination name. If you want to create a
symbolic link, you use the option -s, and then you specify the

source and target file or directory. One important restriction
applies: to be able to create hard links, you must be the owner
of the item that you want to link to.

Table 3-5 shows some examples.

Table 3-5 ln Usage Examples

Command Explanation

ln /etc/hosts . Creates a link to the file /etc/hosts in the current directory

ln -s
/etc/hosts .

Creates a symbolic link to the file /etc/hosts in the current
directory

ln -s /home
/tmp

Creates a symbolic link to the directory /home in the
directory /tmp

The ls command will reveal whether a file is a link:

In the output of the ls -l command, the first character is an l if
the file is a symbolic link.
If a file is a symbolic link, the output of ls -l shows the name
of the item it links to after the filename.
If a file is a hard link, ls -l shows the hard link counter. In the
output in Example 3-3, this is the number 3 that is right
before root root for the hosts file.

Example 3-3 Showing Link Properties with ls -l

Click here to view code image

[root@localhost tmp]# \ls -l

total 3

lrwxrwxrwx. 1 root root 5 Jan 19 04:38 home -> /

-rw-r--r--. 3 root root 158 Jun 7 2013 hosts

Note

In Example 3-3, the command used is \ls -l, not ls -l.
The ls command by default is an alias, which takes
care of using the different colors when showing ls
output; the \ in front of the command causes the
alias not to be used.

Removing Links

Removing links can be dangerous. To show you why, let’s
consider the following procedure.

1. Make a directory named test in your home directory: mkdir
~/test

2. Copy all files that have a name starting with a, b, c, d, or e
from /etc to this directory: cp /etc/[a-e]* ~/test

3. Type ls -l ~/test/ to verify the contents of the test directory.
4. Make sure that you are in your home directory, by using cd

without arguments.
5. Type ln -s test link
6. Type rm link. This removes the symbolic link. (Do not use -r

or -f to remove symbolic links, even if they are
subdirectories.)

7. Type ls -l. You’ll see that the symbolic link has been removed.
8. Let’s do it again. Type ln -s test link to create the link again.
9. Type rm -rf link/ (which is what you would get by using Bash

command-line completion).
10. Type ls. You’ll see that the directory link still exists.
11. Type ls test/. You’ll see the directory test is now empty.

In Exercise 3-4, you learn how to work with symbolic links and
hard links.

Exercise 3-4 Working with Symbolic Links and Hard Links

Note

In this exercise dots are important and used as a
part of the commands. To avoid confusion, if
normally a dot would be used to indicate the end
of a sentence, in this exercise I’ve left it out if it
immediately follows a command.

1. Open a shell as the student user.
2. From your home directory, type ln /etc/passwd . (Make sure

that the command ends with a dot that has a space before it!)
This command gives you an “operation not permitted” error
because you are not the owner of /etc/passwd.

3. Type ln -s /etc/passwd . (Again, make sure that the command
ends with a space and a dot!) This works; you do not have to
be the owner to create a symbolic link.

4. Type ln -s /etc/hosts (this time with no dot at the end of the
command). You’ll notice this command also works. If the
target is not specified, the link is created in the current
directory.

5. Type touch newfile and create a hard link to this file by
using ln newfile linkedfile

6. Type ls -l and notice the link counter for newfile and
linkedfile, which is currently set to 2.

7. Type ln -s newfile symlinkfile to create a symbolic link to
newfile.

8. Type rm newfile
9. Type cat symlinkfile. You will get a “no such file or

directory” error message because the original file could not
be found.

10. Type cat linkedfile. This gives no problem.
11. Type ls -l and look at the way the symlinkfile is displayed.

Also look at linkedfile, which now has the link counter set to
1.

12. Type ln linkedfile newfile
13. Type ls -l again. You’ll see that the original situation has been

restored.

Working with Archives and Compressed Files

Another important file-related task is managing archives and
compressed files. To create an archive of files on a Linux
computer, you often use tar command. This command was
originally designed to stream files to a tape without any

compression of the files, and it still doesn’t compress anything
by default. If you want to compress files as well, you have to
either use a specific compression tool or specify an option that
compresses the archive while it is created. In this section, you
learn how to work with archives and compressed files.

Managing Archives with tar

The Tape ARchiver (tar) utility is used to archive files. Although
originally designed to stream files to a backup tape, in its
current use tar is used mostly to write files to an archive file.
You have to be able to perform four important tasks with tar on
the RHCSA exam:

Create an archive
List the contents of an archive
Extract an archive
Compress and uncompress archives

Creating Archives with tar

To create an archive, you use the following syntax: tar -cf
archivename.tar /files-you-want-to-archive. If you want to
see what is happening, use the -v option as well. To put files in
an archive, you need at least read permissions to the file and
execute permissions on the directory the file resides in. Use tar

-cvf /root/homes.tar /home as user root to write the contents of
the /home directory and everything below it to the file
homes.tar in the directory /root. Notice the options that are
used; the order in these options is important.

Originally, tar did not use the dash (-) in front of its options.
Modern tar implementations use that dash, as do all other
Linux programs, but they still allow the old usage without a
dash for backward compatibility. For a complete overview of
relevant options used, see Table 3-6 in the next section.

While you’re managing archives with tar, it is also possible to
add a file to an existing archive or to update an archive. To add
a file to an archive, you use the -r options. Use, for instance, tar
-rvf /root/homes.tar /etc/hosts to add the /etc/hosts file to the
archive.

To update a currently existing archive file, you can use the -u
option. So, use tar -uvf /root/homes.tar /home to write newer
versions of all files in /home to the archive.

Monitoring and Extracting tar Files

Before you extract a file, it is good to know what might be
expected. The option -t can be used to find out. Type, for

instance, tar -tvf /root/homes.tar to see the contents of the tar
archive.

Tip

It is good practice to create archive files with an
extension such as .tar or .tgz so that they can be
easily recognized, but not everyone does that. If
you think that a file is a tar archive but you are not
sure, use the file command. If you type file
somefile, for instance, the file command analyzes
its contents and shows on the command line what
type of file it is.

To extract the contents of an archive, use tar -xvf
/archivename.tar. This extracts the archive in the current
directory. That means that if you are in /root when typing tar -
xvf /root/homes.tar, and the file contains a directory /home,
after extracting you’ll have a new directory /root/home that
contains the entire contents of the file. This might not be what
you wanted to accomplish. There are two solutions to put the
extracted contents right where you want to have them:

Before extracting the archive file, use the cd command to get
into the directory where you want to extract the file.

Use the option -C /targetdir to specify the target directory
where you want to extract the file to. If you want to put the
contents of the file /root/homes.tar in the directory /tmp, for
instance, you can use tar -xvf homes.tar -C /tmp.

Note

The RHCSA objectives mention that you need to
know how to work with star as well. The star
utility was designed to offer support for archiving
nondefault file attributes, such as access control
lists (see Chapter 7, “Permissions Management”) or
SELinux file context (see Chapter 22, “Managing
SELinux”). In its current release, tar offers this
functionality also, so there is no real need to use
star anymore. You’ll also notice that it isn’t even
included in the default installation patterns.

Apart from extracting an entire archive file, it is also possible to
extract one file out of the archive. To do so, use tar -xvf
/archivename.tar file-you-want-to-extract. If your archive
etc.tar contains the file /etc/hosts that you want to extract, for
instance, use tar -xvf /root/etc.tar etc/hosts.

Using Compression

Many files contain a lot of redundancy. Compression programs
allow you to make files take less disk space by taking out that
redundancy. If there is no redundancy, you won’t gain much by
using compression. In all examples of the tar command that
you have seen so far, not a single byte has been compressed.
Originally, after you created the archive, it had to be
compressed with a separate compression utility, such as gzip or
bzip2. After having created home.tar, you can compress it with
gzip home.tar. gzip replaces home.tar with its compressed
version, home.tar.gz, which takes significantly less space.

As an alternative to using gzip, you can use the bzip2 utility.
Originally, bzip2 used a more efficient encryption algorithm,
which resulted in smaller file sizes, but currently hardly any
difference in file size exists between the result of bzip2 and the
result of gzip. Another alternative for compressing files, is the
xz utility, which has recently been introduced.

To decompress files that have been compressed with gzip or
bzip2, you can use the gunzip and bunzip2 utilities; you work
with some examples of this command in Exercise 3-5.

As an alternative to using these utilities from the command line,
you can include the -z (gzip), -J (xz), or -j (bzip2) option while
creating the archive with tar. This will immediately compress

the archive while it is created. There is no need to use this
option while extracting. The tar utility will recognize the
compressed content and automatically decompress it for you.
In Exercise 3-5, you apply the newly acquired tar skills. Table 3-
6 gives an overview of the most significant tar options.

Table 3-6 Overview of tar Options

Option Use

c Creates an archive.

v Shows verbose output while tar is working.

t Shows the contents of an archive.

z Compresses/decompresses the archive while creating it, by using
gzip.

Option Use

j Compresses/decompresses the archive by using bzip2.

J Compresses/decompresses the archive using xz.

x Extracts an archive.

u Updates an archive; only newer files will be written to the archive.

C Changes the working directory before performing the command.

r Appends files to an archive.

Exercise 3-5 Using tar

1. Open a root shell on your server. When you log in, the home
directory of user root will become the current directory, so
all relative filenames used in this exercise refer to /root/.

2. Type tar cvf etc.tar /etc to archive the contents of the /etc
directory.

3. Type file etc.tar and read the information that is provided
by the command. This should look like the following:
Click here to view code image

[root@server1 ~]# file etc.tartar: POSIX tar a

4. Type gzip etc.tar to compress the tar file, which packages it
into the file etc.tar.gz.

5. Type tar tvf etc.tar.gz Notice that the tar command has no
issues reading from a gzip compressed file. Also notice that
the archive content consists of all relative filenames.

6. Type tar xvf etc.tar.gz etc/hosts
7. Type ls -R Notice that a subdirectory etc has been created in

the current directory. In this subdirectory, the file hosts has
been restored.

8. Type gunzip etc.tar.gz This decompresses the compressed
file but does not change anything else with regard to the tar
command.

9. Type tar xvf etc.tar -C /tmp etc/passwd This extracts the
password file including its relative pathname to the /tmp
directory. Use ls -l /tmp/etc/passwd to verify.

10. Type tar cjvf homes.tar /home This creates a compressed
archive of the home directory to the home directory of user
root.

11. Type rm -f *gz *tar to remove all files resulting from
exercises in this chapter from the home directory of /root.

Summary

In this chapter, you learned how to work with essential file
management tools. You learned how the Linux directory
structure is organized by default, and you learned what file
types to expect in which directories. You also learned how to
find your way in the directory structure and to work with files.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the
Introduction, you have several choices for exam preparation:
the end-of-chapter labs; the memory tables in Appendix C;
Chapter 27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the
Key Topic icon in the margin of the page. Table 3-7 lists a
reference for these key topics and the page number on which
each is found.

Table 3-7 Key Topics for Chapter 3

Key Topic Element Description Page

Table 3-2 FHS Overview 56

Table 3-3 Wildcard Overview 61

Paragraph Definition of an absolute filename 63

Paragraph Definition of a relative filename 63

Table 3-4 ls Common Command-Line Options 64

Paragraph Definition of an inode 68

Table 3-5 ln Usage Examples 69

Key Topic Element Description Page

Table 3-6 Overview of tar Options 74

Complete Tables and Lists from Memory

Print a copy of Appendix C, “Memory Tables” (found on the
companion website), or at least the section for this chapter, and
complete the tables and lists from memory. Appendix D,
“Memory Tables Answer Key,” includes completed tables and
lists to check your work.

Define Key Terms

Define the following key terms from this chapter and check
your answers in the glossary:

File System Hierarchy Standard (FHS)

mount

root directory

device

directory

folder

absolute filename

path

relative filename

inode

hard link

symbolic link

tar

star

compression

gzip

bzip2

xz

Review Questions

The questions that follow are meant to help you test your
knowledge of concepts and terminology and the breadth of
your knowledge. You can find the answers to these questions in
Appendix A.

. Which directory would you go to if you were looking for
configuration files?

. Which command enables you to display a list of current
directory contents, with the newest files listed first?

. Which command enables you to rename the file myfile to
yourfile?

. Which command enables you to wipe an entire directory
structure, including all of its contents?

. How do you create a link to the directory /tmp in your home
directory?

. How would you copy all files that have a name that starts with
a, b, or c from the directory /etc to your current directory?

. Which command enables you to create a link to the directory
/etc in your home directory?

. What is the safe option to remove a symbolic link to a
directory?

. How do you create a compressed archive of the directories /etc
and /home and write that archive to /tmp/etchome.tgz?

. How would you extract the file /etc/passwd from
/tmp/etchome.tgz that you have created in the previous step?

End-of-Chapter Lab

In this chapter, you learned how to perform basic file
management tasks. Managing files is an essential task for a
Linux administrator. This end-of-chapter lab enables you to
practice these skills and make sure that you master them before
taking the RHCSA exam.

Lab 3.1

1. Log in as user student and use sudo -i to open a root shell. In
the home directory of root, create one archive file that
contains the contents of the /home directory and the /etc
directory. Use the name /root/essentials.tar for the archive
file.

2. Copy this archive to the /tmp directory. Also create a hard
link to this file in the / directory.

3. Rename the file /essentials.tar to /archive.tar.
4. Create a symbolic link in the home directory of the user root

that refers to /archive.tar. Use the name link.tar for the
symbolic link.

5. Remove the file /archive.tar and see what happened to the
symbolic link. Remove the symbolic link also.

6. Compress the /root/essentials.tar file.

Chapter 4

Working with Text Files

The following topics are covered in this chapter:

Using Common Text File–Related Tools
A Primer to Using Regular Expressions
Using grep to Analyze Text
Working with Other Useful Text Processing Utilities

The following RHCSA exam objectives are covered in this
chapter:

Use grep and regular expressions to analyze text
Create and edit text files

Since the early days of UNIX, working with text files has been
an important administrator skill. Even on modern Linux
versions such as Red Hat Enterprise Linux 9, working with text
files is still an important skill, as everything you do on Linux is
stored as a text file. By applying the correct tools, you’ll easily
find and modify the configuration of everything. This chapter is
about these tools. Make sure that you master them well,
because good knowledge of these tools really will make your

work as a Linux administrator a lot easier. At the same time, it
will increase your chances of passing the RHCSA exam.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess
whether you should read this entire chapter thoroughly or
jump to the “Exam Preparation Tasks” section. If you are in
doubt about your answers to these questions or your own
assessment of your knowledge of the topics, read the entire
chapter. Table 4-1 lists the major headings in this chapter and
their corresponding “Do I Know This Already?” quiz questions.
You can find the answers in Appendix A, “Answers to the ‘Do I
Know This Already?’ Quizzes and Review Questions.”

Table 4-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Using Common Text File–Related Tools 1–5

A Primer to Using Regular Expressions 6–8

Foundation Topics Section Questions

Using grep to Analyze Text 10

Working with Other Useful Text Processing Utilities 9

. Which command was developed to show only the first ten lines
in a text file?

1. head
2. top
3. first
4. cat

. Which command enables you to count the number of words in
a text file?

1. count
2. list
3. ls -l
4. wc

. Which key on your keyboard do you use in less to go to the last
line of the current text file?

1. End
2. Page Down
3. q
4. G

. Which option is missing (…) from the following command,
assuming that you want to filter the first field out of the
/etc/passwd file and assuming that the character that is used as
the field delimiter is a :?

cut ... : -f 1 /etc/passwd

1. -d
2. -c
3. -t
4. -x

. Which option is missing (…) if you want to sort the third column
of the output of the command ps aux?

ps aux | sort ...

1. -k3
2. -s3
3. -k f 3
4. -f 3

. Which of the following commands would only show lines in the
file /etc/passwd that start with the text anna?

1. grep anna /etc/passwd
2. grep -v anna /etc/passwd
3. grep $anna /etc/passwd
4. grep ^anna /etc/passwd

. Which regular expression do you use to make the previous
character optional?

1. ?
2. .
3. *
4. &

. Which regular expression do you use if you want the preceding
character to occur at least one time?

1. ?
2. .

3. *
4. +

. Assuming that the field delimiter : is used, which command
prints the fourth field of a line in the /etc/passwd file if the text
user occurs in that line?

1. awk '/user/ { print $4 }' /etc/passwd
2. awk -d : '/user/ { print $4 }' /etc/passwd
3. awk -F : '/user/ $4' /etc/passwd
4. awk -F : '/user/ { print $4 }' /etc/passwd

. Which option would you use with grep to show only lines that
do not contain the regular expression that was used?

1. -x
2. -v
3. -u
4. -q

Foundation Topics

Using Common Text File–Related Tools

Before we start talking about the best possible way to find text
files containing specific text, let’s take a look at how you can

display text files in an efficient way. Table 4-2 provides an
overview of some common commands often used for this
purpose.

Table 4-2 Essential Tools for Managing Text File Contents

Command Explanation

less Opens the text file in a pager, which allows for easy reading

cat Dumps the contents of the text file on the screen

head Shows the top of the text file

tail Shows the bottom of the text file

cut Used to filter specific columns or characters from a text file

Command Explanation

sort Sorts the contents of a text file

wc Counts the number of lines, words, and characters in a text file

Apart from their use on a text file, these commands may also
prove very useful when used with pipes. You can use the
command less /etc/passwd, for example, to open the contents
of the /etc/passwd file in the less pager, but you can also use
the command ps aux | less, which sends the output of the
command ps aux to the less pager to allow for easy reading.

Doing More with less

In many cases, as a Linux administrator you’ll need to read the
contents of text files. The less utility offers a convenient way to
do so. To open the contents of a text file in less, just type less
followed by the name of the file you want to see, as in less
/etc/passwd.

From less, you can use the Page Up and Page Down keys on
your keyboard to browse through the file contents. Seen

enough? Then you can press q to quit less. Also very useful is
that you can easily search for specific contents in less using
/sometext for a forward search and ?sometext for a backward
search. Repeat the last search by using n.

If you think this sounds familiar, it should. You have seen
similar behavior in vim and man. The reason is that all of these
commands are based on the same code.

Note

Once upon a time, less was developed because it
offered more features than the classical UNIX tool
more, which was developed to go through file
contents page by page. So, the idea was to do more
with less. Developers did not like that, so they
enhanced the features of the more command as
well. The result is that both more and less offer
many features that are similar, and which tool you
use doesn’t really matter that much anymore.
There is one significant difference, though, and
that is the more utility ends if the end of the file is
reached. To prevent this behavior, you can start
more with the -p option. Another difference is that
the more tool is a standard part of any Linux and

UNIX installation. This is not the case for less,
which may have to be installed separately.

In Exercise 4-1, you apply some basic less skills to work with
file contents and command output.

Exercise 4-1 Applying Basic less Skills

1. From a terminal, type less /etc/passwd. This opens the
/etc/passwd file in the less pager.

2. Type /root to look for the text root. You’ll see that all
occurrences of the text root are highlighted.

3. Press G to go to the last line in the file.
4. Press q to quit less.
5. Type ps aux | less. This sends the output of the ps aux

command (which shows a listing of all processes) to less.
Browse through the list.

6. Press q to quit less.

Showing File Contents with cat

The less utility is useful to read long text files. If a text file is not
that long, you are probably better off using cat, which just
dumps the contents of the text file on the terminal it was started

from. This is convenient if the text file is short. If the text file is
long, however, you’ll see all contents scrolling by on the screen,
and only the lines that fit on the terminal screen are displayed.
Using cat is simple. Just type cat followed by the name of the
file you want to see. For instance, use cat /etc/passwd to show
the contents of this file on your computer screen.

Tip

The cat utility dumps the contents of a file to the
screen from the beginning to the end, which means
that for a long file you’ll see the last lines of the file
only. If you are interested in the first lines, you can
use the tac utility, which gives the inversed result
of cat.

Displaying the First or Last Lines of a File with head and tail

If a text file contains much information, it can be useful to filter
the output a bit. You can use the head and tail utilities to do
that. Using head on a text file will show by default the first ten
lines of that file. Using tail on a text file shows the last ten lines
by default. You can adjust the number of lines that are shown
by adding -n followed by the number you want to see. So, tail -n
5 /etc/passwd shows the last five lines of the /etc/passwd file.

Tip

With older versions of head and tail, you had to
use the -n option to specify the number of lines you
wanted to see. With current versions of both
utilities, you may also omit the -n option. So, using
either tail -5 /etc/passwd or tail -n 5 /etc/passwd
gives you the exact same results.

Another useful option that you can use with tail is -f. This
option starts by showing you the last ten lines of the file you’ve
specified, but it refreshes the display as new lines are added to
the file. This is convenient for monitoring log files. The
command tail -f /var/log/messages (which has to be run as the
root user) is a common command to show in real time messages
that are written to the main log file /var/log/messages. To end
this command, press Ctrl-C.

By combining tail and head, you can do smart things as well.
Suppose, for instance, that you want to see line number 11 of
the /etc/passwd file. To do that, use head -n 11 /etc/passwd |
tail -n 1. The command before the pipe shows the first 11 lines
from the file. The result is sent to the pipe, and on that result
tail -n 1 is used, which leads to only line number 11 being

displayed. In Exercise 4-2, you apply some basic head and tail
operations to get the exact results that you want.

Exercise 4-2 Using Basic head and tail Operations

1. From a root shell, type tail -f /var/log/messages. You’ll see
the last lines of /var/log/messages being displayed. The file
doesn’t close automatically.

2. Press Ctrl-C to quit the previous command.
3. Type head -n 5 /etc/passwd to show the first five lines in

/etc/passwd.
4. Type tail -n 2 /etc/passwd to show the last two lines of

/etc/passwd.
5. Type head -n 5 /etc/passwd | tail -n 1 to show only line

number 5 of the /etc/passwd file.

Filtering Specific Columns with cut

When you’re working with text files, it can be useful to filter out
specific fields. Imagine that you need to see a list of all users in
the /etc/passwd file. In this file, several fields are defined, of
which the first contains the name of the users who are defined.
To filter out a specific field, the cut command is useful. To do
this, use the -d option to specify the field delimiter followed by -
f with the number of the specific field you want to filter out. So,

the complete command is cut -d : -f 1 /etc/passwd if you want
to filter out the first field of the /etc/passwd file. You can see the
result in Example 4-1.

Example 4-1 Filtering Specific Fields with cut

Click here to view code image

[root@localhost ~]# cut -d : -f 1 /etc/passwd

root

bin

daemon

adm

lp

sync

shutdown

halt

...

Sorting File Contents and Output with sort

Another very useful command to use on text files is sort. As you
can probably guess, this command sorts text. If you type sort
/etc/passwd, for instance, the content of the /etc/passwd file is
sorted in byte order. You can use the sort command on the

output of a command also, as in cut -f 1 -d : /etc/passwd | sort,
which sorts the contents of the first column in the /etc/passwd
file.

By default, the sort command sorts in byte order, which is the
order in which the characters appear in the ASCII text table.
Notice that this looks like alphabetical order, but it is not, as all
capital letters are shown before lowercase letters. So Zoo would
be listed before apple. In some cases, that is not convenient
because the content that needs sorting may be numeric or in
another format. The sort command offers different options to
help sorting these specific types of data. Type, for instance, cut -
f 3 -d : /etc/passwd | sort -n to sort the third field of the
/etc/passwd file in numeric order. It can be useful also to sort in
reverse order; if you use the command du -h | sort -rn, you get
a list of files sorted with the biggest file in that directory listed
first.

You can also use the sort command and specify which column
you want to sort. To do this, use sort -k3 -t : /etc/passwd, for
instance, which uses the field separator : to sort the third
column of the /etc/passwd file. Add -n to the command to sort in
a numeric order, and not in an alphabetic order.

Another example is shown in Example 4-2, where the output of
the ps aux command is sorted. This command gives an
overview of processes running on a Linux system. The fourth
column indicates memory usage, and by applying a numeric
sort to the output of the command, you can see that the
processes are sorted by memory usage, such that the process
that consumes the most memory is listed last.

Example 4-2 Using ps aux to Find the Busiest Processes on a
Linux Server

Click here to view code image

[root@localhost ~]# ps aux | sort -k 4 -n

root 897 0.3 1.1 348584 42200 ?

 /usr/bin/python3 -s /usr/sbin/firewalld --nofo

student 2657 1.0 1.1 2936188 45200 ?

 /usr/bin/gjs /usr/share/org.gnome.Characters/o

 BackgroundService

student 2465 0.3 1.3 143976 52644 ?

 /usr/bin/Xwayland :0 -rootless -noreset -acces

 run/user/1000/.mutter-Xwaylandauth.0SRUV1 -lis

 -displayfd 6 -initfd 7

student 2660 1.9 1.4 780200 53412 ?

 /usr/libexec/gnome-terminal-server

root 2480 2.1 1.6 379000 61568 ?

 /usr/bin/python3 /usr/libexec/rhsm-service

student 2368 0.9 1.6 1057048 61096 ?

 /usr/libexec/evolution-data-server/evolution-a

root 1536 0.6 1.8 555908 69916 ?

 /usr/libexec/packagekitd

student 2518 0.6 1.8 789408 70336 ?

 /usr/libexec/gsd-xsettings

student 2540 0.5 1.8 641720 68828 ?

 /usr/libexec/ibus-x11 --kill-daemon

student 2381 4.7 1.9 1393476 74756 ?

 /usr/bin/gnome-software --gapplication-service

student 2000 16.0 7.8 3926096 295276 ?

 /usr/bin/gnome-shell

Counting Lines, Words, and Characters with wc

When working with text files, you sometimes get a large
amount of output. Before deciding which approach to handling
the large amount of output works best in a specific case, you
might want to have an idea about the amount of text you are
dealing with. In that case, the wc command is useful. In its
output, this command gives three different results: the number
of lines, the number of words, and the number of characters.

Consider, for example, the ps aux command. When executed as
root, this command gives a list of all processes running on a
server. One solution to count how many processes there are
exactly is to pipe the output of ps aux through wc, as in ps aux
| wc. You can see the result of the command in Example 4-3,
which shows that the total number of lines is 90 and that there
are 1,045 words and 7,583 characters in the command output.

Example 4-3 Counting the Number of Lines, Words, and
Characters with wc

Click here to view code image

[root@localhost ~]# ps aux | wc

 90 1045 7583

A Primer to Using Regular Expressions

Working with text files is an important skill for a Linux
administrator. You must know not only how to create and
modify existing text files, but also how to find the text file that
contains specific text.

It will be clear sometimes which specific text you are looking
for. Other times, it might not. For example, are you looking for
color or colour? Both spellings might give a match. This is just
one example of why using flexible patterns while looking for
text can prove useful. In Linux these flexible patterns are
known as regular expressions, often also referred to as regex.

To understand regular expressions a bit better, let’s take a look
at a text file example, shown in Example 4-4. This file contains
the last six lines from the /etc/passwd file. (This file is used for
storing Linux accounts; see Chapter 6, “User and Group
Management,” for more details.)

Example 4-4 Sample Lines from /etc/passwd

Click here to view code image

[root@localhost ~]# tail -n 6 /etc/passwd

anna:x:1000:1000::/home/anna:/bin/bash

rihanna:x:1001:1001::/home/rihanna:/bin/bash

annabel:x:1002:1002::/home/annabel:/bin/bash

anand:x:1003:1003::/home/anand:/bin/bash

joanna:x:1004:1004::/home/joanna:/bin/bash

joana:x:1005:1005::/home/joana:/bin/bash

Now suppose that you are looking for the user anna. In that
case, you could use the general regular expression parser grep
to look for that specific string in the file /etc/passwd by using
the command grep anna /etc/passwd. Example 4-5 shows the
results of that command, and as you can see, way too many
results are shown.

Example 4-5 Example of Why You Need to Know About Regular
Expressions

Click here to view code image

[root@localhost ~]# grep anna /etc/passwd

anna:x:1000:1000::/home/anna:/bin/bash

rihanna:x:1001:1001::/home/rihanna:/bin/bash

annabel:x:1002:1002::/home/annabel:/bin/bash

joanna:x:1004:1004::/home/joanna:/bin/bash

A regular expression is a search pattern that allows you to look
for specific text in an advanced and flexible way.

Using Line Anchors

In Example 4-5, suppose that you wanted to specify that you are
looking for lines that start with the text anna. The type of
regular expression that specifies where in a line of output the
result is expected is known as a line anchor.

To show only lines that start with the text you are looking for,
you can use the regular expression ^ (in this case, to indicate
that you are looking only for lines where anna is at the
beginning of the line; see Example 4-6).

Example 4-6 Looking for Lines Starting with a Specific Pattern

Click here to view code image

[root@localhost ~]# grep ^anna /etc/passwd

anna:x:1000:1000::/home/anna:/bin/bash

annabel:x:1002:1002::/home/annabel:/bin/bash

Another regular expression that relates to the position of
specific text in a specific line is $, which states that the line ends
with some text. For instance, the command grep ash$
/etc/passwd shows all lines in the /etc/passwd file that end with
the text ash. This command shows all accounts that have a shell
and are able to log in (see Chapter 6 for more details).

Using Escaping in Regular Expressions

Although not mandatory, when you’re using regular
expressions, it is a good idea to use escaping to prevent regular
expressions from being interpreted by the shell. When a
command line is entered, the Bash shell parses the command
line, looking for any special characters like *, $, and ?. It will
next interpret these characters. The point is that regular
expressions use some of these characters as well, and to make
sure the Bash shell doesn’t interpret them, you should use
escaping.

In many cases, it is not really necessary to use escaping; in some
cases, the regular expression fails without escaping. To prevent
this from ever happening, it is a good idea to put the regular
expression between quotes. So, instead of typing grep ^anna
/etc/passwd, it is better to use grep '^anna' /etc/passwd, even if
in this case both examples work.

Using Wildcards and Multipliers

In some cases, you might know which text you are looking for,
but you might not know how the specific text is written. Or you
might just want to use one regular expression to match
different patterns. In those cases, wildcards and multipliers
come in handy.

To start with, there is the dot (.) regular expression. This is used
as a wildcard character to look for one specific character. So,
the regular expression r.t would match the strings rat, rot, and
rut.

In some cases, you might want to be more specific about the
characters you are looking for. If that is the case, you can
specify a range of characters that you are looking for. For
instance, the regular expression r[aou]t matches the strings
rat, rot, and rut but it wouldn’t match rit and ret.

Another useful regular expression is the multiplier *. This
matches zero or more of the previous character. That does not
seem to be very useful, but indeed it is, as you will see in the
examples at the end of this section.

If you know exactly how many of the previous character you
are looking for, you can specify a number also, as in re\{2\}d,
which would match reed, but not red. The last regular
expression that is useful to know about is ?, which matches zero
or one of the previous character. Table 4-3 provides an
overview of the most important regular expressions.

Using Extended Regular Expressions

What makes regular expressions sometimes a bit hard to
understand is the fact that there are different sets of regular
expressions. The base regular expressions as discussed so far
are supported by tools like grep. There is also a set of extended
regular expressions, which is not supported by default. When
used with grep, you’ll have to add the -E option to indicate it is
an extended regular expression. The + can be used to indicate
that a character should occur one or more times, and the ? is
used to indicate that a character should occur zero or one times.
When used in grep, don’t forget to use grep -E to ensure that
these are interpreted as extended regular expressions!

Table 4-3 Most Significant Regular Expressions

Regular
Expression Use

^text Matches line that starts with specified text.

text$ Matches line that ends with specified text.

Regular
Expression Use

. Wildcard. (Matches any single character.)

[abc] Matches a, b, or c.

? Extended regular expression that matches zero or one of the
preceding character.

+ Extended regular expression that matches one or more of the
preceding character.

* Matches zero to an infinite number of the previous character.

\{2\} Matches exactly two of the previous character.

\{1,3\} Matches a minimum of one and a maximum of three of the
previous character.

Regular
Expression Use

colou?r Matches zero or one of the previous character. This makes the
previous character optional, which in this example would
match both color and colour.

(…) Used to group multiple characters so that the regular expression
can be applied to the group.

Let’s take a look at an example of a regular expression that
comes from the man page semanage-fcontext and relates to
managing SELinux (see Chapter 22, “Managing SELinux”). The
sample line contains the following regular expression:

"/web(/.*)?"

In this regular expression, the text /web is referred to. This text
string can be followed by the regular expression (/.*)?. To
understand the regular expression, start with the ?, which
refers to the part between braces and indicates that the part
between braces may occur zero times or one time. Within the
braces, the pattern starts with a slash, which is just a slash,
followed by zero or more characters. So this means that just the

directory name gives a match, but also the directory name
followed by just a slash, or a slash that is followed by a
filename.

What makes regular expressions difficult is that there is not just
one set of regular expressions; there are also extended regular
expressions. And to make the concept more complex, the
extended regular expressions need specific commands. The
well-known command grep (covered next) by default deals
with base regular expressions. If you want to use extended
regular expressions, you need grep -E or egrep.

Two common extended regular expressions are + and ?. The +
will look for a pattern where the preceding character occurs
one or more times, and the ? looks for a pattern where the
preceding character does not occur or occurs one time. Use the
following procedure to find out how these extended regular
expressions can be confusing:

1. Create a text file with the name regex.txt and the following
contents:

bat

boot

boat

bt

2. Use grep 'b.*t' regex.txt to see any line that starts with a b
and ends with a t.

3. Use grep 'b.+t' regex.txt. You might expect to see only lines
that have at least three characters, but you don’t, because you
are using an extended regular expression, and without using
any additional options, grep doesn’t recognize the extended
regular expression.

4. Use grep -E 'b.+t' regex.txt. Now you see that the extended
regular expression does work as expected.

Using grep to Analyze Text

The ultimate utility to work with regular expressions is grep,
which stands for “general regular expression parser.” Quite a
few examples that you have seen already were based on the
grep command. The grep command has a couple of useful
options to make it even more efficient. Table 4-4 describes some
of the most useful options.

Table 4-4 Most Useful grep Options

Option Use

-i Matches upper- and lowercase letters (i.e., not case sensitive).

-v Shows only lines that do not contain the regular expression.

-r Searches files in the current directory and all subdirectories.

-e Searches for lines matching more than one regular expression.
Use -e before each regular expression you want to use.

-E Interprets the search pattern as an extended regular expression.

-A
<number>

Shows <number> of lines after the matching regular expression.

-B
<number>

Shows <number> of lines before the matching regular
expression.

In Exercise 4-3, you work through some examples using these
grep options.

Exercise 4-3 Using Common grep Options

1. Type grep ' #'/etc/services. This shows that the file
/etc/services contains a number of lines that start with the
comment sign, #.

2. To view the configuration lines that really matter, type grep -
v '^#' /etc/ services. This shows only lines that do not start
with a #.

3. Type grep -v '^#' /etc/services -B 5. This shows lines that do
not start with a # sign but also the five lines that are directly
before each of those lines, which is useful because in the
preceding lines you’ll typically find comments on how to use
the specific parameters. However, you’ll also see that many
blank lines are displayed.

4. Type grep -v -e '^#' -e '^$'/etc/services. This excludes all
blank lines and lines that start with #.

Working with Other Useful Text Processing Utilities

The grep utility is a powerful utility that allows you to work
with regular expressions. It is not the only utility, though. Some
even more powerful utilities exist, like awk and sed, both of
which are extremely rich and merit a book by themselves. The
utilities were developed in the time that computers did not

commonly have screens attached, and for that reason they do a
good job of treating text files in a scripted way.

As a Linux administrator in the twenty-first century, you do not
have to be a specialist in using these utilities anymore. It does
make sense, however, to know how to perform some common
tasks using these utilities. The most useful use cases are
summarized in the following examples.

This command shows the fourth field from /etc/passwd:

Click here to view code image

awk -F : ' { print $4 } ' /etc/passwd

This is something that can be done by using the cut utility as
well, but the awk utility is more successful in distinguishing the
fields that are used in command output of files. The bottom line
is that if cut does not work, you should try the awk utility.

You can also use the awk utility to do tasks that you might be
used to using grep for. Consider the following example:

Click here to view code image

awk -F : ' /user/ { print $4 } ' /etc/passwd

This command searches the /etc/passwd file for the text user
and will print the fourth field of any matching line.

In this example, the “stream editor” sed is used to print the fifth
line from the /etc/passwd file:

sed -n 5p /etc/passwd

The sed utility is a very powerful utility for filtering text from
text files (like grep), but it has the benefit that it also allows you
to apply modifications to text files, as shown in the following
example:

Click here to view code image

sed -i s/old-text/new-text/g ~/myfile

In this example, the sed utility is used to search for the text old-
text in ~/myfile and replace all occurrences with the text new-
text. Notice that the default sed behavior is to write the output
to STDOUT, but the option -i will write the result directly to the
file. Make sure that you know what you are doing before using
this command, because it might be difficult to revert file
modifications that are applied in this way.

You’ll like the following example if you’ve ever had a utility
containing a specific line in a file that was erroneous:

sed -i -e ' 2d ' ~/myfile

With this command, you can delete a line based on a specific
line number. You can also make more complicated references to
line numbers. Use, for instance, sed -i -e '2d;20,25d' ~/myfile to
delete lines 2 and 20 through 25 in the file ~/myfile.

Tip

Do not focus on awk and sed too much. These are
amazing utilities, but many of the things that can
be accomplished using them can be done using
other tools as well. The awk and sed tools are very
rich, and you can easily get lost in them if you are
trying to dig too deep.

Summary

In this chapter, you learned how to work with text files. You
acquired some important skills like searching text files with
grep and displaying text files or part of them with different

utilities. You also learned how regular expressions can be used
to make the search results more specific. Finally, you learned
about the very sophisticated utilities awk and sed, which allow
you to perform more advanced operations on text files.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the
Introduction, you have several choices for exam preparation:
the end-of-chapter labs; the memory tables in Appendix C;
Chapter 27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the
Key Topic icon in the margin of the page. Table 4-5 lists a
reference for these key topics and the page number on which
each is found.

Table 4-5 Key Topics for Chapter 4

Key Topic Element Description Page

Key Topic Element Description Page

Table 4-2 Essential Tools for Managing Text File Contents 84

Paragraph Definition of a regular expression 90

Table 4-3 Most Significant Regular Expressions 92

Table 4-4 Most Useful grep Options 94

Complete Tables and Lists from Memory

Print a copy of Appendix C, “Memory Tables” (found on the
companion website), or at least the section for this chapter, and
complete the tables and lists from memory. Appendix D,
“Memory Tables Answer Key,” includes completed tables and
lists to check your work.

Define Key Terms

Define the following key terms from this chapter and check
your answers in the glossary:

pager

regular expression

line anchor

escaping

wildcard

multiplier

Review Questions

The questions that follow are meant to help you test your
knowledge of concepts and terminology and the breadth of
your knowledge. You can find the answers to these questions in
Appendix A.

. Which command enables you to see the results of the ps aux
command in a way that you can easily browse up and down in
the results?

. Which command enables you to show the last five lines from
~/samplefile?

. Which command do you use if you want to know how many
words are in ~/samplefile?

. After opening command output using tail -f ~/mylogfile, how
do you stop showing output?

. Which grep option do you use to exclude all lines that start
with either a # or a ;?

. Which regular expression do you use to match one or more of
the preceding characters?

. Which grep command enables you to see text as well as TEXT in
a file?

. Which grep command enables you to show all lines starting
with PATH, as well as the five lines just before that line?

. Which sed command do you use to show line 9 from
~/samplefile?

. Which command enables you to replace all occurrences of the
word user with the word users in ~/samplefile?

End-of-Chapter Lab

In this end-of-chapter lab, you work with some of the most
significant text processing utilities.

Lab 4.1

1. Describe two ways to show line 5 from the /etc/passwd file.
2. How would you locate all text files on your server that

contain the current IP address? Do you need a regular
expression to do this?

3. You have just used the sed command that replaces all
occurrences of the text Administrator with root. Your
Windows administrators do not like that very much. How do
you revert?

4. Assuming that in the ps aux command the fifth line contains
information about memory utilization, how would you
process the output of that command to show the process that
has the heaviest memory utilization first in the results list?

5. Which command enables you to filter the sixth column of ps
aux output?

6. How do you delete the sixth line from the file ~/myfile?

Chapter 5

Connecting to Red Hat Enterprise Linux 9

The following topics are covered in this chapter:

Working on Local Consoles
Using SSH and Related Utilities

The following RHCSA exam objectives are covered in this
chapter:

Access remote systems using SSH
Log in and switch users in multiuser targets
Boot, reboot, and shut down a system normally
Securely transfer files between systems
Configure key-based authentication for SSH

You have already learned how to log in on Linux from a
graphical environment. In this chapter, you learn about some
other methods to access a Linux shell and start working. You
learn how to work from local consoles and from Secure Shell
(SSH) to connect to Linux. You also learn how to perform some
basic tasks from these environments.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess
whether you should read this entire chapter thoroughly or
jump to the “Exam Preparation Tasks” section. If you are in
doubt about your answers to these questions or your own
assessment of your knowledge of the topics, read the entire
chapter. Table 5-1 lists the major headings in this chapter and
their corresponding “Do I Know This Already?” quiz questions.
You can find the answers in Appendix A, “Answers to the ‘Do I
Know This Already?’ Quizzes and Review Questions.”

Table 5-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Working on Local Consoles 1–6

Using SSH and Related Utilities 7–10

. Which is the correct term for the description here?

“Used to refer to the physical screen you are currently looking
at as a user”

1. Terminal
2. Console

3. Shell
4. Interface

. Which is the correct term for the description here?

“The environment from which a shell is used where users can
enter their commands”

1. Terminal
2. Console
3. Shell
4. Interface

. Which is the correct term for the description here?

“The environment that offers a command line on which users
type the commands they want to use”

1. Terminal
2. Console
3. Shell
4. Interface

. Which device file is associated with the virtual console that is
opened after using the Alt-F6 key sequence?

1. /dev/console6

2. /dev/tty6
3. /dev/vty6
4. /dev/pts/6

. Which of the following methods will open a pseudo terminal
device? (Choose two)

1. Log in using an SSH session
2. Press Alt-F2 to open a new nongraphical login
3. Type terminal in the search menu and open it
4. Enter your username and password on a nongraphical

console

. Sometimes a server reboot may be necessary to accomplish a
task. Which of the following is not typically one of them?

1. To recover from serious problems such as server hangs and
kernel panics

2. To apply kernel updates
3. To apply changes to kernel modules that are being used

currently and therefore cannot be reloaded easily
4. To apply changes to the network configuration

. Which of the following is true about remote access to Linux
servers from a Windows environment?

1. Open a shell terminal on Windows and type ssh to access
Linux servers remotely. The ssh command is available as a
default part of the Windows operating system.

2. Configure Remote Access on Windows if you want to access
Linux servers running the sshd process.

3. Install the PuTTY program on Windows to access sshd
services on Linux from Windows.

4. You cannot remotely access Linux machines from Windows.

. What is the name of the file in which the public key fingerprint
of the SSH servers you have connected to in the past are stored?

1. /etc/ssh/remote_hosts
2. /etc/ssh/known_hosts
3. ~/.ssh/remote_hosts
4. ~/.ssh/known_hosts

. To allow graphical applications to be used through an SSH
session, you can set a parameter in the /etc/ssh/ssh_config file.
Using this parameter makes it unnecessary to use the -X
command-line option each time an SSH session is initiated.
Which of the following parameters should be used?

1. Host *
2. TunnelX11 yes

3. ForwardX11 yes
4. Xclient yes

. Which of the following statements about key-based SSH
authentication is true?

1. After creating the key pair, you need to copy the private key
to the remote server.

2. Use scp to copy the public key to the remote server.
3. Use ssh-copy-id to copy the public key to the remote server.
4. Use ssh-keygen on the server to generate a key pair that

matches the client keys.

Foundation Topics

Working on Local Consoles

You have already learned how to log in on Linux by using a
graphical console. In this section, you learn some more about
the possibilities you have while working from either a graphical
Linux console or a text-based Linux console.

Before we get into details, it makes sense to highlight the
difference between the words console and terminal. In this
book, I follow the common notion of a console as the
environment the user is looking at. That means that the console
is basically what you see when you are looking at your
computer screen.

A terminal is an environment that is opened on the console and
provides access to a nongraphical shell, typically Bash. This is
the command-line environment that can be used to type
commands. A terminal can be offered through a window while
using a graphical console, but it can also be opened as the only
thing that you see in a textual console. You can also open a
remote terminal, using SSH.

This means that in a textual environment, the words console
and terminal are more or less equivalent. In a graphical
environment, they are not. Think of it like this: You can have
multiple terminals open on a console, but you cannot have
multiple consoles open in one terminal.

Logging In to a Local Console

Roughly, there are two ways to make yourself known to a Linux
server. Sometimes you just sit at the Linux console and
interactively log in from the login prompt that is presented. In

other cases, a remote connection is established. The second part
of this chapter is about logging in from a remote session; in this
part, you learn how to work from a local console.

If a Linux server boots with a graphical environment (the so-
called graphical target), you see a login prompt requesting you
to select a username and enter a password. Many Linux servers
do not use a graphical environment at all, though, and just
present a text-based console, as shown in Figure 5-1.

Figure 5-1 Logging In from a Text Console

To log in from a text console, you need to know which user
account you should use. On many installations, the unrestricted
system administrator user root is available, but using this
account to do your work typically is not a good idea. The user
root has no limitations to access the system and can therefore
do a lot of damage. A small mistake can have a huge impact. On
older versions of RHEL, the user root was enabled by default.
On RHEL 9, you can indicate while installing if the root user
should have a password or not. If the root user doesn’t get a

password, you’ll only be able to log in with an administrator
user. This is a user that will only obtain root superpowers while
using the sudo command.

If the root user, is enabled, you shouldn’t use it. Typically, it is a
better idea to log in as one of the locally defined users, and
there are many reasons to do so, including the following:

Logging in this way will make it more difficult to make
critical errors.
On many occasions, you will not need root permissions
anyway.
If you only allow access to normal users and not to root, it
will force an attacker to guess two different things: the name
of that specific user as well as the password of that user.
If you do need root access anyway, you can use the sudo -i
command from the local user environment to open a root
shell. Note that you are allowed to do this only if you have
sudo privileges, and you’ll have to type your current user
password after using the command.
If you know the root user password, use su - to open a root
shell. This command will prompt for the root user password,
and you’ll be able to work as root until you type exit. Notice
that the sudo -i command only works for authorized users

and doesn’t require the user to enter the root password, and
for that reason is considered more secure.
Use sudo to configure specific administration tasks for
specific users only. See Chapter 6, “User and Group
Management,” for more information.

Switching Between Terminals in a Graphical Environment

When you’re working in a graphical environment, it is
relatively easy to open several different working environments,
such as different terminal windows in which you can work
from a shell. In the upper-left part of the graphical interface,
click Activities, and in the Search bar that appears, type term,
which presents an icon to open a terminal. Because terminals
are opened as a subshell, you do not have to log in to each
terminal again, and will get access as the same user account
that was originally used to log in to the graphical environment
(see Figure 5-2).

Figure 5-2 Using Different Terminal Windows from the Graphical Environment

Working from a graphical environment is convenient. As an
administrator, you can open several terminal windows, and in
each terminal window you can use the su - command to open a
shell in which you can work with a different user identity, or
use sudo -i to open a root shell. This allows you to easily test
features and see the results of these tests immediately. Exercise
5-1 guides you through a common scenario where you can do
this and see how testing things from one terminal window
while monitoring from another terminal window can be
convenient.

Exercise 5-1 Working from Several Terminal Windows
Simultaneously

1. Start your computer and make sure to log in as a non-root
user account from the graphical login window that is
presented. You should have a local user with the name
student and the password password that you can use for this
purpose.

2. Click Activities, and type term. Next, click the terminal icon
to open a new terminal window.

3. From the Terminal menu on the top of your screen, select
New Window.

4. From one of the terminal windows, type the command sudo
-i and enter the password of the student user. Then, type tail
-f /var/log/secure. This opens a trace on the file
/var/log/secure, where you can monitor security events in
real time.

5. From the other terminal windows, type su -. When asked for
a password, you normally enter the password for the user
root. Enter a wrong password.

6. Now look at the terminal where the trace on /var/log/secure
is still open. You will see that an error message has been
written to this file.

7. Press Ctrl-C to close the tail -f session on the /var/log/secure
file.

Working with Multiple Terminals in a Nongraphical
Environment

In the previous section, you learned how to work with multiple
terminals in a graphical environment. This is relatively easy
because you just have to open a new terminal window. In a
nongraphical environment, you have only one terminal
interface that is available, and that makes working in different
user shell environments a bit more difficult.

To offer an option that makes working from several consoles on
the same server possible, Linux uses the concept of a virtual
terminal. This feature allows you to open six different terminal
windows from the same console at the same time and use key
sequences to navigate between them. To open these terminal
windows, you can use the key sequences Alt-F1 through Alt-F6.
The following virtual consoles are available:

F1: Gives access to the GNOME Display Manager (GDM)
graphical login
F2: Provides access to the current graphical console
F3: Gives access back to the current graphical session
F4–F6: Gives access to nongraphical consoles

Tip

A convenient alternative to using the Alt-Function
key sequences is offered by the chvt command.
This command enables you to switch to a different
virtual environment directly from the current
environment. If you are in a graphical console
right now, open a terminal and type chvt 4. This
brings you to a login prompt on virtual terminal 4.
Switch back to the graphical environment using

the chvt 3 command, or use chvt 1 to switch back
to a graphical login prompt.

Of these virtual consoles, the first one is used as the default
console. It is commonly known as the virtual console tty1, and it
has a corresponding device file in the /dev directory that has
the name /dev/tty1. The other virtual consoles also have
corresponding device files, which are numbered /dev/tty1
through /dev/tty6.

When you’re working from a graphical environment, it is also
possible to open different virtual consoles. Because the
combinations between the Alt key and the Function keys
typically already have a meaning in the graphical environment,
you need to use a Ctrl-Alt-Function key instead. So, do not use
Alt-F4 to open /dev/tty4 from a graphical environment, but
instead use Ctrl-Alt-F4. To get back to the graphical console, you
can use the Alt-F3 key sequence. The Alt-F6 and Ctrl-Alt-F6 key
sequences are essentially the same. It is important to use the
Ctrl key as well when going from a GUI to a text environment.
To go back from the text environment to the GUI environment,
using the Ctrl key is optional.

Note

A long time ago, big central computers were used,
to which dumb terminal devices were connected.
These dumb terminal devices consisted of nothing
more than a monitor and keyboard attached to it.
From each of these dumb terminal devices, a
console session to the operating system could be
started. On a modern Linux server, no dumb
terminals are attached. They have been replaced
with the virtual terminals described here.

Understanding Pseudo Terminal Devices

Every terminal used in a Linux environment has a device file
associated with it. You’ve just learned that terminals that are
started in a nongraphical environment are typically referred to
through the devices /dev/tty1 through /dev/tty6.

For terminal windows that are started from a graphical
environment, pseudo terminals are started. These pseudo
terminals are referred to using numbers in the /dev/pts
directory. So, the first terminal window that is started from a
graphical environment appears as /dev/pts/1, the second
terminal window appears as /dev/pts/2, and so on. In Exercise 5-

2, you learn how to work with these pseudo terminal devices
and see which user is active on which pseudo terminal.

Note

On earlier versions of Linux, pseudo terminals
were seen as pty devices. These types of terminals
are now deprecated and replaced with the pts
terminal types, as described before.

Exercise 5-2 Working with Pseudo Terminals

1. Log in to the graphical console, using a non-root user
account.

2. Open a terminal window.
3. From the terminal window, type w. This will give an

overview of all users who are currently logged in. Notice the
column that mentions the tty the users are on, in which you
see tty2 that refers to the terminal window.

4. Open another graphical terminal window. Type su - to
become root.

5. Type w to display once more an overview of all users who
are currently logged in. Notice that the second su - session
doesn’t show as an additional user account because both
have been started from the graphical interface, which is tty2.

At this point, you know how to work with the console,
terminals, virtual terminals, and pseudo terminals. In the
section “Using SSH and Related Utilities” later in this chapter,
you use SSH to open terminal sessions to your server. These
sessions show as pseudo terminals as well.

Booting, Rebooting, and Shutting Down Systems

As an administrator of a Linux server, you occasionally have to
reboot the Linux server. Rebooting a server is not often a
requirement, but it can make your work a lot easier because it
will make sure that all processes and tasks that were running
on your server have reread their configurations and initialized
properly.

Tip

Rebooting a Linux server is an important task on
the RHCSA exam. Everything you have configured
should still be working after the server has
rebooted. So, make sure that you reboot at least
once during the exam, but also after making
critical modifications to the server configuration. If
your server cannot reboot anymore after applying
critical modifications to your server’s

configuration, at least you know where to look to
fix the issues.

For an administrator who really knows Linux very thoroughly,
rebooting a server is seldom necessary. Experienced
administrators can often trigger the right parameter to force a
process to reread its configurations. There are some scenarios,
though, in which even experienced Linux administrators have
to reboot:

To recover from serious problems such as server hangs and
kernel panics
To apply kernel updates
To apply changes to kernel modules that are being used
currently and therefore cannot be reloaded easily

When a server is rebooted, all processes that are running need
to shut down properly. If the server is just stopped by pulling
the power plug, much data will typically be lost. The reason is
that processes that have written data do not typically write that
data directly to disk, but instead store it in memory buffers (a

cache) from where it is committed to disk when it is convenient
for the operating system.

To issue a proper reboot, you have to alert the Systemd process.
The Systemd process is the first process that was started when
the server was started, and it is responsible for managing all
other processes, directly or indirectly. As a result, on system
reboots or halts, the Systemd process needs to make sure that
all these processes are stopped. To tell the Systemd process this
has to happen, you can use a few commands:

systemctl reboot or reboot
systemctl halt or halt
systemctl poweroff or poweroff

When stopping a machine, you can use the systemctl halt
command or the systemctl poweroff command. The difference
between these two commands is that the systemctl poweroff
command talks to power management on the machine to shut
off power on the machine. This often does not happen when
using systemctl halt.

Note

Using the methods that have just been described
will normally reboot or stop your machine. In

some cases, these commands might not work. For
such scenarios, there is an emergency reset option
as well. Using this option may prove useful if the
machine is not physically accessible. To force a
machine to reset, from a root shell you can type
echo b > /proc/sysrq-trigger. This command
immediately resets the machine without saving
anything. Notice that this command should be used
only if there are no other options!

Using SSH and Related Utilities

In the previous sections in this chapter, you learned how to
access a terminal if you have direct access to the server console.
Many administrators work with servers that are not physically
accessible. To manage these servers, Secure Shell (SSH) is
normally used. In this section, you learn how to work with SSH.

On modern Linux distributions, Secure Shell is the common
method to gain access to other machines over the network. In
SSH, cryptography is used to ensure that you are connecting to
the intended server. Also, traffic is encrypted while being
transmitted.

Accessing Remote Systems Using SSH

To access a server using SSH, you need the sshd server process,
as well as an SSH client. On the remote server that you want to
access, the sshd service must be running and offering services,
which it does at its default port 22, and it should not be blocked
by the firewall. After installation, Red Hat Enterprise Linux
starts the sshd process automatically, and by default it is not
blocked by the firewall.

If the SSH port is open, you can access it using the ssh
command from the command line. The ssh command by
default tries to reach the sshd process on the server port 22. If
you have configured the sshd process to offer its services on a
different port, use ssh -p followed by the port number you want
to connect to.

The ssh command is available on all Linux distributions, and
on Apple Mac computers as well, where it can be launched
from a Mac terminal.

If you have a Windows version that does not have the Windows
subsystem for Linux, the ssh command is not a native part of
the Windows operating system. If you want to access Linux
servers through SSH from a Windows computer, you need to
install an SSH client like PuTTY on Windows. From PuTTY,
different types of remote sessions can be established with Linux

machines. Alternative SSH clients for Windows are available as
well, such as MobaXterm, KiTTY, mRemoteNG, Bitvise, and
Xshell.

Accessing another Linux machine from a Linux terminal is
relatively easy. Just type ssh followed by the name or IP address
of the other Linux machine. After connecting, you will be
prompted for a password if a default configuration is used. This
is the password of a user account with the same name as your
current user account, but who should exist on the remote
machine.

When remotely connecting to a Linux server, the SSH client
tries to do that as the user account you are currently logged in
with on the local machine. If you want to connect using a
different user account, you can specify the name of this user on
the command line, in the user@server format. If, for instance,
you want to establish an SSH session as user root to a remote
server, type ssh root@remoteserver. In Exercise 5-3, you learn
how to log in to a remote server using SSH.

Exercise 5-3 Using SSH to Log In to a Remote Server

This exercise assumes that a remote server is available and
reachable. In this exercise, server1 is used as the local server,

and server2 is the remote server on which the sshd process
should be up and running. If you cannot access a remote server
to perform the steps in the exercise, you might alternatively
replace server2 with localhost. It is obvious that by doing so
you will not log in to a remote server, but you still use the ssh
command to connect to an sshd process, and you’ll get the full
experience of working with ssh.

1. Open a root shell on server2. Type systemctl status sshd.
This should show you that the sshd process is currently up
and running.

2. Type ip a | grep 'inet '. (Notice the space between inet and
the closing quote mark.) Notice the IPv4 address your server
is currently using. In the rest of this exercise, it is assumed
that server2 is using IP address 192.168.4.220. Replace that
address with the address that you have found here.

3. Open a shell as a nonprivileged user on server1.
4. On server1, type ssh root@192.168.4.220. This connects to

the sshd process on server2 and opens a root shell.
5. Before being prompted for a password, you see a message

indicating that the authenticity of host 192.168.4.220 cannot
be established (see Example 5-1). This message is shown
because the host you are connecting to is not yet known on
your current host, which might involve a security risk. Type
yes to continue.

6. When prompted, enter the root password. After entering it,
you now are logged in to server2.

7. Type w. Notice that the SSH session you have just opened
shows as just another pseudo terminal session, but you’ll see
the source IP address in the FROM column.

8. Type exit to close the SSH session.

Example 5-1 Security Message Displayed When Logging In to a
Remote Server for the First Time

Click here to view code image

[student@localhost ~]$ ssh root@192.168.29.161

The authenticity of host '192.168.29.161 (192.16

 established.

ED25519 key fingerprint is SHA256:+1vqdHo9iV/

 RNOq26LHsgcASPPW1ga6kxEVjYyAKWIk.

This key is not known by any other names

Are you sure you want to continue connecting (ye

Note

On some occasions, using ssh to get access to a
server will be slow. If you want to know why, use

the -v option with the ssh command. This will start
SSH in verbose mode and show all the individual
components that are contacted. By doing so, you
might get an indication why your server is being
slow.

The security message in Example 5-1 is displayed because the
remote server has never been contacted before and therefore
there is no way to verify the identity of the remote server. After
you connect to the remote server, a public key fingerprint is
stored in the file ~/.ssh/known_hosts.

The next time you connect to the same server, this fingerprint is
checked with the encryption key that was sent over by the
remote server to initialize contact. If the fingerprint matches,
you will not see this message anymore.

In some cases, the remote host key fingerprint does not match
the key fingerprint that is stored locally. That is a potentially
dangerous situation. Instead of being connected to the intended
server, you might be connected to the server of an evildoer. It
does, however, also happen if you are connecting to an IP
address that you have been connected to before but that is now
in use by a different server, or if the sshd service has been
deleted and reinstalled.

If you encounter such a mismatch between the host key that is
presented and the one that you’ve cached, you just have to
remove the key fingerprint from the ~/.ssh/known_hosts file on
the client computer. You can easily do so, using sed. For
instance, use sed -i -e '25d' ~/.ssh/known_hosts to remove line
25 from the known_hosts file (assuming that is the line
containing the erroneous key).

Using Graphical Applications in an SSH Environment

From an SSH session, by default you cannot start graphical
applications. That is because of security; a remote host cannot
display screens on your computer without specific permission
to do that. There are two requirements for starting graphical
applications through an SSH connection:

An X server must be running on the client computer. The X
server is the software component that creates the graphical
screens.
The remote host must be allowed to display screens on the
local computer.

The easiest way to allow the remote host to display graphical
screens on your computer is by adding the -Y option to the ssh
command. So, use ssh -Y linda@server2 if you want to connect

as linda to server2, and also be able to start graphical
applications.

As you have noticed, the ssh command gives you a few options.
Table 5-2 shows some of the most common options available.

Table 5-2 Common ssh Options

Option Use

-v Verbose; shows in detail what is happening while establishing the
connection

-Y Enables support for graphical applications

-p
<PORT>

Used to connect to an SSH service that is not listening on the
default port 22

As an administrator, you can also create a systemwide
configuration that allows you to use X forwarding, which is
starting graphical applications through an SSH session. As root,

open the configuration file /etc/ssh/ssh_config and make sure it
includes the following line:

ForwardX11 yes

The next time you use the ssh command, X forwarding will be
available by default.

Securely Transferring Files Between Systems

If a host is running the sshd service, that service can also be
used to securely transfer files between systems. To do that, you
can use the scp command if you want the file to be copied, or
rsync if you want to synchronize the file. Also, the sftp
command is a part of the SSH solution and enables users to use
an FTP command-line syntax to transfer files using sshd.

Using scp to Securely Copy Files

The scp command is similar to the cp command, which is used
to copy local files, but it also includes an option that enables it
to work with remote hosts. You can use scp to copy files and
subdirectories to and from remote hosts. To copy, for instance,
the /etc/hosts file to the /tmp directory on server2 using your
current user account, use the following command:

scp /etc/hosts server2:/tmp

If you want to connect to server2 as user root to copy the
/etc/passwd file to your home directory, you use the following
command:

Click here to view code image

scp root@server2:/etc/passwd ~

You can also use scp to copy an entire subdirectory structure.
To do so, use the -r option, as in the following command:

scp -r server2:/etc/ /tmp

Notice that the scp command can be configured to connect to a
nondefault SSH port also. It is a bit confusing, but to do this
with the scp command, you need the -P option followed by the
port number you want to connect to. Notice that ssh uses -p
(lowercase) to specify the port it needs to connect to; the scp
command uses an uppercase -P.

Using sftp to Securely Transfer Files

The sftp command provides an alternative to securely transfer
files. Whereas the scp command provides an interface that is
very similar to the cp command, the sftp command provides an
FTP-like interface. Because even modern FTP servers are still
transferring passwords and other sensitive data without using
encryption, sftp should be considered as an alternative.

When working with sftp, you open an FTP client session to the
remote server, where the only requirement on the remote
server is that it should be running the sshd process. From the
FTP client session, you use typical FTP client commands, like
put to upload a file or get to download a file.

Notice that when working with sftp, the local directory is
important, even if after opening the FTP session you only see
the remote directory on the server. When you’re downloading a
file using the get command, the file will be stored in the current
local directory, and when you’re uploading a file using put, the
file will be searched for in the local directory. Exercise 5-4 gives
you a guided tour through using the sftp command and the
rsync command, discussed next.

Using rsync to Synchronize Files

The rsync command uses SSH to synchronize files between a
remote directory and a local directory. The advantage of
synchronizing files is that only differences need to be
considered. So, for example, if you synchronize a 100-MiB file in
which only a few blocks have changed since the previous sync,
only the changed blocks will be synchronized. This approach is
also known as a delta sync.

When you use the rsync command, multiple options are
available. Table 5-3 provides an overview.

Table 5-3 Common rsync Options

Option Use

-r Synchronizes the entire directory tree

-l Copies symbolic links as symbolic links

-p Preserves permissions

-n Performs only a dry run, not actually
synchronizing anything

Option Use

-a Uses archive mode, thus ensuring that entire
subdirectory trees and all file properties will be
synchronized

-A Uses archive mode, and in addition synchronizes
ACLs

-X Synchronizes SELinux context as well

Exercise 5-4 Using SFTP to Manage Files on a Remote Server

1. From a sudo shell, add a line that matches the server2 IP
address to the hostname server2.

2. From a terminal, type sftp student@server2. This gives you
access to an SFTP prompt that is opened on server2.

3. Type ls. You’ll see files in the current working directory on
the remote server.

4. Type pwd. This shows the current directory on the remote
server.

5. Type lpwd. This shows your local current directory.
6. Type lcd /tmp. This changes the local current directory to

/tmp.

7. Type put /etc/hosts. This file will upload the /etc/hosts file
from server1 to the user student home directory on server2.

8. Type exit to close your SFTP session.

Configuring Key-Based Authentication for SSH

If SSH is used on the Internet, it might not be a good idea to
allow password logins. SSH is more secure when using
public/private keys for authentication. This authentication
method is normally enabled by default because it is more
secure than password-based authentication. Only if that is not
possible is a password login used. The only thing you need to do
to enable key-based login is to create a key pair; everything
else is organized by default already.

When using public/private key-based authentication, the user
who wants to connect to a server generates a public/private key
pair. The private key needs to be kept private and will never be
distributed. The public key is stored in the home directory of
the target user on the SSH server in the file
.ssh/authorized_keys.

When authenticating using key pairs, the user generates a hash
derived from the private key. This hash is sent to the server,

and if on the server it proves to match the public key that is
stored on the server, the user is authenticated.

Using Passphrases or Not?

When creating a public/private key pair, you are prompted for a
passphrase. If you want maximal security, you should enter a
passphrase. You are prompted for that passphrase each time
that you are using the private key to authenticate to a remote
host. That is very secure, but it is not very convenient. To create
a configuration that allows for maximal convenience, you can
just press the Enter key twice when generating the
public/private key pair to confirm that you do not want to set a
passphrase. This is a typical configuration that is used for
authentication between servers in a trusted environment
where no outside access is possible anyway.

To create a key pair, use the ssh-keygen command. Next, use
the ssh-copy-id command to copy the public key over to the
target server. In Exercise 5-5, you create a public/private key
pair to log in to the server2 host. (If no remote host is available,
you can use localhost as an alternative to verify the procedure.)

Exercise 5-5 Connecting to a Remote Server with Public/Private
Keys

1. On server1, open a root shell.
2. Type ssh-keygen.
3. When asked for the filename in which to store the (private)

key, accept the default filename ~/.ssh/id_rsa.
4. When asked to enter a passphrase, press Enter twice.
5. The private key now is written to the ~/.ssh/id_rsa file and

the public key is written to the ~/.ssh/id_rsa.pub file.
6. Use ssh-copy-id server2 to copy to server2 the public key

you have just created. You are then asked for the password
on the remote server one last time.

7. After copying the public key, verify that it can actually be
used for authentication. To do this, type ssh server2. You
should now authenticate without having to enter the
password for the remote user account.

After you copy the public key to the remote host, it will be
written to the ~/.ssh/authorized_keys file on that host. Notice
that if multiple users are using keys to log in with that specific
account, the authorized_keys file may contain a lot of public
keys. Make sure never to overwrite it because that will wipe all
keys that are used by other users as well!

Summary

In this chapter, you learned how to connect to Red Hat
Enterprise Linux 9. You learned the difference between
consoles, terminals, and shells, and you learned how to set up
terminal sessions locally as well as remotely. You also learned
how to use SSH to connect to a remote server and how to
securely copy files between servers.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the
Introduction, you have several choices for exam preparation:
the end-of-chapter labs; the memory tables in Appendix C;
Chapter 27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the
Key Topic icon in the margin of the page. Table 5-4 lists a
reference for these key topics and the page number on which
each is found.

Table 5-4 Key Topics for Chapter 5

Key Topic
Element

Description Page
Key Topic
Element

Description Page

Paragraph Definitions of the words console
and terminal

104

List Situations that typically require a
server reboot

109

Table 5-2 Common ssh Options 113

Complete Tables and Lists from Memory

Print a copy of Appendix C, “Memory Tables” (found on the
companion website), or at least the section for this chapter, and
complete the tables and lists from memory. Appendix D,
“Memory Tables Answer Key,” includes completed tables and
lists to check your work.

Define Key Terms

Define the following key terms from this chapter and check
your answers in the glossary:

console

terminal

subshell

reboot

Systemd

key-based login

public key

private key

Review Questions

The questions that follow use an open-ended format that is
meant to help you test your knowledge of concepts and
terminology and the breadth of your knowledge. You can find
the answers to these questions in Appendix A.

. What is the console?

. On a server that currently has an operational graphical
interface, you are at a text-based login prompt. Which key

sequence do you use to switch back to your current work on the
graphical interface?

. Which command(s) show(s) all users that currently have a
terminal session open to a Linux server?

. On a server where no GUI is operational, what would you
expect to be the device name that is used by the first SSH
session that is opened to that server?

. Which command would you use to get detailed information on
what SSH is doing while logging in?

. How do you initiate an SSH session with support for graphical
applications?

. What is the name of the configuration file that needs to be
edited to modify SSH client settings?

. How do you copy the /etc/hosts file to the directory /tmp on
server2 using the username lisa?

. What is the name of the file in which public keys are stored for
remote users who want to log in to this machine using key-
based authentication?

. Which command enables you to generate an SSH public/private
key pair?

End-of-Chapter Labs

The end-of-chapter labs help you practice what you learned
throughout the chapter. The first lab is about connecting to
RHEL 9 locally, and the second lab is about using SSH to log in
to a remote server.

Lab 5.1

1. Log in to the local console on server1. Make sure that server1
does not show a graphical interface anymore, but just a text-
based login prompt.

2. Log in from that environment and activate tty6. From tty6,
switch back on the graphical interface and use the correct
key sequence to go to the graphical interface.

Lab 5.2

1. Set up SSH-based authentication. From server2, use SSH to
connect to server1.

2. Make sure that graphical applications are supported through
the SSH session. Also set up key-based authentication so that

no password has to be entered while connecting to the
remote server.

Chapter 6

User and Group Management

The following topics are covered in this chapter:

Understanding Different User Types
Creating and Managing User Accounts
Creating and Managing Group Accounts

The following RHCSA exam objectives are covered in this
chapter:

Create, delete, and modify local user accounts
Change passwords and adjust password aging for local user
accounts
Create, delete, and modify local groups and group
memberships
Configure superuser access

On a Linux system, various processes are normally being used.
These processes need access to specific resources on the Linux
system. To determine how these resources can be accessed, a
distinction is made between processes that run in kernel mode
and processes that run without full permissions to the
operating system. In the latter case user accounts are needed,

not only to grant the required permissions to processes, but also
to make sure that people can do their work. This chapter
explains how to set up user and group accounts.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess
whether you should read this entire chapter thoroughly or
jump to the “Exam Preparation Tasks” section. If you are in
doubt about your answers to these questions or your own
assessment of your knowledge of the topics, read the entire
chapter. Table 6-1 lists the major headings in this chapter and
their corresponding “Do I Know This Already?” quiz questions.
You can find the answers in Appendix A, “Answers to the ‘Do I
Know This Already?’ Quizzes and Review Questions.”

Table 6-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Understanding Different User Types 1–4

Creating and Managing User Accounts 3–6

Creating and Managing Group Accounts 7–10

. What should you do with the root user account to enhance
system security?

1. Don’t set a password.
2. Allow password-less sudo.
3. Delete the root user.
4. Disable SSH login for the root user.

. On a default installation of an RHEL 9 server, which group does
the user typically need to be a member of to be able to use sudo
to run all administration commands?

1. admin
2. root
3. sys
4. wheel

. Which of the following sudo configurations allows user amy to
change passwords for all users, but not root?

1. amy ALL=! /usr/bin/passwd root, /usr/bin/passwd
2. amy ALL=/usr/bin/passwd, ! /usr/bin/passwd root
3. amy ALL=passwd, ! passwd root
4. amy ALL=! passwd root, passwd

. Which of the following commands shows correct syntax for
using a command with a pipe in a sudo environment?

1. sudo -c "cat /etc/passwd | grep root"
2. sudo "cat /etc/passwd | grep root"
3. sudo sh -c "cat /etc/passwd | grep root"
4. sudo cat /etc/passwd | grep root

. Which configuration file should you change to set the default
location for all new user home directories?

1. /etc/login.defaults
2. /etc/login.defs
3. /etc/default/useradd
4. /etc/default/login.defs

. Which command enables you to get information about
password properties such as password expiry?

1. chage -l
2. usermod --show
3. passwd -l
4. chage --show

. Which of the following files is not processed when a user starts
a login shell?

1. /etc/profile
2. /etc/.profile
3. ~/.bashrc
4. ~/.bash_profile

. Which of the following offers the best option to modify user
group membership?

1. vigr
2. vipw
3. vipasswd
4. usermod

. Which command can be used to list all the groups a user is a
member of?

1. userlist
2. grouplist
3. id
4. groups

. What can you do to ensure that no users, except for the user
root, can log in temporarily?

1. Set the default shell to /usr/sbin/nologin.
2. Set the default shell to /bin/false.

3. Create a file with the name /etc/nologin.
4. Create a file with the name /etc/nologin.txt.

Foundation Topics

Understanding Different User Types

In this chapter, you learn how to create and manage user
accounts. Before diving into the details of user management,
you learn how users are used in a Linux environment.

Users on Linux

On Linux, there are two ways to look at system security. There
are privileged users, and there are unprivileged users. The
default privileged user is root. This user account has full access
to everything on a Linux server and is allowed to work in
system space without restrictions. The root user account is
meant to perform system administration tasks and should be
used for that only. For all other tasks, an unprivileged user
account should be used.

On modern Linux distributions like RHEL 9, the root user
account is often disabled. While installing RHEL 9, you have a
choice of what to do with the root user. If you create a regular
user and choose the option Make This User Administrator, you
don’t have to set a root password and you’ll be able to use
sudo when administrator privileges are needed. If you want to
be able to log in as root directly, you can set a password for the
root user.

To get information about a user account, you can use the id
command. When using this command from the command line,
you can see details about the current user. You can also use it on
other user accounts to get details about those accounts.
Example 6-1 shows an example of the output of the command.

Example 6-1 Getting More Information About Users with id

Click here to view code image

[root@localhost ~]# id linda

uid=1001(linda) gid=1001(linda) groups=1001(lind

Working as Root

On all Linux systems, by default there is the user root, also
known as the superuser. This account is used for managing
Linux and has no restrictions at all. Root, for instance, can
create other user accounts on the system. For some tasks, root
privileges are required. Some examples are installing software,
managing users, and creating partitions on disk devices.
Generally speaking, all tasks that involve direct access to
devices need root permissions.

Because the root account is so useful for managing a Linux
environment, some people make a habit of logging in as root
directly. That is not recommended, especially not when you are
logging in to a graphical environment. When you log in as root
in a graphical environment, all tasks that are executed run as
root as well, and that involves an unnecessary security risk.
Therefore, you should instead use one of the alternative
methods described in Table 6-2.

Table 6-2 Methods to Run Tasks with Elevated Permissions

Method Description

Method Description

su Opens a subshell as a different user, with the
advantage that commands are executed as root
only in the subshell

sudo Allows authorized users to work with
administrator privileges

PolicyKit Enables you to set up graphical utilities to run
with administrative privileges

Using su

From a terminal window, you can use the su command to start
a subshell in which you have another identity. To perform
administrative tasks, for instance, you can log in with a normal
user account and type su to open a root shell. The benefit is that
root privileges are used only in the root shell. You do need to
enter the root password though, which is best practice from a
security perspective.

If you type just the command su, the username root is implied.
But su can be used to run tasks as another user as well. Type su

linda to open a subshell as the user linda, for example. When
using su as an ordinary user, you are prompted for a password,
and after entering that, you acquire the credentials of the target
user:

[linda@localhost ~]$ su

Password:

[root@localhost linda]#

The subshell that is started when using su is an environment
where you are able to work as the target user account, but
environment settings for that user account have not been set. If
you need complete access to the entire environment of the user
account, you can use su - to start a login shell. If you start a
login shell, all scripts that make up the user environment are
processed, which makes you work in an environment that is
exactly the same as when logging in as that user.

Tip

If you want to use su, using su - is better than using
su. When the - is used, a login shell is started;
without the -, some variables may not be set
correctly. So, you are better off using su -
immediately. But don’t forget that for running tasks

with administrator privileges, you’re better off
using sudo.

In Exercise 6-1, you practice switching user accounts.

Exercise 6-1 Switching User Accounts

1. Log in to your system as a nonprivileged user and open a
terminal.

2. Type whoami to see which user account you are currently
using. Type id as well, and notice that you get more detail
about your current credentials when using id.

3. Type su -. When prompted for a password, enter the root
password. Type id again. You see that you are currently root.

4. Type useradd bob to create a user that you can use for
testing purposes.

5. Still from the root shell, use su - bob and confirm that you
can log in without entering a password. Notice that user bob
doesn’t even have a password that is currently set.

6. Type exit to exit from the user bob shell. Type exit again to
exit from the root shell and return to the ordinary user shell.

sudo

If a non-root user needs to perform a specific system
administration task, the user does not need root access; instead,
the system administrator can configure sudo to give that user
administrator permissions to perform the specific task. The
user then carries out the task by starting the command with
sudo (and entering the user’s password when prompted). So,
instead of using commands like useradd as the root user, you
can use a sudo-enabled user account and type sudo useradd.
This approach is definitely more secure because you will have
administrator permissions only while running this specific
command.

When creating a Linux user during the installation process as
described in Chapter 1, “Installing Red Hat Enterprise Linux,”
you can select to grant administrator permissions to that
specific user. If you select to do so, the user will be able to use
all administrator commands using sudo. It is also possible to set
up sudo privileges after installation by making the user a
member of the group wheel. To do that in a very easy way, use
this simple two-step procedure:

1. Make the administrative user account a member of the group
wheel by using usermod -aG wheel user.

2. Type visudo and make sure the line %wheel ALL=(ALL) ALL
is included.

Apart from this method, which would give a user access to all
administrative commands, you can use visudo to edit the
/etc/sudoers configuration file and give user access to specific
commands only. For example, if you included the line linda
ALL=/usr/bin/useradd, /usr/bin/passwd in this file, that would
allow user linda to run only the commands useradd and
passwd with administrative privileges.

Tip

While using sudo, you are prompted to enter a
password. Based on this password a token is
generated, which allows you to run new sudo
commands without having to enter the password
again. However, this token is valid for only five
minutes. It is possible to extend the lifetime of the
token: include the following in /etc/sudoers (using
visudo) to extend the token lifetime to 240
minutes:

Click here to view code image

Defaults timestamp_timeout=240

If you want to set up users with specific sudo
privileges, be careful with the passwd command. If
a user has sudo privileges on the passwd
command, that would allow the user to set or
change the password for the root user as well. This
can be easily prevented, though, by adding an
exception. Just include the line linda
ALL=/usr/bin/useradd, /usr/bin/passwd, !
/usr/bin/passwd root. This would allow user linda
to change the password for all users, but not for
root.

To assign sudo privileges to individual users or
groups of users, you can change the contents of
/etc/sudoers using visudo. A better practice is to
create a drop-in file in the directory /etc/sudoers.d.
This drop-in file would have the exact same
contents as the modification you would make to
/etc/sudoers, with the benefit that the custom
configuration is separated from the standard
configuration that was created while installing
Linux. Files in /etc/sudoers.d are always included
while using sudo.

Tip

It’s convenient to be able to use pipes in sudo
commands. By default, this is not allowed, but if
you use sudo sh -c, you can use any command
containing a pipe as its argument. For example, use
sudo sh -c "rpm -qa | grep ssh" to get a list of all
packages that have the string “ssh” in their name.

PolicyKit

Most administration programs with a graphical user interface
use PolicyKit to authenticate as the root user. If a normal user
who is not a member of the group wheel accesses such an
application, that user will be prompted for authentication. If a
user who is a member of the group wheel opens a PolicyKit
application, that user will have to enter their own password.
For the RHCSA exam, you do not have to know the details of
PolicyKit, but it is good to know that you can use the pkexec
command as an alternative to sudo in case you ever completely
lose sudo access to a system. In that case, just use pkexec
visudo to be able to repair the sudo configuration.

In Exercise 6-2, you practice working with sudo.

Exercise 6-2 Switching User Accounts

1. Log in to your system as the student user and open a
terminal.

2. Type sudo -i to open a sudo root shell. When prompted for a
password, enter the password assigned to user student.

3. Use useradd betty; useradd amy to create two users.
4. Type echo password | passwd --stdin betty; echo

password | passwd --stdin amy to set the password for
these two users. Type exit to return to the user student shell.

5. Use su - betty to open a shell as user betty. When prompted
for a password, enter the password you’ve just assigned for
user betty.

6. Type sudo ls /root, enter the user betty password and notice
the error message.

7. Type exit to return to the shell in which you are user
student. Use whoami to verify the current user ID.

8. Type sudo sh -c 'echo "betty ALL=(ALL) ALL" >
/etc/sudoers.d/betty' to allow full sudo access for betty.

9. Use su - betty to open a shell as betty and enter the
password of this user when prompted.

10. Use sudo ls -l /root to verify that sudo access is working. The
/root directory can only be viewed by the root user due to
the permissions on that directory.

11. Use sudo sh -c ' echo "amy ALL=/usr/sbin/useradd,
/usr/bin/passwd, ! /usr/bin/passwd root" >
/etc/sudoers.d/amy' to allow user amy to create users and
reset user passwords, but not for root.

12. Type su - amy and enter user amy’s password when
prompted.

13. Use sudo passwd betty to verify that you can change the
password as user amy.

14. Use sudo passwd root to verify that changing the root user
password is not allowed.

15. Type exit and exit to return to the user student shell. Use
whoami to verify that you’re in the right shell.

Creating and Managing User Accounts

Now that you know how to perform tasks as either an
administrative user or a nonadministrative user, it is time to
learn how to manage user accounts on Linux. In this section,
you learn what is involved.

System Accounts and Normal Accounts

A typical Linux environment has two kinds of user accounts.
There are normal user accounts for the people who need to
work on a server and who need limited access to the resources

on that server. These user accounts typically have a password
that is used for authenticating the user to the system. There are
also system accounts that are used by the services the server is
offering. Both types of user accounts share common properties,
which are kept in the files /etc/passwd and /etc/shadow.
Example 6-2 shows a part of the contents of the /etc/passwd file.

Example 6-2 Partial Contents of the /etc/passwd User
Configuration File

Click here to view code image

ntp:x:38:38::/etc/ntp:/sbin/nologin

chrony:x:994:993::/var/lib/chrony:/sbin/nologin

abrt:x:173:173::/etc/abrt:/sbin/nologin

pulse:x:171:171:PulseAudio System Daemon:/var/ru

gdm:x:42:42::/var/lib/gdm:/sbin/nologin

gnome-initial-setup:x:993:991::/run/gnome-initia

postfix:x:89:89::/var/spool/postfix:/sbin/nologi

sshd:x:74:74:Privilege-separated SSH:/var/empty/

tcpdump:x:72:72::/:/sbin/nologin

user:x:1000:1000:user:/home/user:/bin/bash

Note

On many Linux servers, hardly any user accounts
are used by people. Many Linux servers are
installed to run a specific service, and if people
interact with that service, they will authenticate
within the service.

As you can see in Example 6-2, to define a user account,
different fields are used in /etc/passwd. The fields are separated
from each other by a colon. The following is a summary of these
fields, followed by a short description of their purpose.

Username: This is a unique name for the user. Usernames
are important to match a user to their password, which is
stored separately in /etc/shadow (see next bullet). On Linux,
there can be no spaces in the username, and in general it’s a
good idea to specify usernames in all lowercase letters.
Password: In the old days, the second field of /etc/passwd
was used to store the hashed password of the user. Because
the /etc/passwd file is readable by all users, this poses a
security threat, and for that reason on current Linux systems

the hashed passwords are stored in /etc/shadow (discussed in
the next section).
UID: Each user has a unique user ID (UID). This is a numeric
ID. It is the UID that really determines what a user can do.
When permissions are set for a user, the UID (and not the
username) is stored in the file metadata. UID 0 is reserved for
root, the unrestricted user account. The lower UIDs (typically
up to 999) are used for system accounts, and the higher UIDs
(from 1000 on by default) are reserved for people who need
to connect a directory to the server. The range of UIDs that
are used to create regular user accounts is set in
/etc/login.defs.
GID: On Linux, each user is a member of at least one group.
This group is referred to as the primary group, and this group
plays a central role in permissions management, as discussed
later in this chapter. Users can be a member of additional
groups, which are administered in the file /etc/group.
Comment field: The Comment field, as you can guess, is used
to add comments for user accounts. This field is optional, but
it can be used to describe what a user account is created for.
Some utilities, such as the obsolete finger utility, can be used
to get information from this field. The field is also referred to
as the GECOS field, which stands for General Electric
Comprehensive Operating System and had a specific purpose

for identifying jobs in the early 1970s when General Electric
was still an important manufacturer of servers.
Directory: This is the initial directory where the user is
placed after logging in, also referred to as the home directory.
If the user account is used by a person, this is where the
person would store their personal files and programs. For a
system user account, this is the environment where the
service can store files it needs while operating.
Shell: This is the program that is started after the user has
successfully connected to a server. For most users this will be
/bin/bash, the default Linux shell. For system user accounts,
it will typically be a shell like /sbin/nologin. The
/sbin/nologin command is a specific command that silently
denies access to users (to ensure that if by accident an
intruder logs in to the server, the intruder cannot get any
shell access). Optionally, you can create an /etc/nologin.txt
file, in which case only root will be able to log in but other
users will see the contents of this file when their logins are
denied.

A part of the user properties is stored in /etc/passwd, which was
just discussed. Another part of the configuration of user
properties is stored in the /etc/shadow file. The settings in this
file are used to set properties of the password. Only the user

root and processes running as root have access to /etc/shadow.
Example 6-3 shows /etc/shadow contents.

Example 6-3 Sample Content from /etc/shadow

Click here to view code image

[root@localhost ~]# tail -n 10 /etc/shadow

ntp:!!:16420::::::

chrony:!!:16420::::::

abrt:!!:16420::::::

pulse:!!:16420::::::

gdm:!!:16420::::::

gnome-initial-setup:!!:16420::::::

postfix:!!:16420::::::

sshd:!!:16420::::::

tcpdump:!!:16420::::::

user:$6$3VZbGx1djo6FfyZo$/Trg7Q.3foIsIFYxBm6UnHu

We/MAuHn8HboBZzpaMD8gfm.fmlB/ML9LnuaT7CbwVXx31:1

The following fields are included in /etc/shadow:

Login name: Notice that /etc/shadow does not contain any
UIDs, but usernames only. This opens up a possibility for
multiple users using the same UID but different passwords
(which, by the way, is not recommended).
Encrypted password: This field contains all that is needed to
store the password in a secure way. If the field is empty, no
password is set and the user cannot log in. If the field starts
with an exclamation mark, login for this account currently is
disabled.
Days since Jan. 1, 1970, that the password was last
changed: Many things on Linux refer to this date, which on
Linux is considered the beginning of time. It is also referred
to as epoch.
Days before password may be changed: This allows system
administrators to use a stricter password policy, where it is
not possible to change back to the original password
immediately after a password has been changed. Typically
this field is set to the value 0.
Days after which password must be changed: This field
contains the maximal validity period of passwords. Notice in
the last line of Example 6-3 that it is set to 99,999 (about 274
years), which is the default.
Days before password is to expire that user is warned:
This field is used to warn a user when a forced password

change is upcoming. Notice in the last line of Example 6-3
that it is set to 7 days, which is the default (even if the
password validity is set to 99,999 days).
Days after password expires that account is disabled: Use
this field to enforce a password change. After password
expiry, the user no longer can log in. After the account has
reached the maximum validity period, the account is locked
out. This field allows for a grace period in which the user can
change her password, but only during the login process. This
field is set in days and is unset by default.
Days since Jan. 1, 1970, that account is disabled: An
administrator can set this field to disable an account on a
specific date. This is typically a better approach than
removing an account, as all associated properties and files of
the account will be kept, but the account no longer can be
used to authenticate on your server. Note that this field does
not have a default value.
A reserved field, which was once added “for future use”:
This field was reserved a long time ago; it will probably
never be used.

Most of the password properties can be managed with the
passwd or chage command, which are discussed later in this
chapter.

Creating Users

There are many solutions for creating users on a Linux server.
To start, you can edit the contents of the /etc/passwd and
/etc/shadow configuration files directly in an editor, using the
vipw command (with the risk of making an error that could
make logging in impossible to anyone). Another option is to use
useradd, which is the utility that you should use for creating
users. To remove users, you can use the userdel command. Use
userdel -r to remove a user and the complete user
environment.

Modifying the Configuration Files

Creating a user account by modifying the configuration files
simply requires adding one line to /etc/passwd and another line
to /etc/shadow, in which the user account and all of its
properties are defined. This method of creating users is not
recommended, though. If you make an error, you might mess
up the consistency of the file and make logging in completely
impossible to anyone. Also, you might encounter locking
problems if one administrator is trying to modify the file
contents directly while another administrator wants to write a
modification with some tool.

If you insist on modifying the configuration files directly, you
should use vipw. This command opens an editor interface on
your configuration files, and more important, it sets the
appropriate locks on the configuration files to prevent
corruption. It does not check syntax, however, so make sure that
you know what you are doing, because making even one typo
might still severely mess up your server. If you want to use this
tool to modify the /etc/shadow file, use vipw -s. To edit the
contents of the /etc/group file where groups are defined, you
can use a similar command with the name vigr.

Note

It is nice to know that vipw and vigr exist, but it is
better not to use these utilities or anything else that
opens the user and group configuration files
directly. Instead, use tools like useradd and
groupmod.

Using useradd

The useradd utility is probably the most common tool on Linux
for adding users. It allows you to add a user account from the
command line by using many of its parameters. Use, for
instance, the command useradd -m -u 1201 -G sales,ops linda

to create a user linda who is a member of the secondary groups
sales and ops with UID 1201 and add a home directory to the
user account as well. (Secondary groups are explained in the
section “Understanding Linux Groups,” later in the chapter.)

Home Directories

All normal users will have a home directory. For people, the
home directory is the directory where personal files can be
stored. For system accounts, the home directory often contains
the working environment for the service account.

As an administrator, you normally will not change home
directory–related settings for system accounts because they are
created automatically from the RPM post-installation scripts
when installing the related software packages. If you have
people who need user accounts, you probably do want to
manage home directory contents a bit.

When creating home directories (which happens by default
while you’re creating users), the content of the “skeleton”
directory is copied to the user home directory. The skeleton
directory is /etc/skel, and it contains files that are copied to the
user home directory at the moment this directory is created.

These files will also get the appropriate permissions to ensure
that the new user can use and access them.

By default, the skeleton directory contains mostly configuration
files that determine how the user environment is set up. If in
your environment specific files need to be present in the home
directories of all users, you take care of that by adding the files
to the skeleton directory.

Default Shell

Most regular users normally have a default shell. This is the
program that is started after successful authentication. For most
users, this shell is set to /bin/bash. System users should not have
an interactive shell as the default shell. For most system users
this shell is set to /sbin/nologin. To set or change the default
shell using useradd or usermod, use the -s option. Use for
instance useradd caroline -s /sbin/nologin to make sure this
user will not be allowed to log in.

Managing User Properties

For changing user properties, the same rules apply as for
creating user accounts. You can either work directly in the
configuration files using vipw or use command-line tools.

The ultimate command-line utility for modifying user
properties is usermod. It can be used to set all properties of
users as stored in /etc/passwd and /etc/shadow, plus some
additional tasks, such as managing group membership. There is
just one task it does not do well: setting passwords. Although
usermod has an option -p that tells you to “use encrypted
password for the new password,” it expects you to do the
password encryption before adding the user account. That does
not make it particularly useful. If as root you want to change
the user password, you’d use the passwd command.

Configuration Files for User Management Defaults

When you’re working with tools such as useradd, some default
values are assumed. These default values are set in two
configuration files: /etc/login.defs and /etc/default/useradd.
Example 6-4 shows the contents of /etc/default/useradd.

Example 6-4 useradd Defaults in /etc/default/useradd

Click here to view code image

[root@localhost skel]# cat /etc/default/useradd

useradd defaults file

GROUP=100

HOME=/home

INACTIVE=-1

EXPIRE=

SHELL=/bin/bash

SKEL=/etc/skel

CREATE_MAIL_SPOOL=yes

As shown in Example 6-4, the /etc/default/useradd file contains
some default values that are applied when using useradd.

In the file /etc/login.defs, different login-related variables are
set. This file is used by different commands, and it relates to
setting up the appropriate environment for new users. Here is a
list of some of the most significant properties that can be set
from /etc/login.defs:

MOTD_FILE: Defines the file that is used as the “message of
the day” file. In this file, you can include messages to be
displayed after the user has successfully logged in to the
server.
ENV_PATH: Defines the $PATH variable, a list of directories
that should be searched for executable files after logging in.

PASS_MAX_DAYS, PASS_MIN_DAYS, and PASS_WARN_AGE:
Define the default password expiration properties when
creating new users.
UID_MIN: Indicates the first UID to use when creating new
users.
CREATE_HOME: Indicates whether or not to create a home
directory for new users.

Managing Password Properties

You learned about the password properties that can be set in
/etc/shadow. You can use two commands to change these
properties for users: chage and passwd. The commands are
rather straightforward, as long as you know what the options
are used for. For instance, the command passwd -n 30 -w 3 -x 90
linda sets the password for user linda to a minimal usage
period of 30 days and an expiry after 90 days, where a warning
is generated 3 days before expiry.

Many of the tasks that can be accomplished with passwd can be
done with chage also. For instance, use chage -E 2025-12-31
bob to have the account for user bob expire on December 31,
2025. To see current password management settings, use chage
-l (see Example 6-5). The chage command also has an
interactive mode; if you type chage anna, for instance, the

command will prompt for all the password properties you want
to set interactively.

Example 6-5 Showing Password Expiry Information with
chage -l

Click here to view code image

linux:~ # chage -l linda

Last password change

Password expires

Password inactive

Account expires

Minimum number of days between password change

Maximum number of days between password change

Number of days of warning before password expir

Creating a User Environment

When a user logs in, an environment is created. The
environment consists of some variables that determine how the
user is working. One such variable, for instance, is $PATH,
which defines a list of directories that should be searched when
a user types a command.

To construct the user environment, a few files play a role:

/etc/profile: Used for default settings for all users when
starting a login shell
/etc/bashrc: Used to define defaults for all users when
starting a subshell
~/.profile: Specific settings for one user applied when
starting a login shell
~/.bashrc: Specific settings for one user applied when
starting a subshell

When you log in, the files are read in this order, and variables
and other settings that are defined in these files are applied. If a
variable or setting occurs in more than one file, the last one
wins.

In Exercise 6-3, you apply common solutions to create user
accounts.

Exercise 6-3 Creating User Accounts

1. From a sudo shell, type vim /etc/login.defs to open the
configuration file /etc/login.defs and the PASS_MAX_DAYS to

use the value 99 before you start creating users. Look for the
parameter CREATE_HOME and make sure it is set to “yes.”

2. Use cd /etc/skel to go to the /etc/skel directory. Type mkdir
fotos and mkdir files to add two default directories to all
user home directories. Also change the contents of the file
.bashrc to include the line export EDITOR=/usr/bin/vim,
which sets the default editor for tools that need to modify
text files.

3. Type useradd linda to create an account for user linda.
Then, type id linda to verify that linda is a member of a
group with the name linda and nothing else. Also verify that
the directories Pictures and Documents have been created in
user linda’s home directory.

4. Use passwd linda to set a password for the user you have
just created. Use the password password.

5. Type passwd -n 30 -w 3 -x 90 linda to change the password
properties. This has the password expire after 90 days (-x
90). Three days before expiry, the user will get a warning (-w
3), and the password has to be used for at least 30 days
before (-n 30) it can be changed.

6. Create a few more users: lucy, lori, and bob, using for i in
lucy lori bob; do useradd $i; done. You may get an error
message stating the user already exists. This message can be
safely ignored.

7. Use grep lori /etc/passwd /etc/shadow /etc/group. This
shows the user lori created in all three critical files and
confirms they have been set up correctly.

Creating and Managing Group Accounts

Every Linux user has to be a member of at least one group. In
this section, you learn how to manage settings for Linux group
accounts.

Understanding Linux Groups

Linux users can be a member of two different kinds of groups.
First, there is the primary group. Every user must be a
member of the primary group, and a user has only one primary
group. When a user creates a file, the user’s primary group
becomes the group owner of the file. (File ownership is
discussed in detail in Chapter 7, “Permissions Management.”)
Users can also access all files their primary group has access to.
The user’s primary group membership is defined in
/etc/passwd; the group itself is stored in the /etc/group
configuration file.

Besides the mandatory primary group, users can be a member
of one or more secondary groups as well. A user can be a

member of a secondary group in addition to the primary
group. Secondary groups are important to get access to files. If
the group a user is a member of has access to specific files, the
user will get access to those files also. Working with secondary
groups is important, in particular in environments where Linux
is used as a file server to allow people working for different
departments to share files with one another. You have also seen
how secondary group membership can be used to enable user
administrative privileges through sudo, by making the user a
member of the group wheel.

Creating Groups

As is the case for creating users, there are also different options
for creating groups. The group configuration files can be
modified directly using vigr or the command-line utility
groupadd.

Creating Groups with vigr

With the vigr command, you open an editor interface directly
on the /etc/group configuration file. In this file, groups are
defined in four fields per group (see Example 6-6).

Example 6-6 Sample /etc/group Content

kvm:x:36:qemu

qemu:x:107:

libstoragemgmt:x:994:

rpc:x:32:

rpcuser:x:29:

"/etc/group.edit" 65L, 870C

The following fields are used in /etc/group:

Group name: As is suggested by the name of the field, it
contains the name of the group.
Group password: Where applicable, this field contains a
group password, a feature that is hardly used anymore. A
group password can be used by users who want to join the
group on a temporary basis, so that access to files the group
has access to is allowed. If a group password is used, it is
stored in the /etc/gshadow file, as that file is root accessible
only.
Group ID: This field contains a unique numeric group
identification number.
Members: Here you find the names of users who are a
member of this group as a secondary group. Note that this
field does not show users who are a member of this group as
their primary group.

As mentioned, in addition to /etc/group, there is the
/etc/gshadow file. This file is not commonly used to store group
passwords (because hardly anyone still uses them), but it does
have a cool feature. In the third field of this file you can list
administrators. This is a comma-separated list of users that can
change passwords for group members, which are listed in the
fourth field of this file. Note that specifying group members
here is optional, but if it is done, the group member names
must be the same as the group members in /etc/group.

Using groupadd to Create Groups

Another method to create new groups is by using the groupadd
command. This command is easy to use. Just use groupadd
followed by the name of the group you want to add. There are
some advanced options; the only significant one is -g, which
allows you to specify a group ID when creating the group.

Managing Group Properties

To manage group properties, groupmod is available. You can
use this command to change the name or group ID of the group,
but it does not allow you to add group members. Notice that it
may be a bad idea to change either of these properties, as it can
affect group-owned files that already exist. To do this, you use

usermod. As discussed before, usermod -aG will add users to
new groups that will be used as their secondary group. Because
a group does not have many properties, it is quite common that
group properties are managed directly in the /etc/group file by
using the vigr command.

To see which users are a member of a group, use the lid
command. For example, use lid -g sales to check which users
are a member of the group sales.

In Exercise 6-4, you create two groups and add some users as
members to these groups.

Tip

Because a user’s group membership is defined in
two different locations, it can be difficult to find out
which groups exactly a user is a member of. A
convenient command to check this is groupmems.
Use, for example, the command groupmems -g
sales -l to see which users are a member of the
group sales. This shows users who are a member of
this group as a secondary group assignment, but
also users who are a member of this group as the
primary group assignment.

Exercise 6-4 Working with Groups

1. Open a sudo shell and type groupadd sales followed by
groupadd account to add groups with the names sales and
account.

2. Use usermod to add users linda and laura to the group sales,
and lori and bob to the sales group account:

usermod -aG sales linda

usermod -aG sales lucy

usermod -aG account lori

usermod -aG account bob

linux:~ # id linda

3. Type id linda to verify that user linda has correctly been
added to the group sales. In the results of this command, you
see that linda is assigned to a group with the name linda.
This is user linda’s primary group and is indicated with the
gid option. The groups parameter shows all groups user
linda currently is a member of, which includes the primary
group as well as the secondary group sales that the user has
just been assigned to.
Click here to view code image

uid=1000(linda) gid=1000(linda) groups=1000(li

Summary

In this chapter, you learned how to create and manage users
and groups. You learned which configuration files are used to
store users and groups, and you learned which properties are
used in these files. You also learned which utilities are available
to manage user and group accounts.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the
Introduction, you have a couple of choices for exam
preparation: the end-of-chapter labs; the memory tables in
Appendix C; Chapter 27, “Final Preparation”; and the practice
exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the
Key Topic icon in the margin of the page. Table 6-3 lists a
reference for these key topics and the page number on which
each is found.

Table 6-3 Key Topics for Chapter 6

Key Topic
Element

Description Page

Section Users on Linux 124

Table 6-2 Methods to Run Tasks with Elevated
Permissions

125

List Description of user account fields in
/etc/passwd

129

List Description of password property
fields in /etc/shadow

131

List Significant properties that can be set
from /etc/login.defs

134

List Files that play a role in constructing
the user environment

136

Complete Tables and Lists from Memory

Print a copy of Appendix C, “Memory Tables” (found on the
companion website), or at least the section for this chapter, and
complete the tables and lists from memory. Appendix D,
“Memory Tables Answer Key,” includes completed tables and
lists to check your work.

Define Key Terms

Define the following key terms from this chapter and check
your answers in the glossary:

user

privileged user

unprivileged user

root

password

GECOS

group

primary group

secondary group

Review Questions

The questions that follow are meant to help you test your
knowledge of concepts and terminology and the breadth of
your knowledge. You can find the answers to these questions in
Appendix A.

. What is the name of the default parameter that you can change
to expand the lifetime of the sudo token that is generated after
entering the sudo password?

. What is the configuration file in which sudo is defined?

. Which command should you use to modify a sudo
configuration?

. What can you do if you’ve made an error to the sudo
configuration and because of this error sudo no longer works,
assuming that the root user does not have a password set?

. How many groups can you assign to a user account in
/etc/passwd?

. If you want to grant a user access to all admin commands
through sudo, which group should you make that user a
member of?

. Which command should you use to modify the /etc/group file
manually?

. Which two commands can you use to change user password
information?

. What is the name of the file where user passwords are stored?

. What is the name of the file where group accounts are stored?

End-of-Chapter Labs

You have now learned how to set up an environment where
user accounts can log in to your server and access resources on
your server. In these end-of-chapter labs, you learn how to
configure an environment for users and groups.

Lab 6.1

Set up a shared group environment that meets the following
requirements:

Create two groups: sales and account.

Create users joana, john, laura, and beatrix. Make sure they
have their primary group set to a private group that has the
name of the user.
Make joanna and john members of the group sales, and laura
and beatrix members of the group account.
Set a password policy that requires users to change their
password every 90 days.

Lab 6.2

Create a sudo configuration that allows user bill to manage
user properties and passwords, but which does not allow this
user to change the password for the root user.

Chapter 7

Permissions Management

The following topics are covered in this chapter:

Managing File Ownership
Managing Basic Permissions
Managing Advanced Permissions
Setting Default Permissions with umask
Working with User-Extended Attributes

The following RHCSA exam objectives are covered in this
chapter:

Manage default permissions
List, set, and change standard ugo/rwx permissions
Create and configure set-GID directories for collaboration
Diagnose and correct file permission problems

To get access to files on Linux, you use permissions. These
permissions are assigned to three entities: the file owner, the
group owner, and the others entity (which is everybody else). In
this chapter, you learn how to apply permissions. The chapter
starts with an overview of the basic permissions, after which
the special permissions are discussed. At the end of this chapter,

you learn how to set default permissions through the umask
and how to manage user-extended attributes.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess
whether you should read this entire chapter thoroughly or
jump to the “Exam Preparation Tasks” section. If you are in
doubt about your answers to these questions or your own
assessment of your knowledge of the topics, read the entire
chapter. Table 7-1 lists the major headings in this chapter and
their corresponding “Do I Know This Already?” quiz questions.
You can find the answers in Appendix A, “Answers to the ‘Do I
Know This Already?’ Quizzes and Review Questions.”

Table 7-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Managing File Ownership 1–3

Managing Basic Permissions 4–5

Managing Advanced Permissions 6–7

Foundation Topics Section Questions

Setting Default Permissions with umask 8–9

Working with User-Extended Attributes 10

. A user needs to work in a session where all new files that the
user creates will be group-owned by the group sales, until the
session is closed. Which command would do that?

1. chgrp sales
2. setgid sales
3. newgrp sales
4. setgroup sales

. Which command enables you to find all files on a system that
are owned by user linda?

1. find / -user linda
2. find / -uid linda
3. ls -l | grep linda
4. ls -R | find linda

. Which command does not set group ownership to the group
sales for the file myfile?

1. chgrp sales myfile
2. chown .sales myfile
3. chgrp myfile sales
4. chown :sales myfile

. Which command would be used to allow read and write
permissions to the user and group owners and no permissions
at all to anyone else?

1. chown 007 filename
2. chmod 077 filename
3. chmod 660 filename
4. chmod 770 filename

. You want to apply the execute permission recursively, such that
only all subdirectories and not the files in these directories will
get the execute permission assigned. How can you do this?

1. Use chmod +x */
2. Use chmod +X *
3. Use umask 444, and then use chmod +x *
4. Use umask 444, and next use chmod +X *

. Which command enables you to set the SGID permission on a
directory?

1. chmod u+s /dir
2. chmod g-s /dir
3. chmod g+s /dir
4. chmod 1770 /dir

. While observing current permission settings, you notice that
the passwd program file has the execute permission set. What
should you do?

1. Run a security scan on your system, because something
obviously is wrong.

2. Check the system logs to find out who has wrongly applied
this permission.

3. Check whether the execute permission is also set. If that is
not the case, it’s not a big deal.

4. Nothing, because the passwd program file needs the SUID
permission to be able to update passwords in the secured
/etc/shadow file.

. How can you make sure that the root user has a different
umask than ordinary users?

1. You don’t have to do anything; this happens by default.
2. Set the default umask in /etc/login.defs.

3. Set a specific umask for the root user in the ~/bash_profile
file.

4. Use an if statement to apply a specific umask for the root
user in the /etc/profile file.

. Which of the following umask settings meets the following
requirements?

Grants all permissions to the owner of the file
Grants read permissions to the group owner of the file
Grants no permissions to others

1. 740
2. 750
3. 027
4. 047

. Which command enables you to check all attributes that are
currently set on myfile?

1. ls --attr myfile
2. getattr myfile
3. lsattr myfile
4. listattr myfile

Foundation Topics

Managing File Ownership

Before we discuss permissions, you need to understand the role
of file and directory ownership. File and directory ownership
are vital for working with permissions. In this section, you first
learn how you can see ownership. Then you learn how to
change user and group ownership for files and directories.

Displaying Ownership

On Linux, every file and every directory has two owners: a user
owner and a group owner. Apart from that, there is the “others”
entity, which also is considered to be an entity to determine the
permissions a user has. Collectively, the user, group, and others
(ugo) owners are shown when listing permissions with the ls -l
command.

These owners are set when a file or directory is created. On
creation, the user who creates the file becomes the user owner,
and the primary group of that user becomes the group owner.
To determine whether you as a user have permissions to a file
or a directory, the shell checks ownership. This happens in the
following order:

1. The shell checks whether you are the user owner of the file
you want to access, which is also referred to as the user of

the file. If you are the user, you get the permissions that are
set for the user, and the shell looks no further.

2. If you are not the user owner, the shell checks whether you
are a member of the group owner, which is also referred to
as the group of the file. If you are a member of the group, you
get access to the file with the permissions of the group, and
the shell looks no further.

3. If you are neither the user owner nor the group owner and
have not obtained permissions through access control lists
(ACLs), you get the permissions of the others entity.

To see current ownership assignments, you can use the ls -l
command. This command shows the user owner and the group
owner. In Example 7-1, you can see the ownership settings for
directories in the directory /home.

Example 7-1 Displaying Current File Ownership

Click here to view code image

[root@server1 home]# ls -l

total 8

drwx------. 3 bob bob 74 F

drwx------. 3 caroline caroline 74 F

drwx------. 3 fozia fozia 74 F

drwx------. 3 lara lara 74 F

drwx------. 5 lisa lisa 4096

drwx------. 14 user user 4096

Using the ls command, you can display ownership for files in a
given directory. It may on occasion be useful to get a list of all
files on the system that have a given user or group as owner. To
do this, you may use find with the argument -user. For
instance, the following command shows all files that have user
linda as their owner:

find / -user linda

You can also use find to search for files that have a specific
group as their owner. For instance, the following command
searches all files that are owned by the group users:

find / -group users

Changing User Ownership

To apply appropriate permissions, the first thing to consider is
ownership. To do this, you can use the chown command. The
syntax of this command is not hard to understand:

chown who what

For instance, the following command changes ownership for
the file files to user linda:

chown linda files

The chown command has a few options, of which one is
particularly useful: -R. You might guess what it does, because
this option is available for many other commands as well. It
allows you to set ownership recursively, which allows you to set
ownership of the current directory and everything below. The
following command changes ownership for the directory /files
and everything beneath it to user linda:

chown -R linda /files

Changing Group Ownership

There are actually two ways to change group ownership. You
can do it using chown, but there is also a specific command
with the name chgrp that does the job. If you want to use the
chown command, use a . or : in front of the group name. The

following changes the group owner of directory /home/account
to the group account:

chown .account /home/account

You can use chown to change user and/or group ownership in a
number of ways, an overview of which follows:

chown lisa myfile Sets user lisa as the owner of myfile
chown lisa.sales myfile Sets user lisa as user owner and
group sales as group owner of myfile
chown lisa:sales myfile Sets user lisa as user owner and
group sales as group owner of myfile
chown .sales myfile Sets group sales as group owner of
myfile without changing the user owner
chown :sales myfile Sets group sales as group owner of
myfile without changing the user owner

You can also use the chgrp command to change group
ownership. Consider the following example, where you can use
chgrp to set group ownership for the directory /home/account
to the group account:

chgrp account /home/account

As is the case for chown, you can use the option -R with chgrp
as well to change group ownership recursively.

Understanding Default Ownership

You might have noticed that when a user creates a file, default
ownership is applied. The user who creates the file
automatically becomes user owner, and the primary group of
that user automatically becomes group owner. Normally, this is
the group that is set in the /etc/passwd file as the user’s primary
group. If the user is a member of more groups, however, the
user can use the newgrp command to change the effective
primary group so that new files will get the new primary group
as group owner.

To show the current primary group, a user can use the groups
command. Of the groups listed, the primary group is the first
name after the : character:

Click here to view code image

[root@server1 ~]# groups lisa

lisa : lisa account sales

If the current user linda wants to change the effective primary
group, user linda can use the newgrp command, followed by

the name of the group that user linda wants to set as the new
effective primary group. This will open a new shell, in which
the new temporary primary group is set. This group will
continue to be used as the effective primary group until user
linda uses the exit command or logs out. Example 7-2 shows
how user linda uses this command to make sales her effective
primary group.

Example 7-2 Using newgrp to Change the Effective Primary
Group

Click here to view code image

[lisa@server1 ~]$ groups

lisa account sales

[lisa@server1 ~]$ newgrp sales

[lisa@server1 ~]$ groups

sales lisa account

[lisa@server1 ~]$ touch file1

[lisa@server1 ~]$ ls -l

total 0

-rw-r--r--. 1 lisa sales 0 Feb 6 10:06 file1

After you change the effective primary group, all new files that
the user creates will get this group as their group owner. To

return to the original primary group setting, use exit.

To be able to use the newgrp command, a user has to be a
member of that group. Alternatively, a group password can be
set for the group using the gpasswd command, but that is
uncommonly used. If a user uses the newgrp command but is
not a member of the target group, the shell prompts for the
group password. After the user enters the correct group
password, the new effective primary group is set.

Managing Basic Permissions

The Linux permissions system was invented in the 1970s.
Because computing needs were limited in those years, the basic
permission system that was created was rather limited as well.
This basic permission system uses three permissions that can
be applied to files and directories. In this section, you learn how
the system works and how to modify these permissions.

Understanding Read, Write, and Execute Permissions

The three basic permissions allow users to read, write, and
execute files. The effect of these permissions differs when
applied to files or directories. If applied to a file, the read
permission gives the right to open the file for viewing.
Therefore, you can read its contents, but it also means that your

computer can open the file to do something with it. A program
file that needs access to a library needs, for example, read
access to that library. From that follows that the read
permission is the most basic permission you need to work with
files.

If applied to a directory, read allows you to list the contents of
that directory. You should be aware that this permission does
not allow you to read files in the directory as well. The Linux
permission system does not know inheritance, and the only
way to read a file is by using the read permissions on that file.
To open a file for reading, however, it is required to have read
as well as execute permissions to the directory because you
would not see the file otherwise.

As you can probably guess, the write permission, if applied to a
file, allows you to modify the contents of the file. Stated
otherwise, write allows you to modify the contents of existing
files. It does not, however, allow you to create or delete new
files. To do that, you need write permission on the directory
where you want to create the file. To modify the permissions on
a file, you don’t need permissions on the file; you just have to be
owner, or root. On directories, this permission also allows you
to create and remove new subdirectories.

The execute permission is what you need to run a program file.
Also, you need the execute permission on a directory if you
want to do anything in that directory. The execute permission
will never be set by default, which makes Linux almost
completely immune to viruses. Only the user owner and the
root user can apply the execute permission.

Whereas having the execute permission on files means that you
are allowed to run a program file, if applied to a directory it
means that you are allowed to use the cd command to enter
that directory. This means that execute is an important
permission for directories, and you will see that it is normally
applied as the default permission to directories. Without it,
there is no way to change to that directory! Table 7-2
summarizes the use of the basic permissions.

