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Big Data Analytics

Successfully navigating the data-driven economy presupposes a certain understanding of the
technologies and methods to gain insights from Big Data. This book aims to help data science
practitioners to successfully manage the transition to Big Data.

Building on familiar content from applied econometrics and business analytics, this book intro-
duces the reader to the basic concepts of Big Data Analytics. The focus of the book is on how
to productively apply econometric and machine learning techniques with large, complex data
sets, as well as on all the steps involved before analysing the data (data storage, data import, data
preparation). The book combines conceptual and theoretical material with the practical applica-
tion of the concepts using R and SQL. The reader will thus acquire the skills to analyse large data
sets, both locally and in the cloud. Various code examples and tutorials, focused on empirical
economic and business research, illustrate practical techniques to handle and analyse Big Data.

Key Features:

¢ Includes many code examples in R and SQL, with R/SQL scripts freely provided online.

e Extensive use of real datasets from empirical economic research and business analytics, with
data files freely provided online.

e Leads students and practitioners to think critically about where the bottlenecks are in practi-
cal data analysis tasks with large data sets, and how to address them.

The book is a valuable resource for data science practitioners, graduate students and researchers
who aim to gain insights from big data in the context of research questions in business, econom-
ics, and the social sciences.

Ulrich Matter is an Assistant Professor of Economics at the University of St.Gallen. His pri-
mary research interests lie at the intersection of data science, political economics, and media
economics. His teaching activities cover topics in data science, applied econometrics, and data
analytics. Before joining the University of St. Gallen, he was a Visiting Researcher at the Berk-
man Klein Center for Internet & Society at Harvard University and a postdoctoral researcher
and lecturer at the Faculty for Business and Economics, University of Basel.
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Preface

Background and goals of this book

In the past ten years, “Big Data” has been frequently referred to as the new “most
valuable” resource in highly developed economies, spurring the creation of new
goods and services across a range of sectors. Extracting knowledge from large
datasets is increasingly seen as a strategic asset for firms, governments, and NGOs.
In a similar vein, the increasing size of datasets in empirical economic research
(both in number of observations and number of variables) offers new opportuni-
ties and poses new challenges for economists and business leaders. To meet these
challenges, universities started adapting their curricula in traditional fields such
as economics, computer science, and statistics, as well as starting to offer new de-
grees in data analytics, data science, and data engineering.

However, in practice (both in academia and industry), there is frequently a gap be-
tween the assembled knowledge of how to formulate the relevant hypotheses and
devise the appropriate empirical strategy (the data analytics side) on one hand and
the collection and handling of large amounts of data to test these hypotheses, on
the other (the data engineering side). While large, specialized organizations like
Google and Amazon can afford to hire entire teams of specialists on either side, as
well as the crucially important liaisons between such teams, many small businesses
and academic research teams simply cannot. This is where this book comes into play.

The primary goal of this book is to help practitioners of data analytics and data
science apply their skills in a Big Data setting. By bridging the knowledge gap
between the data engineering and analytics sides, this book discusses tools and
techniques to allow data analytics and data science practitioners in academia and
industry to efficiently handle and analyze large amounts of data in their daily ana-
lytics work. In addition, the book aims to give decision makers in data teams and
liaisons between analytics teams and engineers a practical overview of helpful ap-
proaches towork on Big Data projects. Thus, for the data analytics and data science
practitioner in academia or industry, this book can well serve as an introduction
and handbook to practical issues of Big Data Analytics. Moreover, many parts of
this book originated from lecture materials and interactions with students in my
Big Data Analytics course for graduate students in economics at the University of
St.Gallen and the University of Lucerne. As such, this book, while not appearing in

xiii
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a classical textbook format, can well serve as a textbook in graduate courses on Big
Data Analytics in various degree programs.

A moving target

Big Data Analytics is considered a moving target due to the ever-increasing
amounts of data being generated and the rapid developments in software tools
and hardware devices used to analyze large datasets. For example, with the
recent advent of the Internet of Things (IoT) and the ever-growing number of
connected devices, more data is being generated than ever before. This data is
constantly changing and evolving, making it difficult to keep up with the latest
developments. Additionally, the software tools used to analyze large datasets are
constantly being updated and improved, making them more powerful and effi-
cient. As a result, practical Big Data Analytics is a constantly evolving field that
requires constant monitoring and updating in order to remain competitive. You
might thus be concerned that a couple of months after reading this book, the tech-
niques learned here might be already outdated.

So how can we deal with this situation? Some might suggest that the key is to stay
informed of the latest developments in the field, such as the new algorithms, lan-
guages, and tools that are being developed. Or, they might suggest that what is
important is to stay up to date on the latest trends in the industry, such as the use
of large language models (LLMs), as these technologies are becoming increasingly
important in the field. In this book, I take a complementary approach. Inspired by
the transferability of basic economics, I approach Big Data Analytics by focusing
on transferable knowledge and skills. This approach rests on two pillars:

1. First, the emphasis is on investing in a reasonable selection of software
tools and solutions that can assist in making the most of the data being
collected and analyzed, both now and in the future. This is reflected in
the selection of R (R Core Team, 2021) and SQL as the primary languages
in this book. While R is clearly one of the most widely used languages
in applied econometrics, business analytics, and many domains of data
science at the time of writing this book (and this may change in the fu-
ture), I am confident that learning R (and the related R packages) in the
Big Data context will be a highly transferable skill in the long run. I believe
this for two primary reasons: a) Recent years have shown that more spe-
cialized lower-level software for Big Data Analytics increasingly includes
easy-to-use high-level interfaces to R (the packages arrow and sparkiyr
discussed in this book are good examples for this development); b) even if
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the R-packages (or Ritself) discussed in this book will be outdated in a few
years, the way R is used as a high-level scripting language (connected to
lower-level software and cloud tools) will likely remain in a similar form
for many years to come. That is, this book does not simply suggest which
current R-package you should use to solve a given problem with a large
dataset. Instead, it gives you an idea of what the underlying problem is
allabout, why a specific R package or underlying specialized software like
Spark might be useful (and how it conceptually works), and how the cor-
responding package and problem are related to the available computing
resources. After reading this book, you will be well equipped to address
the same computational problems discussed in this book with another
language than R (such as Julia or Python) as your primary analytics tool.

2. Second, whendealing with large datasets, the emphasis should be on vari-
ous Big Data approaches, including a basic understanding of the relevant
hardware components (computing resources). Understanding why a task
takes so long to compute is not always (only) a matter of which software
tool you are using. If you understand why a task is difficult to perform
from a hardware standpoint, you will be able to transfer the techniques
introduced in this book’s R context to other computing environments rel-
atively easily.

The structure of the book discussed in the next subsection is aimed at strengthen-
ing these two pillars.

Content and organization of the book

Overall, this book introduces the reader to the fundamental concepts of Big Data
Analytics to gain insights from large datasets. Thereby, the book’s emphasis is
on the practical application of econometrics and business analytics, given large
datasets, as well as all of the steps involved before actually analyzing data (data
storage, data import, data preparation). The book combines theoretical and con-
ceptual material with practical applications of the concepts using R and SQL. As a
result, the reader will gain the fundamental knowledge required to analyze large
datasets both locally and in the cloud.

The practical problems associated with analyzing Big Data, as well as the corre-
sponding approaches to solving these problems, are generally presented in the
context of applied econometrics and business analytics settings throughout this
book. This means that I tend to concentrate on observational data, which is com-
mon in economics and business/management research. Furthermore, in terms of
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statistics/analytics techniques, this context necessitates a special emphasis on re-
gression analysis, as this is the most commonly used statistical tool in applied
econometrics. Finally, the context determines the scope of the examples and tu-
torials. Typically, the goal of a data science project in applied econometrics and
business analytics is not to deploy a machine learning model as part of an opera-
tional App or web application (asis often the case for many working in data science).
Instead, the goal of such projects is to gain insights into a specific economic/busi-
ness/management question in order to facilitate data-driven decisions or policy
recommendations. As a result, the output of such projects (as well as the tutorial-
s/examples in this book) is a set of statistics summarizing the quantitative insights
in away that could be displayed in a seminar/business presentation or an academic
paper/business report. Finally, the context will influence how code examples and
tutorials are structured. The code examples are typically used as part of an interac-
tive session or in the creation of short analytics scripts (and not the development
of larger applications).

The book is organized in four main parts. The first part introduces the reader to
the topic of Big Data Analytics from the perspective of a practitioner in empirical
economics and business research. It covers the differences between Big P and Big
N problems and shows avenues of how to practically address either.

The second part focuses on the tools and platforms to work with Big Data. This
part begins by introducing a set of software tools that will be used extensively
throughout the book: (advanced) R and SQL. It then discusses the conceptual foun-
dations of modern computing environments and how different hardware compo-
nents matter in practical local Big Data Analytics, as well as how virtual servers in
the cloud help to scale up and scale out analyses when local hardware lacks suffi-
cient computing resources.

The third part of this book expands on the first components of a data pipeline: data
collection and storage, data import/ingestion, data cleaning/transformation, data
aggregation, and exploratory data visualization (with a particular focus on Geo-
graphic Information Systems, GIS). The chapters in this part of the book discuss
fundamental concepts such as the split-apply-combine approach and demonstrate
how to use these concepts in practice when working with large datasets in R. Many
tutorials and code examples demonstrate how a specific task can be implemented
locally as well as in the cloud using comparatively simple tools.

Finally, the fourth part of the book covers a wide range of topics in modern ap-
plied econometrics in the context of Big Data, from simple regression estimation
and machine learning with Graphics Processing Units (GPUs) to running machine
learning pipelines and large-scale text analyses on a Spark cluster.
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Prerequisites and requirements

This book focuses heavily on R programming. The reader should be familiar with
R and fundamental programming concepts such as loops, control statements, and
functions (Appendix B provides additional material on specific R topics that are
particularly relevant in this book). Furthermore, the book assumes some knowl-
edge of undergraduate and basic graduate statistics/econometrics. R for Data Sci-
ence by Wickham and Grolemund (Wickham and Grolemund (2016); this is what
our undergraduate students use before taking my Big Data Analytics class), Mostly
Harmless Econometrics by Angrist and Pischke (Angrist and Pischke (2008)), and
Introduction to Econometrics by Stock and Watson (Stock and Watson (2003)) are
all good prep books. Regarding hardware and software requirements, you will gen-
erally get along just fine with an up-to-date R and RStudio installation. However,
given the nature of this book’s topics, some code examples and tutorials might re-
quire you to install additional software on your computer. In most of these cases,
this additional software is made to work on either Linux, Mac, or Windows ma-
chines. In some cases, though, I will point out that certain dependencies might
not work on a Windows machine. Generally, this book has been written on a Pop-
0OS/Ubuntu Linux (version 22.04) machine with R version 4.2.0 (or later) and RStu-
dio 2022.07.2 (or later). All examples (except for the GPU-based computing) have
also been successfully tested on a MacBook running on macOS 12.4 and the same
R and RStudio versions as above.

Code examples, data sets, and additional documentation

This book comes with several freely available online material. All of which is pro-
vided on the book’s GitHub repository: https://github.com/umatter/bigdata. The
README-file in the repository keeps an up-to-date list with links to R-scripts con-
taining the code examples shown in this book, to data sources and datasets used
in this book, as well as to additional files with instructions of how to install some
of the packages/software used in this book.

If you are interested in using this book as a text book in one of your courses, you
might want to have a look at the GitHub repository hosting my own teaching ma-
terial, including slides and additional code examples: https://github.com/uma
tter/bigdata-lecture. All of these materials are published under a CC BY-SA 2.0!

Thttps://creativecommons.org/licenses/by-sa/2.0/
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license. When using these materials, please take note of the corresponding terms:
https://creativecommons.org/licenses/by-sa/2.0/.

Thanks

Many thanks go to the students in my past Big Data Analytics classes. Their interest
and engagement with the topic, as well as their many great analytics projects, were
an important source of motivation to start this book project. I'd also like to thank
Lara Spieker, Statistics and Data Science Editor at Chapman & Hall, who was very
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Setting the Scene: Analyzing Big Data
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Introduction

“Lost in the hoopla about such [Hadoop MapReduce] skills is the embarrassing fact
that once upon a time, one could do such computing tasks, and even much more
ambitious ones, much more easily than in this fancy new setting! A dataset could fit
on a single processor, and the global maximum of the array x’ could be computed
with the six-character code fragment ‘max(x)’ in, say, Matlab or R.” (Donoho, 2017,
p.747)

This part of the book introduces you to the topic of Big Data analysis from a variety
of perspectives. The goal of this part is to highlight the various aspects of modern
econometrics involved in Big Data Analytics, as well as to clarify the approach and
perspective taken in this book. In the first step, we must consider what makes data
big. As a result, we make a fundamental distinction between data analysis prob-
lems that can arise from many observations (rows; big N) and the problems that
can arise from many variables (columns; big P).

In a second step, this part provides an overview of the four distinct approaches to
Big Data Analytics that are most important for the perspective on Big Data taken
in this book: a) statistics/econometrics techniques specifically designed to handle
Big Data, b) writing more efficient R code, c) more efficiently using available local
computing resources, and d) scaling up and scaling out with cloud computing re-
sources. All of these approaches will be discussed further in the book, and it will
be useful to remember the most important conceptual basics underlying these ap-
proaches from the overview presented here.

Finally, this section of the book provides two extensive examples of what problems
related to (too) many observations or (too) many variables can mean for practical
data analysis, as well as how some of the four approaches (a-d) can help in resolving
these problems.
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1
What is Big in “Big Data”?

In this book, we will think of Big Data as data that is (a) difficult to handle and (b)
hard to get value from due to its size and complexity. The handling of Big Data is
difficult as the data is often gathered from unorthodox sources, providing poorly
structured data (e.g., raw text, web pages, images, etc.) as well as because of the
infrastructure needed to store and load/process large amounts of data. Then, the
issue of statistical computation itself becomes a challenge. Taken together, getting
value/insights from Big Data is related to three distinct properties that render its
analysis difficult:

« Handling the complexity and variety of sources, structures, and formats of data
for analytics purposes is becoming increasingly challenging in the context of em-
pirical economic research and business analytics. On the one hand the ongoing
digitization of information and processes boosts the generation and storage of
digital data for all kinds of economic and social activity, making such data basi-
cally more available for analysis. On the other hand, however, the first order focus
of such digitization is typically an end user who directly interacts with the infor-
mation and is part of these processes, and not the data scientist or data analyst
who might be interested in analyzing such data later on. Therefore, the interfaces
for systematically collecting such data for analytics purposes are typically not op-
timal. Moreover, data might come in semi-structured formats such as webpages
(i.e., the HyperText Markup Language (HTML)), raw text, or even images — each
of which needs a different approach for importing/loading and pre-processing.
Anyone who has worked on data analytics projects that build on various types of
raw data from various sources knows that a large part of the practical data work
deals with how to handle the complexity and variety to get to a useful analytic
dataset.

« The big Pproblem: A dataset has close to or even more variables (columns) than ob-
servations, which renders the search for a good predictive model with traditional
econometric techniques difficult or elusive. For example, suppose you run an e-
commerce business that sells hundreds of thousands of products to tens of thou-
sands of customers. You want to figure out from which product category a cus-
tomer is most likely to buy an item, based on their previous product page visits.
That is, you want to (in simple terms) regress an indicator of purchasing from a
specific category on indicators for previous product page visits. Given this setup,
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you would potentially end up with hundreds of thousands of explanatory indica-
tor variables (and potentially even linear combinations of those), while you “only”
have tens of thousands of observations (one per user/customer and visit) to esti-
mate your model. These sorts of problems are at the core of the domain of modern
predictive econometrics, which shows how machine learning approaches like the
lasso estimater can be applied to get reasonable estimates from such a predictive
model.

« The big N problem: a dataset has massive numbers of observations (rows) such
that it cannot be handled with standard data analytics techniques and/or on a
standard desktop computer. For example, suppose you want to segment your
e-commerce customers based on the traces they leave on your website’s server.
Specifically, you plan to use the server log files (when does a customer visit the
site, from where, etc.) in combination with purchase records and written prod-
uct reviews by users. You focus on 50 variables that you measure on a daily basis
over five years for all 50,000 users. The resulting dataset has 50, 000 x 365 x 5 =
91, 250, 000 rows, with 50 variables (at least 50 columns) — over 4.5 billion cells.
Such a dataset can easily take up dozens of gigabytes on the hard disk. Hence it
will either not fit into the memory of a standard computer to begin with (import
fails), or the standard programs to process and analyze the data will likely be very
inefficient and take ages to finish when used on such a large dataset. There are
both econometric techniques as well as various specialized software and hard-
ware tools to handle such a situation.

After having a close look at the practical data analytics challenges behind both big P
and big N in Chapter 3, most of this book focuses on practical challenges and solu-
tions related to big N problems. However, several of the chapters contain code ex-
amples that are primarily discussed as a solution to a big N problem, but are shown
in the context of econometric/machine learning techniques that are broadly used,
forexample, to find good predictive models (based on manyvariables, i.e., big P). At
the same time, many of the topics discussed in this book are in one way or another
related to the difficulties of handling various types of structured, semi-structured,
and unstructured data. Hence you will get familiar with practical techniques to
deal with complexity and variety of data as a byproduct.
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Approaches to Analyzing Big Data

Throughout the book, we consider four approaches to how to solve challenges re-
lated to analyzing big N and big P data. Those approaches should not be understood
as mutually exclusive categories; rather they should help us to look at a specific
problem from different angles in order to find the most efficient tool/approach to
proceed. Figure 2.1 presents an illustrative overview of the four approaches.

Big-N

ro —

Big-P

Statistics

- Random Sampling
- Inference
- Regularization

Approaches

Efficient Code

- Memory Allocation
- Modify in Place

Computing Resources

0,
00%p
0000000000
0000000000

- Virtual Memory
- Parallelization
- GPUvs CPU

- VMS
- Distributed System
- Cloud Storage

Scaling Cloud

FIGURE 2.1: Four approaches to/perspectives on solving big N problems in data

analytics.

1.  Statistics/econometrics and machine learning: During the initial hype sur-
rounding Big Data/Data Science about a decade ago, statisticians promi-
nently (and justifiably) pointed out that statistics techniques that have
always been very useful tools when analyzing “all the data” (the entire
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population) is too costly.! In simple terms, when confronted with the chal-
lenge of answering an empirical question based on a big N dataset (which
is too large to process on a normal computer), one might ask “why not
simply take a random sample?” In some situations this might actually
be a very reasonable question, and we should be sure to have a good an-
swer for it before we rent a cluster computer with specialized software for
distributed computing. After all, statistical inference is there to help us
answer empirical questions in situations where collecting data on the en-
tire population would be practically impossible or simply way too costly.
In today’s world, digital data is abundant in many domains, and the col-
lection is not so much the problem any longer; but our standard data an-
alytics tools are not made to analyze such amounts of data. Depending
on the question and data at hand, it might thus make sense to simply use
well-established “traditional” statistics/econometrics in order to properly
address the empirical question. Note, though, that there are also various
situations in which this would not work well. For example, consider on-
line advertising. If you want to figure out which user characteristics make
a user significantly more likely to click on a specific type of ad, you likely
need hundreds of millions of data points because the expected probability
that a specific user clicks on an ad is generally very low. That is, in many
practical Big Data Analytics settings, you might expect rather small ef-
fects. Consequently, you need to rely on a big N dataset in order to get
the statistical power to distinguish an actual effect from a zero effect.
However, even then, it might make sense to first look at newer statistical
procedures that are specifically made for big N data before renting a clus-
ter computer. Similarly, traditional statistical/econometric approaches
might help to deal with big P data, but they are usually rather ineffi-
cient or have rather problematic statistical properties in such situations.
However, there are also well-established machine learning approaches to
better address these problems. In sum, before focusing on specialized
software like Apache Hadoop or Apache Spark and scaling up hardware
resources, make sure to use the adequate statistical tools for a Big Data
situation. This can save a lot of time and money. Once you have found
the most efficient statistical procedure for the problem at hand, you can
focus on how to compute it.

2. Writing efficient code: No matter how suitable a statistical procedure is the-
oretically to analyze a large dataset, there are always various ways to im-
plement this procedure in software. Some ways will be less efficient than
others. When working with small or moderately sized datasets, you

'David Donoho has nicely summarized this critique in a paper titled “50 Years of Data Science”
(Donoho (2017)), which I warmly recommend.



might not even notice whether your data analytics script is written in
an efficient way. However, it might get uncomfortable to run your script
once you confront it with a large dataset. Hence the question you should
ask yourself when taking this perspective is, “Can I write this script in a
different way to make it faster (but achieve the same result)?” Before in-
troducing you to specialized R packages to work with large datasets, we
thus look at a few important aspects of how to write efficient/fast code in
R.

Using limited local computing resources more efficiently: There are several
strategies to use the available local computing resources (your PC) more
efficiently, and many of those have been around for a while. In simple
terms, these strategies are based on the idea of more explicitly telling
the computer how to allocate and use the available hardware resources
as part of a data analytics task (something that is usually automatically
taken care of by the PC’s operating system). We will touch upon several
of these strategies — such as multi-core processing and the efficient use
of virtual memory — and then practically implement these strategies with
the help of specialized R packages. Unlike writing more efficient R code,
these packages/strategies usually come with an overhead. That is, they
help you save time only after a certain threshold. In other words, not us-
ing these approaches can be faster if the dataset is not “too big”. In ad-
dition, there can be trade-offs between using one vs. another hardware
component more efficiently. Hence, using these strategies can be tricky,
and the best approach might well depend on the specific situation. The
aim is thus to make you comfortable with answering the question, “How
can I use my local computing environment more efficiently to further
speed up this specific analytics task?”

Scaling up and scaling out: once you have properly considered all of the
above, but the task still cannot be done in a reasonable amount of time,
you will need to either scale up or scale out the available computing re-
sources. Scaling up refers to enlarging your machine (e.g., adding more
random access memory) or switching to a more powerful machine alto-
gether. Technically, this can mean literally building an additional hard-
ware device into your PC; today it usually means renting a virtual server
in the cloud. Instead of using a “bigger machine”, scaling out means us-
ing several machines in concert (cluster computer, distributed systems).
While this also has often been done locally (connecting several PCs to a
cluster of PCs to combine all their computing power), today this too is
usually done in the cloud (due to the much easier set up and maintenance).
Practically, a key difference between scaling out and scaling up is that by-
and-large scaling up does not require you to get familiar with specialized
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software. You can simply run the exact same script you tested locally on
a larger machine in the cloud. Although most of the tools and services
available to scale out your analyses are by now also quite easy to use, you
will have to get familiar with some additional software components to
really make use of the latter. In addition, in some situations, scaling up
might be perfectly sufficient, while in others only scaling out makes sense
(particularly if you need massive amounts of memory). In any event, you
should be comfortable dealing with the questions, “Does it make sense to
scale up or scale out?” and “If yes, how can it be done?” in a given situa-
tion.”

Whether one or the other approach is “better” is sometimes a topic hotly debated
between academics and/or practitioners with different academic backgrounds.
The point of the following chapters is not to argue for one or the other approach, but
to make you familiar with these different perspectives in order to make you more
comfortable and able to take on large amounts of data for your analytics project.
When might one or the other approach/perspective be more useful? This is highly
context-dependent. However, as a general rule of thumb, consider the order in
which the different approaches have been presented above.

« First, ask yourself whether there isn't an absolutely trivial solution to your big
N problem, such as taking a random sample. I know, this sound banal, and you
would be surprised at how many books and lectures focusing on the data engi-
neering side of big N do not even mention this. But, we should not forget that the
entire apparatus of statistical inference is essentially based on this idea.’ There s,
however, a well-justified excuse for not simply taking a random sample of a large
dataset. Both in academic research and in business data science and business
analytics, the decision to be facilitated with data might in any event only have
measurable consequences in rather a few cases. That is, the effect size of decid-
ing either for A or B is anyway expected to be small, and hence we need sufficient
statistical power (large N) to make a meaningful decision.

« Second, once you know which statistical procedure should be run on which final
sample/dataset, be aware of how to write your analytics scripts in the most effi-
cient way. As you will see in Chapter 4, there are a handful of R idiosyncrasies

“Importantly, the perspective on scaling up and scaling out provided in this book is solely fo-
cused on Big Data Analytics in the context of economic/business research. There is a large array
of practical problems and corresponding solutions/tools to deal with “Big Data Analytics” in the
context of application development (e.g. tools related to data streams), which this book does not
cover.

3Originally, one could argue, the motivation for the development of statistical inference was
rather related to the practical problem of gathering data on an entire population than handling a
large dataset with observations of the entire population. However, in practice, inferring population
properties from a random sample also works for the latter.
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that are worth keeping in mind in this regard. This will make interactive sessions
in the early, exploratory phase of a Big Data project much more comfortable.

« Third, once you have a clearer idea of the bottlenecks in the data preparation and
analytics scripts, aim to optimize the usage of the available local computing re-
sources.

« In almost any organizational structure, be it a university department, a small
firm, or a multinational conglomerate, switching from your laptop or desktop
computer to a larger computing infrastructure, either locally or in the cloud,
means additional administrative and budgetary hurdles (which means money
and time spent on something other than interpreting data analysis results). That
is, even before setting up the infrastructure and transferring your script and data,
youwill have to make an effort to scale up or scale out. Therefore, as a general rule
of thumb, this option will be considered as a measure of last resort in this book.

Following this recommended order of consideration, before we focus extensively
on the topics of using local computing resources more efficiently and scaling up/out (in
parts II and III of this book, respectively), we need to establish some of the basics
regarding what is meant by statistical/econometric solutions for big P and big N
problems (in the next chapter), as well as introducing a couple of helpful program-
ming tools and skills for working on computationally intense tasks (in Chapter 4).
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3

The Two Domains of Big Data Analytics

As discussed in the previous chapter, data analytics in the context of Big Data can
be broadly categorized into two domains of statistical challenges: techniques/esti-
mators to address big P problems and techniques/estimators to address big N prob-
lems. While this book predominantly focuses on how to handle Big Data for ap-
plied economics and business analytics settings in the context of big N problems,
it is useful to set the stage for the following chapters with two practical examples
concerning both big P and big N methods.

3.1 Apractical big P problem

Due to the abundance of digital data on all kinds of human activities, both em-
pirical economists and business analysts are increasingly confronted with high-
dimensional data (many signals, many variables). While having a lot of variables
to work with sounds kind of like a good thing, it introduces new problems in
coming up with useful predictive models. In the extreme case of having more
variables in the model than observations, traditional methods cannot be used at
all. In the less extreme case of just having dozens or hundreds of variables in a
model (and plenty of observations), we risk “falsely” discovering seemingly influ-
ential variables and consequently coming up with a model with potentially very
misleading out-of-sample predictions. So how can we find a reasonable model?!
Let us look at a real-life example. Suppose you work for Google’s e-commerce plat-
form www.googlemerchandisestore.com, and you are in charge of predicting pur-
chases (i.e., the probability that a user actually buys something from your store in a

'Note that finding a model with good in-sample prediction performance is trivial when you
have a lot of variables: simply adding more variables will improve the performance. However, that
will inevitably result in a nonsensical model as even highly significant variables might not have any
actual predictive power when looking at out-of-sample predictions. Hence, in this kind of exercise
we should exclusively focus on out-of-sample predictions when assessing the performance of candidate
models.

13
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given session) based on user and browser-session characteristics.* The dependent
variable purchase is an indicator equal to 1 if the corresponding shop visit leads to
a purchase and equal to e otherwise. All other variables contain information about
the user and the session (Where is the user located? Which browser is (s)he using?
etc.).

3.1.1 Simplelogistic regression (naive approach)

As the dependent variable is binary, we will first estimate a simple logit model, in
which we use the origins of the store visitors (how did a visitor end up in the shop?)
as explanatory variables. Note that many of these variables are categorical, and the
model matrix thus contains a lot of “dummies” (indicator variables). The plan in
this (intentionally naive) first approach is to simply add a lot of explanatory vari-
ables to the model, run logit, and then select the variables with statistically signifi-
cant coefficient estimates as the final predictive model. The following code snippet
covers the import of the data, the creation of the model matrix (with all the dummy-
variables), and the logit estimation.

# import/inspect data
ga <- read.csv("data/ga.csv")

head(ga[, c("source", "browser", "city", "purchase")])

#i source browser city purchase
## 1 google Chrome San Jose 1
## 2 (direct) Edge Charlotte 1
## 3 (direct) Safari San Francisco 1
## 4 (direct) Safari Los Angeles 1
## 5 (direct) Chrome Chicago 1
## 6 (direct) Chrome Sunnyvale 1

# create model matrix (dummy vars)
mm <- cbind(ga$purchase,
model.matrix(purchase~source, ga,)[,-1])
mm_df <- as.data.frame(mm)
# clean variable names
names (mm_df) <- c("purchase",

gsub ("source', "', names(mm_df)[-1]))

*We will in fact be working with a real-life Google Analytics dataset from www.
googlemerchandisestore.com (https://shop.googlemerchandisestore.com); see here for details
about the dataset: https://www.blog.google/products/marketingplatform/analytics/introducing-
google-analytics-sample/.
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# run logit
modell <- glm(purchase ~ .,

mm_df, binomial)

Now we can perform the t-tests and filter out the “relevant” variables.

modell_sum <- summary(modell)

# select "significant" variables for final model
pvalues <- modell_sums$coefficients[,"Pr(>|z|)"]
vars <- names(pvalues[which(pvalues<0.05)][-1])

vars

## [1] "bing"

## [2] "dfa"

## [3] "docs.google.com"
## [4] "facebook.com"

## [5] "google"

## [6] "google.com"

## [7] "m.facebook.com"
## [8] "Partners"

## [9] "quora.com"

## [10] "siliconvalley.about.com"
## [11] "sites.google.com"
## [12] "t.co"

## [13] "youtube.com"

Finally, we re-estimate our “final” model.

# specify and estimate the final model
finalmodel <- glm(purchase ~.,
mm_df[, c("purchase", vars)],

binomial)

The first problem with this approach is that we should not trust the coefficient t-
tests based on which we have selected the covariates too much. The first model
contains 62 explanatory variables (plus the intercept). With that many hypothesis
tests, we are quite likely to reject the NULL of no predictive effect although there
is actually no predictive effect. In addition, this approach turns out to be unstable.
There might be correlation between some of the variables in the original set, and
adding/removing even one variable might substantially affect the predictive power
of the model (and the apparent relevance of other variables). We can see this already
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from the summary of our final model estimate (generated in the next code chunk).
One of the apparently relevant predictors (dfa) is not at all significant anymore in
this specification. Thus, we might be tempted to further change the model, which
in turn would again change the apparent relevance of other covariates, and so on.

summary (finalmodel) $coef[,c("Estimate", "Pr(>|z|)")]
## Estimate Pr(>|z|)
## (Intercept) -1.3831 0.000e+00
## bing -1.4647 4.416e-03
## dfa -0.1865 1.271e-01
## docs.google.com -2.0181 4.714e-02
## facebook.com -1.1663 3.873e-04
## google -1.0149 6.321e-168
## google.com -2.9607 3.193e-05
## m.facebook.com -3.6920 2.331le-04
## Partners -4.3747 3.942e-14
## quora.com -3.1277 1.869e-03
## siliconvalley.about.com -2.2456 1.242e-04
## sites.google.com -0.5968 1.356e-03
## t.co -2.0509 4.316e-03
## youtube.com -6.9935 4.197e-23

An alternative approach would be to estimate models based on all possible combi-
nations of covariates and then use that sequence of models to select the final model
based on some out-of-sample prediction performance measure. Clearly such an
approach would take a long time to compute.

3.1.2 Regularization: the lasso estimator

Instead, the lasso estimator provides a convenient and efficient way to get a se-
quence of candidate models. The key idea behind lasso is to penalize model com-
plexity (the cause of instability) during the estimation procedure.’ In a second
step, we can then select a final model from the sequence of candidate models
based on, for example, “out-of-sample” prediction in a k-fold cross validation. The
gamlr package (Taddy, 2017) provides both parts of this procedure (lasso for the
sequence of candidate models, and selection of the “best” model based on k-fold
cross-validation).

n simple terms, this is done by addin as a “cost” to the optimization problem.
1 plet this is done by adding A ), |8y, t” to the opt tion probl
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# load packages
library(gamlr)
# create the model matrix

mm <- model.matrix(purchase~source, data = ga)

In cases with both many observations and many candidate explanatory variables,
the model matrix might get very large. Even simply generating the model matrix
might be a computational burden, as we might run out of memory to hold the
model matrix object. If this large model matrix is sparse (i.e, has a lot of e entries),
there is a much more memory-efficient way to store it in an R object. R provides
ways to represent such sparse matrices in a compressed way in specialized R ob-
jects (such as csparseMatrix provided in the matrix package Bates et al. (2022)). In-
stead of containing all n x m cells of the matrix, these objects only explicitly store
the cells with non-zero values and the corresponding indices. Below, we make use
of the high-level sparse.model.matrix function to generate the model matrix and
store it in a sparse matrix object. To illustrate the point of a more memory-efficient
representation, we show that the traditional matrix object is about 7.5 times larger
than the sparse version.

# create the sparse model matrix
mm_sparse <- sparse.model.matrix(purchase~source, data = ga)
# compare the object's sizes

as.numeric(object.size(mm)/object.size(mm_sparse))

## [1] 7.525

Finally, we run the lasso estimation with k-fold cross-validation.

# run k-fold cross-validation lasso

cvpurchase <- cv.gamlr(mm_sparse, gaSpurchase, family="binomial')

We can then illustrate the performance of the selected final model - for example,
with an ROC curve. Note that both the coef method and the predict method for
gamlr objects automatically select the ‘best’ model.

# load packages

library (PRROC)

# use "best" model for prediction

# (model selection based on average 0SS deviance

pred <- predict(cvpurchaseSgamlr, mm_sparse, type='"response')
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# compute tpr, fpr; plot ROC

comparison <- roc.curve(scores.class0 = pred,
weights.classO=ga$purchase,
curve=TRUE)

plot(comparison)
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Hence, econometrics techniques such aslasso help deal with big P problems by pro-
viding reasonable ways to select a good predictive model (in other words, decide
which of the many variables should be included).

3.2 Apractical big N problem

Big N problems are situations in which we know what type of model we want to use
but the number of observations is too big to run the estimation (the computer crashes
or slows down significantly). The simplest statistical solution to such a problem is
usually to just estimate the model based on a smaller sample. However, we might
not want to do that for other reasons (i.e., if we require a big N for statistical power
reasons). As an illustration of how an alternative statistical procedure can speed
up the analysis of big N datasets, we look at a procedure to estimate linear models
for situations where the classical OLS estimator is computationally too demanding
when analyzing large datasets, the Uluru algorithm (Dhillon et al., 2013).

3.2.1 OLS asa point of reference

Recall the OLS estimator in matrix notation, given the linear modely = X5 + e:
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BOLS = (X'x)"'x'y.

In order to compute ﬁAO 1.5, we have to compute (X' X) !, which implies a compu-
tationally expensive matrix inversion.* If our dataset is large, X is large, and the
inversion can take up a lot of computation time. Moreover, the inversion and ma-
trix multiplication to get ﬁo g heeds a lot of memory. In practice, it might well
be that the estimation of a linear model via OLS with the standard approach in R
(im()) brings a computer to its knees, as there is not enough memory available. To
further illustrate the point, we implement the OLS estimator in R.

beta_ols <-
function(X, y) {
# compute cross products and inverse
XXi <- solve(crossprod(X,X))
Xy <- crossprod(X, y)
return( XXi %x% Xy )

Now, we will test our OLS estimator function with a few (pseudo-)random num-
bers in a Monte Carlo study. First, we set the sample size parameters n (the number
of observations in our pseudo-sample) and p (the number of variables describing
each of these observations) and initialize the dataset x.

# set parameter values
<- 10000000

=)

<- 4
generate sample based on Monte Carlo
generate a design matrix (~ our 'dataset')
with 4 variables and 10,000 observations
<= matrix(rnorm(n*p, 10), p)
add column for intercept

<- cbind(rep(1, n), X)

X #H X #H*H ®*H ™ T

Now we define what the real linear model that we have in mind looks like and com-
pute the output y of this model, given the input x.>

*The computational complexity of this is larger than O(n?). That is, for an input of size n, the
time needed to compute (or the number of operations needed) is larger than n.2.
*In reality we would not know this, of course. Acting as if we knew the real model is exactly the

point of Monte Carlo studies. They allow us to analyze the properties of estimators by simulation.
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# MC model
y <= 2 + 1.5%xX[,2] + 4xX[,3] - 3.5*X[,4] + 0.5%xX[,5] + rnorm(n)

Finally, we test our beta_ols function.

# apply the OLS estimator
beta_ols(X, vy)

i [,1]
#4# [1,] 1.9974
## [2,] 1.5001
## [3,] 3.9996
## [4,] -3.4994
## [5,] 0.4999

3.2.2 The Uluru algorithm as an alternative to OLS

Following Dhillon et al. (2013), we implement a procedure to compute

BLUuru: ~ ~ ~

ﬁUluru = BFS + Bcorrecb
where -

_ T —1sT

BFS - (Xsubsxsubs) XsubsYsub57
and ~ n
_ "Ysubs T —1yT
Bcorrect - ’ (Xsubsxsubs) XremRremv
rem

and

Rrem = Y'rem - X'rem ’ ﬁFS'

The key idea behind this is that the computational bottleneck of the OLS estima-
tor, the cross product and matrix inversion, (X' X)~!, is only computed on a sub-
sample (X,,;,, etc.), not the entire dataset. However, the remainder of the dataset
is also taken into consideration (in order to correct a bias arising from the sub-
sampling). Again, we implement the estimator in R to further illustrate this point.

beta_uluru <-
function(X_subs, y_subs, X_rem, y_rem) {
# compute beta_fs
#(this is simply OLS applied to the subsample)
XXi_subs <- solve(crossprod(X_subs, X_subs))
Xy_subs <- crossprod(X_subs, y_subs)

b_fs <- XXi_subs %*% Xy_subs
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# compute \mathbf{R}_{rem}
R_rem <- y_rem - X_rem %x% b_fs
# compute \hat{\beta}_{correct}
b_correct <-
(nrow(X_subs) /(nrow(X_rem))) x*
XXi_subs %*% crossprod(X_rem, R_rem)
# beta uluru

return(b_fs + b_correct)

We then test it with the same input as above:

# set size of sub-sample

n_subs <- 1000

# select sub-sample and remainder
n_obs <- nrow(X)

X_subs <- X[1lL:n_subs,]

y_subs <- y[1lL:n_subs]

X_rem <- X[(n_subs+1L):n_obs,]
y_rem <- y[(n_subs+1L):n_obs]

# apply the uluru estimator

beta_uluru(X_subs, y_subs, X_rem, y_rem)

i [,1]
#4 [1,] 2.0048
## [2,] 1.4997
## [3,] 3.9995
## [4,] -3.4993
## [5,] 0.4996

Thislooks quite good already. Let’s have a closer look with a little Monte Carlo study.
The aim of the simulation study is to visualize the difference between the classical
OLS approach and the Uluru algorithm with regard to bias and time complexity if
we increase the sub-sample size in Uluru. For simplicity, we only look at the first
estimated coefficient f3; .

# define sub-samples

n_subs_sizes <- seq(from = 1000, to = 500000, by=10000)
n_runs <- length(n_subs_sizes)

# compute uluru result, stop time

mc_results <- rep(NA, n_runs)
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mc_times <- rep(NA, n_runs)
for (i 1in 1:n_runs) {
# set size of sub-sample
n_subs <- n_subs_sizes[i]
# select sub-sample and remainder
n_obs <- nrow(X)
X_subs <- X[1lL:n_subs,]
y_subs <- y[1lL:n_subs]
X_rem <- X[(n_subs+1L):n_obs,]
y_rem <- y[(n_subs+1L):n_obs]
mc_results[i] <- beta_uluru(X_subs,
y_subs,
X_rem,
y_rem)[2] # (1 is the intercept)
mc_times[i] <- system.time(beta_uluru(X_subs,
y_subs,
X_rem,
y_rem)) [3]
}
# compute OLS results and OLS time
ols_time <- system.time(beta_ols(X, y))
ols_res <- beta_ols(X, y)[2]

Let’s visualize the comparison with OLS.

# load packages

library(ggplot2)

# prepare data to plot

plotdata <- data.frame( mc_results,
mc_times,

n_subs_sizes)

First, let’s look at the time used to estimate the linear model.

ggplot(plotdata, aes( subs_size, time_elapsed)) +
geom_point( "darkgreen") +
geom_hline( ols_time[3],
"red",
1) +

theme_minimal() +
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ylab("Time elapsed") +

xlab("Subsample size")

0.30

0.25

Time elapsed

0.20

L]
0.15 ® .

0e+00 le+05 2e+05 3e+05 4e+05 5e+05
Subsample size

The horizontal red line indicates the computation time for estimation via OLS; the
green points indicate the computation time for the estimation via the Ulruru algo-
rithm. Note that even for large sub-samples, the computation time is substantially
lower than for OLS. Finally, let’s have a look at how close the results are to OLS.

ggplot(plotdata, aes(x = subs_size, y = betal)) +

geom_hline(yintercept = ols_res,

color = "red",

linewidth = 1) +

geom_hline(yintercept = 1.5,

color = "green",

linewidth = 1) +
geom_point(color="darkgreen") +
theme_minimal() +
ylab("Estimated coefficient") +

xlab("Subsample size")
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The horizontal red line indicates the size of the estimated coefficient, when using
OLS. The horizontal green line indicates the size of the actual coefficient. The green
points indicate the size of the same coefficient estimated by the Uluru algorithm
for different sub-sample sizes. Note that even relatively small sub-samples already
deliver estimates very close to the OLS estimates. Taken together, the example il-
lustrates that alternative statistical methods, optimized for large amounts of data,
can deliver results very close to traditional approaches. Yet, they can deliver these
results much more efficiently.
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Introduction

“Are tomorrow’s bigger computers going to solve the problem? For some people, yes
— their data will stay the same size and computers will get big enough to hold it com-
fortably. For other people it will only get worse — more powerful computers mean
extraordinarily larger datasets. If you are likely to be in this latter group, you might
want to get used to working with databases now.” (Burns, 2011, p.16)

At the center of Figure 3.1 you see an illustration of the key components of a stan-
dard local computing environment to process digital data. In this book, these com-
ponents typically serve the purpose of computing a statistic, given a large dataset
as input. In this part of the book, you will get familiar with how each of these com-
ponents plays a role in the context of Big Data Analytics and how you can recognize
and resolve potential problems caused by large datasets/large working loads for ei-
ther of these components. The three most relevant of these components are:

« Mass storage. This is the type of computer memory we use to store data over the
long term. The mass storage device in our local computing environment (e.g., our
PC/laptop) is generally referred to as the hard drive or hard disk.

« RAM. In order to work with data (e.g., in R), it first has to be loaded into the mem-
ory of our computer — more specifically, into the random access memory (RAM).
Typically, data is only loaded in the RAM for as long as we are working with it.

« CPU. The component actually processing data is the Central Processing Unit (CPU).
When using R to process data, R commands are translated into complex combi-
nations of a small sets of basic operations, which the CPU then executes.

For the rest of this book, consider the main difference between common ‘data an-
alytics’ and ‘Big Data Analytics’ to be the following: in a Big Data Analytics context,
the standard usage of one or several of the standard hardware components in your
local computer fails to work or works very inefficiently because the amount of data
overwhelms its normal capacity.

27
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FIGURE 3.1: Software, local computing resources, and cloud resources.

However, before we discuss these hardware issues in Chapter 5, Chapter 4 focuses
on the software we will work with to make use of these hardware components in
the most efficient way. This perspective is symbolized in the left part of Figure 3.1.
There will be three main software components with which we work in what follows.
The first is the terminal (i.e., bash): instead of using graphical user interfaces to
interact with our local computing environment, we will rather use the terminal® to
install software, download files, inspect files, and inspect hardware performance.
For those of you not yet used to working with the terminal, do not worry! There are
no prerequisites in knowledge about working with the terminal, and most of the
use cases in this book are very simple and well explained. At this point, just note
that there will be two types of code chunks (code examples) shown in what follows:
either they show code that should be run in the terminal (in RStudio, such code
should thus be entered in the tab/window called Terminal), or R code (in RStudio,
this code should be entered in the Tab/window called Console).

To be consistent with the cloud computing services (particularly EC2) introduced later on,
the sections involving terminal commands assume you work with Ubuntu Linux. However, the
corrsponding code chunks are essentially identical for users working on a Mac/OSX-machine. In
case you are working on a Windows machine, starting with Windows 10, you will have essentially
the same tool available called the Windows Terminal. In older Windows versions the Linux terminal
equivalent is called PowerShell or command prompt, which use a slightly different syntax, but pro-
vide similar functionality. See https://www.geeksforgeeks.org/linux-vs-windows-commands/ for
an overview of how to get started with the Windows command prompt, including a detailed listing
of commands next to their corresponding Linux command equivalents.


https://www.geeksforgeeks.org

3.2 Apractical big N problem 29

R (R Core Team, 2021) will be the main language used throughout this book. It will
be the primarylanguage to gather, import, clean, visualize, and analyze data. How-
ever, as you will already see in some of the examples in this part of the book, we will
often not necessarily use base R, but rather use R as a high-level interface to more
specialized software and services. On the one hand this means we will install and
use several specialized R packages designed to manipulate large datasets that are
in fact written in other (faster) languages, such as C. On the other hand, it will
mean that we use R commands to communicate with other lower-level software
systems that are particularly designed to handle large amounts of data (such as
data warehouses, or software to run analytics scripts on cluster computers). The
point is that even if the final computation is not actually done in R, all you need to
know to get the particular job done are the corresponding R commands to trigger
this final computation.

There is one more indispensable software tool on which we will build throughout
the book, Structured Query Language (SQL), or to be precise, different variants of
SQLin different contexts. The main reason for this is twofold: First, even if you pri-
marily interact with some of the lower-level Big Data software tools from within
R, it is often more comfortable (or, in some cases, even necessary) to send some
of the instructions in the form of SQL commands (wrapped in an R function); sec-
ond, while many of you might have only heard of SQL in the context of traditional
relational database systems, SQL variants are nowadays actually used to interact
with a variety of the most important Big Data systems, ranging from Apache Spark
(2 unified analytics platform for large-scale data processing) to Apache Druid (a
column-based distributed data store) and AWS Athena (a cloud-based, serverless
query service for simple storage/data lakes). Hence, if you work in data analytics/-
data science and want to seriously engage with Big Data, knowing your way around
SQL is a very important asset.

Finally, Chapters 6 and 7 consider the situation where all of the tweaks to use the
local computing resources most efficiently are still not enough to get the job done
(one or several components are still overwhelmed and/or it simply takes too much
time to run the analysis). From the hardware perspective, there are two basic strate-
gies to cope with such a situation:

« Scale out (‘horizontal scaling): Distribute the workload over several computers (or
separate components of a system).

« Scale up (‘vertical scaling’): Extend the physical capacity of the affected component
by building a system with a large amount of RAM shared between applications.
This sounds like a trivial solution (‘if RAM is too small, buy more RAM...), but in
practice it can be very expensive.

