

Ali S. Janfada
Elementary Synchronous Programming

Also of interest

C++ Programming
Li Zheng, Yuan Dong, Fang Yang, 2019
ISBN 978-3-11-046943-1, e-ISBN (PDF) 978-3-11-047197-7,
e-ISBN (EPUB) 978-3-11-047066-6

Trusted Computing
Dengguo Feng, Yu Qin, Xiaobo Chu, Shijun Zhao, 2017
ISBN 978-3-11-047604-0, e-ISBN (PDF) 978-3-11-047759-7,
e-ISBN (EPUB) 978-3-11-047609-5

Technoscientific Research
Roman Z. Morawski, 2019
ISBN 978-3-11-058390-8, e-ISBN (PDF) 978-3-11-058406-6,

e-ISBN (EPUB) 978-3-11-058412-7

Web Applications with Javascript or Java, vol. 1
G. Wagner, M. Diaconescu, 2017
ISBN 978-3-11-049993-3, e-ISBN (PDF) 978-3-11-049995-7,
e-ISBN (EPUB) 978-3-11-049724-3

Web Applications with Javascript or Java, vol. 2
G. Wagner, M. Diaconescu, 2019
ISBN 978-3-11-050024-0, e-ISBN (PDF) 978-3-11-050032-5,
e-ISBN (EPUB) 978-3-11-049756-4

Author

Dr. Ali S. Janfada

Urmia University

Faculty of Science

Department of Mathematics

Urmia, 11km SERO Road, Iran

a.sjanfada@urmia.ac.ir

ISBN 978-3-11-061549-4

e-ISBN (PDF) 978-3-11-061648-4

e-ISBN (EPUB) 978-3-11-061673-6

Library of Congress Control Number: 2019938420

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche

Nationalbibliografie; detailed bibliographic data are available on the Internet at http://

dnb.dnb.de.

© 2019 Walter de Gruyter GmbH, Berlin/Boston

www.degruyter.com

mailto:a.sjanfada@urmia.ac.ir
http://dnb.dnb.de/
http://www.degruyter.com/

In memory of my parents
and
to my family

Foreword

In 1975, when I received my B.Sc. degree in mathematics, I
knew nothing about programming except for some scattered
codes. In fact, in 1973, when I was passing the computer
programming course, there were not personal computers on
the market like today, and running a program including
punching the codes on the punch cards, correcting the
administrative mistakes, and re-punching them, as well as
observing the required time for their successful
implementation on the only central computer of the university
and obtaining the outcomes would last almost a week.
Therefore, I could completely implement a maximum of ten
programs during a semester. After my employment at Urmia
University in 1989, computer programming was one of the
courses I eagerly taught in mathematics and physics due to my
great interest in programming. This passion directed me toward
success in writing my first textbook [17] in Farsi in 1994, which
soon became one of the most widely used applicable books in
the computational field, especially for postgraduate students in
physics. Interestingly, my relative skill in programming was one
of the reasons for my success during a Ph.D. program on
algebraic topology in 2000, as the year of mathematics, at
Manchester University, UK. After completing my doctoral
degree, I continued teaching computer programming courses,

and the initial ideas for writing the present book were born in
my mind in 2004. I first implemented my idea in the form of the
pamphlets, and then, I tested it as a textbook [18] in Pascal. In
addition, I frequently modified and improved these materials
and then collected them as a pamphlet in C++, while drawing
upon the assistance of the interested and apt students. Later on,
I published them as a textbook [19], which was extensively used
by my colleagues in other universities. All these materials were
designed and implemented based on the algorithm, which
demonstrated desired results in teaching the algorithm-based
programming. In recent years, I have found that the above-
mentioned programming languages can be simultaneously
presented using the algorithms due to the proximity of their
codes. The suggestion and request of De Gruyter Publications
for publishing the present book encouraged me to
simultaneously write the program for both C++ and Java
languages, for which I appreciate the staff of this publications.

The current textbook aimed to provide the reader with a
more convenient, better, and faster method of programming via
the algorithm in both C++ and Java languages. In fact, this is the
slogan of the current book: You will be a professional
programmer whenever you become a skilled algorithm designer
since a program is nothing but an algorithm with the special
codes of a programming language.

This book covers nearly all the curriculum topics taught in
computer science fundamentals and programming for
mathematics, physics, and engineering except for computer
science during the B.Sc. program and thus can be used as a

textbook for these courses. Actually, the course is more efficient
if the instructor considers the applied examples related to each
field. Further, the knowledge of high school mathematics is a
prerequisite for employing the present book, and therefore, it is
useful for high school graduates as well.

It is worth mentioning that this is not a reference book for
programming in C++ and Java language; however, it seeks to
encourage the readers to develop their skills in algorithm
writing for the problems in which mathematical calculations
are applied, and simultaneously teach them to translate the
algorithm into C++ and Java codes. Therefore, without
addressing the computer fundamentals and programming
details, algorithm-writing principles and techniques are dealt
with after preliminary discussions on algorithm-writing and
programming concepts. Furthermore, the book strives to
gradually strengthen the readers’ ability in this regard so that
they can identify and analyze the mental commands which are
issued and implemented in their brains for solving a
computational mathematics problem and try to design an
algorithm based on their understanding and analyses.

To achieve this goal, we introduce a maximum of ten
algorithmic templates, which are considered the basic
components of the algorithms, and attempt to teach our readers
which template to use for each subjective instruction and how
to arrange such templates in order to obtain a desired
algorithm. Moreover, the translation of each template into C++
and Java programming languages are explained with various
details, descriptions, and examples. Additionally, since each

algorithm includes several templates, the translation of the
program into C++ and Java codes will be easy by knowing the
codes of each template. In addition, we can even translate our
algorithms to any programming language if we know the codes
of each template in that programming language.

To implement our strategy, in Chapter 1, we will explain that
most of our daily routines result from one or more algorithms.
Then, the algorithm is defined, followed by describing the steps
for writing an algorithm. The flowchart, among all types of
algorithms, is the most transparent and simplest type and thus,
it is easier to write, execute, and translate into the codes of each
language. Accordingly, in this book, flowcharts are regarded as
the framework of our algorithms and wherever we talk about
the algorithm, we imply the flowcharts.

In Chapters 2 and 3, we will take a brief look at the
programming alphabet in C++ and Java languages, as well as
some of its preliminary concepts and practice the provided
explanations by implementing several introductory programs,
respectively. These two chapters guide the reader to write
simple algorithms and programs. Furthermore, Chapter 3
describes the nature of object-oriented programming in both
C++ and Java languages. Due to the computational purpose of
the book, most programs are such that the employed functions
(methods) are less dependent on the nature of object-oriented
programming.

Our main task begins in Chapter 4, which explains how to
employ the basic algorithm templates. Sub-algorithms
(subprograms) are considered the main frameworks of the

algorithms (programs), which are more perceptible in large
algorithms (programs). Moreover, in Chapter 5, by addressing a
variety of sub-algorithms and subprograms, we elaborate on
how each type of sub-algorithm (subprogram) is written and
called in the main algorithms (programs). By going through
these two chapters, a novice reader learns to walk. In other
words, he learns how to create intermediate algorithms and
translate them into C++ and Java codes.

Additionally, automated and conditional loops are covered
in Chapters 6 and 7, respectively. The ability of algorithm-
writing is substantially strengthened in these two chapters
using numerous examples. In addition, algorithmic templates
are completed in the above-mentioned chapters. By studying
these chapters, the reader learns how to create suitable
algorithms and write the desired programs

Acquiring skills in algorithm writing and programming is
provided in Chapters 8 and 9, in which we deal with one-
dimensional and two-dimensional arrays called also victors and
matrices, respectively. It should be noted that more than half of
the applications use arrays. In particular, Chapter 9 discusses a
variety of methods for solving linear equation systems.

In this book, several guidelines are presented in order to
solve the problems at the end of the chapters (4-10), which help
the reader to get some ideas from this section in the cases they
fail to solve these problems.

Sometimes, we do not understand part of a movie when we
watch it. In such a case, we rewind the film for further
understanding and review it several times. We may even watch

it slowly in order to finally figure out what is going on in that
section. Given the nature of this course, students are advised to
consider and apply three points for learning useful materials.

The first point is to try to understand what processes your
mind goes through for doing a daily routine or solving a
computational problem. More precisely, try to find out what is
going on in the brain by repeatedly reviewing and even slowly
moving such processes. Then, identify and analyze the
implemented processes.

Next, classify your own perceptions of this recognition and
analysis in a set of regular instructions and design an algorithm
using such a set so that the other person who runs this
algorithm obtains the same answer as your mind did.

Finally, learn the components (templates) of an algorithm,
which are up to a maximum of ten, use them appropriately, and
try to improve your skills in designing an algorithm by further
practice.

We write the name of all sub-algorithms, functions (method),
templates, and statements, as well as the keywords and for loop
specifications in code font (the same as what was just used for
‘for’), while the names of the variables are written in the italic
font. In general, we are bound to use the code font everywhere
in the flowchart or program, and we apply italic fonts wherever
we speak of the variables in the text. However, we employ the
font of the table itself in the tables, which is nearly the same as
the two above-mentioned fonts.

Numbering the tables and figures is by the number of
involved examples.

For the readers’ convenience, all the programs of the book
are provided on De Gruyter website www. degruyter.com
(search: Elementary Synchronous Programming).

In every human endeavour, there are a considerable
number of people worthy of respect and gratitude due to their
invaluable moral, intellectual, and technical support. While not
being able to name them all, I have selected to highlight a few.

I would like to gratefully appreciate Virayeshyar Editing
Company, especially Javad Gholami, Associate Professor of
Applied Linguistics at Urmia University, for his valuable
guidance and fast and meticulous editing of the present book. I
also thanks Amin Habibzadeh and Mohammad Mohammadi for
their helps in editing parts of the book.

My sincere thanks are due to Saeed Matlabjoo for his
valuable suggestions regarding some issues, as well as his
assistance in solving several systemic problems in writing and
working with the format of the publications.

I am also profoundly grateful to the staff of the Walter de
Gruyter Publishing House for all the publishing stages of this
book. I owe special thanks to Katja Schubert, the Production
manager, who patiently and constantly provided me with
technical guidance. In addition, I would like to thank Leonardo
Milla, Aneta Cruz-Kaciak and Angelika Sperlich for all their
helps during the preparation of the book.

Special thanks go to two people without whom I could not
publish this book in due time and with such quality. My son,
Erfan, who translated the original text from Persian to English
and patiently modified several English mistakes after the

http://degruyter.com/

author’s technical reviews and revisions. His encouragement
has always inspired me. Further, Ehsun Rasoulian, a very active
student of the author at undergraduate and postgraduate levels,
was very helpful in carrying the burden of converting all the
C++ programs to Java and their implementation. He, also,
significantly contributed to the implementation of some C++
programs, at times supported the author, technically studied
the entire text of the book, and finally, provided useful
suggestions.

My heartfelt gratitude goes to my dear wife who provided a
quiet environment for me throughout the years of writing the
present book, as well as the other books and helped me
progress in other research studies.

Finally, I apologize for all the respected readers for the
weaknesses and shortcomings which may have skipped my
attention. I sincerely request you, the Reader, to acknowledge
such shortcomings to the author.

Spring 2019, Ali S. Janfada

Contents

Foreword

1 Basic concepts of Algorithm
1.1 Algorithm
1.2 Flowchart

2 Fundamental concepts of programming in C++
2.1 Primary concepts
2.1.1 Reserved words
2.1.2 Identifiers
2.1.3 Data types
2.1.4 Variables
2.1.5 Constants
2.1.6 Operators
2.1.7 Library (predefined) functions
2.1.8 Arithmetic and logical expressions
2.2 Introduction to programming in C++ language
2.2.1 Output statement
2.2.2 Input statement
2.2.3 Formatted output
2.3 Pointers

3 Fundamental concepts of programming in Java
3.1 Primary concepts

3.1.1 Data types
3.1.2 Literals and variables
3.1.3 Operators
3.2 Introduction to programming in Java
3.2.1 Output and input statements
3.2.2 Formatted output
3.3 Object-oriented programming (OOP) system
3.3.1 Objects and class
3.3.2 Types of variables
3.3.3 Constructors and destructors
3.3.4 Destructors and namespaces (C++ only)
3.3.5 Static elements
3.3.6 The this keyword

4 Decision making and branching templates
4.1 The if-else template
4.2 The if template
4.3 The if-else-if template
4.4 The switch statement
4.5 More applications of the if template
4.5.1 Transferring the program execution
4.5.2 Terminating the program execution
Exercises

5 Sub-algorithms and subprograms
5.1 Sub-algorithms
5.2 Subprograms
5.2.1 Functions
5.2.2 Multi-return sub-algorithm (subprograms)

5.3 Self-calling (recursive) functions
Exercises

6 Automated loops
6.1 The for template
6.2 Series
Exercises
Supplementary exercises

7 Conditional loops
7.1 The while and do-while templates
7.2 More applications of the conditional loops
7.3 The if-goto loops (C++ only)
Exercises
Supplementary exercises

8 One-dimensional arrays
8.1 vectors
8.2 More applications of the arrays
Exercises
Supplementary exercises

9 Two-dimensional arrays
9.1 Matrices
9.2 Solving linear equations system
9.2.1 Direct ways
9.2.2 Iterative methods
Exercises
Supplementary exercises

Hints for the exercises

Bibliography

Index

1 Basic concepts of Algorithm

1.1 Algorithm

The word algorithm is derived from the name of a great Iranian
Muslim mathematician, astronomer, and philosopher named al-
Khawrizmi1, who lived in the second century anno hegirae. In
general, by an algorithm, a set of usually predefined and orderly
instructions is meant to be followed to solve a particular type of
problem. One may perform various kinds of algorithms without
being aware of them, in their routine and daily lives. For
instance, the process of preparing a meal requires several
instructions since different stages are needed in cooking and
preparing it for serving. Take as another example, attending a
church or mosque to say one’s praying. This ritual needs several
processes which can be turned into an algorithm. The same
applies to robots. These machines are designed based on a
special algorithm which includes a set of instructions to
implement them in a way that when such instructions are
implemented successively, they move harmonically and perform
the predesigned tasks accurately. Other instances could be
constructing a building, driving a car, taking medicine, setting
the table, reading a book, taking a trip, publishing a book,
directing an office, and many other types of activities. When a
mathematical problem is suggested in a classroom, and the

corresponding data are presented afterwards. Consequently,
particular solutions are expected to be obtained. Accordingly, a
problem-solving algorithm is implemented2 in order to arrive at
specific results. Even the processes which follow in somebody’s
mind during solving a problem in their personal lives, some
kinds of algorithms occur somewhat differently, for these
algorithms are not predefined vividly.

Having understood a problem, one could investigate various
steps to approach the solution. That, in turn, requires several
other phases to arrive at a certain finding to the posed problem.
In the following, a more concise and accurate notion of the
construct of a standard algorithm is elaborated and defined.

An algorithm refers to a set of instructions applied in solving a problem. Accordingly,

four different phase are required to perform this activity. These particular

characteristics include: concise expressions, adequate details, the order of the

phase, and the completion phase. Hence, the presences of all these features are

absolutely essential to perform a standard algorithm.

There are many discussions which lack all those four
characteristics mentioned in the definition given above. For
instance, suppose the instructions to take a particular medicine
are given as follows. Dissolve a teaspoon suspension in a glass of
water and drink it three times a day for ten days. It is obvious
that this instruction does not include some of the features
mentioned in the construct definition given above. First, the
exact capacity of a teaspoon, or a glass is not specified precisely.

Second, it is not clear whether “three times a day” means one
per every eight hours or after each daily meal. Third, the order
of pouring the medicine and water inside the glass are not
explained concisely. In some cases, the accurate order of
instruction seems to play a phenomenal role such as pouring
boiling oil and water.

From now on, by algorithm, the one with all of the four
mentioned features is meant. As mentioned earlier, different
types of algorithms have already been implemented in our daily
lives. It is worth mentioning that the ideas that are made in the
brain can be transformed into algorithms, not those based on
the feelings erupting from the heart. In other words, all human
activities caused by the five senses could be expressed in the
form of various algorithms.

To further elucidate the relationship between algorithms and
the processes happening in the brain, an example is given to
elaborate it and make a feeling of the issue. Assume you have
been requested utter even numbers from 2 to 10. You quote 2, 4,
6, 8, and 10, immediately. Nonetheless, have you ever wondered
the processes which occur in the brain to mention them so
promptly? To further expatiate the issue, imagine a video
records the reactions and the processes which happen in your
brain while enumerating the even numbers from 2 to 10. That is,
the processes which starts off ever since the question is posed
and duration in which the brain’s processes is to provide an
answer. Having recorded the process, watch the recorded item
in a slow motion. Then you can visualize different processes the
brain applies not only in analysing the issue but arriving at a
solution to the posed problem that, in turn, is changed into an

algorithm. Thus, if that algorithm is given to somebody else to
implement, they will arrive at the same solution that have
already been achieved.

In short, the answer to the posed question is divided into two
parts. The first part examines what the brain’s commands, step
by step.

Put the number 2 (the first even number) in the “memory”. Then, till the number

in the memory does not exceed 10, repeatedly, write up or utter the number in the

memory and then add 2 to it and substitute for the preceding number in the

memory.

The second part analyses these processes in the brain very
carefully and patiently in full details in order to convert it into
an algorithm.

Algorithm 1.1(a).
1. In a particular “location”, first put number 2;

2. Write the number in the location;

3. Add 2 units to the number in this location and substitute

the result for the preceding one;

4. If the number in this location is less than or equal to 10,

continue implementing the algorithm from the

instruction number 2;

5. Or else, complete implementing the algorithm.

By the “place” in the above algorithm, we mean the “memory”
mentioned in the brain’s commands. In the brain, this algorithm
is, indeed, implemented quickly and the answer to the above
question is achieved. We too, along with the brain, but slower

than it, implement this algorithm precisely and record the
results in the table below.

Tab. 1.1(a): Results of implementing Algorithm 1.1(a).

The core aim of this book is to create and gradually strengthen
the ability to imagine a slow motion (video) of the brain’s
process and analyse the details of it, also, express them as an
algorithm in the readers. The extreme importance of the ability
in designing algorithms can be understood in the following fact
which is the slogan of the book.

You will be a good programmer whenever you become a skilful algorithm

designer!

Yes, programming is as simple as this, provided that you possess
elegance, precision, and sensitivity; elegance in imagining and
analysing the brain’s commands, precision in designing an
algorithm, and sensitivity in the correctness of the algorithm
and fixing the probable mistakes.

Expressing the recent algorithm in the writing form seems
vulgar. By establishing and defining appropriate symbols and
variables, we could express it in a simple and symbolic form. We
present the requested even number with the variable E. The

variable E is, in fact, the “memory” in the brain’s commands or
the “place” in Algorithm 1.1(a). We will use the assignment
symbol E ← 2 to assign (save) 2 to E and the E ← E+2 in order to
add two units to the last value saved to E and substitute for E;
that is, after adding 2 units to the last value of E in the memory,
the last value is removed and the new value substitutes (saves)
for it.

The direction of the arrow in these standard symbols should always be from right to

left. Using a symbol such as 2 → E is incorrect. The reason will be explained in Chapter

4.

With the given symbols, we modify Algorithm 1.1(a) into a
simpler form.

Algorithm 1.1(b).

In this algorithm, there exists a loop, (instructions which are
repeated several times) where the direction of the repetition is
marked by an arrow. Note that the words like “read, write
(print), go to, if, then, terminate”, etc., also, some of the algebraic
operations used for the algorithm implementer are assumed to
be predefined.

Now we modify Table 1.1(a) to Table 1.1(b), called the
implementation table3.

Tab. 1.1(b): Implementation table of Algorithm 1.1(b).

Processing E Output

before the loop 2

first iteration 4 2

second iteration 6 4

third iteration 8 6

forth iteration 10 8

fifth iteration 12 10

Rule 1 of arranging implementation table: Create columns according to the number

of variables. Also, consider a column for the resulting outputs of the algorithm. Now in

the top row, we specify the column heads. The second row, named “before the loop”, is

assigned for the results of the instructions before the loop, if any. Then, in each row, we

write down the results of each iteration of the loop. The final row dedicated to the

instructions (mainly one or more printing) implemented after exiting the loop.

Although, arranging this table is often simple, its importance is
not less than the importance of the given steps for writing an
algorithm.

If there is any carelessness in arranging the implementation table, we might not be

able to notice the malfunctioning of the algorithm and all of our efforts for writing an

algorithm would be wasted.

When arranging the implementation table, we are, in fact,
putting ourselves in the place of the implementer of the
algorithm, which could be a human or a machine, and we are
implementing the instructions of the algorithm in the given
order. What is seen in the output column of the implementation
table will be displayed, with a specific pattern, in the output unit
of the computer.

Why are we stressing the importance of algorithms? This is
primarily because an algorithm is the structural language of a
computer program in any programming language. Undoubtedly,
all computer programs are rooted in one or several algorithms.
Computers are basically founded on algorithms. Hence, without
algorithms, a computer is nothing but a bunch of useless pieces.

Generally, when we are solving a problem, we are thinking at
different moments, subconsciously, about cases such as: Where
should I start from? What should be done now? Is it time to get
the input? What inputs? Is it time to insert the results? What
results? Is it time to make a (double or multiple) decision? What
decision? Is it time to form a loop? What loop? From where
should I start the loop and how should I end it? Has the problem
ended completely?

Several steps are conducted for answering each of the above-
raised questions. The position of these steps and their order are
very important as they lead to the right direction of solving the
problem.

When we write an algorithm, we express the solution of the
problem in a stereotyped manner. In other words, we arrange
the steps required to solve the problem next to each other in a
stereotyped way regarding their position and order.

The algorithm of a problem plays the role of the solution of it
and writing a program in a programming language is like
expressing this solution in that language so the computer can
execute it. What is important is the solution of the problem. This
is because in order to express it in a programming language, we
only need to be familiar with the rules and regulations of that
language; however, if we do not know the solution, even if we
know many programming languages, they will be of no use since
we do not know what to write.

If you take a look at cites [4, 7, 13, 17−19, 22] and the similar
programming references based on algorithms (flowcharts), you
will get a more thorough understanding of this fact. The author
of these books have tried to represent the similarities of the
syntaxes of the statements of the C++, Java, Pascal, and Fortran
languages and to conclude that if you know a programming
language, you could learn another programming language very
readily in a short period of time. At least for the computational
purposes in the fields of Mathematics, Physics, and most of
engineering courses, the learning of how to program is based on
understanding the algorithm. You will definitely confirm this
fact once you complete reading this book.

On the other hand, if the solution is not correct, what we
write is nothing but a waste of time. In other words, the more
we haste in writing the program, the more time we spend and
the later in achieving a good program. Conversely, if we pay

more attention to the details of the solution of the problem and
express them as an algorithm, writing a program will be nothing
but a simple translation of the algorithm with the use of a few
specific formats and a limited set of rules.

Of what has been discussed about algorithms until now, we
can provide some concluding remarks on the general steps of
writing an algorithm.

Steps of writing an algorithm:

First step (solving the problem). We solve the problem with the scientific method of

the relevant field and write down the required formulas if there are any;

Second step (analysing the solution). We picture, stage by stage, the responses and

processes of the brain in arriving at the solution with complete elegance. We review the

details of the solution from the brain’s point of view and identify and analyse all of the

steps regarding their position and order; Third step (writing the algorithm). By

defining the variables, if necessary, and with a lot of precision and patience, we review

the analysis the solution to the posed problem in the second step and we write down

each stage regarding its position and order in the language of algorithms (we will start

studying the language of algorithms from Chapter 3);

Fourth step (implementing the algorithm). We should be sensitive in the correctness

of the algorithm: We arrange an implementation table and write down the results of

implementing the algorithm in the third step inside the table.

These four steps not only show the routine procedure of
algorithm writing but also create the basis of programming.
What follows illustrates these steps:

If these steps are conducted correctly, and, if the first answer,
which is derived from the brain’s process, matches the last
answer, which is derived from implementing the algorithm,
then the job is almost complete; there is only one more step
remaining for programming and that is nothing but a
straightforward translation:

Fifth step (writing the program). Regarding the rules of a chosen programming

language, we translate the algorithm of the third step to the desired language.

Several algorithms could be written for a single problem.
However, a good algorithm should, 1) work correctly; 2) have
fewer steps; 3) not confuse the reader with a proliferation of
decisions and additional branches such as, if-then, or, goto
statements; 4) get the results as fast as possible (require the least
implementation time).

The following three algorithms are equivalent with Algorith
m 1.1(b).
1.1(c). 1. E ← 2; 2. Write E; 3. E ← E+2; 4. If E > 10 End; 5. Go to 2.
1.1(d). 1. E ← 0; 2. E ← E+2; 3. Write E; 4. If E < 10 go to 2; 5. End.
1.1(e). 1. E ← 2; 2. If E > 10 End; 3. Write E; 4. E ← E+2; 5. Go to 2.

This is while the following algorithm has less value compared to
Algorithm 1.1(b) and the three algorithms mentioned above

since it does not meet the second feature of a good algorithm.

1.1(f). 1. E ← 2; 2. If E > 10 go to 6; 3. Write E; 4. E ← E+2; 5. Go to
2; 6. End.

1.2 Flowchart

In the previous section, we got familiar with algorithms and the
two types of written and symbolic forms for writing an
algorithm. We saw that the symbolic form was simpler than the
written one. An even simpler way of writing an algorithm is by
writing it in a figurative form. An algorithm which is written
with this illustrative method is called a flowchart. In other
words, a flowchart is an algorithm written with the language of
shapes. The following table describes some of the common
constructive shapes used in drawing a flowchart including their
effects and an example of each one of them. For more
information concerning algorithms and flowcharts see the
references [2, 6, 7].

Tab. 1.2: Constructive shapes used in flowcharts and their applications.

These constructive shapes are connected to each other by
arrows. The direction of the arrows represents the flow of the
algorithm.

Rule of directions. In this book, we adopt the branches towards the right side as the

T-direction (T for True) and the branches towards the left side as the F-direction (F for

False). If the direction of any branch is downwards, the priority will be with the right

and left directions. In other words, in a right-down double branch, the downwards

direction will be F because we have already assumed the right direction as T. Also, in a

left-down double branch, the downwards direction will be T because we have already

assumed the left direction as F. These details are illustrated in the following figure.

As an example, Figure 1.1 displays Algorithm 1.1(b) visually.
Having the fact that the constructive shapes of a flowchart

demonstrate, explicitly, the related instructions, we avoid
writing unnecessary phrases such as “read” for inputs, “write”
for outputs, or “if” for decisions and branches. Also, for
simplicity, several assignment and substitution instructions
could be written in a single rectangle. In this case, upon entering
this shape, all the instructions will be implemented from top to
down.

In compliance with the mentioned cases, and according to
the recent statements, one can claim that flowcharts are
translatable to any programming language.

Fig. 1.1: Flowchart of Algorithm 1.1(b).

Since flowcharts are visual algorithms, organizing their
implementation table is similar to that of an algorithm. After
organizing the implementation table, we implement the
algorithm in the specified direction and, if necessary, give it
appropriate data and then write down the results of
implementing every instruction in its appropriate location
inside the table. The input data must be appropriate regarding
their number and their type so that they cover all of the
different states (like even, odd, negative, positive, zero etc.), and
no state is left untested as it is possible that, for example, an
incorrect algorithm would accidentally work correctly only for
positive numbers, so if negative numbers or zero are not tested,
the flaw of the algorithm would not be revealed.

1.1.1. Exercise. Change the flowchart of Figure 1.1 in a way that
instead of writing the numbers themselves, calculate and write
their sum.

1.1.2. Exercise. Draw flowcharts of Algorithms 1.1(c), 1.1.(d),
1.1(e), and 1.1(f).

Convention. Through the book, instead of the phrase “the flowchart of Figure A” we

adopt writing “Figure A” or “Flowchart A”, for simplicity.

In flowcharts, to prevent any bustle in the diagrams, some
details like printed designs, long calculation formulas, and non-
significant and huge details are not written and are applied only
in programming. In choosing the constructive shapes of the
flowchart in Table 1.2, we have focused on their applications.
However, different authors may choose different shapes to
construct flowcharts.

It is interesting to know that in the middle of the 1960s,
computer terminals were used for time-sharing access to central
computers. Before the advent of personal computers (PCs) in the
early 1970s, computers were generally large, and costly systems
were owned only by large corporations such as universities and
government agencies. End users generally could not directly
interact with the machine. Instead, in order to run a program, a
number of assignments for computer were gathered up by
punching some cards. A punched card was a flexible write-once
medium that encoded data, most commonly 80 characters.
Often, each statement, was punched on one card. Groups or
"decks" of cards formed programs and collections of data. Users
could create cards using a desk-sized keypunch with a
typewriter-like keyboard. After the job was completed, users
could collect the results. In some cases, it could take hours or

days between submitting a job to the computing centre and
receiving the output. If a small error, no matter how trivial,
occurred in a card, the program would give an error.

Now, back to the drawing board! To correct this error, one
would have had to punch another entire card, replace it with the
error card, rearrange the cards and input them to the computer.
On the other hand, the outputs were written on a printing paper,
and there were no displaying monitors. Sometimes, in the
process of running a program, the existence of an output
statement inside an infinite loop would waste a pack of papers,
like the program related to Algorithm 1.2.

Algorithm 1.2.

Fig. 1.2: Main part of Algorithm 1.2

We say that the implementation of this algorithm is locked, that
is, we have an endless loop which, if not stopped anyway, will
continue to implement forever.

We should be glad that nowadays correcting mistakes in
programs is much faster and without any waste of resources.

Generally, the time span needed from starting the programming
until acquiring its results has reached its least possible amount.

Algorithm 1.3. Write the main part of an algorithm to swap the
values of m and n.
Solution. At first glance it might look as if the two instructions
below could do this:

To see if this is correct or not, we assume that the values 5 and
10 are saved for m and n, respectively, in the memory. We
implement these instructions in succession. Implementing the
first instruction will assign the value of n, which is 10, for m.
That is to say that the previous value for m, which was 5, is
removed and the new value 10 is saved for it. Now by
implementing the second instruction, we will have the value 10
for both m and n indicating that the above-stated instructions do
not give us what is requested. Draw the implementation table!

The above problem is similar to a situation in which we have
two gauges, one containing rice and the other containing sugar,
and we want to swap the contents of the two gauges. To do this,
we have no other choice but to use an auxiliary gauge. If we
mark the rice gauge m, the sugar gauge n, and the auxiliary
gauge k, then, to swap the contents of the gauges m and n, first
we pour the contents of one of the gauges, say m, into the k

m ← n

n ← m

gauge; afterwards, we pour the contents of the n gauge inside m.
Finally, we empty k into n.

Likewise, to solve our problem, we consider an auxiliary
variable k. Now we act as we did in dealing with the problem of
gauges: 1. k ← m; 2. m ← n; 3. n ← k. The flowchart of this part of
the algorithm, which is called the swap algorithm, is depicted in
Figure 1.3.

Fig. 1.3: The swap algorithm

Notation. Since this part of the algorithm will alternatively be used in the sequel, for

simplicity in drawing algorithms, hereafter instead of the given template, for swapping

the values of m and n by the swap algorithm method, we will use the front template in

flowcharts

1.3.1. Exercise. Write the algorithm to swap the values of m and
n without the use of an auxiliary variable.

1.3.2. Exercise. Write an algorithm for switching the values of x,
y and z in a way that the value of x would be transferred to y,

the value of y to z, and that of z to x.

Algorithm 1.4. Assume that you are asked to read the six
“positive” integer numbers and determine the maximum
number.

Solution. You instantly write 24. How could your brain fulfil
this? What would you do if you were given 100 numbers instead
of 6 numbers? Could you have determined the maximum
number as fast as you did now? For this problem, one might get
a pen and paper and by starting from the first number, read a
number each time and after comparing it with the next number
(next several numbers, instantly but one by one) compare the
read number with the number on the paper and, if the read
number is larger, cross the number on the paper and write the
larger one on the paper.

One might do this by whispering it to oneself instead of
writing it on the paper. The act is the same in both ways. We will
analyse, at a slow motion, the reaction of the brain in this
method for 100 numbers:

Reserve two places in the memory: the first for writing the
maximum number and the second for counting the read
numbers. Put zero in the first place. The reason for this is that
our method is comparing and replacing the larger one and all of
the positive numbers are larger than zero. Put 1 (the counter of
the first number) in the second place. Afterwards, until exactly

7 12 9 24 11 18

100 numbers are not read, each time read a number and after
increasing the counter, compare it with the value existing in the
first place. If the read number is larger than that, substitute it;
otherwise, terminate the algorithm by writing the last number
in the first place.

This is the slow-motion visualization of the brain’s
reaction, and it is from here that an algorithmic idea is
derived from it.

Before continuing to transfer the brain’s commands into the
form of an algorithm, we want you to ponder over this problem
and try to draw a flowchart for it. It is likely that your flowchart
may be different from ours which is completely natural because
we all think in disparate ways.

In order to settle this idea as a flowchart (visual algorithm),
first we define the requested variables:

n: the number which is supposed to be read;
max: the first place in the memory to write the maximum of

read numbers;
c: the second place in the memory to write the counter of

read numbers.

Defining the variables has two major advantages. First, the
implementer of the algorithm gets to know each variable and its
role. Thus, there is no ambiguity in implementing the algorithm.
Second, when writing a program in any programming language,
the data type of each variable, say, integer, real, character, etc. is
declared to the computer in an appropriate position with the
codes of the desired programming language. We will further
discuss this in the next two chapters in the C++ and Java

languages. Hence, if we know the variables well, we will be able
to choose an appropriate data type for each respective one.

Fig. 1.4(a): A testing flowchart for Algorithm 1.4.

Now we transform this idea into the form of an algorithm. To
begin with, we assign 0 and 1 as the initial values of max and c,
respectively. Then, in each repetition we first read the number n
and instantly increase c by one. Next, the read number n is
compared with the last number assigned for max; if the read
number n is bigger, it is substituted for max. Well, how do we
write the condition of repeating the loop? Let us test the
condition “if c < 100, then repeat the loop from the part of
reading n”; after implementing the algorithm, if this condition
worked correctly in the implementation table, then we are done.

Otherwise, we correct it. Also, we put printing the value of max
upon exiting the loop. Figure 1.4(a) illustrates these steps.

We organize the implementation Table 1.3 of Flowchart 1.4(a)
for the six numbers given in the hypothesis of Algorithm 1.4
instead of 100 numbers (see Tab. 1.3). We follow the fifth
repetition of the loop: the number 11 is read, one unit is added
to the value 5 c, and the new value 6 substitutes for c. Then, in
the first condition, the F-direction right is followed and since the
second condition is not true, the F-direction down is followed to
exit the loop. Although the output is correct, the numbers are
not finished yet! Therefore, the algorithm is not functioning
properly and to remedy it, we may change the second condition
to c ≤ 6 or c = 6 (in the case of one hundred numbers to c ≤ 100
or c = 100) (see Fig. 1.4(b)).

Fig. 1.4(b): Modification of Flowchart 1.4(a).

Tab. 1.3: Implementation table of Flowchart 1.4(a).

Fig. 1.4(c): Modification of Flowchart 1.4(b) to work for arbitrary numbers.

We witnessed that organizing the implementation table,
First, showed that the algorithm is not working correctly;
Second, revealed where and how to fix the problem.

Rule 2 of arranging implementation table. In organizing an implementation table,

we limit the number of repetitions if there are too many of them and we choose the

data which is supposed to be read in an appropriate and varied manner.

Question. Does Flowchart 1.4(b) work for 100 “arbitrary”, not
just positive, numbers? If not, then how should we modify it to

have a desirable flowchart?
Answer. It is clear that the answer is negative. For instance, if all
the numbers are negative, then the algorithm would not work
correctly, and the output will be 0. What should we do?

The answer would be trivial if we were aware of the essence
of the numbers. For example, if we knew that all the numbers
are greater than –1000 then we could have taken that number as
the initial value of max and left the other parts of the flowchart
unchanged. However, if we do not have such an assumption,
then the solution is to read the first number before the loop and
take that as the initial value of max. Figure 1.4(c) shows this
process.

Though reorganizing the implementation table, we see that
one more alteration needs to be done: we should take 2 as the
initial value of c. In fact, we start counting from 2 because one
number is read before the loop.

To this point, we have only introduced the algorithm and
flowchart with a few examples. We will start the techniques of
writing algorithms from Chapter 4.

Convention. From now on, throughout the present book, wherever we speak of

algorithms, we mean visual algorithms, that is, flowcharts.

2 Fundamental concepts of programming in C++

C++ is a middle-level programming language and is the successor of the C programming
language which was first introduced by Denis Ritchie at the AT&T’s Bell Laboratories in the
USA in 1972. Denise Ritchie used the concepts of BCPL and B to develop C and added data
typing as well as some other powerful features.

The inception of C++ programming language began in 1979 when Bjarne Stroustrup was
working on his Ph.D. dissertation. He started working on a new language with an object-
oriented paradigm, Simula, and mixed it with the features of C programming language. In
1983, he included some add-on features such as classes and called the “C with Class” as C++.
Also, C++ is interpreted as C+1, denoting one (skill) more than C; for, as we will see in the
sequel, the ++ operator adds 1 to its operand. The first commercial edition of C++
programming language was released in October 1985. C++ is standardized by the Joint
Technical Committee ISO/IEC JTC 1 of the International Organization for Standardization
(ISO) and the International Electro technical Commission (IEC) that develops and facilitates
standards within the fields of programming languages, their environments and system
software interfaces. So far, five revisions of the C++ standard have been published, and
currently the next revision, named C++20, is under way. These revisions are shown in Table
2.1.

Tab. 2.1: Revisions of the C++ standard.

Year C++ standard Informal name

1998 ISO/IEC 14882: 1998 C++ 98

2003 ISO/IEC 14882: 2003 C++ 03

2011 ISO/IEC 14882: 2011 C++ 11, C++ 0x

2014 ISO/IEC 14882: 2014 C++ 14, C++ 1y

2017 ISO/IEC 14882: 2017 C++ 17, C++ 1z

2020 to be determined C++ 20

C++ runs on a variety of platforms, such as Windows, Mac OS, GNU/Linux, and the various
versions of UNIX. Anyone who has used either an Apple Macintosh or a PC running Windows
has indirectly used C++ because the primary user interfaces of these systems are written in
C++.

2.1 Primary concepts

Since the aim of this book is elementary programming, in this chapter we will introduce the
fundamental concepts which are essential for elementary programming in C++ and leave the
supplementary details for the books involved with advanced programming in C++.

2.1.1 Reserved words

A reserved word (or keyword) is a word defined for the C++ compiler for a certain purpose
and cannot be used for any other means except for comments. It is “reserved from use
elsewhere”. This is a syntactic definition, and a reserved word may have no meaning. C++
programming language has 95 reserved words of which only 32 basic reserved words were
also present in the C programming language and have been carried over into C++. Having
these number of reserved words, C++, is still one of the fastest and most efficient
programming languages. Some of the C++ reserved words that will be used alternatively in
this book are summarized in Table 2.2.

Tab. 2.2: Some frequently used reserved words in C++.

The C++ compiler is case sensitive; therefore, For and for will show different behaviours in
the C++ compiler.

2.1.2 Identifiers

An identifier is a name used to identify a variable, constant, function, subprogram, or other
user-defined items. This naming is more important, especially in variables.

Rule of naming identifiers. An identifier is a combination of letters A to Z or a to z, underscores, and digits 0 to 9, provided

that the first character cannot be a number.

For example, the names below can be used as identifiers:

– Although identifiers may be longer, they must differ in the first 31 characters if you want to be sure that your programs

are runnable in most versions of C++. Some of the old versions of C++ recognize only the first 8 characters of an identifier.

– An identifier should not include the blank space character.