Table 7-2 Use of Read, Write, and Execute Permissions

Permission Applied to Files Applied to Directories

Read View file content List contents of directory

Permission Applied to Files Applied to Directories

Write Change contents of a
file

Create and delete files and
subdirectories

Execute Run a program file Change to the directory

Applying Read, Write, and Execute Permissions

To apply permissions, you use the chmod command. When
using chmod, you can set permissions for user, group, and
others. You can use this command in two modes: the relative
mode and the absolute mode. In absolute mode, three digits are
used to set the basic permissions. The three digits apply to user,
group, and others, respectively. Table 7-3 provides an overview
of the permissions and their numeric representation.

Table 7-3 Numeric Representation of Permissions

Permission Numeric Representation

Permission Numeric Representation

Read 4

Write 2

Execute 1

When setting permissions, calculate the value that you need. If
you want to set read, write, and execute for the user, read and
execute for the group, and read and execute for others on the
file /somefile, for example, you use the following chmod
command:

chmod 755 /somefile

When you use chmod in this way, all current permissions are
replaced by the permissions you set. If you want to modify
permissions relative to the current permissions, you can use
chmod in relative mode. When using chmod in relative mode,
you work with three indicators to specify what you want to do:

First, you specify for whom you want to change permissions.
To do this, you can choose between user (u), group (g), others
(o), and all (a).
Then, you use an operator to add or remove permissions
from the current mode, or set them in an absolute way.
At the end, you use r, w, and x to specify what permissions
you want to set.

When changing permissions in relative mode, you may omit the
“to whom” part to add or remove a permission for all entities.
For instance, the following adds the execute permission for all
users:

chmod +x somefile

When working in relative mode, you may use more complex
commands as well. For instance, the following adds the write
permission to the group and removes read for others:

chmod g+w,o-r somefile

When applied in recursive mode, the execute permission needs
special attention. In the following procedure you can find out
why:

1. Open a root shell and type mkdir ~/files
2. Use cp /etc/[a-e]* ~/files. Ignore the errors and warnings that

you see.
3. Type ls -l ~/files/* and observe the permissions that are set

on the files.
4. Use chmod -R a+x ~/files
5. Type ls -l ~/files/* again. You’ll notice that all files have

become executable as well.

Files becoming executable in an uncontrolled way are a major
security issue. For that reason, if you want to apply the execute
permission in a recursive way, you should apply it as X, not x.
So instead of using chmod -R a+x files, use chmod -R a+X files.
This ensures that subdirectories will obtain the execute
permission but the execute permission is not applied to any
files.

In Exercise 7-1, you learn how to work with basic permissions
by creating a directory structure for the groups that you created
earlier. You also assign the correct permissions to these
directories.

Exercise 7-1 Managing Basic Permissions

1. From a root shell, type mkdir -p /data/sales /data/account.

2. Before setting the permissions, change the owners of these
directories using chown linda.sales /data/sales and chown
linda.account /data/account.

3. Set the permissions to enable the user and group owners to
write files to these directories, and deny all access for all
others: chmod 770 /data/sales, and next chmod 770
/data/account.

4. Use su - laura to become user laura and change into the
directory /data/account. Use touch emptyfile to create a file
in this directory. Does this work? Type groups to figure out
why.

5. Still as user laura, use cd /data/sales and use touch
emptyfile to create a file in this directory. Does this work?
Type groups to figure out why.

Managing Advanced Permissions

Apart from the basic permissions that you have just read about,
Linux has a set of advanced permissions as well. These are not
permissions that you would set by default, but they sometimes
provide a useful addition to realize more advanced scenarios.
In this section, you learn what they are and how to set them.

Understanding Advanced Permissions

There are three advanced permissions. The first of them is the
set user ID (SUID) permission. On some very specific occasions,
you may want to apply this permission to executable files. By
default, a user who runs an executable file runs this file with
their own permissions. For normal users, that usually means
that the use of the program is restricted. In some cases,
however, the user needs special permissions, just for the
execution of a certain task.

Consider, for example, the situation where a user needs to
change their password. To do this, the user needs to write their
new password to the /etc/shadow file. This file, however, is not
writeable for users who do not have root permissions:

Click here to view code image

[root@hnl ~]# ls -l /etc/shadow

----------. 1 root root 1184 Apr 30 16:54 /etc/sh

The SUID permission offers a solution for this problem. On the
/usr/bin/passwd utility, this permission is applied by default.
That means that when a user is changing their password, the
user temporarily has root permissions because the
/usr/bin/passwd utility is owned by the root user, which allows
the user to write to the /etc/shadow file. You can see the SUID

permission with ls -l as an s at the position where normally you
would expect to see the x for the user permissions (the
lowercase s means that both SUID and execute are set, whereas
an uppercase S would mean that only SUID is set):

Click here to view code image

[root@hnl ~]# ls -l /usr/bin/passwd

-rwsr-xr-x. 1 root root 32680 Jan 28 2010 /usr/bi

The SUID permission may look useful (and it is in some cases),
but at the same time, it is potentially dangerous. If it is applied
wrongly, you may give away root permissions by accident. I
therefore recommend using it with the greatest care only, or
better yet: don’t apply it to any files at all. It is set on some
operating system files and should stay there, but there really is
no good reason to set it on files ever.

The second special permission is set group ID (SGID). This
permission has two effects. If applied on an executable file, it
gives the user who executes the file the permissions of the
group owner of that file. So, SGID can accomplish more or less
the same thing that SUID does. For this purpose, however, SGID
is hardly used. As is the case for the SUID permission, SGID is
applied to some system files as a default setting.

When applied to a directory, SGID may be useful, because you
can use it to set default group ownership on files and
subdirectories created in that directory. By default, when a user
creates a file, the user’s effective primary group is set as the
group owner for that file. That is not always very useful,
especially because on Red Hat Enterprise Linux, users have
their primary group set to a group with the same name as the
user, and of which the user is the only member. So by default,
files that a user creates will be group shared with nobody else.

Imagine a situation where users linda and lori work for the
accounting department and are both members of the group
account. By default, these users are members of the private
group of which they are the only member. Both users, however,
are members of the accounting group as well but as a
secondary group setting.

The default situation is that when either of these users creates a
file, the primary group becomes owner. So by default, user linda
cannot access the files that user lori has created and vice versa.
However, if you create a shared group directory (say,
/groups/account) and make sure that the SGID permission is
applied to that directory, and that the group account is set as
the group owner for that directory, all files created in this
directory and all its subdirectories also get the group

accounting as the default group owner. For that reason, the
SGID permission is a very useful permission to set on shared
group directories.

The SGID permission shows in the output of ls -l as an s at the
position where you normally find the group execute permission
(a lowercase s indicates that both SGID and execute are set,
whereas an uppercase S means that only SGID is set):

Click here to view code image

[root@hnl data]# ls -ld account

drwxr-sr-x. 2 root account 4096 Apr 30 21:28 acco

The third of the special permissions is sticky bit. This
permission is useful to protect files against accidental deletion
in an environment where multiple users have write
permissions in the same directory. If sticky bit is applied, a user
may delete a file only if they are the user owner of the file or of
the directory that contains the file. It is for that reason that
sticky bit is applied as a default permission to the /tmp
directory, and it can be useful on shared group directories as
well.

Without sticky bit, if a user can create files in a directory, the
user can also delete files from that directory. In a shared group
environment, this may be annoying. Imagine users linda and
lori again, who both have write permissions to the directory
/data/account and get these permissions because of their
membership in the group accounting. Therefore, user linda can
delete files that user lori has created and vice versa.

When you apply sticky bit, a user can delete files only if one of
the following is true:

The user has root access.
The user is owner of the file.
The user is owner of the directory where the file exists.

When using ls -l, you can see sticky bit as a T at the position
where you normally see the execute permission for others (a
lowercase t indicates that sticky bit as well as the execute
permission for the others entity are set, whereas uppercase T
indicates that only sticky bit is set):

Click here to view code image

[root@hnl data]# ls -ld account/

drwxr-sr-T 2 root account 4096 Apr 30 21:28 accou

Tip

Make sure that you know how to manage these
advanced permissions. The RHCSA objectives
specifically mention that you need to be able to use
SGID to create a shared group directory.

Applying Advanced Permissions

To apply SUID, SGID, and sticky bit, you can use chmod as well.
SUID has numeric value 4, SGID has numeric value 2, and sticky
bit has numeric value 1. If you want to apply these permissions,
you need to add a four-digit argument to chmod, of which the
first digit refers to the special permissions. The following line
would, for example, add the SGID permission to a directory and
set rwx for user and rx for group and others:

chmod 2755 /somedir

It is rather impractical if you have to look up the current
permissions that are set before working with chmod in
absolute mode. (You risk overwriting permissions if you do not.)
Therefore, I recommend working in relative mode if you need
to apply any of the special permissions:

For SUID, use chmod u+s
For SGID, use chmod g+s
For sticky bit, use chmod +t, followed by the name of the file
or the directory that you want to set the permissions on

Table 7-4 summarizes all that is important to know about
managing special permissions.

Table 7-4 Working with SUID, SGID, and Sticky Bit

Permission Numeric
Value

Relative
Value On Files On Directories

SUID 4 u+s User executes
file with
permissions of
file owner.

No meaning.

SGID 2 g+s User executes
file with
permissions of
group owner.

Files created in
directory get the
same group
owner.

Permission Numeric
Value

Relative
Value On Files On Directories

Sticky bit 1 +t No meaning. Prevents users
from deleting
files from other
users.

In Exercise 7-2, you use special permissions to make it easier for
members of a group to share files in a shared group directory.
Make sure you have finished Exercise 7-1 before starting this
exercise. You assign the set group ID bit and sticky bit and see
that after setting these, features are added that make it easier
for group members to work together.

Exercise 7-2 Working with Special Permissions

1. Start this exercise from a root shell.
2. Use su - linda to open a terminal in which you are user

linda.
3. Use cd /data/sales to go to the sales directory. Use touch

linda1 and touch linda2 to create two files of which linda is
the owner.

4. Type exit to go back to a root shell, and next use su - laura to
switch the current user identity to user laura, who also is a

member of the sales group.
5. Use cd /data/sales again, and from that directory, use ls -l.

You’ll see the two files that were created by user linda that
are group-owned by the group linda. Use rm -f linda*. This
will remove both files.

6. Use the commands touch laura1 laura2 to create two files
that are owned by user laura.

7. Use su - to escalate your current permissions to root level.
8. Use chmod g+s,o+t /data/sales to set the group ID bit as well

as sticky bit on the shared group directory.
9. Use su - linda and type cd /data/sales. First, use touch

linda3 linda4. You should now see that the two files you
have created are owned by the group sales, which is group
owner of the directory /data/sales.

10. Use rm -rd laura*. Normally, sticky bit prevents you from
doing so, but because user linda is the owner of the directory
that contains the files, you are allowed to do it anyway!

Setting Default Permissions with umask

To set default permissions, you use either file ACLs or umask.
ACLs were within the scope of previous versions of the RHCSA
exam, but you don’t have to know about them for the RHCSA 9

exam. In this section, you learn how to modify default
permissions using umask.

You have probably noticed that when creating a new file, some
default permissions are set. These permissions are determined
by the umask setting. This shell setting is applied to all users
when logging in to the system. In the umask setting, a numeric
value is used that is subtracted from the maximum permissions
that can be set automatically to a file; the maximum setting for
files is 666, and for directories is 777.

Of the digits used in the umask, like with the numeric
arguments for the chmod command, the first digit refers to
user permissions, the second digit refers to the group
permissions, and the last refers to default permissions set for
others. The default umask setting of 022 gives 644 for all new
files and 755 for all new directories that are created on your
server. A complete overview of all umask numeric values and
their result is shown in Table 7-5.

Table 7-5 umask Values and Their Result

Value Applied to Files Applied to DirectoriesValue Applied to Files Applied to Directories

0 Read and write Everything

1 Read and write Read and write

2 Read Read and execute

3 Read Read

4 Write Write and execute

5 Write Write

6 Nothing Execute

7 Nothing Nothing

An easy way to see how the umask setting works is as follows:
Start with the default permissions for a file set to 666 and

subtract the umask to get the effective permissions. For a
directory, start with its default permissions that are set to 777
and subtract the umask to get the effective permissions.

There are two ways to change the umask setting: for all users
and for individual users. If you want to set the umask for all
users, you must make sure the umask setting is considered
when starting the shell environment files as directed by
/etc/profile. The right approach is to create a shell script with
the name umask.sh in the /etc/profile.d directory and specify
the umask you want to use in that shell script. If the umask is
changed in this file, it applies to all users after logging in to your
server.

An alternative to setting the umask through /etc/profile and
related files where it is applied to all users logging in to the
system is to change the umask settings in a file with the name
.profile, which is created in the home directory of an individual
user. Settings applied in this file are applied for the individual
user only; therefore, this is a nice method if you need more
granularity. I personally like this feature to change the default
umask for user root to 027, whereas normal users work with
the default umask 022.

Working with User-Extended Attributes

When you work with permissions, a relationship always exists
between a user or group object and the permissions these user
or group objects have on a file or directory. An alternative
method of securing files on a Linux server is by working with
attributes. Attributes do their work regardless of the user who
accesses the file.

Many attributes are documented. Some attributes are available
but not yet implemented. Do not use them; they bring you
nothing. Following are the most useful attributes that you can
apply:

A This attribute ensures that the file access time of the file is
not modified. Normally, every time a file is opened, the file
access time must be written to the file’s metadata. This affects
performance in a negative way; therefore, on files that are
accessed on a regular basis, the A attribute can be used to
disable this feature.
a This attribute allows a file to be added to but not to be
removed.
c If you are using a file system where volume-level
compression is supported, this file attribute makes sure that
the file is compressed the first time the compression engine
becomes active.

D This attribute makes sure that changes to files are written
to disk immediately, and not to cache first. This is a useful
attribute on important database files to make sure that they
do not get lost between file cache and hard disk.
d This attribute makes sure the file is not backed up in
backups where the legacy dump utility is used.
I This attribute enables indexing for the directory where it is
enabled.
i This attribute makes the file immutable. Therefore, no
changes can be made to the file at all, which is useful for files
that need a bit of extra protection.
s This attribute overwrites the blocks where the file was
stored with 0s after the file has been deleted. This makes sure
that recovery of the file is not possible after it has been
deleted.
u This attribute saves undelete information. This allows a
utility to be developed that works with that information to
salvage deleted files.

Note

Although quite a few attributes can be used, be
aware that most attributes are rather experimental
and are only of any use if an application is used
that can work with the given attribute. For

example, it does not make sense to apply the u
attribute if no application has been developed that
can use this attribute to recover deleted files.

If you want to apply attributes, you can use the chattr
command. For example, use chattr +s somefile to apply the
attributes to somefile. Need to remove the attribute again? Then
use chattr -s somefile and it will be removed. You should try
this to find out how attributes are one of the rare cases where
you can even block access to the root user:

1. Open a root shell.

2. Create a file named touch /root/myfile

3. Set the immutable permission to chattr +i /root/myfile

4. Try to remove the file: rm -f /root/myfile. You can’t!

5. Remove the attribute again: chattr -i /root/myfile

To get an overview of all attributes that are currently applied,
use the lsattr command.

Summary

In this chapter, you learned how to work with permissions. You
read about the three basic permissions as well as the advanced
permissions. You also learned how to use the umask setting to
apply default permissions. Toward the end of this chapter, you
learned how to use user-extended attributes to apply an
additional level of file system security.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the
Introduction, you have several choices for exam preparation:
the end-of-chapter labs; the memory tables in Appendix C;
Chapter 27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the
Key Topic icon in the margin of the page. Table 7-6 lists a
reference for these key topics and the page number on which
each is found.

Table 7-6 Key Topics for Chapter 7

Key Topic
Element

Description Page
Key Topic
Element

Description Page

Table 7-2 Use of Read, Write, and Execute
Permissions

152

Table 7-3 Numeric Representation of
Permissions

153

Table 7-4 Working with SUID, SGID, and
Sticky Bit

158

Table 7-5 umask Values and Their Result 159

Complete Tables and Lists from Memory

Print a copy of Appendix C, “Memory Tables” (found on the
companion website), or at least the section for this chapter, and
complete the tables and lists from memory. Appendix D,
“Memory Tables Answer Key,” includes completed tables and
lists to check your work.

Define Key Terms

Define the following key terms from this chapter and check
your answers in the glossary:

ownership

permissions

inheritance

attribute

Review Questions

The questions that follow use an open-ended format that is
meant to help you test your knowledge of the concepts and
terminology and the breadth of your knowledge. You can find
the answers to these questions in Appendix A.

. How do you use chown to set the group owner to a file?

. Which command finds all files that are owned by a specific
user?

. How would you apply read, write, and execute permissions to
all files in /data for the user and group owners while setting no
permissions for others?

. Which command enables you in relative permission mode to
add the execute permission to a file that you want to make
executable?

. Which command enables you to ensure that group ownership
of all new files that will be created in a directory is set to the
group owner of that directory?

. You want to ensure that users can only delete files of which
they are the owner, or files that are in a directory of which they
are the owner. Which command will do that for you?

. Which umask do you need to set if you never want “others” to
get any permissions on new files?

. Which command ensures that nobody can delete myfile by
accident?

. How can you search for all files that have the SUID permission
set?

. Which command do you use to check if any attributes have
been applied?

End-of-Chapter Lab

In Chapter 6, “User and Group Management,” you created some
users and groups. These users and groups are needed to
perform the exercises in this lab.

Lab 7.1

1. Set up a shared group environment. If you haven’t created
these directories in a previous exercise yet, create two
directories: /data/account and /data/sales. Make the group
sales the owner of the directory sales, and make the group
account the owner of the directory account.

2. Configure the permissions so that the user owner (which
must be root) and group owner have full access to the
directory. There should be no permissions assigned to the
others entity.

3. Ensure that all new files in both directories inherit the group
owner of their respective directory. This means that all files
that will be created in /data/sales will be owned by the group
sales, and all files in /data/account will be owned by the
group account.

4. Ensure that users are only allowed to remove files of which
they are the owner.

Chapter 8

Configuring Networking

The following topics are covered in this chapter:

Networking Fundamentals
Managing Network Addresses and Interfaces
Validating Network Configuration
Managing Network Configuration with nmtui and nmcli
Setting Up Hostname and Name Resolution

The following RHCSA exam objectives are covered in this
chapter:

Configure IPv4 and IPv6 addresses
Configure hostname resolution

Networking is one of the most essential items on a modern
server. On RHEL 9, networking is managed by the
NetworkManager service. The old network service doesn’t exist
anymore, and that means that modern NetworkManager-
related tools like nmcli and nmtui are the only way to manage
network settings.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess
whether you should read this entire chapter thoroughly or
jump to the “Exam Preparation Tasks” section. If you are in
doubt about your answers to these questions or your own
assessment of your knowledge of the topics, read the entire
chapter. Table 8-1 lists the major headings in this chapter and
their corresponding “Do I Know This Already?” quiz questions.
You can find the answers in Appendix A, “Answers to the ‘Do I
Know This Already?’ Quizzes and Review Questions.”

Table 8-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Networking Fundamentals 1–2

Managing Network Addresses and Interfaces 3

Validating Network Configuration 4

Managing Network Configuration with nmtui
and nmcli

5–8

Setting Up Hostname and Name Resolution 9–10

. Which of the following IP addresses belong to the same
network?

1. 192.168.4.17/26
2. 192.168.4.94/26
3. 192.168.4.97/26
4. 192.168.4.120/26

1. I and II
2. II and III
3. III and IV
4. II, III, and IV

. Which of the following is not a private IP address?

1. 10.10.10.10
2. 169.254.11.23
3. 172.19.18.17
4. 192.168.192.192

. Which of the following could be the network interface name on
a RHEL 9 system?

1. p6p1
2. eth0
3. eno1677783

4. e0

. Which command shows the recommended way to display
information about the network interface as well as its IP
configuration?

1. ifconfig -all
2. ipconfig
3. ip link show
4. ip addr show

. Which statement about NetworkManager is not true?

1. It is safe to disable NetworkManager and work with the
network service instead.

2. NetworkManager manages network connections that are
applied to network interfaces.

3. NetworkManager has a text-based user interface with the
name nmtui

4. NetworkManager is the default service to manage
networking in RHEL 9.

. Which man page contains excellent examples on nmcli usage?

1. nmcli
2. nmcli-examples

3. nm-config
4. nm-tools

. Which of the following is the name of the text user interface to
specify network connection properties?

1. system-config-network
2. system-config-networkmanager
3. nmtui
4. nmcli

. Which of the following commands shows correct syntax to set a
fixed IP address to a connection using nmcli?

1. nmcli con add con-name "static" ifname eth0 autoconnect
no type ethernet ipv4 10.0.0.10/24 gw4 10.0.0.1

2. nmcli con add con-name "static" ifname eth0 autoconnect
no type ethernet ipv4 10.0.0.10/24 gwv4 10.0.0.1

3. nmcli con add con-name "static" ifname eth0 type
ethernet ipv4 10.0.0.10/24 gw4 10.0.0.1

4. nmcli con add con-name "static" ifname eth0 autoconnect
no type ethernet ip4 10.0.0.10/24 gw4 10.0.0.1

. Which of the following is not a recommended way to specify
which DNS servers to use?

1. Edit /etc/resolv.conf.
2. Set the DNS options in /etc/sysconfig/network-scripts/ifcfg-

<ID>.
3. Set the DNS server names using nmcli.
4. Use nmtui to set the DNS server names.

. In which configuration file would you set the hostname?

1. /etc/sysconfig/network
2. /etc/sysconfig/hostname
3. /etc/hostname
4. /etc/defaults/hostname

Foundation Topics

Networking Fundamentals

To set up networking on a server, your server needs a unique
address on the network. For this purpose, Internet Protocol
(IP) addresses are used. Currently, two versions of IP addresses
are relevant:

IPv4 addresses: These are based on 32-bit addresses and
have four octets, separated by dots, such as 192.168.10.100.
IPv6 addresses: These are based on 128-bit addresses and
are written in eight groups of hexadecimal numbers that are
16 bits each and separated by colons. An IPv6 address may
look like fe80:badb:abe01:45bc:34ad:1313:6723:8798.

In this chapter, you learn how to work with IPv4 addresses. IPv6
addresses are described only briefly (but in enough detail to
deal with it on the exam), as IPv4 is still the protocol used by
most administrators.

IP Addresses

Originally, IP addresses were assigned to computers and
routers. Nowadays, many other devices also need IP addresses
to communicate, such as smartphones, industrial equipment,
and almost all other devices that are connected to the Internet.
This chapter refers to all of those devices by using the word
node. You’ll also occasionally encounter the word host. A host is
typically a server providing services on the network.

To make it easier for computers to communicate with one
another, every IP address belongs to a specific network, and to
communicate with computers on another network, a router is
used. A router is a machine (often dedicated hardware that has

been created for that purpose) that connects networks to one
another.

To communicate on the Internet, every computer needs a
worldwide unique IP address. These addresses are scarce; a
theoretical maximum of four billion IP addresses is available,
and that is not enough to provide every device on the planet
with an IP address. IPv6 is the ultimate solution for that
problem, because a very large number of IP addresses can be
created in IPv6. Because many networks still work with IPv4,
though, another solution exists: private network addresses.

Private network addresses are addresses that are for use in
internal networks only. Some specific IP network addresses
have been reserved for this purpose:

10.0.0.0/8 (a single Class A network)
172.16.0.0/12 (16 Class B networks)
192.168.0.0/16 (256 Class C networks)

When private addresses are used, the nodes that are using them
cannot access the Internet directly, and nodes from the Internet
cannot easily access them. Because that is not very convenient,

Network Address Translation (NAT) is commonly used on the
router that connects the private network to the Internet. In NAT,
the nodes use a private IP address, but when accessing the
Internet, this private IP address is replaced with the IP address
of the NAT router. Hence, nodes on the Internet think that they
are communicating with the NAT router, and not with the
individual hosts.

The NAT router in its turn uses tables to keep track of all
connections that currently exist for the hosts in the network.
Based on this table, the NAT router helps make it possible for
computers with a private IP address to connect to hosts on the
Internet anyway. The use of NAT is very common; it is
embedded in most routers that are used in home and small
business networks to connect computers and other devices in
those networks to the Internet.

IPv6 Addresses

Let’s look at a valid IPv6 address, such as
02fb:0000:0000:0000:90ff:fe23:8998:1234. In this address, you
can see that a long range of zeros occurs. To make IPv6
addresses more readable, you can replace one range of zeros
with :: instead. Also, if an IPv6 address starts with a leading

zero, you can omit it. So the previously mentioned IPv6 address
can be rewritten as 2fb::90ff:fe23:8998:1234.

IPv4 Network Masks

To know to which network a computer belongs, a subnet mask
is used with every IP address. The subnet mask defines which
part of the network address indicates the network and which
part indicates the node. Subnet masks may be written in the
Classless Inter-Domain Routing (CIDR) notation, which indicates
the number of bits in the subnet mask, or in the classical
notation, and they always need to be specified with the network
address. Examples include 192.168.10.100/24 (CIDR notation),
which indicates that a 24-bit network address is used, and
192.168.10.100/255.255.255.0 (classical notation), which
indicates exactly the same.

Often, network masks use multiple bytes. In the example using
192.168.10.100/24, the first 3 bytes (the 192.168.10 part) form the
network part, and the last byte (the number 100) is the host part
on that network.

When talking about network addresses, you use a 4-byte
number, as well, in which the node address is set to 0. So in the
example of 192.168.10.100/24, the network address is

192.168.10.0. In IPv4 networks, there is also always a broadcast
address. This is the address that can be used to address all
nodes in the network. In the broadcast address, all node bits are
set to 1, which makes for the decimal number 255 if an entire
byte is referred to. So in the example of the address
192.168.10.100/24, the broadcast address is 192.168.10.255.

Binary Notation

Because the number of IPv4 addresses is limited, in modern
IPv4 networks variable-length network masks are used. These
are network masks such as 212.209.113.33/27. In a variable-
length subnet mask, only a part of the byte is used for
addressing nodes, and another part is used for addressing the
network. In the subnet mask /27, the first 3 bits of the last byte
are used to address the network, and the last 5 bits are used for
addressing nodes. This becomes clearer if you write down the
address in a binary notation:

IP address:

Click here to view code image

212.209.113.33 = 11010100.11010001.00001010.00100

Subnet mask:

Click here to view code image

/27 = 11111111.11111111.11111111.11100000

When applying the subnet mask to the IP address, you can see
that the first 3 bits of the IP address belong to the network, so
the network is 00100000. And if you use a binary calculator, you
can see that it corresponds with the decimal IP address 32.
Using the /27 subnet mask allows for the creation of multiple
networks. Table 8-2 gives an overview.

Table 8-2 Binary-Decimal Conversion Overview

Binary Value Decimal Value

00000000 0

00100000 32

01000000 64

Binary Value Decimal Value

01100000 96

10000000 128

10100000 160

11000000 192

11100000 224

So, based on this information, if you consider the IP address
212.209.113.33/27 again, you can see that it belongs to the
network 212.209.113.32/27, and that in this network the
broadcast address (which has the node part of the IP address
set to all 1s) is 212.209.113.63; therefore, with a /27 subnet mask,
30 nodes can be addressed per network. You’ll get 32 IP
addresses, but 2 of them are the network address and the
broadcast address, which cannot be used as a host IP address.

Exam Tip

You do not need to make this kind of calculation on
the RHCSA exam, but it helps in understanding
how IP network addressing works.

MAC Addresses

IP addresses are the addresses that allow nodes to
communicate to any other node on the Internet. They are not
the only addresses in use though. Each network card also has a
12-byte MAC address. MAC addresses are for use on the local
network (that is, the local physical network or local WLAN, just
up to the first router that is encountered); they cannot be used
for communications between nodes that are on different
networks. MAC addresses are important, though, because they
help computers find the specific network card that an IP
address belongs to.

An example of a MAC address is 00:0c:29:7d:9b:17. Notice that
each MAC address consists of two parts. The first 6 bytes is the
vendor ID, and the second 6 bytes is the unique node ID. Vendor
IDs are registered, and by using registered vendor IDs, it is
possible to allocate unique MAC addresses.

Protocol and Ports

In the previous section you learned how to use IP addresses to
identify individual nodes. On these nodes, you will typically be
running services, like a web server or an FTP server. To identify
these services, port addresses are used. Every service has a
specific port address, such as port 80 for Hypertext Transfer
Protocol (HTTP) or port 22 for a Secure Shell (SSH) server, and
in network communication, the sender and the receiver are
using port addresses. So, there is a destination port address as
well as a source port address involved in network
communications.

Because not all services are addressed in a similar way, a
specific protocol is used between the IP address and the port
address, such as Transfer Control Protocol (TCP), User Datagram
Protocol (UDP), or Internet Control Message Protocol (ICMP).
Every protocol has specific properties: TCP is typically used
when the network communication must be reliable and
delivery must be guaranteed; UDP is used when it must be fast
and guaranteed delivery is not necessary.

Managing Network Addresses and Interfaces

As a Linux server administrator, you need to manage network
addresses and network interfaces. The network addresses can
be assigned in two ways:

Fixed IP addresses: Useful for servers and other computers
that always need to be available at the same IP address.
Dynamically assigned IP addresses: Useful for end users’
devices, and for instances in a cloud environment. To
dynamically assign IP addresses, you usually use a Dynamic
Host Configuration Protocol (DHCP) server.

For a long time, network cards in Linux have had default
names, such as eth0, eth1, and eth2. This naming is assigned
based on the order of detection of the network card. So, eth0 is
the first network card that is detected, eth1 the second, and so
on. This works well in an environment where a node has one or
two network cards only. If a node has multiple network cards
that need to be dynamically added and removed, however, this
approach does not work so well because it is very hard to
identify which physical network card is using which name.

In RHEL 9, the default names for network cards are based on
firmware, device topology, and device types. This leads to
network card names that always consist of the following parts:

Ethernet interfaces begin with en, WLAN interfaces begin
with wl, and WWAN interfaces begin with ww.

The next part of the name represents the type of adapter. An
o is used for onboard, s is for a hotplug slot, and p is for a PCI
location. Administrators can also use x to create a device
name that is based on the MAC address of the network card.
Then follows a number, which is used to represent an index,
ID, or port.
If the fixed name cannot be determined, traditional names
such as eth0 are used.

Based on this information, device names such as eno16777734
can be used, which stands for an onboard Ethernet device, with
its unique index number.

Apart from this default device naming, network cards can be
named based on the BIOS device name as well. In this naming
scheme, names such as em1 (embedded network card 1) or
p4p1 (which is PCI slot 4, port 1) can be used.

Validating Network Configuration

Before you can learn how to set network information, you must
know how to verify current network information. In this
section, you learn how to do that, and you learn how to check
the following networking items:

IP address and subnet mask

Routing
Availability of ports and services

Validating Network Address Configuration

To verify the configuration of the network address, you need to
use the ip utility. The ip utility is a modern utility that can
consider advanced networking features that have been
introduced in the past decades. With the ip utility, you can
monitor many aspects of networking:

Use ip addr to configure and monitor network addresses.
Use ip route to configure and monitor routing information.
Use ip link to configure and monitor network link state.

Apart from these items, the ip utility can manage many other
aspects of networking, but you do not need to know about them
for the RHCSA exam.

Warning

In earlier Linux versions and some other UNIX-like
operating systems, the ifconfig utility was and is
used for validating network configuration. Do not
use this utility on modern Linux distributions.
Because Linux has become an important player in

cloud computing, networking has evolved a lot to
match cloud computing requirements, and many
new features have been added to Linux
networking. With the ifconfig utility, you cannot
manage or validate these concepts. Even if ifconfig
is still the default tool on some operating systems
(like macOS, for instance), you should never use it
anymore on Linux!

To show current network settings, you can use the ip addr
show command (which can be abbreviated as ip a s or even as
ip a). The ip command is relatively smart and does not always
require you to type the complete option.

The result of the ip addr show command looks like Example 8-
1.

Example 8-1 Monitoring Current Network Configuration with
ip addr show

Click here to view code image

[root@server1 ~]# ip addr show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc no

 group default qlen 1000

g p q

 link/loopback 00:00:00:00:00:00 brd 00:00:00

 inet 127.0.0.1/8 scope host lo

 valid_lft forever preferred_lft forever

 inet6 ::1/128 scope host

 valid_lft forever preferred_lft forever

2: ens33: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu

 state UP group default qlen 1000

 link/ether 00:0c:29:50:9e:c9 brd ff:ff:ff:ff

 inet 192.168.4.210/24 brd 192.168.4.255 scop

 noprefixroute ens33

 valid_lft 1370sec preferred_lft 1370sec

 inet6 fe80::959:3b1a:9607:8928/64 scope link

 valid_lft forever preferred_lft forever

In the result of this command, you see a listing of all network
interfaces in your computer. You’ll normally see at least two
interfaces, but on specific configurations, there can be many
more interfaces. In Example 8-1, two interfaces are shown: the
loopback interface lo and the onboard Ethernet card ens33.

The loopback interface is used for communication between
processes. Some processes use the IP protocol for internal
communications. For that reason, you’ll always find a loopback
interface, and the IP address of the loopback interface is always
set to 127.0.0.1. The important part of the output of the

command is for the onboard Ethernet card. The command
shows the following items about its current status:

Current state: The most important part of this line is the text
state UP, which shows that this network card is currently up
and available.
MAC address configuration: This is the unique MAC address
that is set for every network card. You can see the MAC
address itself (00:0c:29:50:9e:c9), as well as the corresponding
broadcast address.
IPv4 configuration: This line shows the IP address that is
currently set, as well as the subnet mask that is used. You can
also see the broadcast address that is used for this network
configuration. Notice that on some interfaces you may find
multiple IPv4 addresses.
IPv6 configuration: This line shows the current IPv6 address
and its configuration. Even if you haven’t configured
anything, every interface automatically gets an IPv6 address,
which can be used for communication on the local network
only.

If you are just interested in the link state of the network
interfaces, you can use the ip link show command. This
command (of which you can see the output in Example 8-2)
repeats the link state information of the ip addr show

command. If you add the option -s, you can also see current link
statistics, which gives information about packets transmitted
and received, as well as an overview of errors that have
occurred during packet transmission.

Example 8-2 ip link show Output

Click here to view code image

[root@server1 ~]# ip -s link show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc no

 mode DEFAULT group default qlen 1000

 link/loopback 00:00:00:00:00:00 brd 00:00:00

 RX: bytes packets errors dropped overru

 0 0 0 0 0

 TX: bytes packets errors dropped carrie

 0 0 0 0 0

2: ens33: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu

 state UP mode DEFAULT group default qlen 1000

 link/ether 00:0c:29:50:9e:c9 brd ff:ff:ff:ff

 RX: bytes packets errors dropped overru

 143349 564 0 0 0

 TX: bytes packets errors dropped carrie

 133129 541 0 0 0

In case the ip link show command shows the current link state
as down, you can temporarily bring it up again by using ip link
set, which is followed by dev devicename and up (for example,
ip link set dev ens33 up).

In Exercise 8-1, you learn how to manage and monitor
networking with the ip utility and other utilities.

Exercise 8-1 Validating Network Configuration

1. Open a root shell.
2. Type ip -s link show. This shows all existing network

connections, in addition to statistics about the number of
packets that have been sent and associated error messages.

3. Type ip addr show. You’ll see the current address
assignments for network interfaces on your server.

Validating Routing

One important aspect of networking is routing. On every
network that needs to communicate to nodes on other
networks, routing is a requirement. Every network has, at least,
a default router (also called the default gateway) that is set, and
you can see which router is used as the default router by using
the command ip route show (see Example 8-3). You should

always perform one quick check to verify that your router is set
correctly: the default router at all times must be on the same
network as the local IP address that your network card is using.

Example 8-3 ip route show Output

Click here to view code image

[root@server1 ~]# ip route show

default via 192.168.4.2 dev ens33 proto dhcp met

192.168.4.0/24 dev ens33 proto kernel scope link

 metric 100

192.168.122.0/24 dev virbr0 proto kernel scope l

 linkdown

In Example 8-3, the most important part is the first line. It
shows that the default route goes through (“via”) IP address
192.168.4.2, and also shows that network interface ens33 must
be used to address that IP address. The line shows that this
default route was assigned by a DHCP server. The metric is used
in case multiple routes are available to the same destination. In
that case, the route with the lowest metric will be used. This is
something important on router devices, but on computers that
are not a router, the metric doesn’t really matter.

Next you can see lines that identify the local connected
networks. When you’re booting, an entry is added for each local
network as well, and in this example this applies to the
networks 192.168.4.0 and 192.168.122.0. These routes are
automatically generated and do not need to be managed.

Validating the Availability of Ports and Services

Network problems can be related to the local IP address and
router settings but can also be related to network ports that are
not available on your server or on a remote server. To verify
availability of ports on your server, you can use the netstat
command or the newer ss command, which provides the same
functionality. Exercise 8-2 shows how to verify network
settings. By typing ss -lt, you’ll see all listening TCP ports on the
local system (see Example 8-4).

Example 8-4 Using ss -lt to Display All Listening Ports on the
Local System

Click here to view code image

[root@server1 ~]# ss -lt

State Recv-Q Send-Q Local Addre

 Address:Port

LISTEN 0 32 192.168.122

LISTEN 0 128 0.0.0.0:ssh

LISTEN 0 5 127.0.0.1:i

LISTEN 0 128 0.0.0.0:sun

LISTEN 0 128 [::]:ssh

LISTEN 0 5 [::1]:ipp

LISTEN 0 128 [::]:sunrpc

Notice where the port is listening on. Some ports are only
listening on the IPv4 loopback address 127.0.0.1 or the IPv6
loopback address ::1, which means that they are locally
accessible only and cannot be reached from external machines.
Other ports are listening on *, which stands for all IPv4
addresses, or on :::*, which represents all ports on all IPv6
addresses.

Exercise 8-2 Verifying Network Settings

1. Open a root shell to your server and type ip addr show. This
shows the current network configuration. Note the IPv4
address that is used and the network device names that are
used; you need these later in this exercise.

2. Type ip route show to verify routing configuration.
3. If your computer is connected to the Internet, you can now

use the ping command to verify the connection to the

Internet is working properly. Type ping -c 4 8.8.8.8, for
instance, to send four packets to IP address 8.8.8.8. If your
Internet connection is up and running, you should get “echo
reply” answers.

4. Type ip addr add 10.0.0.10/24 dev <yourdevicename>. This
will temporarily set a new IP address.

5. Type ip addr show. You’ll see the newly set IP address, in
addition to the IP address that was already in use.

6. Type ifconfig. Notice that you do not see the newly set IP
address (and there are no options with the ifconfig
command that allow you to see it). This is one example of
why you should not use the ifconfig command anymore.

7. Type ss -tul. You’ll now see a list of all UDP and TCP ports
that are listening on your server.

Managing Network Configuration with nmtui and
nmcli

As mentioned earlier in this chapter, networking on RHEL 9 is
managed by the NetworkManager service. You can use the
systemctl status NetworkManager command to verify its
current status. When NetworkManager comes up, it reads the
network card configuration scripts, which are in
/etc/NetworkManager/system-connections and have a name

that starts with the name of the network interface the
configuration applies to, like ens160.nmconnection.

When working with network configuration in RHEL 9, you
should know the difference between a device and a connection:

A device is a network interface card.
A connection is the configuration that is used on a device.

In RHEL 9, you can create multiple connections for a device.
This makes sense on mobile computers, for example, to
differentiate between settings that are used to connect to the
home network and settings that are used to connect to the
corporate network. Switching between connections on devices
is common on end-user computers but not so common on
servers. To manage the network connections that you want to
assign to devices, you use the nmtui command or the nmcli
command.

Exam Tip

The nmcli tool is cool and very powerful, but it’s
not the easiest tool available. To change network
configurations fast and efficiently, you should use
the menu-driven nmtui utility. It may not be as
cool as nmcli, but it allows you to do what you

need to do in less than a minute, after which you
can continue with the other tasks.

Required Permissions to Change Network Configuration

Obviously, the root user can make modifications to current
networking. However, if an ordinary user is logged in to the
local console, this user is able to make changes to the network
configuration as well. As long as the user is using the system
keyboard to enter either a graphical console or a text-based
console, these permissions are granted. The reason is that users
are supposed to be able to connect their local system to a
network. Notice that regular users who have used ssh to
connect to a server are not allowed to change the network
configuration. To check your current permissions, use the
nmcli general permissions command, as shown in Figure 8-1.

Figure 8-1 Verifying Current Permissions to Change Network Configuration

Configuring the Network with nmcli

Earlier in this chapter, you learned how to use ip to verify
network configuration. You have also applied the ip addr add
command to temporarily set an IP address on a network
interface. Everything you do with the ip command, though, is
nonpersistent. If you want to make your configuration
persistent, use nmtui or nmcli.

A good start is to use nmcli to show all connections. This shows
active and inactive connections. You can easily see the

difference because inactive connections are not currently
assigned to a device (see Example 8-5).

Example 8-5 Showing Current Connection Status

Click here to view code image

[root@server1 ~]# nmcli con show

NAME UUID

ens33 db6f53bd-654e-45dd-97ef-224514f8050a

After finding the name of the connection, you can use nmcli
con show followed by the name of the connection to see all
properties of the connection. Notice that this command shows
many properties. Example 8-6 shows the partial output of this
command.

Example 8-6 Displaying Connection Properties

Click here to view code image

[root@server1 ~]# nmcli con show ens33

connection.id: ens33

connection.uuid: db6f53bd

 224514

connection.stable-id: --

connection.type: 802-3-et

connection.interface-name: ens33

connection.autoconnect: yes

connection.autoconnect-priority: 0

connection.autoconnect-retries: -1 (defa

connection.multi-connect: 0 (defau

…

DHCP4.OPTION[21]: requeste

DHCP4.OPTION[22]: routers

DHCP4.OPTION[23]: subnet_m

IP6.ADDRESS[1]: fe80::95

IP6.GATEWAY: --

IP6.ROUTE[1]: dst = fe

 mt = 1

IP6.ROUTE[2]: dst = ff

 mt = 2

To find out what exactly these settings are doing, execute man 5
nm-settings. You can also use nmcli to show an overview of
currently configured devices and the status of these devices.
Type, for instance, the nmcli dev status command to show a
list of all devices, and nmcli dev show <devicename> to show
settings for a specific device.

Tip

Using nmcli might seem difficult. It’s not, because
it offers excellent command-line completion
features—just make sure that the bash-completion
package has been installed. Try it by typing nmcli,
but don’t press Enter! Instead, press the Tab key
twice—you will see all available options that nmcli
expects at this moment. Choose an option, such as
connection, and press the Tab key twice. Using this
approach helps you to compose long commands
without the need to memorize anything!

In Exercise 8-3, you learn how to create connections and switch
between connections using the nmcli command.

Exercise 8-3 Managing Network Connections with nmcli

In this exercise you create a new connection and manage its
status. This connection needs to be connected to a network
device. In this exercise the device ens33 is used. If necessary,
change this to the name of the network device in use on your
computer. Run this exercise from a console session, not using
an SSH connection.

1. Create a new network connection by typing nmcli con add
con-name dhcp type ethernet ifname ens33 ipv4.method

auto.
2. Create a connection with the name static to define a static IP

address and gateway: nmcli con add con-name static
ifname ens33 autoconnect no type ethernet ip4
10.0.0.10/24 gw4 10.0.0.1 ipv4.method manual. The gateway
might not exist in your configuration, but that does not
matter.

3. Type nmcli con show to show the connections, and use
nmcli con up static to activate the static connection. Switch
back to the DHCP connection using nmcli con up dhcp.

In this exercise, you created network connections using nmcli
con add. You can also change current connection properties by
using nmcli con mod.

In Exercise 8-4, you learn how to change connection parameters
with nmcli.

Exercise 8-4 Changing Connection Parameters with nmcli

1. Make sure that the static connection does not connect
automatically by using nmcli con mod static
connection.autoconnect no.

2. Add a DNS server to the static connection by using nmcli con
mod static ipv4.dns 10.0.0.10. Notice that while adding a

network connection, you use ip4, but while modifying
parameters for an existing connection, you often use ipv4
instead. This is not a typo; it is just how it works.

3. To add a second item for the same parameters, use a + sign.
Test this by adding a second DNS server, using nmcli con
mod static +ipv4.dns 8.8.8.8.

4. Using nmcli con mod, you can also change parameters such
as the existing IP address. Try this by using nmcli con mod
static ipv4.addresses 10.0.0.100/24.

5. And to add a second IP address, you use the + sign again:
nmcli con mod static +ipv4.addresses 10.20.30.40/16.

6. After changing connection properties, you need to activate
them. To do that, you can use nmcli con up static.

This is all you need to know about nmcli for the RHCSA exam.
As you’ve noticed, nmcli is a very rich command. The exact
syntax of this command may be hard to remember. Fortunately,
though, there is an excellent man page with examples. Type
man nmcli-examples to show this man page; you’ll notice that
if you can find this man page, you can do almost anything with
nmcli. Also, don’t forget to use Tab completion while working
with nmcli.

Configuring the Network with nmtui

If you do not like the complicated syntax of the nmcli command
line, you might like nmtui. This is a text user interface that
allows you to create network connections easily. Figure 8-2
shows what the nmtui interface looks like.

The nmtui interface consists of three menu options:

Edit a Connection: Use this option to create new connections
or edit existing connections.
Activate a Connection: Use this to (re)activate a connection.
Set System Hostname: Use this to set the hostname of your
computer.

Figure 8-2 The nmtui Interface

The option to edit a connection offers almost all the features
that you might ever need while working on network
connections. It sure allows you to do anything you need to be
doing on the RHCSA exam. You can use it to add any type of
connection—not just Ethernet connections, but also advanced
connection types such as network bridges and teamed network
drivers are supported.

When you select the option Edit a Connection, you get access to
a rich interface that allows you to edit most properties of
network connections. After editing the connection, you need to
deactivate it and activate it again.

Tip

If you like graphical user interface (GUI) tools, you
are lucky. Use nm-connection-editor instead of
nmtui, but be prepared that this interface offers a
relatively restricted option set. It does not contain
advanced options such as the options to create
network team interfaces and manage network
bridge interfaces. It does, however, offer all you
need to manage address configuration on a
network connection. Start it by using the nm-
connection-editor command or by using the

applet in the GNOME graphical interface. Figure 8-
3 shows what the default interface of this tool looks
like.

Figure 8-3 The nm-connection-editor Interface

Working on Network Configuration Files

Every connection that you create is stored as a configuration
file in the directory /etc/NetworkManager/system-connections.
The name of the configuration files starts with the name of the
connection, followed by .nmconnection. In Example 8-7, you
can see what such a configuration file looks like.

In previous versions of RHEL, network connections were stored
in the /etc/sysconfig/network-scripts directory. If
NetworkManager finds legacy connection scripts in this
directory, they will still be used, but NetworkManager
connection scripts are no longer stored by default at this
location.

Example 8-7 Example of a NetworkManager Connection File

Click here to view code image

[root@server1 ~]# cat /etc/NetworkManager/system

 ens160.nmconnection

[connection]

id=ens160

uuid=5e4ddb28-2a00-3c27-9ba6-c773de3d7bcb

type=ethernet

autoconnect-priority=-999

interface-name=ens160

timestamp=1663070258

p

[ethernet]

[ipv4]

address1=192.168.29.5/24,192.168.29.2

dns=8.8.8.8;8.8.4.4;

method=manual

[ipv6]

addr-gen-mode=eui64

method=auto

Setting Up Hostname and Name Resolution

To communicate with other hosts, hostnames are used. As an
administrator, you must know how to set the hostname. You
also need to make sure that hosts can contact one another
based on hostnames by setting up hostname resolution. In this
section, you learn how to do that.

Hostnames

Because hostnames are used to access servers and the services
they’re offering, it is important to know how to set the system
hostname. A hostname typically consists of different parts.

These are the name of the host and the Domain Name System
(DNS) domain in which the host resides. These two parts
together make up the fully qualified domain name (FQDN),
which looks like server1.example.com. It is good practice to
always specify an FQDN, and not just the hostname, because the
FQDN provides a unique identity on the Internet. There are
different ways to change the hostname:

Use nmtui and select the option Change Hostname.
Use hostnamectl set-hostname.
Edit the contents of the configuration file /etc/hostname.

To configure the hostname with hostnamectl, you can use a
command like hostnamectl set-hostname
myhost.example.com. After setting the hostname, you can use
hostnamectl status to show the current hostname. Example 8-
8 shows the output of this command.

Example 8-8 Showing Current Hostname Configuration

Click here to view code image

[root@server1 ~]# hostnamectl status

 Static hostname : server1.example.com

 Icon name : computer-vm

 Chassis : vm

 Machine ID : 5aa095b495ed458d934c54a880

 Boot ID. : 5fdef4be9cab48c59873af505d

 Virtualization : vmware

 Operating System : Red Hat Enterprise Linux 9

 CPE OS Name : cpe:/o:redhat:enterprise_l

 Kernel : Linux 4.18.0-80.el9.x86_64

 Architecture : x86-64

When using hostnamectl status, you see not only information
about the hostname but also information about the Linux
kernel, virtualization type, and much more.

Alternatively, you can set the hostname using the nmtui
interface. Figure 8-4 shows the screen from which this can be
done.

Figure 8-4 Changing the Hostname Using nmtui

To set hostname resolution, you typically use DNS. Configuring
a DNS server is not an RHCSA objective, but you need to know

how to configure your server to use an existing DNS server for
hostname resolution. Apart from DNS, you can configure
hostname resolution in the /etc/hosts file. Example 8-9 shows
the contents of an /etc/hosts file as it generated by default after
installation.

Example 8-9 /etc/hosts Sample Contents

Click here to view code image

[root@server1 ~]# cat /etc/hosts

127.0.0.1 localhost localhost.localdomain loc

 localhost4. localdomain4

::1 localhost localhost.localdomain loc

 localhost6. localdomain6

All hostname–IP address definitions as set in /etc/hosts will be
applied before the hostname in DNS is used. This is configured
as a default in the hosts line in /etc/nsswitch.conf, which by
default looks like this:

hosts: files dns myhostname

Setting up an /etc/hosts file is easy; just make sure that it
contains at least two columns. The first column has the IP
address of the specific host, and the second column specifies the
hostname. The hostname can be provided as a short name (like
server1) or as an FQDN. In an FQDN, the hostname as well as
the complete DNS name are included, as in
server1.example.com.

If a host has more than one name, like a short name and a fully
qualified DNS name, you can specify both of them in /etc/hosts.
In that case, the second column must contain the FQDN, and the
third column can contain the alias. Example 8-10 shows a
hostname configuration example.

Example 8-10 /etc/hosts Configuration Example

Click here to view code image

[root@server2 ~]# cat /etc/hosts

127.0.0.1 localhost localhost.localdomain loc

 localhost4. localdomain4

::1 localhost localhost.localdomain loc

 localhost6. localdomain6

10.0.0.10 server1.example.com server1

10.0.0.20 server2.example.com server2

DNS Name Resolution

Just using an /etc/hosts file is not enough for name resolution if
you want to be able to communicate with other hosts on the
Internet. You should use DNS, too. To specify which DNS server
should be used, set the DNS server using nmcli or nmtui as
previously discussed. The NetworkManager configuration
stores the DNS information in the configuration file for the
network connection, which is in /etc/sysconfig/network-scripts,
and from there pushes the configuration to the /etc/resolv.conf
file, which is used for DNS name server resolving. Do not edit
/etc/resolv.conf directly, as it will be overwritten the next time
you restart NetworkManager.

It is recommended to always set up at least two DNS name
servers to be contacted. If the first name server does not
answer, the second name server is contacted. To specify which
DNS name servers you want to use, you have a few different
options:

Use nmtui to set the DNS name servers. Figure 8-5 shows the
interface from which you can do this.
Use a DHCP server that is configured to hand out the address
of the DNS name server.

Use nmcli con mod <connection-id> [+]ipv4.dns <ip-of-
dns>.

Figure 8-5 Setting DNS Servers from the nmtui Interface

Notice that if your computer is configured to get the network
configuration from a DHCP server, the DNS server is also set via
the DHCP server. If you do not want this to happen, use the
following command: nmcli con mod <con-name> ipv4.ignore-
auto-dns yes.

To verify hostname resolution, you can use the getent hosts
<servername> command. This command searches in both
/etc/hosts and DNS to resolve the hostname that has been
specified.

Exam Tip

Do not specify the DNS servers directly in
/etc/resolv.conf. They will be overwritten by
NetworkManager when it is (re)started.

Summary

In this chapter, you learned how to configure networking in
RHEL 9. First you read how the IP protocol is used to connect
computers, and then you read which techniques are used to
make services between hosts accessible. Next you read how to
verify the network configuration using the ip utility and some
related utilities. In the last part of this chapter, you read how to
set IP addresses and other host configurations in a permanent
way by using either the nmcli or the nmtui utility.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the
Introduction, you have several choices for exam preparation:
the end-of-chapter labs; the memory tables in Appendix C;
Chapter 27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the
Key Topic icon in the margin of the page. Table 8-3 lists a
reference for these key topics and the page number on which
each is found.

Table 8-3 Key Topics for Chapter 8

Key Topic
Element

Description Page

List IPv4 and IPv6 short descriptions 170

List Private network addresses 170

Key Topic
Element

Description Page

Table 8-2 Binary-Decimal Conversion
Overview

172

List IP address types 174

Complete Tables and Lists from Memory

Print a copy of Appendix C, “Memory Tables” (found on the
companion website), or at least the section for this chapter, and
complete the tables and lists from memory. Appendix D,
“Memory Tables Answer Key,” includes completed tables and
lists to check your work.

Define Key Terms

Define the following key terms from this chapter and check
your answers in the glossary:

Internet Protocol (IP)

IPv4

IPv6

subnet mask

port

protocol

interface

Dynamic Host Configuration Protocol (DHCP)

connection

Domain Name System (DNS)

fully qualified domain name (FQDN)

Review Questions

The questions that follow are meant to help you test your
knowledge of concepts and terminology and the breadth of
your knowledge. You can find the answers to these questions in
Appendix A.

. What is the network address in the address 213.214.215.99/29?

. Which command only shows link status and not the IP address?

. You have manually edited the /etc/resolv.conf file to include
DNS servers. After a restart your modifications have
disappeared. What is happening?

. Which file contains the hostname in RHEL 9?

. Which command enables you to set the hostname in an easy
way?

. Where does NetworkManager store the configuration that it
generates?

. Which configuration file can you change to enable hostname
resolution for a specific IP address?

. Is a non-administrator user allowed to change
NetworkManager connections?

. How do you verify the current status of the NetworkManager
service?

. Which command enables you to change the current IP address
and default gateway on your network connection?

End-of-Chapter Lab

For exercises in later chapters in this book, it is recommended
to have a test environment in which at least two servers are
present. To do the exercises in this lab, make sure that you have
a second server installed.

Lab 8.1

1. If you didn’t do so earlier, set up the first server to use the
FQDN server1.example.com. Set up the second server to use
server2.example.com.

2. On server1.example.com, use nmtui and configure your
primary network card to automatically get an IP address
through DHCP. Also set a fixed IP address to 192.168.4.210.
On server2, set the fixed IP address to 192.168.4.220.

3. Make sure that from server1 you can ping server2, and vice
versa.

4. To allow you to access servers on the Internet, make sure that
your local DHCP server provides the default router and DNS
servers.

Part II

Operating Running Systems

Chapter 9

Managing Software

The following topics are covered in this chapter:

Managing Software Packages with dnf
Using dnf
Managing Package Modules
Managing Software Packages with rpm

The following RHCSA exam objective is covered in this chapter:

Install and update software packages from Red Hat Network,
a remote repository, or from the local file system

Managing software packages is an important task for an
administrator of Red Hat Enterprise Linux. In this chapter, you
learn how to manage software packages from the command
line by using the dnf utility. You also learn which role
repositories play in software management with dnf. Next, we
cover working with Package Modules, a solution that makes it
possible to work with the specific version packages that you
need in your environment. In the last part of this chapter, you
learn how to manage software with the rpm command, which
is useful to query new and installed software packages.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess
whether you should read this entire chapter thoroughly or
jump to the “Exam Preparation Tasks” section. If you are in
doubt about your answers to these questions or your own
assessment of your knowledge of the topics, read the entire
chapter. Table 9-1 lists the major headings in this chapter and
their corresponding “Do I Know This Already?” quiz questions.
You can find the answers in Appendix A, “Answers to the ‘Do I
Know This Already?’ Quizzes and Review Questions.”

Table 9-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Managing Software Packages with dnf 1–4

Using dnf 5

Managing Package Modules 6–7

Foundation Topics Section Questions

Managing Software Packages with rpm 8–10

. Which of the following is not a mandatory component in a .repo
file that is used to indicate which repositories should be used?

1. [label]
2. name=
3. baseurl=
4. gpgcheck=

. Which installation source is used on RHEL if a server is not
registered with Red Hat?

1. The installation medium is used.
2. No installation source is used.
3. The base Red Hat repository is used, without updates.
4. You have full access to Red Hat repositories, but the software

you are using is not supported.

. Which of the following should be used in the .repo file to refer
to a repository that is in the directory /repo on the local file
system?

1. file=/repo
2. baseurl=file://repo
3. baseurl=file:///repo
4. file=http:///repo

. Which of the following is true about GPG-based repository
security?

1. If packages in the repository have been signed, you need to
import the GPG key while installing packages from the
repository for the first time.

2. GPG package signing is mandatory.
3. GPG package signatures prevent packages in a repository

from being changed.
4. GPG package signing is recommended on Internet

repositories but not required on local repositories that are
for internal use only.

. Which command enables you to search the package that
contains the file semanage?

1. dnf search seinfo
2. dnf search all seinfo
3. dnf provides seinfo
4. dnf whatprovides */seinfo

. Which dnf module component allows you to work with
different versions side by side?

1. Application profile
2. Application stream
3. Module version
4. RPM group

. Which of the following commands allows you to install the
devel profile of the PHP 8.1 application stream?

1. dnf module install php:8.1 devel
2. dnf module install php:8.1 --devel
3. dnf module install php:8.1/devel
4. dnf module install php:8.1@devel

. Which command should you use to install an RPM file that has
been downloaded to your computer?

1. dnf install
2. dnf localinstall
3. rpm -ivh
4. rpm -Uvh

. Which command enables you to find the RPM package a
specific file belongs to?

1. rpm -ql /my/file
2. rpm -qlf /my/file
3. rpm -qf /my/file
4. rom -qa /my/file

. Which command enables you to analyze whether there are
scripts in an RPM package file that you have just downloaded?

1. rpm -qs packagename.rpm
2. rpm -qps packagename.rpm
3. rpm -qp --scripts packagename.rpm
4. rpm -q --scripts packagename.rpm

Foundation Topics

Managing Software Packages with dnf

The default utility used to manage software packages on Red
Hat Enterprise Linux is dnf. dnf is designed to work with
repositories, which are online depots of available software
packages. In this section, you learn how to create and manage
repositories and how to manage software packages based on
the contents of the repositories.

Understanding the Role of Repositories

Software on Red Hat Enterprise Linux is provided in the Red
Hat Package Manager (RPM) format. This is a specific format
used to archive the package and provide package metadata as
well.

When you are working with software in RHEL, repositories
play a key role. Working with repositories makes it easy to keep
your server current: The maintainer of the repository publishes
updated packages in the repository, and the result is that
whenever you use the dnf command to install software, the
most recent version of the software is automatically used.

Another major benefit of working with dnf is the way that
package dependencies are dealt with. On Linux (as on most
other modern operating systems), software packages have
dependencies. This means that to be able to use one package,
other packages may have to be present as well. Without using
repositories, that would mean that these packages have to be
installed manually.

The repository system takes care of resolving dependencies
automatically. If a package is going to be installed, it contains
information about the required dependencies. The dnf
command then looks in the repositories configured on this
system to fetch the dependencies automatically. If all goes well,

the installer just sees a short list of the dependencies that will
be installed as a dependency to install the package. If you are
using RHEL with the repositories that are provided for
registered installations of RHEL, there is no reason why this
procedure should not work, and the attempts to install software
will usually succeed.

While installing RHEL 9, it asks you to register with the Red Hat
Customer Portal, which provides different repositories. After
registering, you can install software packages that are verified
by Red Hat automatically. If you choose to install RHEL without
registration, it cannot get in touch with the Red Hat
repositories, and you end up with no repositories at all. In that
case, you have to be able to configure a repository client to
specify yourself which repository you want to use.

Note that repositories are specific to an operating system.
Therefore, if you are using RHEL, you should use RHEL
repositories only. Do not try, for instance, to add CentOS
repositories to a RHEL server. If you want to provide additional
software from the Fedora project to a RHEL server (which for
support reasons is not recommended), you can consider adding
the EPEL (Extra Packages for Enterprise Linux) repositories. See
https://fedoraproject.org/wiki/EPEL for more information,

https://fedoraproject.org/wiki/EPEL

including information on how to configure your system to use
EPEL repositories.

Warning

Before adding the EPEL repository to RHEL, make
sure that it doesn’t break your current support
status. EPEL packages are not managed by Red Hat,
and adding them may break supported Red Hat
packages.

Registering Red Hat Enterprise Linux for Support

Red Hat Enterprise Linux is a supported Linux operating
system that requires you to register. To register RHEL, you need
a valid entitlement. This entitlement is associated to your
account on the Red Hat Customer Portal. You can obtain an
entitlement by purchasing a subscription for RHEL or by
joining the Red Hat Developer program, which gives access to
the no-cost Red Hat Enterprise Developer subscription. With a
developer subscription you are allowed to install a maximum of
16 RHEL systems. You won’t get any support on these systems,
but you will be able to access the Red Hat repositories and
receive updates. You can sign up for the Red Hat Developer
subscription at https://developers.redhat.com.

https://developers.redhat.com/

After obtaining a valid subscription for Red Hat Enterprise
Linux, you can use the Red Hat Subscription Management
(RHSM) tools to manage your entitlement. Managing an
entitlement involves four basic tasks:

Register: While registering a subscription, you connect it to
your current Red Hat account. As a result, the subscription-
manager tool can inventory the system. If a system is no
longer used, it can also be unregistered.
Subscribe: Subscribing a system gives it access to updates
for Red Hat products that your subscription is entitled to.
Also, by subscribing, you’ll get access to the support level that
is associated with your account.
Enable repositories: After subscribing a system, you’ll get
access to a default set of repositories. Some repositories by
default are disabled but can be enabled after subscribing
your system.
Review and track: You can review and track current
subscriptions that are in use.

Managing Subscriptions

You can manage subscriptions either from the GNOME
graphical interface or from the command line. The

subscription-manager tool is used for managing subscriptions
from the command line. You can use it in the following ways:

Register a system: Type subscription-manager register to
register. It will prompt for the name of your Red Hat user
account as well as your password, and after you enter these,
your RHEL server will be registered.
List available subscriptions: Each account has access to
specific subscriptions. Type subscription-manager list --
available to see what your account is entitled to.
Automatically attach a subscription: Registering a server is
not enough to get access to the repositories. Use
subscription-manager attach --auto to automatically attach
your subscription to the repositories that are available.
Get an overview: To see which subscriptions you’re
currently using, type subscription-manager list --
consumed.
Unregister: If you’re going to deprovision a system, use
subscription-manager unregister. If you have access to a
limited number of registered systems only, unregistering is
important to ensure that you don’t run out of available
licenses.

After you register and attach a subscription, entitlement
certificates are written to the /etc/pki directory. In

/etc/pki/product, stored certificates indicate which Red Hat
products are installed on this system. In /etc/pki/consumer,
stored certificates identify the Red Hat account to which the
system is registered, and the /etc/pki/entitlement directory
contains information about the subscriptions that are attached
to this system.

Specifying Which Repository to Use

On most occasions, after the installation of your server has
finished, it is configured with a list of repositories that should
be used. You sometimes have to tell your server which
repositories should be; for example, if:

You want to distribute nondefault software packages through
repositories.
You are installing Red Hat Enterprise Linux without
registering it.

Telling your server which repository to use is not difficult, but it
is important that you know how to do it (for the RHCSA exam,
too).

Important!

To learn how to work with repositories and
software packages, do not use the repositories that
are provided by default. So if you have installed
RHEL, do not register using subscription-
manager, and if you have installed CentOS,
remove all files from /etc/yum.repos.d. If you
overlooked this requirement while installing
earlier, you can use subscription-manager
unregister to remove all registration.

To tell your server which repository to use, you need to create a
file with a name that ends in .repo in the directory
/etc/yum.repos.d. The following parameters are commonly
used:

[label] The .repo file can contain different repositories, each
section starting with a label that identifies the specific
repository.
name= Use this to specify the name of the repository you
want to use.
baseurl= This option contains the URL that points to the
specific repository location.
gpgcheck= Use this option to specify if a GNU Privacy Guard
(GPG) key validity check should be used to verify that

packages have not been tampered with.

In older versions of RHEL you needed to memorize how to
create a repository client file. In RHEL 9, the dnf config-
manager tool is available, even in a minimal installation, to
create the repository client file for you. To easily generate the
repository client file, use dnf config-manager --add-
repo=http://reposerver.example.com/BaseOS. Just make sure
to replace the URL in this example with the correct URI that
points to the location of the repository that you want to use. If
for instance you have copied the contents of the RHEL 9
installation disk to the /repo directory, you would be using a
file:// URI. In that case, the following command would add the
BaseOS repository: dnf config-manager --add-
repo=file:///repo/BaseOS.

If you’re using the dnf config-manager tool to add repositories,
you need to edit the repository file in /etc/yum.conf.d after
adding it, so that it includes the line gpgcheck=0. Without that
option the dnf tool wants to do a GPG check on incoming
packages, which requires additional complex configuration that
is not needed on the RHCSA exam. In Example 9-1 you can see
what the resulting repository file would look like. In Exercise 9-
1 you will find all the instructions that are needed to set up
your own repository and configure access to it.

Example 9-1 Repository File Example

Click here to view code image

[root@server1 ~]# cat /etc/yum.repos.d/repo_Base

[repo_BaseOS]

name=created by dnf config-manager from file:///

baseurl=file:///repo/BaseOS

enabled=1

gpgcheck=0

In the repository configuration files, several options can be
used. Table 9-2 summarizes some of the most common options.

Table 9-2 Key Options in .repo Files

Option Explanation

[label] Contains the label used as an identifier in the repository file.

name= Mandatory option that specifies the name of the repository.

Option Explanation

mirrorlist= Optional parameter that refers to a URL where information
about mirror servers for this server can be obtained. Typically
used for big online repositories only.

baseurl= Mandatory option that refers to the base URL where the RPM
packages are found.

gpgcheck= Set to 1 if a GNU Privacy Guard (GPG) integrity check needs to
be performed on the packages. If set to 1, a GPG key is required.

gpgkey= Specifies the location of the GPG key that is used to check
package integrity.

When you’re creating a repository file, the baseurl parameter is
the most important because it tells your server where to find
the files that are to be installed. The baseurl takes as its
argument the URL where files need to be installed from. This
will often be an HTTP or FTP URL, but it can be a file-based URL
as well.

When you use a URL, two components are included. First, the
URL identifies the protocol to be used and is in the format

protocol://, such as http://, ftp://, or file://. Following the URL is
the exact location on that URL. That can be the name of a web
server or an FTP server, including the subdirectory where the
files are found. If the URL is file based, the location on the file
system starts with a / as well.

Therefore, for a file system-based URL, there will be three
slashes in the baseurl, such as baseurl:///repo, which refers to
the directory /repo on the local file system.

Understanding Repository Security

Using repositories allows you to transparently install software
packages from the Internet. This capability is convenient, but it
also involves a security risk. When installing RPM packages,
you do that with root permissions, and if in the RPM package
script code is executed (which is common), it is executed as root
as well. For that reason, you need to make sure that you can
trust the software packages you are trying to install. This is why
repositories in general use keys for package signing. This is also
why on Red Hat Enterprise Linux it is a good idea to use trusted
repositories only.

To secure packages in a repository, these packages are often
signed with a GPG key. This makes it possible to check whether

packages have been changed since the owner of the repository
provided them. The GPG key used to sign the software packages
is typically made available through the repository as well. The
users of the repository can download that key and store it
locally so that the package signature check can be performed
automatically each time a package is downloaded from the
repository.

If repository security is compromised and an intruder manages
to hack the repository server and put some fake packages on it,
the GPG key signature will not match, and the dnf command
will complain while installing new packages. This is why it is
highly recommended to use GPG keys when using Internet
repositories.

If you are using a repository where GPG package signing has
been used, on first contact with that repository, the dnf
command will propose to download the key that was used for
package signing (see Example 9-2). This is a transparent
procedure that requires no further action. The GPG keys that
were used for package signing are installed to the /etc/pki/rpm-
gpg directory by default.

Tip

For using internal repositories, the security risks
are not that high. For that reason, you do not have
to know how to work with GPG-signed packages on
the RHCSA exam.

Example 9-2 On First Contact with a Repository, the GPG Key Is
Downloaded

Click here to view code image

[

[root@localhost ~]# dnf install nmap

Updating Subscription Management repositories.

Red Hat Enterprise Linux 9 for x86_64 - AppStrea

10 MB/s | 9.3 MB 00:00

Red Hat Enterprise Linux 9 for x86_64 - BaseOS (

4.0 MB/s | 3.6 MB 00:00

Dependencies resolved.

 Package Architecture

Repository

Installing:

 nmap x86_64

 rhel-9-for-x86_64-appstream-rpms

Transaction Summary

y

Install 1 Package

Total download size: 5.6 M

Installed size: 24 M

Is this ok [y/N]: y

Downloading Packages:

nmap-7.91-10.el9.x86_64.rpm

9.8 MB/s | 5.6 MB 00:00

Total

9.8 MB/s | 5.6 MB 00:00

Red Hat Enterprise Linux 9 for x86_64 - AppStrea

3.5 MB/s | 3.6 kB 00:00

Importing GPG key 0xFD431D51:

 Userid : "Red Hat, Inc. (release key 2) <se

 Fingerprint: 567E 347A D004 4ADE 55BA 8A5F 199E

 From : /etc/pki/rpm-gpg/RPM-GPG-KEY-redha

Is this ok [y/N]:

Creating Your Own Repository

Creating your own repository is not a requirement for the
RHCSA exam, but knowing how to do so is useful if you want to

test setting up and working with repositories. Also, if you’re
using a RHEL system that is not connected to the Red Hat
repositories, it’s the only way you can install packages.

The procedure itself is not hard to summarize. You need to
make sure all RPM packages are available in the directory that
you want to use as a repository, and after doing that, you need
to use the createrepo command to generate the metadata that
enables you to use that directory as a repository. If you’re using
the RHEL 9 installation disk, the procedure is even easier, as
you don’t have to generate the repository metadata. Exercise 9-
1 describes how to create your own repository using the RHEL 9
installation disk.

Exercise 9-1 Creating Your Own Repository

To perform this exercise, you need to have access to the RHEL
or CentOS installation disk or ISO file.

1. Insert the installation disk in your virtual machine and make
sure it is attached and available.

2. Open a root shell and type mkdir /repo so that you have a
mount point where you can mount the ISO file.

3. Add the following line to the end of the /etc/fstab
configuration file: /dev/sr0 /repo iso9660 defaults 0 0

4. Type mount -a, followed by mount | grep sr0. You should
now see that the optical device is mounted on the directory
/repo. At this point, the directory /repo can be used as a
repository.

5. Now, two subdirectories are available through the /repo
directory. The BaseOS repository provides access to the base
packages, and the Application Stream (AppStream)
repository provides access to application streams (these
repositories are described in more detail in the “Managing
Package Module Streams” section later in this chapter). To
make them accessible, you need to add two files to the
/etc/yum.repos.d directory. Start with the file BaseOS.repo.
You can generate this file using dnf config-manager --add-
repo=file:///repo/BaseOS

6. Add the file /etc/yum.repos.d/AppStream.repo using the
following command: dnf config-manager --add-
repo=file:///repo/AppStream

7. Type ls /etc/yum.repos.d/. This will show you two new files:
repo_BaseOS.repo and repo_AppStream.repo. Add the
following line to the end of both files: gpgcheck=0

8. Type dnf repolist to verify the availability of the newly
created repository. It should show the name of both
repositories, including the number of packages offered
through this repository (see Example 9-3). Notice that if

you’re doing this on RHEL, you’ll also see a message that this
system is not registered with an entitlement server. You can
safely ignore that message.

Example 9-3 Verifying Repository Availability with dnf
repolist

Click here to view code image

[root@server1 ~]# dnf repolist

Updating Subscription Management repositories.

Unable to read consumer identity

This system is not registered with an entitlemen

 subscription-manager to register.

repo id

repo_AppStream

 config-manager from file:///repo/AppStream

repo_BaseOS

 config-manager from file:///repo/BaseOS

Using dnf

At this point, you should have operational repositories, so it is
time to start using them. To use repositories, you need the dnf
command. This command enables you to perform several tasks

on the repositories. Table 9-3 provides an overview of common
dnf tasks.

Table 9-3 Common dnf Tasks

Task Explanation

search Search packages for a string that occurs in the package
name or summary.

search all Search packages for a string that occurs in the package
name, summary, or description.

[what]provides
*/name

Perform a deep search in the package to look for specific
files within the package.

info Provide more information about the package.

install Install the package.

Task Explanation

remove Remove the package.

list [all |
installed]

List all or installed packages.

group list List package groups.

group install Install all packages from a group.

update Update packages specified.

clean all Remove all stored metadata.

Using dnf to Find Software Packages

To install packages with dnf, you first need to know the name of
the package. The dnf search command can help you with that.
When you use dnf search, it first gets in touch with the online
repositories (which might take a minute), after which it

downloads the most recent repository metadata to the local
machine. Then, dnf search looks in the package name and
description for the string you have been looking for. If this
doesn’t give the expected result, try using dnf search all, which
performs a deeper search in the package description as well. In
Example 9-4, you can see what the result looks like after using
dnf search user.

Example 9-4 dnf search Sample Output

Click here to view code image

[root@server1 ~]# dnf search user

Updating Subscription Management repositories.

Unable to read consumer identity

This system is not registered with an entitlemen

 subscription-manager to register.

Last metadata expiration check: 0:01:45 ago on W

 10:52:12 AM CEST.

==

 Matched: user ================================

gnome-user-docs.noarch : GNOME User Documentatio

libuser.x86_64 : A user and group account admini

libuser.i686 : A user and group account administ

perl-User-pwent.noarch : By-name interface to Pe

pe Use p e oa c y a e e ace o e

 resolver

usermode.x86_64 : Tools for certain user account

usermode-gtk.x86_64 : Graphical tools for certai

 management tasks

userspace-rcu.x86_64 : RCU (read-copy-update) im

 user-space

userspace-rcu.i686 : RCU (read-copy-update) impl

 user-space

util-linux-user.x86_64 : libuser based util-linu

xdg-user-dirs.x86_64 : Handles user special dire

==

 Matched: user ================================

anaconda-user-help.noarch : Content for the Anac

 system

gnome-shell-extension-user-theme.noarch : Suppor

 GNOME Shell

xdg-user-dirs-gtk.x86_64 : Gnome integration of

==

 Matched: user ================================

NetworkManager.x86_64 : Network connection manag

 applications

PackageKit-command-not-found.x86_64 : Ask the us

 line programs automatically

accountsservice.x86_64 : D-Bus interfaces for qu

 manipulating user account information

anaconda-gui.x86_64 : Graphical user interface f

 installer...

 s a e

Because the dnf search command looks in the package name
and summary only, it often does not show what you need. In
some cases you might need to find a package that contains a
specific file. To do this, the dnf whatprovides command or dnf
provides command will help you. (There is no functional
difference between these two commands, and there’s even a
third option that does exactly the same: dnf wp.) To make it
clear that you are looking for packages containing a specific file,
you need to specify the filename as */filename, or use the full
pathname to the file you want to use. So if you need to look for
the package containing the file Containerfile, for example, use
dnf whatprovides */Containerfile. It will show the name of the
package as a result.

Getting More Information About Packages

Before you install a package, it is a good idea to get some more
information about the package. Because the dnf command was
developed to be intuitive, it is almost possible to guess how that
works. Just use dnf info, followed by the name of the package.
In Example 9-5, you see what this looks like for the nmap
package (which, by the way, is a very useful tool). It is a network
sniffer that allows you to find ports that are open on other

hosts. Just use nmap 192.168.4.100 to give it a try, but be aware
that some network administrators really do not like nmap and
might consider this a hostile attack.

Example 9-5 Sample Output of dnf info nmap

Click here to view code image

[root@server1 ~]# dnf info nmap

Updating Subscription Management repositories.

Unable to read consumer identity

This system is not registered with an entitlemen

Last metadata expiration check: 0:04:47 ago on W

Available Packages

Name : nmap

Epoch : 3

Version : 7.91

Release : 10.el9

Architecture : x86_64

Size : 5.6 M

Source : nmap-7.91-10.el9.src.rpm

Repository : repo_AppStream

Summary : Network exploration tool and secu

URL : http://nmap.org/

License : Nmap

Description : Nmap is a utility for network exp

 auditing. It supports

 : ping scanning (determine which h

 p g sca g (de e e c

 port scanning techniques

 : (determine what services the host

 TCP/IP fingerprinting

 : (remote host operating system ide

 also offers flexible target

 : and port specification, decoy sca

 of TCP sequence

 : predictability characteristics, r

 scanning, and more. In addition

 : to the classic command-line nmap

 suite includes a flexible

 : data transfer, redirection, and d

 utility ncat), a utility

 : for comparing scan results (ndiff

 generation and response

 : analysis tool (nping).

Installing and Removing Software Packages

If after looking at the dnf info output you are happy with the
package, the next step is to install it. As with anything else you
are doing with dnf, it is not hard to guess how to do that: use
dnf install nmap. When used in this way, the dnf command
asks for confirmation. If when you type the dnf install
command you are sure about what you are doing, you might as

well use the -y option, which passes a “yes” to the confirmation
prompt that dnf normally issues. Example 9-6 shows what the
result looks like.

Example 9-6 Installing Software with dnf

Click here to view code image

[root@server1 ~]# dnf install nmap

Updating Subscription Management repositories.

Unable to read consumer identity

This system is not registered with an entitlemen

 subscription-manager to register.

Last metadata expiration check: 0:05:58 ago on W

 10:52:12 AM CEST.

Dependencies resolved.

==

==

 Package Architecture

Repository Size

==

==

Installing:

 nmap x86_64

repo AppStream 5.6 M

epo_ ppS ea 5 6

Transaction Summary

==

==

Install 1 Package

Total size: 5.6 M

Installed size: 24 M

Is this ok [y/N]: y

Downloading Packages:

Running transaction check

Transaction check succeeded.

Running transaction test

Transaction test succeeded.

Running transaction

 Preparing :

1/1

 Installing : nmap-3:7.91-10.el9.x86_64

1/1

 Running scriptlet: nmap-3:7.91-10.el9.x86_64

1/1

 Verifying : nmap-3:7.91-10.el9.x86_64

1/1

Installed products updated.

Installed:

 nmap-3:7.91-10.el9.x86_64

Complete!

Co p e e

In Example 9-6, you can see that dnf starts by analyzing what is
going to be installed. Once that is clear, it gives an overview of
the package that is going to be installed, including its
dependencies. Then, the package itself is installed to the system.

To remove software packages from a machine, use the dnf
remove command. This command also does a dependency
analysis, which means that it will remove not only the selected
package but also all packages that depend on it. This may
sometimes lead to a long list of software packages that are
going to be removed. To avoid unpleasant surprises, you should
never use dnf remove with the -y option.

Note

Some packages are protected. Therefore, you
cannot easily remove them. If dnf remove
encounters protected packages, it refuses to
remove them.

Showing Lists of Packages

When working with dnf, you may also use the dnf list
command to show lists of packages. Used without arguments,
dnf list shows a list of all software packages that are available,
including the repository they were installed from—assuming
that the package has been installed. If a repository name is
shown, the package is available in that specific repository. If
@anaconda is listed, the package has already been installed on
this system. Example 9-7 shows the partial output of the dnf list
command.

Example 9-7 Partial Output of the dnf list Command

Click here to view code image

[root@server3 ~]# dnf list | less

Updating Subscription Management repositories.

Unable to read consumer identity

This system is not registered with an entitlemen

subscription-manager to register.

Last metadata expiration check: 0:12:17 ago on W

10:52:12 AM CEST.

Installed Packages

ModemManager.x86_64 1.18.2

ModemManager-glib.x86_64 1.18.2

NetworkManager.x86 64 1:1.36.0-4

e o a age 86_6 36 0

NetworkManager-adsl.x86_64 1:1.36.0-4

NetworkManager-bluetooth.x86_64 1:1.36.0-4

NetworkManager-config-server.noarch 1:1.36.0-4

NetworkManager-libnm.x86_64 1:1.36.0-4

NetworkManager-team.x86_64 1:1.36.0-4

NetworkManager-tui.x86_64 1:1.36.0-4

NetworkManager-wifi.x86_64 1:1.36.0-4

NetworkManager-wwan.x86_64 1:1.36.0-4

PackageKit.x86_64 1.2.4-2.el

PackageKit-command-not-found.x86_64 1.2.4-2.el

PackageKit-glib.x86_64 1.2.4-2.el

PackageKit-gstreamer-plugin.x86_64 1.2.4-2.el

PackageKit-gtk3-module.x86_64 1.2.4-2.el

abattis-cantarell-fonts.noarch 0.301-4.el

accountsservice.x86_64 0.6.55-10.

accountsservice-libs.x86_64 0.6.55-10.

...

If you only want to see which packages are installed on your
server, you can use the dnf list installed command. The dnf list
command can also prove useful when used with the name of a
specific package as its argument. For instance, type dnf list
kernel to show which version of the kernel is actually installed
and which version is available as the most recent version in the
repositories, which is particularly useful if your system is using
online repositories and you want to check if a newer version of

the package is available. Example 9-8 shows the result of this
command, taken from a registered RHEL 9 system.

Example 9-8 Use dnf list packagename for Information About
Installed and Available Versions

Click here to view code image

[root@localhost ~]# dnf list kernel

Updating Subscription Management repositories.

Last metadata expiration check: 0:04:09 ago on W

11:02:40 AM CEST.

Installed Packages

kernel.x86_64

5.14.0-70.13.1.el9_0

@anaconda

Available Packages

kernel.x86_64

5.14.0-70.22.1.el9_0

rhel-9-for-x86_64-baseos-rpms

Updating Packages

One of the major benefits of working with dnf repositories is
that repositories make it easy to update packages. The
repository maintainer is responsible for copying updated

packages to the repositories. The index in the repository always
contains the current version of a package in the repository. On
the local machine also, a database is available with the current
versions of the packages that are used. When you use the dnf
update command, current versions of packages that are
installed are compared to the version of these packages in the
repositories. As shown in Example 9-9, dnf next shows an
overview of updatable packages. From this overview, type y to
install the updates.

Notice that while updating packages the old version of the
package is replaced with a newer version of the package. There
is one exception, which is for the kernel package. Even if you
are using the dnf update kernel command, the kernel package
is not updated, but the newer kernel is installed in addition to
the old kernel, so that while booting you can select the kernel
that you want to use. This is useful if the new kernel won’t work
because of hardware compatibility issues. In that case, you can
interrupt the GRUB 2 boot process (see Chapter 17, “Managing
and Understanding the Boot Procedure,” for more details) to
start the older kernel.

Example 9-9 Using dnf update

Click here to view code image

[root@localhost ~]# dnf update kernel

Updating Subscription Management repositories.

Last metadata expiration check: 0:06:25 ago on W

11:02:40 AM CEST.

Dependencies resolved.

 Package Architecture

Repository Si

Installing:

 kernel x86_64

5.14.0-70.22.1.el9_0 rhel-9-for

595 k

Installing dependencies:

 kernel-core x86_64

5.14.0-70.22.1.el9_0 rhel-9-for

34 M

 kernel-modules x86_64

5.14.0-70.22.1.el9_0 rhel-9-for

21 M

Transaction Summary

Install 3 Packages

Total download size: 56 M

Installed size: 93 M

Is this ok [y/N]:

Working with dnf Package Groups

While managing specific services on a Linux machine, you
often need several different packages. If, for instance, you want
to make your machine a virtualization host, you need the KVM
packages, but also all supporting packages such as qemu,
libvirt, and the client packages. Or while configuring your
server as a web server, you need to install additional packages
like PHP as well in many cases.

To make it easier to manage specific functionality, instead of
specific packages, you can work with package groups as well. A
package group is defined in the repository, and dnf offers the
group management commands to work with these groups. For
an overview of all current groups, use dnf group list. This
shows output as in Example 9-10.

Tip

The name of the command is dnf group, but there
are aliases that ensure that dnf groups and even
commands like dnf groupinstall are also working.
So, you can use any of these commands.

Example 9-10 Showing Available dnf Groups

Click here to view code image

[root@localhost ~]# dnf group list

Updating Subscription Management repositories.

Last metadata expiration check: 0:11:10 ago on W

11:02:40 AM CEST.

Available Environment Groups:

 Server

 Minimal Install

 Workstation

 Virtualization Host

 Custom Operating System

Installed Environment Groups:

 Server with GUI

Installed Groups:

 Container Management

 Headless Management

Available Groups:

 .NET Development

Console Internet Tools

 Co so e e e oo s

 RPM Development Tools

 Scientific Support

 Legacy UNIX Compatibility

 Network Servers

 Graphical Administration Tools

 Development Tools

 Security Tools

 Smart Card Support

 System Tools

Notice that some dnf groups are not listed by default. To show
those as well, type dnf group list hidden. You see that the list of
groups that is displayed is considerably longer. The difference is
that dnf group list shows environment groups, which contain
basic functionality. Within an environment group, different
subgroups can be used; these are displayed only when using
dnf group list hidden.

To get information about packages available in a group, you use
dnf group info. Because group names normally contain spaces,
do not forget to put the entire group name between quotes. So,
type dnf group info "Container Management" to see what is
in the Container Management group. As you can see in Example
9-11, this command shows mandatory items and optional items
in the group. The items can be groups and individual packages.

Example 9-11 Showing Group Contents with dnf group info

Click here to view code image

[root@localhost ~]# dnf group info "Container Ma

Updating Subscription Management repositories.

Last metadata expiration check: 0:12:49 ago on W

Group: Container Management

 Description: Tools for managing Linux container

 Mandatory Packages:

 buildah

 containernetworking-plugins

 podman

 Optional Packages:

 python3-psutil

 toolbox

Using dnf History

While you’re working with dnf, all actions are registered. You
can use the dnf history command to get an overview of all
actions that have been issued. From the history file, it is
possible to undo specific actions; use dnf history undo
followed by the number of the specific action you want to undo.

In Example 9-12, you see the result of the dnf history
command, where every action has its own ID.

Example 9-12 Showing Past dnf Actions Using dnf history

Click here to view code image

[root@localhost ~]# dnf history

Updating Subscription Management repositories.

ID | Command line

| Date and time | Action(s) | Altered

--

--

 2 | install nmap

| 2022-09-14 10:45 | Install | 1 <

 1 |

As you can see, action number 2 altered one package and was
used to install packages. To undo this action completely, type
dnf history undo 2. In Exercise 9-2, you apply some of the most
useful dnf commands for common package management tasks,
as discussed previously.

Exercise 9-2 Using dnf for Package Management

1. Type dnf repolist to show a list of the current repositories
that your system is using.

2. Type dnf search seinfo. This will give no matching result.
3. Type dnf provides seinfo. The command shows that the

setools-console-<version> package contains this file.
4. Install this package using dnf install -y setools-console.

Depending on your current configuration, you might notice
that quite a few dependencies have to be installed also.

5. Type dnf list setools-console. You see that the package is
listed as installed.

6. Type dnf history and note the number of the last dnf
command you used.

7. Type dnf history undo <nn> (where <nn> is replaced with
the number that you found in step 6). This undoes the last
action, so it removes the package you just installed.

8. Repeat the dnf list setools-console command. The package
is now listed as available but not as installed.

Managing Package Modules

Up to Red Hat Enterprise Linux 7, all packages were offered in
one repository. This made package version management
challenging, as Red Hat has always maintained the philosophy
that major versions of packages should not be changed during a

distribution lifetime. The issue is that changing a major version
of any package often involves changing dependencies as well,
and if that happens, it is very difficult to guarantee that all
packages are installed with the right version. As a result of
adhering to this philosophy, Red Hat was not able to introduce
Python 3 during the RHEL 7 lifetime. The current Python 2
version that was included in RHEL 7, however, became
deprecated, and customers had a hard time understanding this.

To offer a higher level of flexibility, with the introduction of
RHEL 8, Red Hat introduced two different repositories. The
BaseOS repository is for core operating system packages, and all
packages in this repository will not change their major version
during the distribution lifetime. The Application Stream
(AppStream) repository contains other packages that may
change their major version during the distribution lifetime.
Important applications like Python are provided as AppStream
packages, to ensure that if a new major version becomes
available during the distribution lifetime, this major version
can be included.

Understanding dnf Modules

In the AppStream repository, content with varying life cycles is
provided. This content may be provided as traditional RPM

packages, but also as modules. A module describes a set of RPM
packages that belong together, and adds features to package
management. Typically, modules are organized around a
specific version of an application, and in a module you’ll find
module packages, together with all of the dependencies for that
specific version.

Each module can have one or more application streams. A
stream contains one specific version, and updates are provided
for a specific stream. By using streams, different versions of
packages can be offered through the same repositories. When
you’re working with modules that have different streams, only
one stream can be enabled at the same time. This allows users
to select the package version that is needed in their
environment.

Modules can also have one or more profiles. A profile is a list of
packages that are installed together for a particular use case.
You may find, for instance, a minimal profile, a default profile, a
server profile, and many more. While you’re working with
modules, you may select which profile you want to use. Table 9-
4 provides an overview of key terminology when working with
modules.

Table 9-4 dnf Module Terminology

Item Explanation

RPM The default package format. Contains files, as well as metadata
that describes how to install the files. Optionally may contain
pre- and post-installation scripts as well.

Module A delivery mechanism to install RPM packages. In a module,
different versions and profiles can be provided.

Application
stream

A specific version of the module.

Profile A collection of packages that are installed together for a
particular use case.

Managing Modules

The dnf command in RHEL 9 supports working with modules
using the dnf module command. To find out which modules are
available, you may want to start with the dnf module list
command. You can see its sample output in Example 9-13.

Note

In RHEL 9.0 no modules are provided. It is
expected that in future updates modules will be
provided. To show the working of the dnf module
command, all examples are taken from CentOS
Stream.

Example 9-13 Showing dnf Modules with dnf module list

Click here to view code image

[root@localhost ~]# dnf module list

Last metadata expiration check: 2:51:45 ago on W

08:39:28 AM CEST.

CentOS Stream 9 - AppStream

Name Stream Profiles

Summary

maven 3.8 common [d]

Java project management and project comprehensio

nodejs 18 common [d], develo

Javascript runtime

php 8.1 common [d], devel,

scripting language

ruby 3.1 common [d]

interpreter of object-oriented scripting languag

Hint: [d]efault, [e]nabled, [x]disabled, [i]nsta

In the list of modules, you can see whether or not the module is
installed and whether or not a specific stream is enabled. To list
specific streams for a module, use the dnf module list
modulename command. For instance, use dnf module list
maven to get details about streams that are available for the
Maven module, as shown in Example 9-14.

Example 9-14 Showing Details About dnf Modules with dnf
module list

Click here to view code image

[root@localhost ~]# dnf module list maven

Last metadata expiration check: 2:53:36 ago on W

08:39:28 AM CEST.

CentOS Stream 9 - AppStream

Name Stream Pr

Summary

maven 3.8 co

project management and project comprehension too

Hint: [d]efault, [e]nabled, [x]disabled, [i]nsta

After you find out which module streams are available, the next
step is to get information about specific profiles. You can use
dnf module info to obtain this information. For instance, use

dnf module info php to get more information about the php
module. This will provide information for profiles that are
available in all the module streams. To find profile information
for a specific stream, you can provide the stream version as an
argument. For instance, use dnf module info php:8.1 (see
Example 9-15).

Example 9-15 Showing Information About dnf Modules with
dnf module list

Click here to view code image

[

root@localhost ~]# dnf module info php:8.1

Last metadata expiration check: 2:55:06 ago on W

08:39:28 AM CEST.

Name : php

Stream : 8.1

Version : 920220706080036

Context : 9

Architecture : x86_64

Profiles : common [d], devel, minimal

Default profiles : common

Repo : appstream

Summary : PHP scripting language

Description : php 8.1 module

Requires :

equ es

Artifacts : apcu-panel-0:5.1.21-1.module_

 noarch

 : php-0:8.1.8-1.module_el9+158+

 : php-0:8.1.8-1.module_el9+158+

 : php-bcmath-0:8.1.8-1.module_e

 : php-bcmath-debuginfo-0:8.1.8-

 97f99411.x86_64

 : php-cli-0:8.1.8-1.module_el9+

 : php-cli-debuginfo-0:8.1.8-1.m

 97f99411.x86_64

 : php-common-0:8.1.8-1.module_e

 : php-common-debuginfo-0:8.1.8-

…

1.module_el9+158+97f99411.x86_64

 : php-process-0:8.1.8-1.module_

 x86_64

 : php-process-debuginfo-0:8.1.8

 97f99411.x86_64

 : php-snmp-0:8.1.8-1.module_el9

 97f99411.x86_64

 : php-snmp-debuginfo-0:8.1.8-1.

 97f99411.x86_64

 : php-soap-0:8.1.8-1.module_el9

 : php-soap-debuginfo-0:8.1.8-1.

 97f99411.x86_64

 : php-xml-0:8.1.8-1.module_el9+

 : php-xml-debuginfo-0:8.1.8-1.m

 97f99411.x86 64

 9 99 86_6

Hint: [d]efault, [e]nabled, [x]disabled, [i]nsta

After you find module information, the next step is to enable a
module stream and install modules. Every module has a default
module stream, providing access to a specific version. If that
version is what you need, you don’t have to enable anything. If
you want to work with a different version, you should start by
enabling the corresponding module stream. For example, type
dnf module enable php:8.1 to enable that specific version.

Enabling a module stream before starting to work with a
specific module is not mandatory. If you just use dnf module
install to install packages from a module, packages from the
default module stream will be installed. You can also switch
between application stream versions. If, for instance, you are
now on php:8.1 and you want to change to php:8.2, you just
have to type dnf module install php:8.2. This will disable the
old stream and enable the new stream. After doing this, to
ensure that all dependent packages that are not in the module
itself are updated as well, type dnf distro-sync to finalize the
procedure.

Managing Software Packages with rpm

Once upon a time, repositories did not exist, and the rpm
command was used to install package files after they had been
downloaded. That worked, but there was one major issue: the
dependency hell. Because RPM packages have always focused
on specific functionality, to install specific software, a collection
of RPM packages was normally required. Therefore, a “missing
dependency” message was often issued while users were trying
to install RPM packages, which meant that to install the selected
package, other packages needed to be installed first. Sometimes
a whole chain of dependencies needed to be installed to finally
get the desired functionality. That did not make working with
RPM packages a joyful experience.

On modern RHEL systems, repositories are used, and packages
are installed using dnf. The dnf command considers all package
dependencies and tries to look them up in the currently
available repositories. On a RHEL system configured to get
updates from Red Hat, or on a CentOS system where consistent
repositories are used, the result is that package installation
nowadays is without problems and the rpm command no
longer is used for software installation.

Even after downloading an RPM package file, you do not need
to use the rpm -Uvh packagename command to install it (even
if it still works). A much better alternative is dnf install

packagename, which installs the package and also considers
the repositories to resolve dependencies automatically. That
does not mean the rpm command has become totally useless.
You can still use it to query RPM packages.

Tip

On your system, two package databases are
maintained: the dnf database and the RPM
database. When you are installing packages
through dnf, the dnf database is updated first,
after which the updated information is
synchronized to the RPM database. If you install
packages using the rpm command, the update is
written to the RPM database only and will not be
updated to the dnf database, which is an important
reason not to use the rpm command to install
software packages.

Understanding RPM Filenames

When you’re working with RPM packages directly, it makes
sense to understand how the RPM filename is composed. A
typical RPM filename looks like autofs-5.0.7-40.el7.x86_64.rpm.
This name consists of several parts:

autofs: The name of the actual package.
5.0.7: The version of the package. This normally corresponds
to the name of the package as it was released by the package
creator.
-40: The sub-version of the package.
el7: The Red Hat version this package was created for.
x86_64: The platform (32 bits or 64 bits) this package was
created for.

Querying the RPM Database

The rpm command enables you to get much information about
packages. Using RPM queries can be a really useful way to find
out how software can be configured and used. To start, you can
use the rpm -qa command. Like dnf list installed, this
command shows a list of all software that is installed on the
machine. Use grep on this command to find out specific
package names. To perform queries on RPM packages, you just
need the name and not the version information.

After finding the package about which you want more
information, you can start with some generic queries to find out

what is in the package. In the following examples, I assume that
you are using RPM queries on the nmap RPM package. To start,
type rpm -qi nmap to get a description of the package. This will
perform a query of a package that is already installed on your
system, and it will query the package database to get more
details about it.

The next step is to use rpm -ql nmap, which shows a list of all
files that are in the package. On some packages, the result can
be a really long list of filenames that is not particularly useful.
To get more specific information, use rpm -qd nmap, which
shows all documentation available for the package, or rpm -qc
nmap, which shows all configuration files in the package.

Using RPM queries can really help in finding out more useful
information about packages. The only thing that you need to
know is the RPM package name that a specific file belongs to. To
find this, use rpm -qf, followed by the specific filename you are
looking for. Use, for instance, rpm -qf /bin/ls to find the name of
the RPM package the ls command comes from. In upcoming
Exercise 9-3, you’ll see how useful it can be to use RPM queries
in this way.

Querying RPM Package Files

RPM queries by default are used on the RPM database, and
what you are querying are installed RPM packages. It
sometimes makes sense to query an RPM package file before
actually installing it. To do this, you need to add the -p option to
the query, because without the -p option, you will be querying
the database, not the package file. Also, when querying a
package file, you need to refer to the complete filename,
including the version number and all other information that
you do not have to use when querying the RPM database. As an
example, the rpm -qp --scripts httpd-2.4.6-
19.el7.centos.x86_64.rpm command queries the specific RPM
file to see whether it contains scripts.

A query option that needs special attention is --scripts, which
queries an RPM package or package file to see which scripts it
contains (if any). This option is especially important when
combined with the -p option, to find out whether a package file
that you are going to install includes any scripts.

When you install RPM packages, you do so as root. Before
installing an RPM package from an unknown source, you need
to make sure that it does not include any rogue scripts. If you do
not, you risk installing malware on your computer without
even knowing it.

Table 9-5 describes the most important RPM querying options.

Table 9-5 Common RPM Query Commands

Command Description

rpm -qf Uses a filename as its argument to find the specific RPM package
a file belongs to.

rpm -ql Uses the RPM database to provide a list of files in the RPM
package.

rpm -qi Uses the RPM database to provide package information
(equivalent to yum info).

rpm -qd Uses the RPM database to show all documentation that is
available in the package.

rpm -qc Uses the RPM database to show all configuration files that are
available in the package.

Command Description

rpm -q --
scripts

Uses the RPM database to show scripts that are used in the
package. This is particularly useful if combined with the -p
option.

rpm -qp
<pkg>

The -p option is used with all the previously listed options to
query individual RPM package files instead of the RPM package
database. Using this option before installation helps you find out
what is actually in the package before it is installed.

rpm -qR Shows dependencies for a specific package.

rpm -V Shows which parts of a specific package have been changed
since installation.

rpm -Va Verifies all installed packages and shows which parts of the
package have been changed since installation. This is an easy
and convenient way to do a package integrity check.

rpm -qa Lists all packages that are installed on this server.

Using repoquery

While rpm -qp provides useful tools to query packages before
installation, there is a slight problem with this command: It
works only on RPM package files, and it cannot query files
directly from the repositories. If you want to query packages
from the repositories before they have been installed, you need
repoquery. This binary is not installed by default, so make sure
to install the dnf-utils RPM package to use it.

The repoquery command is pretty similar to the rpm -q
command and uses many similar options. There is just one
significant option missing: --scripts. A simple solution is to
make sure that you are using trusted repositories only, to
prevent installing software that contains dangerous script code.

If you need to thoroughly analyze what an RPM package is
doing when it is installed, you can download it to your machine,
which allows you to use the rpm -qp --scripts command on the
package. To download a package from the repository to the
local directory, you can use the yumdownloader command,
which comes from the yum-utils package.

Now that you have learned all about RPM querying options, you
can practice these newly acquired skills in Exercise 9-3 to get
more information about software that is installed on your RHEL
system.

Exercise 9-3 Using RPM Queries

1. To practice working with rpm, we need a package. It doesn’t
really matter which package that is. Type dnf install -y
dnsmasq (you may get a message that the package is already
installed).

2. Type which dnsmasq. This command gives the complete
pathname of the dnsmasq command.

3. Type rpm -qf $(which dnsmasq). This does an RPM file
query on the result of the which dnsmasq command; you
learn more about this technique in Chapter 19, “An
Introduction to Automation with Bash Shell Scripting.”

4. Now that you know that the dnsmasq binary comes from the
dnsmasq package, use rpm -qi dnsmasq to show more
information about the package.

5. The information that is shown with rpm -qi is useful, but it
does not give the details that are needed to start working
with the software in the package. Use rpm -ql dnsmasq to
show a list of all files in the package.

6. Use rpm -qd dnsmasq to show the available documentation.
Notice that this command reveals that there is a man page,
but there is also a doc.html file and a setup.html file in the
/usr/share/doc/dnsmasq-version directory. Open these files

with your browser to get more information about the use of
dnsmasq.

7. Type rpm -qc dnsmasq to see which configuration files are
used by dnsmasq.

8. After installation, it does not make much sense, but it is
always good to know which scripts are executed when a
package is installed. Use rpm -q --scripts dnsmasq to show
the script code that can be executed from this RPM.

Tip

Working with RPM queries is a valuable skill on
the RHCSA exam. If you know how to handle
queries, you can find all relevant configuration
files and the documentation.

Summary

In this chapter, you learned how to work with software on Red
Hat Enterprise Linux. You learned how to use dnf to manage
software packages coming from repositories. You also learned
how to use the rpm command to perform queries on the
packages on your system. Make sure that you master these

essential skills well; they are key to getting things done on Red
Hat Enterprise Linux.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the
Introduction, you have several choices for exam preparation:
the end-of-chapter labs; the memory tables in Appendix C;
Chapter 27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the
Key Topic icon in the margin of the page. Table 9-6 lists a
reference for these key topics and the page number on which
each is found.

Table 9-6 Key Topics for Chapter 9

Key Topic Element Description Page

Key Topic Element Description Page

Table 9-3 Common dnf Tasks 206

List RPM package name components 222

Table 9-5 Common RPM Query Commands 224

Complete Tables and Lists from Memory

Print a copy of Appendix C, “Memory Tables” (found on the
companion website), or at least the section for this chapter, and
complete the tables and lists from memory. Appendix D,
“Memory Tables Answer Key,” includes completed tables and
lists to check your work.

Define Key Terms

Define the following key terms from this chapter and check
your answers in the glossary:

package

dnf

Red Hat Package Manager (RPM)

repository

dependency

Application Stream (AppStream)

package group

module

stream

profile

dependency hell

Review Questions

The questions that follow are meant to help you test your
knowledge of concepts and terminology and the breadth of
your knowledge. You can find the answers to these questions in
Appendix A.

. You have a directory containing a collection of RPM packages
and want to make that directory a repository. Which command
enables you to do that?

. What needs to be in the repository file to point to a repository
on http://server.example.com/repo?

. You have just configured a new repository to be used on your
RHEL computer. Which command enables you to verify that the
repository is indeed available?

. Which command enables you to search the RPM package
containing the file useradd?

. Which two commands do you need to use to show the name of
the dnf group that contains security tools and shows what is in
that group?

. Which command do you use to ensure that all PHP-related
packages are going to be installed using the older version 7.1,
without actually installing anything yet?

. You want to make sure that an RPM package that you have
downloaded does not contain any dangerous script code. Which
command enables you to do so?

. Which command reveals all documentation in an RPM
package?

. Which command shows the RPM package a file comes from?

. Which command enables you to query software from the
repository?

End-of-Chapter Lab

In this end-of-chapter lab, you use some of the essential RHEL
package management skills. All assignments can be done on
one server.

Lab 9.1

1. Copy some RPM files from the installation disk to the /myrepo
directory. Make this directory a repository and make sure
that your server is using this repository.

2. List the repositories currently in use on your server.
3. Search for the package that contains the cache-only DNS

name server. Do not install it yet.
4. Perform an extensive query of the package so that you know

before you install it which files it contains, which
dependencies it has, and where to find the documentation
and configuration.

5. Check whether the RPM package contains any scripts. You
may download it, but you may not install it yet; you want to
know which scripts are in a package before actually
installing it, right?

6. Install the package you found in step 3.
7. Undo the installation.

Chapter 10

Managing Processes

The following topics are covered in this chapter:

Introducing Process Management
Managing Shell Jobs
Using Common Command-Line Tools for Process
Management
Using top to Manage Processes
Using tuned to Optimize Performance

The following RHCSA exam objectives are covered in this
chapter:

Identify CPU/memory-intensive processes and kill processes
Adjust process scheduling
Manage tuning profiles

Process management is an important task for a Linux
administrator. In this chapter, you learn what you need to know
to manage processes from a perspective of the daily operation
of a server. You learn how to work with shell jobs and generic
processes. You also are introduced to system performance
optimization using tuned.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess
whether you should read this entire chapter thoroughly or
jump to the “Exam Preparation Tasks” section. If you are in
doubt about your answers to these questions or your own
assessment of your knowledge of the topics, read the entire
chapter. Table 10-1 lists the major headings in this chapter and
their corresponding “Do I Know This Already?” quiz questions.
You can find the answers in Appendix A, “Answers to the ‘Do I
Know This Already?’ Quizzes and Review Questions.”

Table 10-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Introducing Process Management 1

Managing Shell Jobs 2–3

Using Common Command-Line Tools for Process Management 4–8

Foundation Topics Section Questions

Using top to Manage Processes 9

Using tuned to Optimize Performance 10

. Which of the following are not generally considered a type of
process? (Choose two.)

1. A shell job
2. A cron job
3. A daemon
4. A thread

. Which of the following can be used to move a job to the
background?

1. Press &
2. Press Ctrl-Z and then type bg
3. Press Ctrl-D and then type bg
4. Press Ctrl-Z, followed by &

. Which key combination enables you to cancel a current
interactive shell job?

1. Ctrl-C
2. Ctrl-D
3. Ctrl-Z
4. Ctrl-Break

. Which of the following statements are true about threads?
(Choose two.)

1. Threads cannot be managed individually by an
administrator.

2. Multithreaded processes can make the working of processes
more efficient.

3. Threads can be used only on supported platforms.
4. Using multiple processes is more efficient, in general, than

using multiple threads.

. Which of the following commands is most appropriate if you’re
looking for detailed information about the command and how
it was started?

1. ps ef
2. ps aux
3. ps

4. ps fax

. Of the following nice values, which will increase the priority of
the selected process?

1. 100
2. 20
3. -19
4. -100

. Which of the following shows correct syntax to change the
priority for the current process with PID 1234?

1. nice -n 5 1234
2. renice 5 1234
3. renice 5 -p 1234
4. nice 5 -p 1234

. Which of the following commands cannot be used to send
signals to processes?

1. kill
2. mkill
3. pkill
4. killall

. Which of the following commands would you use from top to
change the priority of a process?

1. r
2. n
3. c
4. k

. Which of the following commands will set the current
performance profile to powersave?

1. tuneadm profile set powersave
2. tuned-adm profile powersave
3. tuneadm profile --set powersave
4. tuned-adm profile --set powersave

Foundation Topics

Introducing Process Management

For everything that happens on a Linux server, a process is
started. For that reason, process management is among the key
skills that an administrator has to master. To do this efficiently,
you need to know which type of process you are dealing with.
A major distinction can be made between three process types:

Shell jobs are commands started from the command line.
They are associated with the shell that was current when the
process was started. Shell jobs are also referred to as
interactive processes.
Daemons are processes that provide services. They normally
are started when a computer is booted and often (but
certainly not in all cases) run with root privileges.
Kernel threads are a part of the Linux kernel. You cannot
manage them using common tools, but for monitoring of
performance on a system, it’s important to keep an eye on
them.

When a process is started, it can use multiple threads. A thread
is a task started by a process and that a dedicated CPU can
service. The Linux shell does not offer tools to manage
individual threads. Thread management should be taken care
of from within the command.

If you want to manage a process efficiently, it is paramount that
you know what type of process you are dealing with. Shell jobs
require a different approach than the processes that are
automatically started when a computer boots.

Managing Shell Jobs

When a user types a command, a shell job is started. If no
particular measures have been taken, the job is started as a
foreground process, occupying the terminal it was started
from until it has finished its work. As a Linux administrator,
you need to know how to start shell jobs as foreground
processes or as background processes and what you can do to
manage shell jobs.

Running Jobs in the Foreground and Background

By default, any executed command is started as a foreground
job. That means that you cannot do anything on the terminal
where the command was started until it is done. For many
commands, that does not really matter because the command
often takes a little while to complete, after which it returns
access to the shell from which it was started. Sometimes it
might prove useful to start commands in the background. This
makes sense for processes that do not require user interaction
and take significant time to finish. A process that does require
user interaction will not be able to get that when running in the
background, and for that reason will typically stall when moved
to the background. You can take two different approaches to
run a process in the background.

If you know that a job will take a long time to complete, you can
start it with an & behind it. This command immediately starts
the job in the background to make room for other tasks to be
started from the command line. To move the last job that was
started in the background back as a foreground job, use the fg
command. This command immediately, and with no further
questions, brings the last job back to the foreground. If multiple
jobs are currently running in the background, you can move a
job back to the foreground by adding its job ID, as shown by the
jobs command.

A job might sometimes have been started that takes (much)
longer than predicted. If that happens, you can use Ctrl-Z to
temporarily stop the job. This does not remove the job from
memory; it just pauses the job so that it can be managed. Once
the job is paused, you can continue it as a background job by
using the bg command. An alternative key sequence that you
can use to manage shell jobs is Ctrl-C. This key combination
stops the current job and removes it from memory.

A related key combination is Ctrl-D, which sends the End Of File
(EOF) character to the current job. The result is that the job
stops waiting for further input so that it can complete what it
was currently doing. The result of pressing Ctrl-D is sometimes
similar to the result of pressing Ctrl-C, but there is a difference.

When Ctrl-C is used, the job is just canceled, and nothing is
closed properly. When Ctrl-D is used, the job stops waiting for
further input and next terminates, which often is just what is
needed to complete in a proper way.

Managing Shell Jobs

When you’re moving jobs between the foreground and
background, it may be useful to have an overview of all current
jobs. To get such an overview, use the jobs command. As you
can see in Table 10-2, this command gives an overview of all
jobs currently running as a background job, including the job
number assigned to the job when starting it in the background.
These job numbers can be used as an argument to the fg and bg
commands to perform job management tasks. In Exercise 10-1,
you learn how to perform common job management tasks from
the shell.

Table 10-2 Job Management Overview

Command Use

Command Use

& (used at the
end of a
command
line)

Starts the command immediately in the background.

Ctrl-Z Stops the job temporarily so that it can be managed. For
instance, it can be moved to the background.

Ctrl-D Sends the EOF character to the current job to indicate that it
should stop waiting for further input.

Ctrl-C Can be used to cancel the current interactive job.

bg Continues the job that has just been frozen using Ctrl-Z in
the background.

fg Brings back to the foreground the last job that was moved to
background execution.

jobs Shows which jobs are currently running from this shell.
Displays job numbers that can be used as an argument to the
commands bg and fg.

Exercise 10-1 Managing Jobs

1. Open a root shell and type the following commands:

sleep 3600 &

dd if=/dev/zero of=/dev/null &

sleep 7200

2. Because you started the last command with no & after the
command, you have to wait 2 hours before you get back
control of the shell. Press Ctrl-Z to stop the command.

3. Type jobs. You will see the three jobs that you just started.
The first two of them have the Running state, and the last job
currently is in the Stopped state.

4. Type bg 3 to continue running job 3 in the background. Note
that because it was started as the last job, you did not really
have to add the number 3.

5. Type fg 1 to move job 1 to the foreground.
6. Press Ctrl-C to cancel job number 1 and type jobs to confirm

that it is now gone.
7. Use the same approach to cancel jobs 2 and 3 also.
8. Open a second terminal on your server.
9. From that second terminal, type dd if=/dev/zero

of=/dev/null &
10. Type exit to close the second terminal.

11. From the other terminal, start top. You will see that the dd
job is still running. It should show on top of the list of
running processes. From top, press k to kill the dd job. It will
prompt for a PID to kill; make sure to enter the PID of the
process you want to terminate, and then press Enter to apply
default values.

Note

You learned how to manage interactive shell jobs
in this section. Note that all of these jobs are
processes as well. As the user who started the job,
you can also manage it. In the next section, you
learn how to use process management to manage
jobs started by other users.

Understanding Parent–Child Relations

When a process is started from a shell, it becomes a child
process of that shell. In process management, the parent–child
relationship between processes is very important. The parent is
needed to manage the child. For that reason, all processes
started from a shell are terminated when that shell is stopped.

This also offers an easy way to terminate processes no longer
needed.

Processes started in the background will not be killed when the
parent shell from which they were started is killed. To
terminate these processes, you need to use the kill command,
as described later in this chapter.

Note

In earlier versions of the Bash shell, background
processes were also killed when the shell they
were started from was terminated. To prevent that,
the process could be started with the nohup
command in front of it. Using nohup for this
purpose is no longer needed in RHEL 9. If a parent
process is killed while the child process still is
active, the child process becomes a child of
systemd instead.