Nowadays, either of these approaches is typically taken with the help of cloud re-
sources (illustrated in the right part of Figure 3.1). How this is basically done is
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introduced in Chapter 7. Regarding vertical scaling, you will see that the transition
from alocal computing environment to the cloud (involving some or all of the core
computing components) is rather straightforward to learn. However, horizontal
scaling for really massive datasets involves some new hardware and software con-
cepts related to what are generally called distributed systems. To this end, we first
introduce the most relevant concepts related to distributed systems in Chapter 6.
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Software: Programming with (Big) Data

The programming language and computing environment R (R Core Team, 2021) is
particularly made for writing code in a data analytics context. However, the lan-
guage was developed at a time when data analytics was primarily focused on mod-
erately sized datasets that can easily be loaded/imported and worked with on a
common PC. Depending on the field or industry you work in, this is not the case
anymore. In this chapter, we will explore some of R’s (potential) weaknesses as well
as learn how to avoid them and how to exploit some of R’s strengths when it comes
to working with large datasets. The first part of this chapter is primarily focused
on understanding code profiling and improving code with the aim of making com-
putationally intensive data analytics scripts in R run faster. This chapter presup-
poses basic knowledge of R data structures and data types as well as experience
with basic programming concepts such as loops.’ While very useful in writing an-
alytics scripts, we will not look into topics like coding workflows, version control,
and code sharing (e.g., by means of Git and GitHub?). The assumption is that you
bring some experience in writing analytics scripts already.

While R is a very useful tool for many aspects of Big Data Analytics that we will cover
in the following chapters, R alone is not enough for a basic Big Data Analytics tool-
box. The second part of this chapter introduces the reader to the Structured Query
Language (SQL), a programming language designed for managing data in relational
databases. Although the type of databases where SQL is traditionally encountered
would not necessarily be considered part of Big Data Analytics today, some ver-
sions of SQL are now used with systems particularly designed for Big Data Analyt-
ics (such as Amazon Athena and Google BigQuery). Hence, with a good knowledge
of R in combination with basic SQL skills, you will be able to productively engage
with a large array of practical Big Data Analytics problems.

'Appendix B reviews the most relevant concepts regarding data types and data structures in R.
ZHowever, in case you want to further explore how to use GitHub as part of your coding work-
flow, Appendix A provides a very short introduction to the topic.

31
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4.1 Domains of programming with (big) data

Programming tasks in the context of data analytics typically fall into one of the
following broad categories:

« Procedures to import/export data.
« Procedures to clean and filter data.
« Implementing functions for statistical analysis.

When writing a program to process large amounts of data in any of these areas, it
is helpful to take into consideration the following design choices:

1. Which basic (already implemented) R functions are more or less suitable
as building blocks for the program?*

2. How can we exploit/avoid some of R’s lower-level characteristics in order
to write more efficient code?

3. Isthere a need to interface with a lower-level programming language in
order to speed up the code? (advanced topic)

Finally, there is an additional important point to be made regarding the writing of
code for statistical analysis: Independent of how we write a statistical procedure in
R (or in any other language, for that matter), keep in mind that there might be an
alternative statistical procedure/algorithm that is faster but delivers approximately the
same result (as long as we use a sufficiently large sample).

4.2 Measuring R performance

When writing a data analysis script in R to process large amounts of data, it gener-
ally makes sense to first test each crucial part of the script with a small sub-sample.
In order to quickly recognize potential bottlenecks, there are a couple of R pack-
ages that help you keep track of exactly how long each component of your script
needs to process as well as how much memory it uses. The table below lists some
of the packages and functions that you should keep in mind when “profiling” and
testing your code.

3Throughout the rest of this book, I will point to specialized R packages and functions that are
particularly designed to work with large amounts of data. Where necessary, we will also look more
closely at the underlying concepts that explain why these specialized packages work better with
large amounts of data than the standard approaches.
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package function purpose

utils object.size() Provides an estimate of the memory that is
being used to store an R object.

pryr object_size() Works similarly O object.size(), but counts
more accurately and includes the size of
environments.

pryr mem_used () Returns the total amount of memory (in
megabytes) currently used by R.

pryr mem_change () Shows the change in memory (in
megabytes) before and after running code.

base system.time() Returns CPU (and other) times that an R
expression used.

microbenchmark microbenchmark() nghly accurate timing of R expression
evaluation.

bench mark () Benchmark a series of functions.

profvis profvis() Profiles an R expression and visualizes the

profiling data (usage of memory, time
elapsed, etc.).

Most of these functions are used in an interactive way in the R console. They serve
either of two purposes that are central to profiling and improving your code’s per-
formance. First, in order to assess the performance of your R code you probably
want to know how long it takes to run your entire script or a specific part of your
script. The system.time() (R Core Team, 2021) function provides an easy way to
check this. This function is loaded by default with R; there is no need to install an
additional package. Simply wrap it around the line(s) of code that you want to as-
sess.

# how much time does it take to run this loop?

system.time(for (i in 1:100) {i + 5})

## user system elapsed
## 0.002 0.000 0.002

Note that each time you run this line of code, the returned amount of time varies
slightly. This has to do with the fact that the actual time needed to run a line of
code can depend on various other processes happening at the same time on your
computer.

The microbenchmark (Mersmann, 2021) and bench (Hester and Vaughan, 2021) pack-
ages provide additional functions to measure execution time in more sophisticated
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ways. In particular, they account for the fact that the processing time for the same
code might vary and automatically run the code several times in order to return
statistics about the processing time. In addition, microbenchmark () provides highly
detailed and highly accurate timing of R expression evaluation. The function is par-
ticularly useful to accurately find even minor room for improvement when testing
adata analysis script on a smaller sub-sample (which might scale when working on
a large dataset). For example, suppose you need to run a for-loop over millions of
iterations, and there are different ways to implement the body of the loop (which
does not take too much time to process in one iteration). Note that the function ac-
tually evaluates the R expression in question many times and returns a statistical
summary of the timings.

# load package
library(microbenchmark)
# how much time does it take to run this loop (exactly)?

microbenchmark(for (i in 1:100) {i + 5})

## Unit: milliseconds

#i expr min 1g mean
## for (i in 1:100) { i +5 3} 1.116 1.231 1.308
## median uq max neval

## 1.265 1.315 4.838 100

Second, a key aspect to improving the performance of data analysis scripts in R is
to detect inefficient memory allocation as well as avoiding an R-object that is either
growing too much or too large to handle in memory. To this end, you might want to
monitor how much memory R occupies at different points in your script as well as
how much memory is taken up by individual R objects. For example, object.size()
returns the size of an R object, that is, the amount of memory it takes up in the R
environment in bytes (pryr: :object_size() counts slightly more accurately).

hello <- "Hello, World!"
object.size(hello)

## 120 bytes

This is useful to implementing your script with a generally less memory-intensive
approach. For example, for a specific task it might not matter whether a particular
variable is stored as a character vector or a factor. But storing it as character turns
out to be more memory intensive (why?).
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# initialize a large string vector containing letters
large_string <- rep(LETTERS[1:20], 100072)
head(large_string)

H# [1] WAN ngn o ncuH o upn npn onpn

# store the same information as a factor in a new variable

large_factor <- as.factor(large_string)

# 1s one bigger than the other?

object.size(large_string) - object.size(large_factor)

## 79999456 bytes

pryr::mem_change () (Wickham, 2021) is useful to track how different parts of your
script affect the overall memory occupied by R.

# load package
library(pryr)

# initialize a vector with 1000 (pseudo)-random numbers
mem_change(
thousand_numbers <- runif(1000)

)

## 7.98 kB

# initialize a vector with 1M (pseudo)-random numbers
mem_change (
a_million_numbers <- runif(1000/2)

)

## 8 MB

bench: :mark () allows you to easily compare the performance of several different im-
plementations of a code chunk both regarding timing and memory usage. The fol-
lowing code example illustrates this in a comparison of two approaches to comput-
ing the product of each element in a vector x with a factor .
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# load packages
library(bench)

# initialize variables
X <- 1:10000
z <- 1.5

# approach I: loop
multiplication <-
function(x,z) {

result <- c()

4 Software: Programming with (Big) Data

for (i in 1l:length(x)) {result <- c(result, x[i]l*z)}

return(result)

}
result <- multiplication(x,z)
head(result)

## [1] 1.5 3.0 4.5 6.0 7.5 9.

# approach II: "R-style"
result2 <- x * z
head(result2)

## [1] 1.5 3.0 4.5 6.0 7.5 9.

# comparison
benchmarking <-

mark (

result <- multiplication(x,z),

result2 <- x x z,
min_iterations = 50

)
benchmarking[, 4:9]

## # A tibble: 2 x 3

(0]

0

## “qtr/sec’ mem_alloc ‘“gc/sec’
## <dbl> <bch:byt> <dbl>
## 1 12.8 382MB 17.7

## 2 70057. 78.2KB

7.01
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In addition, the bench package (Hester and Vaughan, 2021) provides a simple way
to visualize these outputs:

plot(benchmarking, "boxplot™")

result2 <-x*z- o °

expression

result <- multiplication(x, z) = o o

10us 100us ims. 10ms 100ms

time
Finally, to analyze the performance of your entire script/program, the profvis pack-
age (Chang et al., 2020) provides visual summaries to quickly detect the most
prominent bottlenecks. You can either call this via the profvis() function with the
code section to be profiled as argument, or via the RStudio user interface by click-
ing on the Code Tools menu in the editor window and selecting “Profile selected
lines”.

# load package
library(profvis)

# analyze performance of several lines of code
profvis({

X <- 1:10000

z <- 1.5

# approach I: loop
multiplication <-
function(x,z) {
result <- c()
for (i in 1l:length(x)) {result <- c(result, x[i]lxz)}

return(result)
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}

result <- multiplication(x,z)

# approach II: "R-style"
result2 <- x * z
head(result2)

i)

4.3 Writing efficient R code

This subsection touches upon several prominent aspects of writing efficient/fast R
code.*

4.3.1 Memory allocation and growing objects

R tends to “grow” already-initialized objects in memory when they are modified.
At the initiation of the object, a small amount of memory is occupied at some loca-
tion in memory. In simple terms, once the object grows, it might not have enough
space where it is currently located. Hence, it needs to be “moved” to another loca-
tion in memory with more space available. This moving, or “re-allocation” of mem-
ory, needs time and slows down the overall process.

This potential is most practically illustrated with a for-loop in which each itera-
tion's result is stored as an element of a vector (the object in question). To avoid
growing this object, you need to instruct R to pre-allocate the memory necessary
to contain the final result. If we don't do this, each iteration of the loop causes R to
re-allocate memory because the number of elements in the vector/list is changing.
In simple terms, this means that R needs to execute more steps in each iteration.

In the following example, we compare the performance of two functions, one tak-
ing this principle into account, the other not. The functions take a numeric vector
as input and return the square root of each element of the numeric vector.

# naive implementation
sqrt_vector <-

function(x) {

*This is not intended to be a definitive guide to writing efficient R code in every aspect. Instead
the subsection aims at covering most of the typical pitfalls to avoid and to provide a number of
easy-to-remember tricks to keep in mind when writing R code for computationally intensive tasks.
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output <- c()
for (i in 1l:length(x)) {
output <- c(output, x[i1]7(1/2))

return(output)

# implementation with pre-allocation of memory
sqrt_vector_faster <-
function(x) {
output <- rep(NA, length(x))
for (i in 1l:length(x)) {
output[i] <= x[i]”(1/2)

return(output)

As a proof of concept we use system.time() to measure the difference in speed for
various input sizes.’

# the different sizes of the vectors we will put into the two functions
input_sizes <- seq(from = 100, to = 10000, by = 100)
# create the input vectors

inputs <- sapply(input_sizes, rnorm)

# compute outputs for each of the functions
output_slower <-
sapply (inputs,
function(x){ system.time(sqrt_vector(x))["elapsed"]
}
)

output_faster <-
sapply (inputs,
function(x){ system.time(sqrt_vector_faster(x))["elapsed"]

}

*We generate the numeric input by drawing vectors of (pseudo-)random numbers via rnorm().
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The following plot shows the difference in the performance of the two functions.

# load packages
library(ggplot2)

# initialize data frame for plot
plotdata <- data.frame( c(output_slower, output_faster),
c(input_sizes, input_sizes),
c(rep("sqrt_vector",
length(output_slower)),
rep("sqrt_vector_faster",

length(output_faster))))

# plot

gegplot(plotdata, aes(x=input_size, time_elapsed)) +
geom_point(aes( Implementation)) +
theme_minimal( 18) +
theme ( "bottom") +

ylab("Time elapsed (in seconds)") +

xlab("No. of elements processed")
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Clearly, the version with pre-allocation of memory (avoiding growing an object) is
much faster overall. In addition, we see that the problem with the growing object
in the naive implementation tends to get worse with each iteration. The take-away
message for the practitioner: If possible, always initialize the “container” object
(list, matrix, etc.) for iteration results as an empty object of the final size/dimen-
sions.
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The attentive reader and experienced R coder will have noticed by this point that
both of the functions implemented above are not really smart practice to solve the
problem at hand. If you consider yourself part of this group, the next subsection
will make you more comfortable.

4.3.2 Vectorization in basic R functions

We can further improve the performance of this function by exploiting a particular
characteristic of R: in R, ‘everything is a vector’, and many of the most basic R func-
tions (such as math operators) are vectorized. In simple terms, this means that an
operation is implemented to directly work on vectors in such a way that it can take
advantage of the similarity of each of the vector’s elements. That is, R only has to
figure out once how to apply a given function to a vector element in order to apply
it to all elements of the vector. In a simple loop, however, R has to go through the
same ‘preparatory’ steps again and again in each iteration.

Following up on the problem from the previous subsection, we implement an ad-
ditional function called sqrt_vector_fastest that exploits the fact that math oper-
ators in R are vectorized functions. We then re-run the same speed test as above
with this function.

# implementation with vectorization
sqrt_vector_fastest <-
function(x) {
output <- x"(1/2)
return(output)

# speed test
output_fastest <-
sapply (inputs,
function(x){ system.time(sqrt_vector_fastest(x))["elapsed"]

}

Let’s have a look at whether this improves the function’s performance further.

# load packages
library(ggplot2)

# initialize data frame for plot

plotdata <- data.frame( c(output_faster, output_fastest),
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c(input_sizes, input_sizes),
c(rep("sqrt_vector_faster",
length(output_faster)),
rep("sqrt_vector_fastest",
length(output_fastest))))

# plot
gegplot(plotdata, aes(x=time_elapsed, Implementation)) +
geom_boxplot (aes( Implementation),
FALSE) +
theme_minimal( 18) +

xlab("Time elapsed (in seconds)'")

sqgrt_vector_fastest

Implementation

sqrt_vector_faster .

0.000  0.001  0.002  0.003  0.004
Time elapsed (in seconds)

Clearly, the vectorized implementation is even faster. The take-away message:
Make use of vectorized basic R functions where possible. At this point you might
wonder: Why not always use vectorization over loops, when working with R? This
question (and closely related similar questions) has been fiercely debated in the R
online community over the last few years. Also the debate contains and has con-
tained several (in my view) slightly misleading arguments. A simple answer to this
question is: It is in fact not that simple to use actual vectorization for every kind of
problem in R. There are a number of functions often mentioned to achieve “vector-
ization” easily in R; however, they do not actually implement actual vectorization
in its original technical sense (the type just demonstrated here with the R math
operators). Since this point is very prominent in debates about how to improve R
code, the next subsection attempts to summarize the most important aspects to
keep in mind.
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4.3.3 apply-type functions and vectorization

There are basically two ways to make use of some form of “vectorization” instead of
writing loops.

One approach is to use an apply-type function instead of loops. Note, though, that
the apply-type functions primarily make the writing of code more efficient. They
still run aloop under the hood. Nevertheless, some apply-type functions might still
outperform explicit loops, as they might be better implemented.®

Consider, for example, 1apply (), a function that takes a vector (atomic or list) as
input and applies a function Fun to each of its elements. It is a straightforward al-
ternative to for-loops in many situations (and it automatically takes care of the
“growing objects” problem discussed above). The following example shows how we
can get the same result by either writing a loop or using tapply (). The aim of the
code example is to import the Health News in Twitter Dataset’” by Karami et al.
(2017). The raw data consists of several text files that need to be imported to R con-
secutively.

The text-files are located in data/twitter_texts/. For either approach of importing
all of these files, we first need a list of the paths to all of the files. We can get this
with list. files(). Also, for either approach we will make use of the fread function
in the data.table package (Dowle and Srinivasan, 2022).

# load packages
library(data.table)

# get a list of all file-paths
textfiles <- list.files("data/twitter_texts", TRUE)

Now we can read in all the text files with a for-loop as follows.

# prepare loop

all_texts <- list()

n_files <- length(textfiles)
length(all_texts) <- n_files

# read all files listed in textfiles
for (i in 1:n_files) {

¢If you know how to implement efficient for-loops in R (as you are certainly expected to at this
point), there is not much to gain from using an apply-type function instead of a loop, apart from
making your code easier to read (and faster to write).

"https://archive.ics.uci.edu/ml/datasets/Health+News+in+Twitter
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all_texts[[i]] <- fread(textfiles[i])

The imported files are now stored as data.table-objects in the list al1_texts. With
the following line of code we combine all of them in one data. tabte.

# combine all in one data.table
twitter_text <- rbindlist(all_texts)
# check result

dim(twitter_text)

## [1] 42422 3

Alternatively, we can make use of 1apply as follows in order to achieve exactly the
same.

# use lapply instead of loop
all_texts <- lapply(textfiles, fread)
# combine all in one data.table
twitter_text <- rbindlist(all_texts)
# check result

dim(twitter_text)

## [1] 42422 3

Finally, we can make use of vectorization() in order to “vectorize” our own import
function (written for this example). Again, this does not make use of vectorization
in its original technical sense.

# initialize the import function
import_file <-
function(x) {
parsed_x <- fread(x)

return(parsed_x)
# 'vectorize' it
import_files <- Vectorize(import_file, SIMPLIFY = FALSE)

# Apply the vectorized function
all_texts <- import_files(textfiles)
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twitter_text <- rbindlist(all_texts)
# check the result
dim(twitter_text)

## [1] 42422 3

The take-away message: Instead of writing simple loops, use apply-type functions
to save time writing code (and make the code easier to read) and automatically
avoid memory-allocation problems.

4.3.4 Avoiding unnecessary copying

The “growing objects” problem discussed above is only one aspect that can lead to
inefficient use of memory when working with R. Another potential problem of us-
ing up more memory than necessary during an execution of an R-script is how R
handles objects/variables and their names.

Consider the following line of code:

a <- runif(10000)

What is usually said to describe what is happening here is something along the
lines of “we initialize a variable called a and assign a numeric vector with 10,000
random numbers. What in fact happens is that the name a is assigned to the inte-
ger vector (which in turn exists at a specific memory address). Thus, values do not
have names but names have values. This has important consequences for memory
allocation and performance. For example, because a is in fact just a name attached
to a value, the following does not involve any copying of values. It simply”binds”
another name, b, to the same value to which a is already bound.

b <- a

We can prove this in two ways. First, if what I just stated was not true, the line
above would actually lead to more memory being occupied by the current R session.
However, this is not the case:

object_size(a)

## 80.05 kB
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mem_change(c <- a)

## -588 kB

Second, by means of the 1obstr-package (Wickham, 2022a), we can see that the
values to which a and b are bound are stored at the same memory address. Hence,
they are the same values.

# load packages
library(lobstr)

# check memory addresses of objects
obj_addr(a)

## [1] "Ox55ca2050a870"

obj_addr(b)

## [1] "Ox55ca2050a870"

Now you probably wonder, what happens to b if we modify a. After all, if the values
to which b is bound are changed when we write code concerning a, we might end
up with very surprising output. The answer is, and this is key (!), once we modify a,
the values need to be copied in order to ensure the integrity of b. Only at this point,
our program will require more memory.

# check the first element's value
al1l]

## [1] 0.5262
b[1]
## [1] 0.5262

# modify a, check memory change

mem_change(a[l] <- 0)

## 79 kB
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# check memory addresses
obj_addr(a)

## [1] "Ox55c9f91c8380"
obj_addr(b)

## [1] "Ox55ca2050a870"

Note that the entire vector needed to be copied for this. There is, of course, a lesson
from all this regarding writing efficient code. Knowing how actual copying of val-
ues occurs helps avoid unnecessary copying. The larger an object, the more time it
will take to copy it in memory. Objects with a single binding get modified in place

(no copying):
mem_change(d <- runif(10000))

## 80.3 kB

mem_change(d[1] <- 0)
## 584 B

4.3.5 Releasing memory

Closely related to the issue of copy-upon-modify is the issue of “releasing” mem-
ory via “garbage collection”. If your program uses up a lot of (too much) memory
(typical for working with large datasets), all processes on your computer might sub-
stantially slow down (we will look more closely into why this is the case in the next
chapter). Hence, you might want to remove/delete an object once you do not need
it anymore. This can be done with the rm() function.

mem_change (large_vector <- runif(1078))
## 800 MB

mem_change (rm(large_vector))

## -800 MB

rm() removes objects that are currently accessible in the global R environment.
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However, some objects/values might technically not be visible/accessible anymore
(for example, objects that have been created in a function which has since returned
the function output). To also release memory occupied by these objects, you can call
gc() (the garbage collector). While R will automatically collect the garbage once it
is close to running out of memory, explicitly calling gc can still improve the perfor-
mance of your script when working with large datasets. This is in particular the
case when R is not the only data-intensive process running on your computer. For
example, when running an R script involving the repeated querying of data from a
local SQL database and the subsequent memory-intensive processing of this data
in R, you can avoid using up too much memory by running rm and gc explicitly.®

4.3.6 BeyondR

So far, we have explored idiosyncrasies of R we should be aware of when writing
programs to handle and analyze large datasets. While this has shown that R has
many advantages for working with data, it also revealed some aspects of R that
might result in low performance compared to other programming languages. A
simple generic explanation for this is that R is an interpreted language, meaning
that when we execute R code, it is processed (statement by statement) by an ‘in-
terpreter’ that translates the code into machine code (without the user giving any
specific instructions). In contrast, when writing code in a ‘compiled language’, we
first have to explicitly compile the code (into machine code) and then run the com-
piled program. Running code that is already compiled is typically much faster than
running R code that has to be interpreted before it can actually be processed by the
CPU.

For advanced programmers, R offers various options to directly make use of com-
piled programs (for example, written in C, C++, or FORTRAN). In fact, several of
the core R functions installed with the basic R distribution are implemented in one
of these lower-level programming languages, and the R function we call simply in-
teracts with these functions.

We can actually investigate this by looking at the source code of an R function. If
you simply type the name of a function (such as our import_file()) to the console,
R prints the function’s source code to the console.

import_file

## function(x) {
## parsed_x <- fread(x)

## return(parsed_x)

8Note that running gc () takes some time, so you should not overdo it. As a rule of thumb, run
gc () after removing a really large object.
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## }
## <bytecode: 0x55calfdc2030>

However, if we do the same for function sum, we don't see any actual source code.

sum

## function (..., na.rm = FALSE) .Primitive("sum")

Instead .primitive() indicates that sum() is actually referring to an internal func-
tion (in this case implemented in C).

While the use of functions implemented in a lower-level language is a common
technique to improve the speed of ‘R’ functions, it is particularly prominent in the
context of functions/packages made to deal with large amounts of data (such as
the data. table package).

4.4 SQLbasics

Structured Query Language (SQL) has become a bread-and-butter tool for data an-
alysts and data scientists due to its broad application in systems used to store large
amounts of data. While traditionally only encountered in the context of structured
data stored in relational database management systems, some versions of it are
now also used to query data from data warehouse systems (e.g. Amazon Redshift)
and even to query massive amounts (terabytes or even petabytes) of data stored in
data lakes (e.g., Amazon Athena). In all of these applications, SQLs purpose (from
the data analytics perspective) is to provide a convenient and efficient way to query
data from mass storage for analysis. Instead of importing a CSV file into R and
then filtering it in order to get to the analytic dataset, we use SQL to express how
the analytic dataset should look (which variables and rows should be included).

The latter point is very important to keep in mind when already having experience
with alanguage like R and learning SQL for the first time. In R we write code to in-
struct the computer what to do with the data. For example, we tell it to import a csv
file called economics.csv as a data.table; then we instruct it to remove observations
that are older than a certain date according to the date column; then we instruct it
to compute the average of the unemploy column values for each year based on the
date column and then return the result as a separate data frame:

# import data

econ <- read.csv("data/economics.csv")
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# filter

econ2 <- econ["1968-01-01"<=econS$date,]

# compute yearly averages (basic R approach)
econ2$year <- lubridate::year(econ2$date)
years <- unique(econ2$year)

averages <-

sapply(years, function(x){
mean (econ2[econ2Syear==x,"unemploy'"])
)
output <- data.frame( years, averages)

# inspect the first few lines of the result

head (output)

##  year average_unemploy

## 1 1968 2797
## 2 1969 2830
## 3 1970 4127
## 4 1971 5022
## 5 1972 4876
## 6 1973 4359

In contrast, when using SQL we write code that describes what the final result is
supposed to look like. The SQL engine processing the code then takes care of the
rest and returns the result in the most efficient way.’

SELECT

strftime('%Y', “date’) AS year,
AVG(unemploy) AS average_unemploy
FROM econ

WHERE "1968-01-01"<="date’

GROUP BY year LIMIT 6;

## year average_unemploy
## 1 1968 2797
## 2 1969 2830

°In particular, the user does not need to explicitly instruct SQL at which point in the process
which part (filtering, selecting variables, aggregating, creating new variables etc.) of the query
should be processed. SQL will automatically find the most efficient way to process the query.
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## 3 1970 4127
## 4 1971 5022
## 5 1972 4876
## 6 1973 4359

For the moment, we will only focus on the code and ignore the underlying hardware
and database concepts (those will be discussed in more detail in Chapter 5).

4.4.1 Firststeps in SQL(ite)

In order to get familiar with coding in SQL, we work with a free and easy-to-use
version of SQL called SQLite. SQLite'® is a free full-featured SQL database engine
widely used across platforms. It usually comes pre-installed with Windows and
Mac/OSX distributions and has (from the user’s perspective) all the core features
of more sophisticated SQL versions. Unlike the more sophisticated SQL systems,
SQLite does not rely explicitly on a client/server model. That is, there is no need
to set up your database on a server and then query it from a client interface. In
fact, setting it up is straightforward. In the terminal, we can directly call SQLite as
a command-line tool (on most modern computers, the command is now sqlites,
SQLite version 3).

In this first code example, we set up an SQLite database using the command line.

In the file structure of the book repository, we first switch to the data directory.

cd data

With one simple command, we start up SQLite, create a new database called
mydb.sqlite, and connect to the newly created database.”

sqlite3 mydb.sqlite

This created a new file mydb.sqlite in our data directory, which contains the newly
created database. Also, we are now running sqlite in the terminal (indicated by
the sqlite> prompt. This means we can now type SQL code to the terminal to run
queries and other SQL commands.

At this point, the newly created database does not contain any data. There are no
tables in it. We can see this by running the . tables command.

©https://sqlite.org/index.html
UIfthere is already a database called mydb. sqlite in this folder, the same command would simply
start up SQLite and connect to the existing database.
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.tables

As expected, nothing is returned. Now, let’s create our first table and import the
economics.csv dataset into it. In SQLite, it makes sense to first set up an empty ta-
ble in which all column data types are defined before importing data from a CSV-
file to it. If a CSV is directly imported to a new table (without type definitions), all
columns will be set to TexT (similar to character in R) by default. Setting the right
data type for each variable follows essentially the same logic as setting the data
types of a data frame’s columns in R (with the difference that in SQL this also af-
fects how the data is stored on disk).'

In a first step, we thus create a new table called econ.

-- Create the new table
CREATE TABLE econ(
"date" DATE,

"pce" REAL,

"pop" REAL,

"psavert" REAL,
"uempmed" REAL,
"unemploy" INTEGER

)3

Then, we can import the data from the csv file, by first switching to CSV mode
via the command .mode csv and then importing the data to econ with .import. The
.import command expects as a first argument the path to the CSV file on disk and
as a second argument the name of the table to import the data to.

-— prepare import
.mode csv
-— import data from csv

.import --skip 1 economics.csv econ

Now we can have a look at the new database table in SQLite. . tables shows that we
now have one table called econ in our database, and .schema displays the structure
of the new econ table.

2The most commonly used data types in SQL all have a very similar R equivalent: pate is like pate
in R, reaL like numeric/double, INTEGER like integer, and TexT like character.
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.tables

# econ

.schema econ

CREATE TABLE econ(
"date" DATE,

"pce" REAL,

"pop" REAL,
"psavert" REAL,
"uempmed" REAL,
"unemploy" INTEGER

)5

H oH H H H B B

With this, we can start querying data with SQLite. In order to make the query re-
sults easier to read, we first set two options regarding how query results are dis-
played on the terminal. .header on enables the display of the column names in the
returned query results. And .mode columns arranges the query results in columns.

.header on

.mode columns

In our first query, we select all (x) variable values of the observation of January 1968.

select * from econ where date = '1968-01-01";
#t date pce pop psavert uempmed unemploy
## 1 1968-01-01 531.5 199808 11.7 5.1 2878

4.4.1.1 Simple queries

Now let’s select all dates and unemployment values of observations with more than
15 million unemployed, ordered by date.

select date,

unemploy from econ
where unemploy > 15000
order by date;
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## date unemploy
## 1 2009-09-01 15009
## 2 2009-10-01 15352
## 3 2009-11-01 15219
## 4 2009-12-01 15098
## 5 2010-01-01 15046
## 6 2010-02-01 15113
## 7 2010-03-01 15202
## 8 2010-04-01 15325
## 9 2010-11-01 15081
4.4.2 Joins

So far, we have only considered queries involving one table of data. However, SQL
provides a very efficient way to join data from various tables. Again, the way of
writing SQL code is the same: You describe what the final table should look like
and from where the data is to be selected.

Let's extend the previous example by importing an additional table to our
mydb.sqlite. The additional data is stored in the file inflation.csvin the book’s data
folder and contains information on the US annual inflation rate measured in per-
cent.”

-- Create the new table
CREATE TABLE inflation(
"date" DATE,
"inflation_percent" REAL

)3

-— prepare import

.mode csv

-— import data from csv

.import --skip 1 inflation.csv inflation
-- switch back to column mode

.mode columns

Note that the data stored in econ contains monthly observations, while inflation
contains annual observations. We can thus only meaningfully combine the two
datasets at the level of years. Again using the combination of datasets in R as a
reference point, here is what we would like to achieve expressed in R. The aim is to

BLike the data stored in economics. csv, the data stored in inflation.csv is provided by the Federal
Reserve Bank’s (FRED)[https://fred.stlouisfed.org/] website.
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get a table that serves as basis for a Phillips curve' plot, with annual observations
and the variables year, average_unemp_percent, and inflation_percent.

# import data
econ <- read.csv("data/economics.csv")

inflation <- read.csv("data/inflation.csv")

# prepare variable to match observations
econs$year <- lubridate::year(econ$date)

inflation$year <- lubridate::year(inflation$date)

# create final output
years <- unique(econ$year)
averages <- sapply(years, FUN = function(x) {

mean (econ[econ$year==x,"unemploy']/econ[econSyear==x,"pop"])*100

1)
unemp <- data.frame(year=years,
average_unemp_percent=averages)
# combine via the year column
# keep all rows of econ
output<- merge(unemp, inflation[, c("year", "inflation_percent")], by="year")
# inspect output
head (output)

## year average_unemp_percent inflation_percent

## 1 1967 1.512 2.773
## 2 1968 1.394 4.272
## 3 1969 1.396 5.462
## 4 1970 2.013 5.838
## 5 1971 2.419 4.293
## 6 1972 2.324 3.272

Now let’s look at how the same table can be created in SQLite (the table output
below only shows the first 6 rows of the resulting table).

SELECT
strftime('%Y', econ.date) AS year,
AVG (unemploy/pop) *100 AS average_unemp_percent,

inflation_percent

Yhttps://en.wikipedia.org/wiki/Phillips_curve
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FROM econ INNER JOIN -inflation ON year = strftime('%Y', inflation.date)
GROUP BY year

#t year average_unemp_percent inflation_percent

## 1 1967 1.512 2.773
## 2 1968 1.394 4.272
## 3 1969 1.396 5.462
## 4 1970 2.013 5.838
## 5 1971 2.419 4.293
## 6 1972 2.324 3.272

When done working with the database, we can exit SQLite by typing .quit into the
terminal and hit enter.

4.5 Withalittle help from my friends: GPT and R/SQL coding

Whether you are already an experienced programmer in R and SQL or whether you
are rather new to coding, recent developments in Large Language Models (LLMs)
might provide an interesting way of making your coding workflow more efficient.
At the writing of this book, OpenAI's ChatGPT was still in its testing phase but has
already created a big hype in various topic domains. In very simple terms ChatGPT
and its predecessors GPT-2, GPT-3 are pre-trained large-scale machine learning
models that have been trained on millions of websites’ text content (including code
from open repositories such as GitHub). Applying these models for predictions is
different from other machine learning settings. Instead of feeding new datasets
into the trained model, you interact with the model via a prompt (like a chat func-
tion). That is, among other things you can pose a question to the model in plain En-
glish and get an often very reasonable answer, or you can instruct via the prompt
to generate some type of text output for you (given your instructions, and poten-
tially additional input). As the model is trained on natural language texts as well as
(documented) computer code, you can ask it to write code for you, for example in
SQLorR.

While there are many tools that build on LLMs such as GPT-3 already out there
and even more still being developed, I want to explicitly point you to two of those:
gptstudio®, an add-in for Rstudio, providing an easy-to-use interface with some of
OpenAT’s APIs, and GitHub Copilot’. The latter is a professionally developed tool
to support your software development workflow by, for example, auto-completing

Bhttps://github.com/MichelNivard/GPTstudio
Yhttps://github.com/features/copilot
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the code you are writing. To use GitHub Copilot you need a paid subscription. With
a subscription the tool can then be installed as an extension to different code ed-
itors (for example Visual Studio Code). However, at the time of writing this book
no GitHub Copilot extension for RStudio was available. gptstudio is a much sim-
pler but free alternative to GitHub Copilot and it is explicitly made for RStudio."”
You will, however, need an OpenAI account and a corresponding OpenAl API key
(to get these simply follow the instructions here: https://github.com/MichelNiv
ard/GPTstudio) in order to use the gptstudio-add-in. You will be charged for the
queries that gptstudio sends to the OpenAI-API; however there are no fixed costs
associated with this setup.

Just to give you an idea of how you could use gptstudio for your coding workflow,
consider the following example. After installing the add-in and creating your Ope-
nAl account and API key, you can initiate the chat function of the add-in as follows.

# replace "YOUR-API-KEY" with

# your actual key

Sys.setenv( "YOUR-API-KEY")
# open chat window

gptstudio:::chat_gpt_addin()

This will cause RStudio to launch a Viewer window. You can pose questions or write
instructions to OpenAI's GPT model in the prompt field and send the correspond-
ing query by clicking the “Chat” button. In the example below, I simply ask the
model to generate a SQL query for me. In fact, I ask it to construct a query that
we have previously built and evaluated in the previous SQL examples. I want the
model to specifically reproduce the following query:

select date,

unemploy from econ
where unemploy > 15000
order by date;

Figure 4.1 shows a screenshot of my instruction to the model, and Figure 4.2
presents the response from the model.

Two things are worth noting here: first, the query is syntactically correct and would
essentially work; second, when comparing the query or the query’s results with
our previous manually written query, we notice that the AI's query is not seman-
tically correct. Our database’s unemployment variable is called unemploy, and it is

The installation instructions in the README file on https://github.com/MichelNivard/GPTs
tudio are straightforward.
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Write Prompt

The following SQL code returns a table with all dates and unemployment values of observations with more than 15
million unemployed, ordered by date from from a SQL table called "econ"|

)

FIGURE 4.1: GPTStudio: instructing OpenAI’s GPT-3 model (text-davinci-003) to
write an SQL query.

Question
The following SQL code returns a table with all dates and unemployment values of observations with more than 15 million
unemployed, ordered by date from from a SQL table called "econ”

Response
SELECT date, unemployment FROM econ WHERE unemployment > 15000000 ORDER BY date;

FIGURE 4.2: GPTStudio: an SQL query written by OpenAl’s GPT-3 model (text-
davinci-003).

measured in thousands. The GPT model, of course, had no way of obtaining this
information from our instructions. As a result, it simply used variable names and
values for the filtering that seemed most reasonable given our input. The take-away
message here is to be aware of giving the model very clear instructions when cre-
ating code in this manner, especially in terms of the broader context (here the
database and schema you are working with). To check the model’s code for syn-
tax errors, simply test whether the code runs through or not. However, model-
generated code can easily introduce semantic errors, which can be very problem-
atic.

4.6 Wrapping up

« Find bottlenecks in your code before exposing it to the full dataset. To do so, use
tools like bench: :mark() and profvis::profvis() to see how long certain parts of
your code need to process and how much memory they occupy.

« Be aware of R’s strengths and weaknesses when writing code for Big Data
Analytics.Pre-allocate memory for objects in which you collect the results of
loops, make use of R’s vectorization, and avoid unnecessary copying.

« Get familiar with SQL and the underlying concept of only loading those observa-
tions and variables into R that are really needed for your task. SQLite in combi-
nation with R is an excellent lightweight solution to do this.
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Hardware: Computing Resources

In order to better understand how we can use the available computing resources
most efficiently in an analytics task, we first need to get an idea of what we mean
by capacity and big regarding the most important hardware components. We then
look at each of these components (and additional specialized components) through
the lens of Big Data. That is, for each component, we look at how it can become
a crucial bottleneck when processing large amounts of data and what we can do
about it in R. First we focus on mass storage and memory, then on the CPU, and
finally on new alternatives to the CPU.

5.1 Massstorage

In a simple computing environment, the mass storage device (hard disk) is where
the data to be analyzed is stored. So, in what units do we measure the size of
datasets and consequently the mass storage capacity of a computer? The smallest
unit of information in computing/digital data is called a bit (from binary digit; ab-
brev. ‘b) and can take one of two (symbolic) values, either a o or a 1 (“off” or “on’”).
Consider, for example, the decimal number 139. Written in the binary system, 139
corresponds to the binary number 10001011. In order to store this number on a hard
disk, we require a capacity of 8 bits, or one byte (1 byte = 8 bits; abbrev. ‘B’). Histor-
ically, one byte encoded a single character of text (e.g., in the ASCII character en-
coding system). When thinking of a given dataset in its raw/binary representation,
we can simply think of it as a row of es and 1s.

Bigger units for storage capacity usually build on bytes, for example:

« 1kilobyte (KB) = 1000! ~ 210 bytes

« 1 megabyte (MB) = 1000% ~ 22° bytes

. 1 gigabyte (GB) = 1000 ~ 239 bytes

Currently, acommon laptop or desktop computer has several hundred GBs of mass
storage capacity. The problems related to alack of mass storage capacity in Big Data

analytics are likely the easiest to understand. Suppose you collect large amounts of
data from an online source such as the Twitter. At some point, R will throw an error
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and stop the data collection procedure as the operating system will not allow R to
use up more disk space. The simplest solution to this problem is to clean up your
hard disk: empty the trash, archive files in the cloud or onto an external drive and
delete them on the main disk, etc. In addition, there are some easy-to-learn tricks
to use from within R to save some disk space.

5.1.1 Avoiding redundancies

Different formats for structuring data stored on disk use up more or less space. A
simple example is the comparison of JSON (JavaScript Object Notation) and CSV
(Comma Separated Values), both data structures that are widely used to store data
for analytics purposes. JSON is much more flexible in that it allows the definition
of arbitrarily complex hierarchical data structures (and even allows for hints at data
types). However, this flexibility comes with some overhead in the usage of special
characters to define the structure. Consider the following JSON excerpt of an eco-
nomic time series fetched from the Federal Reserve’s FRED API'.

{

"realtime_start": "2013-08-14",

"realtime_end": "2013-08-14",

"observation_start": "1776-07-04",

"observation_end": "9999-12-31",

"units": "lin",

"output_type": 1,

"file_type": "json",

"order_by": "observation_date",

"sort_order": "asc",

"count": 84,

"offset": 0,

"limit": 100000,

"observations": [

{

"realtime_start": "2013-08-14",
"realtime_end": "2013-08-14",
"date": "1929-01-01",
"value'": "1065.9"

"realtime_start": "2013-08-14",
"realtime_end": "2013-08-14",
"date": "1930-01-01",

Thttps://fred.stlouisfed.org/docs/api/fred/series_observations.html#example_json
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"value": "975.5"

1,
>

{
"realtime_start": "2013-08-14",
"realtime_end": "2013-08-14",
"date": "2012-01-01",
"value": "15693.1"

}

}

The JSON format is very practical here in separating metadata (such as what time
frame is covered by this dataset, etc.) in the first few lines on top from the actual
data in "observations" further down. However, note that due to this structure, the
key names like "date", and "value" occur for each observation in that time series.
In addition, "realtime_start" and "realtime_end" occur both in the metadata sec-
tion and again in each observation. Each of those occurrences costs some bytes of
storage space on your hard disk but does not add any information once you have
parsed and imported the time series into R. The same information could also be
stored in a more efficient way on your hard disk by simply storing the metadata in
a separate text file and the actual observations in a CSV file (in a table-like struc-
ture):

"date","value"
"1929-01-01", "1065.9"
"1930-01-01", "975.5"

"2012-01-01", 15693.1"

In fact, in this particular example, storing the data in JSON format would take up
more than double the hard-disk space as CSV. Of course, this is not to say that
one should generally store data in CSV files. In many situations, you might really
have to rely on JSON’s flexibility to represent more complex structures. However, in
practiceitis very much worthwhile to think about whether you can improve storage
efficiency by simply storing raw data in a different format.

Another related point to storing data in CSV files is to remove redundancies by
splitting the data into several tables/CSV files, whereby each table contains the
variables exclusively describing the type of observation in it. For example, when
analyzing customer data for marketing purposes, the dataset stored in one CSV
file might be at the level of individual purchases. That is, each row contains infor-
mation on what has been purchased on which day by which customer as well as
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additional variables describing the customer (such as customer ID, name, address,
etc.). Instead of keeping all of this data in one file, we could split it into two files,
where one only contains the order IDs and corresponding customer IDs as well
as attributes of individual orders (but not additional attributes of the customers
themselves), and the other contains the customer IDs and all customer attributes.
Thereby, we avoid redundancies in the form of repeatedly storing the same values
of customer attributes (like name and address) for each order.?

5.1.2 Data compression

Data compression essentially follows from the same basic idea of avoiding redun-
dancies in data storage as the simple approaches discussed above. However, it hap-
pens on a much more fundamental level. Data compression algorithms encode the
information contained in the original representation of the data with fewer bits. In
the case of lossless compression, this results in a new data file containing the exact
same information but taking up less space on disk. In simple terms, compression
replaces repeatedly occurring sequences with shorter expressions and keeps track
of replacements in a table. Based on the table, the file can then be de-compressed
to recreate the original representation of the data. For example, consider the fol-
lowing character string.

"XXXXXYYYYyyzzzZz"
The same data could be represented with fewer bits as:
"5x6y4z"

which needs fewer than half the number of bits to be stored (but contains the same
information).

There are several easy ways to use your mass storage capacity more efficiently with
data compression in R. Most conveniently, some functions to import/export data
in R directly allow for reading and writing of compressed formats. For example, the
fread()/fwrite() functions provided in the data.table package will automatically
use the GZIP (de-)compression utility when writing to (reading from) a CSV file
with a . gz file extension in the file name.

# load packages
library(data.table)

This concept of organizing data into several tables is the basis of relational database manage-
ment systems, which we will look at in more detail in Chapter 5. However, the basicidea is also very
useful for storing raw data efficiently even if there is no intention to later build a database and run
SQL queries on it.
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# load example data from basic R installation

data("LifeCycleSavings")

# write data to normal csv file and check size
fwrite(LifeCycleSavings, file="lcs.csv")

file.size("lcs.csv'")

## [1] 1441

# write data to a GZIPped (compressed) csv file and check size
fwrite(LifeCycleSavings, file="lcs.csv.gz")

file.size("lcs.csv.gz")

## [1] 744

# read/import the compressed data

lcs <- data.table::fread("lcs.csv.gz")

Alternatively, you can also use other types of data compression as follows.

# common ZIP compression (independent of data.table package)
write.csv(LifeCycleSavings, file="lcs.csv'")

file.size("lcs.csv'")

## [1] 1984

zip(zipfile = "lcs.csv.zip", files = "lcs.csv")

file.size("lcs.csv.zip")

## [1] 1205

# unzip/decompress and read/import data
lcs_path <- unzip("lcs.csv.zip")

lcs <- read.csv(lcs_path)

Note that data compression is subject to a time—memory trade-off. Compression
and de-compression are computationally intensive and need time. When using
compression to make more efficient use of the available mass storage capacity,
think about how frequently you expect the data to be loaded into R as part of the
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data analysis tasks ahead and for how long you will need to keep the data stored on
your hard disk. Importing GBs of compressed data can be uncomfortably slower
than importing from an uncompressed file.

So far, we have only focused on data size in the context of mass storage capac-
ity. But what happens once you load a large dataset into R (e.g., by means of
read.csv())? A program called a “parser” is executed that reads the raw data from
the hard disk and creates a representation of that data in the R environment, that
is, in random access memory (RAM). All common computers have more GBs of
mass storage available than GBs of RAM. Hence, new issues of hardware capacity
loom at the stage of data import, which brings us to the next subsection.

5.2 Random access memory (RAM)

Currently, a common laptop or desktop computer has 8—-32 GB of RAM capacity.
These are more-or-less the numbers you should keep in the back of your mind for
the examples/discussions that follow. That is, we will consider a dataset as “big” if
it takes up several GBs in RAM (and therefore might overwhelm a machine with
8GB RAM capacity).

There are several types of problems that you might run into in practice when at-
tempting to import and analyze a dataset of the size close to or larger than your
computer’s RAM capacity. Importing the data might take much longer than ex-
pected, your computer might freeze during import (or later during the analysis),
R/Rstudio might crash, or you might get an error message hinting at alack of RAM.
How can you anticipate such problems, and what can you do about them?

Many of the techniques and packages discussed in the following chapters are in
one way or another solutions to these kinds of problems. However, there are a few
relatively simple things to keep in mind before we go into the details.

1. Thesame data stored on the mass storage device (e.g.,in a CSV file) might
take up more or less space in RAM. This is due to the fact that the data is
(technically speaking) structured differently in a CSV or JSON file thanin,
for example, a data table or a matrix in R. For example, it is reasonable to
anticipate that the example JSON file with the economic time series data
will take up less space as a time series object in R (in RAM) than it does on
the hard disk (for one thing simply due to the fact that we will not keep
the redundancies mentioned before).

2. 'The import might work well, but some parts of the data analysis script
might require much more memory to run through even without loading
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additional data from disk. A classic example of this is regression analy-
sis performed with, for example, 1n() in R. As part of the OLS estimation
procedure, 1n will need to create the model matrix (usually denoted X).
Depending on the model you want to estimate, the model matrix might
actually be larger than the data frame containing the dataset. In fact, this
can happen quite easily if you specify a fixed effects model in which you
want to account for the fixed effects via dummy variables (for example,
for each country except for one).?> Again, the result can be one of several:
an error message hinting at a lack of memory, a crash, or the computer
slowing down significantly. Anticipating these types of problems is very
tricky since memory problems are often caused at a lower level of a func-
tion from the package that provides you with the data analytics routine
you intend to use. Accordingly, error messages can be rather cryptic.

3. Keep in mind that you have some leeway in how much space imported
data takes up in R by considering data structures and data types. For ex-
ample, you can use factors instead of character vectors when importing
categorical variables into R (the default in read. csv), and for some opera-
tions it makes sense to work with matrices instead of data frames.

Finally, recall the lessons regarding memory usage from the section “Writing effi-
cient R code” in Chapter 1.