– The first character of an identifier is not recommended to be an underscore character. Beginning identifiers with an

underscore is considered poor programming style.

– An identifier cannot have two consecutive underscores.

– An identifier cannot be a reserved word. Reserved words have predefined special meanings for the compiler.

– We will use the above rule and notes, which are valid for all versions of C++, for naming identifiers. However, in the recent

versions some other characters are allowed in naming identifiers.

For example, the names below are forbidden to be used as an identifier:

Here, the symbol “␣” stands for the whitespace character (spacebar key) on the keyboard
and we will use it for this purpose wherever an emphasis is required or if a failure to its
expression causes confusion.

2.1.3 Data types

The name of a program bears no quantity and, only contains a nominal value. By a data, we
mean an identifier containing a quantity. In order for a data to carry information, it should
have a type. C++ offers the programmer a rich assortment of built-in as well as user-defined
data types. The basic data types are as follows.
1) Integer data type int, used for integers.
2) Floating point data type float, used for real numbers with less precision.
3) Double floating point data type double, used for real numbers with high precision.

Several basic types, like the numerical types mentioned above, can be modified using one or
more of the type modifiers short, long, signed, and unsigned. All the numerical types, in two
integer and real groups, are gathered in Tables 2.3 and 2.4, respectively including their range
of values which can be stored in the data as well as the size of the data, in bytes, which is
saved in the memory. The modifier signed does not make any changes and we have not used
it in the tables. For example, the data types int and signed int are the same.

Tab. 2.3: Types of integer data.

Type Range Size (bytes)

int –2,147,483,648 to 2,147,483,648 4

unsigned int 0 to 4,294,967,295 4

short int –32,768 to 32,767 2

unsigned short int 0 to 65,535 2

long int –2,147,483,648 to 2,147,483,647 4

unsigned long int 0 to 4,294,967,295 4

long long –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 8

unsigned long long 0 to 18,446,744,073,709,551,615 8

In Table 2.4, a E b means a × 10b.

Tab. 2.4: Types of floating point (real) data.

Type Range Size (bytes)

float ±3.4028 E –38 to ±3.4028 E 38 4

double ±1.7977 E –308 to ±1.7977 E 308 8

long double ±1.1897 E –4932 to ±1.1897 E 4932 12

There are two reasons for distinguishing the two types of integers and reals. First is the size
of the relevant data stored in the memory. As seen in the tables, the integer data sizes are
relatively less than those of the real data. The second reason is that these two types show
completely different behaviours in calculations. In particular, calculating with integer data is
much quicker.
4) Character data type char, which carries a character. Each character data is stored in one

byte of the memory. In C++, each character data should be written between two
apostrophes, for example:

Whitespace is also considered as a character.

The two character types are shown in Table 2.5.

Tab. 2.5: Types of character data.

Type Range Size (bytes)

char –128 to 127 1

unsigned char 0 to 255 1

The range and size of data might be different from those shown in the above table,
depending on the compiler and the computer system one is using. By the sizeof operator (see
the operators subsection below), one can produce the correct size of various data types on
the used computer.

5) String data type string, which stores a sequence of letters, digits, and other characters. In
programs, a string must be placed between a pair of quotation marks. For example, "The
value of st1.id_no = " is a string. We will study storage of strings in Chapter 8.

6) Boolean type bool, which are true or false. The default numeric value of true is 1 and
false is 0 and these data types can be used in mathematical expressions, although we do
not recommend this.

7) Valueless data type void, which will be discussed later.

There is also another wide character data type wchar_t, which we will not use in this book.
Each data appears in either constant or variable form in the program. We emphasise that
identifiers are mostly used in naming variables, constants, subprograms, and user-defined
functions. In this book, we will be dealing mostly with integer and real data types.

2.1.4 Variables

A variable is an identifier which could be changed during the program. The variables used
in a program must have a type. Defining the variables and determining their types in a
program is done by the variable declaration syntax as shown below.

Syntax (variable declaration):

a data type ˽ one or more variables ;

For example, the part

of a program, declares to the compiler that the variables x and y are of int type, m and n of
float type, c1 and c2 of char type, d of double type, and p of long int type.

When we want to use a variable in a program, we should first choose a name for the
variable based on the role of the variable in the program. For example, the names sum for
the summation of a series and count for the counter of input numbers may be suitable
names. We could even use abbreviations for naming. For example, matA would be an
appropriate name for the matrix A. Anyway, the choice of the names is up to the

programmer with no limitations for it. We should only follow the rule of naming identifiers.
In this book, for the task of simplicity and avoiding large size programs, we will use short
names for variables.

After choosing a name for a variable, we choose a type for it resembling in some sense its
application. For instance, it is clear that a variable named count, which acts as a counter of
the input numbers in the program, should be an integer type. If a variable is used in a
program without declaration, an error will show up.

The variables discussed above are normal variables in C++. On the other hand, C++ is an
object-oriented programming language in which feature each variable has an access
specifier. An access specifier specifies the positions from where the variable can be accessed.
The object-oriented feature of C++ will be discussed in Section 3.3.

Since variables have an essential role in programs, a clear understanding of them is
necessary. For this purpose, according to the figure below, a variable could be imagined as a
box whose name is the name of the variable, and its content is an amount (numeric or non-
numeric) with the same type of the declared name. Moreover, with the object-oriented
feature each variable has an accessibility area.

2.1.5 Constants

A constant is an identifier which has a fixed value in the program and cannot be changed
under any circumstances. Defining the constants and specifying their types in a program is
done by one of the following constant declaration syntaxes:

Syntax (constant declaration):

#define˽ name of constant˽ value of constant;

const˽ a data type ˽ name of constant = value of constant;

For example,

Declaring variables and constants can be done at any point in the program. However, most programmers prefer to do this at

the beginning of the program.

By a block in programming we mean a sequence of declarations and statements within a
pair of curl braces {}. The content of a block always starts at a new line, shifted two or three
spaces to the right. The opening brace { of a block can be placed at the same line of the
element that opens this block. The closing brace } should be written on a separate line placed
at the same column as the beginning of the element that opens the block. The block-style
mentioned above is one of the essential styles of programming. We often ignore using the
curly braces for a block which contains a single statement. The rule related to the grouping
of the blocks is explained in Chapter 4.

2.1.6 Operators

An operator is a symbol that makes the compiler perform specific mathematical or logical
manipulations. An operator acts on either single or double operands surrounding it.
Operators are divided into several categories.
1) Arithmetic operators. These operators in C++ are gathered in Table 2.6.

Tab. 2.6: Arithmetic operations.

Considering an important note when working with the / operator is necessary.

If at least one of the operands of the / operator is a real value, the result will be real, On the other hand, if both of them are

integers, the result will be the quotient of the numerator by the denominator.

Two examples in Table 2.5 resemble the above-mentioned fact. In such cases, if we want to
use the / operator for the purpose of division, one reliable method is to write the phrase
(float) before the expression. For example, if the values 10 and 8 have already been stored
for the variables r and s, respectively, the result of (float)r/s would be the exact value of the
division, which is 1.25.

– The result for each of the operators +, -, and * is integer only when both the operands are integers.

– The right side operand of both operators / and % must be nonzero. Otherwise, either an error will show up or the results

will be incorrect.

– Both operands of the % operator should be an integer.

– If one of the operands of the % operator is negative, then we will have the following rules:

If a < 0 and b > 0, then a % b is equivalent to -(-a % b);

If a > 0 and b < 0, then a % b is equivalent to -(a % -b);

If a < 0 and b < 0, then a % b is equivalent to (-a % -b).

– If either of the operators ++ and -- comes before its operand in calculations, at first, this operator acts, and then the result

participates in the sequel calculations. However, if it comes after the operands, the current value of the operand is used

and afterwards the operator acts on its operand.

To clarify the last explanation, we provide three examples in Table 2.7. First of all, it is
necessary to mention that the expression i++ in algorithm language is written as i←i+1. In the
first two examples of the table, we assume that the value 10 has already been saved for the
integer variable x in the memory, and, in the third example, we further suppose that the
integer variable y holds the value 15 in the memory.

Tab. 2.7: Examples of the operators ++ and --.

Example Algorithmic meaning Result

y = ++x x ← x + 1 x: 11

y ← x y: 11

y = x++ y ← x x: 11

x ← x + 1 y: 10

m = ++x + y++ x ← x + 1 x: 11

m ← x + y m: 26

y ← y + 1 y: 16

2) Relational (comparative) operators. Table 2.8 specifies these operators in C++.

Tab. 2.8: Relational (comparative) operators.

The result of the effect of these operators on their operands will be a logical value (1 for true
and 0 for false). If the operands are characters, the comparison will be made based on the
order of the character s’ locations in the ASCII code table.

3) Logical operators. These operators in C++ appear as shown in Table 2.9.

Tab. 2.9: Logical operators.

Operator Notation in logic Meaning

! ~ negation

&& ^ and

|| v or

– The! operator has only one operand. !p is true whenever p is false and vice versa.

– p&&q is true if and only if both p and q are true.

– p||q is false if and only if both p and q are false.

4) Assignment operators. Table 2.10 lists the assignment operators supported by C++. With
the exception of the first one, all operators are compound.

Tab. 2.10: Assignment operators.

The expression x = y makes the compiler assign (substitute) the value of y to x. This
assignment operator is also called the assignment statement since it behaves like a
statement (see the next section).

– Do not confuse the == relational operator with the = assignment operator. Using the == operator instead of the =

statement often causes an error. However, using the = operator instead of the == operator does not trigger an error.

Nonetheless, it could engender delicate logical errors which could eventually lead to serious problems.

– There must not be any space between the two characters in the compound assignment operators; for example, +˽= is

illegal.

Apart from the above-cited classical operators, there are also some miscellaneous operators.

5) The ? operator (two-way branching). This operator has the syntax below:

Syntax (? operator):

condition ? expression 1 : expression 2

Effect: If the condition is true, then it returns the value of expression 1; otherwise, it returns
the value of expression 2. For example, consider the following assignment statement.

Here, var is assigned the value 1 if y is greater than 5 and 0 if it is not. The effect of this
assignment can be illustrated in the language of flowchart as displayed in the following
figure.

6) The , operator. The syntax of this operator is as follows.

Syntax (, operator):

expression 1 , expression 2 , … , expression n

Effect: The purpose of the comma operator is to string together several expressions. The
value assigned to a comma-separated list of expressions is the value of the rightmost
expression. The values of other expressions will be discarded. This means that the rightmost
expression will become the value of the entire comma-separated expression. Two
assignment examples are presented in Table 2.11 to clarify this further.

Tab. 2.11: Two examples of the , operator.

Example (assignment statement) Result

var = (count = 19 , i = 10 , count +1); var: 20

i = (i++ , i + 100 , 999 + i); i: 1010

As you can see, the second (middle) expressions in both examples are discarded. The
parentheses are necessary because the comma operator has a lower precedence than the
assignment operator.

7) The sizeof operator. This operator returns the size of its operand, which is the number
of bytes it occupies in the memory. For example, if the variable var is declared as a
characteristic variable for the compiler, then the result of sizeof˽var will be 1. As
another example, the result of sizeof(int) is 2. In the
latter example, the parentheses are necessary; otherwise, the compiler will identify int
as a variable instead of a data type.

There are other types of operators like bitwise operators and other miscellaneous operators
which are not used throughout this book.

2.1.7 Library (predefined) functions

In every programming language, certain standard mathematical functions with
mathematical applications, so called library functions, are predefined for the compiler of
the processor of that language. Most of these functions, like sin(x), appear in all of the
programming languages with the same name. However, some of them, like [x], the round
down of x (the least integer not greater than x), are defined by different names in various
languages. In C++ language, the most frequently used library functions are summarized in Ta
ble 2.12. These functions are available in all of the recent versions of C++. Advanced versions
might contain additional functions. It should be noted that there are some library functions
applied for other than mathematical purposes but, in this book, we will not use such
functions.

Tab. 2.12: Some library functions supported by C++.

Note that the arguments of trigonometric functions are in radian.
In Chapter 5, we will see that, in addition to the library functions, a programmer can

define any other needed function in subprograms which are usable in any other program.

– Note the limitation of some arguments. For example, the argument of the functions log() and log10() must be positive and

that of sqrt must not be negative. The same note should be taken for the function pow.

– Never use the name of any library function for naming any identifier like a variable or a constant in a program; otherwise,

that function will lose its effect, which in turn could cause problems in the results of the program.

2.1.8 Arithmetic and logical expressions

In mathematics, an expression such as

2 sin x+10
x2

containing numbers, variables, mathematical functions, algebraic operators, fractions,
or/and pairs of parentheses is called an algebraic expression. An arithmetic expression in
C++ is a combination of variables, constants, library functions, arithmetic operators,
fractions, or pairs of parentheses. The result of an arithmetic expression is a number. The
logical expressions are defined similarly. Each one of the expressions below is an example
of an arithmetic expression in C++:

In mathematics, xy means x multiplied by y but, in C++ the phrase xy means a variable with this name. Always bear in mind

that:

– Write the multiplication of x in y as x*y not xy;

– Write the multiplication of 2 in t as 2*t not 2t;

– Write the multiplication of -12 in 4.5 as -12*4.5 not -12(4.5);

– Write the division of (x-y) by t as (x-y)/t not x-y/t;

– Write the division of 1 by ab as 1/(a*b) not 1/a*b.

– Avoid writing expressions which result in an illegal value such as a number divided by zero.

When several arithmetic operators act in succession, they act with a top-down priority

and subject to the following rule. Note that the = assignment operator has lower priority
than all the arithmetic operators.

Rule of priority of operators. if an operator has a higher or equal priority with respect to the next operator, it acts.

Otherwise, the operator does not act until the next operator is compared to its next one likewise. When an operator acts, it

results in a numeral amount. Now, the previous operators which had been passed over, are executed. Afterwards, we go to

the next operators and continue this procedure until we acquire the result of the expression.

During this procedure, 1) whenever we encounter an open parenthesis, at first, we calculate the amount inside the

parentheses until it closes. Then we continue the procedure. In the case of nested pairs of parentheses, the priority is with the

inner one; 2) whenever we encounter a library function, first, that function affects its argument(s), thereby resulting in a

numeral amount, then we continue the procedure.

The priority of some arithmetic operators together with the assignment operator in the two
examples below are shown under each operator, as under scripts:

Generally, the mentioned rule is used for arithmetic, relational, logical, and assignment
operators with a top-down priority as shown below.

Since in this book we are dealing with only the above-mentioned operators, we skip the
discussion about other standard and miscellaneous operators and their priorities. Now we

are in a position where we could simply and accurately translate algebraic expressions to
C++ codes. Regarding the following notes is strongly recommended.

– To get accurate results from the program and avoid any probable mistakes, pay attention to the type of the variables and

constants when choosing their names.

– By considering the priority of the operators, you could avoid writing extra parentheses unless you have doubt in using

them, in which case, take caution and use the parentheses.

– Pay extra attention when choosing the type of the library functions and the type of their arguments. Especially when

writing the arguments of the trigonometric functions based on radians.

– Note that two relational operators cannot follow each other consecutively. For example, the expression -2 < x < 2 is illegal

in C++. Instead, you should write: (-2 < x) && (x < 2). While considering the priority of the relational operators and the &&

operator in the expression above, the existence of parentheses is necessary.

Example. A number of algebraic expressions are written as C++ codes below:

Exercise. Translate the expressions below to C++ codes (what we mean by expression is only
the calculation, also, the e number is assumed as the Napier number which could be written
as exp(1)).

5(x+y)+2z

x−y : (5 ∗ (x + y) + 2 ∗ z)/ (x − y)

πR2 + k+m
R : pi ∗ (R ∗ R) + (k + m)/R

4 cos (x + 2y) − 2 sin2 (x2) : 4 ∗ cos (x + 2 ∗ y) − 2 ∗ pow (sin (x ∗ x2), 2)
ρ

ln x+√ex−e−x

|xy|

: ro/ (log (x) + sqrt (exp (x) − exp (−x))/fabs (x ∗ y))

t√|m2 − n|, sin (x3) cos2 (2y), 2 + √2 + √2 + √2 + √2, cos (√e), ln x + ρ
√ex+e−x

|xy|

a2+c
(y3+2)(x3−5)

, sin3 (tan (log (x))), sin2 (x cos (2y)) + sin x2 cos (2y).

2.2 Introduction to programming in C++ language

Based on computer type, the reader is responsible for installing and using an appropriate
Integrated Development Environment (IDE) to work with. The related programming
techniques are discussed in the present book. In addition, all C++ programs are run in Dev
C++ 5.11 IDE workspace.

Statements are fragments of the C++ program which are executed in sequence. The body
of any function is a sequence of statements. The functions are discussed in Chapter 5. For the
present purpose, it suffices to indicate that a (main) program is the function

A C++ program pattern:

Hereafter, the italic phrases are not per se parts of the codes of the program in
programming. Instead, what is required is replaced for these phrases. Before explaining the
details of the above pattern, some programming styles are expressed which help have clear
programs for us as well as the users reading and executing these programs. The block-style
were previously explained (Subsection 2.1.5). We describe some more styles as follows.
− A blank is used after the comma and semicolon separators.
− A blank is employed before and after the binary and relational operations. For example,

the expressions a = b + c and i < -1 are considered well-read compared to a=b+c and i<-1,
respectively; however, this style is not applied in two-column programming since space is
limited.

− No blank is utilized before the unitary operators ++ and --; the expression j ++ is illegal.
− No blank is used between the function name and the parenthesis of its arguments; Never

use prime (n); instead, use prime(n).
− A blank is applied between each of the keywords if, for, switch, and while and the

parenthesis just after them; for instance, use if (b > 0), for (i=1; i<=n; i++), while (t==0).
− Avoid making long lines (i.e., not longer than 120 characters).
− A long statement can be written in any number of lines.
− More than one statement can be written in a single line although it is not recommended.
− The two consecutive input are separated by a space. Never use comma or semicolon for

this purpose.

The body of a function is a compound statement which, in turn, is a sequence of statements
and/or declarations (with at least one element) surrounded by curly braces:

{ statements and/or declarations }

Other types of statements are expression, selection (deciding and branching), iteration (loop),
and jump statements. An expression followed by a semicolon is a statement. Most statements
are expression statements in C++. The other types of statements are dealt with in Chapters 4,
6, and 7. Additionally, various types of subprograms including functions are covered in Chap
ter 5.

The operating system of the computer starts executing the program from:

int main()

and upon completing the body of the program, the statement:

return 0;

takes the amount zero to the operating system and announces the termination of the
program. We may use the function void main() instead of the function int main() and remove
the return 0 statement.

The first programming statements, namely, the essential ones when working with any
programming language, are output and input statements.

2.2.1 Output statement

The process of writing the outputs is conducted using the output cout statement with the
following syntax.

Syntax (output statement):

cout << expression 1 << expression 2 << ... ;

Upon executing this statement, expression 1, expression 2, and the like are written in the
output unit, respectively, after their probable calculation if there is any. Then, the cursor
remains in its position for another reading or writing (if there are any). Here, the output unit
is supposed to be the screen. The expressions in the list of cout statement could be:
1) Constant, variable, arithmetic expression, or any other kind of expression;
2) A string, such as "The sum is: ␣ ". In this case, the exact phrase between the pair of

quotation marks is printed, which is:
The sum is:␣
Throughout this book, strings in the C++ programs are mainly used for the purpose of
input notifications or output headings.

3) A format (output layout). The formats are discussed later;

4) A escape sequence or control character in Table 2.13 (these characters should be placed
between a pair of quotation marks, for example "\t");

5) endl, which is the same as "\n".

Tab. 2.13 The escape sequences or control characters.

control character name effect

\n new line move to the beginning of the next row

\t horizontal tab move to the beginning of the next eight column (next tab)

\v vertical tab move to the beginning of the next eight row

\b backspace back up one character removing it

\r carriage return move down a line

\a bib sound a bib

\" double quote write the " character

\ backslash display the \ character

\? question mark display the ? character

\: quotation mark display the : character

Program P2_1 is the first program in C++.

Output:
Welcome to C++ programming world

The namespace statement

using namespace std;

employed in most C++ platforms are discussed in Section 3.3. Assume that this statement
provides a wide variety of facilities for the program including output and input statements.

Since input and/or output data exist in nearly every program, we have the preprocessor
directive

#include <iostream>
in every program posited at the beginning of the program before the function int main().
This pre-processor directive provides the input/output stream for the program by loading the
iostream header. In some old versions, the suffix . h is added to the headers.

Hereafter, the namespace statement and the pre-processor directives are counted as parts of a program.

In general, pre-processor directives are the lines included in the code of the programs
preceded by the hash sign, #. These lines are not program statements, instead, they are
considered directives for the pre-processor. The pre-processor examines the code before the
actual compilation of the code begins and resolves all these directives before any code is
actually generated by the regular statements. To put it differently, a pre-processor directive
opens a gate of C++ capabilities and facilities for the program, corresponding to the
concerned header. There are only a few pre-processor directives in C++ which individually
explained whenever needed.

For clearing the work pad, the statement

clrscr;

is frequently used. In this case, we should place the pre-processor directive

#include <conio.h>

at the beginning of the program.
In some of the versions, in order to see the output of the program, the statement

getch();

should be written before the ending statement return 0.
The following is another program, in which the header math. h is loaded to the program

by the pre-processor directive.

Output:

Be aware that in the above program, whatever is between the pairs of quotation marks is
directly transferred to the output and written without participating in the process of
executing the program except for the control characters. The expression ″\n\n″ is used to
create an empty line. Equivalently, endl<<endl can be employed for this purpose. The two
statements:

are equivalent to the following statements:

If we have the statements:

then, the malformed output

is the result. Examine it for yourself!
The programmer may want to provide additional comments of the program for the user

within the program which should not participate in the process of executing the program.
There are two ways to write comments. Line comments come after two forward slashes // up
to the end of the line. On the other hand, block comments start with a forward slash and an
asterisk /* and terminated with an asterisk and a forward slash */. Further, block comments
can extend across as many lines as needed. You can find examples for the use of such
comments in Program P2_2. It is noteworthy that the purpose of using comments is for the
transparency of the program so that if anyone else reads the program, they can easily
understand what the program is about and what the details of the program are.

2.2.2 Input statement

So far, we found how the constants are declared and determined, as well as how to declare
the variables. There are three ways of determining a value for the variables.
1) When declaring the variables, for example the part

declares the two variables x and y as integer types and puts the value 10 in y. Then, it
declares the variables c1 and c2 assigning the character a and 1 to these variables,
respectively. Bear in mind not to confuse the character 1 with the number 1.
2) After declaring the variables using the assignment operator (statement) with the syntax

below:

Syntax (assignment statement):

a variable = an arithmetic phrase;

For example,

The two assignment statements:

are equivalent to the frequent assignment statement

In any frequent assignment statement, the numbers are assigned from right to the left.
The assignment statement, in addition to determining values for the variables can be

used for calculation and substitution. For instance, the statement

adds 1 to the last value of i in the memory, and substitutes the result for i.

The two expressions k = 2 and 2 = k are equal in theoretical studies, while they are completely different in programming. The

statement k = 2 specifies an assignment statement whereas 2 = k is illegal. Furthermore, the statement u = sin(h) is an

assignment statement while sin(h) = u is illegal.

3) Using the cin (input) statement, which is used in the general syntax below:

Syntax (input statement):

cin>> variable 1 >> variable 2 >> ... ;

For example, in the part

first the variables a and b are declared as real types. Then, the next statement reads their
values from the input unit, respectively, and saves the values for these variables in the
memory. The input unit is assumed to be the keyboard.

When entering the inputs, separate two consecutive inputs by one or more space characters. Moreover, never use a comma,

semicolon, or other separators to separate the inputs.

After inputting the necessary inputs, we push the Enter key, denoted by the ↵ symbol, in
order to continue running the program. Then, after entering all the inputs of the concerned
cin statement, and before pressing the Enter key, we can promptly input the data related to
the next cin statement in the current line if there is another cin statement in the program. Of
course, another way is to press the Enter key to complete the process of inputting the data of
the former cin statement and then, place the data of the latter cin statement in the next line.
Generally, the data of one or more input statements can be placed in one or more lines. For
example, if we assume that a, i, and j are all declared as int types, based on the above
discussion, upon executing the two statements

the data can be entered in any of the following four ways:

Therefore, the two above-mentioned statements are supposed to be equivalent to the
statement

and its inputs behave the same. For example, consider the program below.

The explanations related to running Program P2_3 for some of the inputs and outputs
resulting from such programs are provided in the following passage (recall that the sign ↵
stands for pushing the Enter key). By running the program, the following lines are displayed
in the screen:

In fact, after declaring the constants and variables, the output statement prints the string
“This is my first simple program in C++” in the list of the cout statement and the cursor is
transferred to the next line with the endl expression. In the new line, the constant value pi is

printed, followed by the string “˽isn't an integer”. Again, the cursor is transferred to the next
line. In this line, at first, the input notification “Enter two integers:˽” is written to request the
user to enter two integers. Next, the user inputs two integers, for example, 14 and 3,
respectively, separated by a space, and presses the Enter key. Now, the integers 13 and 4 are
stored in the memory for the int type variables a and b, respectively.

Let’s continue running the program. The next statement is an assignment statement in
which first, the expression a / b is calculated in the argument of the library function sqrt(). In
this expression, the result is 3 which is the integer quotient of a over b since both of the
operands of / are integers. Now, the square root of this number (i.e., 3) is assigned to the real
variable u. The next output statement first prints the * character. Then the control character
\t shifts the cursor one tab right (the eighth column) and prints two items in its list without
any spacing:

After the control character, the first and second items are the value 1.73205 of u, and the
round down of u which is 1, respectively. The fifth item in the list of cout statement is endl
which transfers the cursor to a new line.

Clearly, the outputs are mixed together which is definitely not good. In the next
subsection, this problem is fixed with formatted outputs and then the designing of the
outputs is delivered to the programmer.

We continue the running process. The next cout statement prints the following five items
in its list: the output heading “exp(1)˽=˽”, the value 2.71828 of exp(1) (with the default five
digits precision), the output head “,␣e␣=␣”, and the constant data 2.7182 declared for the
constant e. In addition, the last item in the list of the present cout statement, namely "\n\n",
creates an empty line. The output explained in the present paragraph is:

In the next cout statement, the two values 1 and 1.3 are combined together and written as:

11.3

The first one is considered the integer quotient of a by 10 while the second one is the real
value of a divided by 10. Recall that we should write the (double) prefix in order to have the
real value of a division in which the two operands of the / operator are integers. The third
item, endl, takes the cursor to a new line.

In the continuation of the program, the input notification “Enter two integers:␣” requests
the user to input two integers. Input 4 and press the Enter key. The running is incomplete.
Even if we press the Enter key several times, there is no result since we have not yet entered
the second input. Now enter 8:

By pressing the Enter key, the values 4 and 8 substitute for the integer variables c and d,
respectively. Then, the cout list, which is the values of the given inputs and their
multiplication, is written in succession without any spacing:

4832

Now, the running process is completed. When coding (translating) an algorithm to a
language, we strongly recommend considering the notes below. These notes are applied in
Program P2_3.

– Take the types of the variables proportionate to the types in the algorithm.

– Provide suitable input notifications, before the input statements using the cout statement. This helps the user to know

the number, type, and the essence of the data which are entered.

– Provide appropriate output headings for the outputs to present their features.

2.2.3 Formatted output

When running Program P2_3, it was found that several outputs were mixed together and
appeared in an ugly form. The outputs in C++ can be designed in various forms called
formats which we will only refer to the common ones.
1) The required width for an output can be provided by the setw(n) format in which n is an

appropriate integer or an integer variable, the value of which is already stored in the
memory.
Effect: The output next to the setw(n) is written in n columns with this format.
If this width for the intended output,
− is more than that of the required output, then, we have extra blank columns on the

left side of the output.
− is less than the width of the required output or it is an illegal number such as a

negative number or a number larger than what is considered for the format setw(), it
is ignored and thus, the output is written in a minimum number of columns.

2) The decimal precision can be provided by the format setprecision(n), where n is
replaced by an appropriate integer or an integer variable, for which an appropriate
value is already defined.
Effect: The decimal numbers are written with n precision digits which includes the
number of valuable decimal digits. If the value of n for the intended output,
− is more than the width of the required output, extra number of valueless decimal

digits is added from the rightmost columns. Depending on the programming language
version, these valueless decimal digits can be zero or other digits which when
rounded up, leading to the original number.

− is less than the width of the required output, the intended number is rounded up in
the case where the number of integer digits is not less than n; otherwise it is written
in the floating-point form “a E b”, that is, a × b10.

− is an illegal number such as a negative number or a number larger than what is
considered for the format setprecision(), it is ignored and the output is written with
the defalt precision defined for the format.

By default, the float and double data types are written with six and ten valuable digits, respectively. Note that these numbers

may differ depending on the version of the compiler.

To use the two above-mentioned formats, the header iomanip. h should be loaded by the
following pre-processor directive.

#include <iomanip.h>

In Program P2_4 below, we run the same statements as in Program P2_3 with the same
inputs while with certain formats in order to observe the effect of the above formats. You
can further examine the above-mentioned formats by varying the numbers in the arguments
of the formats.

It is worth mentioning that, unfortunately, the setprecision() format continues to the
subsequent real numbers until another setprecision() format is notified. Several systematic
methods exist to deactivate it, however, a simple way is to active setprecision(5) since the
default precision is 5 in most C++ compilers.

The object-oriented aspect of the two programming languages C++ and Java are
synchronously explained in Section 3.3. We end this chapter with the concept of pointers.

2.3 Pointers

Actually, a variable is a name for a piece of memory which holds its value. When the
program instantiates a variable, a free memory address is automatically assigned to the
variable and any allocated value is stored in this memory address. For example, when the
statement:

int x;

is executed, a location of memory is associated with the variable x. It is noteworthy that the
program needs not to care about the physical address of the data in the memory; it simply
uses the identifier whenever it needs to refer to the variable. However, obtaining the address
of a variable during the runtime is useful for a program in order to access the data cells
which are at a certain location relative to such variable.

In general, the address of a variable can be obtained by preceding the name of a variable
with an & symbol known as the address-of operator. For example, the statement:

x = &var;

assigns the address of the variable var to x; using the above statement, we no longer assign
the content of the variable itself to x while its address should be assigned in the memory.

Obtaining the address of a variable is not very useful by itself. The * dereference
operator allows us to access the value at a particular address.

Having the address-of and dereference operators added to our toolkits, we can now
discuss the pointers. A pointer is a variable which holds a memory address as its value.
Further, it is one of the flexible and strong facilities of C++ programming language which is
not supported by Java in which the other facilities are used instead. Furthermore, the
pointer variables in C++ are declared similar to the normal variables with an asterisk
between the data type and the variable name in either of the following three alternative
ways:

data type*˽variable or function;

data type˽*variable or function;

data type˽*˽variable or function;

For example, the statement:

int *x;

(read “integer x pointer” which is a commonly used shorthand for “a pointer to an integer
x”) declares x as a pointer to the int data type. The data type is not the type of the pointer
itself, instead, it is the type of the data which the pointer points to. In fact, *x returns the
value located at the address specified by x.

– When declaring a pointer variable, put the asterisk next to the name of the variable.

– When declaring a function, put the asterisk of a pointer return value next to the type.

In the above program, first, the actual variable var (with the initial value of 20) and the
pointer variable x are declared, which are both of int type. Then, the address of var is stored
in x. Finally, the real value of the variable var, the address of var stored in the variable x, and
the value in this address of the memory are printed, respectively. It is worth mentioning that
the address mentioned in the output may vary depending on the used machine.

This section is finished with the fact that a pointer to a const value, known as the const
pointer, is a pointer which points to a constant value. The const keyword is used before the
data type in order to declare a const pointer. For example, consider the two statements
below:

The first statement declares the constant con of int type while the second one stores its
address in the const pointer c. However, the following statement is not allowed since we
cannot change a constant value:

*c = 6;

3 Fundamental concepts of programming
in Java

Java is the brainchild of Java pioneer James Gosling, who traces
Java’s core idea of, “Write Once, Run Anywhere” back to the
work he did in graduate school. James Gosling along with other
teammates, namely, Mike Sheridan and Patrick Naughton
(called as the ‘Green’ Team) initiated Java language project for
Sun Microsystems for digital devices such as set-top boxes,
televisions, and the like in June 1991. Over time, the team added
features and refinements which extended the heirloom of C++
and C, resulting in a new language called ‘Oak’, named after a
tree outside Gosling’s office, until it was discovered that a
programming language named Oak already existed. Thus, the
name was altered to ‘Green’, the name of their team. As the
story goes, after many hours of searching for a new name, the
development team went out for a coffee and the name Java was
born. In fact, Java was a nickname selected to specify the coffee
originated from the small Indonesian island called Java.

Java is a high-level popular and general-purpose
programming language and computing platform. In fact, this
programming language is known since it is easy to use, fast,
object-oriented, robust, platform independent, multi-threading,
secure, portable, and highly efficient. According to Oracle, the

company which owns Java, Java runs on more than 3 billion
devices worldwide.

In addition, Java programming is considered an extremely
diverse language and is used for a variety of purposes such as
developing desktop and web (i.e., Linkden.com. Snapdeal.com
and the like) applications, enterprise, mobile operating system
(i.e., Android), navigation systems, e-business solutions, smart
cards, robotics, games, and so on. Actually, Java is applicable
everywhere!

All the revisions of Java and their release dates are
summarized in Table 3.1.

Tab. 3.1: Revisions of Java.

The older version of Java SE 8 (LTS) is still supported. Further,
the Java SE 11 (18.9 LTS) is the latest version followed by the
future release, namely, the Java SE 12 (19.3).

Of course, the information is updated in accord with the time of
writing the present book. There are large amounts of valuable
concepts in Java. However, in the current chapter, only the

http://linkden.com/
http://snapdeal.com/

necessary fundamental concepts of elementary programming
introduced, which are needed for the intended purpose we
have in mind regarding the programming for the mathematical
calculations. For extensive studies the reader is referred to the
standard books and websites.

3.1 Primary concepts

In this section, the primary concepts of Java programming
language are discussed and compared to the C++ programming
language. The definition of all the primary concepts of C++,
previously provided in Section 2.1, are valid in Java. Therefore,
we only explain the reserved words, data types, operators, and
library functions, as well as declaring variables and literals
(constants in C++) in Java. We start with the reserved words or
the keywords as the alphabet of Java. Some of the frequently
used reserved words in Java are represented in Table 3.2. Those
in bold are the ones which are utilized in the present book.

Tab. 3.2: Some frequently used reserved words or keywords in Java.

Similar to the C++ compiler, the Java compiler is case-sensitive
and therefore, the behaviours of For and for are different in
both compilers.

Although goto and const are no longer used in the Java
programming language, they are still cannot be used as
identifiers.

The rule of naming identifiers in Java slightly differs by C++.

The rule of naming the identifiers in Java.

– All the identifiers should begin with either a letter ‘a’ to ‘z’ or ‘A’ to ‘Z’, $ symbol or an

underscore.

– After the starting character, an identifier can have any combination of the above-

mentioned characters.

– The whitespace character cannot be employed in an identifier.

– A Java keyword cannot be utilized as an identifier.

3.1.1 Data types

The Java language has a rich implementation of data types
which specify the size and type of values that can be stored in
an identifier. In Java, data types are classified into primitive
and non-primitive (reference) categories. The reference data
types are discussed in Section 3.3. Primitive data types contain
four integer data types including byte, short, int, long, as well as
two floating point data types float and double, character data
type char, Boolean data type boolean, and finally, the void data
type void. A brief description of each data type is presented as
follows.
1) Integer data type byte is used to save memory when dealing

with a large number of integers which are in the range of
this data type (Tab. 3.3). This is because a byte data type
occupies the least space of the memory needed for a
numerical data type, which includes eight bits (one byte).

2) Integer data type short is utilized to save memory for the
integers lying in the range of this data type (Tab. 3.3). The
space in memory which a short data type occupies is 2 times
larger than that of byte.

3) Integer data type int is employed for integers of normal
size. Furthermore, an int data type in the memory is 4 and 2
times larger than a byte and a short, respectively.

4) Integer data type long is applied when a wider range is
needed compared to the int. It needs an eight-byte space to
be stored in the memory.

5) Floating point data type float is used for real numbers with

less precision.
6) Floating point data type double is utilized for real numbers

with high precision.
7) Character data type char is employed to store a Unicode

character in 2 bytes of the memory while the C++ language
uses 1 byte to store the char data types. This is because C++
supports only ASCII codes for character data types which
includes only the English letters and symbols and to do this
1 byte is sufficient. However, Java language supports the
Unicode characters (i.e., letters and symbols) of more than
18 international languages and 1 byte of memory is
insufficient for storing all these characters. Moreover, each
character data in Java, compared to C++, should be written
between two apostrophes such as '*' or the whitespace
character ' ' which is demonstrated as '˽' whenever an
emphasis is required or if a failure to its expression causes
confusion.

8) Boolean data type boolean represents only one bit of
information for either true or false. The corresponding
boolean types in C++ are 1 and 0, respectively.

In this book, mainly the int, float, and double data types are
used whereas the long and char data types are occasionally
employed. However, the boolen data types rarely utilized. Java
fails to support the implementation of unsigned integers while
C++ supports it. Table 3.3 demonstrates the size, range, and
default values of these data types in which the floating-point
notation ‘a E b’ means a × 10b.

Tab. 3.3: Primitive data types and their size, range, and default values.

Besides the above-mentioned basic data types, there are
valueless data type void and string data type String in Java. A
string is often a combination of any Unicode characters placed
between a pair of quotation marks (e.g., "Note that 10 % 3 = 1").
Formatted prints are considered one of the most common
applications of the strings which is discussed in Section 3.2.

3.1.2 Literals and variables

Unlike C++, we have no constants in Java, instead, literals play
the role of the constants. A literal is a source code
representation of a fixed value which is assigned to a variable
in a program. Literals occur in the following four types.
1) String literals are enclosed in double quotes. For example,

the statement

String s = "this is a string";

declares a string variable named s and assigns it the string
literal inside the double quotes.

2) Character literals are enclosed in single quotes and contain
only one character. For instance,

char star = '*';

3) Boolean literals which are either true or false. Unlike C++,
these values fails to correspond to 1 and 0.

4) Numerical literals can contain either integer or floating-
point values. For example,

float e = 2.8271;

A variable is an identifier associated with a value which can be
modified during the program. Each variable in a program
should have a type. Variables in Java are declared by the same
syntax as in C++.

Syntax (variable declaration):

A data type ˽ one or more variables ;

or

A data type ˽ one variable = a literal ;

where, the literal data type is identical to that of the
corresponding variable. For instance, consider the codes:

The first line declares the int variables a and b to the compiler
while the second line declares the variable pi of float type and
assigns it the literal 3.14.

Java includes local, instance, and class variables. These types
of variables are examined in Section 3.3.

3.1.3 Operators

Java programming language uses the same arithmetic,
relational (comparative), logical, and assignment operators
which C++ apply, and their behaviours are highly comparable.
In a number of cases, Java operators exert different results
compared to their C++ equivalents. The division / operator
generates an exception if we divide an integer by zero. For
instance, 1.0/0.0 causes positive infinity (Infinity on the screen)
while −1.0/0.0 leads to negative infinity (−Infinity on the
screen). Additionally, 1.0/(−1.0/0.0), which is 1 over negative
infinity and 0.0/0.0, which is arithmetically undefined, cause in
minus zero (−0.0 on the screen) and the not-a-number value
(NaN on the screen), respectively.

As shown, Java defines positive and negative zeroes and
infinities, as well as not-a-number values which indicate
different habits as an operand in logical expressions. For
example, the logical expression of 0.0 == −0.0 is true whereas
0.0 > −0.0 is false. Since NaN is unordered, all the comparison

operators return false if either operand is NaN, except for !=
which always returns true if either operand is NaN.