Using Common Command-Line Tools for Process
Management

On a Linux server, many processes are usually running. On an
average server or desktop computer, there are often more than

100 active processes. With so many processes being active,
things may go wrong. If that happens, it is good to know how
noninteractive processes can be stopped or how the priority of
these processes can be adjusted to make more system resources
available for other processes.

Understanding Processes and Threads

Tasks on Linux are typically started as processes. One process
can start several worker threads. Working with threads makes
sense, because if the process is very busy, the threads can be
handled by different CPUs or CPU cores available in the
machine. As a Linux administrator, you cannot manage
individual threads; you can manage processes, though. It is the
programmer of the multithreaded application that has to define
how threads relate to one another.

Before we talk about different ways to manage processes, it is
good to know that there are two different types of background
processes: kernel threads and daemon processes. Kernel threads
are a part of the Linux kernel, and each of them is started with
its own process identification number (PID). When managing
processes, you can easily recognize the kernel processes
because they have a name that is between square brackets.
Example 10-1 shows a list of a few processes as output of the

command ps aux | head (discussed later in this chapter), in
which you can see a couple of kernel threads.

As an administrator, you need to know that kernel threads
cannot be managed. You cannot adjust their priority; neither is
it possible to kill them, except by taking the entire machine
down.

Example 10-1 Showing Kernel Threads with ps aux

Click here to view code image

[root@server3 ~]# ps aux | head

USER PID %CPU %MEM VSZ RSS TTY S

 COMMAND

root 1 0.0 0.4 252864 7792 ? Ss 08:25

 systemd/systemd --switched-root --system --des

root 2 0.0 0.0 0 0 ? S 08:25

root 3 0.0 0.0 0 0 ? I< 08:25

root 4 0.0 0.0 0 0 ? I< 08:25

root 6 0.0 0.0 0 0 ? I< 08:25

 0H-kblockd]

root 8 0.0 0.0 0 0 ? I< 08:25

root 9 0.0 0.0 0 0 ? S 08:2

root 10 0.0 0.0 0 0 ? I 08:25

root 11 0.0 0.0 0 0 ? S 08:2

Using ps to Get Process Information

The most common command to get an overview of currently
running processes is ps. If used without any arguments, the ps
command shows only those processes that have been started by
the current user. You can use many different options to display
different process properties. If you are looking for a short
summary of the active processes, use ps aux (as you saw in
Example 10-1). If you are looking for not only the name of the
process but also the exact command that was used to start the
process, use ps -ef (see Example 10-2). Alternative ways to use
ps exist as well, such as the command ps fax, which shows
hierarchical relationships between parent and child processes
(see Example 10-3).

Example 10-2 Using ps -ef to See the Exact Command Used to
Start Processes

Click here to view code image

 [root@server3 ~]# ps -ef

UID PID PPID C STIME TTY TIME

root 1 0 0 08:25 ? 00:00:02 /usr

 --switched-root --system --deserialize 17

...

root 34948 2 0 12:16 ? 00:00:00 [

root 34971 1030 0 12:17 ? 00:00:00

oo 3 9 030 0 00 00 00

root 34975 34971 0 12:17 ? 00:00:00 ss

root 34976 34975 0 12:17 pts/2 00:00:00

root 35034 1 0 12:17 pts/2 00:00:00 sl

root 35062 2 0 12:20 ? 00:00:00 [

root 35064 2 0 12:20 ? 00:00:00 [kwo

 destroy]

root 35067 2 0 12:20 ? 00:00:00 [

 freezable_power_]

root 35087 939 0 12:21 ? 00:00:00 sle

root 35088 33127 0 12:22 pts/1 00:00:00

Note

For many commands, options need to start with a
hyphen. For some commands, this is not the case
and using the hyphen is optional. The ps command
is one of these commands, due to historic reasons.
In the old times of UNIX, there were two main
flavors: the System V flavor, in which using
hyphens before options was mandatory, and the
BSD flavor, in which using hyphens was optional.
The ps command is based on both of these flavors,
and for that reason some options don’t have to
start with a hyphen.

Example 10-3 Using ps fax to Show Parent-Child Relationships
Between Processes

Click here to view code image

 [root@server3 ~]# ps fax

 PID TTY STAT TIME COMMAND

 2 ? S 0:00 [kthreadd]

 3 ? I< 0:00 _ [rcu_gp]

 4 ? I< 0:00 _ [rcu_par_gp]

...

 2460 ? Ssl 0:00 _ /usr/bin/pulseau

 2465 ? Ssl 0:00 _ /usr/bin/dbus-da

 --session--address=systemd: --nofork --nopidfi

 2561 ? Ssl 0:00 _ /usr/libexec/at-

 2566 ? Sl 0:00 | _ /usr/bin/dbu

 file=/usr/share/defaults/at-spi2/ accessibil

 2569 ? Sl 0:00 _ /usr/libexec/at-

 --use-gnome-session

 2589 ? Ssl 0:00 _ /usr/libexec/xdg

 2594 ? Sl 0:00 _ /usr/libexec/ibu

 2704 ? Sl 0:00 _ /usr/libexec/dco

 2587 ? Sl 0:00 /usr/libexec/ibus-x

 2758 ? Sl 0:00 /usr/bin/gnome-keyr

 --login

 2908 tty3 Sl 0:00 /usr/libexec/ibus-x

 2936 ? Ssl 0:00 /usr/libexec/geoclu

 3102 tty3 Sl+ 0:00 /usr/libexec/gsd-pr

 3 0 y3 S 0 00 /us / be ec/gsd p

 3173 tty3 Sl+ 0:12 /usr/bin/vmtoolsd -

 3378 ? Ssl 0:00 /usr/libexec/fwupd/

 3440 ? Ss 0:00 gpg-agent --homedir

 --use-standard-socket --daemon

 3455 ? S 0:00 /usr/libexec/platfo

 libexec/rhsmd

 33093 ? Ss 0:00 /usr/lib/systemd/sy

 33105 ? S 0:00 _ (sd-pam)

 33117 ? S<sl 0:00 _ /usr/bin/pulsea

 33123 ? Ssl 0:00 _ /usr/bin/dbus-da

 --address=systemd: --nofork --nopidfile --sy

 35034 pts/2 S 0:00 sleep 3600

An important piece of information to get out of the ps
command is the PID. Many tasks require the PID to operate, and
that is why a command like ps aux | grep dd, which will show
process details about dd, including its PID, is quite common. An
alternative way to get the same result is to use the pgrep
command. Use pgrep dd to get a list of all PIDs that have a
name containing the string “dd”.

Understanding Process Priorities

On modern Linux systems, cgroups are used to allocate system
resources. In cgroups, three system areas, the so-called slices,
are defined:

system: This is where all systemd-managed processes are
running.
user: This is where all user processes (including root
processes) are running.
machine: This optional slice is used for virtual machines and
containers.

By default, all slices have the same CPUWeight. That means that
CPU capacity is equally divided if there is high demand. All
processes in the system slice get as much CPU cycles as all
processes in the user slice, and that can result in surprising
behavior. Within a slice, process priority can be managed by
using nice and renice.

Exploring Relations Between Slices

As mentioned before, by default all processes in the system slice
get as many CPU cycles as all processes in the user slice. You
won’t get any questions about this on the RHCSA exam, but as it
may lead to surprising situations, it’s good to know how this
works anyway. Apply the following procedure to discover what
the result can be.

1. Open a root shell and clone the course git repository: git clone
https://github.com/sandervanvugt/rhcsa

https://github.com/sandervanvugt/rhcsa

2. Use cp rhcsa/stress* /etc/systemd/system

3. Type systemctl daemon-reload to ensure that systemd
catches the new files.

4. Type systemctl start stress1, followed by systemctl start
stress2

5. Use top to monitor CPU usage of the processes. You’ll see that
there are two very active dd processes, which each get about 50
percent of all CPU capacity. Keep the top screen open.

6. Open a terminal, and as a non-root user, type while true; do
true; done

7. Observe what is happening in top. If you have a single-core
system, you will see that both dd processes get 50 percent of all
CPU cycles, and the user bash process that was just started also
gets 50 percent of all CPU cycles. This proves that one very busy
user process can have dramatic consequences for the system
processes.

8. If in the previous step you don’t see the described behavior,
type 1 in the top interface. This will show a line for each CPU
core on your system. You should see multiple CPU cores.

9. To temporarily shut down a CPU core, use the command echo
0 > /sys/bus/cpu/devices/cpu1/online. Repeat this command for
each CPU, except for cpu0.

0. To enable any CPU core you’ve just disabled, use either echo 1
> /sys/bus/cpu/devices/cpu1/online or reboot.

1. Use killall dd to make sure all dd processes are terminated.

As you’ve just seen, the standard configuration of cgroup slices
can lead to unexpected results. If you don’t like this behavior,
you can increase the priority of the system slice. Use systemctl
set-property system.slice CPUWeight=800 to set the
CPUWeight of all processes in the system slices eight times as
high as all processes in the user slice.

Managing Process Priorities

When Linux processes are started, they are started with a
specific priority. By default, all regular processes are equal and
are started with the same priority, which is the priority number
20, as shown by utilities like top. In some cases, it is useful to
change the default priority that was assigned to the process
when it was started. You can do that using the nice and renice
commands. Use nice if you want to start a process with an
adjusted priority. Use renice to change the priority for a

currently active process. Alternatively, you can use the r
command from the top utility to change the priority of a
currently running process.

Changing process priority may make sense in two different
scenarios. Suppose, for example, that you are about to start a
backup job that does not necessarily have to finish fast.
Typically, backup jobs are rather resource intensive, so you
might want to start the backup job in a way that does not annoy
other users too much, by lowering its priority.

Another example is where you are about to start a very
important calculation job. To ensure that it is handled as fast as
possible, you might want to give it an increased priority, taking
away CPU time from other processes.

On earlier Linux versions, it could be dangerous to increase the
priority of one job too much, because of the risk that other
processes (including vital kernel processes) might be blocked
out completely. On current Linux kernels, that risk is minimized
for these reasons:

Modern Linux kernels differentiate between essential kernel
threads that are started as real-time processes and normal
user processes. Increasing the priority of a user process will

never be able to block out kernel threads or other processes
that were started as real-time processes.
Modern computers often have multiple CPU cores. A single-
threaded process that is running with the highest priority
will never be able to get beyond the boundaries of the CPU it
is running on.
As you’ve read before, processes are running in slices, and by
default, each slice can claim as many CPU cycles as each
other slice.

When using nice or renice to adjust process priority, you can
select from values ranging from –20 to 19. The default niceness
of a process is set to 0 (which results in the priority value of 20).
By applying a negative niceness, you increase the priority. Use a
positive niceness to decrease the priority. It is a good idea not to
use the ultimate values immediately. Instead, use increments of
5 and see how it affects the application.

Tip

Do not set process priority to –20; it risks blocking
other processes from getting served.

Let’s take a look at examples of how to use nice and renice:

1. Run the command nice -n 5 dd if=/dev/zero of=/dev/null &
to an infinite I/O-intensive job, but with an adjusted niceness
so that some room remains for other processes as well.

2. Use ps aux | grep dd to find the PID of the dd command that
you just started. The PID is in the second column of the
command output.

3. Use renice -n 10 -p 1234 (assuming that 1234 is the PID you
just found).

4. Use top to verify the adjusted process priority and stop the
dd process you just started.

Note that regular users can only decrease the priority of a
running process. You must be root to give processes increased
priority by using negative nice values.

Sending Signals to Processes with kill, killall, and pkill

Before you start to think about using the kill command or
sending other signals to processes, it is good to know that
Linux processes have a hierarchical relationship. Every process
has a parent process, and as long as it lives, the parent process
is responsible for the child processes it has created. In older
versions of Linux, killing a parent process would also kill all of
its child processes. In RHEL 9, if you kill a parent process, all of
its child processes become children of the systemd process.

The Linux kernel allows many signals to be sent to processes.
Use man 7 signal for a complete overview of all the available
signals. Three of these signals work for all processes:

The signal SIGTERM (15) is used to ask a process to stop.
The signal SIGKILL (9) is used to force a process to stop.
The SIGHUP (1) signal is used to hang up a process. The effect
is that the process will reread its configuration files, which
makes this a useful signal to use after making modifications
to a process configuration file.

To send a signal to a process, you use the kill command. The
most common use is the need to stop a process, which you can
do by using the kill command followed by the PID of the
process. This sends the SIGTERM signal to the process, which
normally causes the process to cease its activity and close all
open files.

Sometimes the kill command does not work because the
process you want to kill can ignore it. In that case, you can use
kill -9 to send the SIGKILL signal to the process. Because the
SIGKILL signal cannot be ignored, it forces the process to stop,

but you also risk losing data while using this command. In
general, it is a bad idea to use kill -9:

You risk losing data.
Your system may become unstable if other processes depend
on the process you have just killed.

Tip

Use kill -l to show a list of available signals that
can be used with kill.

There are some commands that are related to kill: killall and
pkill. The pkill command is a bit easier to use because it takes
the name rather than the PID of the process as an argument.
You can use the killall command if multiple processes using the
same name need to be killed simultaneously. However, it is
recommended to use kill, followed by the exact PID of
processes you want to stop, because otherwise you risk
terminating processes that didn’t need to be killed anyway.

Using killall was particularly common when Linux
environments were multiprocessing instead of multithreading.
In a multiprocessing environment where a server starts several
commands, all with the same name, it is not easy to stop these

commands one by one based on their individual PID. Using
killall enables you to terminate all these processes
simultaneously.

In a multithreaded environment, the urge to use killall is
weaker. Because there is often just one process that is
generating several threads, all these threads are terminated
anyway by stopping the process that started them. You still can
use killall, though, to terminate lots of processes with the same
name that have been started on your server. In Exercise 10-2,
you practice using ps, nice, kill, and related utilities to manage
processes.

Exercise 10-2 Managing Processes from the Command Line

1. Open a root shell. From this shell, type dd if=/dev/zero
of=/dev/null &. Repeat this command three times.

2. Type ps aux | grep dd. This command shows all lines of
output that have the letters dd in them; you will see more
than just the dd processes, but that should not really matter.
The processes you just started are listed last.

3. Use the PID of one of the dd processes to adjust the niceness,
using renice -n 5 <PID>.

4. Type ps fax | grep -B5 dd. The -B5 option shows the
matching lines, including the five lines before that. Because

ps fax shows hierarchical relationships between processes,
you should also find the shell and its PID from which all the
dd processes were started.

5. Find the PID of the shell from which the dd processes were
started and type kill -9 <PID>, replacing <PID> with the PID
of the shell you just found. Because the dd processes were
started as background processes, they are not killed when
their parent shell is killed. Instead, they have been moved up
and are now children of the systemd process.

6. Use killall to kill all remaining dd processes.

Killing Zombies

Zombies are processes with a special state. Zombie processes
are processes that have completed execution but are still listed
in the process table. You can check if you have zombies using ps
aux | grep defunct. Although zombies are harmless, it is
annoying to have them, and you may want to do something to
clean them up.

The issue with zombies is that you cannot kill them in the way
that works for normal processes. Rebooting your system is a
solution, but doing so is a bit too much for processes that aren’t
really causing any harm. Fortunately, in recent RHEL systems

you can often—not in all cases—get rid of zombies by applying
the following procedure:

1. Make sure you have cloned the books git repository, using git
clone https://github.com/sandervanvugt/rhcsa.

2. Enter the rhcsa directory, using cd rhcsa, and use ./zombie to
start the demo zombie process.

3. Use ps aux | grep zombie to verify the zombie is running. You
should see two processes, one being the parent that is
responsible for the zombie, the other one being the zombie
itself.

4. Use kill <childpid>, in which <childpid> is replaced with the
actual PID of the child processes you’ve found in step 3. Notice
that this fails.

5. use kill -SIGCHLD <parentpid>. This will tell the parent
process to remove its child processes. Now the zombie will get
adopted by systemd, and after a few seconds it will be removed.

6. If the zombie wasn’t killed by this procedure, use kill -9 to kill
the parent process.

Using top to Manage Processes

https://github.com/sandervanvugt/rhcsa

A convenient tool to manage processes is top. For common
process management tasks, top is great because it gives an
overview of the most active processes currently running (hence
the name top). This enables you to easily find processes that
might need attention. From top, you can also perform common
process management tasks, such as adjusting the current
process priority and killing processes. Figure 10-1 shows the
interface that appears when you start top.

Figure 10-1 Using top Makes Process Management Easy

Among the information that you can conveniently obtain from
the top utility is the process state. Table 10-3 provides an
overview of the different process states that you may observe.

Table 10-3 Linux Process States Overview

State Meaning

Running (R) The process is currently active and using CPU time, or in
the queue of runnable processes waiting to get services.

Sleeping (S) The process is waiting for an event to complete.

Uninterruptible
sleep (D)

The process is in a sleep state that cannot be stopped. This
usually happens while a process is waiting for I/O. This
state is also known as blocking state.

Stopped (T) The process has been stopped, which typically has
happened to an interactive shell process, using the Ctrl-Z
key sequence.

State Meaning

Zombie (Z) The process has been stopped but could not be removed by
its parent, which has put it in an unmanageable state.

Now that you know how to use the kill and nice commands
from the command line, using the same functionality from top
is even easier. From top, type k; top then prompts for the PID of
the process you want to send a signal to. By default, the most
active process is selected. After you enter the PID, top asks
which signal you want to send. By default, signal 15 for
SIGTERM is used. However, if you want to insist on a bit more,
you can type 9 for SIGKILL. Now press Enter to terminate the
process.

To renice a running process from top, type r. You are first
prompted for the PID of the process you want to renice. After
entering the PID, you are prompted for the nice value you want
to use. Enter a positive value to decrease process priority or a
negative value to increase process priority.

Another important parameter you can get from top is the load
average. The load average is expressed as the number of
processes that are in a runnable state (R) or in a blocking state

(D). Processes are in a runnable state if they currently are
running, or waiting to be serviced. Processes are in a blocking
state if they are waiting for I/O. The load average is shown for
the last 1, 5, and 15 minutes, and you can see the current values
in the upper-right corner of the top screen. Alternatively, you
can use the uptime command to show current load average
statistics (see Example 10-4).

Example 10-4 Using uptime for Information About Load
Average

Click here to view code image

 [root@server3 ~]# uptime

 12:43:03 up 4:17, 3 users, load average: 4.9

As a rule of thumb, the load average should not be higher than
the number of CPU cores in your system. You can find out the
number of CPU cores in your system by using the lscpu
command. If the load average over a longer period is higher
than the number of CPUs in your system, you may have a
performance problem. In Exercise 10-3 you investigate the load
average statistics and learn how to manage load average.

Exercise 10-3 Managing Load Average

1. Open a root shell. From this shell, type dd if=/dev/zero
of=/dev/null &. Repeat this command three times.

2. Type top and observe the current load average. After a few
seconds, use q to quit top.

3. From the command line, type uptime. You should see the
numbers that are shown as the load average is slowly
increasing.

4. Type lscpu and look for the number of CPU(s). Also look for
the Core(s) per CPU parameter so that you can calculate the
total number of CPU cores.

5. Use killall dd to kill all dd processes.

Using tuned to Optimize Performance

To offer the best possible performance right from the start,
RHEL 9 comes with tuned. It offers a daemon that monitors
system activity and provides some profiles. In the profiles, an
administrator can automatically tune a system for best possible
latency, throughput, or power consumption.

Based on the properties of an installed system, a tuned profile
is selected automatically at installation, and after installation
it’s possible to manually change the current profile.
Administrators can also change settings in a tuned profile.

Table 10-4 gives an overview of the most important default
profiles.

Table 10-4 tuned Profile Overview

Profile Use

balanced The best compromise between power usage and
performance

desktop Based on the balanced profile, but tuned for better
response to interactive applications

latency-
performance

Tuned for maximum throughput

network-
latency

Based on latency-performance, but with additional
options to reduce network latency

network-
throughput

Based on throughput-performance, optimizes older CPUs
for streaming content

powersave Tunes for maximum power saving

Profile Use

throughput-
performance

Tunes for maximum throughput

virtual-guest Optimizes Linux for running as a virtual machine

virtual-host Optimizes Linux for use as a KVM host

It is relatively easy to create custom profiles. Also, when you’re
installing specific packages, profiles may be added. So you may
find that some additional performance profiles exist on your
server.

To manage the performance profile, the tuned-adm command
is provided. It talks to the tuned daemon, so before you can use
it, run systemctl enable --now tuned to start the tuned
daemon. Next, use tuned-adm active to find out which profile
currently is selected. For an overview of profiles available on
your server, type tuned-adm list. To select another profile, type
tuned-adm profile profile-name. The tuned service can also
recommend a tuned profile for your system: use tuned-adm

recommend. In Exercise 10-4 you can practice working with
tuned.

Exercise 10-4 Using tuned

1. Use dnf -y install tuned to ensure that tuned is installed. (It
probably already is.)

2. Type systemctl status tuned to check whether tuned
currently is running. If it is not, use systemctl enable --now
tuned.

3. Type tuned-adm active to see which profile currently is
used.

4. Type tuned-adm recommend to see which tuned profile is
recommended.

5. To select and activate the throughput-performance profile,
type tuned-adm profile throughput-performance.

Summary

Managing processes is a common task for a Linux system
administrator. In this chapter, you learned how to look up
specific processes and how to change their priority using nice
and kill. You also learned how to use tuned to select the
performance profile that best matches your server’s workload.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the
Introduction, you have several choices for exam preparation:
the end-of-chapter labs; the memory tables in Appendix C;
Chapter 27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the
Key Topic icon in the margin of the page. Table 10-5 lists a
reference for these key topics and the page number on which
each is found.

Table 10-5 Key Topics for Chapter 10

Key Topic Element Description Page

Table 10-2 Job Management Overview 236

List Essential signals overview 244

Key Topic Element Description Page

Table 10-3 Linux Process States Overview 247

Complete Tables and Lists from Memory

Print a copy of Appendix C, “Memory Tables” (found on the
companion website), or at least the section for this chapter, and
complete the tables and lists from memory. Appendix D,
“Memory Tables Answer Key,” includes completed tables and
lists to check your work.

Define Key Terms

Define the following key terms from this chapter and check
your answers in the glossary:

process

thread

job

foreground process

background process

process identification number (PID)

nice

kill

signal

zombie

profile

tuned

Review Questions

The questions that follow are meant to help you test your
knowledge of concepts and terminology and the breadth of
your knowledge. You can find the answers to these questions in
Appendix A.

. Which command gives an overview of all current shell jobs?

. How do you stop the current shell job to continue running it in
the background?

. Which keystroke combination can you use to cancel the current
shell job?

. A user is asking you to cancel one of the jobs he has started. You
cannot access the shell that user currently is working from.
What can you do to cancel his job anyway?

. Which command would you use to show parent–child
relationships between processes?

. Which command enables you to change the priority of PID 1234
to a higher priority?

. On your system, 20 dd processes are currently running. What is
the easiest way to stop all of them?

. Which command enables you to stop the command with the
name mycommand?

. Which command do you use from top to kill a process?

. What is required to select a performance profile that best
matches your system needs?

End-of-Chapter Lab

In this end-of-chapter lab, you apply some of the most
important process management tasks. Use the tools that you
find the most convenient to perform these labs.

Lab 10.1

1. Launch the command dd if=/dev/zero of=/dev/null three
times as a background job.

2. Increase the priority of one of these commands using the
nice value -5. Change the priority of the same process again,
but this time use the value -15. Observe the difference.

3. Kill all the dd processes you just started.
4. Ensure that tuned is installed and active, and set the

throughput-performance profile.

Chapter 11

Working with Systemd

The following topics are covered in this chapter:

Understanding Systemd
Managing Units Through Systemd

The following RHCSA exam objectives are covered in this
chapter:

Start, stop, and check the status of network services
Start and stop services and configure services to
automatically start at boot

In this chapter, you learn about Systemd, which is the system
and service manager used on RHEL since RHEL 7. You discover
all the things that Systemd can do, and after you have a good
general understanding, you learn how to work with Systemd
services. Systemd is also involved in booting your system in a
desired state, which is called a target. That topic is covered in
Chapter 17, “Managing and Understanding the Boot Procedure.”

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess
whether you should read this entire chapter thoroughly or
jump to the “Exam Preparation Tasks” section. If you are in
doubt about your answers to these questions or your own
assessment of your knowledge of the topics, read the entire
chapter. Table 11-1 lists the major headings in this chapter and
their corresponding “Do I Know This Already?” quiz questions.
You can find the answers in Appendix A, “Answers to the ‘Do I
Know This Already?’ Quizzes and Review Questions.”

Table 11-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Understanding Systemd 1–5

Managing Units Through Systemd 6–10

. Which command shows all service unit files on your system
that are currently loaded?

1. systemctl -t service
2. systemctl -t service --all

3. systemctl --list-services
4. systemctl --show-units | grep services

. Which statement about Systemd wants is not true?

1. You can create wants by using the systemctl enable
command.

2. The target to which a specific want applies is agnostic of the
associated wants.

3. Wants are always administered in the
/usr/lib/systemd/system directory.

4. Each service knows to which target it wants to be added.

. What is the best solution to avoid conflicts between
incompatible units?

1. Nothing; the unit files have defined for themselves which
units they are not compatible with.

2. Disable the service using systemctl disable.
3. Unmask the service using systemctl unmask.
4. Mask the service using systemctl mask.

. Which of the following is not a valid status for Systemd
services?

1. Active(running)

2. Active(exited)
3. Active(waiting)
4. Running(dead)

. Which of the following statements is not true about socket
units?

1. A socket unit requires a service unit with the same name.
2. Socket units can listen on ports and activate services only

when activity occurs on a port.
3. Socket units cannot contain the name of the associated

binary that should be started.
4. Socket units may react upon path activity.

. Which of the following is not a valid Systemd unit type?

1. service
2. udev
3. mount
4. socket

. You want to find out which other Systemd units have
dependencies to a specific unit. Which command would you
use?

1. systemd list-dependencies --reverse

2. systemctl list-dependencies --reverse
3. systemctl status my.unit --show-deps
4. systemd status my.unit --show-deps -r

. How do you change the default editor that Systemd uses to
vim?

1. export EDITOR=vim
2. export SYSTEMD_EDITOR=vim
3. export EDITOR=/bin/vim
4. export SYSTEMD_EDITOR=/bin/vim

. Which of the following keywords should you use to define a
Systemd dependency if you want to ensure that the boot
procedure doesn’t fail if the dependency fails?

1. Required
2. Requisite
3. Before
4. Wants

. Which of the following is not a valid command while working
with units in systemctl?

1. systemctl unit start
2. systemctl status -l unit

3. systemctl mask unit
4. systemctl disable unit

Foundation Topics

Understanding Systemd

Systemd is the part of Red Hat Enterprise Linux that is
responsible for starting not only services but also a variety of
other items. In this chapter, you learn how Systemd is organized
and what items are started from Systemd.

To describe it in a generic way, the Systemd system and service
manager is used to start stuff. The stuff is referred to as units.
Units can be many things. One of the most important unit types
is the service. Typically, services are processes that provide
specific functionality and allow connections from external
clients coming in, such as the SSH service, the Apache web
service, and many more. Apart from service, other unit types
exist, such as socket, mount, and target. To display a list of
available units, type systemctl -t help (see Example 11-1).

Example 11-1 Unit Types in Systemd

Click here to view code image

[root@server1 ~]# systemctl -t help

Available unit types:

service

socket

target

device

mount

automount

swap

timer

path

slice

scope

Understanding Systemd Unit Locations

The major benefit of working with Systemd, as compared to
previous methods Red Hat used for managing services, is that it
provides a uniform interface to start units. This interface is
defined in the unit file. Unit files can occur in three locations:

/usr/lib/systemd/system: Contains default unit files that
have been installed from RPM packages. You should never
edit these files directly.

/etc/systemd/system: Contains custom unit files. It may also
contain files that have been written by an administrator or
generated by the systemctl edit command.
/run/systemd/system: Contains unit files that have been
generated automatically.

If a unit file exists in more than one of these locations, units in
the /run directory have highest precedence and will overwrite
any settings that were defined elsewhere. Units in
/etc/systemd/system have second highest precedence, and units
in /usr/lib/systemd/system come last.

Understanding Systemd Service Units

Probably the most important unit type is the service unit. It is
used to start processes. You can start any type of process by
using a service unit, including daemon processes and
commands.

Example 11-2 shows a service unit file, vsftpd.service, for the
Very Secure FTP service.

Example 11-2 A Service Unit File

Click here to view code image

[Unit]

[Unit]

Description=Vsftpd ftp daemon

After=network.target

[Service]

Type=forking

ExecStart=/usr/sbin/vsftpd /etc/vsftpd/vsftpd.co

[Install]

WantedBy=multi-user.target

You can see from this unit file example that unit files are
relatively easy to understand. Systemd service unit files
typically consist of the following three sections (other types of
unit files have different sections):

[Unit] Describes the unit and defines dependencies. This
section also contains the important After statement and
optionally the Before statement. These statements define
dependencies between different units, and they relate to the
perspective of this unit. The Before statement indicates that
this unit should be started before the unit that is specified.

The After statement indicates that this unit should be started
after the unit that is specified.
[Service] Describes how to start and stop the service and
request status installation. Normally, you can expect an
ExecStart line, which indicates how to start the unit, or an
ExecStop line, which indicates how to stop the unit. Note the
Type option, which is used to specify how the process should
start. The forking type is commonly used by daemon
processes, but you can also use other types, such as oneshot
and simple, which will start any command from a Systemd
unit. See man 5 systemd.service for more details.
[Install] Indicates in which target this unit has to be started.
The section “Understanding Systemd Target Units” a bit later
in this chapter explains how to work with targets. This
section is optional, but units that don’t have an [Install]
section cannot be started automatically.

Understanding Systemd Mount Units

A mount unit specifies how a file system can be mounted on a
specific directory. Mount units are an alternative for mounting
file systems through /etc/fstab, about which you’ll learn more in
Chapter 14 “Managing Storage.” Example 11-3 shows a mount
unit file, tmp.mount.

Example 11-3 A Mount Unit File

Click here to view code image

[root@server1 ~]# cat /usr/lib/systemd/system/tm

[Unit]

Description=Temporary Directory /tmp

Documentation=https://systemd.io/TEMPORARY_DIREC

Documentation=man:file-hierarchy(7)

Documentation=https://www.freedesktop.org/wiki/S

 APIFileSystems

ConditionPathIsSymbolicLink=!/tmp

DefaultDependencies=no

Conflicts=umount.target

Before=local-fs.target umount.target

After=swap.target

[Mount]

What=tmpfs

Where=/tmp

Type=tmpfs

Options=mode=1777,strictatime,nosuid,nodev,size=

Make 'systemctl enable tmp.mount' work:

[Install]

WantedBy=local-fs.target

The tmp.mount unit file in Example 11-3 shows some
interesting additional configuration options in its sections:

[Unit] The Conflicts statement is used to list units that
cannot be used together with this unit. Use this statement for
mutually exclusive units.
[Mount] This section defines exactly where the mount has to
be performed. Here you see the arguments that are typically
used in any mount command.

Understanding Systemd Socket Units

Another type of unit that is interesting to look at is the socket. A
socket creates a method for applications to communicate with
one another. A socket may be defined as a file but also as a port
on which Systemd will be listening for incoming connections.
That way, a service doesn’t have to run continuously but
instead will start only if a connection is coming in on the socket
that is specified. Every socket needs a corresponding service
file. Example 11-4 shows what the cockpit.socket file looks like;
notice that this file requires a service file with the name
cockpit.service.

Example 11-4 A Socket Unit File

Click here to view code image

[Unit]

Description=Cockpit Web Service Socket

Documentation=man:cockpit-ws(8)

Wants=cockpit-motd.service

[Socket]

ListenStream=9090

ExecStartPost=-/usr/share/cockpit/motd/update-mo

ExecStartPost=-/bin/ln -snf active.motd /run/coc

ExecStopPost=-/bin/ln -snf /usr/share/cockpit/mo

 cockpit/motd

[Install]

WantedBy=sockets.target

The important option in Example 11-4 is ListenStream. This
option defines the TCP port that Systemd should be listening to
for incoming connections. Sockets can also be created for UDP
ports, in which case you would use ListenDatagram instead of
ListenStream.

Understanding Systemd Target Units

The unit files are used to build the functionality that is needed
on your server. To make it possible to load them in the right
order and at the right moment, you use a specific type of unit:
the target unit. A simple definition of a target unit is “a group
of units.” Some targets are used to define the state a server
should be started in. As such, target units are comparable to the
runlevels used in earlier versions of RHEL.

Other targets are just a group of services that make it easy to
manage not only individual units but also all the units that are
required to get specific functionality. The sound.target is an
example of such a target; you can use it to easily start or stop all
units that are required to enable sound on a system.

Targets by themselves can have dependencies on other targets.
These dependencies are defined in the target unit. An example
of such a dependency relation is the basic.target. This target
defines all the units that should always be started. You can use
the systemctl list-dependencies command for an overview of
any existing dependencies.

Example 11-5 shows the definition of a target unit file, multi-
user.target, which defines the normal operational state of a
RHEL server.

Example 11-5 A Target Unit File

Click here to view code image

[Unit]

Description=Multi-User System

Documentation=man:systemd.special(7)

Requires=basic.target

Conflicts=rescue.service rescue.target

After=basic.target rescue.service rescue.target

AllowIsolate=yes

You can see that by itself the target unit does not contain any
information about the units that it should start. It just defines
what it requires and which services and targets it cannot
coexist with. It also defines load ordering, by using the After
statement in the [Unit] section. The target file does not contain
any information about the units that should be included; that is
defined in the [Install] section of the different unit files.

When administrators use the systemctl enable command, to
ensure that a unit is automatically started while booting, the
[Install] section of that unit is considered to determine to which
target the unit should be added.

When you add a unit to a target, under the hood a symbolic link
is created in the target directory in /etc/systemd/system. If, for
instance, you enabled the vsftpd service to be automatically
started, you’ll find that a symbolic link
/etc/systemd/system/multi-user.target/wants/vsftpd.service has
been added, pointing to the unit file in
/usr/lib/systemd/system/vsftpd.service and thus ensuring that
the unit will automatically be started. In Systemd terminology,
this symbolic link is known as a want, as it defines what the
target wants to start when it is processed.

Managing Units Through Systemd

Managing the current state of Systemd units is an important
task for RHEL administrators. Managing units means not only
managing their current state but also changing options used by
the different units.

Managing Systemd units starts with starting and stopping units.
As an administrator, you use the systemctl command to do that.
In Exercise 11-1, you start, stop, and manage a unit. After you
configure a unit so that it can be started without problems, you
need to make sure that it restarts automatically upon reboot.
You do this by enabling or disabling the unit.

Tip

The systemctl command has a large number of
options, which may appear overwhelming at first
sight, but there’s no need to be overwhelmed. Just
ensure that the bash-completion package is
installed and use Tab completion on the systemctl
command, which provides easy access to all of the
available options.

Exercise 11-1 Managing Units with systemctl

1. From a root shell, type dnf -y install vsftpd to install the
Very Secure FTP service.

2. Type systemctl start vsftpd to activate the FTP server on
your machine.

3. Type systemctl status vsftpd to get output like that shown
in Example 11-6, where you can see that the vsftpd service is
currently operational. In the Loaded line, you can also see
that the service is currently disabled, which means that it
will not be activated on a system restart. The vendor preset

also shows as disabled, which means that, by default, after
installation this unit will not automatically be enabled.

4. Type systemctl enable vsftpd to create a symbolic link in
the wants directory for the multiuser target to ensure that
the service is automatically started after a restart.

5. Type systemctl status vsftpd again. You’ll see that the unit
file has changed from being disabled to enabled.

Example 11-6 Requesting Current Unit Status with systemctl
status

Click here to view code image

[root@server1 system]# systemctl status vsftpd

• vsftpd.service - Vsftpd ftp daemon

 Loaded: loaded (/usr/lib/systemd/system/vsf

 vendor preset: disabled)

 Active: active (running) since Thu 2022-09-

 ago

 Process: 33967 ExecStart=/usr/sbin/vsftpd /e

 (code=exited, status=0/SUCCESS)

 Main PID: 33968 (vsftpd)

 Tasks: 1 (limit: 23272)

 Memory: 708.0K

 CPU: 2ms

 CGroup: /system.slice/vsftpd.service

 └─33968 /usr/sbin/vsftpd /etc/vsftp

 33968 /us /sb / s pd /e c/ s p

Sep 15 08:42:50 server1.example.com systemd[1]:

 daemon...

Sep 15 08:42:50 server1.example.com systemd[1]:

 daemon. .

When requesting the current status of a Systemd unit as in
Example 11-6, you can see different kinds of information about
it. Table 11-2 shows the different kinds of information that you
can get about unit files when using the systemctl status
command.

Table 11-2 Systemd Status Overview

Status Description

Loaded The unit file has been processed and the unit is active.

Active(running) The unit is running with one or more active processes.

Active(exited) The unit has successfully completed a one-time run.

Status Description

Active(waiting) The unit is running and waiting for an event.

Inactive(dead) The unit is not running.

Enabled The unit will be started at boot time.

Disabled The unit will not be started at boot time.

Static The unit cannot be enabled but may be started by another
unit automatically.

As an administrator, you also often need to get a current
overview of the current status of Systemd unit files. Different
commands, some of which are shown in Table 11-3, can help
you get this insight.

Table 11-3 systemctl Unit Overview Commands

Command Description

systemctl -t service Shows only service units

systemctl list-units -t
service

Shows all active service units (same result as the
previous command)

systemctl list-units -t
service --all

Shows inactive service units as well as active
service units

systemctl --failed -t
service

Shows all services that have failed

systemctl status -l
your.service

Shows detailed status information about services

Managing Dependencies

In general, there are two ways to manage Systemd
dependencies:

Unit types such as socket, timer, and path are directly related
to a service unit. Systemd can make the connection because
the first part of the name is the same: cockpit.socket works

with cockpit.service. Accessing either of these unit types will
automatically trigger the service type.
Dependencies can be defined within the unit, using keywords
like Requires, Requisite, After, and Before.

As an administrator, you can request a list of unit dependencies.
Type systemctl list-dependencies followed by a unit name to
find out which dependencies it has; add the --reverse option to
find out which units are required for this unit to be started.
Example 11-7 shows an example of this command.

Example 11-7 Showing Unit Dependencies

Click here to view code image

[root@server1 ~]# systemctl list-dependencies vs

 vsftpd.service

└─system.slice

└─basic.target

 ├─alsa-restore.service

 ├─alsa-state.service

 ├─firewalld.service

 ├─microcode.service

 ├─rhel-autorelabel-mark.service

 ├─rhel-autorelabel.service

 ├─rhel-configure.service

├─rhel-dmesg.service

 ├ e d esg se ce

 ├─rhel-loadmodules.service

 ├─paths.target

 ├─slices.target

 │ ├─-.slice

 │ ├─system.slice

 ├─sockets.target

 │ ├─avahi-daemon.socket

 │ ├─cups.socket

 │ ├─dbus.socket

 │ ├─dm-event.socket

 │ ├─iscsid.socket

 │ ├─iscsiuio.socket

 │ ├─lvm2-lvmetad.socket

 │ ├─rpcbind.socket

 │ ├─systemd-initctl.socket

 │ ├─systemd-journald.socket

 │ ├─systemd-shutdownd.socket

 │ ├─systemd-udevd-control.socket

 │ ├─systemd-udevd-kernel.socket

 ├─sysinit.target

 │ ├─dev-hugepages.mount

 │ ├─dev-mqueue.mount

 │ ├─dmraid-activation.service

 │ ├─iscsi.service

To ensure accurate dependency management, you can use
different keywords in the [Unit] section of a unit:

Requires: If this unit loads, units listed here will load also. If
one of the other units is deactivated, this unit will also be
deactivated.
Requisite: If the unit listed here is not already loaded, this
unit will fail.
Wants: This unit wants to load the units that are listed here,
but it will not fail if any of the listed units fail.
Before: This unit will start before the unit specified with
Before.
After: This unit will start after the unit specified with After.

In upcoming Exercise 11-2 you learn how to use these options to
manage unit dependency relations.

Managing Unit Options

When working with Systemd unit files, you risk getting
overwhelmed by its many options. Every unit file can be
configured with different options. To figure out which options
are available for a specific unit, use the systemctl show
command. For instance, the systemctl show sshd command
shows all Systemd options that can be configured in the
sshd.service unit, including their current default values.
Example 11-8 shows the output of this command.

Example 11-8 Showing Available Options with systemctl show

Click here to view code image

[root@server1 ~]# systemctl show | head -20

Id=sshd.service

Names=sshd.service

Requires=basic.target

Wants=sshd-keygen.service system.slice

WantedBy=multi-user.target

ConsistsOf=sshd-keygen.service

Conflicts=shutdown.target

ConflictedBy=sshd.socket

Before=shutdown.target multi-user.target

After=network.target sshd-keygen.service systemd

 basic.target system.slice

Description=OpenSSH server daemon

LoadState=loaded

ActiveState=active

SubState=running

FragmentPath=/usr/lib/systemd/system/sshd.servic

UnitFileState=enabled

InactiveExitTimestamp=Sat 2015-05-02 11:06:02 ED

InactiveExitTimestampMonotonic=2596332166

ActiveEnterTimestamp=Sat 2015-05-02 11:06:02 EDT

ActiveEnterTimestampMonotonic=2596332166

ActiveExitTimestamp=Sat 2015-05-02 11:05:22 EDT

ActiveExitTimestampMonotonic=2559916100

c e es a p o o o c 5599 6 00

InactiveEnterTimestamp=Sat 2015-05-02 11:06:02 E

When changing unit files to apply options, you need to make
sure that the changes are written to /etc/systemd/system, which
is the location where custom unit files should be created. The
recommended way to do so is to use the systemctl edit
command. This command creates a subdirectory in
/etc/systemd/system for the service that you are editing; for
example, if you use systemctl edit sshd.service, you get a
directory with the name /etc/systemd/systemd/sshd.service.d in
which a file with the name override.conf is created. All settings
that are applied in this file overwrite any existing settings in the
service file in /usr/lib/systemd/system. In Exercise 11-2 you
learn how to apply changes to Systemd units.

Tip

By default, Systemd uses the nano editor. Not
everybody likes that very much (including me). If
you want vim to be used instead of nano, edit the
/root/.bash_profile file to include the following line:
export SYSTEMD_EDITOR="/bin/vim" and add
this line to the ~/.bashrc file. After you log in again,
vim will be used as the default editor. If you would

rather use /bin/vim as the default editor for all
commands that need an external editor (including
systemctl), you may also include export
EDITOR="/bin/vim" instead.

Exercise 11-2 Changing Unit Configuration

1. From a root shell, type dnf -y install httpd to install the
Apache web server package.

2. Use systemctl cat httpd.service to show the current
configuration of the unit file that starts the Apache web
server.

3. Type systemctl show httpd.service to get an overview of
available configuration options for this unit file.

4. Type export SYSTEMD_EDITOR=/bin/vim to ensure you use
vim as the default editor for the duration of this session.
(Optionally, add this line to ~/.bashrc to make it persistent.)

5. Use systemctl edit httpd.service to change the default
configuration, and add a [Service] section that includes the
Restart=always and RestartSec=5s lines.

6. Enter systemctl daemon-reload to ensure that Systemd
picks up the new configuration.

7. Type systemctl start httpd to start the httpd service and
systemctl status sshd to verify that the sshd service is

indeed running.
8. Use killall httpd to kill the httpd process.
9. Type systemctl status httpd and then repeat after 5

seconds. You’ll notice that the httpd process gets
automatically restarted.

Summary

In this chapter you learned how to work with Systemd. You
read how to manage Systemd service state and how to change
different options in Systemd. In the next chapter you’ll learn
how to schedule tasks using the cron and at services.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the
Introduction, you have several choices for exam preparation:
the end-of-chapter labs; the memory tables in Appendix C;
Chapter 27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the
Key Topic icon in the margin of the page. Table 11-4 lists a

reference for these key topics and the page numbers on which
each is found.

Table 11-4 Key Topics for Chapter 11

Key Topic Element Description Page Number

Example 11-1 Unit Types in Systemd 256

List Three sections of a Systemd unit file 257

Section Understanding Systemd Target Units 260

Exercise 11-1 Managing Units with systemctl 261

Table 11-3 systemctl Unit Overview Commands 263

Complete Tables and Lists from Memory

Print a copy of Appendix C, “Memory Tables” (found on the
companion website), or at least the section for this chapter, and
complete the tables and lists from memory. Appendix D,
“Memory Tables Answer Key,” includes completed tables and
lists to check your work.

Define Key Terms

Define the following key terms from this chapter and check
your answers in the glossary:

Systemd

unit

target

want

Review Questions

The questions that follow are meant to help you test your
knowledge of concepts and terminology and the breadth of
your knowledge. You can find the answers to these questions in
Appendix A.

. What is a unit?

. Which command should you use to show all service units that
are currently loaded?

. How do you create a want for a service?

. How do you change the default editor for systemctl?

. Which directory contains custom Systemd unit files?

. What should you include to ensure that a unit file will
automatically load another unit file?

. Which command shows available configuration options for the
httpd.service unit?

. Which command shows all dependencies for a specific unit?

. What does it mean if systemctl status shows that a unit is
dead?

. How do you create a Systemd override file?

End-of-Chapter Lab

You have now learned how to work with Systemd. Before you
continue, it is a good idea to work on a lab that helps ensure
you can apply the skills that you acquired in this chapter.

Lab 11.1

1. Install the vsftpd and httpd services.
2. Set the default systemctl editor to vim.
3. Edit the httpd.service unit file such that starting httpd will

always auto-start vsftpd. Edit the httpd service such that after
failure it will automatically start again in 10 seconds.

Chapter 12

Scheduling Tasks

The following topics are covered in this chapter:

Understanding Task Scheduling Options in RHEL
Using Systemd Timers
Configuring cron to Automate Recurring Tasks
Configuring at to Schedule Future Tasks

The following RHCSA exam objective is covered in this chapter:

Schedule tasks using at and cron

On a Linux server it is important that certain tasks run at
certain times. This can be done by using the at and cron
services, which can be configured to run tasks in the future. The
at service is for executing future tasks once only, and the cron
service is for executing recurring regular tasks. Apart from
these services, which have been around in all previous versions
of RHEL, Systemd is providing timer units that can be used as
an alternative. In this chapter you learn how to configure both
cron and at, as well as Systemd timers.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess
whether you should read this entire chapter thoroughly or
jump to the “Exam Preparation Tasks” section. If you are in
doubt about your answers to these questions or your own
assessment of your knowledge of the topics, read the entire
chapter. Table 12-1 lists the major headings in this chapter and
their corresponding “Do I Know This Already?” quiz questions.
You can find the answers in Appendix A, “Answers to the ‘Do I
Know This Already?’ Quizzes and Review Questions.”

Table 12-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Understanding Task Scheduling Options in
RHEL

1

Using Systemd Timers 2–4

Configuring cron to Automate Recurring Tasks 5–8

Configuring at to Schedule Future Tasks 9–10

. What is the default solution for scheduling recurring jobs in
RHEL 9?

1. Systemd timers
2. cron
3. anacron
4. at

. How do you configure a timer to start at a specific time?

1. Use a cron-style starting time notation in the [Timer] section.
2. Use OnCalendar in the [Timer] section.
3. Use OnTime in the [Timer] section.
4. Schedule it through cron.

. You want a timer to be started 1 minute after starting of the
Systemd service. Which option do you use?

1. OnCalendar
2. OnUnitActiveSec
3. OnBootSec
4. OnStartupSec

. You want a systemd user unit to be started 2 minutes after the
user has logged in. Which of the following would you use?

1. OnCalendar
2. OnUserLogin
3. OnUserActiveSec
4. OnStartupSec

. Which of the following would run a cron task Sunday at 11
a.m.?

1. * 11 7 * *
2. 0 11 * 7 *
3. 0 11 * * 7
4. 11 0 * 7 *

. Which of the following launches a job every 5 minutes from
Monday through Friday?

1. */5 * * * 1-5
2. */5 * 1-5 * *
3. 0/5 * * * 1-5
4. 0/5 * 1-5 * *

. How do you create a cron job for a specific user?

1. Log in as that user and type crontab -e to open the cron
editor.

2. Open the crontab file in the user home directory and add
what you want to add.

3. As root, type crontab -e username.
4. As root, type crontab -u username -e.

. Which of the following is not a recommended way to specify
jobs that should be executed with cron?

1. Modify /etc/crontab.
2. Put the jobs in separate scripts in /etc/cron.d.
3. Use crontab -e to create user-specific cron jobs.
4. Put scripts in /etc/cron.{hourly|daily|weekly|monthly} for

automatic execution.

. After you enter commands in the at shell, which command
enables you to close the at shell?

1. Ctrl-V
2. Ctrl-D
3. exit
4. :wq

. Which command enables you to see current at jobs scheduled
for execution?

1. atrm

2. atls
3. atq
4. at

Foundation Topics

Understanding Task Scheduling Options in RHEL

RHEL 9 offers different solutions for scheduling tasks:

Systemd timers are now the default solution to ensure that
specific tasks are started at specific moments.
cron is the legacy scheduler service. It is still supported and
responsible for scheduling a few services.
st is used to schedule an occasional user job for future
execution.

Using Systemd Timers

Since its initial appearance in RHEL 7, systemd has been
replacing many services. Since the release of RHEL 9 it is also
responsible for scheduling tasks. It is now the primary
mechanism to do so, which means that if ever you are trying to
find out how future tasks are executed, you should consider
systemd timers first.

A systemd timer is always used together with a service file, and
the names should match. For example, the logrotate.timer file is
used to modify the logrotate.service file. The service unit
defines how the service should be started, and the timer defines
when it will be started. If you need a service to be started by a
timer, you enable the timer, not the service. Example 12-1 shows
what the logrotate.timer file looks like.

Example 12-1 Sample Timer Contents

Click here to view code image

[root@server1 system]# systemctl cat logrotate.t

/usr/lib/systemd/system/logrotate.timer

[Unit]

Description=Daily rotation of log files

Documentation=man:logrotate(8) man:logrotate.con

[Timer]

OnCalendar=daily

AccuracySec=1h

Persistent=true

[Install]

WantedBy=timers.target

To define how the timer should be started, the timer unit
contains a [Timer] section. In the code in Example 12-1, you can
see that it lists three options:

OnCalendar: Describes when the timer should execute. In
this case it is set to daily, which ensures daily execution.
AccuracySec: Indicates a time window within which the
timer should execute. In Example 12-1 it is set to 1 hour. If the
timer needs to be executed at a more specific time, it is
common to set it to a lower value. Use 1us for the best
accuracy.
Persistent: A modifier to OnCalendar=daily, it specifies that
the last execution time should be stored on disk, so that the
next time it executes is exactly one day later.

In systemd timers, different options can be used to indicate
when the related service should be started. Table 12-2 lists the
most important options.

Table 12-2 Timing Options in Systemd Timers

Option Use

Option Use

OnActiveSec Defines a timer relative to the moment
the timer is activated.

OnBootSec Defines a timer relative to when the
machine was booted.

OnStartupSec Specifies a time relative to when the
service manager was started. In most
cases this is the same as OnBootSec, but
not when systemd user units are used.

OnUnitActiveSec Defines a timer relative to when the
unit that the timer activates was last
activated.

OnCalendar Defines timers based on calendar event
expressions, such as daily. See man
systemd.time for more details.

In Exercise 12-1 you’ll learn how to explore how systemd timers
are organized.

Exercise 12-1: Using Systemd Timers

1. Use systemctl list-units -t timer to show a list of all timers.
2. Type systemctl list-unit-files logrotate.*, which should

show there is a logrotate.service and a logrotate.timer.
3. Enter systemctl cat logrotate.service to verify the contents

of the logrotate.service unit file. Notice that it doesn’t have
an [Install] section.

4. Use systemctl status logrotate.service, which will show it
marked as triggered by the logrotate.timer.

5. Use systemctl status logrotate.timer to verify the status of
the related timer.

6. Install the sysstat package, using dnf install -y sysstat.
7. Verify the unit files that were added from this package, using

systemctl list-unit-files sysstat*.
8. Type systemctl cat sysstat-collect.timer to show what the

sysstat-collect timer is doing. You’ll see the line
OnCalendar=*:00/10, which ensures that it will run every 10
minutes.

Configuring cron to Automate Recurring Tasks

Task scheduling has been common on Linux for a long time,
and in the past the crond service was the primary tool to

schedule tasks.

The crond service consists of two major components. First is
the cron daemon crond, which in RHEL 9 is also started as a
systemd service. This daemon looks every minute to see
whether there is work to do. Second, this work to do is defined
in the cron configuration, which consists of multiple files
working together to provide the right information to the right
service at the right time. In this section, you learn how to
configure cron.

Exam Tip

Even if systemd timers are now the default
solution for running recurring tasks, cron is still
available. Make sure you master both for purposes
of preparing for the RHCSA exam!

Managing the crond Service

The crond service is started by default on every RHEL system.
Managing the crond service itself is easy: it does not need much
management. Where other services need to be reloaded or
restarted to activate changes to their configuration, this is not
needed by crond. The crond daemon wakes up every minute

and checks its configuration to see whether anything needs to
be started.

To monitor the current status of the crond service, you can use
the systemctl status crond command. Example 12-2 shows the
output of this command.

Example 12-2 Monitoring the Current State of the crond
Service

Click here to view code image

[root@localhost ~]# systemctl status crond

• crond.service - Command Scheduler

 Loaded: loaded (/usr/lib/systemd/system/cro

 Active: active (running) since Mon 2022-11-

 21min ago

 Main PID: 1169 (crond)

 Tasks: 2 (limit: 23284)

 Memory: 1.5M

 CPU: 66ms

 CGroup: /system.slice/crond.service

 ├─1169 /usr/sbin/crond -n

 └─6689 /usr/sbin/anacron -s

Nov 21 13:01:01 localhost.localdomain anacron[66

 'cron.daily' in 12 min.

Nov 21 13:01:01 localhost.localdomain anacron[66

'cron.weekly' in 32 min.

 c o ee y 3

Nov 21 13:01:01 localhost.localdomain anacron[66

 'cron.monthly' in 52 min.

Nov 21 13:01:01 localhost.localdomain anacron[66

 executed sequentially

Nov 21 13:01:01 localhost.localdomain run-parts[

 hourly) finished 0anacron

Nov 21 13:01:01 localhost.localdomain CROND[6675

 (run-parts /etc/cron.hourly)

Nov 21 13:13:01 localhost.localdomain anacron[66

 started

Nov 21 13:13:01 localhost.localdomain anacron[66

 terminated

Nov 21 13:33:01 localhost.localdomain anacron[66

 started

Nov 21 13:33:01 localhost.localdomain anacron[66

 terminated

The most significant part of the output of the systemctl status
crond command is in the beginning, which indicates that the
cron service is loaded and enabled. The fact that the service is
enabled means that it will automatically be started whenever
this service is restarting. The last part of the command output
shows current status information. Through the journald
service, the systemctl command can find out what is actually
happening to the crond service.

Understanding cron Timing

When scheduling services through cron, you need to specify
when exactly the services need to be started. In the crontab
configuration (which is explained in more depth in the next
section), you use a time string to indicate when tasks should be
started. Table 12-3 shows the time and date fields used (in the
order specified).

Table 12-3 cron Time and Date Fields

Field Values

minute 0–59

hour 0–23

day of month 1–31

month 1–12 (or month names)

day of week 0–7 (Sunday is 0 or 7), or day names

In any of these fields, you can use an * as a wildcard to refer to
any value. Ranges of numbers are allowed, as are lists and
patterns. Some examples are listed next:

* 11 * * * Every minute between 11:00 and 11:59 (probably
not what you want)
0 11 * * 1-5 Every day at 11 a.m. on weekdays only
0 7-18 * * 1-5 Every hour at the top of the hour between 7
a.m. and 6 p.m. on weekdays
0 */2 2 12 5 Every two hours on the hour on December 2 and
every Friday in December

Tip

You don’t need to remember all this; man 5
crontab shows all possible constructions.

Managing cron Configuration Files

The main configuration file for cron is /etc/crontab, but you will
not change this file directly. It does give you a convenient
overview, though, of some time specifications that can be used

in cron. It also sets environment variables that are used by the
commands that are executed through cron (see Example 12-3).
To make modifications to the cron jobs, there are other
locations where cron jobs should be specified.

Example 12-3 /etc/crontab Sample Content

Click here to view code image

[root@server2 ~]# cat /etc/crontab

SHELL=/bin/bash

PATH=/sbin:/bin:/usr/sbin:/usr/bin

MAILTO=root

For details see man 4 crontabs

Example of job definition:

.---------------- minute (0 - 59)

| .------------- hour (0 - 23)

| | .---------- day of month (1 - 31)

| | | .------- month (1 - 12) OR jan,feb,mar,a

| | | | .---- day of week (0 - 6) (Sunday=0 or

sun,mon,tue,wed,thu,fri,sat

| | | | |

* * * * * user-name command to be executed

Instead of modifying /etc/crontab, different cron configuration
files are used:

cron files in /etc/cron.d
Scripts in /etc/cron.hourly, cron.daily, cron.weekly, and
cron.monthly
User-specific files that are created with crontab -e

In this section, you get an overview of these locations.

Note

If you want to experiment with how cron works,
you should allow for a sufficient amount of time
for the job to be executed. The crond service reads
its configuration every minute, after which new
jobs can be scheduled for execution on the next
minute. So, if you want to make sure your job is
executed as fast as possible, allow for a safe margin
of three minutes between the moment you save the
cron configuration and the execution time.

To start, cron jobs can be started for specific users. To create a
user-specific cron job, type crontab -e after logging in as that
user, or as root type crontab -e -u username. These user-
specific cron jobs are the most common way for scheduling
additional jobs through cron.

When you are using crontab -e, the default editor opens and
creates a temporary file. After you edit the cron configuration,
the temporary file is moved to its final location in the directory
/var/spool/cron. In this directory, a file is created for each user.
These files should never be edited directly! When the file is
saved by crontab -e, it is activated automatically.

Whereas in the early days of RHEL the /etc/crontab file was
modified directly, on RHEL 9 you do not do that anymore. If you
want to add cron jobs, you add these to the /etc/cron.d directory.
Just put a file in that directory (the exact name does not really
matter) and make sure that it meets the syntax of a typical cron
job. In Example 12-4, you can see an example of the
/etc/cron.d/0hourly.cron file, which takes care of running hourly
jobs through cron.

Example 12-4 Example cron Jobs in /etc/cron.d

Click here to view code image

[root@server1 cron.d]# ls

0hourly

[root@server1 cron.d]# cat 0hourly

Run the hourly jobs

SHELL=/bin/bash

PATH=/sbin:/bin:/usr/sbin:/usr/bin

MAILTO=root

01 * * * * root run-parts /etc/cron.hourly

This example starts by setting environment variables. These are
the environment variables that should be considered while
running this specific job. On the last line the job itself is defined.
The first part of this definition specifies when the job should
run. In this case it will run 1 minute after each hour, each day of
the month, each month, and each day of the week. The job will
be executed as the root user, and the job itself involves the run-
parts command, which is responsible for running the scripted
cron jobs in /etc/cron.hourly.

The last way to schedule cron jobs is through the following
directories:

/etc/cron.hourly
/etc/cron.daily
/etc/cron.weekly

/etc/cron.monthly

In these directories, you typically find scripts (not files that
meet the crontab syntax requirements) that are put in there
from RPM package files. When opening these scripts, notice that
no information is included about the time when the command
should be executed. The reason is that the exact time of
execution does not really matter. The only thing that does
matter is that the job is launched once an hour, once a day, a
week, or a month, and anacron is taking care of everything
else.

Understanding the Purpose of anacron

To ensure regular execution of the job, cron uses the anacron
service. This service takes care of starting the hourly, daily,
weekly, and monthly cron jobs, no matter at which exact time.
To determine how this should be done, anacron uses the
/etc/anacrontab file. Example 12-5 shows the contents of the
/etc/anacrontab file, which is used to specify how anacron jobs
should be executed.

Example 12-5 anacrontab Configuration

Click here to view code image

[t@ 1 l]# t / t / t b

[root@server1 spool]# cat /etc/anacrontab

/etc/anacrontab: configuration file for anacro

See anacron(8) and anacrontab(5) for details.

SHELL=/bin/sh

PATH=/sbin:/bin:/usr/sbin:/usr/bin

MAILTO=root

the maximal random delay added to the base del

RANDOM_DELAY=45

the jobs will be started during the following

START_HOURS_RANGE=3-22

#period in days delay in minutes job-identifier

1 5 cron.daily nice run-part

7 25 cron.weekly nice run-par

@monthly 45 cron.monthly nice run-parts

In /etc/anacrontab, the jobs to be executed are specified in lines
that contain four fields, as shown in Example 12-5. The first
field specifies the frequency of job execution, expressed in days.
The second field specifies how long anacron waits before
executing the job, which is followed by the third field that
contains a job identifier. The fourth field specifies the command
that should be executed.

Tip

Although it’s useful to know how anacron works, it
typically is not a service that is configured directly.
The need to configure services through anacron is
taken away by the /etc/cron.hourly, cron.daily,
cron.weekly, and cron.monthly files.

Note

It is not easy to get an overview of the cron jobs
actually scheduled for execution. There is no single
command that would show all currently scheduled
cron jobs. The crontab -l command does list cron
jobs, but only for the current user account.

Managing cron Security

By default, all users can enter cron jobs. It is possible to limit
which user is allowed to schedule cron jobs by using the
/etc/cron.allow and /etc/cron.deny configuration files. If the
cron.allow file exists, a user must be listed in it to be allowed to
use cron. If the /etc/cron.deny file exists, a user must not be
listed in it to be allowed to set up cron jobs. Both files should
not exist on the same system at the same time. Only root can
use cron if neither file exists.

In Exercise 12-2, you apply some of the cron basics and
schedule cron jobs using different mechanisms.

Exercise 12-2 Running Scheduled Tasks Through cron

1. Open a root shell. Type cat /etc/crontab to get an impression
of the contents of the /etc/crontab configuration file.

2. Type crontab -e. This opens an editor interface that by
default uses vi as its editor. Add the following line:
Click here to view code image

0 2 * * 1-5 logger message from root

3. Use the vi command :wq! to close the editing session and
write changes.

4. Type cd /etc/cron.hourly. In this directory, create a script
file with the name eachhour that contains the following line:
Click here to view code image

logger This message is written at $(date)

5. Use chmod +x eachhour to make the script executable; if
you fail to make it executable, it will not work.

6. Enter the directory /etc/crond.d and in this directory create a
file with the name eachhour. Put the following contents in

the file:
Click here to view code image

11 * * * * root logger This message is written

7. Save the modifications to the configuration file and continue
to the next section. (For optimal effect, perform step 8 after a
couple of hours.)

8. After a couple of hours, type grep written
/var/log/messages and read the messages to verify correct
cron operations.

Configuring at to Schedule Future Tasks

Whereas cron is used to schedule jobs that need to be executed
on a regular basis, the atd service is available for services that
need to be executed only once. On RHEL 9, the atd service is
available by default, so all that you need to do is schedule jobs.

To run a job through the atd service, you would use the at
command, followed by the time the job needs to be executed.
This can be a specific time, as in at 14:00, but it can also be a
time indication like at teatime or at noon. After you type this,
the at shell opens. From this shell, you can type several

commands that will be executed at the specific time that is
mentioned. After entering the commands, press Ctrl-D to quit
the at shell.

After scheduling jobs with at, you can use the atq command (q
for queue) to get an overview of all jobs currently scheduled. It
is also possible to remove current at jobs. To do this, use the
atrm command, optionally followed by the number of the at job
that you want to remove. In Exercise 12-3, you learn how to
work with at to schedule jobs for execution at a specific time.

Tip

The batch command works like at, but it’s a bit
more sophisticated. When using batch, you can
specify that a job is started only when system
performance parameters allow. Typically, that is
when system load is lower than 0.8. This value is a
bit low on modern multi-CPU systems, which is
why the load value can be specified manually
when starting atd, using the -l command-line
option. Use, for instance, atd -l 3.0 to make sure
that no batch job is started when the system load is
higher than 3.0.

Exercise 12-3 Scheduling Jobs with at

1. Type systemctl status atd. In the line that starts with
Loaded:, this command should show you that the service is
currently loaded and enabled, which means that it is ready
to start receiving jobs.

2. Type at 15:00 (or replace with any time near to the time at
which you are working on this exercise).

3. Type logger message from at. Press Ctrl-D to close the at
shell.

4. Type atq to verify that the job has indeed been scheduled.

Summary

In this chapter, you learned how to schedule jobs for future
execution. RHEL 9 provides three solutions to do so: systemd
timers have become the default solution, the legacy cron service
is still around, and at can be used to schedule deferred user
tasks.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the
Introduction, you have several choices for exam preparation:

the end-of-chapter labs; the memory tables in Appendix C;
Chapter 27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the
Key Topic icon in the margin of the page. Table 12-4 lists a
reference for these key topics and the page number on which
each is found.

Table 12-4 Key Topics for Chapter 12

Key Topic
Element

Description Page

Table 12-2 Timing Options in Systemd
Timers

275

Table 12-3 cron Time and Date Fields 278

List crontab time indicators
examples

278

Key Topic
Element

Description Page

List Methods to enter crontab
information

279

Define Key Terms

Define the following key terms from this chapter and check
your answers in the glossary:

timer

crond

anacron

at

Review Questions

The questions that follow are meant to help you test your
knowledge of concepts and terminology and the breadth of
your knowledge. You can find the answers to these questions in
Appendix A.

. Where do you configure a cron job that needs to be executed
once every two weeks?

. How do you configure a service to be started 5 minutes after
your system has started?

. You have enabled a systemd service unit file to be started by a
timer, but it doesn’t work. What should you check?

. What is the easiest way to start a service every 7 hours?

. How do you match a specific timer to a specific service?

. Which command enables you to schedule a cron job for user
lisa?

. How do you specify that user boris is never allowed to schedule
jobs through cron?

. You need to make sure that a job is executed every day, even if
the server at execution time is temporarily unavailable. How do
you do this?

. Which service must be running to schedule at jobs?

. Which command enables you to find out whether any current
at jobs are scheduled for execution?

End-of-Chapter Lab

In this end-of-chapter lab, you work on at jobs and on cron jobs.

Lab 12.1

1. Create a cron job that performs an update of all software on
your computer every evening at 11 p.m.

2. Schedule your machine to be rebooted at 3 a.m. tomorrow
morning.

3. Use a systemd timer to start the vsftpd service five minutes
after your system has started.

Chapter 13

Configuring Logging

The following topics are covered in this chapter:

Understanding System Logging
Working with systemd-journald
Configuring rsyslogd
Rotating Log Files

The following RHCSA exam objectives are covered in this
chapter:

Locate and interpret system log files and journals
Preserve system journals

Analyzing log files is an important system administrator task. If
anything goes wrong on a Linux system, the answer is often in
the log files. On RHEL 9, two different log systems are used, and
it is important to know which information can be found where.
This chapter teaches you all about it. You learn how to read log
files, how to configure rsyslogd and journald, and how to set up
your system for log rotation so that you can prevent your disks
from being completely filled up by services that are logging too
enthusiastically.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess
whether you should read this entire chapter thoroughly or
jump to the “Exam Preparation Tasks” section. If you are in
doubt about your answers to these questions or your own
assessment of your knowledge of the topics, read the entire
chapter. Table 13-1 lists the major headings in this chapter and
their corresponding “Do I Know This Already?” quiz questions.
You can find the answers in Appendix A, “Answers to the ‘Do I
Know This Already?’ Quizzes and Review Questions.”

Table 13-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Understanding System Logging 1–3

Working with systemd-journald 4–6

Configuring rsyslogd 7–9

Rotating Log Files 10

. Which of the following statements about systemd-journald is
not true?

1. systemd-journald logs kernel messages.
2. systemd-journald writes to the journal, which by default does

not persist between boots.
3. systemd-journald is a replacement of rsyslogd.
4. To read files from the systemd journal, you use the

journalctl command.

. Which log would you read to find messages related to
authentication errors?

1. /var/log/messages
2. /var/log/lastlog
3. /var/log/audit/audit.log
4. /var/log/secure

. Which log would you read to find information that relates to
SELinux events?

1. /var/log/messages
2. /var/log/lastlog
3. /var/log/audit/audit.log
4. /var/log/secure

. Which directory is used to store the systemd journal
persistently?

1. /var/log/journal
2. /var/run/journal
3. /run/log
4. /run/log/journal

. What do you need to do to make the systemd journal
persistent?

1. Create the directory /var/log/journal.
2. Open /etc/sysconfig/journal and set the PERSISTENT option to

yes.
3. Open the /etc/systemd/journald.conf file and set the

PERSISTENT option to yes.
4. Create the /var/log/journal file and set appropriate

permissions.

. After making the systemd journal persistent, what should you
do to immediately activate this change?

1. Reboot your server.
2. Nothing, it will be picked up automatically.
3. Use systemctl daemon-reload.
4. Use systemctl restart systemd-journal-flush.

. What is the name of the rsyslogd configuration file?

1. /etc/rsyslog.conf
2. /etc/sysconfig/rsyslogd.conf
3. /etc/sysconfig/rsyslog.conf
4. /etc/rsyslog.d/rsyslogd.conf

. In the rsyslog.conf file, which of the following destinations
refers to a specific rsyslogd module?

1. -/var/log/maillog
2. /var/log/messages
3. :omusrmsg:*
4. *

. Which facility is the best solution if you want to configure the
Apache web server to log messages through rsyslog?

1. daemon
2. apache
3. syslog
4. local0-7

. You want to maximize the file size of a log file to 10 MB. Where
do you configure this?

1. Create a file in /etc/logrotate.d and specify the maximal size
in that file.

2. Put the maximal size in the logrotate cron job.
3. Configure the destination with the maximal size option.
4. This cannot be done.

Foundation Topics

Understanding System Logging

Most services used on a Linux server write information to log
files. This information can be written to different destinations,
and there are multiple solutions to find the relevant
information in system logs. No fewer than three different
approaches can be used by services to write log information:

Systemd-journald: With the introduction of Systemd, the
journald log service systemd-journald has been introduced
also. This service is tightly integrated with Systemd, which
allows administrators to read detailed information from the
journal while monitoring service status using the systemctl
status command or the journalctl command. Systemd-
journald is the default solution for logging in RHEL 9.
Direct write: Some services write logging information
directly to the log files—even some important services such

as the Apache web server and the Samba file server. This
approach to logging is not recommended.
rsyslogd: rsyslogd is the enhancement of syslogd, a service
that takes care of managing centralized log files. syslogd has
been around for a long time. Even if systemd-journald is now
the default for logging, rsyslogd provides features not offered
by systemd-journald, and for that reason it is still offered on
RHEL 9. Also, rsyslogd is still configured to work as it did in
older versions of RHEL, which means that you can still use
the log files it generates to get the log information you need.

Understanding the Role of systemd-journald and rsyslogd

On RHEL 9, systemd-journald provides an advanced log
management system. It collects messages from the kernel, the
entire boot procedure, and services and writes these messages
to an event journal. This event journal is stored in a binary
format, and you can query it by using the journalctl command.
The journalctl command enables you to access a deep level of
detail about messages that are logged, as it is an integrated part
of Systemd and, as such, receives all messages that have been
generated by Systemd units.

Because the journal that is written by systemd-journald is not
persistent between reboots, messages are also forwarded to the
rsyslogd service, which writes the messages to different files in
the /var/log directory. rsyslogd also offers features that do not
exist in journald, such as centralized logging and filtering
messages by using modules. Numerous modules are available
to enhance rsyslog logging, such as output modules that allow
administrators to store messages in a database. As the rsyslogd
advanced features are used a lot, RHEL 9 still offers rsyslogd for
logging as an addition to systemd-journald.

Systemd-journald is tightly integrated with systemd; therefore,
it logs everything that your server is doing. rsyslogd adds some
services to it. In particular, it takes care of writing log
information to specific files (that will be persistent between
reboots), and it allows you to configure remote logging and log
servers.

Apart from rsyslogd and systemd-journald, there is the auditd
service. This service provides auditing, an in-depth trace of
what specific services, processes, or users have been doing.
Configuration of auditing is beyond the scope of the RHCSA

exam, but you’ll notice that SELinux, for instance, logs detailed
messages to the auditd service.

To get more information about what has been happening on a
machine running RHEL, administrators have to take three
approaches:

Use the journalctl command to get more detailed
information from the journal.
Use the systemctl status <unit> command to get a short
overview of the most recent significant events that have been
logged by Systemd units through systemd-journald. This
command shows the status of services, as well as the most
recent log entries that have been written. Example 13-1
shows some status log messages that have been logged for
this service.
Monitor the files in /var/log that are written by rsyslogd.

Example 13-1 Using systemctl status to Show Relevant Log
Information

Click here to view code image

[] l hd l

[root@server1 ~]# systemctl status sshd -l

 sshd.service – OpenSSH server daemon

 Loaded: loaded (/usr/lib/systemd/system/sshd.

 vendor preset: enabled)

 Active: active (running) since Sat 2019-06-08

 ago

 Docs: man:sshd(8)

 man:sshd_config(5)

 Main PID: 1055 (sshd)

 Tasks: 1 (limit: 11363)

 Memory: 5.5M

 Cgroup: /system.slice/sshd.service

 └─1055 /usr/sbin/sshd -D -oCiphers=ae

 chacha20-poly1305@openssh.com,ae>

Jun 08 03:34:56 server1.example.com systemd[1]:

 server daemon...

Jun 08 03:34:56 server1.example.com sshd[1055]:

 0.0.0.0 port 22.

Jun 08 03:34:56 server1.example.com sshd[1055]:

 port 22.

Jun 08 03:34:56 server1.example.com systemd[1]:

 daemon.

Jun 08 03:57:38 server1.example.com sshd[3368]:

 root from 192.168.4.1 port 5470>

Jun 08 03:57:38 server1.example.com sshd[3368]:

 unix(sshd:session):session opened for user roo

Reading Log Files

Apart from the messages that are written by systemd-journald
to the journal and which can be read using the journalctl
command, on a Linux system you’ll also find different log files
in the directory /var/log. Most of the files in this directory are
managed by rsyslogd, but some of the files are created directly
by specific services. You can read these files by using a pager
utility such as less.

The exact number of files in the /var/log directory will change,
depending on the configuration of a server and the services that
are running on that server. Some files, however, do exist on
most occasions, and as an administrator, you should know
which files they are and what content can be expected in these
files. Table 13-2 provides an overview of some of the standard
files that are created in this directory.

Table 13-2 System Log Files Overview

Log File ExplanationLog File Explanation

/var/log/messages This is the most commonly used
log file; it is the generic log file
where most messages are written
to.

/var/log/dmesg Contains kernel log messages.

/var/log/secure Contains authentication-related
messages. Look here to see which
authentication errors have
occurred on a server.

/var/log/boot.log Contains messages that are
related to system startup.

/var/log/audit/audit.log Contains audit messages. SELinux
writes to this file.

/var/log/maillog Contains mail-related messages.

Log File Explanation

/var/log/httpd/ Contains log files that are written
by the Apache web server (if it is
installed). Notice that Apache
writes messages to these files
directly and not through rsyslog.

Understanding Log File Contents

As an administrator, you need to be able to interpret the
contents of log files. For example, Example 13-2 shows partial
content from the /var/log/messages file.

Example 13-2 /var/log/messages Sample Content

Click here to view code image

[root@localhost ~]# tail -10 /var/log/messages

Jan 26 09:45:06 localhost systemd[1590]: Reached

 Session.

Jan 26 09:45:06 localhost systemd[1]: user@42.se

 successfully.

Jan 26 09:45:06 localhost systemd[1]: Stopped Us

Jan 26 09:45:06 localhost systemd[1]: Stopping U

/run/user/42...

 / u /use /

Jan 26 09:45:06 localhost systemd[1]: run-user-4

 successfully.

Jan 26 09:45:06 localhost systemd[1]: user-runti

 Deactivated successfully.

Jan 26 09:45:06 localhost systemd[1]: Stopped Us

 /run/user/42.

Jan 26 09:45:06 localhost systemd[1]: Removed sl

 UID 42.

Jan 26 09:45:06 localhost systemd[1]: user-42.sl

 CPU time.

Jan 26 09:45:15 localhost systemd[1]: fprintd.se

 successfully..

As you can see in Example 13-2, each line that is logged has
specific elements:

Date and time: Every log message starts with a timestamp.
For filtering purposes, the timestamp is written as military
time.
Host: The host the message originated from. This is relevant
because rsyslogd can be configured to handle remote logging
as well.
Service or process name and PID: The name of the service
or process that generated the message.

Message content: The content of the message, which
contains the exact message that has been logged.

To read the content of a log file, you can use a pager utility, like
less, or you can live monitor what is happening in the log file,
as described in the next section.

Live Log File Monitoring

When you are configuring services on Linux, it might be useful
to see in real time what is happening. You could, for example,
open two terminal sessions at the same time. In one terminal
session, you configure and test the service. In the other terminal
session, you see in real time what is happening. The tail -f
<logfile> command shows in real time which lines are added to
the log file. Exercise 13-1 in the following section shows a small
example in which tail -f is used. When you’re monitoring a log
file with tail -f, the trace remains open until you press Ctrl-C to
close it.

Using logger

Most services write information to the log files all by
themselves or through rsyslogd. The logger command enables
users to write messages to rsyslog from the command line or a
script. Using this command is simple. Just type logger, followed

by the message you want to write to the logs. The logger utility,
in this way, offers a convenient solution to write messages from
scripts. This allows you to have a script write to syslog if
something goes wrong.

When using logger, you can also specify the priority and facility
to log to. The command logger -p kern.err hello writes hello to
the kernel facility, for example, using the error priority (priority
and facility are discussed in more detail later in this chapter).
This option enables you to test the working of specific rsyslog
facilities. In Exercise 13-1, you use tail -f to monitor a log file in
real time and use logger to write log messages to a log file.

Exercise 13-1 Using Live Log Monitoring and logger

1. Open a root shell.
2. From the root shell, type tail -f /var/log/messages.
3. Open a second terminal window. In this terminal window,

type su - student to open a subshell as user student.
4. Type su - to open a root shell, but enter the wrong password.
5. Look at the file /var/log/messages. You see an error message

was logged here.
6. From the student shell, type logger hello. You’ll see the

message appearing in the /var/log/messages file in real time.

7. In the tail -f terminal, press Ctrl-C to stop tracing the
messages file.

8. Type tail -20 /var/log/secure. This shows the last 20 lines in
/var/log/secure, which also shows the messages that the su -
password errors have generated previously.

Working with systemd-journald

The systemd-journald service stores log messages in the
journal, a binary file that is temporarily stored in the file
/run/log/journal. This file can be examined using the journalctl
command.

Using journalctl to Find Events

The easiest way to use journalctl is by just typing the
command. It shows that recent events have been written to the
journal since your server last started. The result of this
command is shown in the less pager, and by default you’ll see
the beginning of the journal. Because the journal is written
from the moment your server boots, the start of the output
shows boot-related log messages. If you want to see the last
messages that have been logged, you can use journalctl -f,
which shows the last lines of the messages where new log lines
are automatically added. You can also type journalctl and use

(uppercase) G to go to the end of the journal. Also note that the
search options / and ? work in the journalctl output. Example
13-3 shows a partial result of this command.

Example 13-3 Watching Log Information Generated by
systemd-journald

Click here to view code image

-- Logs begin at Sat 2019-06-08 04:45:34 EDT, en

 04:56:11 EDT. --

Jun 08 04:45:34 server1.example.com kernel: Linu

 el8.x86_64 (mockbuild@x86-vm-08.b>

Jun 08 04:45:34 server1.example.com kernel: Comm

 IMAGE=(hd0,msdos1)/vmlinuz-4.18.0-80.e>

Jun 08 04:45:34 server1.example.com kernel: Disa

 operations

Jun 08 04:45:34 server1.example.com kernel: x86/

 feature 0x001: 'x87 floating po>

Jun 08 04:45:34 server1.example.com kernel: x86/

 feature 0x002: 'SSE registers'

Jun 08 04:45:34 server1.example.com kernel: x86/

 feature 0x004: 'AVX registers'

Jun 08 04:45:34 server1.example.com kernel: x86/

 feature 0x008: 'MPX bounds regi>

Jun 08 04:45:34 server1.example.com kernel: x86/

 feature 0x010: 'MPX CSR'

Jun 08 04:45:34 server1.example.com kernel: x86/

Ju 08 0 5 3 se e e a p e co e e 86/

 576, xstate_sizes[2]: 256

Jun 08 04:45:34 server1.example.com kernel: x86/

 832, xstate_sizes[3]: 64

Jun 08 04:45:34 server1.example.com kernel: x86/

 896, xstate_sizes[4]: 64

Jun 08 04:45:34 server1.example.com kernel: x86/

 features 0x1f, context size is 96>

What makes journalctl a flexible command is that its many
filtering options allow you to show exactly what you need.
Exercise 13-2 shows some of the most interesting options.

Exercise 13-2 Discovering journalctl

1. Type journalctl. You’ll see the content of the journal since
your server last started, starting at the beginning of the
journal. The content is shown in less, so you can use
common less commands to walk through the file.

2. Type q to quit the pager. Now type journalctl --no-pager.
This shows the contents of the journal without using a pager.

3. Type journalctl -f. This opens the live view mode of
journalctl, which allows you to see new messages scrolling
by in real time. Press Ctrl-C to interrupt.

4. Type journalctl, press the Spacebar, and then press the Tab
key twice. When prompted to view all possibilities, type y

and then press the Enter key. This shows specific options that
can be used for filtering. Type, for instance, journalctl
_UID=1000 to show messages that have been logged for your
student user account.

5. Type journalctl -n 20. The -n 20 option displays the last 20
lines of the journal (just like tail -n 20).

6. Type journalctl -p err. This command shows errors only.
7. If you want to view journal messages that have been written

in a specific time period, you can use the --since and --until
commands. Both options take the time parameter in the
format YYYY-MM-DD hh:mm:ss. Also, you can use yesterday,
today, and tomorrow as parameters. So, type journalctl --
since yesterday to show all messages that have been written
since yesterday.

8. journalctl allows you to combine different options, as well.
So, if you want to show all messages with a priority error
that have been written since yesterday, use journalctl --
since yesterday -p err.

9. If you need as much detail as possible, use journalctl -o
verbose. This shows different options that are used when
writing to the journal (see Example 13-4). All these options
can be used to tell the journalctl command which specific
information you are looking for. Type, for instance,

journalctl _SYSTEMD_UNIT=sshd.service to show more
information about the sshd Systemd unit.

10. Type journalctl --dmesg. This shows kernel-related
messages only. Not many people use this command, as the
dmesg command gives the exact same result.

In the preceding exercise, you typed journalctl -o verbose to
show verbose output. Example 13-4 shows an example of the
verbose output. As you can see, this provides detailed
information for all items that have been logged, including the
PID, the ID of the associated user and group account, the
command that is associated, and more. This verbose
information may help you in debugging specific Systemd units.

Example 13-4 Showing Detailed Log Information with
journalctl -o verbose

Click here to view code image

[root@server1 ~]# journalctl _SYSTEMD_UNIT=sshd.

-- Logs begin at Sat 2019-06-08 04:45:34 EDT, en

05:01:40 EDT. --

Sat 2019-06-08 04:45:52.633752 EDT [s=53e57e2481

 ;i=898;b=f35bb68348284f9ead79c3>

 _BOOT_ID=f35bb68348284f9ead79c3c6750adfa1

 _MACHINE_ID=5aa095b495ed458d934c54a88078c16

HOSTNAME=server1.example.com

 _ OS se e e a p e co

 PRIORITY=6

 _UID=0

 _GID=0

 _SYSTEMD_SLICE=system.slice

 _CAP_EFFECTIVE=3fffffffff

 _TRANSPORT=syslog

 SYSLOG_FACILITY=10

 SYSLOG_IDENTIFIER=sshd

 SYSLOG_PID=1211

 MESSAGE=Server listening on 0.0.0.0 port 22.

 _PID=1211

 _COMM=sshd

 _EXE=/usr/sbin/sshd

 _CMDLINE=/usr/sbin/sshd -D -oCiphers=aes256-

 chacha20-poly1305@openssh.com,aes256->

 _SELINUX_CONTEXT=system_u:system_r:sshd_t:s0

 _SYSTEMD_CGROUP=/system.slice/sshd.service

 _SYSTEMD_UNIT=sshd.service

 _SYSTEMD_INVOCATION_ID=728a7dfecd7d436387dcd

 _SOURCE_REALTIME_TIMESTAMP=1559983552633752

Sat 2019-06-08 04:45:52.634696 EDT [s=53e57e2481

 ;i=899;b=f35bb68348284f9ead79c3>

 _BOOT_ID=f35bb68348284f9ead79c3c6750adfa1

lines 1-26

There are some more interesting options to use with the
journalctl command. The -b option shows a boot log, which

includes just the messages that were generated while booting.
The -x option adds explanation to the information that is
shown. This explanation makes it easier to interpret specific
messages. You should also consider the -u option, which allows
you to see messages that have been logged for a specific
systemd unit only. Use, for instance, journalctl -u sshd to see
all messages that have been logged for the sshd service. Table
13-3 provides an overview of the most interesting journalctl
options.

Table 13-3 Most Useful journalctl Options

Option Use

-f Shows the bottom of the journal and live adds
new messages that are generated

-b Shows the boot log

-x Adds additional explanation to the logged items

Option Use

-u Used to filter log messages for a specific unit only

-p Allows for filtering of messages with a specific
priority

Preserving the Systemd Journal

By default, the journal is stored in the file /run/log/journal. The
entire /run directory is used for current process status
information only, which means that the journal is cleared when
the system reboots. To make the journal persistent between
system restarts, you should create a directory /var/log/journal.

Storing the journal permanently requires the Storage=auto
parameter in /etc/systemd/journald.conf, which is set by default.
This parameter can have different values:

Storage=auto The journal will be written on disk if the
directory /var/log/journal exists.
Storage=volatile The journal will be stored only in the
/run/log/journal directory.

Storage=persistent The journal will be stored on disk in the
directory /var/log/journal. This directory will be created
automatically if it doesn’t exist.
Storage=none No data will be stored, but forwarding to
other targets such as the kernel log buffer or syslog will still
work.

Even when the journal is written to the permanent file in
/var/log/journal, that does not mean that the journal is kept
forever. The journal has built-in log rotation that will be used
monthly. Also, the journal is limited to a maximum size of 10
percent of the size of the file system that it is on, and it will stop
growing if less than 15 percent of the file system is still free. If
that happens, the oldest messages from the journal are dropped
automatically to make room for newer messages. To change
these settings, you can modify the file
/etc/systemd/journald.conf, as shown in Example 13-5 (along
with other parameters you can set).

Example 13-5 Setting journald Parameters Through
/etc/systemd/journald.conf

Click here to view code image

[Journal]

#Storage=auto

#Compress=yes

#Seal=yes

#SplitMode=uid

#SyncIntervalSec=5m

#RateLimitIntervalSec=30s

#RateLimitBurst=10000

#SystemMaxUse=

#SystemKeepFree=

#SystemMaxFileSize=

#SystemMaxFiles=100

#RuntimeMaxUse=

#RuntimeKeepFree=

#RuntimeMaxFileSize=

#RuntimeMaxFiles=100

#MaxRetentionSec=

#MaxFileSec=1month

#ForwardToSyslog=no

#ForwardToKMsg=no

#ForwardToConsole=no

#ForwardToWall=yes

#TTYPath=/dev/console

#MaxLevelStore=debug

#MaxLevelSyslog=debug

Making the systemd journal permanent is not hard to do.
Exercise 13-3 shows how to proceed.

Exercise 13-3 Making the systemd Journal Persistent

1. Open a root shell and type mkdir /var/log/journal.
2. Before journald can write the journal to this directory, you

have to set ownership. Type chown root:systemd-journal
/var/log/journal, followed by chmod 2755 /var/log/journal.

3. Use systemctl restart systemd-journal-flush to reload the
new systemd-journald parameters.

4. The Systemd journal is now persistent across reboots.

Configuring rsyslogd

To make sure that the information that needs to be logged is
written to the location where you want to find it, you can
configure the rsyslogd service through the /etc/rsyslog.conf file
and optional drop-in files in /etc/rsyslog.d. In the
/etc/rsyslog.conf file, you find different sections that allow you
to specify where and how information should be written.

Understanding rsyslogd Configuration Files

Like many other services on RHEL, the configuration for
rsyslogd is not defined in just one configuration file. The
/etc/rsyslog.conf file is the central location where rsyslogd is
configured. From this file, the content of the directory
/etc/rsyslog.d is included. This directory can be populated by
installing RPM packages on a server. When looking for specific
log configuration, make sure to always consider the contents of
this directory also.

Understanding rsyslog.conf Sections

The rsyslog.conf file is used to specify what should be logged
and where it should be logged. To do this, you’ll find different
sections in the rsyslog.conf file:

MODULES ####: rsyslogd is modular. Modules are
included to enhance the supported features in rsyslogd.
GLOBAL DIRECTIVES ####: This section is used to
specify global parameters, such as the location where
auxiliary files are written or the default timestamp format.
RULES ####: This is the most important part of the
rsyslog.conf file. It contains the rules that specify what
information should be logged to which destination.

Understanding Facilities, Priorities, and Log Destinations

To specify what information should be logged to which
destination, rsyslogd uses facilities, priorities, and destinations:

A facility specifies a category of information that is logged.
rsyslogd uses a fixed list of facilities, which cannot be
extended. This is because of backward compatibility with the
legacy syslog service.
A priority is used to define the severity of the message that
needs to be logged. When you specify a priority, by default all
messages with that priority and all higher priorities are
logged.
A destination defines where the message should be written.
Typical destinations are files, but rsyslog modules can be
used as a destination as well, to allow further processing
through a rsyslogd module.

Example 13-6 shows the RULES section in rsyslog.

Example 13-6 The RULES Section in rsyslog.conf

Click here to view code image

RULES ####

Log all kernel messages to the console.

Logging much else clutters up the screen.

 ogg g uc e se c u e s up e sc ee

#kern.* /dev

Log anything (except mail) of level info or hi

Do not log private authentication messages!

*.info;mail.none;authpriv.none;cron.none /var

The authpriv file has restricted access.

authpriv.* /v

Log all the mail messages in one place.

mail.* -/var

Log cron stuff

cron.* /var

Everybody gets emergency messages

*.emerg :omusrms

Save news errors of level crit and higher in a

uucp,news.crit

In Example 13-6, you can see how different facilities and
priorities are used to define locations where information can be
logged. The available facilities and priorities are fixed and

cannot be added to. Table 13-4 shows which facilities are
available, and Table 13-5 shows a list of all priorities.

Table 13-4 rsyslogd Facilities

Facility Used by

auth/authpriv Messages related to authentication.

cron Messages generated by the crond service.

daemon Generic facility that can be used for
nonspecified daemons.

kern Kernel messages.

lpr Messages generated through the legacy
lpd print system.

mail Email-related messages.

Facility Used by

mark Special facility that can be used to write a
marker periodically.

news Messages generated by the NNTP news
system.

security Same as auth/authpriv. Should not be used
anymore.

syslog Messages generated by the syslog system.

user Messages generated in user space.

uucp Messages generated by the legacy UUCP
system.

local0-7 Messages generated by services that are
configured by any of the local0 through
local7 facilities.

When you specify a destination, a file is often used. If the
filename starts with a hyphen (as in -/var/log/maillog), the log
messages will not be immediately committed to the file but
instead will be buffered to make writes more efficient. Device
files can also be used, such as /dev/console. If this device is used,
messages are written in real time to the console. On modern
servers, this often does not make sense, because administrators
often log in remotely and do not see what is happening on the
server console.

The syslog facilities were defined in the 1980s, and to guarantee
backward compatibility, no new facilities can be added. The
result is that some facilities still exist that basically serve no
purpose anymore, and some services that have become
relevant at a later stage do not have their own facility. As a
solution, two specific facility types can be used. The daemon
facility is a generic facility that can be used by any daemon. In
addition, the local0 through local7 facilities can be used.

If services that do not have their own rsyslogd facility need to
write log messages to a specific log file anyway, these services
can be configured to use any of the local0 through local7
facilities. You next have to configure the services to use these
facilities as well. The procedure you follow to do that is specific
to the service you are using. Then you need to add a rule to the

rsyslog.conf file to send messages that come in through that
facility to a specific log file.

To determine which types of messages should be logged, you
can use different severities in rsyslog.conf lines. These
severities are the syslog priorities. Table 13-5 provides an
overview of the available priorities in ascending order.

Table 13-5 rsyslogd Priorities

Priority Description

debug Debug messages that will give as much
information as possible about service
operation.

info Informational messages about normal service
operation.

notice Informational messages about items that might
become an issue later.

Priority Description

warning
(warn)

Something is suboptimal, but there is no real
error yet.

error
(err)

A noncritical error has occurred.

crit A critical error has occurred.

alert Message used when the availability of the
service is about to be discontinued.

emerg
(panic)

Message generated when the availability of the
service is discontinued.

When a specific priority is used, all messages with that priority
and higher are logged according to the specifications used in
that specific rule. If you need to configure logging in a detailed
way, where messages with different priorities are sent to
different files, you can specify the priority with an equal sign (=)
in front of it, as in the following line, which will write all cron
messages with only the debug priority to a specific file with the

name /var/log/cron.debug. The - in front of the line specifies to
buffer writes so that information is logged in a more efficient
way.

Click here to view code image

cron.=debug -/var/log/cron.debug

Tip

You don’t need to learn the names of rsyslogd
facilities and priorities by heart. They are all listed
in man 5 rsyslog.conf. On the exam, you have
access to the man pages, so this information will be
easily accessible.

Exercise 13-4 shows how to change rsyslog.conf. You configure
the Apache service to log messages through syslog, and you
create a rule that logs debug messages to a specific log file.

Exercise 13-4 Changing rsyslog.conf Rules

1. By default, the Apache service does not log through rsyslog
but keeps its own logging. You are going to change that. To

start, type dnf install -y httpd to ensure that the Apache
service is installed.

2. After installing the Apache service, open its configuration file
/etc/httpd/conf/httpd.conf and verify it has the following line:

ErrorLog syslog:local1

3. Type systemctl restart httpd.
4. Create a line in the /etc/rsyslog.conf file that will send all

messages that it receives for facility local1 (which is now
used by the httpd service) to the file /var/log/ httpd-error.log.
To do this, include the following line in the #### RULES ####
section of the file:
Click here to view code image

local1.error /var/log/httpd-error.log

5. Tell rsyslogd to reload its configuration, by using systemctl
restart rsyslog.

6. All Apache error messages will now be written to the httpd-
error.log file.

7. From the Firefox browser, go to http://localhost/index.html.
Because no index.html page exists yet, this will be written to
the error log.

8. Create a snap-in file that logs debug messages to a specific
file as well. To do this, type echo "*.debug
/var/log/messages-debug" /etc/rsyslog.d/debug.conf.

9. Again, restart rsyslogd using systemctl restart rsyslog.
10. Use the command tail -f /var/log/messages-debug to open a

trace on the newly created file.
11. From a second terminal, type logger -p daemon.debug

"Daemon Debug Message". You’ll see the debug message
passing by.

12. Press Ctrl-C to close the debug log file.

Rotating Log Files

To prevent syslog messages from filling up your system
completely, you can rotate the log messages. That means that
when a certain threshold has been reached, the old log file is
closed and a new log file is opened. The logrotate utility is
started periodically to take care of rotating log files.

When a log file is rotated, the old log file is typically copied to a
file that has the rotation date in it. So, if /var/log/messages is
rotated on June 8, 2023, the rotated filename will be
/var/log/messages-20230608. As a default, four old log files are

kept on the system. Files older than that period are removed
from the system automatically.

Warning

Log files that have been rotated are not stored
anywhere; they are just gone. If your company
policy requires you to be able to access
information about events that have happened
more than five weeks ago, for example, you should
either back up log files or configure a centralized
log server where logrotate keeps rotated messages
for a significantly longer period.

The default settings for log rotation are kept in the file
/etc/logrotate.conf (see Example 13-7).

Example 13-7 /etc/logrotate.conf Sample Content

Click here to view code image

[root@server1 cron.d]# cat /etc/logrotate.conf

see "man logrotate" for details

global options do not affect preceding include

rotate log files weekly

weekly

keep 4 weeks worth of backlogs

rotate 4

create new (empty) log files after rotating ol

create

use date as a suffix of the rotated file

dateext

uncomment this if you want your log files comp

#compress

packages drop log rotation information into th

include /etc/logrotate.d

system-specific logs may be also be configured

The most significant settings used in this configuration file tell
logrotate to rotate files on a weekly basis and keep four old
versions of the file. You can obtain more information about
other parameters in this file through the man logrotate
command.

If specific files need specific settings, you can create a
configuration file for that file in /etc/logrotate.d. The settings for
that specific file overwrite the default settings in
/etc/logrotate.conf. You will find that different files exist in this
directory already to take care of some of the configuration files.

Summary

In this chapter, you learned how to configure logging. You read
how the rsyslogd and journald services are used on RHEL to
keep log information, and you learned how to manage logs that
are written by these services. You also learned how to configure
log rotation and make the journal persistent.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the
Introduction, you have several choices for exam preparation:
the end-of-chapter labs; the memory tables in Appendix C;
Chapter 27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the
Key Topic icon in the margin of the page. Table 13-6 lists a

reference for these key topics and the page number on which
each is found.

Table 13-6 Key Topics for Chapter 13

Key Topic
Element

Description Page

Paragraph systemd-journald explanation 290

Paragraph rsyslogd explanation 290

Table 13-2 System Log Files Overview 292

Table 13-3 Most Useful journalctl Options 298

Exercise 13-3 Making the systemd Journal
Persistent

300

Table 13-4 rsyslogd Facilities 302

Key Topic
Element

Description Page

Table 13-5 rsyslogd Priorities 303

Complete Tables and Lists from Memory

Print a copy of Appendix C, “Memory Tables” (found on the
companion website), or at least the section for this chapter, and
complete the tables and lists from memory. Appendix D,
“Memory Tables Answer Key,” includes completed tables and
lists to check your work.

Define Key Terms

Define the following key terms from this chapter and check
your answers in the glossary:

systemd-journald

rsyslogd

journalctl

log rotation

facility

priority

destination

Review Questions

The questions that follow are meant to help you test your
knowledge of concepts and terminology and the breadth of
your knowledge. You can find the answers to these questions in
Appendix A.

. Which file is used to configure rsyslogd?

. Which log file contains messages related to authentication?

. If you do not configure anything, how long will it take for log
files to be rotated away?

. Which command enables you to log a message from the
command line to the user facility, using the notice priority?

. Which line would you add to write all messages with a priority
of info to the file /var/log/messages.info?

. Which configuration file enables you to allow the journal to
grow beyond its default size restrictions?

. Which command allows you to check the systemd journal for
boot messages, where an explanation is included?

. Which command enables you to see all journald messages that
have been written for PID 1 between 9:00 a.m. and 3:00 p.m.?

. Which command do you use to see all messages that have been
logged for the sshd service?

. Which procedure enables you to make the systemd journal
persistent?

End-of-Chapter Lab

You have now learned how to work with logging on Red Hat
Enterprise Linux 9 and know how to configure rsyslogd and
journald. You can now complete the end-of-chapter lab to
reinforce these newly acquired skills.

Lab 13.1

1. Configure the journal to be persistent across system reboots.

2. Make a configuration file that writes all messages with an
info priority to the file /var/log/messages.info.

3. Configure logrotate to keep ten old versions of log files.

Chapter 14

Managing Storage

The following topics are covered in this chapter:

Understanding MBR and GPT Partitions
Managing Partitions and File Systems
Mounting File Systems

The following RHCSA exam objectives are covered in this
chapter:

List, create, delete partitions on MBR and GPT disks
Configure systems to mount file systems at boot by
universally unique ID (UUID) or label
Add new partitions and logical volumes, and swap to a
system non-destructively
Create, mount, unmount, and use vfat, ext4, and xfs file
systems

Working with storage is an important task for a Linux
administrator. In this chapter, you acquire the first set of
essential storage skills. You learn how to create and manage
partitions, format them with the file system you need to use,
and mount these file systems.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess
whether you should read this entire chapter thoroughly or
jump to the “Exam Preparation Tasks” section. If you are in
doubt about your answers to these questions or your own
assessment of your knowledge of the topics, read the entire
chapter. Table 14-1 lists the major headings in this chapter and
their corresponding “Do I Know This Already?” quiz questions.
You can find the answers in Appendix A, “Answers to the ‘Do I
Know This Already?’ Quizzes and Review Questions.”

Table 14-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Understanding MBR and GPT Partitions 1–2

Managing Partitions and File Systems 3–6

Mounting File Systems 7–10

. Which of the following is not an advantage of using a GUID
partition table over using an MBR partition table?

1. Access time to a directory is quicker.
2. A total amount of 8 ZiB can be addressed by a partition.
3. With GUID partitions, a backup copy of the partition table is

created automatically.
4. There can be up to 128 partitions in total.

. Which of the following statements about GPT partitions is not
true?

1. You can easily convert an existing MBR disk to GPT by using
gdisk.

2. You can use fdisk to write a GPT disk label.
3. Partition types in GPT are four characters instead of two

characters.
4. GPT partitions can be created on MBR as well as EFI systems.

. Which partition type is commonly used to create a swap
partition?

1. 81
2. 82
3. 83
4. 8e

. What is the default disk device name you would expect to see in
KVM virtual machines?

1. /dev/sda
2. /dev/hda
3. /dev/vda
4. /dev/xsda

. Which of the following statements is not true?

1. You should not ever use gdisk on an MBR disk.
2. fdisk offers support to manage GPT partitions as well.
3. Depending on your needs, you can create MBR and GPT

partitions on the same disk.
4. If your server boots from EFI, you must use GPT partitions.

. Which of the following file systems is used as the default in
RHEL 9?

1. Ext4
2. XFS
3. btrfs
4. Ext3

. Which command enables you to find current UUIDs set to the
file systems on your server?

1. mount
2. df -h

3. lsblk
4. blkid

. What would you put in the device column of /etc/fstab to mount
a file system based on its unique ID 42f419c4-633f-4ed7-b161-
519a4dadd3da?

1. 42f419c4-633f-4ed7-b161-519a4dadd3da
2. /dev/42f419c4-633f-4ed7-b161-519a4dadd3da
3. ID=42f419c4-633f-4ed7-b161-519a4dadd3da
4. UUID=42f419c4-633f-4ed7-b161-519a4dadd3da

. Which command can you use to verify the contents of /etc/fstab
before booting?

1. fsck --fstab
2. findmnt --verify
3. mount -a
4. reboot

. While creating a systemd mount unit file, different elements
are required. Which of the following is not one of them?

1. The mount unit filename corresponds to the mount point.
2. An [Install] section is included to set the default runlevel.

3. A what statement is included to indicate what should be
mounted.

4. A where statement is included to indicate where the device
should be mounted.

Foundation Topics

Understanding MBR and GPT Partitions

To use a hard drive, it needs to have partitions. Some
operating systems install everything to one partition, while
other operating systems such as Linux normally have several
partitions on one hard disk. Using more than one partition on a
system makes sense for multiple reasons:

It’s easier to distinguish between different types of data.
Specific mount options can be used to enhance security or
performance.
It’s easier to create a backup strategy where only relevant
portions of the OS are backed up.
If one partition accidentally fills up completely, the other
partitions still are usable and your system might not crash
immediately.

Note

Instead of using multiple different partitions, you
can also use LVM logical volumes or Stratis file
systems. Managing logical volumes and Stratis file
systems is covered in Chapter 15, “Managing
Advanced Storage.”

On recent versions of RHEL, two different partitioning schemes
are available. Before creating your first partition, you should
understand these schemes.

Understanding the MBR Partitioning Scheme

When the personal computer was invented in the early 1980s, a
system was needed to define hard disk layout. This system
became known as the Master Boot Record (MBR) partitioning
scheme. While booting a computer, the Basic Input/Output
System (BIOS) was loaded to access hardware devices. From
the BIOS, the bootable disk device was read, and on this
bootable device, the MBR was allocated. The MBR contains all
that is needed to start a computer, including a boot loader and a
partition table.

When hard disks first came out for PCs in the early 1980s, users
could have different operating systems on them. Some of these
included MS-DOS/PC-DOS, PC/IX (IBM’s UNIX for 8086 PCs),

CPM86, and MPM86. The disk would be partitioned in such a
way that each operating system installed got a part of the disk.
One of the partitions would be made active, meaning the code
in the boot sector in the MBR would read the first sector of that
active partition and run the code. That code would then load
the rest of the OS. This explains why four partitions were
deemed “enough.”

The MBR was defined as the first 512 bytes on a computer hard
drive, and in the MBR an operating system boot loader (such as
GRUB 2; see Chapter 17, “Managing and Understanding the Boot
Procedure”) was present, as well as a partition table. The size
that was used for the partition table was relatively small, just 64
bytes, with the result that in the MBR no more than four
partitions could be created. Since partition size data was stored
in 32-bit values, and a default sector size of 512 bytes was used,
the maximum size that could be used by a partition was limited
to 2 TiB (hardly a problem in the early 1980s).

In the MBR, just four partitions could be created. Because many
PC operating systems needed more than four partitions, a
solution was found to go beyond the number of four. In the
MBR, one partition could be created as an extended partition,
as opposed to the other partitions that were created as primary
partitions. Within the extended partition, multiple logical

partitions could be created to reach a total number of 15
partitions that could be addressed by the Linux kernel.

Understanding the Need for GPT Partitioning

Current computer hard drives have become too big to be
addressed by MBR partitions. That is one of the main reasons
why a new partitioning scheme was needed. This partitioning
scheme is the GUID Partition Table (GPT). On computers that
are using the new Unified Extensible Firmware Interface
(UEFI) as a replacement for the old BIOS system, GPT partitions
are the only way to address disks. Also, older computer systems
that are using BIOS instead of UEFI can be configured with
globally unique ID (GUID) partitions, which is necessary if a
disk with a size bigger than 2 TiB needs to be addressed.

Using GUID offers many benefits:

The maximum partition size is 8 zebibyte (ZiB), which is 1024
× 1024 × 1024 × 1024 gibibytes.
In GPT, up to a maximum number of 128 partitions can be
created.
The 2-TiB limit no longer exists.
Because space that is available to store partitions is much
bigger than 64 bytes, which was used in MBR, there is no

longer a need to distinguish between primary, extended, and
logical partitions.
GPT uses a 128-bit GUID to identify partitions.
A backup copy of the GUID partition table is created by
default at the end of the disk, which eliminates the single
point of failure that exists on MBR partition tables.

Understanding Storage Measurement Units

When talking about storage, we use different measurement
units. In some cases, units like megabyte (MB) are used. In other
cases, units like mebibyte (MiB) are used. The difference
between these two is that a megabyte is a multiple of 1,000, and
a mebibyte is a multiple of 1,024. In computers, it makes sense
to talk about multiples of 1,024 because that is how computers
address items. However, confusion was created when hardware
vendors a long time ago started referring to megabytes instead
of mebibytes.

In the early days of computing, the difference was not that
important. The difference between a kilobyte (KB) and a
kibibyte (KiB) is just 24 bytes. The bigger the numbers grow, the
bigger the difference becomes. A gigabyte, for instance, is 1,000
× 1,000 × 1,000 bytes, so 1,000,000,000 bytes, whereas a gibibyte

is 1,024 × 1,024 × 1,024 bytes, which makes a total of
1,073,741,824 bytes, which is over 70 MB larger than 1 GB.

On current Linux distributions, the binary numbers (MiB, not
MB) have become the standard. In Table 14-2, you can see an
overview of the values that are used.

Table 14-2 Disk Size Specifications

Symbol Name Value Symbol Name Valu

KB Kilobyte 1000 KiB Kibibyte 1024

MB Megabyte 1000 MiB Mebibyte 1024

GB Gigabyte 1000 GiB Gibibyte 1024

TB Terabyte 1000 TiB Tebibyte 1024

PB Petabyte 1000 PiB Pebibyte 1024

1

2

3

4

5

Symbol Name Value Symbol Name Valu
EB Exabyte 1000 EiB Exbibyte 1024

ZB Zettabyte 1000 ZiB Zebibyte 1024

YB Yottabyte 1000 YiB Yobibyte 1024

In the past, KB, MB, and so on were used both in decimal and
binary situations; sometimes they were even mixed. For
example, 1-Mbps line speed is one million bits per second. The
once famous “1.44 MB” floppy disk was really 1,440,000 bytes in
size (80 tracks × 2 heads × 9 sectors × 512-byte sectors), creating
a mixed meaning of MB: 1.44 × (decimal K) × (binary K).

Managing Partitions and File Systems

As discussed in the previous section, two different types of
partitions can be used on RHEL. To match the different
partition types, there are also two different partitioning
utilities. The fdisk utility has been around for a long time and
can be used to create and manage MBR as well as GPT
partitions. The gdisk utility is used to create GPT partitions. In
this section, you learn how to use both.

6

7

8

Apart from fdisk and gdisk, there are other partitioning
utilities as well, of which parted is probably the most
important. Some people like it, as it is relatively easy to use, but
at the same time it hides some of the more advanced features.
For that reason, this chapter focuses on working with fdisk and
gdisk and introduces parted only briefly.

For both MBR and GPT partitions, you need to specify the name
of the disk device as an argument. Use the lsblk command to
print a list of all disk devices available on your system. Table
14-3 shows the most common disk device names that you work
with on RHEL.

Table 14-3 Common Disk Device Types

Device Name Description

/dev/sda A hard disk that uses the SCSI driver. Used
for SCSI and SATA disk devices. Common
on physical servers but also in VMware
virtual machines.

Device Name Description

/dev/nvme0n1 The first hard disk on an NVM Express
(NVMe) interface. NVMe is a server-grade
method to address advanced SSD devices.
Note at the end of the device name that
the first disk in this case is referred to as
n1 instead of a (as is common with the
other types).

/dev/hda The (legacy) IDE disk device type. You will
seldom see this device type on modern
computers.

/dev/vda A disk in a KVM virtual machine that uses
the virtio disk driver. This is the common
disk device type for KVM virtual
machines.

Device Name Description

/dev/xvda A disk in a Xen virtual machine that uses
the Xen virtual disk driver. You see this
when installing RHEL as a virtual
machine in Xen virtualization. RHEL 9
cannot be used as a Xen hypervisor, but
you might see RHEL 9 virtual machines on
top of the Xen hypervisor using these disk
types.

As you can see in Table 14-3, almost all disk device names end
with the letter a. The reason is that it is the first disk that was
found in your server. The second SCSI disk, for instance, would
have the name /dev/sdb. If many disks are installed in a server,
you can have up to /dev/sdz and even beyond. After /dev/sdz,
the kernel continues creating devices with names like /dev/sdaa
and /dev/sdab. Notice that on NVMe devices, numbers are used
instead of letters. So the first NVMe disk is nvme0n1, the second
NVMe disk is nvme0n2, and so on.

Creating MBR Partitions with fdisk

To create an MBR disk partition, you have to apply a multiple-
step procedure, as shown in Exercise 14-1.

Exercise 14-1 Creating MBR Partitions with fdisk

This exercise has been written to use an installation of RHEL
that contains an unused disk. You can easily add a second disk
to your environment. This can be a virtual disk that is added
through your virtualization program, or a USB flash drive if
you’re working on a physical installation. In that case, make
sure to replace the device names in this exercise with the
device names that match your hardware.

1. Open a root shell and type lsblk. This lists the block devices
that are available.

2. Open a root shell and run the fdisk command. This
command needs as its argument the name of the disk device
where you want to create the partition. This exercise uses
/dev/sdb. Change that, if needed, according to your
hardware.
Click here to view code image

[root@server1 ~]# fdisk /dev/sdb

Welcome to fdisk (util-linux 2.37.4).

Changes will remain in memory only, until you

 them.

B f l b f i th it d

Be careful before using the write command.

Device does not contain a recognized partition

Created a new DOS disklabel with disk identifi

Command (m for help):

3. Before you do anything, it is a good idea to check how much
disk space you have available. Press p to see an overview of
current disk allocation:
Click here to view code image

Command (m for help): p

Disk /dev/sdb: 20 GiB, 21474836480 bytes, 4194

Disk model: VMware Virtual S

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 51

Disklabel type: dos

Disk identifier: 0x2c00c707

In the output of this command, in particular look for the
total number of sectors and the last sector that is currently
used. If the last partition does not end on the last sector, you
have available space to create a new partition. In this case,
that shouldn’t be an issue because you are supposed to use a
new disk in this exercise.

4. Type n to add a new partition:
Click here to view code image

Command (m for help): n

Partition type

 p primary (0 primary, 0 extended, 4 free)

 e extended (container for logical partiti

Select (default p):

5. Press p to create a primary partition. Accept the partition
number that is now suggested, which should be /dev/sdb1.

6. Specify the first sector on disk that the new partition will
start on. The first available sector is suggested by default, so
press Enter to accept.

7. Type +1G to make this a 1-GiB partition. If you were to just
press Enter, the last sector available on disk would be
suggested. If you were to use that, after this exercise you
would not have any disk space left to create additional
partitions or logical volumes, so you should use another last
sector. To use another last sector, you can do one of the
following:
1. Enter the number of the last sector you want to use.
2. Enter +number to create a partition that sizes a specific

number of sectors.

3. Enter +number(K,M,G) to specify the size you want to
assign to the partition in KiB, MiB, or GiB.

Click here to view code image

Command (m for help): n

Partition type

 p primary (0 primary, 0 extended, 4 free)

 e extended (container for logical partiti

Select (default p): p

Partition number (1-4, default 1):

I/O size (minimum/optimal): 512 bytes / 512 by

First sector (2048-41943039, default 2048):

Last sector, +/-sectors or +/-size{K,M,G,T,P}

 default 41943039): +1G

Created a new partition 1 of type ‘Linux’ and

After you enter the partition’s ending boundary, fdisk will
show a confirmation.