5.3 Combining RAM and hard disk: Virtual memory

What if all the RAM in our computer is not enough to store all the data we want to
analyze?

Modern operating systems (OSs) have a way of dealing with such a situation. Once
all RAM is used up by the currently running programs, the OS allocates parts of
the memory back to the hard disk, which then works as virtual memory. Figure 4.2
illustrates this point.

For example, when we implement an R-script that imports one file after another
into the R environment, ignoring the RAM capacity of our computer, the OS will
start paging data to the virtual memory. This happens ‘under the hood’ without ex-
plicit instructions by the user. We will quite likely notice that the computer slows
down a lot when this happens.

3For example, if you specify something like im(y~x1 + x2 + country, data=mydata) and country is
a categorical variable (factor).
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FIGURE 5.1: Virtual memory. Overall memory is mapped to RAM and parts of the
hard disk.

While this default usage of virtual memory by the OS is helpful for running several
applications at the same time, each taking up a moderate amount of memory, it is
not a really useful tool for processing large amounts of data in one application (R).
However, the underlying idea of using both RAM and mass storage simultaneously
in order to cope with a lack of memory is very useful in the context of Big Data
Analytics.

Several R packages have been developed that exploit the idea behind virtual mem-
ory explicitly for analyzing large amounts of data. The basic idea behind these pack-
ages is to map a dataset to the hard disk when loading it into R. The actual data
values are stored in chunks on the hard disk, while the structure/metadata of the
dataset is loaded into R.

5.4 CPU and parallelization

The actual processing of the data is done in the computer’s central processing unit
(CPU). Consequently, the performance of the CPU has a substantial effect on how
fast a data analytics task runs. A CPU’s performance is usually denoted by its clock
rate measured in gigaherz (GHz). In simple terms, a CPU with a clock rate of 4.8
GHz can execute 4.8 billion basic operations per second. Holding all other aspects



5.4 CPU and parallelization 67

constant, you can thus expect an analytics task to run faster if it runs on a com-
puter with higher CPU clock rate. As an alternative to scaling up the CPU, we can
exploit the fact that modern CPUs have several cores. In the normal usage of a PC,
the operating system makes use of these cores to run several applications smoothly
in parallel (e.g., you listen to music on Spotify while browsing the web and running
some analytics script in RStudio in the background).

Modern computing environments such as R allow us to explicitly run parts of the
same analytics task in parallel, that is, on several CPU cores at the same time. Fol-
lowing the same logic, we can also connect several computers (each with several
CPU cores) in a cluster computer and run the program in parallel on all of these
computing nodes. Both of these approaches are generally referred to as paralleliza-
tion, and both are supported in several R packages.

An R program run in parallel typically involves the following steps.

« First, several instances of R are running at the same time (across one machine
with multiple CPU cores or across a cluster computer). One of the instances (i.e.,
the master instance) breaks the computation into batches and sends those to the
other instances.

« Second, each of the instances processes its batch and sends the results back to
the master instance.

« Finally, the master instance combines the partial results into the final result and
returns it to the user.

To illustrate this point, consider the following econometric problem: you have a
customer dataset* with detailed data on customer characteristics, past customer
behavior, and information on online marketing campaigns. Your task is to figure
out which customers are more likely to react positively to the most recent online
marketing campaign. The aim is to optimize personalized marketing campaigns
in the future based on insights gained from this exercise. In a first step you take a
computationally intensive “brute force” approach: you run all possible regressions
with the dependent variable rResponse (equal to 1 if the customer took the offer in
the campaign and O otherwise). In total you have 21 independent variables; thus
you need to run 220 = 1,048, 576 logit regressions (this is without considering
linear combinations of covariates etc.). Finally, you want to select the model with
the best fit according to deviance.

A simple sequential implementation to solve this problem could look like this (for
the sake of time, we cap the number of regression models to N=10).

*https://www.kaggle.com/jackdaoud/marketing-data?select=marketing_data.csv
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# you can download the dataset from
# https://www. kaggle.com/jackdaoud/marketing-data?

# select=marketing_data.csv

# PREPARATION —-—--————————————————————— o=
# packages
library(stringr)

# import data
marketing <- read.csv("data/marketing_data.csv")
# clean/prepare data
marketing$Income <- as.numeric(gsub("[[:punct:]]",
marketing$Income))
marketingSdays_customer <-
as.Date(Sys.Date())-
as.Date(marketing$Dt_Customer, "%m/%d/%y")
marketing$Dt_Customer <- NULL

# all sets of independent vars
indep <- names(marketing)[ c(2:19, 27,28)]
combinations_list <- lapply(l:length(indep),

function(x) combn(indep, x,

simplify = FALSE))

combinations_list <- unlist(combinations_Tlist,

recursive = FALSE)
models <- lapply(combinations_list,

function(x) paste('"Response ~'",

paste(x, collapse="+")))

# COMPUTE REGRESSIONS -———-—————=——-—————————-————
N <= 10 # N <- length(models) for all
pseudo_Rsq <- list()
length(pseudo_Rsq) <- N
for (i in 1:N) {
# fit the logit model via maximum likelihood
fit <- glm(models[[i]],
data=marketing,
family = binomial())
# compute the proportion of deviance explained by

# the independent vars (~R"2)
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pseudo_Rsq[[i1]] <- 1-(fit$deviance/fitsnull.deviance)

# SELECT THE WINNER —----—----——---
models[ [which.max(pseudo_Rsq)]]

## [1] "Response ~ MntWines"

Alternatively, a sequential implementation could be based on an apply-type func-
tion like 1apply (). As several of the approaches to parallelize computation with R
build either on loops or an apply-type syntax, let us also briefly introduce the se-
quential lapply-implementation of the task above as a point of reference.

# COMPUTE REGRESSIONS --—-——--——=———=———=—————————

N <- 10 # N <- length(models) for all

run_reg <-

function(model, data, family){

# fit the logit model via maximum likelihood
fit <- glm(model, data, family)
# compute and return the proportion of deviance explained by
# the independent vars (~R"2)
return(l-(fit$deviance/fitsnull.deviance))

pseudo_Rsq_list <-lapply(models[1:N], run_reg, marketing, binomial() )
pseudo_Rsq <- unlist(pseudo_Rsq_list)

# SELECT THE WINNER ——————---------
models[ [which.max(pseudo_Rsq)]]

## [1] "Response ~ MntWines"

5.4.1 Naive multi-session approach

There is actually a simple way of doing this “manually” on a multi-core PC, which
intuitively illustrates the point of parallelization (although it would not be a very
practical approach): you write an R script that loads the dataset, runs the first n of
the total of N regressions, and stores the result in a local text file. Next, you run the
script in your current RStudio session, open an additional RStudio session, and
run the script with the next n regressions, and so on until all cores are occupied
with one RStudio session. At the end you collect all of the results from the separate
text files and combine them to get the final result. Depending on the problem at
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hand, this could indeed speed up the overall task, and it is technically speaking
a form of “multi-session” approach. However, as you have surely noticed, this is
unlikely to be a very practical approach.

5.4.2 Multi-session approach with futures

There is a straightforward way to implement the very basic (naive) idea of running
parts of the task in separate R sessions. The future package (see Bengtsson (2021)
for details) provides a lightweight interface (API) to use futures’. An additional
set of packages (such as future.apply) that build on the future package, provides
high-level functionality to run your code in parallel without having to change your
(sequential, usual) R code much. In order to demonstrate the simplicity of this ap-
proach, let us re-write the sequential implementation through 1appy () from above
for parallelization through the future package. Allwe need to dois toload the future
and future.apply packages (Bengtsson, 2021) and then simply replace 1appiyc...)
with future_lapply(...).

# SET UP ————————————

# load packages

library(future)

library(future.apply)

# instruct the package to resolve

# futures in parallel (via a SOCK cluster)

plan(multisession)

# COMPUTE REGRESSIONS ——————————————————————————
N <= 10 # N <- length(models) for all
pseudo_Rsq_list <- future_lapply(models[1:N],
run_reg,
marketing,
binomial() )
pseudo_Rsq <- unlist(pseudo_Rsq_list)

# SELECT THE WINNER —----—-----—---
models[ [which.max(pseudo_Rsq)]]

## [1] "Response ~ MntWines"

*In simple terms, futures are a programming concept that allows for the asynchronous execu-
tion of a task. A future is a placeholder object that represents the result of an asynchronous opera-
tion. The future object can be used to check the status of the asynchronous operation and to retrieve
the result of the operation when it is completed. By using futures, tasks can be broken down into
smaller tasks that can be executed in parallel, resulting in faster completion times.
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5.4.3 Multi-core and multi-node approach

There are several additional approaches to parallelization in R. With the help of
some specialized packages, we can instruct R to automatically distribute the work-
load to different cores (or different computing nodes in a cluster computer), con-
trol and monitor the progress in all cores, and then automatically collect and com-
bine the results from all cores. The future-package and the packages building on
it provide in themselves different approaches to writing such scripts.® Below, we
look at two additional ways of implementing parallelization with R that are based
on other underlying frameworks than future.

5.4.3.1 Parallel for-loops using socket

Probably the most intuitive approach to parallelizing a task in R is the foreach pack-
age (Microsoft and Weston, 2022). It allows you to write a foreach statement that
is very similar to the for-loop syntax in R. Hence, you can straightforwardly “trans-
late” an already implemented sequential approach with a common for-loop to a
parallel implementation.

# COMPUTE REGRESSIONS IN PARALLEL (MULTI-CORE) ———————————————=———————————

# packages for parallel processing
library(parallel)
library (doSNOW)

# get the number of cores available
ncores <- parallel::detectCores()

# set cores for parallel processing
ctemp <- makeCluster(ncores)

registerDoSNOW (ctemp)

# prepare loop
N <- 10000 # N <- length(models) for all
# run loop in parallel
pseudo_Rsq <-
foreach ( 1:N, c) %dopar% {
# fit the logit model via maximum likelihood
fit <- glm(models[[i]],
marketing,
binomial())

¢See https://www.futureverse.org/packages-overview.html for an overview of the futureverse,
and https://www.futureverse.org/#ref-bengtsson-future for a set of simple examples of using
future in different ways (with different syntaxes/coding styles).
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# compute the proportion of deviance explained by
# the independent vars (~R"2)
return(l-(fitsSdeviance/fit$null.deviance))

# SELECT THE WINNER —-—-———-—-————~
models[[which.max(pseudo_Rsq)]]

## [1] "Response ~ Year_Birth+Teenhome+Recency+MntWines+days_customer"

With relatively few cases, this approach is not very fast due to the overhead of “dis-
tributing” variables/objects from the master process to all cores/workers. In sim-
ple terms, the socket approach means that the cores do not share the same vari-
ables/the same environment, which creates overhead. However, this approach is
usually very stable and runs on all platforms.

5.4.3.2 Parallel lapply using forking

Finally, let us look at an implementation based on forking (here, implemented in
the paratlel package by (R Core Team, 2021). In the fork approach, each core works
with the same objects/variables in a shared environment, which makes this ap-
proach very fast. However, depending on what exactly is being computed, sharing
an environment can cause problems.” If you are not sure whether your setup might
run into issues with forking, it would be better to rely on a non-fork approach.®

# COMPUTE REGRESSIONS IN PARALLEL (MULTI-CORE) —-—————====——-——-

# prepare parallel lapply (based on forking,
# here clearly faster than foreach)
N <- 10000 # N <- length(models) for all
# run parallel lapply
pseudo_Rsq <- mclapply(1:N,
ncores,
function(i){
# fit the logit model
fit <- glm(models[[i]],

marketing,

7Also, this approach does not work on Windows machines (see ?mclapply for details).

$Note that you can use the forking approach also to resolve futures. By setting plan(multicore)
instead of plan(multisession) when working with the future package, parallelization based on fu-
tures will be run via forking (again, this will not work on Windows machines).
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binomial())
# compute the proportion of deviance
# explained by the independent vars (~R"2)
return(l1-(fitSdeviance/fit$null.deviance))
b

# SELECT THE WINNER, SHOW FINAL OUTPUT --—-———————————-—

best_model <- models[[which.max(pseudo_Rsq)]]
best_model

## [1] "Response ~ Year_Birth+Teenhomet+Recency+MntWines+days_customer"

5.5 GPUs for scientific computing

The success of the computer games industry in the late 1990s/early 2000s led to an
interesting positive externality for scientific computing. The ever more demanding
graphics of modern computer games and the huge economic success of the com-
puter games industry set incentives for hardware producers to invest in research
and development of more powerful ‘graphics cards’, extending a normal PC/com-
puting environment with additional computing power solely dedicated to graphics.
At the heart of these graphic cards are so-called GPUs (graphics processing units),
microprocessors specifically optimized for graphics processing. Figure 5.2 depicts
a modern graphics card similar to those commonly built into today’s ‘gaming PCs.

FIGURES5.2:llustration of a Nvidia GEFORCE RTX 2080 graphics card with a mod-
ern GPU (illustration by MarcusBurns1977 under CC BY 3.0 license).
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Why did the hardware industry not simply invest in the development of more pow-
erful CPUs to deal with the more demanding PC games? The main reason is that
the architecture of CPUs is designed not only for efficiency but also flexibility. That
is, a CPU needs to perform well in all kinds of computations, some parallel, some
sequential, etc. Computing graphics is a comparatively narrow domain of compu-
tation, and designing a processing unit architecture that is custom-made to excel
just at this one task is thus much more cost efficient. Interestingly, this graphics-
specific architecture (specialized in highly parallel numerical [floating point] work-
loads) turns out to also be very useful in some core scientific computing tasks — in
particular, matrix multiplications (see Fatahalian et al. (2004) for a detailed dis-
cussion of why that is the case). A key aspect of GPUs is that they are composed
of several multiprocessor units, of which each in turn has several cores. GPUs can
thus perform computations with hundreds or even thousands of threads in paral-
lel. The figure below illustrates this point by showing the typical architecture of an
NVIDIA GPU.
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FIGURE 5.3: Illustration of a graphics processing unit’s components/architecture.
The GPU consists of several Texture Processing Clusters (TPC), which in turn con-
sist of several Streaming Multiprocessors (SM; the primary unit of parallelism in
the GPU) that contain ten Streaming Processors (SP; cores, responsible for execut-
ing a single thread), shared memory (can be accessed by multiple SPs simultane-
ously), instruction cache (I-Cache; responsible for storing and managing the in-
structions needed to execute a program), constant cache (C-Cache; store constant
datathatis needed during program execution), and a multi-threaded issue compo-
nent (MT issue; responsible for scheduling and managing the execution of multiple
threads simultaneously).

While initially, programming GPUs for scientific computing required a very good
understanding of the hardware, graphics card producers have realized that there
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is an additional market for their products (in particular with the recent rise of deep
learning) and now provide several high-level APIs to use GPUs for tasks other than
graphics processing. Over the last few years, more high-level software has been de-
veloped that makes it much easier to use GPUs in parallel computing tasks. The fol-
lowing subsections show some examples of such software in the R environment.’

5.5.1 GPUsinR

The gpur package (Determan, 2019) provides basic R functions to compute with
GPUs from within the R environment.! In the following example we compare the
performance of a CPU with a GPU for a matrix multiplication exercise. For a large
N x P matrix X, we want to compute X*X.

In a first step, we load the gpur package.” Note the output to the console. It shows
the type of GPU identified by gpur. This is the platform on which gpur will compute
the GPU examples. In order to compare the performances, we also load the bench
package.

# load package
library(bench)
library(gpuR)

## Number of platforms: 1

## - platform: NVIDIA Corporation: OpenCL 3.0 CUDA 12.0.151
## - context device index: 0

## - NVIDIA GeForce GTX 1650

## checked all devices

## completed +initialization

Note how loading the gpur package triggers a check of GPU devices and outputs in-
formation on the detected GPUs as well as the lower-level software platform to run
GPU computations. Next, we initialize a large matrix filled with pseudo-random
numbers, representing a dataset with NV observations and P variables.

®Note that while these examples are easy to implement and run, setting up a GPU for scientific
computing can still involve many steps and some knowledge of your computer’s system. The exam-
ples presuppose that all installation and configuration steps (GPU drivers, CUDA, etc.) have already
been completed successfully.

°GSee https://github.com/cdeterman/gpuR/wiki for installation instructions regarding the
dependencies. Once the package dependencies are installed you can install the gpur-package di-
rectly from GitHub: devtools: :install_github("cdeterman/gpur") (make sure the devtools-package
is installed before doing this).

IAs with setting up GPUs on your machine in general, installing all prerequisites to make gpur
work on your local machine can be a bit of work and can depend a lot on your system.
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initialize dataset with pseudo-random numbers
<- 10000 # number of observations

<- 100 # number of variables

X U Z *

<= matrix(rnorm(N x P, 0, 1), nrow = N, ncol =P)

For the GPU examples to work, we need one more preparatory step. GPUs have
their own memory, which they can access faster than they can access RAM. How-
ever, this GPU memory is typically not very large compared to the memory CPUs
have access to. Hence, there is a potential trade-off between losing some efficiency
but working with more data or vice versa.'” Here, we transfer the matrix to GPU
memory with velMatrix ().,

# prepare GPU-specific objects/settings
# transfer matrix to GPU (matrix stored in GPU memory)

vclX <- vclMatrix(X, type = "float'")

Now we run the two examples, first, based on standard R, using the CPU, and then,
computing on the GPU and using GPU memory. In order to make the comparison
fair, we force bench: :mark () to run at least 200 iterations per variant.

# compare three approaches

gpu_cpu <- bench: :mark(

# compute with CPU
cpu <-t(X) %x% X,

# GPU version, in GPU memory
# (vclMatrix formation is a memory transfer)

gpu <- t(vclX) %x% vclX,

check = FALSE, memory = FALSE, min_iterations = 200)

The performance comparison is visualized with boxplots.

21f we instruct the GPU to use its own memory but the data does not fit in it, the program will
result in an error.

BAlternatively, with gpumatrix () we can create an object representing matrix x for computation
on the GPU, while only pointing the GPU to the matrix and without actually transferring data to
the GPU’s memory.
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plot(gpu_cpu, "boxplot")

gpu_memory <- t(vclX) %*% vclX - |l~ L] co °

expression

cpu <- t(X) %*% X- ————— —_— ° L)

10ms 30ms 100ms
time

The theoretically expected pattern becomes clearly visible. When using the GPU +
GPU memory, the matrix operation is substantially faster than the common CPU
computation. However, in this simple example of only one matrix operation, the
real strength of GPU computation vs. CPU computation does not really become
visible. In Chapter 13, we will look at a computationally much more intensive ap-
plication of GPUs in the domain of deep learning (which relies heavily on matrix
multiplications).

5.6 Theroad ahead: Hardware made for machine learning

Due to the high demand for more computational power in the domain of train-
ing complex neural network models (for example, in computer vision), Google has
recently developed a new hardware platform specifically designed to work with
complex neural networks using TensorFlow: Tensor Processing Units (TPUs). TPUs
were designed from the ground up to improve performance in dense vector and
matrix computations with the aim of substantially increasing the speed of train-
ing deep learning models implemented with TensorFlow (Abadi et al., 2015).

l

L
[——

FIGURE 5.4: [llustration of a tensor processing unit (TPU).

While initially only used internally by Google, the Google Cloud platform now offers
cloud TPUs to the general public.
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5.7 Wrapping up

« Be aware of and avoid redundancies in data storage. Consider, for example, stor-
ing data in CSV-files instead of JSON-files (if there is no need to store hierarchical
structures).

« File compression is a more general strategy to avoid redundancies and save mass
storage space. It can help you store even large datasets on disk. However, reading
and saving compressed files takes longer, as additional processing is necessary.
As a rule of thumb, store the raw datasets (which don’t have to be accessed that
often) in a compressed format.

« Standard R for data analytics expects the datasets to be imported and available as
R objects in the R environment (i.e., in RAM). Hence, the step of importing large
datasets to R with the conventional approaches is aimed to parsing and loading
the entire dataset into RAM, which might fail if your dataset is larger than the
available RAM.

« Even if a dataset is not too large to fit into RAM, running data analysis scripts
on it might then lead to R reaching RAM limits due to the creation of additional
R objects in RAM needed for the computation. For example, when running re-
gressions in the conventional way in R, R will generate, among other objects, an
object containing the model matrix. However, at this point your original dataset
object will still also reside in RAM. Not uncommonly, R would then crash or slow
down substantially.

« The reason R might slow down substantially when working with large datasets
in RAM is that your computer’s operating system (OS) has a default approach of
handling situations with a lack of available RAM: it triggers paging between the
RAM and a dedicated part of the hard disk called virtual memory. In simple terms,
your computer starts using parts of the hard disk as an extension of RAM. How-
ever, reading/writing from/to the hard disk is much slower than from/to RAM,
so your entire data analytics script (and any other programs running at the same
time) will slow down substantially.

« Based on the points above, when working locally with a large dataset, recognize
why your computer is slowing down or why R is crashing. Consider whether the
dataset could theoretically fit into memory. Clarify whether analyzing the already
imported data triggers the OS’s virtual memory mechanism.

« Taken together, your program might run slower than expected due to a lack of
RAM (and thus the paging) and/or due to a very high computational burden on
the CPU - for example, bootstrapping the standard errors of regression coeffi-
cients.

« By default essentially all basic R functions use one CPU thread/core for compu-
tation. If RAM is not an issue, setting up repetitive tasks to run in parallel (i.e.,
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using more than one CPU thread/core at a time) can substantially speed up your
program. Easy-to-use solutions to do this are foreach for a parallel version of for-
loops and mc1apply for a parallel version of 1apply.

« Finally, if your analytics script builds extensively on matrix multiplication, con-
sider implementing it for processing on your GPU via the gpur package. Note,
though, that this approach presupposes that you have installed and set up your
GPU with the right drivers to use it not only for graphics but also for scientific
computation.

5.8 Still have insufficient computing resources?

When working with very large datasets (i.e., terabytes of data), processing the data
on one common computer might not work due to a lack of memory or would be
way too slow due to a lack of computing power (CPU cores). The architecture or ba-
sic hardware setup of a common computer is subject to a limited amount of RAM
and a limited number of CPUs/CPU cores. Hence, simply scaling up might not
be sufficient. Instead, we need to scale out. In simple terms, this means connect-
ing several computers (each with its own RAM, CPU, and mass storage) in a net-
work, distributing the dataset across all computers (“nodes”) in this network, and
working on the data simultaneously across all nodes. In the next chapter, we look
into how such “distributed systems’’ basically work, what software frameworks are
commonly used to work on distributed systems, and how we can interact with this
software (and the distributed system) via R and SQL.
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Distributed Systems

When we connect several computers in a network to jointly process large amounts
of data, such a computing system is commonly referred to as a “distributed system’”.
From a technical standpoint the key difference between a distributed system and
the more familiar parallel system (e.g., our desktop computer with its multi core
CPU)is thatin distributed systems the different components do not share the same
memory (and storage). Figure 6.1 illustrates this point.

B)

cPU CcPU CcPU

FIGURE 6.1: Panel A illustrates a distributed system, in contrast to the illustration
of a parallel system in Panel B.

In a distributed system, the dataset is literally split up into pieces that then reside
separately on different nodes. This requires an additional layer of software (that
coordinates the distribution/loading of data as well as the simultaneous process-
ing) and different approaches (different programming models) to defining com-
puting/data analytics tasks. Below, we will look at each of these aspects in turn.

81
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6.1 MapReduce

A broadly used programming model for processing Big Data on distributed sys-
tems is called MapReduce. It essentially consists of two procedures and is concep-
tually very close to the “split-apply-combine” strategy in data analysis. First, the
Map function sorts/filters the data (on each node/computer). Then, a Reduce func-
tion aggregates the sorted/filtered data. Thereby, all of these processes are orches-
trated to run across many nodes of a cluster computer. Finally, the master node
collects the results and returns them to the user.

Let us illustrate the basic idea behind MapReduce with a simple example. Suppose
you are working on a text mining task in which all the raw text in thousands of
digitized books (stored as text files) need to be processed. In a first step, you want
to compute word frequencies (count the number of occurrences of specific words
in all books combined).

For simplicity, let us only focus on the following very simple and often referred to
MapReduce word count example’:

Text in book 1:

Apple Orange Mango

Orange Grapes Plum

Text in book 2:

Apple Plum Mango

Apple Apple Plum

The MapReduce procedure is then as follows:

o First, the data is loaded from the original text files.

« Each line of text is then passed to individual mapper instances, which separately
split the lines of text into key—value pairs. In the example above, the first key-
value pair of the first document/line would then be Apple,1.

« Then the system sorts and shuflles all key-value pairs across all instances; next,
the reducer aggregates the sorted/shuffled key-value pairs (here: counts the
number of word occurrences). In the example above, this means all values with
key Apple are summed up, resulting in Apple,4.

« Finally, the master instance collects all the results and returns the final output.

ISee, e.g., https://commons.wikimedia.org/wiki/File:WordCountFlow.JPG for an illustration
of the same example.
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The result would be as follows:

Text in book 2:

Apple4

Grapes,1

Mango,2

Orange,2

Plum,3

From this simple example, a key aspect of MapReduce should become clear: for the
key tasks of mapping and reducing, the data processing on one node/instance can
happen completely independently of the processing on the other instances. Note
that this is not as easily achievable for every data analytics task as it is for comput-

ing word frequencies.

r

Aside: MapReduce concept illustrated in R
In order to better understand the basic concept behind the MapReduce
framework on a distributed system, let’s look at how we can combine the
functions map() and reduce() in R to implement the basic MapReduce ex-
ample shown above (this is just to illustrate the underlying idea, not to sug-
gest that MapReduce actually is simply an application of the classical map
and reduce (fold) functions in functional programming).” The overall aim
of the program is to count the number of times each word is repeated in a
given text. The input to the program is thus a text, and the output is a list
of key-value pairs with the unique words occurring in the text as keys and
their respective number of occurrences as values.
In the code example, we will use the following text as input.

# initialize the input text (for simplicity as one text string)
input_text <-

"Apple Orange Mango

Orange Grapes Plum

Apple Plum Mango

Apple Apple Plum"

Mapper

The Mapper first splits the text into lines and then splits the lines into key—
value pairs, assigning to each key the value 1. For the first step we use
strsplit(), which takes a character string as input and splits it into a list
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of sub-strings according to the matches of a sub-string (here "\n", indicat-
ing the end of a line).

# Mapper splits input into lines
lines <- as.list(strsplit(input_text, "\n")[[1]])
lines[1:2]

## [[1]1]

## [1] "Apple Orange Mango"

#4

## [[2]]

## [1] "Orange Grapes Plum"

In a second step, we apply our own function (map_fun()) to each line of text
via Map (). map_fun() splits each line into words (keys) and assigns a value of
1 to each key.

# Mapper splits lines into key-value pairs
map_fun <-

function(x){

# remove special characters

x_clean <- gsub("[[:punct:]]", "", x)
# split line into words

keys <- unlist(strsplit(x_clean, " "))
# initialize key-value pairs
key_values <- rep(l, length(keys))

names (key_values) <- keys

return(key_values)

kv_pairs <- Map(map_fun, lines)

# look at the result
kv_pairs[1:2]

## [[11]

## Apple Orange Mango
## 1 1 1
##

## [[2]]

~
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## Orange Grapes Plum

## 1 1 1

Reducer

The Reducer first sorts and shuffles the input from the Mapper and then
reduces the key-value pairs by summing up the values for each key.

# order and shuffle
kv_pairs <- unlist(kv_pairs)
keys <- unique(names(kv_pairs))
keys <- keys[order (keys)]
shuffled <- lapply(keys,
function(x) kv_pairs[x == names(kv_pairs)])
shuffled[1:2]

## [[1]]

## Apple Apple Apple Apple

## 1 1 1 1

##

## [[2]]

## Grapes

## 1

Now we can sum up the keys to get the word count for the entire input.

sums <- lapply(shuffled, Reduce, sum)
names (sums) <- keys
sums[1:2]

## $SApple
## [1] 4
##

## SGrapes
## [1] 1

*For a more detailed discussion of what map and reduce actually have to do with MapRe-
duce, see https://medium.com/@jkff/mapreduce-is-not-functional-programming-
39109a4ba7b2.
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6.2 Apache Hadoop

Hadoop MapReduce is the most widely known and used implementation of the
MapReduce framework. A decade ago, Big Data Analytics with really large datasets
often involved directly interacting with/working in Hadoop to run MapReduce
jobs. However, over the last few years various higher-level interfaces have been de-
veloped that make the usage of MapReduce/Hadoop by data analysts much more
easily accessible. The purpose of this section is thus to give a lightweight introduc-
tion to the underlying basics that power some of the code examples and tutorials
discussed in the data analytics chapters toward the end of this book.

6.2.1 Hadoop word count example

To get an idea of what running a Hadoop job looks like, we run the same simple
word count example introduced above on a local Hadoop installation. The example
presupposes a local installation of Hadoop version 2.10.1 (see Appendix C for de-
tails) and can easily be run on a completely normal desktop/laptop computer run-
ning Ubuntu Linux. As a side remark, this actually illustrates an important aspect
of developing MapReducescripts in Hadoop (and many of the software packages
building on it): the code can easily be developed and tested locally on a small ma-
chine and only later transferred to the actual Hadoop cluster to be run on the full
dataset.

The basic Hadoop installation comes with a few templates for very typical map/re-
duce programs.” Below we replicate the same word-count example as shown in
simple R code above.

In a first step, we create an input directory where we store the input file(s) to feed
to Hadoop.

# create directory for input files (typically text files)
mkdir ~/input

Then we add a text file containing the same text as in the example above.

echo "Apple Orange Mango

Orange Grapes Plum

Apple Plum Mango

Apple Apple Plum" >> ~/1input/text.txt

ZMore sophisticated programs need to be custom made, written in Java.
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Now we can run the MapReduce/Hadoop word count as follows, storing the results
in a new directory called wordcount_example. We use the already-implemented
Hadoop script to run a word count job, MapReduce style. This is where we
rely on the already implemented word-count example provided with the
I{adOCQJinstaualion.ﬂocated,hl/usr/local/hadoop/share/hadoop/mapreduce/hadoop—

mapreduce-examples-2.10.1.jar).

# run mapreduce word count

/usr/local/hadoop/bin/hadoop jar \
/usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.10.1.jar \
wordcount

~/input ~/wc_example

What this line says is: Run the Hadoop program called wordcount implemented
in the jar—ﬁle hadoop-mapreduce-examples-2.10.1.jar; use the files in directory
~/input containing the raw text as input, and store the final output in directory

~/wc_example.

cat ~/wc_example/*

## Apple
## Grapes
## Mango

N N R BA

## Orange
## Plum 3

What looks rather simple in this example can get very complex once you want to
write an entire data analysis script with all kinds of analysis for Hadoop. Also,
Hadoop was designed for batch processing and does not offer a simple interface
forinteractive sessions. All of this makes it rather impractical for a typical analytics
workflow as we know it from working with R. This is where Apache Spark’ (Zaharia
et al., 2016) comes to the rescue.

6.3 Apache Spark

Spark (Zaharia et al., 2016) is a data analytics engine specifically designed
for processing large amounts of data on cluster computers. It partially builds
on the broader Apache Hadoop framework for handling storage and resource

*https://spark.apache.org/
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management, but it is often faster than Hadoop MapReduce by an order of mag-
nitude. In addition, it offers many more easy-to-use high-level interfaces for typi-
cal analytics tasks than Hadoop. In contrast to Hadoop, Spark is specifically made
for interactively developing and running data analytics scripts and is therefore
more easily accessible to people with an applied econometrics background but no
substantial knowledge in MapReduce and/or cluster computing. In particular, it
comes with several high-level operators that make it rather easy to implement ana-
lytics tasks. As we will see in later chapters, it is very easy to use interactively from
within R (and other languages like Python, SQL, and Scala). This makes the plat-
form much more accessible and worthwhile for empirical economic research, even
for relatively simple econometric analyses.

The following figure illustrates the basic components of Spark. The main function-
ality includes memory management, task scheduling, and the implementation of
Spark’s capabilities to handle and manipulate data distributed across many nodes
in parallel. Several built-in libraries extend the core implementation, covering spe-
cific domains of practical data analytics tasks (querying structured data via SQL,
processing streams of data, machine learning, and network/graph analysis). The
last two provide various common functions/algorithms frequently used in data
analytics/applied econometrics, such as generalized linear regression, summary
statistics, and principal component analysis.

At the heart of Big Data Analytics with Spark is the fundamental data structure
called ‘resilient distributed dataset’ (RDD). When loading/importing data into
Spark, the data is automatically distributed across the cluster in RDDs (~ as dis-
tributed collections of elements), and manipulations are then executed in parallel
on these RDDs. However, the entire Spark framework also works locally on a sim-
ple laptop or desktop computer. This is a great advantage when learning Spark and
when testing/debugging an analytics script on a small sample of the real dataset.

6.4 SparkwithR

There are two prominent packages for using Spark in connection with R: sparkr
(Venkataraman et al., 2021) and RStudio’s sparklyr (Luraschi et al., 2022). The
former is in some ways closer to Spark’s Python API; the latter is closer to the
dplyr-type of data handling (and is compatible with the tidyverse (Wickham et al.,
2019)).* For the very simple introductory examples below, either package could

*See https://cosminsanda.com/posts/a-compelling-case-for-sparkr/ for a more detailed
comparison and discussion of advantages of either package.
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have been used equally well. For the general introduction we focus on sparkr and
later have a look at a simple regression example based on sparkiyr.

To install and use Spark from the R shell, only a few preparatory steps are needed.
The following examples are based on installing/running Spark on a Linux machine
with the sparkr package. sparkr depends on Java (version 8). Thus, we first should
make sure the right Java version is installed. If several Java versions are installed,
we might have to select version 8 manually via the following terminal command
(Linux):

# might have to switch to java version 8 first

sudo update-alternatives java

With the right version of Java running, we can install sparkr from GitHub (needs the
devtools package (Wickham et al., 2022)) devtools: :install_github("cran/SparkR").
After installing sparkr, the call sparkr::install.spark() will download and install
Apache Spark to a local directory.” Now we can start an interactive SparkR session
from the terminal with

$ SPARK-HOME/bin/sparkR

where spark-HoMe is a placeholder for the path to your local Spark installa-
tion (printed to the console after running sparkr::install.spark()). Or simply
run SparkR from within RStudio by loading sparkr and initiating Spark with

sparkR.session().

# to install use

# devtools::install_github("cran/SparkR")
# load packages

library(SparkR)

# start session

sparkR.session()

By default this starts a local stand-alone session (no connection to a cluster com-
puter needed). While the examples below are all intended to run on a local machine,

>Note that after the installation, the location of Spark is printed to the R console. Alternatively,
you can also first install the sparklyr package and then run sparklyr::spark_install() to install
Spark. In the data analysis examples later in the book, we will work both with sparkr and spark-
lyr.
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it is straightforward to connect to a remote Spark cluster and run the same exam-
ples there.®

6.4.1 Dataimport and summary statistics

First, we want to have a brief look at how to perform the first few steps of a typ-
ical econometric analysis: import data and compute summary statistics. We will
analyze the already familiar flights.csv dataset. The basic Spark installation pro-
vides direct support to import common data formats such as CSV and JSON via
the read.df() function (for many additional formats, specific Spark libraries are
available). To import flights.csv, we set the source argument to "csv".

# Import data and create a SparkDataFrame
# (a distributed collection of data, RDD)
flights <- read.df("data/flights.csv", "csv'", "true")

# inspect the object
class(flights)

## [1] "SparkDataFrame"
## attr(,"package")
## [1] "SparkR"

dim(flights)

## [1] 336776 19

By default, all variables have been imported as type character. For several variables
this is, of course, not the optimal data type to compute summary statistics. We
thus first have to convert some columns to other data types with the cast function.

flights$dep_delay <- cast(flights$dep_delay, "double')
flights$dep_time <- cast(flights$Sdep_time, "double')
flights$arr_time <- cast(flightsSarr_time, "double')
flights$arr_delay <- cast(flightsS$arr_delay, "double')
flights$air_time <- cast(flightsS$Sair_time, "double')
flights$distance <- cast(flights$distance, "double')

Simply set the master argument of sparkRr.session() to the URL of the Spark master node of the
remote cluster. Importantly, the local Spark and Hadoop versions should match the corresponding
versions on the remote cluster.
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Suppose we only want to compute average arrival delays per carrier for flights with
adistance over 1000 miles. Variable selection and filtering of observations is imple-
mented in select() and filter () (asin the dplyr package).

# filter

long_flights <- select(flights, "carrier", "year", "arr_delay", "distance")
long_flights <- filter(long_flights, long_flights$distance >= 1000)

head (long_flights)

## carrier year arr_delay distance

## 1 UA 2013 11 1400
## 2 UA 2013 20 1416
## 3 AA 2013 33 1089
## 4 B6 2013 -18 1576
## 5 B6 2013 19 1065
## 6 B6 2013 -2 1028

Now we summarize the arrival delays for the subset of long flights by carrier. This
is the ‘split-apply-combine’ approach applied in sparkr.

# aggregation: mean delay per carrier

long_flights_delays<- summarize(groupBy(long_flights, long_flights$carrier),
avg_delay = mean(long_flightsSarr_delay))

head (long_flights_delays)

## carrier avg_delay

## 1 UA 3.2622
## 2 AA 0.4958
## 3 EV 15.6876
## 4 B6 9.0364
## 5 DL -0.2394
## 6 00 -2.0000

Finally, we want to convert the result back into a usual data. frame (loaded in our
current R session) in order to further process the summary statistics (output to La-
TeX table, plot, etc.). Note that as in the previous aggregation exercises with the ff
package, the computed summary statistics (in the form of a table/df) are obviously
much smaller than the raw data. However, note that converting a sparkbataFrame
back into a native R object generally means all the data stored in the RDDs consti-
tuting the sparkbataFrame object is loaded into local RAM. Hence, when working
with actual Big Data on a Spark cluster, this type of operation can quickly overflow
local RAM.
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# Convert result back into native R object
delays <- collect(long_flights_delays)
class(delays)

## [1] "data.frame"

delays

##t carrier avg_delay
## 1 UA 3.2622
## 2 AA 0.4958
## 3 EV 15.6876
## 4 B6 9.0364
## 5 DL -0.2394
## 6 00 -2.0000
## 7 F9 21.9207
## 8 us 0.5567
## 9 MQ 8.2331
## 10 HA -6.9152
## 11 AS -9.9309
## 12 VX 1.7645
## 13 WN 9.0842
## 14 9E 6.6730
T —

6.5 Sparkwith SQL

Instead of interacting with Spark via R, you can do the same via SQL. This can be
very convenient at the stage of data exploration and data preparation. Also note
that this is a very good example of how knowing some SQL can be very useful
when working with Big Data even if you are not interacting with an actual rela-
tional database.”

To directly interact with Spark via SQL, open a terminal window, switch to the
SPARK-HOME directory,

"Importantly, this also means that we cannot use SQL commands related to configuring such
databases, such as . tables etc. Instead we use SQL commands to directly query data from JSON or
CSV files.
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cd SPARK-HOME

and enter the following command:

$ bin/spark-sql

where spark-HoME is again the placeholder for the path to your local Spark installa-
tion (printed to the console after running sparkr: :install.spark()). This will start
up Spark and connect to it via Spark’s SQL interface. You will notice that the
prompt in the terminal changes (similar to when you start sqtite).

Let’s run some example queries. The Spark installation comes with several data
and script examples. The example datasets are located at SPARK-HOME/examples/
src/main/resources. For example, the file employees.json contains the following
records in JSON format:

{"name":"Michael", "salary":3000}
{"name":"Andy", "salary":4500}
{"name":"Justin", "salary":3500}
{"name":"Berta", "salary":4000}

We can query this data directly via SQL commands by referring to the location of
the original JSON file.

Select all observations

SELECT *

FROM json. examples/src/main/resources/employees.json’

)

Michael 3000
Andy 4500
Justin 3500
Berta 4000

Time taken: 0.099 seconds, Fetched 4 row(s)

Filter observations

SELECT *
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FROM json. examples/src/main/resources/employees.json’
WHERE salary <4000

)

Michael 3000
Justin 3500

Time taken: 0.125 seconds, Fetched 2 row(s)

Compute the average salary

SELECT AVG(salary) AS mean_salary

FROM json. examples/src/main/resources/employees.json";

3750.0

Time taken: 0.142 seconds, Fetched 1 row(s)

6.6 Sparkwith R +SQL

Most conveniently, you can combine the SQL query features of Spark and SQL with
running R on Spark. First, initiate the Spark session in RStudio and import the
data as a Spark data frame.

# to install use

# devtools::install_github("cran/SparkR")
# load packages

library(SparkR)

# start session

sparkR.session()

## Java ref type org.apache.spark.sql.SparkSession id 1

# read data

flights <- read.df("data/flights.csv", source = "csv'", header="true")

Now we can make the Spark data frame accessible for SQL queries by register-
ing it as a temporary table/view with createorreplaceTempview() and then run SQL
queries on it from within the R session via the sq1 () -function. sq1() will return the
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results as a Spark data frame (this means the result is also located on the cluster
and hardly affects the master node’s memory).

# register the data frame as a table

createOrReplaceTempView(flights, "flights" )

# now run SQL queries on it
query <-

"SELECT DISTINCT carrier,
year,

arr_delay,

distance

FROM flights

WHERE 1000 <= distance"

long_flights2 <- sql(query)
head (long_flights2)

#it carrier year arr_delay distance

## 1 DL 2013 -30 1089
## 2 UA 2013 -11 1605
## 3 DL 2013 -42 1598
## 4 UA 2013 -5 1585
## 5 AA 2013 6 1389
## 6 UA 2013 -23 1620
I

6.7 Wrapping up

« At the core of a vertical scaling strategy are so-called distributed systems — several
computers connected in a network to jointly process large amounts of data.

« In contrast to standard parallel-computing, the different computing nodes in a
distributed system do not share the same physical memory. Each of the nodes/-
computers in the system has its own CPU, hard disk, and RAM. This architec-
ture requires a different computing paradigm to run the same data analytics job
across all nodes (in parallel).

« A commonly used paradigm to do this is MapReduce, which is implemented in
software called Apache Hadoop.

« The core idea of MapReduce is to split a problem/computing task on a large
dataset into several components, each of which focuses on a smaller subset of
the dataset. The task components are then distributed across the cluster, so that
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each component is handled by one computer in the network. Finally, each node
returns its result to the master node (the computer coordinating all activities in
the cluster), where the partial results are combined into the overall result.

« A typical example of a MapReduce job is the computation of term frequencies
in a large body of text. Here, each node computes the number of occurrences of
specific words in a subset of the overall body of text; the individual results are
then summed up per unique word.

« Apache Hadoop is a collection of open-source software tools to work with mas-
sive amounts of data on a distributed system (a network of computers). Part of
Hadoop is the Hadoop MapReduce implementation to run MapReduce jobs on a
Hadoop cluster.

« Apache Spark is an analytics engine for large-scale data processing on local
machines or clusters. It improves upon several shortcomings of the previous
Hadoop/MapReduce framework, in particular with regard to iterative tasks (such
as in machine learning).
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Cloud Computing

In this chapter, we first look at what cloud computing basically is and what plat-
forms provide cloud computing services. We then focus on scaling up in the cloud.
For the sake of simplicity, we will primarily focus on how to use cloud instances pro-
vided by one of the providers, Amazon Web Services (AWS). However, once you are
familiar with setting things up on AWS, also using Google Cloud, Azure, etc. will
be easy. Most of the core services are provided by all providers, and once you un-
derstand the basics, the different dashboards will look quite familiar. In a second
step, we look at a prominent approach to scaling out by setting up a Spark cluster in
the cloud.

7.1 Cloud computing basics and platforms

So far we have focused on the available computing resources on our local machines
(desktop/laptop) and how to use them optimally when dealing with large amounts
of data and/or computationally demanding tasks. A key aspect of this has been to
understand why our local machine is struggling with a computing task when there
is a large amount of data to be processed and then identifying potential avenues
to use the available resources more efficiently, for example, by using one of the
following approaches:

« Computationally intensive tasks (but not pushing RAM to the limit): paralleliza-
tion, using several CPU cores (nodes) in parallel.

« Memory-intensive tasks (data still fits into RAM): efficient memory allocation.

« Memory-intensive tasks (data does not fitinto RAM): efficient use of virtual mem-
ory (use parts of mass storage device as virtual memory).

« Storage: efficient storage (avoid redundancies).

In practice, datasets might be too large for our local machine even if we take all
of the techniques listed above into account. That is, a parallelized task might still
take ages to complete because our local machine has too few cores available, a task
involving virtual memory would use up way too much space on our hard disk, etc.

97
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In such situations, we have to think about horizontal and vertical scaling beyond
our local machine. That is, we outsource tasks to a bigger machine (or a cluster of
machines) to which our local computer is connected (typically, over the internet).
While only one or two decades ago most organizations had their own large cen-
trally hosted machines (database servers, cluster computers) for such tasks, today
they often rely on third-party solutions ‘in the cloud’. That is, specialized companies
provide computing resources (usually, virtual servers) that can be easily accessed
via a broadband internet connection and rented on an hourly basis (or even by the
minute or second). Given the obvious economies of scale in this line of business, a
few large players have emerged who effectively dominate most of the global mar-
ket:

« Amazon Web Services (AWS)!
Microsoft Azure?

Google Cloud Platform (GCP)?
IBM Cloud*

Alibaba Cloud®

« Tencent Cloud®

In the following subsections and chapters, we will primarily rely on services pro-
vided by AWS and GCP. In order to try out the code examples and tutorials, make
sure to have an AWS account as well as a Google account (which can then easily be
linked to GCP). For the AWS account, go to https://aws.amazon.com/ and create an
account. You will have to enter credit card details for either cloud platform when
setting up/linking accounts. Importantly, you will only be charged for the time you
use an AWS service. However, even when using some cloud instances, several of
AWS’s cloud products offer a free tier to test and try out products. The following
examples rely whenever possible on free-tier instances; if not, it is explicitly indi-
cated that running the example in the cloud will generate some costs on your ac-
count. For the GCP account, have your Google login credentials ready, and visit
https://cloud.google.com/ to register your Google account with GCP. Again, credit
card details are needed to set up an account, but many of the services can be used
for free to a certain extent (to learn and try out code).

https://aws.amazon.com/
Zhttps://azure.microsoft.com/en-us/
*https://cloud.google.com/
*https://www.ibm.com/cloud/
*https://www.alibabacloud.com/
¢https://intl.cloud.tencent.com/
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7.2 Transitioning to the cloud

When logged in to AWS and GCP, you will notice the breadth of services offered
by these platforms. There are more than 10 main categories of services, with
many subcategories and products in each. It is easy to get lost from just browsing
through them. Rest assured that for the purpose of data analytics/applied econo-
metrics, many of these services are irrelevant. Our motivation to use the cloud is to
extend our computational resources to use our analytics scripts on large datasets,
not to develop and deploy web applications or business analytics dashboards. With
this perspective, a small selection of services will make the cloud easily accessible
for daily analytics workflows.

When we use services from AWS or GCP to scale up (vertical scaling) the available
resources, the transition from our local implementation of a data analytics task to
the cloud implementation is often rather simple. Once we have set up a cloud in-
stance and figured out how to communicate with it, we typically can run the exact
same R script locally and in the cloud. This is usually the case for parallelized tasks
(simply run the same script on a machine with more cores), in-memory tasks (rent
a machine with more RAM but still use data.table(), etc.), and highly parallelized
tasks to be run on GPUs. The transition from a local implementation to horizontal
scaling (scaling out) in the cloud will require slightly more preparatory steps. How-
ever, in this domain we will directly build on the same (or very similar) software
tools that we have used locally in previous chapters. For example, instead of con-
necting R to alocal SQLite database, we set up a MySQL database on AWS RDS and
then connect in essentially the same way our local R session with this database in
the cloud.