The results of some (mainly binary) calculations concerned
with the above-mentioned values are represented in Table 3.4.
In this table, the results are what appear on the screen. The
variable p is assumed a positive real number which can be
replaced in the program calculations by, say, 1.0. In addition,
the variable inf is supposed to be the infinity. This variable may
be replaced by 1.0/0.0 in the program calculations.

Tab. 3.4: Abnormal calculations in Java.

The ? and , (comma) operators have the same actions in C++ and
Java programs. The sizeof() operator is not defined in Java since
the size of primitives in Java is fixed in all platforms.

Further, the arithmetic and logical expressions have similar
behaviours in C++ and Java programs. In particular, in Java, we
follow the same priority for the operators as in C++. Several
library functions which are mainly used in Java are

summarized in Table 3.5 analogous to Table 2.12 with minor
differences.

Tab. 3.5: Some library functions supported by Java.

3.2 Introduction to programming in Java

Installing and using Java depends on the user’s computer,
which is the reader’s responsibility. The programming

techniques are discussed in this book. All Java programs in the
present book are run in eclipse IDE 2018-09 workspace.

We start with a Java program pattern.

A Java program pattern:

As before, the italic phrases in the program codes are not parts
of the codes per se and what is required by these phrases is
placed for them.

The package statement defines a namespace in which
classes are stored. The package is used to organize the classes
based on functionality. Suppose it as a folder in a file directory.
These packages are employed to avoid the name conflicts and to
write better maintainable code. However, the package
statement cannot appear anywhere in the program. In fact, it
should be in the first line of the program or it can be omitted in
which case, the class names are put into the default package
which has no name.

Further, packages in Java can be divided into built-in and
user-defined categories. There exist various built-in packages
such as java, lang, awt, javax, swing, net, io, util, sql, and the
like while the user-defined packages are written by the
programmer for specific purposes. In the current book, we use
no package in our programs.

A C++ program was a sequence of separate fragments
containing declarations, statements and functions
(subprograms) altogether under the control of a main function
which results in running the program. Contrarily, a Java
program is often gathered in a unit class including separate
data members and member functions (methods) which form
the body of program in the above pattern. Here again, a main
method (the void main() method in the above pattern) results in
running the program.

Actually, a method is a compound statement which includes
a sequence of statements and declarations within a pair of curly
braces. An expression followed by a semicolon is considered a
statement. The other types of statements are expression,
selection (decision and branching), iteration (loop), and jump
statements. A number of other types of statements are
addressed in Chapters 4, 6, and 7. Moreover, various types of
subprograms including the methods are dealt with in Chapter 5.
The classes and their various aspects along with data members
and methods are discussed in details in the next section.

Similar to C++ programs, there are two ways for writing the
comments. Line comments come after two forward slashes // up
to the end of the line. However, block comments begin with a

forward slash and an asterisk /* and terminate with an asterisk
and a forward slash */. Additionally, these comments can
extend across as many lines as needed.

It is strongly recommended to consider the programming
styles at the beginning of Section 2.2. The output and input
statements are regarded as the basic handling statements in all
programming languages.

3.2.1 Output and input statements

We start with the output statement. Consider Program P3_1
(compare to Program P2_1).

This simple program, having P3_1 class name, contains only the
main body which is an output statement. This statement prints
the string inside the double quotes:

Welcome to Java programming world

In general, there are two normal (unformatted) print
statements.

Syntax (print statement):

System.out.print(armument 1 + armument 2 + …);

System.out.println(armument 1 + armument 2 + …);

where, each of the arguments may be one of the following
items:
1. Constant, variable, arithmetic expressions, or any other kind

of expression;
2. A string, for instance, "The sum is: ". In this case, the exact

phrase between the pair of quotation marks is printed, as:

The sum is:␣

3. The escape sequences or the control characters are provided
in Table 3.6. These characters should be placed between a
pair of quotation marks, for example, "\t";

Tab. 3.6 The frequently used escape sequences or control characters.

escape

sequence

name effect

\n new line move to the beginning of the next row

\t horizontal

tab

move to the beginning of the next eight column

(next tab)

\b backspace back up one character removing it

\r carriage

return

move down a line

\f form feed move the next page

\" double quote write the " character

\' single quote display the ' character

Note that the two consecutive arguments in the print statement
are separated by a + operation. A space is used before and after
this separator to distinguish the successive arguments.
Nevertheless, this may cause a conflict, particularly, when we
have two consecutive arithmetic expressions in which case the
+ operation arithmetically adds these expressions. Therefore,
we can separate such expressions with the null argument "" or
spaces in order to prevent this inconvenience. The three
examples along with their outputs in Table 3.7 clarify this fact.

Tab. 3.7: Use the null argument "" or spaces between two consecutive arithmetic

expressions.

Statement Output

System.out.print(1 + 2); 3

System.out.print(1 + "" + 2); 12

System.out.print(1 + " " + 2); 1 2

The difference between the two above-mentioned printing
statements is that the println() statement positions the cursor
onto the next line after printing the desired arguments while
the print() statement leaves the cursor on the current line. As a
result, the escape character "\n" has the same effect as println()
if we put it as the last argument of the print() statement.
However, these two print statements have their own
applications.

There exists no pre-processor directive in Java. However
several head statements are contributed for certain purposes.

Consider Program P3_2 analogous to Program P2_2 in which the
mathematical sine function is invoked.

The same explanations after Program P2_2 are established here.
In particular, the expression ″\n\n″ is used to create an empty
line, and the following three pairs of statements are equivalent:

That is because, as mentioned above, the print("\n") is the same
as println().

We continue with the input statement. There are several
ways to obtain input from the input unit. Here, the common

input statements are employed. In Java, four steps should be
followed to read the inputs from the input unit:
1. Importing the Scanner class by the head statement:

import java.util.Scanner;

at the top of the program before starting the class;
2. Providing the input facility for the Java compiler by the

statement:

Scanner scan = new Scanner(System.in);

often at the beginning of the class body in which the inputs
are to be read;

3. Reading the single input n (here with int data type) by the
statement:

int n = scan.nextInt();

4. Closing the input facility by the statement:

scan.close();

often at the end of the class body in which the statement in
item 2 is contained.

The scanner object scan in statements 2, 3, and 4 is selected by
the programmer (The concepts “class” and “object” are
discussed in the next section). Throughout the present book, the
name read is applied for the numeric scanning in order to have
a uniform scanner name. Then, having imported the Scanner

class (the head statement in item 1), we keep fixed using the
statement
Scanner read = new Scanner(System.in);

to provide input facility; the statement

int n = read.nextInt();

to read the int type variable n; and the statement:

read.close();

to close the input facility. The aspects of these statements are
not discussed any more. At present, we only use the above steps
to read the inputs. With the statement

int n = read.nextInt();

the int type variable n is read. It is noteworthy that the variable
n may not be individually declared any more. In addition, the
same statements are used for other numeric data types. It
suffices to replace “Int” by the data type name starting with an
uppercase letter (e.g., nextShort(), nextDouble() and the like).
Further, the reading of char type inputs in left to the next
section.

The two above Programs P3_1 and P3_2 were analogous to
Programs P2_1 and P2_2. The strategy of using the same
programs in both C++ and Java languages provides the chance
to compare the similarities and differences, along with
synchronous learning of the details related to the aspects of the

programs. We continue our strategy in the following couple of
examples.

As in C++ programs, there are three methods of storing a
value for the variables in Java including: along with
declaration, after the declaration by assignment statements,
and using output statements. Furthermore, the way of entering
the inputs in Java is the same as C++. In particular, inputs may
be entered in one or more lines, and the two consecutive inputs
should only be separated by a space. Consider Program P3_3
analogous to Program P2_3.

Some of the inputs and outputs resulting from the above
program are provided in the following passage. Recall that the
sign ↵ stands for pressing the Enter key.

By running the program, the following lines are displayed on
the screen:

In fact, after declaring the literals and variables, the first output
statement prints its string argument “This is my first simple
program in Java” and then the cursor is transferred to the next
line due to the println() type of output statement. In the new
line, the constant value of pi and, following it, the string “␣isn't

an integer” is printed by the second print statement. One more,
the cursor is moved to the next line. In this line, first, the input
notification “Enter two integers:␣” is written to request the user
to enter two integers using the println() statement which leaves
the cursor in the current line. Next, the user inputs two
integers, for example, 13 and 4, respectively, separated by a
space, and presses the Enter key. Now, the integer numbers 13
and 4 are stored in the memory for the variables a and b,
respectively.

Let’s continue running the program. The next statement is
an assignment statement. In this statement, first, the expression
a / b is calculated in the argument of the library function
Math.sqrt(). In this expression, the result is 3 which is the
integer quotient of a by b since both of the operands of / are
integers. Now, the square root of 3 is assigned to the real
variable u. The next output statement prints first the *
character. Then, the control character \t shifts the cursor one
tab right (the eighth column). Finally, the current print
statement continuous printing the last two items in its list
without any spacing:

The first item after the control character is the value
1.7320508075688772 of u and the second one is the round down
of u which is 1.0. Then, the cursor is transferred to a new line.

As it is evident, the outputs are mixed together which is
definitely not good. This problem is solved by formatted outputs

and the designing of the outputs is delivered to the
programmer.

We continue the running process. The next output statement
prints the five arguments which are mentioned below in its
arguments list: first, the output heading “exp(1)␣=␣ ”; second,
the value 2.718281828459045 of exp(1) with the default 15 digits
precision; third, the output heading “ , ␣ e ␣ = ␣ ”; fourth, the
constant value 2.7182 which is previously declared for the
literal e. The fifth and last item in the list of the present print
statement, "\n\n", creates an empty line. The output explained
in the present paragraph is:

In the next print statement, the two values 1 and 1.3 are mixed
together and written as:

11.3

The first value is the integer quotient of a by 10 and the second
one as the last argumet is the real value of a divided by 10. The
middle argument fails to affect anything while if we remove it,
the result 2.3 is obtained which is 1 + 1.3. Recall that we should
write the (double) prefix in order to have the real value of a
division in which the two operands of the / operator are
integers.

In the continuation of the program, the input notification
“Enter two integers:␣” requests the user to input two integers.
Input 4 and press the Enter key. The running is incomplete.

There are no results even if we press the Enter key several
times since we have not yet entered the second input. Now,
enter 8:

By pressing the Enter key, the values 4 and 8 substitute for the
int type variables c and d, respectively. Afterwards, the
arguments of the next print statement, which is the value of the
given inputs and their multiplication, is written in succession,
without any spacing:

4832

Now, the executing process is completed. We strongly
recommend considering the notes below when coding
(translating) an algorithm in any programming language. These
notes are applied in Program P3_3.

– Take the types of the variables proportionate to the types in the algorithm.

– Provide suitable input notifications before input statements by print() statement.

This helps the user to know the number, type and the essence of the data which

would be entered.

– Provide appropriate output headings for the outputs to present their features.

3.2.2 Formatted output

In Program P3_3, we experienced some mixed outputs together
which frequently appear in an unacceptable form. Java
programming language provides a variety of facilities, called
formats, for the programmer to design the outputs. For the
purpose of calculation, we only express commonly used
numerical formats. We adopt using the italic brackets for
optional items. In general, we employ the following syntax in
order to have a formatted print.

Syntax (formatted print):

System.out.printf("format string" [, argument 1, argument 2, …]);

where, format string contains the string literals and format specifiers. Moreover,

arguments are required only if there are format specifiers in the format string.

Additionally, format specifiers appear in the following pattern:

%[flags] [width] [.precision] conversion character

The aspects of the above items are explained as follows.

Flags: Various flags are defined for the Java compiler out of
which three of them are frequently used in the programs
associated with the calculations.
− : left-justify (default is to right-justify);
+ : output a plus (+) or minus (−) sign for a numerical value;
0 : forces numerical values to be zero-padded (default is blank

padding).

Width: Specifies the field width for outputting the argument
and represents the minimum number of characters to be
written to the output. Include space for the expected commas
and a decimal point in the determination of the width for
numerical values. The width is ignored if it is less than the
minimum number of characters needed for the output.

Precision: Used to restrict the output depending on the
conversion. It specifies the number of digits of precision when
outputting floating-point values. Numbers are rounded to the
specified precision. Finally, the valueless zeroes are padded to
reach the declared precision if the precision is more than the
real decimal digits of the output.

Conversion characters: These characters are:
d : decimal integer (byte, short, int, long);
f : floating-point number (float, double);
c : character, capital C uppercases the letters;
s : string, capital S uppercases all the letters in the string;
\n : newline platform, specific newline character; use %n

instead of \n for greater compatibility.

Several examples are presented in Table 3.8

Tab. 3.8: Examples of formatted outputs.

We run Program P3_3 with the same inputs while with certain
formats in order to observe the effect of the above formats. You
can further examine the mentioned formats by varying the
numbers flags, width, precision, and conversion characters.

As shown, in the above program the following two statements
have the same effects. It is the readers responsibility to discover
the details!

Now, we are ready to synchronously explain the object-oriented
aspect of the two programming languages C++ and Java.

3.3 Object-oriented programming (OOP) system

The C++ programming mainly aims to introduce the concept of
object-orientation to the C programming language: C++ is
equivalent to C+1 in programming codes which means one
feature more than C, namely, “Class”. In fact, C++ encapsulates
high and low-level language features. Therefore, it is considered
as an intermediate level language. In addition, C++ allows both
procedural and object-oriented programming. Using the object-
orientation feature of C++ is not felt a necessity due to the
calculation natures of our subprograms except for a few cases
and thus, we prefer simplicity in the codes instead.

Contrarily, Java is a high-level, general-purpose, class-based,
object-oriented programming language which is designed to
minimize implementation dependencies.

An object is a real-world entity such as stone, glass, book,
umbrella, bike and the like. Further, object-oriented
programming is a methodology or paradigm for designing a
program using the objects and classes. It simplifies software

development and maintenance by providing the properties
including object, class, inheritance, polymorphism, abstraction,
and encapsulation. We only discuss and use the notions of
object and class since the present book seeks to adhere to
mathematical calculations.

In general, by an object, we mean any entity which has state
and behaviour where, state and behaviour mean data and
functionality, respectively. In other words, the object-oriented
approach is extremely close to the real world and its
applications since the state and behaviour of these objects are
nearly the same as the real-world objects. In the next
subsection, the concepts of objects and class are synchronously
dealt with in C++ and Java programming languages. The
differences are explained whenever necessary.

3.3.1 Objects and class

A class is a blueprint of the objects, that is, a collection of
similar objects. In other words, an object is an instance of a
class. Furthermore, an object can be physical and logical while
a class is only a logical entity. Finally, class is invisible to the
world whereas the object is visible.

In general, a class is somehow a user-defined data which
has the elements containing data members, member functions
(methods), constructors, and the like. The following is the
syntax for defining a class in C++ and Java with a minor
difference.

Syntax (defining class):

By class definition, we indicate to define a structure or a
blueprint while not to exclusively define a data; that is, to what
the objects of that class type contain and what operations can
be performed on the objects. The following are examples of the
class in C++ and Java.

Based on the above discussion, defining a class in C++
terminates with a semicolon following the closed curly bracket
‘}’. However, in Java, a class ends without any semicolon.

Here, Test is a class which has three data members data1,
data2, and data3, along with two member functions including
function2() and function2(). A data member is a variable which
is declared in any class by using any primitive data types, (e.g.,
int) or derived data type (e.g., user-named class data type).

A member function, which we refer to as a method, is a
function which has its definition or prototype within or outside
its class definition. A method operates on any object of the class
of which it is a member, and has access to all the data members
of a class for that object.

Every method in Java should be a part of a class which is
different from that of C++. Methods are generally divided into
built-in and user-defined categories. The built-in methods are
part of the compiler package such as System. out.println() and
System. exit(0). Hereafter, by a method, we mean a user-defined
method.

The access specifier specifies the accessibility of an
element. If it is considered as private, then the data members
and methods in its range can be accessed only from inside the
same class. The compiler throws an error if we attempt to
access private data from outside of the class. Another access
specifier is public, in which case, data members and methods
are accessible from anywhere, inside or outside of the class.
Moreover, there exists another access specifier named
protected in which data members and methods can be accessed
in the derived class or within the same class. The protected
specifiers are not discussed and used in this book. The public
specifier is mainly used in both languages C++ and Java.

One of the differences between C++ and Java in the object-
oriented programming is that in Java a specifier is a modifier
while it is written as a label in C++. This fact can be experienced
in the above Test class. Another difference is in the default
specifiers. In C++, the access modifier for an element is private
if we specify no access modifiers by default for that element
inside the class. However, the default specifier for Java
programs is the private-package which implies that the element
is accessible from inside the same package to which the class
belongs.

The method function1() in the above examples has neither
return value (of void type) nor has it any parameter. We may
put the void keyword inside the parenthesis only in C++
programs if there is no parameter. Contrarily, the method
function2() has float-type return value. Additionally, it has one
parameter of int type. In general, a method can have any data
type or it is void. In addition, it can be void of any parameter or
it contains one or more parameters. No method can be defined
outside the class in Java since it is a class-based programming
language. However, in C++, a method can be defined outside the
class using the :: (scope resolution) operator, as demonstrated in
the following codes.

In this case, this method should be declared inside the class as
follows.

double function3(double);

There are two worthwhile notes related to the methods in C++
which need attention. First, the declaration is a statement with
a semicolon at the end. Second, writing the name of the
parameter in the declaration statement is optional. In the above
declaration statement, only the data type of the parameter is
written. Now, return to the synchronous approach.

When a class is defined, only the specifications of the objects
is defined while no memory is allocated to the objects. Actually,
memory is allocated to an object as soon as it is created with the
following syntaxes in both languages.

Syntax (creating an object):

For example, the statements:

creates two objects obj1 and obj2 of the class Test. As shown, the
objects are created one by one in Java while in C++, the objects
are created in groups as if they are in class data type.

We can access the data members and methods by using a .
(dot) operator in both languages. For instance, the statement:

calls the function1() method inside the Test class for the objects
obj2. Similarly, the data member data2 can be accessed as:

Notice that, the private members can be accessed only from
inside the class. Accordingly, you can write the statement

anywhere (inside or outside the class Test) in the above-
mentioned examples. However, a code such as

should constantly be inside the Test class.
On the other hand, in the input statement defined in Section

3.2, the println(), print(), and printf() are built-in methods
which have already been defined for the compiler of Java
aiming at printing their arguments. Furthermore, the nextInt()
is a built-in method for reading the int type inputs. Therefore,
when we write read. nextInt(), in fact, we call the nextInt()
method in the Scanner class for the object read.

In Sections 2.2 and 3.1, various (primitive) data types were
presented. There is another data type, named reference data
types, which is any instantiable class type that stands for the
objects of a class, and the array type which points to the arrays.
The word "reference" is selected for these data types since they
are handled "by reference"; in other words, the address of the
object or array is stored in a variable, passed to methods, and
the like. By comparison, primitive types are handled "by value";
the actual primitive values are stored in variables and passed to
the methods.

Most of the above discussions are demonstrated in Programs
P3_5.

In each of the above programs, five public methods are
declared, along with the declaration of one private and three
public data members as instance variables. The first public void
method, setName(), receives a char type argument and print it
following the message name of box set to:˽. The second void

method, setDimentions(), receives its three float arguments l, b,
and h and then assigns them to the instance variables length,
breadth, and height, respectively. The two above-mentioned
methods have parameters but no return. On the other hand, the
three remaining methods have no parameters but return
values. The third char-type method, namely getName(), returns
the private instance variable name. Notice the use of the this
keyword in this method (see Section 3.3.6). Finally, the float-type
methods getVolume() and getSurface() return, respectively, the
volume and surface of the associated boxes with dimensions
length, breadth, and height, as instance variables. The running
of the program is clear.

3.3.2 Types of variables

As in C++, a block in Java is a group of one or more statements
enclosed in curly braces {}. For example,

A block is itself a type of statement. Variables in both C++ and
Java languages include the following types.
1) Local variables. These variables are declared in methods,

constructors (refer to the next subsection), or blocks. A
local variable is created (memory allocated to them) when
the involved method, constructor, or block is executed and
disappeared once it terminates. Local variables are visible
only within the method, constructor, or block in which the
variable is declared. We cannot use access specifiers for

local variables. Moreover, a local variable fails to be defined
with the static keyword (Subsection 3.3.5). In the following
sample class, the local variable age is declared within a
method.

2) Instance (or non-static) variable. An instance variable is
the one which is declared without the static keyword in a
class outside any method, constructor, or block. They are
called instance variables since they are object-specific and
are not shared among the objects. In other words, an
instance variable is created when an object of the class is
created and disappeared when the object is disappeared.
Unlike the local variables, we may use access specifiers for
instance variables. The default access specifier is used if no
access specifier is specified. The instance variables can be
directly accessed by calling the variable name inside the
class. In other words, these variables are visible for all the
methods, constructors, and blocks in the class. However,
instance variables should be called using the completely
qualified name:
object name.variable name
when instance variables are given accessibility. For
example, in Programs P3_6 below, the public float variable

InitialSum is an instance variable which is called in the
main() methods for the object s in both programs.

3) Class (or static) variable. A class variable is declared with
the static keyword in a class and common for all the objects
of the class. There exists exactly one copy of this variable
regardless of how many times the class is instantiated.
Further details about the class variables are presented in Su
bsection 3.3.5.

In C++, there exists another type of variable, called a global
variable, which is declared in the main unit.

3.3.3 Constructors and destructors

A constructor is a special method which automatically
initializes an object of its class when it is created. It is called
constructor since it constructs the initial values of data
members of the class. A constructor differs from a normal
method in the following items:

– A constructor has the same name as the class itself;

– A constructor has no return value;

– A constructor is constantly public ;

– A constructor is automatically called when an object is created;

There are three types of constructors including default,
parameterized, and copy constructors. A default constructor is

the one which takes no parameter. There is a default
constructor in Programs P3_6.

In the program above, as soon as the object is created the
constructor is called and the object s is initialized to 0.
The initialization of the object members is necessary. The C++
and Java compilers provide a default constructor implicitly
even if the programmer fails to explicitly define a constructor.
In Programs P3_6, if we remove the constructor, along with its
body, the value of InitialSum is printed as the default value:

Unlike Java, in the C++ compiler a compiler-dependent value is
stored for s. Therefore, it would be better that we initialize the
constructor and its body.

It is possible to pass parameters to a constructor. Typically,
these parameters help initialize an object when it is created. A
parameterized constructor is used to initialize various data
members of different objects with varied values when they are
created. Additionally, parameters are simply added to a
parameterized constructor for its creation. Each of the
Programs P3_7 represents a parameterized constructor which is
called for the object P1 in the main() unit.

The initial values should pass as parameters to the constructor
function when an object is declared in a parameterized
constructor. However, the normal method of object declaration
may fail to work. In C++, the constructors can be called
explicitly or implicitly as follows.

The copy constructor is a constructor which creates an object
by initializing it with an object of the same class already
created. A copy constructor has the following general function
prototype:

In each of the above Programs P3_7, the new object P2 is
initialized to the old object P1. It is worth mentioning that, for

any class which has no user-defined copy constructor, the
compiler creates a default copy constructor per se.

Constructors may be overloaded. In fact, when we have both
default and parameterized constructors defined in the class, it
implies there exist overloaded constructors with or without any
parameters. In addition, we can have any number of
constructors in a class differing in parameter lists. In each of
the following programs P3_8, two constructors with different
parameters are defined thus, the constructors are overloaded.

In the main part of the above codes, if we write

then, a compile-time error is encountered since no default
constructor is defined.

3.3.4 Destructors and namespaces (C++ only)

A destructor is a special methods which destructs an object or,
equivalently, de-allocate the memory which was already
allocated to the object. Further, a destructor method is
automatically called when the object goes out of the scope:
− the function terminates;
− the program ends;
− a block containing local variables ends.

More than one destructor cannot be used for an object in a
program. Destructors have the same name as the class preceded
by a tilde ‘~’ symbol while they take no parameter and fail to
return anything. Program P3_9 aims to highlight the concept of
the destructor.

In the above program, the message The control is in constructor
is printed when the constructor is called, followed by printing
Function main is terminating... in the main() function. Then, the
object abc1, which was created before, goes out of scope, the
destructor is called, and The control is in destructor is printed
in order to de-allocate the memory consumed by abc1.

We now explain the statement

used in most of the C++ programs. The namespace is a
container for the identifiers. It puts the names of its members in
a distinct space so that they are unable to conflict with the

names in other namespaces or global namespaces. The syntax
of namespaces is as follows.

Syntax (namespace):

where, the identifier is considered any valid identifier and the
entities are the set of variables, classes, objects, and functions
which are included within the namespace. For example,
consider the following codes:

The variables r and s are normal variables declared within a
namespace called mySpace. We should use the :: operator in
order to access these variables from the outside of mySpace
namespace. For instance, to access the previous variables from
the outside of mySpace, we can write:

Two namespaces are used in Program P3_10.

All the files in the C++ standard library declare all of its entities
within the std namespace. In fact, the statement

requires the compiler to take anything which is in the std
namespace and dump it in the global namespace. However, it
increases the probability for name conflicts since a bunch of
extra names, which were unexpected, were added to the global
namespace, and that might butt the heads with some of your
own names. Accordingly, it suffices to use the concerned
identifiers using the :: operator in the programs which were
involved with only a few identifiers in order to avoid this

inconvenience. For instance, std::cout notifies the compiler that
it requires the cout identifier which is in the std namespace.
Therefore, the following two programs (both in the C++ codes)
lead to the same outputs: Sample text.

Throughout the present book, we adopt the left pattern in our
programs in C++ language and use the statement

at the top of the programs just after the pre-processor
directives.

3.3.5 Static elements

The static keyword in C++ and Java is mainly used for memory
management. Static elements are allocated to memory only
once through a program in the static storage area and they have
a scope until the program terminates. The static element can be:
− A local variable in functions (C++ only);
− A data member;
− A method in class;
− A block.

A static local variable in C++ exists only inside a function
where it is declared (similar to a local variable). Moreover, its
lifetime begins when the function is called while it only
terminates when the (main) program ends. However, the
lifetime of a local variable ends upon terminating the
associated function. A static local variable is demonstrated in
Programs P3_11 in C++ codes.

In the above program, the function getCount() is called 3 times.
During the first call, the variable count is declared as the static
local variable and is initialized to 0 by default. Then, the count
is increased by 1 which is displayed on the screen. When the
function getCount() returns, variable count still exists since it is
a static variable. During the second and third function calls, the

previously storage value for count is increased by 1 without
initializing the 0 value to count and then, it is displayed on the
screen. The output of Program P3_11, if the count is not
specified as a static variable, is as:

Different copies of a normal data member are created with the
associated objects when that data member is declared in a class.
In some cases, a common data member is needed which should
be the same for all the objects. We cannot perform this using
normal data members and thus, static data members are
required in this respect. A static data member, known as a
class member, is declared with the static keyword. It is
noteworthy that a static data member cannot be private. It is
called a class member since it belongs to the class instead of the
objects. Additionally, this data member makes the program
memory efficient, that is, it saves the memory. No matter how
many objects of the class are created, there is only one copy of
the static data member. In other words, one single copy of static
data member is shared between all the objects of that class.
When the first object is created, a static data member is
initialized to zero if no other initialization is presented.

In C++, the declaration of a static data member is unable to
be considered a definition. The data member is declared in a
class scope while the definition is performed at the file scope
using the scope resolution :: operator as:

data type˽class name::static data member name;

In the left C++ program P3_12 below, the static data member
count is defined by the following statement after the class StA.

The static data member, along with the definition may be
initialized in C++. For example, we may initialize the above-
mentioned static data member count to, say, 1 and write the
following statement instead of the above one.

The above paragraph is valid in C++. However, in Java, static
data members cannot be initialized outside the class. Instead,
they can be separately initialized in the static blocks. A static
block is a block of statements inside a Java class which is
executed before the main method at the time of class loading.
By default (if no value is initialized), the value of a numerical
static data member is considered as 0 in both C++ and Java
languages.

In addition, static data members can be directly accessed by
the class name while no object is required to access these
variables. The following codes represents how a static member
can be accessed:

Programs P3_12 are examples of static data members in C++
and Java.

In each of these programs, we have created the StA class with a
static data member count declared inside the class. By default,
count is initialized to 0. Of course, in C++ the static data
members should be defined outside the class. This is done in the
left program using the :: operator. In the default constructor of
this class we are incrementing the static variable count by 1. So

every time an object is created this value is incremented. The
output of the programs show this fact for three objects created
in the main() function.

A static method, also called a class method, belongs to the
class rather than the objects of a class. In other words,
allocating static storage, a static method is independent of any
particular object of the class. That is to say that, a static method
can be called directly using the class name itself rather than
creating an object and calling from the object. A static method
can only access static data members and other static methods
with the following statements in C++ and Java.

The most common example of a static member is Java's main()
method. This special method is referred to as the main method
or the driver method. Programs P3_13 are examples of static
methods.

In each of the Programs P3_13, we created two static data
members count initialized to 10 in the program as well as k
which is initialized to 0 by default. Furthermore, two static
methods getCount() and callCount() are created which access to
these static data members. Moreover, the static method

callCount() is called in the static method getCount(). As shown
in the left program, both static data members are defined after
ending the class. However, as previously mentioned, this is
unnecessary in Java unless we want to initialize a value to the
data member. In the right program, we initialized the static
data member to 10 within a static block. As demonstrated in
both programs, the static methods are directly called without
creating any object.

3.3.6 The this keyword

The this keyword is commonly used in both C++ and Java
languages. There are various applications of this keyword in
both languages. However, due to the calculation aim of the
present book, we do not need all the applications in our
programs and only one feature is used in several programs.

Moreover, the this keyword in C++ is an important pointer
accessible only within the non-static member functions of a
class and points to the object for which the member function is
called. However, in Java, the this keyword is an instance
variable which refers to the current object in a method or
constructor.

As explained above, using the this keyword is nearly the
same in both languages. The most common use of the this
keyword in both C++ and Java is to resolve the ambiguity
between the instance variables and parameters with the same
name. This can be accomplished by the following syntaxes:

where, the variable var is simultaneously regarded as an
instance variable and a parameter. In the left C++ codes, this-
>var means (this*).var, in the literature of the pointers (Section
2.3). To clarify the above discussions, consider Programs P3-14.

In the above-mentioned programs, the parameters and instance
variables id and grade are homonymous. Therefore, the this
keyword is used to distinguish between the local and instance
variables. Removing the this keyword, along with -> in the left
and . in the right programs, the following output is displayed:

In the left output, the strange numbers stand for the existence
of errors.

4 Decision making and branching
templates

In many studies and branches of science, there is a limited set
of infrastructure objects and tools in which all the elements are
subject to specific rules and principles. These elements act as
the building blocks and have a certain names in every case. For
instance, the periodic table of the elements in chemistry,
regular figures and curves in geometry, numbers in arithmetic,
prime numbers in number theory, and building materials in the
construction industry are several examples of various sets of
the building blocks.

As previously explained in Chapter 1, algorithms are the
root bases of the elementary programming in every
programming language. This set of infrastructure objects are
called templates in algorithm designing. Each template in an
algorithm corresponds to a statement in a program.
Fortunately, a limited number of templates exist which
facilitate memorization of each statement; however, this is not
enough. What is worth mentioning is when, where, and how to
use these statements appropriately.

In the remaining chapters of this book, it is attempted to
introduce and gradually strengthen the ability to employ these
templates in an optimized and systematic way. Facilitating and
organizing the algorithms, as well as having the ability to

translate the templates into the codes of any programming
language, are two major advantages of the templates.
Therefore, the algorithms created by such templates can be
translated into any programming language. In other words,
writing a program for the algorithm in a certain programming
language, includes translating the algorithm of that problem
into the codes of the programming language, template by
template, after constructing the algorithm of a specific problem.

Templates are divided into simple and compound types. A
simple or a 1-shape template indicates that the corresponding
statement of that template is a single reserved word without
any block. The input cin, output cout, and the assignment =
statements correspond to simple templates and are referred to
as input (in the shape of a parallelogram), output (in the shape
of a torn paper), and assignment (in the shape of a rectangle),
templates, respectively. Bear in mind that the assignment
operator is regarded as the assignment statement. In addition,
more instructions in the same rectangle are counted as a simple
template.

Further, a compound template includes more than one
shape, or its corresponding statement has one or more reserved
words along with several blocks. The templates in the
algorithms are generally categorized into decision making and
branching (the conditional), looping, and jumping groups. The
decision making and branching templates are studied in the
present chapter. Furthermore, chapters 5, 6 and 7 are dedicated
to the looping templates. The jumping templates are scattered

in Chapters 4, 6, and 7 and occasionally applied in the
remaining chapters.

The present chapter first examines three two-way branching
templates, namely the if, if-else, and if-else-if ones. Then, two
jumping goto and exit templates are presented for transmitting
the implementations and termination, respectively. The final
section delves into a multi-way branching template, called the
switch template.

Accordingly, the flowchart of each template and its
translation into both C++ and Java codes are provided. Then, the
result of template implementation and other related details are
explained. Finally, the template is applied in various examples.

It is strongly recommended to consider the following
important rule regarding the blocks (Subsection 2.1.5).

The rule of grouping. A block encompassing more than one statement should be

places between a couple of curl braces {}.

Failure to comply with this rule leads to an error or incorrect
results. For example, consider the following small programs in
both C++ and Java codes regardless of the notion of codes. As
seen, the ranges of if, else, and the body of the main program
(method), as the specific blocks, are separately grouped and are
shifted two spaces to the right.

Although writing the statements inside the blocks (two or three
columns ahead) fails to affect the program running, it has two
advantages. It makes the program clear and well-built by
separating various blocks in different groups. Moreover, it
enables the reader to easily analyze and perceive the program
by distinguishing such blocks in a variety of groups.

Conventions in algorithm-writing. The following conventions are adopted in

algorithm-writing, as well as programming used either in the examples or exercises (in

the texts or at the end of chapters).

– The word “read” means “read from the input unit (keyboard)”;

– The word “print” indicates “print on the output unit (screen)”;

– The word “receive” implies “receive from the call unit (see Chapter 5)”;

– The word “return” denotes “return to the call unit (see Chapter 5)”;

– For the sake of simplicity, we write: print MESSAGE instead of print “MESSAGE”. This

may not be confused since the phrase “MESSAGR” is in the code font.

4.1 The if-else template

The if-else template appears when there is a two-way
branch. Given the rule of distributions in the flowcharts
represented in chapter 1, the flowchart related to this template
along with the syntaxes of the if-else statement in both C++ and
Java codes is illustrated as follows.

The if-else template Syntax in C++ codes Syntax in Java codes

Implementation: If the condition is true, first, the T-path (the
if-range in programming) including block A is implemented and
then the implementation control is transferred to position P.
Otherwise, the F-path (the else-range in programming)
encompassing block B is implemented and the control is
transferred to position P.

The statements in the if-range and else-range, should be grouped by {}if they are more

than one.

The above-mentioned problem related to disregarding the
grouping notice can be observed in the next example.

4.1. Example (The hanging problem). This problem arises
when more than one statement is presented between the if and
else parts without curly braces in the if-else

Fig. 4.1(a): The hanging problem flowchart (without problem).

statements. This example is presented for further clarification.
Translate the sample flowchart in Figure 4.1(a) into both C++
and Java codes.
Solution. The following if-else statements are the answer to the
above-mentioned problem:

If grouping the if-range is disregarded, then we will encounter
the hanging if problem: the statement a = a + 1 is hanging.
Therefore, there will be a “misplaced if” error. Additionally, the
existence of an error alerts the presence of a problem which

needs to be solved. The worse situation happens when the else-
range is expressed without grouping as:

In fact, in this case, no error appears while only the statement
after else is processed as the else-range. In other words, the
corresponding flowchart is shown in Figure 4.1(b).

Fig. 4.1(b): The flowchart of the hanging problem (with a problem).

Therefore, using the grouping rule is extensively emphasized
due to the great importance of the subject. However, rarely
ever, if the ranges are extremely short to place the whole
statement in a single line, this rule can be ignored to simplicity
and reduce the size of the program. For example:

4.2. Example. Construct a flowchart to read the integer number
a. Then, print the read number followed by the message “ ␣ is

positive” if the number is positive; otherwise print n followed
by the message “␣is not positive”.
Solution. The required flowchart is depicted in Figure 4.2. This
flowchart is translated into both C++ and Java codes in
Programs P4_2.

Fig. 4.2: A simple use of the if-else template.

4.2 The if template

If one of the two blocks in the if-else template is null, it is placed
in the F-path in order to standardize it. In other words, if we
have only one block, it is put in the T-path. This trend is
guaranteed since every condition has a negation. Therefore,
even if a block is posited in the F-path, it can be moved to the T-
path by negating the condition. The obtained template, which is
a special case of the if-else template, is called the if template.
The F-path in the flowchart of the if-else template collapses
since block B does not exist in this flowchart. In addition, block
B together along with the else reserved word in the syntaxes of
the if-else statement of both codes is removed. Consequently,
the representation of the if template, as well as the syntaxes of
the if statement in both codes is as follows.

The if template Syntax in C++ codes Syntax inJava codes

Implementation: The T-path (the if-range in programming)
including block A is first implemented if the condition is true
and then the control is transferred to position P. Otherwise, the
control is transferred to position P.

The statements in the if-range should be grouped by {} if they more than one.

Although the if statement has only one reserved word, it always
contains a block (the if-range).

The rule of the intersection of the T- and F-paths. Intersect the T- and F-paths in the

flowcharts of the if and if-else templates exactly below the involved condition.

This rule is one of the important tasks in drawing the
flowcharts and has three advantages. First, it makes the
flowchart clear and legible, in particular from the
implementation point of view. Second, the flowcharts
constructed using this rule, are translatable into any
programming language. Third, this rule reduces the probable
errors arising from disregarding the grouping rule. Some of
these features are experienced in the next example.

4.3. Example. Draw a flowchart to read a positive integer
number. Then, print the output if it is positive:

The given number␣is positive

Print the output if it is zero:

The given number␣is zero

And print the output if it is negative:

The given number␣is negative

Solution. Here, we are facing a three-way branching. Therefore,
two if-else templates are used for this purpose. One of these
three branching is put in the T-path of an if-else template while
the other two branching are placed in the F-path. Afterwards,

the two-way branching in the F-path is separated using another
if-else template. Finally, the flowchart displayed in Figure 4.3(a)
is obtained. Programs P4_3_A display the translation of this
flowchart into both C++ and Java codes.

Fig. 4.3(a): Nested conditional templates.

Question. Why didn’t we comply with the grouping rule for the
else range from the outer if-else template?
Answer. Since only one statement (the compound if-else
statement) existed in this respect.

Fig. 4.3(b): The rule of T- and F-paths is not used.

As illustrated in Figure 4.3(a), the body of the T-path of the
external conditional template is itself another conditional
template, that is, the if-else template. In this case, we are
supported to have two nested conditional templates (nested
conditional statements in programming). As shown, this
flowchart is totally transparent and complete. Having applied
the rule of T- and F-paths, one can observe the clearness and
legibility of Flowchart 4.3(a). However, the three flowcharts in F
igure 4.3(b) lack this feature.

Further, every IF reserved word in the IF-ELSE-ENDIF
statement ends with an ENDIF reserved word in some
programming languages including Fortran. The translation of Fl
owchart 4.3(a) into Fortran codes is as follows:

In the main model of Figure 4.3(a), the positions of each ENDIF
is clearly determined in the intersection of the T- and F-paths of
the involved IF-ELSE-ENDIF template. However, no unique
place can be determined for each ENDIF in the three models of
Figure 4.3(b)

It occasionally happens to terminate the implementation of
a flowchart before closing the entire flowchart with the
keyword “end”. Any programming languages has a one-
keyword statement for this purpose. For example, the keywords

STOP in Fortran, halt in Pascal, and exit(0) in both C++ and Java
play the role of termination. However, the following rule is
recommended in the flowcharts.