8. At this point, you can define the partition type. By default, a
Linux partition type is used. If you want the partition to be
of any other partition type, use t to change it. For this
exercise there is no need to change the partition type.
Common partition types include the following:
1. 82: Linux swap
2. 83: Linux

3. 8e: Linux LVM
9. If you are happy with the modifications, press w to write

them to disk and exit fdisk.
10. Type lsblk to verify that the new partition has been created

successfully.

Using Extended and Logical Partitions on MBR

In the previous procedure, you learned how to add a primary
partition. If three MBR partitions have been created already,
there is room for one more primary partition, after which the
partition table is completely filled up. If you want to go beyond
four partitions on an MBR disk, you have to create an extended
partition. Following that, you can create logical partitions
within the extended partition.

Using logical partitions does allow you to go beyond the
limitation of four partitions in the MBR; there is a disadvantage
as well, though. All logical partitions exist within the extended
partition. If something goes wrong with the extended partition,
you have a problem with all logical partitions existing within it
as well. If you need more than four separate storage allocation
units, you might be better off using LVM instead of logical
partitions. If you’re on a completely new disk, you might just

want to create GPT partitions instead. In Exercise 14-2 you learn
how to work with extended and logical partitions.

Note

An extended partition is used only for the purpose
of creating logical partitions. You cannot create file
systems directly on an extended partition!

Exercise 14-2 Creating Logical Partitions

1. In a root shell, type fdisk /dev/sdb to open the fdisk
interface.

2. Type n to create a new partition. To create a logical partition,
when fdisk prompts which partition type you want to create,
enter e. This allows you to create an extended partition,
which is necessary to later add logical partitions.
Click here to view code image

Command (m for help): n

Partition type

 p primary (1 primary, 0 extended, 3 free)

 e extended (container for logical partiti

Select (default p): e

3. If the extended partition is the fourth partition that you are
writing to the MBR, it will also be the last partition that can
be added to the MBR. For that reason, it should fill the rest of
your computer’s hard disk. Press Enter to accept the default
first sector and press Enter again when fdisk prompts for
the last sector (even if this is not the fourth partition yet).
Click here to view code image

Select (default p): e

Partition number (2-4, default 2):

First sector (2099200-41943039, default 209920

Last sector, +/-sectors or +/-size{K,M,G,T,P}

default 41943039):

Created a new partition 2 of type 'Extended' a

4. Now that the extended partition has been created, you can
create a logical partition within it. Still from the fdisk
interface, press n again. Because all of the space in the drive
has been allocated to partitions, the utility will by default
suggest adding a logical partition with partition number 5.
Click here to view code image

Command (m for help): n

All space for primary partitions is in use.

p p y p

Adding logical partition 5

First sector (2101248-41943039, default 210124

5. Press Enter to accept the default first sector. When asked for
the last sector, enter +1G:
Click here to view code image

First sector (2101248-41943039, default 210124

Last sector, +/-sectors or +/-size{K,M,G,T,P}

default 41943039): +1G

Created a new partition 5 of type 'Linux' and

6. Now that the logical partition has been created, enter w to
write the changes to disk and quit fdisk.

Tip

In some cases, fdisk will print a message after
writing the partitions to disk, stating that it could
not update the partition table. If that happens, you
can try using the partprobe command to manually
update the partition table. Use lsblk to verify that it

now is visible. If this is not the case, use reboot to
restart your system.

Creating GPT Partitions with gdisk

If a disk is configured with a GUID Partition Table (GPT), or if it
is a new disk that does not contain anything yet and has a size
that goes beyond 2 TiB, you need to create GUID partitions. The
easiest way to do so is by using the gdisk utility. This utility has
a lot of similarities with fdisk but also has some differences.

Notice that you can only decide which type of partition table to
create when initializing an unused disk. Once either MBR or
GPT partitions have been created on a disk, you cannot change
its type. The preferred utility for creating GPT partitions is
gdisk. Alternatively, after starting fdisk on a new disk, you can
use the g command to initialize a GPT. Exercise 14-3 shows how
to create partitions in gdisk on a disk that doesn’t have any
partitions yet.

Warning!

Do not ever use gdisk on a disk that has been
formatted with fdisk and already contains fdisk
partitions. gdisk will detect that an MBR is present,

and it will convert this to a GPT (see the following
code listing). Your computer most likely will not be
able to boot after doing this! When you see the
following message, use q to quit gdisk
immediately, without saving anything!

Click here to view code image

[root@server1 ~]# gdisk /dev/sda

GPT fdisk (gdisk) version 1.0.7

Partition table scan:

 MBR: MBR only

 BSD: not present

 APM: not present

 GPT: not present

Found invalid GPT and valid MBR; conve

in memory. THIS OPERATION IS POTENTIALL

typing 'q' if you don’t want to convert

to GPT format!

Warning! Secondary partition table ove

33 blocks!

You will need to delete this partition

utility.

Command (? for help):

To save you the hassle of going through this, I
verified it does what it says. After converting an
MBR to a GPT, your machine will not start
anymore.

Exercise 14-3 Creating GPT Partitions with gdisk

To apply the procedure in this exercise, you need a new disk
device. Do not use a disk that contains data that you want to
keep, because this exercise will delete all data on it. If you are
using this exercise on a virtual machine, you may add the new
disk through the virtualization software. If you are working on
a physical machine, you can use a USB thumb drive as a disk
device for this exercise. Note that this exercise works perfectly
on a computer that starts from BIOS and not EFI; all you need is
a dedicated disk device.

1. To create a partition with gdisk, open a root shell and type
gdisk /dev/sdc. (Replace /dev/sdc with the exact device name
used on your computer.) gdisk will try to detect the current
layout of the disk, and if it detects nothing, it will create the
GPT and associated disk layout.
Click here to view code image

[root@server1 ~]# gdisk /dev/sdc

GPT fdisk (gdisk) version 1.0.7

Partition table scan:

 MBR: not present

 BSD: not present

 APM: not present

 GPT: not present

Creating new GPT entries in memory.

Command (? for help):

2. Type n to enter a new partition. You can choose any partition
number between 1 and 128, but it is wise to accept the
default partition number that is suggested.
Click here to view code image

Command (? for help): n

Partition number (1-128, default 1): 1

3. You now are asked to enter the first sector. By default, the
first sector that is available on disk will be used, but you can
specify an offset as well. This does not make sense, so just
press Enter to accept the default first sector that is proposed.
Click here to view code image

First sector (34-2097118, default = 2048) or {

4. When asked for the last sector, by default the last sector that
is available on disk is proposed (which would create a
partition that fills the entire hard disk). You can specify a
different last sector, or specify the disk size using +, the size,
and KMGTP. So to create a 1-GiB disk partition, use +1G.
Click here to view code image

Partition number (1-128, default 1): 1

First sector (34-41943006, default = 2048) or

Last sector (2048-41943006, default = 41943006

Current type is 8300 (Linux filesystem)

Hex code or GUID (L to show codes, Enter = 830

5. You now are asked to set the partition type. If you do not do
anything, the partition type is set to 8300, which is the Linux
file system partition type. Other options are available as
well. You can press l to show a list of available partition
types.
Click here to view code image

Current type is 'Linux filesystem'

Hex code or GUID (L to show codes, Enter = 830

0700 Microsoft basic data 0c01 Microsoft rese

0700 Microsoft basic data 0c01 Microsoft rese

 RE

3000 ONIE boot 3001 ONIE config

4100 PowerPC PReP boot 4200 Windows LDM da

 LDM metadata

4202 Windows Storage Spac 7501 IBM GPFS

 kernel

7f01 ChromeOS root 7f02 ChromeOS reser

 swap

8300 Linux filesystem 8301 Linux reserved

 / home

8303 Linux x86 root (/) 8304 Linux x86-64 r

 ARM64 root (/)

8306 Linux /srv 8307 Linux ARM32 ro

 Rapid Start

8e00 Linux LVM a000 Android bootlo

 bootloader 2

a002 Android boot a003 Android recove

 misc

a005 Android metadata a006 Android system

 cache

a008 Android data a009 Android persis

 factory

a00b Android fastboot/ter a00c Android OEM

 disklabel

a501 FreeBSD boot a502 FreeBSD swap

 UFS

a504 FreeBSD ZFS a505 FreeBSD Vinum/

BSD data

 BSD data

a581 Midnight BSD boot a582 Midnight BSD s

 BSD UFS

a584 Midnight BSD ZFS a585 Midnight BSD V

 disklabel

a800 Apple UFS a901 NetBSD swap

 FFS

a903 NetBSD LFS a904 NetBSD concate

 encrypted

a906 NetBSD RAID ab00 Recovery HD

 HFS/HFS+

af01 Apple RAID af02 Apple RAID off

 label

The relevant partition types are as follows:
1. 8200: Linux swap
2. 8300: Linux file system
3. 8e00: Linux LVM
Notice that these are the same partition types as the ones
that are used in MBR, with two 0s added to the IDs. You can
also just press Enter to accept the default partition type 8300.

6. The partition is now created (but not yet written to disk).
Press p to show an overview, which allows you to verify that
this is really what you want to use.
Click here to view code image

Command (? for help): p

Command (? for help): p

Disk /dev/sdc: 41943040 sectors, 20.0 GiB

Model: VMware Virtual S

Sector size (logical/physical): 512/512 bytes

Disk identifier (GUID): 49433C2B-16A9-4EA4-9D7

Partition table holds up to 128 entries

Main partition table begins at sector 2 and en

First usable sector is 34, last usable sector

Partitions will be aligned on 2048-sector boun

Total free space is 39845821 sectors (19.0 GiB

Number Start (sector) End (sector) Size

 1 2048 2099199 1024.0

filesystem

Command (? for help):

7. If you are satisfied with the current partitioning, press w to
write changes to disk and commit. This gives a warning
which you can safely ignore by typing Y, after which the new
partition table is written to the GUID partition table.
Click here to view code image

Command (? for help): w

Final checks complete. About to write GPT data

OVERWRITE EXISTING

PARTITIONS!!

Do you want to proceed? (Y/N): Y

OK; writing new GUID partition table (GPT) to

The operation has completed successfully.

8. If at this point you get an error message indicating that the
partition table is in use, type partprobe to update the kernel
partition table.

Creating GPT Partitions with parted

As previously mentioned, apart from fdisk and gdisk, the
parted utility can be used to create partitions. Because it lacks
support for advanced features, I have focused on fdisk and
gdisk, but I’d like to give you a quick overview of working with
parted.

To use parted, you need to know that it has an interactive shell
in which you can work with its different options. Exercise 14-4
guides you through the procedure of creating partitions using

parted. This exercise assumes you have a new and unused disk
device /dev/sdd available.

Exercise 14-4 Creating Partitions with parted

You need a new disk to work with this procedure. This exercise
assumes that the new disk name is /dev/sdd.

1. From a root shell, type parted /dev/sdd. This opens the
interactive parted shell.

2. Type help to get an overview of available commands.
3. Type print. You will see a message about an unrecognized

disk label.
4. Type mklabel and press Enter. parted will now prompt for a

disk label type. Press the Tab key twice to see a list of
available disk label types. From the list, select gpt and press
Enter.

5. Type mkpart. The utility prompts for a partition name. Type
part1 (the partition name doesn’t really matter).

6. Now the utility prompts for a file system type. This is a very
confusing option, because it suggests that you are setting a
file system type here, but that is not the case. Also, when
using Tab completion, you’ll see a list of file systems that
you’ve probably never used before. In fact, you could just
press Enter to accept the default suggestion of ext2, as the

setting isn’t used anyway, but I suggest using a file system
type that comes close to what you’re going to use on the
partition. So type xfs and press Enter to continue.

7. Now you are prompted for a start location. You can specify
the start location as a number of blocks, or an offset from the
start of the device. Notice that you can type 1M to specify the
start of the partition at 1 megabyte, or type 1 MiB to have it
start at 1 MiB. This is confusing, so make sure you specify the
appropriate value here. At this point, type 1MiB and press
Enter.

8. Type 1GiB to specify the end of the partition. After doing so,
type print to print the current partition table, and type quit
to quit the utility and commit your changes.

9. Type lsblk to verify the new partition has been created. It
should show as /dev/sdd1.

10. Use mkfs.ext4 /dev/sdd1 to format this partition with the
Ext4 file system.

Creating File Systems

At this point, you know how to create partitions. A partition all
by itself is not very useful. It only becomes useful if you decide
to do something with it. That often means that you have to put a
file system on top of it. In this section, you learn how to do that.

Different file systems can be used on RHEL 9. Table 14-4
provides an overview of the most common file systems.

Table 14-4 File System Overview

File
System

Description

XFS The default file system in RHEL 9.

Ext4 The default file system in previous versions of
RHEL; still available and supported in RHEL 9.

Ext3 The previous version of Ext4. On RHEL 9, there is
no need to use Ext3 anymore.

Ext2 A very basic file system that was developed in
the early 1990s. There is no need to use this file
system on RHEL 9 anymore.

File
System

Description

BtrFS A relatively new file system that is not supported
in RHEL 9.

NTFS A Windows-compatible file system that is not
supported on RHEL 9.

VFAT A file system that offers compatibility with
Windows and macOS and is the functional
equivalent of the FAT32 file system. Useful on
USB thumb drives that exchange data with other
computers but not on a server’s hard disks.

To format a partition with one of the supported file systems,
you can use the mkfs command, using the option -t to specify
which specific file system to use. Alternatively, you can use one
of the file system–specific tools such as mkfs.ext4 to format an
Ext4 file system.

Note

If you use mkfs without any further specification
of which file system you want to format, an Ext2
file system will be formatted. This is probably not
what you want to use, so do not forget to specify
which file system you want to use.

To format a partition with the default XFS file system, use the
command mkfs.xfs. Example 14-1 shows the output of this
command.

Example 14-1 Formatting a File System with XFS

Click here to view code image

[root@server1 ~]# mkfs.xfs /dev/sdb1

meta-data=/dev/sdb1 isize=512 agco

 = sectsz=512 attr

 = crc=1 fino

 = reflink=1 bigt

data = bsize=4096 bloc

 = sunit=0 swid

naming =version 2 bsize=4096 asci

log =internal log bsize=4096 bloc

 = sectsz=512 suni

realtime =none extsz=4096 bloc

In Exercise 14-5, you create a file system on the previously
created partition /dev/sdb1.

Exercise 14-5 Creating a File System

In Exercise 14-1, you created a partition /dev/sdb1. In this
exercise, you format it with an XFS file system. This exercise
has one step only.

1. From a root shell, type mkfs.xfs /dev/sdb1

Changing File System Properties

When working with file systems, you can manage some
properties as well. File system properties are specific for the file
system you are using, so you work with different properties and
different tools for the different file systems.

Managing Ext4 File System Properties

The generic tool for managing Ext4 file system properties is
tune2fs. This tool was developed a long time ago for the Ext2
file system and is compatible with Ext3 and Ext4 also. When
you’re managing Ext4 file system properties, tune2fs -l is a nice
command to start with. Example 14-2 presents the output of this

command where different file system properties are shown.
Notice that you first have to create an Ext4 file system, using
mkfs.ext4, before you can use tune2fs.

Example 14-2 Showing File System Properties with tune2fs -l

Click here to view code image

[root@server1 ~]# tune2fs -l /dev/sdd1

tune2fs 1.46.5 (30-Dec-2021)

Filesystem volume name: <none>

Last mounted on: <not available>

Filesystem UUID: 5d34b37c-5d32-4790-836

Filesystem magic number: 0xEF53

Filesystem revision #: 1 (dynamic)

Filesystem features: has_journal ext_attr r

Filesystem flags: signed_directory_hash

Default mount options: user_xattr acl

Filesystem state: clean

Errors behavior: Continue

Filesystem OS type: Linux

Inode count: 65536

Block count: 262144

Reserved block count: 13107

Overhead clusters: 12949

Free blocks: 249189

Free inodes: 65525

First block: 0

Block size: 4096

Fragment size: 4096

Group descriptor size: 64

Reserved GDT blocks: 127

Blocks per group: 32768

Fragments per group: 32768

Inodes per group: 8192

Inode blocks per group: 512

Flex block group size: 16

Filesystem created: Thu Sep 15 11:56:26 20

Last mount time: n/a

Last write time: Thu Sep 15 11:56:26 20

Mount count: 0

Maximum mount count: -1

Last checked: Thu Sep 15 11:56:26 20

Check interval: 0 (<none>)

Lifetime writes: 533 kB

Reserved blocks uid: 0 (user root)

Reserved blocks gid: 0 (group root)

First inode: 11

Inode size: 256

Required extra isize: 32

Desired extra isize: 32

Journal inode: 8

Default directory hash: half_md4

Directory Hash Seed: ba256a6f-1ebe-4d68-8ff

Journal backup: inode blocks

p

Checksum type: crc32c

Checksum: 0x49ee65b4

As you can see, the tune2fs -l command shows many file system
properties. One interesting property is the file system label,
which shows as the Filesystem volume name. Labels are used to
set a unique name for a file system, which allows the file system
to be mounted in a consistent way, even if the underlying
device name changes. Also interesting are the file system
features and default mount options.

To change any of the default file system options, you can use the
tune2fs command with other parameters. Some common usage
examples are listed here:

Use tune2fs -o to set default file system mount options. When
set to the file system, the option does not have to be specified
while mounting through /etc/fstab anymore. Use, for
instance, tune2fs -o acl,user_xattr to switch on access
control lists and user-extended attributes. Use a ^ in front of
the option to switch it off again, as in tune2fs -o
^acl,user_xattr.
Ext file systems also come with file system features that may
be enabled as a default. To switch on a file system feature,

use tune2fs -O followed by the feature. To turn a feature off,
use a ^ in front of the feature name.
Use tune2fs -L to set a label on the file system. As described
in the section “Mounting File Systems” later in this chapter,
you can use a file system label to mount a file system based
on its name instead of the device name. Instead of tune2fs -L,
the e2label command enables you to set a label on the file
system.

Managing XFS File System Properties

The XFS file system is a completely different file system, and for
that reason also has a completely different set of tools to
manage its properties. It does not allow you to set file system
attributes within the file system metadata. You can, however,
change some XFS properties, using the xfs_admin command.
For instance, use xfs_admin -L mylabel to set the file system
label to mylabel.

Adding Swap Partitions

You use most of the partitions on a Linux server for regular file
systems. On Linux, swap space is normally allocated on a disk
device. That can be a partition or an LVM logical volume

(discussed in Chapter 15). In case of an emergency, you can
even use a file to extend the available swap space.

Using swap on Linux is a convenient way to improve Linux
kernel memory usage. If a shortage of physical RAM occurs,
non-recently used memory pages can be moved to swap, which
makes more RAM available for programs that need access to
memory pages. Most Linux servers for that reason are
configured with a certain amount of swap. If swap starts being
used intensively, you could be in trouble, though, and that is
why swap usage should be closely monitored.

Sometimes, allocating more swap space makes sense. If a
shortage of memory occurs, this shortage can be alleviated by
allocating more swap space in some situations. This is done
through a procedure where first a partition is created with the
swap partition type, and then this partition is formatted as
swap. Exercise 14-6 describes how to do this.

Exercise 14-6 Creating a Swap Partition

1. Type fdisk /dev/sdb to open your disk in fdisk.
2. Press n to add a new partition. Specify start cylinder and size

to create a 1-GiB partition.

3. Type t to change the partition type. If you are using fdisk,
type swap to set the swap partition type to 82. If you are
using gdisk, use partition type 8200. Press w to write and
exit.

4. Use mkswap to format the partition as swap space. Use, for
instance, mkswap /dev/sdb6 if the partition you have just
created is /dev/sdb6.

5. Type free -m. You see the amount of swap space that is
currently allocated. This does not include the swap space
you have just created, as it still needs to be activated.

6. Use swapon to switch on the newly allocated swap space. If,
for instance, the swap device you have just created is
/dev/sdb6, use swapon /dev/sdb6 to activate the swap space.

7. Type free -m again. You see that the new swap space has
been added to your server.

8. Open the file /etc/fstab with an editor and, on the last line,
add the following to ensure the swap space is also available
after a reboot: /dev/sdb6 none swap defaults 0 0

Adding Swap Files

If you do not have free disk space to create a swap partition and
you do need to add swap space urgently, you can use a swap file
as well. From a performance perspective, it does not even make

that much difference if a swap file is used instead of a swap
device such as a partition or a logical volume, and it may help
you fulfill an urgent need in a timely manner.

To add a swap file, you need to create the file first. The dd
if=/dev/zero of=/swapfile bs=1M count=100 command would
add 100 blocks with a size of 1 MiB from the /dev/zero device
(which generates 0s) to the /swapfile file. The result is a 100-MiB
file that can be configured as swap. To do so, you can follow the
same procedure as for swap partitions. First use mkswap
/swapfile to mark the file as a swap file, and then use swapon
/swapfile to activate it. Also, put it in the /etc/fstab file so that it
will be initialized automatically, using a line that looks as
follows:

Click here to view code image

/swapfile none swap defaults 0 0

Mounting File Systems

Just creating a partition and putting a file system on it is not
enough to start using it. To use a partition, you have to mount it
as well. By mounting a partition (or better, the file system on it),
you make its contents accessible through a specific directory.

To mount a file system, some information is needed:

What to mount: This information is mandatory and specifies
the name of the device that needs to be mounted.
Where to mount it: This is also mandatory information that
specifies the directory on which the device should be
mounted.
What file system to mount: Optionally, you can specify the
file system type. In most cases, this is not necessary. The
mount command will detect which file system is used on the
device and make sure the correct driver is used.
Mount options: Many mount options can be used when
mounting a device. Using options is optional and depends on
the needs you may have for the file system.

Manually Mounting File Systems

To manually mount a file system, you use the mount command.
To disconnect a mounted file system, you use the umount
command. Using these commands is relatively easy. To mount
the file system that is on /dev/sdb5 on the directory /mnt, for
example, use the following command:

mount /dev/sdb5 /mnt

To disconnect the mount, you can use umount with either the
name of the device or the name of the mount point you want to
disconnect. So, both of the following commands will work:

umount /dev/sdb5

umount /mnt

Using Device Names, UUIDs, or Disk Labels

To mount a device, you can use the name of the device, as in the
command mount/dev/sdb5 /mnt. If your server is used in an
environment where a dynamic storage topology is used, this is
not always the best approach. You may today have a storage
device /dev/sdb5, which after changes in the storage topology
can be /dev/sdc5 after the next reboot of your server. This is
why on a default RHEL 9 installation, universally unique IDs
(UUIDs) are used instead of device names.

Every file system by default has a UUID associated with it—not
just file systems that are used to store files but also special file
systems such as the swap file system. You can use the blkid
command to get an overview of the current file systems on your
system and the UUID that is used by that file system.

Before the use of UUIDs was common, file systems were often
configured to work with labels, which can be set using the
e2label command, the xfs_admin -L command, or, while
creating the file system, the mkfs.xxxx -L command. This has
become more uncommon in recent Linux versions. If a file
system has a label, the blkid command will also show it. In
Example 14-3 you can see an example of blkid output.

Example 14-3 Using blkid to Find Current File System UUIDs

Click here to view code image

[root@server1 ~]# blkid

/dev/mapper/rhel-swap: UUID="3f377db9-7a25-4456-

 TYPE="swap"

/dev/sdd1: PARTLABEL="part1" PARTUUID="97ddf1cb-

 e4345862283d"

/dev/sdb5: UUID="5d34b37c-5d32-4790-8364-d22a8b8

 SIZE="4096" TYPE="ext4" PARTUUID="e049881b-05"

/dev/sdb1: UUID="1e6b3b75-3454-4e03-b5a9-81e5fa1

 SIZE="512" TYPE="xfs" PARTUUID="e049881b-01"

/dev/sdb6: UUID="b7ada118-3586-4b22-90db-451d821

 PARTUUID="e049881b-06"

/dev/sr0: BLOCK_SIZE="2048" UUID="2022-04-19-20-

 9-0-0-BaseOS-x86_64" TYPE="iso9660" PTUUID="3a

/dev/mapper/rhel-root: UUID="1e9d930d-4c05-4c91-

pp

 BLOCK_SIZE="512" TYPE="xfs"

/dev/sdc1: PARTLABEL="Linux filesystem"

 PARTUUID="c021ce85-8a1b-461a-b27f-d911e2ede649

/dev/sda2: UUID="bKb2nd-kGTl-voHS-h8Gj-AjTD-fORt

 member" PARTUUID="908faf3e-02"

/dev/sda1: UUID="6c2b4028-1dcb-44cb-b5b7-c8e5235

 SIZE="512" TYPE="xfs" PARTUUID="908faf3e-01"

To mount a file system based on a UUID, you use UUID=nnnnn
instead of the device name. So if you want to mount /dev/sdb5
from Example 14-3 based on its UUID, the command becomes as
follows:

Click here to view code image

mount UUID="5d34b37c-5d32-4790-8364-d22a8b8f88db

Manually mounting devices using the UUID is not exactly easier.
If mounts are automated as discussed in the next section,
however, using UUIDs instead of device names does make sense.

To mount a file system using a label, you use the mount
LABEL=labelname command. For example, use mount
LABEL=mylabel /mnt to temporarily mount the file system
with the name mylabel on the /mnt directory.

Automating File System Mounts Through /etc/fstab

Normally, you do not want to be mounting file systems
manually. Once you are happy with them, it is a good idea to
have them mounted automatically. The classical way to do this
is through the /etc/fstab file. Example 14-4 shows what the
contents of this file may look like.

Example 14-4 Sample /etc/fstab File Contents

Click here to view code image

[root@server1 ~]# cat /etc/fstab

/etc/fstab

Created by anaconda on Thu Sep 1 12:06:40 202

Accessible filesystems, by reference, are main

 disk/'.

See man pages fstab(5), findfs(8), mount(8) an

 info.

After editing this file, run 'systemctl daemon

 systemd

units generated from this file.

/dev/mapper/rhel-root / xfs

pp

UUID=6c2b4028-1dcb-44cb-b5b7-c8e52352b06c /boot

 defaults 0 0.

/dev/mapper/rhel-swap none swap

/dev/sr0 /repo iso9660

In the /etc/fstab file, everything is specified to mount the file
system automatically. For this purpose, every line has six fields,
as summarized in Table 14-5.

Table 14-5 /etc/fstab Fields

Field Description

Device The device that must be mounted. A device
name, UUID, or label can be used.

Mount
Point

The directory or kernel interface where the
device needs to be mounted.

File
System

The file system type.

Field Description

Mount
Options

Mount options.

Dump
Support

Use 1 to enable support to back up using the
dump utility. This may be necessary for some
backup solutions.

Automatic
Check

This field specifies whether the file system
should be checked automatically when
booting. Use 0 to disable automated check, 1 if
this is the root file system and it has to be
checked automatically, and 2 for all other file
systems that need automatic checking while
booting. Network file systems should have
this option set to 0.

Based on what has previously been discussed about the mount
command, you should have no problem understanding the
Device, Mount Point, and File System fields in /etc/fstab. Notice
that in the mount point not all file systems use a directory
name. Some system devices such as swap are not mounted on a

directory, but on a kernel interface. It is easy to recognize when
a kernel interface is used; its name does not start with a / (and
does not exist in the file system on your server).

The Mount Options field defines specific mount options that can
be used. If no specific options are required, this line will just
read “defaults.” To offer specific functionality, a large number
of mount options can be specified here. Table 14-6 gives an
overview of some of the more common mount options.

Table 14-6 Common Mount Options

Option Use

auto /
noauto

Mounts/does not mount the file system
automatically.

acl Adds support for file system access control
lists (see Chapter 7, “Permissions
Management”).

Option Use

user_xattr Adds support for user-extended attributes
(see Chapter 7).

ro Mounts the file system in read-only mode.

atime /
noatime

Disables/enables access time modifications.

noexec /
exec

Denies/allows execution of program files
from the file system.

The fifth column of /etc/fstab specifies support for the dump
utility, which was developed a long time ago to create file
system backups. On modern file systems this option is not
needed, which is why you will see it set to 0 in most cases.

The last column indicates if the file system integrity needs to be
checked while booting. Enter a 0 if you do not want to check the
file system at all, a 1 if this is the root file system that needs to
be checked before anything else, and a 2 if this is a non-root file
system that needs to be checked while booting. Because file

system consistency is checked in another way, this option is
now commonly set to the value 0.

After adding mounts to /etc/fstab, it’s a good idea to check that
you didn’t make any errors. If /etc/fstab contains errors, you
won’t be able to boot your system anymore, and on the RHCSA
exam the result could be that you fail the exam. The following
options can be used to verify /etc/fstab contents:

findmnt --verify Verifies /etc/fstab syntax and alerts you if
anything is incorrect.
mount -a Mounts all file systems that have a line in /etc/fstab
and are not currently mounted.

In Exercise 14-7, you learn how to mount partitions through
/etc/fstab by mounting the XFS-formatted partition /dev/sdb5
that you created in previous exercises.

Exercise 14-7 Mounting Partitions Through /etc/fstab

1. From a root shell, type blkid. Use the mouse to copy the
UUID=“nnnn” part for /dev/sdb5.

2. Type mkdir -p /mounts/data to create a mount point for this
partition.

3. Open /etc/fstab in an editor and add the following line:
Click here to view code image

UUID="nnnn" /mounts/data xfs defaults

4. Before you attempt an automatic mount while rebooting, it is
a good idea to test the configuration. Type mount -a. This
command mounts everything that is specified in /etc/fstab
and that has not been mounted already.

5. Type df -h to verify that the partition has been mounted
correctly.

Using Systemd Mounts

The /etc/fstab file has been used to automate mounts since the
earliest days of UNIX. In recent RHEL versions it is used as an
input file to create systemd mounts, as ultimately systemd is
responsible for mounting file systems. You can find the files
generated by /etc/fstab in the directory /run/systemd/generator.
In Example 14-5 you can see what its contents may look like.

Example 14-5 Sample Systemd Mount File

Click here to view code image

[root@server1 ~]# cat /run/systemd/generator/rep

Automatically generated by systemd-fstab-gener

[Unit]

Documentation=man:fstab(5) man:systemd-fstab-gen

SourcePath=/etc/fstab

Before=local-fs.target

After=blockdev@dev-sr0.target

[Mount]

What=/dev/sr0

Where=/repo

Type=iso9660

As mounts are taken care of by systemd, you could also choose
to mount your file systems this way. To do so, you need to create
a mount file in /etc/systemd/system, meeting the following
requirements:

The name of the file corresponds to the directory where you
want to mount its device. So if you want to mount on /data,
the file is data.mount.
The file contains a [Mount] section that has the lines What,
Where, and Type.

The file has an [Install] section, containing
WantedBy=some.target. Without this section the mount
cannot be enabled.

In Exercise 14-8 you’ll create a mount file for the /dev/sdc1
device that was previously created.

Exercise 14-8 Creating a Systemd Mount File

1. Use mkfs.ext4 /dev/sdc1 to format /dev/sdc1 with an Ext4
file system.

2. Type mkdir /exercise to create the mount point
3. Use vim /etc/systemd/system/exercise.mount and give the

file the following contents:
Click here to view code image

[Unit]

Before=local-fs.target

[Mount]

What=/dev/sdc1

Where=/exercise

Type=ext4

[Install]

WantedBy=multi-user.target

4. Use systemctl enable --now exercise.mount to enable and
start the mount unit.

5. Type mount | grep exercise to verify the mount was
created.

6. Use systemctl status exercise.mount to verify the unit file.

Summary

In this important chapter, you learned how to work with
partitions and file systems on RHEL 9. You learned how to
create partitions for MBR and GPT disks and how to put a file
system on top of the partition. You also learned how to mount
these partitions manually and automatically through /etc/fstab
or by using systemd unit files.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the
Introduction, you have several choices for exam preparation:
the end-of-chapter labs; the memory tables in Appendix C;
Chapter 27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the
Key Topic icon in the margin of the page. Table 14-7 lists a
reference for these key topics and the page numbers on which
each is found.

Table 14-7 Key Topics for Chapter 14

Key Topic Element Description Page

Table 14-2 Disk Size Specifications 316

Table 14-3 Common Disk Device Types 317

Table 14-4 File System Overview 328

Table 14-5 /etc/fstab Fields 336

Table 14-6 Common Mount Options 337

Complete Tables and Lists from Memory

Print a copy of Appendix C, “Memory Tables” (found on the
companion website), or at least the section for this chapter, and
complete the tables and lists from memory. Appendix D,
“Memory Tables Answer Key,” includes completed tables and
lists to check your work.

Define Key Terms

Define the following key terms from this chapter and check
your answers in the glossary:

partition

Master Boot Record (MBR)

Basic Input/Output System (BIOS)

extended partition

primary partition

logical partition

GUID Partition Table (GPT)

Unified Extensible Firmware Interface (UEFI)

XFS

Ext4

Ext3

Ext2

BtrFS

VFAT

mount

umount

universally unique ID (UUID)

label

fstab

Review Questions

The questions that follow use an open-ended format that is
meant to help you test your knowledge of concepts and
terminology and the breadth of your knowledge. You can find
the answers to these questions in Appendix A.

. Which tool do you use to create GUID partitions?

. Which tool do you use to create MBR partitions?

. What is the default file system on RHEL 9?

. What is the name of the file that is used to automatically mount
partitions while booting?

. Which mount option do you use if you want a file system not to
be mounted automatically while booting?

. Which command enables you to format a partition that has
type 82 with the appropriate file system?

. You have just added a couple of partitions for automatic
mounting while booting. How can you safely test if this is going
to work without actually rebooting?

. Which file system is created if you use the mkfs command
without any file system specification?

. How do you format an Ext4 partition?

. How do you find UUIDs for all devices on your computer?

End-of-Chapter Lab

To perform this end-of-chapter lab, you’ll need to add a new
and unused disk device. Create this new disk device using the
virtualization software you’re using, or by adding an empty
USB thumb drive.

Lab 14.1

1. Add two partitions to your server. Create both partitions with
a size of 100 MiB. One of these partitions must be configured
as swap space; the other partition must be formatted with an
Ext4 file system.

2. Configure your server to automatically mount these
partitions. Mount the Ext4 partition on /mounts/data and
mount the swap partition as swap space.

3. Reboot your server and verify that all is mounted correctly.
In case of problems, read Chapter 18, “Essential
Troubleshooting Skills,” for tips on how to troubleshoot.

Chapter 15

Managing Advanced Storage

The following topics are covered in this chapter:

Understanding LVM
Creating LVM Logical Volumes
Resizing LVM Logical Volumes
Configuring Stratis

The following RHCSA exam objectives are covered in this
chapter:

Create and remove physical volumes
Assign physical volumes to volume groups
Create and delete logical volumes
Extend existing logical volumes

In Chapter 14, “Managing Storage,” you learned how to manage
partitions on a hard disk. Creating multiple partitions on a disk
is useful because it enables you to keep different data types in
separate partitions, but it does not offer the flexibility that the
advanced storage solutions offer. In this chapter, you learn how
to work with advanced storage solutions, including Logical
Volume Manager (LVM) and Stratis.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess
whether you should read this entire chapter thoroughly or
jump to the “Exam Preparation Tasks” section. If you are in
doubt about your answers to these questions or your own
assessment of your knowledge of the topics, read the entire
chapter. Table 15-1 lists the major headings in this chapter and
their corresponding “Do I Know This Already?” quiz questions.
You can find the answers in Appendix A, “Answers to the ‘Do I
Know This Already?’ Quizzes and Review Questions.”

Table 15-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Understanding LVM 1–2

Creating LVM Logical Volumes 3–5

Resizing LVM Logical Volumes 6–8

Configuring Stratis 9–10

. Which of the following is not a standard component in an LVM
setup?

1. Logical volume
2. File system
3. Volume group
4. Physical volume

. Which of the following is not an LVM feature?

1. Volume resizing
2. Hot replacement of failing disk
3. Copy on write
4. Snapshots

. Which partition type do you need on a GPT partition to mark it
with the LVM partition type?

1. 83
2. 8e
3. 8300
4. 8e00

. Which of the following commands shows correctly how to
create a logical volume that uses 50% of available disk space in
the volume group?

1. vgadd -n lvdata -l +50%FREE vgdata
2. lvcreate lvdata -l 50%FREE vgdata
3. lvcreate -n lvdata -l 50%FREE vgdata
4. lvadd -n lvdata -l 50% FREE /dev/vgdata

. Which commands show an overview of available physical
volumes? (Choose two.)

1. pvshow
2. pvdisplay
3. pvs
4. pvlist

. Which statement about resizing LVM logical volumes is not
true?

1. The Ext4 file system can be increased and decreased in size.
2. Use lvextend with the -r option to automatically resize the

file system.
3. The XFS file system cannot be resized.
4. To increase the size of a logical volume, you need allocatable

space in the volume group.

. You want to remove the physical volume /dev/sdd2 from the
volume group vgdata. Which of the following statements about
the removal procedure is not true?

1. The file system must support shrinking.
2. You need the amount of used extents on /dev/sdd2 to be

available on remaining devices.
3. Before you can use vgreduce, you have to move used extents

to the remaining volumes.
4. Use pvmove to move used extents.

. You have extended the size of a logical volume without
extending the XFS file system it contains. Which of the
following solutions can you use to fix it?

1. Use lvresize again, but this time with the -r option. The
command will resize just the file system.

2. Bring the logical volume back to its original size and then use
lvresize -r again.

3. Use fsresize to resize the file system later.
4. Use xfs_growfs to grow the file system to the size available in

the logical volume.

. How much storage is used in a Stratis file system for metadata
storage?

1. 527 MiB
2. 1 GiB
3. 4 MiB

4. 4 GiB

. Which of the following lines correctly shows how a Stratis file
system should be mounted through /etc/fstab?

1. UUID=abcd /stratis xfs defaults 0 0
2. /dev/stratis/stratis1 /stratis xfs defaults,x-

systemd.requires=stratis.service 0 0
3. UUID=abcd /stratis xfs defaults,x-

systemd.requires=stratis.service 0 0
4. /dev/stratis/stratis1 /stratis xfs defaults 0 0

Foundation Topics

Understanding LVM

In the early days of Linux servers, storage was handled by
creating partitions on disks. Even if this approach does work,
there are some disadvantages, the most important of which is
that partitions are inflexible. That is why the Logical Volume
Manager was introduced. Whereas it is not possible to
dynamically grow a partition that is running out of disk space,
this is possible when working with LVM. LVM offers many other
advantages as well, which you learn about in this chapter.

LVM Architecture

In the LVM architecture, several layers can be distinguished. On
the lowest layer, the storage devices are used. These can be any
storage devices, such as complete disks, partitions, logical units
(LUNs) on a storage-area network (SAN), and whatever else is
made possible in modern storage topologies. In this chapter you
learn how to use partitions as physical volumes, which is
recommended practice. By using partitions instead of complete
disk devices, it is easy for other tools to recognize that some
storage has already been configured on the block device, which
makes it less likely that misconfigurations are going to occur.

The storage devices need to be flagged as physical volumes,
which makes them usable in an LVM environment and makes
them usable by other utilities trying to gain access to the logical
volume. A storage device that is a physical volume can be added
to the volume group, which is the abstraction of all available
storage. The “abstraction” means that the volume group is not
something that is fixed, but it can be resized when needed,
which makes it possible to add more space on the volume group
level when volumes are running out of disk space. The idea is
simple: If you are running out of disk space on a logical volume,
you take available disk space from the volume group. And if
there is no available disk space in the volume group, you just
add it by adding a physical volume.

On top of the volume group are the logical volumes. Logical
volumes do not act on disks directly but get their disk space
from available disk space in the volume group. That means that
a logical volume may consist of available storage from multiple
physical volumes, which adds an important layer of additional
flexibility to the storage configuration.

Note

It is a good idea to avoid logical volumes from
spanning multiple physical volumes; if one of the
physical volumes breaks, all files on the LVM file
system will become inaccessible.

The actual file systems are created on the logical volumes.
Because the logical volumes are flexible with regard to size, that
makes the file systems flexible as well. If a file system is
running out of disk space, it is relatively easy to extend the file
system or to reduce it if the file system allows that. Note that in
order to resize file systems when logical volumes are resized,
the file systems must offer support for that.

Figure 15-1 gives an overview of the LVM architecture.

Figure 15-1 LVM Architecture Overview

LVM Features

There are several reasons why LVM is great. The most
important reason is that LVM offers a flexible solution for
managing storage. Volumes are no longer bound to the
restrictions of physical hard drives. If additional storage space
is needed, the volume group can easily be extended by adding a

new physical volume, so that disk space can be added to the
logical volumes. It is also possible to reduce the size of a logical
volume, but only if the file system that was created on that
volume supports the feature of reducing the size of the file
system. Ext4 supports growing and shrinking; XFS size can only
be increased.

Another important reason why administrators like using LVM is
the support for snapshots. A snapshot keeps the current state
of a logical volume and can be used to revert to a previous
situation or to make a backup of the file system on the logical
volume if the volume is open. Using snapshots is essential in
backup strategies.

LVM snapshots are created by copying the logical volume
administrative data (the metadata) that describes the current
state of files to a snapshot volume. As long as nothing changes,
from the LVM snapshot metadata the original blocks in the
original volume are addressed. When blocks are modified, the
blocks containing the previous state of the file are copied over
to the snapshot volume, which for that reason will grow. Using
this method ensures that, by accessing an LVM snapshot
volume, the exact state of the files as they were when the
snapshot was created can be accessed. Because the snapshot
will grow when files on the original volume change, when

planning for snapshots, you should make sure that a sufficient
amount of disk space is available. Also, snapshots are supposed
to be temporary: once a snapshot has served its purpose, it can
be removed.

A third important advantage of using LVM logical volumes is
the option to replace failing hardware easily. If a hard disk is
failing, data can be moved within the volume group (through
the pvmove command), the failing disk can then be removed
from the volume group, and a new hard disk can be added
dynamically, without requiring any downtime for the logical
volume itself.

Creating LVM Logical Volumes

Creating LVM logical volumes involves creating the three layers
in the LVM architecture. You first have to convert physical
devices, such as disks or partitions, into physical volumes (PVs);
then you need to create the volume group (VG) and assign PVs
to it. As the last step, you need to create the logical volume (LV)
itself. In this section, you learn what is involved in creating
these three layers.

Different utilities exist for creating LVM logical volumes. This
chapter focuses on using the command-line utilities. They are

relatively easy to use, and they are available in all
environments (whether you are running a graphical interface
or not).

Tip

You absolutely do not need to memorize the
commands discussed in this chapter for the RHCSA
exam. All you really need to remember are pv, vg,
and lv. Open a command line, type pv, and press
the Tab key twice. This will show all commands
that start with pv, which are all commands that are
used for managing physical volumes. After you
have found the command you need, run this
command with the --help option. This shows a
usage summary that lists everything you must do
to create the element you need. Example 15-1
shows an example of the pvcreate --help
command (which is explained in the next
subsection).

Example 15-1 Requesting Help for the pvcreate Command

Click here to view code image

[root@server1]# pvcreate help

[root@server1 ~]# pvcreate --help

 pvcreate - Initialize physical volume(s) for u

 pvcreate PV ...

 [-f|--force]

 [-M|--metadatatype lvm2]

 [-u|--uuid String]

 [-Z|--zero y|n]

 [--dataalignment Size[k|UNIT]]

 [--dataalignmentoffset Size[k|UNIT]

 [--bootloaderareasize Size[m|UNIT]]

 [--labelsector Number]

 [--pvmetadatacopies 0|1|2]

 [--metadatasize Size[m|UNIT]]

 [--metadataignore y|n]

 [--norestorefile]

 [--setphysicalvolumesize Size[m|UNIT

 [--reportformat basic|json]

 [--restorefile String]

 [COMMON_OPTIONS]

 Common options for lvm:

 [-d|--debug]

 [-h|--help]

 [-q|--quiet]

 [-v|--verbose]

 [-y|--yes]

 [-t|--test]

[--commandprofile String]

 [co a dp o e S g]

 [--config String]

 [--driverloaded y|n]

 [--nolocking]

 [--lockopt String]

 [--longhelp]

 [--profile String]

 [--version]

 [--devicesfile String]

 [--devices PV]

 [--nohints]

 [--journal String]

 Use --longhelp to show all options and advance

Creating the Physical Volumes

Before you can use the LVM tools to create physical volumes
(PVs), you should create a partition marked as the LVM
partition type. This is basically the same procedure as described
in Chapter 14, with the only difference being that before writing
changes to disk, you need to change the partition type.

In fdisk and gdisk, you can use t from the menu to change the
type. If you are using an MBR disk, the partition type is 8e. If
you are using a GUID disk, use the partition type 8e00. In fdisk
you can also just type lvm as the partition type to use, as the

RHEL 9 version of fdisk supports using aliases. If you are using
parted to create partitions, you need to use the set n lvm on
command from within the parted interface (where n is the
number of the partition you want to mark for use with LVM).

After creating the partition and flagging it as an LVM partition
type, you need to use pvcreate to mark it as a physical volume.
This writes some metadata to the partition, which allows it to
be used in a volume group. The entire procedure is summarized
in Exercise 15-1, in which you create a physical volume. Also
see Example 15-2 for an overview of this procedure.

Exercise 15-1 Creating a Physical Volume

To do this exercise, you need a hard disk that has free
(unpartitioned) disk space available. The recommended
method to make disk space available is to add a new hard disk
in your virtual machine environment. In this exercise, I use a
clean /dev/sdd device to create the partition. You may have to
change the device name to match your configuration.

1. Open a root shell and type fdisk /dev/sdd
2. Type p. This will show the current partition table layout.

There should be none at this point.
3. Type g to create a GPT partition table.

4. Type n to create a new partition. Press Enter when asked for
the partition number, as well as when asked for the first
sector.

5. When prompted for the last sector, type +1G to create a 1-GiB
partition.

6. Type t to change the partition type. As you only have one
partition at the moment, this partition is automatically
selected. When prompted for the partition type, enter lvm.

7. Press p to verify the partition was created successfully.
8. Repeat this procedure to create three other 1-GiB LVM

partitions for future use.
9. Press w to write the new partitions to disk and quit fdisk.

10. Use the lsblk command to verify that the new partitions
were created successfully.

11. Type pvcreate /dev/sdd1 to mark the new partition as an
LVM physical volume (see Example 15-3).

12. Type pvs to verify that the physical volume was created
successfully.

Example 15-2 Creating an LVM Partition in fdisk

Click here to view code image

[root@

[] fdi k d dd

[root@server1 ~]# fdisk /dev/sdd

Welcome to fdisk (util-linux 2.37.4).

Changes will remain in memory only, until you de

Be careful before using the write command.

Command (m for help): g

Created a new GPT disklabel (GUID:

 3BCE8E49-EFDF-9144-ACD5-290F4FCCDA07).

Command (m for help): n

Partition number (1-128, default 1):

First sector (2048-41943006, default 2048):

Last sector, +/-sectors or +/-size{K,M,G,T,P} (2

 41943006): +1G

Created a new partition 1 of type 'Linux filesys

GiB.

Command (m for help): t

Selected partition 1

Partition type or alias (type L to list all): lv

Changed type of partition 'Linux filesystem' to

Command (m for help): p

Disk /dev/sdd: 20 GiB, 21474836480 bytes, 419430

Disk model: VMware Virtual S

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512

I/O size (minimum/optimal): 512 bytes / 512 byte

Disklabel type: gpt

Disk identifier: 3BCE8E49-EFDF-9144-ACD5-290F4FC

Device Start End Sectors Size Type

/dev/sdd1 2048 2099199 2097152 1G Linux LVM

Command (m for help): w

The partition table has been altered.

Calling ioctl() to re-read partition table.

Syncing disks.

Example 15-3 Verifying the Physical Volume

Click here to view code image

[root@server1 ~]# pvcreate /dev/sdd1

 Physical volume "/dev/sdd1" successfully creat

[root@server1 ~]# pvs

 PV VG Fmt Attr PSize PFree

 /dev/sda2 rhel lvm2 a-- <19.00g 0

 /dev/sdd1 lvm2 --- 1.00g 1.00g

As an alternative to the pvs command, which shows a summary
of the physical volumes and their attributes, you can use the

pvdisplay command to show more details. Example 15-4 shows
an example of the output of this command.

Example 15-4 Sample pvdisplay Command Output

Click here to view code image

[root@server1 ~]# pvdisplay /dev/sdd1

 "/dev/sdd1" is a new physical volume of "1.00

 --- NEW Physical volume ---

 PV Name /dev/sdd1

 VG Name

 PV Size 1.00 GiB

 Allocatable NO

 PE Size 0

 Total PE 0

 Free PE 0

 Allocated PE 0

 PV UUID cjdhpJ-bRh9-fg3B-KlPh-XQ

If you want a compact overview of the current storage
configuration on your server, you might also like the lsblk
command. As shown in Example 15-5, this command gives a
hierarchical overview of which disks and partitions are used in
what LVM volume groups and logical volumes.

Example 15-5 Using lsblk for a Compact Overview of the
Current Storage Configuration

Click here to view code image

[root@server1 ~]# lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 0 20G 0 disk

├─sda1 8:1 0 1G 0 part /boot

└─sda2 8:2 0 19G 0 part

 ├─rhel-root 253:0 0 17G 0 lvm /

 └─rhel-swap 253:1 0 2G 0 lvm [SWAP]

sdb 8:16 0 20G 0 disk

├─sdb1 8:17 0 1G 0 part

├─sdb2 8:18 0 1K 0 part

├─sdb5 8:21 0 1G 0 part

└─sdb6 8:22 0 1G 0 part

sdc 8:32 0 20G 0 disk

└─sdc1 8:33 0 1G 0 part /exercise

sdd 8:48 0 20G 0 disk

└─sdd1 8:49 0 1G 0 part

sr0 11:0 1 8G 0 rom /repo

nvme0n1 259:0 0 20G 0 disk

Creating the Volume Groups

Now that the physical volume has been created, you can assign
it to a volume group (VG). It is possible to add a physical
volume to an existing volume group (which is discussed later in
this chapter), but here you learn how to create a new volume
group and add the physical volume to it. This is a simple one-
command procedure. Just type vgcreate followed by the name
of the volume group you want to create and the name of the
physical device you want to add to it. So, if the physical volume
name is /dev/sdd1, the complete command is vgcreate vgdata
/dev/sdd1. You are completely free in your choice of name for
the volume group. I like to start all volume group names with
vg, which makes it easy to find the volume groups if there are
many, but you are free to choose anything you like.

Between the previous section and the preceding paragraph, you
have learned how to create a volume group in a two-step
procedure where you first create the physical volume with the
pvcreate command and then add the volume group using the
vgcreate command. You can do this in a one-step procedure as
well (where using a separate pvcreate command will not be
necessary).

The one-step procedure is particularly useful for adding a
complete disk device). If you want to add the disk /dev/sdc, for
instance, just type vgcreate vgdata /dev/sdc to create a volume

group vgdata that contains the /dev/sdc device. When you are
doing this to add a device that has not been marked as a
physical volume yet, the vgcreate utility will automatically flag
it as a physical volume so that you can see it while using the pvs
command.

When you’re creating volume groups, a physical extent size is
used. The physical extent size defines the size of the building
blocks used to create logical volumes. A logical volume always
has a size that is a multiple of the physical extent size. If you
need to create huge logical volumes, it is more efficient to use a
big physical extent size. If you do not specify anything, a default
extent size of 4 MiB is used. The physical extent size is always
specified as a multiple of 2 MiB, with a maximum size of 128
MiB. Use the vgcreate -s option to specify the physical extent
size you want to use.

Note

When you’re working with LVM, you need to
consider the physical extent size. This is the size of
the basic building blocks used in the LVM
configuration. When you’re working with an ext4
file system, logical extents are used. The extent

sizes on LVM are in no way related to the extent
sizes that are used on the file systems.

After creating the volume group, you can request details about
the volume group using the vgs command for a short summary,
or the vgdisplay command to get more information. Example
15-6 shows an example of the output of the vgdisplay
command.

Example 15-6 Showing Current Volume Group Properties

Click here to view code image

[root@server1 ~]# vgdisplay vgdata

 --- Volume group ---

 VG Name vgdata

 System ID

 Format lvm2

 Metadata Areas 1

 Metadata Sequence No 1

 VG Access read/write

 VG Status resizable

 MAX LV 0

 Cur LV 0

 Open LV 0

 Max PV 0

Cur PV 1

 Cu

 Act PV 1

 VG Size 1020.00 MiB

 PE Size 4.00 MiB

 Total PE 255

 Alloc PE / Size 0 / 0

 Free PE / Size 255 / 1020.00 MiB

 VG UUID KrzkCo-QUFs-quJm-Z6pM-qM

Creating the Logical Volumes and File Systems

Now that the volume group has been created, you can start
creating one or more logical volumes (LVs) from it. This
procedure is slightly more complicated than the creation of
physical volumes or volume groups because there are more
choices to be made. While creating the logical volume, you must
specify a volume name and a size.

The volume size can be specified as an absolute value using the
-L option. Use, for instance, -L 5G to create an LVM volume with
a 5-GiB size. Alternatively, you can use relative sizes with the -l
option. For instance, use -l 50%FREE to use half of all available
disk space. You can also use the -l option to specify the number
of extents that you want the logical volume to be. You’ll further
need to specify the name of the volume group that the logical

volume is assigned to, and optionally (but highly
recommended), you can use -n to specify the name of the logical
volume. For instance, use lvcreate -n lvdata -l 100 vgdata to
create a logical volume with the name lvdata and a size of 100
extents and add that to the vgdata volume group. Once the
logical volume has been created, you can use the mkfs utility to
create a file system on top of it.

Understanding LVM Device Naming

Now that the logical volume has been created, you can start
using it. To do this, you need to know the device name. LVM
volume device names can be addressed in multiple ways. The
simple method is to address the device as /dev/vgname/lvname.
So, for example, if you have created a volume with the name
lvdata, which gets its available disk space from the vgdata
volume group, the device name would be /dev/vgdata/lvdata,
which is in fact a symbolic link to the device mapper name
(which is explained next).

For naming LVM volumes, another system plays a role: device
mapper. The device mapper (abbreviated as dm) is a generic
interface that the Linux kernel uses to address storage devices.
The device mapper is used by multiple device types, such as

LVM volumes, but also by software RAID and advanced
network storage devices such as multipath devices.

Device mapper devices are generated on detection and use
names that are generated while booting, like /dev/dm-0 and
/dev/dm-1. To make these devices easier to access, the device
mapper creates symbolic links in the /dev/mapper directory
that point to these meaningless device names. The symbolic
links follow the naming structure /dev/mapper/vgname-lvname.

So, the device /dev/vgdata/lvdata would also be known as
/dev/mapper/vgdata-lvdata. When working with LVM logical
volumes, you can use either of these device names. Example 15-
7 shows an overview of the different LVM device names as
provided by the device mapper. In Exercise 15-2, you learn how
to create a volume group and logical volumes.

Example 15-7 LVM Device Name Overview

Click here to view code image

[root@server1 ~]# ls -l /dev/mapper/vgdata-lvdat

lrwxrwxrwx. 1 root root 7 Sep 16 11:34 /dev/mapp

 ../dm-2

lrwxrwxrwx. 1 root root 7 Sep 16 11:34 /dev/vgda

Exercise 15-2 Creating the Volume Group and Logical Volumes

In Exercise 15-1, you created a physical volume. In this
exercise, you continue working on that physical volume and
assign it to a volume group. Then you add a logical volume
from that volume group. You can work on this exercise only
after successful completion of Exercise 15-1.

1. Open a root shell. Type pvs to verify the availability of
physical volumes on your machine. You should see the
/dev/sdd1 physical volume that was created previously.

2. Type vgcreate vgdata /dev/sdd1. This will create the volume
group with the physical volume assigned to it.

3. Type vgs to verify that the volume group was created
successfully. Also type pvs. Notice that this command now
shows the name of the physical volumes, with the names of
the volume groups they are assigned to.

4. Type lvcreate -n lvdata -l 50%FREE vgdata. This creates an
LVM logical volume with the name lvdata, which will use
50% of available disk space in the vgdata volume group.

5. Type lvs to verify that the volume was added successfully.
6. At this point, you are ready to create a file system on top of

the logical volume. Type mkfs.ext4 /dev/vgdata/lvdata to
create the file system.

7. Type mkdir /files to create a folder on which the volume can
be mounted.

8. Add the following line to the bottom of /etc/fstab:
Click here to view code image

/dev/vgdata/lvdata /files ext4 defaults 0 0

9. Type mount -a to verify that the mount works and mount
the file system.

10. Use lsblk to verify that the partition was mounted
successfully.

Table 15-2 summarizes the relevant commands for creating
logical volumes.

Table 15-2 LVM Management Essential Commands

Command Explanation

pvcreate Creates physical volumes

Command Explanation

pvs Shows a summary of available physical
volumes

pvdisplay Shows a list of physical volumes and their
properties

pvremove Removes the physical volume signature from
a block device

vgcreate Creates volume groups

vgs Shows a summary of available volume
groups

vgdisplay Shows a detailed list of volume groups and
their properties

vgremove Removes a volume group

lvcreate Creates logical volumes

Command Explanation

lvs Shows a summary of all available logical
volumes

lvdisplay Shows a detailed list of available logical
volumes and their properties

lvremove Removes a logical volume

Resizing LVM Logical Volumes

One of the major benefits of using LVM is that LVM volumes are
easy to resize, which is very useful if your file system is running
out of available disk space. If the XFS file system is used, a
volume can be increased, but not decreased, in size. Other file
systems such as Ext4 support decreasing the file system size
also. You can decrease an Ext4 file system offline only, which
means that you need to unmount it before you can resize it. In
this section, you learn how to increase the size of an LVM
logical volume. To increase the size of a logical volume, you
need to have disk space available in the volume group, so we
address that first.

Resizing Volume Groups

The most important feature of LVM flexibility lies in the fact
that it is so easy to resize the volume groups and the logical
volumes that are using disk space from the volume groups. The
vgextend command is used to add storage to a volume group,
and the vgreduce command is used to take physical volumes
out of a volume group. The procedure to add storage to a
volume group is relatively easy:

1. Make sure that a physical volume or device is available to be
added to the volume group.

2. Use vgextend to extend the volume group. The new disk
space will show immediately in the volume group.

After extending a volume group, you can use the vgs command
to verify that a physical volume has been added to the volume
group. In Example 15-8, you can see that the vgdata VG contains
two physical volumes, as indicated in the #PV column.

Example 15-8 Verifying VG Resize Operations with vgs

Click here to view code image

[root@server1 ~]# vgs

 VG #PV #LV #SN Attr VSize

 centos 1 2 0 wz--n- <19.00g

 vgdata 2 1 0 wz--n- 1020.00m

Resizing Logical Volumes and File Systems

Like volume groups can be extended with the vgextend
command, logical volumes can be extended with the lvextend
command. This command has a very useful option -r to take
care of extending the file systems on the logical volume at the
same time; it is recommended to use this option and not the
alternative approach that separately extends the logical
volumes and the file systems on top of the logical volumes. Most
file system resizing operations can be done online if the file
system needs to be extended without unmounting it.

To grow the logical volume size, use lvextend or lvresize,
followed by the -r option to resize the file system used on it.
Then specify the size you want the resized volume to be. The
easiest and most intuitive way to do that is by using -L followed
by a + sign and the amount of disk space you want to add, as in
lvresize -L +1G -r /dev/vgdata/lvdata. An alternative way to
resize the logical volume is by using the -l option. This option is
followed either by the number of extents that are added to the
logical volume or by the absolute or relative percentage of

extents in the volume group that will be used. You can, for
example, use the following commands to resize the logical
volume:

lvresize -r -l 75%VG /dev/vgdata/lvdata Resizes the logical
volume so that it will take 75% of the total disk space in the
volume group. Notice that if currently the logical volume is
using more than 75% of the volume group disk space, this
command will try to reduce the logical volume size!
lvresize -r -l +75%VG /dev/vgdata/lvdata Tries to add 75% of
the total size of the volume group to the logical volume. This
will work only if currently at least 75% of the volume group
is unused. (Notice the difference with the previous
command.)
lvresize -r -l +75%FREE /dev/vgdata/lvdata Adds 75% of all
free disk space to the logical volume.
lvresize -r -l 75%FREE /dev/vgdata/lvdata Resizes the
logical volume to a total size that equals 75% of the amount
of free disk space, which may result in an attempt to reduce
the logical volume size. (Notice the difference with the
previous command.)

A logical extent is the logical building block used when
creating logical volumes, and it maps to a physical extent, the
size of which can be specified when creating a volume group.
All resize operations need to match complete logical extents.
You will sometimes notice that the resize size is rounded up or
down to the logical extent size. You can also specify the number
of logical extents that need to be added or removed directly by
using the -l option with the lvresize command.

As you can see, resizing a logical volume has many options, and
you need to take care to use the right options because it is easy
to make a mistake! In Exercise 15-3, you learn how to resize
logical volumes and the file systems used on top of them.

Note

The size of an XFS file system cannot be decreased;
it can only be increased. If you need a file system
that can be shrunk in size, use Ext4, not XFS.

Exercise 15-3 Resizing Logical Volumes

In Exercises 15-1 and 15-2, you created a physical volume,
volume group, and logical volume. In this exercise, you extend

the size of the logical volume and the file system used on top of
it.

1. Type pvs and vgs to show the current physical volume and
volume group configuration.

2. Use lsblk to verify that you have an unused partition
available that can be added to the volume group. In Exercise
15-1 you created the partition /dev/sdd2 for this purpose.

3. Type vgextend vgdata /dev/sdd2 to extend vgdata with the
total size of the /dev/sdd2 device.

4. Type vgs to verify that the available volume group size has
increased.

5. Type lvs to verify the current size of the logical volume
lvdata.

6. Type df -h to verify the current size of the file system on
lvdata.

7. Type lvextend -r -l +50%FREE /dev/vgdata/lvdata to extend
lvdata with 50% of all available disk space in the volume
group.

8. Type lvs and df -h again to verify that the added disk space
has become available.

Reducing Volume Groups

If a volume group consists of multiple PVs, a PV can be removed
from the VG if the remaining PVs have sufficient free space to
allocate the extents it currently uses. This procedure will not
work if the remaining PVs are fully used already. Removing a
PV from a VG is a two-step procedure. First, use pvmove to
move used extents from the PV that you want to remove to any
of the remaining volumes. Next, use vgreduce to complete the
PV removal. In Exercise 15-4 you can practice this.

Exercise 15-4 Removing a VG from a PV

1. Use fdisk to create two partitions with a size of 2 GiB each,
and set the type to lvm. In the remainder of this exercise, I’ll
assume you’re using the partitions /dev/sdd3 and dev/sdd4
for this purpose.

2. Use vgcreate vgdemo /dev/sdd3 to create a volume group.
3. Type lvcreate -L 1G -n lvdemo /dev/vgdemo to create a

logical volume with a size of 1 GiB. Notice that it is essential
not to use all of the available disk space!

4. Type vgextend vgdemo /dev/sdd4 to extend the volume
group.

5. Use pvs to verify extent usage on /dev/sdd3 and /dev/sdd4.
You should see that sdd3 is using about half of its extents,
and all extents on /dev/sdd4 are still unused.

6. Now type lvextend -L +500M /dev/vgdemo/lvdemo
/dev/sdd4 to grow the lvdemo logical volume. Notice that
you have to add /dev/sdd4 to ensure that free extents will be
taken from the sdd4 device.

7. Type pvs to verify current extent usage on the devices.
8. Create a file system, using mkfs.ext4 /dev/vgdemo/lvdemo
9. Temporarily mount the logical volume, using mount

/dev/vgdemo/lvdemo /mnt
10. Use df -h to verify disk space usage.
11. Use dd if=/dev/zero of=/mnt/bigfile bs=1M count=1100. The

size ensures that file data is on both PVs.
12. Now you can prepare sdd4 for removal. As a first step, you

need to move all extents it uses to unused extents on sdd1.
Type the following to do so: pvmove -v /dev/sdd4 /dev/sdd3.
This can take a minute or two to complete.

13. Type pvs, which will show that /dev/sdd4 is now unused.
14. At this point you can remove the unused physical volume,

using vgreduce vgdemo /dev/sdd4

Configuring Stratis

In RHEL 9, Red Hat is offering Stratis as an advanced storage
solution. Stratis is a so-called volume-managing file system, and
it introduces advanced storage features that were not available

prior to RHEL 8. By doing so, Red Hat intends to offer an
alternative to the Btrfs and ZFS file systems that are used in
other environments. The following features are offered by
Stratis:

Thin provisioning: This feature enables a Stratis file system
to present itself to users as much bigger than it really is. This
is useful in many environments, such as virtual desktops,
where each user may see 20 GiB of available storage in total
although a much lower amount is actually provisioned to
each user.
Snapshots: A Stratis snapshot allows users to take a
“picture” of the current state of a file system. This snapshot
makes it easy to revert to the previous state of a file system,
rolling back any changes that have been made.
Cache tier: Cache tier is a Ceph storage feature that ensures
that data can be stored physically closer to the Ceph client,
which makes data access faster.
Programmatic API: The programmatic API ensures that
storage can easily be configured and modified through API
access. This is particularly interesting in cloud environments,
where setting up storage directly from cloud-native
applications is extremely useful.
Monitoring and repair: Whereas older file systems need
tools like fsck to verify the integrity of the file system, Stratis

has built-in features to monitor the health of the file system
and repair it if necessary.

Understanding Stratis Architecture

The lowest layer in the Stratis architecture is the pool. From a
functional perspective, the Stratis pool is comparable to an LVM
volume group. A pool represents all the available storage and
consists of one or more storage devices, which in a Stratis
environment are referred to as blockdev. These block devices
may not be thin provisioned at the underlying hardware level.
Stratis creates a /dev/stratis/poolname directory for each pool.

From the Stratis pool, XFS file systems are created. Note that
Stratis only works with XFS, and the XFS file system it uses is
integrated with the Stratis volume. When a file system is
created, no size is specified, and each file system can grow up to
the size of all the available storage space in the pool. Stratis file
systems are always thin provisioned. The thin volume
automatically grows as more data is added to the file system.

Creating Stratis Storage

Creating Stratis volumes is a multistep process. This section
provides a high-level overview, and then Exercise 15-5 in the
following section guides you through the procedure. You start

by creating a pool. Once the pool has been added, you can
create file systems from it. Before you begin, make sure that the
block devices you’re going to use in Stratis have a minimal size
of 5 GiB. Each Stratis file system occupies a minimum of 527
MiB of disk space, even if no data has been copied to the file
system.

1. Install the Stratis software using dnf by installing the stratis-
cli and stratisd packages.

2. Start and enable the user-space daemon, using systemctl
enable --now stratisd.

3. Once the daemon is running, use the stratis pool create
command to create the pool that you want to work with. For
instance, use stratis pool create mypool /dev/sde to create a
pool that is based on the block device /dev/sdd. You can add
additional block devices later, using stratis pool add-data
poolname blockdevname, as in stratis pool add-data
mypool /dev/sde.

4. Once you have created the pool, add a file system using
stratis fs create poolname fsname.

5. To verify that all was created successfully, use the stratis fs
list command.

6. After creating the file system, you can mount it. To mount a
Stratis file system through /etc/fstab, you must use the UUID;
using the device name is not supported. Also, when mounting

the Stratis volume through /etc/fstab, include the mount
option x-systemd.requires=stratisd.service to ensure that
the Systemd waits to activate this device until the stratisd
service is loaded. Without this option you won’t be able to
boot your system anymore.

Managing Stratis

After creating the Stratis file system, you can perform several
different management tasks. To start with, you can dynamically
extend the pool, using stratis pool add-data. Also, you need to
monitor Stratis volumes using Stratis-specific tools, as the
traditional Linux tools cannot handle the thin-provisioned
volumes. The following commands are available:

stratis blockdev: Shows information about all block devices
that are used for Stratis.
stratis pool: Gives information about Stratis pools. Note in
particular the Physical Used parameter, which should not
come too close to the Physical Size parameter.
stratis filesystem: Enables you to monitor individual file
systems.

Another Stratis feature that you may want to manage is the
snapshot. A snapshot contains the state of the file system at the

moment the snapshot was created. After creation, the snapshot
can be modified. It’s also good to know that the snapshot and its
origin are not linked, which allows the snapshot to live longer
than the file system it was created from. This is fundamentally
different from, for instance, LVM snapshots, which cannot stay
alive if the volume they are linked to is removed.

In Exercise 15-5, you set up an environment with Stratis
volumes.

Exercise 15-5 Managing Stratis Volumes

You need one dedicated disk with a minimal size of 5 GiB to
perform the steps in this exercise. In this exercise, the disk
name /dev/sde is used as an example. Replace this name with
the disk device name that is presented on your hardware.

1. Type dnf install stratisd stratis-cli to install all the required
packages.

2. Type systemctl enable --now stratisd to enable the Stratis
daemon.

3. Type stratis pool create mypool /dev/sde to add the entire
disk /dev/sde to the storage pool.

4. Type stratis pool list to verify successful creation of the
pool.

5. Type stratis fs create mypool stratis1 to create the first
Stratis file system. Note that you don’t have to specify a file
system size.

6. Type stratis fs list to verify the creation of the file system.
7. Type mkdir /stratis1 to create a mount point for the Stratis

file system.
8. Type stratis fs list to find the Stratis volume UUID.
9. Add the following line to /etc/fstab to enable the volume to

be mounted automatically. Make sure to use the UUID name
that is used by your Stratis file system.
Click here to view code image

UUID=xxx /stratis1 xfs defaults,x-systemd.requ

service 0 0

10. Type mount -a to mount the Stratis volume. Use the mount
command to verify that this procedure worked successfully.

11. Type cp /etc/[a-f]* /stratis1 to copy some files to the Stratis
volume.

12. Type stratis filesystem snapshot mypool stratis1 stratis1-
snap to create a snapshot of the volume you just created.
Note that this command may take up to a minute to
complete.

13. Type stratis filesystem list to get statistics about current file
system usage.

14. Type rm -f /stratis1/a* to remove all files that have a name
starting with a.

15. Type mount /dev/stratis/mypool/stratis1-snap /mnt and
verify that the files whose names start with a are still
available in the /mnt directory.

16. Reboot your server. After reboot, verify that the Stratis
volume is still automatically mounted.

Summary

In this chapter, you learned how to work with advanced storage
on RHEL 9. First, you read how LVM is used to bring flexibility
to storage. By using LVM, you get the advantages of volumes
that can be resized easily and multidevice logical volumes.
Next, you were introduced to Stratis, the volume-managing file
system. Stratis brings next-generation storage features to RHEL
9, and by default creates thin-provisioned file systems.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the
Introduction, you have several choices for exam preparation:

the end-of-chapter labs; the memory tables in Appendix C;
Chapter 27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the
Key Topic icon in the margin of the page. Table 15-3 lists a
reference for these key topics and the page number on which
each is found.

Table 15-3 Key Topics for Chapter 15

Key Topic
Element

Description Page

Figure 15-1 LVM Architecture Overview 347

Table 15-2 LVM Management Essential
Commands

357

List LVM lvresize commands 359

Complete Tables and Lists from Memory

Print a copy of Appendix C, “Memory Tables” (found on the
companion website), or at least the section for this chapter, and
complete the tables and lists from memory. Appendix D,
“Memory Tables Answer Key,” includes completed tables and
lists to check your work.

Define Key Terms

Define the following key terms from this chapter and check
your answers in the glossary:

snapshot

physical volume (PV)

volume group (VG)

physical extent

logical volume (LV)

device mapper

logical extent

Stratis

Review Questions

The questions that follow are meant to help you test your
knowledge of concepts and terminology and the breadth of
your knowledge. You can find the answers to these questions in
Appendix A.

. Which partition type is used on a GUID partition that needs to
be used in LVM?

. Which command enables you to create a volume group with the
name vgroup that contains the physical device /dev/sdb3 and
uses a physical extent size of 4 MiB?

. Which command shows a short summary of the physical
volumes on your system as well as the volume group to which
these belong?

. What do you need to do to add an entire hard disk /dev/sdd to
the volume group vgroup?

. Which command enables you to create a logical volume lvvol1
with a size of 6 MiB?

. Which command enables you to add 100 MB to the logical
volume lvvol1, assuming that the disk space is available in the
volume group?

. Which two commands do you use to remove a physical volume
from a volume group?

. When working with Stratis, what line would you add to
/etc/fstab to mount the Stratis volume?

. Which command do you use to create a Stratis pool that is
based on the block device /dev/sdd?

. How do you format a Stratis volume with the Ext4 file system?

End-of-Chapter Labs

To complete the following end-of-chapter labs, you need a
dedicated disk device. Either use a USB thumb drive or add a
new virtual disk to your virtual environment before starting.

Lab 15.1

1. Create a 500-MB logical volume named lvgroup. Format it
with the XFS file system and mount it persistently on /groups.
Reboot your server to verify that the mount works.

2. After rebooting, add another 250 MB to the lvgroup volume
that you just created. Verify that the file system resizes as
well while resizing the volume.

3. Verify that the volume extension was successful.

Lab 15.2

1. Create a Stratis pool with a size of 5 GiB. In this pool, create
two Stratis file systems and ensure that they are
automatically mounted.

2. Add an additional block device to the Stratis pool and verify
that the size of the pool was successfully extended.

3. Ensure that the new Stratis device is automatically mounted
on the directory /stratis while rebooting.

Part III

Performing Advanced System
Administration Tasks

Chapter 16

Basic Kernel Management

The following topics are covered in this chapter:

Understanding the Role of the Linux Kernel
Working with Kernel Modules
Upgrading the Linux Kernel

The Linux kernel is the heart of the Linux operating system. It
takes care of many things, including hardware management. In
this chapter, you learn all you need to know about the Linux
kernel from an RHCSA perspective. In fact, you even learn a bit
more. The topics covered in this chapter are not included in the
current RHCSA exam objectives, but any serious Linux
administrator should be able to deal with issues related to the
kernel, so I address them in this chapter.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess
whether you should read this entire chapter thoroughly or
jump to the “Exam Preparation Tasks” section. If you are in
doubt about your answers to these questions or your own
assessment of your knowledge of the topics, read the entire

chapter. Table 16-1 lists the major headings in this chapter and
their corresponding “Do I Know This Already?” quiz questions.
You can find the answers in Appendix A, “Answers to the ‘Do I
Know This Already?’ Quizzes and Review Questions.”

Table 16-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Understanding the Role of the Linux Kernel 1–4

Working with Kernel Modules 5–9

Upgrading the Linux Kernel 10

. What causes a tainted kernel?

1. A kernel driver that is not available as an open source driver
2. A driver that was developed for a different operating system

but has been ported to Linux
3. A driver that has failed
4. An unsupported driver

. Which command shows kernel events since booting?

1. logger
2. dmesg
3. klogd
4. journald

. Which command enables you to find the actual version of the
kernel that is used?

1. uname -r
2. uname -v
3. procinfo -k
4. procinfo -l

. Which command shows the current version of RHEL you are
using?

1. uname -r
2. cat /proc/rhel-version
3. cat /etc/redhat-release
4. uname -k

. What is the name of the process that helps the kernel to
initialize hardware devices properly?

1. systemd-udevd
2. hwinit

3. udev
4. udevd

. Where does your system find the default rules that are used for
initializing new hardware devices?

1. /etc/udev/rules.d
2. /usr/lib/udev/rules.d
3. /usr/lib/udev.d/rules
4. /etc/udev.d/rules

. Which command should you use to unload a kernel module,
including all of its dependencies?

1. rmmod
2. insmod -r
3. modprobe -r
4. modprobe

. Which command enables you to see whether the appropriate
kernel modules have been loaded for hardware in your server?

1. lsmod
2. modprobe -l
3. lspci -k
4. lspci

. Where do you specify a kernel module parameter to make it
persistent?

1. /etc/modules.conf
2. /etc/modprobe.conf
3. /etc/modprobe.d/somefilename
4. /usr/lib/modprobe.d/somefilename

. Which statements about updating the kernel are not true?

1. The dnf update kernel command will install a new kernel
and not update it.

2. The dnf install kernel command will install a new kernel
and keep the old kernel.

3. The kernel package should be set as a dnf-protected package
to ensure that after an update the old kernel is still available.

4. After you have installed a new kernel version, you must run
the grub2-mkconfig command to modify the GRUB 2 boot
menu so that it shows the old kernel and the newly installed
kernel.

Foundation Topics

Understanding the Role of the Linux Kernel

The Linux kernel is the heart of the operating system. It is the
layer between the user who works with Linux from a shell
environment and the hardware that is available in the
computer on which the user is working. The kernel manages
the I/O instructions it receives from the software and translates
them into the processing instructions that are executed by the
central processing unit and other hardware in the computer.
The kernel also takes care of handling essential operating
system tasks. One example of such a task is the scheduler that
makes sure any processes that are started on the operating
system are handled by the CPU.

Understanding the Use of Kernel Threads and Drivers

The operating system tasks that are performed by the kernel
are implemented by different kernel threads. Kernel threads
are easily recognized with a command like ps aux. The kernel
thread names are listed between square brackets (see Example
16-1).

Example 16-1 Listing Kernel Threads with ps aux

Click here to view code image

[root@server1 ~]# ps aux | head -n 20

USER PID %CPU %MEM VSZ RSS TTY STAT

root 1 1.8 0.6 52980 6812 ? Ss 11

systemd/systemd --switched-root --system --deser

root 2 0.0 0.0 0 0 ? S 11:44 0:

root 3 0.0 0.0 0 0 ? S 11:44 0:

root 4 0.0 0.0 0 0 ? S 11:44 0:

root 5 0.0 0.0 0 0 ? S< 11:44 0:

root 6 0.0 0.0 0 0 ? S 11:44 0:

root 7 0.1 0.0 0 0 ? S 11:44 0:

root 8 0.0 0.0 0 0 ? S 11:44 0:

root 9 0.0 0.0 0 0 ? S 11:44 0:

root 10 0.0 0.0 0 0 ? S 11:44 0:

root 11 0.0 0.0 0 0 ? S 11:44 0:

root 12 0.0 0.0 0 0 ? S 11:44 0:

root 13 0.0 0.0 0 0 ? S 11:44 0:

root 14 0.0 0.0 0 0 ? S 11:44 0:

root 15 0.0 0.0 0 0 ? S 11:44 0:

root 16 0.0 0.0 0 0 ? S 11:44 0:

root 17 0.0 0.0 0 0 ? S 11:44 0:

root 18 0.0 0.0 0 0 ? S 11:44 0:

root 19 0.0 0.0 0 0 ? S 11:44 0:

Another important task of the Linux kernel is hardware
initialization. To make sure that this hardware can be used, the
Linux kernel uses drivers. Every piece of hardware contains

specific features, and to use these features, a driver must be
loaded. The Linux kernel is modular, and drivers are loaded as
kernel modules, which you’ll read more about later in this
chapter.

In some cases, the availability of drivers is an issue because
hardware manufacturers are not always willing to provide
open source drivers that can be integrated well with the Linux
kernel. That can result in a driver that does not provide all the
functionality that is provided by the hardware.

If a manufacturer is not willing to provide open source drivers,
an alternative is to work with closed source drivers. Although
these make it possible to use the hardware in Linux, the
solution is not ideal. Because a driver performs privileged
instructions within the kernel space, a badly functioning driver
may crash the entire kernel. If this happens with an open
source driver, the Linux kernel community can help debug the
problem and make sure that the issue is fixed. If it happens
with a closed source driver, the Linux kernel community cannot
do anything. But, a proprietary driver may provide access to
features that are not provided by its open source equivalent.

To make it easy to see whether a kernel is using closed source
drivers, the concept of the tainted kernel is used. A tainted

kernel is a kernel that contains closed source drivers. The
concept of tainted kernels helps in troubleshooting drivers. If
your RHEL kernel appears to be tainted, Red Hat support can
identify it as a tainted kernel and recognize which driver is
tainting it. To fix the problem, Red Hat might ask you to take out
the driver that is making it a tainted kernel.

Analyzing What the Kernel Is Doing

To help analyze what the kernel is doing, the Linux operating
systems provide some tools:

The dmesg utility
The /proc file system
The uname utility

The first utility to consider if you require detailed information
about the kernel activity is dmesg. This utility shows the
contents of the kernel ring buffer, an area of memory where the
Linux kernel keeps its recent log messages. An alternative
method to get access to the same information in the kernel ring
buffer is the journalctl --dmesg command, which is equivalent

to journalctl -k. In Example 16-2, you can see a part of the
result of the dmesg command.

Example 16-2 Analyzing Kernel Activity Using dmesg

Click here to view code image

[8.153928] sd 0:0:0:0: Attached scsi generic

[8.154289] sd 0:0:1:0: Attached scsi generic

[8.154330] sd 0:0:2:0: Attached scsi generic

[8.154360] sd 0:0:3:0: Attached scsi generic

[8.154421] sr 4:0:0:0: Attached scsi generic

[8.729016] ip_tables: (C) 2000-2006 Netfilter

[8.850599] nf_conntrack version 0.5.0 (7897 b

[8.939613] ip6_tables: (C) 2000-2006 Netfilte

[9.160092] Ebtables v2.0 registered

[9.203710] Bridge firewalling registered

[9.586603] IPv6: ADDRCONF(NETDEV_UP): eno1677

[9.587520] e1000: eno16777736 NIC Link is Up

 Flow Control: None

[9.589066] IPv6: ADDRCONF(NETDEV_CHANGE): eno

 ready

[10.689365] Rounding down aligned max_sectors

 4294967288

[5158.470480] Adjusting tsc more than 11% (694

[21766.132181] e1000: eno16777736 NIC Link is Do

[21770.391597] e1000: eno16777736 NIC Link is Up

p

 Duplex, Flow Control: None

[21780.434547] e1000: eno16777736 NIC Link is Do

In the dmesg output, all kernel-related messages are shown.
Each message starts with a time indicator that shows at which
specific second the event was logged. This time indicator is
relative to the start of the kernel, which allows you to see
exactly how many seconds have passed between the start of the
kernel and a particular event. (Notice that the journalctl -k and
journalctl --dmesg commands show clock time, instead of time
that is relative to the start of the kernel.) This time indicator
gives a clear indication of what has been happening and at
which time it has happened.

Another valuable source of information is the /proc file system.
The /proc file system is an interface to the Linux kernel, and it
contains files with detailed status information about what is
happening on your server. Many of the performance-related
tools mine the /proc file system for more information.

As an administrator, you will find that some of the files in /proc
are very readable and contain status information about the
CPU, memory, mounts, and more. Take a look, for instance, at
/proc/meminfo, which gives detailed information about each

memory segment and what exactly is happening in these
memory segments.

A last useful source of information is the uname command.
This command gives different kinds of information about your
operating system. Type, for instance, uname -a for an overview
of all relevant parameters of uname -r to see which kernel
version currently is used. This information also shows when
you are using the hostnamectl status command, which shows
useful additional information as well (see Example 16-3).

Tip

On some occasions, you might need to know
specific information about the RHEL version you
are using. To get that information, run the cat
/etc/redhat-release command and review its
output; it will tell you which Red Hat version you
are using and which update level is applied.

Example 16-3 Getting More Information About the System

Click here to view code image

[root@server1 ~]# hostnamectl status

 Static hostname: server1.example.com

 Icon name: computer-vm

 Chassis: vm ¬

 Machine ID: d04b1233036748edbcf73adc926c98

 Boot ID: 21e4e2e53648413dbe7975f64f570e

 Virtualization: vmware

Operating System: Red Hat Enterprise Linux 9.0 (

 CPE OS Name: cpe:/o:redhat:enterprise_linux

 Kernel: Linux 5.14.0-70.13.1.el9_0.x86

 Architecture: x86-64

 Hardware Vendor: VMware, Inc.

 Hardware Model: VMware Virtual Platform

Working with Kernel Modules

In the old days of Linux, kernels had to be compiled to include
all drivers that were required to support computer hardware.
Other specific functionality needed to be compiled into the
kernel as well. Since the release of Linux kernel 2.0 in 1996,
kernels are no longer compiled but modular. A modular kernel
consists of a relatively small core kernel and provides driver
support through modules that are loaded when required.

Modular kernels are very efficient, as they include only those
modules that really are needed.

Tip

A kernel module implements specific kernel
functionality. Kernel modules are used to load
drivers that allow proper communications with
hardware devices, but are not limited to loading
hardware drivers alone. For example, file system
support is loaded as modules. Other kernel
features can be loaded as modules as well.

Understanding Hardware Initialization

The loading of drivers is an automated process that roughly
goes like this:

1. During boot, the kernel probes available hardware.
2. Upon detection of a hardware component, the systemd-

udevd process takes care of loading the appropriate driver
and making the hardware device available.

3. To decide how the devices are initialized, systemd-udevd
reads rules files in /usr/lib/udev/rules.d. These are system-
provided rules files that should not be modified.

4. After processing the system-provided udev rules files,
systemd-udevd goes to the /etc/udev/rules.d directory to
read any custom rules if these are available.

5. As a result, required kernel modules are loaded
automatically, and status about the kernel modules and
associated hardware is written to the sysfs file system, which
is mounted on the /sys directory. The Linux kernel uses this
pseudo file system to track hardware-related settings.

The systemd-udevd process is not a one-time-only process; it
continuously monitors plugging and unplugging of new
hardware devices. To get an impression of how this works, as
root you can type the command udevadm monitor. This lists
all events that are processed while activating new hardware
devices. For instance, if you plug in a USB device while this
command is active, you can see exactly what’s happening. Press
Ctrl-C to close the udevadm monitor output.

Example 16-4 shows output of the udevadm monitor
command. In this command, you can see how features that are
offered by the hardware are discovered automatically by the
kernel and systemd-udevd working together. Each phase of the
hardware probing is concluded by the creation of a file in the
/sys file system. Once the hardware has been fully initialized,
you can also see that some kernel modules are loaded.

Note

Although useful to know, hardware initialization is
not included in the current RHCSA objectives.

Example 16-4 Output of the udevadm monitor Command

Click here to view code image

[root@server2 ~]# udevadm monitor

monitor will print the received events for:

UDEV - the event which udev sends out after rule

KERNEL - the kernel uevent

KERNEL[132406.831270] add

 /devices/pci0000:00/0000:00:11.0/0000:02:04.0/

KERNEL[132406.974110] add

 /devices/pci0000:00/0000:00:11.0/0000:02:04.0/

UDEV [132406.988182] add

 /devices/pci0000:00/0000:00:11.0/0000:02:04.0/

KERNEL[132406.999249] add /module/usb_storage (m

UDEV [132407.001203] add /module/usb_storage (mo

KERNEL[132407.002559] add

 /devices/pci0000:00/0000:00:11.0/0000:02:04.0/

 host33 (scsi)

UDEV [132407.002575] add

 /devices/pci0000:00/0000:00:11.0/0000:02:04.0/

p

KERNEL[132407.002583] add

 /devices/pci0000:00/0000:00:11.0/0000:02:04.0/

 host33/scsi_host/host33 (scsi_host)

KERNEL[132407.002590] add /bus/usb/drivers/usb-s

UDEV [132407.004479] add /bus/usb/drivers/usb-st

UDEV [132407.005798] add

 /devices/pci0000:00/0000:00:11.0/0000:02:04.0/

 host33 (scsi)

UDEV [132407.007385] add

 /devices/pci0000:00/0000:00:11.0/0000:02:04.0/

 host33/scsi_host/host33 (scsi_host)

KERNEL[132408.008331] add

 /devices/pci0000:00/0000:00:11.0/0000:02:04.0/

 host33/target33:0:0 (scsi)

KERNEL[132408.008355] add

 /devices/pci0000:00/0000:00:11.0/0000:02:04.0/

 host33/target33:0:0/33:0:0:0 (scsi)

...

KERNEL[132409.381930] add /module/fat (m

KERNEL[132409.381951] add /kernel/slab/f

KERNEL[132409.381958] add /kernel/slab/f

KERNEL[132409.381964] add /module/vfat (

UDEV [132409.385090] add /module/fat (m

UDEV [132409.385107] add /kernel/slab/f

UDEV [132409.385113] add /kernel/slab/f

UDEV [132409.386110] add /module/vfat (

Managing Kernel Modules

Linux kernel modules normally are loaded automatically for
the devices that need them, but you will on rare occasions have
to load the appropriate kernel modules manually. A few
commands are used for manual management of kernel
modules. Table 16-2 provides an overview.

Table 16-2 Linux Kernel Module Management Overview

Command Use

lsmod Lists currently loaded kernel modules

modinfo Displays information about kernel modules

modprobe Loads kernel modules, including all of their
dependencies

modprobe
-r

Unloads kernel modules, considering kernel
module dependencies

An alternative method of loading kernel modules is through the
/etc/modules-load.d directory. In this directory, you can create
files to load modules automatically that are not already loaded
by the systemd-udevd method. For default modules that should
always be loaded, this directory has a counterpart in
/usr/lib/modules-load.d.

The first command to use when working with kernel modules is
lsmod. This command lists all kernel modules that currently
are used, including the modules by which this specific module
is used. Example 16-5 shows the output of the first ten lines of
the lsmod command.

Example 16-5 Listing Loaded Modules with lsmod

Click here to view code image

[root@server1 ~]# lsmod | head

Module Size Used by

nls_utf8 16384 1

isofs 45056 1

fuse 126976 3

rfcomm 90112 6

xt_CHECKSUM 16384 1

ipt_MASQUERADE 16384 1

xt_conntrack 16384 1

ipt_REJECT 16384 1

nft_counter 16384 16

Tip

Many Linux commands show their output in
different columns, and it is not always clear which
column is used to show which kind of information.
Most of these commands have a header line on the
first line of command output. So, if in the output of
any command you are not sure what you are
seeing, pipe the output of the command through
head to see whether there is a header file, or pipe
the command output to less, which allows you to
page up to the first line of command output easily.

If you want to have more information about a specific kernel
module, you can use the modinfo command. This gives
complete information about specific kernel modules, including
two interesting sections: the alias and the parms. A module
alias is another name that can also be used to address the
module. The parms lines refer to parameters that can be set
while loading the module. (In the section “Managing Kernel
Module Parameters” later in this chapter, you learn how to

work with kernel module parameters.) Example 16-6 shows
partial output of the modinfo e1000 command.

Example 16-6 Showing Module Information with modinfo

Click here to view code image

[root@server1 ~]# modinfo e1000

filename: /lib/modules/5.14.0-70.13.1.el9_

 drivers/net/ethernet/intel/e1000/e1000.ko.xz

license: GPL v2

description: Intel(R) PRO/1000 Network Driver

author: Intel Corporation, <linux.nics@i

rhelversion: 9.0

srcversion: 55BD0A50779C0A80232DEDD

alias: pci:v00008086d00002E6Esv*sd*bc*s

alias: pci:v00008086d000010B5sv*sd*bc*s

alias: pci:v00008086d00001099sv*sd*bc*s

…

depends:

retpoline: Y

intree: Y

name: e1000

vermagic: 5.14.0-70.13.1.el9_0.x86_64 SMP

 modversions

sig_id: PKCS#7

signer: Red Hat Enterprise Linux kernel

g p

sig_key: 41:63:79:65:D6:4F:EC:E6:A4:AB:67

 :CA:C6

sig_hashalgo: sha256

signature:

…

parm: TxDescriptors:Number of transmit

 of int)

parm: RxDescriptors:Number of receive

parm: Speed:Speed setting (array of in

parm: Duplex:Duplex setting (array of

parm: AutoNeg:Advertised auto-negotiat

 int)

parm: FlowControl:Flow Control setting

parm: XsumRX:Disable or enable Receive

 (array of int)

parm: TxIntDelay:Transmit Interrupt De

parm: TxAbsIntDelay:Transmit Absolute

 (array of int)

parm: RxIntDelay:Receive Interrupt Del

parm: RxAbsIntDelay:Receive Absolute I

 of int)

parm: InterruptThrottleRate:Interrupt

 (array of int)

parm: SmartPowerDownEnable:Enable PHY

 (array of int)

parm: copybreak:Maximum size of packet

 new buffer on receive (uint)

parm: debug:Debug level (0=none,...,16

To manually load and unload modules, you can use the
modprobe and modprobe -r commands. On earlier Linux
versions, you may have used the insmod and rmmod
commands. These should no longer be used because they do not
load kernel module dependencies. In Exercise 16-1, you learn
how to manage kernel modules using these commands.

Exercise 16-1 Managing Kernel Modules from the Command
Line

1. Open a root shell and type lsmod | less. This shows all
kernel modules currently loaded.

2. Type modprobe vfat to load the vfat kernel module.
3. Verify that the module is loaded by using the lsmod | grep

vfat command. You can see that the module is loaded, as
well as some of its dependencies.

4. Type modinfo vfat to get information about the vfat kernel
module. Notice that it does not have any parameters.

5. Type modprobe -r vfat to unload the vfat kernel module
again.

6. Type modprobe -r xfs to try to unload the xfs kernel
module. Notice that you get an error message because the

kernel module currently is in use.

Checking Driver Availability for Hardware Devices

On modern Linux servers, many hardware devices are
supported. On occasion, you might find that some devices are
not supported properly because their modules are not currently
loaded. The best way to find out whether this is the case for
your hardware is by using the lspci command. If used without
arguments, it shows all hardware devices that have been
detected on the PCI bus. A very useful argument is -k, which
lists all kernel modules that are used for the PCI devices that
were detected. Example 16-7 shows sample output of the lspci -
k command.

Example 16-7 Checking Kernel Module Availability

Click here to view code image

[root@server1 ~]# lspci -k | head

00:00.0 Host bridge: Intel Corporation 440BX/ZX/

 Host bridge (rev 01)

 Subsystem: VMware Virtual Machine Chipset

 Kernel driver in use: agpgart-intel

00:01.0 PCI bridge: Intel Corporation 440BX/ZX/D

g p

 bridge (rev 01)

00:07.0 ISA bridge: Intel Corporation 82371AB/EB

 Subsystem: VMware Virtual Machine Chipset

00:07.1 IDE interface: Intel Corporation 82371AB

 01)

 Subsystem: VMware Virtual Machine Chipset

 Kernel driver in use: ata_piix

 Kernel modules: ata_piix, ata_generic

00:07.3 Bridge: Intel Corporation 82371AB/EB/MB

 Subsystem: VMware Virtual Machine Chipset

 Kernel modules: i2c_piix4

00:07.7 System peripheral: VMware Virtual Machin

 Interface (rev 10)

 Subsystem: VMware Virtual Machine Communi

 Kernel driver in use: vmw_vmci

 Kernel modules: vmw_vmci

00:0f.0 VGA compatible controller: VMware SVGA I

 Subsystem: VMware SVGA II Adapter

 Kernel driver in use: vmwgfx

 Kernel modules: vmwgfx

00:10.0 SCSI storage controller: LSI Logic / Sym

 PCI-X Fusion-MPT Dual Ultra320 SCSI (rev 01)

 Subsystem: VMware LSI Logic Parallel SCSI

 Kernel driver in use: mptspi

 Kernel modules: mptspi

00:11.0 PCI bridge: VMware PCI bridge (rev 02)

00:15.0 PCI bridge: VMware PCI Express Root Port

g p

 Kernel driver in use: pcieport

If you discover that PCI devices were found for which no kernel
modules could be loaded, you are probably dealing with a
device that is not supported. You can try to find a closed source
kernel module, but you should realize that doing so might
endanger the stability of your kernel. A much better approach
is to check with your hardware vendor that Linux is fully
supported before you purchase specific hardware.

Managing Kernel Module Parameters

Occasionally, you might want to load kernel modules with
specific parameters. To do so, you first need to find out which
parameter you want to use. If you have found the parameter
you want to use, you can load it manually, specifying the name
of the parameter followed by the value that you want to assign.
To make this an automated procedure, you can create a file in
the /etc/modprobe.d directory, where the module is loaded,
including the parameter you want to be loaded. In Exercise 16-2
you see how to do this using the cdrom kernel module.

Exercise 16-2 Loading Kernel Modules with Parameters

1. Type lsmod | grep cdrom. If you have used the optical drive
in your computer, this module should be loaded, and it
should indicate that it is used by the sr_mod module.

2. Type modprobe -r cdrom. This will not work because the
module is in use by the sr_mod module.

3. Type modprobe -r sr_mod; modprobe -r cdrom. This
should unload both modules, but it will most likely fail. (It
won’t fail if currently no optical device is mounted.)

4. Type umount /dev/sr0 to unmount the mounted cdrom file
system and use modprobe -r sr_mod. This should now
work.

5. Type modinfo cdrom. This shows information about the
cdrom module, including the parameters that it supports.
One of these is the debug parameter, which supports a
Boolean as its value.

6. Type modprobe cdrom debug=1. This loads the cdrom
module with the debug parameter set to on.

7. Type dmesg. For some kernel modules, load information is
written to the kernel ring buffer, which can be displayed
using the dmesg command. Unfortunately, this is not the
case for the cdrom kernel module.

8. Create a file with the name /etc/modprobe.d/cdrom.conf and
give it the following contents:
options cdrom debug=1

This enables the parameter every time the cdrom kernel
module loads.

Upgrading the Linux Kernel

From time to time, you need to upgrade the Linux kernel. When
you upgrade the Linux kernel, a new version of the kernel is
installed and used as the default kernel. The old version of the
kernel file will still be available, though. This ensures that your
computer can still boot if the new kernel includes
nonsupported functionality. To install a new version of the
kernel, you can use the command dnf upgrade kernel. The dnf
install kernel command also works. Both commands install the
new kernel beside the old kernel.

The kernel files for the last four kernels that you have installed
on your server will be kept in the /boot directory. The GRUB 2
boot loader automatically picks up all kernels that it finds in
this directory. This allows you to select an older kernel version
while booting, which is useful if the newly installed kernel
doesn’t boot correctly.

Summary

In this chapter, you learned how to work with the Linux kernel.
You learned that the Linux kernel is modular and how working
with kernel modules is important. You also learned how to
manage kernel modules and how kernel modules are managed
automatically while working with new hardware.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the
Introduction, you have several choices for exam preparation:
the end-of-chapter labs; the memory tables in Appendix C;
Chapter 27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the
Key Topic icon in the margin of the page. Table 16-3 lists a
reference for these key topics and the page number on which
each is found.

Table 16-3 Key Topics for Chapter 16

Key Topic
Element

Description Page
Key Topic
Element

Description Page

List Overview of kernel-related tools 373

Table 16-2 Linux Kernel Module
Management Overview

378

Complete Tables and Lists from Memory

Print a copy of Appendix C, “Memory Tables” (found on the
companion website), or at least the section for this chapter, and
complete the tables and lists from memory. Appendix D,
“Memory Tables Answer Key,” includes completed tables and
lists to check your work.

Define Key Terms

Define the following key terms from this chapter and check
your answers in the glossary:

kernel

tainted kernel

dmesg

/proc

module

Review Questions

The questions that follow are meant to help you test your
knowledge of concepts and terminology and the breadth of
your knowledge. You can find the answers to these questions in
Appendix A.

. Which command shows the current version of the kernel that is
used on your computer?

. Where do you find current version information about your
RHEL installation?

. Which command shows a list of kernel modules that currently
are loaded?

. Which command enables you to discover kernel module
parameters?

. How do you unload a kernel module?

. What can you do if you get an error message while trying to
unload a kernel module?

. How do you find which kernel module parameters are
supported?

. Where do you specify kernel module parameters that should be
used persistently?

. Assuming that the cdrom module has a parameter debug,
which must be set to 1 to enable debug mode, which line would
you include in the file that will automatically load that module?

. How do you install a new version of the kernel?

End-of-Chapter Lab

In the end-of-chapter lab, you install a new version of the
kernel and work with kernel modules.

Lab 16.1

1. Find out whether a new version of the kernel is available. If
so, install it and reboot your computer so that it is used.

2. Use the appropriate command to show recent events that
have been logged by the kernel.

3. Locate the kernel module that is used by your network card.
Find out whether it has options. Try loading one of these
kernel module options manually; if that succeeds, take the
required measures to load this option persistently.

Chapter 17

Managing and Understanding the Boot
Procedure

The following topics are covered in this chapter:

Managing Systemd Targets
Working with GRUB 2

The following RHCSA exam objectives are covered in this
chapter:

Configure systems to boot into a specific target automatically
Modify the system bootloader

In this chapter, you learn how the boot procedure on Red Hat
Enterprise Linux is organized. In the first part of this chapter,
you learn about Systemd targets and how you can use them to
boot your Linux system into a specific state. The second part of
this chapter discusses GRUB2 and how to apply changes to the
GRUB 2 boot loader. Troubleshooting is not a topic in this
chapter; it is covered in Chapter 18, “Essential Troubleshooting
Skills.”

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess
whether you should read this entire chapter thoroughly or
jump to the “Exam Preparation Tasks” section. If you are in
doubt about your answers to these questions or your own
assessment of your knowledge of the topics, read the entire
chapter. Table 17-1 lists the major headings in this chapter and
their corresponding “Do I Know This Already?” quiz questions.
You can find the answers in Appendix A, “Answers to the ‘Do I
Know This Already?’ Quizzes and Review Questions.”

Table 17-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Managing Systemd Targets 1–7

Working with GRUB 2 8–10

. Which of the following is the most efficient way to define a
system want?

1. Use the systemctl enable command.
2. Define the want in the unit file [Service] section.
3. Create a symbolic link in the /usr/lib/system/system directory.

4. Create a symbolic link in the unit wants directory in the
/etc/system/system directory.

. Which target is considered the normal target for servers to start
in?

1. graphical.target
2. server.target
3. multi-user.target
4. default.target

. Which of the following is not an example of a systemd target?

1. rescue.target
2. restart.target
3. multi-user.target
4. graphical.target

. Where do you define which target a unit should be started in if
it is enabled?

1. The target unit file
2. The wants directory
3. The systemctl.conf file
4. The [Install] section in the unit file

. To allow targets to be isolated, you need a specific statement in
the target unit file. Which of the following describes that
statement?

1. AllowIsolate
2. Isolate
3. SetIsolate
4. Isolated

. An administrator wants to change the current multi-user.target
to the rescue.target. Which of the following should the admin
do?

1. Use the systemctl isolate rescue.target command.
2. Use the systemctl start rescue.target command.
3. Restart the system, and from the GRUB boot prompt specify

that rescue.target should be started.
4. Use the systemctl enable rescue.target --now command.

. To which legacy System V runlevel does multi-user.target
correspond?

1. 2
2. 3
3. 4
4. 5

. What is the name of the file where you should apply changes to
the GRUB 2 configuration?

1. /boot/grub/menu.lst
2. /boot/grub2/grub.cfg
3. /etc/sysconfig/grub
4. /etc/default/grub

. After applying changes to the GRUB 2 configuration, you need
to write those changes. Which of the following commands will
do that for you?

1. grub2 -o /boot/grub/grub.cfg
2. grub2-mkconfig > /boot/grub2/grub.cfg
3. grub2 > /boot/grub2/grub.cfg
4. grub2-install > /boot/grub2/grub.cfg

. What is the name of the GRUB2 configuration file that is
generated on a UEFI system?

1. /boot/efi/redhat/grub.cfg
2. /boot/efi/EFI/redhat/grub.cfg
3. /boot/EFI/grub.cfg
4. /boot/EFI/efi/grub.cfg

Foundation Topics

Managing Systemd Targets

Systemd is the service in Red Hat Enterprise Linux 9 that is
responsible for starting all kinds of things. Systemd goes way
beyond starting services; other items are started from Systemd
as well. In Chapter 11, “Working with Systemd,” you learned
about the Systemd fundamentals; this chapter looks at how
Systemd targets are used to boot your system into a specific
state.

Understanding Systemd Targets

A systemd target is basically just a group of units that belong
together. Some targets are just that and nothing else, whereas
other targets can be used to define the state a system is booting
in, because these targets have one specific property that regular
targets don’t have: they can be isolated. Isolatable targets
contain everything a system needs to boot or change its current
state. Four targets can be used while booting:

emergency.target: In this target only a minimal number of
units are started, just enough to fix your system if something
is seriously wrong. You’ll find that it is quite minimal, as
some important units are not started.
rescue.target: This target starts all units that are required to
get a fully operational Linux system. It doesn’t start

nonessential services though.
multi-user.target: This target is often used as the default
target a system starts in. It starts everything that is needed
for full system functionality and is commonly used on
servers.
graphical.target: This target also is commonly used. It starts
all units that are needed for full functionality, as well as a
graphical interface.

Working with Targets

Working with targets may seem complicated, but it is not. It
drills down to three common tasks:

Adding units to be automatically started
Setting a default target
Running a nondefault target to enter troubleshooting mode

In Chapter 11 you learned how to use the systemctl enable and
systemctl disable commands to add services to or remove
services from targets. In this chapter you learn how to set a
default target and how to run a nondefault target to enter
troubleshooting mode. But first let’s take a closer look at the
working of targets under the hood.

Understanding Target Units

Behind a target there is some configuration. This configuration
consists of two parts:

The target unit file
The “wants” directory, which contains references to all unit
files that need to be loaded when entering a specific target

Targets by themselves can have dependencies to other targets,
which are defined in the target unit file. Example 17-1 shows
the definition of the multi-user.target file, which defines the
normal operational state of a RHEL server.

Example 17-1 The multi-user.target File

Click here to view code image

[root@localhost ~]# systemctl cat multi-user.tar

/usr/lib/systemd/system/multi-user.target

SPDX-License-Identifier: LGPL-2.1+

This file is part of systemd.

systemd is free software; you can redistribut

under the terms of the GNU Lesser General Pub

 published by

the Free Software Foundation; either version

 or

(at your option) any later version.

[Unit]

Description=Multi-User System

Documentation=man:systemd.special(7)

Requires=basic.target

Conflicts=rescue.service rescue.target

After=basic.target rescue.service rescue.target

AllowIsolate=yes

You can see that by itself the target unit does not contain much.
It just defines what it requires and which services and targets it
cannot coexist with. It also defines load ordering, by using the
After statement in the [Unit] section. The target file does not
contain any information about the units that should be
included; that is, in the individual unit files and the wants
(explained in the upcoming section “Understanding Wants”).

Systemd targets look a bit like runlevels used in older versions
of RHEL, but targets are more than that. A target is a group of
units, and there are multiple different targets. Some targets,

such as the multi-user.target and the graphical.target, define a
specific state that the system needs to enter. Other targets just
bundle a group of units together, such as the nfs.target and the
sound.target. These targets are included from other targets,
such as multi-user.target or graphical.target.

Understanding Wants

Understanding the concept of a want simply requires
understanding the verb want in the English language, as in “I
want a cookie.” Wants in Systemd define which units Systemd
wants when starting a specific target. Wants are created when
Systemd units are enabled using systemctl enable, and this
happens by creating a symbolic link in the /etc/systemd/system
directory. In this directory, you’ll find a subdirectory for every
target, containing wants as symbolic links to specific services
that are to be started. The multi-user.target, for instance,
contains its wants in /etc/systemd/system/multi-
user.target.wants/.

Managing Systemd Targets

As an administrator, you need to make sure that the required
services are started when your server boots. To do this, use the
systemctl enable and systemctl disable commands. You do
not have to think about the specific target a service has to be
started in. Through the [Install] section in the service unit file,
the services know for themselves in which targets they need to
be started, and a want is created automatically in that target
when the service is enabled. The following procedure walks
you through the steps of enabling a service:

1. Type dnf install -y vsftpd, followed by systemctl status
vsftpd. If the service has not yet been enabled, the Loaded
line will show that it currently is disabled:

Click here to view code image

[root@server202 ~]# systemctl status vsftpd

vsftpd.service - Vsftpd ftp daemon

 Loaded: loaded (/usr/lib/systemd/system/vsftp

 Active: inactive (dead)

2. Type ls /etc/systemd/system/multi-user.target.wants. You’ll
see symbolic links that are taking care of starting the
different services on your machine. You can also see that the
vsftpd.service link does not exist.

3. Type systemctl enable vsftpd. The command shows you that
it is creating a symbolic link for the file
/usr/lib/systemd/system/vsftpd.service to the directory
/etc/systemd/system/multi-user.target.wants. So basically,
when you enable a Systemd unit file, in the background a
symbolic link is created.

Tip

On the RHCSA exam, you are likely to enable a
couple of services. It is a good idea to read through
the exam questions, identify the services that need
to be enabled, and enable them all at once to make
sure that they are started automatically when you
restart. This prevents your being so focused on
configuring the service that you completely forget
to enable it as well.

Isolating Targets

As already discussed, on Systemd machines there are several
targets. You also know that a target is a collection of units. Some
of those targets have a special role because they can be isolated.
These are also the targets that you can set as the targets to get
into after system start.

By isolating a target, you start that target with all of its
dependencies. Only targets that have the isolate option enabled
can be isolated. We’ll explore the systemctl isolate command
later in this section. Before doing that, let’s take a look at the
default targets on your computer.

To get a list of all targets currently loaded, type systemctl --
type=target. You’ll see a list of all the targets currently active. If
your server is running a graphical environment, this will
include all the dependencies required to install the graphical.
target also. However, this list shows only the active targets, not
all the targets. Type systemctl -t target --all for an overview of
all targets that exist on your computer. You’ll now see inactive
targets also (see Example 17-2).

Example 17-2 Showing System Targets

Click here to view code image

root@localhost ~]# systemctl --type=target --all

 UNIT LOAD ACTI

DESCRIPTION

 basic.target loaded

active Basic System

 bluetooth.target loaded

active active Bluetooth

 cryptsetup.target loaded

active active Local Encrypted

 dbus.target

inactive dead db

 emergency.target loaded

inactive dead Emergency Mode

 getty-pre.target loaded

active active Login Prompts (

 getty.target loaded

active Login Prompts

 graphical.target loaded

active Graphical Interface

 initrd-fs.target loaded

dead Initrd File Systems

 initrd-root-device.target loaded

dead Initrd Root Device

 initrd-root-fs.target loaded

dead Initrd Root File System

 initrd-switch-root.target loaded

Switch Root

 initrd.target loaded

inactive dead Initrd Default Target

 local-fs-pre.target

active active Local File Systems (Pre)

 local-fs.target load

active active Local File Systems

 multi-user.target l

active active Multi-User System

y

 network-online.target lo

active active Network is Online

 network-pre.target l

active active Network (Pre)

 network.target loaded

active active Network

 nfs-client.target loaded

active NFS client services

 nss-lookup.target loaded

dead Host and Network Name Look

 nss-user-lookup.target loaded

active User and Group Name Lookups

 paths.target loaded

active Paths

 remote-fs-pre.target loaded

active Remote File Systems (Pre)

 remote-fs.target loaded

active Remote File Systems

 rescue.target loaded

inactive dead Rescue Mode

 rpc_pipefs.target loaded

active rpc_pipefs. target

 rpcbind.target loaded active

RPC Port Mapper

 shutdown.target loaded

dead Shutdown

 slices.target loaded active

Slices

 sockets.target loaded active

Sockets

 sound.target loaded active

Sound Card

 sshd-keygen.target loaded active

sshd-keygen. target

 swap.target loaded active

Swap sysinit.target loaded active

System Initialization

Of the targets on your system, a few have an important role
because they can be started (isolated) to determine the state
your server starts in. These are also the targets that can be set
as the default targets. These targets also roughly correspond to
runlevels used on earlier versions of RHEL. These are the
following targets:

poweroff.target runlevel 0

rescue.target runlevel 1

multi-user.target runlevel 3

graphical.target runlevel 5

reboot.target runlevel 6

If you look at the contents of each of these targets, you’ll also
see that they contain the AllowIsolate=yes line. That means that
you can switch the current state of your computer to either one
of these targets using the systemctl isolate command. Exercise
17-1 shows you how to do this.

Exercise 17-1 Isolating Targets

1. From a root shell, go to the directory /usr/lib/systemd/system.
Type grep Isolate *.target. This command shows a list of all
targets that allow isolation.

2. Type systemctl isolate rescue.target. This command
switches your computer to rescue.target. You need to type
the root password on the console of your server to log in.

3. Type systemctl isolate reboot.target. This command
restarts your computer.

Setting the Default Target

Setting the default target is an easy procedure that can be
accomplished from the command line. Type systemctl get-
default to see the current default target and use systemctl set-
default to set the desired default target.

To set the graphical.target as the default target, you need to
make sure that the required packages are installed. If this is not
the case, you can use the dnf group list command to show a list
of all RPM package groups. The “server with GUI” package
group applies. Use dnf group install " server with gui " to
install all GUI packages on a server where they have not been
installed yet.

Working with GRUB 2

The GRUB 2 boot loader is one of the first things that needs to
be working well to boot a Linux server. As an administrator, you
will sometimes need to apply modifications to the GRUB 2 boot
loader configuration. This section explains how to do so. The
RHEL 9 boot procedure is discussed in more detail in Chapter
18, where troubleshooting topics are covered as well.

Understanding GRUB 2

The GRUB 2 boot loader makes sure that you can boot Linux.
GRUB 2 is installed in the boot sector of your server’s hard

drive and is configured to load a Linux kernel and the
initramfs:

The kernel is the heart of the operating system, allowing
users to interact with the hardware that is installed in the
server.
The initramfs contains drivers that are needed to start your
server. It contains a mini file system that is mounted during
boot. In it are kernel modules that are needed during the rest
of the boot process (for example, the LVM modules and SCSI
modules for accessing disks that are not supported by
default).

Normally, GRUB 2 works just fine and does not need much
maintenance. In some cases, though, you might have to change
its configuration. To apply changes to the GRUB 2 configuration,
the starting point is the /etc/default/grub file, which has options
that tell GRUB what to do and how to do it. Example 17-3 shows
the contents of this file after an installation with default settings
of RHEL 9.