7.3 Scaling up in the cloud: Virtual servers

In the following pages we look at a very common scheme to deal with a lack of local
computing resources: flexibly renting a type of virtual server often referred to as
“Elastic Cloud Computing (EC2)” instance. Specifically, we will look at how to scale
up with AWS EC2 and R/RStudio Server. One of the easiest ways to set up an AWS
EC2 instance for R/RStudio Server is to use Louis Aslett’s Amazon Machine Image
(AMI)’. This way you do not need to install R/Rstudio Server yourself. Simply follow
these five steps:

"https://www.louisaslett.com/RStudio_AMI/
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« Depending on the region in which you want to create your EC2 instance, click
on the corresponding AMI link in https://www.louisaslett.com/RStudio_A
MI/. For example, if you want to create the instance in Frankfurt, click on ami-
076abd591¢43350928. You will be automatically directed to the AWS page where
you can select the type of EC2 instance you want to create. By default, the free
tier T2.micro instance is selected (I recommend using this type of instance if you
simply want to try out the examples below).

« After selecting the instance type, click on “Review and Launch”. On the opened
page, select “Edit security groups”. There should be one entry with ssH selected in
the drop-down menu. Click on this drop-down menu and select HTTp (instead of
ssH). Click again on “Review and Launch” to confirm the change.

« Then, click “Launch” to initialize the instance. From the pop-up concerning the
key pair, select “Proceed without a key pair” from the drop-down menu, and check
the box below (“I acknowledge ..”). Click “Launch” to confirm. A page opens. Click
on “View” instances to see all of your instances and their status. Wait until “Status
check” is “2/2 checks passed” (you might want to refresh the instance overview or
browser window).

« Click on the instance ID of your newly launched instance and copy the public
[Pv4 address, open a new browser window/tab, type in http://, paste the IP
address, and hit enter (the address in your browser bar will be something like
http://3.66.120.150; http, NOt https!) .

« You should see the login-interface to RStudio on your cloud instance. The user-
name is rstudio, and the password is the instance ID of your newly launched in-
stance (it might take a while to load R/Rstudio). Once RStudio is loaded, you are
ready to go.

NOTE: the instructions above help you set up your own EC2 instance with R/RStu-
dio to run some example scripts and tryout R on EC2. For more serious/profes-
sional (long-term) usage of an EC2 instance, I strongly recommend setting it up
manually and improving the security settings accordingly! The above setup will the-
oretically result in your instance being accessible for anyone in the Web (something
you might want to avoid).

7.3.1 Parallelization with an EC2 instance

This short tutorial illustrates how to scale the computation up by running it on an
AWS EC2 instance. Thereby, we build on the techniques discussed in the previous
chapter. Note that our EC2 instance is a Linux machine. When running R on a

8https://console.aws.amazon.com/ec2/home?region=eu-central-1#launchAmi=ami-076abd59
1c4335092
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Linux machine, there is sometimes an additional step to install R packages (at least
for most of the packages): R packages need to be compiled before they can be in-
stalled. The command to install packages is exactly the same (install.packages()),
and normally you only notice a slight difference in the output shown on the R con-
sole during installation (and the installation process takes a little longer than what
you are used to). In some cases you might also have to install additional depen-
dencies directly in Linux. Apart from that, using R via RStudio Server in the cloud
looks/feels very similar if not identical to when using R/RStudio locally.

Preparatory steps

If your EC2 instance with RStudio Server is not running yet, do the following. In
the AWS console, navigate to EC2, select your EC2 instance (with RStudio Server
installed), and click on “Instance state/Start instance”. You will have to wait until
you see “2/2 checks passed”. Then, open a new browser window, enter the address
of your EC2/RStudio Server instance (see above, e.g., http: //3.66.120.150), and log
in to RStudio. First, we need to install the paratltel (R Core Team, 2021) and doSnow
(Microsoft Corporation and Weston, 2022) packages. In addition we will rely on the
stringr package (Wickham, 2022b).

# install packages for parallelization

install.packages("parallel”, "doSNOW", "stringr'")

Once the installations have finished, you can load the packages and verify the num-
ber of cores available on your EC2 instance as follows. If you have chosen the free
tier T2.micro instance type when setting up your EC2 instance, you will see that
you only have one core available. Do not worry. It is reasonable practice to test your
parallelization script with a few iterations on a small machine before bringing out
the big guns. The specialized packages we use for parallelization here do not mind
if you have one or 32 cores; the same code runs on either machine (obviously not
very fast with only one core).

# load packages
library(parallel)
library (doSNOW)

# verify no. of cores available
n_cores <- detectCores()

n_cores

Finally, we have to upload the data that we want to process as part of the paral-
lelization task. To this end, in RStudio Server, navigate to the file explorer in the
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lower right-hand corner. The graphical user interfaces of a local RStudio instal-
lation and RStudio Server are almost identical. However, you will find in the file
explorer pane an “Upload” button to transfer files from your local machine to the
EC2 instance. In this demonstration, we will work with the previously introduced
marketing_data.csv dataset. You can thus click on “Upload” and upload it to the cur-
rent target directory (the home directory of RStudio Server). As soon as the file
is uploaded, you can work with it as usual (as on the local RStudio installation). To
keep things as in the local examples, use the file explorer to create a new data folder,
and move marketing_data.csv in this new folder. The screenshot in Figure 7.1 shows
a screenshot of the corresponding section.

Files Plots Packages Help Viewer
© | NewFolder | & | Upload = © Delete - Rename | 4gF More -

/|\ Home
& Name

.Rhistory

R

ShinyApps
@] welcomeR

FIGURE 7.1: File explorer and Upload button on RStudio Server.

In order to test if all is set up properly to run in parallel on our EC2 instance, open a
new R scriptin RStudio Server and copy/paste the preparatory steps and the simple
parallelization example from Section 4.5 into the R script.

# PREPARATION —============——— oo

# packages
library(stringr)

# import data

marketing <- read.csv("data/marketing_data.csv")

# clean/prepare data

marketing$Income <- as.numeric(gsub("[[:punct:]]", "", marketing$Income))

marketing$days_customer <- as.Date(Sys.Date())-
as.Date(marketing$Dt_Customer, "%m/%d/%y")

marketing$Dt_Customer <- NULL

# all sets of independent vars
indep <- names(marketing)[ c(2:19, 27,28)]
combinations_list <- lapply(l:length(indep),
function(x) combn(indep, x, FALSE))

combinations_list <- unlist(combinations_list, FALSE)
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models <- lapply(combinations_list,

function(x) paste("Response ~'", paste(x, collapse="+")))

Test parallelized code

Now, we can start testing the code on EC2 without registering the one core for clus-
ter processing. This way, dopart% will automatically resort to running the code se-
quentially. Make sure to set n to 10 (or another small number) for this test.

# set cores for parallel processing
# ctemp <- makeCluster (ncores)

# registerDoSNOW(ctemp)

# prepare loop
N <= 10 # just for illustration, the actual code is N <- length(models)
# run loop in parallel
pseudo_Rsq <-
foreach ( 1 = 1:N, .combine = c) %dopar% {
# fit the logit model via maximum likelihood
fit <- glm(models[[i]], data=marketing, family = binomial())
# compute the proportion of deviance explained
#by the independent vars (~R"2)
return(l-(fitsdeviance/fit$null.deviance))

Once the test has run through successfully, we are ready to scale up and run the
actual workload in parallel in the cloud.

Scale up and run in parallel

First, switch back to the AWS EC2 console and stop the instance by selecting the
tick-mark in the corresponding row, and click on “Instance state/stop instance”.
Once the Instance state is “Stopped”, click on “Actions/Instance settings/change
instance type”. You will be presented with a drop-down menu from which you can
select the new instance type and confirm. The example below is based on select-
ing the t2.2x1arge (with 8 vCPU cores and 32MB of RAM). Now you can start the
instance again, log in to RStudio Server (as above), and run the script again — but
this time with the following lines not commented out (in order to make use of all
eight cores):
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# set cores for parallel processing
ctemp <- makeCluster(ncores)

registerDoSNOW (ctemp)

In order to monitor the usage of computing resources on your instance, switch
to the Terminal tab, type in htop, and hit enter. This will open the interactive pro-
cess viewer called htop’. Figure 7.2 shows the output of htop for the preparatory
phase of the parallel task implemented above. The output confirms the available
resources provided by a t2.2x1arge EC2 instance (with 8 vCPU cores and 32MB of
RAM). When using the default free tier T2.micro instance, you will notice in the
htop output that only one core is available.

36~ # PARALLELIZATION EXAMPLE (SOCKET) -------vo-mmomnnnnnnn
37

38 # set cores for parallel processing

39 ctemp =- makeCluster(ncores)

48  registerDoSHOW(ctemp)

41

42 # prepare loop

43 N <- 108 # just for illustration, the actual cede is N <- length(models)
44 # run loop in parallel

45 pseudo Rsq =-

46~ foreach ( i = 1:N, .combine = ¢) %dopar% {

a7 # fit the logit model via maximum likelihood

48 fit <- glm(models[[i]], data=marketing, family = binomial())

49 # compute the proportion of deviance explained by the independent vars (~R*2)

50 return(1-(fitsdeviance/fitSnull.deviance))

51~}

52

53

37:1 1 PARALLELIZATION EXAMPLE (SOCKET) = RScr

‘onsole  Terminal Jobs =
Terminal 1 {busy) = | rstudio@ip-172-31-0-158; ~

10 1.3%] 0.0%]

20 0.06%] 0.06%]

EIN 0.0%] 1.3%]

4 0.0%] 0.0%]

MemL I TEELTREEITREITT T 9.066G/31.4G] unning

Swp[ BK/1024M] 8.12

FIGURE 7.2: Monitor resources and processes with htop.

7.4 Scaling up with GPUs

As discussed in Chapter 4, GPUs can help speed up highly parallelizable tasks such
as matrix multiplications. While using a local GPU /graphics card for statistical
analysis has become easier due to more easily accessible software layers around
the GPUs, it still needs solid knowledge regarding the installation of specific GPU
drivers and changing of basic system settings. Many users specializing in the data
analytics side rather than the computer science/hardware side of Big Data Ana-
lytics might not be comfortable with making such installations/changes on their

*https://htop.dev/
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desktop computers or might not have the right type of GPU/graphics card in their
device for such changes. In addition, for many users it might not make sense to
have a powerful GPU in their local machine, if they only occasionally use it for cer-
tain machine learning or parallel computing tasks. In recent years, many cloud
computing platforms have started providing virtual machines with access to GPUs
, in many cases with additional layers of software and/or pre-installed drivers, al-
lowing users to directly run their code on GPUs in the cloud. Below, we briefly look
at two of the most easy-to-use options to run code on GPUs in the cloud: using
Google Colab notebooks with GPUs and setting up RStudio on virtual machines in
a special EC2 tier with GPU access on AWS.

7.4.1 GPUs on Google Colab

Google Colab provides a very easy way to run R code on GPUs from Google Cloud.
All you need is a Google account. Open a new browser window, go to https://cola
b.to/r, and log in with your Google account if prompted to do so. Colab will open
a Jupyter notebook'® with an R runtime. Click on “Runtime/Change runtime type”,
and in the drop-down menu under ‘Hardware accelerator’, select the option ‘GPU".

Notebook settings

Want your notebook to keep running even after you

close your browser?

Cancel

FIGURE 7.3: Colab notebook with R runtime and GPUs.

Then, you can install the packages for which you wish to use GPU acceleration
(e.g., gpuR, keras, and tensorflow), and the code relying on GPU processing will
be run on GPUs (or even TPUs™M). At the following link you can find a Colab

https://en.wikipedia.org/wiki/Project_Jupyter
Uhttps://en.wikipedia.org/wiki/Tensor_Processing_Unit
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112

notebook set up for running a simple image classification tutorial' with keras on

TPUs: bit.ly/bda_colab®.

7.4.2 RStudio and EC2 with GPUs on AWS

To start a ready-made EC2 instance with GPUs and RStudio installed, open a
browser window and navigate to this service provided by Inmatura on the AWS
Marketplace: https://aws.amazon.com/marketplace/pp/prodview-p4gqghzith
mmo. Click on “Continue to Subscribe”.

JupyterHub multiple user server + GPU Support + Gesiiitie tiSUbCHite
i RStudio and VSCode

Jupyter hub By: Inmatura(@  Latest Version: 2.4.0
Y’ Ready to use JupyterHub Installation with support for multiple users, easy user management,
multiple Python and R versions with core packages Installed. Support for GPUs, Includes

Typical Total Price

$0.25/hr

~ Show more

Linux/Unix sk 3 AWS reviews

Free Trial

FIGURE 7.4: JupyterHub AMI provided by Inmatura on the AWS Marketplace to
run RStudio Server with GPUs on AWS EC2.

After the subscription request is processed, click on “Continue to Configuration”
and “Continue to Launch”. To make use of a GPU, select, for example, g2.2x1arge
type under “EC2 Instance Type”. If necessary, create a new key pair under Key Pair
Settings; otherwise keep all the default settings as they are. Then, at the bottom,
click on Launch. This will launch a new EC2 instance with a GPU and with RStudio
server (as part of JupyterHub) installed.*

Once you have successfully launched your EC2 instance, JupyterHub is pro-
grammed to automatically initiate on port 80. You can access it using the following
link: http://, where the <instance-1ip> is the public IP address of the newly launched
instance (you will find this on the EC2 dashboard). The default username is set as
jupyterhub-admin’, and the default password is identical to your EC2 instance ID.
If you need to verify this, you can find it in your EC2 dashboard. For example, it
could appear similar to ‘i-0b3445939c7492’.%°

Zhttps://tensorflow.rstudio.com/tutorials/beginners/basic-ml/tutorial_basic_classification/

Bhttps://bit.ly/bda_colab

“Note that due to high demand for GPUs on AWS, you might not be able to launch the instance of
the preferred type in the preferred region. You will see a corresponding error message after clicking
on launch. It might well be the case that simply navigating back to the Configuration page and
changing the region of the instance resolves this issue (as not all instances of the preferred type
might be in use in other regions).

Bt is strongly recommended to change the password afterward. In order to do that, click on
“Tools” and select “shell”. Then type “password” into the shell/terminal, and enter the current pass-
word (the instance_id); then enter the new password, hit enter, and enter the new password again
to confirm. For further information or help, consult the comprehensive documentation available
at: https://aws.inmatura.com/ami/jupyterhub/.
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T JupyterHub multiple user server + GPU Support +
= RStudio and VSCode

Product Detail ubscribe if Launch

Launch this software

Review the launch configuration details and follow the instructions to launch this software.

Configuration details

Fulfillment option 64-bit (x86) Amazon Machine Image (AMI)
JupyterHub multiple user server + GPU Support + Rstudio and VSCode

Software version 240

Region Us East (N. Virginia)

Choose Action

Choose this action to launch from this website
Launch from Website v

EC2 Instance Type

Memory: 15 GIB
CPU: 22 EC2 Compute Units (8 virtual cores), plus 1 NVIDIA GK104
GPU

Storage: 1 x 60 GB SSD

Network Performance: High

FIGURE 7.5: Launch JupyterHub with RStudio Server and GPUs on AWS EC2.

92.2xlarge v

7.5 Scaling out: MapReduce in the cloud

Many cloud computing providers offer specialized services for MapReduce tasks in
the cloud. Here we look at a comparatively easy-to-use solution provided by AWS,
called Elastic MapReduce (AWS EMR). It allows you to set up a Hadoop cluster in
the cloud within minutes and requires essentially no additional configuration if
the cluster is being used for the kind of data analytics tasks discussed in this book.

Setting up a default AWS EMR cluster via the AWS console is straightforward. Sim-
ply go O https://console.aws.amazon.com/elasticmapreduce/, click on “Create clus-
ter”, and adjust the default selection of settings if necessary. Alternatively, we can
set up an EMR cluster via the AWS command-line interface (CLI). In the following
tutorials, we will work with AWS EMR via R/Rstudio (specifically, via the package
sparklyr). By default, RStudio is not part of the EMR cluster set-up. However, AWS
EMR offers a very flexible way to install/configure additional software on virtual
EMR clusters via so-called “bootstrap” scripts. These scripts can be shared on AWS
S3 and used by others, which is what we do in the following cluster set-up via the
AWS command-line interface (CLI).'

6Specifically, we will use the bootstrap script provided by the AWS Big Data Blog, which is stored
here: s3://aws-bigdata-blog/artifacts/aws-blog-emr-rstudio-sparklyr/rstudio_sparklyr_emré.sh
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In order to run the cluster set up via AWS CLI, shown below, you need an SSH key
to later connect to the EMR cluster. If you do not have such an SSH key for AWS
yet, follow these instructions to generate one: https://docs.aws.amazon.com/clou
dhsm/classic/userguide/generate_ssh_key.html. In the example below, the key
generated in this way is stored in a file called sparklyr.pem.”

The following command (aws emr create-cluster) initializes our EMR cluster with
a specific set of options (all of these options can also be modified via the AWS
console in the browser). -—applications Name=Hadoop Name=Spark Name=Hive Name=Pig
Name=Tez Name=Ganglia specifies which type of basic applications (that are essential
to running different types of MapReduce tasks) should be installed on the cluster.
Unless you really know what you are doing, do not change these settings. --name
"EMR 6.1 RStudio + sparklyr simply specifies what the newly initialized cluster
should be called (this name will then appear on your list of clusters in the AWS
console). More relevant for what follows is the line specifying what type of virtual
servers (EC2 instances) should be used as part of the cluster: --instance-groups
InstanceGroupType=MASTER,InstanceCount=1,InstanceType=m3.2xlarge speci—
fies that the one master node (the machine distributing tasks and co-
ordinating the MapReduce procedure) is an instance of type m3.2xlarge;
InstanceGroupType=CORE,InstanceCount=2,InstanceType=m3.2xlarge speciﬁes that
there are two slave nodes in this cluster, also of type m1.medium.'® ~-bootstrap-action
Path=s3://aws-bigdata-blog/artifacts/aws-blog-emr-rstudio-sparklyr/rstudio
_sparklyr_emr6.sh,Name="Install RStudio" tells the set-up appﬂicathan.to run the
corresponding bootstrap script on the cluster in order to install the additional
software (here RStudio).

Finally, there are two important aspects to note: First, in order to initialize the clus-
ter in this way, you need to have an SSH key pair (for your EC2 instances) set up,
which you then instruct the cluster to use with keyName=. That is, KeyName="sparklyr"
means that the user already has created an SSH key pair called sparkiyr and that
this is the key pair that will be used with the cluster nodes for SSH connections.
Second, the --region argument defines in which AWS region the cluster should be
created. Importantly, in this particular case, the bootstrap script used to install
RStudio on the cluster is stored in the us-east-1 region; hence we also need to set
up the cluster in this region: --region us-east-1 (otherwise the set-up will fail as
the set-up application will not find the bootstrap script and will terminate with an
error!).

If you simply copy and paste the CLI command below to set up an EMR cluster, make sure to
name your key file sparklyr.pem. Otherwise, make sure to change the partin the command referring
to the key file accordingly.

BWorking with one master node of type m3.2x1large and two slave nodes of the same type only
makes sense for test purposes. For an actual analysis task with many gigabytes or terabytes of data,
you might want to choose larger instances.
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aws emr create-cluster \

--release-label emr-6.1.0 \

-—applications Name=Hadoop Name=Spark Name=Hive Name=Pig \
Name=Tez Name=Ganglia \

--name "EMR 6.1 RStudio + sparklyr" \

--service-role EMR_DefaultRole \

-—instance-groups InstanceGroupType=MASTER,InstanceCount=1,\
InstanceType=m3.2xlarge,InstanceGroupType=CORE,\
InstanceCount=2,InstanceType=m3.2xlarge \

--bootstrap-action \

Path="'s3://aws-bigdata-blog/artifacts/
aws-blog-emr-rstudio-sparklyr/rstudio_sparklyr_emr6.sh',\
Name="Install RStudio" InstanceProfile=EMR_EC2_DefaultRole,\
KeyName="sparklyr"

--configurations '[{"Classification":"spark",
"Properties":{"maximizeResourceAllocation":"true"}}]"' \

--region us-east-1

Setting up this cluster with all the additional software and configurations from the
bootstrap script will take around 40 minutes. You can always follow the progress
in the AWS console. Once the cluster is ready, you will see something like this:

Create cluster
Filter: | Active clusters ~ HF\'.‘rnr clusters 1 cluster (all Ioaded) C'
Name ID Status
» . EMR 6.1 RStudio + sparklyr }183C61XT2HWMR

FIGURE 7.6: AWS EMR console indicating the successful set up of the EMR cluster.

In order to access RStudio on the EMR cluster’s master node via a secure SSH con-
nection, follow these steps:

« First, follow the prerequisites to connect to EMR via SSH: https://docs.aws.ama
zon.com/emr/latest/ManagementGuide/emr-connect-ssh-prereqs.html.

« Then initialize the SSH tunnel to the EMR cluster as instructed here: https://do
cs.aws.amazon.com/emr/latest/ManagementGuide/emr-ssh-tunnel.html.

« Protect your key-file (sparkiyr.pem) by navigating to the location of the key-file on
your computer in the terminal and run chmod 660 sparklyr.pembefore connecting.
Also make sure your IP address is still the one you have entered in the previous
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step (you can check your current IP address by visiting https://whatismyipaddr
ess.com/).

« In a browser tab, navigate to the AWS EMR console, click on the newly created
cluster, and copy the “Master public DNS”. In the terminal, connect to the EMR
cluster via SSH by running ssh -i sparklyr.pem -ND 8157 hadoop@master-node-dns
(if you have protected the key-file as superuser, i.e., sudo chmod, you will need
to use sudo ssh here; make sure to replace master-node-dns with the actual DNS
copied from the AWS EMR console). The terminal will be busy, but you won't see
any output (if all goes well).

« Inyour Firefox browser, install the FoxyProxy add-on®. Follow these instructions
to set up the proxy via FoxyProxy: https://docs.aws.amazon.com/emr/latest/M
anagementGuide/emr-connect-master-node-proxy.html.

« Select the newly created Socks5 proxy in FoxyProxy.

« Go to http://localhost:8787/ and enter with username hadoop and password
hadoop.

Now you can run sparklyr on the AWS EMR cluster. After finishing working with
the cluster, make sure to terminate it via the EMR console. This will shut down all
EC2 instances that are part of the cluster (and hence AWS will stop charging you
for this). Once you have connected and logged into RStudio on the EMR cluster’s
master node, you can connect the Rstudio session to the Spark cluster as follows:

# load packages
library(sparklyr)
# connect rstudio session to cluster

sc <- spark_connect(master = "yarn')

After using the EMR Spark cluster, make sure to terminate the cluster in the AWS
EMR console to avoid additional charges. This automatically terminates all the EC2
machines linked to the cluster.

7.6 Wrapping up

« Cloud computing refers to the on-demand availability of computing resources.
While many of today’s cloud computing services go beyond the scope of the com-
mon data analytics tasks discussed in this book, a handful of specific services

Yhttps://addons.mozilla.org/en-US/firefox/addon/foxyproxy-standard/
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can be very efficient in providing you with the right solution if local computing
resources are not sufficient, as summarized in the following bullet points.

« EC2 (elastic cloud computing): scale your analysis up with a virtual server/virtual
machine in the cloud. For example, rent an EC2 instance for a couple of minutes
in order to run a massively parallel task on 36 cores.

« GPUs in the cloud: Google Colab offers an easy-to-use interface to run your
machine-learning code on GPUs, for example, in the context of training neural
nets.

« AWS RDS ofters a straightforward way to set up an SQL database in the cloud
without any need for database server installation and maintenance.

« AWS EMR allows you to flexibly set up and run your Spark/sparkly or Hadoop
code on a cluster of EC2 machines in the cloud.
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Components of Big Data Analytics
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Introduction

“Men at some time are masters of their fates. The fault, dear Brutus, is not in our
stars, but in ourselves, that we are underlings.”(Shakespeare, 2020)

Working with the complexity and size of Big Data is rarely as overwhelming and
intimidating as when collecting and preparing the data for analysis. Even when
working with small datasets, collecting and preparing data for analysis can easily
consume more than two-thirds of an analytics project’s time. Larger datasets make
the time-consuming tasks preceding the actual statistical analysis even more dif-
ficult, as the common tools and workflows for dealing with large datasets at the
beginning of a project become overwhelmed and rendered useless.

In this part we aim to tackle these challenges by combining the conceptual ba-
sics of part I with the platform basics in part II and look at each practical step in-
volved in analyzing Big Data in the context of applied econometrics/business ana-
lytics. Thereby, the focus is primarily on how to handle Big Data in order to gather,
prepare, combine, filter, visualize, and summarize it for analytics purposes. That
is, we cover all core practical tasks necessary before running more sophisticated
econometric analyses or machine learning algorithms on the data. Each of these
core tasks is summarized in a separate chapter, whereby the sequence of chapters
follows a typical workflow/process in applied data science, usually referred to as
data pipeline.

The data pipeline concept is useful to illustrate and organize the process from gath-
ering/extracting the raw data from various data sources to the final analytics out-
put. The concept of data pipelines thus helps us to structure all steps involved in a
meaningful way. Figure 7.7 illustrates the data pipeline idea, which is consistent
with the order and content of how the chapters in this book cover all the tasks in-
volved in the first steps of a Big Data Analytics project. Initial, intermediate and
final data entities are displayed as nodes in the flow diagram, and tasks/activities
between these entities are displayed as arrows.

115
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Data (science) pipeline
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FIGURE 7.7: Illustration of a generic data pipeline in a data analytics project.

In many domains of modern data science, data pipelines also involve loops, indi-
cating that certain parts of the overall process are iterative and repeated several
times to further optimize and maintain the final data product. Such a perspective
is typical in a context where the final data product is a dashboard or a (compo-
nent of a) web application that is at some point deployed and runs in production.
For the perspective of this book, we intentionally follow an acyclical concept of the
data pipeline, representative of data projects in business analytics and applied eco-
nomic research, in which raw data needs to be collected, processed, and analyzed
with the aim of delivering statistical insights summarized in a report or presen-
tation. In that sense, each chapter in this part builds on the previous one, and I
recommend going through these chapters sequentially.

Note, though, that in your work it might make sense to slightly re-arrange some
parts of the workflow suggested by the generic data pipeline illustrated here. In
particular, you might want to first systematically collect and store all of the needed
data and then only selectively load and transform/clean parts of this data for anal-
ysis (an approach usually referred to as Extract-Load-Transform (ELT), or, in con-
trast, you might want to directly clean all the gathered data and store all of the
cleaned/prepared data in a cleanly structured database before turning to any ana-
lytics steps (as the pipeline illustration above would suggest, and which is typically
referred to as Extract-Transform-Load (ETL)).
Aside: ETL vs. ELT

In traditional business analytics, a company’s raw/unstructured data was
typically handled and prepared by IT specialists and then provided in a final
clean/transformed analytic dataset to the data analysts. Such a process can
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generally be described as Extract-Transform-Load (ETL). In ETL the data ana-
lystis only presented with the final well-structured database containing all
variables and observations (e.g., in a traditional SQL database). The data
pipeline illustration above basically follows the ETL idea in the sense that
raw data is gathered/extracted, then cleaned, and then stored in a struc-
tured format before it is queried and analyzed. With large amounts of data
from various sources with frequent updating (as is typical for Big Data), this
process is rather slow and might be inefficient in the sense that parts of the
raw data might in the end not play an important role in the data analytics
project.

Nowadays, with data analysts and data scientists being increasingly famil-
iar with data technologies and how to handle raw/unstructured data, a
more flexible process called Extract-Load-Transform (ELT) is followed. In ELT,
raw data is extracted and then ingested into/stored in more flexible frame-
works than traditional SQL databases that allow for more diverse data struc-
tures, such as data warehouses, or do not require the data to be structured,
such as data lakes. The transformation of the data for analytics purposes is
then done on demand and practically often involves the same person later
analyzing the data.

Importantly, for the perspective on data analytics in this book, either pro-
cess involves the components illustrated in the pipeline above in one way
or another. However, the order of the individual steps varies between ETL
and ELT.
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8

Data Collection and Data Storage

The first steps of a data analytics project typically deal with the question of how to
collect, organize, and store the raw data for further processing. In this chapter, we
cover several approaches to how to practically implement these steps in the context
of observational data, as they commonly occur in applied econometrics and busi-
ness analytics. Thereby, the focus lies on several important aspects of how to im-
plement these steps locally and then introduces several useful cloud tools to store
and query large amounts of data for analytics purposes.

8.1 Gathering and compilation of raw data

The NYC Taxi & Limousine Commission (TLC) provides detailed data on all trip
records, including pick-up and drop-off times/locations. When combining all
available trip records from 2009 to 2018, we get a rather large dataset of over 200GB.
The code examples below illustrate how to collect and compile the entire dataset.
In order to avoid long computing times, the code examples shown below are based
on a small sub-set of the actual raw data (however, all examples involving virtual
memory are in theory scalable to the extent of the entire raw dataset).

The raw data consists of several monthly Parquet files and can be downloaded via
the TLC’s website!. The following short R script automates the downloading of all
available trip-record files. NOTE: Downloading all files can take several hours and
will occupy over 200GB!

I

Fetch all TLC trip records Data source:

I+

https://wwwl.nyc.gov/site/tlc/about/tlc-trip-record-data.page

T

Input: Monthly Parquet files from urls

# packages

https://wwwl.nyc.gov/site/tlc/about/tlc- trip-record-data.page
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library(R.utils) # to create directories from within R

# fix vars

BASE_URL <- "https://d37ci6vzurychx.cloudfront.net/trip-data/"
FILE <- "yellow_tripdata_2018-01.parquet"

URL <- paste@(BASE_URL, FILE)

OUTPUT_PATH <- "data/tlc_trips/"

START_DATE <- as.Date("2009-01-01")

END_DATE <- as.Date("2018-06-01")

# BUILD URLS -----------

# parse base url

base_url <- gsub("2018-01.parquet", "", URL)

# build urls

dates <- seq(from = START_DATE, to = END_DATE, by = "month')
year_months <- gsub("-01$", "", as.character(dates))
data_urls <- paste@(base_url, year_months, ".parquet")
data_paths <- paste@(OUTPUT_PATH, year_months, ".parquet")

# FETCH AND STACK CSVS —=============—~
mkdirs (OUTPUT_PATH)
# download all csvs in the data range

for (i in 1l:length(data_urls)) {

# download to disk
download. file(data_urls[i], data_paths[i])

8.2 Stack/combine raw source files

In a next step, we parse and combine the downloaded data. Depending on how you
want to further work with the gathered data, one or another storage format might
be more convenient. For the sake of illustration (and the following examples build-
ing on the downloaded data), we store the downloaded data in one CSV file. To this
end, we make use of the arrow package (Richardson et al., 2022), an R interface to
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the Apache Arrow C++ library (a platform to work with large-scale columnar data).
The aim of the exercise is to combine the downloaded Parquet files into one com-
pressed CSV file, which will be more easily accessible for some of the libraries used
in further examples.

We start by installing the arrow package in the following way.

# install arrow
Sys.setenv(LIBARROW_MINIMAL = "false") # to enable working with compressed files

install.packages("arrow") # might take a while

The setting LIBARROW_MINIMAL= "false" ensures that the installation of arrow is not
restricted to the very basic functionality of the package. Specifically, for our context
it will be important that the arrow installation allows for the reading of compressed

files.
# SET UP ———————mmmmmmmmmmmmme

# load packages
library(arrow)
library(data.table)
library(purrr)

# fix vars

INPUT_PATH <- "data/tlc_trips/"
OUTPUT_FILE <- "data/tlc_trips.parquet"
OUTPUT_FILE_CSV <- "data/tlc_trips.csv"

# list of paths to downloaded Parquet files
all_files <- list.files(INPUT_PATH, full.names = TRUE)

# LOAD, COMBINE, STORE —----=---——=——————————

# read Parquet files

all_data <- lapply(all_files, read_parquet, as_data_ frame = FALSE)

# combine all arrow tables into one

combined_data <- lift_dl(concat_tables) (all_data)

# write combined dataset to csv file

write_csv_arrow(combined_data,
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OUTPUT_FILE_CSV,
TRUE)

Note that in the code example above we use purr::1ift_d1() to facilitate the code.

The arrow function concat_tables combines several table objects into one table.

f

Aside: CSV import and memory allocation, read.csv vs. fread
The time needed for the simple step of importing rather large CSV files can
vary substantially in R, depending on the function/package used. The rea-
son is that there are different ways to allocate RAM when reading data from
a CSV file. Depending on the amount of data to be read in, one or another
approach might be faster. We first investigate the RAM allocation in R with
mem_change () anclmem_used().

# SET UP —=—m——mmmmmmmmome e

# fix variables

DATA_PATH <- "data/flights.csv"

# load packages

library(pryr)

# check how much memory is used by R (overall)

mem_used ()

## 1.73 GB

# DATA IMPORT --—————-—-------—-

# check the change in memory due to each step
# and stop the time needed for the import
system.time(flights <- read.csv(DATA_PATH))

## user system elapsed
## 1.825 0.177 2.006

mem_used ()

## 1.76 GB
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# DATA PREPARATION ---—-—----
flights <- flights[,-1:-3]
# check how much memory is used by R now

mem_used ()

## 1.76 GB
Thelast resultis rather interesting. The object flights must have beenlarger
right after importing it than at the end of the script. We have thrown out
several variables, after all. Why does R still use that much memory? R does
not by default ‘clean up’ memory unless it is really necessary (meaning no
more memory is available). In this case, R still has much more memory
available from the operating system; thus there is no need to ‘collect the
garbage’ yet. However, we can force R to collect the garbage on the spot
with gc (). This can be helpful to better keep track of the memory needed by
an analytics script.

gc()

## used (Mb) gc trigger (Mb) max used

## Ncells 7028873 375.4 11817067 631.1 11817067

## Vcells 170442328 1300.4 399523409 3048.2 399265766

## (Mb)

## Ncells 631.1

## Vcells 3046.2

Now, let’s see how we can improve the performance of this script with
regard to memory allocation. Most memory is allocated when importing
the file. Obviously, any improvement of the script must still result in im-
porting all the data. However, there are different ways to read data into
RAM. read.csv() reads all lines of a csv file consecutively. In contrast,
data.table::fread() first ‘maps’ the data file into memory and only then ac-
tually reads it in line by line. This involves an additional initial step, but the
larger the file, the less relevant is this first step in the total time needed to
read all the data into memory. By switching on the verbose option, we can
actually see what fread is doing.

# load packages
library(data.table)

# DATA IMPORT ------—-——————--
system.time(flights <- fread(DATA_PATH, TRUE))
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( '

# user system elapsed
##  ©.392 0.004 0.072
The output displayed on the console shows what is involved in steps [1] to
[12] of the parsing/import procedure. Note in particular the following line
under step [7] in the procedure:
Estimated number of rows: 30960501 / 92.03 = 336403

Initial alloc = 370043 rows (336403 + 9%) using

bytes/max (mean-2xsd,min) clamped between [1l.lxestn, 2.0*estn]
This is the result of the above-mentioned preparatory step in the form of
sampling. The fread CSV parser first estimates how large the dataset likely
is and then creates an additional allocation (in this case of 370043 rows).
Only after this are the rows actually imported into RAM. The summary of
the time allocated for the different steps shown at the bottom of the out-
put nicely illustrates that the preparatory steps of memory mapping and
allocation are rather fast compared with the time needed to actually read
the data into RAM. Given the size of the dataset, fread’s approach to mem-
ory allocation results in a much faster import of the dataset than read.csv’s
approach.

8.3 Efficientlocal data storage

In this section, we are concerned with a) how we can store large datasets perma-
nently on a mass storage device in an efficient way (here, efficient can be under-
stood as ‘not taking up too much space’) and b) how we can load (parts of) this
dataset in an efficient way (here, efficient~fast) for analysis.

We look at this problem in two situations:

« The data needs to be stored locally (e.g., on the hard disk of our laptop).
« The data can be stored on a server ‘in the cloud’.

Various tools have been developed over the last few years to improve the efficiency
of storing and accessing large amounts of data, many of which go beyond the scope
implied by this book’s perspective on applied data analytics. Here, we focus on the
basic concept of SQL/Relational Database Management Systems (RDBMSs), as well as
a few alternatives that can be summarized under the term NoSQL (‘non-SQL, some-
times ‘Not only SQL) database systems. Conveniently (and contrary to what the lat-
ter name would suggest), most of these tools can be worked with by using basic
SQL queries to load/query data.
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The relational database system follows the relational data model, in which the data
is organized in several tables that are connected via some unique data record iden-
tifiers (keys). Such systems, for example, SQLite introduced in Chapter 3, have
been used for a long time in all kinds of business and analytics contexts. They are
well-tried and stable and have a large and diverse user base. There are many tech-
nicalities involved in how they work under the hood, but for our purposes three
characteristics are most relevant:

1. All common RDBMSs, like SQLite and MySQL, are row-based databases.
That is, data is thought of as observations/data records stored in rows of
a table. One record consists of one row.

2. Theyare typically made for storing clean data in a clearly defined set of tables,
with clearly defined properties. The organizing of data in various tables
has (at least for our perspective here) the aim of avoiding redundancies
and thereby using the available storage space more efficiently.

3. Rows are indexed according to the unique identifiers of tables (or one or
several other variables in a table). This allows for fast querying of specific
records and efficient merging/joining of tables.

While these particular features work very well also with large amounts of data, par-
ticularly for exploration and data preparation (joining tables), in the age of Big Data
they might be more relevant for operational databases (in the back-end of web ap-
plications, or simply the operational database of a business) than for the specific
purpose of data analytics.

On the one hand, the data basis of an analytics project might be simpler in terms
of the number of tables involved. On the other hand, Big Data, as we have seen,
might come in less structured and/or more complex forms than traditional table-
like/row-based data. NoSQL databases have been developed for the purposes of
storing more complex/less structured data, which might not necessarily be de-
scribed as a set of tables connected via keys, and for the purpose of fast analy-
sis of large amounts of data. Again, three main characteristics of these types of
databases are of particular relevance here:

1. Typically, NoSQL databases are not row-based, but follow a column-based,
document-based, key-value-based, or graph-based data model. In what
follows, the column-based model is most relevant.

2. NoSQLdatabases are designed for horizontal scaling. That s, scaling such
a database out over many nodes of a computing cluster is usually straight-
forward.

3. They are optimized to give quick answers based on summarizing large
amounts of data, such as frequency counts and averages (sometimes by
using approximations rather than exact computations.)
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Figure 8.1illustrates the basic concept of row-based vs. column-based data storage.

Row - based Column - based

Access/Write
per row

Access/Write
per column

FIGURE 8.1: Schematic illustration of columnar vs. row-based data storage.

Aside: Row-based vs. column-based databases

Conceptually, in a row-based database individual values (cells) are contained
in rows, which means changing one value requires updating a row. Row-
based databases (e.g., SQLite) are thus designed for efficient data reading
and writing when users often access many columns but rather few obser-
vations. For example, for an operational database in the back-end of a web
application such as an online shop, a row-based approach makes sense be-
cause hundreds or thousands of users (customers in that case) constantly
add or query small amounts of data. In contrast, changing a value in column-
based databases means changing a column. Accessing all values in a partic-
ular column is much faster in comparison to row-based databases.

This means that column-based databases are useful when users tend to
query rather few columns but massive numbers of observations, which is
typically rather the case in an analytics context. Some well-known data
warehouse and data lake systems are therefore based on this principle
(e.g., Google BigQuery). However, if analytics tasks involve a lot of (out-of-
memory) table joins, column-based solutions are likely to be slower than
row-based solutions.
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In the following, we have a close look at using both column-based and row-based
tools. Thereby we will particularly highlight the practical differences between using
column-based and row-based data storage solutions.

8.3.1 RDBMS basics

RDBMSs have two key features that tackle the two efficiency concerns mentioned
above:

« The relational data model: The overall dataset is split by columns (covariates) into
tables in order to reduce the storage of redundant variable-value repetitions. The
resulting database tables are then linked via key-variables (unique identifiers).
Thus (simply put), each type of entity on which observations exist resides in its
own database table. Within this table, each observation has its unique ID. Keep-
ing the data in such a structure is very efficient in terms of storage space used.

o Indexing: The key-columns of the database tables are indexed, meaning (in simple
terms) ordered on disk. Indexing a table takes time, but it has to be performed
only once (unless the content of the table changes). The resulting index is then
stored on disk as part of the database. These indices substantially reduce the num-
ber of disk accesses required to query/find specific observations. Thus, they make
the loading of specific parts of the data for analysis much more efficient.

The loading/querying of data from an RDBMS typically involves the selection of
specific observations (rows) and covariates (columns) from different tables. Due
to the indexing, observations are selected efficiently, and the defined relations be-
tween tables (via keys) facilitate the joining of columns to a new table (the queried
data).

8.3.2 Efficient data access: Indices and joins in SQLite

So far we have only had a look at the very basics of writing SQL code. Let us now
further explore SQLite as an easy-to-use and easy-to-set-up relational database so-
lution. In a second step we then look at how to connect to a local SQLite database
from within R. First, we switch to the Terminal tab in RStudio, set up a new
database called air.sqlite, and import the csv-file flights.csv (used in previous
chapters) as a first table.

# switch to data directory
cd data
# create database and run sqlite

sqlite3 air.sqlite
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-— import csvs
.mode csv

.import flights.csv flights

We check whether everything worked out well via the .tables and .schema com-
mands.

.tables
.schema flights

In flights, each row describes a flight (the day it took place, its origin, its destina-
tion, etc.). It contains a covariate carrier containing the unique ID of the respec-
tive airline/carrier carrying out the flight as well as the covariates origin and dest.
The latter two variables contain the unique IATA-codes of the airports from which
the flights departed and where they arrived, respectively. In flights we thus have
observations at the level of individual flights.

Now we extend our database in a meaningful way, following the relational data
model idea. First we download two additional CSV files containing data that relate
to the flights table:

« airports.csv?: Describes the locations of US Airports (relates to origin and dest).
« carriers.csv’: A listing of carrier codes with full names (relates to the carrier-
column in flights).

In this code example, the two CSVs have already been downloaded to the
materials/data-fblder.

-— import airport data
.mode csv
.import airports.csv airports

.import carriers.csv carriers

-— inspect the result
.tables
.schema airports

.schema carriers

Now we can run our first query involving the relation between tables. The aim of the
exercise is to query flights data (information on departure delays per flight number

Zhttps://bda-examples.s3.eu-central-1.amazonaws.com/airports.csv
3https://bda-examples.s3.eu-central-1.amazonaws.com/carriers.csv
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and date, from the flights table) for all united Air Lines Inc. flights (information
from the carriers table) departing from Newark Intlairport (information from the
airports table). In addition, we want the resulting table ordered by flight number.
For the sake of the exercise, we only show the first 10 results of this query (LImIT
10).

SELECT

year,

month,

day,

dep_delay,

flight

FROM (flights INNER JOIN airports ON flights.origin=airports.iata)

INNER JOIN carriers ON flights.carrier = carriers.Code

WHERE carriers.Description = 'United Air Lines Inc.'
AND airports.airport = 'Newark Intl'

ORDER BY flight

LIMIT 10;

flights_join

#i year month day dep_delay flight

## 1 2013 1 4 0 1
## 2 2013 1 5 -2 1
## 3 2013 3 6 1 1
## 4 2013 2 13 -2 3
## 5 2013 2 16 -9 3
## 6 2013 2 20 3 3
## 7 2013 2 23 -5 3
## 8 2013 2 26 24 3
## 9 2013 2 27 10 3
## 10 2013 1 5 3 10

Note that this query has been executed without indexing any of the tables first.
Thus SQLite could not take any ‘shortcuts’ when matching the ID columns in order
tojoin the tables for the query output. Thatis, SQLite had to scan all the columns to
find the matches. Now we index the respective ID columns and re-run the query.

CREATE INDEX iata_airports ON airports (iata);
CREATE INDEX origin_flights ON flights (origin);
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CREATE INDEX carrier_flights ON flights (carrier);
CREATE INDEX code_carriers ON carriers (code);

Note that SQLite optimizes the efficiency of the query without our explicit instruc-
tions. If there are indices it can use to speed up the query, it will do so.

SELECT

year,

month,

day,

dep_delay,

flight

FROM (flights INNER JOIN airports ON flights.origin=airports.iata)

INNER JOIN carriers ON flights.carrier = carriers.Code

WHERE carriers.Description = 'United Air Lines Inc.'
AND airports.airport = 'Newark Intl'

ORDER BY flight

LIMIT 10;

#t year month day dep_delay flight

## 1 2013 1 4 0 1
## 2 2013 1 5 -2 1
## 3 2013 3 6 1 1
## 4 2013 2 13 -2 3
## 5 2013 2 16 -9 3
## 6 2013 2 20 3 3
## 7 2013 2 23 -5 3
## 8 2013 2 26 24 3
## 9 2013 2 27 10 3
## 10 2013 1 5 3 10

You can find the final air.sqlite database, including all the indices and tables, as
materials/data/air_final.sqlite in the book’s code repository.

8.4 Connecting R to an RDBMS

The R-package rsqLite (Miiller et al., 2022) embeds SQLite in R. That is, it provides
functions that allow us to use SQLite directly from within R. You will see that the
combination of SQLite with R is a simple but very practical approach to working
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with very efficiently (and locally) stored datasets. In the following example, we ex-
plore how rsqLite can be used to set up and query the air.sqlite database shown
in the example above.

8.4.1 Creating a new database with rsqLite

Similarly to the raw SQLite syntax, we connect to a database that does not exist
yet actually creates this (empty database). Note that for all interactions with the
database from within R, we need to refer to the connection (here: con_air).

# load packages
library(RSQLite)

# initialize the database

con_air <- dbConnect(SQLite(), "data/air.sqlite")

8.4.2 Importing data

With rRsqLite we can easily add data. frames as SQLite tables to the database.

# import data into current R session
flights <- fread('"data/flights.csv")
airports <- fread("data/airports.csv'")

carriers <- fread("data/carriers.csv")

# add tables to database
dbWriteTable(con_air, "flights", flights)
dbWriteTable(con_air, "airports'", airports)

dbWriteTable(con_air, "carriers', carriers)

8.4.3 Issuing queries

Now we can query the database from within R. By default, rsqLite returns the
query results as data.frames. Queries are simply character strings written in
SQLite.

# define query
delay_query <-
"SELECT

year,

month,
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day,

dep_delay,

flight

FROM (flights INNER JOIN airports ON flights.origin=airports.iata)

INNER JOIN carriers ON flights.carrier = carriers.Code

WHERE carriers.Description = 'United Air Lines Inc.'
AND airports.airport = 'Newark Intl'

ORDER BY flight

LIMIT 10;

# issue query
delays_df <- dbGetQuery(con_air, delay_query)
delays_df

# clean up

dbDisconnect(con_air)

When done working with the database, we close the connection to the database
with dbDisconnect(con).

8.5 Cloud solutions for (big) data storage

As outlined in the previous section, RDBMSs are a very practical tool for storing
the structured data of an analytics project locally in a database. A local SQLite
database can easily be set up and accessed via R, allowing one to write the whole
data pipeline — from data gathering to filtering, aggregating, and finally analyzing
— in R. In contrast to directly working with CSV files, using SQLite has the advan-
tage of organizing the data access much more efficiently in terms of RAM. Only
the final result of a query is really loaded fully into R’s memory.