Fig. 4.3(c): The existence of two “end” keywords (not recommended).

Close each flowchart with only one ellipse end-shape with the keyword “end” inside.

Flowchart 4.3(c) is not recommended for Example 4.3, although
we cannot claim that it is incorrect. One may use a common
word like “stop”, or specialized keyword exit(0) instead of the
keyword “end” inside the right hand end-shape.

4.4. The dangling else problem. This classic problem is created
when no matching else is found for each if. This problem
basically occurs when the nested if or if- else statements are
employed without grouping by {}. Let us explain this fact in

more details. There are two if and if-else statements both in the
one-line form in the following part:

Either of the statements is clear and there is no problem. Now
consider the following on-line statement:

Fig. 4.4: Dangling problem flowchart.

In this example, r++ is unambiguously executed when both
conditions are true. However, this question arises that the else
clause is dandling on which if? One may interpret s++ as being
executed when the condition c1 is false (thus, attaching the else
to the first if) or true and the condition c2 is false (therefore,
attaching the else to the second if). In other words, the previous
statement is found as either of the following expressions whose
flowcharts are displayed in Figure 4.4. The codes of the right
flowchart is as follows:

However, the codes of the left flowchart:

The rule of dangling else. The reserved word else is always paired with the most

recent reserved word if.

Fig. 4.5(a): Multi-way decision with nested if-else templates.

Accordingly, the expression

is equivalent with the second expression provided above.
Therefore, applying the grouping rule is helpful for avoiding
similar ambiguities.

4.3 The if-else-if template

4.5. Observation. Occasionally, there is a variety of nested if-
else templates in algorithms, where a multi-way (multi-
condition) decision is taken. An example of these circumstances
including three conditions is represented in Figure 4.5(a).

The condition is evaluated from the top of the ladder
downwards. Considering the statements pinpointed so far,
translating Flowchart 4.5(a) into both codes are as follows.

Fig. 4.5(b): The if-else-if template.

As it is shown, we face three nested if-else templates. From the
implementation point of view, the previous flowchart is
equivalent to the one in Figure 4.5(b). This template is referred
to as the if-else-if template. The syntaxes of the if-else-if
statement in both C++ and java codes are presented below.

The statements in each block, should be grouped by {} if they are more than one.

Fig. 4.5(c): Flowchart 4.3(a) with the if-else-if template.

The clearness and simplicity in the flowchart and codes of the
if-else-if template can be perceived by comparing the flowchart
s 4.5(a) and 4.5(b) and their codes.

It should be noted that in the multi-way branching, it is
always possible to provide the nested if-else template as Figure
4.5(a) by negating the conditions if necessary and, following it,
the if-else-if template as Figure 4.5(b). As an example, Flowchart
4.5 (c) is a redrawing of Flowchart 4.3 (a). Programs P4_5_C are
the same as Program P4_3_A using the if-else-if statement
instead of the nested if-else statements.

Fig. 4.6(a): The if-else-if template cannot be used.

Considering the following rule is necessary when using the if-
else-if templates.

The rule of making the if-else-if template. The last F-path block in the if-else-if

template may be empty, while none of the T-paths should be empty. Otherwise, a

combination of the if-else-if template and the nested if-else templates should be used.

The next example clarifies the issue described in the above rule.

4.6. Example. The if-else-if template cannot be used for Flowcha
rt 4.6(a) since it fails to satisfy the above rule. Furthermore, it is
not consistent with the standard templates proposed in this
book. Use a combination of the nested if-else templates and the
if-else-if template to draw an equivalent flowchart for Figure 4.
6(a).
Solution. Negate the condition 1 to create an if template.
Moreover, an if-else-if template may be applied for the rest of
the flowchart. The resulted flowchart is depicted in Figure 4.6
(b)

4.6_1. Exercise. Translate Flowchart 4.6(b) to both C++ and Java
codes.

Question. Is it necessary to group the block corresponding the
T-path block of the outer if template in programming?
Answer. The answer is no, since only one if-else-if template
exists.

Fig. 4.6(b): An if-else-if template nested in an if template.

4.7. Example. Draw a flowchart to read the three integer
numbers a, b, and c. Then, if one of the inequalities a < 10, b <
20, or c < 30 holds, then print Yes. Otherwise, print No.
Solution. The required flowchart is drawn using the if-else-if
template in Figure 4.7(a).

Fig. 4.7(a): Print Yes if one of the three conditions is true; otherwise, print

No.

Fig. 4.7(b): Merging the conditions in Figure 4.7(a) with the || operator.

Programs P4_7 is the transferred codes of Flowchart 4.7(a) in
both C++ and Java languages.

We can combine the three conditions and use the logical ||
operator based on Figure 4.7(b) since the same print exists in all
the three T-paths.

Fig. 4.8(a): Flowchart in Figure 4.7(b) with the operator && instead of ||.

4.7.1. Exercise. Translate Flowchart 4.7(b) into both C++ and
Java codes.

4.7.2. Exercise. Draw a deformation of Flowchart 4.7(a) using
an if-else template and the || operator. Then, translate it into
both C++ and Java codes.

4.8. Observation. The flowcharts in Figures 4.7(a) and 4.7(b)
are equivalent. The former is drawn using the if-else-if template
while there a conditional template in the latter one which is
depicted employing the || operators. Figure 4.8(b) is similar to
Figure 4.7(b) which is drawn applying the && rather than the ||
operators.

Based on the above-mentioned observation, we attempt to
draw a flowchart in which the if-else-if template is used instead
of the && operators. Note that the composed proposition

a < 10 && b < 20 && c < 30

is true if and only if all the three conditions are true. Therefore,
the part of the flowchart which prints Yes acts as Flowchart 4.8
(b). When is No printed? Considering the value of the above
composed proposition, the phrase “No” is printed when at least
one of the conditions above is false. Then, No is printed in the F-
path of all the three conditions. The following rule is applied to
close several opened conditional templates.

The rule of closing the conditional templates. The opened conditional templates are

closed from the innermost to the outermost ones, respectively.

Fig. 4.8(b): Part of the flowchart equivalent to Figure 4.8(a) which prints

Yes.

According to the above rule, first, close the template involved
with the condition c < 30. Taking into account this if-else
template as the T-path of the condition b < 20, close this middle
if-else template. Finally, consider this double nested if-else
templates as the T-range of the condition a < 10 and close the
outermost if-else template. Figure 4.8(c) illustrates the obtained
flowchart.

Flowchart 4.8(c) cannot be directly translated into the
program codes using the if-else-if statement since its structure
is not only the same as the structure of the if-else-if template in
Figure 4.5(a) but also it is the mirror symmetric to that
structure. Accordingly, the same structure as that of Figure 4.5
(a) is obtained if we negate the conditions and thus, the if-else-if
statement is applied to translate it into the codes of the
program.

Fig. 4.8(c): A flowchart equivalent to Figure 4.8(c) with the nested if-else

templates.

4.8.1. Exercise. Redraw Flowchart 4.8(c) negating its conditions,
and translate it into both C++ and Java codes.

Based on the recent discussions, we can impose a rule for
merging the && and | | operators.

4.9. Example. Draw a flowchart to read the coefficients a, b, and
c of the quadratic equation ax2 + bx + c = 0, in which a is
assumed to be nonzero, and then calculate and print the roots
accompanied by the appropriate headings.

Fig. 4.9: Calculating and printing the roots of the quadratic equation ax2 +

bx + c = 0.

Solution. Let d = b2 − 4ac is the discriminant of this polynomial.
Then, the three arguments are obtained as follows:
1. If d > 0, we have two distinct real roots:

x1 = −b+√d

2a , x2 = −b−√d

2a

2. If d = 0, the equation has only one real root:

x = −b

2a

3. If d < 0, there is no real root for the equation.

The above arguments are illustrated in Flowchart 4.9.
Sometimes, the algorithm of certain problems are not

derived from a special idea, instead, they are easily written by
one or more formulas, and probably followed by a short
discussion. In such algorithms one only needs to pay attention
to the correct use of the formulas and the related discussions.
So far, all the examples were approximately of this type. The
translations of Flowchart 4.9 into both C++ and Java codes are
displayed in Programs P4_9.

In some cases, the nature of the given problem requires using
the consecutive conditional templates. Therefore, we should be
careful not to fall into the trap of the nested conditional
templates. The next example demonstrates such a case.

4.10. Example. Draw a flowchart to read three numbers of a, b,
and c, sort them in ascending order, and finally, print the sorted
numbers.
Solution. Every individual can propose an exclusive solution to
this problem. To this end, a method called “the bubble sorting
algorithm” is employed. In this method, starting from the first
number, two consecutive numbers are compared each time. If
the former one is greater than the latter, then we swap the two
numbers. Afterwards, we go one number forward and repeat
the same process for the new pair of numbers. Accordingly, the
biggest number, among the others, is transferred to the last
position, that is, it rises up like a bubble. Then, this number is
put aside and the process is repeated for the remaining
numbers until only one number is left. Therefore, the numbers
are sorted in ascending order. The swap algorithm (see Chapter
1) is used to swap the consecutive numbers.

Fig. 4.10: Bubble sorting method for three numbers.

The above-mentioned method is used for the three given
numbers a, b, and c. In the first step, a is compared with b. If a
is greater than b, then they are swapped. Afterwards, b is
compared with c. They swap only if b is greater than c. To this
point, the biggest number, among others, is shifted to the end.
In the second step, the values of b and c (probably the new
ones) are compared and then swapped if the former is greater
than the latter one. The reaction of the brain to perform this
process is too quick to trace. The required flowchart is depicted
in Figure 4.10. In Chapter 8, we will focus on using this method
for any set of numbers.

Worth to mention that the first and third if templates are the
same in Flowchart 4.10. In fact, the values of a and b may vary
from their previous values after exiting the second if template.
This fact is understood if the implementation table is arranged
for a = 12, b = 8 and c= 5. Program P4_10 is the translation of
Flowchaer 4.10 into both C++ and Java codes.

4.10.1. Exercise. Apply the bubble sorting method to draw a
flowchart in order to sort four numbers in ascending order.
Further, write the codes of its program.

4.4 The switch statement

4.11. Observation. This time start with a program. Suppose that
the five ranks of A, B, C, D, and E corresponds to the titles very
good, good, average, weak, and failed, respectively. Programs
P4_11_A receive the earned rank by the user and determine and
print its corresponding title using the if-else-if statement.
Moreover, the programs are written in a way to identically treat
both uppercase and lowercase letters.

Fig. 4.11(a): Flowchart of Program P4_11 using the if-else-if template.

The flowchart of Programs P4_11 (Fig. 4.11(a)) drawn with
another pattern in Figure 4.11(b). These two flowcharts are
equivalent from the executive point of view. In cases

Fig. 4.11(b): Flowchart of Program P4_11 using the switch template.

where we are dealing with this kind of multi-way branching,
we use the switch template with a flowchart similar to the one
displayed in Figure 4.11(b).

Programs P4_11_B are the same as Programs P4_11_A. The
only difference is that in the latter programs the switch
template substitutes for the if-else-if template in the former one.

Fig. 4.11(c): The switch template.

In general, we use the switch template with the flowchart as in
Figure 4.11(c) in the multi-way branching.

Implementation: If the variable satisfies in
− the case 1, then, block 1 first runs, afterwards, the break

statement terminates this case and finally, the control
transfers to position P;

− the case 2, then, block 2 first runs, then the break statement
terminates such a case and the control transfers to position

P;
. . .

− the case n, then, block n is run, the break statement
terminates the case, and eventually, the control transfers to
position P;

− none of the cases, then, block z is first run, the break
statement terminates this case, and the control transfers to
position P.

Translating of the switch template into both C++ and Java codes
is written in the following parts.

Several notes should be highlighted regarding the switch
template.

– The variable of the switch statement only admits one of the two int or char data

types. Therefore, we should use the conditional templates if we want to work with

other types of data.

– No block needs to be grouped by {} since the break statement terminates the

corresponding case.

– Even the break may be ignored in block z.

– The block z along with the break keyword may not exist.

– Not every case needs to contain a break. If no break appears, the flow of control

falls through to the subsequent case until a break is appeared.

Additionally, each of the case 1, case 2, …, case n expressions
should be in the same data type as the variable. In addition,
each of these expressions may have several cases. In this
circumstance, each expression is stated in the range of a case
and the establishment of one of these expressions for the switch
variable suffices to run the corresponding block. For example,
consider the program parts below.

If the value read for the integer m is:

− equal to 1, 2, or 3, then the phrase “one, two, or three” is
printed;

− equal to 4, then phrase “four” is printed;
− a value other than the above values, then the phrase “not

known” is printed.

Besides the above application, the break statement, as a
jumping statement, has another usage. Other applications of the
break statement will be discussed in details in Chapters 6 and 7
where the loops are studied.

4.5 More applications of the if template

In this section, further applications of the if template are
explained in which the if-range is cut by either a jumping or
termination statement. Additionally, in the subsequent
subsections, both jumping goto and exit(0) statements are
presented. Indeed, these statements are single reserved words.

4.5.1 Transferring the program execution

To transfer (jump) from one part of the program to the other
one (after or before the position of the statement), there are
statements in both C++ and Java languages with the following
syntaxes.

Execution: Resume the program at the statement with the
mentioned label. In other words, the running control is
transferred to the statement with the mentioned label.

– A label can be an identifier or a positive number often from 1 to 255.

– A statement with the mentioned label should appear in the program. This

statement is written as below:

label : the desired statement ;

– The label may correspond to a block of statements:

label : { block of statements }

4.12. Example. In Programs P4_12_A we employ the two above-
mentioned statements.

This program in both C++ and Java codes, reads the
nonnegative integer n and then, if the value of n,
− is 0, the statement with the label C is executed and the value

1000 is printed for g;
− is 10, the program resumes at the statement labelled B and

therefore, the value 1020 printed for g;

− is 100, the program is continued from the statement with
the label A and the value 1300 is printed for g;

− otherwise, the message Out of range is printed and the
program is terminated .

Question. Why are the break statements practically useless in
the left program?
Answer: Look for the answer within the goto statement.

Unless necessary, attempt not to use the goto statement since it
decreases the speed of the program execution and confuses its
reader. Fortunately, we rarely need to use the goto statement
since there are various loops to fill the gap of using the goto
statement. Moreover, the goto statement is not employed
throughout this book, except for several times. Although this
statement is a Java keyword, it is not used in Java.

4.5.2 Terminating the program execution

The statements with the following syntaxes exist in the C++ and
Java languages for successful termination of the program.

Execution: Terminate the program execution at this point.

We should place the stdlib.h pre-processor statement at the beginning of the program

in order to use the exit(0) statement in C++ codes.

4.13. Example. For example, we use the statement

in Programs P4_12 instead of the statement

and thus Programs P4_13 are acquired. Explain the outputs of
this program in any case!

In either program, label B and the related break statement are
useless.

4.14. Example. Write an algorithm to read the Cartesian
coordinates of a point with the names a and b, respectively,
determine the position of that point in the coordinate plane,
and finally, print it with appropriate headings.

Fig. 4.14: Determine and printing the position of a point in the coordinate

plane.

Solution. We draw the flowchart in a way that if the point is at
the origin, on the x-axis, or on the y-axis in Part 1, the algorithm
is terminated by separately printing them with appropriate
headings using the exit(0) statement in C++ and System. exit(0)

statement in Java. Otherwise, the position of the point is
determined and printed by mentioning the number of the
coordinate quarter. The flowchart is depicted in Figure 4.14.
Programs P4_14 are the translation of this flowchart into both
C++ and Java codes.

Of course, Part 1 in Flowchart 4.13 can be considered as an if-
else-if template and translated to both codes as follows.

4.14_1. Exercise. In the codes of Part 1 presented in the above
codes, what results are obtained if one, two, or all the
termination statements are removed? Discuss the answer in all
cases.

Exercises

In the following exercises: arrange the implementation table, if
needed, write the complete program, and provide appropriate
input notifications and output headings, if any. Writing an
algorithm stands for drawing its flowchart.

4.1. Write an algorithm to read two real numbers and print the
integer numbers 1, −1, or 0 if their multiplication is positive,
negative, or zero, respectively.

4.2. Write an algorithm to read an integer n and if the number
is a multiple of 3, then print the output below:

The value of n is a multiple of 3

A similar message is printed if it is a multiple of 5 or 7. Note that
a number can simultaneously be the multiple of two or all the
numbers 3, 5, and 7. In this case, two or three messages are
printed.

4.3. Write an algorithm to read a positive integer n and then
determine whether the number is a full square or not by
printing one of the messages YES or NO.

4.4. Write an algorithm to read the real numbers A, B, and C
and print the message YES in the case that these three numbers
form the edges of a triangle; otherwise, print the message NO.

4.5. Repeat the exercise 4.4 for a right-angle triangle.

4.6. Repeat the exercise 4.4 for an equilateral triangle.

4.7. Repeat the exercise 4.4 for an isosceles triangle.

4.8. Write an algorithm to read the radius of a circle, calculate
the area of the circle, inscribed square, and circumscribed
square of the circle, and finally, print them.

4.9. Write an algorithm to read three integers. Then, calculate
and print the average of these integers if the first number is
even; otherwise, calculate and print the squares sum of the
integers.

4.10. The number of digits of a positive integer is equal to one
plus the integer part of its logarithm (based on 10). Write an
algorithm to read an arbitrary integer, then calculate and print
the number of its digits.

4.11. Write an algorithm to read an integer number n. Then,
− if n is negative and its last digit is 0 or 5 (i.e., it is divisible by

5), print the output:

The value of n is negative and divided by 5

− if n is non-negative and its last digit is 0 or 5, print the
output:

The value of n is non-negative and divided by 5

− if n is none of the above, print the output:

The value of n is not divided by 5

4.12. Assuming that the year 1980 is a leap year, write an
algorithm to read the number n, as a year (after or before the
year 1980), and determine if it is a leap year. If yes, print YES;
otherwise, print NO.

4.13. Write an algorithm to print the number of days of a month
by reading the count n of that month. Suppose the year is not a
leap year. If n is not in the range of 1 to 12, print the message:
Illegal number.

4.14. Write an algorithm to read the two numbers m, (as
months), and d, (as days), and then calculate and print the
number of a day in a year which corresponds to the d-th day of
the m-th month (e.g., by reading 2 and 21, print: 52).

4.15. In Exercise 4.14, modify the algorithm in a way to print
the message Illegal month if the month number m is in the
illegal rang and the message Illegal day if the day number n is
in the illegal range; otherwise, the process in Exercise 4.14 is
performed.

In the exercises 4.16 and 4.17 take 0 for Monday, 1 for Sunday,
…, and 6 for Friday.

4.16. Assuming that the first day of the current year is Saturday,
write an algorithm to read n, (as the count of a day in the year),
and then determine and print which day of the week it is.

4.17. Repeat the exercise 4.16 in the case that the first day f of
the year is either read.

4.18. Totally 90 two-digit numbers 10 to 99 are known to exist.
Write an algorithm to read the positive integer n. Then, print
the words First, Second, or Third if it is one of the first, second,
or third 30 numbers, respectively. Eventually, print the message
Not two-digit number if n is not a two-digit number. Do this task
in duplicate using the switch and if-else-if templates.

4.19. Write an algorithm to read each time a pair of numbers m,
(as a month), and d, (as a day). Then, print the message Illegal

month if the month number m is in the illegal range and the
message Illegal day if the day number n is in the illegal range;
otherwise, calculate and print a day of the week corresponding
to the d-th day of the m-th month. The termination happens
whenever the read values for m and d are both zero.

4.20. Turn your computer input into a calculator: write an
algorithm to read a real number a, a character, and a real
number b, each separated with a blank space and if that
character is,
− +, calculate and print the value of a + b;
− -, calculate and print the value of a − b;
− *, calculate and print the value of a * b;
− /, calculate and print the value of a / b (announce a division

by zero with the message Divided by zero);
− otherwise, print: illegal character

Repeat the above process until the character ‘.’ is entered.

4.21. Write an algorithm to read a letter c and if the input for c
is,
− one of the letters b or B, print Black;
− one of the letters w or W, print White;
− one of the letters r or R, print Red;
− one of the letters g or G, print Green;
− or if other than the letters above, print Not in range.

Afterwards, asks the user if they want to exit the program, by
printing the message

Terminate the program if the letter n or N is entered and repeat
the program from reading c if n or N is entered; if a letter other
than the above four characters in entered, ask the user to type Y
or N by printing the message:

5 Sub-algorithms and subprograms

5.1 Sub-algorithms

Assume that we know the programming for reading the entries of a matrix, as well
as, calculating the sum and multiplication of two matrices along with the inverse
and determinant of a matrix. Then, suppose that we were asked to write the
following program:

Write a program to read a positive integer n with n ≥ 2. Then, read the entries of the three n × n matrices A,

B, and C, individually, where C is assumed invertible. Finally, compute and print the value of det(AB + C−1).

If we were to write the required task within one unit of such a large program, we
would encounter several problems including: the complexity in writing the
different parts and connecting to each other, repeating the same parts, and most
importantly, testing the correctness of the program and correcting lots of runtime
errors. This is, if not impossible, a very exhausting task.

What is the solution? Clearly, we can divide this program into several
subprograms each performing a specific task. For example, in the recent program,
we could use the subprograms with specific tasks as follows: (1) To read the entries
of a matrix and save them in the memory, (2) To get two matrices, add them, and
return the result, (3) To get two matrices, multiply them, and return the result, (4)
To get a matrix, invert it, and return the result, and (5) To get a matrix, compute its
determinant, and return the result. Afterwards, a main program manages the tasks
of these subprograms. More precisely, the main program calls the above-mentioned
subprograms in a reasonable order, to arrive at the requested value after reading
the value of n (Tab. 5.1).

Tab. 5.1: Managing the subprograms by the main program

Number of subprogram Input to subprogram Procedure

(1) A saving in the memory

(1) B saving in the memory

(1) C saving in the memory

(3) A and B return AB as, say, X

(4) C return C−1 as , say, Y

(2) X and Y return X + Y as, say, Z

(5) Z return det(Z)

Eventually, the main algorithm, prints the final returned result and the program is
terminated. Several motivations for using the sub-algorithms (subprograms) are
mentioned below.
− Writing the algorithm becomes simpler since the tasks of a large calculation are

distributed among the small sub-algorithms and a main algorithm plays the role
of a director. Actually, writing the sub-algorithms and the main algorithm is
simpler due to their small size and limited job;

− Testing the correctness of the algorithm is summarized to checking each of the
small sub-algorithms and, therefore, the problem of testing the algorithm is
resolved. In particular, correcting the algorithm becomes easier in the single
sub-algorithms and the main algorithm if there are any probable errors;

− Repeating the same parts of the program is avoided and thus, the time is not
wasted;

− Saving every sub-algorithm in auxiliary memories for using in other future
programs, independently.

The rule of constructing the sub-algorithms. The sub-algorithms are written exactly like the algorithms and all

the templates in writing the algorithms can be applied to the sub-algorithms.

In practice, a sub-algorithm does nothing unless another sub-algorithm or the main
algorithm, which is named the “call unit”, calls it. In this case, none, one, or several
values enter the sub-algorithm and thus, its implementation starts. As a result, one
or both of the following are processed.

1. A task such as reading, printing, assigning, and the like is performed;

2. One or several values return to the call unit.

The rule of starting the sub-algorithms. At the start of a sub-algorithm, the name of the sub-algorithm, along

with the (formal) parameters inside a pair of parentheses is placed inside an ellipse shape which is the sub-

algorithm prototype in algorithm-writing. This instruction is called the defining instruction of the sub-algorithm.

For example,

The parameters of a sub-algorithm are divided into two types. The first type, called
the value parameter, brings values from the call unit to the sub-algorithm. All the
parameters in Java are value parameters. In addition to the value parameters,
there is a second type parameter in C++ called the reference parameter which sends
out the results from the sub-algorithm to the call unit. Some value parameters may
play the role of the reference parameters in C++ programs, which are discussed
later on.

Throughout the present book, we start the main algorithm with the shape
below:

In addition, it is sufficient to write only the name of parameters in algorithm-
writing; however in programming, the data type of each parameter should be
added before its name.

The rule of ending the sub-algorithms. When implementing a sub-algorithm is completed, the implementation

control of the algorithm is shifted after the position from where the sub-algorithm was called.

The shape

is used at the end of a sub-algorithm instead of the shape

which was used at the end of the main algorithms.
The carrier variable of the return single value is written instead of ‘?’. However,

we have an empty return if there is no return value to the call unit. Although the
return statement may not be written in programs of these circumstances, the
empty return instruction is written in the algorithms for these cases. This preserves
the standard shape of the flowcharts related to the sub-algorithms indicating that
the sub-algorithms should have at least one return instruction.

When a sub-algorithm is called, the values (expressions) that are passed to the
call unit are called the actual parameters or arguments. Later on, we will find
that the types of sub-algorithms and the ways of their calling vary. Nevertheless,
there is one common point in all the calling processes. In other words, the name of
the sub-algorithm along with a pair of parentheses probably with several
arguments inside occurs in the calling instruction of a sub-algorithm, for instance,
power(y,8). Further, following the parameters in the defining instruction of a sub-
algorithm, the arguments in the calling instruction of a sub-algorithm inside the
call unit are divided into value and reference types. The value arguments carry
certain values to the sub-algorithm and the reference arguments take the results
coming from the sub-algorithm. The terms “arguments” and “parameters” are used
interchangeably. Figure 5.0 displays the data flow from the call unit to the sub-
algorithm (subprogram) and vice versa by the parameters and arguments.

The rule of parameter-argument. The number, order, and type of the parameters should be compatible with

the number, order, and type of their corresponding arguments.

For example, in the defining instruction

considering the type of the defined parameters x and n, we can write: power(y,8) in
the calling instruction in order to call the sub-algorithm for the real value y and

integer value 8 which correspond the value parameters x and n, respectively.
However, none of the following forms is allowed:

– Repetition is allowed in the arguments, however, none of the parameters can be repetitive. For instance, the

following defining instruction is illegal.

– The arguments and their corresponding parameters can be either homonymous or non-homonymous. For

example, the form power(x,n) may occur as the form power(u,k) in the above-mentioned calling instruction.

5.2 Subprograms

The translation of sub-algorithm and main algorithm is called the subprogram and
main program in programming, respectively. Similar to most programming
languages, the order of writing the main program and the subprograms is not
important in C++ and Java languages. However, professional programmers prefer
to place the main program at the beginning of their programs. This strategy is
followed in most programs of the current book.

We regard the main program and each of the sub programs as a unit.
Furthermore, we may occasionally refer to the main program as the main unit and
to each of the sub programs with the name of that unit. In particular, the call unit
refers to a unit which calls a subprogram. Moreover, the call unit may be either the
main program or a subprogram. By a complete program we mean the main
program as well as all its subprograms, if any.

The variables declared in the main program and the subprograms are referred
to as the global and local variables, respectively.

Depending on the number of the returned values, the sub-algorithms
(subprograms) are classified into one-return (function), no-return (void) and multi-
return types. There is no multi-return subprogram in Java programming language.
The no-return (void) and 1-return subprograms are called methods in this

language. In other words, a method is a collection of statements which perform
some specific tasks and frequently returns one result to the call unit. However, it is
occasionally used to perform certain tasks such as reading, printing, assigning, and
the like without returning anything. Think of a method as a subprogram which acts
on the value parameters and mostly returns a value. The methods in the current
book are mainly of this type.

The methods in Java act like the functions (i.e., no-return or 1-return) in C++.
Therefore, the words “function” and “method” have the same meaning in
programming. Of course, the method which is the synonym of the technique is
excluded. In fact, the word “method” is commonly used after the Java
programming language appearance and before that, the word “function” is used
for this purpose.

Convention. Throughout this book,

– When we talk of sub-algorithms (subprograms), we mean all types including the functions or methods.

– In the present book, the words “function” and “method” are interchangeably used, which refer to the same

concept.

The value of each value argument is copied to the corresponding value parameter
at the calling time. This type of parameter passing is called pass-by-value. We have
already explained that all the Java parameters are value parameters since all the
Java sub-algorithms (subprograms) are of function type. In other words, all the
Java parameters are strictly pass-by-value while C++ has pass-by-reference
parameters which refer to the reference parameter as well.

The flow of data passing from a subprogram to a call unit and vice versa in the
multi-return subprograms is depicted in Figure 5.0. It is worth mentioning that all
the parameters are of value type in the functions (methods) and thus, the single
value of the (1-return) function is probably returned by the return statement by
means of the function carrier.

Fig. 5.0: The flow of data via the parameters and arguments in the multi-return subprograms.

Considering the above discussions, the classification of subprograms is revised and
summarized in two categories, namely methods, which occur in both C++ and Java
languages and multi-return sub-programs which are only dedicated to C++. In the
coming chapters, the majority subprograms are function type.

5.2.1 Functions

We start with the function which exactly returns one value. This type of sub-
algorithm is used when a programmer wants to construct a function which is not
in the list of the library functions. Therefore, this category is referred to as the
user-defined function. Furthermore, in cases where the return of only one value to
the call unit is required it is advised to use this type of sub-algorithm since its
construction and call are easy.

5.1. Example. The sign function for a real number x is defined as follows.

sign (x) =

Write a function sub-algorithm to receive a real value and return sign(x).

−1, if x < 0

0, if x = 0,

1, if x > 0.

Fig. 5.1(a): The carrier name is different from the function name.

Solution. This function is clearly defined in Flowchart 5.1(a). In this function the
name of the carrier related to the result is different from the name of the function.
Of course, we may select the same name for both carrier and function (Fig. 5.1(b)).

Moreover, if the carrier is to return the single value of a function, it is
reasonable for the carrier to occur at least in one assignment instruction in order
to obtain a value to return. Occasionally, there is no carrier and thus the return
value of a function is directly returned. Flowchart 5.1(c) is of this type.

Fig. 5.1(b): The carrier name is homonym to the function name.

Fig. 5.1(c): There is no carrier and the return value is returned directly.

The syntax of the function (method) defining statement. The statement for defining a function subprogram

in programming is written as follows.

Recall from Section 3.2 that the keyword static is used for the static methods for
which the memory is allocated only once at the time of class loading. These
methods are common to every object such that it is known as member or class
method. Conversely, non-static methods for which the keyword static is not written,
the memory is allocated multiple times whenever a method is called. These
methods are specific to an object, therefore, they are known as instance methods.
Based on the purpose of the present book, we use the static keyword in our
methods.

The name of method is an identifier and should be selected following the rule of
naming identifiers. In addition, the data type is the value type of the data returned
to the call unit. In the void methods, the void keyword is written instead of data
type. The following is an example of this type.

In Example 5.2 we find another function of this type.
We leave an empty parenthesis for the parameters if there is no parameter. An

example of this type of function is as follows.

In this book, all the functions except for a few examples have at least one
parameter and exactly one return value. The form of parameters, if any, is
explained below.

The rule of the parameter list in functions. All the parameters of a function, if any, are value parameters and

the list of parameters is of the following pattern:

data type˽first parameter, data type˽second parameter, …, data type˽last parameter

As shown, two consecutive parameters are separated by a comma. For example, in
the defining statement

the parameters x and y are declared as float type while the parameter n is declared
as int type for the function Pad() and the data type of the return result for this
function is double.

Given the above-mentioned discussions, Flowcharts 5.1(a), 5.1(b), and 5.1(c) are
translated into both C++ and Java codes.

Note 1 of the functions. None of the parameters should be defined as a local variable anymore in the body of a

subprogram. In other words, a parameter in simultaneously unable to be a local variable.

For example, writing a statement like

float x;

in the body of each of the three above-mentioned subprograms is illegal.

Note 2 of the functions. We should not read any parameter in the body of a sub-algorithm (subprogram)

anymore; the value of any parameter reaches the sub-algorithm (subprogram) by the call unit.

For instance, reading x is completely illegal in each of Flowcharts or Subprograms
5.1(a), 5.1(b), and 5.1(c).

Note 3 of the functions. We should not print the return value, if any, in the body of a sub-algorithm

(subprogram) anymore; this value is going to be returned to the call unit.

Fig. 5.1(d): A main program calling the function sign().

For instance, printing f in Flowchart or Subprogram 5.1(a) as well as printing sign
in Flowchart or Subprogram 5.1(b) is illegal.

Now we explain how to call a function.

The rule of calling a 1-return function. Calling a function with a return value in algorithm-writing and

programming is similar to calling a library mathematical function.

More precisely, a function with a return value is called by its name followed by the
arguments which may occur in either of the following forms:
− In the list of an output statement;
− In a logical expression, especially, in an if template condition;
− In an arithmetic expression;
− As an argument of another function or a library function.

In general, the above-mentioned call phrase may occur anywhere a library
function probably occurs. The occurrence of the above sign() function can be
observed in the following examples:

The sub-algorithm of the sign() function is called in the main algorithm of Flowchar
t 5.1(d).
As shown, the function sign() and the library function sin() are equally treated
upon calling. Programs P5_1 are the codes of the main Algorithm 5.1(d) along with
the function sub-algorithm 5.1(a).

In C++ programming language, the short function subprograms can immediately be
written after the preprocessor statements using inline manner. Accordingly, the in-
line keyword is added before the defining statement. These subprograms
frequently occupy a single line since they are short. In this regard, an example is
provided as follows.

Typically, both of the following subprograms are equivalent to the above inline
function.

Two common methods exist for writing a complete program including the main
program and its subprogram(s). The first way is to write the main program after all
the subprograms. There is nothing to say about this way. In the second way, which
is the preference of most programmers, the main program is written before all the
subprogram(s).

In C++ language, all the subprograms should be predefined before the main
program when using the second way. This can be performed using a predefined
statement which is a copy of the defining statement with a semicolon at the end. Of
course, we may remove the name of the parameters and only leave their data
types. Actually, the predefined statement specifies to the compiler about the
structure of the function and its parameters.

Calling a void function is quite different.

The rule of calling a void function. Calling a void function in algorithm-writing is conducted by an instruction

with the following shape:

Similarly, a void function is called by a statement with the following syntax in programming: name(arguments).

Similar to all the parameters, the arguments are all the value arguments. The
parenthesis empty is left empty if there is no argument. The next example includes
a void function.

Fig. 5.2(a): Receiving the coefficients and determining the roots of ax2 + bx + c = 0.

5.2. Example. Write a function named Roots() to receive the coefficients a, b, and c
of the quadratic equation ax2 + bx + c = 0 in which a is assumed to be nonzero and
then calculate and print the roots accompanied by appropriate headings. Next,
write another function named Heading() to print an appropriate heading for the
above-mentioned function. Finally, write a main algorithm to call these sub-
algorithms.
Solution. The first function has already been worked out in Example 4.9. Remove
the start and end parts as well as the reading instruction in Flowchart 4.9 and take
the resulted flowchart as the body of the required void function. Then, Flowchart 5.
2(a) is obtained. Flowchart 5.2(b) is a sketch of printing a heading. This function
has no return value or parameter.

Ultimately, the above functions are called in the main algorithm of Flowchart 5.
2(c).

Fig. 5.2(b): Sketch of printing a heading.

Fig. 5.2(c): Calling the two functions Roots() and Heading().

In this main algorithm, the related heading is first printed using the Heading
function. Then, the quadratic polynomial coefficients named u, v, and w are read
and the Roots function is called for these three values. Programs P5_2 are the codes
of the main Algorithm 5.2(c) along with the two function sub-algorithms 5.2(a) and
5.2(b).

5.2.2 Multi-return sub-algorithm (subprograms)

We first consider this type of sub-algorithms in C++. The behaviours of the value
and reference parameters are explained following by pass-by-value and pass-by-
reference concepts. As already mentioned, the Java language fails to support this
type of subprograms. Therefore, we attempt to write equivalent subprograms for
the C++ multi-return subprograms in Java.

An argument as a variable has both a value and a unique reference (address).
Both pass-by-value and pass-by-reference approaches are used to pass the
arguments to the subprogram. However, either the value or the reference can be
passed to the subprogram via an argument. In the pass-by-reference approach, the
reference of the argument in the memory of the computer is passed to the called
subprogram whereas, in the pass-by-value approach the real value of the argument
is passed to the called subprogram. In other words, a copy of the value argument is

first stored in the temporary reference of the subprogram when it is going to pass
the called subprogram and then, it is passed to the subprogram. Finally, its
temporary references are totally disappeared after terminating the subprogram.

The difference between pass-by-reference and pass-by-value approaches is that
modifications made to the arguments passed in by reference in the subprogram
can affect the call unit while those applied to the arguments passed in by value in
the subprogram are unable to affect the call unit. Further, arguments passed by the
value can be variables (e.g., x), literals (e.g., 107), and expressions (e.g., sin(x) + 2x /
y) while the reference arguments have to be variables.

We use the multi-return sub-algorithms (subprograms) when there is more than
one return to the call unit or when sub-algorithms (subprograms) are needed to
modify some arguments. The defining instruction for this type of sub-algorithms
(subprograms) is similar to the void functions. The only difference is that, unlike
the functions where all the parameters were value parameters, the parameters
here are a combination of the value and reference parameters.

The rule of the parameter list for multi-return subprograms. The parameters of a multi-return subprogram

are of the following form:

data type˽‘c’ first parameter, data type˽‘c’ second parameter, …, data type˽‘c’ last parameter

where, ‘c’ stands for the characteristic symbol of the parameter which is empty for the value parameters and &

for the reference parameters.

As shown in the above rule, the reference parameter is indicated by following the
parameter name through an & symbol. Then, the compiler passes the memory
address of the actual parameter instead of the value. The & symbol may stick to the
parameter. For example, in the defining statement

both float variables ro and theta are value parameters while the float variables x
and y are reference parameters. Moreover, the notes of function subprograms
mentioned in Subsection 5.2.1 are applied here with slight differences.

Notes of the multi-return subprograms in C++: 1. None of the parameters should be defined as a local variable

in the body of a subprogram anymore. In other words, a parameter is unable to be a local variable at the same

time.

2. We should not read any value parameter in the body of a sub-algorithm (subprogram) anymore; the value of

any parameter reaches to the sub-algorithm (subprogram) by the call unit.

3. We should not print any reference parameter in the body of a sub-algorithm (subprogram) anymore; these

parameters are going to be returned to the call unit.

Fig. 5.3: Converting the polar coordinate (ro, theta) to the Cartesian coordinate (x, y).

Additionally, the calling instruction for multi-return sub-algorithms (subprograms)
is similar to the void functions with the difference that, unlike the functions where
all the arguments were value arguments, the arguments here are a combination of
the value and reference arguments. In the next example a multi-return sub-
program is experienced.

5.3. Example. The Cartesian coordinates (x, y) of a point are calculated from its
polar coordinates (ρ, θ) as follows.

x = ρ cos (θ), y = ρ sin (θ).

Write a sub-algorithm named Pol_Cart to receive the polar coordinates of a point and then calculate and return

its Cartesian coordinates. Next, write a main algorithm to read the polar coordinates of a point and then

calculate and print its Cartesian coordinates calling the Pol_Cart sub-algorithm.

Solution. The requested algorithm is drawn in Flowchart 5.3 and its translation is written in Program P5_3 in C++

codes.

Writing the return statement including its reference parameters at the end of the subprogram is optional in the

multi-return subprograms. However, writing an empty return statement is illegal. In other words, the return

statement should always be accompanied by the return parameters.

Now, we program for Algorithm 5.3 in Java. Since Java is strictly pass-by-value,
therefore, the Cartesian coordinate should be used as the objects of the class Cart.
The following synchronous programs are employed to examine the object-
orientation feature in both C++ and Java.

Based on the rule, any reference parameter should have the & symbol. In addition,
the parameter should have the & symbol if it is of both value and parameter types.
In the subprogram of the next example, the parameters m and n are of both value
and reference types.