Example 17-3 Contents of the /etc/default/grub File

Click here to view code image

[root@localhost ~]# cat /etc/default/grub

GRUB_TIMEOUT=5

GRUB_DISTRIBUTOR="$(sed 's, release .*$,,g' /etc

GRUB_DEFAULT=saved

GRUB_DISABLE_SUBMENU=true

GRUB_TERMINAL_OUTPUT="console"

GRUB_CMDLINE_LINUX="crashkernel=auto resume=/dev

 rd.lvm.lv=rhel/root rd.lvm.lv=rhel/swap rhgb q

GRUB_DISABLE_RECOVERY="true"

GRUB_ENABLE_BLSCFG=true

As you can see, the /etc/default/grub file does not contain much
information. The most important part that it configures is the
GRUB_CMDLINE_LINUX option. This line contains boot
arguments for the kernel on your server.

Tip

For the RHCSA exam, make sure that you
understand the contents of the /etc/default/grub
file. That is the most important part of the GRUB 2
configuration anyway.

Apart from the configuration in /etc/default/grub, there are a
few configuration files in /etc/grub.d. In these files, you’ll find
rather complicated shell code that tells GRUB what to load and
how to load it. You typically do not have to modify these files.
You also do not need to modify anything if you want the
capability to select from different kernels while booting. GRUB
2 picks up new kernels automatically and adds them to the boot
menu automatically, so nothing has to be added manually.

Understanding GRUB 2 Configuration Files

Based on the configuration files mentioned previously, the main
configuration file is created. If your system is a BIOS system, the
name of the file is /boot/grub2/grub.cfg. On a UEFI system the
file is written to /boot/efi/EFI/redhat/grub.cfg on RHEL and
/boot/efi/EFI/centos/grub.cfg on CentOS. After making
modifications to the GRUB 2 configuration, you’ll need to
regenerate the relevant configuration file with the grub2-
mkconfig command, which is why you should know the name

of the file that applies to your system architecture. Do not edit
it, as this file is automatically generated.

Modifying Default GRUB 2 Boot Options

To apply modifications to the GRUB 2 boot loader, the file
/etc/default/grub is your entry point. The most important line in
this file is GRUB_CMDLINE_LINUX, which defines how the
Linux kernel should be started. In this line, you can apply
permanent fixes to the GRUB 2 configuration. Some likely
candidates for removal are the options rhgb and quiet. These
options tell the kernel to hide all output while booting. That is
nice to hide confusing messages for end users, but if you are a
server administrator, you probably just want to remove these
options so that you can see what happens while booting.

Tip

On the exam, you want to know immediately if
something does not work out well. To accomplish
this, it is a good idea to remove the rhgb and quiet
boot options. Without these you will not have to
guess why your server takes a long time after a
restart; you’ll just be able to see.

Another interesting parameter is GRUB_TIMEOUT. This defines
the amount of time your server waits for you to access the
GRUB 2 boot menu before it continues booting automatically. If
your server runs on physical hardware that takes a long time to
get through the BIOS checks, it may be interesting to increase
this time a bit so that you have more time to access the boot
menu.

While working with GRUB 2, you need to know a bit about
kernel boot arguments. There are many of them, and most of
them you’ll never use, but it is good to know where you can find
them. Type man 7 bootparam for a man page that contains an
excellent description of all boot parameters that you may use
while starting the kernel.

To write the modified configuration to the appropriate files, you
use the grub2-mkconfig command and redirect its output to
the appropriate configuration file. On a BIOS system, the
command would be grub2-mkconfig -o /boot/grub2/grub.cfg
and on a UEFI system the command would be grub2-mkconfig -
o /boot/efi/EFI/redhat/grub.cfg.

In Exercise 17-2, you learn how to apply modifications to the
GRUB 2 configuration and write them to the
/boot/grub2/grub.cfg configuration file.

Tip

You should know how to apply changes to the
GRUB configuration, but you should also know that
the default GRUB 2 configuration works fine as it is
for almost all computers. So, you will probably
never have to apply any changes at all!

Exercise 17-2 Applying Modifications to GRUB 2

1. Open the file /etc/default/grub with an editor and remove the
rhgb and quiet options from the GRUB_CMDLINE_LINUX
line.

2. From the same file, set the GRUB_TIMEOUT parameter to 10
seconds. Save changes to the file and close the editor.

3. From the command line, type grub2-mkconfig >
/boot/grub2/grub.cfg to write the changes to GRUB 2. (Note
that instead of using the redirector > to write changes to the
grub.cfg file, you could use the -o option. Both methods have
the same result.)

4. Reboot and verify that while booting you see boot messages
scrolling by.

Summary

In this chapter you learned how Systemd and GRUB 2 are used
to bring your server into the exact state you desire at the end of
the boot procedure. You also learned how Systemd is organized,
and how units can be configured for automatic start with the
use of targets. Finally, you read how to apply changes to the
default GRUB 2 boot loader. In the next chapter, you learn how
to troubleshoot the boot procedure and fix some common
problems.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the
Introduction, you have several choices for exam preparation:
the end-of-chapter labs; the memory tables in Appendix C;
Chapter 27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the
Key Topic icon in the margin of the page. Table 17-2 lists a

reference for these key topics and the page number on which
each is found.

Table 17-2 Key Topics for Chapter 17

Key Topic
Element

Description Page

Section Understanding Target Units 391

Section Managing Systemd Targets 392

Exercise 17-1 Isolating Targets 396

List Explanation of the role of kernel
and initramfs

396

Example 17-
3

Contents of the /etc/default/grub
File

397

Exercise 17-2 Applying Modifications to GRUB 2 399

Define Key Terms

Define the following key terms from this chapter and check
your answers in the glossary:

Systemd

target

dependency

unit

want

boot loader

GRUB

kernel

initramfs

Review Questions

The questions that follow are meant to help you test your
knowledge of concepts and terminology and the breadth of

your knowledge. You can find the answers to these questions in
Appendix A.

. What is a unit?

. Which command enables you to make sure that a target is no
longer eligible for automatic start on system boot?

. Which configuration file should you modify to apply common
changes to GRUB 2?

. Which command should you use to show all service units that
are currently loaded?

. How do you create a want for a service?

. How do you switch the current operational target to the
rescue.target?

. Why can it happen that you get the message that a target cannot
be isolated?

. You want to shut down a Systemd service, but before doing that
you want to know which other units have dependencies to this
service. Which command would you use?

. What is the name of the GRUB 2 configuration file where you
apply changes to GRUB 2?

. After applying changes to the GRUB 2 configuration, which
command should you run?

End-of-Chapter Labs

You have now learned how to work with Systemd targets and
the GRUB 2 boot loader. Before you continue, it is a good idea to
work on some labs that help you ensure that you can apply the
skills that you acquired in this chapter.

Lab 17.1

1. Set the default target to multi-user.target.
2. Reboot to verify this is working as expected.

Lab 17.2

1. Change your GRUB 2 boot configuration so that you will see
boot messages upon startup.

Chapter 18

Essential Troubleshooting Skills

The following topics are covered in this chapter:

Understanding the RHEL 9 Boot Procedure
Passing Kernel Boot Arguments
Using a Rescue Disk
Fixing Common Issues

The following RHCSA exam objectives are covered in this
chapter:

Boot systems into different targets manually
Interrupt the boot process in order to gain access to a system

In Chapter 17, “Managing and Understanding the Boot
Procedure,” you learned how a RHEL 9 server boots and which
role the boot loader GRUB 2 and Systemd play in that process.
In this chapter, you learn what you can do when common
problems occur while booting your server. This chapter teaches
general approaches that help to fix some of the most common
problems that may occur while booting. Make sure to master
the topics discussed in this chapter well; they might save your
(professional) life one day!

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess
whether you should read this entire chapter thoroughly or
jump to the “Exam Preparation Tasks” section. If you are in
doubt about your answers to these questions or your own
assessment of your knowledge of the topics, read the entire
chapter. Table 18-1 lists the major headings in this chapter and
their corresponding “Do I Know This Already?” quiz questions.
You can find the answers in Appendix A, “Answers to the ‘Do I
Know This Already?’ Quizzes and Review Questions.”

Table 18-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Understanding the RHEL 9 Boot Procedure 1

Passing Kernel Boot Arguments 2–6

Using a Rescue Disk 7

Fixing Common Issues 8–10

. Which of the following comes first in the Red Hat Enterprise
Linux 9 boot procedure?

1. Systemd
2. Kernel
3. GRUB 2
4. Initramfs

. You have just entered a kernel argument on the GRUB 2 boot
prompt. Pressing which key(s) enables you to start with this
boot argument?

1. ZZ
2. Ctrl-X
3. Esc
4. Enter

. Your initramfs seems faulty and cannot initialize the LVM
volumes on your disk. Which configuration file should you
check for options that are used?

1. /etc/dracut.d/dracut.conf
2. /etc/dracut.conf
3. /etc/sysconfig/dracut
4. /etc/mkinitrd.conf

. You do not have the root password and want to reset it. Which
kernel argument offers the recommended way to reset it?

1. init=/bin/bash
2. init=/bin/sh
3. systemd.unit=emergency.target
4. rd.break

. You want to see exactly what is happening on system boot.
Which two boot options should you remove from the GRUB 2
boot prompt? (Choose two.)

1. rhgb
2. logo
3. quiet
4. silent

. You want to enter the most minimal troubleshooting mode
where as few services as possible are loaded. Which boot
argument should you use?

1. systemd.unit=break.target
2. systemd.unit=emergency.target
3. systemd.unit=rescue.target
4. 1

. Which of the following situations can be resolved only by using
a rescue disk?

1. The kernel stops loading.
2. The initramfs stops loading.
3. You never get to a GRUB 2 boot prompt.
4. You are prompted to enter the root password for

maintenance mode.

. You have entered a troubleshooting mode, and disk access is
read-only. What should you do?

1. Restart the troubleshooting mode and pass the rw boot
option to the kernel.

2. Use the rd.break boot argument to manually start into the
initramfs mode.

3. Use mount -o remount,rw /
4. Use mount /

. Your server shows a blinking cursor only while booting. No
GRUB 2 menu is available. What is the first step in
troubleshooting this issue?

1. From a rescue disk, try the Boot from local disk option.
2. Start a rescue environment and reinstall GRUB.
3. Start a rescue environment and re-create the initramfs.

4. Use the rd.break boot argument.

. After resetting the root password from an environment that
was started with the init=/bin/bash kernel boot argument, how
can you restart the system normally?

1. reboot
2. systemctl isolate multi-user.target
3. exec /usr/lib/systemd/system
4. exit

Foundation Topics

Understanding the RHEL 9 Boot Procedure

To fix boot issues, it is essential to have a good understanding of
the boot procedure. If an issue occurs during boot, you need to
be able to judge in which phase of the boot procedure the issue
occurs so that you can select the appropriate tool to fix the
issue.

The following steps summarize how the boot procedure
happens on Linux:

1. Performing POST: The machine is powered on. From the
system firmware, which can be the modern Universal
Extended Firmware Interface (UEFI) or the classical Basic
Input/Output System (BIOS), the Power-On Self-Test (POST) is
executed, and the hardware that is required to start the
system is initialized.

2. Selecting the bootable device: Either from the UEFI boot
firmware or from the BIOS, a bootable device is located.

3. Loading the boot loader: From the bootable device, a boot
loader is located. On RHEL, this is usually GRUB 2.

4. Loading the kernel: The boot loader may present a boot
menu to the user or can be configured to automatically start
a default operating system. To load Linux, the kernel is
loaded together with the initramfs. The initramfs contains
kernel modules for all hardware that is required to boot, as
well as the initial scripts required to proceed to the next
stage of booting. On RHEL 9, the initramfs contains a
complete operational system (which may be used for
troubleshooting purposes).

5. Starting /sbin/init: Once the kernel is loaded into memory,
the first of all processes is loaded, but still from the initramfs.
This is the /sbin/init process, which on RHEL is linked to
Systemd. The systemd-udevd daemon is loaded as well to

take care of further hardware initialization. All this is still
happening from the initramfs image.

6. Processing initrd.target: The Systemd process executes all
units from the initrd.target, which prepares a minimal
operating environment, where the root file system on disk is
mounted on the /sysroot directory. At this point, enough is
loaded to pass to the system installation that was written to
the hard drive.

7. Switching to the root file system: The system switches to
the root file system that is on disk and at this point can load
the Systemd process from disk as well.

8. Running the default target: Systemd looks for the default
target to execute and runs all of its units. In this process, a
login screen is presented, and the user can authenticate. Note
that the login prompt can be prompted before all Systemd
unit files have been loaded successfully. So, seeing a login
prompt does not necessarily mean that your server is fully
operational yet; services may still be loaded in the
background.

In each of the phases listed, issues may occur because of
misconfiguration or other problems. Table 18-2 summarizes
where a specific phase is configured and what you can do to
troubleshoot if something goes wrong.

Table 18-2 Boot Phase Configuration and Troubleshooting Overview

Boot Phase Configuring It Fixing It

POST Hardware configuration (F2, Esc,
F10, or another key).

Replace
hardwar

Selecting
the
bootable
device

BIOS/UEFI configuration or
hardware boot menu.

Replace
hardwar
rescue sy

Loading the
boot loader

grub2-install and edits to
/etc/defaults/grub.

Use the G
boot prom
edits to
/etc/defau
followed
grub2-m

Boot Phase Configuring It Fixing It
Loading the
kernel

Edits to the GRUB configuration
and /etc/ dracut.conf.

Use the G
boot prom
edits to
/etc/defau
followed
grub2-m

Starting
/sbin/init

Compiled into initramfs. Use the in
kernel bo
argumen
rd.break
boot argu

Processing
initrd.target

Compiled into initramfs. Use the d
comman
won’t oft
to troubl
this.)

Boot Phase Configuring It Fixing It
Switch to
the root file
system

Edits to the /etc/fstab file. Apply ed
/etc/fstab

Running
the default
target

Using systemctl set-default to
create the
/etc/systemd/system/default.target
symbolic link.

Start the
rescue.ta
kernel bo
argumen

Tip

Troubleshooting has always been a part of the
RHCSA exam. If you encounter an issue, make sure
that you can identify in which phase of the boot
procedure it occurs and what you can do to fix it.

In the next section you learn how to apply the different
troubleshooting techniques described in this table.

Passing Kernel Boot Arguments

If your server does not boot normally, the GRUB boot prompt
offers a convenient way to stop the boot procedure and pass

specific options to the kernel while booting. In this section, you
learn how to access the boot prompt and how to pass specific
boot arguments to the kernel while booting.

Accessing the Boot Prompt

When your server boots, you briefly see the GRUB 2 menu. Look
fast because it will last for only a few seconds. From this boot
menu you can type e to enter a mode where you can edit
commands, or c to enter a full GRUB command prompt, as
shown in Figure 18-1. To pass boot options to a starting kernel,
use e.

Figure 18-1 Entering the GRUB Boot Prompt

After passing an e to the GRUB boot menu, you’ll see the
interface that is shown in Figure 18-2. From this interface, scroll
down to locate the section that begins with linux
($root)/vmlinuz followed by a lot of arguments. This is the line
that tells GRUB how to start a kernel, and by default it looks like
this:

Figure 18-2 Enter Boot Arguments on the Line That Starts with linux

Click here to view code image

linux ($root)/vmlinuz-{versionnumber].el9.x86_64

rhel-root ro crash kernel=[options] resume=/dev

rd.lvm.lv=rhel/ root rd.lvm.lv=rhel/swap rhgb qu

To start, it is a good idea to remove the rhgb and quiet parts
from this line; these arguments hide boot messages for you, and
typically you do want to see what is happening while booting.
In the next section you learn about some troubleshooting
options that you can enter from the GRUB boot prompt.

After entering the boot options you want to use, press Ctrl-X to
start the kernel with these options. Notice that these options are
used one time only and are not persistent. To make them
persistent, you must modify the contents of the /etc/default/grub
configuration file and use grub2-mkconfig -o
/boot/grub2/grub.cfg to apply the modification. (Refer to
Chapter 17 for more details about this procedure.)

Starting a Troubleshooting Target

If you encounter trouble when booting your server, you have
several options that you can enter on the GRUB 2 boot prompt:

rd.break: This stops the boot procedure while still in the
initramfs stage. Your system will still be in the initramfs stage
of booting, which means that the root file system is not

mounted on / yet. You’ll have to provide the root password to
enter this mode.
init=/bin/sh or init=/bin/bash: This specifies that a shell
should be started immediately after loading the kernel and
initrd. This option provides the earliest possible access to a
running system. You won’t have to enter the root password,
but notice that only the root file system is mounted and it is
still read-only. Read more about this option in the section
“Resetting the Root Password” later in this chapter.
systemd.unit=emergency.target: This enters a mode that
loads a bare minimum number of Systemd units. It requires
a root password. To see that only a very limited number of
unit files have been loaded, you can type the systemctl list-
units command.
systemd.unit=rescue.target: This starts some more Systemd
units to bring you in a more complete operational mode. It
does require a root password. To see that only a very limited
number of unit files have been loaded, you can type the
systemctl list-units command.

In Exercise 18-1, you learn how to enter the troubleshooting
targets. The other modes listed here are discussed in the
following sections.

Exercise 18-1 Exploring Troubleshooting Targets

1. (Re)start your computer. When the GRUB menu shows, select
the first line in the menu and press e.

2. Scroll down to the line that starts with linux $(root)/vmlinuz.
At the end of this line, type systemd.unit=rescue.target.
Also remove the options rhgb quit from this line. Press Ctrl-
X to boot with these modifications.

3. Enter the root password when you are prompted for it.
4. Type systemctl list-units. This shows all unit files that are

currently loaded. You can see that a basic system
environment has been loaded.

5. Type systemctl show-environment. This shows current
shell environment variables.

6. Type systemctl reboot to reboot your machine.
7. When the GRUB menu appears, press e again to enter the

editor mode. At the end of the line that loads the kernel, type
systemd.unit=emergency.target. Press Ctrl-X to boot with
this option.

8. When prompted for it, enter the root password to log in.
9. After successful login, type systemctl list-units. Notice that

the number of unit files loaded is reduced to a bare
minimum.

10. Type reboot to restart your system into the default target.

Using a Rescue Disk

If you are lucky when you encounter trouble, you’ll still be able
to boot from hard disk. If you are a bit less lucky, you’ll just see
a blinking cursor on a system that does not boot at all. If that
happens, you need a rescue disk. The default rescue image for
Red Hat Enterprise Linux is on the installation disk. When
booting from the installation disk, you’ll see a Troubleshooting
menu item. Select this item to get access to the options you need
to repair your machine.

Restoring System Access Using a Rescue Disk

After selecting the Troubleshooting option, you are presented
with the following options, as shown in Figure 18-3:

Figure 18-3 Starting from a Rescue Disk

Install Red Hat Enterprise Linux 9 in Basic Graphics
Mode: This option reinstalls your machine. Do not use it
unless you want to troubleshoot a situation where a normal
installation does not work and you need a basic graphics
mode. Normally, you should never need to use this option to
troubleshoot a broken installation.
Rescue a Red Hat Enterprise Linux System: This is the
most flexible rescue system. In Exercise 18-2, you can explore
it in detail. This should be the first option of choice when
using a rescue disk.
Run a Memory Test: Run this option if you encounter
memory errors. It allows you to mark bad memory chips so
that your machine can boot normally.
Boot from Local Drive: If you cannot boot from GRUB on
your hard disk, try this option first. It offers a boot loader
that tries to install from your machine’s hard drive, and as
such is the least intrusive option available.

After starting a rescue system, you usually need to enable full
access to the on-disk installation. Typically, the rescue disk
detects your installation and mounts it on the /mnt/sysimage
directory. To fix access to the configuration files and their
default locations as they should be available on disk, use the
chroot /mnt/sysimage command to make the contents of this
directory your actual working environment. If you do not use

this chroot command, many utilities will not work, because if
they write to a configuration file, it will be the version that
exists on the read-only disk. Using the chroot command
ensures that all path references to configuration files are
correct.

In Exercise 18-2, you learn how to use the Rescue a Red Hat
Enterprise Linux System option to troubleshoot a system that
does not boot anymore.

Exercise 18-2 Using the Rescue Option

1. Restart your server from the installation disk. Select the
Troubleshooting menu option.

2. From the Troubleshooting menu, select Rescue a Red Hat
Enterprise Linux System. This prompts you to press Enter
to start the installation. Do not worry; this option does not
overwrite your current configuration, it just loads a rescue
system.

3. The rescue system now prompts you that it will try to find an
installed Linux system and mount on /mnt/sysimage. Press 1
to accept the Continue option (see Figure 18-4).

Figure 18-4 The Rescue System Looks for an Installed System Image and Mounts It
for You

4. If a valid Red Hat installation was found, you are prompted
that your system has been mounted under /mnt/sysimage. At
this point, you can press Enter to access the rescue shell.

5. Your Linux installation at this point is accessible through the
/mnt/sysimage directory. Type chroot /mnt/sysimage. At this
point, you have access to your root file system and you can
access all tools that you need to repair access to your system.

6. Type exit to quit the chroot environment, and type reboot
to restart your machine in a normal mode.

Reinstalling GRUB Using a Rescue Disk

One of the common reasons you might need to start a rescue
disk is that the GRUB 2 boot loader breaks. If that happens, you
might need to reinstall it. After you have restored access to your
server using a rescue disk, reinstalling GRUB 2 is not hard to do
and consists of two steps:

Make sure that you have made the contents of the
/mnt/sysimage directory available to your current working
environment, using chroot as described before.
Use the grub2-install command, followed by the name of the
device on which you want to reinstall GRUB 2. So on a KVM
virtual machine, the command to use is grub2-install
/dev/vda, and on a physical server or a VMware or Virtual
Box virtual machine, it is grub2-install /dev/sda.

Re-creating the Initramfs Using a Rescue Disk

Occasionally, the initramfs image may get damaged as well. If
this happens, you cannot boot your server into normal
operational mode. To repair the initramfs image after booting
into the rescue environment, you can use the dracut command.

If used with no arguments, this command creates a new
initramfs for the kernel currently loaded.

Alternatively, you can use the dracut command with several
options to make an initramfs for specific kernel environments.
The dracut configuration is dispersed over different locations:

/usr/lib/dracut/dracut.conf.d/*.conf contains the system
default configuration files.
/etc/dracut.conf.d contains custom dracut configuration files.
/etc/dracut.conf is now deprecated and should not be used
anymore. Put your configuration in files in /etc/dracut.conf.d/
instead.

Tip

According to the RHCSA objectives, you should not
have to work with a rescue disk on the exam.
However, as a Linux administrator, you should
expect the unexpected, which is why it is a good
idea to ensure that you can handle common as well
as less common troubleshooting scenarios.

Fixing Common Issues

In one small chapter such as this, it is not possible to consider
all the possible problems one might encounter when working
with Linux. There are some problems, though, that are more
likely to occur than others. In this section you learn about some
of the more common problems.

Reinstalling GRUB 2

Boot loader code does not disappear just like that, but on
occasion it can happen that the GRUB 2 boot code gets damaged.
In that case, you should know how to reinstall GRUB 2. The
exact approach depends on whether your server is still in a
bootable state. If it is, reinstalling GRUB 2 is fairly easy. Just type
grub2-install followed by the name of the device to which you
want to install it. The command has many different options to
fine-tune what exactly will be installed, but you probably will
not need them because, by default, the command installs
everything you need to make your system bootable again.

Reinstalling GRUB 2 becomes a little bit more complicated if
your machine is in a nonbootable state. If that happens, you
first need to start a rescue system and restore access to your
server from the rescue system. (See Exercise 18-2 for the exact
procedure for how to do that.) After mounting your server’s file
systems on /mnt/sysimage and using chroot /mnt/sysimage to

make the mounted system image your root image, reinstalling
is as easy as described previously: just run grub2-install to
install GRUB 2 to the desired installation device. So, if you are in
a KVM virtual machine, run grub2-install /dev/vda, and if you
are on a physical disk, run grub2-install /dev/sda.

Fixing the Initramfs

In rare cases, the initramfs might get damaged. If you analyze
the boot procedure carefully, you will learn that you have a
problem with the initramfs because you’ll never see the root
file system getting mounted on the root directory, nor will you
see any Systemd units getting started. If you suspect that you
are having a problem with the initramfs, it is easy to re-create
it. To re-create it using all default settings (which is fine in most
cases), you can just run the dracut --force command. (Without -
-force, the command will refuse to overwrite your existing
initramfs.)

Recovering from File System Issues

If you make a misconfiguration to your file system mounts, the
boot procedure may just end with the message “Give root
password for maintenance.” This message is, in particular,
generated by the fsck command that is trying to verify the

integrity of the file systems in /etc/fstab while booting. If fsck
fails, manual intervention is required that may result in this
message during boot. Make sure that you know what to do
when this happens to you!

Tip

Make sure to master this topic very well. File
system–related topics have a heavy weight in the
RHCSA objectives, and it is likely that you will need
to create partitions and/or logical volumes and put
them in /etc/fstab for automatic mounting. That
also makes it likely that something will go wrong,
and if that happens on the exam, you’d better make
sure that you know how to fix it!

If a device is referred to that does not exist, or if there is an
error in the UUID that is used to mount the device, for example,
Systemd waits first to see whether the device comes back by
itself. If that does not happen, it gives the message “Give root
password for maintenance” (see Figure 18-5). If that happens,
you should by all means first enter the root password. Then you
can type journalctl -xb as suggested to see whether relevant
messages providing information about what is wrong are
written to the journal boot log. If the problem is file system

oriented, type mount -o remount,rw / to make sure the root file
system is mounted read/write and analyze what is wrong in the
/etc/fstab file and fix it.

Figure 18-5 If You See This, You Normally Have an /etc/fstab Issue

Resetting the Root Password

A common scenario for a Linux administrator is that the root
password has gone missing. If that happens, you need to reset
it. The only way to do that is by booting into minimal mode,
which allows you to log in without entering a password. To do
so, follow these steps:

1. On system boot, press e when the GRUB 2 boot menu is
shown.

2. Enter init=/bin/bash as a boot argument to the line that loads
the kernel and press Ctrl-X to boot with this option.

3. Once a root shell is opened, type mount -o remount,rw / to
get read/write access to the root filesystem.

4. Now you can enter passwd and set the new password for the
user root.

5. Because at this very early boot stage SELinux has not been
activated yet, the context type on /etc/shadow will be messed
up. Type touch /.autorelabel to create the autorelabel file in
the root directory. This will make sure that while rebooting
the SELinux security labels are set correctly.

6. Type exec /usr/lib/systemd/systemd to replace /bin/bash
(which is the current PID 1) with Systemd. This will start your
system the normal way. Notice that you cannot use the
reboot command, as /bin/bash is currently PID 1 and the
reboot command requires Systemd as the PID 1.

7. Verify that you can log in as the root user after rebooting.

In the previous procedure you changed the root password from
an init=/bin/bash shell. Getting out of an init=/bin/bash
environment is a bit special, as Systemd is not currently loaded.
Because of this, you cannot just use the reboot command to
restart, as reboot invokes Systemd. Typing exit is also not an
option, as you would exit from the PID 1 and leave the kernel
with no PID 1. Therefore, you have to manually start Systemd.

In this special environment where bash is PID 1, you cannot just
type /usr/lib/systemd/system to start Systemd. That is because
typing a command normally creates a child process to the
current process—a process generically known as “forking.” In
this case that doesn’t work, as Systemd needs to be PID 1. The
solution that was used in the previous procedure was to use
exec /usr/lib/systemd/system. Whereas fork will create a child
process to the current process, exec replaces the current
process with the command that is started this way. This allows
Systemd to be started as PID 1, and that’s exactly what is needed
in this scenario.

Summary

In this chapter, you learned how to troubleshoot the Red Hat
Enterprise Linux 9 boot procedure. You learned in general what
happens when a server boots and at which specific points you

can interfere to fix things that go wrong. You also learned what
to do in some specific cases. Make sure that you know these
procedures well; you are likely to encounter them on the exam.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the
Introduction, you have several choices for exam preparation:
the end-of-chapter labs; the memory tables in Appendix C;
Chapter 27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the
Key Topic icon in the margin of the page. Table 18-3 lists a
reference for these key topics and the page number on which
each is found.

Table 18-3 Key Topics for Chapter 18

Key Topic
Element

Description Page

Key Topic
Element

Description Page

List Summary of phases processed while
booting

406

Table 18-2 Boot Phase Configuration and
Troubleshooting Overview

407

List Summary of relevant GRUB 2 boot
options for troubleshooting

409

Section Resetting the Root Password 416

Complete Tables and Lists from Memory

Print a copy of Appendix C, “Memory Tables” (found on the
companion website), or at least the section for this chapter, and
complete the tables and lists from memory. Appendix D,
“Memory Tables Answer Key,” includes completed tables and
lists to check your work.

Define Key Terms

Define the following key terms from this chapter and check
your answers in the glossary:

initramfs

GRUB

dracut

fork

exec

Review Questions

The questions that follow are meant to help you test your
knowledge of concepts and terminology and the breadth of
your knowledge. You can find the answers to these questions in
Appendix A.

. Which key do you need to press to enter the GRUB boot menu
editor mode?

. During startup, the boot procedure is not completed and the
server asks for the root password instead. What is likely to be
the reason for this?

. You want to enter troubleshooting mode, but you do not know
the root password. Which argument would you pass to the
kernel to enter a mode that provides access to most of the
machine’s functionality?

. You start your server and nothing happens. You just see a
blinking cursor and that’s all. What is the first step to
troubleshoot this issue?

. You want to find out which units are available in a specific
troubleshooting environment. Which command would you use?

. You have just changed the root password from the
init=/bin/bash environment. What should you do to start your
system the normal way now?

. How do you ensure that after resetting the root password all
files are provided with the right SELinux context label?

. You are in troubleshooting mode, and you cannot write any file
to the root file system. The root file system was mounted
correctly. What can you do to make it writable again?

. You have applied changes to the GRUB 2 boot loader and want
to save them. How do you do that?

. You do not know the root password on a machine where you
want to enter the most minimal troubleshooting mode. Which
GRUB 2 boot argument would you use?

End-of-Chapter Lab

Lab 18.1 shows you how to troubleshoot some common
problems.

Lab 18.1

1. Restart your server and change the root password from the
appropriate troubleshooting mode.

2. In /etc/fstab, change one of the device names so that on the
next reboot the file system on it cannot be mounted. Restart
and fix the issue that you encounter.

3. Use a rescue disk to bring your server up in full
troubleshooting mode from the rescue disk.

4. Re-create the initramfs.

Chapter 19

An Introduction to Automation with Bash
Shell Scripting

The following topics are covered in this chapter:

Understanding Shell Scripting Core Elements
Using Variables and Input
Using Conditional Loops

The following RHCSA exam objectives are covered in this
chapter:

Conditionally execute code (use of if, test, [], etc.)
Using Looping constructs (for, etc.) to process file and
command line input
Process script inputs ($1, $2, etc.)
Process output of shell commands within a script

Shell scripting is a science all by itself. You do not learn about
all the nuts and bolts related to this science in this chapter,
however. Instead, you learn how to apply basic shell scripting
elements, which allows you to write a simple shell script and
analyze what is happening in a shell script.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess
whether you should read this entire chapter thoroughly or
jump to the “Exam Preparation Tasks” section. If you are in
doubt about your answers to these questions or your own
assessment of your knowledge of the topics, read the entire
chapter. Table 19-1 lists the major headings in this chapter and
their corresponding “Do I Know This Already?” quiz questions.
You can find the answers in Appendix A, “Answers to the ‘Do I
Know This Already?’ Quizzes and Review Questions.”

Table 19-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Understanding Shell Scripting Core Elements 1–2

Using Variables and Input 3–5

Using Conditional Loops 6–10

. Which line should every Bash shell script start with?

1. /bin/bash

2. #!/bin/bash
3. !#/bin/bash
4. !/bin/bash

. What is the purpose of the exit 0 command that can be used at
the end of a script?

1. It informs the parent shell that the script executed without
any problems.

2. It makes sure the script can be stopped properly.
3. It is required only if a for loop has been used to close the for

loop structure.
4. It is used to terminate a conditional structure in the script.

. How do you stop a script to allow a user to provide input?

1. pause
2. break
3. read
4. stop

. Which line stores the value of the first argument that was
provided when starting a script in the variable NAME?

1. NAME = $1
2. $1 = NAME

3. NAME = $@
4. NAME=$1

. What is the best way to distinguish between different
arguments that have been passed into a shell script?

1. $?
2. $#
3. $*
4. $@

. What is used to close an if loop?

1. end
2. exit
3. stop
4. fi

. What is missing in the following script at the position of the
dots?

Click here to view code image

if [-f $1]

then

 echo "$1 is a file"

….. [-d $1]

then

 echo "$1 is a directory"

else

 echo "I do not know what \$1 is"

fi

1. else
2. if
3. elif
4. or

. What is missing in the following script at the position of the
dots?

Click here to view code image

for ((counter=100; counter>1; counter--)); ...

 echo $counter

done

exit 0

1. in
2. do
3. run
4. start

. Which command is used to send a message with the subject
“error” to the user root if something didn’t work out in a script?

1. mail error root
2. mail -s error root
3. mail -s error root .
4. mail -s error root < .

. In a case statement, it is a good idea to include a line that
applies to all other situations. Which of the following would do
that?

1. *)
2. *
3. else
4. or

Foundation Topics

Understanding Shell Scripting Core Elements

Basically, a shell script is a list of commands that is sequentially
executed, with some optional scripting logic in it that allows
code to be executed under specific conditions only. To
understand complex shell scripts, let’s start by looking at a very
basic script, shown in Example 19-1.

Example 19-1 Basic Script

Click here to view code image

#!/bin/bash

This is a script that greets the world

Usage: ./hello

clear

echo hello world

exit 0

This basic script contains a few elements that should be used in
all scripts. To start, there is the shebang. This is the line
#!/bin/bash. When a script is started from a parent shell
environment, it opens a subshell. In this subshell, different
commands are executed. These commands can be interpreted
in any way, and to make it clear how they should be
interpreted, the shebang is used. In this case, the shebang
makes clear that the script is a Bash shell script. Other shells
can be specified as well. For instance, if your script contains
Perl code, the shebang should be #!/usr/bin/perl.

It is good practice to start a script with a shebang; if it is
omitted, the script code will be executed by the shell that is
used in the parent shell as well. Because your scripts may also
be executed by, for instance, users of ksh, using a shebang to
call /bin/bash as a subshell is important to avoid confusion.

Right after the shebang, there is a part that explains what the
script is about. It is a good idea in every script to include a few
comment lines. In a short script, it is often obvious what the
script is doing. If the script is becoming longer, and as more
people get involved in writing and maintaining the script, it will
often become less clear what the writer of the script intended to
do. To avoid that situation, make sure that you include
comment lines, starting with a #. Include them not only in the
beginning of the script but also at the start of every subsection
of the script. Comments will surely be helpful if you read your
script a few months later and don’t remember exactly what you
were trying to do while creating it! You can also use comments
within lines. No matter in which position the # is used,
everything from the # until the end of the line is comment text.

Next is the body of the script. In Example 19-1, the body is just a
simple script containing a few commands that are sequentially
executed. The body may grow as the script develops.

At the end of the script, I included the statement exit 0. An exit
statement tells the parent shell whether the script was
successful. A 0 means that it was successful, and anything else
means that the script has encountered a problem. The exit
status of the last command in the script is the exit status of the
script itself, unless the exit command is used at the end of the
script. But it is good to know that you can work with exit to
inform the parent shell how it all went. To request the exit
status of the last command, from the parent shell, use the echo
$? command. This request can be useful to determine whether
and why something didn’t work out.

After writing a script, make sure that it can be executed. The
most common way to do this is to apply the execute permission
to it. So, if the name of the script is hello, use chmod +x hello to
make it executable. The script can also be executed as an
argument of the bash command, for instance. Use bash hello to
run the hello script. If started as an argument of the bash
command, the script does not need to be executable.

You can basically store the script anywhere you like, but if you
are going to store it in a location that is not included in the
$PATH, you need to execute it with a ./ in front of the script
name. So, just typing hello is not enough to run your script;
type ./hello to run it. Note that ./ is also required if you want to

run the script from the current directory, because on Linux the
current directory is not included in the $PATH variable. Or put
it in a standard directory that is included in the $PATH variable,
like /usr/local/bin. In Exercise 19-1 you apply these skills and
write a simple shell script.

Exercise 19-1 Writing a Simple Shell Script

1. Use vim to create a script with the name hello in your home
directory.

2. Give this script the contents that you see in Example 19-1
and close it.

3. Use ./hello to try to execute it. You’ll get a “permission
denied” error message.

4. Type chmod +x hello and try to execute it again. You’ll see
that it now works.

Using Variables and Input

Linux Bash scripts are much more than just a list of
sequentially executed commands. One of the nice things about
scripts is that they can work with variables and input to make
the script flexible. In this section, you learn how to work with
variables and input.

Using Positional Parameters

When starting a script, you can use arguments. An argument is
anything that you put behind the script command while
starting it. Arguments can be used to make a script more
flexible. Take, for instance, the useradd lisa command. In this
example, the command is useradd, and the argument lisa
specifies what needs to be done. In this case, a user with the
name lisa has to be created. In this example, lisa is the
argument to the command useradd. In a script, the first
argument is referred to as $1, the second argument is referred
to as $2, and so on. The script in Example 19-2 shows how an
argument can be used. Go ahead and try it using any arguments
you want to use!

Example 19-2 Script That Uses Arguments

Click here to view code image

#!/bin/bash

run this script with a few arguments

echo The first argument is $1

echo The second argument is $2

echo the third argument is $3

If you tried to run the sample code from Example 19-2, you
might have noticed that its contents are not perfect. If you use
three arguments while using the script, it will work perfectly. If
you use only two arguments, the third echo will print with no
value for $3. If you use four arguments, the fourth value (which
would be stored in $4) will never be used. So, if you want to use
arguments, you’ll be better off using a more flexible approach.
Example 19-3 shows a script that uses a more flexible approach.

Example 19-3 Script That Uses Arguments in a Flexible Way

Click here to view code image

#!/bin/bash

run this script with a few arguments

echo you have entered $# arguments

for i in $@

do

 echo $i

done

exit 0

In Example 19-3, two new items that relate to the arguments
are introduced:

$# is a counter that shows how many arguments were used
when starting the script.
$@ refers to all arguments that were used when starting the
script.

To evaluate the arguments that were used when starting this
script, you can use a conditional loop with for. In conditional
loops with for, commands are executed as long as the condition
is true. In this script, the condition is for i in $@, which means
“for each argument.” Each time the script goes through the
loop, a value from the $@ variable is assigned to the $i variable.
So, as long as there are arguments, the body of the script is
executed. The body of a for loop always starts with do and is
closed with done, and between these two, the commands that
need to be executed are listed. So, the script in Example 19-3
will use echo to show the value of each argument and stop
when no more arguments are available. In Exercise 19-2, you
can try this for yourself by writing a script that works with
positional parameters.

Exercise 19-2 Working with Positional Parameters

1. Open an editor, create a script named ex192a, and copy the
contents from Example 19-2 into this script.

2. Save the script and make it executable.

3. Run the ./ex192a a b c command. You’ll see that three lines
are echoed.

4. Run the ./ex192a a b c d e f command. You’ll see that three
lines are still echoed.

5. Open an editor to create the script ex192 and copy the
contents from Example 19-3 into this script.

6. Save the script and make it executable.
7. Run the ./ex192 a b c d e command. You’ll see that five lines

are echoed.
8. Run the ./ex192 command without arguments. You’ll see that

the command does not echo any arguments, but it does
indicate that zero arguments are entered.

Working with Variables

A variable is a label that is used to refer to a specific location in
memory that contains a specific value. Variables can be defined
statically by using NAME=value or can be defined in a dynamic
way. There are two solutions to define a variable dynamically:

Use read in the script to ask the user who runs the script for
input.
Use command substitution to use the result of a command
and assign that result to a variable. For example, the date
+%d-%m-%y command shows the current date in day-
month-year format. To assign that date to a variable in a
script, you could use the TODAY=$(date +%d-%m-%y)
command.

In command substitution, you just have to enclose in
parentheses the command whose result you want to use, with a
dollar sign preceding the opening parenthesis. As an alternative
to this notation, you can use backquotes. So the TODAY=`date
+%d-%m-%y` command would do exactly the same.

In the previous section about positional parameters, you
learned how to provide arguments when starting a script. In
some cases, a more efficient approach is to ask for information
when you find out that something essential is missing. The
script in Example 19-4 shows how to do this using read.

Example 19-4 Script That Uses the read Command

Click here to view code image

#!/bin/bash

if [-z $1]; then

 echo enter a name

 read NAME

else

 NAME=$1

fi

echo you have entered the text $NAME

exit 0

In Example 19-4, an if ... then ... else ... fi statement is used to
check whether the argument $1 exists. This is done by using the
test command, which can be written in either of two ways: test
or [...]. In Example 19-4, the line if [-z $1] executes to see if
the test -z $1 is true. The -z test checks whether $1 is
nonexistent. Stated otherwise, the line if [-z $1] checks
whether $1 is empty; if so, it means that no argument was
provided when starting this script. If this is the case, the
commands after the then statement are executed. Notice that
when you’re writing the test command with the square
brackets, it is essential to include one space after the opening
bracket and one space before the closing bracket; without these
spaces, the command will not work.

Notice that the then statement immediately follows the test
command. This is possible because a semicolon is used (;). A
semicolon is a command separator and can replace a new line
in a script. In the then statement, two commands are executed:
an echo command that displays a message onscreen and a read
command. The read command stops the script so that user
input can be processed and stored in the variable NAME. So, the
line read NAME puts all user input in the variable NAME,
which will be used later in the script.

In Example 19-4, the next part is introduced by the else
statement. The commands after the else statement are executed
in all other cases, which in this case means “if an argument was
provided.” If that is the case, the variable NAME is defined and
the current value of $1 is assigned to it.

Notice how the variable is defined: directly after the name of
the variable there is an = sign, which is followed by $1. Notice
that you should never use spaces when defining variables.

Then, the if loop is closed with a fi statement. Once the if loop
has been completed, you know for sure that the variable NAME
is defined and has a value. The last line of the script reads the
value of the variable NAME and displays this value to STDOUT
via the echo command. Notice that to request the current value

of a variable, the script refers to the variable name, preceded
by a $ sign.

In Exercise 19-3, you can practice working with input.

Exercise 19-3 Working with Input

1. Open an editor and create a script with the name ex193.
Enter the contents of Example 19-4 in this script.

2. Write the script to disk and use chmod +x ex193 to make it
executable.

3. Run the script using ./ex193 and no further arguments. You’ll
see that it prompts for input.

4. Run the script using hello as its argument. It will echo “you
have entered the text hello” to the STDOUT.

Using Conditional Loops

As you have already seen, you can use conditional loops in a
script. These conditional loops are executed only if a certain
condition is true. In Bash the following conditional loops are
often used:

if … then … else: Used to execute code if a specific condition
is true
for: Used to execute commands for a range of values
while: Used to execute code as long as a specific condition is
true
until: Used to execute code until a specific condition is true
case: Used to evaluate specific values, where beforehand a
limited number of values is expected

Working with if … then … else

The if … then … else construction is common to evaluate
specific conditions. You already saw an example with it in
Example 19-4. This conditional loop is often used together with
the test command, which you saw in action earlier to check
whether a file exists. This command enables you to do many
other things as well, such as compare files, compare integers,
and much more.

Tip

Look at the man page of the test command.

The basic construction with if is if ... then ... fi. This
construction evaluates one single condition, as in the following

example:

Click here to view code image

if [-z $1]

then

 echo no value provided

fi

In Example 19-4 you saw how two conditions can be evaluated
by including else in the statement. Example 19-5 shows how
multiple conditions can be evaluated by contracting else with if
to become elif. This construction is useful if many different
values need to be checked. In Example 19-5 note that multiple
test commands are used as well.

Example 19-5 Script with if … then … else

Click here to view code image

#!/bin/bash

run this script with one argument

the goal is to find out if the argument is a f

if [-f $1]

then

 echo "$1 is a file"

elif [-d $1]

then

 echo "$1 is a directory"

else

 echo "I do not know what \$1 is"

fi

exit 0

Also note the use of the backslash (\) in Example 19-5. This
character informs the shell that it should not interpret the
following character, which is known as escaping the character.
Obviously, if you wanted the value of $1 to be printed instead of
the string $1, you would need to remove the \.

Using || and &&

Instead of writing full if ... then statements, you can use the
logical operators || and &&. || is a logical OR and will execute
the second part of the statement only if the first part is not true;
&& is the logical AND and will execute the second part of the
statement only if the first part is true. Consider these two one-
liners:

Click here to view code image

[-z $1] && echo no argument provided

ping -c 1 10.0.0.20 2>/dev/null || echo node is n

In the first example, a test is performed (using the alternative
test command syntax) to see whether $1 is empty. If that test is
true (which basically means that the test command exits with
the exit code 0), the second command is executed.

In the second example, a ping command is used to check the
availability of a host. The logical OR is used in this example to
echo the text “node is not available” in case the ping command
was not successful. You’ll often find that instead of fully written
if … then statements, the && and || constructions are used. In
Exercise 19-4 you can practice some if … then … else skills,
using either if ... then … else or && and ||.

Exercise 19-4 Using if ... then ... else

In this exercise, you work on a script that checks if the
argument is a file, a directory, or neither.

1. Start an editor and create a script using filechk as the name.
2. Copy the contents from Example 19-5 to this script.
3. Run a couple of tests with it, such as

./filechk /etc/hosts

./filechk /usr

./filechk non-existing-file

Applying for

The for conditional provides an excellent solution for
processing ranges of data. In Example 19-6, you can see the first
script with for, where a range is defined and processed as long
as there are unprocessed values in that range.

Example 19-6 Script with for

Click here to view code image

#!/bin/bash

for ((COUNTER=100; COUNTER>1; COUNTER--)); do

 echo $COUNTER

done

exit 0

A for conditional statement always starts with for, which is
followed by the condition that needs to be checked. Then comes

do, which is followed by the commands that need to be
executed if the condition is true, and the conditional statement
is closed with done.

In Example 19-6, you can see that the condition is a range of
numbers assigned to the variable COUNTER. The variable first
is initialized with a value of 100, and as long as the value is
higher than 1, in each iteration, 1 is subtracted. As long as the
condition is true, the value of the $COUNTER variable is
displayed, using the echo commands.

Example 19-7 shows one of my favorite one-liners with for. The
range is defined this time as a series of numbers, starting with
100 and moving up to 104.

Example 19-7 One-Liner with for

Click here to view code image

for i in {100..104}; do ping -c 1 192.168.4.$i >

 192.168.4.$i is up; done

Notice how the range is defined: You specify the first number,
followed by two dots and closed with the last number in the
range. With for i in, each of these numbers is assigned to the

variable i. For each of these numbers, a ping command is
executed, where the option -c 1 makes sure that only one ping
request is sent.

In this ping command, it is not the result that counts, which is
why the result is redirected to the /dev/null device. Based on the
exit status of the ping command, the part behind the && is
executed. So, if the host could be reached, a line is echoed
indicating that it is up.

Understanding while and until

Whereas the for statement that you just read about is useful to
work through ranges of items, the while statement is useful if
you want to monitor something like the availability of a
process. In Example 19-8 you can see how while is used to
monitor process activity.

Example 19-8 Monitoring Processes with while

Click here to view code image

#!/bin/bash

usage: monitor <processname>

while ps aux | grep $1 | grep -v grep > ~/output

p | g p | g p g p p

do

 sleep 5

done

clear

echo your process has stopped

logger $1 is no longer present

The script in Example 19-8 consists of two parts. First, there is
the while loop. Second, there is everything that needs to be
executed when the while loop no longer evaluates to true. The
core of the while loop is the ps command, which is grepped for
the occurrence of $1. Notice the use of grep -v grep, which
excludes lines containing the grep command from the result.
Keep in mind that the ps command will include all running
commands, including the grep command that the output of the
ps command is piped to. This can result in a false positive
match. The results of the ps aux command are redirected to the
file ~/output.txt. That makes it possible to read the results later
from ~/output.txt if that is needed, but they do not show by
default.

The commands that need to be executed if the statement
evaluates to true follow after the while statements. In this case,
the command is sleep 5, which will basically pause the script

for 5 seconds. As long as the while command evaluates to true,
it keeps on running. If it does no longer (which in this case
means that the process is no longer available), it stops and the
commands that follow the while loop can be executed.

The counterpart of while is until, which opens an iteration that
lasts until the condition is true. In Example 19-9, until is used to
filter the output of the users command for the occurrence of $1,
which would be a username. Until this command is true, the
iteration continues. When the username is found in the output
of users, the iteration closes and the commands after the until
loop are executed.

Example 19-9 Monitoring User Login with until

Click here to view code image

#!/bin/bash

until users | grep $1 > /dev/null

do

 echo $1 is not logged in yet

 sleep 5

done

echo $1 has just logged in

Understanding case

The last of the important iteration loops is case. The case
statement is used to evaluate a number of expected values. The
case statement in particular is important in Linux startup
scripts that were used to start services in previous versions of
RHEL. In a case statement, you define every specific argument
that you expect, which is followed by the command that needs
to be executed if that argument was used.

In Example 19-10, you can see the blueprint of the case
statement that was used in the service scripts in earlier
versions of RHEL to start almost any service. This statement
works on $1, which is the name of a startup script. Following
the name of the script, the user can type start, stop, restart,
and so on.

Example 19-10 Evaluating Specific Cases with case

Click here to view code image

case "$1" in

 start)

 start;;

 stop)

p

 rm -f $lockfile

 stop;;

 restart)

 restart;;

 reload)

 reload;;

 status)

 status

 ;;

 *)

 echo "Usage: $0 (start|stop|restart|r

 ;;

esac

The case statement has a few particularities. To start, the
generic syntax is case item-to-evaluate in. This syntax is
followed by a list of all possible values that need to be
evaluated. Each item is closed with a closing parenthesis. This)
is followed by a list of commands that need to be executed if a
specific argument was used. The list of commands is closed with
a double semicolon. This ;; can be used directly after the last
command, and it can be used on a separate line. Also notice that
the *) refers to all other options not previously specified. It is a
“catchall” statement. The case statement is closed by an esac
statement.

Notice that the evaluations in case are performed in order.
When the first match is made, the case statement will not
evaluate anything else. Within the evaluation, wildcard-like
patterns can be used. This shows in the *) evaluation, which
matches everything. But you also could use evaluations like
start|Start|START) to match the use of a different case.

Bash Shell Script Debugging

When a script does not do what you expect it to do, debugging
the script is useful. Try starting it as an argument to the bash -x
command. This command shows you line by line what the
script is trying to do and also shows you specific errors if it does
not work. Example 19-11 shows a script using bash -x where it
becomes immediately clear that the grep command does not
know what it is expected to do; the reason is that it is missing
an argument to work on.

Example 19-11 Using bash -x to Debug Scripts

Click here to view code image

[root@server1 ~]# bash -x 319.sh

+ grep

Usage: grep [OPTION]... PATTERN [FILE]...

Try 'grep --help' for more information.

+ users

+ echo is not logged in yet

is not logged in yet

+ sleep 5

Summary

In this chapter you learned how to write shell scripts. You also
worked through a few examples and are now familiar with
some of the basic elements that are required to create a
successful script.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the
Introduction, you have several choices for exam preparation:
the end-of-chapter labs; the memory tables in Appendix C;
Chapter 27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the
Key Topic icon in the margin of the page. Table 19-2 lists a

reference for these key topics and the page number on which
each is found.

Table 19-2 Key Topics for Chapter 19

Key Topic
Element

Description Page

Paragraph Definition of variable 427

List Dynamically defining
variables

427

List Conditional loops overview 429

Define Key Terms

Define the following key terms from this chapter and check
your answers in the glossary:

shebang

parent shell

subshell

variable

conditional loop

OR

AND

iteration

Review Questions

The questions that follow are meant to help you test your
knowledge of concepts and terminology and the breadth of
your knowledge. You can find the answers to these questions in
Appendix A.

. What is the effect if a script does not start with a shebang?

. How can you check if a variable VAR has no value?

. What would you use in a script to count the number of
arguments that have been used?

. What would you use to refer to all arguments that have been
used when starting the script?

. How do you process user input in a script?

. What is the simplest way to test whether a file exists and
execute the echo “file does not exist” command if it does not?

. Which test would you perform to find out if an item is a file or a
directory?

. Which construction would you use to evaluate a range of items?

. How do you close an elif statement in a script?

. In a case statement, you evaluate a range of items. For each of
these items, you execute one or more commands. What do you
need to use after the last command to close the specific item?

End-of-Chapter Lab

In this end-of-chapter lab, you apply your scripting skills to
write two simple scripts.

Lab 19.1

1. Write a script that works with arguments. If the argument
one is used, the script should create a file named /tmp/one. If
the argument two is used, the script should send a message
containing the subject “two” to the root user.

2. Write a countdown script. The script should use one
argument (and not more than one). This argument specifies
the number of minutes to count down. It should start with
that number of minutes and count down second by second,
writing the text “there are nn seconds remaining” at every
iteration. Use sleep to define the seconds. When there is no
more time left, the script should echo “time is over” and quit.

Part IV

Managing Network Services

Chapter 20

Configuring SSH

The following topics are covered in this chapter:

Hardening the SSH Server
Using Other Useful sshd Options
Configuring Key-Based Authentication with Passphrases

The following RHCSA exam objective is covered in this chapter:

Configure key-based authentication for SSH

Secure Shell (SSH) is among the most important utilities that
system administrators use. In Chapter 5, “Connecting to Red Hat
Enterprise Linux 9,” you learned how to use SSH to connect to a
server using a password or key-based authentication. In this
chapter, you learn about some of the more advanced
configuration settings.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess
whether you should read this entire chapter thoroughly or
jump to the “Exam Preparation Tasks” section. If you are in

doubt about your answers to these questions or your own
assessment of your knowledge of the topics, read the entire
chapter. Table 20-1 lists the major headings in this chapter and
their corresponding “Do I Know This Already?” quiz questions.
You can find the answers in Appendix A, “Answers to the ‘Do I
Know This Already?’ Quizzes and Review Questions.”

Table 20-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Hardening the SSH Server 1–5

Using Other Useful sshd Options 6–8, 10

Configuring Key-Based Authentication with
Passphrases

9

. Which of the following is not a common approach to prevent
brute-force attacks against SSH servers?

1. Disable X11 forwarding
2. Have SSH listening on a nondefault port
3. Disable password login

4. Allow specific users only to log in

. Which of the following successfully limits SSH server access to
users bob and lisa only?

1. LimitUsers bob,lisa
2. AllowedUsers bob lisa
3. AllowUsers bob lisa
4. AllowedUsers bob,lisa

. Which of the following commands must be used to provide
nondefault port 2022 with the correct SELinux label?

1. semanage ports -m -t ssh_port_t -p 2022
2. semanage port -m -t ssh_port_t -p tcp 2022
3. semanage ports -a -t sshd_port_t -p tcp 2022
4. semanage port -a -t ssh_port_t -p tcp 2022

. Which of the following descriptions is correct for the
MaxAuthTries option?

1. After reaching the number of attempts specified here, the
account will be locked.

2. This option specifies the maximum number of login attempts.
After reaching half the number specified here, additional
failures are logged.

3. After reaching the number of attempts specified here, the IP
address where the login attempts come from is blocked.

4. The number specified here indicates the maximum number
of login attempts per minute.

. Which log file do you analyze to get information about failed
SSH login attempts?

1. /var/log/auth
2. /var/log/authentication
3. /var/log/messages
4. /var/log/secure

. SSH login in your test environment takes a long time. Which of
the following options could be most likely responsible for the
connection time problems?

1. UseLogin
2. GSSAPIAuthentication
3. UseDNS
4. TCPKeepAlive

. Which of the following options is not used to keep SSH
connections alive?

1. TCPKeepAlive

2. ClientAliveInterval
3. ClientAliveCountMax
4. UseDNS

. Which file on an SSH client computer needs to be added to set
the ServerKeepAliveInterval for an individual user?

1. ~/.ssh/ssh_config
2. ~/.ssh/config
3. /etc/ssh/config
4. /etc/ssh/ssh_config

. Assuming that a passphrase-protected public/private key pair
has already been created, how do you configure your session so
that you have to enter the passphrase once only?

1. Copy the passphrase to the ~/.ssh/passphrase file.
2. Run ssh-add /bin/bash followed by ssh-agent.
3. Run ssh-agent /bin/bash followed by ssh-add.
4. This is not possible; you must enter the passphrase each time

a connection is created.

. The MaxSessions option can be used to tune the maximum
number of sessions that can be open at the same time. Which
value does it have by default?

1. 10
2. 25
3. 100
4. 1000

Foundation Topics

Hardening the SSH Server

SSH is an important and convenient solution that helps you
establish remote connections to servers. It is also a dangerous
solution. If your SSH server is visible directly from the Internet,
you can be sure that sooner or later an intruder will try to
connect to your server, intending to do harm.

Dictionary attacks are common against an SSH server. In a
dictionary attack, the attacker uses common passwords (the
dictionary) that are used to try repeated logins. The attacker
uses the fact that SSH servers usually offer their services on
port 22 and that still too many Linux servers have a root
account that is allowed to log in over SSH. Based on that
information, it is easy for an attacker to try to log in as root just
by guessing the password. If the password uses limited
complexity, and no additional security measures have been
taken, sooner or later the intruder will be able to connect.

Fortunately, you can take some measures to protect SSH servers
against these kinds of attacks:

Disable root login
Disable password login
Configure a nondefault port for SSH to listen on
Allow specific users only to log in on SSH

In the following subsections, you learn what is involved in
changing these options.

Limiting Root Access

In past versions of RHEL, the root user was allowed to log in,
locally as well as remotely, through SSH. In RHEL 9 this has
been fixed. The RHEL 9 installer now has an option not to set a
password for the root user, which disables root login. Also, by
default the root user is not allowed to log in through SSH. This
is accomplished by the option PermitRootLogin prohibit-
password, which is set by default. This option allows the root
user to log in only if the user has a valid public/private-key pair,
and it is recommended not to change this.

Even if root login to SSH is disabled, it’s still possible to perform
remote administration tasks. To do so, you’ll first have to log in
remotely as a non-root user, using a command like ssh

student@remoteserver. Once the session to the remote server
has been established, use sudo -i to open a root shell if you’re
using a sudo-enabled user, or su - for non-sudo-enabled users.
This is also the procedure to follow if no root password has
been set.

Configuring Alternative Ports

Many security problems on Linux servers start with a port scan
issued by the attacker. Scanning all of the 65,535 ports that can
potentially be listening takes a lot of time, but most port scans
focus on known ports only, and SSH port 22 is always among
the first ports scanned. Do not underestimate the risk of port
scans. On several occasions, I found that an SSH port listening
at port 22 was discovered within an hour after installation of
the server.

To protect against port scans, you can configure your SSH
server to listen on another port. By default, the sshd_config file
contains the line Port 22 that tells SSH to listen on privileged
port 22. To have SSH listen on another port, you must change
port 22 to something else. Different ports can be used. You can
choose to use a completely random port like 2022, but it can
also be handy to configure SSH to listen on port 443.

Port 443 by default is assigned to web servers using Transport
Layer Security (TLS) to offer encryption. If the users who want
to access the SSH server are normally behind a proxy that
allows traffic to ports 80 and 443 only, it may make sense to
configure SSH to listen on port 443. You should realize, though,
that by doing so port 443 cannot be used by your web server
anymore; a port can be assigned to one service at a time only!
So, do this only on a machine where you are not planning to
run a TLS-enabled web server!

Tip

To avoid being locked out of your server after
making a change to the SSH listening port while
being connected remotely, it is a good idea to open
two sessions to your SSH server. Use one session to
apply changes and test, and use the other session to
keep your current connection option. Active
sessions will not be disconnected after restarting
the SSH server (unless you fail to restart the SSH
server successfully).

Modifying SELinux to Allow for Port Changes

After changing the SSH port, you also need to configure SELinux
to allow for this change. (See Chapter 22, “Managing SELinux,”
for more details about SELinux.) Network ports are labeled
with SELinux security labels to prevent services from accessing
ports where they should not go. To allow a service to connect to
a nondefault port, you need to use semanage port to change
the label on the target port. Before doing so, it is a good idea to
check whether the port already has a label. You can do this by
using the semanage port -l command.

If the port does not have a security label set yet, use -a to add a
label to the port. If a security label has been set already, use -m
to modify the current security label. Use, for instance, the
command semanage port -a -t ssh_port_t -p tcp 2022 to label
port 2022 for access by sshd. If you want to relabel a port that
already was in use by another service, you have to use
semanage port -m to modify the current port assignment. This
is needed if, for instance, you want SSH to be able to bind to
port 443.

Limiting User Access

You can find many options for sshd by just browsing through
the sshd_config file. One of the most interesting options to use is
AllowUsers. This option takes a space-separated list of all users

that will be allowed login through SSH. Notice that this is a
powerful option, limiting login to only these users and
excluding all other users, including the root user.

When you use the AllowUsers parameter, carefully consider
which username you want to allow or deny access. In a scripted
brute-force attack, intruders normally also try common
usernames such as admin, Administrator, and jsmith. It is easy
to add a layer of security by selecting an uncommon username.
Notice the following about the AllowUsers parameter:

The AllowUsers option by default does not appear anywhere
in the default /etc/ssh/sshd_config file.
The AllowUsers option is a better option than
PermitRootLogin because it is more restrictive than just
denying root to log in.
If the AllowUsers option does not specify root, you can still
become root by using su - or sudo -i after making a
connection as a normal user.

A parameter that looks promising, but is misleading, is
MaxAuthTries. You might think that this option locks access to
the SSH login prompt after a maximum number of failed login
attempts. Such functionality proves useful when connecting to a
local server (of which configuration can easily be changed if so

required), but on an SSH server with Internet access, it is a
rather dangerous option, making it easy to perform a denial-of-
service attack on the server. An intruder would only have to
run a script that tries to log in as a specific user to block access
for that user for an amount of time. That is why MaxAuthTries
does not do what you might think it would do. It just starts
logging failed login attempts after half the number of successful
login attempts specified here.

Still, the MaxAuthTries option is useful. For analyzing security
events related to your SSH server, it is not that interesting to
know when a user by accident has typed a wrong password one
or two times. It becomes interesting only after multiple failed
attempts. The higher the number of attempts, the more likely it
is that an intruder is trying to get in. SSH writes log information
about failed login attempts to the AUTHPRIV syslog facility. By
default, this facility is configured to write information about
login failures to /var/log/secure.

In Exercise 20-1, you apply the common SSH options that have
been discussed so far.

Exercise 20-1 Configuring SSH Security Options

In this exercise, the sshd process should be configured on
server1. Use a second server, server2, to test access to server1.

1. Open a root shell on server1, and from there, open the sshd
configuration file /etc/ssh/sshd_config in an editor.

2. Find the Port line, and below that line add the line Port 2022.
This tells the sshd process that it should bind to two different
ports, which ensures that you can still open SSH sessions
even if you have made an error.

3. Add the line AllowUsers student to the SSH configuration
file as well.

4. Save changes to the configuration file and restart sshd, using
systemctl restart sshd. You will see an error message.

5. Type systemctl status -l sshd. You’ll see a “permission
denied” error for SSH trying to connect to port 2022.

6. Type semanage port -a -t ssh_port_t -p tcp 2022 to apply the
correct SELinux label to port 2022.

7. Open the firewall for port 2022 also, using firewall-cmd --
add-port=2022/tcp, followed by firewall-cmd --add-
port=2022/tcp --permanent

8. Type systemctl status -l sshd again. You’ll see that the sshd
process is now listening on two ports.

9. Try to log in to your SSH server from your other server, using
ssh -p 2022 student@server1. After the user shell has
opened, type su - to get root access.

Using Other Useful sshd Options

Apart from the security-related options, there are some useful
miscellaneous options that you can use to streamline SSH
performance. In the next two subsections, you read about some
of the most significant of these options.

Session Options

To start with, there is the UseDNS option. This option is on by
default and instructs the SSH server to look up the remote
hostname and check with DNS that the resolved hostname for
the remote host maps back to the same IP address. Although
this option has some security benefits, it also involves a
significant performance penalty. If client connections are slow,
make sure to set it to no, to switch off client hostname
verification completely.

Another session-related option is MaxSessions. This option
specifies the maximum number of sessions that can be opened
from one IP address simultaneously. If you are expecting
multiple users to use the same IP address to log in to your SSH
server, you might need to increase this option beyond its default
value of 10.

Connection Keepalive Options

TCP connections in general are a relatively scarce resource,
which is why connections that are not used for some time
normally time out. You can use a few options to keep inactive
connections alive for a longer period of time.

The TCPKeepAlive option is used to monitor whether the client
is still available. Using this option (which is on by default)
ensures that the connection is released for any machine that is
inactive for a certain period of time. If used by itself, however, it
might lead to a situation where unused connections are
released as well, which is why it makes sense to use the
ClientAliveInterval option. This option sets an interval, in
seconds, after which the server sends a packet to the client if no
activity has been detected. The ClientAliveCountMax parameter
specifies how many of these packets should be sent. If
ClientAliveInterval is set to 30, and ClientAliveCountMax is set
to 10, for instance, inactive connections are kept alive for about
five minutes. It is a good idea to set this to match the amount of
time you want to keep inactive connections open.

The ClientAliveInterval and ClientAliveCountMax options can
be specified on a server only. There is a client-side equivalent to
these options also. If you cannot change the configuration of the

SSH server, use the ServerAliveInterval and
ServerAliveCountMax options to initiate connection keepalive
traffic from the client machine. These options are set in the
/etc/ssh/ssh_config file if they need to be applied for all users on
that machine, or in ~/.ssh/config if applied for individual users.

Table 20-2 provides an overview of the most useful SSH options.

Table 20-2 Most Useful sshd Configuration Options

Option Use

Port Defines the TCP listening port.

PermitRootLogin Indicates whether to allow or
disallow root login.

MaxAuthTries Specifies the maximum number
of authentication tries. After
reaching half of this number,
failures are logged to syslog.

Option Use

MaxSessions Indicates the maximum
number of sessions that can be
open from one IP address.

AllowUsers Specifies a space-separated list
of users who are allowed to
connect to the server.

PasswordAuthentication Specifies whether to allow
password authentication. This
option is on by default.

TCPKeepAlive Specifies whether or not to
clean up inactive TCP
connections.

ClientAliveInterval Specifies the interval, in
seconds, that packets are sent
to the client to figure out if the
client is still alive.

Option Use

ClientAliveCountMax Specifies the number of client
alive packets that need to be
sent.

UseDNS If on, uses DNS name lookup to
match incoming IP addresses to
names.

ServerAliveInterval Specifies the interval, in
seconds, at which a client sends
a packet to a server to keep
connections alive.

ServerAliveCountMax Specifies the maximum number
of packets a client sends to a
server to keep connections
alive.

Configuring Key-Based Authentication with
Passphrases

By default, password authentication is allowed on RHEL SSH
servers. If a public/private key pair is used, as explained in
Chapter 5, this key pair is used first. If you want to allow
public/private key-based authentication only and disable
password-based authentication completely, set the
PasswordAuthentication option to no.

When you use public/private keys, a passphrase can be used.
Using a passphrase makes the key pair stronger. Not only does
an intruder have to get access to the private key, but when he
does, he must also know the passphrase to use the key. This is
why for establishing client/server connections with
public/private keys, it is recommended to use passphrases.
Without further configuration, the use of passphrases would
mean that users have to enter the passphrase every time before
a connection can be created, and that is inconvenient.

To make working with passphrases a bit less complicated, you
can cache the passphrase for a session. To do this, you need the
ssh-agent and ssh-add commands. Assuming that the
public/private key pair has already been created, this is an easy
three-step procedure:

1. Type ssh-agent /bin/bash to start the agent for the current
(Bash) shell.

2. Type ssh-add to add the passphrase for the current user’s
private key. The key is now cached.

3. Connect to the remote server. Notice that there is no longer a
need to enter the passphrase.

This procedure needs to be repeated for all new sessions that
are created.

Summary

In this chapter, you learned how to configure the SSH server
with advanced options. You also learned how to set security
options for sshd and how to set specific client options that help
in keeping connections alive for a longer period.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the
Introduction, you have several choices for exam preparation:
the end-of-chapter labs; the memory tables in Appendix C;
Chapter 27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topic in the chapter, noted with the
Key Topic icon in the margin of the page. Table 20-3 lists a
reference for this key topic and the page number on which it is
found.

Table 20-3 Key Topic for Chapter 20

Key Topic
Element

Description Page

Table 20-2 Most Useful sshd Configuration
Options

447

Complete Tables and Lists from Memory

Print a copy of Appendix C, “Memory Tables” (found on the
companion website), or at least the section for this chapter, and
complete the tables and lists from memory. Appendix D,
“Memory Tables Answer Key,” includes completed tables and
lists to check your work.

Define Key Terms

Define the following key terms from this chapter and check
your answers in the glossary:

connection

passphrase

Review Questions

The questions that follow are meant to help you test your
knowledge of concepts and terminology and the breadth of
your knowledge. You can find the answers to these questions in
Appendix A.

. Which two commands do you need to cache the passphrase that
is set on your private key?

. You want to disallow root login and only allow user lisa to log in
to your server. How would you do that?

. How do you configure your SSH server to listen on two different
ports?

. What is the name of the main SSH configuration file?

. When configuring a cache to store the passphrase for your key,
where will this passphrase be stored?

. What is the name of the file that contains SSH client settings for
all users?

. Which setting should you use to set the maximum number of
concurrent SSH sessions to 10?

. How do you configure SELinux to allow SSH to bind to port
2022?

. How do you configure the firewall on the SSH server to allow
incoming connections to port 2022?

. Which setting could you use if you experience long timeouts
while trying to establish an SSH connection?

End-of-Chapter Lab

In this end-of-chapter lab, you configure SSH for enhanced
security and optimized connection settings. Use server1 to set
up the SSH server, and use server2 as the SSH client.

Lab 20.1

1. Configure your SSH server in such a way that inactive
sessions will be kept open for at least one hour.

2. Secure your SSH server so that it listens on port 2022 only
and that only user lisa is allowed to log in.

3. Test the settings from server2. Make sure that the firewall as
well as SELinux are configured to support your settings.

Chapter 21

Managing Apache HTTP Services

The following topics are covered in this chapter:

Configuring a Basic Apache Server
Understanding Apache Configuration Files
Creating Apache Virtual Hosts

This chapter discusses a subject that is not listed in the RHCSA
objectives. However, for a Red Hat server administrator, it is
important to know how to deal with the Apache web service. In
Chapter 22, “Managing SELinux,” you’ll learn how to configure
SELinux. To learn about SELinux, it is convenient to also know a
bit about services that can be secured with SELinux, which is
why it is useful to know how to configure an Apache server.
Also, in Chapter 11, “Working with Systemd,” you learned how
to work with services in an RHEL environment. Knowing how
to configure a common service like the Apache web service will
surely help you to do so. That is why this chapter explains
Apache web server basics.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess
whether you should read this entire chapter thoroughly or
jump to the “Exam Preparation Tasks” section. If you are in
doubt about your answers to these questions or your own
assessment of your knowledge of the topics, read the entire
chapter. Table 21-1 lists the major headings in this chapter and
their corresponding “Do I Know This Already?” quiz questions.
You can find the answers in Appendix A, “Answers to the ‘Do I
Know This Already?’ Quizzes and Review Questions.”

Table 21-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Configuring a Basic Apache Server 1–4

Understanding Apache Configuration Files 5–7

Creating Apache Virtual Hosts 8–10

. Which command installs the software packages that are needed
to configure an Apache web server?

1. dnf install httpd

2. dnf install web-server
3. dnf install apache
4. dnf install apache2

. What is the name of the main Apache configuration file?

1. /etc/httpd/conf/httpd.conf
2. /etc/httpd/httpd.conf
3. /etc/apache2/apache.conf
4. /etc/httpd/default-server.conf

. Which parameter in the Apache configuration file is used to
specify where Apache will serve its documents from?

1. ServerRoot
2. ServerDocuments
3. DocumentRoot
4. DocumentIndex

. Which parameter in the main Apache configuration file defines
the location where the Apache process looks for its
configuration files?

1. ServerRoot
2. ServerDocuments
3. DocumentRoot

4. DocumentIndex

. Which directory contains the main Apache configuration file?

1. /etc/httpd
2. /etc/httpd/conf
3. /etc/httpd/conf.d
4. /etc/httpd/conf.modules.d

. Which directory contains the configuration files for the
different Apache modules?

1. /etc/httpd
2. /etc/httpd/conf
3. /etc/httpd/conf.d
4. /etc/httpd/conf.modules.d

. Which directory is used to drop configuration files that are
installed from RPMs?

1. /etc/httpd
2. /etc/httpd/conf
3. /etc/httpd/conf.d
4. /etc/httpd/conf.modules.d

. Which virtual host type allows you to run multiple virtual hosts
on the same IP address?

1. Name-based
2. IP-based
3. Configuration-based
4. Default

. Which line is used to start the definition of a virtual host that
listens on port 80 of all IP addresses on the current server?

1. <VirtualHost *:80>
2. <VirtualHost *>
3. <NameHost *:80
4. <NameHost *>

. Which of the following statements about virtual hosts is not
true?

1. When virtual hosts are offered through an httpd process, the
default configuration no longer works.

2. The names of virtual hosts must be resolvable through
/etc/hosts or DNS.

3. To use virtual hosts, the mod_virt package must be installed.
4. Virtual host configurations can be specified in httpd.conf.

Foundation Topics

Configuring a Basic Apache Server

Configuring a basic Apache server is not hard to do. It consists
of a few easy steps:

1. Install the required software.

2. Identify the main configuration file.

3. Create some web server content.

Installing the Required Software

The Apache server is provided through some different software
packages. The basic package is httpd, which contains
everything that is needed for an operational but basic web
server. There are some additional packages, as well. Use dnf
group install "Basic Web Server" to install all relevant
packages in one command.

Identifying the Main Configuration File

The configuration of the Apache web server goes through
different configuration files. The section “Understanding
Apache Configuration Files” later in this chapter provides an

overview of the way these files are organized. The main Apache
configuration file is /etc/httpd/conf/httpd.conf. In this file, many
parameters are specified. The most important parameter to
understand for setting up a basic web server is the
DocumentRoot parameter. This parameter specifies the default
location where the Apache web server looks for its contents.

Another important configuration parameter is the ServerRoot.
This defines the default directory where Apache will look for its
configuration files. By default, the /etc/httpd directory is used
for this purpose, but alternative directories can be used as well.
Many other configuration files are referenced in the httpd.conf
file, a portion of which is shown in Example 21-1. The use of
additional configuration files makes it easy for applications to
install drop-in files that will be included by the Apache server
from RPM packages. The names of all these configuration files
are relative to the ServerRoot /etc/httpd.

Example 21-1 Partial Contents of the /etc/httpd/conf/httpd.conf
Configuration File

Click here to view code image

[root@localhost ~]# grep -v '#' /etc/httpd/conf/

ServerRoot "/etc/httpd"

Listen 80

Include conf.modules.d/*.conf

User apache

Group apache

ServerAdmin root@localhost

<Directory />

 AllowOverride none

 Require all denied

</Directory>

DocumentRoot "/var/www/html"

<Directory "/var/www">

 AllowOverride None

 Require all granted

</Directory>

<Directory "/var/www/html">

 Options Indexes FollowSymLinks

 AllowOverride None

 Require all granted

</Directory>

<IfModule dir_module>

 DirectoryIndex index.html

</IfModule>

<Files ".ht*">

 Require all denied

</Files>

ErrorLog "logs/error_log"

LogLevel warn

<IfModule log_config_module>

 LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Ref

 {User-Agent}i\"" combined

 LogFormat "%h %l %u %t \"%r\" %>s %b" common

 <IfModule logio_module>

 LogFormat "%h %l %u %t \"%r\" %>s %b \"%{R

 {User-Agent}i\" %I %O" combinedio

 </IfModule>

 CustomLog "logs/access_log" combined

</IfModule>

<IfModule alias_module>

 ScriptAlias /cgi-bin/ "/var/www/cgi-bin/"

</IfModule>

<Directory "/var/www/cgi-bin">

 AllowOverride None

 Options None

 Require all granted

</Directory>

<IfModule mime_module>

 TypesConfig /etc/mime.types

 AddType application/x-compress .Z

 AddType application/x-gzip .gz .tgz

 AddType text/html .shtml

 AddOutputFilter INCLUDES .shtml

</IfModule>

AddDefaultCharset UTF-8

<IfModule mime_magic_module>

 MIMEMagicFile conf/magic

</IfModule>

EnableSendfile on

IncludeOptional conf.d/*.conf

Creating Web Server Content

After identifying the web server DocumentRoot, you know all
you need to know to configure a basic web server. The Apache
web server by default looks for a file with the name index.html
and will present the contents of that document to clients using a
browser to access the web server. It suffices to configure this file
with very basic contents; just a line like “Welcome to my web
server” will do.

To test the web server, you can launch a browser. The Firefox
browser is installed by default on all graphical installations of
RHEL 9. If your server does not run a graphical interface, use
dnf install curl to work with Apache from the command line.

In Exercise 21-1, you learn how to set up a basic Apache web
server—nothing fancy, just enough to get you going and test
web server functionality.

Exercise 21-1 Setting Up a Basic Web Server

1. Type dnf install httpd
2. Open the main Apache configuration file with an editor, and

look up the line that starts with DocumentRoot. This line
identifies the location where the Apache server will look for
the contents it will service. Confirm that it is set to
/var/www/html.

3. In the directory /var/www/html, create a file with the name
index.html. In this file, type the following: Welcome to my
web server.

4. To start and enable the web server, type systemctl enable --
now httpd. This starts the web server and makes sure that it
starts automatically after restarting the server. Use
systemctl status httpd to check that the web server is up
and running. In Example 21-2 you can see what the result of
this command should look like.

5. Type dnf install curl to install the elinks text-based browser.
Type curl http://localhost to connect to the web server and
verify it is working.

Example 21-2 Verifying the Availability of the Apache Web
Server with systemctl status

Click here to view code image

[root@localhost ~]# systemctl status httpd

 httpd.service - The Apache HTTP Server

 Loaded: loaded (/usr/lib/systemd/system/httpd

 vendor preset: disabled)

 Active: active (running) since Fri 2022-07-05

 Docs: man:httpd.service(8)

 Main PID: 4540 (httpd)

 Status: "Started, listening on: port 443, por

 Tasks: 213 (limit: 11222)

 Memory: 24.2M

 CGroup: /system.slice/httpd.service

 |–4540 /usr/sbin/httpd -DFOREGROUND

 |–4542 /usr/sbin/httpd -DFOREGROUND

 |–4543 /usr/sbin/httpd -DFOREGROUND

 |–4544 /usr/sbin/httpd -DFOREGROUND

 |–4545 /usr/sbin/httpd -DFOREGROUND

Jul 05 03:06:02 localhost.localdomain systemd[1]

 HTTP Server...

Jul 05 03:06:02 localhost.localdomain httpd[4540

 Could not reliably determine the server’>

Jul 05 03:06:02 localhost.localdomain httpd[4540

 listening on: port 443, port 80

Jul 05 03:06:02 localhost.localdomain systemd[1]

 HTTP Server.

Understanding Apache Configuration Files

A default installation of the Apache web server creates a
relatively complex configuration tree in the /etc/httpd directory.
Example 21-3 shows the default contents of this directory. The
contents of this directory may differ on your server if additional
software has been installed. Apache is modular, and upon
installation of additional Apache modules, different
configuration files might be installed here.

Example 21-3 Default Contents of the /etc/httpd Directory

Click here to view code image

[root@server1 httpd]# ls -l

total 8

drwxr-xr-x. 2 root root 35 Feb 23 03:12 conf

drwxr-xr-x. 2 root root 4096 Feb 25 12:41 conf.d

drwxr-xr-x. 2 root root 4096 Feb 25 12:41 conf.m

lrwxrwxrwx. 1 root root 19 Feb 17 13:26 logs ->

lrwxrwxrwx. 1 root root 29 Feb 17 13:26 modules

 httpd/modules

lrwxrwxrwx. 1 root root 10 Feb 17 13:26 run -> /

The first thing you notice is the presence of three symbolic links
to logs, modules, and a run directory. These are created to allow
Apache to be started in a chroot environment.

A chroot environment provides a fake root directory. This is a
directory in the file system that is presented as the root
directory for the process that is running in the chroot
environment. This is done for security reasons: processes that
are running in a chroot environment can access files in that
chroot environment only, which decreases the risk of security
incidents occurring when intruders manage to get a login shell
using the web server identity and try walking through the file
system to do unauthorized things.

The main configuration files for the Apache web server are in
the /etc/httpd/conf directory. To start, the httpd.conf file
contains the most important configuration parameters. Apart
from that, there is a file with the name magic. This file is used
by the browser to interpret how the contents of the web server
should be displayed. It makes sure that the web server content
is shown correctly in different browsers.

The /etc/httpd/conf.d directory contains files that are included
in the Apache configuration. Files are added by the line Include
conf.d/*.conf in the httpd.conf file. This directory can be used by
RPMs that include Apache drop-in files. As is the case for the
ServerRoot, this approach makes it possible to add
configuration files that define the different web pages without
changing the contents of the /etc/httpd/conf/httpd.conf file.

The last configuration directory is /etc/httpd/conf.modules.d.
Apache is a modular web server. Therefore, the functionality of
the Apache web server can easily be extended by adding
additional modules that enable many different features. If
modules are used, they can use their own module-specific
configuration files, which will be dropped in the
/etc/httpd/conf.modules.d directory. Again, the purpose of this
approach is to keep the configuration in
/etc/httpd/conf/httpd.conf as clean as possible and to make sure
that module-specific configuration is not overwritten if the
Apache generic configuration is updated.

Creating Apache Virtual Hosts

Many companies host more than one website. Fortunately, it is
not necessary to install a new Apache server for every website
that you want to run. Apache can be configured to work with

virtual hosts. A virtual host is a distinct Apache configuration
file or section that is created for a unique hostname. When
you’re working with virtual hosts, the procedure to access the
host is roughly like the following:

1. The client starts a session to a specific virtual host, normally
by starting a browser and entering the URL to the website the
client wants to use.

2. DNS helps resolve the IP address of the virtual host, which is
the IP address of the Apache server that can host different
virtual hosts.

3. The Apache process receives requests for all the virtual hosts
it is hosting.

4. The Apache process reads the HTTP header of each request
to analyze which virtual host this request needs to be
forwarded to.

5. Apache reads the specific virtual host configuration file to
find which document root is used by this specific virtual host.

6. The request is forwarded to the appropriate contents file in
that specific document root.

When you’re working with virtual hosts, there are a few things
to be aware of:

If your Apache server is configured for virtual hosts, all
servers it is hosting should be handled by virtual hosts. To
create a catch-all entry for all HTTP requests that are
directed to this host but that do not have a specific virtual
host file, you can create a virtual host for _default_:80. If you
don’t do that, packets that successfully arrive on your server
via DNS name resolution but don’t find a matching virtual
host are sent to the virtual host whose configuration the
Apache process finds first. That leads to unpredicted results.
Name-based virtual hosting is the most common solution. In
this solution, virtual hosts use different names but the same
IP address.
IP-based virtual hosts are less common but are required if
the name of a web server must be resolved to a unique IP
address. IP-based virtual hosts do require several IP
addresses on the same machine and are common in
configurations where the Apache server uses TLS to secure
connections.

Configuring virtual hosts is not an RHCSA objective, but it is
useful to know how to configure them as a Linux administrator.
Therefore, Exercise 21-2 walks you through the procedure.

Exercise 21-2 Configuring Apache Virtual Hosts

In this exercise, you create two virtual hosts. To set up virtual
hosts, you first set up name resolution, after which you create
the virtual hosts’ configuration. Because SELinux has not been
discussed yet, you temporarily switch off SELinux.

Note

I later tell you that you should never switch off
SELinux. For once, I make an exception to this
important security rule. To focus on what needs to
be done on the Apache web server, it is easier to
focus just on Apache and not to configure SELinux
as well.

1. On both server1 and server2, open the file /etc/hosts with an
editor and add two lines that make it possible to resolve the
names of the virtual host you are going to create to the IP
address of the virtual machine:

Click here to view code image

192.168.4.210 server1.example.com server1

192.168.4.220 server2.example.com server2

192.168.4.210 account.example.com account

192.168.4.210 sales.example.com sales

2. On server1, open a root shell and add the following to the
/etc/httpd/conf/httpd.conf file. (You can leave all other
settings as they are.)

<Directory /www/docs>

 Require all granted

 AllowOverride None

</Directory>

3. On server1, open a root shell and create a configuration file
with the name account.example.com.conf in the directory
/etc/httpd/conf.d. Give this file the following content:

Click here to view code image

<VirtualHost *:80>

 ServerAdmin webmaster@account.example.c

 DocumentRoot /www/docs/account.example.

 ServerName account.example.com

 ErrorLog logs/account.example.com-error

 CustomLog logs/account.example.com-acces

</VirtualHost>

4. Close the configuration file, and from the root shell type
mkdir -p /www/docs/account.example.com

5. Create a file with the name index.html in the account
document root, and make sure its contents reads as follows:
Welcome to account.

6. Temporarily switch off SELinux using setenforce 0.
7. Use systemctl restart httpd to restart the Apache web

server.
8. Use curl http://account.example.com. You should now see

the account welcome page. (You may have to install curl,
using dnf install -y curl.)

9. Back on the root shell, copy the
/etc/httpd/conf.d/account.example.com.conf file to a file with
the name /etc/httpd/conf.d/sales.example.com.conf.

10. Open the sales.example.com.conf file in vi, and use the vi
command : %s/account/sales/g. This should replace all
instances of “account” with “sales.”

11. Create the /www/docs/sales.example.com document root,
and create a file index.html in it, containing the text
“Welcome to the sales server.”

12. Restart httpd and verify that both the account and the sales
servers are accessible.

Summary

In this chapter, you learned about Apache basics. The
information in this chapter helps you configure a basic Apache
web server, which helps with testing advanced topics like
firewall configuration or SELinux configuration that are
covered in subsequent chapters.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the
Introduction, you have several choices for exam preparation:
the end-of-chapter labs; the memory tables in Appendix C;
Chapter 27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the
Key Topic icon in the margin of the page. Table 21-2 lists a
reference for these key topics and the page number on which
each is found.

Table 21-2 Key Topics for Chapter 21

Key Topic
Element

Description Page
Key Topic
Element

Description Page

Paragraph chroot environment
explanation

461

List Virtual host explanation 462

Define Key Terms

Define the following key terms from this chapter and check
your answers in the glossary:

DocumentRoot

chroot

virtual host

Review Questions

The questions that follow are meant to help you test your
knowledge of concepts and terminology and the breadth of
your knowledge. You can find the answers to these questions in
Appendix A.

. Which dnf group can be used to install Apache and relevant
related packages?

. How do you enable the httpd service to be started automatically
when booting?

. What is the default location where RPMs can drop plug-in
configuration files that should be considered by the Apache
server?

. Which command enables you to test a web server from a server
that does not offer a graphical interface?

. What is the name of the default Apache configuration file?

. Which directory is used as the default Apache document root?

. Which file does the Apache process look for by default in the
document root?

. Which command enables you to see whether the Apache web
server is currently running?

. Which location is preferable for storing virtual host
configuration files?

. Names of configuration files and directories in the main
Apache configuration file are relative to the ServerRoot. To
which directory is the ServerRoot set by default?

End-of-Chapter Lab

In this end-of-chapter lab, you install and configure a basic
Apache web server.

Lab 21.1

1. Install the required packages that allow you to run a basic
web server. Make sure that the web server process is started
automatically when your server reboots. Do not use a virtual
server.

2. Use curl to make sure the web server presents a default page
showing “Welcome to my web server.”

3. Type dnf install httpd-manual to install the Apache
documentation.

4. Use a browser to test access to the /manual web page on your
server.

Chapter 22

Managing SELinux

The following topics are covered in this chapter:

Understanding SELinux Working Modes
Understanding Context Settings and the Policy
Restoring Default File Contexts
Managing Port Access
Using Boolean Settings to Modify SELinux Settings
Diagnosing and Addressing SELinux Policy Violations

The following RHCSA exam objectives are covered in this
chapter:

Set enforcing and permissive modes for SELinux
List and identify SELinux file and process context
Restore default file contexts
Use Boolean settings to modify system SELinux settings
Diagnose and address routine SELinux policy violations
Manage SELinux port labels

Since the earliest days of Linux, file permissions have been the
standard method of securing Linux systems. In some cases, file

permissions are just not enough to secure a server fully. Let’s
take a look at an example:

One morning I found out that my server was hacked. An
intruder had broken through a bad script on my web server
and had obtained shell access as the httpd user—this was
possible due to a bug in the shell code that I was using. Using
this file access, the intruder managed to create thousands of
little PHP scripts that were involved in a massive DDoS attack.

From a security perspective, it is interesting that nothing really
was wrong with the security settings on this server. All
permissions were set in a decent way, and the httpd user, like
any other user on a Linux server, does have permissions to
create files in /var/tmp, as in /tmp. So, what would have been a
good solution to prevent this kind of problem?

You could, of course, argue that the administrator of the web
server should have been doing a better job and should have
been watching what the scripts on the server were doing. But
that is not how Linux servers are normally used. The Linux
server administrator does not necessarily have in-depth
knowledge of the internals of all the applications running on
the Linux server, and the application administrator does not

understand enough about Linux to ensure that something like
this can never happen.

Another solution is to apply further security measures. For
instance, this specific situation would have been prevented if
the permission to run program files from the /tmp and /var/tmp
directory had been taken away by using the noexec mount
option. But even if that would have worked for this specific
situation, it is not a good overall security solution that prevents
applications from doing things they are not supposed to be
doing. Basically, Linux just needs a default security solution that
covers all settings.

That is why SELinux was invented. SELinux provides
mandatory access control to a Linux server, where every system
call is denied unless it has been specifically allowed. This
chapter explains how to use SELinux to make sure that serious
security incidents will never happen on your server.

Tip

By any means, make sure that at the end of the
exam SELinux is working on your server. If it is
not, it will cost you many points!

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess
whether you should read this entire chapter thoroughly or
jump to the “Exam Preparation Tasks” section. If you are in
doubt about your answers to these questions or your own
assessment of your knowledge of the topics, read the entire
chapter. Table 22-1 lists the major headings in this chapter and
their corresponding “Do I Know This Already?” quiz questions.
You can find the answers in Appendix A, “Answers to the ‘Do I
Know This Already?’ Quizzes and Review Questions.”

Table 22-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Understanding SELinux Working Modes 1–2

Understanding Context Settings and the Policy 3–5

Restoring Default File Contexts 6

Foundation Topics Section Questions

Managing Port Access 7

Using Boolean Settings to Modify SELinux Settings 8

Diagnosing and Addressing SELinux Policy Violations 9–10

. Which of the following allows you to set SELinux in disabled
mode in RHEL 9?

1. From a root shell, use setenforce 0
2. Use the GRUB kernel boot argument selinux=0
3. Set selinux=disabled in /etc/sysconfig/selinux
4. Remove the SELinux packages using dnf remove selinux

. Which of the following commands enable you to see the current
SELinux mode? (Choose two.)

1. sestatus
2. lsmode
3. semode
4. getenforce

. Which of the following items in the context label is the most
significant for SELinux system administration tasks?

1. Type
2. User
3. Role
4. Mission

. Which command-line switch is used with many commands to
display SELinux-related information?

1. -S
2. -X
3. -Z
4. -D

. Which of the following commands should be used to set the
context type of the directory /web to httpd_sys_content_t?

1. chcon -t httpd_sys_content_t /web
2. semanage -t httpd_sys_content_t "/web(/.*)?"
3. semanage fcontext -t httpd_sys_content_t "/web(/.*)?"
4. semanage fcontext -a -t httpd_sys_content_t "/web(/.*)?"

. Which command must you run to ensure that a file has the
appropriate SELinux context after moving the file to another

location?

1. reboot
2. restorecon /new/filename
3. chcon
4. restorecon -R /etc/selinux -v

. While setting a port context using semanage port -a -t
ssh_port_t -p tcp 443, you get an error message telling you that
the port is already defined. Which of the following statements is
true?

1. You cannot change a default port setting like 443, as it is used
already for https.

2. You have already issued the command earlier.
3. You need to use -m to modify the port context, not -a to add

it.
4. The syntax you use is incorrect.

. Which command enables you to change a Boolean in a way that
it survives a reboot?

1. chcon boolean -P
2. setsebool -P
3. setsebool
4. semanage boolean

. Which file contains all the information you need to
troubleshoot SELinux messages?

1. /var/log/audit/audit.log
2. /var/log/selinux/selinux.log
3. /var/log/messages
4. /var/log/selinux.log

. You want to grep the audit log for SELinux log messages. Which
of the following strings should you use grep on?

1. selinux
2. deny
3. violation
4. AVC

Foundation Topics

Understanding SELinux Working Modes

If SELinux is enabled and nothing else has been configured, all
system calls are denied. To specify what exactly is allowed, a
policy is used. In this policy, rules define which source domain
is allowed to access which target domain. The source domain is
the object that is trying to access something. Typically, this is a
process or a user. The target domain is the object that is

accessed. Typically, that is a file, a directory, or a network port.
To define exactly what is allowed, context labels are used. Using
these labels is the essence of SELinux because these labels are
used to define access rules. Table 22-2 summarizes the most
important SELinux building blocks.

Table 22-2 SELinux Core Elements

Element Use

Policy A collection of rules that define which source has access to which
target.

Source
domain

The object that is trying to access a target. Typically a user or a
process.

Target
domain

The thing that a source domain is trying to access. Typically a file
or a port.

Context A security label that is used to categorize objects in SELinux.

Element Use

Rule A specific part of the policy that determines which source domain
has which access permissions to which target domain.

Label Also referred to as context label, defined to determine which
source domain has access to which target domain.

On a Linux system, you can choose to enable or disable
SELinux. When SELinux is enabled, kernel support for SELinux
is loaded, and some applications that are SELinux aware
change their behavior, because specific libraries are used on a
system that has SELinux enabled. If SELinux is disabled, no
SELinux activity happens at all. Changing between SELinux
enabled mode and SELinux disabled mode requires a reboot of
your system. The reason is that SELinux is a feature that is
deeply interwoven with the Linux kernel.

If on a system SELinux is enabled, you can select to put SELinux
in enforcing mode or in permissive mode. In enforcing mode,
SELinux is fully operational and enforcing all SELinux rules in
the policy. If SELinux is in permissive mode, all SELinux-related
activity is logged, but no access is blocked. This makes SELinux

permissive mode an excellent mode to do troubleshooting, but
it also makes your system temporarily insecure. Permissive
mode is also a great way to do something and see the result
from an SELinux perspective by analyzing the messages that
are written to /var/log/audit/audit.log. That can help in building
new and more efficient policies.

To set the default SELinux mode while booting, use the file
/etc/sysconfig/selinux. Example 22-1 shows the content of this
file.

Example 22-1 Content of the /etc/sysconfig/selinux File

Click here to view code image

[root@server1 ~]# cat /etc/sysconfig/selinux

This file controls the state of SELinux on the

SELINUX= can take one of these three values:

enforcing - SELinux security policy is enf

permissive - SELinux prints warnings inste

disabled - No SELinux policy is loaded.

See also:

https://docs.fedoraproject.org/en-US/quick-doc

with-selinux/#getting-started-with-selinux-sel

 se u / ge g s a ed se u se

NOTE: In earlier Fedora kernel builds, SELINUX

fully disable SELinux during boot. If you need

 SELinux

fully disabled instead of SELinux running with

 you

need to pass selinux=0 to the kernel command l

 grubby

to persistently set the bootloader to boot wit

grubby --update-kernel ALL --args selinux=0

To revert back to SELinux enabled:

grubby --update-kernel ALL --remove-args se

SELINUX=enforcing

SELINUXTYPE= can take one of these three value

targeted - Targeted processes are protecte

minimum - Modification of targeted policy.

 processes are protected.

mls - Multi Level Security protection.

SELINUXTYPE=targeted

As you can see, in this file, which is read while booting, you can
choose to put SELinux in enforcing or permissive mode. On
older versions of RHEL, it was possible to define disabled mode

as a default; in RHEL 9 this can no longer be done. To put
SELinux in disabled mode, use the GRUB kernel boot argument
selinux=0. You can also set permissive mode from the GRUB
shell, by passing the kernel boot option enforcing=0.

On a server that currently has SELinux enabled, you can use the
getenforce command to see whether SELinux currently is in
enforcing mode or in permissive mode. To switch between
permissive mode and enforcing mode, you can use setenforce.
The command setenforce 0 temporarily puts SELinux in
permissive mode, and setenforce 1 puts SELinux temporarily
in enforcing mode. To change the default mode persistently, you
need to write it to /etc/sysconfig/selinux, or change GRUB kernel
boot arguments.

Another useful command is sestatus. If used with the option -v,
this command shows detailed information about the current
status of SELinux on a server. Example 22-2 shows the output of
the sestatus -v command. It not only shows you which parts of
SELinux are enabled but also shows the current version of the
policy that is loaded and the context labels for some critical
parts of the system.

Example 22-2 Using sestatus -v to Get Detailed Information
About the Current Protection Status

Click here to view code image

[root@server1 ~]# sestatus -v

SELinux status: enabled

SELinuxfs mount: /sys/fs/selinux

SELinux root directory: /etc/selinux

Loaded policy name: targeted

Current mode: enforcing

Mode from config file: enforcing

Policy MLS status: enabled

Policy deny_unknown status: allowed

Memory protection checking: actual (secure)

Max kernel policy version: 33

Process contexts:

Current context: unconfined_u:un

 t:s0-s0:c0.c1023

Init context: system_u:system

/usr/sbin/sshd system_u:system

 c1023

File contexts:

Controlling terminal: unconfined_u:ob

/etc/passwd system_u:object

/etc/shadow system_u:object

/bin/bash system_u:object

/bin/login system_u:object

/bin/sh system_u:object

 system u:object r:shell exec t:s0

 sys e _u objec _ s e _e ec_ s0

/sbin/agetty system_u:object

/sbin/init system_u:object

 system_u:object_r:init_exec_t:s0

/usr/sbin/sshd system_u:object

In Exercise 22-1, you practice working with the different modes.

Exercise 22-1 Manipulating SELinux Modes

1. Open a root console on your server and type getenforce.
You’ll normally see that SELinux is in enforcing mode. If the
output of getenforce shows Disabled, edit the
/etc/default/grub file and add the argument selinux=1 to the
line that starts the Linux kernel (it is the line that starts with
the word linux). Then save the file and use the command
grub2-mkconfig -o /boot/grub2/grub.cfg and reboot the
system before you continue.

2. Type setenforce 0 and type getenforce again. SELinux now
switches to permissive mode.

3. Type setenforce 1 and verify that SELinux is back to
enforcing mode.

4. Type sestatus -v and read current status information about
SELinux.

Note that on real Red Hat servers, SELinux on occasion is set to
be disabled. Putting SELinux in disabled mode certainly makes
it easier for administrators to run their applications. However,
it also makes the server much less secure. Often, ignorance of
the system administrator is the only reason SELinux is put in
disabled mode. If an application vendor tells you that the
application is supported only if SELinux is disabled, that often
simply means the application vendor has no knowledge about
SELinux. Advanced administrators can use sepolicy generate
to allow almost any application to run in an environment
where SELinux is enabled.

A fully enforcing system is especially important if your server is
accessed directly by users from the Internet. If your server
cannot be reached directly from the Internet and is in a safe
internal network, having SELinux enabled is not strictly
necessary (but I recommend always keeping it in enforcing
mode anyway). On the RHCSA exam, however, you must make
sure that SELinux is enabled and fully protecting your server.

Understanding Context Settings and the Policy

Context settings are an important part of SELinux operations.
The context is a label that can be applied to different objects:

Files and directories
Ports
Processes
Users

Context labels define the nature of the object, and SELinux rules
are created to match context labels of source objects (often
referred to as source domains) to the context labels of target
objects (referred to as target domains). So, setting correct
context labels is a very important skill for system
administrators. You learn how to do that later in this chapter.

Note

Managing SELinux context labels is a key skill for
securing systems with SELinux. It is not listed in
the RHCSA exam objectives though. Nevertheless,
I’ll give you a decent explanation of how context
labels work, because a mismatch of context labels
can create lots of SELinux-related problems.

Monitoring Current Context Labels

To see current context settings on the objects in the previous
bulleted list, many commands offer support for the -Z option. In
Example 22-3, you see how ls -Z shows context settings for some
directories in the / file system. Other commands also support
the -Z option to show current context label settings. Some
examples are ps Zaux, which shows a list of all processes,
including their context label, and ss -Ztul, which shows all
network ports and the current context label associated with
each port.

Example 22-3 Displaying Context Labels on Files with ls -Z

Click here to view code image

[root@server1 /]# ls -Z

 system_u:object_r:bin_t:s0 bin unconfi

 default_t:s0 repo

 system_u:object_r:boot_t:s0 boot sys

 home_t:s0 root

 system_u:object_r:device_t:s0 dev s

 run_t:s0 run

 system_u:object_r:etc_t:s0 etc syste

 s0 sbin

 system_u:object_r:unlabeled_t:s0 files

 system_u:object_r:var_t: s0 srv

 system_u:object_r:home_root_t:s0 home

 system u:object r:root t: s0 stratis

 sys e _u objec _ oo _ s0 s a s

 system_u:object_r:lib_t:s0 lib system_

 t:s0 stratis1

 system_u:object_r:lib_t:s0 lib64 sys

 s0 sys

 system_u:object_r:mnt_t:s0 media sys

 s0 tmp

 system_u:object_r:mnt_t:s0 mnt syste

 s0 usr

 system_u:object_r:usr_t:s0 opt system

 s0 var

 system_u:object_r:proc_t:s0 proc syst

 unlabeled_t:s0 vdo1

Every context label always consists of three different parts:

User: The user can be recognized by _u in the context label; it
is set to system_u on most directories in Example 22-3.
SELinux users are not the same as Linux users, and they are
not important on the RHCSA exam.
Role: The role can be recognized by _r in the context label. In
Example 22-3, most objects are labeled with the object_r role.
In advanced SELinux management, specific SELinux users
can be assigned permissions to specific SELinux roles. For the

RHCSA exam, you do not have to know how to configure
roles.
Type: The type context can be recognized by _t in the context
label. In Example 22-3, you can see that a wide variety of
context types are applied to the directories in the / file
system. Make sure that you know how to work with context
types, because they are what the RHCSA exam expects you to
know.

Tip

Just to make sure that you are focusing on the parts
that really matter on the RHCSA exam, you need to
work with context types only. You can safely ignore
the user and role parts of the context label.

Setting Context Types

As an administrator, you need to know how to set context types
on target domains. If currently your application is not working
as expected, you can often make it work correctly by setting the
appropriate context on the target domain. In RHCSA, this is the
key SELinux skill that you should master.

You can set context types on files and directories and other
objects such as network ports. Let’s focus on that task first.

There are two commands to set context type:

semanage: This is the command you want to use. The
semanage command writes the new context to the SELinux
policy, from which it is applied to the file system.
chcon: This command is for use in specific cases only and
normally should be avoided. The chcon command writes the
new context to the file system and not to the policy.
Everything that is applied with chcon is overwritten when
the file system is relabeled, or the original context is restored
from the policy to the file system. Do not use this command!

Note

You might want to know why I bother mentioning
chcon if you should not use it. Well, you’ll see the
chcon command still being referred to in older
documentation, which might give the impression
that it is a useful command. It is not, because if
your file system is relabeled, all changes applied
with chcon are lost. File system relabeling actions
can take you by surprise if you are new to SELinux,

and you will fail your exam if by accident file
system relabeling happens on a file system where
you have applied SELinux context with chcon. So, I
repeat: do not use it.

Tip

The semanage command may not be installed by
default. Fortunately, you can type dnf
whatprovides */semanage to find the
policycoreutils-python-utils RPM package
containing semanage and then install it. Do not
learn the names of all relevant RPMs by heart; just
remember dnf whatprovides. It will find any RPM
you need. See Chapter 9, “Managing Software,” for
more information about the use of the dnf
command and package management in general.

To set context using semanage, you first need to find the
appropriate context (a topic covered in more depth in the next
section, “Finding the Context Type You Need”). An easy way to
find the appropriate context is by looking at the default context
settings on already-existing items. If you want to change the
context for a custom web server DocumentRoot, for example,

type ls -Z /var/www to see the context settings that are set on
the default web server DocumentRoot:

Click here to view code image

[root@server1 /]# ls -Z /var/www

drwxr-xr-x. root root system_u:object_r:httpd_sys

cgi-bin

drwxr-xr-x. root root system_u:object_r:httpd_sys

As you can see, the context settings on /var/www/html are set to
httpd_sys_content_t. (As a reminder, we’re looking only at the
context type because the user and role are for advanced use
only.) To set this context type to any new directory that you
want to use as the DocumentRoot, use the following command:

Click here to view code image

semanage fcontext -a -t httpd_sys_content_t "/myd

In this command, the option -a is used to add a context type.
This is what you need to do for all directories that you have
created manually. Then you use -t to change the context type (as
opposed to user and role). The last part of the command is a

regular expression, which is used to refer to the directory
/mydir and anything that might exist below this directory.

Setting the context in this way is not enough, though, because
you’ll write it only to the policy and not to the file system. To
complete the command, you need to apply the policy setting to
the file system, as follows:

restorecon -R -v /mydir

You’ll see that the new context is now applied, which allows the
httpd process to access the directory.

Tip

The semanage command is not the easiest
command to remember. Fortunately, it has some
excellent man pages. Type man semanage and use
G to go all the way down to the bottom of the man
page. You’ll now see the “See Also” section, which
mentions semanage-fcontext, which is about
managing file context with semanage. Open this
man page using man semanage-fcontext, type
/example, and you’ll see some pretty examples

that mention exactly what you need to know (see
Example 22-4).

Example 22-4 semanage fcontext Usage Example from the
man Page

Click here to view code image

EXAMPLE

 remember to run restorecon after you set t

 Add file-context for everything under /web

 # semanage fcontext -a -t httpd_sys_conten

 # restorecon -R -v /web

 Substitute /home1 with /home when setting

 # semanage fcontext -a -e /home /home1

 # restorecon -R -v /home1

 For home directories under top level dire

 /disk6/home,

 execute the following commands.

 # semanage fcontext -a -t home_root_t "/di

 # semanage fcontext -a -e /home /disk6/hom

 # restorecon -R -v /disk6

SEE ALSO

selinux (8), semanage (8)

 se u (8), se a age (8)

AUTHOR

 This man page was written by Daniel Walsh

 20130617

Now it is time for an exercise. In Exercise 22-2, you learn how to
change the DocumentRoot for the Apache web server and label
the new DocumentRoot in the right way.

Exercise 22-2 Setting a Context Label on a Nondefault Apache
DocumentRoot

1. Open a root shell and type dnf install httpd curl -y.
2. Still from the root shell, type mkdir /web.
3. Type vim /web/index.html and put the following contents in

the file: welcome to my web server.
4. Type vim /etc/httpd/conf/httpd.conf to open the Apache

configuration file and find the DocumentRoot parameter.
Change it so that it reads DocumentRoot "/web".

5. In the same httpd.conf configuration file, add the following
section, as without this section it will be Apache and not
SELinux blocking access to the new DocumentRoot:

<Directory "/web">

 AllowOverride None

 Require all granted

</Directory>

6. Type systemctl enable --now httpd to start and enable the
httpd service. Note that if the httpd service was already
running, you’ll need to use systemctl restart httpd to
restart it so that it can pick up the changes you’ve made to
the httpd. conf configuration file.

7. Type curl http://localhost. You’ll see the default Red Hat
web page and not the contents of the index.html file you
have just created.

8. Type setenforce 0 to switch SELinux to permissive mode.
9. Repeat step 7. You’ll now get access to your custom web

page, which proves that SELinux was doing something to
block access.

10. Type semanage fcontext -a -t httpd_sys_content_t
"/web(/.*)?" to apply the new context label to /web.

11. Type restorecon -R -v /web. The -v (verbose) option ensures
that you see what is happening and that you will see the new
context being applied to /web.

12. Set SELinux back in enforcing mode, using setenforce 1.
13. Type curl http://localhost. You’ll get access to your custom

web page because SELinux now allows access to it.

Finding the Context Type You Need

One of the challenging parts of setting SELinux contexts is
finding the context you need. Roughly, there are three
approaches:

Look at the default environment.
Read the configuration files.
Use man -k _selinux to find SELinux-specific man pages for
your service.

The most powerful way of getting the SELinux information you
need is by using man -k _selinux, which searches the database
of man pages for those that match _selinux in the name or
description of the man page. On RHEL 9, however, these man
pages are not installed by default. To install them, you need to
install the selinux-policy-doc package. In Exercise 22-3 you’ll
learn how to do this and use the SELinux man pages.

Exercise 22-3 Installing SELinux-Specific Man Pages

1. Type man -k _selinux. You’ll probably see just one or two
man pages.

2. Type dnf search selinux. This will show several packages,
including the selinux-policy-doc package.

3. Install this package by using dnf install selinux-policy-doc

4. Type man -k _selinux. You should now see a long list of man
pages.

5. In case that man -k _selinux does not show a list of man
pages, type mandb to update the database that contains
names and descriptions of all man pages that are installed.

6. Once the mandb command has finished (this can take a
minute), type man -k _selinux. You’ll now see a long list of
man pages scrolling by.

7. Type man -k _selinux | grep http to find the man pages that
documents SELinux settings for the httpd service and scroll
through it. Notice that it is a complete list of all that you can
do with SELinux on the httpd service.

Restoring Default File Contexts

In the previous section, you learned how to apply context types
using semanage. You also applied the context settings from the
policy to the file system using restorecon. The restorecon
command is a useful command because in the policy the default
settings are defined for most files and directories on your
computer. If the wrong context setting is ever applied, you just
have to type restorecon to reapply it from the policy to the file
system.

Using restorecon this way can be useful to fix problems on new
files. Before explaining how to do it, let’s take a look at how new
context settings are applied:

If a new file is created, it inherits the context settings from
the parent directory.
If a file is copied to a directory, this is considered a new file,
so it inherits the context settings from the parent directory.
If a file is moved, or copied while keeping its properties (by
using cp -a), the original context settings of the file are
applied.

Especially the latter of these three situations is easily fixed by
using restorecon. Exercise 22-4 simulates this problem, and
you fix it using restorecon.

It is also possible to relabel the entire file system. Doing so
applies all context settings as defined in the policy to the file
system. Because the policy should always be leading and
contain correct context settings, relabeling a file system may be
a good idea. To relabel the file system, you can either use the
command restorecon -Rv / or create a file with the name

/.autorelabel. If the /.autorelabel file exists, the next time your
server is restarted, the file system will automatically be
relabeled. Once the file system has been relabeled, the file
/.autorelabel will be removed. Using /.autorelabel is a good idea
if you’re not sure that current context labels are consistent with
the SELinux policy settings.

A relabeling action sometimes occurs spontaneously. If while
troubleshooting a server you have started the server in a mode
where SELinux is disabled, and you have applied modifications
to the file system, SELinux will detect that the file system has
changed without SELinux monitoring it. This will result in an
automatic relabeling of the entire file system. Note that on a
large file system, relabeling the file system can take a significant
amount of time; on a minimal system such as the one that is
used on the RHCSA exam, a complete file system relabeling
should be done in less than 2 minutes.

Exercise 22-4 Using restorecon to Relabel Files

1. From a root shell, type ls -Z /etc/hosts. You’ll see the file has
the net_conf_t context label.

2. Type cp /etc/hosts ~ to copy the file to the root home
directory. Because copying is considered the creation of a

new file, the context setting on the ~/hosts file is set as
admin_home_t. Use ls -Z ~/hosts to verify this.

3. Type mv ~/hosts /etc and confirm that you want to
overwrite the existing file.

4. Type ls -Z /etc/hosts to confirm that the context type is still
set to admin_home_t.

5. Type restorecon -v /etc/hosts to reapply the correct context
type. The -v option shows you what is happening.

6. Type touch /.autorelabel and restart your server. While
restarting, make sure to press the Escape key so that you’ll
see boot messages. You’ll see that the file system is
automatically relabeled.

Managing Port Access

Managing file context is a key skill on the exam, but it is not the
only skill that matters. When services are configured to listen
on a nondefault port, you’ll need to set the appropriate context
on the port or access will be denied.

To set a port label, use semanage port. If, for instance, you
want your Apache web server to offer services on port 8008, use
semanage port -a -t http_port_t -p tcp 8008. After changing the
port label, you don’t have to run the restorecon utility—the

change will be effective immediately. In Exercise 22-5 you’ll
learn how to change a port label.

Exercise 22-5 Changing Port Labels

1. From a root shell, type vim /etc/httpd/conf/httpd.conf. Look
up the line that starts with Listen and change it so that it
reads Listen 82.

2. Use systemctl restart httpd to restart the Apache server
with this new setting. You will see an error message.

3. Type systemctl status httpd. The log messages show
“Permission denied … could not bind to address 0.0.0.0:82.”

4. Use setenforce 0 to set SELinux to permissive mode and
systemctl restart httpd to restart Apache. It will now work,
so you have confirmed that the problems are caused by
SELinux.

5. Type setenforce 1 to switch back to enforcing mode.
6. Type semanage port -a -t http_port_t -p tcp 82 to apply the

correct port label.
7. Use systemctl restart httpd. It will now restart without any

issues.

Using Boolean Settings to Modify SELinux Settings

The SELinux policy includes many rules. Some of these rules
allow specific activity, whereas other rules deny that activity.
Changing rules is not always easy, and that is why SELinux
Booleans are provided to easily change the behavior of a rule.
By applying a Boolean, multiple rules are changed to allow or
deny specific behavior.