If mass storage space is too sparse or if RAM is nevertheless not sufficient, even
when organizing data access via SQLite, several cloud solutions come to the res-
cue. Although you could also rent a traditional web server and host a SQL database
there, this is usually not worthwhile for a data analytics project. In the next section
we thus look at three important cases of how to store data as part of an analytics
project: RDBMS in the cloud, a serverless data warehouse solution for large datasets
called Google BigQuery, and a simple storage service to use as a data lake called AWS
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S3. All of these solutions are discussed from a data analytics perspective, and for
all of these solutions we will look at how to make use of them from within R.

8.5.1 Easy-to-use RDBMS in the cloud: AWS RDS

Once we have set up the RStudio server on an EC2 instance, we can run the SQLite
examples shown above on it. There are no additional steps needed to install SQLite.
However, when using RDBMSs in the cloud, we typically have a more sophisticated
implementation than SQLite in mind. Particularly, we want to set up an actual
RDBMS server running in the cloud to which several clients can connect (e.g., via
RStudio Server).

AWS’s Relational Database Service (RDS) provides an easy way to set up and run
a SQL database in the cloud. The great advantage for users new to RDBMS/SQL
is that you do not have to manually set up a server (e.g., an EC2 instance) and in-
stall/configure the SQL server. Instead, you can directly set up a fully functioning
relational database in the cloud.

As a first step, open the AWS console and search for/select “RDS” in the search bar.
Then, click on “Create database” in the lower part of the landing page.

Create database

Amazon Relational Database Service (RDS) makes it easy to set up, operate, and scale a relational database in the cloud.

Restore from S3 Create database

Note: your DB instances will launch in the EU (Frankfurt) region

FIGURE 8.2: Create a managed relational database on AWS RDS.

On the next page, select “Easy create”, “MySQL’, and the “Free tier” DB instance
size. Further down you will have to set the database instance identifier, the user
name, and a password.

Once the database instance is ready, you will see it in the databases overview. Click
onthe DB identifier (the name of your database shown in the list of databases), and
click on modify (button in the upper-right corner). In the “Connectivity” panel un-
der “Additional configuration”, select Publicly accessible (this is necessary to interact
with the DB from your local machine), and save the settings. Back on the overview
page of your database, under “Connectivity & security”, click on the link under the
VPC security groups, scroll down and select the “Inbound rules” tab. Edit the in-
bound rule to allow any IP4 inbound traffic.*

*Note that this is not generally recommended. Only do this to get familiar with the service and
to test some code.
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Choose a database creation method i

Data Collection and Data Storage

Standard create © Easy create
You set all of the configuration options, including ones Use recommended best-practice configurations. Some
for availability, security, backups, and maintenance. configuration options can be changed after the

database is created

Configuration

Engine type Info

Amazon Aurora O MysqL MariaDB

S5 ¢

A

PostgreSQL Oracle Microsoft SQL Server

ORACLE' 7258 server

DB instance size

Production Dev/Test © Free tier
db.rég:xiarge db.rig.large db.t3.micro
4 vCPUs 2 vCPUs 2vCPUs

32 GiB RAM 16 GiB RAM 1 GiB RAM
500 GiB 100 GiB 20 GiB

1.225 USD/hour 0.279 USD/hour 0.024 USD/hour

FIGURE 8.3: Easy creation of an RDS MySQL DB.

Inbound rules (1/1)

Lo m

Q
Name v Security group r... ¥ IP version v Type v Protocol v Port range v Source
- sgr-023970b13230... 1Pva MYSQL/Aurora Tcp 3306 0.0.0.0/0

FIGURE 8.4: Allow all IP4 inbound traffic (set Source to e.0.0.0/60).

# load packages
library (RMySQL)
library(data.table)

# fix vars
# replace this with the Endpoint shown in the AWS RDS
RDS_ENDPOINT <- "MY-ENDPOINT"

console

# replace this with the password you have set when initiating the RDS DB on AWS

PW <- "MY-PW"

# connect to DB

con_rds <- dbConnect(RMySQL: :MySQL(),
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host=RDS_ENDPOINT,
port=3306,
username="admin",

password=PW)

# create a new database on the MySQL RDS instance

dbSendQuery (con_rds, "CREATE DATABASE air")

# disconnect and re-connect directly to the new DB
dbDisconnect(con_rds)
con_rds <- dbConnect(RMySQL: :MySQL(),
host=RDS_ENDPOINT,
port=3306,
username="admin",
dbname="a1ir",

password=PW)

rRMysqL and rsqLite both build on the pe1 package, which generalizes how we can in-
teract with SQL-type databases via R. This makes it straightforward to apply what
we have learned so far by interacting with our local SQLite database to interactions
with other databases. As soon as the connection to the new database is established,
we can essentially use the same R functions as before to create new tables and im-
port data.

# import data into current R session
flights <- fread("data/flights.csv")
airports <- fread("data/airports.csv'")

carriers <- fread("data/carriers.csv")

# add tables to database
dbWriteTable(con_rds, "flights", flights)
dbWriteTable(con_rds, "airports'", airports)

dbWriteTable(con_rds, '"carriers'", carriers)

Finally, we can query our RDS MySQL database on AWS.

# define query
delay_query <-
"SELECT

year,
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month,

day,

dep_delay,

flight

FROM (flights INNER JOIN airports ON flights.origin=airports.iata)
INNER JOIN carriers ON flights.carrier = carriers.Code

WHERE carriers.Description = 'United Air Lines Inc.'

AND airports.airport = 'Newark Intl'

ORDER BY flight

LIMIT 10;

# issue query
delays_df <- dbGetQuery(con_rds, delay_query)
delays_df

# clean up

dbDisconnect(con_rds)

8.6 Column-based analytics databases

As outlined in the discussion of row-based vs. column-based databases above,
many data analytics tasks focus on few columns but many rows, hence mak-
ing column-based databases the better option for large-scale analytics purposes.
Apache Druid’ (Yang et al., 2014) is one such solution that has particular advan-
tages for the data analytics perspective taken in this book. It can easily be run on
a local machine (Linux and Mac/OSX), or on a cluster in the cloud, and it easily
allows for connections to external data, for example, data stored on Google Cloud
Storage. Moreover, it can be interfaced by roruid (Metamarkets Group Inc., 2023)
to run Druid queries from within R, or, yet again, Druid can be directly queried via

SQL.

To get started with Apache Druid, navigate to https://druid.apache.org/. Un-
der downloads® you will find a link to download the latest stable release (at the
time of writing this book: 25.0.0). On the Apache Druid landing page, you will
also find a link Quickstart” with all the details regarding the installation and set up.

*https://druid.apache.org/
¢https://druid.apache.org/downloads.html
"https://druid.apache.org/docs/latest/tutorials/index.html
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Importantly, as of the time of writing this book, only Linux and MacOSX are sup-
ported (Windows is not supported).

8.6.1 Installation and start up

On Linux, follow these steps to set up Apache Druid on your machine. First, open a
terminal and download the Druid binary to the location in which you want to work
with Druid. First, we download and unpack the current Apache Druid version via
the terminal.

Using Druid in its most basic form is then straightforward. Simply navigate to the
unpacked folder and run . /bin/start-micro-quickstart.

# navigate to local copy of druid
cd apache-druid-25.0.0
# start up druid (basic/minimal settings)

./bin/start-micro-quickstart

8.6.2 First steps via Druid’s GUI

Once all Druid services are running, open a new browser window and navigate to
http://localhost:8888. This will open Druid’s graphical user interface (GUI). The
GUI provides easy-to-use interfaces to all basic Druid services, ranging from the
loading of data to querying via Druid’s SQL. Figure 8.5 highlights the GUI buttons
mentioned in the instructions below.

FIGURE 8.5: Apache Druid GUI starting page. White boxes highlight buttons for
the Druid services discussed in the main text (from left to right): the query editor
(run Druid SQL queries on any of the loaded data sources directly here); the data
load service (use this to import data from local files); and the Datasources console
(lists all currently available data sources).

8.6.2.1 Load datainto Druid

In a first step, we will import the TLC taxi trips dataset from the locally stored CSV
file. To do so, click on Load data/Batch - classic, then click on Start new batch spec, and


http://localhost:8888

138 8 Data Collection and Data Storage

then select Local disk and Connect. On the right side of the Druid GUI, a menu will
open. In the Base directory field, enter the path to the local directory in which you
have stored the TLC taxi trips CSV file used in the examples above (. ./data/).® In
the Fitle filter field, enter tlc_trips.csv.’ Finally click on the Apply button.

FIGURE 8.6: Apache Druid GUI: CSV parse menu for classic batch data ingestion.

The first few lines of the raw data will appear in the Druid console. In the lower-
right corner of the console, click on Next: Parse data. Druid will automatically guess
the delimiter used in the CSV (following the examples above, this is ,) and present
the first few parsed rows.

If all looks good, click on Next: Parse time in the lower-right corner of the console.
Druid is implemented to work particularly fast on time-series and panel data. To
this end, it expects you to define a main time-variable in your dataset, which then
can be used to index and partition your overall dataset to speed up queries for spe-
cific time frames. Per default, Druid will suggest using the first column that looks
like a time format (in the TLC-data, this would be column 2, the pick-up time of a
trip, which seems very reasonable for the sake of this example). We move on with
a click on Next: Transform in the lower right corner. Druid allows you, right at the
step of loading data, to add or transform variables/columns. As we do not need to
change anything at this point, we continue with Next: Filter in the lower-right cor-
ner. At this stage you can filter out rows/observations that you are sure should not
be included in any of the queries/analyses performed later via Druid.

For this example, we do not filter out any observations and continue via Next: Con-
figure schema in the lower-right corner. Druid guesses the schema/data types for
each column based on sampling the first few observations in the dataset. Notice,

8Importantly, recall that with this set up, Druid is currently running from within the apache-
druid-25.0.0-directory. Hence, unless you have copied your data into this directory, you will have
to explicitly point to data files outside of this directory (via . . /).

The Druid service toload data by default allows you to point to various files here via the wildcard
character (). As we have stored all the taxi trip example data in one CSV file, we can directly point
to this one file.
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for example, how Druid considers vendor_name tobe a stringand Trip_distance to be
a double (a 64-bit floating point number). In most applications of Druid for the data
analytics perspective of this book, the guessed data types will be just fine. We will
leave the data types as-is and keep the original column/variable names. You can
easily change names of variables/columns by double-clicking on the correspond-
ing column name, which will open a menu on the right-hand side of the console.
With this, all the main parameters to load the data are defined. What follows has
to do with optimizing Druid’s performance.

Once you click on Next: Partition in the lower-right corner, you will have to choose
the primary partitioning, which is always based on time (again, this has to do with
Druid being optimized to work on large time-series and panel datasets). Basically,
you need to decide whether the data should be organized into chunks per year,
month, week, etc. For this example, we will segment the data according to months.
To this end, from the drop-down menu under segment granularity, choose month.
For the rest of the parameters, we keep the default values. Continue by clicking
on Next: Tune (we do not change anything here) and then on Next: Publish. In the
menu that appears, you can choose the name under which the TLC taxi trips data
should be listed in the Datasources menu on your local Druid installation, once all
the data is loaded/processed. Thinking of SQL queries when working with Druid,
the patasource name is what you then will use in the From statement of a Druid SQL
query (in analogy to a table name in the case of RDBMSs like SQLite). We keep the
suggested name t1c_trips. Thus, you can click on Edit spec in the lower-right corner.
An editor window will open and display all your load configurations as a JSON file.
Only change anything at this step if you really know what you are doing. Finally,
click on Submit in the lower-right corner. This will trigger the loading of data into
Druid. As in the case of the RDBMS covered above, the data ingestion or data load-
ing process primarily involves indexing and writing data to disk. It does not mean
importing data to RAM. Since the CSV file used in this example is rather large, this
process can take several minutes on a modern laptop computer.

Once the data ingestion is finished, click on the Datasources tab in the top menu bar
to verify the ingestion. The t1c_trips dataset should now appear in the list of data
sources in Druid.

Ddruid B aquey A Lo

Datasources

FIGURE 8.7: Apache Druid: Datasources console.
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8.6.2.2 Query Druid via the GUI SQL console

Once the data is loaded into Druid, we can directly query it via the SQL console in
Druid’s GUL. To do this, navigate in Druid to Query. To illustrate the strengths of
Druid as an analytic database, we run an extensive data aggregation query. Specif-
ically, we count the number of cases (trips) per vendor and split the number of trips
per vendor further by payment type.

SELECT

vendor_name,

Payment_Type,

COUNT (*) AS Count_trips

FROM tlc_trips

GROUP BY vendor_name, Payment_Type

Note that for such simple queries, Druid SQL is essentially identical to the SQL di-
alects covered in previous chapters and subsections, which makes it rather simple
for beginners to start productively engaging with Druid. SQL queries can directly
be entered in the query tab; a click on Run will send the query to Druid, and the
results are shown right below.

Ddruid | Bl queyy A Losddars

FIGURE 8.8: Apache Druid query console with Druid-SQL example: count the num-
ber of cases per vendor and payment type.

Counting the number of taxi trips per vendor name and payment type implies us-
ing the entire dataset of over 27 million rows (1.5GB). Nevertheless, Druid needs
less than a second and hardly any RAM to compute the results.



8.6 Column-based analytics databases 141

8.6.3 QueryDruid from R

Apache provides high-level interfaces to Druid for several languages common in
data science/data analytics. The roruid package provides such a Druid connector
for R. The package can be installed from GitHub via the devtools package.

# install devtools 1if necessary
if (!require("devtools")) {
install.packages("devtools")}

# install RDruid
devtools::install_github("druid-io/RDruid")

The roruid package provides several high-level functions to issue specific Druid
queries; however, the syntax might not be straightforward for beginners, and the
package has not been further developed for many years.

Thanks to Druid’s basic architecture as a web application, however, there is a sim-
ple alternative to the roruid package. Druid accepts queries via HTTP POST calls
(with SQL queries embedded in aJSON file sent in the HTTP body). The data is then
returned as a compressed JSON string in the HTTP response to the POST request.
We can build on this to implement our own simple druid () function to query Druid
from R.

# create R function to query Druid (locally)
druid <-
function(query) {
# dependencies
require(jsonlite)
require(httr)
require(data.table)

# basic POST body
base_query <-

'{

"context": {
"sglOuterLimit": 1001,
"sqlQueryId": "1"},
"header": true,
"query": "",
"resultFormat": "csv",

"sqlTypesHeader": false,
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"typesHeader": false

3

param_list <- fromJSON(base_query)
# add SQL query

param_list$query <- query

# send query; parse result
resp <- POST("http://localhost:8888/druid/v2/sql",
body = param_list,

encode = "json")
parsed <- fread(content(resp, as = "text", encoding = "UTF-8"))
return(parsed)

Now we can send queries to our local Druid installation. Importantly, Druid needs
to be started up in order to make this work. In the example below we start up Druid
from within R via system("apache-druid-25.0.0/bin/start-micro-quickstart")
(make sure that the working directory is set correctly before running this). Then,
we send the same query as in the Druid GUI example from above.

# start Druid
system("apache-druid-25.0.0/bin/start-micro-quickstart",
intern = FALSE,
wait = FALSE)
Sys.sleep(30) # wait for Druid to start up

# query tlc data

query <-

!

SELECT

vendor_name,

Payment_Type,

COUNT (*) AS Count_trips

FROM tlc_trips

GROUP BY vendor_name, Payment_Type

result <- druid(query)

# inspect result

result
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## vendor_name Payment_Type Count_trips
## 1: CMT Cash 9618583
## 2: CMT Credit 2737111
## 3: CMT Dispute 16774
##t 4: CMT No Charge 82142
## 5: DDS CASH 1332901
## 6: DDS CREDIT 320411
## 7: VTS CASH 10264988
## 8: VTS Credit 3099625
T —

8.7 Datawarehouses

Unlike RDBMSs, the main purpose of data warehouses is usually analytics and not
the provision of data for everyday operations. Generally, data warehouses contain
well-organized and well-structured data, but are not as stringent as RMDBS when
it comes to organizing data in relational tables. Typically, they build on a table-
based logic, but allow for nesting structures and more flexible storage approaches.
They are designed to contain large amounts of data (via horizontal scaling) and
are usually column-based. From the perspective of Big Data Analytics taken in this
book, there are several suitable and easily accessible data warehouse solutions pro-
vided in the cloud. In the following example, we will introduce one such solution
called Google BigQuery.

8.7.1 Data warehouse for analytics: Google BigQuery example

Google BigQuery is flexible regarding the upload and export of data and can be
set up straightforwardly for a data analytics project with hardly any set up costs.
The pricing schema is usage-based. Unless you store massive amounts of data on
it, you will only be charged for the volume of data processed. Moreover, there is
a straightforward R-interface to Google BigQuery called bigrquery’®, which allows
for the same R/SQL-syntax as R’s interfaces to traditional relational databases.

Get started with bigrquery

To get started with Google BigQuery and bigrquery (Wickham and Bryan, 2022),
go to https://cloud.google.com/bigquery. Click on “Try Big Query” (if new
to this) or “Go to console” (if used previously). Create a Google Cloud project to
use BigQuery with. Note that, as in general for Google Cloud services, you need
to have a credit card registered with the project to do this. However, for learn-
ing and testing purposes, Google Cloud offers 1TB of free queries per month. All

https://bigrquery.r-dbi.org/
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the examples shown below combined will not exceed this free tier. Finally, run
install.packages("bigrquery")inl{

To set up an R session to interface with BigQuery, you need to indicate which
Google BigQuery project you want to use for the billing (the B1LLING Variable in
the example below), as well as the Google BigQuery project in which the data is
stored that you want to query (the proJecT variable below). This distinction is very
useful because it easily allows you to query data from a large array of publicly
available datasets on BigQuery. In the set up example code below, we use this op-
tion in order to access an existing and publicly available dataset (provided in the
bigquery-public-data projch Caued,google_analytics_sample.Irlféct,tfﬁs dataset
provides the raw Google Analytics data used in the Big-P example discussed in
Chapter 2.

Finally, all that is left to do is to connect to BigQuery via the already familiar
dbConnect () function provided in ps1." When first connecting to and querying Big-
Query with your Google Cloud account, a browser window will open, and you will
be prompted to grant bigrquery access to your account/project. To do so, you will
have to be logged in to your Google account. See the Important details section on
https://bigrquery.r-dbi.org/ for details on the authentication.

# load packages, credentials
library(bigrquery)
library(data.table)
library(DBI)

# fix vars

# the project ID on BigQuery (billing must be enabled)
BILLING <- "bda-examples"

# the project name on BigQuery

PROJECT <- "bigquery-public-data"

DATASET <- "google_analytics_sample"

# connect to DB on BigQuery
con <- dbConnect(
bigrquery::bigquery(),
PROJECT,
DATASET,
BILLING

UThe bigrquery package provides a DBI-driver for BigQuery. For more advanced usage of bigr-
query, the package also provides lower-level functions to directly interact with the BigQuery APL.
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Get familiar with BigQuery

The basic query syntax is now essentially identical to what we have covered in the
RDBMS examples above." In this first query, we count the number of times a
Google merchandise shop visit originates from a given web domain on August 1,
2017 (hence the query to table ga_sessions_20170801). Note the way we refer to the
specific table (in the From statement of the query below): bigquery-public-datais the
pointer to the BigQuery project, google_analytics_sample is the name of the data
warehouse, and ga_sessions_20170801 is the name of the specific table we want to
query data from. Finally, note the argument page_size=15000 as part of the familiar
dbGetQuery () function. This ensures that bigrquery does not exceed the limit of vol-

ume per second for downloads via the Google BigQuery API (on which bigrquery
builds).

# run query

query <-

"

SELECT DISTINCT trafficSource.source AS origin,

COUNT (trafficSource.source) AS no_occ

FROM “bigquery-public-data.google_analytics_sample.ga_sessions_20170801"
GROUP BY trafficSource.source

ORDER BY no_occ DESC;

"

ga <- as.data.table(dbGetQuery(con, query, page_size=15000))
head(ga)

Note the output displayed in the console. bigrquery indicates how much data vol-
ume was processed as part of the query (which indicates what will be charged to
your billing project),

Upload data to BigQuery

Storing your entire raw dataset on BigQuery is straightforward with bigrquery. In
the following simple example, we upload the previously gathered and locally stored
TLC taxi trips data. To do so, we first create and connect to a new dataset on Big-
Query. To keep things simple, we initialize the new dataset in the same project
used for the billing.

2Minor but relevant exceptions are that sqLite, MysqL, and Bigquery do not provide all the same
SQL commands. However, for all core operations to query and summarize data, the SQL syntax is
essentially identical.
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# name of the dataset to be created
DATASET <- "tlc"

# connect and initialize a new dataset
con <- dbConnect(
bigrquery::bigquery(),
project = BILLING,
billing = BILLING,
dataset = DATASET

In a first step, we create the dataset to which we then can add the table.

tlc_ds <- bqg_dataset(BILLING, DATASET)
bg_dataset_create(tlc_ds)

We then load the TLC dataset into R via fread() and upload it as a new table to your
project/dataset on BigQuery via bigrquery. For the sake of the example, we only
upload the first 10,000 rows.

# read data from csv
tlc <- fread("data/tlc_trips.csv.gz", nrows = 10000)
# write data to a new table

dbWriteTable(con, name = "tlc_trips", value = tlc)

Alternatively, you can easily upload data via the Google BigQuery console in the
browser. Go to https://console.cloud.google.com/bigquery, select (or create) the
project you want to upload data to, then in the Explorer section click on + ADD DATA,
and select the file you want to upload. You can either upload the data from disk,
from Google Cloud Storage, or from a third-party connection. Uploading the data
into BigQuery via Google Cloud Storage is particularly useful for large datasets.

Finally, we can test the newly created dataset/table with the following query

test_query <-

"

SELECT =*

FROM tlc.tlc_trips
LIMIT 10
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"

test <- dbGetQuery(con, test_query)

Tutorial: Retrieve and prepare Google Analytics data

The following tutorial illustrates how the raw data for the Big-P example in Chap-
ter 2 was collected and prepared via Google BigQuery and R. Before we get started,
note an important aspect of a data warehouse solution like BigQuery in contrast
to common applications of RDBS. As data warehouses are used in a more flexi-
ble way than relational databases, it is not uncommon to store data files/tables
containing the same variables separately in various tables, for example to store
one table per day or year of a panel dataset. On Google BigQuery, this partition-
ing of datasets into several components can additionally make sense for cost rea-
sons. Suppose you want to only compute summary statistics for certain variables
over a given time frame. If all observations of a large dataset are stored in one
standard BigQuery table, such a query results in processing GBs or TBs of data,
as the observations from the corresponding time frame need to be filtered out
of the entire dataset. Partitioning the data into several subsets helps avoid this,
as BigQuery has several features that allow the definition of SQL queries to be
run on partitioned data. The publicly available Google Analytics dataset is orga-
nized in such a partitioned way. The data is stored in several tables (one for each
day of the observation period), whereby the last few characters of the table name
contain the date of the corresponding observation day (such as the one used in
the example above: ga_sessions_20170801). If we want to combine data from sev-
eral of those tables, we can use the wildcard character () to indicate that the
BigQuery should consider all tables matching the table name up to the *: From

bigquery-public-data.google_analytics_sample.ga_sessions_x.

We proceed by first connecting the R session with GoogleBigQuery.

# fix vars

# the project ID on BigQuery (billing must be enabled)
BILLING <- "YOUR-BILLING-PROJECT-ID"

# the project name on BigQuery

PROJECT <- "bigquery-public-data"

DATASET <- "google_analytics_sample"

# connect to DB on BigQuery
con <- dbConnect(
bigrquery: :bigquery(),
PROJECT,
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dataset = DATASET,
billing = BILLING

The query combines all Google Analytics data recorded from the beginning of 2016
to the end of 2017 via WHERE _TABLE_SUFFIX BETWEEN '20160101' AND '20171231'. This
gives us all the raw data used in the Big-P analysis shown in Chapter 2.

# run query

query <-

"

SELECT

totals.visits,

totals.transactions,

trafficSource.source,

device.browser,

device.isMobile,

geoNetwork.city,

geoNetwork.country,

channelGrouping

FROM “bigquery-public-data.google_analytics_sample.ga_sessions_x
WHERE _TABLE_SUFFIX BETWEEN '20160101' AND '20171231';

ga <- as.data.table(dbGetQuery(con, query, page size=15000))

Finally, we use data. table and basic R to prepare the final analytic dataset and write
it on disk.

# further cleaning and coding via data.table and basic R
gastransactions[is.na(ga$transactions)] <- 0

ga <- ga[gaScity!="not available in demo dataset",]

ga$purchase <- as.integer(0<ga$transactions)

gaS$transactions <- NULL

ga_p <- gal[purchase==1]

ga_rest <- gal[purchase==0][sample(l:nrow(ga[purchase==0]), 45000)]
ga <- rbindlist(list(ga_p, ga_rest))

potential_sources <- table(gaS$source)

potential_sources <- names(potential_sources[l<potential_sources])

ga <- ga[ga$source %in% potential_sources,]
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# store dataset on local hard disk

fwrite(ga, "data/ga.csv")

# clean up

dbDisconnect(con)

Note how we combine BigQuery as our data warehouse with basic R for data prepa-
ration. Solutions like BigQuery are particularly useful for this kind of approach as
part of an analytics project: Large operations such as the selection of columns/-
variables from large-scale data sources are handled within the warehouse in the
cloud, and the refinement/cleaning steps can then be implemented locally on a
much smaller subset.”

Note the wildcard character (») in the query is used to fetch data from several par-
titions of the overall dataset.

8.8 Datalakes and simple storage service

Broadly speaking a data lake is where all your data resides (these days, this is typ-
ically somewhere in the cloud). The data is simply stored in whatever file format
and in simple terms organized in folders and sub-folders. In the same data lake
you might thus store CSV files, SQL database dumps, log files, image files, raw
text, etc. In addition, you typically have many options to define access rights to
files, including to easily make them accessible for download to the public. For a
simple data analytics project in the context of economic research or business ana-
lytics, the data lake in the cloud concept is a useful tool to store all project-related
raw data files. On the one hand you avoid running into troubles with occupying
gigabytes or terabytes of your local hard disk with files that are relevant but only
rarely imported/worked with. On the other hand you can properly organize all the
raw data for reproducibility purposes and easily share the files with colleagues (and
eventually the public). For example, you can use one main folder (one “bucket”) for
an entire analytics project, store all the raw data in one sub-folder (for reproduc-
tion purposes), and store all the final analytic datasets in another sub-folder for
replication purposes and more frequent access as well as sharing across a team of
co-workers.

BSince in this example the queried subset is not particularly large, it is easier to perform the data
preparation locally in R. However, in other situations it might make sense to use SQL in BigQuery
more extensively for data preparation tasks that would require a lot of RAM.
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There are several types of cloud-based data lake solutions available, many of which
are primarily focused on corporate data storage and provide a variety of services
(for example, AWS Lake Formation or Azure Data Lake) that might go well beyond
the data analytics perspective taken in this book. However, most of these solutions
build in the end on a so-called simple storage service such as AWS S3 or Google
Cloud Storage, which build the core of the lake — the place where the data is actu-
ally stored and accessed. In the following, we will look at how to use such a simple
storage service (AWS S3) as a data lake in simple analytics projects.™

Finally, we will look at a very interesting approach to combine the concept of a data
lake with the concept of a data warehouse. That is, we briefly look at solutions of
how some analytics tools (specifically, a tool called Amazon Athena) can directly be
used to query/analyze the data stored in the simple storage service.

8.8.1 AWS S3 with R: First steps

For the following first steps with AWS S3 and R, you will need an AWS account (the
same as above for EC2) and IAM credentials from your AWS account with the right
to access S3.” Finally, you will have to install the aws.s3 package in R in order to
access S3\da.RJﬁnstall.packages("aws.s3").

To initiate an R session in which you connect to S3, aws.s3 (Leeper, 2020) must be
loaded and the following environment variables must be set:

« AWS_ACCESS_KEY_ID: your access key ID (of the keypair with rights to use S3)
« AWS_SECRET_KEY: your access key (of the keypair with rights to use S3)
« ReGION: the region in which your S3 buckets are/will be located (e.g.,

"eu-central-1")

# load packages

library(aws.s3)

# set environment variables with your AWS S3 credentials

Sys.setenv ("AWS_ACCESS_KEY_ID" = AWS_ACCESS_KEY_ID,
"AWS_SECRET_ACCESS_KEY" = AWS_SECRET_KEY,
"AWS_DEFAULT_REGION" = REGION)

“Essentially, all other major cloud computing providers offer very similar services with very sim-
ilar features to AWS S3. Conceptually, you could thus easily use one of these other services. The ex-
amples here focus on AWS S3 primarily for simplicity (as we have already set up AWS credentials
etc.), and the straightforward way to connect to AWS S3via R.

BThere are many ways to create these credentials, and many ideas about which ones to use. A
very simple and reasonable instruction how to do this can be found here: https://binaryguy.tech/a
ws/s3/create-iam-user-to-access-s3/.
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In a first step, we create a project bucket (the main repository for our project) to
store all the data of our analytics project. All the raw data can be placed directly in
this main folder. Then, we add one sub-folder to this bucket: analytic_data (for the
cleaned/prepared datasets underlying the analyses in the project).’

# fix variable for bucket name
BUCKET <- "tlc-trips"

# create project bucket

put_bucket (BUCKET)

# create folders
put_folder("raw_data'", BUCKET)
put_folder("analytic_data", BUCKET)

8.8.2 Uploading datato S3

Now we can start uploading the data to the bucket (and the sub-folder). For exam-
ple, to remain within the context of the TLC taxi trips data, we upload the original
Parquet files directly to the bucket and the prepared CSV file to analytic_data. For
large files (larger than I00MB) it is recommended to use the multipart option (up-
load of file in several parts; multipart=TRUE).

# upload to bucket
# final analytic dataset
put_object(
"data/tlc_trips.csv'", # the file you want to upload
"analytic_data/tlc_trips.csv", # name of the file in the bucket
BUCKET,
TRUE

# upload raw data
file_paths <- list.files("data/tlc_trips/raw_data", TRUE)
lapply (file_paths,
put_object,
BUCKET,
TRUE)

16Note that, technically, the explicit creation of folders is not necessary, as S3 uses slashes (/) in
file names on S3 to make them appear to be in a particular folder. However, when using the AWS S3
console in the browser, defining folders explicitly can make more sense from the user’s perspective.
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8.8.3 More than just simple storage: S3 + Amazon Athena

There are several implementations of interfaces with Amazon Athena
in R. Here, we will rely on Awr.Athena (Fultz and Dardczi, 2019) (run
install.packages("AWR.Athena")), which allows interacting with Amazon Athena
via the familiar pe1 package (R Special Interest Group on Databases (R-SIG-DB)
etal., 2022).

# SET UP —————————mmmmmmm e~

# load packages

library(DBI)

library(aws.s3)

# aws credentials with Athena and S3 rights and region
AWS_ACCESS_KEY_ID <- "YOUR_KEY_ID"

AWS_ACCESS_KEY <- "YOUR_KEY"

REGION <- "eu-central-1"

# establish AWS connection

Sys.setenv ("AWS_ACCESS_KEY_ID'" = AWS_ACCESS_KEY_ID,
""AWS_SECRET_ACCESS_KEY" = AWS_ACCESS_KEY,
"AWS_DEFAULT_REGION" = REGION)

Create a bucket for the output.

OUTPUT_BUCKET <- '"bda-athena"
put_bucket (OUTPUT_BUCKET, region="us-east-1")

Now we can connect to Amazon Athena to query data from files in S3 via the rRipBC
package (Urbanek, 2022).

# load packages
library(RJIDBC)
library(DBI)

# download Athena JDBC driver

URL <- "https://s3.amazonaws.com/athena-downloads/drivers/JDBC/"
VERSION <- "AthenalDBC_1.1.0/AthenalDBC41-1.1.0.jar"

DRV_FILE <- "AthenalDBC41-1.1.0.jar"

download. file(paste®@(URL, VERSION), destfile = DRV_FILE)
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# connect to JDBC

athena <- JDBC(driverClass = '"com.amazonaws.athena.jdbc.AthenaDriver",
DRV_FILE, identifier.quote = "'")

# connect to Athena

con <- dbConnect(athena, "jdbc:awsathena://athena.us-east-1.amazonaws.com:443/",
s3_staging_dir = "s3://bda-athena", user = AWS_ACCESS_KEY_ID,
password = AWS_ACCESS_KEY)

Inorder to query data stored in S3via Amazon Athena, we need to create an external
table in Athena, which will be based on data stored in S3.

query_create_table <-

"

CREATE EXTERNAL TABLE default.trips (
‘vendor_name’ string,
‘Trip_Pickup_DateTime’ string,
‘Trip_Dropoff_DateTime' string,
‘Passenger_Count® fint,
‘Trip_Distance’ double,
‘Start_Lon' double,

‘Start_Lat® double,
"Rate_Code’ string,
‘store_and_forward® string,
"End_Lon" double,
"End_Lat® double,
‘Payment_Type  string,
‘Fare_Amt® double,
‘surcharge’ double,
‘mta_tax® string,
‘Tip_Amt® double,
"Tolls_Amt' double,
‘Total_Amt® double

)

ROW FORMAT DELIMITED

FIELDS TERMINATED BY ','

STORED AS TEXTFILE

LOCATION 's3://tlc-trips/analytic_data/'

dbSendQuery (con, query_create_table)

Run a test query to verify the table.
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test_query <-

SELECT =
FROM default.trips
LIMIT 10

test <- dbGetQuery(con, test_query)
dim(test)

## [1] 10 18

Finally, close the connection.

dbDisconnect(con)

## [1] TRUE

8.9 Wrapping up

« Itis good practice to set up all of the high-level pipeline in the same language (here
R). This substantially facilitates your workflow and makes your overall pipeline
easier to maintain. Importantly, as illustrated in the sections above, this practice
does not mean that all of the underlying data processing is actually done in R. We
simply use R as the highest-level layer and call a range of services under the hood
to handle each of the pipeline components as efficiently as possible.

« Apache Arrow allows you to combine and correct raw data without exceeding RAM;
in addition it facilitates working with newer (big) data formats for columnar data
storage systems (like Apache Parquet).

« RDBMSs such as SQLite or MySQL and analytics databases such as Druid help you
store and organize clean/structured data for analytics purposes locally or in the
cloud.

« RDBMSslike SQLite are row-based (changing a value means changing a row), while
modern analytics databases are usually column-based (changing a value means
modifying one column).

« Row-based databases are recommended when your analytics workflow includes
a lot of tables, table joins, and frequent filtering for specific observations with
variables from several tables. Column-based databases are recommended for an-
alytics workflows involving less frequent but large-scale data aggregation tasks.

« Data warehouse solutions like Google BigQuery are useful to store and query large
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(semi-)structured datasets but are more flexible regarding hierarchical data and
file formats than traditional RDBMSs.

« Data lakes and simple storage services are the all-purpose tools to store vast
amounts of data in any format in the cloud. Typically, solutions like AWS S3 are a
great option to store all of the raw data related to a data analytics project.



Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com
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Big Data Cleaning and Transformation

Preceding the filtering/selection/aggregation of raw data, data cleaning and trans-
formation typically have to be run on large volumes of raw data before the observa-
tions and variables of interest can be further analyzed. Typical data cleaning tasks
involve:

« Normalization/standardization (across entities, categories, observation peri-
ods).

« Coding of additional variables (indicators, strings to categorical, etc.).

« Removing/adding covariates.

« Merging/joining datasets.

« Properly defining data types for each variable.

All of these steps are very common tasks when working with data for analytics pur-
poses, independent of the size of the dataset. However, as most of the techniques
and software developed for such tasks is meant to process data in memory, per-
forming these tasks on large datasets can be challenging. Data cleaning workflows
you are perfectly familiar with might slow down substantially or crash due to alack
of memory (RAM), particularly if the data preparation step involves merging/join-
ing two datasets. Other potential bottlenecks are the parsing of large files (CPU) or
intensive reading from and writing to the hard disk (Mass storage).

In practice, the most critical bottleneck of common data preparation tasks is often
a lack of RAM. In the following, we thus explore two strategies that broadly build
on the idea of virtual memory (using parts of the hard disk as RAM) and/or lazy eval-
uation (only loading/processing the part of a dataset really required).

9.1 Out-of-memory strategies and lazy evaluation: Practical basics

Virtual memory is in simple words an approach to combining the RAM and mass
storage components in order to cope with a lack of RAM. Modern operating sys-
tems come with a virtual memory manager that automatically handles the swap-
ping between RAM and the hard-disk, when running processes that use up too
much RAM. However, a virtual memory manager is not specifically developed to

157
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perform this task in the context of data analysis. Several strategies have thus been
developed to build on the basic idea of virtual memory in the context of data analysis
tasks.

« Chunked data files on disk: The data analytics software ‘partitions’ the dataset, and
maps and stores the chunks of raw data on disk. What is actually ‘read’ into RAM
when importing the data file with this approach is the mapping to the parti-
tions of the actual dataset (the data structure) and some metadata describing the
dataset. In R, this approach is implemented in the ff package (Adler et al., 2022)
and several packages building on ff. In this approach, the usage of disk space
and the linking between RAM and files on disk is very explicit (and clearly visible
to the user).

« Memory mapped files and shared memory: The data analytics software uses segments
of virtual memory for the dataset and allows different programs/processes to ac-
cess it in the same memory segment. Thus, virtual memory is explicitly allocated
for one or several specific data analytics tasks. In R, this approach is notably im-
plemented in the bigmemory package (Kane et al., 2013) and several packages build-
ing OI bigmemory.

A conceptually related but differently focused approach is the lazy evaluation imple-
mented in Apache Arrow and the corresponding arrow package (Richardson et al.,
2022). While Apache Arrow is basically a platform for in-memory columnar data,
it is optimized for processing large amounts of data and working with datasets
that actually do not fit into memory. The way this is done is that instructions on
what to do with a dataset are not evaluated step-by-step on the spot but all together
at the point of actually loading the data into R. That is, we can connect to a dataset
via arrow, see its variables, etc., give instructions of which observations to filter out
and which columns to select, all before we read the dataset into RAM. In compari-
son to the strategies outlined above, this approach is usually much faster but might
still lead to a situation with a lack of memory.

In the following subsections we briefly look at how to set up an R session for data
preparation purposes with any of these approaches (ff, bigmemory, arrow) and look
at some of the conceptual basics behind the approaches.

9.1.1 Chunking data with the ff package

We first install and load the ff and ffbase (de Jonge et al., 2023) packages, as well
as the pryr package. We use the familiar flights.csv dataset’ For the sake of the
example, we only use a fraction of the original dataset. On disk, the dataset is about
30MB:

'Data from the same source is also used in the code examples given in Kane et al. (2013).
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fs::file_size("data/flights.csv'")

## 29.5M

However, loading the entire dataset of several GBs would work just fine, using the
ff-approach.

When importing data via the ff package, we first have to set up a directory where ff
can store the partitioned dataset (recall that this is explicitly/visibly done on disk).
We call this new directory ff_files.

i SET UP s——mosmmsmmses

# install.packages(c("ff", "ffbase'"))

# you might have to install the ffbase package directly from GitHub:
# devtools::install_github("edwindj/ffbase", subdir="pkg")

# load packages

library (ff)

library(ffbase)

library(data.table) # for comparison

# create directory for ff chunks, and assign directory to ff
system("mkdir ff_files")
options(fftempdir = "ff_files")

Now we can read in the data with read.table.ffdf. In order to better understand
the underlying concept, we also import the data into a common data. table object
via fread() and then look at the size of the objects resulting from the two ‘import’
approaches in the R environment with object.size().

# usual in-memory csv import

flights_dt <- fread("data/flights.csv")

# out-of-memory approach
flights <-
read.table.ffdf(file="data/flights.csv",
sep=",",
VERBOSE=TRUE,
header=TRUE,
next.rows=100000,

colClasses=NA)



160 9 Big Data Cleaning and Transformation

## read.table.ffdf 1..100000 (100000) csv-read=0.433sec ffdf-write=0.076sec

## read.table.ffdf 100001..200000 (100000) csv-read=0.415sec ffdf-write=0.045sec
## read.table.ffdf 200001..300000 (100000) csv-read=0.442sec ffdf-write=0.056sec
## read.table.ffdf 300001..336776 (36776) csv-read=0.169sec ffdf-write=0.031sec
## csv-read=1.459sec ffdf-write=0.208sec TOTAL=1.667sec

# compare object sizes

object.size(flights) # out-of-memory approach

## 949976 bytes

object.size(flights_dt) # common data.table

## 32569024 bytes

Note that there are two substantial differences to what we have previously seen
when using fread(). It takes much longer to import a CSV into the ff_files structure.
However, the RAM allocated to it is much smaller. This is exactly what we would ex-
pect, keeping in mind what read. table. ffdf() does in comparison to what fread()
does. Now we can actually have a look at the data chunks created by ff.

# show the files in the directory keeping the chunks
head(list.files("ff_files"))

## [1] "ffdf991b1906c435c.ff" "ffdf991blad3a49c.ff"
## [3] "ffdf99lblba739af.ff" "ffdf991b21lef4115.ff"
## [5] "ffdf991b2464b9c4.ff" "ffdf991b252df4ac.ff"

9.1.2 Memory mapping with bigmemory

The bigmemory package handles data in matrices and therefore only accepts data
values of identical data type. Before importing data via the bigmemory package, we
thus have to ensure that all variables in the raw data can be imported in a common

type.
# SET UP —-—————————————-
# load packages

library (bigmemory)
library(biganalytics)
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# import the data

flights <- read.big.matrix("data/flights.csv",
type="1integer",
header=TRUE,
backingfile="flights.bin",
descriptorfile="flights.desc")

Note that, similar to the ff example, read.big.matrix() creates a local file
flights.bin on disk that is linked to the flights object in RAM. From looking at
the imported file, we see that various variable values have been discarded. This is
because we have forced all variables to be of type "integer" when importing the
dataset.

object.size(flights)

## 696 bytes

str(flights)

## Formal class 'big.matrix' [package "bigmemory"] with 1
slot

## ..@ address:<externalptr>

Again, the object representing the dataset in R does not contain the actual data (it
does not even take up a KB of memory).

9.1.3 Connecting to Apache Arrow

# SET UP ————————————————

# load packages

library(arrow)

# import the data
flights <- read_csv_arrow("data/flights.csv",
as_data_frame = FALSE)

Note the as_data_frame=FALSE in the function call. This instructs Arrow to establish
a connection to the file and read some of the data (to understand what is in the file),
but not actually import the whole CSV.
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summary (flights)

##t Length Class Mode

## year 336776 ChunkedArray environment
## month 336776 ChunkedArray environment
## day 336776 ChunkedArray environment
## dep_time 336776 ChunkedArray environment
## sched_dep_time 336776 ChunkedArray environment
## dep_delay 336776 ChunkedArray environment
## arr_time 336776 ChunkedArray environment
## sched_arr_time 336776 ChunkedArray environment
## arr_delay 336776 ChunkedArray environment
## carrier 336776 ChunkedArray environment
## flight 336776 ChunkedArray environment
## tailnum 336776 ChunkedArray environment
## origin 336776 ChunkedArray environment
## dest 336776 ChunkedArray environment
## air_time 336776 ChunkedArray environment
## distance 336776 ChunkedArray environment
## hour 336776 ChunkedArray environment
## minute 336776 ChunkedArray environment
## time_hour 336776 ChunkedArray environment

object.size(flights)

## 488 bytes

Again, we notice that the flights object is much smaller than the actual dataset on
disk.

9.2 Big Data preparation tutorial with ff
9.2.1 Setup

The following code and data examples build on Walkowiak (2016), Chapter 3.
The set up for our analysis script involves the loading of the ff and ffbase pack-
ages, the initialization of fixed variables to hold the paths to the datasets, and the

“You can download the original datasets used in these examples from https://github.com/Pac
ktPublishing/Big-Data-Analytics-with-R/tree/master/Chapter%203.


https://github.com
https://github.com
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creation and assignment of a new local directory ff_files in which the binary flat
file-partitioned chunks of the original datasets will be stored.

## SET UP —————————————m—mmmmo o

# create and set directory for ff files
system("mkdir ff_files")
options(fftempdir = "ff_files")

# load packages
library (ff)
library(ffbase)
library(pryr)

# fix vars
FLIGHTS_DATA <- "data/flights_sep_octl5.txt"
AIRLINES_DATA <- "data/airline_1id.csv"

9.2.2 Dataimport

In a first step we read (or ‘upload’) the data into R. This step involves the creation
of the binary chunked files as well as the mapping of these files and the metadata.
In comparison to the traditional read.csv approach, you will notice two things. On
the one hand the data import takes longer; on the other hand it uses up much less
RAM than with read.csv.

# DATA IMPORT —-----—-—-—————————

# check memory used

mem_used ()

## 1.79 GB
# 1. Upload flights_sep_octl5.txt and airline_id.csv files from flat files.

system.time(flights.ff <- read.table.ffdf(file=FLIGHTS_DATA,
sep=",",
VERBOSE=TRUE,
header=TRUE,
next.rows=100000,
colClasses=NA))
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##
##
##
##
##
##
##
##
##
##
##

read
read
read
read
read.
read

read

##
##

user

5.733

csv-read=5.919sec

system elapsed
6.669

0.821

read.table.ffdf 1..100000 (100000)
.table.ffdf 100001.
.table.ffdf 200001.
.table.ffdf 300001.
.table.ffdf 400001.
table.ffdf 500001.
.table.ffdf 600001.
.table.ffdf 700001.
read.table.ffdf 800001.
read.table.ffdf 900001.
ffdf-write=0.738sec

.200000
.300000
.400000
.500000
.600000
. 700000
.800000
.900000
.951111

(100000)
(100000)
(100000)
(100000)
(100000)
(100000)
(100000)

(100000)

(51111)
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csv-read=0
csv-read=0

csv-read=0

csv-read=0.
csv-read=0.
csv-read=0.

csv-read=0.

.581sec
.603sec

657sec
675sec
613sec
648sec

ffdf-write=0
ffdf-write=0
ffdf-write=0
ffdf-write=0
ffdf-write=0
ffdf-write=0
ffdf-write=0

csv-read=0.589sec ffdf-write=0.091sec
.587sec .065sec
.063sec
.074sec
.074sec
.073sec
.076sec

.089sec

csv-read=0.635sec ffdf-write=0.07sec

csv-read=0.331sec ffdf-write=0.063sec
TOTAL=6.657sec

system.time(airlines.ff <- read.csv.ffdf(file= AIRLINES_DATA,

## read.table.ffdf 1..1607 (1607)

##
## user
## 0.010

csv-read=0.005sec

system elapsed
0.019

0.000

# check memory used

mem_used ()

## 1.79 GB

VERBOSE=TRUE,

header=TRUE,

next.rows=100000,
colClasses=NA))

Comparison with read. table

# Using read.table()

system.time(flights.table <- read.table(FLIGHTS_DATA,

##
##

user

6.527

system elapsed
7.089

0.526

csv-read=0.005sec ffdf-write=0.005sec
TOTAL=0.01sec

ffdf-write=0.005sec

Sep:”,”,

header=TRUE))
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system.time(airlines.table <- read.csv(AIRLINES_DATA,
header = TRUE))

#t user system elapsed
## 0.002 0.000 0.002

# check the memory used

mem_used ()
## 1.93 GB

9.2.3 Inspectimported files

A particularly useful aspect of working with the ff package and the packages build-
ing on it is that many of the simple R functions that work on normal data.frames
in RAM also work on fI_files files. Hence, without actually having loaded the en-
tire raw data of a large dataset into RAM, we can quickly get an overview of the key
characteristics, such as the number of observations and the number of variables.