5.4. Example (Swap algorithm). The swap algorithm was discussed in Chapter 1.
Write a subprogram, named swap, to receive two integer values of m and n, swap
their value, and return them with the same parameters. Then, write a main
algorithm to call the subprogram swap() for the two read integers.
Solution. The requested algorithm in C++ codes is found in Program P5_4.

The following synchronous Programs P5_4_OOP shoe the object-oriented feature in
C++ and Java.

In each of the Programs P5_4_OOP, there exists a constructor which constructs the
initial values of int-type data members (instance variable) no. In the left C++
program, the method swap() receives the arguments v1 and v2 as the objects
created in the main method, call the instance variable no in the class Var, and
finally, swap and return them. These tasks are performed in the right Java program
within the class swap. The run of the program is clear.

5.3 Self-calling (recursive) functions

Self-calling is a technique in which a sub-algorithm (subprogram) calls itself one or
more times in its uncompleted implementation (execution) process. In this case, the

following tasks are performed in the implementation process of this calls.
Considering these tasks leads to a better understanding of the notion of self-calling
and therefore an accurate method of applying this notion in algorithm-writing
(programming).
1) Imagine that, a temporary layered memory called the “stack memory” is

created in each calling of the sub-algorithm and the values of arguments are
copied to a layer of this memory such that each layer is distinguished from the
previous layer and stacked on that layer. It is noteworthy that all the arguments
are of value type.

2) Further, the self-calling process is repeated up to the reflexing point. By the
reflexing point we mean the first completed sub-algorithm in the last calling in
which there is no more self-calling and the sub-algorithm is completely
implemented. With the arrangement of the layers of the stack memory in the
first above- mentioned task, the top layer is related to the last calling. The top
layer of the stack memory is disappeared when the last calling is completely
implemented. Then, the implementation control is transferred just after the
point from where the final self-calling was conducted. Now, the uncompleted
implementation of this sub-algorithm is completed and the corresponding layer
of the stack memory is disappeared. This procedure is repeated until the first
uncompleted sub-algorithm called from the call unit is completed. Finally, the
bottom layer related to the first call is disappeared and the implementation
control is transferred just after the point from where the first calling from the
call unit was performed.

One of the most important applications of the self-calling technique is the
calculation of recursive equations or recursive functions. The most popular
recursive example is the factorial function (relation).

5.5. Example. The factorial of the non-negative integer n is defined by the recursive
relation

n! = n (n − 1)!

or by the following recursive function:

fact (n) = {

Write a function to receive a non-negative integer n and then calculate and return
the factorial of n using the recursive technique.
Solution. The definition is clear and we only need an if-else template. Flowchart 5.5
(a) visualizes this sub-algorithm.

The main algorithm represented in Flowchart 5.5(b) reads an integer m and
prints a message if the number is negative. Otherwise, it calculates and prints the
factorial of the given number by calling the fact() sub-algorithm. Programs P5_5
combined Sub-algorithm 5.5(a) and main Algorithm 5.5(b) in C++ and Java codes.

1, if n = 0,

n fact (n − 1), otherwise.

Fig. 5.5(c): Self-calling process in the recursive function fact().

Fig. 5.5(a): Calculating the factorial of n using the recursive technique.

Fig. 5.5(b): Calculating the factorial of a read number calling the function fact().

As explained at the beginning of the section, Figure 5.5(c) illustrates the self-calling
process in the recursive function of Flowchart 5.1(a) from the call unit up to the
reflexing point and then back to the call unit bringing the required value of the
factorial of n for n = 3. The dotted lines indicates that the implementation of the
surrounded region is uncompleted. This illustration is for the C++ codes.
Furthermore, the same is true for Java codes.

In Example 5.5, we had a 1-return function in the implementation of which the
function was once called by the call unit and three times by itself. In the next
example, a void function calls itself.

5.6. Example. Using the recursive technique, write a function named Back() to
receive an integer n which is supposed ≤ 9 and print the integers 9 backward to n.
Solution. In the basic body of the required void function, using an if-else template,
we call the function itself for n + 1 if n < 9. Otherwise, we print n. This sub-
algorithm is displayed in Flowchart 5.6(a). The main algorithm in Flowchart 5.6(a)
calls the sub-algorithm Back() for the argument of 7. Programs P5_6 demonstrate
the translation of Flowchart 5.6(a) into C++ and Java codes.

Fig. 5.6(a): Printing the numbers 9 backward to n.

Based on what was mentioned at the beginning of the section, Figure 5.6(b) depicts
the self-calling process in the void function of Flowchart 5.6(a) from the call unit up
to the reflexing point and then back to the call unit printing the integers 9
backward to n = 7. The part of the program below the dotted lines is incomplete in
the downward direction while it is completed in the upward direction. This
illustration is for the C++ codes. Moreover, the same is true for Java codes.

The program starts executing from the back(n) call statement in the main
program and the direction of the arrows clearly displays the execution direction of
the program reaching the reflexing point. In this direction, the main program calls
the subprogram once and the subprogram calls itself twice. In each of the three
above-mentioned calls, one layer is created in the stack memory. In the reflexing
point, the subprogram is completely executed printing the value 9 of the concerned
layer in the stack memory. Then, the execution control goes back to the
uncompleted part of the penultimate subprogram and the procedure is continued
printing 8 and then 7 until the return 0 statement terminates the main program.

Fig. 5.6(b): Self-calling process in the recursive void function Back().

Question. There should be a reflexing point in every self-calling subprogram. What
happens if we write the statement

Back(n+1);

in the functions of Programs P5_6 instead of the following if statement?

Answer. In this case, there is no reflexing point and the subprogram frequently
calls itself. However, considering that the capacity of the stack memory is limited,
the memory overflows after a while and the stack overflow error is encountered
since one layer is created in the stack memory in each calling.

Fig. 5.7: Puzzle of Hanoi Towers.

Additionally, the historical puzzle of the Hanoi towers is another popular example
of the self-calling void functions.

5.7. Example (Puzzle of Hanoi Towers). Consider three towers and several disks of
distinct sizes on a tower, say A, as shown in Figure 5.7.

In this puzzle, we move the disks from Tower A to Tower C using Tower B as an
auxiliary tower subject to the following conditions:

1. Only the top disk can be picked up in every move;

2. The disk should be placed on another Tower if it is picked up;

3. A big disk fails to be placed on a smaller disk.

This puzzle, which is attributed to the monks of the Brahma temple, includes three
golden towers and sixty-four golden disks. Considering the above-mentioned
conditions, it was believed that upon moving all the sixty-four disks from one
tower to another the world would end if every move takes one second. In his book
[14], Georges Gamow proves that life on the earth ends much sooner than that
time.

Write an algorithm named move to receive the number n of disks and the char
type variables pegA, pegB, and pegC and then moves the n disks from Tower pegA

to Tower pegC using Tower pegB as an auxiliary tower. Each movement is by
printing its direction.
Solution. The required algorithm is described below.
1. If n = 1 then, move the single disk from Tower A to Tower C with one move;
2. Else, the movement is performed by recursive techniques as follows:

2.1. Move n – 1 disks from Tower A to Tower B employing Tower C;
2.2. Move the only remaining (biggest) disk in Tower A to Tower C with one

move;
2.3. Move n – 1 disks from Tower B to Tower C utilizing Tower A.

It is recommended to experiment the above-mentioned moves for the cases n = 2, 3,
and 4 by yourself. You can observe that the moves of the previous case are
repeated twice (once in step 2.1 and once again in step 2.3) in each case.

Considering the clear algorithm described above, the program can be directly
written without the need for drawing a flowchart. To do this, the defining
statement of the function is first written:

We only need an if-else statement. The above description puts forward the fact that
we are dealing with a recursive process hanging on the if-range (case n = 1) in
which case the move direction is printed as follows:

Now, the else-range is clear if we pay attention to the order of the origin,
destination, and auxiliary towers in the defining statements of the function. We are
ready now to write the required function. The main units of Programs P5_7 read
the number n of the disks and call the function move for n and the corresponding
character arguments ‘A’, ‘B’, and ‘C’ to character parameters pegA, pegB, and pegC,
respectively.

As shown, the first seven moves transfers three disks from A to B using C. In
addition, the eighth move transfers the biggest disk from A to C. Finally, the last
seven moves transfer the three disks from B to C employing A.

5.7.3. Exercise. Illustrate the process of executing the programs P5_7 as displayed
in Figures 5.5(c) and 5.5(b).

Exercises

In the following exercises: (1) Arrange the implementation table, if needed, (2)
Write the complete program, and (3) Provide appropriate input notifications and
output headings, if any. In addition, the user-defined functions in the texts of the
current and previous chapters may be used unless otherwise is explicitly specified.

5.1. The number of digits of a positive integer n can be calculated using the
following formula.

d (n) = [log10 (n)] + 1.

where, [x] refers to the nearest integer less than or equal to x. Write a function
named digits() to receive the positive integer n and then calculate and return the
number of digits of n using the above formula. Next, write a main algorithm to
read the integer m and calling the function digits(), print the number of its digits if
m is positive; otherwise, print the message Not positive.

5.2. Write a function to receive two real numbers and return the integers 1, −1, or
0 if their multiplication is positive, negative or zero, respectively. Finally, call this
function in an appropriate main algorithm.

5.3. Write a function to read the positive integer n and determine whether it is an
entire square or not by returning one of the two numbers 1 or 0, respectively.
Eventually, call this function in an appropriate main algorithm.

5.4. Write a function to receive the integer n and determine whether it is odd or
even by returning the characters ‘o’ or ‘e’, respectively. Ultimately, call this function
in an appropriate main algorithm.

5.5. Write a function for defining the Kronecker function below (take i and j as real
numbers):

K (i, j) = {

Then, call this function in an appropriate main algorithm.

5.6. Write a function to receive a real number and return its integer and decimal
part to the call unit. Then, call this function in an appropriate main algorithm.

5.7. Write a function named Tri() to receive three positive real numbers A, B, and C
and return 1 if they form the sides of a triangle; otherwise, return 0. Next, call this
function in an appropriate main algorithm.

5.8. Write a function named R_Tri() to receive three positive real numbers A, B, and
C and return 1 if they form the sides of a right triangle; otherwise, return 0. Finally,
call this function in an appropriate main algorithm.

5.9. Write a main algorithm to read three positive real numbers A, B, and C. Next,
print the message Not all positive if none of these numbers are positive (at least
one of them is negative or zero); otherwise, calling the function Tri(), print the Not
triangle message if they are not the sides of a triangle; otherwise, calling the R_Tri
algorithm, print the message Right triangle if they are the sides of a right triangle;
otherwise, print the message Trinangle.

5.10. Write a function to receive the two numbers m and d as months and days,
respectively, and then calculate and return the number of a day in a year which
corresponds to the d-th day of the m-th month (e.g., by receiving 2 and 21, return:
52).

5.11. Write a function to receive the first day f of the current year and the count n
of a day in the year and then determine and return which day of the week that day
is. Next, write a main algorithm to read a number (from 0 to 6) as the first day of
the year and determine what day of the week the first day of every month is,
calling the above-mentioned function.

5.12. Write a function to receive a number f (from 0 to 6), a pair of integers m and
d, as the first day of the year, the month, and the day, respectively, and calculate
and return a day of the week with is in correspondence with the d-th day of the m-
th month. Next, write a main algorithm to read an integer g (from 0 to 6), as the

1, if i = j,

0, if i ≠ j.

first day of the year. Then, each time read a pair of integers n, as the month, and t,
as the day, and
− Terminate the algorithm if both n and t are equal to 0;
− Print the message error if one of the numbers n or t is out of its legal range;
− Otherwise, calculate a day of the week which is related to the t-th day of the n-

th month by calling the above function and then print it as one of the days of the
week.

5.13. The Fibonacci sequence is a sequence in which the first two terms are equal
to 1 and from the third term each term is the sum of the two previous terms before
that term:

f1 = f2 = 1, and for n ≥ 3, fn = fn−1 + fn−2.

Some of the terms of this sequence are:

1, 1, 2, 3, 5, 8, 13, 21, …

Write a function to receive a positive integer n and then calculate and return the n-
th term of the sequence using the self-calling technique. Next, write a main
algorithm to read a positive integer n and print the message Not positive if it is not
positive and if it is positive, calculate and print the n-th term of the sequence using
the above-mentioned function.

5.14. The terms of the sequence f are recursively defined as:

f1 = 1, f2 = 2, and for n ≥ 3, fn = fn−1
2 + fn−2

2.

Using the self-calling technique, write a function to receive a positive integer n and
then calculate and return the n-th term of the sequence. Now, write a main
algorithm to read a positive integer n. Next, print the message Not positive if it is
not positive; otherwise, calculate and print the n-th term of the sequence using the
above function.

5.15. The polynomials Pn

at the point x, with −1 < x < 1, are calculated by the
following recurrence relations.

P0 (x) = 1, P1 (x) = x, and for n ≥ 3, Pn (x) = 2n−1
n

Pn−1 (x) − n−1
n

Pn−2 (x).

Arrange a function to receive n and x and then calculate and return pn (x).

Next, write a main algorithm to read the values of n and x and, calling

the above function, calculate and print the value of Pn (x)

in the format
below if n ≥ 0 and −1 < x < 1:

the value of n -th polynomial at x is: the return value

Otherwise, print the message below:

Error: illegal value x or n

5.16. Considering that x0 = 1,

 and for a positive integer

n, xn = xxn−1,

 and x−1 =

 1/x,

define a recursive function f to receive the real number x and the integer n and

calculate and return the value of fn (x) = xn.

Assume that the

receiving values of x and n are such that xn

 is not undefined. Next, write a
main algorithm to read the value of x and n and print the following message in the
undefined cases x = 0 and n ≤ 0:

the value of x ^ the value of n is not defined

Otherwise, print the value of xn

with the following format calling the function
above:

the value of x ^ the value of n = the recursive value

5.17. The number of combinations of r distinct objects from n objects, with 0 ≤ r ≤
n, denoted by C(n, r), is calculated by the following recursive function:

C (n, r) =

Write a function to receive the integer values n and r and then calculate and return
the value C(n, r) using the self-calling technique. It is assumed that the receiving
values n and r satisfy the inequality 0 ≤ r ≤ n. Next, write a main algorithm which
reads the two values n and r. Afterwards, prints the following format if the
condition 0 ≤ r ≤ n is not established:

C(the value of n , the value of r) is not defined

Otherwise, print C(n, r) in the following format calling the above function:

C(the value of n , the value of r) = recursive value

1, if r = n or r = 0,

n, if r = 1

C (n − 1, r) + C (n − 1, r − 1), otherwise.

6 Automated loops

Any process that repeatedly implements a set of instructions, called the range
of a loop, is called a loop. Designing this range is the most fundamental part
of the job in creating a loop. In other words, knowing what to do in each
repetition of the loop and how to use such repetition properly to design the
algorithm is of great importance.

A kind of loop is based on one or several variables so that, first, the initial
values are often assigned to them before starting the loop. Then, a process is
performed on the variables in each repetition of the loop. Finally, repeating
or exiting the loop is determined by a condition called the repetition (or
exiting) condition of the loop. This kind of loop is known as the conditional
loop which is discussed in the next chapter.

Another kind of loop is called the automated loop which depends on a
counter. Three tasks are automatically performed by the compiler in this type
of loop:

1. The initial value for the counter is assigned;

2. A constant (positive or negative) amount, called the growth of the

loop, is added to the previous amount of the counter in each

repetition of the loop;

3. The number r of the repetitions is calculated by the compiler and the

range of the loop repeats to the number of r times.

That is why this kind of loop is named the automated loop.

6.1 The for template

The automated loop template, called hereafter the “for template”, or the “for
loop” is used in the flowcharts with the shape displayed below.

The translation of this template into both C++ and Java codes, which is called
the for statement, is as follows.

The loop range, in the case of more than one statement, should be grouped by {}.

The items “i, a, b”, and “step” are called the “variable, initial value, final
value”, and “growth value” of the loop, respectively. The phrase “i=a,b,step” is
called the specification of the loop and is written in the font of the codes
without any spacing after commas. Moreover, only after the semicolon will
be used the space; for instance, we write: for (i=k+1; i<=n; i=+2).

For running the mentioned for statement, the compiler first calculates the
number r of repetitions using the following formula:

r = max{[b−a+step

step
]},

where, [k] stands for the least integer close to k. Then, the run process is
performed in the following way: repeat the loop range to the number of r
times, starting from i = a, in such a way to add the amount of the step to the
previous amount of i in each repetition.

For example, consider the specification i=1,3,9. The number of repetitions
is r = 3 and hence the loop range is run 3 times. The first time, 1 is assigned to
i and the range is run. The second time, 3 units is added to the previous
amount of i, and the range is run for i = 4. Finally, the amount of i is increased
to 7 and the range is run the third time for i = 7. Several notes should be
considered in this respect.

– The growth increment i=i+step can be written as i+=step using the compound addition assignment

+=. Especially, one-unit increasing is written as i++ and one-unit decreasing as i--.

– The initial, final, and growth values should not vary inside the loop range.

– The variable of the loop should not be manipulated.

– The initial value is always used in the first repetition for assigning to the variable. However, the final

value may be useless. This value, indeed, plays the role of a border so that the exit from the loop

happens upon passing the value of the variable from this amount.

– From now on, if the growth is not written in the flowcharts, then it will be assumed as 1 for simplicity.

There are two circumstances in which incompatibility occurs in the
variables of a loop:
1) a < b and step < 0 , for example i=1,3,-1;
2) a > b and step > 0 , for example i=4,1,2;

In these cases, the number of repetitions is equal to zero and, therefore, the
range of the loop never runs. It is as though there is no loop whatsoever.

Fig. 6.1: Determining the number of positive integers among 20 integers.

Two issues are highlighted in constructing of the for loops, properly
recognizing the specification of the loop, and determining the range of the
loop.

6.1. Example. Write an algorithm to read 20 integers, and then determine
and print the number of positive integers among these integers.
Solution. Denote the number of positive and read integers by cp and cx,
respectively. Here, we need a for loop with 20 repetitions since 20 numbers
should be read. The specification of this loop is: cx=1,20. What should be
processed in each repetition of the loop? Well, first a number x is read. Then,
one unit is added to the cp if this number is positive. Assigning an initial
value to cp is missing. This should be conducted before starting the loop.
Why? Arrange the implementation table for four or five various data in order
to get the answer to this question and assign the initial value to cp in
duplicate before starting the loop and inside the loop and then compare the
results. The resulted flowchart is illustrated in Figure 6.1. Programs P6_1 are
the translation of this flowchart into both C++ and Java codes.

In chapter 5, the factorial of a non-negative integer was calculated using a
recursive subprogram. In the next example, we calculate directly this
factorial.

6.2. Example. Write an algorithm to read a non-negative integer n and then
calculate and print n! using the following formula:

n! = 1 × 2 × ⋯ × n.

Solution. Here, we are dealing with a normal count from 1 to n. Therefore, an
automated loop with the specification c=1,n is constructed.

When n equals to 1 we expect the output 1;

When n equals to 2 we expect the output 1 × 2;

When n equals to 3 we expect the output 1 × 2 × 3, and the like.

As seen, we have a repetitive multiplication which is taken as the fact.
Furthermore, the new number in each repetition of the loop is multiplied to
the previous amount of the fact and substituted for it. Therefore, the
instruction which is implemented in each repetition of the loop is:

In fact, this is the range of our loop. Finally, assigning the initial value 1 to the
fact is the only process left to finish the loop. Why 1? The implementation
table reveals the answer. The result of our discussion is depicted in Figure 6.2
(a).

The implementation table of this algorithm for n = 4 is presented in Table
6.2(a).

– If a variable is read only once, then it is not necessary to place it in the implementation table. Thus,

we did not written n in Table 6.2(a).

– It would be better to write the details of the calculation in the implementation table in order to

compare the requested calculation in the problem with the results of the implementation table. In Tab

le 6.2(a), the details of the calculation are written instead of writing only the resulted numbers in the

fact column. In this case, the output column is not necessary.

Fig. 6.2(a): Factorial main algorithm.

Tab. 6.2(a): Implementation table of Flowchart 6.2(a) for n = 4.

Does Table 6.2(a) work either for n = 0? The answer is yes. This is due the
existence of an incompatibility. As a result, the loop never runs. However, the

initial number of fact is 1 which is accidentally 0! The translation of Flowchar
t 6.2(a) into both C++ and Java codes can be seen in Programs P6_2_A.

The long type has a higher capacity in the calculations compared to the int
type. Accordingly, one can use this type in order to use the maximum
capacity.

The for statement is used in various types. One of these types which is not
mostly used is employed for the infinite repetitions:

In this case, a combination of control buttons is used in different systems to
exit the infinite loop. For example, pushing the two buttons “ctrl” and “break”
terminates the loop in most systems.

The for statement used so far is in the following form:

Here, the “assignment statements related to the loop” may be displaced before
i=a. Moreover, the loop range may be moved after i=a, in which case the for
statement is ended and thus a semicolon must be added after the closed
parenthesis. Note that, except for the two semicolon separators in the
specification of the loop, the other statements must be separated by the
commas. Given the above explanations, the following four group of
statements are equivalent in both C++ and Java languages.

Fig. 6.2(b): Factorial function; the carrier and function have the same name.

We modify Flowchart 6.2(a) to a sub-algorithm named fact() (Fig. 6.2(b)).

We respected two essential points in the process of modifying this sub-
algorithm from Algorithm 6.2(a).
− Considering the fact that there exists exactly one return, we choose a

function named fact and determine its only parameters as n. This function
receives a nonnegative number n and then calculates and returns its
factorial.

− The instructions of reading n and printing fact are removed. Instead, n is
received from the call unit to the subprogram and the fact returns to that
unit.

The name of the carrier and function are the same in Flowchart 6.2(b).
However, they may be different, as in Figure 6.2(c).

Fig. 6.2(c): Factorial function; the carrier and function have different names.

Fig. 6.2(d): A main algorithm calling fact.

The function sub-algorithm fact() is applied several times in this book. The
corresponding subprogram (method) can be saved in the memory of the
computer for further uses. The translation of Flowchart 6.2(c) into C++ and
Java codes is represented in the following methods:

The main algorithm 6.2(d) reads first the positive integer k. Then, it reads k
integers one by one. After each reading, if the read number is non-negative, it
calculates and prints the factorial of the number using the sub-algorithm
fact(); otherwise, it prints a message. Programs P6_2_B hold the translation of

this main algorithm, as well as the sub-algorithm fact() into both C++ and Java
codes.

6.3. Example. Write an algorithm to read the positive integer n and calculate
and then print the following sum.

1! + 2 ! + 3! + ⋯ + n!

Solution. In this algorithm, as well as both the oncoming Algorithms 6.5 and
6.6, where a factorial calculation is involved, a simple way is to write an
algorithm in which the fact() sub-algorithm is used. However, we will
consider these three algorithms using direct techniques.

Concentrating on Table 6.2(a), we will notice that the factorial of the new
number is calculated in each repetition of the loop. Therefore, the requested
algorithm will be achieved if we consider this factorial as the general term of
a repetitive sum and place the calculation of this repetitive sum after the
calculation of this factorial. Accordingly, we only need to put the initial value
of sum, which we consider as 0, before the loop. The above-mentioned
discussion is summarized in Figure 6.3.

Fig. 6.3: Calculating the sum 1! + 2! + ... + n!.

Implementing the above algorithm for n = 4 is demonstrated in Table 6.3. The
output column is removed since the calculation for sum is written in details.

Tab. 6.3: Implementation table of Algorithm 6.3 for n = 4.

Programs P6_3 represents this algorithm in both C++ and Java codes.

The importance of the order in writing the instructions inside the rectangle is
emphasized. Therefore, to realize this importance, swap the position of both

instructions inside the rectangle in the range of the loop and rearrange the
implementation table anew!

6.4. Example. Write an algorithm to read the positive integer n and then
calculate and print the following sum.

1 + (1 + 2) + (1 + 2 + 3) + ⋯ + (1 + 2 + ⋯ + n).

Solution. Comparing this formula with that provided in Example 6.3, we will
notice that the calculation operator of the general term is multiplication in Ex
ample 6.3 whereas the operator is an addition here. As a result, at first glance,
it seems obvious that we only need to change the multiplications operator in
Example 6.3 to addition operator. How much do you agree with this obvious
assumption? Arrange the implementation table! In the first repetition, it is
found that the algorithm does not work. By looking at the problem occurred
in the table, it is found that we only need to take 0 instead of 1 as the initial
value of fact in order to fix this problem

The implementation table should be rearranged anew even for the most obvious changes in the

flowchart.

6.4.1. Exercise. Draw the complete flowchart and arrange the
implementation table for n = 3. In addition, translate the resulted flowchart
into both C++ and Java codes.

6.5. Example. Write an algorithm to read the positive integer n and calculate
and print the sum below.

1 − 1
2! + 1

3! − ⋯ + (−1)n+1 1
n! .

Fig. 6.5: Calculating the sum 1 – 1 / 2! + 1 / 3! – … (–1)n+11 / n!.

Solution. Ignoring the signs for a moment, the difference between the above
sum and that of Example 6.3 is that the general term is added to the previous
repetitive sum in each stage in Example 6.3 and is reversed here. How do we
apply the signs? There are two general techniques to do this. In the first
technique, we consider a new variable named sign and take −1 as its initial
value before the loop. Then, before calculating the sum in each repetition of
the loop, we change the sign of the sum with the instruction sign ← -sign and
then multiply it to the general term. Accordingly, the sign of the general term
turns positive and negative alternatively. This algorithm is illustrated in Figur
e 6.5.

6.5.1. Exercise. Arrange the implementation table for n = 3. Further, translate
Flowchart 6.5 into both C++ and Java codes.

In the second technique, we change the factorial instruction in the form
below:

Furthermore, the initial value of the fact should be changed to −1; otherwise,
the first term obtains the negative sign.

6.5.2. Exercise. Draw the complete flowchart in this case and arrange the
implementation table for n = 3. Moreover, translate the obtained flowchart
into both C++ and Java codes.

Fig. 6.6: Calculating the sum 1 – 1 / 3! + 1 / 5! – … (–1)(n+1)/21 / n!.

6.6. Example. Write an algorithm to read a positive odd integer n. Then
calculate and print the sum

1 − 1
3! + 1

5! − ⋯ + (−1)
n+1

2 1
n! .

Solution. There is more difference this time. The counter increases two units
and this causes some complexity. Consider Flowchart 6.5 and change the
growth amount to 2. Now, assume that the third repetition with c = 3 is
implemented and the result 3! is obtained for the fact. Increasing the growth
amount by 2, the new amount of c gets 5. Certainly, the result of fact*c, that is,
3! × 5 will not be 5!. Something is missing. What should be put instead of the
dots in 3! × ⋯ × 5 to arrive at 5!? Obviously it is 4 which is c − 1. Therefore,
the factorial instruction should be changed to

Now, implementing the recent instruction for c = 1 leads to 0, which is
problematic. As a result, we should take 3 as the initial value of the loop and
assign the initial value 1 (the first term) to the sum, instead of 0 in order to fix
this problem. Now, the repetitive sum starts with the second term and thus
the initial value of the sign should be changed to 1. More importantly, all
these changes are inspired by the implementation table. Flowchart 6.6
depicts the result of the above argument and Table 6.6 is the implementation
table for n = 5.

Tab. 6.6: Implementation table of Algorithm 6.6 for n = 5.

Flowchart 6.6 is displayed in C++ and Java codes in Programs P6_6.

6.7. Example (Khayyam-Pascal triangle). The binomial coefficients are
calculated using the following formula:

c (i, j) = j!
i! (j−i)! , i = 0, 1, … , j

Starting with j = 0, consecutively increase the amount of j, and write the
results for each j in a separate row. Accordingly, a number of integers arrayed
in the shape of a triangle are obtained, called the Khayyam-Pascal triangle.
The following pattern illustrates this triangle for j = 0, 1, 2, 3, 4, 5, and 6.

Fig. 6.7: Khayyam-Pascal triangle algorithm.

Write an algorithm to read the positive integer m and produce this triangle.
then, print it like the above shape using the function fact().
Solution. Clearly, two for loops produce and print this triangle. The for loop
with the j variable organizes the rows and that with the i variable calculates
and prints the numbers of each row (Fig. 6.7).

In addition, the inner loop produces and prints one row of the triangle for
each value of j received from the outer loop. Further, an appropriate space
should be considered between the two outputs in this printing. Then, the
current row is broken, using the statement cout<<endl and the process is
continued. The break in the row is displayed in the flowchart by an empty
print. The result is programs P6_7.

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1

There is a function named pow() with two arguments in the list of library
functions which takes the first argument to the power of the second. In the
following example, we design a sub-algorithm with the same action.

6.8. Example. Write a function to get the real number x and integer n and

then calculate and return xn.

Solution. Choose a function named power() for this mean. Recall that the
name of a function, as an identifier cannot be any keyword. A clear idea in
this calculation is that, whether n is negative or positive, x is multiplied |n|
times by itself. This is conducted in Figure 6.8(a).

The output of the for template is p = n|n|.

Now, return 1 /
p if n is negative, and p otherwise using an if-else template. The complete
function is illustrated in Figure 6.8(b). Of course, the direction selected for n =
0 is not a matter of importance due to the incompatibility which occurs in the
loop.

Fig. 6.8(a): Part of power algorithm (x to the power of |n|)

What does happen when n = 0? In this condition, there is an incompatibility
of in the for loop and thus the result of the amount of p will be the initial
amount 1. Therefore, there is no difference between selecting to put this
condition in one path of the if-then template or the other. We placed it here in
the F-path.

Comparing Flowchart 6.8(a) with the factorial calculation part of Flowchar
t 6.2(a), the logic in both parts is found to be equivalent while they differ only
in the contents.

As shown in Flowchart 6.8(a), the variable of the loop totally failed to
appear in its range. The completed flowchart is illustrated in Figure 6.8(b).

The variable of the loop takes the role of counting. It may appear in the range or not.

In mathematics, the form xn

is called the indeterminate form if x = 0 and
n ≤ 0. The main Algorithm 6.8(c) reads the real number x and the integer n.
Then, if xn

is in the indeterminate form, it prints a message; otherwise,
the amount of xn

is calculated and printed calling the function power().
Programs P6_8 demonstrate this algorithm.

Fig. 6.8(b): Completed power algorithm (x to the power of n).

Fig. 6.8(c): A Main algorithm calling the power algorithm.

Fig. 6.9(a): Main tasks in the ranking algorithm.

6.9. Example. In a class of n students, two students with the top grade are to
be selected to receive awards. Assuming that all the grades are distinct, write
an algorithm to read each time the ID number and grade of a student and
then print the top two grades together with their ID numbers.
Solution. Let us first describe and analyse an equivalent problem in a simple

way: Determine two students from a class of n students who are the tallest
between their classmates and announce their height together with their
ID numbers, assuming there are no two students with the same height.

We examine the solution of this problem as follows. Consider two empty
places and mark them as the max1 and max2 students. Assume the empty
places as students with zero heights. Now implement the following
instructions:

1. Call a student named the t student

2. If the t student is taller than the max1 student, then substitute the

max1 student for the max2 and the t student for the max1.

3. Otherwise, if the t student is taller than the max2 student, then

substitute the t student for the max2.

Suppose that after implementing the above instructions, the student who
takes no place or loses its place is asked to leave the class.

Examining all the students this way, the max1 and max2 students are the
required ones.

As shown in Flowchart 6.9(a), the three above instructions are the range of
a for template with 40 repetitions. The empty places considered at first are
indeed the zero initial values of max1 and max2.

Fig. 6.9(b): Completed ranking algorithm.

What about the ID numbers? We know that the grade and the ID number are
two related quantities, as if they are two faces of a coin. Therefore, in
correspondence with the three variables t, max1, and max2, we select the
other three variables for their ID number, as d, d1 and d2, respectively. The
complete flowchart is depicted in Figure 6.9(b). Programs P6_9 is the
translation of Flowchart 6.9(b) into C++ and Java codes.

6.9.1. Exercise. Arrange the implementation table of the previous flowchart
for five students with various inputs.

6.9.2. Exercise. Repeat Example 6.9, this time without the assumption that all
the grades are distinct.

6.9.3. Exercise. Repeat Example 6.9 for three top ranks instead of the two,
first, by assuming that all the grades are distinct and the second time in a
general case.

We briefly and usefully explain the jumping statements of the continue and
break. In Chapter 4, we used the statement break to break out of the switch
statement. This statement can be employed in the loops as well. When the
break statement is encountered inside a loop, the loop is immediately
terminated and the program control continues at the next statement
following the loop. However, the continue statements are only used in the
loops. In the case where the continue statement is in the range of a loop, the
control is shifted to the first statement of the loop and the loop is continued.
As an example, the direction of the run control is demonstrated in the
following parts for both the continue and break statements.

On the other hand, the Java programming language supports more facilities
for the continue and break statements using the suffix label with the syntax
below:

The labelled continue

statement in Java

The labelled break statement in

Java

continue label; break label;

Effect: continue from the label

posited up.

Effect: break and run from the label

posited down.

Several notes should be considered in this regard.

– As mentioned above, the label in the continue statement should be placed up while it may appear up

or down for the break statement.

– The statement after the label should be a loop or a block.

– In the loops, the above-mentioned syntax is the same as the statement without the suffix if the label

is exactly before the loop where the statement is in.

– We can have the statements before the labels whereas no statement should exist between a label and

the loop or block after that.

A prototype for the continue and break statements (with or without the label)
can be found in the following model in which some comments are explained
on the run flow in the literature of the codes in the loops.

Fig. 6.10(a): The function prime() (the first technique: returning 0 upon divisibility).

It is worth mentioning that the labelled continue and break statements are
only used in Java. We will employ the continue and break statements in
various examples in the remaining chapters of the book.

6.10. Example. Design a function sub-algorithm named prime() in order to
receive an integer n, assuming that n > 1. Then, determine whether or not the
number is a prime number by returning one of the integers 1 or 0,
respectively (one can return the Boolean values true or false instead of 1 or 0,
respectively).
Solution. Recall that a positive integer n > 1 is called prime if its only divisors
are 1 and n. Furthermore, all the prime numbers are odd except for 2.
Therefore, we should work on the divisors of the number n in a for template.
To this end, it suffices to consider the divisibility of n to the numbers from 2

to n − 1 or, even less, to [√n],

 where [k] stands for the least
integer close to k. Accordingly, four various techniques are recommended for
solving this problem.

First technique. Consider the divisibility of n by the variable of the loop
inside it. Upon reaching the first divisibility, return 0. However, the loop
applies all the repetitions if no divisibility occurs. This implies that the
number n is prime and hence 1 should be returned after exiting the loop. Flo
wchart 6.10(a) visualizes this technique. The translation of the first technique
is represented below.

Fig. 6.10(b): The function prime() (the second technique: breaking upon divisibility).

Second technique. At first, assume that n is prime and assign 1 to p, which is
the carrier of the function. If the divisibility occurs, then substitute 0 for p
which means that n is not prime. After exiting the loop, the value of p returns
the result of prime-testing. This technique is demonstrated in Flowchart 6.10
(b) in which a break instruction prevents unnecessary repetitions. The
subprogram in accord with the flowchart is similar to that of the first
technique.

The subprogram in accord with the Flowchart 6.10(b) is presented below:

Third technique. The number of divisors except for 1 is counted by the
variable t in this technique. The value zero for t implies that the number n is
prime after exiting the loop; otherwise, it is not prime. Figure 6.10(c) is the

flowchart of this technique. The corresponding subprogram of the third
technique is:

Fig. 6.10(c): The function prime() (the third technique: counting the divisors).

Fourth technique. Use a variable named s as a switch. By a switch we mean
a variable which records a conversion of status related to a condition in the
loop, possibly after one or several instructions. We assign 0 to s (switch off)
before starting the loop. Upon the occurrence of divisibility, the value of s
changes to 1 (switch on). Then, we return the result based on whether the
switch is off or on. Flowchart 6.10(d), analogy to Flowchart 6.10(b), illustrates
this technique.

Comparing Flowcharts 6.10(c) and 6.10(d), an equivalency is observed
between their logic and their codes.

Fig. 6.10(d): The function prime() (the forth technique: using a switch).

Have you thought that how the function prime() (any technique) deals with
the cases n = 2 or 3? You can find the answer in the incompatibilities of the
loop.

6.11. Example. Write a main algorithm to read a an integer n with n > 2.
Then, determine and print the prime numbers smaller than n using the
function prime().

Solution. Figure 6.11 displays the required flowchart and Programs P6_11
hold its translation into C++ and Java codes.

Fig. 6.11: Printing the prime numbers less than 100 calling the function prime().

In Flowchart 6.11, we can write the condition as the prime(n). In this case, the
return integer values 1 and 0 should be replaced by the Boolean values true
and false, respectively, in the right Java program while, in the left C++
program, there is no need to perform this change. Recall that in C++, the
integers 1 and 0 are equivalent to the Boolean values true and false,
respectively.

Fig. 6.12(a): Calculating single series.

6.2 Series

6.12. Series via the for template. The for templates are widely used in the
algorithms and programs concerned with the series calculations due to their
counting nature. In general, to calculate the single series

b

∑
i=a

Ai,

we can construct Flowchart 6.12(a). In the series above, assume that Ai is the
general term of the series which is normally dependent on i. Moreover, the
algorithm of the following double series can be constructed as Flowchart 6.12
(b).

b

∑
i=a

d

∑
j=c

Aij

Fig. 6.12(b): Calculating double series.

Fig. 6.13(a): Sketch of calculating the single series in Example 6.13.

Here again, Aij is assumed as the general term of the series which depends on
both i and j. The double series pattern can be naturally extended to the multi
series.

6.13. Example. Write an algorithm to read the positive integer i and then
calculate and print the following series.

8

∑
t=1

(i2 + t2)
i+t

.

Solution. Combine Flowcharts 6.8(a) and 6.12(a) and add the input and output
templates to it. Accordingly, change the name of the general term from Ai to p
in Flowchart 6.12(a) and add it to the repetitive sum, which we name sumt (Fi
g. 6.13(a)).

Considering that the power of i + t is positive, we use a special form of Flo
wchart 6.8(a) shown in Figure 6.13(b) to calculate p = (i2 + t2)

i+t
.

The completed algorithm is obtained by putting
Flowchart 6.13(b) in its position in Flowchart 6.13(a) (Fig. 6.13(c)).

6.13.1. Exercise. Write the programs of the completed Algorithm 6.13(c) in
both C++ and Java codes.

Fig. 6.13(b): Calculating i2 + t2 to the power of i + t.

The above algorithm can be written in a more simple way using the library
function pow(), or calling the function power() in Example 6.8. This is
performed in Flowchart 6.13(d). Programs P6_13 are the translation of Flowc
hart 6.13(d) into C++ and Java codes.

Fig. 6.13(c): Calculating the single series in example 6.13 (complete algorithm).

Fig. 6.13(d): Calculating the single series in Example 6.13 (using the pow() function).

6.14. Example. Write an algorithm to calculate and print the following
series.

8

∑
t=1

(i2 + t2)
i+t

Solution. As shown in Flowchart 6.14, this double series can be created using
the pattern of Flowchart 6.12(b).

Fig. 6.14: Calculating the double series in Example 6.14 (using the pow() function).

Tab. 6.14: Implementation table of Flowchart 6.14 for i = 1, 2 and t = 1, 2, 3.

The details of implementing Flowchart 6.14 for i from 1 to 2 and t from 1 to 3
are summarized in Table 6.14. The following rule should be highlighted in
arranging the implementation table for the nested loops.

The rule of implementation table for nested loops. The best technique to arrange an implementation

table for the nested loops is to allocate necessary parts of the table each for a repetition of the outer

loop and write the results of implementing the range of the inner loop in the related part.

Programs P6_14 translate Flowchart 6.14 into C++ and Java codes.