An example of a Boolean is ftpd_anon_write, which by default is
set to off. That means that even if you have configured your FTP
server to allow anonymous writes, the Boolean will still deny it,
and the anonymous user cannot upload any files. If a Boolean
denies specific activity, it will always be denied, regardless of
the setting in the configuration file. The opposite is also true
though: if the Boolean allows activity but it is not enabled in the
configuration file, it will still not work.

To get a list of Booleans on your system, type getsebool -a. If
you are looking for Booleans that are set for a specific service,
use grep to filter down the results. In Example 22-5, you can see
how this command is used to show current Booleans that match
FTP.

An alternative way to show current Boolean settings is by using
the semanage boolean -l command. This command provides

some more details, because it shows the current Boolean setting
and the default Boolean setting.

Example 22-5 Displaying Boolean Settings

Click here to view code image

root@server1 ~]# getsebool -a | grep ftp

ftp_home_dir --> off

ftpd_anon_write --> off

ftpd_connect_all_unreserved --> off

ftpd_connect_db --> off

ftpd_full_access --> off

ftpd_use_cifs --> off

ftpd_use_fusefs --> off

ftpd_use_nfs --> off

ftpd_use_passive_mode --> off

httpd_can_connect_ftp --> off

httpd_enable_ftp_server --> off

sftpd_anon_write --> off

sftpd_enable_homedirs --> off

sftpd_full_access --> off

sftpd_write_ssh_home --> off

tftp_anon_write --> off

tftp_home_dir --> off

To change a Boolean, you can use setsebool. If you want to
switch the ftpd_anon_write Boolean to allow anonymous writes,
for example, use setsebool ftpd_anon_write on. This changes
the runtime value of the Boolean but does not change it
permanently. To apply permanent changes to a Boolean, use
setsebool -P. Notice that this takes longer, because parts of the
policy need to be recompiled to apply the modification. In
Exercise 22-6, you apply these commands to see how Booleans
are working.

Exercise 22-6 Working with SELinux Booleans

1. From a root shell, type getsebool -a | grep ftp. You’ll see the
ftpd_anon_write Boolean, with its current value set to off.

2. Type setsebool ftpd_anon_write on. This changes the value
in the runtime.

3. Type getsebool ftpd_anon_write. It shows the value of the
Boolean as on.

4. Type semanage boolean -l | grep ftpd_anon. Notice that
this command shows the runtime configuration set to on, but
the permanent setting is still set to off.

5. Use setsebool -P ftpd_anon_write on to switch the runtime
and the default setting for the Boolean to on.

6. Repeat semanage boolean -l | grep ftpd_anon. Notice that
it is now set to on, on.

Diagnosing and Addressing SELinux Policy Violations

Configuring a system with SELinux can be a challenging task. To
make it easier to understand what is happening, SELinux logs
everything it is doing. The primary source to get logging
information is the audit log, which is in /var/log/audit/audit.log.
SELinux messages are logged with type=AVC in the audit log. So,
to see what SELinux is doing, you can use the command grep
AVC /var/log/audit/audit.log. If SELinux messages have been
logged, this command shows a result as in Example 22-6.

Example 22-6 Getting SELinux Messages from audit.log

Click here to view code image

[root@server1 ~]# grep AVC /var/log/audit/audit.

type=AVC msg=audit(1559986797.093:185): avc: de

 pid=32939 comm="httpd" path="/web/index.html"

 ino=35321780 scontext=system_u:system_r:httpd_

 tcontext=unconfined_u:object_r:default_t:s0 tc

type=AVC msg=audit(1559986797.093:186): avc: de

 pid=32939 comm="httpd" path="/web/index.html"

 ino=35321780 scontext=system_u:system_r:httpd_

 tcontext=unconfined_u:object_r:default_t:s0 tc

type=AVC msg=audit(1559986815.360:188): avc: de

 pid=32939 comm="httpd" path="/web/index.html"

 p d 3 939 co pd pa / eb/ de

 ino=35321780 scontext=system_u:system_r:httpd_

 tcontext=unconfined_u:object_r:default_t:s0 tc

type=AVC msg=audit(1559986815.360:189): avc: de

 pid=32939 comm="httpd" path="/web/index.html"

 ino=35321780 scontext=system_u:system_r:httpd_

 tcontext=unconfined_u:object_r:default_t:s0 tc

type=AVC msg=audit(1559986883.549:192): avc: de

 pid=33214 comm="httpd" path="/web/index.html"

 ino=35321780 scontext=system_u:system_r:httpd_

 tcontext=unconfined_u:object_r:default_t:s0 tc

type=AVC msg=audit(1559986883.550:193): avc: de

 pid=33214 comm="httpd" path="/web/index.html"

 scontext=system_u:system_r:httpd_t:s0 tconte

 _r:default_t:s0 tclass=file permissive=0

type=AVC msg=audit(1559986927.406:197): avc: de

 pid=33214 comm="httpd" path="/web/index.html"

 ino=35321780 scontext=system_u:system_r:httpd_

 tcontext=unconfined_u:object_r:default_t:s0 tc

type=AVC msg=audit(1559986927.406:198): avc: de

 pid=33214 comm="httpd" name="index.html" dev="

 ntext=system_u:system_r:httpd_t:s0 tcontext=

default_t:s0 tclass=file permissive=1

type=AVC msg=audit(1559986927.406:198): avc: de

 pid=33214 comm="httpd" path="/web/index.html"

 ino=35321780 scontext=system_u:system_r:httpd_

 tcontext=unconfined_u:object_r:default_t:s0 tc

type=AVC msg=audit(1559986927.406:199): avc: de

 pid=33214 comm="httpd" path="/web/index.html"

 p d 33 co pd pa / eb/ de

 ino=35321780 scontext=system_u:system_r:httpd_

 ed_u:object_r:default_t:s0 tclass=file permiss

At first sight, the SELinux log messages look complicated. If you
look a bit closer, though, they are not that hard to understand.
Let’s take a closer look at the last line in the log file:

Click here to view code image

type=AVC msg=audit(1559986927.406:199): avc: den

pid=33214 comm="httpd" path="/web/index.html" dev

scontext=system_u:system_r:httpd_t:s0 tcontext=

r:default_t:s0 tclass=file permissive=1

The first relevant part in this line is the text avc: denied { map }.
That means that a map request was denied, so some process has
tried to read attributes of a file and that was denied, because it
is a policy violation. Following that message, we can see
comm=httpd, which means that the command trying to issue
the getattr request was httpd, and we can see
path="web/index.html", which is the file that this process has
tried to access.

In the last part of the log line, we can get information about the
source context and the target context. The source context
(which is the context setting of the httpd command) is set to
http_t, and the target context (which is the context setting of
the /web/index.html file) is set to default_t. And apparently,
SELinux did not like that too much. So, to fix this, you would
have to relabel the file, as discussed earlier in the chapter.

Making SELinux Analyzing Easier

Based on the information you find in the audit.log, you may be
able to decide what you need to do to fix the problem. Because
the information in the audit.log is not easy to understand, the
sealert command is offered to provide simplified messages
about SELinux-related events. You may need to install sealert by
using dnf -y install setroubleshoot-server. After installing it, it is
a good idea to restart your server to make sure that all
processes that are involved are restarted correctly. The next
time an SELinux message is written to the audit log, an easier-
to-understand message is written to the systemd journal.
Example 22-7 shows an output example.

Example 22-7 sealert Makes Analyzing SELinux Logs Easier

Click here to view code image

j

[root@server1 ~]# journalctl | grep sealert

Oct 26 08:21:42 server1.example.com setroublesho

 is preventing /usr/sbin/httpd from name_bind a

 socket port 82. For complete SELinux messages

 fde99ca7-d84d-4956-beec-aa55d0a68044

Oct 26 08:21:43 server1.example.com setroublesho

 is preventing /usr/sbin/httpd from name_bind a

 socket port 82. For complete SELinux messages

 fde99ca7-d84d-4956-beec-aa55d0a68044

To get more details, you should run the command that is
suggested. This will get information from the SELinux event
database, including suggestions on how to fix the problem.
Example 22-8 shows the first lines of the output for the
command that is suggested in Example 22-7.

Example 22-8 Exploring sealert Messages

Click here to view code image

[root@server1 ~]# sealert -l fde99ca7-d84d-4956-

SELinux is preventing /usr/sbin/httpd from name_

tcp_socket port 82.

***** Plugin bind_ports (99.5 confidence) sugge

If you want to allow /usr/sbin/httpd to bind to

Then you need to modify the port type.

e you eed o od y e po ype

Do

semanage port -a -t PORT_TYPE -p tcp 82

 where PORT_TYPE is one of the following: ht

 port_t, jboss_management_port_t, jboss_messagi

 port_t, puppet_port_t.

***** Plugin catchall (1.49 confidence) suggest

If you believe that httpd should be allowed name

port 82 tcp_socket by default.

Then you should report this as a bug.

You can generate a local policy module to allow

Do

allow this access for now by executing:

ausearch -c 'httpd' --raw | audit2allow -M my-

semodule -X 300 -i my-httpd.pp

Additional Information:

The useful thing about sealert is that it tries to analyze what
has happened and, based on the analysis, suggests what you
need to do to fix the problem. The not-so-useful part is that in
some cases, hundreds of possible context types are shown, and
the administrator has to choose the right one. So, if you do not
know what you are doing, you risk getting completely lost. In
other cases the output will be very useful, as is the case for the
output in Example 22-8, which is suggesting to run the
semanage port command to fix the issue.

When working with sealert, you can see that different plug-ins
are called, and every plug-in has a confidence score. If, as in the
example in Example 22-8, one plug-in has a 99.5% confidence
score, while the other has only a 1.49% confidence score, it may
be obvious that the former approach is what you should choose.
Unfortunately, however, it is not always that readable.

Tip

If you are not sure what SELinux is trying to tell
you, install the setroubleshoot-server package and
analyze what sealert shows. The information that
is shown by sealert is often a lot more readable.
Sometimes it will not help you at all, whereas
sometimes the information can prove quite
helpful.

Summary

This chapter provided an RHCSA-level introduction to SELinux.
You learned why SELinux is needed for security and how
SELinux uses context as the main feature to apply security. You
also learned how to set the default SELinux mode and how to
analyze in case things go wrong.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the
Introduction, you have several choices for exam preparation:
the end-of-chapter labs; the memory tables in Appendix C;
Chapter 27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the
Key Topic icon in the margin of the page. Table 22-3 lists a
reference for these key topics and the page number on which
each is found.

Table 22-3 Key Topics for Chapter 22

Key Topic Element Description Page

Table 22-2 SELinux Core Elements 473

List Elements a context label can be applied to 477

Key Topic Element Description Page

List Three parts of a context label 478

List How new context settings are applied 483

Complete Tables and Lists from Memory

Print a copy of Appendix C, “Memory Tables” (found on the
companion website), or at least the section for this chapter, and
complete the tables and lists from memory. Appendix D,
“Memory Tables Answer Key,” includes completed tables and
lists to check your work.

Define Key Terms

Define the following key terms from this chapter and check
your answers in the glossary:

policy

context

enforcing

permissive

context type

audit log

source context

target context

Review Questions

The questions that follow are meant to help you test your
knowledge of concepts and terminology and the breadth of
your knowledge. You can find the answers to these questions in
Appendix A.

. You want to put SELinux temporarily in permissive mode.
Which command do you use?

. You need a list of all available Booleans. Which command do
you use?

. You do not see any service-specific SELinux man page. What
solution do you need to apply?

. What is the name of the package you need to install to get easy-
to-read SELinux log messages in the audit log?

. What commands do you need to run to apply the
httpd_sys_content_t context type to the directory /web?

. When would you use the chcon command?

. Which file do you need to change if you want to completely
disable SELinux?

. Where does SELinux log all of its messages?

. You have no clue which context types are available for the ftp
service. What command enables you to get more specific
information?

. Your service does not work as expected, and you want to know
whether it is due to SELinux or something else. What is the
easiest way to find out?

End-of-Chapter Lab

You have now learned how SELinux works. To practice
managing this essential service, work through this end-of-
chapter lab about SELinux.

Lab 22.1

1. Change the Apache document root to /web. In this directory,
create a file with the name index.html and give it the
content welcome to my web server. Restart the httpd
process and try to access the web server. This will not work.
Fix the problem.

2. In the home directory of the user root, create a file with the
name hosts and give it the following content:
Click here to view code image

192.168.4.200 labipa.example.com

192.168.4.210 server1.example.com

192.168.4.220 server2.example.com

3. Move the file to the /etc directory and do what is necessary to
give this file the correct context.

Chapter 23

Configuring a Firewall

The following topics are covered in this chapter:

Understanding Linux Firewalling
Working with Firewalld

The following RHCSA exam objective is covered in this chapter:

Configure firewall settings using firewall-cmd/firewalld

If a server is connected to the Internet, it needs to be protected
against unauthorized access. SELinux is one part of this
protection, as discussed in Chapter 22, “Managing SELinux,”
and a firewall is the second part. The Linux kernel implements
firewalling via the netfilter framework. To configure which
packets are allowed and which are not, Firewalld is the default
solution in RHEL 9. In this chapter, you learn how a basic
Firewalld configuration is created in an RHEL 9 environment.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess
whether you should read this entire chapter thoroughly or

jump to the “Exam Preparation Tasks” section. If you are in
doubt about your answers to these questions or your own
assessment of your knowledge of the topics, read the entire
chapter. Table 23-1 lists the major headings in this chapter and
their corresponding “Do I Know This Already?” quiz questions.
You can find the answers in Appendix A, “Answers to the ‘Do I
Know This Already?’ Quizzes and Review Questions.”

Table 23-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Understanding Linux Firewalling 1–3, 7

Working with Firewalld 4–6, 8–10

. Which of the following is not a standard Firewalld zone?

1. untrusted
2. trusted
3. external
4. internal

. Which of the following is the name of the firewalling service as
implemented in the Linux kernel?

1. iptables
2. firewalld
3. netfilter
4. firewall-mod

. Which of the following is not an advantage of Firewalld?

1. Rules can be modified through DBus.
2. It has an easy-to-use command-line interface.
3. It has an easy-to-use graphical interface.
4. It can be used to manage the iptables service.

. Which command enables you to list all available Firewalld
services?

1. firewall-cmd --list-services
2. firewall-cmd --list-all
3. firewall-cmd --get-services
4. firewall-cmd --show-services

. What is the name of the GUI tool that enables you to easily
manage Firewalld configurations?

1. system-config-firewall
2. firewall-gtk
3. firewall-config

4. firewall-gui

. Which of the following shows the correct syntax for adding a
port persistently to the current Firewalld configuration?

1. firewall-cmd --addport=2022/tcp --permanent
2. firewall-cmd --add-port=2022/tcp --permanent
3. firewall-cmd --addport=2022/tcp --persistent
4. firewall-cmd --add port=2022/tcp --persistent

. Which zone should you use for an interface that is on a
network where you need minimal firewall protection because
every other computer on that same network is trusted?

1. trusted
2. home
3. work
4. private

. Which of the following statements is true about the --
permanent command-line option when used with firewall-
cmd?

1. Configuration that is added using --permanent is activated
immediately and will be activated automatically after
(re)starting Firewalld.

2. Configuration that is added using --permanent is activated
immediately.

3. Configuration that is added using --permanent is not
activated immediately and can be activated only by using
systemctl restart firewalld.

4. To activate configuration that has been added with the --
permanent option, you need to reload the firewall
configuration by using firewall-cmd --reload.

. Which command enables you to get an overview of all the
current firewall configurations for all zones?

1. firewall-cmd --show-current
2. firewall-cmd --list-all
3. firewall-cmd --list-current
4. firewall-cmd --show-all

. How can you easily write the current runtime configuration to
the permanent configuration?

1. When using firewall-cmd, add the --permanent option to all
commands.

2. Only write the permanent configuration, and use systemctl
restart firewalld to activate the permanent configuration in
the runtime as well.

3. Manually edit the firewalld zone file.
4. Write all options to the runtime configuration, and then use

the firewall-cmd --runtime-to-permanent command to add
these options to the persistent configuration.

Foundation Topics

Understanding Linux Firewalling

You can use a firewall to limit traffic coming in to a server or
going out of the server. Firewalling is implemented in the Linux
kernel by means of the netfilter subsystem. Netfilter allows
kernel modules to inspect every incoming, outgoing, or
forwarded packet and act upon such a packet by either allowing
it or blocking it. So, the kernel firewall allows for inspection of
incoming packets, outgoing packets, and packets that are
traversing from one interface to another if the RHEL server is
providing routing functionality.

Understanding Previous Solutions

To interact with netfilter, different solutions can be used. On
earlier versions of Red Hat Enterprise Linux, iptables was the

default solution to configure netfilter packet filtering. This
solution worked with the command-line utility iptables, which
provided a sophisticated and detailed way of defining firewall
rules, but that also was challenging to use for the occasional
administrator because of the complicated syntax of iptables
commands and because the ordering rules could become
relatively complex.

The iptables service is no longer offered in RHEL. It has been
replaced with nftables, a newer solution with more advanced
options than the ones offered by iptables. The nft command-
line tool offers an advanced interface to write rules directly to
nftables.

Understanding Firewalld

Firewalld is a system service that can configure firewall rules
by using different interfaces. Administrators can manage rules
in a Firewalld environment, but even more important is that
applications can request ports to be opened using the DBus
messaging system, which means that rules can be added or
removed without any direct action required of the system

administrator, which allows applications to address the firewall
from user space.

Firewalld was developed as a completely new solution for
managing Linux firewalls. It uses the firewalld service to
manage the netfilter firewall configuration and the firewall-
cmd command-line utility.

Understanding Firewalld Zones

Firewalld makes firewall management easier by working with
zones. A zone is a collection of rules that are applied to
incoming packets matching a specific source address or
network interface. Firewalld applies to incoming packets only
by default, and no filtering happens on outgoing packets.

The use of zones is particularly important on servers that have
multiple interfaces. On such servers, zones allow
administrators to easily assign a specific set of rules. On servers
that have just one network interface, you might very well need
just one zone, which is the default zone. Every packet that
comes into a system is analyzed for its source address, and
based on that source address, Firewalld analyzes whether or

not the packet belongs to a specific zone. If not, the zone for the
incoming network interface is used. If no specific zone is
available, the packet is handled by the settings in the default
zone.

Firewalld works with some default zones. Table 23-2 describes
these default zones.

Table 23-2 Firewalld Default Zones

Zone
Name

Default Settings

block Incoming network connections are rejected
with an “icmp-host-prohibited” message. Only
network connections that were initiated on this
system are allowed.

dmz For use on computers in the demilitarized zone.
Only selected incoming connections are
accepted, and limited access to the internal
network is allowed.

Zone
Name

Default Settings

drop Any incoming packets are dropped and there is
no reply.

external For use on external networks with
masquerading (Network Address Translation
[NAT]) enabled, used especially on routers. Only
selected incoming connections are accepted.

home For use with home networks. Most computers
on the same network are trusted, and only
selected incoming connections are accepted.

internal For use in internal networks. Most computers
on the same network are trusted, and only
selected incoming connections are accepted.

public For use in public areas. Other computers in the
same network are not trusted, and limited
connections are accepted. This is the default
zone for all newly created network interfaces.

Zone
Name

Default Settings

trusted All network connections are accepted.

work For use in work areas. Most computers on the
same network are trusted, and only selected
incoming connections are accepted.

Understanding Firewalld Services

The second key element while working with Firewalld is the
service. Note that a service in Firewalld is not the same as a
service in Systemd; a Firewalld service specifies what exactly
should be accepted as incoming and outgoing traffic in the
firewall. It typically includes ports to be opened, as well as
supporting kernel modules that should be loaded. Behind all
services are XML files that define the service; these files can be
found in the /usr/lib/firewalld/services directory.

In Firewalld, many default services are defined, which allows
administrators to easily allow or deny access to specific ports on
a server. Behind each service is a configuration file that
explains which UDP or TCP ports are involved and, if so
required, which kernel modules must be loaded. To get a list of
all services available on your computer, you can use the
command firewall-cmd --get-services (see Example 23-1).

Example 23-1 Use firewall-cmd --get-services for a List of All
Available Services

Click here to view code image

[root@server1 ~]# firewall-cmd --get-services

RH-Satellite-6 RH-Satellite-6-capsule amanda-cli

amqp amqps apcupsd audit bacula bacula-client bb

rpc bitcoin-testnet bitcoin-testnet-rpc bittorre

mon cfengine cockpit collectd condor-collector c

dhcpv6-client distcc dns dns-over-tls docker-reg

dropbox-lansync elasticsearch etcd-client etcd-s

foreman-proxy freeipa-4 freeipa-ldap freeipa-lda

freeipa-trust ftp galera ganglia-client ganglia-

high-availability http https imap imaps ipp ipp-

iscsi-target isns jenkins kadmin kdeconnect kerb

kpasswd kprop kshell kube-api kube-apiserver kub

controller-manager kube-scheduler kubelet-worker

g

libvirt-tls lightning-network llmnr managesieve

minidlna mongodb mosh mountd mqtt mqtt-tls ms-wb

nbd netbios-ns nfs nfs3 nmea-0183 nrpe ntp nut o

ovirt-storageconsole ovirt-vmconsole plex pmcd p

pmwebapis pop3 pop3s postgresql privoxy promethe

pulseaudio puppetmaster quassel radius rdp redis

bind rquotad rsh rsyncd rtsp salt-master samba s

sane sip sips slp smtp smtp-submission smtps snm

lansync spotify-sync squid ssdp ssh steam-stream

syncthing syncthing-gui synergy syslog syslog-tl

tile38 tinc tor-socks transmission-client upnp-c

wbem-http wbem-https wireguard wsman wsmans xdmc

client xmpp-local xmpp-server zabbix-agent zabbi

In essence, what it comes down to when working with
Firewalld is that the right services need to be added to the right
zones. In special cases, the configuration may be enhanced with
more specific settings. In the next section, you learn which tools
you can use for that purpose.

To add your own services, custom service XML files can be
added to the /etc/firewalld/services directory and will
automatically be picked up after restarting the Firewalld
service.

Example 23-2 shows what the contents of a service file look like.

Example 23-2 Contents of the ftp.xml Service File

Click here to view code image

[root@server1 services]# cat ftp.xml

<?xml version="1.0" encoding="utf-8"?>

<service>

 <short>FTP</short>

 <description>FTP is a protocol used for remote

 you plan to make your FTP

server publicly available, enable this option. Y

 package installed for this

option to be useful.</description>

 <port protocol="tcp" port="21"/>

 <module name="nf_conntrack_ftp"/>

</service>

Working with Firewalld

In this section, you learn how to configure a firewall with the
Firewalld command-line interface tool, firewall-cmd. The
Firewalld service also offers a GUI version of this tool, firewall-
config, but the RHCSA exam objectives list only firewall-cmd,
so this section focuses on working from the command line.

When working with either of these tools, be aware of where
exactly modifications are made. Both tools work with an in-
memory state of the configuration in addition to an on-disk
state (permanent state) of the configuration. While using either
of these tools, make sure to commit changes to disk before
proceeding.

The firewall-cmd tool is an easily accessible tool that enables
administrators to change the runtime configuration of the
firewall and to write this configuration to disk. Before learning
all the options available with this versatile command, in
Exercise 23-1 you work with some of the most important
options firewall-cmd offers.

Exercise 23-1 Managing the Firewall with firewall-cmd

1. Open a root shell. Type firewall-cmd --get-default-zone.
This shows the current default zone, which is set to public.

2. To see which zones are available, type firewall-cmd --get-
zones.

3. Show the services that are available on your server by typing
firewall-cmd --get-services. Notice that the firewall-cmd --
get options show what is available on your server, so
basically you can use firewall-cmd --get-<item> to request
information about a specific item.

4. To see which services are available in the current zone, type
firewall-cmd --list-services. You’ll see a short list containing
a Dynamic Host Configuration Protocol (DHCP) client as well
as Secure Shell (SSH) and the Cockpit web-based
management interface. In the public zone only a limited
number of services are enabled by default.

5. Type firewall-cmd --list-all. Look at the output and compare
the output to the result of firewall-cmd --list-all --
zone=public. Both commands show a complete overview of
the current firewall configuration, as shown in Example 23-
3. Notice that you see much more than just the zone and the
services that are configured in that zone; you also see
information about the interfaces and more advanced items.

Example 23-3 Showing Current Firewall Configuration

Click here to view code image

[root@server1 ~]# firewall-cmd --list-all

public (active)

 target: default

 icmp-block-inversion: no

 interfaces: ens160

 sources:

 services: cockpit dhcpv6-client ssh

 ports:

 protocols:

 masquerade: no

 forward-ports:

 source-ports:

 icmp-blocks:

 rich rules:

6. Type firewall-cmd --add-service=vnc-server to open VNC
server access in the firewall. Verify using firewall-cmd --list-
all.

7. Type systemctl restart firewalld and repeat firewall-cmd --
list-all. Notice that the vnc-server service is no longer listed;
the reason is that the previous command has added the
service to the runtime configuration but not to the persistent
configuration.

8. Add the vnc-server service again, but make it permanent this
time, using firewall-cmd --add-service vnc-server --
permanent.

9. Type firewall-cmd --list-all again to verify. You’ll see that
VNC server service is not listed. Services that have been
added to the on-disk configuration are not added
automatically to the runtime configuration. Type firewall-

cmd --reload to reload the on-disk configuration into the
runtime configuration.

10. Type firewall-cmd --add-port=2020/tcp --permanent,
followed by firewall-cmd --reload. Verify using firewall-
cmd --list-all. You’ll see that a port has now been added to
the Firewalld configuration.

Tip

On the exam, work with services as much as
possible. Only use specific ports if no services
contain the ports that you want to open.

In the preceding exercise, you worked with zones and services
and you learned how to add services and ports to the default
zone. You should work with services as much as possible;
adding individual ports is not recommended practice. You have
also learned how working with runtime as well as permanent
configuration can be inefficient. An alternative approach exists:
just write all your configuration to runtime, and next use
firewall-cmd --runtime-to-permanent to make the runtime
configuration permanent.

The firewall-cmd interface offers many more options. Table 23-
3 describes some of the most important command-line options.

Table 23-3 Common firewall-cmd Options

firewall-cmd Option Explanation

--get-zones Lists all available zones

--get-default-zone Shows the zone currently set
as the default zone

--set-default-zone=
<ZONE>

Changes the default zone

--get-services Shows all available services

--list-services Shows services currently in
use

firewall-cmd Option Explanation

--add-service=<service-
name> [--zone=<ZONE>]

Adds a service to the current
default zone or the zone that is
specified

--remove-service=
<service-name>

Removes a service from the
configuration

--list-all-zones Shows configuration for all
zones

--add-port=
<port/protocol> [--
zone=<ZONE>]

Adds a port and protocol

--remove-port=
<port/protocol> [--
zone=<ZONE>]

Removes a port from the
configuration

--add-interface=
<INTERFACE> [--zone=
<ZONE>]

Adds an interface to the
default zone or a specific zone
that is specified

firewall-cmd Option Explanation

--remove-interface=
<INTERFACE> [--zone=
<ZONE>]

Removes an interface from a
specific zone

--add-source=
<ipaddress/netmask> [-
-zone=<ZONE>]

Adds a specific IP address

--remove-source=
<ipaddress/netmask> [-
-zone=<ZONE>]

Removes an IP address from
the configuration

--permanent Writes configuration to disk
and not to runtime

--runtime-to-permanent Adds the current runtime
configuration to the
permanent configuration

--reload Reloads the on-disk
configuration

Summary

In this chapter, you learned how to set up a basic firewall
environment, where Firewalld services are added to Firewalld
zones to allow access to specific services on your computer. You
also learned how to set up a base firewall by using the firewall-
cmd command-line tool.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the
Introduction, you have several choices for exam preparation:
the end-of-chapter labs; the memory tables in Appendix C;
Chapter 27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the
Key Topic icon in the margin of the page. Table 23-4 lists a
reference for these key topics and the page number on which
each is found.

Table 23-4 Key Topics for Chapter 23

Key Topic
Element

Description Page

Paragraph Introduces firewalling in the Linux
kernel

498

Paragraph Introduces netfilter as opposed to
other firewalling tools

498

Paragraph Introduces how Firewalld zones are
used

499

Table 23-2 Firewalld Default Zones 499

Section Understanding Firewalld Services 500

Table 23-3 Common firewall-cmd Options 503

Complete Tables and Lists from Memory

Print a copy of Appendix C, “Memory Tables” (found on the
companion website), or at least the section for this chapter, and
complete the tables and lists from memory. Appendix D,

“Memory Tables Answer Key,” includes completed tables and
lists to check your work.

Define Key Terms

Define the following key terms from this chapter and check
your answers in the glossary:

firewall

netfilter

iptables

nftables

firewalld

zone

service

Review Questions

The questions that follow are meant to help you test your
knowledge of concepts and terminology and the breadth of

your knowledge. You can find the answers to these questions in
Appendix A.

. Which service should be running before you try to create a
firewall configuration with firewall-config?

. Which command adds UDP port 2345 to the firewall
configuration in the default zone?

. Which command enables you to list all firewall configurations
in all zones?

. Which command enables you to remove the vnc-server service
from the current firewall configuration?

. Which firewall-cmd command enables you to activate a new
configuration that has been added with the --permanent
option?

. Which firewall-cmd option enables you to verify that a new
configuration has been added to the current zone and is now
active?

. Which command enables you to add the interface eno1 to the
public zone?

. If you add a new interface to the firewall configuration while
no zone is specified, which zone will it be added to?

. Which command enables you to add the source IP address
192.168.0.0/24 to the default zone?

. Which command enables you to list all services that are
currently available in Firewalld?

End-of-Chapter Lab

You have now learned how to work with Firewalld on a Red Hat
Enterprise Linux 9 server. Make sure to master these skills by
working through this end-of-chapter lab.

Lab 23.1

1. Create a firewall configuration that allows access to the
following services that may be running on your server:
1. web
2. ftp
3. ssh

2. Make sure the configuration is persistent and will be
activated after a restart of your server.

Chapter 24

Accessing Network Storage

The following topics are covered in this chapter:

Using NFS Services
Mounting Remote File Systems Through fstab
Using Automount to Mount Remote File Systems

The following RHCSA exam objectives are covered in this
chapter:

Mount and unmount network file systems using NFS
Configure autofs

The RHCSA exam requires that you know how to access
network storage. This encompasses different topics. In this
chapter we discuss accessing network storage that has been
provided through NFS. You learn how to mount network
storage through the fstab file, as well as how to automatically
mount this storage on demand using automount.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess
whether you should read this entire chapter thoroughly or
jump to the “Exam Preparation Tasks” section. If you are in
doubt about your answers to these questions or your own
assessment of your knowledge of the topics, read the entire
chapter. Table 24-1 lists the major headings in this chapter and
their corresponding “Do I Know This Already?” quiz questions.
You can find the answers in Appendix A, “Answers to the ‘Do I
Know This Already?’ Quizzes and Review Questions.”

Table 24-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Using NFS Services 1–5

Mounting Remote File Systems Through fstab 6

Using Automount to Mount Remote File Systems 7–10

. Which command should you use to list shares offered by an
NFS server?

1. lsmount
2. showmount -e
3. lsexport
4. showexport

. Which of the following is not a feature in NFSv4?

1. Integration with Active Directory
2. Kerberized security
3. Services offered on TCP port 2049
4. The root mount

. What is the name of the package that needs to be installed to
mount NFS shares on an NFS client?

1. nfs-client
2. nfs-tools
3. nfs-utils
4. nfs

. You type the command showmount -e to display available
mounts on an NFS server, but you do not get any result. Which
of the following is the most likely explanation?

1. The NFS client software is not running.
2. You are using a UID that does not exist on the server.

3. SELinux is not configured properly.
4. The firewall does not allow showmount traffic.

. What is the name of the systemd service that provides NFS
shares?

1. nfs.service
2. nfs-kernel-server.service
3. nfs-server.service
4. netmount.service

. Which mount option needs to be used in /etc/fstab to mount
NFS shares successfully?

1. _netdev
2. _netfs
3. none
4. nfs

. Which of the following is not a required step in configuring
automount?

1. Identify the name of the automount directory in
/etc/auto.master.

2. Create an indirect file in /etc/auto.something.
3. Start and enable the autofs service.

4. On the local mount point, set the appropriate permissions.

. Assuming that the name of the directory you want automount
to monitor is /myfiles, what is the recommended name for the
corresponding configuration file?

1. /etc/automount/auto.myfiles
2. /etc/auto.myfiles
3. /etc/myfiles.auto
4. There is no recommended name.

. Which of the following lines correctly identifies the syntax of a
wildcard automount configuration that uses the NFS protocol?

1. &. -rw server:/homes/*
2. &. rw. server:/homes/*
3. * -rw server:/homes/&
4. * rw. server:/homes/&

. What is the name of the service that automount uses?

1. autofs
2. automount
3. autofiles
4. auto

Foundation Topics

Using NFS Services

In previous chapters, you learned how to work with local file
systems and mount them into the file system structure. In this
chapter, you learn how to work with network file systems. The
classic network file system is the Network File System (NFS). It
is a protocol that was developed for UNIX by Sun in the early
1980s, and it has been available on Linux forever. Its purpose is
to make it possible to mount remote file systems into the local
file system hierarchy.

Understanding NFS Security

When NFS was developed in the 1980s, it was often used
together with Network Information Service (NIS), a solution
that provides a network-based authentication server. With the
use of NIS, all servers connected to NIS used the same user
accounts, and security was dealt with by the NIS server. The
only thing that needed to be configured on the NFS server was
host access. So, NFS security by default was limited to allowing
and restricting specific hosts to access it.

Since the 1990s, NIS is not often used any more. NFS, however,
continues to be a very popular service, primarily because it is

fast and easy to configure. Without NIS, the feature that
provided user-based security has been removed, and that may
make NFS seem to be an unsecure solution. Let’s look at an
example: Imagine that on server1, user linda has UID 1001. On
server2, which is the NFS server, UID 1001 is used by user bob.
After successfully connecting from server1 to server2, server1
user linda would have the same access to server2 resources as
user bob. This obviously is an undesired situation.

To prevent situations like this from happening, you should use
NFS together with a centralized authentication service.
Commonly, a combination of the Lightweight Directory Access
Protocol (LDAP) and Kerberos is used to provide this
functionality. Configuration and integration of NFS with LDAP
and Kerberos are not included in the RHCSA exam objectives,
and for that reason will not be covered here.

RHEL NFS Versions

On Red Hat Enterprise Linux, NFS 4 is the default version of
NFS. If when making an NFS mount the NFS server offers a
previous version of NFS, the client falls automatically back to
that version. From a client, you can also force a specific NFS
version to be used for the mount, by using the mount option
nfsvers This technique can prove useful if you are connecting

to a server or a device that offers NFS 3 only. Fortunately, this
type of server or device is increasingly uncommon nowadays.

Setting Up NFS

Setting up an NFS server is not a part of the RHCSA exam.
However, to practice your NFS-based skills, it’s useful to set up
your own NFS test server. To do so, you need to go through a
few tasks:

1. Create a local directory you want to share.
2. Edit the /etc/exports file to define the NFS share.
3. Start the NFS server.
4. Configure your firewall to allow incoming NFS traffic.

Exercise 24-1 guides you through these steps.

Exercise 24-1 Offering an NFS Share

You need a second server to do this exercise. A RHEL server
that was installed using the minimal server installation pattern
is sufficient. This exercise assumes that a server with the name
server2.example.com is available to offer these services.

1. Type mkdir -p /nfsdata /users/user1 /users/user2 to create
some local directories that are going to be shared.

2. Copy some random files to this directory, using cp /etc/[a-c]*
/nfsdata.

3. Use vim to create the /etc/exports file and give it the
following contents:
/nfsdata *(rw,no_root_squash)

/users *(rw,no_root_squash)

4. Type dnf install -y nfs-utils to install the required packages.
5. Type systemctl enable --now nfs-server to start and enable

the NFS server.
6. Type firewall-cmd --add-service nfs --permanent to add the

nfs service. Also type firewall-cmd --add-service rpc-bind --
permanent and firewall-cmd --add-service mountd --
permanent to add the bind and mountd services.

7. To make the newly added services effective at this point, type
firewall-cmd --reload.

Mounting the NFS Share

To mount an NFS share, you first need to find the names of the
shares. This information can be provided by the administrator,
but it is also possible to find out yourself. To discover which
shares are available, you have multiple options:

If NFSv4 is used on the server, you can use a root mount. That
means that you just mount the root directory of the NFS
server, and under the mount point you’ll only see the shares
that you have access to.
Use the showmount -e nfsserver command to find out
which shares are available.

You’ll practice mounting NFS shares in Exercise 24-2.

Warning

The showmount command may have issues with
NFSv4 servers that are behind a firewall. The
reason is that showmount relies on the
portmapper service, which uses random UDP ports
while making a connection, and the firewalld nfs
service opens port 2049 only, which does not allow
portmapper traffic. If the firewall is set up
correctly, the mountd and rpc-bind services need to
be added to the firewall as well. It is very well
possible that shares have been set up correctly on
the server, but you cannot see them because
showmount does not get through the firewall. If
you suspect that this is the case, use the NFS root

mount, or just try mounting the NFS share as
explained in Exercise 24-2.

Exercise 24-2 Mounting an NFS Share

1. On server1, type dnf install -y nfs-utils to install the RPM
package that contains the showmount utility.

2. Type showmount -e server2.example.com to see all exports
available from server2.

3. On server1, type mount server2.example.com:/ /mnt. (Note
the space between the slashes in the command.) This
performs an NFSv4 pseudo root mount of all NFS shares.

4. Type mount | grep server2 to verify the mount has
succeeded.

5. Still on server1, type ls /mnt. This shows the subdirectories
data and home, which correspond to the mounts offered by
the NFS server.

Mounting Remote File Systems Through fstab

You now know how to manually mount NFS file systems from
the command line. If a file system needs to be available
persistently, you need to use a different solution. Mounts can be
automated either by using the /etc/fstab file or by using the

autofs service. In this section, you learn how to make the mount
through /etc/fstab. This is a convenient solution if you need the
remote file system to be available permanently.

Mounting NFS Shares Through fstab

As you learned in earlier chapters, the /etc/fstab file is used to
mount file systems that need to be mounted automatically
when a server restarts. Only the user root can add mounts to
this configuration file, thus providing shares that will be
available for all users. The /etc/fstab file can be used to mount
the NFS file system as well as other network-based file systems
such as Samba. To mount an NFS file system through /etc/fstab,
make sure that the following line is included:

Click here to view code image

server1:/share /nfs/mount/point nfs sync 0 0

When making an NFS mount through fstab, you have a few
options to consider:

In the first column, you need to specify the server and share
name. Use a colon after the name of the server to identify the
mount as an NFS share.
The second column has the directory where you want to
mount the NFS share; this is not different from a regular
mount.
The third column contains the NFS file system type.
The fourth column is used to specify mount options and
includes the sync option. This ensures that modified files are
committed to the remote file system immediately and are not
placed in write buffers first (which would increase the risk of
data getting lost). On older versions of RHEL, this column
should include the _netdev option to ensure that this mount
is only done after the network services are running. Because
of better dependency handling, using this option is no longer
required.
The fifth column contains a zero, which means that no
backup support through the dump utility is requested.
The sixth column also contains a zero, to indicate that no
fsck has to be performed on this file system while booting to
check the integrity of the file system. The integrity of the file
system would need to be checked on the server, not on the
client.

Using Automount to Mount Remote File Systems

As an alternative to using /etc/fstab, you can configure
automount to mount the share automatically. Automount can be
used for SMB as well as NFS mounts, and the big difference is
that mounts through automount are affected on demand and
not by default. So, using automount ensures that no file systems
are mounted that are not really needed.

On RHEL 9 there are two solutions for offering automount
services. First, there is the old autofs service, which has been
around for a long time. Second, systemd provides automount
unit files, which are used together with mount unit files to
ensure that a mount is done only when the corresponding
directory is mounted. For purposes of the RHEL 9 RHCSA exam,
you do not have to know about systemd automount, because
only autofs is covered. The main reason is that autofs offers
wildcard mounts, a feature that is not supported by systemd
automount.

Understanding Automount

Automount is implemented by the autofs service that takes care
of mounting a share when an attempt is made to access it. That
means it is mounted on demand and that it does not have to be
mounted permanently. An important benefit of using

automount is that it works completely in user space and,
contrary to mounts that are made through the mount
command, no root permissions are required.

Defining Mounts in Automount

In automount, mounts are defined through a two-step
procedure. First, you need to edit the master configuration file
/etc/auto.master. In this directory you identify the mount point
(for instance, /nfsdata). Next, and on the same line, you identify
the name of the secondary file, as all further configuration
happens in this secondary file. The line you create could look as
follows:

/nfsdata /etc/auto.nfsdata

In the secondary file you put the name of the subdirectory that
will be created in the mount point directory as a relative
filename. For instance, you start the line with files, to mount
/nfsdata/files. After the name of the subdirectory, you specify
NFS mount options, as well as the server and share name to
access the NFS share. This line could look as follows:

Click here to view code image

files -rw server2:/nfsdata

Configuring Automount for NFS

Configuring an automount solution is a multistep procedure. To
show how it works, Exercise 24-3 lists all steps involved. Follow
the steps in this exercise to see for yourself how to configure
automount.

Exercise 24-3 Configuring Direct and Indirect Maps to Mount
NFS Shares

This exercise is performed on server1. It uses the NFS shares
provided by server2 that you created in Exercise 24-1.

1. Type dnf install -y autofs to install the autofs package.
2. Type showmount -e server2.example.com, which shows

you NFS exports offered by server2.
3. Type vim /etc/auto.master and add the following line:

/nfsdata /etc/auto.nfsdata

4. Type vim /etc/auto.nfsdata and add the following line:

files -rw server2:/nfsdata

5. Type systemctl enable --now autofs to start and enable the
autofs service.

6. Type ls /; notice that there is no /nfsdata directory.
7. Type cd /nfsdata/files to get access to the /nfsdata directory.
8. Type mount and notice the last three lines in the mount

output, created by the autofs service.

Using Wildcards in Automount

In Exercise 24-3, you learned how to perform automounts
based on fixed directory names. In some cases, this is not very
useful, and you are better off using wildcards. This is, for
example, the case for automounting home directories. By using
a wildcard, automount tries to mount a share that matches the
name of the directory that is accessed.

With home directories, a very helpful solution is to have the
home directory of a specific user automounted when that user
logs in. This allows administrators to store home directories on
a central NFS server, instead of on individual workstations. So,
for example, if user linda logs in, she gets access to the NFS
exported directory /home/linda, and when user anna logs in,
she gets access to /home/anna. Using wildcards in automount
offers an excellent tool to do this.

To create a wildcard mount, you will use lines like * -rw
server2:/users/&. In this line, the * represents the local mount
point, which in this case represents anything, and the &
represents the matching item on the remote server.

Obviously, you could also choose to export the /home directory
and mount just the /home directory, but that increases the risk
that user anna gets access to user linda’s home directory. For
that reason, using a wildcard mount is a much cleaner solution,
as demonstrated in Exercise 24-4.

Exercise 24-4 Configuring Wildcard Mounts

This exercise is performed on server1. It uses the NFS shares
that are provided by server2, which you created in Exercise 24-
1. On server2, the directory /users is exported, which simulates
an NFS server that exports home directories. You are going to
configure a wildcard mount, such that when /users/user1 is
accessed, that exact directory is mounted, and when
/users/user2 is accessed, that directory is mounted.

1. Open the file /etc/auto.master and make sure it includes the
following line:

/users /etc/auto.users

2. Create the file /etc/auto.users and give it the following
contents:

* -rw server2:/users/&

3. Type systemctl restart autofs to restart the autofs service.
4. Type cd /users/user1 to get access to the NFS export

/users/user1 on the server2 server.

Summary

In this chapter you learned how to mount remote file systems
and how to configure automount. You first learned how to
manually mount an NFS file system from the command line.
Then you learned how these mounts can be automated through
/etc/fstab or automount.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the
Introduction, you have several choices for exam preparation:
the end-of-chapter labs; the memory tables in Appendix C;
Chapter 27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topic in the chapter, noted with the
Key Topic icon in the margin of the page. Table 24-2 lists a
reference for this key topic and the page number on which it is
found.

Table 24-2 Key Topic for Chapter 24

Key Topic
Element

Description Page

List Options to consider when making an
NFS mount through fstab

515

Define Key Terms

Define the following key terms from this chapter and check
your answers in the glossary:

Network File System (NFS)

automount

Review Questions

The questions that follow are meant to help you test your
knowledge of concepts and terminology and the breadth of
your knowledge. You can find the answers to these questions in
Appendix A.

. On your NFS server, you have verified that the nfs service is
active, and the firewall allows access to TCP port 2049. A client
uses showmount against your server but doesn’t see any
exports. What is the most likely explanation?

. Which command enables you to show available NFS mounts on
server1?

. Which command enables you to mount an NFS share that is
available on server1:/share?

. How would you mount all NFS shares that are provided by
nfsserver on the directory /shares?

. Which additional mount option is required in /etc/fstab to
ensure that NFS shares are only mounted after the network
services have been started?

. Which option should you include in /etc/fstab to ensure that
changes to the mounted file system are written to the NFS
server immediately?

. Which autofs feature is not supported by systemd automount?

. What is the name of the main automount configuration file?

. What is the name of the service that implements automount?

. Which ports do you need to open in the firewall of the
automount client?

End-of-Chapter Lab

In this chapter, you learned how to mount remote file systems
and automate those mounts using /etc/fstab or automount. In
this end-of-chapter lab, you practice these skills in a way that is
similar to how you need to perform them on the exam.

Lab 24.1

1. Set up an NFS server that shares the /home directory on
server2.

2. Configure server1 to access the NFS-shared home directory
using automount. You need to do this using wildcard

automount.

Chapter 25

Configuring Time Services

The following topics are covered in this chapter:

Understanding Local Time
Using Network Time Protocol
Managing Time on Red Hat Enterprise Linux

The following RHCSA exam objective is covered in this chapter:

Configure time service clients

An increasing number of services offered through Linux
servers depend on the correct configuration of time on the
server. Think of services such as database synchronization,
Kerberos authentication, and more. In this chapter, you learn
how time is configured on a Linux server.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess
whether you should read this entire chapter thoroughly or
jump to the “Exam Preparation Tasks” section. If you are in
doubt about your answers to these questions or your own

assessment of your knowledge of the topics, read the entire
chapter. Table 25-1 lists the major headings in this chapter and
their corresponding “Do I Know This Already?” quiz questions.
You can find the answers in Appendix A, “Answers to the ‘Do I
Know This Already?’ Quizzes and Review Questions.”

Table 25-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Understanding Local Time 1–2

Using Network Time Protocol 4–5

Managing Time on Red Hat Enterprise Linux 3, 6–10

. When a system is started, where does it initially get the system
time?

1. NTP
2. Software time
3. The hardware clock
4. Network time

. Which of the following statements is not true about local time?

1. Local time is the current time in the current time zone.
2. In local time, DST is considered.
3. System time typically should correspond to the current local

time.
4. Hardware time typically corresponds to the current local

time.

. Which is the recommended command in RHEL 9 to set the local
time zone?

1. hwclock
2. tz
3. date
4. timedatectl

. Which clock type would you recommend on a server that is not
connected to any other server but needs to be configured with
the most accurate time possible?

1. RTC
2. UTC
3. An atomic clock
4. NTP

. Which configuration file contains the default list of NTP servers
that should be contacted on RHEL 9?

1. /etc/ntp/ntp.conf
2. /etc/ntp.conf
3. /etc/chrony/chronyd.conf
4. /etc/chrony.conf

. Which of the following shows correct syntax to set the current
system time to 9:30 p.m.?

1. date 9:30
2. date --set 9.30 PM
3. date -s 21:30
4. date 2130

. Which command correctly translates epoch time into human
time?

1. date --date '@1420987251'
2. time --date '$1420987251'
3. time --date '#1420987251'
4. time --date '1420987251'

. Which command do you use to set the system time to the
current hardware time?

1. hwclock --hctosys
2. hwclock --systohc
3. date --set-hc
4. ntpdate

. Which command enables you to show current information that
includes the local time, hardware time, and the time zone the
system is in?

1. timedatectl --all
2. timedatectl --tz
3. timedatectl -ht
4. timedatectl

. Which command can you use to verify that a time client that is
running the chrony service has successfully synchronized?

1. timedatectl
2. chronyc sources
3. systemctl chrony status
4. chronyc status

Foundation Topics

Understanding Local Time

When a Linux server boots, the hardware clock, also referred to
as the real-time clock (RTC), is read. This clock typically
resides in the computer hardware, and the time it defines is
known as hardware time. Generally, the hardware clock is an
integrated circuit on the system board that is completely
independent of the current state of the operating system and
keeps running even when the computer is shut down, as long as
the mainboard battery or power supply feeds it. From the
hardware clock, the system gets its initial time setting.

The time on the hardware clock on Linux servers is usually set
to Coordinated Universal Time (UTC). UTC is a time that is the
same everywhere on the planet, and based on UTC, the current
local time is calculated. (Later in this chapter you learn how
this works.)

System time is maintained by the operating system. Once the
system has booted, the system clock is completely independent
of the hardware clock. Therefore, when system time is changed,

the new system time is not automatically synchronized with the
hardware clock.

System time maintained by the operating system is kept in UTC.
Applications running on the server convert system time into
local time. Local time is the actual time in the current time
zone. In local time, daylight saving time (DST) is considered so
that it always shows an accurate time for that system. Table 25-
2 gives an overview of the different concepts that play a role in
Linux time.

Table 25-2 Understanding Linux Time

Concept Explanation

Hardware clock The hardware clock that resides on the
main card of a computer system

Real-time clock Same as the hardware clock

System time The time that is maintained by the
operating system

Concept Explanation

Software clock Similar to system time

Coordinated
Universal Time
(UTC)

A worldwide standard time

Daylight saving
time

Calculation that is made to change time
automatically when DST changes occur

Local time The time that corresponds to the time in
the current time zone

Using Network Time Protocol

As you learned, the current system time is based on a hardware
clock. This hardware clock is typically a part of the computer’s
motherboard, and it might be unreliable. Because of its
potential unreliability, it is a good idea to use time from a more
reliable source. Generally speaking, two solutions are available.

One option is to buy a more reliable hardware clock. This may
be, for instance, a very accurate atomic clock connected directly

to your computer. When such a very reliable clock is used, an
increased accuracy of the system time is guaranteed. Using an
external hardware clock is a common solution to guarantee that
datacenter time is maintained, even if the connection to
external networks for time synchronization temporarily is not
available.

Another and more common solution is to configure your server
to use Network Time Protocol (NTP). NTP is a method of
maintaining system time that is provided through NTP servers
on the Internet. It is an easy solution to provide an accurate
time to servers, because most servers are connected to the
Internet anyway.

To determine which Internet NTP server should be used, the
concept of stratum is used. The stratum defines the reliability
of an NTP time source, and the lower the stratum, the more
reliable it is. Typically, Internet time servers use stratum 1 or 2.
When configuring local time servers, you can use a higher
stratum number to configure the local time server as a backup,
except that it will never be used when Internet time is
available.

It is good practice, for example, to set stratum 5 on a local time
server with a very reliable hardware clock and stratum 8 on a

local time server that is not very reliable. A setting of stratum
10 can be used for the local clock on every node that uses NTP
time. This enables the server to still have synchronized time
when no external connection is available. Stratum 15 is used by
clocks that want to indicate they should not be used for time
synchronization.

Setting up a server to use NTP time on RHEL 9 is easy if the
server is already connected to the Internet. If this is the case,
the /etc/chrony.conf file is configured with a standard list of NTP
servers on the Internet that should be contacted. The only thing
the administrator has to do is switch on NTP, by using
timedatectl set-ntp 1.

Managing Time on Red Hat Enterprise Linux

Different commands are involved in managing time on Red Hat
Enterprise Linux. Table 25-3 provides an overview.

Table 25-3 Commands Related to RHEL 9 Time Management

Command Short Description

date Manages local time

hwclock Manages hardware time

timedatectl Developed to manage all aspects of time on
RHEL 9

On a Linux system, time is calculated as an offset of epoch time.
Epoch time is the number of seconds since January 1, 1970, in
UTC. In some logs (such as /var/log/audit/audit.log), you’ll find
timestamps in epoch time and not in human time. To convert
such an epoch timestamp to human time, you can use the --date
option, followed by the epoch string, starting with an @:

date --date '@1420987251'

The use of epoch time also creates a potential timing problem
on Linux. On a 32-bit system, the number of seconds that can be
counted in the field that is reserved for time notation will be

exceeded in 2037. (Try setting the time to somewhere in 2050 if
you are on a 32-bit kernel; it will not work.) However, 64-bit
systems can address time until far into the twenty-second
century.

Using date

The date command enables you to manage the system time. You
can also use it to show the current time in different formats.
Some common usage examples of date are listed here:

date: Shows the current system time
date +%d-%m-%y: Shows the current system day of month,
month, and year
date -s 16:03: Sets the current time to 3 minutes past 4 p.m.

Using hwclock

The date command enables you to set and show the current
system time. Using the date command will not change the
hardware time that is used on your system. To manage
hardware time, you can use the hwclock command. The
hwclock command has many options, some of which are of
particular interest:

hwclock --systohc: Synchronizes current system time to the
hardware clock
hwclock --hctosys: Synchronizes current hardware time to
the system clock

Using timedatectl

A command that was introduced in RHEL 7 that enables you to
manage many aspects of time is timedatectl. As shown in
Example 25-1, when used without any arguments, this
command shows detailed information about the current time
and date. It also displays the time zone your system is in, in
addition to information about the use of NTP network time and
information about the use of DST.

Example 25-1 Using timedatectl to Get Detailed Information
About Current Time Settings

Click here to view code image

[root@server1 ~]# timedatectl

 Local time: Mon 2019-06-10 08:27

 Universal time: Mon 2019-06-10 12:

 RTC time: Mon 2019-06-10 12:27:

 Time zone: America/New_York (ED

 System clock synchronized: yes

NTP service: active

 se ce ac e

 RTC in local TZ: no

The timedatectl command works with commands to perform
time operations. Table 25-4 provides an overview of the
relevant commands.

Table 25-4 timedatectl Command Overview

Command Explanation

status Shows the current time settings

set-time
TIME

Sets the current time

set-timezone
ZONE

Sets the current time zone

list-timezone Shows a list of all time zones

Command Explanation

set-local-rtc
[0|1]

Controls whether the RTC (hardware
clock) is in local time

set-ntp [0|1] Controls whether NTP is enabled

The timedatectl command was developed as a generic solution
to manage time on RHEL. It has some functions that are offered
through other commands, but the purpose of the command is
that eventually it will replace other commands used for
managing time and date settings. When timedatectl is used to
switch on NTP time, it talks to the chronyd process. Exercise 25-
1 walks you through some common options to manage time on
a RHEL 9 server.

Exercise 25-1 Managing Local Time

1. Open a root shell and type date.
2. Type hwclock and see whether it shows approximately the

same time as date in step 1.
3. Type timedatectl status to show current time settings.
4. Type timedatectl list-timezones to show a list of all time

zone definitions.

5. Type timedatectl set-timezone Europe/Amsterdam to set
the current time zone to Amsterdam.

6. Type timedatectl show and note the differences with the
previous output.

7. Type timedatectl set-ntp 1 to switch on NTP use. You might
see the error “failed to issue method call.” If you get this
message, type dnf -y install chrony and try again.

8. Open the configuration file /etc/chrony.conf and look up the
server lines. These are used to specify the servers that
should be used for NTP time synchronization.

9. Type systemctl status chronyd and verify that the chrony
service is started and enabled. If this is not the case, use
systemctl start chronyd; systemctl enable chronyd to
make sure that it is operational.

10. Type systemctl status -l chronyd and read the status
information. Example 25-2 shows you what the output of the
command should look like.

Example 25-2 Monitoring Current Time Synchronization Status

Click here to view code image

[root@server1 ~]# systemctl status -l chronyd

 chronyd.service - NTP client/server

 Loaded: loaded (/usr/lib/systemd/syste

 enabled; vendor preset: enabled)

 e ab ed; e do p ese e ab ed)

 Active: active (running) since Mon 2019

 3h 8min ago

 Docs: man:chronyd(8)

 man:chrony.conf(5)

 Main PID: 1062 (chronyd)

 Tasks: 1 (limit: 11365)

 Memory: 1.5M

 CGroup: /system.slice/chronyd.service

 └─1062 /usr/sbin/chronyd

Jun 10 07:21:04 server1.example.com chronyd[1062

 5.200.6.34

Jun 10 07:28:40 server1.example.com chronyd[1062

 213.154.236.182

Jun 10 07:28:42 server1.example.com chronyd[1062

 149.210.142.45 replaced with 195.242.98.57

Jun 10 07:43:51 server1.example.com chronyd[1062

 5.200.6.34

Jun 10 07:53:35 server1.example.com chronyd[1062

 195.242.98.57

Jun 10 08:16:24 server1.example.com chronyd[1062

 detected!

Jun 10 08:16:24 server1.example.com chronyd[1062

 no selectable sources

Jun 10 08:20:44 server1.example.com chronyd[1062

 213.154.236.182

Jun 10 08:22:57 server1.example.com chronyd[1062

 195.242.98.57 replaced with 195.191.113.251

Jun 10 08:25:05 server1.example.com chronyd[1062

Ju 0 08 5 05 se e e a p e co c o yd[06

 5.200.6.34

Managing Time Zone Settings

Between Linux servers, time is normally communicated in UTC.
This allows servers across different time zones to use the same
time settings, which makes managing time in large
organizations a lot easier. To make it easier for end users,
though, the local time must also be set. To do this, you need to
select the appropriate time zone.

On Red Hat Enterprise Linux 9, you have three approaches to
setting the correct local time zone:

Go to the directory /usr/share/zoneinfo, where you’ll find
different subdirectories containing files for each time zone
that has been defined. To set the local time zone on a server,
you can create a symbolic link with the name /etc/localtime
to the time zone file that is involved. If you want to set local
time to Los Angeles time, for instance, use ln -sf
/usr/share/zoneinfo/America/Los_Angeles /etc/localtime.
Use the tzselect utility. This tool starts the interface shown in
Example 25-3, from which the appropriate region and locale
can be selected.

Use timedatectl to set the time zone information; this is the
recommended method.

Example 25-3 Selecting the Time Zone Using tzselect

Click here to view code image

[root@localhost ~]# tzselect

Please identify a location so that time zone rul

 correctly.

Please select a continent, ocean, "coord", or "T

 1) Africa

 2) Americas

 3) Antarctica

 4) Asia

 5) Atlantic Ocean

 6) Australia

 7) Europe

 8) Indian Ocean

 9) Pacific Ocean

10) coord - I want to use geographical coordinat

11) TZ - I want to specify the time zone using t

#? 1

Please select a country whose clocks agree with

 1) Algeria 20) Gambia 39

 2) Angola 21) Ghana 40

 3) Benin 22) Guinea 41

 4) Botswana 23) Guinea-Bissau 42

) o s a a 3) Gu ea ssau

 5) Burkina Faso 24) Kenya 43

 6) Burundi 25) Lesotho 44

 7) Côte d'Ivoire 26) Liberia 45

 8) Cameroon 27) Libya 46

 9) Central African Rep. 28) Madagascar 47

10) Chad 29) Malawi 48

11) Comoros 30) Mali 49

12) Congo (Dem. Rep.) 31) Mauritania 50

13) Congo (Rep.) 32) Mayotte 51

14) Djibouti 33) Morocco 52

15) Egypt 34) Mozambique 53

16) Equatorial Guinea 35) Namibia 54

17) Eritrea 36) Niger 55

18) Ethiopia 37) Nigeria

19) Gabon 38) Rwanda

#? 54

The following information has been given:

 Zambia

 Central Africa Time

Therefore TZ='Africa/Maputo' will be used.

Selected time is now: Mon Jul 22 12:03:41 CAT 20

Universal Time is now: Mon Jul 22 10:03:41 UTC 2

Is the above information OK?

1) Yes

2) No

#? 1

You can make this change permanent for yourself

 TZ='Africa/Maputo'; export TZ to the file '.pr

 directory; then log out and log in again.

Here is that TZ value again, this time on standa

 can use the /usr/bin/tzselect command in shell

Configuring Time Service Clients

By default, the chrony service is configured to get the right time
from the Internet. As a default configuration, the highly reliable
time servers from pool.ntp.org are used to synchronize time.
However, in a corporate environment it is not always desirable
for time clients to go out to the Internet, and local time services
should be used instead. This can be configured by making a
simple modification to the chrony.conf configuration file.

By default, the chrony.conf configuration file contains the line
pool 2.rhel.pool.ntp.org. If you comment out this line by putting
a pound sign in front of it and add the line server
yourtimeserver.example.com, your time server will be used
instead of the servers in pool.ntp.org. Exercise 25-2 explains
how to make this modification. Notice that this exercise

http://pool.ntp.org/
http://ntp.org/
http://yourtimeserver.example.com/
http://pool.ntp.org/

requires access to two servers, in which server1 is configured
as the time server and server2 is configured as the time client.

Exercise 25-2 Configuring an NTP Time Client

1. On server1, open a root shell and use vim /etc/chrony.conf
to edit the chrony main configuration file.

2. Disable the line pool 2.rhel.pool.ntp.org by putting a # sign in
front of it.

3. Include the line allow 192.168.0.0/16 to allow access from all
clients that use a local IP address starting with 192.168.

4. Also include the line local stratum 8. This ensures that the
local time server is going to advertise itself with a stratum of
8, which means it will be used by clients, but only if no
Internet time servers are available. Next, close the
configuration file.

5. Use systemctl restart chronyd to restart the chrony process
with the new settings.

6. Still on server1, type firewall-cmd --add-service ntp --
permanent, followed by firewall-cmd --reload. This opens
the firewall for time services.

7. Open a root shell on server2.
8. On server2, open the configuration file /etc/chrony.conf and

disable the line pool 2.rhel.pool.ntp.org.

9. Add the line server server1.example.com. Make sure that
name resolution to server1.example.com is configured, and
if not, use the IP address of server1 instead.

10. Type systemctl restart chronyd to restart the chrony
service with the new settings.

11. On server2, type the command chronyc sources. It should
show the name or IP address of server1, the stratum of 8 that
is advertised, and a synchronization status indicating that
server2 has successfully synchronized its time.

Summary

In this chapter, you learned how time works on Linux. You read
how your operating system can get its time by using hardware
time, system time, and local time. You also learned how to
manage time using the date, hwclock, and timedatectl
commands.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the
Introduction, you have several choices for exam preparation:
the end-of-chapter labs; the memory tables in Appendix C;
Chapter 27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the
Key Topic icon in the margin of the page. Table 25-5 lists a
reference for these key topics and the page number on which
each is found.

Table 25-5 Key Topics for Chapter 25

Key Topic
Element

Description Page

Paragraph Definition of hardware time 526

Paragraph Definition of system time 526

Table 25-2 Understanding Linux Time 526

Paragraph Using NTP time 527

Table 25-3 Commands Related to RHEL 9
Time Management

528

Key Topic
Element

Description Page

Paragraph Explanation of epoch time 528

Table 25-4 timedatectl Command Overview 529

Complete Tables and Lists from Memory

Print a copy of Appendix C, “Memory Tables” (found on the
companion website), or at least the section for this chapter, and
complete the tables and lists from memory. Appendix D,
“Memory Tables Answer Key,” includes completed tables and
lists to check your work.

Define Key Terms

Define the following key terms from this chapter and check
your answers in the glossary:

real-time clock (RTC)

hardware time

Coordinated Universal Time (UTC)

system time

time synchronization

Network Time Protocol (NTP)

stratum

epoch time

network time

Review Questions

The questions that follow are meant to help you test your
knowledge of concepts and terminology and the breadth of
your knowledge. You can find the answers to these questions in
Appendix A.

. Which command enables you to set the system time to 4:24
p.m.?

. Which command sets hardware time to the current system
time?

. Which command enables you to show epoch time as human-
readable time?

. Which command enables you to synchronize the system clock
with hardware time?

. Which service is used to manage NTP time on RHEL 9?

. Which command enables you to use NTP time on your server?

. Which configuration file contains the list of NTP servers to be
used?

. Which command enables you to list time zones?

. Which command enables you to set the current time zone?

. How do you use chrony to set system time?

End-of-Chapter Lab

In this chapter, you learned how to manage time on Linux
servers. Because it is very important to ensure that a server
uses the correct time, you can now practice some of the most
essential skills you have acquired in this chapter.

Lab 25.1

1. Compare the current hardware time to the system time. If
there is a difference, make sure to synchronize time.

2. Set the time zone to correspond to the current time in Boston
(USA East Coast).

Chapter 26

Managing Containers

The following topics are covered in this chapter:

Understanding Containers
Running a Container
Working with Container Images
Managing Containers
Managing Container Storage
Running Containers as Systemd Services

The following RHCSA exam objectives are covered in this
chapter:

Find and retrieve container images from a remote registry
Inspect container images
Perform container management using commands such as
podman and skopeo
Build a container from a Containerfile
Perform basic container management such as running,
starting, stopping, and listing running containers
Run a service inside a container

Configure a container to start automatically as a systemd
service
Attach persistent storage to a container

Containers have revolutionized datacenter IT. Where services
not so long ago were running directly on top of the server
operating system, nowadays services are often offered as
containers. Red Hat Enterprise Linux 9 includes a complete
platform to run containers. In this chapter you learn how to
work with them.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess
whether you should read this entire chapter thoroughly or
jump to the “Exam Preparation Tasks” section. If you are in
doubt about your answers to these questions or your own
assessment of your knowledge of the topics, read the entire
chapter. Table 26-1 lists the major headings in this chapter and
their corresponding “Do I Know This Already?” quiz questions.
You can find the answers in Appendix A, “Answers to the ‘Do I
Know This Already?’ Quizzes and Review Questions.”

Table 26-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section QuestionsFoundation Topics Section Questions

Understanding Containers 1, 2

Running a Container 3, 4

Working with Container Images 5, 6

Managing Containers 7

Managing Container Storage 8, 9

Running Containers as Systemd Services 10

. The success of containers depends on different Linux features.
Which of the following is not one of them?

1. Cgroups
2. Semaphores
3. Namespaces
4. SELinux

. What is the name of the Red Hat solution to add enterprise
features such as scalability and availability to containers?

1. OpenStack
2. OpenShift
3. Kubernetes
4. JBoss

. How do you detach from a running container without shutting
it down?

1. exit
2. quit
3. detach
4. Ctrl-P, Ctrl-Q

. Which command will run an application container in the
background?

1. podman run nginx
2. podman run -d nginx
3. podman run --background nginx
4. podman run -it nginx

. Which command do you use to inspect images that have not yet
been pulled to your local system?

1. podman inspect
2. buildah inspect

3. skopeo inspect
4. docker inspect

. Which command do you use for an overview of the registries
currently in use?

1. podman info
2. podman status
3. podman search
4. podman registries

. There are many ways to figure out whether a container needs
any environment variables. Which of the following can you
use?

1. Use podman inspect to inspect the image that you want to
run. Within the image, you’ll often find usage information.

2. Use podman run to run the container. If environment
variables are required, it will fail. You can next use podman
logs to inspect messages that have been logged to STDOUT.

3. Read the documentation provided in the container registry.
4. All of the above.

. Which SELinux context type must be set on host directories that
you want to expose as persistent storage in the container using
bind mounts?

1. container_t
2. container_file_t
3. container_storage_t
4. public_content_rw_t

. Which of the following commands shows correct syntax to
automatically set the correct SELinux context type on a host
directory that should be exposed as persistent storage inside a
container?

1. podman run --name mynginx -v /opt/nginx:/var/lib/nginx
nginx

2. podman run --name mynginx --bind
/opt/nginx:/var/lib/nginx nginx

3. podman run --name mynginx -v
/opt/nginx:/var/lib/nginx:Z nginx

4. podman run --name mynginx --bind
/opt/nginx:/var/lib/nginx:Z nginx

0. What is needed to ensure that a container that user anna has
created can be started as a systemd service at system start, not
just when user anna is logging in?

1. Configure the container as a systemd service.

https://calibre-pdf-anchor.a/#a3034

2. Use loginctl enable-linger anna to enable the linger feature
for user anna.

3. Use systemctl enable-linger anna to enable the linger
feature for user anna.

4. Just use systemctl --user enable to enable the container.

Foundation Topics

Understanding Containers

In the past decade, containers have revolutionized the way
services are offered. Where not so long ago physical or virtual
servers were installed to offer application access, this is now
done by using containers. But what exactly is a container? Let’s
start with an easy conceptual description: a container is just a
fancy way to run an application based on a container image
that contains all dependencies required to run that application.

To install a noncontainerized application on a server, the server
administrator must make sure that not only the application is
installed but also all the other software dependencies required
by the application. This includes, for instance, the right
(supported) version of the underlying operating system. This
makes it difficult for application developers, who need to

provide many versions of their applications to support all
current operating systems.

A container is a complete package that runs on top of the
container engine, an integrated part of the host operating
system. A container is comparable to an application on your
smartphone: you get the complete application package from the
smartphone’s app store and install it on your phone.

To use a container, you run the container from the container
image. This container image is found in the container registry,
which can be compared to the app store that hosts smartphone
applications. The result is the container, which is the runnable
instance of the container image.

To run containers, you need a host operating system that
includes a container engine, as well as some tools used to
manage the containers. On versions of RHEL prior to RHEL 8,
this was supported by Docker. Docker delivered the container
engine as well as the tools to manage the containers. In RHEL 8,
Red Hat replaced Docker with a new solution, which is still used
on RHEL 9: CRI-o is the container engine, and Red Hat offers
three main tools to manage the containers:

podman: The main tool, used to start, stop, and manage
containers
buildah: A specialized tool that helps you create custom
images
skopeo: A tool that is used for managing and testing
container images

Container Host Requirements

Sometimes it is said that containers are Linux, and that is true.
This is because containers rely heavily on features that are
offered by the Linux kernel, including the following:

Namespaces for isolation between processes
Control groups for resource management
SELinux for security

Let’s explore each of these features. To start with, containers
need namespaces. A namespace provides isolation for system
resources. To best understand what namespaces are like, let’s
look at the chroot jail, a feature that was introduced in the
1990s. A chroot jail is a security feature that presents the
contents of a directory as if it is the root directory of your

system, so the process that runs in a chroot jail can’t see
anything but the contents of that directory.

Chroot jails are important for security. When a process is
restricted to just the contents of a chroot jail, there is no risk of
it accessing other parts of the operating system. However, to
make sure this works, all the dependencies required to run the
process must be present in the chroot jail.

Chroot jails still exist, but the functionality is now leveraged
and is a part of what is called the mount namespace. Here’s an
overview of it and some of the other namespaces (note that new
namespaces may be added in the future as well):

Mount: The mount namespace is equivalent to the chroot
namespace. The contents of a directory are presented in such
a way that no other directories can be accessed.
Process: A process namespace makes sure that processes
running in this namespace cannot reach or connect to
processes in other namespaces.
Network: Network namespaces can be compared to VLAN.
Nodes connected to a specific network namespace cannot see
what is happening in other network namespaces, and contact
to other namespaces is possible only through routers.

User: The user namespace can be used to separate user IDs
and group IDs between namespaces. As a result, user
accounts are specific to each namespace, and a user who is
available in one namespace may not be available in another
namespace.
Interprocess communication (ipc): Interprocess
communication is what processes use to connect to one
another, and these namespaces ensure that connection can
be made only to processes in the same namespace.

In containers, almost all of the namespaces are implemented to
ensure that the container is a perfectly isolated environment.
Only the network namespace is not enabled by default, to
ensure that communication between containers is not
restricted by default.

The second important Linux component that is required for
running containers is the control group, or cgroup. Cgroups are
a kernel feature that enables resource access limitation. By
default, there is no restriction to the amount of memory or the
number of CPU cycles a process can access. Cgroups make it
possible to create that limitation in such a way that each
container has strictly limited access to available resources.

The last important pillar of containers is implemented on RHEL
by using SELinux. As you’ve learned elsewhere in this book,
SELinux secures access by using resource labels. On RHEL, a
specific context label is added to ensure that containers can
access only the resources they need access to and nothing else.

Containers on RHEL 9

Since its launch in 2014, Docker has been the leading solution
for running containers. Up to RHEL 7, Docker was the default
container stack used on Red Hat Enterprise Linux. As
previously mentioned, with the release of RHEL 8, Red Hat
decided to discontinue Docker support and offer its own stack.
This stack is based on the CRI-o container runtime and uses
Podman as the main tool to run containers. The new solution
offers a few advantages over the Docker solution:

In Podman, containers can be started by ordinary users that
do not need any elevated privileges. This is called the rootless
container.
When users start containers, the containers run in a user
namespace where they are strictly isolated and not accessible
to other users.
Podman containers run on top of the lightweight CRI-o
container runtime, without needing any daemon to do their

work.

An important benefit of using Podman is the rootless container.
On RHEL 8 and 9, rootless containers are started by non-root
users and don’t require root privileges. This makes running
containers much more secure, but it also does come with some
challenges. Rootless containers cannot access any components
on the host operating system that require root access. For
example, rootless containers do not have an IP address
(because it requires root privileges to allocate an IP address)
and can bind only to a nonprivileged TCP or UDP port. Also, if
the rootless container needs access to host-based storage, the
user who runs the container must be owner of the directory
that provides the storage.

Container Orchestration

The solutions for running containers that are discussed in this
chapter are all about running standalone containers on top of a
single host. If that host goes down, you don’t have any running
containers left anymore. When containers are used to run
mission-critical services, additional features are needed. They
include the following:

Easy connection to a wide range of external storage types

Secure access to sensitive data
Decoupling, such that site-specific data is strictly separated
from the code inside the container environment
Scalability, such that when the workload increases,
additional instances can easily be added
Availability, ensuring that the outage of a container host
doesn’t result in container unavailability

To implement these features, Kubernetes has developed itself as
the industry standard. Kubernetes is open source and,
currently, it is the only solution that matters for adding
enterprise features to containers. Red Hat has its own
Kubernetes distribution, which is called OpenShift. For
building a scalable, flexible, and reliable infrastructure based
on containers, you should investigate the options offered by
either Kubernetes or OpenShift. These topics are outside the
scope of the RHCSA exam and for that reason will not be
discussed further here.

Running a Container

To get familiar with containers, let’s start by running some. To
get full access to all tools that RHEL is offering for running
containers, you should start by installing the appropriate
software. You can do this by using sudo dnf install container-

tools. After installing this software, you can start running your
first container by using podman run, which does not require
any root privileges. You can use this command with many
arguments; the only argument that is really required, however,
is the name of the image that you want to run. As we discuss
later, the image is fetched from one of the container registries
that is configured by default. To run your first container, use the
command podman run nginx. This will try to start the nginx
image from one of the known registries. You can see the result
of running this command in Example 26-1.

Example 26-1 Podman May Prompt Which Registry You Want
to Use

Click here to view code image

[root@server1 ~]# podman run nginx

? Please select an image:

 registry.fedoraproject.org/nginx:latest

 registry.access.redhat.com/nginx:latest

 registry.centos.org/nginx:latest

 quay.io/nginx:latest

 docker.io/library/nginx:latest

While using podman run, it may not be clear from which
registry the image you want to run should be started. If that is

the case, the podman command will prompt to make a choice
from one of the available registries, as can be seen in Example
26-1. This can be avoided by including the complete registry
name of the image: if you use podman run
docker.io/library/nginx, Podman knows it needs to fetch the
image from the docker.io registry. Example 26-2 shows how this
works out.

Example 26-2 Running Your First Container with podman run
nginx

Click here to view code image

[root@server1 ~]# podman run docker.io/libraryng

Resolved "nginx" as an alias (/var/cache/contain

 aliases.conf)

Trying to pull docker.io/library/nginx:latest...

Getting image source signatures

Copying blob eef26ceb3309 done

Copying blob 71689475aec2 done

Copying blob 8e3ed6a9e43a done

Copying blob f88a23025338 done

Copying blob 0df440342e26 done

Copying blob e9995326b091 done

Copying config 76c69feac3 done

Writing manifest to image destination

Storing signatures

S o g s g a u es

/docker-entrypoint.sh: /docker-entrypoint.d/ is

 attempt to perform configuration

/docker-entrypoint.sh: Looking for shell scripts

 docker-entrypoint.d/

/docker-entrypoint.sh: Launching /docker-entrypo

 ipv6-by-default.sh

10-listen-on-ipv6-by-default.sh: info: Getting t

 nginx/conf.d/default.conf

10-listen-on-ipv6-by-default.sh: info: Enabled l

 nginx/conf.d/default.conf

/docker-entrypoint.sh: Launching /docker-entrypo

 templates.sh

/docker-entrypoint.sh: Launching /docker-entrypo

 processes.sh

/docker-entrypoint.sh: Configuration complete; r

2022/10/31 07:27:27 [notice] 1#1: using the "epo

2022/10/31 07:27:27 [notice] 1#1: nginx/1.23.2

2022/10/31 07:27:27 [notice] 1#1: built by gcc 1

 10.2.1-6)

2022/10/31 07:27:27 [notice] 1#1: OS: Linux 5.14

2022/10/31 07:27:27 [notice] 1#1: getrlimit(RLIM

 1048576:1048576

2022/10/31 07:27:27 [notice] 1#1: start worker p

2022/10/31 07:27:27 [notice] 1#1: start worker p

2022/10/31 07:27:27 [notice] 1#1: start worker p

As you can see in Example 26-2, when running the container,
Podman starts by fetching the container image from the
registry you want to use. Container images typically consist of
multiple layers, which is why you can see that different blobs
are copied. When the image file is available on your local
server, the nginx container is started. As you will also notice,
the container runs in the foreground. Use Ctrl-C to terminate
the container.

You typically want to run containers in detached mode (which
runs the container in the background) or in a mode where you
have access to the container console. You can run a container in
detached mode by using podman run -d nginx. Notice that all
options that modify the podman command (podman run in
this case) need to be placed behind the podman command and
not after the name of the image.

When you run a container in detached mode, it really runs like
a daemon in the background. Alternatively, you can run the
container in interactive TTY mode. In this mode, you get access
to the container TTY and from there can work within the
container. However, this makes sense only if the container is
configured to start a shell as its default command. If it does not,
you may have to add /bin/sh to the container image, so that it
starts a shell instead of its default command.

Let’s have a look at how this works:

1. To start the nginx image in interactive TTY mode, use the
command podman run -it nginx.

2. You are now connected to a TTY in which you only have access
to the nginx process output. That doesn’t make sense, so use
Ctrl-C to get out.

3. Now start the container using podman run -it nginx /bin/sh.
This will start the /bin/sh command, instead of the container
default command, which will give you access to a shell. After
starting the container in this way, you have access to the TTY,
and all the commands that you enter are entered in the
container and not on the host operating system.

Tip

Container images are normally created as minimal
environments, and for that reason you may not be
able to run a bash shell. That’s why in the previous
example we used /bin/sh. This is a minimal shell,
and no matter which container image you use, it
will always be there.

When you’re running in interactive mode, there are two ways
to get out of it:

Use exit to exit the TTY mode. If you started the container
using podman run -it nginx /bin/sh, this will stop the
container. That’s because the exit command stops the
primary container command, and once that is stopped the
container has no reason to be around anymore.
Use Ctrl-P, Ctrl-Q to detach. This approach ensures that in all
cases the container keeps on running in the background in
detached mode. That may not always be very useful though.
If like in the previous example you’ve started the nginx
image with /bin/sh as the default command (instead of the
nginx service), keeping it around might not make much sense
because it isn’t providing any functionality anyway.

To get an overview of currently running containers, you can
use the podman ps command. This will show you only
containers that are currently running. If a container has been
started but has already been stopped, you won’t see it. If you
also want to see containers that have been running but are now
inactive, use podman ps -a. In Example 26-3 you can see the
output of the podman ps -a command.

Example 26-3 podman ps -a Output

Click here to view code image

student@podman ~]$ podman ps -a

CONTAINER ID IMAGE COMMAND CREATED

PORTS NAMES

1f6426109d3f docker.io/ sh 6 minut

 minutes ago adoring_

 library/

feynman

 busybox: latest

0fa670dc56fe docker.io/ nginx -g 8 min

 minutes web1

 library/ daemon o...

 nginx:latest

15520f225787 docker.io/ nginx -g 32 m

 32 minutes ago peaceful_

 library/ daemon o...

visvesvaraya

 nginx:latest

Notice the various columns in the output of the podman ps
command. Table 26-2 summarizes what these columns are used
for.

Table 26-2 podman ps Output Columns Overview

Column UseColumn Use

CONTAINER_ID The automatically generated container
ID; often used in names of files created
for this container.

IMAGE The complete registry reference to the
image used for this container.

COMMAND The command that was started as the
default command with this container.

CREATED The identifier when the container was
created.

STATUS Current status.

PORTS If applicable, ports configured or
forwarded for this container.

NAMES The name of this container. If no name
was specified, a name will be
automatically generated.

In Exercise 26-1 you can practice running containers and basic
container management.

Exercise 26-1 Running Containers with podman

1. Use sudo dnf install container-tools to install the container
software.

2. Type podman ps -a to get an overview of currently existing
containers. Observe the STATUS field, where you can see
whether the container currently is active.

3. Type podman run -d nginx. This command starts an nginx
container in detached mode.

4. Type podman ps and observe the output. In the CONTAINER
ID field, you’ll see the unique ID that has been generated.
Also observe the NAME field, where you’ll see a name that
has automatically been generated.

5. Type podman run -it busybox. This command runs the
busybox cloud image, a minimized Linux distribution that is
often used as the foundation for building custom containers.

6. Because the busybox container image was configured to run
a shell as the default command, you’ll get access to the shell
that it is running. Type ps aux to see the processes running
in this container namespace. Notice that the ps command
works, which is not the case for all container images you
may be using.

7. Type exit to close the busybox shell.
8. Type podman ps. You won’t see the busybox container

anymore because in the previous step you exited it.
9. Type podman run -it busybox once more, and when you

have access to its interactive shell, press Ctrl-P, Ctrl-Q to
detach.

10. Use podman ps. You’ll notice the busybox container is still
running. Look at the NAME column to find the name for the
container that was automatically generated.

11. Use podman attach <name>, where <name> should be
replaced with the name you found in the preceding step.
This will reconnect you to the shell that is still waiting on the
busybox container.

12. Use Ctrl-P, Ctrl-Q again to detach.
13. Type podman stop <name>. This will stop the busybox

container.

Tip

When you run non-root containers, the container
files are copied to the
~/.local/share/containers/storage directory. Make
sure you have enough storage space in the user
home directory. With an average file size of about

60 MB for each container, disk space will be used
fast!

Working with Container Images

The foundation of every container is the container image. The
container is a running instance of the image, where while
running it a writable layer is added to store changes made to
the container. To work with images successfully, you need to
know how to access container registries and how to find the
appropriate image from these registries. Container images are
created in the Docker format. The Docker format has become an
important standard for defining container images, which is why
you can run container images in Docker format without any
problem in RHEL.

Using Registries

Container images are typically fetched from container
registries, which are specified in the
/etc/containers/registries.conf configuration file. A user who
runs a rootless container can create a file
~/.config/containers/registries.conf. In case of conflict, settings
in the user-specific file will override settings in the generic file.

In the registries.conf file, different registries are in use by
default. Don’t worry too much about the exact names of these
registries, as they tend to change between different versions of
RHEL. Among the registries, you’ll find Red Hat registries that
give access to licensed software. You need to enter your Red Hat
credentials to access these registries. Also, the Docker registry is
used. Docker hosts the biggest container registry currently
available, containing more than 10,000,000 images, and adding
the Docker registry as the last registry will increase your
chances of finding the desired container image.

In the registries.conf file, all container registries are listed as
unqualified-search-registries. This is because Red Hat
recommends the complete image name (including the registry
you want to use it from) to avoid ambiguity. So instead of using
podman run -d nginx, use podman run -d
docker.io/library/nginx.

To see which registries are currently used, you can use the
podman info command. Apart from information about the
registries that are used, this command also shows other useful
information about your current environment. Example 26-4
shows what the output of this command might look like.

Example 26-4 Using podman info to Find Which Registries Are
Used

Click here to view code image

[student@server1 ~]$ podman info | grep -A 10 re

registries:

 search:

 - registry.fedoraproject.org

 - registry.access.redhat.com

 - registry.centos.org

 - quay.io

 - docker.io

store:

 configFile: /home/student/.config/containers/s

 containerStore:

 number: 0 OsArch: linux/amd64

 Version: 4.0.2

NOTE

Much of what is happening in containerized
environments is standardized in the Open
Containers Initiative (OCI). All companies involved
in containers are currently making a huge effort to
make their containers OCI compliant. Because of

this, you can use Docker images without any issues
in a podman environment.

Finding Images

To find available images, you can use the podman search
command. If you need to access images from one of the
subscriber-only Red Hat registries as well, you need to log in to
the registry first because the Red Hat registries are accessible
only to users who have a valid Red Hat account. Use podman
login to enter your current Red Hat username and password,
which will give you access to these registries. To log in to a
registry, you have to specify the name of the registry you want
to log in to. For instance, use podman login
registry.access.redhat.com to log in to that specific registry.

After enabling access to the Red Hat registries that you want to
use, use podman search to find the images you need. Example
26-5 shows the partial result of the podman search mariadb
command output.

Example 26-5 podman search mariadb Partial Result

Click here to view code image

INDEX NAME DESCRIPTION

http://registry.access.redhat.com/

INDEX NAME DESCRIPTION

 STARS OFFICIAL AUTOMATED

docker.io docker.io/panubo/ MariaDB Galera Cl

 [OK]

 mariadb-galera

docker.io docker.io/demyx/ Non-root Docker i

 mariadb Alpine Linux a...

docker.io docker.io/toughiq/ Dockerized Automa

 [OK]

 mariadb-cluster Galera Cluster ..

docker.io docker.io/bianjp/ Lightweight Maria

 [OK]

 mariadb-alpine image with Alpine

docker.io docker.io/ MariaDB relationa

 [OK]

 clearlinux/mariadb management syste.

docker.io docker.io/ Fast, simple, and

 [OK]

 jonbaldie/mariadb MariaDB Docker...

docker.io docker.io/ Docker MariaDB se

 [OK]

 tiredofit/mariadb S6 Overlay, Zabbi

In the output of podman search, different fields are used to
describe the images that were found. Table 26-3 gives an
overview.

Table 26-3 podman search Output Fields

Field Use

INDEX The name of the registry where this image
was found.

NAME The full name of the image.

DESCRIPTION A more verbose description. Use --no-
trunc to see the complete description.

STARS A community appreciation, expressed in
stars.

OFFICIAL Indicates whether this image was
provided by the software vendor.

AUTOMATED Indicates whether this image is
automatically built.

You might notice that in some cases this podman search
command gives a lot of results. To filter down the results a bit,
you can use the --filter option. Use podman search --filter is-
official=true alpine to see only alpine images that are created

by the application vendor, for instance, or podman search --
filter stars=5 alpine to show only alpine images that have been
appreciated with at least five stars. Alpine is a common cloud
image that is used a lot, because it is really small.

Tip

While you’re looking for images, search for the UBI
images in the Red Hat registries. UBI stands for
Universal Base Image, and it’s the image that is
used as the foundation for all of the Red Hat
products.

Inspecting Images

Because images are provided by the open source community, it
is important to get more information before you start using
them. This allows you to investigate what exactly the image is
doing. The best way to do so is to use the skopeo inspect
command. The advantage of using skopeo to inspect images is
that the inspection happens directly from the registry without
any need to first pull the image.

Alternatively, you can inspect local images. To do so, use
podman inspect. This command works only on images that are

available on your local system but gives more detailed output
than skopeo inspect. Use podman images for a list of images
that are locally available, and use podman pull to pull an
image first. Example 26-6 shows a partial result of the podman
inspect command.

Example 26-6 Using podman inspect to Verify Image Contents

Click here to view code image

student@podman ~]$ podman inspect busybox

[

 {

 "Id":

"6858809bf669cc5da7cb6af83d0fae838284d12e1be0182

 "Digest": "sha256:d366a4665ab44f0648d7a0

 67accd604bb55df9d05a",

 "RepoTags": [

 "docker.io/library/busybox:latest"

],

 "RepoDigests": [

"docker.io/library/busybox@sha256:2ca5e69e244d2d

 7aaccd0b8823d11b0d5de956002",

"docker.io/library/busybox@sha256:d366a4665ab44f

 2f9712c67accd604bb55df9d05a"

],

 "Parent": "",

 "Comment": "",

 Co e ,

 "Created": "2020-09-09T01:38:02.33492735

 "Config": {

 "Env": [

"PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/

],

 "Cmd": [

 "sh"

]

 },

 "Version": "18.09.7",

 "Author": "",

 "Architecture": "amd64",

 "Os": "linux",

 "Size": 1454611,

 "VirtualSize": 1454611,

 "GraphDriver": {

 "Name": "overlay",

 "Data": {

 "UpperDir": "/home/student/.

local/share/containers/storage/overlay/

be8b8b42328a15af9dd6af4cba85821aad30adde28d249d1

 "WorkDir": "/home/student/.

local/share/containers/storage/overlay/

be8b8b42328a15af9dd6af4cba85821aad30adde28d249d1

 }

 },

 "RootFS": {

 "Type": "layers",

 ype aye s ,

 "Layers": [

"sha256:be8b8b42328a15af9dd6af4cba85821aad30adde

 d1c"

]

 },

 "Labels": null,

 "Annotations": {},

 "ManifestType": "application/vnd.docker.

 v2+json",

 "User": "",

 "History": [

 {

 "created": "2020-09-09T01:38:02.

 "created_by": "/bin/sh -c #(nop)

 d0a903df801c6425de761264d7c1bc7984d5cf285d7781

 },

 {

 "created": "2020-09-09T01:38:02.

 "created_by": "/bin/sh -c #(nop)

 "empty_layer": true

 }

]

 }

]

When you use podman inspect, the most interesting
information that you should be looking for is the command

(Cmd). This is the command that the image runs by default
when it is started as a container. Remember: a container is just
a fancy way to start an application, and the Cmd line will tell
you which application that is.

Tip

To run a container, you can use podman run. This
command first pulls the image, stores it on your
local system, and then runs the container. You can
also use podman pull first to store the image
without running it, and after pulling it, you can still
run it. This second method is more secure because
it allows you to inspect the contents of the image
before running it.

Performing Image Housekeeping

For every container that you have ever started, an image is
downloaded and stored locally. To prevent your system from
filling up, you might want to do a bit of housekeeping every
now and then. To remove container images, use the podman
rmi command. Notice that this command works only if the
container is no longer in use. If podman rmi gives an error
message, ensure that the container has been stopped and

removed first. Exercise 26-2 shows how to manage your
container images.

Exercise 26-2 Managing Container Images

1. Type podman info | grep -A 10 registries to check which
registries are currently used.

2. Use podman login registry.access.redhat.com and enter
your Red Hat account credentials to ensure full access to the
Red Hat registries.

3. Use podman search registry.access.redhat.com/ubi to
search only in registry. access.redhat.com for all the UBI
images.

4. Use skopeo inspect
docker://registry.access.redhat.com/ubi9 to show
information about the container image. Do you see which
command is started by default by this image? (Notice that
this information is not revealed using skopeo.)

5. Now use podman pull registry.access.redhat.com/ubi9 to
pull the image.

6. Type podman images to verify the image is now locally
available.

7. Type podman inspect registry.access.redhat.com/ubi9 and
look for the command that is started by default by this

http://registry.access.redhat.com/
http://access.redhat.com/

image. You used skopeo inspect in step 4, whereas now
you’re using podman inspect, which shows more details.

Building Images from a Containerfile

Container images provide an easy way to distribute
applications. While using containers, application developers no
longer have to provide an installer file that runs on all common
operating systems. They just have to build a container image,
which will run on any OCI-compliant container engine, no
matter if that is Docker or Podman.

To build container images, generic system images are
commonly used, to which specific applications are added. To
make building images easy, Docker introduced the Dockerfile,
which in Podman is standardized as the Containerfile. In a
Containerfile, different instructions can be used to build custom
images, using the podman build command. In Example 26-7
you’ll find a simple example of Containerfile contents.

Example 26-7 Example Containerfile Contents

Click here to view code image

FROM registry.access.redhat.com/ubi8/ubi:latest

d f i ll

RUN dnf install nmap

CMD ["/usr/sbin/nmap", "-sn", "192.168.29.0/24"]

In a Containerfile you may have different lines defining exactly
what needs to be done. Table 26-4 outlines the common
Containerfile directives.

Table 26-4 Common Containerfile Directives

Directive Use

FROM Identifies the base image to use

RUN Specifies commands to run in the base image
while building the custom image

CMD Identifies the default command that should be
started by the custom image

Tip

On the RHCSA exam, you’ll only need to work with
an existing Containerfile; you won’t have to create
one yourself.

To build a custom container image based on a Containerfile,
you use the podman build -t imagename:tag . command. In
this command the dot at the end refers to the current directory.
Replace it with the name of any other directory that may
contain the Containerfile you want to use. The -t option is used
to specify an image tag. The image tag consists of two parts: the
name of the image, which is followed by a specific tag. This
specific tag may be used to provide version information. To
build a custom image based on the Containerfile in Example 26-
7, you could, for instance, use the command podman build -t
mymap:1.0 .. After building the custom image, use the podman
images command to verify that it has been added. In Exercise
26-3 you can practice working with a Containerfile.

Exercise 26-3 Building Custom Images with a Containerfile

1. Use mkdir exercise264; cd exercise264 to ensure that your
Containerfile is going to be created in a custom directory.

2. Use an editor to create a Containerfile with the following
contents:
Click here to view code image

FROM docker.io/library/alpine

RUN apk add nmap

CMD ["nmap", "-sn", "172.16.0.0/24"]

3. Type podman build -t alpmap:1.0.
4. Verify the image builds successfully. Once completed, use

podman images to verify the image has been added.
5. Use podman run alpmap:1.0 to run the image you’ve just

created. If the nmap command gets stuck, use Ctrl-C to
interrupt it.

In Exercise 26-3 you’ve created your own custom image based
on the alpine image. Alpine is a common cloud image that is
used a lot, because it is really small. Even if you’re running your
containerized applications on top of Red Hat, that doesn’t mean
that you have to use the UBI image, which is provided by Red
Hat as a universal base image. If you want it to be small and
efficient, better to use alpine instead.

Managing Containers

While working with containers, you need to be aware of a few
operational management tasks:

Managing container status
Running commands in a container
Managing container ports
Managing container environment variables

In this section you learn how to perform these tasks.

Managing Container Status

You have already learned how podman ps shows a list of
currently running containers and how you can extend this list
to show containers that have been stopped by using podman ps
-a. But let’s talk about what brings a container to a stopped
status.

To understand containers, you need to understand that they are
just a fancy way to run an application. Containers run
applications, including all of the application dependencies, but
in the end, the purpose of a container is to run an application.
In some cases, the application is a process that is meant to be
running all the time. In other cases, the application is just a
shell, or another command that runs, produces its result, and
then exits, as you have seen in Exercise 26-3. Containers in the
latter category are started, run the command, and then just stop
because the command has been executed successfully, and
there is nothing wrong with that.

Before we continue, let me explain where the potential
confusion about the stopped status of containers comes from.
Sometimes, a container is considered to be something like a
virtual machine. If you start an Ubuntu virtual machine, for
instance, it starts and will keep on running until somebody

comes and decides to stop it. Containers are not virtual
machines. Every container image is configured with a default
command, and as just discussed, the container runs the default
command and then exits, as it’s done after running the
command. Some containers, however, run services, which keep
running all the time.

For those containers that do keep on running after starting
them, you can use a few commands to stop and start them:

podman stop sends a SIGTERM signal to the container. If that
doesn’t give any result after 10 seconds, a SIGKILL command
is sent.
podman kill immediately sends a SIGKILL command. In
most cases, that’s not necessary because podman stop will
send a SIGKILL after 10 seconds.
podman restart restarts a container that is currently
running.

Also, don’t forget that after stopping a container, it is still
available on your local system. That availability is convenient
because it allows you to easily restart a container and maintain

access to modifications that have previously been applied and
stored in the writable layer that has been added to the
container image while running the container. If, however,
you’ve been starting and stopping containers a lot and don’t
need to keep the container files around, use podman rm to
remove those container files. Alternatively, use podman run --
rm to run your container. This command ensures that after it is
run, the container files are automatically cleaned up.

Running Commands in a Container

When a container starts, it executes the container entrypoint
command. This is the default command that is specified to be
started in the container image. In some cases, you may have to
run other commands inside the container as well. To do so, you
can use the podman exec command. This allows you to run a
second command inside a container that has already been
started, provided that this other command is available in the
namespaced container file system (which often is a small file
system that contains only essential utilities).

If a command is not available in a container image, you can
install it, using the image operating system package installer.
However, this doesn’t make sense in many cases. Installing
additional commands will only make the container image

significantly bigger and, for that reason, slower. So, you’re
better off trying to use default facilities that are provided in the
container image.

While running a command, you can run it as a one-shot-only
command command. In that case, the command output is
written to STDOUT. You can also use podman exec in
interactive TTY mode to run several commands inside the
container.

For example, you can use podman exec mycontainer uname -
r to run the command and write its output to STDOUT, or
podman exec -it mycontainer /bin/bash to open a Bash shell
in the container and run several commands from there. In
Exercise 26-4 you practice running commands in a container.

Exercise 26-4 Running Commands in a Container

1. Use podman run -d --rm --name=web2
docker.io/library/nginx

2. Type podman ps to verify that the web2 container is
available.

3. Use podman exec -it web2 /bin/bash to open a Bash shell in
the container.

4. Within the container shell, type ps aux. You will see that
there is no ps command in the nginx container; the reason is
that many containers come without even fundamental
standard tools.

5. Type ls /proc, and notice that a few directories have a
numeric name. These are the PID directories, and if you
don’t have access to the ps command, this is how you can
find process information.

6. Each /proc/<PID> directory has a file with the name cdmline.
Type cat/proc/1/cmdline to find that the nginx process has
been started as PID 1 within the container.

7. Type exit to close the Bash shell you just opened on the
container.

8. Type podman ps to confirm that the web2 container is still
running. It should be running because the exit command
you used in the preceding step only exited the Bash shell, not
the primary command running inside the container.

9. On the container host, type uname -r to confirm the current
kernel version. The el9 part of the kernel name indicates this
is an Enterprise Linux kernel, which you’ll see only on RHEL,
CentOS, and related distributions.

10. Type podman run -it docker.io/library/ubuntu. This will
run the latest Ubuntu image from the Docker registry and
give access to a shell. Because the image has the shell set as

the entrypoint command (the default command it should
start), you don’t need to specify the name of the shell as well.

11. Type cat /etc/os-release to confirm this really is an Ubuntu
container.

12. Type uname -r to see the Enterprise Linux kernel that you
saw previously in step 6. The reason is that containers really
are all running on the same kernel, no matter which Linux
distribution container you’re running on top.

13. Type exit to close the interactive TTY. Does that command
shut down the container?

14. Use podman ps to verify the Ubuntu container is no longer
active. While using exit in step 13, you exited the entrypoint
command running in the container, so there is now nothing
else to be done.

Managing Container Ports

Rootless containers in podman run without a network address
because a rootless container has insufficient privileges to
allocate a network address. Root containers do get a dedicated
IP address, but that’s an IP address on an isolated network that
cannot be accessed directly from external networks. In either
case, to make the service running in the container accessible
from the outside, you need to configure port forwarding, where

a port on the container host is used to access a port in the
container application. Notice that if you are running a rootless
container, you can address only nonprivileged ports on the
host: ports 1–1024 are accessible by the root user only.

Tip

If you do want to run a container that has an IP
address and can bind to a privileged port, you need
to run a root container. Use sudo podman run ... to
run root containers. If you run a root container,
you also need to use sudo podman ps to verify
that it is running. The root container is running in
the root user namespace and therefore is not
accessible or visible by ordinary users. The
opposite is also true: if you type sudo podman ps,
you’ll only see root containers, not the rootless
containers that have been started by users.

To run a container with port forwarding, you add the -p option
to the podman run command. Use podman run --name
nginxport -d -p 8080:80 nginx to run the nginx image as a
container and make the nginx process accessible on host port
8080, which will be forwarded to the standard http port 80 on
which nginx is offering its services. Don’t forget to use sudo

firewall-cmd --add-port 8080/tcp --permanent; sudo firewall-
cmd --reload to open the port in the firewall as well afterward!
After exposing a web server container on a host port, you can
use curl localhost:8080 to verify access. Exercise 26-5 guides
you through this procedure.

Exercise 26-5 Managing Container Port Mappings

1. Type podman run --name nginxport -d -p 8080:80 nginx to
run an nginx container and expose it on host port 8080.

2. Type podman ps to verify that the container has been
started successfully with port forwarding enabled.

3. Use sudo firewall-cmd --add-port 8080/tcp --permanent;
sudo firewall-cmd --reload to open this port in the firewall
on the host operating system.

4. Type curl localhost:8080 to verify that you get access to the
default nginx welcome page.

Managing Container Environment Variables

Many containers can be started without providing any
additional information. Some containers need further
specification of how to do their work. This information is
typically passed using environment variables. A well-known
example where you have to pass environment variables to be

able to run the container successfully is mariadb, the database
service that needs at least to know the password for the root
user that it is going to use.

If a container needs environment variables to do its work, there
are a few ways to figure this out:

Just run the container without any environment variables. It
will immediately stop, and the main application will generate
an error message. Use podman logs on your container to
read the log for information on what went wrong.
Use podman inspect to see whether there is a usage line in
the container image that tells you how to run the container.
This may not always work, as it depends on whether or not
the image creator has included a usage line in the container
image.

After you’ve found out how to run the container, run it,
specifying the environment variables with the -e option. To run
a mariadb instance, for example, you can use podman run -d -e
MYSQL_ROOT_PASSWORD=password -e MYSQL_USER=anna
-e MYSQL_PASSWORD=password -e

MYSQL_DATABASE=mydb -p 3306:3306 mariadb. Exercise 26-
6 guides you through the procedure of running a container
using environment variables.

Exercise 26-6 Managing Container Environment Variables

1. Use podman run docker.io/library/mariadb. It will fail
(and you will see an error message on the STDOUT).

2. Use podman ps -a to see the automatically generated name
for the failing mariadb container.

3. Use podman logs container_name to see the Entrypoint
application error log. Make sure to replace container_name
with the name you found in step 2.

4. Use podman inspect mariadb and look for a usage line. You
won’t see any.

5. Use podman search registry.redhat.io/rhel9/mariadb to
find the exact version number of the mariadb image in the
RHEL registry.

6. Use podman login registry.redhat.io and provide valid
credentials to log in.

7. Use podman run registry.redhat.io/rhel9/mariadb-nnn
(make sure to replace nnn with the version number you
found in step 5). It will also fail but will show much more
usage details on the STDOUT. The reason is that the Red Hat

mariadb image is not the same as the image that was fetched
from the Docker registry in the first step of this procedure.

8. Use podman inspect registry.redhat.io/rhel9/mariadb-nnn
and in the command output search for the usage line. It will
tell you exactly how to run the mariadb image.

9. According to the instructions that you found here, type
podman run -d -e MYSQL_USER=bob -e
MYSQL_PASSWORD=password -e
MYSQL_DATABASE=mydb -e
MYSQL_ROOT_PASSWORD=password -p 3306:3306
registry.redhat.io/rhel9/mariadb-105. (By the time you
read this, the version number may be different, so make sure
to check the version number of the image if you’re
experiencing a failure in running this command.)

10. Use podman ps. You will see the mariadb container has now
been started successfully.

Managing Container Storage

When a container is started from an image, a writable layer is
added to the container. The writable layer is ephemeral:
modifications made to the container image are written to the
writable layer, but when the container is removed, all
modifications that have been applied in the container are

removed also. So if you run an application in a container and
want to make sure that modifications are stored persistently,
you need to add persistent storage.

To add persistent storage to Podman containers, you bind-
mount a directory on the host operating system into the
container. A bind-mount is a specific type of mount, where a
directory is mounted instead of a block device. Doing so ensures
that the contents of the directory on the host operating system
are accessible within the container. So, when files are written
within the container to the bind-mounted directory, they are
committed to the host operating system as well, which ensures
that data will be available beyond the lifetime of the container.
For more advanced storage, you should use an orchestration
solution. When you use OpenShift or Kubernetes, it’s easy to
expose different types of cloud and datacenter storage to the
containers.

To access a host directory from a container, it needs to be
prepared:

The host directory must be writable for the user account that
runs the container.
The appropriate SELinux context label must be set to
container_file_t.

Obviously, the container_file_t context label can be set manually
by a user who has administrator privileges, using semanage
fcontext -a -t container_file_t "/hostdir(/.*)?"; restorecon. It
can also be set automatically, but that works only if the user
who runs the container is the owner of the directory. It is not
enough if the user has write permissions on the directory! For
an easy way to apply the right SELinux context, you should
focus on the automatic solution.

To mount the volume, you use the -v host_dir:container_dir
command. If the user running the container is owner, or the
container is a root container, you can use -v
host_dir:container_dir:Z as an alternative to setting the
SELinux context automatically. So, to make sure that a mariadb
database is started in a way that database files are stored on the
host operating system, you use podman run -d --name mydb -v
/home/$(id -un)/dbfiles:/var/lib/mysql:Z -e
MYSQL_USER=user -e MYSQL_PASSWORD=password -e
MYSQL_DATABASE=mydatabase

registry.redhat.io/rhel9/mariadb-105. In Exercise 26-7 you can
practice running containers with storage attached.

Exercise 26-7 Attaching Storage to Containers

1. Use sudo mkdir /opt/dbfiles; sudo chmod o+w /opt/dbfiles
to create a directory on the host operating system.

2. Use podman login registry.redhat.io and provide valid
credentials to log in.

3. Use podman run -d --name mydbase -v
/opt/dbfiles:/var/lib/mysql:Z -e MYSQL_USER=user -e
MYSQL_PASSWORD=password -e
MYSQL_DATABASE=mydbase
registry.redhat.io/rhel9/mariadb-105. The output of this
command shows “operation not permitted.”

4. Type podman ps -a. You’ll see that starting the container has
failed.

5. Use podman logs mydbase to investigate why it has failed.
Because the error was not related to the container
application, the logs don’t show you anything; the problem is
related to Linux permissions.

6. Remove the failed container by using podman rm mydbase.
7. Type sudo chown $(id -un) /opt/dbfiles.
8. Run the command shown in step 3 again. It will now be

successful.

9. Use ls -ldZ /opt/dbfiles. You’ll see that the container_file_t
SELinux context has automatically been set.

To understand what is really happening while running rootless
containers, it makes sense to investigate a bit more. Rootless
containers are launched in a namespace. For each user, a
namespace is created in which all containers are started. The
namespace provides isolation, which allows the container
inside the namespace to run as the root user, where this root-
level access does not exist outside of the namespace. To make
this work, inside the container namespace different UIDs are
used than those used outside of the namespace.

To ensure that access is working correctly, UIDs are mapped
between the namespace and the host OS. This UID mapping
allows any UID inside the container namespace to be mapped to
a valid UID on the container host. The podman unshare
command can be used to run commands inside the container
namespace, which in some cases is necessary to make sure the
container is started the right way. To start with, as a non-root
user, type podman unshare cat /proc/self/uid_map. This
shows that the root user (UID 0) maps to the current user ID,
which in Example 26-8 is shown as UID 1000.

Example 26-8 Using podman unshare to Show UID Mappings

Click here to view code image

[student@server1 ~]$ podman unshare cat /proc/se

 0 1000 1

 1 100000 65536

If you want to set appropriate directory ownership on bind-
mounted directories for rootless containers, additional work is
required:

1. Find the UID of the user that runs the container main
application. In many cases podman inspect imagename will
show this.

2. Use podman unshare chown nn:nn directoryname to set the
container UID as the owner of the directory on the host. Notice
that this directory must be in the rootless user home directory,
as otherwise it wouldn’t be a part of the user namespace.

3. Use podman unshare /cat/proc/self/uid_map to verify the
user ID mapping.

4. Verify that the mapped user is owner on the host by using ls -
ld ~/directoryname.

In Exercise 26-8 you’ll practice bind-mounting in rootless
containers

Exercise 26-8 Bind Mounting in Rootless Containers

1. Make sure you’re in a non-root shell.
2. Use podman search mariadb | grep quay. The images in

quay.io are optimized for use in Red Hat environments, and
most of them are rootless by nature.

3. Type podman run -d --name mydb -e
MYSQL_ROOT_PASSWORD=password
quay.io/centos7/mariadb-103-centos7

4. Use podman exec mydb grep mysql /etc/passwd to verify
the UID of the mysql user, which is set to 27.

5. Use podman stop mydb; podman rm mydb, as you’ll now
have to set up the storage environment with the right
permissions before starting the container again.

6. Type mkdir ~/mydb
7. Use podman unshare chown 27:27 mydb to set appropriate

permissions inside the user namespace.
8. Check the UID mapping by typing podman unshare cat

/proc/self/uid_map
9. Use ls -ld mydb to verify the directory owner UID that is

used in the host OS. At this point the UIDs are set correctly.

10. Type podman run -d --name mydb -e
MYSQL_ROOT_PASSWORD=password -v
/home/student/mydb:/var/lib/mysql:Z
quay.io/centos7/mariadb-103-centos7 to start the rootless
mariadb container.

11. Use ls -Z mydb to verify the database files have been created
successfully.

Running Containers as Systemd Services

As containers are becoming increasingly common as the way to
start services, a way is needed to start them automatically.
When you’re using Kubernetes or OpenShift to orchestrate
container usage, this is easy: the orchestration platform ensures
that the container is started automatically, unless you decide
this is not desired behavior. On a standalone platform where
containers are running rootless containers, systemd is needed
to autostart containers.

In systemd, services are easily started and enabled with root
permissions using commands like systemctl enable --now
myservice.service. If no root permissions are available, you
need to use systemctl --user. The --user option allows users to
run the common systemd commands, but in user space only.

This works for any service that can run without root
permissions; for instance, use systemctl --user start
myservice.service to start the myservice service.

By default, when systemctl --user is used, services can be
automatically started only when a user session is started. To
define an exception to that, you can use the loginctl session
manager, which is part of the systemd solution to enable linger
for a specific user account. If you use loginctl enable-linger
myuser, you enable this for the user myuser. When linger is
enabled, systemd services that are enabled for that specific user
will be started on system start, not only when the user is
logging in.

The next step is to generate a systemd unit file to start
containers. Obviously, you can write these files yourself, but a
much easier way is to use podman generate systemd --name
mycontainer --files to do so. Note that this container file must
be generated in the ~/.config/systemd/user/ directory, so you
have to create that directory and change to it before running
the podman generate command.

The podman generate systemd command assumes that a
container with the name mycontainer has already been created
and will result in a unit file that can be enabled using systemctl

--user enable container-mycontainer.service. In Example 26-9
you can see what such a unit file looks like.

Example 26-9 Podman Autogenerated Container Service File

Click here to view code image

[student@server1 ~]$ cat container-wbe2.service

container-wbe2.service

autogenerated by Podman 4.0.2

Mon Oct 31 10:35:47 CET 2022

[Unit]

Description=Podman container-wbe2.service

Documentation=man:podman-generate-systemd(1)

Wants=network-online.target

After=network-online.target

RequiresMountsFor=/run/user/1000/containers

[Service]

Environment=PODMAN_SYSTEMD_UNIT=%n

Restart=on-failure

TimeoutStopSec=70

ExecStart=/usr/bin/podman start wbe2

ExecStop=/usr/bin/podman stop -t 10 wbe2

ExecStopPost=/usr/bin/podman stop -t 10 wbe2

PIDFile=/run/user/1000/containers/overlay-contai

 3deb6488b9c57400530b2e77310fd3294b6d08b8dc630b

 3deb6 88b9c5 00530b e 3 0 d3 9 b6d08b8dc630b

Type=forking

[Install]

WantedBy=default.target

In Exercise 26-9 you can practice working with Podman
autogenerated systemd unit files.

Exercise 26-9 Running Containers as Systemd Services

1. Use sudo useradd linda to create user linda.
2. Use sudo passwd linda to set the password for user linda.
3. Type sudo loginctl enable-linger linda to enable the linger

feature for user linda.
4. Use ssh linda@localhost to log in. The procedure doesn’t

work from a su or sudo environment.
5. Type mkdir -p ~/.config/systemd/user; cd

~/.config/systemd/user to create and activate the directory
where the systemd user files will be created.

6. Use podman run -d --name mynginx -p 8081:80 nginx to
start an nginx pod.

7. Type podman ps to verify the nginx pod has been started.
8. Create the systemd user files using podman generate

systemd --name mynginx --files.

9. A systemd unit file with the name container-mynginx.service
is created.

10. Type systemctl --user daemon-reload to ensure that
systemd picks up the changes.

11. Use systemctl --user enable container-mynginx.service to
enable the systemd user service. (Do not try to start it,
because it has already been started!)

12. Type systemctl --user status container-mynginx.service to
verify the service has the state of enabled.

13. Reboot your server, and after rebooting, open a shell as your
regular non-root user.

14. Type ps faux | grep -A3 -B3 mynginx to show that the
mynginx container has successfully been started and is
running as user linda.

Summary

In this chapter you learned about containers. First, you learned
how containers really come forth from the Linux operating
system and then learned all that is needed to run containers.
This includes managing images, managing containers and
container storage, as well as running containers as systemd
services.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the
Introduction, you have several choices for exam preparation:
the end-of-chapter labs; the memory tables in Appendix C;
Chapter 27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the
Key Topic icon in the margin of the page. Table 26-5 lists a
reference for these key topics and the page numbers on which
each is found.