# 2. Inspect the ff_files objects.
## For flights.ff object:
class(flights.ff)

## [1] "ffdf"
dim(flights.ff)

## [1] 951111 28

## For airlines.ff object:

class(airlines. ff)

## [1] "FFdf"

dim(airlines.ff)

## [1] 1607 2
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9.2.4 Datacleaning and transformation

After inspecting the data, we go through several steps of cleaning and transforma-
tion, with the goal of then merging the two datasets. That is, we want to create a
new dataset that contains detailed flight information but with additional informa-
tion on the carriers/airlines. First, we want to rename some of the variables.

# step 1:

# Rename '"Code" variable from airlines.ff

# to "AIRLINE_ID" and '"Description" into "AIRLINE_NM".
names (airlines.ff) <- c("AIRLINE_ID", "AIRLINE_NM")

names (airlines. ff)

## [1] "AIRLINE_ID" "AIRLINE_NM"

str(airlines.ff[1:20,])

## 'data.frame': 20 obs. of 2 variables:

## $ AIRLINE_ID: int 19031 19032 19033 19034 19035 19036
19037 19038 19039 19040 ...

## $ AIRLINE_NM: Factor w/ 1607 levels "40-Mile Adir:
Q5",..: 945 1025 503 721 64 725 1194 99 1395 276 ...

Now we can join the two datasets via the unique airline identifier "ATRLINE_ID".
Note that these kinds of operations would usually take up substantially more RAM
on the spot, if both original datasets were also fully loaded into RAM. As illustrated
by the mem_change () function, this is not the case here. All that is needed is a small
chunk of RAM to keep the metadata and mapping-information of the new ff_fitles
object; all the actual data is cached on the hard disk.

# merge of ff_files objects
mem_change(flights.data.ff <- merge.ffdf(flights.ff,

airlines.ff,
by="AIRLINE_ID"))

## 774 kB

#The new object is only 551.2 KB in size
class(flights.data.ff)

## [1] "FFdf"
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dim(flights.data.ff)

## [1] 951111 29

names (flights.data.ff)

## [1] "YEAR" "MONTH"

## [3] "DAY_OF_MONTH" "DAY_OF_WEEK"

## [5] "FL_DATE" "UNIQUE_CARRIER"
## [7] "AIRLINE_ID" "TAIL_NUM"

## [9] "FL_NUM" "ORIGIN_AIRPORT_ID"
## [11] "ORIGIN" "ORIGIN_CITY_NAME"
## [13] "ORIGIN_STATE_NM" "ORIGIN_WAC"

## [15] "DEST_AIRPORT_ID" "DEST"

## [17] "DEST_CITY_NAME" "DEST_STATE_NM"

## [19] "DEST_WAC" "DEP_TIME"

## [21] "DEP_DELAY" "ARR_TIME"

## [23] "ARR_DELAY" "CANCELLED"

## [25] "CANCELLATION_CODE" "DIVERTED"

## [27] "AIR_TIME" "DISTANCE"

## [29] "AIRLINE_NM"

9.2.5 Inspectdifference in in-memory operation

In comparison to the ff-approach, performing the merge in memory needs more
resources:

##For flights.table:
names(airlines.table) <- c("AIRLINE_ID'", "AIRLINE_NM")

names (airlines.table)

## [1] "AIRLINE_ID" "AIRLINE_NM"

str(airlines.table[1:20,])

## 'data.frame': 20 obs. of 2 variables:

## $ AIRLINE_ID: int 19031 19032 19033 19034 19035 19036
19037 19038 19039 19040

## $ AIRLINE_NM: chr "Mackey International Inc.: MAC" "Munz
XY" "Cochise Airlines Inc.: COC"

GSA"

Northern Airlines Inc.:

"Golden Gate Airlines Inc.:
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# check memory usage of merge in RAM

mem_change(flights.data.table <- merge(flights.table,
airlines.table,
by="AIRLINE_ID"))

## 161 MB

#The new object is already 105.7 MB in size

#A rapid spike in RAM use when processing

9.2.6 Subsetting

Now, we want to filter out some observations as well as select only specific variables
for a subset of the overall dataset.

mem_used ()
## 2.09 GB

# Subset the ff_files object flights.data.ff:

subsl.ff <-
subset. ffdf(flights.data.ff,
CANCELLED == 1,
select = c(FL_DATE,
AIRLINE_ID,

ORIGIN_CITY_NAME,
ORIGIN_STATE_NM,
DEST_CITY_NAME,
DEST_STATE_NM,
CANCELLATION_CODE))

dim(subsl.ff)

## [1] 4529 7

mem_used ()

## 2.09 GB
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9.2.7 Save/load/export ff files

In order to better organize and easily reload the newly created ff_fitles files, we
can explicitly save them to disk.

# Save a newly created ff_files object to a data file:
# (7 files (one for each column) created in the ffdb directory)
save.ffdf(subsl.ff, overwrite = TRUE)

Ifwe want to reload a previously saved ff_fi1es object, we do not have to go through
the chunking of the raw data file again but can very quickly load the data mapping
and metadata into RAM in order to further work with the data (stored on disk).

# Loading previously saved ff_files files:
rm(subsl.ff)

#gc ()

load. ffdf("ffdb")

# check the class and structure of the loaded data
class(subsl. ff)

## [1] "FFdf"

dim(subsl.ff)

## [1] 4529 7

dimnames (subsl.ff)

## [[1]]

## NULL

Hi

## [[2]]

## [1] "FL_DATE" "AIRLINE_ID"

## [3] "ORIGIN_CITY_NAME" "ORIGIN_STATE_NM"
## [5] "DEST_CITY_NAME" "DEST_STATE_NM"
## [7] "CANCELLATION_CODE"

If we want to store an ff_files dataset in a format more accessible for other users
(such as CSV), we can do so as follows. This last step is also quite common in prac-
tice. The initial raw dataset is very large; thus we perform all the theoretically very
memory-intensive tasks of preparing the analytic dataset via ff and then store the
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(often much smaller) analytic dataset in a more accessible CSV file in order to later
read it into RAM and run more computationally intensive analyses directly in RAM.

# Export subsl.ff into CSV and TXT files:
write.csv.ffdf(subsl.ff, "subsetl.csv'")

9.3 Big Data preparation tutorial with arrow

We begin by initializing our R session as in the short arrow introduction above.
# SET UP ==—==—=—mm—mm-

# load packages
library(arrow)

library(dplyr)

library(pryr) # for profiling

# fix vars
FLIGHTS_DATA <- "data/flights_sep_octl5.txt"
AIRLINES_DATA <- "data/airline_1id.csv"

# import the data

flights <- read_csv_arrow(FLIGHTS_DATA,
as_data_frame FALSE)

airlines <- read_csv_arrow(AIRLINES_DATA,
as_data_frame = FALSE)

Note how the data from the CSV files is not actually read into RAM yet. The created
objects flights and airlines are not data frames (yet) and occupy hardly any RAM.

class(flights)
## [1] "Table" "ArrowTabular" "ArrowObject"
## [4] "Re"

class(airlines)

## [1] "Table" "ArrowTabular" "ArrowObject"
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## [4] "R6"

object_size(flights)
## 283.62 kB

object_size(airlines)

## 283.62 kB

In analogy to the ff tutorial above, we go through the same data preparation steps.
First, we rename the variables in airlines to ensure that the variable names are
consistent with the flights data frame.

# step 1:

# Rename "Code" variable from airlines.ff to "AIRLINE_ID"
# and "Description' into "AIRLINE_NM'".

names (airlines) <- c("AIRLINE_ID'", "AIRLINE_NM'")

names (airlines)

## [1] "AIRLINE_ID" "AIRLINE_NM"

In a second step, the two data frames are merged/joined. The arrow package fol-
lows dplyr-syntax regarding data preparation tasks. That is, we can directly build
on functions like

# merge the two datasets via Arrow
flights.data.ar <- dnner_join(airlines, flights, by="AIRLINE_ID")
object_size(flights.data.ar)

## 647.74 kB

In a last step, we filter the resulting dataset for cancelled flights and select only
some of the available variables.

Now, we want to filter out some observations as well as select only specific variables
for a subset of the overall dataset. As Arrow works with the dptlyr back-end, we can
directly use the typical dplyr-syntax to combine selection of columns and filtering
of rows.

# Subset the ff_files object flights.data.ff:

subsl.ar <-
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flights.data.ar %>%

filter (CANCELLED == 1) %>%

select (FL_DATE,
AIRLINE_ID,
ORIGIN_CITY_NAME,
ORIGIN_STATE_NM,
DEST_CITY_NAME,
DEST_STATE_NM,
CANCELLATION_CODE)

object_size(subsl.ar)

## 591.21 kB

Again, this operation hardly affected RAM usage by R. Note, though, that in con-
trast to the ff-approach, Arrow has actually not yet created the new subset sub1.ar.
In fact, it has not even really imported the data or merged the two datasets. This
is the effect of the lazy evaluation approach implemented in arrow. To further pro-
cess the data in sub1.ar with other functions (outside of arrow), we need to actually
trigger the evaluation of all the data preparation steps we have just instructed R to
do. This is done via collect().

mem_change (subsl.ar.df <- collect(subsl.ar))

## 2.47 MB

class(subsl.ar.df)

## [1] "tbl_df" th1" "data.frame"

object_size(subsl.ar.df)

## 57.15 kB

Note how in this tutorial, the final subset is substantially smaller than the initial
two datasets. Hence, in this case it is fine to actually load this into RAM as a data
frame. However, this is not a necessary part of the workflow. Instead of calling
collect(), you can then trigger the computation of all the data preparation steps
via compute () and, for example, store the resulting arrow table to a CSV file.
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subsl.ar %>%
compute() %>%

write_csv_arrow(file="data/subsl.ar.csv'")

9.4 Wrapping up

« Typically, the raw/uncleaned data is the critical bottleneck in terms of data vol-
ume, particularly as the selection and filtering of the overall dataset in the prepa-
ration of analytic datasets can only work properly with cleaned data.

« Out-of-memory strategies are based on the concept of virtual memory and are key
to cleaning large amounts of data locally.

« The ff package provides a high-level R interface to an out-of-memory approach.
Most functions in ff and the corresponding ffbase package come with a syntax
very similar to the basic R syntax for data cleaning and manipulation.

« The basic idea behind ff is to store the data in chunked format in an easily acces-
sible way on the hard disk and only keep the metadata of a dataset (e.g., variable
names) in an R object in RAM while working on the dataset.

« The arrow package offers similar functionality based on a slightly different ap-
proach called lazy evaluation (only evaluate data manipulation/cleaning tasks once
the data is pulled into R). Unlike ff, arrow closely follows the dplyr syntax rather
than basic R syntax for data cleaning tasks.
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10

Descriptive Statistics and Aggregation

10.1 Data aggregation: The ‘split-apply-combine’ strategy

The ‘split-apply-combine’ strategy plays an important role in many data analysis
tasks, ranging from data preparation to summary statistics and model-fitting.!
The strategy can be defined as “break up a problem into manageable pieces, operate
on each piece independently, and then put all the pieces back together.” (Wickham,
2011, p. 1)

Many R users are familiar with the basic concept of split-apply-combine imple-
mented in the p1yr package intended for normal in-memory operations (dataset
fits into RAM). Here, we explore the options for split-apply-combine approaches
to large datasets that do not fit into RAM.

10.2 Data aggregation with chunked data files

In this tutorial we explore the world of New York’s famous Yellow Cabs. In a first
step, we will focus on the ff-based approach to employ parts of the hard disk as
‘virtual memory’. This means, that all of the examples are easily scalable without
risking too much memory pressure. Given the size of the entire TLC database (over
200GB), we will only use one million taxi trip records.”

Data import
First, we read the raw taxi trip records into R with the ff package.

# load packages
library (ff)

'Moreover, ‘split-apply-combine is closely related to a core strategy of Big Data Analytics with
distributed systems (MapReduce).

“Note that the code examples below could also be run based on the entire TLC database (provided
that there is enough hard-disk space available). But, creating the ff chunked file structure for a
200GB CSV would take hours or even days.

175
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library(ffbase)

# set up the ff directory (for data file chunks)
if (!dir.exists("fftaxi")){
system("mkdir fftaxi")
}
options(fftempdir = "fftaxi")

# import the first one million observations

taxi <- read.table.ffdf(file = "data/tlc_trips.csv",
sep = ","

header = TRUE,

next.rows = 100000,

# colClasses= col_classes,

nrows = 1000000

)

Following the data documentation provided by TLC, we give the columns of our
dataset more meaningful names and remove the empty columns (some covariates
are only collected in later years).

When inspecting the factor variables of the dataset, we notice that some of the val-
ues are not standardized/normalized, and the resulting factor levels are, therefore,
somewhat ambiguous. We should clean this before getting into data aggregation
tasks. Note the ff-specific syntax needed to recode the factor.

# inspect the factor levels

levels(taxi$Payment_Type)

## [1] "Cash" ""CASH" "Credit" "CREDIT"
## [5] "Dispute" "No Charge"

# recode them
levels(taxi$Payment_Type) <- tolower(levels(taxi$Payment_Type))
taxis$Payment_Type <- ff(taxi$Payment_Type,
levels = unique(levels(taxisSPayment_Type)),
ramclass = "factor")
# check result

levels(taxis$Payment_Type)

## [1] "cash" "credit" "dispute" "no charge"
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Aggregation with split-apply-combine

First, we will have alook at whether trips paid with credit card tend to involve lower
tip amounts than trips paid in cash. In order to do so, we create a table that shows
the average amount of tip paid for each payment-type category.

In simple words, this means we first split the dataset into subsets, each of which
contains all observations belonging to a distinct payment type. Then, we compute
the arithmetic mean of the tip-column of each of these subsets. Finally, we com-
bine all of these results into one table (i.e., the split-apply-combine strategy). When
working with ff, the ffdfply() function in combination with the doBy package
(Hgjsgaard and Halekoh, 2023) provides a user-friendly implementation of split-
apply-combine types of tasks.

# load packages
library(doBy)

# split-apply-combine procedure on data file chunks
tip_pcategory <- ffdfdply(taxi,
taxisPayment_Type,
100000000,
function(x) {
summaryBy (Tip_Amt~Payment_Type,
X,
mean,

TRUE)})

Note how the output describes the procedure step by step. Now we can have a look
at the resulting summary statistic in the form of a data. frame.

as.data.frame(tip_pcategory)

## Payment_Type Tip_Amt.mean

## 1 cash 0.0008162
## 2 credit 2.1619737
## 3 dispute 0.0035075
## 4 no charge 0.0041056

The result contradicts our initial hypothesis. However, the comparison is a little
flawed. If trips paid by credit card also tend to be longer, the result is not too sur-
prising. We should thus look at the share of tip (or percentage), given the overall
amount paid for the trip.
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We add an additional variable percent_tip and then repeat the aggregation exercise
for this variable.

# add additional column with the share of tip
taxi$percent_tip <- (taxisTip_Amt/taxi$Total_Amt)x*100

# recompute the aggregate stats
tip_pcategory <- ffdfdply(taxi,
split = taxis$Payment_Type,
BATCHBYTES = 100000000,
FUN = function(x) {
# note the difference here
summaryBy (percent_tip~Payment_Type,
data = x,
FUN = mean,
na.rm = TRUE)})
# show result as data frame

as.data.frame(tip_pcategory)

## Payment_Type percent_tip.mean

## 1 cash 0.005978
## 2 credit 16.004173
## 3 dispute 0.045660
## 4 no charge 0.040433

Cross-tabulation of ff vectors

Alsoinrelative terms, trips paid by credit card tend to be tipped more. However, are
there actually many trips paid by credit card? In order to figure this out, we count
the number of trips per payment type by applying the table. ff function provided
in ffbase.

table. ff(taxi$Payment_Type)

##
##t cash credit dispute no charge
## 781295 215424 536 2745

So trips paid in cash are much more frequent than trips paid by credit card. Again
using the table.ff function, we investigate what factors might be correlated with
payment types. First, we have a look at whether payment type is associated with
the number of passengers in a trip.
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# select the subset of observations only containing trips paid by
# credit card or cash
taxi_sub <- subset.ffdf(taxi, Payment_Type=="credit" | Payment_Type == '"cash')
taxi_subs$Payment_Type <- ff(taxi_sub$Payment_Type,
levels = c("credit", "cash"),

ramclass = "factor")

# compute the cross tabulation
crosstab <- table.ff(taxi_sub$Passenger_Count,
taxi_subSPayment_Type
)
# add names to the margins
names (dimnames (crosstab)) <- c('"Passenger count', "Payment type')
# show result

crosstab

## Payment type
## Passenger count credit cash

## 0 2 44

## 1 149990 516828
#H# 2 32891 133468
## 3 7847 36439
## 4 2909 17901
## 5 20688 73027
## 6 1097 3588

From the raw numbers it is hard to see whether there are significant differences
between the categories cash and credit. We therefore use a visualization technique
called a ‘mosaic plot’ (provided in the vcd package; see Meyer et al. (2023), Meyer
et al. (2006), and Zeileis et al. (2007)) to visualize the cross-tabulation.

# install.packages (vcd)
# load package for mosaic plot

library(ved)

# generate a mosaic plot

mosaic(crosstab, shade = TRUE)
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The plot suggests that trips involving more than one passenger tend to be paid by
cash rather than by credit card.

10.3 High-speed in-memory data aggregation with arrow

For large datasets that (at least in part) fit into RAM, the arrow package again pro-
vides an attractive alternative to ff.

Data import
We use the already familiar read_csv_arrow() to import the same first million ob-

servations from the taxi trips records.

# load packages
library(arrow)

library(dplyr)

# read the CSV file
taxi <- read_csv_arrow("data/tlc_trips.csv",

as_data_frame = FALSE)

Data preparation and ‘split-apply-combine’

We prepare/clean the data as in the ff-approach above.
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As arrowbuilds onadptlyr back-end, basic computations can be easily done through
the common dplyr syntax. Note, however, that not all of the dplyr functions are
covered in arrow (as of the writing of this book).?

# clean the categorical variable; aggregate by group
taxi <-
taxi %>%

mutate( tolower (Payment_Type))

taxi_summary <-

taxi %>%

mutate ( (Tip_Amt/Total_Amt)*100 ) %>%
group_by (Payment_Type) %>%

summarize( mean (percent_tip)) %>%
collect()

Similarly, we can use data. table’s dcast () for cross-tabulation-like operations.
library(tidyr)

# compute the frequencies; pull result into R

ct <- taxi %>%
filter (Payment_Type %in% c("credit", "cash")) %>%
group_by (Passenger_Count, Payment_Type) %>%
summarize(n=n())%>%

collect()

# present as cross-tabulation
pivot_wider( ct,

"Passenger_Count",

llnH)
## # A tibble: 2 x 11
## Payment_Type 10 t2° '3° ‘40 '5° ‘6"
## <chr> <int> <int> <int> <int>  <int> <int>
## 1 cash 1.42e7 3.57e6 972341 473783 1.89e6 96920
## 2 credit 4.34e6 9.23e5 221648 82800 5.63e5 28853

3Ifadplyr-like functionis notimplemented in arrow, the arrowdata object is automatically pulled
into R (meaning fully into RAM) and then processed there directly via native dplyr. Such a situation
might crash your R session due to a lack of RAM.
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## # 1 4 more variables: "0  <int>, 208  <int>,

## # Y1297 <int>, "113° <int>

10.4 High-speed in-memory data aggregation with data.table

For large datasets that still fit into RAM, the data.table package (Dowle and Srini-
vasan, 2022) provides very fast and elegant functions to compute aggregate statis-
tics.

Data import
We use the already familiar fread() to import the same first million observations

from the taxi trip records.

# load packages
library(data.table)

# import data into RAM (needs around 200MB)
taxi <- fread("data/tlc_trips.csv",

1000000)

Data preparation and data.table syntax for ‘split-apply-combine’
We prepare/clean the data as in the ff approach above.

# clean the factor levels

taxi$Payment_Type <- tolower (taxiS$Payment_Type)

taxi$Payment_Type <- factor (taxi$Payment_Type,
unique(taxis$Payment_Type))

Note the simpler syntax of essentially doing the same thing, but all in-memory.
data.table-syntax for ‘split-apply-combine’ operations

With the [1-syntax we index/subset the usual data. frame objects in R. When work-
ing with data. tables, much more can be done in the step of ‘sub-setting the frame.*

For example, we can directly compute on columns.

*See https://cran.r-project.org/web/packages/data.table/vignettes/datatable-intro.html for a
detailed introduction to the syntax.


https://cran.r-project.org
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taxi[, mean(Tip_Amt/Total_Amt)]

## [1] 0.03452

Moreover, in the same step, we can ‘split’ the rows by specific groups and apply the
function to each subset.

taxi[, .(percent_tip = mean((Tip_Amt/Total_Amt)x*100)), by = Payment_Type]

## Payment_Type percent_tip
##t 1 cash 0.005978
## 2 credit 16.004173
## 3: no charge 0.040433
## 4 dispute 0.045660

Similarly, we can use data. table’s dcast () for cross-tabulation-like operations.
dcast(taxi[Payment_Type %in% c("credit", "cash")],

Passenger_Count~Payment_Type,

fun.aggregate = length,

value.var = "vendor_name'")

#it Passenger_Count cash credit
## 1: 0 44 2
## 2: 1 516828 149990
##t 3: 2 133468 32891
## 4. 3 36439 7847
## 5: 4 17901 2909
## 6: 5 73027 20688
## T7: 6 3588 1097
T —

10.5 Wrapping up

« Similar to the MapReduce idea in the context of distributed systems, the split-
apply-combine approach is key in many Big Data aggregation procedures on nor-
mal machines (laptop/desktop computers). The idea is to split the overall data
into subsets based on a categorical variable, apply a function (e.g., mean) on each
subset, and then combine the results into one object. Thus, the approach allows
for parallelization and working on separate data chunks.
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« As computing descriptive statistics on various subsets of a large dataset can be
very memory-intensive, it is recommended to use out-of-memory strategies,
lazy evaluation, or a classical SQL-database approach for this.

There are several options available such as ffdply, running on chunked datasets;
and arrow with group_by ().
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(Big) Data Visualization

Visualizing certain characteristics and patterns in large datasets is primarily chal-
lenging for two reasons. First, depending on the type of plot, plotting raw data
consisting of many observations can take a long time (and lead to large figure files).
Second, patterns might be harder to recognize due to the sheer amount of data dis-
played in a plot. Both of these challenges are particularly related to the visualiza-
tion of raw data for explorative or descriptive purposes. Visualizations of already-
computed aggregations or estimates is typically very similar whether working with
large or small datasets.

The following sections thus particularly highlight the issue of generating plots
based on the raw data, including many observations, and with the aim of exploring
the data in order to discover patterns in the data that then can be further investi-
gated in more sophisticated statistical analyses. We will do so in three steps. First,
we will look into a few important conceptual aspects where generating plots with
a large number of observations becomes difficult, and then we will look at poten-
tially helpful tools to address these difficulties. Based on these insights, the next
section presents a data exploration tutorial based on the already familiar TLC taxi
trips dataset, looking into different approaches to visualize relations between vari-
ables. Finally, the last section of this chapter covers an area of data visualization
that has become more and more relevant in applied economic research with the
availability of highly detailed observational data on economic and social activities
(due to the digitization of many aspects of modern life): the plotting of geo-spatial
information on economic activity.

Allillustrations of concepts and visualization examples in this chapter build on the
Grammar of Graphics (Wilkinson et al., 2005) concept implemented in the ggplot2
package (Wickham, 2016). The choice of this plotting package/framework is moti-
vated by the large variety of plot-types covered in ggplot2 (ranging from simple scat-
terplots to hexbin-plots and geographic maps), as well as the flexibility to build and
modify plots step by step (an aspect that is particularly interesting when exploring
large datasets visually).

185
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11.1 Challenges of Big Data visualization

Generating a plot in an interactive R session means generating a new object in the
R environment (RAM), which can (in the case of large datasets) take up a consider-
able amount of memory. Moreover, depending on how the plot function is called,
RStudio will directly render the plot in the Plots tab (which again needs memory
and processing). Consider the following simple example, in which we plot two vec-
tors of random numbers against each other.!

# load package

library(ggplot2) # for plotting
library(pryr) # for profiling
library(bench) # for profiling
library(fs) # for profiling

# random numbers generation

X <= rnorm(1076, 5)

y <= 1 + 1.4xx + rnorm(1076)
plotdata <- data.frame(x=x, y)
object_size(plotdata)

## 16.00 MB

# generate scatter plot

splot <-
ggplot(plotdata, aes(x=x, y))+
geom_point()

object_size(splot)

## 16.84 MB

The plot object, not surprisingly, takes up an additional slice of RAM of the size
of the original dataset, plus some overhead. Now when we instruct ggplot to gen-
erate/plot the visualization on canvas, even more memory is needed. Moreover,
rather a lot of data processing is needed to place one million points on the canvas
(also, note that one million observations would not be considered a lot in the con-
text of this book...).

"We will use bench and the s package (Hester et al., 2023) for profiling.
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mem_used ()

## 2.26 GB

system.time(print(splot))

' ' ' ' '
0.0 25 5.0 75 10.0

## user system elapsed
## 2.583 0.710 3.306

mem_used ()

## 2.36 GB

First, to generate this one plot, an average modern laptop needs about 13.6 seconds.
This would not be very comfortable in an interactive session to explore the data
visually. Second, and even more striking, before the plot was generated, mem_used ()

indicated the total amount of memory (in MBs) used by R was around 160M B, while
right after plotting to the canvas, R had used around 270MB. Note that this is larger
than the dataset and the ggplot-object by an order of magnitude. Creating the same

plot based on 100 million observations would likely crash or freeze your R session.
Finally, when we output the plot to a file (for example, a pdf), the generated vector-
based graphic file is also rather large.

ggsave("splot.pdf", "pdf", 5, 5)
file_size("splot.pdf")
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## 54.8M

Hence generating plots visualizing large amounts of raw data tends to use up a lot
of computing time, memory, and (ultimately) storage space for the generated plot
file. There are a couple of solutions to address these performance issues.

Avoid fancy symbols (costly rendering) It turns out that one aspect of the problem
is the particular symbols/characters used in ggplot (and other plot functions in R)
for the points in such a scatter-plot. Thus, one solution is to override the default
set of characters directly when calling ggplot(). A reasonable choice of character
for this purpose is simply the full point (.).

# generate scatter plot
splot2 <-

gegplot(plotdata, aes(x=x, y))+

geom_point( )

mem_used ()

## 2.26 GB

system.time(print(splot2))

0.0 25 5.0 75 10.0

## user system elapsed
## 1.856 0.260 2.121
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mem_used ()

## 2.37 GB

The increase in memory due to the plot call is comparatively smaller, and plotting
is substantially faster.

Use rasterization (bitmap graphics) instead of vector graphics By default, most
datavisualization libraries, including ggplot2, are implemented to generate vector-
based graphics. Conceptually, this makes a lot of sense for any type of plot when
the number of observations plotted is small or moderate. In simple terms, vector-
based graphics define lines and shapes as vectors in a coordinate system. In the
case of a scatter-plot, the x and y coordinates of every point need to be recorded.
In contrast, bitmap files contain image information in the form of a matrix (or sev-
eral matrices if colors are involved), whereby each cell of the matrix represents a
pixel and contains information about the pixel’s color. While a vector-based repre-
sentation of plot of few observations is likely more memory-efficient than a high-
resolution bitmap representation of the same plot, it might well be the other way
around when we are plotting millions of observations.

Thus, an alternative solution to save time and memory is to directly use a bitmap
format instead of a vector-based format. This could be done by plotting directly to
a bitmap-format file and then opening the file to look at the plot. However, this
is somewhat clumsy as part of a data visualization workflow to explore the data.
Luckily there is a ready-made solution by Kratochvil et al. (2020) that builds on the
idea of rasterizing scatter-plots, but that then displays the bitmap image directly
in R. The approach is implemented in the scattermore package (Kratochvil, 2022)
and can straightforwardly be used in combination with ggptot.

# install.packages("scattermore')
library(scattermore)
# generate scatter plot
splot3 <-
ggplot()+
geom_scattermore (aes(x=x, y), plotdata)

# show plot in interactive session

system.time(print(splot3))
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00 25 50 75 100

## user system elapsed

## 0.678 0.020 0.705

# plot to file
ggsave("splot3.pdf", "pdf", 5, 5)
file_size("splot3.pdf")

## 13.2K

This approach is faster by an order of magnitude, and the resulting pdf takes up
only a fraction of the storage space needed for sptlot.pdf, which is based on the
classical geom_points() and a vector-based image.

Use aggregates instead of raw data Depending on what pattern/aspect of the data
you want to inspect visually, you might not actually need to plot all observations di-
rectly but rather the result of aggregating the observations first. There are several
options to do this, but in the context of scatter plots based on many observations,
a two-dimensional bin plot can be a good starting point. The idea behind this ap-
proach is to divide the canvas into grid-cells (typically in the form of rectangles
or hexagons), compute for each grid cell the number of observations/points that
would fall into it (in a scatter plot), and then indicate the number of observations
per grid cell via the cell's shading. Such a 2D bin plot of the same data as above can
be generated via geom_hex():

# generate scatter plot

splot4 <-


https://www.splot.pdf
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ggplot(plotdata, aes(x=x, y))+

geom_hex ()

mem_used ()

## 2.26 GB

system.time(print(splot4))

count

20000
15000
10000
5000

00 25 50 75 100

##t user system elapsed
## 0.471 0.001 0.494

mem_used ()

## 2.27 GB

Obviously, this approach is much faster and uses up much less memory than the
geom_point() approach. Moreover, note that this approach to visualizing a poten-
tial relation between two variables based on many observations might even have
another advantage over the approaches taken above. In all of the scatter plots, it
was not visible whether the point cloud contains areas with substantially more ob-
servations (more density). There were simply too many points plotted over each
other to recognize much more than the contour of the overall point cloud. With the
2D bin plot implemented with geom_hex (), we recognize immediately that there are
many more observations located in the center of the cloud than further away from
the center.
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11.2 Data exploration with ggplot2

In this tutorial we will work with the TLC data used in the data aggregation session.
The raw data consists of several monthly CSV files and can be downloaded via the
TLC’s website?. Again, we work only with the first million observations.

In order to better understand the large dataset at hand (particularly regarding the
determinants of tips paid), we use ggplot2 to visualize some key aspects of the data.

First, let’s look at the raw relationship between fare paid and the tip paid. We set
up the canvas with ggplot.

# load packages
library(ggplot2)

# set up the canvas
taxiplot <- ggplot(taxi, aes(y=Tip_Amt, Fare_Amt))

taxiplot

100-

75-

Tip_Amt
3

25-

0 50 100 150 200
Fare_Amt

Now we visualize the co-distribution of the two variables with a simple scatter-plot.
to speed things up, we use geon_scattermore () but increase the point size.?

Zhttps://wwwl.nyc.gov/site/tlc/about/tlc- trip-record-data.page
3*Note how the points look less nice than what geom_point () would produce. This is the disadvan-
tage of using the bitmap approach rather than the vector-based approach.


https://www1.nyc.gov
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# simple x/y plot

taxiplot + geom_scattermore( 3)
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Note that this took quite a while, as R had to literally plot one million dots on the
canvas. Moreover, many dots fall within the same area, making it impossible to rec-
ognize how much mass there actually is. This is typical for visualization exercises
with large datasets. One way to improve this is by making the dots more transpar-

ent by setting the alpha parameter.

# simple x/y plot

taxiplot + geom_scattermore( 3,
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Alternatively, we can compute two-dimensional bins. Here, we use geom_bin2d()
(an alternative to geom_hex used above) in which the canvas is split into rectangles
and the number of observations falling into each respective rectangle is computed.
The visualization is then based on plotting the rectangles with counts greater than
0, and the shading of the rectangles indicates the count values.

# two-dimensional bins

taxiplot + geom_bin2d()
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Alarge proportion of the tip/fare observations seem to be in the very lower-left cor-
ner of the pane, while most other trips seem to be evenly distributed. However,
we fail to see smaller differences in this visualization. In order to reduce the dom-
inance of the 2D bins with very high counts, we display the natural logarithm of
counts and display the bins as points.

# two-dimensional bins
taxiplot +
stat_bin_2d( "point",
aes( log(after_stat(count)))) +

guides ( "none")
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We note that there are many cases with very low fare amounts, many cases with no
or hardly any tip, and quite a lot of cases with very high tip amounts (in relation to
the rather low fare amount). In the following, we dissect this picture by having a
closer look at ‘typical’ tip amounts and whether they differ by type of payment.

# compute frequency of per tip amount and payment method
taxi[, n_same_tip:= .N, by= c("Tip_Amt'", "Payment_Type")]
frequencies <- unique(taxi[Payment_Type %in% c('credit", '"cash"),

c("n_same_tip",

"Tip_Amt",
"Payment_Type")][order (n_same_tip,
TRUE) 1)
# plot top 20 frequent tip amounts
fare <- ggplot( frequencies[1:20], aes( factor (Tip_Amt),

n_same_tip))

fare + geom_bar( "identity")
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Indeed, paying no tip at all is quite frequent, overall.* The bar plot also indicates
that there seem to be some ‘focal points’ in the amount of tip paid. Clearly, paying
one USD or two USD is more common than paying fractions. However, fractions
of dollars might be more likely if tips are paid in cash and customers simply add
some loose change to the fare amount paid.

fare + geom_bar(stat = "didentity") +

facet_wrap("Payment_Type'")
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factor(Tip_Amt)

Clearly, it looks as if trips paid in cash tend not to be tipped (at least in this sub-
sample).

*Or, could there be another explanation for this pattern in the data?
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Let’s try to tease this information out of the initial points plot. Trips paid in cash
are often not tipped; we thus should indicate the payment method. Moreover, tips
paid in full dollar amounts might indicate a habit.

# indicate natural numbers

taxi[, dollar_paid := ifelse(Tip_Amt == round(Tip_Amt,0), "Full", "Fraction"),]

# extended x/y plot
taxiplot +
geom_scattermore( 3, 0.2, aes( Payment_Type)) +

facet_wrap("dollar_paid") +

theme ( "bottom")
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Now the picture is getting clearer. Paying a tip seems to follow certain rules of
thumb. Certain fixed amounts tend to be paid independent of the fare amount (vis-
ible in the straight lines of dots on the right-hand panel). At the same time, the pat-
tern in the left panel indicates another habit: computing the amount of the tip as a
linear function of the total fare amount (‘pay 10% tip). A third habit might be to de-
termine the amount of tip by ‘rounding up’ the total amount paid. In the following,
we try to tease the latter out, only focusing on credit card payments.

taxi[, rounded_up := ifelse(Fare_Amt + Tip_Amt == round(Fare_Amt + Tip_Amt, 0),
"Rounded up",
"Not rounded")]

# extended x/y plot

taxiplot +
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geom_scattermore(data= taxi[Payment_Type == "credit"],

pointsize = 3, alpha=0.2, aes(color=rounded_up)) +
facet_wrap('"dollar_paid") +
theme (legend.position="bottom")
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rounded_up Not rounded Rounded up

Now we can start modeling. A reasonable first shot is to model the tip amount as
a linear function of the fare amount, conditional on no-zero tip amounts paid as
fractions of a dollar.

modelplot <- ggplot(data= taxi[Payment_Type == "credit" &
dollar_paid == "Fraction" &
0 < Tip_Amt],
aes(x = Fare_Amt, vy = Tip_Amt))
modelplot +
geom_scattermore(pointsize = 3, alpha=0.2, color="darkgreen") +
geom_smooth(method = "1m", colour = "black") +

theme (legend.position="bottom")
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Finally, we prepare the plot for reporting. ggplot2 provides several predefined
‘themes’ for plots that define all kinds of aspects of a plot (background color, line
colors, font size, etc.). The easiest way to tweak the design of your final plotin a cer-
tain direction is to just add such a pre-defined theme at the end of your plot. Some
of the pre-defined themes allow you to change a few aspects, such as the font type
and the base size of all the texts in the plot (labels, tick numbers, etc.). Here, we use
the theme_bw(), increase the font size, and switch to a serif-type font. theme_bw() is
one of the complete themes that ships with the basic ggplot2 installation.” Many
more themes can be found in additional R packages (see, for example, the ggthemes
package®).

modelplot <- ggplot(data= taxi[Payment_Type == "credit"
& dollar_paid == "Fraction"
& 0 < Tip_Amt],
aes(x = Fare_Amt, vy = Tip_Amt))
modelplot +
geom_scattermore(pointsize = 3, alpha=0.2, color="darkgreen") +
geom_smooth(method = "1m", colour = "black") +
ylab("Amount of tip paid (in USD)") +
xlab("Amount of fare paid (in USD)") +

theme_bw(base_size = 18, base_family = "serif")

>See the ggplot2 documentation (https://ggplot2.tidyverse.org/reference/ggtheme.html) for a
list of all pre-defined themes shipped with the basic installation.
¢https://cran.r-project.org/web/packages/ggthemes/index.html
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Aside: modify and create themes
Simple modifications of themes
Apart from using pre-defined themes as illustrated above, we can use the
theme () function to further modify the design of a plot. For example, we
can print the axis labels (‘axis titles’) in bold.

modelplot <- ggplot( taxi[Payment_Type == "credit"
& dollar_paid == "Fraction"
& 0 < Tip_Amt],
aes( Fare_Amt, Tip_Amt))
modelplot +
geom_scattermore( 3, 0.2, "darkgreen") +
geom_smooth ( "lm", "black") +

ylab("Amount of tip paid (in USD)") +
xlab("Amount of fare paid (in USD)") +

theme_bw ( 18, "serif") +
theme ( element_text( "bold"))
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There is a large list of plot design aspects that can be modified in this way
(see 2theme () for details).
Create your own themes
Extensive design modifications via theme () can involve many lines of code,
making your plot code harder to read/understand. In practice, you might
want to define your specific theme once and then apply this theme to all
of your plots. In order to do so it makes sense to choose one of the exist-
ing themes as a basis and then modify its design aspects until you have the
design you are looking for. Following the design choices in the examples
above, we can create our own theme_my_serif() as follows.

# 'define' a new theme

theme_my_serif <-

theme_bw ( 18, "serif") +
theme ( element_text( "bold"))
# apply it
modelplot +
geom_scattermore( 3, 0.2, "darkgreen") +
geom_smooth ( "lm", "black") +

ylab("Amount of tip paid (in USD)") +
xlab("Amount of fare paid (in USD)") +

theme_my_serif
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This practical approach does not require you to define every aspect of a
theme. If you indeed want to completely define every aspect of a theme,
you can set complete=TRUE When calling the theme function.

# 'define' a new theme

my_serif_theme <-

theme_bw ( 18, "serif") +
theme ( element_text( "bold"), TRUE)
# apply it
modelplot +
geom_scattermore( B 0.2, "darkgreen") +
geom_smooth ( "tm", "black") +

ylab("Amount of tip paid (in USD)") +
xlab("Amount of fare paid (in USD)") +

theme_my_serif
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Note that since we have only defined one aspect (bold axis titles), the rest of
the elements follow the default theme.
Implementing actual themes as functions
Importantly, the approach outlined above does not technically really create
anew theme like theme_bw(), as these pre-defined themes are implemented
as functions. Note that we add the new theme to the plot simply with +
theme_my_serif (no parentheses). In practice this is the simplest approach,
and it provides all the functionality you need in order to apply your own
‘theme’ to each of your plots. If you want to implement a theme as a func-
tion, the following blueprint can get you started.
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( )

# define own theme
theme_my_serif <-
function( 15,
"
base_size/170,
base_size/170){
# use theme_bw() as a basis but replace some design elements
theme_bw/( base_size,
base_family,
base_size/170,

base_size/170) %+replace%

theme (
element_text( "bold")
)
}

# apply the theme

modelplot +
geom_scattermore( 3y ®.2, "darkgreen") +
geom_smooth ( "tm", "black") +

ylab("Amount of tip paid (in USD)") +
xlab("Amount of fare paid (in USD)") +

theme_my_serif( 18, "serif")

11.3 Visualizing time and space

The previous visualization exercises were focused on visually exploring patterns
in the tipping behavior of people taking a NYC yellow cab ride. Based on the same
dataset, we will explore the time and spatial dimensions of the TLC Yellow Cab data.
That is, we explore where trips tend to start and end, depending on the time of the
day.

11.3.1 Preparations

For the visualization of spatial data, we first load additional packages that give R
some GIS features.
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# load GIS packages
library(rgdal)
library(rgeos)

Moreover, we download and import a so-called ‘shape file” (a geospatial data for-
mat) of New York City. This will be the basis for our visualization of the spatial di-
mension of taxi trips. The file is downloaded from New York’s Department of City
Planning® and indicates the city’s community district borders.’

# download the zipped shapefile to a temporary file; unzip

BASE_URL <-
"https://wwwl.nyc.gov/assets/planning/download/zip/data-maps/open-data/"
FILE <- "nycd_19a.zip"

URL <- paste®(BASE_URL, FILE)

tmp_file <- tempfile()

download. file(URL, tmp_file)

file_path <- unzip(tmp_file, exdir= "data")

# delete the temporary file

unlink(tmp_file)

Now we can import the shape file and have a look at how the GIS data is structured.

# read GIS data
nyc_map <- readOGR(file_path[1], verbose = FALSE)
# have a look at the GIS data

summary (nyc_map)

## Object of class SpatialPolygonsDataFrame

## Coordinates:

## min max

## x 913175 1067383

## y 120122 272844

## Is projected: TRUE

## proj4string :

## [+proj=lcc +lat_0=40.1666666666667 +lon_0=-74
## +1lat_1=41.0333333333333 +lat_2=40.6666666666667

"https://en.wikipedia.org/wiki/Shapefile

8https://wwwl.nyc.gov/site/planning/index.page

°Similar files are provided online by most city authorities in developed countries. See, for ex-
ample, GIS Data for the City and Canton of Zurich: https://maps.zh.ch/.


https://en.wikipedia.org
https://www1.nyc.gov
https://maps.zh.ch
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## +x_0=300000 +y_0=0 +datum=NAD83 +units=us-ft
## +no_defs]
## Data attributes:

#i BoroCD Shape_Leng Shape_Area

## Min. :101 Min. 1 23963 Min. 12.43e+07
## 1st Qu.:206 1st Qu.: 36611 1st Qu.:4.84e+07
## Median :308 Median : 52246 Median :8.27e+07
## Mean 1297 Mean © 74890 Mean :1.19e+08
## 3rd Qu.:406 3rd Qu.: 85711 3rd Qu.:1.37e+08
## Max. :595 Max. 1270660 Max. 5.99e+08

Note that the coordinates are not in the usuallongitude and latitude units. The orig-
inal map uses a different projection than the TLC data of taxi trip records. Before
plotting, we thus have to change the projection to be in line with the TLC data.

# transform the projection

p <- CRS("+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0")
nyc_map <- spTransform(nyc_map, p)

# check result

summary (nyc_map)

## Object of class SpatialPolygonsDataFrame

## Coordinates:

## min max

## x -74.26 -73.70

## y 40.50 40.92

## Is projected: FALSE

## projdstring : [+proj=longlat +datum=WGS84 +no_defs]
## Data attributes:

## BoroCD Shape_Leng Shape_Area

## Min. :101 Min. : 23963 Min. :2.43e+07
## 1st Qu.:206 1st Qu.: 36611 1st Qu.:4.84e+07
## Median :308 Median : 52246 Median :8.27e+07
## Mean 1297 Mean © 74890 Mean :1.19e+08
## 3rd Qu.:406 3rd Qu.: 85711 3rd Qu.:1.37e+08
## Max. :595 Max. :270660 Max. 5.99e+08

One last preparatory step is to convert the map data to a data. frame for plotting
with ggplot.

nyc_map <- fortify(nyc_map)
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11.3.2 Pick-up and drop-offlocations

Since trips might actually start or end outside of NYC, we first restrict the sample
of trips to those within the boundary box of the map. For the sake of the exercise,
we only select a random sample of seece trips from the remaining trip records.

# taxi trips plot data

taxi_trips <- taxi[Start_Lon <= max(nyc_mapS$long) &
Start_Lon >= min(nyc_mapS$long) &
End_Lon <= max(nyc_mapSlong) &
End_Lon >= min(nyc_mapS$long) &
Start_Lat <= max(nyc_map$lat) &
Start_Lat >= min(nyc_mapS$lat) &
End_Lat <= max(nyc_maps$lat) &
End_Lat >= min(nyc_maps$lat)
]

taxi_trips <- taxi_trips[base::sample(l:nrow(taxi_trips), 50000)]

In order to visualize how the cab traffic is changing over the course of the day, we
add an additional variable called start_time in which we store the time (hour) of
the day a trip started.

taxi_trips$start_time <- lubridate::hour(taxi_trips$Trip_Pickup_DateTime)

Particularly, we want to look at differences between morning, afternoon, and
evening/night.

# define new variable for facets
taxi_trips$time_of_day <- "Morning"
taxi_trips[start_time > 12 & start_time < 17]$time_of_day <- "Afternoon"
taxi_trips[start_time %in% c(17:24, 0:5)]stime_of_day <- "Evening/Night"
taxi_tripsStime_of_day <-
factor (taxi_trips$time_of_day,
c("Morning", "Afternoon", "Evening/Night"))

We create the plot by first setting up the canvas with our taxi trip data. Then, we
add the map as a first layer.

# set up the canvas
locations <- ggplot(taxi_trips, aes(x=long, lat))
# add the map geometry
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locations <- locations + geom_map( nyc_map,
nyc_map,
aes( id))
locations

40.9-
408 -
I 40.7-
40.6-
405-
742 741 740 739 738 737
long

Now we can start adding the pick-up and drop-oft locations of cab trips.

# add pick-up locations to plot
locations +
geom_scattermore(aes(x=Start_Lon, Start_Lat),
"orange",
1,
0.2)
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As is to be expected, most of the trips start in Manhattan. Now let’s look at where
trips end.

# add drop-off locations to plot
locations +
geom_scattermore (aes(x=End_Lon, End_Lat),
"steelblue",
1,
0.2) +
geom_scattermore(aes(x=Start_Lon, Start_Lat),
"orange",
1,
0.2)
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In fact, more trips tend to end outside of Manhattan. And the destinations seem
to be broader spread across the city then the pick-up locations. Most destinations
are still in Manhattan, though.

Now let’s have a look at how this picture changes depending on the time of the day.

# pick-up locations
locations +
geom_scattermore (aes(x=Start_Lon, Start_Lat),
"orange",
1,
0.2) +

facet_wrap(vars(time_of_day))

Morning Afternoon Evening/Night

409-
408-
T 407-

40.6 -

-7élt.2 -7:1.1 -7:1.0 -71’3.9 -7(‘3.8 -7‘3.7 -7:1.2 -721.1 -7élt.0 -7(‘3.9 -7é.8 -7é.7 -7élt.2 -7:1.1 -7:1.0 -7(’3.9 -7é.8 -7(‘3.7
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# drop-off locations
locations +
geom_scattermore(aes(x=End_Lon, End_Lat),
"steelblue",
1,
0.2) +

facet_wrap(vars(time_of_day))

Morning Afternoon Evening/Night

40.9-
40.8-

T 407-

406-

405-

III"’ ’“J;th
742 741

-7:1.2 -7:1.1 -7:1.0 -7é.9 -7‘3.8 -7:”).7 -7:1.2 -71I$.1 -7:1.0 -7:7,.9 -7(‘%.8 -7‘3.7 -7:1.0 -7é.9 -7‘3.8 -7:7,.7

long

Alternatively, we can plot the hours on a continuous scale.