6.15) Trapezoidal approximated integration. The trapezoidal method is one
of the methods for the approximation integration of the definite integral

∫
b

a

f (x)dx.

As shown in Figure 6.15(a), the integration interval [a, b] is divided into n
equal parts and the split points are marked as
a = x0, x1, … , xn−1, xn = b

in this method.
The mentioned integral is the area under the curve of y = f(x) which

restricted between the two lines x = a and x = b. Additionally, the amount of
this integral is approximately equal to the sum of the areas related to the

trapezoids created by the division subintervals of the integration interval.
Given a straightforward calculation, it can be checked that this sum can be
obtained by the formula:

T = 1
2 h (f (a) + 2f (x1) + 2f (x2) + ⋯ + 2f (xn−1) + f (b)),

Fig. 6.15(a): The sum of the trapezoids’ areas is the approximated integral.

Fig. 6.15(b): Calculating the series of the trapezoid method.

where h is the length of each division subinterval. To calculate the
approximated integral

∫
b

a

e−x2
dx,

sketch an algorithm including the following parts using the trapezoidal
technique.
1. The function sub-algorithm f() which receives a real value x and returns

e−x2
.

2. The function sub-algorithm Trap() which receives the integration
endpoints a and b as well as the number of division points n, and returns
the approximated integral

∫
b

a

f (x)dx

calling the function f() in the first part.
3. The main algorithm which reads the values of the endpoints a and b as

well as the division points n and, calling the function Trap(), prints the
approximated value of the integral

∫
b

a

e−x2
dx.

Solution. The required approximated value is the sum of the areas of the
above-mentioned trapezoids, denoted by T. Note that xi = a + ih

 in the above-mentioned formula for T. Therefore, the
formula can be rewritten as:

T = 1
2 h(f (a) + 2

n−1

∑
i=1

f (a + ih) + f (b)).

The calculation of the series

Fig. 6.15(c): Integral approximation by the trapezoid method (completed algorithm).

n−1

∑
i=1

f (a + ih)

is the basic part in the above formula. This is conducted in Flowchart 6.15(b).
The three required parts are illustrated in Flowchart 6.15(c). Programs P6_15
are the corresponding programs in C++ and Java codes. Programs P6_15 can
be used for any function provided that the rule of f is changed in the
program.

Exercises

In the following exercises: (1) Arrange the implementation table, if needed,
(2) Write the complete program, (3) Provide appropriate input notifications
and output headings, if any. In addition, the user-defined functions in the text

of the current and the previous chapters may be used unless otherwise is
explicitly specified.

6.1. Write an algorithm to read a positive integer n and then calculate and
print the sum of the numbers from 1 to n.

6.2. Write an algorithm to read a positive integer n and then calculate and
print the sum of the first n even numbers.

6.3. Write an algorithm to read a positive integer n and then calculate and
print the sum of the odd numbers smaller than n.

6.4. The square of a positive integer n can be derived from the sum of n
consecutive positive odd numbers. For example,

62 = 1 + 3 + 5 + 7 + 9 + 11.

Write an algorithm to read a positive integer n and then calculate its square
using the above-mentioned method and print it together with n itself.
6.5. Write an algorithm to read two positive integers m and n and then
calculate and print their multiplication using the following consecutive sum:

nm = m + m + … + m (n times).

6.6. Write an algorithm to read a positive integer n, which is a multiple of 4,
and then calculate and print the sum of the multiples of 4, from 4 to n.

6.7. Write an algorithm to read the three positive integers a, b, and m (a < b)
and then determine and print the number of the multiples of m from a and b.

6.8. Write an algorithm to read the ID number and grade of 20 students and
then determine the students with grade < 12 and print them together with
their ID numbers. Finally, print the number of these students.

6.9. An airplane at an altitude of h passes above the point P. If its speed is v,
then its distance from the point P at the moment t can be calculated using the

formula d =

√h2 + (vt)2.

Write an algorithm
to read the speed v and altitude h and then calculate and print the distance of
the airplane at the moments t = 1, 2, …, 60.

6.10. Write an algorithm to read the employee number n, the monthly
working hours h, and the hourly wage s of the employees in an office
including 300 members one by one and then calculate and print the monthly
salary of these employees. If an employee has worked over 200 hours per
month, the hourly wage will be multiplied by 1.5 for their overtime hours.

6.11. Write an algorithm to read 50 numbers and then separately calculate
and print the following items.
− The positive numbers;
− The sum of the positive numbers;
− The number of positive numbers;
− The negative numbers;
− The sum of the negative numbers;
− The number of negative numbers;
− The number of zeroes.

6.12. Write an algorithm to read a positive integer n. Then read n real
numbers and determine and print their maximum and minimum.

6.13. Write an algorithm to read the positive integer n and then print the
prime numbers smaller than n.

6.14. Write an algorithm to calculate and print the number of primes smaller
than 1000 and in the form 4n + 1.

6.15. Write an algorithm to read the positive even integer n and the real
number x and then calculate and print the following sum.

1 − x
2! + x

4! − ⋯ + (−1)
n
2 x
n! .

In Exercises 6.16 to 6.23, write the requested algorithm using the necessary
user-defined functions in the current chapter, and once again without using
such a functions.

6.16. Write an algorithm to read a positive n and then calculate and print the
following sum.

n

∑
i=1

ii.

6.17. Write an algorithm to calculate and print the following sum.

5

∑
i=1

ii!.

6.18. Write an algorithm to read a positive odd integer n and then calculate
and print the following sum.

1 − 33! + 55! − ⋯ + (−1)
n−1

2 nn!.

6.19. Write an algorithm to calculate and print the following sum:

5

∑
i=1

i!i.

6.20. Write an algorithm to read a positive odd integer n and then calculate
and print the following sum.

1 − 3!3 + 5!5 − ⋯ + (−1)
n−1

2 n!n.

6.21. Write an algorithm to read the real number x and calculate and print
the following sum.

7

∑
i=1

(−1)i+1
i2xi.

6.22. Write an algorithm to calculate and print the following sum.

5

∑
n=1

10

∑
i=1

(in + ni).

6.23. Write an algorithm to read the positive integer n and then calculate and
print the following sum.

15

∑
i=1

in + (
15

∑
i=1

i)

n

.

6.24. Write an algorithm to calculate and print the following sum.

3

∑
i=1

4

∑
j=1

5

∑
k=1

(i + ij + ij
k

).

6.25. The approximated integration of the definite integral

∫
b

a

f (x)dx

using the Simpson method is calculated by the formula

s = 1
3 h (f (a) + 4f (x1) + 2f (x2) + ⋯ + 2f (xn−2) + 4f (xn−1) + f (b)).

where a, b, n, and h are the same as in the trapezoidal method in Example 6.1
5. Here, n is assumed even. To calculate the approximated integral

∫
b

a

e−x2
dx

by the Simpson method, design an algorithm including the three parts
mentioned in Example 6.15. Denote the function of the approximated
integration by Simp() instead of Trap.

6.26. Consider the following continued 3-fraction.

1 + 1
1+ 1

1+ 1
x

.

Write an algorithm to read the value of the real number x and the positive
integer n and then calculate and print a similar continued n-fraction.

6.27. Write an algorithm to read the positive integer n and the real number x
and then calculate and print the first n terms of the following series.

1
x + 1

1+ 1
x

+ 1
2+ 1

1+ 1
x

+ 1
3+ 1

2+ 1
1+ 1

x

+ ⋯

6.28. Write an algorithm to read the real number x and then calculate and
print the first 10 terms of the following series.

1
x − 1

x+2x2 + 1
x+2x2+3x3 − 1

x+2x2+3x3+4x4 + ⋯

6.29. Write an algorithm to read a positive integer n and then calculate and
print all of its positive divisors smaller than n.

6.30. A perfect number is defined to be a positive integer n which is equal to
the sum of its positive divisors smaller than n. For example, 28 is a perfect
number since 28 = 1 + 2 + 4 + 7 + 14. Write a function named perfect() to
receive a positive integer n and then return 1 if n is perfect and 0 otherwise.
Afterwards, write a main algorithm to read a positive integer n and specify
whether it is a perfect number by printing an appropriate message. Use the
function perfect() in the main algorithm.

Supplementary exercises

6.1*. Consider the following six 4-line patterns.

Now, write a program for each pattern to read a positive integer n and print
the n-line corresponding pattern.

6.2*. Write an algorithm to read the positive integer n and print an n-row
triangle as follows.

6.3*. Modify Algorithm 6.7 so that upon reading 6 for m, print the Khayyam-
Pascal triangle in the following pattern.

1
1 2
1 2 6
1 2 6 24

⋮

1 … n!

6.4 *. Write an algorithm to read the positive integer n and then determine
and print the digits of n from right to left.

6.5*. Write an algorithm to determine and print the four-digit positive
integers in which the first two digits from left are even while the other two
digits are odd. Further, the number of such integers should be printed.

6.6*. Write an algorithm to read a positive integer n and take it to the power
of its largest prime divisor and finally, print this integer. For example, if 20 is
read then print 20^5.

6.7*. The sum of all the divisors of the positive integer n, except for n itself, is
denoted by σ(n). The number n is called perfect, abundant, and deficient if
σ(n) = n, σ(n)> n, and σ(n) < n, respectively. Write an algorithm to separately
determine and print the perfect, abundant, and deficient numbers less than
100. Furthermore, the number of perfect, abundant, and deficient numbers
are printed.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 6 15 20 15 1

6.8*. For a positive integer n, the Euler phi function, namely, φ(n), is defined
as the number of all the positive integers smaller than n, which are coprime
to n. For example, φ(14) = 6 since 1, 3, 5, 9, 11, and 13 are the only positive
integers less than 14 being coprime to 14. Moreover, this function can be
calculated using the following formula.

φ (n) = n(1 − 1
p1
)(1 − 1

p2
)...(1 − 1

pr
) = n(p1−1

p1
)(p2−1

p2
)...(pr−1

pr
),

where p1, p2, … , pr

are distinct prime factors of n.
Write an algorithm to read the positive integer n and then calculate and print
φ(n) using the above formula and once again, directly without using it.

6.9*. Write a main algorithm to read a positive number k and then determine
and print the perfect numbers less than k using the function perfect() in Exer
cise 6.30.

7 Conditional loops

7.1 The while and do-while templates

In Chapter 6, we observed that the automated loops perform three processes including
giving the initial value to the variable of the loop, increasing the growth value in each
repetition, and controlling the repetition of the loop automatically which in the
algorithm (programming) an instruction (a statement) is used for this purpose. On the
other hand, in the conditional loops, which we will study in the present chapter, the
situation is somehow different. Especially, the repetition of the loop is controlled by a
condition named the condition of loop repetition or simply the condition of the loop.

Depending on whether this condition is at the beginning or the end of the loop, the
conditional loops are divided into two templates called the while or do-while
templates or loops. In fact, the position of the condition is as the position of the while
keyword in the name of the template. In this chapter, these two templates are
thoroughly investigated. Normally, the following steps are used in creating the
conditional loop templates regardless of their order.

The first step. Determining the initial values of the loop, if there are any. These initial
values exist in most loops and the first repetition of the loop is created with their help.
The best location for the initial values is before the start of the loop. In some loops,
however, we distinguish these values after the second or even the third repetition.

The second step. Designing the range of the loop based on the processes performed in
each repetition of the loop. Sometimes, especially when the initial values of the loop are
not specified, writing the range of the loop from the second repetition onwards is
feasible. In such circumstances, we first create the range of the loop and then look for
initial values which can create the first repetition using this range. This step, like the
automated loops, is of great importance.

The third step. Evaluating the condition for the repetition of the loop and its
appropriate location. Clearly, we can place the condition of the loop either at the start
or the end in most loops. However, in some loops we are bound to use only one of the
start-condition (while) or end-condition (do-while) templates of the loop.

7.1. Example. Write an algorithm to read 20 integers and then determine and print the
number of positive integers among these integers.

Solution. This is exactly the first example in Chapter 6 (Example 6.1) for which we
wrote an algorithm (Flowchart 6.1) using a for loop. In this loop, the initial values,
growth value, and controlling the repetition of the loop were automatically determined
and a single instruction corresponded to all these three tasks.

Fig. 7.1(a): Flowchart of Example 6.1 using the do-while template.

In this chapter, we decided to write this algorithm using a conditional loop. Therefore,
the three above-mentioned tasks should now be performed using three individual
instructions.

1. Before the loop, where no integer has yet been read, take the initial value of

cx as 0.

2. We already know the basic instructions of the range of the loop, namely, those

which were implemented in each repetition. Often, the best place for

increasing the growth value is after these basic instructions of the range of the

loop. Nevertheless, we can occasionally put the growth value increment before

the basic instructions of the range or even insert it among such instructions.

3. Finally, the condition of the repetition is located at the end of the loop so that

the loop repeats until 20 counts for the read numbers is completed.

The flowchart obtained based on the do-while template is illustrated in Figure 7.1(a). In
this flowchart, the above-mentioned instructions are demonstrated in bold font.

Fig. 7.1(b): Flowchart 7.1(a) using the while template.

Finally, the implementation table is arranged for the following 5 data, instead of 20.

−2, 0, 19, − 23, 14

Tab. 7.1: Implementation table of Flowchart 7.1(a) for 5 data instead of 20.

In Flowchart 7.1(a), the condition is located at the end of the loop. Flowchart 7.1(b) is
designed for the same algorithm in a way that the condition is at the start of the loop.
we leave the reader to arrange the implementation table for Flowchart 7.1(b) with the
same input data as above for better understanding.

The other template can be created by changing the location related to the condition of the loop from the start of the

loop to the end or vice versa using one of the conditional loop templates. Accordingly, several other changes need to

be made. After replacing the template, it is strongly recommended to arrange an implementation table for the

resulted template in order to be assured the correctness of the algorithm.

7.1.1. Exercise. Modify Example 7.1 in such a way that the integers themselves along
with the number of positive integers are printed. Apply this change in both flowcharts
7.1(a) and 7.1(b).

7.1.2. Exercise. Now, modify the algorithm so that it calculates and prints the number
of positive and negative integers and zeroes together with appropriate output headings.

In general, the flowcharts of the while and do-while templates along with their
identical codes in C++ and Java are summarized as follows.

Implementation of the while template: Implement (repeat the implementation of)
the loop range while the condition is true. Thus, exit the loop as soon as the condition is
false.
Implementation of the do-while template: Do implement the loop range and repeat
its implementation while the condition is true. Therefore, exit the loop as soon as the
condition is false.

In fact, every logical condition has a negation having the opposite logical value. As a
result, both while and do-while loops can be made in such a way that the T- and F-paths
on these templates stay on the same directions as the above flowchart pattern. Of
course, there are nearly similar flowcharts for these two conditional loop templates in
all the programming languages.

The loop range should be grouped by {} if it contains more than one statement.

Programs P7_1_A translate Flowchart 7.1(a) into C++ and Java codes.

Furthermore, Programs P7_1_B translate Flowchart 7.1(b) into C++ and Java codes.

As shown, despite the position regarding the condition of the loop, there is another
major difference between these two loops in their flowcharts.

The basic difference between the two conditional loop templates. In the while template, the range of the loop may

never be implemented while the range of the loop is implemented at least once in the do-while template. This is

exactly due to the position of the conditions of the loops.

Comparing Flowcharts 7.1(a) and 7.1(b) with Flowchart 6.1, it is observed that the
following three flowcharts are equivalent from the implementation point of view.

The algorithm in Example 7.1 is an instance indicating that writing the algorithms is
possible using any loop template including the automated or either of the conditional

loop templates. In particular, the automated loop templates can be transferred to either
of the conditional loops.

Due to the simplicity of the automated loops both in flowchart and programming codes, it is strongly recommended to

use automated loops whenever possible, unless the problem requires employing the conditional loops.

As previously mentioned, before Example 6.10 in Chapter 6, the continue and break
statements may appear in the loops. A general application of these statements in the
nested loops are represented in a prototype, accompanied by some notes, in which any
loop may be one of the three loops of for, while, or do-while. Recall that the labelled
continue and break statements are exclusively used in Java programming language.

Furthermore, the direction of the run control was demonstrated for both the
continue and break statements in the for template. In the following parts, this direction
is shown for the while and do-while templates.

7.2. Example. Several exam marks out of 20 will be read from the input unit. However,
the number of marks is not known. Write an algorithm to read all the marks and then
calculate and print their average.
Solution. Define the variables x, n, and sum for the read marks, number of read marks,
and their repetitive sum, respectively. Then, assign the initial values of 0 to both n and
sum before using any loop since no mark is yet read.

Since the read marks are from 0 to 20, we attempt to use a while template so that, while
0 ≤ x ≤ 20, first, an x (a mark) is read. Then, the number n is increased one unit and the
x is added to the sum, namely, the repetitive sum. Moreover, it suffices to enter either a
negative number or a number greater than 20 in order to exit the loop. Then, the
average, which is sum / n, is printed. The obtained flowchart is displayed in Figure 7.2.
Programs P7_2 represent the codes of Flowchart 7.2.

Fig. 7.2: Determining the average of unknown number of marks.

Fig. 7.3(a): Sketch of the Fibonacci sequence algorithm.

As seen, it is difficult to solve Example 7.2 using the for template. However, we can
easily use the for template if the upper bound of the number of marks is known.

7.2.1. Exercise. Assume that the number of marks is at most 40. Using the for template,
write an algorithm for Example 7.2 and then write the programs.

The following paragraph is another example in which it is impossible to employ the for
template.

7.3. Example. The Fibonacci sequence in one of the famous sequences in which the first
and second terms are 1 and from the third item onward, each item is the sum of the
two previous terms. A few terms of this sequence are as follows.

1, 1, 3, 5, 8, 13, 21, …

Write an algorithm to generate and print the terms of this sequence which are smaller
than 50.
Solution. First, take two variables a and b with the initial value 1. These are the first two
terms of the sequence. We intend to generate the terms smaller than 50. We do this in a
do-while template while the term is less than 50. So far, we have Flowchart 7.3(a).

Take one of the variables a or b, say a, as the sequence generator. Then, add a to b
and substitute the result for a. An implementation table indicates that if we continue
this way, we are stuck after two repetitions. Additionally, the table represents that a and
b should be swapped after adding up to overcome this problem (Fig. 7.2(b)).

Fig. 7.3(b): Generating the terms of Fibonacci sequence without print.

Arrange the implementation table again (Tab. 7.3(a)). This time it generates the
sequence. In this table, we generated the terms less than 7, instead of 50.

Tab. 7.3(a): Generating the terms of the Fibonacci sequence less than 7.

position a(generator) b

before the loop 1 1

first repetition 2

1 2

second repetition 3

2 3

third repetition 5

3 5

forth repetition 8

5 8

Concentrating on the underlined terms in the table, we can guess the location of the
print template. It should be at the start of the loop. Now, the required flowchart is
completed. Figure 7.3(c) depicts the completed flowchart. Programs P7_3_A represent
the codes of the completed flowchart 7.3(c).

Fig. 7.3(c): Completed Fibonacci algorithm.

Fig. 7.3(d): Calling Fibonacci sub-algorithm in a main algorithm.

Next, we divide Algorithm 7.3(c) into a sub-algorithm and a main algorithm so that the
sub-algorithm, named Fibo(), receives the positive integer i and prints all the terms of

the Fibonacci sequence smaller than i. Moreover, the main algorithm reads an integer k
from the input and prints a message if k < 2. Otherwise, this algorithm prints all the
terms smaller than k using the sub-algorithm Fibo(). The result is represented in Flowc
hart 7.3(d). Programs P7_3_B indicate the translation of these two units into C++ and
Java codes.

Writing an algorithm to generate the n-th term of the Fibonacci sequence by recursive
method would be easier for any positive integer n. If we denote the n-th term by fn,

then we have the following recursive relations

fn = fn−1 + fn−2, f1 = 1, f2 = 1,

or, equivalently, as a recursive function,

f (n) = {

The generating function of this sequence, named Fib, is illustrated in Flowchart 7.3(e)
using the above-mentioned method. This function receives a positive integer n and then
calculates and returns the n-th term of the Fibonacci sequence. Additionally, the main
algorithm of this flowchart reads an integer k from the input and prints a message if k
is not positive. Otherwise, it determines and prints the k-th term of the sequence using
the function Fib(). Programs P7_3_C are considered the translation of these two units
into C++ and Java codes.

1, if n = 1 or 2

f (n − 1) + f (n − 2), otherwise.

Fig. 7.3(e): Generator the n-th term of Fibonacci sequence by recursive method.

7.4. Example. Write an algorithm to read an integer and print its reverse. For example,
–491 is the reverse of –194.
Solution. The brain reaction is first analyzed in order to get an insight on how to write
the algorithm for a positive integer. Then, the algorithm is extended to any integer. The
details regarding the process of working with number 234 are described in Table 7.4(a).

Tab. 7.4(a): The brain reaction and issued commands for reversing the number 234.

The brain reaction and the issued commands in each step are analyzed:
1. Take the last digit from 234; what is left is 23; write the removed digit (as the

new number): 4.

2. Take the last digit from 23; what is left is 2; put the removed number in front of

the recent 4: 43.

3. Take the last digit from 2 (2 itself); what is left is 0 (nothing); put the removed

number in front of the recent 43: 432.

Now the mentioned analysis is steered to reach an algorithm. To do this, we need to
approach some of the above actions to equivalent actions from the algorithm
viewpoint:
− Last digit: the remainder of the division by 10;
− What is left: the quotient of the division by 10;
− Putting the digit r in front of the recent number x: substituting the number x * 10 +

r for x.

To continue, define some variables:
n: the number being processed;
newn: the new number obtained by putting a digit in front of a certain number;
r: the remainder of the division by 10.

We are now going to rewrite the three commands issued from the brain reaction in the
literature of the algorithm as follows.

1. Assign n % 10 to r; substitute n / 10 for n; assign r to newn.

2. Assign n % 10 to r; substitute n / 10 for n; substitute newn * 10 + r for newn.

3. Assign n % 10 to r; substitute n / 10 for n; substitute newn * 10 + r for newn.

Fig. 7.4(a): The do-while template constructed so far for reversing a positive integer.

As seen, there is a loop which is repeated three times and the following instructions are
implemented in each repetition of the loop (Note that assigning zero to the initial value
of newn, the instruction “assign r to newn” becomes equivalent to “substitute newn * 10
+ r for newn”).

How long should we continue this loop? Until there is a (positive) number, that is, until
n ≠ 0. As shown in Flowchart 7.4(a), so far, we have constructed a do-while template
with the initial value of 0 for newn.

Table 7.4(a) is only displayed for explaining the brain reaction and the issued
commands. Table 7.4(b) is the real implementation table for 234.

Tab. 7.4(b): Implementation table of Flowchart 7.4(a) for n = 234.

Fig. 7.4(b): Completed algorithm to reverse an integer.

Flowchart 7.4(a) is the most essential part on which the algorithm is based. This
flowchart displays a positive integer. Assume that we do not know whether or not the
given integer is positive. Take the original number as n0 and substitute its absolute
value for n. Continue the process of Flowchart 7.4(a). Upon the exit of the loop, print
newn if the original number is positive; otherwise –newn is printed. Flowchart 7.4(b) is
the completed algorithm.

7.4.1. Exercise. Transform the do-while template in Flowchart 7.4(b) into the while
template and arrange the implementation table for both positive and negative integers
in duplicate.

Now the process of Flowchart 7.4(a) is considered as the main body of a function sub-
algorithm, named rev(). In fact, the function rev() is taken into account for calculating
and returning the reverse of the positive integer n. Finally, the remaining duties are
assigned to a main algorithm. Figure 7.4(c) includes these two units.

Fig. 7.4(c): Reversing an integer using the rev() function.

Programs P7_4 translate the two units of Flowchart 7.4(d) into C++ and Java codes.

Fig. 7.5(a): Putting digits in front of each other from left to right.

7.5. Example. (a) We are given repeatedly a digit r and requested to put it in front of the
previous one from left to right while a condition holds. Write a part of the algorithm for
this purpose;
(b) Repeat part (a) putting the digits behind each other from right to left;
(c) Repeat part (a) after a decimal point.

Solution. Denote by x the number obtained by putting the digit r in each part. We
applied part (a) in the algorithm of Example 7.4. Figure 7.5(a) recalls this part. In fact,
we multiply x by 10 before putting the digit r in front of x in order to open up a place
for r. Then, r is inserted in its place by adding x * 0 up to r.

For part (b) we use a positioner variable named p for ones, tens, hundreds, and the
like to arrange the digits from right to left behind each other. This time, we multiply p
by r before putting the digit r behind x to open up the right position of r. Then, r is
inserted in its position by adding the p * r up to x. Finally, the positioner is multiplied by
10 to create a new position for the next repetition. The obtained part is illustrated in Flo
wchart 7.5(b).

The arrangement of digits for part (c) is similar to part (a), namely, from left to right.
However, the real processing depends on part (b) with the difference that, this time, the
positioner variable p provides positions for the one tenth, one hundredth, and the like.
Flowchart 7.5(c) illustrates the algorithm for this part.

Fig. 7.5(b): Putting digits behind each other from right to left.

Fig. 7.5(c): Putting digits in front of each other from left to right, after a decimal point.

7.2 More applications of the conditional loops

In this section, converting positive real numbers to the base-2 numeral system,
Euclidean algorithm (to find the greatest common divisor), the generalized Euclidean
algorithm, and primary decomposition of positive integers are examined.

7.6. Example. Write a function (method) to receive a positive real number, convert it to
the base-2 numeral system, and then return the result.
Solution. We start with the positive integer n. Theoretically, to convert n into the base-2
numeral system one must divide it continuously by 2 and write the quotient and
remainder. This is repeated until the zero quotient appears. Now, the required number
is obtained if the remainders are arranged behind each other from right to left.
Applying the mentioned process for n = 11 is summarized in Table 7.6(a).

Tab. 7.6(a): Converting 11 to the base-2 numeral system.

status quotient by 2 remainder by 2

first step 5 1

second step 2 1

third step 1 0

fourth step 0 1

The number 1011 is the required number. We analyze the problem further. As in Exam
ple 7.4, the brain reaction and issued commands are analyzed in each step.

1. Divide 11 by 2; what is left (by removing the remainder) is 5; write the

remainder (as the new number): 1;

2. Divide 5 by 2; what is left (by removing the remainder) is 2; put the remainder

behind the recent 1: 11;

3. Divide 2 by 2; what is left (by removing the remainder) is 1; put the remainder

behind the recent 11: 011 = 11;

4. Divide 1 by 2; what is left (by removing the remainder) is 0 (nothing); put the

remainder behind the recent 011: 1011.

Further, the details of each step are provided. First, to approach some of the actions to
the equivalent actions from the algorithm viewpoint:
− What is left: the quotient of the division by 2;
− Putting the digit r behind the recent number x: Flowchart 7.5(b).

Fig. 7.6(a): Merging Flowcharts 7.4(a) and 7.5(b).

Fig. 7.6(b): A function to transfer an integer to the base-2 numeral system.

Define the following variables:
n: the number being processed;
newn: the new number obtained by putting a digit behind a certain number;
r: the remainder of the division by 2.

Now, inspired by Flowchart 7.4(a) and considering Flowchart 7.5(b) for putting a digit
behind each one from right to left, Flowchart 7.6(a) is the merge of these two
flowcharts.

The required function (method) for integers is represented by bin1. As visualized in
Flowchart 7.6(b), this function receives the integer n, converts it to the base-2 numeral
system and then returns the result with the carrier newn.

We arrange the implementation table for number 11 in order to test the correctness
of the function bin1().

Tab. 7.6(b): Implementation table for the function bin1() in Flowchart 7.6(b).

7.6.1. Exercise. Furthermore, the function bin1() can be designed using the logic of Flo
wchart 7.4(a) with an appeal to the function rev(): (a) Modify Flowchart 7.4(a) by
changing the division 10 to 2 in the remainder r and quotient n. Then, the returning
number from the function will be the reversed binary representation, (b) An appeal to
the function rev(), now, returns the binary representation. Write the completed
algorithm and test it for number 11.

Now we continue with a decimal number t. Mathematically, to convert a decimal
number t to the base-2 numeral system, one should multiply it continuously to 2 and
each time keep the integer part of the resulted number. This process is continued until
the number of the requested decimals is acquired. Now, the desired number is obtained
if we arrange the integers obtained in the above process from left to right after the
decimal point. The mentioned process is applied for t = 0.863 and the result is obtained
up to four decimals precision in Table 7.6(c).

Tab. 7.6(c): Converting the number 0.863 to the base-2 numeral system.

status multiply the number by 2 integer part of the resulted number

first step 1.726 1

second step 1.452 1

third step 0.904 0

fourth step 1.808 1

The result is 0.1101. As the previous part, we analyze the brain reaction and issued
commands in each step.

1. Multiply 0.863 by 2; what is left is 0.726; take the integer part of the resulted

number and put it after the decimal point (as a new number): 0.1;

2. Multiply 0.726 by 2; what is left is 0.452; take the integer part of the resulted

number and put it in front of the recent decimal number: 0.11;

3. Multiply 0.452 by 2; what is left is 0.902; take the integer part of the resulted

number and put it in front of the recent decimal number: 0.110;

4. Multiply 0.902 by 2; what is left is 0.808; take the integer part of the resulted

number and put it in front of the recent decimal number: 0.1101.

Like the previous part, we explain the details by stating the equivalent parts of some
actions from the algorithm viewpoint. The details regarding each step are provided.
First, to approach several actions to the equivalent actions:
− What is left: the decimal part of the number after multiplying by 2;
− Putting the digit r (the integer part of the number after multiplying by 2) in front of

the recent decimal number x: Flowchart 7.5(c).

Fig. 7.6(c): The tasks performed in each repetition regarding the discussions so far.

Define the following variables:
t: the number being processed;
newt: the new number obtained by putting a digit in front of the recent decimal
number;

b: the integer part of the number after multiplying by 2.

Now, considering the above discussion, the do-while loop can be written as depicted in
Flowchart 7.6(c).

The loop in Flowchart 7.6(c) terminates only if the decimal digits of the number
being processed ends; like 0.125 whose decimal digits terminates after three times
multiplying the number by 2. If this does not occur, the loop is terminated after a
specific decimal precision determined by the user. To do this, consider a counter
variable i with the initial value of 0 and increase it in each repetition. Now, the loop
repeats while i < m. The function bin2() in Flowchart 7.6(d) receives a decimal number t
and an integer m. Finally, it converts t to the base-2 decimal system and returns it with
m decimal digits. The result of the implementation of Flowchart 7.6(d) for t = 0.863 and
m = 4 is demonstrated in Table 7.6(d).

Tab. 2: implementation table for Flowchart 7.6(d) for t = 0.863 and m = 4.

Fig. 7.6(d): A function to transfer a decimal number to the base-2 numeral system.

Now, we write a main algorithm which reads a positive real number u and a positive
integer m. The, it prints the representation of u in the base-2 decimal system with the
precision of m decimal digits using the two functions bin1() and bin2. To do this, the
integer and decimal parts of u are first separated and converted to the base-2 numeral
system. Then, the results are added and printed. Flowchart 7.6(e) and Programs P7_6
are the outcomes of this process (note the formatted prints in the programs).

Fig. 7.6(e): Representing a real number in the base-2 numeral system with m precision digits.

Fig. 7.7(a): Instructions implemented in each repetition of the Euclidean algorithm.

7.6.2. Exercise. The main Algorithm 7.6(e) converts the positive real numbers to the
base-2 numeral system. Modify this algorithm in such a way to work for any real
number and write the programs.

In the previous examples, the loops had initial values for the variables. The variables in
the conditional loop template of the following example do not need any initial values.

7.7) The Euclidean algorithm to compute the greatest common divisor (gcd). Write
an algorithm to read the two positive integers b and s and then determine and print
their greatest common divisor using the Euclidean algorithm.
Solution. To get a general idea, we apply the Euclidean algorithm to compute the gcd of
two numbers 87 and 24. Define the larger and smaller numbers as the dividend and
divisor and denote them by b and s, respectively. Divide b by s and record the
remainder, which is denoted by r. Next, substitute the divisor for the dividend and the
remainder for the divisor. Repeat this process while the remainder is non-zero. The last
non-zero remainder will be the gcd. Flowchart 7.7(a) and Table 7.7(a) summarizes the
above discussion.

Tab. 7.7(a): The Euclidean algorithm applied for 87 and 24.

Considering the above-mentioned argument, the following instructions are
implemented in each repetition of a do-while template while the remainder is non-zero.

Fig. 7.7(b): Calculating the gcd using a do-while template.

Be careful not to misplace the two instructions b←s and s←r; otherwise the algorithm will be completely wrong. Verify

this fact by arranging an implementation table!

After exiting the loop, which variable should we print as the gcd? We look for the
answer in the implementation Table 7.7(b).

Tab. 7.7(b): Implementation table for Flowchart 7.7(a).

As shown in Table 7.7, the answer to the above question is b. Flowchart 7.7(b) displays
the resulted algorithm.

It is noteworthy that if we start with b = 24 and s = 87 in Table 7.7(b), the same result
is obtained. Examine it! Thus, the order of reading small or large numbers is not
important. The C++ and Java codes of Flowchart 7.7(b) can be observed in Programs
P7_7_A.

If we change the do-while template in Flowchart 7.7(b) to a while template, Flowchart
7.7(c) is obtained.

Should we still print b upon exiting the loop? The answer is again in the
implementation Table 7.7(c).

Tab. 7.7(c): Implementation table for Flowchart 7.7(c).

Fig. 7.7(c): Calculating the gcd using a while template.

This time, we should print either s or r. At the beginning of this algorithm, we substitute
the absolute values of the read integers b0 and s0 for b and s, respectively, to avoid
having a negative gcd. Of course, we can instead change the printing value to positive
(write the absolute value of r instead of r in the print statement).

7.7.1. Exercise. Write the programs of Flowchart 7.7(c).

When we transfer the condition of the loop from the start to the end or vice versa, the condition and/or the outputs

may change. Anyway, the implementation table should be arranged again to check the correctness of the algorithm.

We transform the process of Flowchart 7.7(c) into a function, named gcd(), which
receives two arbitrary none-zero integers b and s and then calculates and returns their
greatest common divisor. This function is depicted in Flowchart 7.7(d).

The main unit in Programs P7_7_B reads the two integers b0 and s0. Then, it prints a
message if at least one of these integers is zero. Otherwise, using the function gcd(), it
calculates and prints the greatest common divisor.

Fig. 7.7(d): A function to calculate the gcd.

Fig. 7.7(e): A recursive function to Calculate the gcd.

Now, we transform the process in the function of Flowchart 7.7(d) into a function with
the same name as gcd() using the recursive method (Flowchart 7.7(e)). Concentrate on F
lowcharts 7.7(d) and 7.7(e) and find the analogy in their logic! The subprogram
associated with the function in Flowchart 7.7(e) is represented as follows.

7.8) The generalized Euclidean algorithm. Complete the algorithm of Flowchart 7.7(c)
so that, in addition to finding the gcd of the two non-zero integers b0 and s0, it
calculates the two integers x and y leading to gcd(b0, s0) = r = b0 x + s0 y. Solution. First
let b0 and s0 be positive. It suffices to find only one of the two required integers, say x,
since knowing b0, s0, r, and x, the integer y can be obtained from the above relation as
follows.

y = r−xb0

s0

Furthermore, the Euclidean algorithm is described in two simultaneous processes in
order to further clarify the issue. In one process, calculate the algorithm itself to the
point of achieving the gcd result and in the other one, compute the remainders as a
linear combination of b and s. These two simultaneous processes are provided in Table
7.8(a).

Tab. 7.8(a): calculating the remainders as a linear combination of b and s.

Euclidean algorithm remainders

b = sq1 + r1 r1 = 1b − q1s

s = r1q2 + r2 r2 = s − q2r1 = −q2b + λ2s

r1 = r2q3 + r3 r3 = r1 − q3r2 = (1 − (−q2)q3)b + λ3s

r2 = r3q4 + r4 r4 = r2 − q4r3 = (−q2 − (1 + q2q3)q4)b + λ4s

⁝ ⁝

This table aims to calculate the coefficients of b. Therefore, the coefficient of s is not
explained in details. The third row in the right column is reviewed in order to find how
the coefficients of b are calculated in each step:

r3 = r1 − q3r2 = (1 − (−q2)q3)b + λ3s.

From the algorithm viewpoint, we define the following variables to state the coefficient
of b in this row:
− q: the quotient in the current row;
− C0: the coefficient of b in the current row;
− C1: the coefficient of b in the previous row;
− C2: the coefficient of b in the two rows before.

Now, as represented in Table 7.8(a), the coefficient in the current row is obtained from
the following relation:

C0 = C2 − C1 q.

As shown in the fourth row of Table 7.8(a), C1 and C0 substitute for C2 and C1,
respectively, in order to transfer the calculation to the next rows. Precisely, the
following instructions are implemented in the quoted orders:

Finally, the initial values of C2 and C1 are left to determine. These values should be
selected in such a way that in the first row, C0 would be equal to 1, independent of the
quotient q. For this purpose, C2 and C1 should have the initial values 1 and 0,
respectively.

In Flowchart 7.7(c), there is a while template which calculates the gcd of the read
integers b0 and s0. Therefore, considering the simultaneous processes in the table 7.8

Fig. 7.8(a): Euclidean algorithm and extended Euclidean algorithm simultaneously.

and the above arguments, we can extend the while template of this flowchart to Flowch
art 7.8(a) in which the new instructions are represented in a bold format. The required
integers are:

x = C0, y = r−xb0
s0 .

The implementation Table 7.8(b) is the extended version of Table 7.7(c) for Flowchart 7.
8(a). As mentioned above, the required integer x is indeed C0.

Tab. 7.8(b): Simultaneous calculations of the coefficient of b and the gcd.

Fig. 7.8(b): Euclidean algorithm and extended Euclidean algorithm simultaneously (completed).

Now, let b0 and s0 be any non-zero integers. Then the required integers x and y are:

x = C0, y =
r−x|b0|

|s0| .

Moreover, in this case, the linear combination is as follows.

r = b0 (x × sign (b0)) + s0 (y × sign (s0))

The completed flowchart is illustrated in Figure 7.8(b) with the codes in Programs P7_8.

It is worth mentioning that we should initialize the variables r and C0 to 0 in the right
Java program. However, in the left program this is not necessary.

Fig. 7.9(a): Counting the prime factor i.

7.8.1. Exercise. Write a function, named egcd() to receives two non-zero integers b0 and
s0. Then, calculate and return the gcd of these two numbers as well as the two integers
x and y mentioned in the extended Euclidean algorithm. Afterwards, write a main
algorithm to read the two integers b0 and s0. Next, print a message if at least one of
them is zero. Otherwise, calculate and print the returned values, using the function
egcd(). Finally, write the complete programs.

7.8.2. Exercise. Repeat the previous exercise using a do-while template instead of while
template.

7.9. Example. Write an algorithm to read a positive integer n and decompose it as a
multiplication of its prime factors and then print it like the following output for the
input 504:

Solution. This problem needs more attention. We should look for the prime factors of n
in the range of integers from 2 to n. Accordingly, we perform the following tasks in the
range of a for loop with the specification i=2,n:

1. Pass the i through the prime() function filter and count the number of the i

inside n in the F-path of an if template. To do this, define a counter named c

with the initial value of 0. Then, inside the range of a while template, while n is

divisible to i, first, increase c by one and then, take an i from n by substituting

the n / i for n. Flowchart 7.9(a) displays this count.

2. How do we print the required format after exiting this while template? It is

clear that the i is the (prime) factor of n if it exists at least once inside n. Thus,

we check whether c is positive. If so, we attempt to print the required format in

the F-path of an if template with the rule as follows. What is clear is that in

each repetition, the value of the factor i along with its power c is printed in the

form i^c followed by the * character except for the last repetition in which

there is no asterisk. Accordingly, we divide the printing task into two sections

due to whether or not the repletion is the last one which is happened only

when n is 1. Therefore, if n = 1, we terminate the program by printing the

string:

Fig. 7.9(b): Printing the required format.