Table 26-5 Key Topics for Chapter 26

Key Topic
Element

Description Page

List Three main tools to manage
containers

542

Key Topic
Element

Description Page

List Essential Linux kernel features
for containers

543

List Commands to manage container
state

559

List Finding information about
variables to use

562

List Preparing host storage 563

Complete Tables and Lists from Memory

There are no memory tables or lists in this chapter.

Define Key Terms

Define the following key terms from this chapter and check
your answers in the glossary:

container

container engine

registry

CRI-o

namespace

Docker

Kubernetes

OpenShift

image

orchestration

linger

Review Questions

The questions that follow are meant to help you test your
knowledge of concepts and terminology and the breadth of
your knowledge. You can find the answers to these questions in
Appendix A.

. What is the name of the tool that Red Hat includes with RHEL 9
to work with container images without having to download
them from the registry first?

. What are the three Linux features that are needed in container
environments?

. What is the name of the container engine on RHEL 9?

. Which file defines the registries that are currently used?

. After you start a container, using podman run ubuntu,
executing podman ps doesn’t show it as running. What is
happening?

. What do you need to do to start a rootless container that bind-
mounts a directory in the home directory of the current user
account?

. How can you find the default command that a container image
will use when started?

. How do you start an Ubuntu-based container that prints the
contents of /etc/os-release and then exits?

. What do you need to do to run a podman nginx container in
such a way that host port 82 forwards traffic to container port

80?

. Which command do you use to generate a systemd unit file for
the container with the name nginx?

End-of-Chapter Lab

At this point you should be familiar with running containers in
a RHEL environment. You can now complete the end-of-chapter
lab to reinforce these newly acquired skills.

Lab 26.1

1. Ensure that you have logged in to get access to the Red Hat
container registries.

2. Download the mariadb container image to the local
computer.

3. Start the mariadb container, meeting the following
requirements:
1. The container must be accessible at port 3206.
2. The MYSQL_ROOT_PASSWORD must be set to “password”
3. A database with the name mydb is created.
4. A bind-mounted directory is accessible: the directory

/opt/mariadb on the host must be mapped to /var/lib/mysql
in the container.

4. Configure systemd to automatically start the container as a
user systemd unit upon (re)start of the computer.

Chapter 27

Final Preparation

Congratulations! You made it through the book, and now it’s
time to finish getting ready for the RHCSA exam. This chapter
helps you get ready to take and pass the exam. In this chapter,
you learn more about the exam process and how to register for
the exam. You also get some useful tips that will help you avoid
some common pitfalls while taking the exam.

General Tips

In this section, you get some general tips about the exam. You
learn how to verify your exam readiness, how to register for
the exam, and what to do on the exam.

Verifying Your Readiness

Register for the exam only when you think that you are ready
to pass it. This book contains a lot of material to help you verify
your exam readiness. To start with, you should be able to
answer all the “Do I Know This Already?” quiz questions, which
you find at the beginning of each chapter. You should also have
completed all the exercises in the chapters successfully, as well
as the end-of-chapter labs. The labs are the first real way of

testing your readiness because the questions are formulated
similarly to the real exam questions, providing a good way to
gauge whether you are ready for the exam.

Registering for the Exam

There are three ways of taking the RHCSA exam. You can take it
as a kiosk exam provided in a testing center, as part of a Red
Hat training course, or as a home exam. The option to take the
exam from home has made it much easier for candidates
around the world to get certified, and has become the most
common way to take the exam.

A kiosk exam is administered in a test center on an individual
basis, where you work through the exam tasks on a kiosk
computer. This computer is monitored remotely through
multiple cameras while you work on the exam tasks. The good
thing about a kiosk exam is that you schedule the exam for a
time and place that is convenient to you. This also applies to the
home exam.

The home exam can be taken from the convenience of your
own house. You do need to be able to work in a quiet room
without interruptions, and your desk must be clear of
everything but your computer. You also need a valid ID and one

internal as well as an external web cam to register and take the
home exam. You will be monitored through these connected
web cams, and you’ll use them to show your ID and the room in
which you are taking the exam before starting the exam. To
start the home exam, you’ll have to download and run the Red
Hat exam environment on your laptop, which will enable you
to log in securely to the remote exam environment. This
environment runs completely from a USB thumb drive, so you
won’t install anything on your own computer.

The third option to take the exam is as a part of a Red Hat
training course in a classroom. Red Hat offers five-day courses
to prepare for the RHCSA exam. The last day of such a course is
dedicated to taking the exam, and you and your fellow students
will work on the exam, which is administered by a local proctor,
in a classroom.

You can register to take the exam either through Redhat.com
(following the links under the Services & support tab) or
through a training company. Either way, you take the same
exam. It might be easier, though, to get a discount by booking
through a local training company. Booking through Red Hat will
be faster normally, as you have direct access to Red Hat.

On Exam Day

http://redhat.com/

Make sure to bring appropriate identification to the exam or to
have it handy for a home exam. To be allowed to take the exam,
you need an approved government ID. Normally, a passport or
driver’s license will do; other types of proof may be accepted in
your country as well. Do not forget it; without ID, you will not
be allowed to take the exam.

Also, make sure you are on time. For an exam in a test center, it
is a good idea to arrive 30 minutes before the exam’s scheduled
starting time. If you are late, you will normally be allowed to sit
for the exam, but you will not get extra time. So, just make sure
that you are on time. If you’re taking a home exam, I advise you
to start the exam environment 30 minutes before the scheduled
exam time. It will take a while for the environment to load
completely.

After proving your identity, you are introduced to the exam
environment. Because of the nondisclosure agreement that
every test-taker signs with Red Hat, I cannot tell you in detail
what the exam environment looks like. I can tell you, though,
that there will be an environment that consists of one or more
servers that you can access from a graphical desktop
environment that runs Red Hat Linux. There is also a list of
tasks that you must perform. Work your way through the tasks,

reading all carefully and thoroughly, and you will pass the
exam if you have prepared well.

During the Exam

The tasks that you have to work on during the exam are not
necessarily presented in the most logical order. Therefore, it is a
good idea to start reading through all the tasks before you start
working on the first assignment. While reading through all the
tasks, you can decide which is the best order to create the
configurations needed. Determine the best possible order for
yourself, because it may not be obvious.

You have 2 hours and 30 minutes to work through all the exam
assignments. Expect about 17 assignments; you might see a bit
more or less.

Another very important tip is to read carefully, a skill that not
many people have been taught well. IT administrators are very
skilled in scanning web pages to retrieve the information that
they need. That skill will not help you on the exam. Reading
skills do. I cannot stress that enough. I estimate that 40% of all
people who fail the exam do so because they do not read the
exam questions carefully. (They scan instead.) So, let me give
you some tips on how to read the exam questions:

If English is not your native language, you can switch the
language that questions are presented in. Maybe the English-
language question is not clear to you, but the question
translated in another language is. So, if in doubt, read the
translation as well.
Because the questions are originally written in English—the
default language and the preference of most exam
candidates—they tend to be perfect in that form, because Red
Hat applies a tremendous effort to make them perfect. Red
Hat must rely on translators to ensure the questions are
translated correctly, so the quality of the English-language
questions is the best. You are free to use translated questions,
but you should use the English-language questions as your
primary source.
To make sure that you do not miss anything, make a task list
for each question. You have scratch paper with you during
the exam. Use it to make a short list of tasks that you have to
accomplish, and work on them one by one. This approach
helps you concentrate on what the exam question is actually
asking.
After you have worked on all assignments, take a short
break. (You are allowed to take a break during the exam.)
When you return, read all questions again to make sure that
you did not miss anything. Taking a short break is important;

it allows you to distance yourself from the exam, after which
you should read the questions as if it is the first time that you
have seen them.

Another important part of the exam is the order in which you
work on the assignments. Regardless of the specific exam
content, some topics need to be addressed before other topics.
Make sure that you deal with those topics first. If you do not, it
will make it more difficult or even impossible to complete the
other assignments. Roughly speaking, here is the order in which
you should work on the exam topics:

1. Make sure that your server boots and you have root access to
it.

2. Configure networking in the way it is supposed to work.
3. Configure any repositories that you need.
4. Install and enable all services that need to be up and running

at the end of the exam.
5. Work on all storage-related tasks.
6. Create all required user and group accounts.
7. Set permissions.
8. Make sure SELinux is working and configured as required.
9. Work on everything else.

The third thing that you need to know about the exam is that
you should reboot at least a couple of times. A successful reboot
allows you to verify that everything is working up to the
moment you have rebooted. Before rebooting, it is a good idea
to remove the rhgb and quiet options from the GRUB boot
loader. Removing them allows you to see what actually happens
and makes troubleshooting a lot easier.

Do not reboot only at the end of the exam, because if at that
moment you encounter an issue, you might not have enough
time to fix it. You should at least make sure to reboot after
working on all storage-related assignments.

The Nondisclosure Agreement

The RHCSA certification is the most sought-after certification
that currently exists in IT. It represents a real value because it
demonstrates that the person who has passed the RHCSA exam
is able to work through a list of realistic assignments and
complete the job successfully. It is in everybody’s interest to
help maintain this high value of the RHCSA certification. The
nondisclosure agreement (NDA) is an important part of that.

The RHCSA exam requires demonstrating real skills because the
content of the exam is not publicly available. Please help keep

these exams valuable by not talking about questions that you
have seen on the exam. Anyone who knows before the exam
which questions will be asked will have an easier exam than
you had, which means that the value of the certification will
diminish and will make your effort less valuable. So, please
help protect what you have worked so hard for and do not talk
about exam content to anyone.

Also, you should realize that there is a penalty for disclosing
exam questions after you have signed the NDA. You will lose
your certification if you have passed the exam, or you will
become barred from retaking it if you did not pass.

Chapter 28

Theoretical Pre-Assessment Exam

This chapter provides an RHCSA theoretical pre-assessment
exam to help you determine what you know and what you do
not know. This theoretical exam is provided so that you can
assess your skills and determine the best route forward for
studying for the exam.

The RHCSA exam is a 100% practical exam. You work on actual
configuration tasks, and you must deliver a working
configuration at the end of the exam. Therefore, passing this
practical exam requires that you have a working knowledge of
RHEL 9. This chapter helps you check whether you have the
requisite knowledge.

In the following pre-exam theoretical exam, you are asked how
you would approach some essential tasks. The purpose is to
check for yourself whether you are on the right track. You do
not have to provide a detailed step-by-step procedure. You just
need to know what needs to be done. For instance, if the
question asks how to set the appropriate SELinux context type
on a nondefault web server document root, you know what you
need to do if you say “check the semanage-fcontext man page.”

If you do not have the answers to any of these questions, you
know that you need to do additional studying on those topics.

In this theoretical pre-assessment exam, some key elements are
covered. This test is not 100% comprehensive; it just focuses on
some of the most essential skills.

1. You need to create a shared group environment where
members of the group sales can easily share permissions
with one another. Which approach would you suggest?

2. You need to change the hostname of the computer to
something else and do it persistently. How would you do
that?

3. On your disk, you have to create a logical volume with a size
of 500 MB and the name my_lv. You do not have LVM
volumes yet. List the steps to take to create the logical volume
and mount it as an Ext4 file system on the /data directory.
Also ensure that the extent size this logical volume uses is 8
MiB.

4. While booting, your server gives an error and shows “Enter
root password for maintenance mode.” What is the most
likely explanation for this problem?

5. You need to access a repository that is available on
ftp://server.example.com/pub/repofiles. How would you do
this?

6. You need to schedule a command to be executed
automatically every day at midnight as user bob. How would
you do that?

7. How do you create a user who is not allowed to log in?
8. You have configured your web server to listen at port 8082,

and now it doesn’t start anymore. How do you troubleshoot?
9. You have access to the server console, but you do not have

the root password to log in to that server. Describe step by
step what you would do to get access to the server by
changing the password of user root.

10. How do you configure a server to use the best performance
profile?

11. You need to install the RPM package that contains the file
sealert, but you have no clue what the name of this package
is. What is the best way to find the package name?

12. You need to locate all files containing the text “root” in the
/etc directory. How would you do that?

13. You are trying to find relevant man pages that match the
keyword user. You type man -k user but get the “nothing
appropriate” message. How can you fix this?

14. How do you add a user to a new secondary group with the
name sales without modifying the existing (secondary) group
assignments?

15. How would you create a 5-GiB Stratis volume with the name
stratisdata and mount it automatically on /stratisdata?

16. How would you configure time synchronization, such that
your server is synchronizing time with
server10.example.com?

17. How do you set up automount in such a way that any user
who accesses their home directory in /home/ldapusers will
automatically mount the matching directory from
nfsserver:/home/ldapuser/?

Part V

RHCSA 9 Practice Exams

RHCSA Practice Exam A

General Notes

Here are some tips to ensure your exam starts with a clean
environment:

You do not need external servers or resources.
Do not register or connect to external repositories.
Install a new VM according to the instructions in each
practice exam.
No sample solutions are provided for these practice exams.
On the real exam, you need to be able to verify the solutions
for yourself as well.
You should be able to complete each exam within two hours.

After applying these tips, you’re ready to get started. Good luck!

1. Install a RHEL 9 virtual machine that meets the following
requirements:
1. 2 GB of RAM
2. 20 GB of disk space using default partitioning
3. One additional 20-GB disk that does not have any

partitions installed
4. Server with GUI installation pattern

2. Create user student with password password, and user root
with password password.

3. Configure your system to automatically mount the ISO of the
installation disk on the directory /repo. Configure your
system to remove this loop-mounted ISO as the only
repository that is used for installation. Do not register your
system with subscription-manager, and remove all
references to external repositories that may already exist.

4. Reboot your server. Assume that you don’t know the root
password, and use the appropriate mode to enter a root shell
that doesn’t require a password. Set the root password to
mypassword.

5. Set default values for new users. Set the default password
validity to 90 days, and set the first UID that is used for new
users to 2000.

6. Create users edwin and santos and make them members of
the group livingopensource as a secondary group
membership. Also, create users serene and alex and make
them members of the group operations as a secondary
group. Ensure that user santos has UID 1234 and cannot start
an interactive shell.

7. Create shared group directories /groups/livingopensource
and /groups/operations, and make sure the groups meet the
following requirements:

1. Members of the group livingopensource have full access to
their directory.

2. Members of the group operations have full access to their
directory.

3. New files that are created in the group directory are group
owned by the group owner of the parent directory.

4. Others have no access to the group directories.
8. Create a 2-GiB volume group with the name myvg, using 8-

MiB physical extents. In this volume group, create a 500-MiB
logical volume with the name mydata, and mount it
persistently on the directory /mydata.

9. Find all files that are owned by user edwin and copy them to
the directory/rootedwinfiles.

10. Schedule a task that runs the command touch /etc/motd
every day from Monday through Friday at 2 a.m.

11. Add a new 10-GiB virtual disk to your virtual machine. On
this disk, add a Stratis volume and mount it persistently.

12. Create user bob and set this user’s shell so that this user can
only change the password and cannot do anything else.

13. Install the vsftpd service and ensure that it is started
automatically at reboot.

14. Create a container that runs an HTTP server. Ensure that it
mounts the host directory /httproot on the directory
/var/www/html.

15. Configure this container such that it is automatically started
on system boot as a system user service.

16. Create a directory with the name /users and ensure it
contains the subdirectories linda and anna. Export this
directory by using an NFS server.

17. Create users linda and anna and set their home directories
to /home/users/linda and /home/users/anna. Make sure that
while these users access their home directory, autofs is used
to mount the NFS shares /users/linda and /users/anna from
the same server.

RHCSA Practice Exam B

General Notes

Here are some tips to ensure your exam starts with a clean
environment:

You do not need external servers or resources.
Do not register or connect to external repositories.
Install a new VM according to the instructions in each
practice exam.
No sample solutions are provided for these practice exams.
On the real exam, you need to be able to verify the solutions
for yourself as well.
You should be able to complete each exam within two hours.

After applying these tips, you’re ready to get started. Good luck!

1. Install a RHEL 9 virtual machine that meets the following
requirements:
1. 2 GB of RAM
2. 20 GB of disk space using default partitioning
3. One additional 20-GB disk that does not have partitions

installed
4. Server with GUI installation pattern

2. Create user student with password password, and user root
with password password.

3. Configure your system to automatically mount the ISO of the
installation disk on the directory /repo. Configure your
system to remove this loop-mounted ISO as the only
repository that is used for installation. Do not register your
system with subscription-manager, and remove all
references to external repositories that may already exist.

4. Create a 1-GB partition on /dev/sdb. Format it with the vfat
file system. Mount it persistently on the directory /mydata,
using the label mylabel.

5. Set default values for new users. Ensure that an empty file
with the name NEWFILE is copied to the home directory of
each new user that is created.

6. Create users laura and linda and make them members of the
group livingopensource as a secondary group membership.
Also, create users lisa and lori and make them members of
the group operations as a secondary group.

7. Create shared group directories /groups/livingopensource
and /groups/operations and make sure these groups meet
the following requirements:
1. Members of the group livingopensource have full access to

their directory.

2. Members of the group operations have full access to their
directory.

3. Users should be allowed to delete only their own files.
4. Others should have no access to any of the directories.

8. Create a 2-GiB swap partition and mount it persistently.
9. Resize the LVM logical volume that contains the root file

system and add 1 GiB. Perform all tasks necessary to do so.
10. Find all files that are owned by user linda and copy them to

the file /tmp/lindafiles/.
11. Create user vicky with the custom UID 2008.
12. Install a web server and ensure that it is started

automatically.
13. Configure a container that runs the

docker.io/library/mysql:latest image and ensure it meets the
following conditions
1. It runs as a rootless container in the user linda account.
2. It is configured to use the mysql root password password.
3. It bind mounts the host directory /home/student/mysql to

the container directory /var/lib/mysql.
4. It automatically starts through a systemd job, where it is

not needed for user linda to log in.

Appendix A

Answers to the “Do I Know This Already?”
Quizzes and Review Questions

Answers to the “Do I Know This Already?” Quizzes

Chapter 1

. A and B. Fedora is an experimental/enthusiast version
containing many components that may or may not make it into
the RHEL distribution tree and onto the RHCSA exam. CentOS
Stream is also not an optimal choice, as it continuously evolves.

. D. All RHEL software updates are made available in CentOS as
well. For the rest, CentOS Stream is an unsupported platform.

. A. In particular, when working with virtual machines, you’ll be
happy to have a GUI at your disposal.

. C. XFS is used as the default file system. When Red Hat decided
which file system to use as the default file system, Btrfs was not
stable enough yet.

. A. The size of an XFS file system cannot be reduced.

. C. The Fedora project tries to make a stable distribution as well.
There are many Fedora users around the globe who use it as a
production distribution.

. D. The Troubleshoot an Existing Installation option is available
when booting from disk, not on the Installation Summary
screen.

. D. You are allowed to use an unsecure password; you just have
to confirm it twice.

. D. Language settings can be changed after installation. This is
done easily through the Settings option in the graphical
interface.

. B. Even if it makes sense having /var on a dedicated partition,
this is not part of a default installation.

Chapter 2

. B. You first must redirect the standard output to a file, and then
2>&1 is used to specify that errors are to be treated in the same
way.

. B. /etc/bashrc is processed when a subshell is started, and it is
included while starting a login shell as well.

. C. On Linux, the current directory is not set in the $PATH
variable.

. D. A pipe (|) is used to process the output of the first command
and use it as input of the second command.

. D. The command history -c removes the in-memory state from
the history file of current history. That doesn’t just remove the
line that contains the password, but everything. Use history -d
<number> to remove a line with a specific number.

. D. Ctrl-X is not a valid history command.

. D. Bash completion works for commands, files, variables, and
other names if configuration for that has been added (like
hostnames for the SSH command).

. A. You need the command :%s/old/new/g to replace all
instances of old with new. % means that it must be applied on
the entire file. s stands for substitute. The g option is used to
apply the command to not only the first occurrence in a line
(which is the default behavior) but all occurrences in the line.

. B. The /etc/motd file contains messages that are displayed after
user login on a terminal session. If you want to show a message
before users log in, edit the /etc/issue file.

. C. The man -k command uses a database to find the keywords
you are looking for. On RHEL 9, this database is updated with
the mandb command. On older versions of RHEL (prior to
RHEL 7), the makewhatis command was used instead.

Chapter 3

. D. /run is the default location where temporary files are
created. Notice that these can also be created in the /tmp
directory, but within /run a directory structure is created to
ensure each process has its own environment that is not
accessible by other processes, and that makes /run more secure.

. C. The /var directory is used on Linux to store files that may
grow unexpectedly.

. B, C, and D. The nodev option specifies that the mount cannot
be used to access device files. With noexec, executable files
cannot be started from the mount, and nosuid denies the use of
the SUID permission.

. C. The df -h command shows mounted devices and the amount
of disk space currently in use on these devices. The -T option
helps in recognizing real file systems (as opposed to kernel
interfaces) because it shows the file system type as well.

. C. The option -a shows hidden files, -l gives a long listing, -r
reverts the sorting so that newest files are shown last, and -t
sorts on modification time, which by default shows newest files
first.

. C. To copy hidden files as well as regular files, you need to put a
. after the name of the directory the files are in. Answer A
copies hidden files as well, but it creates a subdirectory $USER
in the current directory.

. A. The mv command enables you to move files and rename
files.

. D. In hard links, no difference exists between the first hard link
and subsequent hard links.

. C. The option -s is used to create a symbolic link. While creating
a link, you first have to specify the source, and next you specify
the destination.

. D. Use the option -u to update an existing tar archive.

Chapter 4

. A. The head command by default shows the first ten lines in a
text file.

. D. The wc command shows the number of lines, words, and
characters in a file.

. D. When you use less, the G key brings you to the end of the
current file.

. A. The -d option is used to specify the field delimiter that needs
to be used to distinguish different fields in files while using cut.

. A. The sort command can sort files or command output based
on specific keys. If no specific key is mentioned, sorting
happens based on fields. The option -k3 will therefore sort the
third field in the output of the ps aux command.

. D. When used in a regular expression, the ^ sign in front of the
text you are looking for indicates that the text has to be at the
beginning of the line.

. A. The ? regular expression is used to refer to zero or one of the
previous characters. This makes the previous character
optional, which can be useful. If the regular expression is
colou?r, for example, you would get a match on color as well as
colour.

. D. + is used to indicate the preceding character should occur
one or more times. Notice that this is an extended regular

expression and most tools need additional options to work with
extended regular expressions.

. D. The awk command first needs to know which field separator
should be used. This is specified with the -F : option. Then, it
needs to specify a string that it should look for, which is /user/.
To indicate that the fourth field of a matching file should be
printed, you need to include the { print $4 } command.

. B. Use grep -v to exclude from the results lines containing the
regular expression.

Chapter 5

. B. The console is the screen you are working from. On the
console, a terminal is started as the working environment. In
the terminal, a shell is operational to interpret the commands
you are typing.

. A. The console is the screen you are working from. On the
console, a terminal is started as the working environment. In
the terminal, a shell is operational to interpret the commands
you are typing.

. C. The console is the screen you are working from. On the
console, a terminal is started as the working environment. In

the terminal, a shell is operational to interpret the commands
you are typing.

. B. The six virtual consoles that are available on Linux by
default are numbered /dev/tty1 through /dev/tty6. The device
/dev/pts/6 is used to refer to the sixth pseudo terminal, which is
created by opening six terminal windows in a graphical
environment.

. A and C. A pseudo terminal device is created when opening
new terminals using SSH or from the graphical interface.

. D. Typically, a server reboot is necessary only after making
changes to the kernel and kernel modules that are in use.
Changing the network configuration does not normally require
a reboot, because it is possible to just restart the network
service.

. C. Windows has no native support for SSH. You need to install
PuTTY or similar software to remotely connect to Linux using
SSH.

. D. Key fingerprints of hosts that you have previously connected
to are stored in your home directory, in the subdirectory .ssh in
a file with the name known_hosts.

. C. The ForwardX11 option in the /etc/ssh/ssh_config file enables
support for graphical applications through SSH.

. C. To initiate key-based remote authentication, you should copy
the public key to the remote server. The most convenient way to
do so is using the ssh-copy-id command.

Chapter 6

. A and D. The RHEL 9 installation program offers an option to set
no password for user root, which will effectively disable the
root user account. If you want to allow root user login, it’s wise
not to allow this user to log in. You cannot delete the root user,
as it is required for much system functionality.

. D. In the sudo configuration file, all members of the group
wheel by default get access to all administrator tasks.

. B. To define an exception, the exception is listed after the
generic command and not before. Notice that answer C may
also be working, but depends on the current PATH setting and
for that reason should not be used in this way.

. C. To use pipes in the sudo shell, the entire command must be
executed as an argument to the sh -c command. Answer D

might look correct as well, but it is not, because the grep
command is not executed with sudo privileges.

. C. The file /etc/default/useradd is read for default settings when
new user accounts are created. Notice that it only includes
some settings, including the name of the default home
directory. Most user-related settings are in /etc/login.defs.

. A. The chage -l command enables you to manage password
properties.

. B. There is no file /etc/.profile.

. A. The vigr command creates a copy of the /etc/group file so
that changes can be applied safely.

. C and D. The id and groups commands show a list of all groups
a user is a member of.

. C. If a file /etc/nologin exists, only the user root will be allowed
to log in. To display an optional message to users trying to log
in, the message can be included in /etc/nologin.txt.

Chapter 7

. C. The newgrp command is used to set the effective primary
group, which will affect default group ownership on new files

until the current shell session is ended. The chgrp command is
used to set the group owner of an existing file; chgrp is not
related to any user account, and it affects newly created files
only.

. A. The find / -user linda command searches all files that are
owned by user linda. Notice that find also has a -uid option that
allows you to locate files based on a specific UID setting. This
does not allow you to search files based on a username, but it
will let you find files based on the UID of a specific user.

. C. chgrp myfile sales does not set group ownership for the file
myfile. The order in this command is wrong; chgrp first needs
the name of the group, followed by the name of the owner that
needs to be set.

. C. When used in relative mode, the three digits are used to
specify user, group, and others permissions. The value 6 is used
to apply read and write.

. D. The essence to the answer is the use of uppercase X, also
known as “special X.” This changes the permission on the
directory, but not on files.

. C. The chmod g+s /dir command adds (+) the SGID permission
to /dir; chmod u+s /dir adds SUID to the directory; chmod g-s

/dir removes the SGID permission; and the 1 in chmod 1770
/dir would set the sticky bit and not SGID.

. D. The passwd command needs the SUID permission to be set,
to make it possible to write changes to the /etc/shadow file.

. A. The root user needs a higher level of security, and for that
reason has a different umask than regular users.

. C. The umask 027 will give all permissions to the file owner,
read permissions to the group, and no permissions to others.

. C. The lsattr command shows current attribute settings to files.
The ls command is not capable of showing file attributes, and
the other commands that are listed do not exist.

Chapter 8

. D. Based on the /26 subnet mask, the networks are 192.168.4.0,
192.168.4.64, 192.168.4.128, and 192.168.4.192. That means that
IP addresses II, III, and IV belong to the same network.

. B. The 169.254.0.0 network address does not belong to the
private address ranges, which are 10.0.0.0/8, 172.16.0.0/12, and
192.168.0.0/16. The address 169.254.0.0 is from the APIPA range.
This is a range of IP addresses that can be automatically self-

assigned by a client that is trying to reach an unreachable DHCP
server.

. A, B, or C. On RHEL 9, network device names are generated
automatically, and the exact name you’ll get depends on the
information that is revealed by the kernel driver in use. If no
specific information is revealed by the driver, the legacy name
eth0 is used.

. D. Use of the ifconfig command is deprecated; use the ip
command instead. The ip addr show command shows
information about the state of the interface as well as the
current IP address assignment.

. A. The network service no longer exists in RHEL 9.

. B. The nmcli-examples man page was created to make working
with the long commands in nmcli a bit easier. Note that nmcli
also has excellent command-line completion features.

. C. On RHEL 9, nmtui is the default utility to set and modify the
network interface.

. D. When the connection is added, you use ip4 and gw4 (without
a v).

. A. You should not set the DNS servers directly in /etc/resolv.conf,
because that file is automatically written by the
NetworkManager service.

. C. The name of the configuration file that contains the
hostname is /etc/hostname. You should use hostnamectl to
change its contents.

Chapter 9

. D. The gpgcheck= line indicates whether to check the integrity
of packages in the repository using a GPG key. Although useful,
this capability is not mandatory in all cases.

. B. If a RHEL system is not registered with Red Hat, no
repositories are available. This is important to realize for the
RHCSA exam, because it means that you need to connect to a
repository before you can install anything.

. C. Use baseurl to specify which URL to use. If the URL is based
on the local file system, it uses the URI file:// followed by the
path on the local file system, which in this case is /repo. This
explains why there are three slashes in the baseurl.

. A, D. GPG package signing is used to set a checksum on
packages so that altered packages can easily be recognized. The

main purpose of signing packages is to make it easy to protect
packages on Internet repositories. For internal repositories that
cannot be accessed by Internet users, the need to add GPG
package signatures is less urgent. If you access a signed
repository for the first time, the dnf command will query to
import the GPG key.

. C, D. Both the commands dnf provides and dnf whatprovides
can be used to search for files within a specific package. While
using dnf whatprovides, the file pattern must be specified as
*/filename or as a full path.

. B. The dnf module application stream allows for working with
different versions of user space software side by side.

. C. To install a specific profile from a dnf module application
stream, add the profile name to the application stream version
using a /.

. A. The dnf install command installs individually downloaded
RPM files while looking for package dependencies in the
current repositories. This is better than using rpm -ivh, which
does not consider the dnf repositories. In earlier versions of
RHEL, the dnf localinstall command was used to install

packages that were downloaded to the local file system, but this
command is now deprecated.

. C. Use the rpm -qf command to find which RPM package a
specific file comes from.

. C. The --scripts option checks whether there are scripts in an
RPM package. If you want to query the package file and not the
database of installed RPMs, you need to add the -p option to the
-q option, which is used to perform RPM queries.

Chapter 10

. B and D. There are two different types of processes that each
request a different management approach. These are shell jobs
and daemons. A cron job and a thread are subdivisions of these
generic categories.

. B. The Ctrl-Z command temporarily freezes a current job, after
which the bg command can be used to resume that job in the
background.

. A. The Ctrl-C command cancels the current job. Ctrl-D sends the
EOF character to the current job, which can result in a stop if
this allows the job to complete properly. The difference with

Ctrl-C is that the job is canceled with no regard to what it was
doing. The Ctrl-Z keystroke freezes the job.

. A and B. Individual threads cannot be managed by an
administrator. Using threads makes working in a multi-CPU
environment more efficient because one process cannot be
running on multiple CPUs simultaneously, unless the process is
using threads.

. A. The ps ef command shows all processes, including the exact
command that was used to start them.

. C. To increase process priority, you need a negative nice value.
Note that -20 is the lowest value that can be used.

. C. Use the renice command to change priority for currently
running processes. To refer to the process you want to renice,
use the -p option.

. B. mkill is not a current command to send signals to processes.

. A. To change the process priority from top, use r for renice.

. B. To set the tuned performance profile, use tuned-adm
profile, followed by the name of the profile you want to set.

Chapter 11

. A. The -t service argument shows all currently loaded services
only.

. C. Wants are specific to a particular system and for that reason
are managed through /etc/systemd/system (not
/usr/lib/systemd/system).

. D. Masking a service makes it impossible to enable it.

. D. Running(dead) is not a valid status for systemd services. You
see Inactive(dead) for units that currently are not active.

. D. Socket units monitor socket activity, which may consist of a
file being accessed or a network port being accessed. They do
not monitor PATH activity. This is done by the path unit type.

. B. udev is not a valid systemd unit type (device is a valid unit
type though). All others are.

. B. Answers A and B are very similar, but answer A uses the
wrong command. You have to use the systemctl command, not
the systemd command.

. C and D. The SYSTEMD_EDITOR variable defines which editor to
use. You need to set a full path name for this editor.

Alternatively, you can use the EDITOR variable to set the default
editor for all commands that need to be able to use an editor.

. D. The Wants dependency type defines that a specific unit is
wanted, without setting a hard requirement.

. A. The word order is wrong. It should be systemctl start unit,
not systemctl unit start.

Chapter 12

. A. In RHEL 9 systemd timers are used as the default solution for
scheduling future jobs.

. B. To specify a starting time using systemd timers, use
OnCalendar.

. D. Use OnStartupSec to specify that a timer should run at a
specific time after starting systemd.

. D. In user systemd services, you use OnStartupSec to specify
that a service should be started a specific time after the user
systemd service has been started.

. C. The fields in cron timing are minute, hour, day of month,
month, and day of week. Answer C matches this pattern to run
the task on the seventh day of the week at 11 a.m.

. A. To launch a job from Monday through Friday, you should use
1-5 in the last part of the time indicator. The minute indicator
*/5 will launch the job every 5 minutes.

. A and D. You cannot modify user cron files directly, but have to
go through the crontab editor. This editor is started with the
crontab -e command. As the root user, you can use crontab -u
<username> -e to edit a specific user crontab.

. A. The /etc/crontab file should not be edited directly, but only by
using input files that are stored in either the user environment
or in /etc/cron.*/ directories.

. B. The Ctrl-D key sequence sends the end-of-file (EOF) character
to the at shell and closes it.

. C. The atq command queries the at service and provides an
overview of jobs currently scheduled for execution.

Chapter 13

. C. system-journald is not a replacement of rsyslogd. It is an
additional service that logs information to the journal. In RHEL
9, they are integrated to work together to provide you with the
logging information you need.

. D. Most messages are written to the /var/log/messages file, but
authentication-related messages are written to /var/log/secure.
Check the contents of /etc/rsyslog.conf and look for authpriv to
find out what exactly is happening for this facility.

. C. SELinux events are logged through the audit service, which
maintains its log in /var/log/audit/audit.log.

. D. If systemd-journald has been configured for persistent
storage of the journal, the journal is stored in /var/log/journal.
Note that by default the systemd journal is not stored
persistently.

. D. To make the systemd journal persistent, you have to create a
directory /var/log/journal and ensure it has the appropriate
permissions.

. D. The systemd-journal-flush service will update the systemd
journal to use its current settings.

. A. The rsyslogd configuration file is /etc/rsyslog.conf.

. C. rsyslogd destinations often are files. For further processing,
however, log information can be sent to an rsyslogd module. If
this is the case, the name of the module is referred to as
:modulename:.

. D. The local facilities local0 through local7 can be used to
configure services that do not use rsyslog by default to send
messages to a specific rsyslog destination, which needs to be
further configured in the rsyslog.conf file.

. A. The logrotate service can rotate files based on the maximal
file size. The recommended way to configure this is to drop a
file in /etc/logrotate.d containing parameters for this specific
file.

Chapter 14

. A. Using GUI partition tables offers many advantages, but it
does not make access to a directory faster.

. A. There is no easy way to change MBR partitions to GPT.

. B. Partition type 82 is normally used to create Linux partitions.

. C. KVM virtual machines use the virtio driver to address hard
disks. This driver generates the device /dev/vda as the first disk
device.

. C. A disk can have one partition table only. For that reason, it is
not possible to have MBR and GPT partitions on the same disk.

. B. XFS is used as the default file system; partitions can still be
formatted with other file systems, like Ext4.

. D. The blkid command shows all file systems, their UUID, and if
applicable, their label.

. D. To mount a file system based on its UUID, use UUID=nnnn in
the /etc/fstab device column.

. B. The best option to verify the content of /etc/fstab is to use the
findmnt --verify command. This command will complain about
errors in lines, regardless of the current mounted state of a
device. The mount -a command can also be helpful, but it only
works on devices that are not currently mounted.

. B. Although convenient, having an [Install] section is only
required if you want to enable the mount unit file.

Chapter 15

. B. It is common to create a file system on top of a logical
volume, but this is not a requirement. For instance, a logical
volume can be used as a device that is presented as a disk
device for a virtual machine.

. C. Copy on write is a feature that is offered by modern file
systems, such as Btrfs. It copies the original blocks a file was
using before creating a new file, which allows users to easily
revert to a previous state of the file. Copy on write is not an
LVM feature.

. D. On a GPT disk, LVM partitions must be flagged with the
partition type 8e00.

. C. The lvcreate command is used to create logical volumes. Use
-n <name> to specify the name. The option -l 50%FREE will
assign 50% of available disk space, and vgdata is the volume
group it will be assigned from.

. B and C. The pvdisplay command is used to show extensive
information about physical volumes. The pvs command shows
a summary of essential physical volume properties only.

. C. You can increase the size of an XFS file system, but it cannot
be decreased.

. A. Reducing a volume group doesn’t always involve reducing
the logical volumes it contains as well, which means that you
may be able to reduce the volume group without reducing the
logical volumes, and in that case file system shrinking is not
required.

. D. You can always grow the file system later, using file system–
specific tools.

. A. To write metadata, each Stratis volume requires 527 MiB of
storage.

. C. You need to mount Stratis volumes using the UUID and not
the device name. Also, the option x-
systemd.requires=stratisd.service needs to be included to
ensure that the stratisd.service is loaded before systemd tries to
mount the Stratis volume.

Chapter 16

. A. A tainted kernel is caused by drivers that are not available as
open source drivers. Using these may have an impact on the
stability of the Linux operating system, which is why it is good
to have an option to recognize them easily.

. B. The dmesg utility shows the contents of the kernel ring
buffer. This is the area of memory where the Linux kernel logs
information to, so it gives a clear overview of recent kernel
events. Alternatively, use journalctl -k.

. A. The uname -r command shows the current kernel version.
The uname -v command gives information about the hardware

in your computer, and the procinfo command does not exist.

. C. The /etc/redhat-release version contains information about
the current version of RHEL you are using, including the update
level.

. A. On a systemd-based operating system such as RHEL 9, the
systemd-udevd process takes care of initializing new hardware
devices.

. B. Default rules for hardware initialization are in the directory
/usr/lib/udev/rules.d; custom rules should be stored in
/etc/udev/rules.d.

. C. The modprobe command is the only command that should
be used for managing kernel modules, as it considers kernel
module dependencies as well. Use modprobe to load a kernel
module and modprobe -r to unload it from memory.

. C. The lspci -k command lists devices that are detected on the
PCI bus and supporting kernel modules that have been loaded
for those devices. Alternatively, lspci -v shows more verbose
information about modules that are currently loaded.

. C. The /etc/modprobe.d directory is used for files that create
custom configurations. The files /etc/modules.conf and

modprobe.conf were used for this purpose in the past. On RHEL
9, kernel module parameters are passed through
/usr/lib/modprobe.d if they are used for operating system–
managed permanent parameters.

. C and D. Kernels are not updated, they are installed. You can
use either dnf update kernel or yum install kernel to do so.
There are no additional requirements, which makes answers C
and D false.

Chapter 17

. A. The systemctl enable command creates a want for the
current unit in the target that is listed in the [Install] section in
the service unit file.

. C. Servers typically don’t run a graphical interface and will start
the multi-user. target.

. B. There is no restart.target.

. D. Unit files contain an [Install] section that is used to specify in
which target the unit should be started.

. A. The required statement is AllowIsolate. All other statements
mentioned here are invalid.

. A. To switch from a target with more unit files to a target with
fewer unit files, use systemctl isolate.

. B. The multi-user.target corresponds roughly to runlevel 3 as
used in a System V environment.

. D. Changes to GRUB 2 need to be applied to /etc/default/grub,
not to /boot/grub2/grub.cfg. The /boot/grub2/grub.cfg file cannot
be edited directly; you have to apply changes to
/etc/default/grub and run the grub2-mkconfig command to
write them to the appropriate configuration file.

. B. The grub2-mkconfig command enables you to regenerate
the GRUB 2 configuration. The result, by default, is echoed to
the screen. Use redirection to write it to a file.

. B. The /boot/efi/EFI/redhat/grub.cfg file is used to store the
GRUB 2 bootloader on a UEFI system.

Chapter 18

. C. During the boot procedure, the GRUB 2 boot loader gets
loaded first. From here, the kernel with the associated initramfs
is loaded. Once that has completed, systemd can be loaded.

. B. The Ctrl-X key sequence leaves the GRUB 2 shell and
continues booting.

. B. The /etc/dracut.conf file is used for managing the initramfs
file system.

. A and B. The init=/bin/bash GRUB 2 boot option allows you to
open a root shell without having to enter a password.
init=/bin/sh will do the same.

. A and C. The rhgb and quiet boot options make it impossible to
see what is happening while booting.

. B. The emergency.target systemd target gives just a root shell
and not much more than that. All other options that are
mentioned also include the loading of several systemd unit files.

. C. If you do not get to a GRUB 2 boot prompt, you cannot select
an alternate startup mechanism. This situation requires you to
use a rescue disk so that GRUB can be reinstalled. If the kernel
or initramfs cannot load successfully, you might need to use a
rescue disk also, but in many cases an alternate kernel is
provided by default.

. C. The mount -o remount,rw / option remounts the / file system
in read/write mode.

. A. Because the error occurs before the GRUB 2 menu is loaded,
the only option to fix this is to use a rescue disk.

. C. When you enter the Linux system with the init=/bin/bash
kernel boot option, you don’t have systemd. As answers A and B
need systemd, they won’t work. Also, the exit command won’t
work, as it will close the current shell and leave you with no
working environment. The only option that does work is exec
/usr/lib/systemd/system, which replaces the current bash shell
with systemd.

Chapter 19

. B. The first line of a Bash shell script contains the shebang,
which defines the subshell that should be used for executing the
script code.

. A. The exit 0 statement at the end of a script is an optional one
to inform the parent shell that the script code was executed
successfully.

. C. The read statement stops a script, which allows a user to
provide input. If read is used with a variable name as its
argument, the user input is stored in this variable.

. D. The first argument is referred to as $1. To store $1 in a
variable with the name, use the command NAME=$1. Make
sure that no spaces are included, which is why answer A is
incorrect.

. D. Both $@ and $* can be used to refer to all arguments that
were provided when starting a script, but $@ is the preferred
method because it enables the script to distinguish between the
different individual arguments, whereas $* refers to all the
provided arguments as one entity.

. D. A conditional loop that is started with if is closed with fi.

. C. If within an if loop a new conditional check is opened, this
conditional check is started with elif.

. B. After the condition is started in a for loop, do is used to start
the commands that need to be started when the condition is
true.

. D. The mail command needs its subject specified with the -s
option. The mail command normally waits until a dot is
entered on an empty line to start sending the message. This dot
can be fed to the mail command using STDIN redirection, using
<.

. A. In a case statement, the different options are proposed with
a) behind them. *) refers to all other options (not specified in
the script).

Chapter 20

. A. X11 forwarding applies to sessions that have already been
authorized. Disabling it does not protect against brute-force
attacks.

. C. The AllowUsers parameter can be used to restrict SSH access
to specific users only.

. D. To change the port on which SSH is listening in SELinux, the
port must be allowed as well. To do so, use semanage port. The
context type needs to be set to ssh_port_t.

. B. The MaxAuthTries setting starts logging failed login attempts
after half the number of attempts specified here.

. D. Login-related settings are logged to /var/log/secure.

. C. SSH is trying to do a reverse lookup of the DNS name
belonging to a target IP address. If faulty DNS configuration is
used, this will take a long time.

. D. The UseDNS option has nothing to do with SSH session
keepalive.

. A. SSH client settings that apply to a specific user only can be
stored in ~/.ssh/config.

. C. The ssh-agent command adds an SSH credentials cache to a
shell. Next, you need to run ssh-add to add a specific key to the
cache.

. A. By default, an SSH server can support ten sessions only.

Chapter 21

. A. The httpd package contains the core components of the
Apache web server. It can be installed using yum install httpd.

. A. The default Apache configuration file is
/etc/httpd/conf/httpd.conf.

. C. The DocumentRoot parameter specifies where the Apache
web server will look for its contents.

. A. The ServerRoot parameter defines where Apache will look
for its configuration files. All file references in the httpd.conf
configuration file are relative to this directory.

. B. The /etc/httpd/conf directory contains the main Apache
configuration file httpd.conf.

. D. The /etc/httpd/conf.modules.d directory contains
configuration files that are used by specific Apache modules.

. C. The /etc/httpd/conf.d directory is used by RPMs that can drop
files in that directory without changing the contents of the main
Apache configuration file.

. A. The name-based virtual host is used as the default virtual
host type. It allows multiple virtual hosts to be hosted on the
same IP address.

. A. The VirtualHost parameter is used to open a virtual host
definition. * refers to all IP addresses, and :80 defines the port it
should listen on.

. C. No additional packages need to be installed to enable virtual
hosts. Virtual hosts are supported through the default httpd
RPM package.

Chapter 22

. B. In older versions of Red Hat, the file /etc/sysconfig/selinux
could be modified to contain the setting selinux=disabled. In

RHEL 9 you can start a system in disabled mode only by using
the GRUB boot argument selinux=0.

. A and D. The getenforce command is used to request the
current SELinux mode. The sestatus command can be used
also. It shows the current mode, and some additional security-
related information as well.

. A. For basic SELinux configuration, you need to make sure that
the appropriate context type is set. User and role are for
advanced use only.

. C. The -Z option displays SELinux-related information and can
be used with many commands.

. D. This is the only command that provides correct usage
information about semanage. Remember that chcon should be
avoided at all times.

. B. When you’re moving a file, the original file context is moved
with the file. To ensure that the file has the context that is
appropriate for the new file location, you should use
restorecon on it.

. C. If a port has already been labeled, use semanage port -m to
modify it.

. B. To change Booleans, use setsebool; to make the change
persistent, use -P.

. A. SELinux messages are logged by auditd, which writes the log
messages to /var/log/audit/audit.log. Only if sealert is installed
are messages written to /var/log/messages as well, but that does
not happen by default.

. D. SELinux log messages in audit log always contain the text
avc, which stands for access vector cache.

Chapter 23

. A. On a default configuration, there is no untrusted zone in
firewalld.

. C. Netfilter is the name of the firewall implementation in the
Linux kernel. Different toolsets exist to manage netfilter
firewalls. Iptables has been the default management interface
for a long time, and in Red Hat Enterprise Linux 7, firewalld
was added as an alternative solution to manage firewalls.

. D. Iptables is a legacy service and has been replaced with the
nftables utility. Firewalld is used to provide an easy-to-use
management interface for nftables.

. C. The firewall-cmd --get-services command shows all services
that are available in firewalld.

. C. The name of the GUI tool that can be used to manage firewall
configurations is firewall-config.

. B. Answer B shows the correct syntax.

. A. The trusted zone is provided for interfaces that need
minimal protection.

. D. Configuration that is added with the --permanent option is
not activated immediately and needs either a restart of the
firewalld service or the command firewall-cmd --reload.

. B. The --list-all command without further options shows all
configurations for all zones.

. D. The --runtime-to-permanent option writes all current
configuration to the permanent configuration. Although answer
B would also work, answer D is preferred as it doesn’t require
you to restart the firewalld service.

Chapter 24

. B. The showmount command can be used to get information
about mounts. Use showmount -e to get a list of all mounts that

have been exported.

. A. NFSv4 does not offer straight integration with Active
Directory. Similar functionality is provided by the option to use
Kerberized security.

. C. The nfs-utils package contains all that is needed to mount
NFS shares.

. D. showmount is using the NFS portmapper, which is using
random UDP ports to make the connection. Portmapper traffic
is not automatically allowed when the nfs service is added to
the firewall because RPC ports that are needed by showmount
are blocked by the firewall. Ensure that the rpc-bind and
mountd services are added to the firewall to enable the
showmount command to work as it should.

. C. The Systemd nfs-server.service file is used to offer NFS
services.

. B. On older RHEL versions, the _netdev mount option needed to
be specified in /etc/fstab to indicate that the network service is
required before starting the NFS service. Because of improved
dependency handling in systemd, on current RHEL no
additional mount options are required.

. D. You do not have to set permissions on the local file system for
automount to be effective.

. B. Each automounted directory should have a configuration file
that has a name that matches the name of the automounted
directory. For /myfiles, that would be /etc/auto.myfiles.

. C. The first element is *, which refers to all directories that may
be accessed in the local directory. The & matches this directory
on the NFS share. The -rw option is used to specify NFS mount
options.

. A. Automount uses the autofs service.

Chapter 25

. C. When booting, a server reads the hardware clock and sets
the local time according to hardware time.

. D. Hardware time on Linux servers typically is set to UTC, but
local administrators may choose to make an exception to that
general habit.

. D. The timedatectl command, introduced as a new solution in
RHEL 7, allows you to manage many aspects of time.

. C. Atomic clocks can be used as a very accurate alternative to
the normal hardware clock.

. D. The /etc/chrony.conf file contains the default list of NTP
servers that should be contacted on RHEL 9.

. C. The -s option is used to set the current time, and to do so,
military time format is the default.

. A. To translate epoch time into human time, you need to put @
in front of the epoch time string.

. A. Use hwclock --hctosys to synchronize system time with
hardware time.

. D. When used without arguments, timedatectl gives a complete
overview of current time settings on your server.

. B. The chronyc sources command will show all current
synchronization sources, as well as the stratum that was
obtained from these sources.

Chapter 26

. B. Containers are implemented on top of Linux features like
cgroups for resource allocation and limitation, namespaces for
isolation, and SELinux for enhanced security.

. B. Red Hat OpenShift provides a container orchestration
platform that is based on Kubernetes.

. D. From a running container, use Ctrl-P, Ctrl-Q to detach without
exiting the primary container application.

. B. When you’re running a container, it runs in the foreground
by default. To run it in detached mode, use podman run -d,
which starts it in the background.

. C. To inspect images that have not yet been pulled, you can use
skopeo inspect. This command does not give as much result as
podman inspect or buildah inspect after the image has been
pulled.

. A. The podman info command gives information about the
complete podman working environment. It includes a list of
registries currently in use.

. D. If environment variables are required for starting a
container, the environment variables to be used are well
documented within the image, as well as in the documentation
on the container registry. Alternatively, you may just run the
container and read the container logs after it has failed.

. B. The container_file_t SELinux context type must be set on the
host directory that you want to bind-mount to make it available
as storage inside the container.

. C. To perform the bind mount, you must use the -v option with
podman run. To automatically set correct SELinux context, you
must use the :Z option right after the name of the directory
within the container. Also, you must make sure that the user
who runs this command is the owner of the directory on the
host operating system.

. B. After you enable a container with systemctl --user enable,
the container service will be started when the user logs in. To
have the container start when the system starts, enable the
linger feature by using loginctl enable-linger.

Answers to the Review Questions

Chapter 1

. You have different options. The recommended option is to use a
free version of RHEL, as provided through
developers.redhat.com. Alternatively, you can use Rocky Linux
or AlmaLinux.

http://developers.redhat.com/

. The network card might not be enabled. This is dependent on
the environment that you’re using. If the network card is
enabled, you’ll automatically obtain configuration from a DHCP
server.

. You need 1 GB of RAM to install a minimal system.

. By default, updates and installation of additional software
packages require Internet connectivity.

. Use an ISO image to install a virtual machine on the computer.

. It is easier to open two terminal windows side by side.

. XFS is the default file system on RHEL 9.

. You can install RHEL if you do not have Internet access. But you
cannot register with RHN, so you will not have access to
repositories after the installation has finished and you’ll need to
set up repository access manually.

. Registering your RHEL 9 installation gives access to the RHEL
repositories, so that software packages can be installed and
updated.

. Use the Minimal Install pattern if you have a very limited
amount of disk space available.

Chapter 2

. A variable is a placeholder that contains a specific value and
that can be used in scripts to work with dynamic contents.

. man -k enables you to find the correct man page based on
keyword usage.

. Change /etc/bashrc to ensure a variable is set for every shell
that is started.

. Use pinfo to read the information.

. Bash stores its history in ~/.bash_history.

. mandb updates the database that contains man keywords.

. Use + to undo the last modification you have applied in vim.

. Add 2> /dev/null to a command to ensure that it doesn’t show
an error message.

. Use echo $PATH to read the current contents of the $PATH
variable.

. Press Ctrl-R and type dog.

Chapter 3

. /etc contains configuration files.

. ls -alt displays a list of current directory contents, with the
newest files listed first. (-a also shows files that have a name
that starts with a dot.)

. mv myfile yourfile renames myfile to yourfile.

. rm -rf /directory wipes an entire directory structure, including
all of its contents.

. ln -s /tmp ~ creates in your home directory a link to /tmp.

. cp /etc/[abc]* . copies all files that have a name that starts with
a, b, or c from the directory /etc to your current directory.

. ln -s /etc ~ creates in your home directory a link to /etc.

. Use rm symlink to safely remove a symbolic link to a directory.
If rm is aliased to rm -i and you do not want to answer yes for
every individual file, use \rm instead.

. tar zcvf /tmp/etchome.tgz /etc /home creates a compressed
archive of /etc and /home and writes it to /tmp/etchome.tgz.

. tar xvf /tmp/etchome.tgz /etc/passwd extracts /etc/passwd
from /tmp/etchome.tgz.

Chapter 4

. ps aux | less shows the results of ps aux in a way that is easily
browsable.

. tail -n 5 ~/samplefile shows the last five lines from
~/samplefile.

. wc ~/samplefile. You might use -w to show only the number of
words.

. Press Ctrl-C to stop showing output.

. grep -v -e '^#' -e '^;' filename excludes all lines that start with
either a # or a ;.

. Use + to match one or more of the preceding characters.

. grep -i text file finds both text and TEXT in a file.

. grep -B 5 '^PATH' filename shows all lines starting with PATH
as well as the preceding five lines.

. sed -n 9p ~/samplefile shows line 9 from ~/samplefile.

. sed -i 's/user/users/g' ~/samplefile replaces the word user with
the word users in ~/samplefile.

Chapter 5

. Typically, the console is the main screen on a Linux server.

. Press Ctrl-Alt-F2 to switch back from a text-based login prompt
to current work on the GUI.

. w or who shows all users who currently have a terminal
session open to a Linux server.

. /dev/pts/0 is the device name that is used by the first SSH
session that is opened to a server where no GUI is operational.

. ssh -v shows detailed information on what SSH is doing while
logging in.

. ssh -X initiates an SSH session with support for graphical
applications.

. ~/.ssh/config needs to be edited to modify SSH client settings.

. scp /etc/hosts lisa@server2:/tmp copies the /etc/hosts file to
the directory /tmp on server2 using the username lisa.

. ~/.ssh/authorized_keys stores public keys for remote users who
want to log in using key-based authentication.

. ssh-keygen generates an SSH public/private key pair.

Chapter 6

. timestamp_timeout, which can be set in the Default
configuration in /etc/sudoers.

. sudo is defined in /etc/sudoers.

. Use visudo to modify a sudo configuration. Or even better, use
an editor to create sudo configuration files in /etc/sudoers.d/

. Use pkexec visudo to run the visudo command with sudo
privileges.

. Just one additional group membership is defined in /etc/group.

. Making a user a member of the wheel group grants the user
access to all admin commands through sudo.

. Use vigr to modify the /etc/group file manually.

. passwd and chage can be used to change user password
information.

. /etc/shadow stores user passwords.

. /etc/group stores group accounts.

Chapter 7

. chown :groupname filename or chown .groupname filename
sets the group owner to a file.

. find / -user username finds all files owned by a specific user.

. chmod -R 770 /data applies read, write, and execute
permissions to all files in /data for the user and group owners
while setting no permissions for others.

. In relative permission mode, use chmod +x file to add the
execute permission to a file that you want to make executable.

. Using chmod g+s /directory ensures that group ownership of
all new files created in a directory is set to the group owner of
that directory.

. chmod +t /directory ensures that users can only delete files of
which they are the owner or files that are in a directory of
which they are the owner.

. The umask 027 should be used. The 7 in the third position
indicates that no default permissions should be granted to
“others.”

. You need to use the append only (a) extended attribute. Use
chattr +a <filename> to set it.

. Use find / -perm +4000. The -perm argument to find searches
for permissions, and the permission mode you’re looking for is
4 at the first position. By using a + and specifying the other
permissions as a 0, you indicate that any other permissions may
be allowed as well.

. Attributes are not shown by the ls command. Use lsattr
instead.

Chapter 8

. 213.214.215.96 is the network address in 213.214.215.99/29.

. ip link show shows link status and not the IP address.

. The /etc/resolv.conf file is written automatically by
NetworkManager. After restarting NetworkManager it will be
rewritten, and locally applied changes will have disappeared.

. /etc/hostname contains the hostname in RHEL 9.

. hostnamectl set-hostname enables you to set the hostname
easily.

. NetworkManager stores the connections it creates in
/etc/NetworkManager/

. Change /etc/hosts to enable hostname resolution for a specific IP
address.

. Non-admin users can change NetworkManager settings
according to the permissions that are set. Use nmcli general
permissions for an overview of current permissions.

. systemctl status NetworkManager verifies the service’s
current status.

. nmcli con mod "static" ipv4.addresses "10.0.0.20/24"
10.0.0.100 changes the current IP address and default gateway
on your network connection.

Chapter 9

. createrepo enables you to make a directory containing a
collection of RPM packages a repository.

. The line [some-label] name=some-name
baseurl=http://server.example.com/repo needs to be in the
repository file.

. dnf repolist verifies that a repository is available.

. dnf provides */useradd enables you to search the RPM
package containing the file useradd.

. Using dnf group list followed by dnf group info "Security
Tools" shows the name and contents of the dnf group that
contains security tools.

. dnf module enable php:5.1 ensures that all PHP-related
packages are going to be installed using the older version 5.1,
without actually installing anything yet.

. rpm -pq --scripts packagename enables you to ensure that a
downloaded RPM package does not contain dangerous script
code.

. rpm -qd packagename shows all documentation in an RPM
package.

. rpm -qf /path/to/file shows which RPM package a file comes
from.

. repoquery enables you to query software from the repository.

Chapter 10

. jobs gives an overview of all current shell jobs.

. Press Ctrl-Z and type bg to stop the current shell job to continue
running it in the background.

. Press Ctrl-C to cancel the current shell job.

. Use process management tools such as ps and kill to cancel the
job.

. ps fax shows parent–child relationships between processes.

. Use renice -nn -p PID, where nn is a value between –1 and –20.
Notice that you need to be root in order to increase process
priority.

. killall dd stops all running processes.

. pkill mycommand stops mycommand.

. k is used to kill a process.

. The tuned service must be running to select a performance
profile.

Chapter 11

. A unit is a thing that is started by systemd. There are different
types of units, such as services, mounts, sockets, and many

more.

. Use systemctl list-units to show all service units that are
currently loaded.

. Creating a want for a service means that you’ll mark it to be
automatically started as system boot. You create a want for a
service by using the systemctl enable command.

. Set the SYSTEMD_EDITOR variable in /etc/profile to change the
default editor for systemctl.

. /etc/systemd/system/ contains custom systemd unit files.

. Include Requires to ensure that a unit file will automatically
load another unit file.

. systemctl show httpd shows available configuration options
for the httpd. service unit.

. systemctl list-dependencies --reverse shows all dependencies
for a specific unit.

. systemctl status output indicating that a unit is dead is nothing
serious; it simply means the service is currently not running.

. Using systemctl edit on the unit that you want to modify
creates a systemd override file.

Chapter 12

. A cron job that needs to be executed once every two weeks is
configured as a specific cron file in /etc/cron.d, or tied to a user
account using crontab -e -u username.

. Use a systemd timer that has the OnBoot option to specify how
much time after system boot the corresponding service should
be started.

. If a service should be started by a timer, you have to enable the
timer and not the service. Ensure this is what you’ve done.

. Create a systemd timer that uses the OnUnitActive option to
specify how much time after activation of a service it should be
started again.

. To match a timer to a service, you need to ensure they are using
the same name. So to activate my.service, you need to create
my.timer.

. crontab -e -u lisa enables you to schedule a cron job for user
lisa.

. Create the file /etc/cron.deny and make sure that it includes
username boris.

. Specify the job in /etc/anacrontab and make sure that the
anacron service is operational.

. The atd service must be running to schedule at jobs; use
systemctl status atd to verify.

. Use atq to find out whether any current at jobs are scheduled
for execution.

Chapter 13

. /etc/rsyslog.conf is used to configure rsyslogd.

. /var/log/secure contains messages related to authentication.

. Log files are rotated away by default after five weeks (one week
for the current file, and four weeks for old files).

. logger -p user.notice "some text" logs a message from the
command line to the user facility, using the notice priority.

. Create a file in /etc/rsyslog.d. The name does not really matter.
Give it the following contents: *.=info /var/log/messages.info.

. You can configure the journal to grow beyond its default size
restrictions in /etc/systemd/journald.conf.

. journalctl -xb shows boot messages, including some
explanation that makes interpreting them easier.

. journalctl _PID=1 --since 9:00:00 --until 15:00:00 shows all
journald that have been written for PID 1 between 9:00 a.m.
and 3:00 p.m.

. Use journalctl -u sshd to see all messages that have been
logged for the sshd service. Notice that you can see the last
messages that have been logged for this service conveniently by
using systemctl status sshd.

. Making the systemd journal persistent requires the following
four commands, in order: mkdir /var/log/journal; chown
root:systemd-journal /var/log/journal; chmod 2755
/var/log/journal; killall -USR1 systemd-journald.

Chapter 14

. Any tool. GPT can be managed using fdisk, gdisk, or parted.

. fdisk or parted is used to create MBR partitions.

. XFS is the default file system on RHEL 9.

. /etc/fstab is used to automatically mount partitions while
booting.

. The noauto mount option is used to specify that a file system
should not be mounted automatically while booting.

. mkswap enables you to format a partition that has type 82 with
the appropriate file system.

. mount -a enables you to test, without actually rebooting,
whether automatic mounting of the partitions while booting is
going to work. Alternatively, use findmnt --verify.

. Ext2 is created if you use the mkfs command without
specifying a file system.

. Use either mkfs.ext4 or mkfs -t ext4 to format an Ext4
partition.

. Use blkid to find UUIDs for all devices on your computer.

Chapter 15

. The 8e00 partition type is used on a GUID partition that needs
to be used in LVM.

. vgcreate vggroup -s 4MiB /dev/sdb3 creates the specified
volume group.

. pvs shows a short summary of the physical volumes on your
system as well as the volume group to which they belong.

. Just type vgextend vggroup /dev/sdd. You do not have to do
anything on the disk device itself.

. Use lvcreate -L 6M -n lvvol1 vgname. Notice that this works
only if you have created the volume group with a 2-MiB
physical extent size.

. lvextend -L +100M /dev/vgname/lvvol1 adds 100 MB to the
logical volume lvvol1.

. First use pvmove to move used extents to the remaining PVs,
next use vgreduce to remove the PV from the VG.

. Add the line UUID=xxx /stratis1 xfs defaults,x-
systemd.requires=stratisd. service 0 0 to /etc/fstab to mount the
Stratis volume.

. stratis pool create mypool /dev/sdd creates a Stratis pool that
is based on the block device /dev/sdd.

. You can’t. Stratis comes with XFS by default and this cannot be
changed.

Chapter 16

. uname -r shows the current version of the kernel on a
computer.

. Current version information about your RHEL installation is
found in /etc/redhat-release.

. lsmod shows a list of currently loaded kernel modules.

. modinfo modulename displays kernel module parameters.

. modprobe -r unloads a kernel module.

. Use lsmod to find out which other kernel modules currently
need this kernel module and unload these kernel modules first.
Note that this will not always work, especially if the considered
hardware currently is in use.

. Use modinfo to find which kernel module parameters are
supported.

. Create a file in /etc/modprobe.d and include the parameters
using an options statement.

. Include options cdrom debug=1 in the file that will
automatically load the cdrom module.

. yum upgrade kernel installs a new version of the kernel.

Chapter 17

. A unit is a thing that is started by systemd. There are different
types of units, such as services, mounts, sockets, and many
more.

. Use systemctl mask to make sure that a target is no longer
eligible for automatic start on system boot.

. Modify /etc/default/grub to apply common changes to GRUB 2.

. systemctl --type=service shows all service units that are
currently loaded.

. Create a want for a service by using systemctl enable on that
service.

. systemctl isolate rescue.target switches the current
operational target to the rescue target.

. There are two types of targets: targets that can run
independently and targets that cannot. Check the target unit file

to find out more about this and ensure the target is isolatable
(which means it can run independently).

. systemctl list-dependencies --reverse shows which other
units have dependencies to a systemd service.

. Apply changes to GRUB 2 in /etc/default/grub.

. Run grub2-mkconfig > /boot/grub2/grub.cfg after applying
changes to the GRUB 2 configuration.

Chapter 18

. Press e to enter the GRUB boot menu editor mode.

. An error in /etc/fstab prevents the fsck command on that file
system from finishing successfully.

. Pass init=/bin/bash to the Grub line that loads the kernel to
start the procedure to reset the root password.

. Start from a rescue system.

. systemctl list-units shows which units are available in a
specific troubleshooting environment.

. Use exec /usr/lib/systemd/system to replace the bin/bash
process with systemd.

. touch /.autorelabel ensures that while rebooting, the SELinux
context labels on all files are restored.

. Use mount -o remount,rw / to make the root file system
writable again.

. grub2-mkconfig -o /boot/grub2/grub.cfg saves changes applied
to the GRUB 2 boot loader.

. systemd.unit=emergency.target enters the most minimal
troubleshooting mode.

Chapter 19

. The script will be interpreted by the same shell as the parent
shell.

. test -z $VAR or [-z $VAR] can be used to check whether a
variable VAR has no value.

. Use $# to count the number of arguments that have been used.

. Use $@ to refer to all arguments that have been used when
starting the script.

. Use read SOMEVAR to process user input in a script.

. [-f filename] || echo file does not exist determines whether
the file exists and, if not, executes the specified command.

. [-e filename] can be used to determine whether an item is a
file or a directory.

. A for statement is typically used to evaluate a range of items.

. You do not; it is a part of the if statement that is closed with fi.

. Using ;; after the last command closes the specific item.

Chapter 20

. Use ssh-agent and ssh-add to cache the passphrase that is set
on your private key.

. Use AllowUsers lisa to disallow root login and allow only user
lisa to log in to your server.

. Specify the Port line twice to configure your SSH server to
listen on two different ports.

. The main SSH configuration file is /etc/ssh/sshd_config.

. The passphrase will be stored in a protected area in memory.

. /etc/ssh/ssh_config contains SSH client settings for all users.

. The MaxSessions parameter that manages this feature is
already set to 10 as a default, so you don’t need to change
anything.

. semanage port -a -t ssh_port_t -p tcp 2022 configures SELinux
to allow SSH to bind to port 2022.

. firewall-cmd –add-port 2022/tcp --permanent; firewall-cmd --
reload configure the firewall on the SSH server to allow
incoming connections to port 2022.

. Try UseDNS. This option, which is active by default, uses DNS
to get the name of the target host for verification purposes.

Chapter 21

. The Basic Web Server group contains useful Apache packages.

. systemctl enable --now httpd starts the httpd service
automatically when booting.

. /etc/httpd/conf.d is the default location where RPMs can drop
plug-in configuration files that should be considered by the
Apache server.

. curl enables you to test a web server from a server that does
not offer a graphical interface.

. /etc/httpd/conf/httpd.conf is the default Apache configuration
file.

. /var/www/html is used as the default Apache document root.

. The Apache process looks for index.html.

. Use either systemctl status httpd or ps aux| grep http to
check whether the Apache web server is currently running.

. /etc/httpd/conf.d is the preferred location for storing virtual
host configuration files.

. The ServerRoot is set by default to /etc/httpd.

Chapter 22

. setenforce 0 puts SELinux in permissive mode temporarily.

. getenforce -a or semanage boolean -l provides a list of all
available Booleans.

. Install the RPM package that contains the man pages: dnf
install selinux-policy-doc.

. Install setroubleshoot-server to get easy-to-read SELinux log
messages in the audit log.

. Use semanage fcontext -a -t httpd_sys_content_t "/web(/.*)?"
followed by restorecon to apply the httpd_sys_content_t
context type to the directory /web.

. Never!

. Add the argument selinux=0 to the line that configures the
kernel in /etc/default/grub, and next use grub2-mkconfig -o
/boot/grub2/grub.cfg to write the new boot loader
configuration.

. SELinux logs all of its messages in /var/log/audit/audit.log.

. man -k _selinux | grep ftp shows which SELinux-related man
pages are available for the FTP service, including ftpd_selinux.
Read it for more information.

. Use setenforce 0 to temporarily switch SELinux to permissive
mode and try again.

Chapter 23

. firewalld should be running before you try to create a firewall
configuration with firewall-config.

. firewall-cmd --add-port=2345/udp adds UDP port 2345 to the
firewall in the default zone.

. firewall-cmd --list-all-zones lists all firewall configurations in
all zones.

. firewall-cmd --remove-service=vnc-server removes the vnc-
server service from the current firewall configuration.

. --reload activates a new configuration added with the --
permanent option.

. --list-all enables you to verify that a new configuration has
been added to the current zone and is now active.

. firewall-cmd --add-interface=eno1 --zone=public adds the
interface eno1 to the public zone.

. The new interface will be added to the default zone.

. firewall-cmd --permanent --add-source=192.168.0.0/24 adds
the source IP address 192.168.0.0/24 to the default zone.

. firewall-cmd --get-services lists all services that are currently
available in firewalld.

Chapter 24

. The showmount command needs the mountd and rpc-bind
services to be opened in the firewall as well.

. showmount -e server1 shows available NFS mounts on
server1. Note that the showmount command does not get
through a firewall.

. mount [-t nfs] server1:/share /somewhere mounts an NFS
share that is available on server1:/share.

. Use an NFS root mount: mount nfsserver:/ /mnt.

. No additional options are needed, because of improved
dependency handling in RHEL 9.

. Include sync in /etc/fstab to ensure that changes to the mounted
file system are written to the NFS server immediately.

. Systemd automount cannot be used for wildcard mounts.

. auto.master is the main automount configuration file.

. autofs implements automount.

. None. You’ll have to open ports on the server, not on the client.

Chapter 25

. date -s 16:24 sets the system time to 4:24 p.m.

. hwclock --systohc sets the hardware time to the current system
time.

. date -d '@nnnnnnn' shows epoch time as human-readable
time.

. hwclock --hctosys synchronizes the system clock with the
hardware time.

. chronyd is used to manage NTP time on RHEL 9.

. timedatectl set-ntp 1 enables you to use NTP time on your
server.

. /etc/chrony.conf contains the list of NTP servers to be used.

. Either timedatectl list-timezones or tzselect can be used to
list time zones.

. timedatectl set-timezone ZONE is used to set the current time
zone.

. timedatectl set-time TIME is used to set the system time.

Chapter 26

. RHEL 9 includes skopeo to work with container images.

. Namespaces, cgroups, and SELinux are needed in container
environments.

. CRI-o is the container engine on RHEL 9.

. The /etc/containers/registries.conf file defines the registries that
are currently used.

. In a container image, a default command is specified. When
you start a container, the default command is executed. After
executing the default command, the container stops. In generic
system images like Ubuntu and Fedora, the default command is
set to /bin/bash, so if you don’t specify anything else, the
container will immediately stop.

. Find the UID used by the container, and use podman unshare
to make that UID the owner of the directory you want to
provide access to.

. Use podman inspect on the image and look for the Cmd.

. Use the podman run ubuntu cat /etc/os-release command.

. You need to run it as a root container by using sudo podman
run -d -p82:80 nginx. Next, you need to open the firewall by

using sudo firewall-cmd --add-port 82/tcp --permanent; sudo
firewall-cmd --reload.

. Use the podman generate systemd --name nginx --files
command.

Appendix B

Red Hat RHCSA 9 Cert Guide: EX200 Exam
Updates

Over time, reader feedback allows Pearson to gauge which
topics give our readers the most problems when taking the
exams. To assist readers with those topics, the authors create
new materials clarifying and expanding on those troublesome
exam topics. As mentioned in the Introduction, the additional
content about the exam is contained in a PDF on this book’s
companion website, at
https://www.pearsonITcertification.com/title/9780138096274.

This appendix is intended to provide you with updated
information if Red Hat, Inc. makes minor modifications to the
exam upon which this book is based. When Red Hat, Inc.
releases an entirely new exam, the changes are usually too
extensive to provide in a simple update appendix. In those
cases, you might need to consult the new edition of the book for
the updated content. This appendix attempts to fill the void that
occurs with any print book. In particular, this appendix does the
following:

https://www.pearsonitcertification.com/title/9780138096274

Mentions technical items that might not have been
mentioned elsewhere in the book
Covers new topics if Red Hat, Inc. adds new content to the
exam over time
Provides a way to get up-to-the-minute current information
about content for the exam

Always Get the Latest at the Book’s Product Page

You are reading the version of this appendix that was available
when your book was printed. However, given that the main
purpose of this appendix is to be a living, changing document, it
is important that you look for the latest version online at the
book’s companion website. To do so, follow these steps:

1. Browse to
www.pearsonITcertification.com/title/9780138096274.

2. Click the Updates tab.

3. If there is a new Appendix B document on the page, download
the latest Appendix B document.

Note

http://www.pearsonitcertification.com/title/9780138096274

The downloaded document has a version number.
Comparing the version of the print Appendix B
(Version 1.0) with the latest online version of this
appendix, you should do the following:

Same version: Ignore the PDF that you
downloaded from the companion website.

Website has a later version: Ignore this
Appendix B in your book and read only the
latest version that you downloaded from the
companion website.

Technical Content

The current Version 1.0 of this appendix does not contain
additional technical coverage.

Glossary

$PATH A variable that contains a list of directories that are
searched for executable files when a user enters a command.

. The current directory. Its value can be requested using the
pwd command.

A

absolute filename A filename that is complete and starts with
the name of the root directory, including all directories up to
the current file or directory.

access control list (ACL) In Linux permissions, a system that
makes it possible to grant permissions to more than one user
and more than one group. Access control lists also allow
administrators to set default permissions for specific
directories.

Alma Linux Free open source alternative for Red Hat
Enterprise Linux, which consists of the RHEL source code with
all licensing removed.

anacron A service that ensures that vital cron jobs can be
executed when the server is down at the moment that the job

normally should be executed. Can be considered an extension
to cron.

AND A logical construction that can be used in scripts. In an
AND construction, the second command is executed only after
successful execution of the first command.

application profile A collection of packages that may be used
to install a specific version of software, according to a specific
installation profile.

application stream A specific version of a dnf module that can
be installed as such.

archiving A system that ensures that data can be properly
backed up.

at A service that can be used to schedule future jobs for one-
time execution.

attribute A property that can be set to a file or directory and
that will be enforced no matter which user with access
permission accesses the file. For instance, a file that has the
immutable (i) attribute set cannot be deleted, not even by the
root user. However, the root user does have the capability to

change the attribute, which would allow the root user to delete
the file anyway.

audit log The main log file in /var/log/audit/audit.log, which by
default contains all messages that are logged by the auditd
service.

auditd A service that runs by default on Red Hat Enterprise
Linux and can be configured to log very detailed information
about what is happening on RHEL. Auditing is complementary
to system logging and can be used for compliancy reasons. On
RHEL, the auditing system takes care of logging SELinux-related
messages, which makes it a relatively important system.

autofs A service that takes care of automatically mounting file
systems at the moment that a specific directory is accessed. This
service is very useful to ensure the automatic mounting of
home directories for users in a centralized user management
system, as can be implemented by the LDAP service.

automount The process that is started by the autofs service. See
autofs for more details.

B

background process A process that is running on a system
without actively occupying a console. Processes can be started
in the background by adding a & after the command that starts
the process. See also foreground process.

backup A copy of important data, which can be restored if at
any point in time the original data gets lost.

Bash The default shell that is used on Red Hat Enterprise Linux.

Basic Input/Output System (BIOS) The first software that is
started when a computer starts on older IBM-compatible
computers. Settings in the BIOS can be changed by using the
BIOS setup program. See also Unified Extensible Firmware
Interface (UEFI).

binary A numbering scheme that is based on bit values that can
be on or off. Binary numbers are 0 and 1. Because binary
numbers are difficult to use, decimal, hexadecimal, or octal
numbers often are used.

BIOS See Basic Input/Output System.

boot loader Program that is started as the very first thing while
starting a computer and that takes care of loading the operating
system kernel and initramfs.

BtrFS A general-purpose Linux file system that is expected to
become the default file system on Red Hat Enterprise Linux in a
future release.

bzip2 A compression utility that can be used as an alternative
to gzip.

C

cache In memory management, the area of memory where
recently used files are stored. Cache is an important mechanism
to speed up reads on servers.

capability A specific task that can be performed on Linux. User
root has access to all capabilities; normal users have access to
limited sets of capabilities only.

CentOS A Linux distribution that uses all Red Hat packages but
has removed the Red Hat logo from all these packages to make
it possible to distribute the software for free. CentOS is the best
option for practicing for the RHCSA exam if you do not have
access to RHEL.

certificate In PKI cryptography, contains the public key of the
issuer of the certificate. This public key is signed with the

certificate of a certificate authority, which guarantees its
reliability.

certificate authority (CA) A commonly known organization
that can be used to guarantee the reliability of PKI certificates.
The certificate authority provides a certificate that can be used
to sign public key certificates. Instead of using commonly
known organizations, self-signed certificates can be used for
internal purposes as well.

chrony The service that offers time synchronization services in
Red Hat Enterprise Linux.

chroot An environment where a part of the file system is
presented as if it were the root of the file system. Chroot is used
as a security feature that hides part of the operating system that
is not required by specific services.

CIFS See Common Internet File System.

cloud A computing platform that allows for flexible usage of
hosted computing resources.

Common Internet File System (CIFS) The standardized
version of the Microsoft Server Message Block (SMB) protocol,
which is used to provide access to shared printers, files, and

directories in a way that is compatible with Windows servers
and clients. CIFS has become the de facto standard for file
sharing in IT.

compression A technology that is used to reduce the size of
files by analyzing redundant patterns and storing them more
efficiently.

conditional loop In shell scripting, a set of commands that is
executed only if a specific condition has been met.

connection (in network card configuration) A set of network
configuration parameters that is associated to a network
interface.

connection (in network communication) A session between
two parties that has been initialized and will exist until the
moment that the connection is tiered down.

console In Linux, the primary terminal where a user works. It
is also a specific device with the name /dev/console.

container A ready-to-run application that is started from an
image and includes all application dependencies.

container engine The code that allows containers to run on top
of an operating system.

context In SELinux, a label that is used to define the security
attributes of users, processes, ports, and directories. These
contexts are used in the SELinux policy to define security rules.

context switch When the CPU switches from executing one
task to executing another task.

context type In SELinux, a label that identifies the SELinux
properties of users, ports, and processes.

Coordinated Universal Time (UTC) A time standard that is
globally the same, no matter which specific time zone a user is
in. UTC roughly corresponds to Greenwich Mean Time (GMT).

credentials file A file that can be used to mount CIFS file
systems automatically from the /etc/fstab file. The credentials
file is stored in a secure place, like the home directory of user
root, and contains the username and password that are used to
mount the remote file system.

CRI-o The default container engine on RHEL 9. Pronounced
CRY-o.

cron A service that takes care of starting services repeatedly at
specific times.

cryptography A technique used to protect data, often by
converting information to an unreadable state, where keys are
used to decipher the scrambled data. Cryptography is used not
only to protect files while in transit but also to secure the
authentication procedure.

D

deduplication A storage technology that analyzes data to be
stored on disk and takes out duplicate patterns to allow for
more efficient storage.

default route The route that is used by default to forward IP
packets that have a destination on an external network.

dependency Generally, a situation where one item needs
another item. Dependencies occur on multiple levels in Linux.
In RPM package management, a dependency is a software
package that needs to be present for another package to be
installed. In Systemd, a dependency is a Systemd unit that must
be loaded before another unit can be loaded.

dependency hell Situation where for package installation,
other packages are needed, which by themselves could require
dependencies as well. The problem of dependency hell has been
fixed by the introduction of repository-based systems.

destination In rsyslog, the place where log messages should be
sent by the logging system. Destinations are often files, but can
also be input modules, output modules, users, or hosts.

device A peripheral that is attached to a computer to perform a
specific task.

device file A file that is created in the /dev directory and that is
used to represent and interact with a device.

device mapper A service that is used by the Linux kernel to
communicate with storage devices. Device mapper is used by
LVM, multipath, and other devices, but not by regular hard
disks. Device files that are created by device mapper can be
found in the /dev/mapper directory.

directory A folder in the file system that can be used to store
files in an organized manner.

disabled mode The SELinux mode in which SELinux is
completely deactivated.

distribution A Linux version that comes with its own
installation program or which is ready for usage. Because Linux
is a collection of different tools and other components, the
Linux distribution gathers these tools and other components,
may or may not enhance them, and distributes them so that
users do not have to gather all the different components for
themselves.

dmesg Utility that can be used to read the kernel ring buffer,
which contains log messages that were generated by the Linux
kernel.

dnf The new software manager that replaces the yum utility in
RHEL 9.

Docker A common solution to run containers. Docker was the
default container solution in RHEL 8 but is no longer supported
and was replaced with CRI-o/podman in RHEL 9.

Domain Name System (DNS) The global system used to match
logical server names to IP addresses.

dracut A utility used to generate the initramfs, an essential part
of the Linux operating system that contains drivers and other
vital files required to start a Linux system.

Dynamic Host Configuration Protocol (DHCP) A protocol
used to ensure that hosts can obtain an IP address and related
information automatically.

dynamic route A network route that is managed by an
automatic routing protocol.

E

enforcing mode The SELinux mode where SELinux is fully
operational and applies all restrictions that have been
configured for a specific system.

environment The collection of settings that users or processes
are using to do their work.

epoch time In Linux, the number of seconds that have passed
since epoch (corresponds to midnight on January 1, 1970). Some
utilities write epoch time instead of real clock time.

escaping In a shell environment, using special syntax to ensure
that specific characters are not interpreted by the shell.
Escaping may be necessary to show specific characters
onscreen or to ensure that regular expression metacharacters
are not interpreted by the bash shell first.

exec A system call that replaces the current process with
another one. See also fork.

export In NFS, a directory that is shared on an NFS server to
allow access to other servers.

Ext2, Ext3, and Ext4 Three different versions of the Ext file
system. Up to RHEL 6, Ext4 was the default file system. It is now
considered inadequate for modern storage needs, which is why
Ext4 in RHEL 7 was replaced by XFS as the default file system.

extended partition A solution to create more than four
partitions on an MBR disk. On MBR disks, a maximum of four
partitions can be stored in the partition table. To make it
possible to go beyond that number, one of the four partitions
can be created as an extended partition. Within an extended
partition, logical partitions can be created, which will perform
just like regular partitions, allowing system administrators to
create more partitions.

external command A command that exists as a file on disk.

F

facility In rsyslogd, the source where log information comes
from. A strictly limited number of facilities have been defined

in rsyslogd.

Fedora The free and open source Linux distribution that is
sponsored by Red Hat. In Fedora, new features are provided
and tested. Some of these features will be included in later
releases of Red Hat Enterprise Linux.

FHS See Filesystem Hierarchy Standard.

file descriptor A pointer that is used by a Linux process to
refer to files that are in use by the process.

file system A logical structure that is created on a storage
device. In a Linux file system, inodes are used for file system
administration, and the actual data is written to blocks. See also
inode.

Filesystem Hierarchy Standard (FHS) A standard that defines
which Linux directories should be used for which purpose.
Read man 7 file-hierarchy for a specification of the FHS.

firewall A solution that can be used to filter packets on a
network. Firewalls are used to ensure that only authorized
traffic can reach a system. A firewall can be offered through the
Linux kernel netfilter functionality but often is also offered as
an appliance on the network.

firewalld The modern service (replacing iptables) that is used
since RHEL 7 to implement firewalling based on the Linux
kernel firewalling framework.

folder Also referred to as a directory, a structure in the file
system used to organize files that belong together.

foreground process A process that is running on a system and
occupies the console it is running on. Linux processes that are
started by users can be started in the foreground or in the
background. If a process has been started as a foreground
process, no other processes can be started in the same terminal
until it finishes or is moved to the background. See also
background process.

fork A system call that starts a new process as a child of the
current process. This is the default way commands are
executed. See also exec.

fstab A configuration file that is used on Linux to mount file
systems automatically when the system starts.

fully qualified domain name (FQDN) A complete DNS
hostname that contains the name of the host (like myserver), as
well as the DNS domain it is used in (like example.com).

G

GECOS A field in the /etc/passwd file that can be used to store
personal data about a user on the Linux operating system.
GECOS originally stood for General Electric Comprehensive
Operating Supervisor.

globally unique ID (GUID) An identification number that
consists of parts that ensure that it is globally unique.

GPT See GUID Partition Table.

group A collection of items. In user management, a group is
used to assign permissions to multiple users simultaneously. In
Linux, every user is a member of at least one group.

group owner The group that has been set as the owner of a file
or a directory. On Linux, every file and directory has a user
owner and a group owner. Group ownership is set when files
are created, and unless configured otherwise, it is set to the
primary group of the user who creates the file.

GRUB 2 The boot loader that is installed on most systems that
need to start Linux. GRUB 2 provides a boot prompt from which
different kernel boot options can be entered, which is useful if
you need to troubleshoot the boot procedure.

GUID See globally unique ID.

GUID Partition Table (GPT) A modern solution to store
partitions on a hard disk, as opposed to the older MBR partition
table. In GUID partitions, a total of 128 partitions can be
created, and no difference exists between primary, extended,
and logical partitions anymore.

gzip One of the most common utilities that is used for
compression and decompression of files on Linux.

H

hard link A name associated with an inode. Inodes are used to
store Linux files. An inode contains the complete
administration of the file, including the blocks in which the file
is stored. A file that does not have at least one hard link is
considered a deleted file. To increase file accessibility, more
than one hard link can be created for an inode.

hardware time The time that is provided by computer
hardware, typically the BIOS clock. When a Linux system boots,
it sets the software time based on the hardware time. Because
hardware time often is inaccurate, most Linux systems use the
Network Time Protocol (NTP) to synchronize the system time
with a reliable time source.

hexadecimal A 16-based numbering system that is based on
groups of 4 bytes. Hexadecimal numbers start with the range 0
through 9, followed by A through F. Because hexadecimal is
much more efficient in computer technology, hexadecimal
numbers are often used. In IPv6, IP addresses are written as
hexadecimal numbers.

hypervisor A piece of computer software, firmware, or
hardware that creates and runs virtual machines. In Linux,
KVM is used as the common hypervisor software.

I

image The read-only instance from which a container is
started.

inheritance In permission management, the situation where
new files that are created in a directory inherit the permission
settings from the parent directory.

init The first process that is started once the Linux kernel and
initramfs have been loaded. From the init process, all other
processes are started. As of RHEL 7, the init process has been
replaced by Systemd.

initramfs The initial RAM file system. Contains drivers and
other files that are needed in the first stages of booting a Linux
system. On Red Hat Enterprise Linux, the initramfs is generated
during installation and can be manually re-created using the
dracut utility.

inode A structure that contains the complete administration of
a file. Every Linux file has an inode, and the inode contains all
properties of the file but not the filename.

input module In rsyslog, a module that allows rsyslog to
receive log messages from specific sources.

interface In Linux networking, the set of configuration
parameters that can be activated for a specific device. Several
interface configurations can exist for a device, but only one
interface can be active at a time for a device.

internal command A command that is a part of the shell and
does not exist as a file on disk.

Internet Protocol (IP) The primary communications protocol
that is used by computers for communication. The Internet
Protocol exists in two versions (IPv4 and IPv6). Apart from node
addressing, it defines routing, which enables nodes to contact
one another.

IP See Internet Protocol.

iptables An older solution to create firewall rules on the Linux
operating system. It interfaces with the netfilter Linux kernel
firewalling functionality and was the default solution to create
software firewalls on earlier versions of RHEL. As of RHEL 7,
iptables has been replaced by firewalld.

IPv4 Version 4 of the Internet protocol. It was developed in the
1970s and introduced in 1981. It allows a theoretical maximum
of about 4 billion nodes to be addressed by using a 32-bit
address space. It is still the most important IP version in use.

IPv6 Version 6 of the Internet protocol. It was developed in the
1990s to address the shortage in IPv6 addresses. It uses a 128-bit
address space that allows for addressing 3,4e38 nodes and thus
is considered a virtually unlimited address space.

iteration In shell scripting, one time of many that a conditional
loop has been processed until the desired result has been
reached.

J

job In a Linux shell, a task running in the current terminal. Jobs
can be started in the foreground and in the background. Every

job is also visible as a process.

journalctl The command used to manage systemd-journald.

journald See systemd-journald.

K

kernel The central component of the operating system. It
manages I/O requests from software and translates them into
data processing instructions for the hardware in the computer.

kernel ring buffer A part of memory where messages that are
generated by the kernel are stored. The dmesg command
enables you to read the contents of the kernel ring buffer.

kernel space The part of memory that is reserved for running
privileged instructions. Kernel space is typically accessible by
the operating system kernel, kernel extensions, and most device
drivers. Applications normally run in user space, which ensures
that a faulty application cannot crash the computer system.

Kernel-based Virtual Machine (KVM) The Linux kernel
module that acts as a hypervisor and makes it possible to run
virtual machines directly on top of the Linux kernel.

key-based login In SSH, login that uses public/private keys to
prove the identity of the user who wants to log in. Key-based
login is generally considered more secure than password-based
login.

kill A command that can be used to send a signal to a Linux
process. Many signals are defined (see man 7 signal), but only a
few are commonly used, including SIGTERM and SIGKILL, both
of which are used to stop processes.

Kubernetes The standard in container orchestration and also
the foundation of Red Hat OpenShift.

KVM See Kernel-based Virtual Machine.

L

label A name that can be assigned to a file system. Using labels
can be a good idea, because once a label is assigned, it will
never be changed, which guarantees that the file system can
still be mounted, even if other parameters such as the device
name have changed. However, UUIDs are considered safer than
labels because the chance of having a duplicate label by
accident is much higher than the chance of having a duplicate
UUID. See also universally unique ID (UUID).

line anchor In regular expressions, a character that refers to a
specific position in a line.

linger The Systemd feature that is needed to start Systemd user
units at system boot and not at user login.

Linux A UNIX-like operating system that consists of a kernel
that was originally developed by Linus Torvalds (hence the
name Linux). A current Linux operating system consists of a
kernel and lots of open source tools that provide a complete
operating system. Linux is packaged in the form of a
distribution. Currently, Red Hat Enterprise Linux is among the
most widely used Linux distributions.

log rotation A service that ensures that log files cannot grow
too big. Log files are monitored according to specific
parameters, such as a maximum age or size. Once this
parameter is reached, the log file will be closed and a new log
file will be opened. Old log files are kept for a limited period
and will be removed, often after only a couple of weeks.

logical extent The building block that is used in LVM to create
logical volumes. It normally has a size of a few megabytes that
corresponds to the size of the physical extents that are used.

logical partition A partition that is created in an extended
partition. See also extended partition.

logical volume In LVM, the entity on which a file system is
created. Logical volumes are often used on RHEL because they
offer important advantages, such as the option to dynamically
resize the logical volume and the file system that it hosts.

Logical Volume Manager (LVM) The software that makes it
possible to work with logical volumes.

login shell The shell that is opened directly after a user has
logged in.

LVM See Logical Volume Manager.

M

masquerading A solution that enables a private IP address
range that is not directly accessible from outside networks to be
accessed by using one public IP address that is exposed on a
router. This is also referred to as Network Address Translation
(NAT).

Master Boot Record (MBR) On a BIOS system, the first 512
bytes on the primary hard disk. It contains a boot loader and a

partition table that give access to the different partitions on the
hard disk of that computer.

MBR See Master Boot Record.

module A piece of snap-in code. Modules are used by several
systems on Linux, such as the kernel, GRUB 2, rsyslog, and
more. Via modules, Linux components can be extended easily,
and adding functionality does not require a total rewrite of the
software.

module (in dnf) A collection of software packages that can be
managed as one entity and can contain different versions of a
software solution.

mount A connection that is made between a device and a
directory. To access files on specific storage devices, the storage
device needs to be mounted on a directory. This sets up the
specified directory as the access point to files on the storage
device. Mounts are typically organized by the system
administrator and are not visible to end users.

multiplier In regular expressions, a character that indicates
that multiples of the previous character are referred to.

N

namespace An isolated environment that is created by the
Linux kernel and allows for running containers in complete
isolation. Namespaces exist for multiple aspects of the
operating system, including mounts, processes, users, and
more.

netfilter The part of the Linux kernel that implements
firewalling.

netmask See subnet mask.

Network Address Translation (NAT) See masquerading.

Network File System (NFS) A common UNIX solution to export
physical file systems to other hosts on the network. The other
hosts can mount the exported NFS directory in their local file
system.

network time Time that is provided on the network.

Network Time Protocol (NTP) A standard that is used to
provide reliable time to servers in a network. NTP on RHEL 9 is
implemented by the chronyd service.

NFS See Network File System.

nftables The service that manages kernel firewalling. It is a
replacement of the older iptables service.

nice A method to change the priority of Linux processes. A
negative nice value will make the process more aggressive,
giving it a higher priority (which is expressed by a lower
priority number); a positive nice value will make a process less
eager so that it gives priority to other processes.

NTP See Network Time Protocol.

O

octal A numbering scheme that uses the numbers 0 through 7
only. Used when working with Linux permissions using the
umask setting or the chmod command.

OpenShift The Red Hat platform, based on Kubernetes, that is
used for container orchestration.

OR A logical operation where the second command is executed
only if the first command is not able to execute.

orchestration The technique that ensures containers can be
offered in a scalable and redundant way in corporate
environments.

output module In rsyslog, a module that is used to send log
messages to a specific destination. Output modules make
rsyslogd flexible and allow for the usage of log destinations that
are not native to rsyslog.

ownership In file system permissions, the basis of the effective
permissions that a user has. Every file has a user owner and a
group owner assigned to it.

P

package A bundle that is used to distribute software. A package
typically contains a compressed archive of files and metadata
that includes instructions on how to install those files.

package group A group of packages that can be installed as
such using the dnf groups install command.

package group (in dnf) A group of software packages that can
be installed with a single command.

pager A program that can be used to browse page by page
through a text file. The less utility provides one of the most
common Linux pagers.

parent shell The environment from which a shell script or
program is started. Processes or child scripts will inherit
settings from the parent shell.

partition A subdivision of a hard disk on which a file system
can be created to mount it into the directory structure.

passphrase Basically a password, but is supposed to be longer
and more secure than a password.

password A token that is used in authentication. The password
is a secret word that can be set by individual users and will be
stored in an encrypted way.

path The complete reference to the location of a file.

permissions Attributes that can be set on files or directories to
allow users or groups access to these files or directories.

permissive mode The SELinux mode where nothing is blocked
but everything is logged in the audit log. This mode is typically
used for troubleshooting SELinux issues.

physical extent The physical building block that is used when
creating LVM physical volumes. Typically, the size is multiple
megabytes.

physical volume The foundation building block of an LVM
configuration. The physical volume typically corresponds to a
partition or a complete disk device.

PID See process identification number.

pipe A structure that can be used to forward the output of one
command to be used as input for another command.

policy See SELinux policy.

port A number that is used by a process to offer access to the
process through a network connection.

port forwarding A firewalling technique where traffic that is
coming in on a specific port is forwarded to another port that
may be on the same host or on a different host.

Portable Operating System Interface (POSIX) A standard that
was created to maintain compatibility between operating
systems. The standard mainly applies to UNIX and guarantees
that different flavors of Linux and UNIX are compatible with
one another.

portmapper A Remote Procedure Call service that needs to run
on systems that provide RPC services. Portmapper uses

dynamic ports that do not correspond to specific TCP or UDP
ports; the service will pick a UDP or TCP port that will be used
as long as the process is active. When the process is restarted,
chances are that different ports are used. They need to be
mapped to fixed UDP and TCP ports in order to make it possible
to open the firewall for these ports. Portmapper is still used by
components of the NFS service.

POSIX See Portable Operating System Interface.

primary group The group that is listed in the group
membership field for a user in /etc/passwd. Every Linux user is
a member of a primary group. Apart from that, users can be
made a member of secondary groups as well.

primary partition In MBR, one of a maximum of four
partitions that can be created in the Master Boot Record. See
also extended partition.

priority (in process handling) Specifies the importance of a
process. Process priority is expressed with a number (which
can be modified using nice). Processes with a lower priority
number are serviced before processes with a higher priority
number.

priority (in rsyslog) Used to specify the severity of a logged
event. Based on the severity, specific actions can be taken.

private key In public/private key encryption, the key that is
used to generate encrypted data.

privileged user See root.

proc A kernel interface that provides access to kernel
information and kernel tunables. This interface is available
through the /proc file system.

process A task that is running on a Linux machine. Roughly, a
process corresponds to a program, although one program can
start multiple processes.

process identification number (PID) A unique number that is
used to identify a process running on a Linux system.

profile In tuned, a collection of performance settings that can
easily be applied.

protocol A set of rules that is used in computing, such as in
computer networking, to establish communications between
two computers.

public key In cryptography, the key that is typically sent by a
server to a client so that the client can send back encrypted
data.

PV See physical volume.

Q

queue In process management, where processes wait before
they can be executed.

R

real-time clock (RTC) The hardware clock that is installed on
the computer motherboard.

reboot The procedure of stopping the computer and starting it
again.

Red Hat Customer Portal The platform that Red Hat offers to
provide patches for customers that have an active subscription.
To provide these patches and updates, Red Hat Network
provides the repositories that are needed for this purpose.

Red Hat Enterprise Linux (RHEL) The name of the software
that Red Hat sells subscriptions for. It is available in a server

edition and a desktop edition.

Red Hat Package Manager (RPM) The name for the package
format that is used on RHEL for software packages and for the
Package Management software. RPM has become the standard
for package management on many other Linux distributions as
well.

reference clock A clock that is used as a time source in an NTP
time configuration. Typically, a reference clock is a highly
reliable clock on the Internet, but it can be an internal clock on
the computer’s motherboard as well.

registry A location where container images are started from.

regular expression A search pattern that allows users to
search text patterns in a flexible way. Not to be confused with
shell metacharacters.

relative filename A filename that is relative to a directory that
is not the root directory.

Remote Procedure Calls (RPC) A method for interprocess
communication that allows a program to execute code in
another address space. Remote Procedure Calls is an old
protocol and as such is still used in the Network File System.

repository An installation source that contains installable
packages and an index that contains information about the
installable packages so that the installation program dnf can
compare the version of packages currently installed with the
version of packages available in the repository.

resident memory Memory pages that are in use by a program.

resolver The DNS client part that contains a list of DNS servers
to contact to resolve DNS queries.

RHEL See Red Hat Enterprise Linux.

rich rules Rules in firewalld that allow the usage of a more
complicated syntax so that more complex rules can be defined.

Rocky Linux Free open source alternative for Red Hat
Enterprise Linux, which consists of the RHEL source code with
all licensing removed.

root The privileged user account that is used for system
administration tasks. User root has access to all capabilities,
which means that permissions do not apply to user root and the
root user account is virtually unlimited.

root directory The starting point of the file system hierarchy,
noted as /.

RPC See Remote Procedure Calls.

RPM See Red Hat Package Manager.

rsyslogd The generic daemon that logs messages.

RTC See real-time clock.

S

Samba The name for the Linux service that implements the
SMB protocol.

SAN See storage-area network.

scheduler The part of the Linux kernel that monitors the queue
of runnable processes and allocates CPU time to these
processes.

secondary group A group that a user is a member of but which
membership is not defined in the /etc/passwd file. When new
files are created, the secondary group will not automatically
become the owner of those files.

Secure Shell (SSH) A solution that allows users to open a shell
on a remote server where security is implemented by using
public/private key cryptography.

Secure Sockets Layer (SSL) See Transport Layer Security (TLS).

SELinux A Linux kernel security module that provides a
mechanism for supporting access control security policies.

SELinux Policy The collection of rules that is used to define
SELinux security.

Server Message Block (SMB) An application-level protocol that
is used to provide shared access to files, printers, and serial
ports, which on Linux is implemented in the Samba server.

service (in firewalld) A configuration of firewall settings that
is used to allow access to specific processes.

services (in Systemd) Processes that need to be started to
provide specific functionality.

share A directory to which remote access is configured using a
remote file system protocol such as NFS or CIFS.

shebang The characters used in a script to indicate which shell
should be used for executing the code in the shell script. If no

shebang is used, the script code will be interpreted by the
parent shell, which may lead to errors in some cases. A shebang
starts with a #, which is followed by a ! and the complete
pathname of the shell, such as #!/bin/bash.

shell The environment from which commands can be executed.
Bash is the default shell on Linux, but other shells exist as well.

shell metacharacters Characters such as *, ?, and [a-z] that
allow users to refer to characters in filenames in a flexible way.

signal An instruction that can be sent to a process. Common
signals exist, such as SIGTERM and SIGKILL, but the Linux
kernel allows a total of 32 different signals to be used. To send a
signal to a process, use the kill command.

SMB See Server Message Block.

snapshot A “photo” of the actual state of a file system.

software time See system time.

source context In SELinux, the context of the processes or
users that initiate an action. A context in SELinux is a label that
identifies allowed operations. Everything in an SELinux
environment has a context.

SSH See Secure Shell.

standard error (STDERR) The default location where a
program sends error messages.

standard input (STDIN) The default location where a program
gets its input.

standard output (STDOUT) The default location where a
program sends its regular output.

star A legacy extended version of tar, which offers support for
extended attributes. Currently no longer required, as all of its
functionality has been integrated in tar.

static route A route that is defined manually by a network
administrator.

STDERR See standard error.

STDIN See standard input.

STDOUT See standard output.

storage-area network (SAN) A solution where disk devices are
shared at a block level over the network. As such, they can be

used in the same way as local disk devices on a Linux system.
iSCSI and Fibre Channel are the common SAN protocols.

Stratis The new volume managing file system that was
introduced in RHEL 8.

stratum In time synchronization, used to indicate the distance
between a server and an authoritative Internet time source.

subnet mask A logical subdivision of an IP network.

subshell A shell that is started from another shell. Typically, a
subshell is started by running a shell script.

symbolic link A special type of file that contains a reference to
another file or directory in the form of an absolute or relative
path.

sysfs The kernel interface that is mounted on the /sys directory
and which is used to provide access to parameters that can be
used for managing hardware settings.

system call A low-level operating system instruction.

system time The time that is maintained by the operating
system. When a Linux system boots, system time is set to the
current hardware time, and while the operating system is

running, it is often synchronized using the Network Time
Protocol (NTP).

Systemd The service manager on RHEL 9. Systemd is the very
first process that starts after the kernel has loaded, and it takes
care of starting all other processes and services on a Linux
system.

systemd-journald The part of Systemd that takes care of
logging information about events that have been happening.
The introduction of journald ensures that information about all
services can be logged, regardless of how the service itself is
configured to deal with information that is to be logged.

T

tainted kernel A kernel in which unsupported kernel modules
have been loaded.

tar The Tape Archiver; the default Linux utility that is used to
create and extract backups.

target In Systemd, a collection of unit files that can be managed
together.

target context The SELinux context that is set to a target object,
such as a port, file, or directory.

terminal Originally, the screen that was used by a user to type
commands on. On modern Linux systems, pseudo terminals can
be used as a replacement. A pseudo terminal offers a shell
window from which users enter the commands that need to be
executed.

thin allocation In storage, an approach that enables the system
to present more storage to the storage user than what is really
available by using smart technologies to store data, like
deduplication.

thread A thread is a subdivision of a process. Many processes
are single threaded, which means that process is basically one
entity that needs to be serviced. On a multicore or multi-CPU
computer system, working with multithreaded processes makes
sense. That way, the different cores can be used to handle the
different threads, which allows a process to benefit from
multicore or multithreaded environments.

time synchronization A system that ensures that multiple
servers are using the exact same time. To accomplish time

synchronization, it is common to use an external time server, as
defined in the Network Time Protocol (NTP).

timer A Systemd unit type that can be used as an alternative to
cron jobs and run units at a specific time.

timestamp An identifier that can be used on files, database
records, and other types of data to identify when the last
modification has been applied. Many services rely on
timestamps. To ensure that timestamp-based systems work
properly, time synchronization needs to be configured.

TLS See Transport Layer Security.

Transport Layer Security (TLS) A cryptographic protocol that
is created to ensure secured communications over a computer
network. In TLS, public and private keys are used, and
certificates authenticate the counterparty. TLS was formerly
known as SSL.

TTY A program that provides a virtual terminal on Linux. Every
terminal still has a TTY name, which is either tty1-6 for virtual
TTYs or /dev/pts/0-nn for pseudo terminals.

tuned A service on RHEL that enables administrators to easily
apply performance settings by using profiles.

U

udev A service that works with the Linux kernel to initialize
hardware.

UEFI See Unified Extensible Firmware Interface.

umask An octal value that defines the default permissions as a
shell property.

umount The command that is used to decouple a file system
from the directory on which it is mounted.

Unified Extensible Firmware Interface (UEFI) A replacement
of the Basic Input/Output System used on older IBM-compatible
computers as the first program that runs when the computer is
started. UEFI is the layer between the operating system and the
computer firmware.

unit An item that is managed by Systemd. Different types of
units exist, including service, path, mount, and target units.

universally unique ID (UUID) An identification number
consisting of a long random hexadecimal number that is
globally unique.

unprivileged user A regular non-root user account to which
access restrictions apply, as applied by permissions.

user An entity that is used on Linux to provide access to
specific system resources. Users can be used to represent
people, but many services also have a dedicated user account,
which allows the service to run with the specific permissions
that are needed for that service.

user space The area of memory that is accessible by
application software that has been started with non-root
privileges.

UTC See Coordinated Universal Time.

UUID See universally unique ID.

V

value The data that is assigned to a specific property, variable,
or record.

variable A label that contains a specific value that can be
changed dynamically. In scripting, variables are frequently
used to allow the script to be flexible.

VFAT The Linux kernel driver that is used to access FAT-based
file systems. FAT is a commonly used file system in Windows
environments. The Linux VFAT driver allows usage of this file
system.

VG See volume group.

virtual host In the Apache web server, a collection of
configuration settings that is used to address a web server.
What makes it a virtual host is that one installation of the
Apache web server can be configured with multiple virtual
hosts, which allows administrators to run multiple websites on
one Apache server.

virtual memory The total amount of addressable memory.
Virtual memory is called virtual memory because it does not
refer to memory that really exists. Its only purpose is to make
sure that Linux programs can set an address pointer that is
unique and not in use by other programs.

volume group (VG) The abstraction layer that in Logical
Volume Manager is used to represent all available storage
presented by physical volumes from which logical volumes can
be created.

W

want An indication for a Systemd unit file that it is supposed to
be started from a specific Systemd target.

wildcard The * character, which in a shell environment refers
to an unlimited number of any characters.

X

XFS A high-performance 64-bit file system that was created in
1993 by SGI and which in RHEL 9 is used as the default file
system.

Xz A compression utility that can be used as an alternative to
gzip or bzip2.

Y

Yellowdog Update, Modified The full name for Yum, the meta
package handler that on older versions of RHEL was used to
install packages from yum repositories. Now replaced with dnf.

Yum See Yellowdog Update, Modified.

Z

zombie A process that has lost contact with its parent and for
that reason cannot be managed using regular tools.

zone In firewalld, a collection of one or more network
interfaces that specific firewalld rules are associated with.