# drop-off locations

locations +

geom_scattermore(aes(x=End_Lon, End_Lat, start_time),
1,
0.2) +
scale_colour_gradient2( "red", "yellow", "red",

12)
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Aside: change color schemes
In the example above we use scale_colour_gradient2() to modify the color
gradient used to visualize the start time of taxi trips. By default, ggplot
would plot the following (default gradient color setting):

# drop-off locations
locations +
geom_scattermore(aes(x=End_Lon, End_Lat, start_time ),
1,
0.2)
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geplot2 offers various functions to modify the color scales used in a plot. In

the case of the example above, we visualize values of a continuous variable.

Hence we use a gradient color scale. In the case of categorical variables, we
need to modify the default discrete color scale.

Recall the plot illustrating tipping behavior, where we highlight in which
observations the client paid with credit card, cash, etc.

# indicate natural numbers
taxi[, dollar_paid := ifelse(Tip_Amt == round(Tip_Amt,0),
"Full",
"Fraction"),]
# extended x/y plot
taxiplot +
geom_scattermore( ®-2
3,
aes( Payment_Type)) +
facet_wrap("dollar_paid") +
theme ( "bottom")
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Since we do not further specify the discrete color scheme to be used, ggplot

simply uses its default color scheme for this plot. We can change this as
follows.

# indicate natural numbers
taxi[, dollar_paid := ifelse(Tip_Amt == round(Tip_Amt,0),
"Full",
"Fraction"),]
# extended x/y plot
taxiplot +
geom_scattermore( ©®©.2 S
aes ( Payment_Type)) +
facet_wrap("dollar_paid") +
scale_color_discrete( c("red",
"steelblue",
"orange",
"purple")) +
theme ( "bottom'")
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11.4 Wrapping up

ggplot offers a unified approach to generating a variety of plots common in the
Big Data context: heatmaps, GIS-like maps, density plots, 2D-bin plots, etc.
Building on the concept of the Grammar of Graphics (Wilkinson et al., 2005),
ggplot2 follows the paradigm of creating plots layer-by-layer, which offers great
flexibility regarding the visualization of complex (big) data.

Standard plotting facilities in R (including in ggplot) are based on the concept of
vector images (where each dot, line, and area is defined as in a coordinate sys-
tem). While vector images have the advantage of flexible scaling (no reliance on
a specific resolution), when plotting many observations, the computational load
to generate and store/hold such graphics in memory can be substantial.

Plotting of large amounts of data can be made more efficient by relying on less
complex shapes (e.g., for dots in a scatter-plot) or through rasterization and con-
version of the plot into a bitmap-image (a raster-based image). In contrast to vector
images, raster images are created with a specific resolution that defines the size
of a matrix of pixels that constitutes the image. If plotting a scatter-plot based
on many observations, this data structure is much more memory-efficient than
defining each dot in a vector image.

Specific types of plots, such as hex-bin plots and other 2D-bin plots, facilitate
plotting large amounts of data independent of the type of image (vector or raster).
Moreover, they can be useful to show/highlight specific patterns in large amounts
of data that could not be seen in standard scatter plots.
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Introduction

“There has also been an intellectual convergence across fields—machine learning and
computer science, modern computational and Bayesian statistics, and data-driven
social sciences and economics—that has raised the breadth and quality of applied
analysis elsewhere. The machine learners have taught us how to automate and scale,
the economists bring tools for causal and structural modeling, and the statisticians
make sure that everyone remembers to keep track of uncertainty.” (Taddy, 2019, p.ix)

Far from being a comprehensive overview of Big Data Analytics applications in ap-
plied econometrics, the goal of this part of the book is to connect the conceptual
and practical material covered thus far with analytics settings and point you to po-
tentially interesting approaches and tools that may be useful in your specific field
of applying Big Data Analytics. While all of the examples, case studies, and tutori-
als presented in this part are in the context of economic research or business an-
alytics, the approaches and tools discussed are often easily transferable to other
domains of applying Big Data Analytics.

First, Chapter 12 presents a few brief case studies pointing to a small exemplary
selection of common bottlenecks in everyday data analytics tasks, such as the esti-
mation of fixed effects models. The purpose of this chapter is to review some of the
key concepts discussed in the previous two parts, whereby each of the case studies
refers to some of the previously discussed perspectives on/approaches to Big Data:
realizing why an analytics task is a burden for the available resources and consider-
ing an alternative statistical procedure, writing efficient R code for simple compu-
tations, and scaling up the computing resources. You can easily skip this chapter
if you are already well familiar with the topics covered in the previous parts. Chap-
ters 13-15 cover specific topic domains in the realm of applied Big Data Analytics
that are common in modern econometrics: training machine learning models in
predictive econometrics using GPUs (Chapter 13), estimating linear and general-
ized linear models (e.g., classification models) with large scale datasets (Chapter
14), and performing large-scale text analysis (Chapter 15).
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12

Bottlenecks in Everyday Data Analytics Tasks

This chapter presents three examples of how the lessons from the previous chap-
ters could be applied in everyday data analytics tasks. The first section focuses on
the statistics perspective: compute something in a different way (with a different
algorithm) but end up with essentially the same result. It is also an illustration
of how diverse the already implemented solutions for working with large data in
applied econometrics in the R-universe are, and how it makes sense to first look
into a more efficient algorithm/statistical procedure than directly use specialized
packages such as bigmemory or even scale up in the cloud. The second section is a re-
minder (in an extremely simple setting) of how we can use R more efficiently when
taking basic R characteristics into consideration. It is an example and detailed il-
lustration of how adapting a few simple coding habits with basic R can substan-
tially improve the efficiency of your code for larger workloads. Finally, the third
section in this chapter re-visits the topics of scaling up both locally and in the cloud.

12.1 Case study: Efficient fixed effects estimation

In this case study we look into a very common computational problem in applied
econometrics: estimation of a fixed effects model with various fixed-effects units
(i.e., many intercepts). The aim of this case study is to give an illustration of how
a specific statistical procedure can help us reduce the computational burden sub-
stantially (here, by reducing the number of columns in the model matrix and there-
fore the burden of computing the inverse of a huge model matrix). The context of
this tutorial builds on a study called “Friends in High Places™ by Cohen and Mal-
loy (2014). Cohen and Malloy show that US Senators who are alumni of the same
university/college tend to help each other out in votes on industrial policies if the
corresponding policy is highly relevant for the state of one senator but not relevant
for the state of the other senator. The data is provided along with the published arti-
cle and can be accessed here: http://doi.org/10.3886/E114873V1. The data (and code)
is provided in STATA format. We can import the main dataset with the foreign

Thttps://www.aeaweb.org/articles?id=10.1257/pol.6.3.63
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package (R Core Team, 2022). For data handling we load the data.table package
and for hypotheses tests we load the intest package (Zeileis and Hothorn, 2002).

# SET UP s——————c=osos=====
# load packages
library(foreign)
library(data.table)
library(lmtest)

# fix vars

DATA_PATH <- "data/data_for_tables.dta"

# import data

cm <- as.data.table(read.dta(DATA_PATH))

# keep only clean obs

cm <- cm[!(is.na(yes)
|is.na(pctsumyessameparty)
|is.na(pctsumyessameschool)

|is.na(pctsumyessamestate)) ]

As part of this case study, we will replicate parts of Table 3 of the main article (p. 73).
Specifically, we will estimate specifications (1) and (2). In both specifications, the
dependentvariable is an indicator yes thatis equal to1if the corresponding senator
voted Yes on the given bill and 0 otherwise. The main explanatory variables of inter-
est are pctsumyessameschool (the percentage of senators from the same school as the
corresponding senator who voted Yes on the given bill), pctsumyessamestate (the per-
centage of senators from the same state as the corresponding senator who voted
Yes on the given bill), and pctsumyessameparty (the percentage of senators from the
same party as the corresponding senator who voted Yes on the given bill). Speci-
fication 1 accounts for congress (time) fixed effects and senator (individual) fixed
effects, and specification 2 accounts for congress-session-vote fixed effects and
senator fixed effects.

First, let us look at a very simple example to highlight where the computational
burden in the estimation of such specifications is coming from. In terms of the
regression model 1, the fixed effect specification means that we introduce an in-
dicator variable (an intercept) for N — 1 senators and M — 1 congresses. That is,
the simple model matrix (X) without accounting for fixed effects has dimensions
425653 x 4.

# pooled model (no FE)

model® <- yes ~
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pctsumyessameschool +
pctsumyessamestate +

pctsumyessameparty

dim(model.matrix(model@, cm))

## [1] 425653 4

In contrast, the model matrix of specification (1) is of dimensions 425653 x 221,
and the model matrix of specification (2) even of 425653 x 6929.

modell <-
yes ~ pctsumyessameschool +
pctsumyessamestate +
pctsumyessameparty +
factor (congress) +
factor(id) -1
mml <- model.matrix(modell, cm)

dim(mml)

## [1] 425653 168

Using OLS to estimate such a model thus involves the computation of a very large
matrix inversion (because 35, ¢ = (X'X) !X 'y). In addition, the model matrix
for specification 2 is about 22GB, which might further slow down the computer
due to a lack of physical memory or even crash the R session altogether.

In order to set a point of reference, we first estimate specification (1) with standard
OLS.

# fit specification (1)
runtime <- system.time(fitl <- Tm( cm, modell))
coeftest(fitl)[2:4,]

##t Estimate Std. Error t value
## pctsumyessamestate 0.11861 0.001085 109.275
## pctsumyessameparty 0.92640 0.001397 662.910
## factor(congress)10l1 -0.01458 0.006429 -2.269
## Pr(>|t])
## pctsumyessamestate 0.0000
## pctsumyessameparty 0.0000
## factor(congress)101 0.0233
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# median amount of time needed for estimation

runtime[3]

## elapsed
## 6.678

As expected, this takes quite some time to compute. However, there is an alter-
native approach to estimating such models that substantially reduces the compu-
tational burden by “sweeping out the fixed effects dummies”. In the simple case
of only one fixed effect variable (e.g., only individual fixed effects), the trick is
called “within transformation” or “demeaning” and is quite simple to implement.
For each of the categories in the fixed effect variable, compute the mean of the co-
variate and subtract the mean from the covariate’s value.

# illustration of within transformation for the senator fixed effects
cm_within <-
with(cm, data.table( yes - ave(yes, id),
pctsumyessameschool -
ave (pctsumyessameschool, -id),
pctsumyessamestate -
ave(pctsumyessamestate, id),
pctsumyessameparty -

ave(pctsumyessameparty, id)

))

# comparison of dummy fixed effects estimator and within estimator
dummy_time <- system.time(fit_dummy <-
lm(yes ~ pctsumyessameschool +
pctsumyessamestate +
pctsumyessameparty +
factor(id) -1, cm
)
within_time <- system.time(fit_within <-
Im(yes ~ pctsumyessameschool +
pctsumyessamestate +
pctsumyessameparty -1,
cm_within))
# computation time comparison

as.numeric(within_time[3])/as.numeric(dummy_time[3])

## [1] 0.008582
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# comparison of estimates
coeftest(fit_dummy)[1:3,]

##
##
##
##
##
##
##
##

Estimate

pctsumyessameschool 0.04424
pctsumyessamestate 0.11864
pctsumyessameparty 0.92615
Pr>|t

pctsumyessameschool 1.205e-2
pctsumyessamestate 0.000e+

pctsumyessameparty 0.000e+

coeftest(fit_within)

##
##
##
##
##
##
##
##
##
##
##
##
##
##

t test of coefficients:

Estimate
pctsumyessameschool 0.04424
pctsumyessamestate 0.11864

pctsumyessameparty 0.92615

Pr(>|t])
pctsumyessameschool <2e-16
pctsumyessamestate <2e-16
pctsumyessameparty <2e-16
Signif. codes:

0 "xxx' 0.001 'xx' 0.01 "'

Std. Error t value
0.001352 32.73
0.001085 109.30
0.001397 662.93

1

34
00
00

Std. Error t value
0.00135 32.7
0.00109 109.3
0.00140 663.0

* Kk

* Kk Kk

)k Kk

0.05 '." 0.1 ' "1

Unfortunately, we cannot simply apply the same procedure in a specification with
several fixed effects variables. However, Gaure (2013b) provides a generalization
of the linear within-estimator to several fixed effects variables. This method is
implemented in the 1fe package (Gaure, 2013a). With this package, we can eas-
ily estimate both fixed-effect specifications (as well as the corresponding cluster-
robust standard errors) in order to replicate the original results by Cohen and Mal-
loy (2014).

library(1lfe)

# model and clustered SE specifications

modell <- yes ~ pctsumyessameschool +
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pctsumyessamestate +

pctsumyessameparty |congress+id|0]id
model2 <- yes ~ pctsumyessameschool +

pctsumyessamestate +

pctsumyessameparty |congress_session_votenumber+id|0|id

# estimation
fitl <- felm(modell, data=cm)
fit2 <- felm(model2, data=cm)

Finally we can display the regression table.

stargazer::stargazer(fitl,fit2,
type="text",
dep.var.labels = "Vote (yes/no)",
covariate.labels = c("School Connected Votes",
"State Votes",
"Party Votes"),
keep.stat = c("adj.rsq", "n"))

##

## ===================================================
H# Dependent variable:

## e
## Vote (yes/no)

## (1) (2)

## --—----——
## School Connected Votes 0.045% %% 0.052%%%

#i# (0.016) (0.016)

##

## State Votes 0.119%*x% 0.122%%x%

## (0.013) (0.012)

##

## Party Votes 0.926%*% 0.945% %%

## (0.022) (0.024)

##

## -
## Observations 425,653 425,653

## Adjusted R2 0.641 0.641

## ===================================================

## Note: *p<0.1; **p<0.05; ***p<0.01
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12.2 Case study: Loops, memory, and vectorization

We first read the economics dataset into R and extend it by duplicating its rows to
get a slightly larger dataset (this step can easily be adapted to create a very large
dataset).

# read dataset into R
economics <- read.csv("data/economics.csv')
# have a look at the data

head (economics, 2)

#it date pce pop psavert uempmed unemploy
## 1 1967-07-01 507.4 198712 12.5 4.5 2944
## 2 1967-08-01 510.5 198911 12.5 4.7 2945

# create a 'large' dataset out of this
for (i in 1:3) {

economics <- rbind(economics, economics)
}

dim(economics)

## [1] 4592 6

The goal of this code example is to compute real personal consumption expendi-
tures, assuming that pce in the economics dataset provides nominal personal con-
sumption expenditures. Thus, we divide each value in the vector pce by a deflator
1.05.

12.2.1 Naive approach (ignorant of R)

The first approach we take is based on a simple for loop. In each iteration one el-
ement in pce is divided by the deflator, and the resulting value is stored as a new
element in the vector pce_real.

# Naive approach (ignorant of R)
deflator <- 1.05 # define deflator
# iterate through each observation
pce_real <- c()

n_obs <- length(economicsS$pce)

for (i in 1:n_obs) {
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pce_real <- c(pce_real, economics$Spce[i]/deflator)

# look at the result
head(pce_real, 2)

## [1] 483.2 486.2

How long does it take?

# Naive approach (ignorant of R)
deflator <- 1.05 # define deflator
# iterate through each observation
pce_real <- list()
n_obs <- length(economicsS$pce)
time_elapsed <-

system.time(

for (i in 1:n_obs) {
pce_real <- c(pce_real, economics$pce[i]/deflator)

i)

time_elapsed

#it user system elapsed
## 0.105 0.004 0.110

Assuming a linear time algorithm (O(n)), we need that much time for one addi-

tional row of data:

time_per_row <- time_elapsed[3]/n_obs

time_per_row

#it elapsed
## 2.395e-05

If we are dealing with Big Data, say 100 million rows, that is

# in seconds

(time_per_rowx100/74)

## elapsed
#i 2395
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# in minutes

(time_per_rowx10074) /60

## elapsed
## 39.92

# in hours
(time_per_row*x10074) /602

## elapsed
## 0.6654

Can we improve this?

12.2.2 Improvement I: Pre-allocation of memory

In the naive approach taken above, each iteration of the loop causes R to re-allocate
memory because the number of elements in the vector pce_etlement is changing. In
simple terms, this means that R needs to execute more steps in each iteration. We
canimprove this with a simple trick by initiating the vector to the right size to begin
with (filled with na values).

# Improve memory allocation (still somewhat ignorant of R)
deflator <- 1.05 # define deflator
n_obs <- length(economicsS$pce)
# allocate memory beforehand
# Initialize the vector to the right size
pce_real <- rep(NA, n_obs)
# iterate through each observation
time_elapsed <-
system.time(
for (i in 1:n_obs) {
pce_real[i] <- economics$pce[i]/deflator

b
Let’s see if this helped to make the code faster.

time_per_row <- time_elapsed[3]/n_obs

time_per_row

#i elapsed
## 1.742e-06
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Again, we can extrapolate (approximately) the computation time, assuming the
dataset had millions of rows.

# 1n seconds

(time_per_rowx10074)

## elapsed
## 174.2

# 1n minutes

(time_per_rowx10074) /60

## elapsed
## 2.904

# in hours

(time_per_row*x10074) /602

## elapsed
## 0.04839

This looks much better, but we can do even better.

12.2.3 Improvement 2: Exploit vectorization

In this approach, we exploit the fact thatin R, ‘everything is a vector’ and that many
of the basic R functions (such as math operators) are vectorized. In simple terms,
this means that a vectorized operation is implemented in such a way that it can
take advantage of the similarity of each of the vector’s elements. That is, R only has
to figure out once how to apply a given function to a vector element in order to
apply it to all elements of the vector. In a simple loop, R has to go through the same
‘preparatory’ steps again and again in each iteration; this is time-intensive.

In this example, we specifically exploit that the division operator / is actually a vec-
torized function. Thus, the division by our deflator is applied to each element of

economicsS$pce.

# Do it 'the R way'

deflator <- 1.05 # define deflator
# Exploit R's vectorization
time_elapsed <-

system. time(
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pce_real <- economics$pce/deflator
)
# same result

head(pce_real, 2)

## [1] 483.2 486.2

Now this is much faster. In fact, system.time() is not precise enough to
capture the time elapsed. In order to measure the improvement, we use
microbenchmark: :microbenchmark() to measure the elapsed time in microseconds
(millionth of a second).

library(microbenchmark)
# measure elapsed time in microseconds (avg.)
time_elapsed <-
summary (microbenchmark(pce_real <- economics$pce/deflator))$mean
# per row (in sec)

time_per_row <- (time_elapsed/n_obs) /10”6

Now we get a more precise picture regarding the improvement due to vectoriza-
tion:

# in seconds

(time_per_rowx100/74)

## [1] 0.1687

# in minutes

(time_per_rowx10074) /60

## [1] 0.002811

# 1in hours

(time_per_rowx10074) /6072

## [1] 4.685e-05
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12.3 Case study: Bootstrapping and parallel processing

In this example, we estimate a simple regression model that aims to assess racial
discrimination in the context of police stops.? The example is based on the ‘Min-
neapolis Police Department 2017 Stop Dataset’, containing data on nearly all stops
made by the Minneapolis Police Department for the year 2017.

We start by importing the data into R.

url <-
"https://vincentarelbundock.github.io/Rdatasets/csv/carData/MplsStops.csv"
stopdata <- data.table::fread(url)

We specify a simple linear probability model that aims to test whether a person
identified as ‘white’ is less likely to have their vehicle searched when stopped by
the police. In order to take into account level differences between different police
precincts, we add precinct indicators to the regression specification.

First, let’s remove observations with missing entries (NA) and code our main ex-
planatory variable and the dependent variable.

# remove incomplete obs

stopdata <- na.omit(stopdata)

# code dependent var

stopdatasSvsearch <- 0
stopdatasvsearch[stopdatasvehicleSearch=="YES"] <- 1
# code explanatory var

stopdataswhite <- 0
stopdataswhite[stopdatasrace=="White"] <- 1

We specify our baseline model as follows.

model <- vsearch ~ white + factor(policePrecinct)

and estimate the linear probability model via OLS (the im function).

“Note that this example aims to illustrate a point about computation in an applied econometrics
context. It does not make any argument whatsoever about identification or the broader research
question.
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fit <- lm(model, stopdata)

summary (fit)

##

## Call:

## Im(formula = model, data = stopdata)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.1394 -0.0633 -0.0547 -0.0423 0.9773

##

## Coefficients:

#t Estimate Std. Error t value
## (Intercept) 0.05473 0.00515 10.62
## white -0.01955 0.00446 -4.38
## factor(policePrecinct)2 0.00856 0.00676 1.27
## factor(policePrecinct)3 0.00341 0.00648 0.53
## factor(policePrecinct)4 0.08464 0.00623 13.58
## factor(policePrecinct)5 -0.01246 0.00637 -1.96
#i#t Pr>|t])

## (Intercept) < 2e-16 **x

## white 1.2e-05 **x*

## factor(policePrecinct)2 0.21

## factor(policePrecinct)3 0.60

## factor(policePrecinct)4 < 2e-16 *xx

## factor(policePrecinct)5 0.05

## -——-

## Signif. codes:

## O 'x%x' 0.001 '4x' 0.01 'x' 0.05 '.' 0.1 ' "1

##t

## Residual standard error: 0.254 on 19078 degrees of freedom
## Multiple R-squared: 0.025, Adjusted R-squared: 0.0248

##

F-statistic: 97.9 on 5 and 19078 DF, p-value: <2e-16

A potential problem with this approach (and there might be many more in this sim-
ple example) is that observations stemming from different police precincts might
be correlated over time. If that is the case, we likely underestimate the coefficient’s
standard errors. There is a standard approach to computing estimates for so-called
cluster-robust standard errors, which would take the problem of correlation over
time within clusters into consideration (and deliver a more conservative estimate
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of the SEs). However, this approach only works well if the number of clusters in
the data is roughly 50 or more. Here we only have five.

The alternative approach is to compute bootstrapped clustered standard errors.
That is, we apply the bootstrap resampling procedure’ at the cluster level. Specifi-
cally, we draw B samples (with replacement), estimate and record the coefficient
vector for each bootstrap-sample, and then estimate SEj, based on the standard
deviation of all respective estimated coefficient values.

# load packages
library(data.table)
# set the 'seed' for random numbers (makes the example reproducible)

set.seed(2)

# set number of bootstrap iterations

B <- 10

# get selection of precincts

precincts <- unique(stopdata$policePrecinct)

# container for coefficients

boot_coefs <- matrix(NA, nrow = B, ncol = 2)

# draw bootstrap samples, estimate model for each sample
for (i in 1:B) {

# draw sample of precincts (cluster level)
precincts_i <- base::sample(precincts, size = 5, replace = TRUE)
# get observations
bs_i <-
lapply(precincts_i, function(x){
stopdata[stopdatasSpolicePrecinct==x, ]
1)
bs_i <= rbindlist(bs_d)

# estimate model and record coefficients
boot_coefs[i,] <- coef(lm(model, bs_i))[1:2] # ignore FE-coefficients
Finally, let'’s compute SE; ;.

se_boot <- apply(boot_coefs,
MARGIN = 2,

*https://en.wikipedia.org/wiki/Bootstrapping_(statistics)


https://en.wikipedia.org
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FUN = sd)

se_boot

## [1] 0.004043 0.004690

Note that even with a very small B, computing SE,_,, takes some time to com-
pute. When setting B to over 500, computation time will be substantial. Also note
that running this code hardly uses up more memory than the very simple approach
without bootstrapping (after all, in each bootstrap iteration the dataset used to es-
timate the model is approximately the same size as the original dataset). There is
little we can do to improve the script’s performance regarding memory. However,
we can tell R how to allocate CPU resources more efficiently to handle that many
regression estimates.

In particular, we can make use of the fact that most modern computing environ-
ments (such as a laptop) have CPUs with several cores. We can exploit this fact by
instructing the computer to run the computations in parallel (simultaneously com-
puting on several cores). The following code is a parallel implementation of our
bootstrap procedure that does exactly that.

# load packages for parallel processing
library (doSNOW)

# get the number of cores available
ncores <- parallel::detectCores()

# set cores for parallel processing
ctemp <- makeCluster(ncores) #

registerDoSNOW (ctemp)

# set number of bootstrap iterations

B <- 10

# get selection of precincts

precincts <- unique(stopdataSpolicePrecinct)
# container for coefficients

boot_coefs <- matrix(NA, nrow = B, ncol = 2)

# bootstrapping in parallel
boot_coefs <-
foreach(i = 1:B, .combine = rbind, .packages="data.table") %dopar% {
# draw sample of precincts (cluster level)

precincts_i <- base::sample(precincts, size = 5, replace = TRUE)
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# get observations
bs_i <- lapply(precincts_i, function(x) {
stopdata[stopdatas$policePrecinct==x, ]
)
bs_i <- rbindlist(bs_1)
# estimate model and record coefficients
coef(lm(model, bs_1i))[1:2] # ignore FE-coefficients
}
# be a good citizen and stop the snow clusters

stopCluster( ctemp)

As alast step, we again compute SE; ;.

se_boot <- apply(boot_coefs,
2,
sd)

se_boot

## (Intercept) white
#H# 0.001332 0.005642

12.3.1 Parallelization with an EC2 instance

This short tutorial illustrates how to scale up the computation of clustered stan-
dard errors shown above by running it on an AWS EC2 instance. Note that there
are a few things that we need to keep in mind to make the script run on an AWS
EC2 instance in RStudio Server. First, our EC2 instance is a Linux machine. When
running R on a Linux machine, there is an additional step to install R packages (at
least for most of the packages): R packages need to be compiled before they can be
installed. The command to install packages is exactly the same (install.packages()),
and normally you only notice a slight difference in the output shown in the R con-
sole during installation (and the installation process takes a little longer than you
are used to). Apart from that, using R via RStudio Server in the cloud looks/feels
very similar if not identical to when using R/RStudio locally. For this step of the
case study, first follow the instructions of how to set up an AWS EC2 instance with
R/RStudio Server in Chapter 7. Then, open a browser window, log in to RStudio
Server on the EC2 instance, and copy and paste the code below to a new R-file on
the EC2 instance (note that you might have to install the data. table and dosnow pack-
ages before running the code).

When executing the code below line-by-line, you will notice that essentially all
parts of the script work exactly as on your local machine. This is one of the great
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advantages of running R/RStudio Server in the cloud. You can implement your en-
tire data analysis locally (based on a small sample), test it locally, and then move it
to the cloud and run it at a larger scale in exactly the same way (even with the same
Graphical User Interface (GUI)).

# install packages
install.packages("data.table")
install.packages("doSNOW'")

# load packages
library(data.table)

# fetch the data

url <- "https://vincentarelbundock.github.io/Rdatasets/csv/carData/MplsStops.csv"
stopdata <- read.csv(url)

# remove incomplete obs

stopdata <- na.omit(stopdata)

# code dependent var

stopdatasSvsearch <- 0
stopdatas$vsearch[stopdatas$vehicleSearch == "YES"] <- 1
# code explanatory var

stopdataswhite <- 0

stopdataswhite[stopdatasrace == "White"] <- 1

# model fit
model <- vsearch ~ white + factor(policePrecinct)
fit <- lm(model, stopdata)
summary (fit)
# bootstrapping: normal approach set the 'seed' for random
# numbers (makes the example reproducible)
set.seed(2)
# set number of bootstrap iterations
B <- 50
# get selection of precincts
precincts <- unique(stopdatasSpolicePrecinct)
# container for coefficients
boot_coefs <- matrix(NA, nrow = B, ncol = 2)
# draw bootstrap samples, estimate model for each sample
for (i in 1:B) {
# draw sample of precincts (cluster level)
precincts_i <- base::sample(precincts, size = 5, replace = TRUE)

# get observations
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bs_i <- lapply(precincts_i, function(x) {
stopdata[stopdataspolicePrecinct == x, ]

)

bs_i <- rbindlist(bs_1i)

# estimate model and record coefficients

boot_coefs[i, ] <- coef(lm(model, bs_i))[1:2] # ignore FE-coefficients

se_boot <- apply(boot_coefs, 2 sd)

se_boot

So far, we have only demonstrated that the simple implementation (non-parallel)
works both locally and in the cloud. However, the real purpose of using an EC2
instance in this example is to make use of the fact that we can scale up our instance
to have more CPU cores available for the parallel implementation of our bootstrap
procedure. Recall that running the script below on our local machine will employ all
cores available to us and compute the bootstrap resampling in parallel on all these
cores. Exactly the same thing happens when running the code below on our simple
t2.micro instance. However, this type of EC2 instance only has one core. You can
check this when running the following line of code in RStudio Server (assuming
the dosnow package is installed and loaded): paraltel: :detectCores() .

When running the entire parallel implementation below, you will thus notice thatit
won't compute the bootstrap SE any faster than with the non-parallel version above.
However, by simply initiating another EC2 type with more cores, we can distribute
the workload across many CPU cores, using exactly the same R script.

# bootstrapping: parallel approaach

# install.packages ("doSNOW", "parallel")
# load packages for parallel processing
library (doSNOW)

# set cores for parallel processing
ncores <- parallel::detectCores()

ctemp <- makeCluster(ncores)
registerDoSNOW (ctemp)

# set number of bootstrap iterations

B <- 50

# get selection of precincts

precincts <- unique(stopdataSpolicePrecinct)
# container for coefficients

boot_coefs <- matrix(NA, B, 2)
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# bootstrapping in parallel
boot_coefs <-
foreach(i = 1:B, .combine = rbind, .packages="data.table") %dopar% {
# draw sample of precincts (cluster level)
precincts_i <- base::sample(precincts, size = 5, replace = TRUE)
# get observations
bs_i <- lapply(precincts_i, function(x){
stopdata[stopdatas$policePrecinct==x,])
}
bs_i <- rbindlist(bs_1)

# estimate model and record coefficients

coef(lm(model, bs_i))[1:2] # ignore FE-coefficients

# be a good citizen and stop the snow clusters
stopCluster(cl = ctemp)
# compute the bootstrapped standard errors
se_boot <- apply(boot_coefs,

MARGIN = 2,

FUN = sd)



Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com


https://taylorandfrancis.com

13

Econometrics with GPUs

GPUs have been used for a while in computational economics (see Aldrich (2014)
for an overview of early applications in economics). However, until recently most
of the work building on GPUs in economics has focused on solving economic mod-
els numerically (see, e.g., Aldrich et al. (2011)) and more broadly on Monte Carlo
simulation. In this chapter, we first look at very basic GPU computation with R be-
fore having a look at the nowadays most common application of GPUs in applied
econometrics, machine learning with neural networks.

13.1 OLS on GPUs

In a first simple tutorial, we have a look at how GPUs can be used to speed up basic
econometric functions, such as the implementation of the OLS estimator. To this
end, we will build on the gpur package introduced in Chapter 5. To keep the exam-
ple code simple, we follow the same basic set-up to implement and test our own
OLS estimator function as in Chapter 3. That is, we first generate a sample based
on (pseudo-)random numbers. To this end, we first define the sample size param-
eters n (the number of observations in our pseudo-sample) and p (the number of
variables describing each of these observations) and then initialize the dataset x.

set.seed(1)

# set parameter values

n <- 100000

p <-4

# generate a design matrix (~ our 'dataset')
# with p variables and n observations

X <= matrix(rnorm(nxp, mean = 10), ncol = p)
# add column for intercept

#X <- cbind(rep(1, n), X)

Following exactly the same code as in Chapter 3, we can now define what the real lin-
ear model that we have in mind looks like and compute the output y of this model,
given the input x.

241
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# MC model
y <= 1.5%X[,1] + 4xX[,2] - 3.5%X[,3] + 0.5*X[,4] + rnorm(n)

Now we re-implement our beta_ols function from Chapter 3 such that the OLS es-
timation is run on our local GPU. Recall that when computing on the GPU, we have
the choice between keeping the data objects that go into the computation in RAM,
or we can transfer the corresponding objects to GPU memory (which will further
speed up the GPU computation). In the implementation of our beta_ols_gpu, [ have
added a parameter that allows switching between these two approaches. While set-
ting gpu_memory=TRUE is likely faster, it might fail due to a lack of GPU memory (in
all common desktop and laptop computers, RAM will be substantially larger than
the GPU’s own memory). Hence, gpu_memory is set to FaLSE by default.

beta_ols_gpu <-
function(X, y, gpu_memory=FALSE) {
require(gpuR)

if (!gpu_memory) {
# point GPU to matrix (matrix stored in non-GPU memory)
vclX <- vclMatrix(X, type = "float")
vcly <- vclVector(y, type = "float")
# compute cross products and inverse
XXi <- solve(crossprod(vclX,vclX))
Xy <= crossprod(vclX, vcly)
} else {
# point GPU to matrix (matrix stored in non-GPU memory)
gpuX <- gpuMatrix(X, type = "float")
gpuy <- gpuVector(y, type = "float")
# compute cross products and inverse
XXi <- solve(crossprod(gpuX,gpuX))
Xy <- t(gpuX) %x% gpuy
}
beta_hat <- as.vector(XXi %x% Xy)

return(beta_hat)

Now we can verify whether the implemented GPU-run OLS estimator works as ex-
pected.
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beta_ols_gpu(X,y)

## [1] 1.5037 3.9997 -3.5036 0.5003

beta_ols_gpu(X,y, TRUE)

## [1] 1.5033 3.9991 -3.5029 0.5005

Note how the coefficient estimates are very close to the true values. We can rest
assured that our implementation of a GPU-based OLS estimator works fairly well.
Also note how simple the basic implementation of functions to compute matrix-
based operations on the GPU is through the gpur package.

13.2 Aword of caution

From just comparing the number of threads of a modern CPU with the number of
threads of a modern GPU, one might get the impression that parallelizable tasks
should always be implemented for GPU computing. However, whether one ap-
proach or the other is faster can depend a lot on the overall task and the data at
hand. Moreover, the parallel implementation of tasks can be done more or less well
on either system. Really efficient parallel implementation of tasks can take a lot of
coding time (particularly when done for GPUs).!

As it turns out, the GPU OLS implementation above is actually a good example of a
potential pitfall. While, as demonstrated in Chapter 4, matrix operations per se are
likely much faster on GPUs than CPUs, the simple beta_ols_gpu() function imple-
mented above involves more than the simple matrix operations. The model matrix
as well as the vector of the dependent variable first had to be prepared for these op-
erations (either a pointer for the GPU to the object in RAM had to be created or the
objects had to be transferred to GPU memory). Finally, the computed values need
to be transferred back to a normal R-object (at least if we want to make the out-
put consistent with our simple beta_ols() implementation from Chapter 3). All of
these steps create an additional overhead in terms of computing time.? Depending
on the problem athand, this overhead resulting from preparatory steps before run-
ning the actual computations on the GPU might be dwarfed by the efficiency gain
if the computing task is much more demanding then what is involved in OLS. The

For a more detailed discussion of the relevant factors for well-designed parallelization (either
on CPUs or GPUs), see Matloff (2015).

%You can easily verify this by comparing the performance of beta_ols() (the simple CPU-based
implementation) with the here implemented beta_ols_gpu() through the bench: :mark() function.
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section on TensorFlow/Keras below points to exactly such a setting, where GPUs
are typically much faster than CPUs.

13.3 Higher-level interfaces for basic econometrics with GPUs

The CRAN Task View on High-Performance and Parallel Computing with R? lists
several projects that provide easy-to-use interfaces to canned implementations of
regression and machine learning algorithms running on GPUs. For example, the
tfestimators package provides an R interface to use the TensorFlow Estimators
framework by Cheng et al. (2017). The package provides various canned estimators
to be run on GPUs (through TensorFlow).* Note, however, that this framework is
only compatible with TensorFlow version 1. As we will build on the latest version
of TensorFlow (version 2) in the following example (and as most applications now
build on version 2), we will not go into details of how to work with tfestimators.
However, there are excellent vignettes provided with the package that help you get
started.’

13.4 TensorFlow/Keras example: Predict housing prices

The most common application of GPUs in modern econometrics is machine learn-
ing, in particular deep learning (a type of machine learning based on artificial neu-
ral networks). Training deep learning models can be very computationally inten-
sive and to a great extent depends on tensor (matrix) multiplications. Thisis also an
area where you might come across highly parallelized computing based on GPUs
without even noticing it, as the now commonly used software to build and train
deep neural nets (TensorFlow®; Abadi et al. (2015), and the high-level Keras” API;
Chollet et al. (2015)) can easily be run on a CPU or GPU without any further config-
uration/preparation (apart from the initial installation of these programs). In this
chapter, we look at a simple example of using GPUs with Keras in the context of
predictive econometrics.

In this example we train a simple sequential model with two hidden layers to pre-
dict the median value of owner-occupied homes (in USD 1,000) in the Boston area

3https://cran.r-project.org/web/views/HighPerformanceComputing.html

*See https://cran.r-project.org/web/packages/tfestimators/vignettes/estimator_basics.html
for an introduction to the basic usage of the package.

*See https://cran.r-project.org/web/packages/tfestimators/.

¢https://www.tensorflow.org/

"https://keras.io/
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(data is from the 1970s). The original data and a detailed description can be found
here: https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html. The
example closely follows this Keras tutorial® published by RStudio. See RStudio’s
Keras installation guide® for how to install Keras (and TensorFlow) and the corre-
sponding R package keras (Allaire and Chollet, 2022).° While the purpose of the
example here is to demonstrate a typical (but very simple!) use case of GPUs in ma-
chinelearning, the same code should also run on a normal machine (without using
GPUs) with a default installation of Keras.

Apart from keras, we load packages to prepare the data and visualize the output.
Via dataset_boston_housing(), we load the dataset (shipped with the Keras installa-
tion) in the format preferred by the keras library.

# load packages

library(keras)

library(tibble)

library(ggplot2)

library(tfdatasets)

# load data

boston_housing <- dataset_boston_housing()

str(boston_housing)

## List of 2
## $ train:List of 2

## ..$ x: num [1:404, 1:13] 1.2325 0.0218 4.8982 0.0396 3.6931 ...

## ..$ y: num [1:404(1d)] 15.2 42.3 50 21.1 17.7 18.5 11.3 15.6 15.6 14.4 ...
## $ test :List of 2

## ..$ x: num [1:102, 1:13] 18.0846 0.1233 0.055 1.2735 0.0715 ...

## ..$ y: num [1:102(1d)] 7.2 18.8 19 27 22.2 24.5 31.2 22.9 20.5 23.2 ...

13.4.1 Data preparation

In a first step, we split the data into a training set and a test set. The latter is used
to monitor the out-of-sample performance of the model fit. Testing the validity
of an estimated model by looking at how it performs out-of-sample is of particular
relevance when working with (deep) neural networks, as they can easilylead to over-
fitting. Validity checks based on the test sample are, therefore, often an integral
part of modeling with TensorFlow/Keras.

8https://keras.rstudio.com/articles/tutorial_basic_regression.html#the-boston-housing-
prices-dataset
*https://keras.rstudio.com/index.html
°This might involve the installation of additional packages and software outside the R environ-
ment. The following examples were run with TensorFlow version tensorflow_gpu-2.9.3.
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# assign training and test data/labels
c(train_data, train_labels) %<-% boston_housingS$train

c(test_data, test_labels) %<-% boston_housingStest

In order to better understand and interpret the dataset, we add the original vari-
able names and convert it to a tibble.

library(dplyr)

column_names <- c('CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE',
'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT')

train_df <- train_data %>%
as_tibble( "minimal™) %>%
setNames (column_names) %>%

mutate ( train_labels)

test_df <- test_data %>%
as_tibble( "minimal™) %>%
setNames (column_names) %>%
mutate( test_Tlabels)

Next, we have a close look at the data. Note the usage of the term ‘label’ for what is
usually called the ‘dependent variable’ in econometrics.™ As the aim of the exercise
is to predict median prices of homes, the output of the model will be a continuous
value (labels).

# check training data dimensions and content
dim(train_df)

## [1] 404 14
head(train_df)

## # A tibble: 6 x 14
H# CRIM ZN INDUS CHAS NOX RM AGE DIS
## <db1l> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

UTypical textbook examples in machine learning deal with classification (e.g., a logit model),
while in microeconometrics the typical example is usually a linear model (continuous dependent
variable).
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## 1 1.23 0 8.14 0 0.538 6.14 91.7 3.98
## 2 0.0218 82.5 2.03 0 0.415 7.61 15.7 6.27
## 3 4.90 0] 18.1 0 0.631 4.97 100 1.33
## 4 0.0396 0] 5.19 0 0.515 6.04 34.5 5.99
## 5 3.69 0 18.1 0 0.713 6.38 88.4 2.57
## 6 0.284 0 7.38 0 0.493 5.71 T74.3 4.72
## # 1 6 more variables: RAD <dbl>, TAX <dbl>,

## #  PTRATIO <dbl>, B <dbl>, LSTAT <dbl>,

## # label <dbl[1d]>

As the dataset contains variables ranging from per capita crime rate to indicators
for highway access, the variables are obviously measured in different units and
hence displayed on different scales. This is not a problem per se for the fitting pro-
cedure. However, fitting is more efficient when all features (variables) are normal-
ized.

spec <- feature_spec(train_df, label ~ . ) %>%
step_numeric_column(all_numeric(), scaler_standard()) %>%
fit()

13.4.2 Model specification

We specify the model as a linear stack of layers, the input (all 13 explanatory vari-
ables), two densely connected hidden layers (each with a 64-dimensional output
space), and finally the one-dimensional output layer (the ‘dependent variable’).

# Create the model
# model specification

input <- layer_input_from_dataset(train_df %>% select(-label))

output <- dnput %>%

layer_dense_features(dense_features(spec)) %>%

layer_dense( 64, "relu") %>%
layer_dense( 64, "relu") %>%
layer_dense( 1)

model <- keras_model(input, output)

In order to fit the model, we first have to compile it (configure it for train-
ing). At this step we set the configuration parameters that will guide the
training/optimization procedure. We use the mean squared errors loss function
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(mse) typically used for regressions, and we chose the RMSProp** optimizer to find
the minimum loss.

# compile the model
model %>%
compile(
loss = "mse",
optimizer = optimizer_rmsprop(),

metrics = list("mean_absolute_error'")

Now we can get a summary of the model we are about to fit to the data.

# get a summary of the model

model

13.4.3 Training and prediction

Given the relatively simple model and small dataset, we set the maximum number
of epochs to 500.

# Set max. number of epochs

epochs <- 500

Finally, we fit the model while preserving the training history, and visualize the
training progress.

# Fit the model and store training stats
history <- model %>% fit(

x = train_df %>% select(-label),

y = train_df$label,

epochs = epochs,

validation_split = 0.2,

verbose = 0

)
plot(history)

Zhttp://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lecé.pdf
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13.5 Wrapping up

« gpur provides a straightforward interface for applied econometrics run on GPUs.
While working with gpur, be aware of the necessary computational overhead to
run commands on the GPU via this interface. For example, implementing the
OLS estimator with gpur is a good exercise but does not really pay off in terms of
performance.

« There are several ongoing projects in the R world to bring GPU computation
closer to basic data analytics tasks, providing high-level interfaces to work with
GPUs (see the CRAN Task View on High-Performance and Parallel Computing
with R for some of those).

« A typical application of GPU computation in applied econometrics is the train-
ing of neural nets, particularly deep neural nets (deep learning). The keras and
tensorflow packages provide excellent R interfaces to work with the deep learn-
ing libraries TensorFlow and Keras. Both of those libraries are implemented to
directly work with GPUs.

Bhttps://cran.r-project.org/web/views/HighPerformanceComputing.html
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14

Regression Analysis and Categorization with Spark and R

Regression analysis, particularly simple linear regression (OLS), is the backbone of
applied econometrics. As discussed in previous chapters, regression analysis can
be computationally very intensive with a dataset of many observations and vari-
ables, as it involves matrix operations on a very large model matrix. Chapter 12 dis-
cusses in one case study the special case of a large model matrix due to fixed-effects
dummy variables. In this chapter, we first look at a generally applicable approach
for estimating linear regression models with large datasets (when the model ma-
trix cannot be held in RAM). Building on the same sparkiyr framework (Luraschi
et al., 2022) as for the simple linear regression case, we then look at classification
models, such as logit and random forest. Finally, we look at how regression analy-
sis and machine learning tasks can be organized in machine learning pipelines to
be run, stored/reloaded, and updated flexibly.

14.1 Simplelinear regression analysis

Suppose we want to conduct a correlation study of what factors are associated with
longer or shorter arrival delays in air travel. Via its built-in ‘MLib’ library, Spark
provides several high-level functions to conduct regression analyses. When calling
these functions via sparklyr (Or sparkr), their usage is actually very similar to the
usual R packages/functions commonly used to run regressions in R.

As a simple point of reference, we first estimate a linear model with the usual R
approach (all computed in the R environment). First, we load the data as a com-
mon data.table. We could also convert a copy of the entire sparkpataFrame object
to a data.frame Or data.table and get essentially the same outcome. However, col-
lecting the data from the RDD structure would take much longer than parsing the
CSVwith fread. In addition, we only import the first 300 rows. Running regression
analysis with relatively large datasets in Spark on a small local machine might fail
or be rather slow.!

Again, it is important to keep in mind that running Spark on a small local machine is only
optimal for learning and testing code (based on relatively small samples). The whole framework is
optimized to be run on cluster computers.

251
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# flights_r <- collect(flights) # very slow!
flights_r <- data.table::fread('"data/flights.csv", 300)

Now we run a simple linear regression (OLS) and show the summary output.

# specify the linear model

modell <- arr_delay ~ dep_delay + distance
# fit the model with OLS

fitl <- lm(modell, flights_r)

# compute t-tests etc.

summary (fitl)

##

## Call:

## Im(formula = modell, data = flights_r)
##

## Residuals:

## Min 1Q Median 3Q Max

## -42.39 -9.96 -1.91 9.87 48.02

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t])

## (Intercept) -0.182662 1.676560 -0.11 0.91

## dep_delay 0.989553 0.017282 57.26 <2e-16 **x*
## distance 0.000114 0.001239 0.09 0.93

## —-—-

## Signif. codes:

## 0 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 15.5 on 297 degrees of freedom
## Multiple R-squared: 0.917, Adjusted R-squared: ©0.917
## F-statistic: 1.65e+03 on 2 and 297 DF, p-value: <2e-16

Now we aim to compute essentially the same model estimate in sparklyr.? In or-
der to use Spark via the sparklyr package, we need to first load the package and

establish a connection with Spark (similar to sparkr: : sparkr.session()).

2Most regression models commonly used in traditional applied econometrics are provided in

some form in sparklyr or sparkr. See the package documentation for more details.
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library(sparklyr)

# connect with default configuration

sc <- spark_connect( "local")

We then copy the data.table flights_r (previously loaded into our R session) to
Spark. Again, working on a normal laptop this seems trivial, but the exact same
command would allow us (when connected with Spark on a cluster computer in
the cloud) to properly load and distribute the data.table on the cluster. Finally, we
then fit the model with ml_linear_regression() and compute.

# load data to spark

flights_spark <- copy_to(sc, flights_r, "flights_spark")

# fit the model

fitl_spark <- ml_linear_regression(flights_spark, modell)
# compute summary stats

summary (fitl_spark)

Deviance Residuals:
Min 1Q Median 3Q Max
-42.386 -9.965 -1.911 9.866 48.024

Coefficients:
(Intercept) dep_delay distance
-0.1826622687 0.9895529018 0.0001139616

R-Squared: 0.9172
Root Mean Squared Error: 15.42

Alternatively, we can use the spark_apply () function to run the regression analysis
in R via the original R 1m() function.?