Otherwise, the string:

is printed in each repetition. It is noteworthy that this printing formats are different
in C++ and Java (see Programs P7_9). Flowchart 7.9(b) illustrates this printing design.

Only the part “504=”is left from the required print format. This can be performed by
printing the string:

before the for template. The above discussion, is summarized in the completed Flowcha
rt 7.9(c). Programs P7_9 is the translation of this algorithm into C++ and Java codes.

Fig. 7.9(c): Primary decomposition of n along with the formatted print.

7.9.1. Exercise. The completed Flowchart 7.9(c) as well as Programs 7_9 do not work for
0, 1, and the negative integers. Modify the flowchart and the programs so that they

work for any integer.

In numerical computations, a certain quantity is often approximated in a series of
specific iterated procedures so that in each step the approximated amount becomes
more accurate compared to the previous step. In such computations, if we need an
accuracy of n decimal digits, then we have to repeat these steps until the absolute value
of two consecutive approximations is smaller than

5 × 10−(n+1) =

n times

0.00 … 05

Fig. 7.10: Finding the approximated root of a function f using the bisection method.

This amount is called the tolerance. In this case, the last approximation, or the
approximation before the last one, up to n decimal digits, is the desired approximation.

7.10. Example. The bisection method is one of the methods of finding the approximated
root of a function f. In this method, an interval [a, b] is guessed in which f(a) and f(b)
have different signs, that is, f has a root. Now, we halve the interval and take the half in
which the values of the function at the endpoints have different signs (f has a root). We

may repeat this procedure as many times as needed. Write the algorithm of a function
to receive the endpoints a and b and the positive integer n and then calculate and
return the approximated root of f with the precision of n decimal digits.
Solution. Take the tolerance as t. Find the middle point of the interval [a, b] in the range
of a do-while template and mark it as m. Now, take m as the end point of the new
interval (substitute m for b) if f(a) and f(m) have different signs; otherwise, take it as its
start point (substitute m for a). Repeat this procedure while the value of b − a is greater
than or equals to the tolerance t. Now the value of either a or b with the precision of n
decimal digits is the required approximation. To separate this value from, say a, it

suffices to multiply it by 10n,

take the integer part of the obtained number, and

finally, divide it by 10n

again. The resulted algorithm is depicted in Flowchart 7.1
0.

In the main unit of Programs P7_10, first, the amounts of a and b are read. If f(a) and
f(b) have the same signs, a message is printed. Otherwise, calling the function bisect(),
the approximated root of the functions f (x) = x6 − x − 1

 is calculated and printed with the precision of seven
decimal precision.

7.3 The if-goto loops (C++ only)

In the C++ language, the programs of the while and do-while templates can be written
using the two statements if and goto as in Figure 7.11.

Using the if-goto loops is not recommend since it confuses the reader of the
program. Recall that the goto statement is not defined for the compiler of Java language
although it is counted as a keyword. Practically, often there is no need to use the goto
statement, even in C++. To observe this fact, we provide several various examples in the
following patterns. The italic phrases are replaced by the real codes used by the user in
these examples. The first columns (from left), are valid codes in C++ using the goto
statement. In the second or third columns, which are valid in both C++ and Java, the
existence of label L is not needed in practice and it is written just for comparisons.

Fig. 7.11: The if-goto loops equivalent to the while and do-while templates.

Exercises

In the following exercises: (1) Arrange the implementation table, if needed, (2) Write
the complete program, (3) Provide appropriate input notifications and output headings,
if any. In addition, the user-defined functions in the text of the current and the previous
chapters may be used unless otherwise is explicitly specified.

7.1. The approximated amount of the number π is calculated using the following
formula.

π ≈ 4 (1
1 − 1

3 + 1
5 − 1

7 + ⋯).

Write an algorithm to calculate and print the approximated amount of π with the sum
of the ten first terms of this series.

7.2. Write an algorithm to calculate and print the approximated amount of π with the
precision of 4 decimal digits using the formula in Exercise 7.1.

7.3. The approximated amount of the Neperian logarithm of the positive number x is
calculated using the formula

ln (x) ≈ x−1
x

+ 1
2 (x−1

x
)

2
+ 1

3 (x−1
x

)
3

+ ⋯

Write an algorithm to read the positive number x and print the undefined message if it
is non-positive; otherwise, calculate and print the amount of ln(x) with the sum of the
first ten terms of the above series.

7.4. Repeat Exercise 7.3 with the precision of 4 decimal digits instead of the ten first
terms of the series.

7.5. Write an algorithm to read the two positive integers m and n and then calculate
and print the quotient and remainder of the division of m by n using the repeated
subtractions. For example, the equation 13 – 4 – 4 – 4 = 1 indicates that the quotient of
the division 13 by 4 is 3 and the remainder is 1.

7.6. The first two terms of a series are 1 and 2 and from the second term onwards, the
distance between the two terms is one more than the distance of the previous two
terms. Some of the terms of this series are:

Write an algorithm to read a positive integer n, where n is assumed greater than 2.
Then, calculate and print the n first terms of this series, as well as their sum.

7.7. Write a function to receive a positive integer n, where n is assumed greater than 2.
Then, calculate and return the n-th term of the sequence in Exercise 7.6. To do this, use
the direct method and once again use the recursive method.

7.8. Write an algorithm to determine and print the terms of the Fibonacci sequence
between 100 and 150.

7.9. Write an algorithm to determine and print the number and sum of the terms of the
Fibonacci sequence smaller than 100.

7.10. Write an algorithm to produce and print the first 20 terms of the Fibonacci
sequence.

7.11. Write a function named SumDig() to receive a positive integer n and then
calculate and return the sum of its digits.

7.12. Write an algorithm to read the positive integer n. Then, read n positive integers
and determine and print the numbers which the sum of their digits are greater than 45.
Finally, print the number of these numbers.

7.13. Write an algorithm to read a positive integer n and then determine whether or
not n is divisible to the sum of its digits by printing an appropriate message.

7.14. Write an algorithm to read a positive integer n. Then, read n integers one by one
and each time print the reverse of the read number.

7.15. A symmetric integer is an integer which is equal to its reverse. For example, 1221
is symmetrical while 867 is not. Write an algorithm to read a positive integer n and
then determine whether or not n is symmetric by printing one of the messages YES or
NO after calculating its reverse.

7.16. Write an algorithm to calculate and print the four-digit symmetric integers and
the number of such integers.

7.17. Write a function named DecPart() to receive a real number t and then calculate
and return the decimal part of t as an integer by removing the decimal point.

1 2 4 7 11 16 …

7.18. Write an algorithm to find the reverse of an arbitrary real number t. For example,
the reverse of 12.345 is 543.21.

7.19. Repeat the previous exercise directly without using Exercise 7.17.

7.20. Write an algorithm to read an integer n with n > 2. Then, read n integers from the
input one by one and calculate and print their greatest common divisor. It should be
mentioned that the greatest common divisor of a set of numbers is determined
recursively. For example

gcd (a, b, c) = gcd (gcd (a, b), c)

7.21. A polynomial is called primitive if its coefficients are prime to each other. Write
an algorithm to read the degree and the coefficients of a polynomial and determine
whether or not it is primitive by printing one of the messages Primitive or Not
primitive.

7.22. What is the possibility that a pair of integers from 1 to n are coprime? Write an
algorithm to read the positive integer n and then calculate and print this possibility. For
example, for n = 4, among 10 (= 2 + 3 + 4) pairs of numbers from 1 to 4, six of them are
coprime; therefore, the possibility is 0.6 (= 6 / 10).

7.23. Write an algorithm to read a positive integer n and then print the first prime
number to the n-th one.

7.24. Write an algorithm to read a positive integer n and then calculate and print the n-
th prime number.

7.25. A perfect integer is defined in Exercise 6.26. Write an algorithm to read a positive
integer n and print the perfect numbers from the first to the n-th one.

7.26. Write an algorithm to read a positive integer n and then calculate and print the n-
th perfect number.

7.27. Write an algorithm to read a positive integer n having at most eight digits. Then,
determine whether or not n is a factorial of an integer by printing an appropriate
message. If yes, determine the integer k for which k! = n.

7.28. For a positive integer n, the phi Euler function of n, denoted by φ(n), is defined to
be the number of positive integers smaller than n and coprime to n. Write an algorithm
to read the positive integer n and then calculate and print φ(n). Additionally, print all
the positive integers smaller than n and coprime to n.

7.29. Write a sub-algorithm to receive the two arbitrary integers b and s and find their
greatest common divisor, g, together with the two numbers x and y so that g = bx + sy.
Then, return g, x, and y to the caller unit. Write this sub-algorithm with two ways: once
using the while template and once again with the do-while template.

7.30. The approximated amount of the n-th root of the real number t can be calculated
using the following repetitive way in which a presupposed root x0 should be selected
beforehand.

xi+1 = 1
n

(n − 1)xi + t
xn

i −1 .

Write an algorithm to read the amount of t, n, and the presupposed root x0 from the
input and then calculate the amount of the n-th root of t and print it with three decimal
digits precision.

7.31. Solve Exercises 4.19, 4.20, 4.21, and 5.12 using either whole or do-while loop.

Supplementary exercises

7.1*. Write an algorithm to read the integers a, c, and m. Then, print a message if gcd(a,
m) is not divisible by c. Otherwise, solve the following congruent equation.

ax ≡ c (mod m).

7.2*. Write an algorithm to read the integers b, c, m, and n. Then, print an appropriate
message if gcd(m, n) ≠ 1. Otherwise, solve the following congruent equations system.

7.3*. Write a function named akmodm() to receive the integers a, k, and m and then

calculate and return the value of ak

 modulo m. The amounts of a and k are
assumed none-negative and smaller than m.

7.4*. Suppose that n is a positive integer. The set of positive integers less than and
coprime to n form a group with the multiplication modulo n. Assume that a is a
member of this group. Then,

x ≡ b (mod m)

x ≡ c (mod n).

gcd (a, n) = 1, for all 0 < a < n.

The smallest positive integer k satisfying the

ak ≡ 1 (mod n),

is called the order of a modulo n. Write a function named order() to receive two
positive integers a and n, with the above properties, and calculate and return the order
of a modulo n. Next, write a main algorithm to read two positive integers a and n and
print a message if they do not possess the above properties. Otherwise, calculate and
print the order of a modulo n using the function order().

7.5*. Write a function to receive a positive integer and then determine and return its
reverse using the recursive method.

7.6*. Write a function named dec() to receive a positive integer n in the base-2 numeral
system, convert it into the base-10 numeral system, and return the result.

7.7*. Write an algorithm to read a positive integer n and group it in triples, from right
to left and then print this integer. For example, the read integer 5176254 is printed as
5,176,254. The solution for this exercise is simpler if the arrays are used (Exercise
8.13*).

7.8*. Do the following process to convert a positive integer n from the base-2 numeral
system to the base-8 numeral system: arrange n in the groups of threes from right to
left, convert each group to the base-10 (usual) numeral system, and put it in its location.
The resulting number is the representation of the number in the base-8 numeral
system. Write an algorithm to read a positive integer n in the base-2 numeral system,
convert it into the base-8 numeral system, and then print the result.

7.9*. To convert a number from the base-8 numeral system into the base-2 numeral
system do as in the previous exercise but in an opposite direction: convert each digit
into the base-2 numeral system using the bin1() function in Example 7.6 and place it in
its position. The obtained number is the representation of the number in the base-2
numeral system. Write an algorithm to read the positive integer n in the base-8
numeral system, convert it into the base-2 numeral system, and then print the result.

8 One-dimensional arrays

8.1 vectors

In previous chapters, we addressed independent and non-
homonymous variables in algorithm writing and programming. Now,
we start working with variables named arrays which include one or
more indices. These variables have the same name but different
indices. In the process of solving certain problems, we have to deal
with a large number of variables having similar behaviours in the
program. In these situations, defining all the variables independently
consumes the time of the algorithm, increases its size and thus makes
it useless. Therefore, we use arrays which have homonymous
variables and different indices in order to overcome this problem. An
important advantage of using arrays is in object-oriented
programming: arrays, as the predefined objects, pass by the reference.
In the present chapter, we concentrate on one-dimensional arrays and
remove the phrase “one-dimensional”. This type of array is
occasionally regarded as a vector or a list. For example, an array of
eight entries is illustrated in the following diagram.

As shown, eight different variables exists in this diagram all having
the same name while different indices. In theoretical studies, these
variables are written as u1, u2, …, u8.

All of the entries of an array should be of the same data type which
is then associated with the array data type. For instance, an array is
integer if all of its entries are integers. The declaration of arrays in
programming is as follows.

For example, the statement

declares the variable u as a one-dimensional integer array with a
length of 9. As regards the entry un in programs, we write u[n]. By
default, the index of the entries starts from 0 in both C++ and Java
compilers. However, we may start from index 1 if necessary, in which
case, the length should be added up by one unit (for the zero index).
For example, if we want to work with u0, u1, …, u7 we introduce u as
above. On the other hand, we introduce u with a length of 9 if we
want to work with u1, u2, …, u8:

In algorithm writing, we may declare an array in different ways inside
a rectangle with dashed border, depending on what feature we need.
For example, there are three patterns in the following figure. In the
leftmost pattern, the name, along with the starting and ending indices
are declared. In the middle one, the data type, name, and the length
are the user’s emphasis and finally, in the rightmost pattern, the
declaration focuses on the data type, name, as well as the starting and
ending indices.

8.1. Example. The mean M and the variance V for n numbers are
calculated using the following formulae.

M =
∑ n

i=1xi

n , V =
∑ n

i=1x
2
i −nM 2

n−1 .

Write an algorithm to read an integer n > 1. Then, read n real
numbers and calculate and print their mean and variance.
Solution. We first write an algorithm without using the arrays. To do
this, denote the number which is supposed to be read each time as x
and use the variables sum1 and sum2 for the repetitive sums of the x
and the x2, respectively.

Use a for template and assign 0 as the initial value of sum1 and
sum2 before the loop. At each repetition of the loop we should
calculate the repetitive sums sum1 and sum2 after reading x. Then,
calculate and print M and V upon exiting the loop. These discussions
are displayed in the form of an algorithm in Flowchart 8.1(a).

Programs P7_8_A indicate the codes of Flowchart 8.1(a).

Fig. 8.1(a): Calculating the mean and variance without using the arrays.

Now, arrays are used to write this algorithm. To achieve this, an array
named x is defined with 100 hypothetical entries (a hypothetical
length of 101) and the indexed variable entries of this array are
applied in the calculation. Accordingly, Flowchart 8.1(b) is obtained.

Fig. 8.1(b): Calculating the mean and variance using the arrays.

Maybe one objects that the appearance of the flowchart is now a little
complicated! Therefore, what is the benefit of using the arrays? Well, a
similar initial idea which is used to write the algorithm without using
the arrays may not always occur in everyone’s mind. Further, the
speed of running the program is normally higher while less space is
occupied in the memory when using the arrays. Furthermore, writing
the algorithm without using the arrays is often difficult when facing a
large number of data of the same type. For example, can you write an
algorithm m) without using the arrays to read two 100-component
vectors, add them (componentwise), and store the result of this victor

addition in the third 100-component vector? How many variables are
used? How many assignment statements?

Programs P8_1_B are related to Flowchart 8.1(b).

Note that, at least two inputs should be entered when running these
programs. Otherwise, we encounter the “division by zero” error in

C++ and NaN (not a number) result in Java when calculating the
variance.

The next example confirms the fact that it is occasionally difficult
to write the algorithm without employing the arrays.

8.2. Example. Write an algorithm to read 20 integer entries of an
array and put them reversely (from the end to the start) in another
array. Then, print the two arrays separately.
Solution. We arrange the algorithm so that it reads 20 entries of an
array named a by a for template. Then, the algorithm puts these
entries reversely in another array named b by another for template.

To this end, we only need to assign ai to b21−i

in the
range of the loop. Finally, the algorithm prints both arrays separately
using two for templates. The obtained flowchart is displayed in Figure
8.2(a) with the Programs P8_2 in C++ and Java codes.

Of course, as shown in Flowchart 8.2(b), the two first loops can be
merged. Programs P8_2 depict Flowchart 8.2(b) in both C++ and Java
codes.

Fig. 8.2(a): Reversely putting the entries of an array in another one.

Fig. 8.2(b): Merging the two first arrays in Flowchart 8.2(a).

As displayed in Flowcharts 8.2(a) and 8.2(b), printing the array using a
for template is repeated two times in Programs P8_2. From now on,
sub-algorithms (subprograms) are employed for reading and printing
the entries of the arrays (vectors) in order to reduce the time and size
of writing algorithms (programs) involved with the arrays. The
following flowcharts illustrate the sub-algorithms for reading and
writing the integer vectors having n entries started from index 1. We
refer to these sub-algorithms as readIvec() and writeIvec() (I for int).

Additionally, similar sub-algorithms named readFvec() and
writeFvec() (F for float) will be used in the case of real entries (The
same can be written for double data type). The subprograms of these
sub-algorithms are as follows.

We can write the length of a one-dimensional array in the open form[] when using it as the

parameter of a subprogram. More importantly, the number of entries of the array, which is one

less than the real length when starting with index 1, should appear as one of the parameters of

the subprogram. Eventually, depending on the need, select an appropriate printing format

when using the subprograms writeIvec and writeFvec.

Consider the codes of the above-mentioned readIvec() method. If we
use this method more than once, the error is encountered when
inputting the data. The reason is that in the first using of readIvec()
method, the facility for inputting the data (of int type) is closed by
executing the statement

read. reset();

Fig. 8.2(c): Redrawing Flowchart 8.2(a) using the subprograms readIvec() and

writeIvec().

at the end of the method. One way to resolve this problem is to use the
hasNext() built-in method as follows.

The hasNext() is a built-in method of Java Scanner class which
returns true if this scanner has another token in its input.

Nevertheless, there are other ways which can be found in the
following rule.

The rule of multi-using the reading methods. There are three ways to prevent any input

error when we use a reading method with the read.close() statement at the end:

1. Using the hasNext() built-in method as explained above.

2. Inactivating the read.close() statement by adding double slashes:

// read. close();

3. Changing the read. close() statement to the the read. reset() statement for resetting the Java

Scanner class.

Fig. 8.3: Reversing the positions of the entries of an array.

4. Transferring the read.close() statement to another appropriate place where there is no

reading item

As displayed in Figure 8.2(c), Flowchart 8.2(a) can now be written in
the simple form.

8.2.1. Exercise. Write the programs of Flowchart 8.2(c).

8.3. Example. Write a sub-algorithm, named revive(), to receive the n-
entry integer array a, reverse the position of entries (from the end to
the beginning) and return the reversed array a.
Solution. The method which we are going to use is to swap the values

of the entries ai

and a21−i

in pairs, appealing to the swap

algorithm. The entries ai and a21−i

 should be
swapped in the range of a for template with the specification i=1,n/2
due to the nature of swapping in pairs. It is noteworthy that one may
write the similar subprogram named revFvec() for the arrays of float
types. It suffices to change int to float.

Flowchart 8.3 illustrates the above discussion. Programs P8_3 read
a 20-entry integer array and then print the reversed array using the
sub-algorithm revive().

Question. What would be the result if we wrote n instead of n / 2 as
the final value of the loop?
Answer. No task is performed since the reversion is repeated.

The rule of calling the array-return methods. The number of the entries of the array should

be determined when calling a subprogram which returns an array. In addition, the length of

the array should be identified while declaring an array in the call unit.

8.4. Example. Write an algorithm to read 20 entries of an integer
array named a. Then, put the negative and none-negative entries in
the arrays named b and c, respectively. Finally, print the entries of the
arrays b and c.

Solution. Since it is not clear how many entries b and c have, we will
declare them as 20-entry arrays. First, the array a is read using the
sub-algorithm readIvev(). The way we use is to take an entry ai

in
each repetition of a for template with the specification i=1,20. Next, we
put ai

in b if it is negative; otherwise we put it in c. In which index
of b or c do we put the entry ai

 in each case? For this purpose,
two index maker variables nb and nc are employed to make indices for
b and c, respectively. Further, we assign 0 to these variables before the
loop in order to use them. Then, we first make an index in the
involved case by increasing the previous value of the related index
maker variable by one unit and then put the taken ai

in the index
just made. The obtained flowchart is displayed in Figure 8.4. Programs
P8_4 translate this algorithm into C++ and Java codes.

Fig. 8.4: Putting the negative and none-negative entries of a in b and c, respectively.

8.4.1. Exercise. Modify Flowchart 8.4 and Programs 8_4 so that the
entries of a are read inside the used for loop instead of reading the
array a using the subprogram readIvec().

8.5. Example. In Flowchart 1.8(c), we first read the first number and
assigned it to the variable max to find the maximum number between
50 read integers. Next, we performed the necessary process using a
do-while loop. Do the same tasks using the arrays. Employ the for
template instead of the do-while template.
Solution. Given the generality of this algorithm in mind, Flowchart 8.5
(a) can easily be drawn. Programs P8_5_A are related to Flowchart 8.5
(a).

Fig. 8.5(a): Calculating the maximum of 50 numbers.

As shown in Flowchart 8.5(b), Flowchart 8.5(a) is divided into a
function named max() which is responsible for finding the maximum
member and a main algorithm.

8.5.1. Exercise. Write a similar function named min() for finding the
minimal entries of the received array u.

Programs P8_5_B are the translation of Flowchart 8.5(b) into C++ and
Java codes.

Fig. 8.5(b): A function to calculate the maximum of an n-entry array and a main

algorithm.

Fig. 8.5(c): Combining the comparing and assigning tasks of flowchart 8.5(a).

In the algorithm of Figure 8.5(a), the entries of the array were first
read by the sub-algorithm readIvec(). Then, the first entry was
assigned to the variable max and the comparing and assigning were
processed by a for template. All these processes can be combined in a
single for template (Fig. 8.5(c)).

Since the F-paths of the two conditions in Flowchart 8.5(c) are the
same, we can modify Flowchart 8.5(c) to Flowchart 8.5(d) appealing to
the rule of merging the conditions by the || operator in Chapter 4.

8.5.2. Exercise. Write the programs of Flowcharts of 8.5(c) and 8.5(d)
in both C++ and Java codes.

8.5.3. Exercise. Modify each of Flowcharts 8.5(a), 8.5(c) and 8.5(d) in
such a way that they print the location of the maximum and the
maximum itself. In the case where the maximum is repeated, print
the first location of the maximum. Finally, write the programs in both
C++ and Java codes.

Fig. 8.5(d): Merging the conditions of Flowchart 8.5(c) using the || operator.

8.5.4. Exercise. Repeat Exercise 8.5.3 with the difference that print all
the locations if the maximum is repeated.

8.6. Example. Write an algorithm to read the identification number
(ID) and grade of 40 students of a class one by one. Then, read an ID
number and print the grade of that student if it is between the 40 read
ID numbers. Otherwise, print the message Not in list.
Solution. First the ID numbers and grades of the students are read and
saved in the arrays N and G, respectively. Then, the intended number
by the name m is read and searched for among the entries of the array
N using the switch variable s with the initial value of 0 (switch off).
Next, 1 to s is assigned (switch on) in the range of a for loop and the

index i is instantly stored in the memory with the name j upon

matching m with an ID number Ni.

Finally, after exiting the loop, the quoted message is printed if the

switch is off; otherwise, the grade of the student corresponding to the

number Nj,

 that is Gj,

 is printed. The result of the above
process is illustrated in Flowchart 8.6(a).

Question. Suppose that we take out the instruction j←i and then print

Gi

instead of Gj

after exiting the loop. What is printed? Find
the answer by examining.

Programs P8_6_A are the translations of Flowchart 8.6(a) into both C++
and Java codes.

Fig. 8.6(a): Searching a specific student among 40 students and printing its

average.

In is noteworthy that initiating the variable to 0 is necessary for the
right Java program.

There is a simple way to solve this example: in the range of the for
loop, print the grade of the student and terminate the algorithm upon

matching the number m with an ID number Ni.

Otherwise, the
quoted message is printed after exiting the loop. The result is Flowcha
rt 8.6(b) and Programs P8_6_B.

Fig. 8.6(b): A simple way for Example 8.6 instead of Flowchart 8.6(a).

8.7. Example. Write a function named search() to receive an integer m
and the n entries of the integer array named a. Then, it returns 1 if m
exists among the entries of a; otherwise, it returns 0. Afterwards,
write a main algorithm to read the ID number and grade of 40
students of a class. Next, read a single ID number and print the
message Founded if it is between the 40 students; otherwise, print the
message Not founded. One may return the Boolean literals true or
false instead of 1 and 0, respectively. This function may be modified to
any data type of the m and the array a.
Solutions. We use a switch, say s. First, turn the switch off (assign 0 to
s). Then, in the range of a for template, turn the switch on (assign 1 to

s) upon matching m with an entry ai.

Finally, return the value of
s after exiting the loop. These processes are all summarized in Flowch
art 8.7(a).

The main algorithm in Figure 8.7(b) is as required. Programs P8_7
combined both flowcharts 8.7(a) and 8.7(b) in the literature of codes.

Fig. 8.7(a): Searching a number among the entries of an array.

Fig. 8.7(b): Searching an ID number among 40 numbers using the search() function.

8.7.1. Exercise. Modify the main program in Figure 8.7(b) in such a
way to determine and print the index in which the matching happens
if the number m is found in the array a. Then, redraw Flowchart 8.7(b)
and rewrite Programs P8_7 with this idea.

8.8. Example. Write an algorithm to read 20 entries of an integer
array named a. Then remove the repetitive entries and put the
remained entries in another integer array named b, respectively. In

other words, the entries of the array b are the same as the array a
without the repeating ones. Finally, separately print the arrays a and
b.
Solution. The method used in writing this algorithm is as follows. The
n is regarded as the index maker variable of the array b. First, a1

is substituted for b1.

Then, the entry ai

is considered in a for
template with the specification i=2,20 and, using the search() function,
this entry is searched for among the entries of b which are created to

this point. If ai

 is not found between the entries of b, the index
maker of b creates a new index and the picked entry is placed in the
array b with the created index. This method is visualized in Flowchart
8.8(a).

Fig. 8.8(a): Removing the repeated entries of an array.

Fig. 8.8(b): Removing the repeated entries of an array (improved version).

Now, let us improve the above algorithm. Remove the instruction
b[1]←a[1], take 0 as the initial value of the index maker variable n,
and then start the for template with the initial value of 1. Accordingly,
the incompatibility in the for loop of the search() function causes the

index maker n to be equal to 1 and a1

substitutes for b1.

Flo
wchart 8.8(b) illustrates the improved version of the algorithm.
Programs P8_8 are the codes of the improved Flowchart 8.8(b) in the
C++ and Java languages.

Fig. 8.9(a): Storing the repeated numbers of an array in another array in a special

case.

8.9. Example. Write an algorithm to read the entries of a 20-entry
integer array a and store its repetitive entries in another array b. Then
print the array b. Note that the repeated prints are not allowed.
Solution. First, we work with a simple case: it is supposed that the
entries of a are not repeated more than once. In an outer for template
with the specification i=1,19, we pick an entry ai

and compare it
with the entries of a after ai

 in an inner for loop with the
specification j=i+1,n. Then, we store it in b if ai

matches with an

aj.

 Therefore, we make a new index by increasing the index
maker variable m by one unit, and then store the picked ai

 in b
with the new index. The result is displayed in Flowchart 8.9(a).

Now, we examine the general case where the entries of a may be
repeated any times. In this case, we nominate the picked ai

in the

matching path ai = aj

to be stored in b and store it in b
using the above-mentioned method only if it has not already stored in
b. Flowchart 8.9(b) depicts this procedure.

Next, we attempt to improve the algorithm. An appeal to the rule of
merging the conditions using the && operator (Chapter 4) leads to the
improved Flowchart 8.9(c).

Fig. 8.9(b): Storing the repeated numbers of an array in another array in the

general case.

Programs P8_9 represent the codes of the improved Flowchart 8.9(c)
together with all of its subprograms.

8.9.1. Exercise. Modify Algorithm 8.9 and Programs 8_9 so that they
print the number of repetitions along with the repetitive entries.

8.10. Example. Write an algorithm to read the entries of the two
integer arrays a and b, each with 20 entries and then store their
common entries in another integer array named c. Finally, print the
entries of c.

Solution. First, in a simple case, we assume that none of the arrays a
and b have repetitive entries. We consider m as the index maker
variable for the array c. In each repetition of a for loop with the
specification i=1,20, we take an entry ai

 of a and search for it
among the entries of b, using the search() function in Example 8.7.
Then, we store the ai

in the array c if we find it in the array b. To
do this, as before, we make a new index by increasing the index
maker variable m by one unit, and then store the picked ai

 in b
with the created index.

Fig. 8.9(c): Improvement Flowchart 8.9(b) by merging the conditions using the &&

operator.

Flowchart 8.10(a) displays the result to this point.

Fig. 8.10(a): Storing the common entries of two arrays in another array in a special

case.

Fig. 8.10(b): Storing the common entries of two arrays in another array in the

general case.

Now, we consider the general case in which the arrays a and b can
have repeating entries. In this case, we store the picked entry ai

in
the array c only if it is not already stored in c; that is, if ai

is in b
but not in c. Flowchart 8.10(b) illustrates the result. The general case 8.
10(b) is translated into C++ and Java codes in Programs P8_10.

8.2 More applications of the arrays

In this section, two sorting methods for numbers are considered.
Then, the Lagrange interpolation polynomial for finding the
approximated root of a function is examined. Finally, a method for
computing the factorial of large positive integers is exhibited.

8.11. Example (The bubble sorting method). One of the common
methods is the bubble method. We used it for sorting three numbers
in the algorithm of Example 4.10. Write an algorithm to read first the
size m (at most 40) of the integer array a. Then, read the m entries of a
and sort them in ascending order using the bubble method.
Solution. In this method, we sort m numbers in ascending order in
m−1 steps in a way that in each step a number is compared with the
latter number such that if it is larger, then their amounts are swapped
using the swap algorithm. As a result, the larger number rises upward
(moves to the end) like a bubble and is put aside. Then the recent
procedure is performed with the remaining numbers. In order to
clarify this procedure, take the four integers:

Fig. 8.11(a): Sketch of the bubble sorting algorithm in ascending order.

Following the above-mentioned procedure, in the first step,

12 9 24 5

Fig. 8.11(b): Another way for the bubble sorting algorithm in ascending order.

Fig. 8.11(c): Another way for the bubble sorting algorithm in ascending order.

Now, 24 is put aside (underlined) and in the second step, we work on
the three remaining numbers. Thus,

The number 12 is put aside and the two remaining numbers are
compared in the third step:

As seen, several steps are repeated and several processes are
performed in each step. Therefore, we need two nested for loops. The
outer loop gives the number j, as the times of processes in each step,
to the inner loop. Now, the inner loop takes an index i from 1 to the
received number j (the times of processes in each step) and compares
the entry ai

with ai+1

such that it swaps them if ai > ai+1.

Up to this point, we have Flowchart 8.11(a).
Next, the specification of the outer loop is remained to find. To do

this, we look at the indices that are used in each step:

The number of processes which are performed in each step is written
in the bold font: 3, 2, 1. Considering the number of entries used in the
above pattern, namely 4, we found the specification of the outer for
loop to this pattern: j=3,1,-1. Accordingly, the required algorithm for
the m entries is now illustrated in Figure 8. 11(b). Programs P8_11 are
the translations of Flowchart 8.11(b).

Fig. 8.12(a): Ranking the grades of 40 students.

8.11.1. Exercise. Write a similar algorithm and programs as above for
the descending order.

In Algorithm 8.11(b), the largest number is transferred to the end in
each step (each repetition of the outer loop). Moreover, in Flowchart
8.11(c), the smallest amount is transferred to the start in each step
(each repetition of the outer loop). The results are the same, that is,
sorting in ascending order using the bubble method.

8.11.2. Exercise. Arrange the implementation table for both flowchart
s 8.11(b) and 8.11(c) using five various integers.

8.12. Example. Design an algorithm in a way that each time it reads
the ID number and grade of one of the m students of a class which m
is assumed to be at most 40. Then, it ranks the students and prints the
ranks together with the ID numbers in order from top rank
downwards. Trivially, two equal grades have the same ranks.
Solution. Denote the arrays of ID numbers, grades, and ranks by N, G,
and R, respectively. We assume the grades out of 20. Recall that the
larger number is transferred to the end in each step in the algorithm
of ascending sorting using the bubble method (Fig. 8.11(b)). We
construct the main process of this algorithm based on this concept.
More precisely, we transfer the largest grade, together with the
corresponding ID to the end in each step in the inner for loop of the

bubble sorting algorithm. These are actually the grade Gj+1

and the corresponding ID, Nj+1.

 Then, we determine the
ranks after exiting from the inner loop: we compare the grades Gj+1

and Gj+2

 to perform the ranking process such that it

takes the rank of Gj+2,

namely Rj+2,

 if the grade

Gj+1

 is equal to Gj+2;

 otherwise, it takes one rank

more than the recent one Rj+2.

We have two gaps in the ranks. First, there is no rank to compare

with Rm.

To fill this gap, we assign the virtual initial rank 0 to

Rm+1

and simultaneously assign the virtual initial grade 21

to Gm+1

and locate these initial values before the outer for
loop.

Additionally, R1

has not yet been determined. To fill this gap,
use the same ranking process as above, taking j = 0 after exiting the
outer loop.

Now, it is time to print. The printing is performed from top rank
downwards. Flowchart 8.12(a) covers what has been mentioned so
far.

The length of these arrays are declared one unit more than their real length since the virtual

values other than the real values are used for the grade and rank.

The second gap can more easily be filled. It suffices to remove the
ranking process for j = 0 after exiting the outer loop and, instead,
change the initial value of the outer for loop from 1 to 0. In fact, it is

the incompatibility in the inner for loop that settles the rank R1.

The improved flowchart is shown in Figure 8.12(b). The codes of Flow
chart 8.12(b) can be found in Programs P8_12.

Fig. 8.12(b): Ranking the grades of 40 students (improved version).

Fig. 8.13(a): Wrong attempt to insert x between the second and third entry.

8.13. Example. Write an algorithm to read first the size m (at most 40)
of an integer array a and then, read the entries of a. Next, read an
integer x and insert it between the second and third entry. Finally,
print the new entries of the (m + 1)-entry array a.
Solution. There are two important points in this algorithm. First, we
should declare the array a with a length of at most 42 since one entry
is going to be added to the number of the entries of a. The second
point is how to insert the read integer x between the second and third
entry of the array. We want the read integer x to be accommodated as
the third entry, the third entry as the fourth entry, the fourth entry as
the fifth entry and the like.

We must be careful in the process of replacing these entries. Only a
small carelessness will disarrange the algorithm. For example, we will
end up with Flowchart 8.13(a) if we intend to write an algorithm
based exactly on the above argument.

This flowchart leads to an algorithm which is completely wrong.
We arrange the implementation table of Flowchart 8.13(a) for m = 5

and the value of x as in Table 8.13(a) in order to observe the
incorrectness.

Tab. 8.13(a): Implementation table for Flowchart 8.13(a) for m = 5.

As illustrated, the algorithm does not work right. Therefore, the
insertion process should be started from the final cell of the array
which is empty in order to overcome this error. The entries pulled one
back, up to the third entry using a for template with the specification
i=3,5. Finally, x is substituted for a3

 after exiting the loop. The
result can be observed in Flowchart 8.13(b).

Fig. 8.13(b): Right attempt to insert x between the second and third entry.

Now the implementation Table 8.13(b) is rearranged which
guarantees the correctness of Flowchart 8.13(b).

Tab. 8.13(b): Implementation table for Flowchart 8.13(b) for m = 5.

Fig. 8.13(c): Algorithm for reading x and inserting it between the second and third

entry.

The codes for the completed Flowchart 8.13(c) can be found in
Programs P8_13.

Note that in the right Java program, the read. reset() method is used
due to the multi-use of the readIvec() method.

Fig. 8.14: Iinserting a read number in an ascending array preserving the order.

8.14. Example. Write an algorithm to read the m entries of an integer
array sorted in ascending order followed by the reading m. Then, read
an integer and insert it inside the array preserving the ascending
order. In other words, the m + 1 entries of the modified array are still
in ascending order.
Solution. This problem is somehow similar to the algorithm of Figure
8.13(c). The main difference is that in Figure 8.13(c) it is known that
the read number is to be inserted between the second and third entry;
therefore, we can easily design the flowchart. However, the position
in which the number is to be inserted is not clear in the present
problem. A simple way is to place the read number in the (m + 1)-st
empty cell. Then use the first step of Flowchart 8.11(c) for m numbers
here instead of the 40 numbers there. It means that we use the inner

for loop with the specification i=40,1,-1. As shown in Flowchart 8.11(c),
this loop which starts from i = 40 downwards, compares the entry

ai with ai+1

 and swaps them if ai > ai+1

 in each repetition. Accordingly, the entry a41

sits in the required place by necessary iterated one-back movements.
Flowchart 8.14 is as required.

We arrange the implementation table of Flowchart 8.14 m = 4 and
the read numbe as in Table 8.14.

Tab. 8.14: Implementation table for Flowchart 8.14 for m = 4.

8.14.1. Exercise. Write the codes of Flowchart 8.14 in both languages
C++ and Java.

8.14.2. Exercise. As demonstrated in Table 8.14, implementing the
algorithm has no effect on the result from the third repetition
onwards. Modify Flowchart 8.14(a) in such a way that these extra
repetitions are not processed. In addition, write the programs of the
obtained flowchart. Think of modifying the if template.

8.15. Example (The insertion sorting method). The insertion is
another method of sorting a set of numbers in ascending or
descending order. In this method, the numbers are read one by one
and inserted inside the previously sorted numbers preserving the
order. Write an algorithm to read first the size m of the integer array a
having at most 40 entries. Then, read the entries of a one by one and
sort them in ascending order using the insertion method.

Fig. 8.15: Sorting an array in ascending order by the insertion sorting method.

Solution. The idea in Flowchart 8.14 is used for this algorithm. To be
precise, the entries are read one by one with a for template. Upon
reading an entry, it is inserted inside the previously sorted numbers
preserving the ascending order. The above discussion is summarized
in Flowchart 8.15. It should be mentioned that, the basic sorting is
started from the second entry. Actually, the first entry is read due to
the occurrence of incompatibility in the inner loop. Programs P8_15
are codes of this algorithm.

Fig. 8.16: The n-degree Lagrange interpolation polynomial.

8.15.1. Exercise. Modify the previous algorithm and the programs so
that all the entries are read and then sorted in ascending order using
the insertion method. How many arrays do you use? One or two?
Attack to both cases!

8.15.2. Exercise. Split Flowchart 8.15 into a sub-algorithm and a main
algorithm. In fact, the sub-algorithm receives an array, sorts it in
ascending order using the insertion method, and then returns the
sorted array.

8.16. Example (The Lagrange interpolation polynomial). One way to
approximate the function f at a point z is to use the n-degree Lagrange
interpolation polynomial of the function f based on the knots
x0,x1, … ,xn

at the point z which is defined as
follows.

p (z) =
n

∑
k=0

f (xk)Lk (z), Lk (z) =
n

∏
z − xi

xk − xi

.

The knots should be accumulated in the neighborhood of the point z.
Write a function to receive the knots x0,x1, … ,xn

as the entries of the (n + 1)-entry real array x as
well as the value of the point z and then calculate and return p(z).
Solution. The structure of this algorithm is clear: we have an additive
series the common term of which is a multiplicative series. Just note
the conditional common term in the multiplicative series. The
resulted function is depicted in Figure 8.16. We use this method in the
main unit of Programs P8_16 to approximate the function f(x) = sin(x)
+ cos(x). To do this, the main unit first reads the value of n. Then, it
reads the x0,x1, …xn.