Index

Symbols

& (ampersand), 235, 431
* (asterisk), 61, 91–92, 278
\ (backslash), 430–431
#!/bin/bash, 424
^ (caret), 39
$ (dollar sign), 39
. (dot) regular expression, 91–92
= (equal sign), 41, 303
> (greater than symbol), 33
< (less than symbol), 33
&& (logical AND), 431
|| (logical OR), 431
!ls command (vim), 39
:%s/old/new/g command (vim), 39
| (pipe), 33–35, 431
+ (plus sign), 92
:q! command (vim), 38
? (question mark), 61, 92
(…) regular expression, 92
/ (root directory), 56
?text command (vim), 39

^text regular expression, 92
:w filename command (vim), 39
:wq command (vim), 38
\{1,3\} regular expression, 92
\{2\} regular expression, 92

A

a command (vim), 38
absolute filenames, 62–64
accounts

group
creating, 137–138
group properties, 138–139
primary, 137
secondary, 137

user
creating, 132–133, 136
default values, 134–135
normal accounts, 129–132
password properties, 135
system accounts, 129–132
user environment, 135–136
user properties, 134

AccuracySec option (systemd), 275

acl mount option, 337
addresses

broadcast, 172
IP (Internet Protocol), 170–173
MAC (media access control), 173
network

management of, 174
validation of, 175–178

administrators, setting, 16
alert priority, rsyslogd, 303
alias command, 31
aliases, 31
AllowUsers option (SSH), 444–445, 447
AlmaLinux, 8
ampersand (&), 235, 431
anacron service, 281
Apache server configuration

configuration files, 456–459, 460–461
content creation, 459–460
software installation, 456
virtual hosts, 456

Application Stream (AppStream) repository, 205–206
apropos command, 45
archives, 71–73

arguments, 30
asterisk (*), 61, 91, 92, 278
at command, 282–283
atd service, 282–283
atime mount option, 337
atq command, 283
audit log, 487–488
[auo] wildcard, 61
auth/authpriv facility, rsyslogd, 302
authentication, SSH (Secure Shell), 116–117, 447–448
auto mount option, 337
autofs service, 516
automation

with crond service
anacron, 281
cron configuration files, 278–280
cron time/date fields, 278
management of, 276–277
security, 282

of file system mounts, 335–338
with shell scripting

conditional loops, 429–435
core elements of, 424–425
debugging, 435

variables and input, 426–429
automount, mounting NFS (Network File System) shares from,

516–518
autorelabel file, 417
awk command, 94–96

B

background processes, 234–235
backslash (\), 430–431
balanced profile, 249
baseurl= option, repositories, 202
bash command, 425, 435
Bash shell. See shell
~/.bash_profile file, 41
~/.bashrc file, 41, 136
Basic Graphics Mode, 411
Basic Input/Output System (BIOS), 314, 315, 323, 406
batch command, 283
bg command, 235–237
binary notation, 172–173
bind-mounting in rootless containers, 565–566
/bin/sh, 547
BIOS (Basic Input/Output System), 314, 315, 323, 406
blkid command, 334, 338

block zone, firewalld, 499
blockdev, 362
Boolean settings, SELinux, 485–487
/boot directory, 56, 57–58
boot procedure

GRUB 2 boot loader, 396–399
boot options, 398–399
components of, 396
configuration files, 397–398
reinstalling, 410–414

overview of, 109–110
Systemd targets, 390–396

isolating, 393–396
managing, 392–393
showing list of, 393–396
target units, 391–392
types of, 390
wants, 392

troubleshooting
boot phase configuration, 406–408
boot prompt, accessing, 408–409
file system issues, 415
GRUB 2 reinstallation, 410–414
initramfs, 415

rescue disks, 410–414
root password, resetting, 416–417
troubleshooting targets, 409–410

boot prompt, accessing, 408–409
/boot/efi/EFI/centos/grub.cfg file, 397–398
/boot/efi/EFI/redhat/grub.cfg file, 397–398
/boot/grub2/grub.cfg file, 397–398
broadcast addresses, 172
BtrFS, 328
buildah, 542
bunzip2, 74
bzip2 command, 74

C

cache tier, 362
caret (^), 39
case loops, 434–435
cat command, 84, 85, 375
cd command, 62, 152
CentOS Stream, 7
Cert Guide environment, 9–10
chage command, 135
characters, counting, 88–89
chattr command, 160

chcon command, 479–480
chgrp command, 150
chmod command, 153–154, 156–158
chown command, 149–150
chrony service, 533–534
chronyd process, 529–530
chroot command, 411–413, 414
chroot environment, 461, 543
chvt command, 107
Classless Inter-Domain Routing (CIDR) notation, 171
ClientAliveCountMax option (SSH), 446, 447
ClientAliveInterval option (SSH), 446, 447
clients

SSH options, 446–447
time service, 533–534

clock. See time services
command line

command-line completion, 37
mounting NFS (Network File System) shares from, 514

command mode, vim, 38
commands. See also individual commands

aliases, 31
command-line completion, 37
executing, 30–32

help, 43
internal/external, 31–32
I/O redirection, 32–33
pipes, 34–35
running in containers, 559–560
syntax for, 30

community distributions, 8
compression, file, 74–75
conditional loops, 429–435

&& (logical AND), 431
|| (logical OR), 431
case, 434–435
for, 431–432
if…then…else, 430–431
until, 432–434
while, 432–434

configuration. See also configuration files; installation
Apache server

configuration files, 456–459, 460–461
content creation, 459–460
software installation, 456
virtual hosts, 462–464

boot procedure, 406–408
firewalld

firewall-cmd options, 501–504
overview of, 498
services, 500–501
zones, 499

GRUB 2 boot loader
boot options, 398–399
configuration files, 397–398

network
configuration files, 186–187
hostnames, 187–189
management with nmcli, 180–184, 190
management with nmtui, 184–185, 190
name resolution, 189–191
permissions, 181
validating, 175–180

NFS (Network File System)
automount, 516–518
server setup, 513
servers, 513
shares, mounting, 514–518

root password, 416–417
rsyslogd, 300–304

configuration files, 300
facilities, priorities, and destinations, 301–303

rules, changing, 304
SSH (Secure Shell), 442–448

connection keepalive options, 446–447
hardening, 442–445
key-based authentication, 447–448
most useful options, 447
passphrases, 447–448
session options, 446

Stratis, 361–364
Systemd units, 266–267
time services

clients, 533–534
local time, 526
NTP (Network Time Protocol), 527
time management commands, 527–531
time zones, 531–533

configuration files
Apache, 456–459, 460–461
cron, 278–280
/etc/bashrc, 136
/etc/default/useradd, 134–135
/etc/group, 137–138
/etc/gshadow, 138
/etc/login.defs, 134–135

/etc/passwd, 129–130
/etc/profile, 136
/etc/shadow, 130–132
network, 186–187
rsyslogd, 300
shell environment, 41–43

Conflicts statement, 259
connection keepalive options (SSH), 446–447
consoles, local

booting/rebooting, 109–110
logging in to, 104–105
multiple terminals in

in graphical environment, 105–106
in nongraphical environment, 107–108

pseudo terminal devices, 108–109
shutting down, 109–110
terminals versus, 104

containerfiles, building images from, 556–558
containers

container images, 542
building from containerfiles, 556–558
finding, 552–553
inspecting, 553–555
managing, 556

registries, 542, 550–551
removing, 556

control group (cgroup), 544
environment variables, 561
host requirements for, 543–544
namespaces, 543–544
Open Containers Initiative (OCI), 551
orchestration, 545, 563, 566
overview of, 542
ports, 561
rootless, 544
running, 545–550
running commands in, 559–560
software solutions for, 542, 544–545
status of, 558–559
storage, 563–566

context settings, SELinux
context labels

monitoring, 477–478
setting, 481–482

context types
finding needed type, 482–483
setting, 479–481

overview of, 477

control group (cgroup), 544
Coordinated Universal Time (UTC), 526
cp command, 64–65
CREATE_HOME, 135
createrepo command, 204
CRI-o, 542, 544
crit priority, rsyslogd, 303
cron facility, rsyslogd, 302
crond service

anacron, 281
cron configuration files, 278–280
cron time/date fields, 278
management of, 276–277
running scheduled tasks through, 282
security, 282

cut command, 84, 87

D

daemons
crond

anacron, 281
cron configuration files, 278–280
cron time/date fields, 278
management of, 276–277

security, 282
definition of, 234
rsyslogd, 302
systemd-udevd, 376, 406

database, rpm, 222–223
date command, 528
date fields, cron, 278
daylight saving time (DST), 526
dd command (vim), 39
debug priority, rsyslogd, 303
debugging shell scripts, 435. See also troubleshooting
default file contexts, SELinux, 483–484
default permissions, 159–160
default shell, 133
default user account values, 134–135
dependencies

repositories and, 198
Systemd targets, 391–392

dependencies, Systemd, 263–265
dependency hell, 221
desktop profile, 249
destination, rsyslogd, 301–303
/dev directory, 56
/dev/hda, 317

device files, 33
device mapper, 356
device names

file system, 334–335
LVM (Logical Volume Manager), 355–356

/dev/mapper directory, 356
/dev/nvme0n1, 317
/dev/sda, 317
/dev/vda, 317
/dev/xvda, 317
df -Th command, 59–61
DHCP (Dynamic Host Configuration Protocol), 174
dictionary attacks, 442
directories. See also individual directories

absolute versus relative pathnames in, 62–64
copying, 64–65
home, 133
listing, 64
moving, 65–66
ownership

changing, 149–150
default, 150–151
displaying, 148–149

structure of, 61–62

table of, 56–57
disk devices, 317–318
distributions, Red Hat Enterprise Linux (RHEL), 7–8
dmesg command, 373–375, 383
dmz zone, firewalld, 499
dnf command

common dnf tasks, 206
overview of, 198
packages

finding, 206–208
installing/removing, 209–211
listing, 211–213
package groups, 214–216
package modules, 217–221
returning information about, 208–209
updating, 213–214

past actions, showing, 216–217
repositories

creating, 204–206
options for, 202
role of, 198–199
security, 203–204
specifying, 200–202

dnf config-manager tool, 201

dnf group install command, 206, 214, 396, 456
dnf group list command, 206, 214–216, 396
dnf history command, 216–217
dnf info command, 206, 208–209
dnf install command, 206, 209–211
dnf install curl command, 459, 464
dnf install httpd command, 459
dnf install kernel command, 383
dnf install vim-enhanced command, 38
dnf list command, 206, 211–213
dnf module command, 217–221
dnf module enable command, 221
dnf module install command, 221
dnf module list command, 217–221
dnf remove command, 206, 211
dnf search command, 206–208
dnf update command, 206, 213–214
dnf upgrade kernel command, 383
dnf whatprovides command, 208, 479
DNS (Domain Name Service), 189–191
Docker, 542, 544
DocumentRoot parameter, Apache, 456–459
dollar sign ($), 39
dot (.) regular expression, 91, 92

dracut command, 413, 415
drivers, kernel, 372–373
drop zone (firewalld), 499
DST (daylight saving time), 526
dump utility, 158, 337, 515
Dynamic Host Configuration Protocol (DHCP), 174

E

e2label command, 331, 334
echo command, 41, 428
editors

vi, 38
vim, 37–40

EFI (Extensible Firmware Interface), 57–58
else statement, 429
emergency.target, 390
emerg/panic priority, rsyslogd, 303
End Of File (EOF) character, 235
enforcing mode, SELinux, 473–475
engine, container, 542
env command, 40
ENV_PATH, 135
environment, shell, 135–136

configuration files, 41–43

definition of, 40
variables, 40–41

environment variables
container, 562–563
shell, 40–41

EPEL (Extra Packages for Enterprise Linux) repositories, 199
epoch time, 528
equal sign (=), 41, 303
err/error priority, rsyslogd, 303
esac statement, 435
escaping, 91, 430–431
/etc directory, 56
/etc/anacrontab file, 281
/etc/bashrc file, 41, 136
/etc/containers/registries.conf file, 550–551
/etc/cron.allow file, 282
/etc/crontab file, 278–280
/etc/default/grub file, 396–397
/etc/default/useradd file, 134–135
/etc/fstab file, 335–338, 515
/etc/group file, 137–138
/etc/gshadow file, 138
/etc/httpd/conf/httpd.conf file, 456–459, 461
/etc/issue file, 42

/etc/login.defs file, 134–135
/etc/logrotate.conf file, 304–306
/etc/modprobe.d directory, 382
/etc/modules-load.d directory, 378
/etc/motd file, 42
/etc/NetworkManager/system-connections, 186
/etc/passwd file, 129–130
/etc/profile file, 41, 136
/etc/rsyslog.conf file, 300
/etc/rsyslog.d file, 300
/etc/shadow file, 130–132
/etc/sysconfig/network-scripts directory, 186
/etc/sysconfig/selinux file, 474–475
/etc/systemd/system directory, 257
/etc/yum.repos.d directory, 201
exabytes (EB), 316
exam, RHCSA

exam day tips, 574–576
nondisclosure agreement (NDA), 576–577
practice exams, tips for, 581–582, 583–584
registration for, 573–574
theoretical pre-assessment exam, 579–580
updates for, 617–618
verifying readiness for, 573

exec command, 417
exec mount option, 337
execute permissions, 152–154
exit command, 36, 151, 425, 548
expressions, regular. See regular expressions
Ext2, 328
Ext3, 328
Ext4, 328, 329–331
extended partitions, 315, 320–322
extended regular expressions, 91–93
Extensible Firmware Interface (EFI), 57–58
external commands, 31–32
external zone (firewalld), 499

F

facilities, rsyslogd, 301–303
fdisk utility, 317, 318–322, 350–352
Fedora, 8
fg command, 235–237
file command, 73
file descriptors, 33
file systems. See also directories

BtrFS, 328
creating, 328–329

/etc/bashrc, 331–332
Ext2, 328
Ext3, 328
Ext4, 328, 329–331
Filesystem Hierarchy Standard (FHS), 56–57
mounting, 57–61

automating through /etc/fstab, 335–338
device names, 334–335
disk labels, 334–335
manually, 334
requirements for, 333–334
systemd mounts, 338–339
UUIDs, 334–335

NFS
configuration, 513
history of, 512
security, 512
shares, mounting, 514–518
versions of, 512–513

NTFS, 328
swap files, 333
troubleshooting, 415
VFAT, 328
volume-managing, 361

XFS, 328, 331–332, 362
files. See also directories; log files

absolute versus relative filenames, 62–64
archives, 71–73
compression of, 74–75
configuration

Apache, 456–459, 460–461
cron, 278–280
/etc/bashrc, 136
/etc/default/useradd, 134–135
/etc/group, 137–138
/etc/gshadow, 138
/etc/login.defs, 134–135
/etc/passwd, 129–130
/etc/profile, 136
/etc/shadow, 130–132
GRUB 2 boot loader, 397–398
network, 186–187
rsyslogd, 300
shell environment, 41–43

containerfiles, 556–558
copying, 64–65, 114
deleting, 66–67
device, 33

file descriptors, 33
filtering

with cut command, 87
with sort command, 87–88

hidden, 64
links

creating, 69–70
definition of, 68
hard, 68, 71
removing, 70
symbolic (soft), 69, 71

listing, 64
moving, 65–66
multi-user.target, 390, 391–392
ownership

changing, 149–150
default, 150–151
displaying, 148–149

rpm, 222, 223–224, 225
secure file transfers, 115
swap, 333
synchronizing, 115
Systemd, 257–258
text

regular expressions, 89–96
text file-related tools, 84–89

/usr/share/doc, 48–49
wildcards and, 61

filtering text files
with cut command, 87
with sort command, 87–88

find command, 149
findmnt command, 59, 337
firewall-cmd command, 501–504
firewall-config command, 501
firewalls

benefits of, 498
firewalld

configuring, 501–504
overview of, 498
services, 500–501
zones, 499

folders. See directories
for loops, 431–432
foreground processes, 234–235
fork command, 417
forking, 258
forward slash (/), 56

FQDN (fully qualified domain name), 187
free -m command, 332
fsck command, 415
fstab file, 515
ftp.xml file, 501
fully qualified domain name (FQDN), 187

G

gdisk command, 317, 322–326, 350
getenforce command, 474–477
getent hosts command, 191
getsebool -a command, 484
gg command (vim), 39
gigabytes (GB), 316
GLOBAL DIRECTIVES #### section, rsyslog.conf, 300
gpasswd command, 151
GPG key, 203–204
gpgcheck= option, repositories, 202
gpgkey= option, repositories, 202
GPT (GUID Partition Table)

benefits of, 315–316
partitions

creating with gdisk, 322–326
creating with parted, 327

graphical applications, 113–114
graphical environments, multiple terminals in, 105–106
graphical.target, 390
greater than symbol (>), 33
grep command, 36, 93–94, 433, 484
group accounts

creating, 137–138
dnf package groups, 214–216
group properties, 138–139
primary groups, 137
secondary groups, 137

group ownership. See ownership, file/directory
groupadd command, 138
groupmems command, 139
groupmod command, 138–139
groups command, 151
GRUB 2 boot loader, 396–399

boot options, 398–399
components of, 396
configuration files, 397–398
reinstalling, 410–414

grub2-install command, 413, 414
grub2-mkconfig command, 397–398
gunzip utility, 74

gzip command, 74

H

halt command, 109–110
hard links, 68, 71
hardening, SSH (Secure Shell), 442–445

alternative port configuration, 443
root access, limiting, 442
SELinux, 443

hardware initialization, 376–377
hardware time, 526
head command, 84, 86
help

--help option, 43
/usr/share/doc documentation files, 48–49

hidden files, 64
history

Bash, 35–37
dnf, 216–217

history command, 35–37
home directories, 133
/home directory, 56, 58
home zone (firewalld), 499
host requirements, container, 543–544

hostnamectl set-hostname command, 187–188
hostnamectl status command, 187–188, 375
hostnames, 187–189
hosts, virtual, 170, 462–464
hwclock command, 528

I

i command (vim), 38
id command, 124
if…then…else loops, 430–431
if…then…else…fi statement, 428–429
ifconfig utility, 175
images, container

building from containerfiles, 556–558
finding, 552–553
inspecting, 553–555
managing, 556
registries, 550–551

info command, 47–48
info priority, rsyslogd, 303
inheritance, 152
init=/bin/bash option, 409
init=/bin/sh option, 409
initramfs, 396, 406, 413, 415

initrd.target, 406
inodes, 68
input, shell scripting, 426–429
input mode, vim, 38
installation. See also configuration

Apache server software, 456
GRUB 2, 410–414
Red Hat Enterprise Linux (RHEL)

Cert Guide environment, 9–10
repositories, 8
setup requirements, 9
software options, 7–8
step-by-step process, 10–22
subscriptions, 6–7

SELinux man pages, 483
software packages, 209–211

Installation Source option, 16
Installation Summary screen, 12–21
interactive processes. See shell jobs
interface management, 174
internal commands, 31–32
internal zone, firewalld, 499
interprocess communication (ipc), 543
I/O redirection, 32–33

IP (Internet Protocol) addresses, 170–173
binary notation, 172–173
IPv4 subnet masks, 171–172
IPv6, 171

ip addr command, 175–178, 182
ip link command, 175–178
ip route command, 175–178
ip route show command, 178–179
iptables, 498
isolation of Systemd targets, 393–396
iteration. See loops, conditional

J

jails, chroot, 543
jobs. See shell jobs
jobs command, 235–237
journalctl command, 290–292, 295–298, 373–374, 415

K

KDUMP, 14
Kerberos, 512
kern facility, rsyslogd, 302
kernel. See also GRUB 2 boot loader

analysis of, 373–375
drivers, 372–373
modules, 375–383

checking availability of, 381–382
definition of, 375
dnf, 217–221
hardware initialization, 376–377
management of, 378–383
parameters of, 382–383

role of, 372–375
tainted, 373
threads, 234, 238, 372–373
upgrading, 383

key-based authentication, 116–117, 203–204, 447–448
keyboard settings, 12–14
kibibytes (KiB), 316
kill command, 243–245
killall command, 243–245
kilobytes (KB), 316
Kubernetes, 545, 562
KVM, 9–10

L

[label] option, repositories, 202

labels
file system, 334–335
SELinux context labels

monitoring, 477–478
setting, 481–482

language settings, 12
latency-performance profile, 249
LDAP (Lightweight Directory Access Protocol), 512
less command, 84–85
less than symbol (<), 33
lid command, 139
Lightweight Directory Access Protocol (LDAP), 512
line anchors, 90
lines, counting, 88–89
linger feature, 541, 566–568
links

creating, 69–70
definition of, 68
hard, 68, 71
removing, 70
symbolic (soft), 69, 71

ListenDatagram, 259
ListenStream, 259
list-timezone command, 529

live log ile monitoring, 294
ln command, 69–70
load averages, 247–248
local consoles. See consoles, local
local time, 526
local0–7 facility, rsyslogd, 302
~/.local/share/containers/storage directory, 550
log files, 487–488

audit, 487–488
contents of, 293
direct write, 290
live monitoring, 294
logger, 294
overview of, 290
reading, 292
rotating, 304–306
rsyslogd service, 290–292, 300–304
systemd-journald service

examining with journalctl, 295–298
role of, 290–292
systemd journal, preserving, 298–300

logger, 294
logical AND (&&), 431
logical extent, 354, 359

logical OR (||), 431
logical partitions, 315, 320–322
Logical Volume Manager. See LVM (Logical Volume Manager)
logical volumes

creating, 348–349, 355, 356–357
resizing, 358–360

loginctl session manager, 566–568
logins, local console, 104–105
logrotate command, 305
loops, conditional, 429–435

case, 434–435
for, 431–432
if…then…else, 430–431
logical AND (&&), 431
logical OR (||), 431
until, 432–434
while, 432–434

lpr facility, rsyslogd, 302
ls command, 30, 34–35, 64, 69, 148–149, 477–478
lsattr command, 161
lsblk command, 317–318, 351, 353, 360
lsmod command, 378
lspci command, 381–382
lv command, 348

lvcreate command, 355, 357, 361
lvdisplay command, 357
lvextend command, 358–360
LVM (Logical Volume Manager), 57–58

architecture, 346–347
benefits of, 346
device mapper, 356
device naming, 355–357
features, 347–348
logical extent, 354, 359
logical volumes

creating, 348–349, 355–357
resizing, 358–360

physical volumes, creating, 350–353
snapshots, 347–348
volume groups (VGs)

creating, 353–357
physical extent, 354
reducing, 360–361
resizing, 358

lvremove command, 357
lvresize command, 358–360
lvs command, 357, 360

M

MAC (media access control) addresses, 173
mail facility, rsyslogd, 302
man command, 43–47, 398, 482–483
man logrotate command, 305
man pages, 44–47, 480, 483
man semanage command, 480
mandb command, 46
mark facility, rsyslogd, 302
Master Boot Record partitions. See MBR (Master Boot Record)

partitions
MaxAuthTries option (SSH), 447
MaxSessions option (SSH), 447
MBR (Master Boot Record) partitions

creating with fdisk, 318–320
extended and logical partitions, 320–322
overview of, 314–315

measurement units, storage, 316
mebibytes (MiB), 316
/media directory, 56
megabytes (MB), 316
memory tests, 411
Microsoft Hyper-V, 9–10
mirrorlist= option, repositories, 202

mkdir command, 62
mkfs command, 328–329, 355
mklabel command, 327
mkpart command, 327
mkswap command, 332–333
/mnt directory, 56
modes, SELinux, 473–477
modinfo command, 378–380, 383
modprobe command, 378–382
modules, 375–383

checking availability of, 381–382
definition of, 375
dnf, 217–221
hardware initialization, 376–377
management of, 378–383
parameters of, 382–383

MODULES #### section, rsyslog.conf, 300
more command, 85
MOTD_FILE, 134
mount command, 58–59, 333–338, 415, 512–513, 516
mount namespace, 543
mount units, Systemd, 258–259
mounting

file systems

automating through /etc/fstab, 335–338
device names, 334–335
disk labels, 334–335
manually, 334
requirements for, 333
systemd mounts, 338–339
UUIDs, 334–335

NFS (Network File System) shares
with automount, 516–518
from command line, 514
through /etc/fstab file, 515

multipliers in regular expressions, 91
multi-user.target file, 390–392
mv command, 65–66

N

name resolution, 189–191
name= option, repositories, 202
names, device

file system, 334–335
LVM (Logical Volume Manager), 355–356

namespaces, 543–544
nano editor, 266
NAT (Network Address Translation), 171

NDA (nondisclosure agreement), 576–577
netfilter, 498
netstat command, 179–180
Network Address Translation (NAT), 171
network addresses

management of, 174
validation of, 175–178

Network File System. See NFS (Network File System)
Network Information Service (NIS), 512
network masks, IPv4, 171–172
network namespace, 543
Network Time Protocol (NTP), 527
networking

binary notation, 172–173
broadcast addresses, 172
configuration

configuration files, 186–187
hostnames, 187–189
management with nmcli, 180–184, 190
management with nmtui, 184–185, 190
name resolution, 189–191
permissions, 181
validating, 175–180

hostnames, 187–189

interface management, 174
IP (Internet Protocol) addresses, 170–173

binary notation, 172–173
IPv4 subnet masks, 171–172
IPv6, 171

MAC (media access control) addresses, 173
network addresses

management of, 174
validation of, 175–178

NetworkManager, 180
ports, 173, 179–180
protocols, 173
Red Hat Enterprise Linux (RHEL) installation settings, 20

network-latency profile, 249
NetworkManager, 180
network-throughput profile, 249
newgrp command, 150
news facility, rsyslogd, 302
NFS (Network File System)

history of, 512
security, 512
server setup, 513
shares, mounting

with automount, 516–518

from command line, 514
through /etc/fstab file, 515

versions of, 512–513
nfsvers= option (mount command), 512–513
nft command, 498
nftables, 498
nice command, 241–243
NIS (Network Information Service), 512
nmap command, 558
nmcli command, 182–184, 190
nm-connection-editor, 185
nmtui command, 184–185, 190
noatime mount option, 337
noauto mount option, 337
nodes, 170
noexec mount option, 337, 469
nohup command, 237
nondisclosure agreement (NDA), 576–577
nongraphical environments, multiple terminals in, 107–108
normal accounts, 129–132
notice priority, rsyslogd, 303
NTFS, 328
NTP (Network Time Protocol), 527
NVM Express (NVMe) interface, 317

O

o command (vim), 38
OnActiveSec option (systemd), 275
OnBootSec option (systemd), 275
OnCalendar option (systemd), 275
OnStartupSec option (systemd), 275
OnUnitActiveSec option (systemd), 275
Open Containers Initiative (OCI), 551
OpenShift, 545, 562
operators

logical AND (&&), 431
logical OR (||), 431

/opt directory, 56
options, command, 30
Oracle VM VirtualBox, 9–10
orchestration, container, 545, 563, 566
ownership, file/directory

changing, 149–150
default, 150–151
displaying, 148–149

P

p command (vim), 39

packages, software
managing with dnf, 213–214

common dnf tasks, 206
dnf history, 216–217
dnf package groups, 214–216
dnf package modules, 217–221
finding software packages with, 206–208
installing/removing packages with, 209–211
overview of, 198
returning package information with, 208–209
showing list of packages with, 211–213
updating packages with, 213–214

managing with rpm, 221–225
dependency hell, 221
overview of, 221–222
repoquery, 224–225
rpm database queries, 222–223
rpm filenames, 222
rpm package file queries, 223–225

Red Hat Enterprise Linux registration, 199
repositories

creating, 204–206
options for, 202
role of, 198–199

security, 203–204
specifying, 200–202

subscription management, 200
parent shell, 424
parent-child relationship, 237
parted command, 317, 327, 350
partitions

definition of, 314
disk device types, 317–318
extended, 315
GPT (GUID Partition Table)

benefits of, 315–316
creating with gdisk, 322–326
creating with parted, 327

logical, 315
MBR (Master Boot Record)

creating with fdisk, 318–320
extended and logical partitions, 320–322
overview of, 314–315

primary, 315
storage measurement units, 316
swap, 332–333

PASS_MAX_DAYS, 135
PASS_MIN_DAYS, 135

PASS_WARN_AGE, 135
passphrases, SSH (Secure Shell), 116–117, 447–448
passwd command, 135
PasswordAuthentication option (SSH), 447
passwords

Red Hat Enterprise Linux (RHEL) installation, 15
root password, resetting, 416–417
user accounts, 135

performance optimization, 248–249
permissions

attributes, user-extended, 160–161
default, 159–160
inheritance and, 152
network configuration, 181
read/write/execute, 152–154
set group ID (SGID), 155–159
set user ID (SUID), 155–159
sticky bit, 156–159

permissive mode, SELinux, 473–475
PermitRootLogin option, 447
PermitRootLogin prohibit-password option, 442
persistent modifier, 275
petabytes (PB), 316
pgrep command, 240

physical extent, 354
physical volumes, creating, 350–353
PID (process identification number), 238
pinfo command, 47–48
ping command, 431–432
pipe (|), 33–35, 431
pkexec command, 127
pkill command, 243–245
plus sign (+), 92
Podman, 542, 544

commands, running in container, 559–560
container environment variables, managing, 562–563
container images

building, 556–558
finding, 552–553
inspecting, 553–555
managing, 556

container ports, managing, 561
container status, managing, 558–559
container storage, managing, 563–564
containers, running, 545–550, 555, 566–568
registries, finding, 550–551

podman build command, 556–558
podman exec command, 559–560, 566

podman generate command, 567–568
podman generate systemd command, 567–568
podman info command, 550–551
podman inspect command, 553–555, 562–563
podman kill command, 559
podman login command, 552
podman logs command, 562–564
podman ps command, 548–550, 558–559
podman restart command, 559
podman rm command, 559
podman rmi command, 556
podman run command, 545–550, 555, 559, 561
podman search command, 552–553
podman stop command, 559
podman unshare command, 565
policy violations, SELinux, 487–490
PolicyKit, 127
pool, Stratis, 362–363
port access, SELinux, 484–485
Port option (SSH), 447
ports, 173

container, 561
SSH (Secure Shell), 443
validation of, 179–180

positional parameters, 426–427
poweroff command, 109–110
Power-On Self-Test (POST), 406
powersave profile, 249
practice exams, tips for, 581–584
pre-assessment exam, 579–580
preparation

for Red Hat Enterprise Linux (RHEL) installation
Cert Guide environment, 9–10
distributions, 7–8
setup requirements, 9
step-by-step process, 10–22
subscriptions, 6–7

for RHCSA exam
exam day tips, 574–576
nondisclosure agreement (NDA), 576–577
registration, 573–574
verifying readiness, 573

primary groups, 137
primary partitions, 315
priorities

process, 241–243
management of, 242–243
overview of, 241

relations between slices, 241–242
rsyslogd, 301–303

private keys, 116
privileged users, 124
/proc directory, 56, 373–375
process identification number (PID), 238
process management

command-line tools for
kill command, 243–245
killall command, 243–245
nice command, 241–243
pkill command, 243–245
ps aux | head command, 238
ps command, 239–240
renice command, 241–243
top command, 246–248
tuned command, 248–249

daemons, 234
kernel threads, 234
overview of, 234
performance optimization, 248–249
process priorities, 241–243

management of, 242–243
overview of, 241

relations between slices, 241–242
process states, 247
process types, 238
shell jobs, 234–237

common job management tasks, 235–237
definition of, 234
parent-child relationship, 237
running in foreground/background, 234–235

signals, sending to processes, 243–245
tuned profiles, 248–249
zombies, 245–246

process namespace, 543
~/.profile file, 136
profiles

dnf, 218
setting during Red Hat Enterprise Linux (RHEL)
installation, 14
tuned, 248–249

programmatic API, 362
properties

Ext4 file systems, 329–331
group, 138–139
password, 135
user, 134

XFS file systems, 331–332
protocols, 173
ps aux command, 88, 238, 245–246, 372
ps command, 239–240
ps Zaux command, 477
pseudo terminal devices, 108–109
public keys, 116
public zone (firewalld), 499
pv command, 348
pvcreate command, 348, 350–352, 354, 357
pvdisplay command, 352–353, 357
pvmove command, 348, 360
pvremove command, 357
pvs command, 351–352, 356–357, 360
pwd command, 34, 62–63

Q

queries
repoquery, 224–225
rpm database, 222–223
rpm package files, 223–225

question mark (?), 61, 92
quiet option, GRUB 2 boot loader, 398

R

rd.break, 409
read command, 427–429
read permissions, 152–154
reading text files

with cat command, 85
with head and tail commands, 86
with less command, 84–85

real-time clock (RTC), 526
reboot command, 109–110, 417
rebooting system, 21–22, 109–110
Red Hat Customer Portal, 6–7, 198
Red Hat Enterprise Linux registration, 199
Red Hat Enterprise Linux (RHEL) installation

Cert Guide environment, 9–10
repositories, 8
setup requirements, 9
software options, 7–8
step-by-step process, 10–22

Begin Installation process, 21
Installation Summary screen, 12–21
Reboot System process, 21–22
Welcome to Red Hat Enterprise Linux 9.0 screen, 11

subscriptions, 6–7

Red Hat Enterprise Linux subscription management, 200
Red Hat Network (RHN), 7
Red Hat Package Manager (RPM), 198. See also rpm command
Red Hat Subscription Management (RHSM) tools, 199
redirection, I/O, 32–33
registration

of Red Hat Enterprise Linux, 199
for RHCSA exam, 573–574

registries, 542, 550–551
regular expressions, 89–96

awk command with, 94–96
definition of, 89
escaping in, 91
examples of, 89–90
extended, 91–93
grep command with, 93–94
line anchors, 90
wildcards and multipliers in, 91

relabeling action, SELinux, 484
relative filenames, 62–64
remote NFS shares, mounting

with automount, 516–518
through /etc/fstab file, 515

remote systems, accessing with SSH (Secure Shell), 110–113

renice command, 241–243
.repo files. See repositories
repoquery, 224–225
repositories, 8

Application Stream (AppStream) repository, 205–206
creating, 204–206
EPEL (Extra Packages for Enterprise Linux) repositories,
199
options for, 202
role of, 198–199
security, 203–204
specifying, 200–202

rescue disks, 410–414
rescue.target, 390
resizing

logical volumes, 358–360
volume groups (VGs), 358

restorecon command, 483–484
restoring SELinux default file contexts, 483–484
RHCSA exam. See exam, RHCSA
RHEL, 274
rhgb option, GRUB 2 boot loader, 398
rm command, 66, 70
rmdir command, 62

Rocky Linux, 8
root access, limiting, 442
root directory (/), 56
root password, 15, 416–417
root users (superusers), 124–125
rootless container, 544
routing, validation of, 179–180
rpm command, 221–225

dependency hell, 221
overview of, 221–222
repoquery, 224–225
rpm database queries, 222–223
rpm filenames, 222
rpm package file queries, 223–225

rsync command, 114–115
rsyslogd

configuration, 300–304
configuration files, 300
facilities, priorities, and destinations, 301–303
rules, changing, 304

role of, 290–292
RTC (real-time clock), 526
rules (rsyslogd), changing, 304
RULES #### section, rsyslog.conf, 300–301

/run directory, 56
/run/log/journal file, 298–300
Running (R) state, 247
run-parts command, 280
/run/systemd/system directory, 257

S

Samba, 515
/sbin/init, 406
scheduling

anacron service, 281
at command, 282–283
atd service, 282–283
batch command, 283
crond service

anacron, 281
cron configuration files, 278–280
cron time/date fields, 278
management of, 276–277
running scheduled tasks through, 282
security, 282

RHEL, 274
systemd timers, 274–276

scp command, 114

scripting, shell
conditional loops, 429–435

case, 434–435
for, 431–432
if…then…else, 430–431
logical AND (&&), 431
logical OR (||), 431
until, 432–434
while, 432–434

core elements of, 424–425
debugging, 435
variables and input, 426–429

sealert command, 489–490
secondary groups, 137–138
security

cron, 282
NFS (Network File System), 512
repositories, 203–204
rsyslogd, 302

security profiles, 14
SELinux, 463–464, 484, 544

Boolean settings, 485–487
context settings

context labels, monitoring, 477–478

context labels, setting, 481–482
context types, finding needed, 482–483
context types, setting, 479–481
overview of, 477

core elements of, 473
default file contexts, restoring, 483–484
man pages, installing, 483
overview of, 469
policy violations, 487–490
port access, managing, 484–485
relabeling action, 484
working modes, 473–477

semanage command, 443–445, 479–482, 484–486, 490, 564
sepolicy generate command, 476
Server with GUI option, 18
ServerAliveCountMax option (SSH), 447
ServerAliveInterval option (SSH), 447
ServerRoot parameter, Apache, 456–459
servers

Apache
software installation, 456–460
virtual hosts, 462–464

booting/rebooting, 109–110
shutting down, 109–110

session options, SSH (Secure Shell), 446
sestatus command, 475–477
set group ID (SGID) permissions, 155–159
set n lvm on command, 350
set user ID (SUID) permissions, 155–159
setenforce command, 474–477
set-local-rtc command, 529
set-ntp command, 529
setsebool command, 486
set-time command, 529
set-timezone command, 529
sftp command, 115
shares (NFS), mounting

with automount, 516–518
from command line, 514
through /etc/fstab file, 515

shebang, 424
shell

commands. See also individual commands
aliases, 31
command-line completion, 37
executing, 30–32
help, 43
internal/external, 31–32

I/O redirection, 32–33
pipes, 34–35
running in containers, 559–560
syntax for, 30

default, 133
definition of, 30
environment

configuration files, 41–43
definition of, 40
variables, 40–41. See also individual variables

help
--help option, 43
info/pinfo commands, 47–48
man pages, 44–47
/usr/share/doc documentation files, 48–49

history, 35–37
local console connections

booting/rebooting, 109–110
logging in to, 104–105
pseudo terminal devices, 108–109
shutting down, 109–110
switching between terminals, 105–108
terminals versus, 104

parent, 424

shell jobs, 234–237
common job management tasks, 235–237
definition of, 234
parent-child relationship, 237
running in foreground/background, 234–235

shell scripting
conditional loops, 429–435
core elements of, 424–425
debugging, 435
variables and input, 426–429

SSH (Secure Shell)
accessing remote systems with, 110–113
configuration, 442–448, 464
copying files in, 114
file synchronization, 115
graphical applications in, 113–114
key-based authentication for, 116–117, 447–448
passphrases, 460–461
secure file transfers, 115
secure file transfers in, 115

subshells, 41–42, 105, 424
wildcards, 61

shell jobs, 234–237
common job management tasks, 235–237

definition of, 234
parent-child relationship, 237
running in foreground/background, 234–235

showmount command, 514
shutting down system, 109–110
SIGKILL command, 559
SIGTERM signal, 559
skopeo, 542, 553
Sleeping (S) state, 247
slices, 241

management of, 242–243
overview of, 241
relations between, 241–242

snapshots
LVM (Logical Volume Manager), 347–348
Stratis, 362

socket units, Systemd, 259
soft links, 69, 71
software, Red Hat Enterprise Linux (RHEL), 7–8
software clock, 526
software management

with dnf
common dnf tasks, 206
dnf history, 216–217

dnf package groups, 214–216
dnf package modules, 217–221
finding software packages with, 206–208
installing/removing packages with, 209–211
overview of, 198
returning package information with, 208–209
showing list of packages with, 211–213
updating packages with, 213–214

Red Hat Enterprise Linux registration, 199
repositories

creating, 204–206
options for, 202
role of, 198–199
security, 203–204
specifying, 200–202

with rpm, 221–225
dependency hell, 221
overview of, 221–222
repoquery, 224–225
rpm database queries, 222–223
rpm filenames, 222
rpm package file queries, 223–225

subscription management, 200
Software Selection option, RHEL installation, 18

sort command, 84, 87–88
source context, 488
/srv directory, 56
ss command, 179–180, 477
SSH (Secure Shell)

accessing remote systems with, 110–113
configuration, 464

connection keepalive options, 446–447
hardening, 442–445
key-based authentication, 447–448
most useful options, 447
session options, 446

copying files in, 114
file synchronization, 115
graphical applications in, 113–114
key-based authentication for, 116–117, 447–448
passphrases, 460–461
secure file transfers in, 115

ssh command, 110–114
ssh-add command, 448
ssh-agent command, 448
ssh-keygen command, 117
st command, 274
star utility, 73

starting Red Hat Enterprise Linux (RHEL) installation, 21
states, process, 247
status, container, 558–559
status command, 529
STDERR, 32–33
STDIN, 32–33
STDOUT, 32–33
sticky bit, 156–159
Stopped (T) state, 247
storage. See containers; file systems; LVM (Logical Volume

Manager); partitions; Stratis
Stratis, 361–364

architecture, 362
features of, 361–362
management of, 363–364
snapshots, 362
volumes, creating, 362–363

stratis blockdev command, 363
stratis filesystem command, 363
stratis fs create command, 363
stratis fs list command, 363
stratis pool command, 363
stratum, 527
streams, dnf, 218

su command, 125–126
subnet masks, 172–173
subscription management, 200
subscription-manager tool, 199–201
subscriptions, Red Hat Enterprise Linux (RHEL), 6–7
subshells, 41–42, 105, 424
sudo command, 105, 126–128
sudo dnf install container-tools command, 545
sudo podman ps command, 561
sudo podman run command, 561
superusers, 124–125
swap files, 333
swap partitions, 332–333
swapon command, 332–333
symbolic links, 69, 71
synchronization, time, 527, 530–531
/sys directory, 56
syslog facility, rsyslogd, 302
system accounts, 129–132
system logging. See log files
system time, 526
systemctl command, 261–263, 275
systemctl disable command, 392–393
systemctl edit command, 266–267

systemctl enable command, 260–261, 363, 392–393, 459, 566–
568

systemctl --failed -t service command, 263
systemctl get-default command, 396
systemctl halt command, 109–110
systemctl isolate command, 393–396
systemctl list-dependencies command, 260, 263
systemctl list-units command, 263, 275, 410
systemctl poweroff command, 109–110
systemctl reboot command, 109–110
systemctl restart autofs command, 518
systemctl restart httpd command, 464
systemctl set-default command, 396
systemctl show command, 265–267
systemctl start vsftpd command, 261
systemctl status command, 180, 261–263, 276–277, 290–292,

445, 459
systemctl -t help command, 256
systemctl -t service command, 263
systemctl --type=target command, 393–396
systemctl --user command, 566–568
Systemd, 109–110

mounts, 338–339
overview of, 256

systemd-journald
examining with journalctl, 295–298
preserving, 298–300
role of, 290–292

targets, 390–396
isolating, 393–396
managing, 392–393
showing list of, 393–396
target units, 391–392
types of, 390
wants, 392

timers, 274–276
units

changing configuration of, 266–267
definition of, 256
dependencies, 263–265
displaying list of, 256
locations, 256–257
management of, 261–263
mount, 258–259
options for, 265–266
socket, 259
target, 260–261
unit file, 257–258

systemd-udevd daemon, 376, 406
systemd.unit=emergency.target topion, 410
systemd.unit=rescue.target option, 410

T

tail command, 84, 86, 106, 294
tainted kernels, 373
tar command, 72–75
target context, 488
targets, Systemd, 390–396

isolating, 393–396
managing, 392–393
showing list of, 393–396
target units, 260–261, 391–392
troubleshooting, 409–410
types of, 390
wants, 392

task scheduling. See scheduling
TCPKeepAlive option (SSH), 446, 447
terabytes (TB), 316
term command, 105
terminals, 107

consoles versus, 104
multiple

in graphical environment, 105–106
in nongraphical environment, 107–108

pseudo terminal devices, 108–109
test command, 428, 431
/text command (vim), 39
text editors

vi, 38
vim, 37–40

text files
regular expressions, 89–96

awk command with, 94–96
definition of, 89
escaping in, 91
examples of, 89–90
extended, 91–93
grep command with, 93–94
line anchors, 90
wildcards and multipliers in, 91

text file-related tools
cat, 85
cut, 87
head and tail commands, 86
less, 84–85
sort, 87–88

table of, 84
wc, 88–89

text$ regular expression, 92
text-processing tools

awk, 94–96
grep, 93–94

then statement, 428
theoretical pre-assessment exam, 579–580
thin provisioning, 361–362
threads, kernel, 234, 238, 372–373
throughput-performance profile, 249
time services

client configuration, 533–534
epoch time, 528
local time, 526
NTP (Network Time Protocol), 527
RTC (real-time clock), 526
system time, 526
time management commands, 527–531

date, 528
hwclock, 528
time, 32
timedatectl, 529–530

time synchronization, 527, 530–531

time zone settings, 531–533
time/date fields, 278
time/date settings, 14–15

timedatectl command, 527, 529–533
timers, systemd, 274–276
TLS (Transport Layer Security), 443
/tmp directory, 57
top command, 246–248
touch /.autorelabel command, 417
Transport Layer Security (TLS), 443
troubleshooting

boot issues
boot phase configuration, 406–408
boot prompt, accessing, 408–409
file system issues, 415
GRUB 2 reinstallation, 414
initramfs, 415
rescue disks, 410–414
root password, resetting, 416–417
troubleshooting targets, 409–410

Red Hat Enterprise Linux (RHEL) installation, 10
shell scripts, debugging, 435

trusted zone (firewalld), 499
tune2fs command, 329–331

tuned command, 248–249
type command, 31
tzselect utility, 531–533

U

u command (vim), 39
udevadm monitor command, 376–377
UEFI (Unified Extensible Firmware Interface), 315, 406
UID_MIN, 135
umask command, 159–160
umount command, 334
uname utility, 373–375
Unified Extensible Firmware Interface (UEFI), 315
Uninterruptible sleep (D) state, 247
units, Systemd

changing configuration of, 266–267
definition of, 256
dependencies, 263–265
displaying list of, 256
locations, 256–257
management of, 261–263
mount, 258–259
options for, 265–266
socket, 259

target, 260–261, 391–392
unit file, 257–258

Universal Extended Firmware Interface (UEFI), 406
universally unique IDs (UUIDs), 334–335
UNIX, 512. See also NFS (Network File System)
unprivileged users, 124
until loops, 432–434
updates

exam, 617–618
software packages, 213–214

upgrades, Linux kernel, 383
uptime command, 247–248
UseDNS option (SSH), 447
user accounts, switching between, 125–126
User Creation option, RHEL installation, 16
user environment, 135–136
user facility, rsyslogd, 302
user management

group accounts
creating, 137–138
group properties, 138–139
primary groups, 137
secondary groups, 137

user accounts

creating, 132–133, 136
default values, 134–135
normal accounts, 129–132
password properties, 135
system accounts, 129–132
user environment, 135–136
user properties, 134

user types
PolicyKit, 127
privileged/unprivileged, 124
root users (superusers), 124–125
su command, 125–126
sudo command, 126–128
switching between, 125–126

user namespace, 543
user ownership. See ownership, file/directory
user_xattr mount option, 337
useradd command, 126, 132–133
userdel command, 132
user-extended attributes, 160–161
usermod command, 133–134, 138–139
/usr directory, 57, 58
/usr/lib/modules-load.d directory, 378
/usr/lib/systemd/system directory, 256

UTC (Coordinated Universal Time), 526
uucp facility, rsyslogd, 302
UUIDs (universally unique IDs), 334–335

V

v command (vim), 39
-v host_dir:container_dir command, 564
validation

of network configuration, 175–180
network addresses, 175–178
network settings, 179–180
ports and services, 179
routing, 178–179

/var directory, 57, 58
variables, 40–41

$LANG, 40
$PATH, 31
container environment variables, 561
shell scripting, 426–429

defining, 427–429
positional parameters, 426–427

/var/log directory, 292–293
/var/log/audit/audit.log file, 487–488
Very Secure FTP service, 257

VFAT, 328
vg command, 348
vgcreate command, 353–354, 356–357, 361
vgdisplay command, 354–355, 357
vgextend command, 358, 360
vgreduce command, 358, 360–361
vgremove command, 357
vgs command, 354–355, 357–358, 360
vi editor, 38
vigr command, 132–133, 137–139
vim editor, 37–40
vimtutor command, 38
vipw command, 132–134
virtual hosts, Apache, 462–464
virtual terminals, 107–108
virtual-guest profile, 249
virtual-host profile, 249
visudo command, 127
VMware Workstation, 9–10
volume groups (VGs)

creating, 353–357
physical extent, 354
reducing, 360–361
resizing, 358

volume-managing file systems, 361. See also Stratis
volumes, Stratis, 362–363

W

wants, 260–261, 392
warning/warn priority, rsyslogd, 303
wc command, 88–89
we command, 84
Web server content, creating, 459–460
Welcome to Red Hat Enterprise Linux 9.0 screen, 11
which command, 31, 225
while loops, 432–434
whoami command, 126
wildcards, 61

in automount, 517–518
in regular expressions, 91

words, counting, 88–89
work zone (firewalld), 499
working modes, SELinux, 473–477
write permissions, 152–154

X

Xen virtual machine, 317

XFS file system, 328, 331–332, 362
xfs_admin command, 331–332, 334
xz utility, 74

Y

yottabytes (YB), 316
yumdownloader command, 225
yum-utils package, 225
yy command (vim), 39

Z

zettabytes (ZB), 316
zombies, 245–246, 247
zones, firewalld, 499

RHCSA Practice Exam C

General Notes

Here are some tips to ensure your exam starts with a clean
environment:

You do not need any external servers or resources.
Do not register or connect to any external repositories.
Install a new VM according to the instructions in each
practice exam.
No sample solutions are provided for these practice exams.
On the real exam, you need to be able to verify the solutions
for yourself as well.
You should be able to complete each exam within two hours.

After applying these tips, you’re ready to get started. Good luck!

1. Install a RHEL 9 virtual machine that meets the following
requirements:
1. 2 GB of RAM
2. 20 GB of disk space using default partitioning
3. One additional 20-GB disk that does not have any

partitions installed
4. Server with GUI installation pattern

2. Create user student with password password, and user root
with password password.

3. Configure your system to automatically mount the ISO of the
installation disk on the directory /repo. Configure your
system to remove this loop-mounted ISO as the only
repository that is used for installation. Do not register your
system with subscription-manager, and remove all
references to external repositories that may already exist.

4. Reboot your server. Assume that you don’t know the root
password, and use the appropriate mode to enter a root shell
that doesn’t require a password. Set the root password to
mypassword.

5. Set default values for new users. Make sure that any new
user password has a length of at least six characters and
must be used for at least three days before it can be reset.

6. Create users linda and anna and make them members of the
group sales as a secondary group membership. Also, create
users serene and alex and make them members of the group
account as a secondary group.

7. Configure an SSH server that meets the following
requirements:
1. User root is allowed to connect through SSH.
2. The server offers services on port 2022.

8. Create shared group directories /groups/sales and
/groups/account, and make sure these groups meet the
following requirements:
1. Members of the group sales have full access to their

directory.
2. Members of the group account have full access to their

directory.
3. Users have permissions to delete only their own files, but

Alex is the general manager, so user alex has access to
delete all users’ files.

9. Create a 4-GiB volume group, using a physical extent size of 2
MiB. In this volume group, create a 1-GiB logical volume with
the name myfiles, format it with the Ext3 file system, and
mount it persistently on /myfiles.

10. Create a group sysadmins. Make users linda and anna
members of this group and ensure that all members of this
group can run all administrative commands using sudo.

11. Optimize your server with the appropriate profile that
optimizes throughput.

12. Add a new disk to your virtual machine with a size of 10 GiB.
On this disk, create a LVM logical volume with a size of 5 GiB,
configure it as swap, and mount it persistently.

13. Create a directory /users/ and in this directory create the
directories user1 through user5 using one command.

14. Configure a web server to use the nondefault document root
/webfiles. In this directory, create a file index.html that has
the contents hello world and then test that it works.

15. Configure your system to automatically start a mariadb
container. This container should expose its services at port
3306 and use the directory /var/mariadb-container on the
host for persistent storage of files it writes to the /var
directory.

16. Configure your system such that the container created in step
15 is automatically started as a Systemd user container.

RHCSA Practice Exam D

General Notes

Here are some tips to ensure your exam starts with a clean
environment:

You do not need any external servers or resources.
Do not register or connect to any external repositories.
Install a new VM according to the instructions in each
practice exam.
No sample solutions are provided for these practice exams.
On the real exam, you need to be able to verify the solutions
for yourself as well.
You should be able to complete each exam within two hours.

After applying these tips, you’re ready to get started. Good luck!

1. Install a RHEL 9 virtual machine that meets the following
requirements:
1. 2 GB of RAM
2. 20 GB of disk space using default partitioning
3. One additional 20-GB disk that does not have any

partitions installed
4. Server with GUI installation pattern

2. Create user student with password password, and user root
with password password.

3. Configure your system to automatically mount the ISO of the
installation disk on the directory /repo. Configure your
system to remove this loop-mounted ISO as the only
repository that is used for installation. Do not register your
system with subscription-manager, and remove all
references to external repositories that may already exist.

4. Create a 500-MiB partition on your second hard disk, and
format it with the Ext4 file system. Mount it persistently on
the directory /mydata, using the label mydata.

5. Set default values for new users. A user should get a warning
three days before expiration of the current password. Also,
new passwords should have a maximum lifetime of 120 days.

6. Create users lori and laura and make them members of the
secondary group sales. Ensure that user lori uses UID 2000
and user laura uses UID 2001.

7. Create shared group directories /groups/sales and
/groups/data, and make sure the groups meet the following
requirements:
1. Members of the group sales have full access to their

directory.
2. Members of the group data have full access to their

directory.

3. Others has no access to any of the directories.
4. Alex is general manager, so user alex has read access to all

files in both directories and has permissions to delete all
files that are created in both directories.

8. Create a 1-GiB swap partition and mount it persistently.
9. Find all files that have the SUID permission set, and write the

result to the file /root/suidfiles.
10. Create a 1-GiB LVM volume group. In this volume group,

create a 512-MiB swap volume and mount it persistently.
11. Add a 10-GiB disk to your virtual machine. On this disk,

create a Stratis pool and volume. Use the name stratisvol for
the volume, and mount it persistently on the directory
/stratis.

12. Install an HTTP web server and configure it to listen on port
8080.

13. Create a configuration that allows user laura to run all
administrative commands using sudo.

14. Create a directory with the name /users and ensure it
contains the subdirectories linda and anna. Export this
directory by using an NFS server.

15. Create users linda and anna and set their home directories
to /home/users/linda and /home/users/anna. Make sure that
while these users access their home directory, autofs is used

to mount the NFS shares /users/linda and /users/anna from
the same server.

Appendix C

Memory Tables

Chapter 2

Table 2-2 Standard Input, Output, and Error Overview

Name
Default
Destination

Use in
Redirection

File Descriptor
Number

 Computer
keyboard

< (same as
0<)

0

 Computer
monitor

> (same as
1>)

1

STDERR 2> 2

Table 2-3 Common Bash Redirectors

Redirector Explanation

Redirector Explanation

(same as
1>)

Redirects STDOUT. If redirection is to a file,
the current contents of that file are
overwritten.

(same as
1>>)

Redirects STDOUT in append mode. If output
is written to a file, the output is appended to
that file.

 Redirects STDERR.

 Redirects STDERR to the same destination as
STDOUT. Notice that this has to be used in
combination with normal output redirection,
as in ls whuhiu > errout 2>&1.

(same as
0<)

Redirects STDIN.

Table 2-4 vim Essential Commands

vim
Command

Explanation
vim
Command

Explanation

 Switches from input mode to command mode.
Press this key before typing any command.

 Switches from command mode to input mode
at (i) or after (a) the current cursor position.

 Opens a new line below the current cursor
position and goes to input mode.

 Writes the current file and quits.

 Quits the file without applying any changes.
The ! forces the command to do its work. Add
the ! only if you really know what you are
doing.

 Writes the current file with a new filename.

 Deletes the current line and places the
contents of the deleted line into memory.

vim
Command

Explanation

 Copies the current line.

 Pastes the contents that have been cut or
copied into memory.

 Enters visual mode, which allows you to
select a block of text using the arrow keys. Use
d to cut the selection or y to copy it.

 Undoes the last command. Repeat as often as
necessary.

 Redoes the last undo. (Cannot be repeated
more than once.)

 Goes to the first line in the document.

 Goes to the last line in the document.

vim
Command

Explanation

 Searches for text from the current cursor
position forward.

 Searches for text from the current cursor
position backward.

 Goes to the first position in the current line.

 Goes to the last position in the current line.

 Adds the output of ls (or any other command)
in the current file.

 Replaces all occurrences of old with new.

Chapter 3

Table 3-2 FHS Overview

Directory Use

Directory Use

/

/boot

/dev

/etc

/home

/media, /mnt

/opt

/proc

/root

/run

/srv

Directory Use

/sys

/tmp

/usr

/var

Chapter 4

Table 4-2 Essential Tools for Managing Text File Contents

Command Explanation

 Opens the text file in a pager, which allows for
easy reading

 Dumps the contents of the text file on the
screen

 Shows the top of the text file

Command Explanation

 Shows the bottom of the text file

 Used to filter specific columns or characters
from a text file

 Sorts the contents of a text file

 Counts the number of lines, words, and
characters in a text file

Table 4-3 Most Significant Regular Expressions

Regular
Expression

Use

 Matches line that starts with specified text.

 Matches line that ends with specified text.

 Wildcard. (Matches any single character.)

Regular
Expression

Use

 Matches a, b, or c.

 Extended regular expression that matches
zero or one of the preceding character.

 Extended regular expression that matches
one or more of the preceding character.

 Matches zero to an infinite number of the
previous character.

 Matches exactly two of the previous
character.

 Matches a minimum of one and a maximum
of three of the previous character.

Regular
Expression

Use

 Matches zero or one of the previous
character. This makes the previous character
optional, which in this example would match
both color and colour.

 Used to group multiple characters so that the
regular expression can be applied to the
group.

Table 4-4 Most Useful grep Options

Option Use

 Matches upper- and lowercase letters (i.e., not
case sensitive).

 Shows only lines that do not contain the regular
expression.

Option Use

 Searches files in the current directory and all
subdirectories.

 Searches for lines matching more than one
regular expression. Use -e before each regular
expression you want to use.

 Interprets the search pattern as an extended
regular expression.

 Shows <number> of lines after the matching
regular expression.

 Shows <number> of lines before the matching
regular expression.

Chapter 5

Table 5-2 Common ssh Options

Option Use

Option Use

 Verbose; shows in detail what is happening while
establishing the connection

 Enables support for graphical applications

 Used to connect to an SSH service that is not
listening on the default port 22

Table 5-3 Common rsync Options

Option Use

 Synchronizes the entire directory tree

 Copies symbolic links as symbolic links

 Preserves permissions

 Performs only a dry run, not actually
synchronizing anything

Option Use

 Uses archive mode, thus ensuring that entire
subdirectory trees and all file properties will be
synchronized

 Uses archive mode, and in addition synchronizes
ACLs

 Synchronizes SELinux context as well

Chapter 6

Table 6-2 Methods to Run Tasks with Elevated Permissions

Method Description

 Opens a subshell as a different user, with the
advantage that commands are executed as root
only in the subshell

 Allows authorized users to work with
administrator privileges

Method Description

 Enables you to set up graphical utilities to run
with administrative privileges

Chapter 7

Table 7-2 Use of Read, Write, and Execute Permissions

Permission Applied to Files Applied to Directories

Read

Write

Execute

Table 7-3 Numeric Representation of Permissions

Permission Numeric Representation

Read

Permission Numeric Representation

Write

Execute

Table 7-4 Working with SUID, SGID, and Sticky Bit

Permission
Numeric
Value

Relative
Value

On Files
On
Directo

SUID User
executes
file with
permissions
of file
owner.

No
meanin

Permission
Numeric
Value

Relative
Value

On Files
On
Directo

SGID User
executes
file with
permissions
of group
owner.

Files
created
director
get the
same
group
owner.

Sticky bit No
meaning.

Prevent
users fr
deleting
files fro
other
users.

Table 7-5 umask Values and Their Result

Value Applied to Files Applied to Directories

0 Everything

Value Applied to Files Applied to Directories

1 Read and write

2 Read

3 Read

4 Write

5 Write

6 Nothing

7 Nothing

Chapter 8

Table 8-2 Binary-Decimal Conversion Overview

Binary Value Decimal Value

 0

Binary Value Decimal Value

 32

 64

 96

 128

 160

 192

 224

Chapter 9

Table 9-2 Key Options in .repo Files

Option Explanation

Option Explanation

 Contains the label used as an identifier in the
repository file.

 Mandatory option that specifies the name of the
repository.

 Optional parameter that refers to a URL where
information about mirror servers for this server
can be obtained. Typically used for big online
repositories only.

 Mandatory option that refers to the base URL
where the RPM packages are found.

 Set to 1 if a GNU Privacy Guard (GPG) integrity
check needs to be performed on the packages. If
set to 1, a GPG key is required.

 Specifies the location of the GPG key that is used
to check package integrity.

Table 9-3 Common dnf Tasks

Task Explanation

 Search packages for a string that occurs in the
package name or summary.

 Search packages for a string that occurs in the
package name, summary, or description.

 Perform a deep search in the package to look for
specific files within the package.

 Provide more information about the package.

 Install the package.

 Remove the package.

 List all or installed packages.

 List package groups.

 Install all packages from a group.

 Update packages specified.

Task Explanation

 Remove all stored metadata.

Table 9-4 dnf Module Terminology

Item Explanation

 The default package format. Contains files, as well
as metadata that describes how to install the files.
Optionally may contain pre- and post-installation
scripts as well.

 A delivery mechanism to install RPM packages. In a
module, different versions and profiles can be
provided.

 A specific version of the module.

 A collection of packages that are installed together
for a particular use case.

Table 9-5 Common RPM Query Commands

Command DescriptionCommand Description

 Uses a filename as its argument to find the
specific RPM package a file belongs to.

 Uses the RPM database to provide a list of files
in the RPM package.

 Uses the RPM database to provide package
information (equivalent to yum info).

 Uses the RPM database to show all
documentation that is available in the
package.

 Uses the RPM database to show all
configuration files that are available in the
package.

 Uses the RPM database to show scripts that
are used in the package. This is particularly
useful if combined with the -p option.

Command Description

 The -p option is used with all the previously
listed options to query individual RPM
package files instead of the RPM package
database. Using this option before installation
helps you find out what is actually in the
package before it is installed.

 Shows dependencies for a specific package.

 Shows which parts of a specific package have
been changed since installation.

 Verifies all installed packages and shows
which parts of the package have been
changed since installation. This is an easy and
convenient way to do a package integrity
check.

 Lists all packages that are installed on this
server.

Chapter 10

Table 10-2 Job Management Overview

Command Use

 Starts the command immediately in the
background.

 Stops the job temporarily so that it can be
managed. For instance, it can be moved to the
background.

 Sends the EOF character to the current job to
indicate that it should stop waiting for further
input.

 Can be used to cancel the current interactive
job.

 Continues the job that has just been frozen
using Ctrl-Z in the background.

Command Use

 Brings back to the foreground the last job that
was moved to background execution.

 Shows which jobs are currently running from
this shell. Displays job numbers that can be
used as an argument to the commands bg and
fg.

Table 10-3 Linux Process States Overview

State Meaning

 The process is currently active and using CPU time,
or in the queue of runnable processes waiting to
get services.

 The process is waiting for an event to complete.

 The process is in a sleep state that cannot be
stopped. This usually happens while a process is
waiting for I/O.

State Meaning

 The process has been stopped, which typically has
happened to an interactive shell process, using the
Ctrl-Z key sequence.

 The process has been stopped but could not be
removed by its parent, which has put it in an
unmanageable state.

Table 10-4 tuned Profile Overview

Profile Use

 The best compromise between power usage and
performance

 Based on the balanced profile, but tuned for
better response to interactive applications

 Tuned for maximum throughput

Profile Use

 Based on latency-performance, but with
additional options to reduce network latency

 Based on throughput-performance, optimizes
older CPUs for streaming content

 Tunes for maximum power saving

 Tunes for maximum throughput

 Optimizes Linux for running as a virtual machine

 Optimizes Linux for use as a KVM host

Chapter 11

Table 11-2 Systemd Status Overview

Status Description

Status Description

 The unit file has been processed and the unit is
active.

 The unit is running with one or more active
processes.

 The unit has successfully completed a one-time
run.

 The unit is running and waiting for an event.

 The unit is not running.

 The unit will be started at boot time.

 The unit will not be started at boot time.

 The unit cannot be enabled but may be started by
another unit automatically.

Table 11-3 systemctl Unit Overview Commands

Command DescriptionCommand Description

 Shows only service units

 Shows all active service units (same result as
the previous command)

 Shows inactive service units as well as active
service units

 Shows all services that have failed

 Shows detailed status information about
services

Chapter 13

Table 13-2 System Log Files Overview

Log
File

Explanation

Log
File

Explanation

 This is the most commonly used log file; it is the
generic log file where most messages are written to.

 Contains kernel log messages.

 Contains authentication-related messages. Look here
to see which authentication errors have occurred on
a server.

 Contains messages that are related to system
startup.

 Contains audit messages. SELinux writes to this file.

 Contains mail-related messages.

 Contains log files that are written by the Apache web
server (if it is installed). Notice that Apache writes
messages to these files directly and not through
rsyslog.

Table 13-4 rsyslogd Facilities

Facility Used by

 Messages related to authentication.

 Messages generated by the crond service.

 Generic facility that can be used for nonspecified
daemons.

 Kernel messages.

 Messages generated through the legacy lpd print
system.

 Email-related messages.

 Special facility that can be used to write a
marker periodically.

 Messages generated by the NNTP news system.

Facility Used by

 Same as auth/authpriv. Should not be used
anymore.

 Messages generated by the syslog system.

 Messages generated in user space.

 Messages generated by the legacy UUCP system.

 Messages generated by services that are
configured by any of the local0 through local7
facilities.

Table 13-5 rsyslogd Priorities

Priority Description

 Debug messages that will give as much
information as possible about service operation.

Priority Description

 Informational messages about normal service
operation.

 Informational messages about items that might
become an issue later.

 Something is suboptimal, but there is no real
error yet.

 A noncritical error has occurred.

 A critical error has occurred.

 Message used when the availability of the
service is about to be discontinued.

 Message generated when the availability of the
service is discontinued.

Chapter 14

Table 14-3 Common Disk Device Types

Device
Name

Description

/dev/sda A hard disk that uses the SCSI driver. Used for
SCSI and SATA disk devices. Common on
physical servers but also in VMware virtual
machines.

 The first hard disk on an NVM Express (NVMe)
interface. NVMe is a server-grade method to
address advanced SSD devices. Note at the end
of the device name that the first disk in this case
is referred to as n1 instead of a (as is common
with the other types).

 The (legacy) IDE disk device type. You will
seldom see this device type on modern
computers.

 A disk in a KVM virtual machine that uses the
virtio disk driver. This is the common disk
device type for KVM virtual machines.

Device
Name

Description

 A disk in a Xen virtual machine that uses the
Xen virtual disk driver. You see this when
installing RHEL as a virtual machine in Xen
virtualization. RHEL 9 cannot be used as a Xen
hypervisor, but you might see RHEL 9 virtual
machines on top of the Xen hypervisor using
these disk types.

Table 14-4 File System Overview

File
System

Description

 The default file system in RHEL 9.

 The default file system in previous versions of
RHEL; still available and supported in RHEL 9.

 The previous version of Ext4. On RHEL 9, there is
no need to use Ext3 anymore.

File
System

Description

 A very basic file system that was developed in
the early 1990s. There is no need to use this file
system on RHEL 9 anymore.

 A relatively new file system that is not supported
in RHEL 9.

 A Windows-compatible file system that is not
supported on RHEL 9.

 A file system that offers compatibility with
Windows and macOS and is the functional
equivalent of the FAT32 file system. Useful on
USB thumb drives that exchange data with other
computers but not on a server’s hard disks.

Table 14-5 /etc/fstab Fields

Field Description

Field Description

 The device that must be mounted. A device name,
UUID, or label can be used.

 The directory or kernel interface where the device
needs to be mounted.

 The file system type.

 Mount options.

 Use 1 to enable support to back up using the dump
utility. This may be necessary for some backup
solutions.

 This field specifies whether the file system should
be checked automatically when booting. Use 0 to
disable automated check, 1 if this is the root file
system and it has to be checked automatically, and
2 for all other file systems that need automatic
checking while booting. Network file systems
should have this option set to 0.

Table 14-6 Common Mount Options

Option Use

 Mounts/does not mount the file system
automatically.

 Adds support for file system access control lists
(see Chapter 7, “Permissions Management”).

 Adds support for user-extended attributes (see
Chapter 7).

 Mounts the file system in read-only mode.

 Disables/enables access time modifications.

 Denies/allows execution of program files from the
file system.

Chapter 15

Table 15-2 LVM Management Essential Commands

Command ExplanationCommand Explanation

 Creates physical volumes

 Shows a summary of available physical
volumes

 Shows a list of physical volumes and their
properties

 Removes the physical volume signature from
a block device

 Creates volume groups

 Shows a summary of available volume groups

 Shows a detailed list of volume groups and
their properties

 Removes a volume group

 Creates logical volumes

Command Explanation

 Shows a summary of all available logical
volumes

 Shows a detailed list of available logical
volumes and their properties

 Removes a logical volume

Chapter 16

Table 16-2 Linux Kernel Module Management Overview

Command Use

 Lists currently loaded kernel modules

 Displays information about kernel modules

 Loads kernel modules, including all of their
dependencies

Command Use

 Unloads kernel modules, considering kernel
module dependencies

Chapter 18

Table 18-2 Boot Phase Configuration and Troubleshooting Overview

Boot
Phase

Configuring It Fixing It

 Hardware configuration (F2, Esc,
F10, or another key).

Replace
hardware.

 BIOS/UEFI configuration or
hardware boot menu.

Replace
hardware or us
rescue system.

Boot
Phase

Configuring It Fixing It

 grub2-install and edits to
/etc/defaults/grub.

Use the GRUB
boot prompt an
edits to
/etc/defaults/gru
followed by
grub2-mkconfi

 Edits to the GRUB configuration
and /etc/ dracut.conf.

Use the GRUB
boot prompt an
edits to
/etc/defaults/gru
followed by
grub2-mkconfi

 Compiled into initramfs. Use the init=
kernel boot
argument,
rd.break kerne
boot argument.

Boot
Phase

Configuring It Fixing It

 Compiled into initramfs. Use the dracut
command. (You
won’t often hav
to troubleshoot
this.)

 Edits to the /etc/fstab file. Apply edits to t
/etc/fstab file.

 Using systemctl set-default to
create the
/etc/systemd/system/default.target
symbolic link

Start the
rescue.target as
kernel boot
argument.

Chapter 20

Table 20-2 Most Useful sshd Configuration Options

Option Use

 Defines the TCP listening port.

Option Use

 Indicates whether to allow or disallow root login.

 Specifies the maximum number of authentication
tries. After reaching half of this number, failures
are logged to syslog.

 Indicates the maximum number of sessions that
can be open from one IP address.

 Specifies a space-separated list of users who are
allowed to connect to the server.

 Specifies whether to allow password
authentication. This option is on by default.

 Specifies whether or not to clean up inactive TCP
connections.

 Specifies the interval, in seconds, that packets are
sent to the client to figure out if the client is still
alive.

Option Use

 Specifies the number of client alive packets that
need to be sent.

 If on, uses DNS name lookup to match incoming
IP addresses to names.

 Specifies the interval, in seconds, that a client
sends a packet to a server to keep connections
alive.

 Specifies the maximum number of packets a
client sends to a server to keep connections alive.

Chapter 22

Table 22-2 SELinux Core Elements

Element Use

 A collection of rules that define which source
has access to which target.

Element Use

 The object that is trying to access a target.
Typically a user or a process.

 The thing that a source domain is trying to
access. Typically a file or a port.

 A security label that is used to categorize objects
in SELinux.

 A specific part of the policy that determines
which source domain has which access
permissions to which target domain.

 Also referred to as context label, defined to
determine which source domain has access to
which target domain.

Chapter 23

Table 23-2 Firewalld Default Zones

Zone
Name

Default Settings
Zone
Name

Default Settings

 Incoming network connections are rejected with
an “icmp-host-prohibited” message. Only network
connections that were initiated on this system are
allowed.

 For use on computers in the demilitarized zone.
Only selected incoming connections are accepted,
and limited access to the internal network is
allowed.

 Any incoming packets are dropped and there is no
reply.

 For use on external networks with masquerading
(Network Address Translation [NAT]) enabled,
used especially on routers. Only selected incoming
connections are accepted.

Zone
Name

Default Settings

 For use with home networks. Most computers on
the same network are trusted, and only selected
incoming connections are accepted.

 For use in internal networks. Most computers on
the same network are trusted, and only selected
incoming connections are accepted.

 For use in public areas. Other computers in the
same network are not trusted, and limited
connections are accepted. This is the default zone
for all newly created network interfaces.

 All network connections are accepted.

 For use in work areas. Most computers on the
same network are trusted, and only selected
incoming connections are accepted.

Table 23-3 Common firewall-cmd Options

firewall-
cmd
Option

Explanation

firewall-
cmd
Option

Explanation

 Lists all available zones

 Shows the zone currently set as the default
zone

 Changes the default zone

 Shows all available services

 Shows services currently in use

 Adds a service to the current default zone or
the zone that is specified

 Removes a service from the configuration

 Shows configuration for all zones

 Adds a port and protocol

firewall-
cmd
Option

Explanation

 Removes a port from the configuration

 Adds an interface to the default zone or a
specific zone that is specified

 Removes an interface from a specific zone

 Adds a specific IP address

 Removes an IP address from the
configuration

 Writes configuration to disk and not to
runtime

 Adds the current runtime configuration to
the permanent configuration

 Reloads the on-disk configuration

Chapter 25

Table 25-2 Understanding Linux Time

Concept Explanation

 The hardware clock that resides on the main
card of a computer system

 Same as the hardware clock

 The time that is maintained by the operating
system

 Similar to system time

 A worldwide standard time

 Calculation that is made to change time
automatically when DST changes occur

 The time that corresponds to the time in the
current time zone

Table 25-3 Commands Related to RHEL 9 Time Management

Command Short Description

 Manages local time

 Manages hardware time

 Developed to manage all aspects of time on
RHEL 9

Table 25-4 timedatectl Command Overview

Command Explanation

 Shows current time settings

 Sets the current time

 Sets the current time zone

 Shows a list of all time zones

Command Explanation

 Controls whether the RTC (hardware clock) is
in local time

 Controls whether NTP is enabled

Appendix D

Memory Tables Answer Key

Chapter 2

Table 2-2 Standard Input, Output, and Error Overview

Name
Default
Destination

Use in
Redirection

File Descriptor
Number

STDIN Computer
keyboard

< (same as
0<)

0

STDOUT Computer
monitor

> (same as
1>)

1

STDERR Computer
monitor

2> 2

Table 2-3 Common Bash Redirectors

Redirector Explanation

Redirector Explanation

> (same as
1>)

Redirects STDOUT. If redirection is to a file,
the current contents of that file are
overwritten.

>> (same
as 1>>)

Redirects STDOUT in append mode. If output
is written to a file, the output is appended to
that file.

2> Redirects STDERR.

2>&1 Redirects STDERR to the same destination as
STDOUT. Notice that this has to be used in
combination with normal output redirection,
as in ls whuhiu > errout 2>&1.

< (same as
0<)

Redirects STDIN.

Table 2-4 vim Essential Commands

vim
Command

Explanation
vim
Command

Explanation

Esc Switches from input mode to command
mode. Press this key before typing any
command.

i, a Switches from command mode to input
mode at (i) or after (a) the current cursor
position.

o Opens a new line below the current
cursor position and goes to input mode.

:wq Writes the current file and quits.

:q! Quits the file without applying any
changes. The ! forces the command to do
its work. Add the ! only if you really know
what you are doing.

:w filename Writes the current file with a new
filename.

vim
Command

Explanation

dd Deletes the current line.

yy Copies the current line.

p Pastes the contents that have been cut or
copied into memory.

v Enters visual mode, which allows you to
select a block of text using the arrow keys.
Use d to cut the selection or y to copy it.

u Undoes the last command. Repeat as often
as necessary.

Ctrl-r Redoes the last undo. (Cannot be repeated
more than once.)

gg Goes to the first line in the document.

G Goes to the last line in the document.

vim
Command

Explanation

/text Searches for text from the current cursor
position forward.

?text Searches for text from the current cursor
position backward.

^ Goes to the first position in the current
line.

$ Goes to the last position in the current
line.

!ls Adds the output of ls (or any other
command) in the current file.

:%s/old/new/g Replaces all occurrences of old with new.

Chapter 3

Table 3-2 FHS Overview

Directory UseDirectory Use

/ Specifies the root directory. This is where the
file system tree starts.

/boot Contains all files and directories that are
needed to boot the Linux kernel.

/dev Contains device files that are used for
accessing physical devices. This directory is
essential during boot.

/etc Contains configuration files that are used by
programs and services on your server. This
directory is essential during boot.

/home Used for local user home directories.

/media,
/mnt

Contain directories that are used for mounting
devices in the file system tree.

/opt Used for optional packages that may be
installed on your server.

Directory Use

/proc Used by the proc file system. This is a file
system structure that gives access to kernel
information.

/root Specifies the home directory of the root user.

/run Contains process and user-specific information
that has been created since the last boot.

/srv May be used for data by services like NFS, FTP,
and HTTP.

/sys Used as an interface to different hardware
devices that are managed by the Linux kernel
and associated processes.

/tmp Contains temporary files that may be deleted
without any warning during boot.

Directory Use

/usr Contains subdirectories with program files,
libraries for these program files, and
documentation about them.

/var Contains files that may change in size
dynamically, such as log files, mail boxes, and
spool files.

Chapter 4

Table 4-2 Essential Tools for Managing Text File Contents

Command Explanation

less Opens the text file in a pager, which allows for
easy reading

cat Dumps the contents of the text file on the
screen

head Shows the first ten lines of the text file

Command Explanation

tail Shows the last ten lines of the text file

cut Used to filter specific columns or characters
from a text file

sort Sorts the contents of a text file

wc Counts the number of lines, words, and
characters in a text file

Table 4-3 Most Significant Regular Expressions

Regular
Expression

Use

^text Matches line that starts with specified text.

text$ Matches line that ends with specified text.

. Wildcard. (Matches any single character.)

Regular
Expression

Use

[abc] Matches a, b, or c.

? Extended regular expression that matches
zero or one of the preceding character.

+ Extended regular expression that matches
one or more of the preceding character.

* Matches zero to an infinite number of the
previous character.

\{2\} Matches exactly two of the previous
character.

\{1,3\} Matches a minimum of one and a maximum
of three of the previous character.

Regular
Expression

Use

colou?r Matches zero or one of the previous
character. This makes the previous character
optional, which in this example would match
both color and colour.

(…) Used to group multiple characters so that the
regular expression can be applied to the
group.

Table 4-4 Most Useful grep Options

Option Use

-i Matches upper- and lowercase letters (i.e.,
not case sensitive).

-v Shows only lines that do not contain the
regular expression.

Option Use

-r Searches files in the current directory and all
subdirectories.

-e Searches for lines matching more than one
regular expression. Use -e before each
regular expression you want to use.

-E Interprets the search pattern as an extended
regular expression.

-A
<number>

Shows <number> of lines after the matching
regular expression.

-B
<number>

Shows <number> of lines before the
matching regular expression.

Chapter 5

Table 5-2 Common ssh Options

Option Use

Option Use

-v Verbose; shows in detail what is happening
while establishing the connection

-Y Enables support for graphical applications

-p
<PORT>

Used to connect to an SSH service that is not
listening on the default port 22

Table 5-3 Common rsync Options

Option Use

-r Synchronizes the entire directory tree

-l Copies symbolic links as symbolic links

-p Preserves permissions

-n Performs only a dry run, not actually
synchronizing anything

Option Use

-a Uses archive mode, thus ensuring that entire
subdirectory trees and all file properties will be
synchronized

-A Uses archive mode, and in addition synchronizes
ACLs

-X Synchronizes SELinux context as well

Chapter 6

Table 6-2 Methods to Run Tasks with Elevated Permissions

Method Description

su Opens a subshell as a different user, with the
advantage that commands are executed as root
only in the subshell

sudo Allows authorized users to work with
administrator privileges

Method Description

PolicyKit Enables you to set up graphical utilities to run
with administrative privileges

Chapter 7

Table 7-2 Use of Read, Write, and Execute Permissions

Permission Applied to Files
Applied to
Directories

Read View file content List contents of
directory

Write Change contents of
a file

Create and delete
files

Execute Run a program file Change to the
directory

Table 7-3 Numeric Representation of Permissions

Permission Numeric RepresentationPermission Numeric Representation

Read 4

Write 2

Execute 1

Table 7-4 Working with SUID, SGID, and Sticky Bit

Permission
Numeric
Value

Relative
Value

On Files
On
Directo

SUID 4 u+s User
executes
file with
permissions
of file
owner.

No
meanin

Permission
Numeric
Value

Relative
Value

On Files
On
Directo

SGID 2 g+s User
executes
file with
permissions
of group
owner.

Files
created
director
get the
same
group
owner.

Sticky bit 1 +t No
meaning.

Prevent
users fr
deleting
files fro
other
users.

Table 7-5 umask Values and Their Result

Value Applied to Files Applied to Directories

0 Read and write Everything

Value Applied to Files Applied to Directories

1 Read and write Read and write

2 Read Read and execute

3 Read Read

4 Write Write and execute

5 Write Write

6 Nothing Execute

7 Nothing Nothing

Chapter 8

Table 8-2 Binary-Decimal Conversion Overview

Binary Value Decimal Value

00000000 0

Binary Value Decimal Value

00100000 32

01000000 64

01100000 96

10000000 128

10100000 160

11000000 192

11100000 224

Chapter 9

Table 9-2 Key Options in .repo Files

Option Explanation

Option Explanation

[label] Contains the label used as an identifier in the
repository file.

name= Mandatory option that specifies the name of
the repository.

mirrorlist= Optional parameter that refers to a URL
where information about mirror servers for
this server can be obtained. Typically used
for big online repositories only.

baseurl= Mandatory option that refers to the base URL
where the RPM packages are found.

gpgcheck= Set to 1 if a GNU Privacy Guard (GPG)
integrity check needs to be performed on the
packages. If set to 1, a GPG key is required.

gpgkey= Specifies the location of the GPG key that is
used to check package integrity.

Table 9-3 Common dnf Tasks

Task Explanation

search Search packages for a string that occurs
in the package name or summary.

search all Search packages for a string that occurs
in the package name, summary, or
description.

[what]provides
*/name

Perform a deep search in the package to
look for specific files within the
package.

info Provide more information about the
package.

install Install the package.

remove Remove the package.

list [all |
installed]

List all or installed packages.

Task Explanation

group list List package groups.

group install Install all packages from a group.

update Update packages specified.

clean all Remove all stored metadata.

Table 9-4 dnf Module Terminology

Item Explanation

RPM The default package format. Contains files,
as well as metadata that describes how to
install the files. Optionally may contain pre-
and post-installation scripts as well.

Module A delivery mechanism to install RPM
packages. In a module, different versions
and profiles can be provided.

Item Explanation

Application
stream

A specific version of the module.

Profile A collection of packages that are installed
together for a particular use case.

Table 9-5 Common RPM Query Commands

Command Description

rpm -qf Uses a filename as its argument to find the
specific RPM package a file belongs to.

rpm -ql Uses the RPM database to provide a list of files
in the RPM package.

rpm -qi Uses the RPM database to provide package
information (equivalent to yum info).

Command Description

rpm -qd Uses the RPM database to show all
documentation that is available in the
package.

rpm -qc Uses the RPM database to show all
configuration files that are available in the
package.

rpm -q --
scripts

Uses the RPM database to show scripts that
are used in the package. This is particularly
useful if combined with the -p option.

rpm -qp
<pkg>

The -p option is used with all the previously
listed options to query individual RPM
package files instead of the RPM package
database. Using this option before installation
helps you find out what is actually in the
package before it is installed.

rpm -qR Shows dependencies for a specific package.

Command Description

rpm -V Shows which parts of a specific package have
been changed since installation.

rpm -Va Verifies all installed packages and shows
which parts of the package have been
changed since installation. This is an easy and
convenient way to do a package integrity
check.

rpm -qa Lists all packages that are installed on this
server.

Chapter 10

Table 10-2 Job Management Overview

Command Use

Command Use

& (used at
the end of
a
command
line)

Starts the command immediately in the
background.

Ctrl-Z Stops the job temporarily so that it can be
managed. For instance, it can be moved to the
background.

Ctrl-D Sends the EOF character to the current job to
indicate that it should stop waiting for
further input.

Ctrl-C Can be used to cancel the current interactive
job.

bg Continues the job that has just been frozen
using Ctrl-Z in the background.

Command Use

fg Brings back to the foreground the last job that
was moved to background execution.

jobs Shows which jobs are currently running from
this shell. Displays job numbers that can be
used as an argument to the commands bg
and fg.

Table 10-3 Linux Process States Overview

State Meaning

Running (R) The process is currently active and using
CPU time, or in the queue of runnable
processes waiting to get services.

Sleeping (S) The process is waiting for an event to
complete.

State Meaning

Uninterruptible
sleep (D)

The process is in a sleep state that
cannot be stopped. This usually happens
while a process is waiting for I/O.

Stopped (T) The process has been stopped, which
typically has happened to an interactive
shell process, using the Ctrl-Z key
sequence.

Zombie (Z) The process has been stopped but could
not be removed by its parent, which has
put it in an unmanageable state.

Table 10-4 tuned Profile Overview

Profile Use

balanced The best compromise between power
usage and performance

Profile Use

desktop Based on the balanced profile, but tuned
for better response to interactive
applications

latency-
performance

Tuned for maximum throughput

network-
latency

Based on latency-performance, but with
additional options to reduce network
latency

network-
throughput

Based on throughput-performance,
optimizes older CPUs for streaming
content

powersave Tunes for maximum power saving

throughput-
performance

Tunes for maximum throughput

Profile Use

virtual-guest Optimizes Linux for running as a virtual
machine

virtual-host Optimizes Linux for use as a KVM host

Chapter 11

Table 11-2 Systemd Status Overview

Status Description

Loaded The unit file has been processed and the
unit is active.

Active(running) The unit is running with one or more
active processes.

Active(exited) The unit has successfully completed a
one-time run.

Status Description

Active(waiting) The unit is running and waiting for an
event.

Inactive(dead) The unit is not running.

Enabled The unit will be started at boot time.

Disabled The unit will not be started at boot time.

Static The unit cannot be enabled but may be
started by another unit automatically.

Table 11-3 systemctl Unit Overview Commands

Command Description

systemctl -t
service

Shows only service units

systemctl list-
units -t service

Shows all active service units (same
result as the previous command)

Command Description

systemctl list-
units -t service --
all

Shows inactive service units as well
as active service units

systemctl --failed
-t service

Shows all services that have failed

systemctl status -
l your.service

Shows detailed status information
about services

Chapter 13

Table 13-2 System Log Files Overview

Log File Explanation

/var/log/messages This is the most commonly used
log file; it is the generic log file
where most messages are written
to.

Log File Explanation

/var/log/dmesg Contains kernel log messages.

/var/log/secure Contains authentication-related
messages. Look here to see which
authentication errors have
occurred on a server.

/var/log/boot.log Contains messages that are
related to system startup.

/var/log/audit/audit.log Contains audit messages. SELinux
writes to this file.

/var/log/maillog Contains mail-related messages.

/var/log/httpd/ Contains log files that are written
by the Apache web server (if it is
installed). Notice that Apache
writes messages to these files
directly and not through rsyslog.

Table 13-4 rsyslogd Facilities

Facility Used by

auth /
authpriv

Messages related to authentication.

cron Messages generated by the crond service.

daemon Generic facility that can be used for
nonspecified daemons.

kern Kernel messages.

lpr Messages generated through the legacy lpd
print system.

mail Email-related messages.

mark Special facility that can be used to write a
marker periodically.

news Messages generated by the NNTP news system.

Facility Used by

security Same as auth/authpriv. Should not be used
anymore.

syslog Messages generated by the syslog system.

user Messages generated in user space.

uucp Messages generated by the legacy UUCP system.

local0-7 Messages generated by services that are
configured by any of the local0 through local7
facilities.

Table 13-5 rsyslogd Priorities

Priority Description

debug Debug messages that will give as much
information as possible about service
operation.

Priority Description

info Informational messages about normal service
operation.

notice Informational messages about items that might
become an issue later.

warning
(warn)

Something is suboptimal, but there is no real
error yet.

err
(error)

A noncritical error has occurred.

crit A critical error has occurred.

alert Message used when the availability of the
service is about to be discontinued.

emerg
(panic)

Message generated when the availability of the
service is discontinued.

Chapter 14

Table 14-3 Common Disk Device Types

Device Name Description

/dev/sda A hard disk that uses the SCSI driver. Used
for SCSI and SATA disk devices. Common
on physical servers but also in VMware
virtual machines.

/dev/nvme0n1 The first hard disk on an NVM Express
(NVMe) interface. NVMe is a server-grade
method to address advanced SSD devices.
Note at the end of the device name that
the first disk in this case is referred to as
n1 instead of a (as is common with the
other types).

/dev/hda The (legacy) IDE disk device type. You will
seldom see this device type on modern
computers.

Device Name Description

/dev/vda A disk in a KVM virtual machine that uses
the virtio disk driver. This is the common
disk device type for KVM virtual
machines.

/dev/xvda A disk in a Xen virtual machine that uses
the Xen virtual disk driver. You see this
when installing RHEL as a virtual
machine in Xen virtualization. RHEL 9
cannot be used as a Xen hypervisor, but
you might see RHEL 9 virtual machines on
top of the Xen hypervisor using these disk
types.

Table 14-4 File System Overview

File
System

Description

XFS The default file system in RHEL 9.

File
System

Description

Ext4 The default file system in previous versions of
RHEL; still available and supported in RHEL 9.

Ext3 The previous version of Ext4. On RHEL 9, there is
no need to use Ext3 anymore.

Ext2 A very basic file system that was developed in
the early 1990s. There is no need to use this file
system on RHEL 9 anymore.

BtrFS A relatively new file system that is not supported
in RHEL 9.

NTFS A Windows-compatible file system that is not
supported on RHEL 9.

File
System

Description

VFAT A file system that offers compatibility with
Windows and macOS and is the functional
equivalent of the FAT32 file system. Useful on
USB thumb drives that exchange data with other
computers but not on a server’s hard disks.

Table 14-5 /etc/fstab Fields

Field Description

Device The device that must be mounted. A device
name, UUID, or label can be used.

Mount
Point

The directory or kernel interface where the
device needs to be mounted.

File
System

The file system type.

Field Description

Mount
Options

Mount options.

Dump
Support

Use 1 to enable support to back up using the
dump utility. This may be necessary for some
backup solutions.

Automatic
Check

This field specifies whether the file system
should be checked automatically when
booting. Use 0 to disable automated check, 1 if
this is the root file system and it has to be
checked automatically, and 2 for all other file
systems that need automatic checking while
booting. Network file systems should have
this option set to 0.

Table 14-6 Common Mount Options

Option Use

Option Use

auto /
noauto

Mounts/does not mount the file system
automatically.

acl Adds support for file system access control
lists (see Chapter 7, “Permissions
Management”).

user_xattr Adds support for user-extended attributes
(see Chapter 7).

ro Mounts the file system in read-only mode.

atime /
noatime

Disables/enables access time modifications.

noexec /
exec

Denies/allows execution of program files
from the file system.

Chapter 15

Table 15-2 LVM Management Essential Commands

Command ExplanationCommand Explanation

pvcreate Creates physical volumes

pvs Shows a summary of available physical
volumes

pvdisplay Shows a list of physical volumes and their
properties

pvremove Removes the physical volume signature from
a block device

vgcreate Creates volume groups

vgs Shows a summary of available volume
groups

vgdisplay Shows a detailed list of volume groups and
their properties

vgremove Removes a volume group

Command Explanation

lvcreate Creates logical volumes

lvs Shows a summary of all available logical
volumes

lvdisplay Shows a detailed list of available logical
volumes and their properties

lvremove Removes a logical volume

Chapter 16

Table 16-2 Linux Kernel Module Management Overview

Command Use

lsmod Lists currently loaded kernel modules

modinfo Displays information about kernel modules

Command Use

modprobe Loads kernel modules, including all of their
dependencies

modprobe
-r

Unloads kernel modules, considering kernel
module dependencies

Chapter 18

Table 18-2 Boot Phase Configuration and Troubleshooting Overview

Boot Phase Configuring It Fixing It

POST Hardware configuration (F2, Esc,
F10, or another key).

Replace
hardwar

Selecting
the
bootable
device

BIOS/UEFI configuration or
hardware boot menu.

Replace
hardwar
rescue sy

Boot Phase Configuring It Fixing It
Loading the
boot loader

grub2-install and edits to
/etc/defaults/grub.

Use the G
boot prom
edits to
/etc/defau
followed
grub2-m

Loading the
kernel

Edits to the GRUB configuration
and /etc/ dracut.conf.

Use the G
boot prom
edits to
/etc/defau
followed
grub2-m

Starting
/sbin/init

Compiled into initramfs. Use the in
kernel bo
argumen
rd.break
boot argu

Boot Phase Configuring It Fixing It
Processing
initrd.target

Compiled into initramfs. Use the d
comman
won’t oft
to troubl
this.)

Switch to
the root file
system

Edits to the /etc/fstab file. Apply ed
/etc/fstab

Running
the default
target

Using systemctl set-default to
create the
/etc/systemd/system/default.target
symbolic link

Start the
rescue.ta
kernel bo
argumen

Chapter 20

Table 20-2 Most Useful sshd Configuration Options

Option Use

Port Defines the TCP listening port.

Option Use

PermitRootLogin Indicates whether to allow or
disallow root login.

MaxAuthTries Specifies the maximum number
of authentication tries. After
reaching half of this number,
failures are logged to syslog.

MaxSessions Indicates the maximum
number of sessions that can be
open from one IP address.

AllowUsers Specifies a space-separated list
of users who are allowed to
connect to the server.

PasswordAuthentication Specifies whether to allow
password authentication. This
option is on by default.

Option Use

TCPKeepAlive Specifies whether or not to
clean up inactive TCP
connections.

ClientAliveInterval Specifies the interval, in
seconds, that packets are sent
to the client to figure out if the
client is still alive.

ClientAliveCountMax Specifies the number of client
alive packets that need to be
sent.

UseDNS If on, uses DNS name lookup to
match incoming IP addresses to
names.

ServerAliveInterval Specifies the interval, in
seconds, that a client sends a
packet to a server to keep
connections alive.

Option Use

ServerAliveCountMax Specifies the maximum number
of packets a client sends to a
server to keep connections
alive.

Chapter 22

Table 22-2 SELinux Core Elements

Element Use

Policy A collection of rules that define which source
has access to which target.

Source
domain

The object that is trying to access a target.
Typically a user or a process.

Target
domain

The thing that a source domain is trying to
access. Typically a file or a port.

Element Use

Context A security label that is used to categorize objects
in SELinux.

Rule A specific part of the policy that determines
which source domain has which access
permissions to which target domain.

label Also referred to as context label, defined to
determine which source domain has access to
which target domain.

Chapter 23

Table 23-2 Firewalld Default Zones

Zone
Name

Default Settings

Zone
Name

Default Settings

block Incoming network connections are rejected
with an “icmp-host-prohibited” message. Only
network connections that were initiated on this
system are allowed.

dmz For use on computers in the demilitarized zone.
Only selected incoming connections are
accepted, and limited access to the internal
network is allowed.

drop Any incoming packets are dropped and there is
no reply.

external For use on external networks with
masquerading (Network Address Translation
[NAT]) enabled, used especially on routers. Only
selected incoming connections are accepted.

Zone
Name

Default Settings

home For use with home networks. Most computers
on the same network are trusted, and only
selected incoming connections are accepted.

internal For use in internal networks. Most computers
on the same network are trusted, and only
selected incoming connections are accepted.

public For use in public areas. Other computers in the
same network are not trusted, and limited
connections are accepted. This is the default
zone for all newly created network interfaces.

trusted All network connections are accepted.

work For use in work areas. Most computers on the
same network are trusted, and only selected
incoming connections are accepted.

Table 23-3 Common firewall-cmd Options

firewall-cmd Option Explanationfirewall-cmd Option Explanation

--get-zones Lists all available zones

--get-default-zone Shows the zone currently set
as the default zone

--set-default-zone=
<ZONE>

Changes the default zone

--get-services Shows all available services

--list-services Shows services currently in
use

--add-service=<service-
name> [--zone=<ZONE>]

Adds a service to the current
default zone or the zone that is
specified

--remove-service=
<service-name>

Removes a service from the
configuration

firewall-cmd Option Explanation

--list-all-zones Shows configuration for all
zones

--add-port=
<port/protocol> [--
zone=<ZONE>]

Adds a port and protocol

--remove-port=
<port/protocol> [--
zone=<ZONE>]

Removes a port from the
configuration

--add-interface=
<INTERFACE> [--zone=
<ZONE>]

Adds an interface to the
default zone or a specific zone
that is specified

--remove-interface=
<INTERFACE> [--zone=
<ZONE>]

Removes an interface from a
specific zone

firewall-cmd Option Explanation

--add-source=
<ipaddress/netmask> [-
-zone=<ZONE>]

Adds a specific IP address

--remove-source=
<ipaddress/netmask> [-
-zone=<ZONE>]

Removes an IP address from
the configuration

--permanent Writes configuration to disk
and not to runtime

--runtime-to-permanent Adds the current runtime
configuration to the
permanent configuration

--reload Reloads the on-disk
configuration

Chapter 25

Table 25-2 Understanding Linux Time

Concept ExplanationConcept Explanation

Hardware clock The hardware clock that resides on the
main card of a computer system

Real-time clock Same as the hardware clock

System time The time that is maintained by the
operating system

Software clock Similar to system time

Coordinated
Universal Time
(UTC)

A worldwide standard time

Daylight saving
time

Calculation that is made to change time
automatically when DST changes occur

Local time The time that corresponds to the time in
the current time zone

Table 25-3 Commands Related to RHEL 9 Time Management

Command Short DescriptionCommand Short Description

date Manages local time

hwclock Manages hardware time

timedatectl Developed to manage all aspects of time on
RHEL 9

Table 25-4 timedatectl Command Overview

Command Explanation

status Shows the current time settings

set-time
TIME

Sets the current time

set-timezone
ZONE

Sets the current time zone

list-timezone Shows a list of all time zones

Command Explanation

set-local-rtc
[0|1]

Controls whether the RTC (hardware
clock) is in local time

set-ntp [0|1] Controls whether NTP is enabled

Appendix E Study Planner

Key:

Reading

Review

Element Task Goal
Date

First Date
Completed

Se
Da
Co
(O

Introduction Read
Introduction

1. Installing Red
Hat Enterprise
Linux

Read
Foundation
Topics

1. Installing Red
Hat Enterprise
Linux

Review Key
Topics using
the book or
companion

website

1. Installing Red
Hat Enterprise
Linux

Define Key
Terms using
the book or
companion
website

1. Installing Red
Hat Enterprise
Linux

Complete
the end-of-
chapter
lab(s) for
this chapter

1. Installing Red
Hat Enterprise

Linux

Repeat
DIKTA

questions
using the
book

2. Using
Essential Tools

Read
Foundation
Topics

i i

2. Using
Essential Tools

Review Key
Topics using
the book or
companion
website

2. Using
Essential Tools

Define Key
Terms using
the book or
companion
website

2. Using
Essential Tools

Complete all
memory
tables in
this chapter

using the
companion
website

2. Using
Essential Tools

Complete
the end-of-
chapter
lab(s) for

this chapter

2. Using
Essential Tools

Repeat
DIKTA
questions
using the
book or PTP
exam
engine

3. Essential File
Management
Tools

Read
Foundation
Topics

3. Essential File
Management

Tools

Review Key
Topics using

the book or
companion
website

3. Essential File
Management
Tools

Define Key
Terms using
the book or
companion

website

3. Essential File
Management
Tools

Complete all
memory
tables in
this chapter
using the
companion
website

3. Essential File
Management
Tools

Complete
the end-of-
chapter
lab(s) for
this chapter

3. Essential File
Management
Tools

Repeat
DIKTA
questions
using the
book

4. Working with
Text Files

Read
Foundation

Topics

4. Working with
Text Files

Review Key
Topics using
the book or
companion
website

4. Working with
Text Files

Define Key
Terms using
the book or
companion
website

4. Working with
Text Files

Complete all
memory

tables in
this chapter
using the
companion
website

4. Working with
Text Files

Complete
the end-of-

chapter
lab(s) for
this chapter

4. Working with
Text Files

Repeat
DIKTA
questions
using the
book

5. Connecting to
Red Hat
Enterprise
Linux 9

Read
Foundation
Topics

5. Connecting to

Red Hat
Enterprise
Linux 9

Review Key

Topics using
the book or
companion
website

5. Connecting to
Red Hat
Enterprise

Define Key
Terms using
the book or

Linux 9 companion
website

5. Connecting to
Red Hat
Enterprise
Linux 9

Complete all
memory
tables in
this chapter
using the
companion
website

5. Connecting to
Red Hat
Enterprise
Linux 9

Complete
the end-of-
chapter
lab(s) for
this chapter

5. Connecting to
Red Hat
Enterprise
Linux 9

Repeat
DIKTA
questions
using the
book

6. User and
Group

Read
Foundation

Management Topics

6. User and
Group
Management

Review Key
Topics using
the book or
companion
website

6. User and
Group
Management

Define Key
Terms using
the book or
companion
website

6. User and
Group

Management

Complete all
memory

tables in
this chapter
using the
companion
website

6. User and
Group

Complete
the end-of-

Management chapter
lab(s) for
this chapter

6. User and
Group
Management

Repeat
DIKTA
questions
using the
book

7. Permissions
Management

Read
Foundation
Topics

7. Permissions
Management

Review Key
Topics using

the book or
companion
website

7. Permissions
Management

Define Key
Terms using
the book or
companion

website

7. Permissions
Management

Complete all
memory
tables in
this chapter
using the
companion
website

7. Permissions
Management

Complete
the end-of-
chapter
lab(s) for
this chapter

7. Permissions
Management

Repeat
DIKTA
questions
using the
book

8. Configuring
Networking

Read
Foundation

Topics

8. Configuring
Networking

Review Key
Topics using
the book or
companion
website

8. Configuring
Networking

Define Key
Terms using
the book or
companion
website

8. Configuring
Networking

Complete all
memory

tables in
this chapter
using the
companion
website

8. Configuring
Networking

Complete
the end-of-

chapter
lab(s) for
this chapter

8. Configuring
Networking

Repeat
DIKTA
questions
using the
book

Part I.
Performing
Basic System
Management
Tasks

Complete all
exercises in
Part I
Review

9. Managing
Software

Read
Foundation
Topics

9. Managing
Software

Review Key
Topics using
the book or
companion

website

9. Managing
Software

Define Key
Terms using
the book or
companion
website

9. Managing
Software

Complete all
memory
tables in
this chapter
using the
companion
website

9. Managing
Software

Complete
the end-of-
chapter
lab(s) for
this chapter

9. Managing
Software

Repeat
DIKTA

questions
using the
book

10. Managing
Processes

Read
Foundation
Topics

10. Managing
Processes

Review Key
Topics using
the book or
companion
website

10. Managing
Processes

Define Key
Terms using

the book or
companion
website

10. Managing
Processes

Complete all
memory
tables in
this chapter

using the
companion
website

10. Managing
Processes

Complete
the end-of-
chapter
lab(s) for
this chapter

10. Managing
Processes

Repeat
DIKTA
questions
using the
book

11. Working
with Systemd

Read
Foundation
Topics

11. Working
with Systemd

Review Key
Topics using
the book or
companion

website

11. Working
with Systemd

Define Key
Terms using
the book or
companion
website

11. Working
with Systemd

Complete all
memory
tables in
this chapter
using the
companion
website

11. Working
with Systemd

Complete
the end-of-
chapter
lab(s) for
this chapter

11. Working
with Systemd

Repeat
DIKTA

questions
using the
book

12. Scheduling
Tasks

Read
Foundation
Topics

12. Scheduling
Tasks

Review Key
Topics using
the book or
companion
website

12. Scheduling
Tasks

Define Key
Terms using

the book or
companion
website

12. Scheduling
Tasks

Complete
the end-of-
chapter
lab(s) for

this chapter

12. Scheduling
Tasks

Repeat
DIKTA
questions
using the
book

13. Configuring
Logging

Read
Foundation
Topics

13. Configuring
Logging

Review Key
Topics using
the book or

companion
website

13. Configuring
Logging

Define Key
Terms using
the book or
companion
website

13. Configuring
Logging

Complete all
memory
tables and
practice
exercises in
this chapter
using the
companion
website

13. Configuring
Logging

Complete
the end-of-
chapter
lab(s) for
this chapter

13. Configuring
Logging

Repeat
DIKTA
questions
using the
book

14. Managing
Storage

Read
Foundation

Topics

14. Managing
Storage

Review Key
Topics using
the book or
companion
website

14. Managing
Storage

Define Key
Terms using
the book or
companion
website

14. Managing
Storage

Complete all
memory

tables and
practice
exercises in
this chapter
using the
companion
website

14. Managing
Storage

Complete
the end-of-
chapter
lab(s) for
this chapter

14. Managing
Storage

Repeat
DIKTA
questions
using the
book

15. Managing
Advanced
Storage

Read
Foundation
Topics

15. Managing
Advanced
Storage

Review Key
Topics using
the book or
companion
website

15. Managing
Advanced

Define Key
Terms using

Storage the book or
companion
website

15. Managing
Advanced
Storage

Complete all
memory
tables in
this chapter
using the
companion
website

15. Managing
Advanced
Storage

Complete
the end-of-
chapter

lab(s) for
this chapter

15. Managing
Advanced
Storage

Repeat
DIKTA
questions
using the
book

Part II.
Operating
Running
Systems

Complete all
exercises in
Part II
Review

16. Basic Kernel
Management

Read
Foundation
Topics

16. Basic Kernel
Management

Review Key
Topics using
the book or
companion
website

16. Basic Kernel
Management

Define Key
Terms using
the book or
companion
website

16. Basic Kernel
Management

Complete all
memory

tables in
this chapter
using the
companion
website

16. Basic Kernel
Management

Complete
the end-of-
chapter
lab(s) for
this chapter

16. Basic Kernel
Management

Repeat
DIKTA
questions

using the
book

17. Managing
and
Understanding
the Boot
Procedure

Read
Foundation
Topics

17. Managing
and
Understanding
the Boot
Procedure

Review Key
Topics using
the book or
companion
website

17. Managing
and
Understanding
the Boot
Procedure

Define Key
Terms using
the book or
companion
website

17. Managing
and
Understanding

the Boot
Procedure

Complete
the end-of-
chapter

lab(s) for
this chapter

17. Managing
and
Understanding
the Boot
Procedure

Repeat
DIKTA
questions
using the
book

18. Essential
Troubleshooting
Skills

Read
Foundation
Topics

18. Essential
Troubleshooting
Skills

Review Key
Topics using
the book or
companion
website

18. Essential
Troubleshooting
Skills

Define Key
Terms using
the book or
companion
website

18. Essential
Troubleshooting
Skills

Complete
the end-of-
chapter
lab(s) for
this chapter

18. Essential
Troubleshooting

Repeat
DIKTA

Skills questions
using the
book

19. An
Introduction to
Automation
with Bash Shell
Scripting

Read
Foundation
Topics

19. An
Introduction to
Automation
with Bash Shell
Scripting

Review Key
Topics using
the book or
companion
website

19. An
Introduction to
Automation
with Bash Shell
Scripting

Define Key
Terms using
the book or
companion
website

19. An
Introduction to

Complete
the end-of-

Automation
with Bash Shell
Scripting

chapter
lab(s) for
this chapter

19. An
Introduction to
Automation
with Bash Shell
Scripting

Repeat
DIKTA
questions
using the
book

Part III.
Performing
Advanced
System
Administration
Tasks

Complete all
exercises in
Part III
Review

20. Configuring
SSH

Read
Foundation
Topics

20. Configuring
SSH

Review Key
Topics using
the book or
companion

website

20. Configuring
SSH

Define Key
Terms using
the book or
companion
website

20. Configuring
SSH

Complete all
memory
tables in
this chapter
using the
companion
website

20. Configuring
SSH

Complete
the end-of-
chapter
lab(s) for
this chapter

20. Configuring
SSH

Repeat
DIKTA

questions
using the
book

21. Managing
Apache HTTP
Services

Read
Foundation
Topics

21. Managing
Apache HTTP
Services

Review Key
Topics using
the book or
companion
website

21. Managing
Apache HTTP

Services

Define Key
Terms using

the book or
companion
website

21. Managing
Apache HTTP
Services

Complete
the end-of-
chapter
lab(s) for

this chapter

21. Managing
Apache HTTP
Services

Repeat
DIKTA
questions
using the
book

22. Managing
SELinux

Read
Foundation
Topics

22. Managing
SELinux

Review Key
Topics using
the book or

companion
website

22. Managing
SELinux

Define Key
Terms using
the book or
companion
website

22. Managing
SELinux

Complete all
memory
tables and
practice
exercises in
this chapter
using the
companion
website

22. Managing
SELinux

Complete
the end-of-
chapter
lab(s) for
this chapter

22. Managing
SELinux

Repeat
DIKTA
questions
using the
book

23. Configuring
a Firewall

Read
Foundation

Topics

23. Configuring
a Firewall

Review Key
Topics using
the book or
companion
website

23. Configuring
a Firewall

Define Key
Terms using
the book or
companion
website

23. Configuring
a Firewall

Complete all
memory

tables in
this chapter
using the
companion
website

23. Configuring
a Firewall

Complete
the end-of-

chapter
lab(s) for
this chapter

23. Configuring
a Firewall

Repeat
DIKTA
questions
using the
book

24. Accessing
Network
Storage

Read
Foundation
Topics

24. Accessing
Network

Storage

Review Key
Topics using

the book or
companion
website

24. Accessing
Network
Storage

Define Key
Terms using
the book or
companion

website

24. Accessing
Network
Storage

Complete
the end-of-
chapter
lab(s) for
this chapter

24. Accessing
Network
Storage

Repeat
DIKTA
questions
using the
book

25. Configuring
Time Services

Read
Foundation

Topics

25. Configuring
Time Services

Review Key
Topics using
the book or
companion
website

fi i fi

25. Configuring
Time Services

Define Key
Terms using
the book or
companion
website

25. Configuring
Time Services

Complete all
memory
tables in
this chapter
using the
companion
website

25. Configuring
Time Services

Complete
the end-of-

chapter
lab(s) for
this chapter

25. Configuring
Time Services

Repeat
DIKTA
questions
using the

book

26. Managing
Containers

Read
Foundation
Topics

26. Managing
Containers

Review Key
Topics using
the book or
companion
website

26. Managing
Containers

Define Key
Terms using
the book or

companion
website

26. Managing
Containers

Complete
the end-of-
chapter
lab(s) for
this chapter

26. Managing
Containers

Repeat
DIKTA
questions
using the
book

Part IV.
Managing
Network
Services

Complete all
exercises in
Part IV
Review

27. Final
Preparation

Read
Chapter

27. Final

Preparation

Review all

Key Topics
in all
chapters or
in the Key
Topics app
using the
companion
website

27. Final
Preparation

Complete all
memory
tables from
Appendix C

27. Final
Preparation

Complete all
exercises in
all chapters

27. Final
Preparation

Complete all
labs in all
chapters

28. Theoretical
Pre-Assessment

Exam

Read
Chapter

28. Theoretical
Pre-Assessment
Exam

Take the
pre-
assessment
exam found
in the
chapter

Final Review Take
Practice
Exam A
found in the
book

Final Review Take
Practice
Exam B
found in the
book

Final Review Take
Practice
Exam C

found in the
book

Final Review Take
Practice
Exam D
found in the
book

Code Snippets

Many titles include programming code or configuration
examples. To optimize the presentation of these elements, view
the eBook in single-column, landscape mode and adjust the font
size to the smallest setting. In addition to presenting code and
configurations in the reflowable text format, we have included
images of the code that mimic the presentation found in the
print book; therefore, where the reflowable format may
compromise the presentation of the code listing, you will see a
“Click here to view code image” link. Click the link to view the
print-fidelity code image. To return to the previous page
viewed, click the Back button on your device or app.

	Cover Page
	About This eBook
	Title Page
	Copyright Page
	Pearson’s Commitment to Diversity, Equity, and Inclusion
	Contents at a Glance
	Table of Contents
	About the Author
	Acknowledgments
	About the Technical Reviewers
	We Want to Hear from You!
	Reader Services
	Introduction
	Goals and Methods
	Who Should Read This Book?
	How This Book Is Organized
	How to Use This Book
	Other Features
	Exam Objective to Chapter Mapping
	Where Are the Companion Content Files?
	Figure Credits

	Part I: Performing Basic System Management Tasks
	Chapter 1. Installing Red Hat Enterprise Linux
	“Do I Know This Already?” Quiz
	Foundation Topics
	Preparing to Install Red Hat Enterprise Linux
	Performing an Installation
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 1.1

	Chapter 2. Using Essential Tools
	“Do I Know This Already?” Quiz
	Foundation Topics
	Basic Shell Skills
	Editing Files with vim
	Understanding the Shell Environment
	Finding Help
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 2.1

	Chapter 3. Essential File Management Tools
	“Do I Know This Already?” Quiz
	Foundation Topics
	Working with the File System Hierarchy
	Managing Files
	Using Links
	Working with Archives and Compressed Files
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 3.1

	Chapter 4. Working with Text Files
	“Do I Know This Already?” Quiz
	Foundation Topics
	Using Common Text File–Related Tools
	A Primer to Using Regular Expressions
	Using grep to Analyze Text
	Working with Other Useful Text Processing Utilities
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 4.1

	Chapter 5. Connecting to Red Hat Enterprise Linux 9
	“Do I Know This Already?” Quiz
	Foundation Topics
	Working on Local Consoles
	Using SSH and Related Utilities
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	Review Questions
	End-of-Chapter Labs
	Lab 5.1
	Lab 5.2

	Chapter 6. User and Group Management
	“Do I Know This Already?” Quiz
	Foundation Topics
	Understanding Different User Types
	Creating and Managing User Accounts
	Creating and Managing Group Accounts
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	Review Questions
	End-of-Chapter Labs
	Lab 6.1
	Lab 6.2

	Chapter 7. Permissions Management
	“Do I Know This Already?” Quiz
	Foundation Topics
	Managing File Ownership
	Managing Basic Permissions
	Managing Advanced Permissions
	Setting Default Permissions with umask
	Working with User-Extended Attributes
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 7.1

	Chapter 8. Configuring Networking
	“Do I Know This Already?” Quiz
	Foundation Topics
	Networking Fundamentals
	Managing Network Addresses and Interfaces
	Validating Network Configuration
	Managing Network Configuration with nmtui and nmcli
	Setting Up Hostname and Name Resolution
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 8.1

	Part II: Operating Running Systems
	Chapter 9. Managing Software
	“Do I Know This Already?” Quiz
	Foundation Topics
	Managing Software Packages with dnf
	Using dnf
	Managing Package Modules
	Managing Software Packages with rpm
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	Review Questions
	End-of-Chapter Labs
	Lab 9.1

	Chapter 10. Managing Processes
	“Do I Know This Already?” Quiz
	Foundation Topics
	Introduction to Process Management
	Managing Shell Jobs
	Using Common Command-Line Tools for Process Management
	Using top to Manage Processes
	Using tuned to Optimize Performance
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 10.1

	Chapter 11. Working with Systemd
	“Do I Know This Already?” Quiz
	Foundation Topics
	Understanding Systemd
	Managing Units Through Systemd
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 11.1

	Chapter 12. Scheduling Tasks
	“Do I Know This Already?” Quiz
	Foundation Topics
	Understanding Task Scheduling Options in RHEL
	Using Systemd Timers
	Configuring cron to Automate Recurring Tasks
	Configuring at to Schedule Future Tasks
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 12.1

	Chapter 13. Configuring Logging
	“Do I Know This Already?” Quiz
	Foundation Topics
	Understanding System Logging
	Working with systemd-journald
	Configuring rsyslogd
	Rotating Log Files
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 13.1

	Chapter 14. Managing Storage
	“Do I Know This Already?” Quiz
	Foundation Topics
	Understanding MBR and GPT Partitions
	Managing Partitions and File Systems
	Mounting File Systems
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 14.1

	Chapter 15. Managing Advanced Storage
	“Do I Know This Already?” Quiz
	Foundation Topics
	Understanding LVM
	Creating LVM Logical Volumes
	Resizing LVM Logical Volumes
	Configuring Stratis
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	Review Questions
	End-of-Chapter Labs
	Lab 15.1
	Lab 15.2

	Part III: Performing Advanced System Administration Tasks
	Chapter 16. Basic Kernel Management
	“Do I Know This Already?” Quiz
	Foundation Topics
	Understanding the Role of the Linux Kernel
	Working with Kernel Modules
	Upgrading the Linux Kernel
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 16.1

	Chapter 17. Managing and Understanding the Boot Procedure
	“Do I Know This Already?” Quiz
	Foundation Topics
	Managing Systemd Targets
	Working with GRUB 2
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Define Key Terms
	Review Questions
	End-of-Chapter Labs
	Lab 17.1
	Lab 17.2

	Chapter 18. Essential Troubleshooting Skills
	“Do I Know This Already?” Quiz
	Foundation Topics
	Understanding the RHEL 9 Boot Procedure
	Passing Kernel Boot Arguments
	Using a Rescue Disk
	Fixing Common Issues
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 18.1

	Chapter 19. An Introduction to Automation with Bash Shell Scripting
	“Do I Know This Already?” Quiz
	Foundation Topics
	Understanding Shell Scripting Core Elements
	Using Variables and Input
	Using Conditional Loops
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 19.1

	Part IV: Managing Network Services
	Chapter 20. Configuring SSH
	“Do I Know This Already?” Quiz
	Foundation Topics
	Hardening the SSH Server
	Using Other Useful sshd Options
	Configuring Key-Based Authentication with Passphrases
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 20.1

	Chapter 21. Managing Apache HTTP Services
	“Do I Know This Already?” Quiz
	Foundation Topics
	Configuring a Basic Apache Server
	Understanding Apache Configuration Files
	Creating Apache Virtual Hosts
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 21.1

	Chapter 22. Managing SELinux
	“Do I Know This Already?” Quiz
	Foundation Topics
	Understanding SELinux Working Modes
	Understanding Context Settings and the Policy
	Restoring Default File Contexts
	Managing Port Access
	Using Boolean Settings to Modify SELinux Settings
	Diagnosing and Addressing SELinux Policy Violations
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 22.1

	Chapter 23. Configuring a Firewall
	“Do I Know This Already?” Quiz
	Foundation Topics
	Understanding Linux Firewalling
	Working with Firewalld
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 23.1

	Chapter 24. Accessing Network Storage
	“Do I Know This Already?” Quiz
	Foundation Topics
	Using NFS Services
	Mounting Remote File Systems Through fstab
	Using Automount to Mount Remote File Systems
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 24.1

	Chapter 25. Configuring Time Services
	“Do I Know This Already?” Quiz
	Foundation Topics
	Understanding Local Time
	Using Network Time Protocol
	Managing Time on Red Hat Enterprise Linux
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 25.1

	Chapter 26. Managing Containers
	“Do I Know This Already?” Quiz
	Foundation Topics
	Understanding Containers
	Running a Container
	Working with Container Images
	Managing Containers
	Managing Container Storage
	Running Containers as Systemd Services
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 26.1

	Chapter 27. Final Preparation
	General Tips

	Chapter 28. Theoretical Pre-Assessment Exam

	Part V: RHCSA 9 Practice Exams
	RHCSA Practice Exam A
	General Notes

	RHCSA Practice Exam B
	General Notes

	Appendix A: Answers to the “Do I Know This Already?” Quizzes and Review Questions
	Answers to the “Do I Know This Already?” Quizzes
	Answers to the Review Questions

	Appendix B: Red Hat RHCSA 9 Cert Guide: EX200 Exam Updates
	Always Get the Latest at the Book’s Product Page
	Technical Content

	Glossary
	Index
	RHCSA Practice Exam C
	General Notes

	RHCSA Practice Exam D
	General Notes

	Appendix C: Memory Tables
	Appendix D: Memory Tables Answer Key
	Appendix E: Study Planner
	Code Snippets