# fit the model
spark_apply (flights_spark,
function(df) {
broom::tidy(lm(arr_delay ~ dep_delay + distance, df))},
c("term",
"estimate",

"std.error",

3Note, though, that this approach might take longer.
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"statistic",

"p.value')

# Source: spark<?> [?? x 5]

term estimate std.error statistic p.value
<chr> <dbl> <dbl> <db1> <db1l>
1 (Intercept) -0.183 1.68 -0.109 9.13e- 1
2 dep_delay 0.990 0.0173 57.3 1.63e-162
3 distance 0.000114 0.00124 0.0920 9.27e- 1

Finally, the parsnip package (Kuhn and Vaughan, 2022) (together with the
tidymodels package; Kuhn and Wickham (2020)) provides a simple interface to run
the same model (or similar specifications) on different “engines” (estimators/fit-
ting algorithms), and several of the parsnip models are also supported in sparkiyr.
This significantly facilitates the transition from local testing (with a small subset
of the data) to running the estimation on the entire dataset on spark.

library(tidymodels)
library(parsnip)

# simple local linear regression example from above

# via tidymodels/parsnip

fitl <- fit(linear_reg(engine="1m"), modell, data=flights_r)
tidy (fitl)

# A tibble: 3 x 5

term estimate std.error statistic p.value
<chr> <db1l> <db1l> <db1l> <db1l>
1 (Intercept) -0.183 1.68 -0.109 9.13e- 1
2 dep_delay 0.990 0.0173 57.3 1.63e-162
3 distance 0.000114 0.00124 0.0920 9.27e- 1

# run the same on Spark
fitl_spark <- fit(linear_reg(engine="spark"), modell, data=flights_spark)
tidy (fitl_spark)

# A tibble: 3 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <db1l> <db1l>
1 (Intercept) -0.183 1.68 -0.109 9.13e- 1
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2 dep_delay 0.990 0.0173 57.3 1.63e-162
3 distance 0.000114 0.00124 0.0920 9.27e- 1

We will further build on this interface in the next section where we look at different
machine learning procedures for a classification problem.

14.2 Machine learning for classification

Building on sparkiyr, tidymodels, and parsnip, we test a set of machine learning
models on the classification problem discussed in Varian (2014), predicting Titanic
survivors. The data for this exercise can be downloaded from here: http://doi.org/
10.3886/E113925V1.

We import and prepare the data in R.

# load into R, select variables of interest, remove missing
titanic_r <- read.csv("data/titanic3.csv")
titanic_r <- na.omit(titanic_r[, c("survived",

"pclass",

"sex",

"age",

"sibsp",

"parch")])

titanic_rS$survived <- ifelse(titanic_r$survived==1, '"yes", "no')

In order to assess the performance of the classifiers later on, we split the sample
into training and test datasets. We do so with the help of the rsampie package (Frick
etal., 2022), which provides a number of high-level functions to facilitate this kind
of pre-processing.

library(rsample)

# split into training and test set
titanic_r <- dinitial_split(titanic_r)
ti_training <- training(titanic_r)

ti_testing <- testing(titanic_r)

For the training and assessment of the classifiers, we transfer the two datasets to
the spark cluster.


http://doi.org/10.3886/E113925V1
http://doi.org/10.3886/E113925V1
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# load data to spark
ti_training_spark <- copy_to(sc, ti_training, "ti_training_spark")

ti_testing_spark <- copy_to(sc, ti_testing, "ti_testing_spark')

Now we can set up a ‘horse race’ between different ML approaches to find the best
performing model. Overall, we will consider the following models/algorithms:

« Logistic regression
« Boosted trees
« Random forest

# models to be used

models <- list(logit=logistic_reg(engine="spark", mode = "classification"),
btree=boost_tree(engine = "spark", mode = "classification"),
rforest=rand_forest(engine = "spark", mode = "classification"))

# train/fit the models
fits <- lapply(models, fit, formula=survived~., data=ti_training_spark)

The fitted models (trained algorithms) can now be assessed with the help of the
test dataset. To this end, we use the high-level accuracy function provided in the
yardstick package (Kuhn et al., 2022) to compute the accuracy of the fitted models.
We proceed in three steps. First, we use the fitted models to predict the outcomes
(we classify cases into survived/did not survive) of the test set. Then we fetch the pre-
dictions from the Spark cluster, format the variables, and add the actual outcomes
as an additional column.

# run predictions

predictions <- lapply(fits, predict, new_data=ti_testing_spark)

# fetch predictions from Spark, format, add actual outcomes

pred_outcomes <-

lapply(1:length(predictions), function(i){

x_r <- collect(predictions[[i]]) # load into local R environment
x_rs$pred_class <- as.factor(x_rS$pred_class) # format for predictions
Xx_rs$survived <- as.factor(ti_testing$Ssurvived) # add true outcomes

return(x_r)
b

Finally, we compute the accuracy of the models, stack the results, and display them
(ordered from best-performing to worst-performing.)
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acc <- lapply(pred_outcomes, accuracy, truth="survived", estimate="pred_class')
acc <- bind_rows(acc)
accSmodel <- names(fits)

acc[order (acc$.estimate, decreasing = TRUE),]

# A tibble: 3 x 4

.metric .estimator .estimate model

<chr> <chr> <db1l> <chr>
1 accuracy binary 0.817 rforest
2 accuracy binary 0.790 btree
3 accuracy binary 0.779 logit

In this simple example, all models perform similarly well. However, none of them
really performs outstandingly. In a next step, we might want to learn about which
variables are considered more or less important for the predictions. Here, the
tidy() function is very useful. As long as the model types are comparable (here
btree and rforest), tidy() delivers essentially the same type of summary for dif-
ferent models.

tidy (fits[["btree"]1])

# A tibble: 5 x 2

feature -dmportance

<chr> <dbl>
1 age 0.415
2 sex_male 0.223
3 pclass 0.143
4 sibsp 0.120
5 parch 0.0987

tidy(fits[["rforest"]1])

# A tibble: 5 x 2

feature -importance

<chr> <db1>
1 sex_male 0.604
2 pclass 0.188
3 age 0.120
4 sibsp 0.0595
5 parch 0.0290
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Finally, we clean up and disconnect from the Spark cluster.

spark_disconnect(sc)

14.3 Building machine learning pipelines with R and Spark

Spark provides a framework to implement machine learning pipelines called ML
Pipelines*, with the aim of facilitating the combination of various preparatory
steps and ML algorithms into a pipeline/workflow. sparkiyr provides a straight-
forward interface to ML Pipelines that allows implementing and testing the entire
ML workflow in R and then easily deploying the final pipeline to a Spark cluster or
more generally to the production environment. In the following example, we will
revisit the e-commerce purchase prediction model (Google Analytics data from the
Google Merchandise Shop) introduced in Chapter 1. That is, we want to prepare the
Google Analytics data and then use lasso to find a set of important predictors for
purchase decisions, all built into a machine learning pipeline.

14.3.1 Setupand dataimport

All of the key ingredients are provided in sparklyr. However, I recommend using
the ‘piping syntax provided in dplyr (Wickham et al., 2023) to implement the ma-
chine learning pipeline. In this context, using this syntax is particularly helpful to
make the code easy to read and understand.

# load packages
library(sparklyr)
library(dplyr)

# fix vars

INPUT_DATA <- "data/ga.csv"

Recall that the Google Analytics dataset is a small subset of the overall data gener-
ated by Google Analytics on a moderately sized e-commerce site. Hence, it makes
perfect sense to first implement and test the pipeline locally (on alocal Spark instal-
lation) before deploying it on an actual Spark cluster in the cloud. In a first step, we
thus copy the imported data to the local Spark instance.

*https://spark.apache.org/docs/latest/ml-pipeline.html
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# import to local R session, prepare raw data

ga <- na.omit(read.csv(INPUT_DATA))

#gaspurchase <- as.factor(ifelse(gasSpurchase==1, '"yes", "no"))
# connect to, and copy the data to the local cluster

sc <- spark_connect(master = "local'")

ga_spark <- copy_to(sc, ga, '"ga_spark'", overwrite = TRUE)

14.3.2 Building the pipeline

The pipeline object is initialized via m1_pipeline(), in which we refer to the connec-
tion to the local Spark cluster. We then add the model specification (the formula) to
the pipeline with ft_r_formula(). ft_r_formula essentially transforms the data in ac-
cordance with the common specification syntax in R (here: purchase ~ .). Among
other things, this takes care of properly setting up the model matrix. Finally, we
add the model via m1_tlogistic_regression(). We can set the penalization parame-
ters via elastic_net_param (With alpha=1, we get the lasso).

# ml pipeline
ga_pipeline <-
ml_pipeline(sc) %>%
ft_string_indexer (input_col="city",
output_col="city_output",
handle_invalid = "skip") %>%
ft_string_indexer (input_col="country",
output_col="country_output",
handle_invalid = "skip") %>%
ft_string_indexer (input_col="source",
output_col="source_output",
handle_invalid = "skip") %>%
ft_string_indexer(input_col="browser",
output_col="browser_output",
handle_invalid = "skip") %>%
ft_r_formula(purchase ~ .) %>%

ml_logistic_regression(elastic_net_param = list(alpha=1))

Finally, we create a cross-validator object to train the model with a k-fold cross-
validation and fit the model. For the sake of the example, we use only a 30-fold
cross validation (to be run in parallel on 8 cores).
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# specify the hyperparameter grid
# (parameter values to be considered in optimization)

ga_params <- list(logistic_regression=list(max_iter=80))

# create the cross-validator object

set.seed(1)

cv_lasso <- ml_cross_validator(sc,
estimator=ga_pipeline,
estimator_param_maps = ga_params,
ml_binary_classification_evaluator(sc),
num_folds = 30,
parallelism = 8)

# train/fit the model
cv_lasso_fit <- ml_fit(cv_lasso, ga_spark)

# note: this takes several minutes to run on a local machine (1 node, 8 cores)

Finally, we can inspect and further process the results — in particular the model’s
performance.

# pipeline summary
# cv_lasso_fit
# average performance

cv_lasso_fit$avg_metrics_df

areaUnderROC max_-iter_1
1 0.8666304 80

Before closing the connection to the Spark cluster, we can save the entire pipeline
to work further with it later on.

# save the entire pipeline/fit
ml_save(
cv_lasso_fit,
"ga_cv_lasso_fit",

overwrite = TRUE

To reload the pipeline later on, run ml_load(sc, "ga_cv_lasso_fit").
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14.4 Wrapping up
The key take-aways from this chapter are:

« When running econometric analysis such as linear or logistic regressions with
massive amounts of data, sparklyr provides all the basic functions you need.

« You can test your code on your local spark installation by connecting to the local
‘cluster’: spark_connect (master="1local"). This allows you to test your entire regres-
sion analysis scriptlocally (on a sub-sample) before running the exact same script
via a connection to a large spark cluster on AWS EMR. To do so, simply connect
to the cluster via spark_connect(master = "yarn") from RStudio server, following
the setup introduced in Section 8.4.

« The rsample package provides easy-to-use high-level functions to split your
dataset into training and test datasets: See zinitial_split, ?training, and
?testing.

« The parsnip and broom packages (Robinson et al., 2022) provide a way to eas-
ily standardize regression output. This is very helpful if you want to verify
your regression analysis implementation for Spark with the more familiar R
regression frameworks such as im(). For example, compare the standard R
OLS output with the linear regression output computed on a Spark cluster:
fit(linear_reg(engine="1m"), modell, data=flights_r) for R’s standard OLS;
fit(linear_reg(engine="spark"), modell, data=flights_r) for Spark.

« For more advanced users, sparklyr provides a straightforward way to effi-
ciently implement entire Spark machine learning pipelines in an R script via
ml_pipeline(sc) and the dplyr-style pipe operators %>%, including model specifi-
cation, data preparation, and selection and specification of the estimator.



Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com


https://taylorandfrancis.com

15

Large-scale Text Analysis with sparklyr

Text analysis/natural language processing (NLP) often involves rather large
amounts of data and is particularly challenging for in-memory processing.
sparklyr provides several easy-to-use functions to run some of the computationally
most demanding text data handling on a Spark cluster. In this chapter we explore
these functions and the corresponding workflows to do text analysis on an AWS
EMR cluster running Spark. Thereby we focus on the first few key components of
amodern NLP pipeline. Figure 15.1 presents an overview of the main components
of such a pipeline.

Data Acquisition Text Cleaning Pre-Processing Feature
Engineering

1 1
: Improving :
: the model :

odeling

Monitoring and Deployment -
Model Updating ploy Evaluation

FIGURE 15.1: Illustration of an NLP (Natural Language Processing) pipeline.

Up until the deployment of an NLP model, all the steps involved constitute the
typical workflow of economic research projects based on text data. Conveniently,
all these first crucial steps of analyzing text data are covered in a few high-level
functions provided in the sparkiyr package. Implementing these steps and run-
ning them based on massive amounts of text data on an AWS EMR cluster are thus
straightforward.

To get familiar with the basic syntax, the following subsection covers the first steps
in such a pipeline based on a very simple text example.

263
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15.1 Getting started: Import, pre-processing, and word count

The following example briefly guides the reader through some of the most com-
mon first steps when processing text data for NLP. In the code example, we pro-
cess Friedrich Schiller’s “Wilhelm Tell” (English edition; Project Gutenberg Book
ID 2782), which we download from Project Gutenberg' by means of the gutenbergr
package (Johnston and Robinson, 2022). The example can easily be extended to pro-
cess many more books.

The example is set up to work straightforwardly on an AWS EMR cluster. However,
given the relatively small amount of data processed here, you can also run it locally.
If you want to run it on EMR, simply follow the steps in Section 6.4 to set up the
cluster and log in to RStudio on the master node. The sparkiyr package is already
installed on EMR (if you use the bootstrap-script introduced in Section 6.4 for the
set-up of the cluster), but other packages might still have to be installed.

We first load the packages and connect the RStudio session to the cluster (if you
ru11thislocalha use spark_connect (master="1ocal")).

# install additional packages
# install.packages (""gutenbergr') # download book from Project Gutenberg
# install.packages("dplyr'") # for the data preparatory steps

# load packages
library(sparklyr)
library(gutenbergr)
library(dplyr)

# fix vars

TELL <- "https://www.gutenberg.org/cache/epub/6788/pg6788.txt"

# connect rstudio session to cluster

sc <- spark_connect(master = "yarn")

We fetch the raw text of the book and copy it to the Spark cluster. Note that you can
do this sequentially for many books without exhausting the master node’s RAM
and then further process the data on the cluster.

https://www.gutenberg.org/
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# Data gathering and preparation

# fetch Schiller's Tell, load to cluster

tmp_file <- tempfile()

download.file(TELL, tmp_file)

raw_text <- readLines(tmp_file)

tell <- data.frame( raw_text)

tell_spark <- copy_to(sc, tell,
"tell_spark",

TRUE)

The text data will be processed in a sparkpatafFrame column behind the tel1_spark
object. First, we remove empty lines of text, select the column containing all the
text, and then remove all non-numeric and non-alphabetical characters. The last
step is an important text cleaning step as we want to avoid special characters being
considered words or parts of words later on.

# data cleaning

tell_spark <- filter(tell_spark, raw_text!="")
tell_spark <- select(tell_spark, raw_text)
tell_spark <- mutate(tell_spark,

regexp_replace(raw_text, "[720-9a-zA-Z]+", " "))

Now we can split the lines of text in the column raw_text into individual words (se-
quences of characters separated by white space). To this end we can call a Spark
feature transformation routine called tokenization, which essentially breaks text
into individual terms. Specifically, each line of raw text in the column raw_text
will be split into words. The overall result (stored in a new column specified with
output_col), is then a nested list in which each word is an element of the correspond-
ing line element.

# split into words
tell_spark <- ft_tokenizer(tell_spark,
"raw_text",

"words")

Now we can call another feature transformer called “stop words remover”, which
excludes all the stop words (words often occurring in a text but not carrying much
information) from the nested word list.
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# remove stop-words
tell_spark <- ft_stop_words_remover (tell_spark,
input_col = "words",

output_col = "words_wo_stop")

Finally, we combine all of the words in one vector and store the result in a new
SparkDataFrame called “all_tell_words” (by calling compute()) and add some final
cleaning steps.

# unnest words, combine in one row
all_tell_words <- mutate(tell_spark,

word = explode(words_wo_stop))
# final cleaning

all_tell_words <- select(all_tell_words, word)
all_tell_words <- filter(all_tell_words, 2<nchar(word))

Based on this cleaned set of words, we can compute the word count for the entire
book.

# get word count and store result in Spark memory

compute(count(all_tell_words, word), "wordcount_tell")

## # Source: spark<wordcount_tell> [?? x 2]

##t word n
##t <chr> <int>
## 1 language 2
## 2 martin 1
## 3 baron 8
## 4 nephew 3
## 5 hofe 3
## 6 reding 16
## 7 fisherman 39
## 8 baumgarten 32
## 9 hildegard

## 10 soldiers 4

## # 1 more rows

Finally, we can disconnect the R session from the Spark cluster
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spark_disconnect(sc)

15.2 Tutorial: political slant

The tutorial below shows how to use sparklyr (in conjunction with AWS EMR) to
run the entire raw text processing of academic research projects in economics. We
will replicate the data preparation and computation of the slant measure for con-
gressional speeches suggested by Gentzkow and Shapiro (2010) in the tutorial. To
keep things simple, we'll use the data compiled by Gentzkow et al. (2019) and made
available at https://data.stanford.edu/congress_text.

15.2.1 Data download and import

To begin, we download the corresponding zip-file to the EMR master node (if us-
ing EMR) or to your local RStudio working directory if using a local Spark instal-
lation. The unzipped folder contains text data from all speeches delivered from
the 97th to the 114th US Congress, among other things. We will primarily work
with the raw speeches text data, which is stored in files with the naming pattern
"speeches CONGRESS.txt," Where conNGrEss is the number of the corresponding US
Congress. To make things easier, we put all of the speeches-files in a subdirectory
called 'speeches'. The following section simply illustrates one method for down-
loading and rearranging the data files. The following code chunks require that all
files containing the text of speeches be stored in data/text/speeches and all speaker
information be stored in data/text/speakers.

# download and unzip the raw text data
URL <- "https://stacks.stanford.edu/file/druid:md374tz9962/hein-daily.zip"
PATH <- "data/hein-daily.zip"
system(paste@("curl ",
URL,
moson
PATH,
" && unzip ",
PATH))
# move the speeches files
system("mkdir data/text/ && mkdir data/text/speeches")
system("mv hein-daily/speechesx data/text/speeches/")

# move the speaker files
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system("mkdir data/text/speakers")
system("mv hein-daily/*SpeakerMap.txt data/text/speakers/")

In addition, we download an extra file in which the authors kept only valid phrases
(after removing procedural phrases that often occur in congressional speeches but
that do not contribute to finding partisan phrases). Thus we can later use this ad-
ditional file to filter out invalid bigrams.>

# download and unzip procedural phrases data
URL_P <- "https://stacks.stanford.edu/file/druid:md374tz9962/vocabulary.zip"
PATH_P <- "data/vocabulary.zip"
system(paste@("curl ",
URL_P,
ms on
PATH_P,
" && unzip ",
PATH_P))
# move the procedural vocab file

system("mv vocabulary/vocab.txt data/text/")

We begin by loading the corresponding packages, defining some fixed variables,
and connecting the R session to the Spark cluster, using the same basic pipeline
structure as in the previous section’s introductory example. Typically, you would
first test these steps on a local Spark installation before feeding in more data to
process on a Spark cluster in the cloud. In the following example, we only pro-
cess the congressional speeches from the 97th to the 114th US Congress. The orig-
inal source provides data for almost the entire history of Congress (see https:
//data.stanford.edu/congress_text for details). Recall that for local tests/work-
ing with the local Spark installation, you can connect your R session with sc «<-
spark_connect (master = "local"). Since even the limited speeches set we work with
locally is several GBs in size, we set the memory available to our local Spark node
to 16GB. This can be done by fetching the config file via spark_config() and then set-
ting the driver-memory accordingly before initializing the Spark connection with the
adapted configuration object (see config = conf in the spark_connect() command).

Unlike in the simple introductory example above, the raw data is distributed in
multiple files. By default, Spark expects to load data from multiple files in the
same directory. Thus, we can use the spark_read_csv () function to specify where all
of the raw data islocated in order to read in all of the raw text data at once. The data
in this example is essentially stored in CSV format, but the pipe symbol | is used to

“Invalid for the context of this study.
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separate columns instead of the more common commas. By specifying
delimiter="|", we ensure that the data structure is correctly captured.

# LOAD TEXT DATA —==———————————————o

# load data
speeches <- spark_read_csv(sc,
""speeches",
INPUT_PATH_SPEECHES,
n | ||)
speakers <- spark_read_csv(sc,
"speakers",
INPUT_PATH_SPEAKERS,
n | ||)

15.2.2 Cleaning speeches data

The intermediate goal of the data preparation steps is to determine the number
of bigrams per party. That is, we want to know how frequently members of a par-
ticular political party have used a two-word phrase. As a first step, we must com-
bine the speeches and speaker data to obtain the party label per speech and then
clean the raw text to extract words and create and count bigrams. Congressional
speeches frequently include references to dates, bill numbers, years, and so on.
This introduces a slew of tokens made up entirely of digits, single characters, and
special characters. The cleaning steps that follow are intended to remove the ma-
jority of those.

speeches <-
inner_join(speeches,
speakers,
"speech_id") %>%
filter(party %in% c("R", "D"), chamber=="H") %>%
mutate( substr (speech_id, 1,3)) %>%

select(speech_id, speech, party, congress)

# CLEANING —--------—---—--
# clean text: numbers, letters (bill IDs, etc.
speeches <-

mutate (speeches, tolower (speech)) %>%
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mutate(speech = regexp_replace(speech,
LA O s, PN,
Y)Y 9%>%

mutate(speech = regexp_replace(speech, "\\\\(.+\\\\)", " ")) %>%

mutate(speech = regexp_replace(speech, "[0-9]+", " ")) %>%
mutate(speech = regexp_replace(speech, "<[a-z]+>", " ")) %>%
mutate(speech = regexp_replace(speech, "<\\w+>", " ")) %>%
mutate(speech = regexp_replace(speech, "_", " ")) %>%

mutate(speech = trimws(speech))

15.2.3 Create a bigrams count per party

Based on the cleaned text, we now split the text into words (tokenization), remove
stopwords, and create a list of bigrams (2-word phrases). Finally, we unnest the
bigram list and keep the party and bigram column. The resulting Spark table con-
tains a row for each bigram mentioned in any of the speeches along with the infor-
mation of whether the speech in which the bigram was mentioned was given by a
Democrat or a Republican.

# TOKENIZATION, STOPWORDS REMOVAL, NGRAMS --—---—--————————-

# stopwords list

stop <- readLines("http://snowball.tartarus.org/algorithms/english/stop.txt")
stop <- trimws(gsub("\\|.x", "", stop))

stop <- stop[stop!=""]

# clean text: numbers, letters (bill IDs, etc.

bigrams <-
ft_tokenizer(speeches, '"speech", "words'") %>%
ft_stop_words_remover ("words", "words_wo_stop",

stop_words = stop ) %>%
ft_ngram("words_wo_stop", "bigram_list", n=2) %>%
mutate(bigram=explode(bigram_list)) %>%
mutate(bigram=trim(bigram)) %>%
mutate(n_words=as.numeric(length(bigram) -
length(replace(bigram, " ', '')) + 1)) %>%

filter(3<nchar(bigram), 1<n_words) %>%

select(party, congress, bigram)

Before counting the bigrams by party, we need an additional context-specific clean-
ing step in which we remove procedural phrases from the speech bigrams.
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# load the procedural phrases list

valid_vocab <- spark_read_csv(sc,
path="data/text/vocab.txt",
name = "valid_vocab",
delimiter = "|",
header = FALSE)

# remove corresponding bigrams via anti-join

bigrams <- dinner_join(bigrams, valid_vocab, by= c("bigram"="v1'"))

15.2.4 Find “partisan” phrases

At this point, we have all pieces in place in order to compute the bigram count (how
often a certain bigram was mentioned by a member of either party). As this is an
important intermediate result, we evaluate the entire operation for all the data and
cache it in Spark memory through compute (). Note that if you run this code on your
local machine, it can take a while to process.

# BIGRAM COUNT PER PARTY ——————————————~
bigram_count <-
count(bigrams, party, bigram, congress) %>%

compute ("bigram_count'")

Finally, we can turn to the actual method/analysis suggested by Gentzkow and
Shapiro (2010). They suggest a simple chi-squared test to find the most partisan
bigrams. For each bigram, we compute the corresponding chi-squared value.

# FIND MOST PARTISAN BIGRAMS ------——-—---

# compute frequencies and chi-squared values
freqs <-
bigram_count %>%
group_by(party, congress) %>%
mutate(total=sum(n), f_npl=total-n)
freqs_d <-
filter(freqs, party=="D") %>%
rename(f_pld=n, f_npld=f_npl) %>%
select(bigram, congress, f_pld, f_npld)

## Adding missing grouping variables: ‘party’
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freqs_r <-
filter(freqs, party=="R'") %>%
rename ( n, f_npl) %>%

select(bigram, congress, f_plr, f_nplr)

## Adding missing grouping variables: ‘party’

Based on the computed bigram frequencies, we can compute the chi-squared test
as follows.

pol_bigrams <-
inner_join(freqs_d, freqs_r, c("bigram", '"congress")) %>%
group_by(bigram, congress) %>%
mutate ( ((f_plrxf_npld-f_pld*f_nplr)~2)/
((f_plr + f_pld)*x(f_plr + f_nplr)=
(f_pld + f_npld)x(f_nplr + f_npld))) %>%
select(bigram, congress, x2, f_pld, f_plr) %>%

compute("pol_bigrams")

15.2.5 Results: Most partisan phrases by congress

In order to present a first glimpse at the results we first select the 2,000 most par-
tisan phrases per Congress according to the procedure above. To do so, we need to
first create an index column in the corresponding Spark table.’ We then collect the
2,000 most partisan bigrams.*

# create output data frame
output <- pol_bigrams %>%
group_by (congress) %>%

arrange (desc(x2)) %>%

sdf_with_sequential_id( "index") %>%
filter (index<=2000) %>%
mutate( ifelse(f_pld<f_plr, "R", "D"))%>%

select(bigram, congress, Party, x2) %>%

3Recall that Spark is made to operate on distributed systems. Since the entire dataset is dis-
tributed (as subsets) across the cluster, it is not as straightforward to fetch the first N entries of a
dataset as compared to a situation in which the entire dataset is stored in one data frame residing
in RAM.

“The output of the entire pipeline is not at all large anymore at this stage; thus we can confidently
call cotlect () to download the results (output data) from the Spark cluster into our local R memory
(or the master node’s R memory when working in the cloud).
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collect()

# disconnect from cluster

spark_disconnect(sc)

From the subset of the 2,000 most partisan bigrams, we then generate a table of
the top 5 most partisan bigrams per Congress.

# packages to prepare and plot

library(data.table)

library(ggplot2)

# select top ten per congress, clean

output <- as.data.table(output)

topten <- output[order(congress, x2, decreasing = TRUE),
rank:=1:.N, by=list(congress)][rank %in% (1:5)]

topten[, congress:=gsub("990", "99", congress)]

topten[, congress:=gsub("980", "98", congress)]

topten[, congress:=gsub("970", "97", congress)]

# plot a visualization of the most partisan terms
ggplot(topten, mapping-aes(x=as.integer(congress), y=-log(x2), color=Party)) +
geom_text(aes(label=bigram), nudge y = 1)+
ylab("Partisanship score (Ln of Chisq. value)") +
xlab("Congress") +
scale_color_manual(values=c("D"="blue", "R"="red"), name="Party") +
guides(color=guide_legend(title.position="top")) +
scale_x_continuous(breaks=as.integer (unique(topten$congress))) +
theme_minimal() +
theme(axis.text.x = element_text(angle = 90, hjust = 1),
axis.text.y = element_text(hjust = 1),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),

panel.background = element_blank())
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15.3 Natural Language Processing at Scale

The examples above merely scratch the surface of what is possible these days in the
realm of text analysis. With increasing availability of Big Data and the recent boost
in deep learning, Natural Language Processing (NLP) put forward several very pow-
erful (and very large) language models for various text prediction tasks. Due to the
improvement of these models when trained on massive amounts of text data and
the rather generic application of many of these large models, it has become com-
mon practice to work directly with a pre-trained model. That is, we do not actually
train the algorithm based on our own training dataset but rather build on a model
thathasbeen trained on a large text corpus and then has been made available to the
public. In this section, we look at one straightforward way to build on such models
with sparklyr.

15.3.1 Preparatory steps

Specifically, we look at a few brief examples based on the sparknip package (Kin-
caid and Kuo, 2023) providing a sparklyr extension for using the John Snow
Labs Spark NLP® library. The package can be directly installed from GitHub:

*https://www.johnsnowlabs.com/spark-nlp
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devtools::install_github("r-spark/sparknlp") To begin, weload the corresponding
packages and initialize a pre-trained NLP pipeline for sentiment analysis, which
we will then apply to the congressional speeches data. Note that the sparknip pack-
age needs to be loaded before we connect the R session to the Spark cluster. In
the following code chunk we thus first load the package and initiate the session by
connecting again to the local Spark node. In addition to loading the sparklyr and
dplyr packages, we also load the sparkilyr.nested package (Pollock, 2023). The lat-
ter is useful when working with sparknip’s pipelines because the results are often
returned as nested lists (in Spark table columns).

# load packages
library(dplyr)
library(sparklyr)
library(sparknlp)
library(sparklyr.nested)

# configuration of local spark cluster

conf <- spark_config()

confs$’ T <- "1eg"
# connect rstudio session to cluster
sc <- spark_connect( "local",

conf)

The goal of this brief example of sparknip is to demonstrate how we can easily tap
into very powerful pre-trained models to categorize text.To keep things simple, we
return to the previous context (congressional speeches) and reload the speeches
dataset. To make the following chunks of code run smoothly and relatively fast on
alocal Spark installation (for test purposes), we use sample_n() for a random draw
0f 10,000 speeches.

# load speeches
INPUT_PATH_SPEECHES <- "data/text/speeches/"
speeches <-
spark_read_csv(sc,
"speeches",
INPUT_PATH_SPEECHES,
",

TRUE) %>%
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sample_n (10000, FALSE) %>%

compute ("speeches")

15.3.2 Sentiment annotation

In this short tutorial, we'll examine the tone (sentiment) of the congressional
speeches. Sentiment analysis is a fairly common task in NLP, but it is frequently a
computationally demanding task with numerous preparatory steps. sparknlp pro-
vides a straightforward interface for creating the necessary NLP pipeline in R and
massively scaling the analysis on Spark. Let’s begin by loading the pretrained NLP
pipeline for sentiment analysis provided in sparkntp.

# load the nlp pipeline for sentiment analysis

pipeline <- nlp_pretrained_pipeline(sc, "analyze_sentiment", "en'")

We can easily feed in the entire speech corpus via the target argument and point to
the column containing the raw text (here "speech"). The code below divides the text
into sentences and tokens (words) and returns the sentiment annotation for each
sentence.

speeches_a <-
nlp_annotate(pipeline,
speeches,

"speech")

The sentiment of the sentences is then extracted for each corresponding speech ID
and coded with two additional indicator variables, indicating whether a sentence
was classified as positive or negative.

# extract sentiment coding per speech
sentiments <-
speeches_a %>%
sdf_select(speech_id, sentiment.result) %>%
sdf_explode(sentiments) %>%
mutate( as.integer (sentiments=="positive"),
as.integer (sentiments=="negative")) %>%

select(speech_id, pos, neg)
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15.4 Aggregation and visualization

Finally, we compute the proportion of sentences with a positive sentiment per
speech and export the aggregate sentiment analysis result to the R environment
for further processing.®

# aggregate and download to R environment -----
sentiments_aggr <-

sentiments %>%

select(speech_id, pos, neg) %>%

group_by (speech_id) %>%

mutate ( sum(pos)/(sum(pos) + sum(neg))) %>%

filter (0<rel_pos) %>%

select(speech_id, rel_pos) %>%

sdf_distinct( "sentiments_aggr") %>%

collect()

# disconnect from cluster

spark_disconnect(sc)

We can easily plot the aggregate speech sentiment over time because the speech
ID is based on the Congress number and the sequential number of speeches in
this Congress. This allows us to compare (in the simple setup of this tutorial) the
sentiment of congressional speeches over time.

# clean

library(data.table)

sa <- as.data.table(sentiments_aggr)

sa[, congress:=substr(speech_id, 1,3)]

sa[, congress:=gsub("990", "99", congress)]
sa[, congress:=gsub("980", "98", congress)]

sa[, congress:=gsub("970", "97", congress)]

# visualize results
library(ggplot2)

ggplot(sa, aes(x=as.integer(congress),

¢Note that even if we run this NLP pipeline for the entire text dataset of congressional speeches,
the final aggregate output will easily fit into the RAM of a standard PC.
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rel_pos,
congress)) +
geom_boxplot() +
ylab("Share of sentences with positive tone") +
xlab("Congress") +

theme_minimal()
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15.5 sparklyr and lazy evaluation

When running the code examples above, you may have noticed that the execution
times vary significantly between the different code chunks, and maybe not always
in the expected way. When using Apache Spark via the sparkiyr/dplyr-interface as
we did above, the evaluation of the code is intentionally (very) lazy. That is, unless
aline of code really requires data to be processed (for example, due to printing the
results to the console or explicitly due to calling coltect()), Spark will not be trig-
gered to run the actual processing of the entire data involved. When working with
extremely large datasets, it makes sense to modify one’s workflow to accommodate
this behavior. A reasonable workflow would then be to write down the pipeline so
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that the heavy load processing happens at the very end (which can then take several
minutes, but you will have time for other things to do.)

The following short example taken from the script developed above illustrates this
point. The arguably computationally most intensive part of the previous section
was the sentiment annotation via nlp_annotate():

system. time(
speeches_a <-
nlp_annotate(pipeline,
speeches,

"speech'")

## user system elapsed
H# 0.074 0.011 0.225

Remember that the pre-trained pipeline used in this example includes many steps,
such as breaking down speeches into sentences and words, cleaning the text, and
predicting the sentiment of each sentence. When you run the code above, you'll
notice that this was not the most time-consuming part to compute. That chunk of
code runs in less than a second on my machine (with a local Spark node). Because
we do not request the sentiment analysis results at this point, the pipeline is not
actually run. It is only executed when we request it, for example, by adding the
compute () call at the end.

system.time(
speeches_a <-
nlp_annotate(pipeline,
speeches,
"speech") %>%

compute ( "speeches_a")

#t user system elapsed
## 0.370 0.176 33.720

Asyou can see, this takes an order of magnitude longer, which makes perfect sense
given that the pipeline is now running for the entire dataset fed into it. Unless you
require the intermediate results (for example, for inspection), it thus makes sense
to only process the big workload at the end of your sparklyr-analytics script.
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Appendix A: GitHub

GitHub can be a very useful platform to arrange, store, and share the code of your
analytics projects even if it is typically used for collaborative software development.
If you are unfamiliar with Git or GitHub, the steps below will assist you in getting
started.

Initiate a new repository

1. Logintoyour GitHubaccount and click on the plus sign in the upper right
corner. From the drop-down menu select New repository.

2. Give your repository a name, for example, bigdatastat. Then, click on the
big green button, create repository. You have just created a new reposi-
tory.

3. Open Rstudio, and and navigate to a place on your hard-disk where you
want to have the local copy of your repository.

4. Then create the local repository as suggested by GitHub (see the page
shown right after you have clicked on create repository:“..or create anew
repository on the command line”). In order to do so, you have to switch
to the Terminal window in RStudio and type (or copy and paste) the com-
mands as given by GitHub. This should look similar to the following code
chunk:

echo "# bigdatastat" >> README.md

git init

git add README.md

git commit "first commit"

git remote add origin \
https://github.com/YOUR-GITHUB-ACCOUNTNAME /bigdatastat.git

git push origin master

Remember to replace Your-6ITHUB-ACCOUNTNAME with your GitHub account name, be-
fore running the code above.
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5. Refresh the page of your newly created GitHub repository. You should
now see the result of your first commit.

6. Open reapME.md in RStudio, and add a few words describing what this
repository is all about.

Clone this book’s repository

1. InRStudio, navigate to a folder on your hard-disk where you want to have
alocal copy of this book’s GitHub repository.

2. Open anew browser window, and go to https://github.com/umatter/Big
Data.

3. Click on clone or download and copy the link.
In RStudio, switch to the Terminal, and type the following command
(pasting the copied link).

git clone https://github.com/umatter/BigData.git

You now have a local copy of the repository which is linked to the one on GitHub.
You can see this by changing to the newly created directory, containing the local
copy of the repository:

cd BigData

Whenever there are some updates to the book’s repository on GitHub, you can up-
date your local copy with:

git pull

(Make sure you are in the Bigbata folder when running git putt.)

Fork this book’s repository

1. Gotohttps://github.com/umatter/BigData, and click on the ‘Fork’ button
in the upper-right corner (follow the instructions).
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2. Clone the forked repository (see the cloning of a repository above for de-
tails). Assuming you called your forked repository Bigbata-forked, you run
the following command in the terminal (replacing <yourgithubusername>):

git clone https://github.com/ <yourgithubusername>" /BigData-forked.git

3. Switch into the newly created directory:

cd BigData-forked

4. Setaremote connection to the original repository:
git remote add upstream https://github.com/umatter/BigData.git
You can verify the remotes of your local clone of your forked repository as follows:
git remote -v
You should see something like

origin https://github.com/<yourgithubusername>/BigData-forked.git (fetch)
origin https://github.com/<yourgithubusername>/BigData-forked.git (push)
upstream https://github.com/umatter/BigData.git (fetch)
upstream https://github.com/umatter/BigData.git (push)

5. Fetch changes from the original repository. New material has been added
to the original book repository, and you want to merge it with your forked
repository. In order to do so, you first fetch the changes from the original
repository:

git fetch upstream

6. Make sure you are on the master branch of your local repository:

git checkout master

7. Merge the changes fetched from the original repo with the master of your
(local clone of the) forked repository:

git merge upstream/master

8. Push the changes to your forked repository on GitHub:
git push

Now your forked repo on GitHub also contains the commits (changes) in the orig-
inal repository. If you make changes to the files in your forked repo, you can add,
commit, and push them as in any repository. Example: open README.md in a text
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editor (e.g. RStudio), add # HeLLo worLD to the last line of ReabME.md, and save the
changes. Then:

git add README.md
git commit -m "hello world"

git push



Appendix B: R Basics

This appendix provides an overview of various key R properties, including data
types and data structures.

Data types and memory/storage

Data loaded into RAM can be interpreted differently by R depending on the data
type. Some operators or functions in R only accept data of a specific type as argu-
ments. For example, we can store the numeric values 1.5 and 3 in the variables a
and b, respectively.

a <- 1.5
b <- 3

a+b

## [1] 4.5

R interprets this data as type double (class ‘numeric’):
typeof(a)

## [1] "double"

class(a)

## [1] "numeric"

object.size(a)

## 56 bytes

If, however, we define a and b as follows, R will interpret the values stored in a and
b as text (character).
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a <- "1.5"
b <— "3n

a+b

typeof(a)

## [1] "double"

class(a)

## [1] "numeric"

object.size(a)

## 56 bytes

Note that the symbols 1.5 take up more or less memory depending on the data-
type they are stored in. This directly links to how data/information is stored/repre-
sented in binary code, which in turn is reflected in how much memory is used to
store these symbols in an object as well as what we can do with it.

Example: Data types and information storage

Given the fact that computers only understand es and 1s, different approaches are
taken to map these digital values to other symbols or images (text, decimal num-
bers, pictures, etc.) that we humans can more easily make sense of. Regarding text
and numbers, these mappings involve character encodings (in which combinations
of es and 1s represent a character in a specific alphabet) and data types.

Let’s illustrate the main concepts with the simple numerical example from above.
When we see the decimal number 139 written somewhere, we know that it means
‘one-hundred-and-thirty-nine’. The fact that our computer is able to print 139 on
the screen means that our computer can somehow map a sequence of es and 1s to
the symbols 1, 3, and 9. Depending on what we want to do with the data value 139
on our computer, there are different ways of how the computer can represent this
value internally. Inter alia, we could load it into RAM as a string (‘text’/‘character’)
or as an integer (‘natural number’) or double (numeric, floating point number). All
of them can be printed on screen but only the latter two can be used for arithmetic
computations. This concept can easily be illustrated in R.
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We initiate a new variable with the value 139. By using this syntax, R by default
initiates the variable as an object of type double. We then can use this variable in
arithmetic operations.

my_number <- 139

# check the class
typeof (my_number)

## [1] "double"

# arithmetic

my_number*2

## [1] 278

When we change the data type to ‘character’ (string) such operations are not possi-
ble.

# change and check type/class
my_number_string <- as.character (my_number)

typeof (my_number_string)

## [1] "character"

# try to multiply

my_number_string*2

## Error in my_number_string * 2: non-numeric argument to binary operator
If we change the variable to type integer, we can still use math operators.
# change and check type/class

my_number_int <- as.integer (my_number)

typeof (my_number_int)

## [1] "integer"

# arithmetics

my_number_int*2

## [1] 278
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Having all variables in the correct type is important for data analytics with various
sample sizes. However, because different data types must be represented differ-
ently internally, different types may take up more or less memory, affecting per-
formance when dealing with massive amounts of data.

We can illustrate this point with object.size():

object.size("139")

## 112 bytes

object.size(139)

## 56 bytes

Data structures

For the time being, we have only looked at individual bytes of data. A single dataset
can contain gigabytes of data and both text and numeric values. R has several
classes of objects that provide different data structures. The data types and data
structures used to store data can both affect how much memory is required to hold
a dataset in RAM.

Vectors vs. Factorsin R

Vectors are collections of values of the same type. They can contain either all nu-
meric values or all character values.

For example, we can initiate a character vector containing information on the
hometowns of persons participating in a survey.

hometown <- c("St.Gallen", "Basel", "St.Gallen")

hometown
## [1] "St.Gallen" "Basel" "St.Gallen"

object.size(hometown)

## 200 bytes
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Unlike in the data types example above, storing these values as type numeric to save
memory is unlikely to be practical. R would be unable to convert these strings into
floating point numbers. Alternatively, we could consider a correspondence table in
which each unique town name in the dataset is assigned a numeric (id) code. We
would save memory this way, but it would require more effort to work with the data.
Fortunately, the data structure ‘factor’ in basic R already implements this idea in a
user-friendly manner.

Factors are sets of categories. Thus, the values are drawn from a fixed set of possible
values.

Considering the same example as above, we can store the same information in an
object of type class factor.

hometown_f <- factor(c("St.Gallen", "Basel'", "St.Gallen"))

hometown_f

## [1] St.Gallen Basel St.Gallen
## Levels: Basel St.Gallen

object.size(hometown_f)

## 584 bytes

At first glance, the fact that hometown f consumes more memory than its character
vector sibling appears strange. But we've seen this kind of ‘paradox’ before. Once
again, the more sophisticated approach has an overhead (here not in terms of com-
puting time but in terms of structure encoded in an object). hometown_f has more
structure (i.e., a number-to-‘factor level’/category label mapping). This additional
structure is also data that must be saved somewhere. This disadvantage, as in pre-
vious examples of overhead costs, diminishes with larger datasets:

# create a large character vector
hometown_large <- rep(hometown, 1000)
# and the same content as factor
hometown_large_f <- factor (hometown_large)

# compare size

object.size(hometown_large)

## 24168 bytes
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object.size(hometown_large_f)

## 12568 bytes

Matrices/Arrays

Matrices are two-dimensional collections of values of the same type, arrays are
higher-dimensional collections of values of the same type.

For example, we can initiate a three-row/two-column numeric matrix as follows.

my_matrix <- matrix(c(1,2,3,4,5,6), 3)

my_matrix

## [,1] [,2]
## [1,] 1 4
## [2,] 2 5
## [3,] 3 6

And a three-dimensional numeric array as follows.

my_array <- array(c(1,2,3,4,5,6), 3)

my_array
## [1] 1 2 3

Data frames, tibbles, and data tables

Remember that in R, data frames are the most common way to represent a (table-
like) dataset. Each column can contain a vector of a specific data type (or a factor),
but all columns must be the same length. In the context of data analysis, each row
of adata frame contains an observation, and each column contains a characteristic
of that observation.

The previous implementation of data frames in R made it difficult to work with
large datasets.” Several newer R implementations of the data-frame concept were
introduced with the aim to speed up data processing. One is known as tibble, and
it is implemented and used in the tidyverse packages. The other is known as data
table, and it is implemented in the data table-package. Most of the shortcom-
ings of the original ‘data.frame’ implementation, however, have been addressed in

"This was not an issue in the early days of R because datasets that were rather large by today’s
standards (in the Gigabytes) could not have been handled properly by normal computers anyway
(due to a lack of RAM).
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subsequent R versions, making traditional data. frames, tibbles, and data.tables
more similarly suitable for working with large datasets (for in-memory process-

ing).

Here is how we define a data.table in R:

# load package

library(data.table)

# initiate a data.table

dt <- data.table(person = c("Alice", "Ben"),
age = c(50, 30),
gender = c("f", "m"))

dt

## person age gender
## 1: Alice 50 f
## 2: Ben 30 m
Lists

Similar to data frames and data tables, lists can contain different types of data in
each element. For example, a list could contain several other lists, data frames, and
vectors with differing numbers of elements.

This flexibility can easily be demonstrated by combining some of the data struc-
tures created in the examples above:

my_list <- list(my_array, my_matrix, dt)

my_Tlist

## [[11]

## [1] 1 2 3

##

## [[2]]

it (11 [,2]

## [1,] 1 4

## [2,] 2 5

## [3,]

##

## [[31]

## person age gender
## 1: Alice 50 f

## 2: Ben 30 m
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R-tools to investigate structures and types

package  function purpose

utils str() Compactly display the structure of an arbitrary R
object.

base class() Prints the class(es) of an R object.

base typeof () Determines the (R-internal) type or storage mode of an

object.
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You might wish to install Hadoop locally on your computer in order to perform
the Hadoop example in Chapter 6. The next few stages assist you in configuring
everything. Please be aware that between the time I wrote this book and the time
you read it, Hadoop may have undergone some changes. Consult https://hadoop
.apache.org/ for further details on releases and to install the most recent version.
However, the instructions for installing Hadoop in the following should be nearly
comparable. Please take note that the steps below assume you are using Ubuntu
Linux. See the README file in https://github.com/umatter/bigdata for additional
hints regarding the installation of software used in this book.

# download binary

wget https://dlcdn.apache.org/hadoop/common/hadoop-2.10.1/hadoop-2.10.1.tar.gz

# download checksum

wget \
https://dlcdn.apache.org/hadoop/common/hadoop-2.10.1/hadoop-2.10.1.tar.gz.sha512

# run the verification
shasum 512 hadoop-2.10.1.tar.gz
# compare with value in mds file

cat hadoop-2.10.1.tar.gz.sha512

# if all is fine, unpack
tar hadoop-2.10.1.tar.gz
# move to proper place

sudo mv hadoop-2.10.1 /usr/local/hadoop

# then point to this version from hadoop

# open the file /usr/local/hadoop/etc/hadoop/hadoop-env.sh

# in a text editor and add (where export JAVA_HOME=...)
export JAVA_HOME=S (readlink /usr/bin/java | sed "s:bin/java::")
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# clean up
rm hadoop-2.10.1.tar.gz
rm hadoop-2.10.1.tar.gz.sha512

After running all of the steps above, run the following line in the terminal to check
the installation

# check installation
/usr/local/hadoop/bin/hadoop
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