Finally, the value of z is
read. Now, the method p() is called for z as well as the n-entry array x
and then the return value is printed. Eventually, the exact amount of
f(1) is computed and printed for comparison with the above
approximated value.

i−=0

i≠k

We studied two methods of writing algorithms for calculating the
factorial of nonnegative integers, the recursive and direct ways in Cha
pters 5 and 6, respectively. The programs of these algorithms are
practically usable for calculating the factorial of small numbers in
most of the computers and compilers in both C++ and Java languages.
In the next example we will use the arrays to write an algorithm
usable for determining the factorial of large integers.

8.17. Example. Design a sub-algorithm named LargFact() to calculate
and print the factorial of a rather large number m using the arrays.
Solution. Here, the usual formula is employed:

m! = 1 × 2 × 3 × … × m.

We use the idea behind the multiplication of a digit to a positive
integer, taught to the students in the primary schools. Let us explain
this manner for the multiplication of 859 × 7. To have a clear
explanation, insert a valueless zero to the left of 859, and put the digits
of 0859 from left to right, respectively, into the 1-st, 2-nd, 3-rd, and 4-th
entry of an array as follows.

The explanation is as follows.
1. Multiply the 4-th entry 9 to 7 (= 63); write the right digit 3;

hold on the transferring digit 6;

2. Multiply the 3-rd entry 5 to 7 and add the result to the

previous transferring digit (= 41); write the right digit 1; hold

on the transferring digit 4;

3. Multiply the 2-nd entry 8 to 7 and add the result to the

previous transferring digit (= 60); write the right digit 0; hold

on the transferring digit 6;

4. Multiply the 1-st entry 0 to 7 and add the result to the

previous transferring digit (= 6); write the right digit 6; hold

on the transferring digit 0.

Now, if we stored the “right digits” in an array, say a, in each step from
the 4-th entry downwards, we would have the following entries of a:

Fig. 8.17(a): The multiplication of an integer by 7 using the primary idea.

Arranging the entries from left to right, we get the real value of the
multiplication 859 × 7 = 6013. Two points should be noticed here. First,
we may use the above idea for any number instead of 7, provided that
the necessary valueless zero digits are inserted to the left of 879.
Second, nothing is lost if we take the original array the same as a.

Now, we steer the idea in the above multiplication, which is
mentioned in four steps, to reach an algorithm. To do this, we need to
approach some of the above actions to the equivalent actions from the
algorithm viewpoint:
− Right digit: the remainder of the division by 10;
− Transferring digit: the quotient of the division by 10;

To continue, define some variables:
t: the amount of the multiplication of an entry to 7 and adding the
result to the previous transferring digit;
u: the quotient of the division by 10.

Now, we rewrite the above-mentioned four steps in the literature of
algorithm as follows.

1. Assign a4 × 7

to t; substitute the remainder of t / 10 for
a4;

assign the quotient of t / 10 to u;

2. Assign a3 × 7 + u to t;

 substitute the
remainder of t / 10 for a3;

assign the quotient of t / 10 to u;

3. Assign a2 × 7 + u to t;

 substitute the
remainder of t / 10 for a2;

assign the quotient of t / 10 to u;

4. Assign a1 × 7 + u to t;

 substitute the
remainder of t / 10 for a1;

assign the quotient of t / 10 to u.

Fig. 8.17(b): Calculating the factorial of a large number and storing the digits in an

array.

It is noteworthy that the constructions in the first step would be the
same as the other steps by assigning the initial value zero to u. As
shown, we have a for loop repeated four times and the above steps
can now be settled down in Flowchart 8.17(a).

Now, take 720 = 6! instead of the above number 859. Then, the
multiplication above will be 6! = 720 × 7 = 5040 = 7! Therefore, if we
take the array a as:

and consider Flowchart 8.17(a) (with replacing 7 by i) as the range of
an outer for loop with the specification i=1,7, we will get the amount
of 5040 = 7! upon exiting this outer loop. To extend this for m instead
of 7 and r instead of 4, we arrive at Flowchart 8.17(b) of the required
sub-algorithm. The number m is a positive integer which we want to
calculate its factorial and r is the number of digits of m! This number
is not often known and an upper bound should be guesstimated for it.
The sub-algorithm LargFact() receives the positive integer m and the
guesstimated integer r. Then it calculates and returns the array a
including the digits of m! in the natural order.

Table 8.17 thoroughly demonstrated the implementation table of
the sub-algorithm LargFact() for m = 5 and r = 3.

Fig. 8.17(c): Calculating 20! using the sub-algorithm LargeFact().

Tab. 8.17: Implementation table of the sub-algorithm LargFact() for m=5 and r=3.

In the main algorithm of Flowchart 8.17(c), the amount of 20!, is
calculated, using the sub-algorithm LargeFact(). Of course, we know
that 20! is a 19-digit number. These digits, which are the entries of the
array a, are printed successively, without any space. This may be
performed in any programming language.

Fig. 8.17(d): Calculating the m! (for large m) and printing it removing the leftmost

zero digits.

8.17.1. Exercise. Write the complete programs of Flowchart 8.17(c) in
both C++ and Java codes.

It is worth mentioning that, in general, the number of digits of m! is
not always known and an upper bound should be guessed for this
purpose. Some valueless zeroes mainly appear on the left of the real
amount of m! For example, we will have the following output if we
write 22 instead of 19 in the main algorithm of Figure 7,18(c):

0002432902008176640000

The main algorithm in Figure 8.17(d), reads the values of m and r and
then receives the amount of m! within the r-entry array a by calling
the sub-algorithm LargeFac(). Next, using a while template, while the
first entry of a (the leftmost digit of m!) is zero, it is removed and then

all the other entries are pulled one back in each repetition. Finally, the
guesstimated number of digits, r, is decreased by 1.

The codes of Flowchart 8.17(d) in both C++ and Java languages can
be observed in Programs P8_17.

A point about the length (upper bound) of the guesstimated value
should be noticed.

Extra care should be taken upon assigning the guessed length! We will not achieve a correct

answer if this length is smaller than the necessary one.

8.17.2. Exercise. Another way for preventing the appearance of the
meaningless digits on the left side of the number is to replace a
possible meaningless zero digit with a space character in the main
algorithm. Write a main algorithm to perform this print.

Exercises

In the following exercises: (1) Arrange the implementation table, if
needed, (2) Write the complete program, (3) Provide appropriate input
notifications and output headings, if any. In addition, the user-defined
functions in the text of the current and the previous chapters may be
used unless otherwise is explicitly specified.

8.1. Write an algorithm to produce the first 20 terms of the Fibonacci
sequence and save them in the array F. Then, read the positive integer
n (which is less than 20) and calculate and print the sum

n

∑
i=1

iFi,

where Fi is the i-th term of the Fibonacci sequence.

8.2. Write a sub-algorithm named FibArray() to receive a positive
integer n, calculate the first n terms of the Fibonacci sequence, and
return them as the entries of an integer array, say F. Then, write a
main algorithm to calculate and print the first 20 terms of the
Fibonacci sequence using the above sub-algorithm.

8.3. Write a sub-algorithm to receive the n-entry integer array a and
an integer t. Then determine and return the first position of the
occurrence of t in the array. If t does not occur in the array, announce
its position as 0.

8.4. Write an algorithm to read the ID number and grade of 40
students and then store them in the arrays N and G, respectively. Next,
read a grade g and print the Not in list message if it is not in the list of
grades. Otherwise, print the ID numbers with this grade and the
number of these students.

8.5. Write an algorithm to read 20 integers, sort them in ascending
order after removing the repeating elements, and print the sorted
numbers.

8.6. Write an algorithm to read the 20-entry integer arrays a and b.
Then, put those entries in the array a, which are not equal to any
entry of the array b in the array c. Repetition is not allowed. Finally,
print the three arrays separately.

8.7. Write an algorithm to read the positive integers m and n which
are at most 100. Then, read the m-entry array A and n-entry array B
and combine them in a new array C so that it is discarded if a number
from B exists in A. Finally, print C. An example is demonstrated below.

8.8. In Exercise 8.7, sort the resulted numbers in both ascending and
descending orders and then print them separately.

8.9. Write a function named repeat() to receive the n-entry integer
array a and the integer x and calculate and return the number of
repetitions of x in the array.

8.10. Write an algorithm to read the entries of a 20-entry integer array
and determine the first repeated number, its position, and the number
of its repetitions. Then, print them separately. An appropriate message
should be printed if there is no such number.

8.11. Write a sub-algorithm to receive an integer array with n entries
named u. Then, determine and return the number with the most
repetition. Additionally, determine and print the largest one if there is
more than one entry with this property. For example, the output for
the following inputs should be 7 since it is the last number which is
most repeated (three times).

A : 3, 7, 2, 5, 9, 3, 6

B : 12, 4, 6, 2, 3, 9, 8

C : 3, 7, 2, 5, 9, 3, 6, 12, 4, 8

8.12. Divide Algorithm 8.11, sorting in ascending order by the bubble
sorting method, into a sub-algorithm named Sort and a main
algorithm. In other words, the sub-algorithm Sort() receives an n-
entry array, sorts it in the ascending order by the bubble sorting
method, and then returns the sorted array.

8.13. Write an algorithm to read the 40 entries of an integer array
and, using the bubble sorting method, sort the first 20 entries in
ascending order and the second 20 entries in descending order and
print them separately. The entries should be sorted into ascending and
descending orders simultaneously and in the same loop.

8.14. Write an algorithm to read two 20-entry integer arrays a and b
which are sorted in a descending order. Then, combine them in the
40-entry array c and sort c in ascending order. Finally, print the sorted
array c.

8.15. Write a sub-algorithm named Rank() to receive the ID number
and grade of n students with the names N and G, respectively. Then,
determine a rank for each student and return the ranks in an integer
array, say R. For the same grades consider the same ranks. Next, write
a main algorithm to read the ID number and grade of 40 students and
then print three separate lists by calling the sub-algorithm rank(): the
first list in the ascending order of the ID numbers (the array N), the
second one in the ascending order of the grades (the array G), and
finally, the third list in the ascending order of the ranks (the array R).
Every list contains 40 rows and in each row, the ID number, grade,
and rank of each student are positioned, respectively.

2 4 7 4 9 4 6 6 7 1 2 6 7 1

8.16. Write an algorithm to read 40 entries of a real array a. Then read
the integer m (1 ≤ m ≤ 39) and the real number t and insert the
number t between the m-th and (m + 1)-th entries of the array a.

8.17. Write an algorithm to read 40 real numbers and save them in
the real array a. Then, read 7 real numbers one by one and insert
them between the fifth and sixth entry.

8.18. Write an algorithm to read the 40 entries of the real array a.
Then, read a positive integer q (1 ≤ q ≤ 19) as the count of the
numbers which will be inserted. Afterwards, in q steps, each step read
the two numbers m and t and insert t in the position between m and
m + 1 in the array (1 ≤ m ≤ q). Finally, print the new (40 + q)-entry
array a.

8.19. Write an algorithm to read the 20 entries of an ascending real
array a. Then, read a number n (1 ≤ n ≤ 19) as the count of numbers
which will be read. Next, in n steps, each step read a real number and
insert it in the array a so that the ascending order of the array is
preserved.

8.20. Repeat Exercise 8.12 for the insertion sorting method.

8.21. Write a sub-algorithm named Bin() to receive the positive integer
n, convert it to the base-2 numeral system, and return the result in the
k-entry integer array e. Compare the solution to the sub-algorithm of F
igure 7.6(b) which is written without using the arrays.

8.22. Write a sub-algorithm to receive the positive integer k, transfer it
to the base-16 numeral system, and return the result to the calling
unit. Then, write a main algorithm to read a positive integer k, convert
it to the base-16 numeral system, and print it using the above sub-
algorithm.

8.23. Write an algorithm to read the 20 entries of the integer array a.
Then, calculate and print the greatest common divisor of the entries.
Finally, compare this exercise with Exercise 7.21 which is written
without using the arrays.

Supplementary exercises

8.1*. Write an algorithm to read the ID number and grade of 40
students with the names N and G, respectively. Then, store the ranks
of the students with the name R using the sub-algorithm rank() in Exe
rcise 8.15. Next, ask the user to enter one of the following numbers for
the stated purposes within the input announcement as follows:

After entering one of the above numbers, the algorithm performs the
task stated in front of that number and the implementation continues
until the user enters the zero number. If the user enters any number
other than the above-mentioned numbers, the algorithm prints the
message Wrong number and continues from the beginning.

8.2*. Repeat the previous exercise, this time for the following input
announcement:

8.3*. Write an algorithm to read thirty real numbers and determine
whether or not these numbers are orderly sorted and if so, are they
sorted in ascending or descending order? It is supposed that not all
the numbers are zero.

8.4*. Write an algorithm to read the entries of the 40-entry integer
array a. Then, read an integer x and remove that entry and pull all the
subsequent entries one back if it matches an entry of the array.
Finally, print the deformed array a with possibly less entries.

8.5*. Write an algorithm to read the entries of a 20-entry integer array
and remove its repeated entries without using another array. Then,
print the deformed array. For example:

8.6*. Write an algorithm to read the entries of the 40-entry integer
array a. Then determine the repeated entries of this array followed by
the number of repetition for each case. Repetition for the repeated
entries is not allowed.

8.7*. Write a sub-algorithm named prim_dec() to read a positive
integer n. Then, in the primary decomposition

n = p1
r1p2

r2 … pk
rk

store the prime factors in an array named p and the multiplicity of
each factor in another array named r.

8.8*. Consider the two numbers m and n having the following primary
decompositions:

m = p1
r1p2

r2 … pk
rk , n = p1

s1p2
s2 … pk

sk .

Then, their greater common divisor and their least common multiple
(gcd and lcm, respectively) are obtained from the formulas

gcd = p1
u1p1

u2 … pk
uk , lcm = p1

v1p2
v2 … pk

vk ,

where, for any i (1 ≤ i ≤ k), ui is the minimum of ri and si, and vi is the
maximum of ri and si. Write an algorithm to read the two numbers m
and n and then calculate and print their gcd and lcm using the
mentioned manner.

8.9*. For a positive integer n, the Mobius function μ is defined as
follows.

μ (n) = .

Write a function, named mu(), to receive the positive integer n and
then calculate and return the Mobius function μ(n).

1 if n = 1

0 if p2 n, for some prime p,

(−1)k, if n = p1p2 … pk, for distinct primes pi

8.10*. Write an algorithm to read the degrees m and n of two
polynomials

f (x) = f0 + f1x + ⋯ + fmx
m, g (x) = g0 + g1x + ⋯ + gnx

n.

Then, read the coefficients of the functions f and g, separately. Finally,
calculate their sum and print it in the standard form of a polynomial.
The following is an example for the output:

8.11*. Repeat the previous exercise, this time for multiplication
instead of summation. Recall that for the two polynomials f(x) and g(x)
as in Exercise 8.10*, the multiplication is defined as the function h by
the following rules.

h (x) =
m+n

∑
i=1

hixi, hi

i

∑
s=0

fsgi−s.

8.12*. Given the positive integers a and n, an efficient technique for
calculating an

is to transfer n to the base-2 numeral system:

n =
k

∑
i=0

ei2
i.

Now we can write:

b = an =
k

∏
i=0

aei2i

,

Write an algorithm to read the positive integers a, n, and m and then

calculate and print an

modulo m.

8.13*. Solve Exercise 7.7* using the arrays.

9 Two-dimensional arrays

At the beginning of Chapter 8, some information was provided
regarding introducing one-dimensional arrays in algorithms and
programs. This information is also true for two-dimensional arrays,
which we will refer to as matrices from now on. In particular, as the
one-dimensional case, the two-dimensional arrays, as predefined
objects, pass by reference. The only difference is that here, we are
dealing with double indices instead of a single index and each index is
used inside a pair of []. In this chapter, matrices are studied in more
details and then solving linear equations systems are examined.

9.1 Matrices

The first step in matrix related programming is how to read and write
the matrices. In other words, how to read matrices row by row, as they
are, from the input and write them based on the matrix structure in the
output. To this end the simplest pattern is to use two nested for loops for

row-reading the matrix A = (Aij)m×n

 in the

C++ and Java codes as follows:

This pattern satisfies our need for row-reading (reading row by row)
matrices although matrices can be entered in any form by running this
part provided that the row order of the entries is kept. For example, all

the rows of a matrix can be continuously entered in a single input row.
In addition, each entry could enter in one row.

From now on, the following subprograms named readImat() and
readFmat() are used to read the integer and real (floating point)
matrices, respectively:

The rule of multi-using the reading methods in Chapter 8 is held for two-
dimensional arrays. Moreover, the following notes should be highlighted
regarding the two-dimensional arrays.

– Whenever two-dimensional arrays are applied as the parameters of a subprogram in the C++

language, the length of the first dimension can be written in an open way [] while the length of

the second dimension should be determined. Further, we may change the value of the length

of the second dimension depending on our need upon calling the involved subprogram.

– The lengths of both dimensions may be written in an open way [][] in Java language.

– The values of the lengths within the integer variables should be part of the parameters in both

languages.

– The real length of both dimensions should be determined in the main program.

Now, the writing pattern of a matrix in the form of matrix structure
(row by row) is investigated. Consider the following parts for writing the

matrix A = (Aij)m×n
,

 in the C++ and Java

codes:

Then, all the entries are written in a single row, which is not what we
desire. Therefore, we should break a row after exiting it using the
cout<<endl statement in C++ (the System. out.println() statement in Java)
and then transfer it to the beginning of the next row:

Suppose that a 2 × 4 matrix is previously saved in the memory as
follows.

Then, running the above parts of the program result in the following
output:

a11 a12 a13 a14 a21 a22 a23 a24

1 2 3 4 5 6 7 8

Furthermore, we can add one or several space characters after writing
A[i][j] in order to create spaces between the entries:

However, the problem generally fails to be solved by doing this. For

example, if we had the number 22222 instead of the entry aij

in the
above matrix, then we would end up with the following scrambled print
even with the use of space characters:

We use an appropriate formats for spacing in prints in order to solve
this problem. For example, if we use the formats:

in the above parts, then we will have the following output:

This visualization satisfies our desire. Generally, from now on, we use
the following subprograms named writeImat() for printing the integer m
× n matrices:

The width of the spacing format in the above patterns of printing is changed depending on the

size of the necessary length.

9.1. Example. Write an algorithm to produce and print the 5 × 5 identity
matrix in the name of U.
Solution. The identity matrix is defined in a way that the entries on the
main diagonal are considered 1 while the remaining entries are 0. We
have two variable indices (rows and columns) in this definition.
Therefore, we produce the identity matrix inside two nested for loops in
as displayed in Flowchart 9.1(a).

Programs P9_1_A translate Flowchart 9.1(a) into the C++ and Java
codes. The feature of the ? operator is used in these programs.

Fig. 9.1(a): Producing the 5 × 5 identity matrix.

Now, a sub-algorithm named idImat() is written to produce the n × n
identity matrix and then return it within the integer array U. Flowchart
9.1(b) is the required sub-algorithm.

Fig. 9.1(b): A sub-algorithm to produce the n × n identity matrix.

Each of the Programs P9_1_B first reads the size of the identity matrix
with the name n which is assumed to be at most 10. Then, it prints the n
× n identity matrix calling the subprogram idImat(). Eventually, the
subprograms idImat in both programs are written without using the ?
operator.

Recall that the arrays are passed by reference in both C++ and Java
languages. This is why we write no return value in the return
instruction at the end of the sub-algorithms. Nevertheless, we do write
the return instruction in sub-algorithms to keep their standard structure
although the return statement is not written in the subprograms.

The main process of the sub-algorithm idImat() is to produce the identity
matrix, denoted in the standard texts by I, and assign it to the integer
matric U. This is analogous to the assignment instruction:

U → I

A float version idFmat() of the subprogram idImat() may be written by
replacing the data type float instead of int.

An alternative method to produce the identity matrix is to define the

entries Uij

 as 0 in the range of an inner for loop and define the

diagonal entry Uii

as 1 after exiting that loop. This idea is directly
used in Figure 9.1(c) to produce a 5 × 5 identity matrix in an algorithm.
The codes related to the algorithm of Figure 9.1(c) can be found in
Programs P9_1_C.

Fig. 9.1(c): Producing a 5 × 5 identity matrix using an alternative manner.

9.2. Example. Write an algorithm to read a 6 × 6 integer matrix named A
and then print the message Symmetric if A is equal with its transpose;
otherwise, print the message Not symmetric.
Solution. The transpose of the matrix A is a matrix in which the (i , j)-
entry is equal to the (j , i)-entry of A. Therefore, as depicted in Flowchart
9.2, the algorithm is arranged in a way that as soon as an opposition case
of the equality of the (i , j)-entry with the (j , i)-entry is found, prints the
Not symmetric message and terminates the program using an if
template. The other case occurs when, the (i , j)-entry would be equal to
the corresponding (j , i)-entry for each i and j. In this case, the nested
loops is completely implemented and the Symmetric message is printed
after the natural exit from the outer loop. Programs P9_2 are the
translation of this algorithm into C++ and Java codes.

Fig. 9.2: Checking whether or not a 6 × 6 matrix is symmetric.

Fig. 9.3: Adding two matrices.

9.3. Example. Write a sub-algorithm named addFmats() to receive the
two real m × n matrices named A and B and then calculate and return
the matrix sum C = A + B.
Solution. The sum C = A + B of two matrices is defined as follows.

Cij = Aij + Bij, i = 1, … , m, j = 1, … , n.

As shown in Figure 9.3, this definition can be performed with two nested
for loops due to the existence of two variable indices. The codes of this
sub-algorithm are as follows.

The subprogram addFmat() may be written in alternative forms in various systems and versions of

compilers. In particular, in some compilers in C++, the statement return a[i][j] is written at the end

in order to return the entries of C. Additionally, in some compilers of C++, the data type void is

accepted for the subprogram.

A similar subprogram named addImats() can be written for adding the
integer matrices. It suffices to replace the keyword float by int.

The main units in Program P9_3 read two real 3 × 4 matrices and
then calculate and print their sum using the subprogram addFmats().

9.4. Example. Write a sub-algorithm named productFmats() in order to
receive the two real m × n matrix A and n × k matrix B and then
calculate and return their multiplication matrix C, which is a real m × k
matrix.
Solution. The multiplication C = AB of the two matrices A and B is
defined as follows.

Cij =
n

∑
l=1

AilBlj, i = 1, … , m, j = 1, … , n.

As shown, we are dealing with a series. On the other hand, we have two
variable indices. Therefore, we calculate this series and assign its result
to C[i][j] inside two nested for loops. The result of this process is
displayed in Figure 9.4. This subprogram is called in Programs P9_4.

Fig. 9.4: Multiplying two matrices.

9.5. Example. The sum of the entries on the main diagonal of a square
matrix is called the trace of the matrix. Write a program to read a 5 × 5
real matrix named T without the need to draw any flowchart while
using the previous sub-programs and then calculate and print the trace

of the matrix T 3.

Solution. We denote the multiplication of T and T as well as T and T2 by

T2 and T3, respectively. Now, T3 is the matrix T 3.

Next, using a for
loop, we calculate the sum of the entries on the main diagonal of T3
which is:

Trace (T3) =
5

∑
i=1

T3ii.

Programs P9_5 are the requested programs.

Fig. 9.6(a): Calculating the number x to the power of k (recalling Flowchart 6.8(a)).

In Programs P9_5, we used the technique of repetitive multiplications
for calculating the low powers of a matrix. This technique is not an
efficient technique for high powers. The next sub-algorithm calculates
any power of a square matrix.

9.6. Example. Write a sub-algorithm named powerFmat() to receive an n
× n real matrix T and a positive integer k and then calculate and return

T k.

Solution. Recall the algorithm of Figure 6.8(a) for taking the number t to
the positive integer power of k, as in Figure 9.6(a).

We use the idea behind the algorithm of Figure 9.6(a). Two points
should be noted. First, the analogy to the assignment

p ← 1

in the matrix point of view is:

p ← I

where, I is the identity matrix. This is known for us. In fact, the float
version of the sub-algorithm in Figure 9.1(b) performs this assignment.

Fig. 9.6(b): Calculating the matrix X to the power of k.

Fig. 9.6(c): Assigning the matrix B to the matrix A.

The second note is that we are unable to directly store the matrix
product PX in P due to the nature of the matrix multiplication defined in
Example 9.4. Instead, we can store PX in another matrix, say R, and then
assign R to P. By the discussion provided so far, we can draw Flowchart
9.6(b).

Finally, we provide Flowchart 9.6(c) to assign any m × n matrix B to
the matrix A of the same size. Now, we gather the three above
flowcharts in Programs 9_6.

9.7. Example. Write a program to read two 4 × 4 real matrices A and B.
Then, calculate and print the following matrix using the needed
subprograms which were already studied.

AB5 + BA5.

Solution. Denote the B5, AB5, A5, BA5, and AB5 + BA5 by C, D, E, F, and G,
respectively. The requested calculations are performed in Programs
P9_7.

There are three elementary row operations on an m × n matrix as
follows.

1. Multiplying one row of A by a nonzero number z;

2. Replacing the r-th row of A by row r plus z times row s where z is

any number and r ≠ s;

3. Interchanging the two rows of A.

In the following two challenging Examples 9.8 and 9.9, we use the
elementary row operations to calculate the determinant and the inverse
of a square matrix, respectively. There may exist simpler manners to

solve these examples. However, exhibited manners aim to examine and
apply several previously taught techniques.

9.8. Example. Write a function named det() to receive an n × n real
matrix A and then calculate and return its determinant.

Fig. 9.8: Calculating the determinant of an n × n matrix using the elementary row

operations.

Solution. This is a challenging example. Represent the carrier of the
function as d with the initial value of 1. The strategies for calculating the
determinant is to transform the given matrix to an upper triangular
matrix using the elementary row operations and then exhibit the

multiplication of the (main) diagonal entries as the determinant. To do

this, we take the diagonal entry Akk

 in each repetition, using a
leader for loop with the specification k=1,n and then check whether or

not Akk

is zero with an if template. We continue the algorithm in
two cases depending on this condition.

Case 1. Akk = 0.

 In this case, we look for a nonzero

entry below Akk

 in the same column using a for loop with the
specification i=k+1,n. All the corresponding entries of rows i and k are
swapped by a for loop if there is such a nonzero entry in some repetition
of the recent loop. Then, the sign of d is changed by the preliminary
properties of determinant and finally, goes to Case 2. However, the non-
existence of such a nonzero entry in any repetition implies that the
entry in this position of the upper triangular matrix is zero. Therefore,
the sub-algorithm is terminated returning the zero value for the
determinant.

Case 2. Akk ≠ 0.

 In this case, which starts with the

label b, we turn all the entries below Akk,

 in the same column,
to zeroes. To do this, it suffices to perform the following substitution
inside a for loop with the specification i=k+1,n.

row i ← row i − z × row k,

where z = Aik/Akk.

 As seen, the row is fixed
while only the columns vary. Therefore, a for loop with the specification
j=k,n is used to perform this substitution since the entries Ai1 to Aik−1

have already become zero.

Finally, we should multiply the value of the current diagonal entry to
the previous repetitive multiplication of d before ending the current
repetition of the leader loop. The above discussions are summarized in F
lowchart 9.8.

Each of Programs P9_8 reads the size of the matrix A as n which is at
most 10. Then, reads an n × n matrix. Eventually, calculates and prints
the determinant of A calling the function det().

9.9. Example. Write a subprogram named invFmat() to receive the n × n
real matrix A and then calculate and return its inverse if it is invertible;
otherwise, prints a message.
Solution. One of the techniques of finding the inverse of the invertible
matrix A is to transform A to the identity matrix, using the elementary
row operations. Then, apply exactly the same elementary row

operations to the identity matrix I in the same order. The final matrix I
is the inverse of A.

Further, the same strategies as in Example 9.8 with a little differences
is simultaneously applied for A and I. Then, the real identity matrix is
generated using the sub-algorithm idFmat() and is assigned to I. Next, as

in Example 9.8, we take the diagonal entry Akk

in each repetition
using a leader for loop with the specification k=1,n and check whether or

not Akk

 is zero. Finally, we continue the algorithm in two cases
depending on this condition.

Case 1. Akk = 0.

This case goes the same line as Case 1
in Example 9.8 and the elementary row operations are simultaneously
applied for A and I.

Case 2. Akk ≠ 0.

This case, which starts with the label
b, is divided into two parts. In Part 1, we divide rows k of both A and I by

the diagonal entry Akk.

Since this entry may vary, we store it in
a variable, say p, and divide the mentioned rows by p. In Part 2, we

change all the entries below and above Akk,

 in the same

column, to zeroes. In other words, we annihilate all the entries Aij

with i ≠ j. To do this, we jump over row k using an if template and apply
the following substitution for both A and I.

row i ← row i − z × row k,

where, this time z = Aik

since the division by Akk

has already been conducted. As before, this substitution is performed

using a for loop with the specification j=k,n, since the entries

Ai1 to Aik−1

have already reached zero.
Concentrating on the sub-algorithm det() in Example 9.8, exactly in

the position where the determinant was announced as zero by the
instruction return 0, we terminate our sub-algorithm and return to the
caller unit by printing a message mentioning that the matrix is not
invertible. The above discussions are summarized in Flowchart 9.9.

Each of Programs P9_9 reads the size of the matrix A as n which is at
most 10. Then, it reads the n × n matrix A and, calling the subprogram
invFmat(), it calculates and prints the inverse of A if A is invertible;
otherwise, it prints a message.

To check the correctness of the inverse matrix I in Programs P9_9, we
multiplied it by the matrix A which was assigned in the matrix A0 using
the assignFmat subprogram in Example 9.6. The inverse matrix is
correct if the result of the multiplication is the identity matrix. It is
worth mentioning that, we may encounter with the approximated
results for the 0- and 1-entries of the identity matrix due to the
approximated computations for the real numbers in the system of the
computers.

Fig. 9.9: Calculating the inverse of a matrix using the elementary row operations.

9.2 Solving linear equations system

Consider the following system of linear equations including n equations
in n unknowns.

This system can be expressed as the following matrix multiplication.

Ax = y.

where A = (Aij)n×n

is supposed the coefficients

matrix and

x = , y = .

A11x1 + A12x2 + ⋯ + A1nxn = y1

A21x1 + A22x2 + ⋯ + A2nxn = y2

⋮
An1x1 + An2x2 + ⋯ + Annxn = yn

⎡⎢⎣x1

x2

⋮
xn

⎤⎥⎦ ⎡⎢⎣y1

y2

⋮
yn

⎤⎥⎦

It is noteworthy that every column matrix can be regarded as a row
matrix and vice versa. Moreover, a row or column matrix can be
considered a vector.

The condition for the existence of a solution to this system is that A
must be invertible. In other words, its determinant should be nonzero.

We study the solution of the system Ax = y

in two parts.

9.2.1 Direct ways

9.10. Example (Matrix method). If we multiply both sides of the relation

Ax = y

 from left to the inverse of A, we obtain the

unknown matrix x = A−1y

 including the solutions.
Using the previously mentioned subprograms, write programs in both
C++ and Java codes in order to read the of the n × n coefficients matrix A,
as well as the n × 1 matrix y, and then calculate the solutions, if any;
otherwise, print a message.

Solution. We have a simple matrix multiplication. Programs P9_10 are
the requested programs. In each program, the size of the system Ax = y,
which is at most 10, is first read. Then, after reading the coefficients
matrix A and column vector y, the solutions are calculated.

9.11. Example (Cramer method). In this method, the solutions are
calculated as follows.

xi = det(Ai)
det(A)

where the matrix Ai

is obtained by replacing the i-th column of A by
y.

Solution. This method is rarely used due to the more determinant
calculations. However, we leave the reader to use the necessary
subprograms and write a program in order to read the n × n coefficients
matrix A as well as the n × 1 matrix y and then calculate the solutions, if
any; otherwise, print a message.

9.2.2 Iterative methods

First, two special cases of the system related to linear equations are
studied, which are used in the sequel general methods. In this
subsection, we deal with x and y as vectors (one-dimensional arrays),
write the coefficients matrix in the uppercase or lowercase forms and
then represent the system of linear equations in the form Ax = y.

Fig. 9.12: Solving an upper triangular system of equations by the backward method.

9.12) Backward displacement method. Consider the following upper
triangular system of linear equations of n equations in n unknowns.

This system can be easily solved. We get xn

from the n-th equation,
obtain xn−1

placing xn

in the (n – 1)-th equation, and then
continue this process backward. Finally, we arrive at x1.

 The
answers are as follows.

xn = yn

Ann
, xi = 1

Aii
(yi −

n

∑
k=i+1

Aikxk), i = n − 1, … , 2, 1.

Flowchart 9.12 displays a sub-algorithm which receives the coefficients
matrix A and the vector y and then calculates and returns the solutions
vector x.
This flowchart is written in C++ and Java codes as follows.

A11x1 + A12x2 + ⋯ + A1nxn = y1

A22x2 + ⋯ + A2nxn = y2

⋮
Annxn = yn

9.13. Forward displacement method. This time, we consider the lower
triangular system of linear equations of n equations in n unknowns..

This system can be solved in a similar way as the backward system with
the following solutions.

A11x1 = y1

A21x1 + A22x2 = y2

⋮

An1x1 + An2x2 + ⋯ + Annxn = yn

x1 = y1
A11

, xi = 1
Aii
(yi −

i−1

∑
k=1

Aikxk), i = 1, 2, … , n.

We only write the subprogram with a slight changes in the flowchart
and subprogram of the backward method.

Now, we study the system of linear equations Ax = y in a general case in
two methods as follows.

9.14. Example (The Gauss elimination method). In this method, the
system of linear equations Ax = y is turned to an upper triangular
system as in the backward displacement method and then the solutions
are calculated using the backward displacement method. Write a sub-
algorithm named Gauss() in order to receive the coefficients matrix A
and the vector y. Then, calculate and return the solutions vector x using
the Gauss elimination method.
Solution. We discuss the solution in four steps:
Form the augmented matrix with the same name A. This matrix is
obtained by the matrix A followed by the (column) vector y. This is easily
implemented by a for loop.

1. Turn the augmented matrix A to a matrix in which the square

part corresponding to the coefficients matrix is the upper

triangular using the elementary row operations. This may be

performed exactly in a similar manner as in the function det() in

Example 9.8 with only two slight differences. The process related

to the carrier d is removed. Additionally, the initial values related

to the column from n to n + 1 are changed.

2. At this point, we have the upper triangular system Ax = y where

A is now an upper triangular matrix and the new vector y is the

deformation of the original one. However, the current deformed

matrix A includes both the mentioned upper triangular matrix

and thus, the new vector y and we should separate the vector y

from it. To this end, the substitution processes are performed

opposite to those in the first step.

3. The solutions are calculated and returned calling the

subprogram backw().

Flowchart 9.14 includes all the above steps which clearly described.
Programs P9_14 translate this flowchart into C++ and Java codes. Each
program reads first the size of the system which is supposed at most 10.
Then, it reads the coefficients matrix A and the column vector y and
determine the solutions.

Each of the Programs P9_14 reads the size n of the system, whoch is
at most 10, coefficients matrix A, and the vector y. Then, calculates and
prints the solution of the linear system Ax = y using the Gauss method.

Fig. 9.14: Solving a system of linear equations by the Gauss elimination method.

9.15. Example (The triangular decomposition method). In this method,
the coefficients matrix A is decomposed, in some ways which are latter
explained, into two upper triangular matrix U and lower triangular
matrix L, that is, A = LU. Now, the system Ax = y turns to LUx = y. Then,
we get Lz = y putting Ux = z. As shown, we are involved with the two
systems of linear equations as follows.

Lz = y, Ux = z.

where L and U are regarded as lower and upper triangular matrices,
respectively. Therefore, having the vector y, we first solve the system Lz
= y to achieve the required solutions using the forward displacement
method and then get the solutions vector z of this system. Next, we solve
the system Ux = z and obtain the required solution vector x using the
backward displacement method.

Now, we explain the Doolittle manner of decomposition of the matrix
A into two upper and lower triangular matrices U and L, respectively. In
addition, there are two other decomposition manners, the Choleski
manner and the Crout manner. We cite [??] for more details about these
manners. We omit the details of decomposition in the following Doolittle
manner.

Consider the matrices L and U as follows.

L = , U =

It is proved that, for i = 1, … , n,

the i-th row of U
is:

Uik = Aik −
i−1

∑
j=1

Lij Ujk, k = i, … , n,

and the i-th column of L is:

⎡⎢⎣ 1 0 0 0
L21 1 0 ⋯ 0
L31 L32 1 0

⋮ ⋱ ⋮
Ln1 Ln2 Ln3 ⋯ 1

⎤⎥⎦ ⎡⎢⎣U11 U12 U13 U1n

0 U22 U23 ⋯ U2n

0 0 U33 ⋮

⋮ ⋱ ⋮
0 0 0 ⋯ Unn

⎤⎥⎦

Lki = 1
Uii
(Aki −

i−1

∑
j=1

LkjUji), k = i + 1, … , n.

Fig. 9.15: Solving a system of linear equations by the triangle decomposition method.

Write a sub-algorithm named LUdecomp() to receive an n × n matrix A
and then calculate and return L and U based on the above relations.
Next, write a main program to read the coefficients matrix A of the
system Ax = y as well as the vector y. Then, receive the solutions vector z
of the system Lz = y calling the sub-algorithm forw(). Finally, receive the
solutions vector x of the system Ux = z calling the sub-algorithm backw()
and print the entries of x as the required solutions.
Solutions. We write the sub-algorithm LUdecomp() in two parts as
follows.
1. Produce the 0- and 1-entries of both matrices L and U (Part 1 in Fig. 9.1

5);
2. Generate the i-th row of U as well as the i-th column of L for

i = 1, … , n

(Part 2 in Fig. 9.15).

The main unit in Programs P9_15,
1. reads the size n of the system Ax = y, the n × n coefficients

matrix A of the system, and the vector y, respectively;

2. calls the sub-algorithm LUdecomp() for A and receives the

matrices L and U;

3. calls the sub-algorithm forw() for L and y and receives the

solutions vector z of the system Lz = y;

4. calls the sub-algorithm backw() for U and z and receives the

solutions vector x of the system Ux = z

5. prints the entries of x as the required solutions.

In each of the Programs P9_15, after reading the size n of the linear
system (at most 10), coefficients matrix A, and the vector y, first, the
lower and upper triangular matrices L and U and then, the z-solutions of
the system Lz = y, as well as the x-solutions of the system Ux = z are
calculated and printed. The x-solutions are indeed the solutions of the
linear system Ax = y

Exercises

In the following exercises: (1) Arrange the implementation table, if
needed, (2) Write the complete program, and (3) Provide appropriate
input notifications and output headings, if any. In addition, the user-
defined functions in the text of the current as well as the previous
chapters may be used unless otherwise is explicitly specified.

9.1. Write an algorithm to create the multiplication table of the numbers
from 1 to 10 and print it with an appropriate format.

9.2. Write an algorithm to read an integer square matrix A and save its
transpose on itself.

9.3. Write a sub-algorithm to receive two integer matrices and
determine whether or not they are equal by returning one of the
numbers 1, for the equal case, or 0, otherwise.

9.4. Write an algorithm to print a 5 × 5 integer matrix A in which the
entries on the main and secondary diagonals are 1 whereas the
remaining entries are considered 0.

9.5. Write an algorithm to read a 7 × 7 integer matrix and swap its main
diagonal with the secondary diagonal.

9.6. Write an algorithm to read an m × n real matrix A and swap the
distinct rows r and s of the matrix.

9.7. Repeat the previous exercise for columns instead of rows.

9.8. Write an algorithm to read an m × n real matrix A and apply the
following substitution. It is supposed that z ≠ 0 and r ≠ t.

r-th row ← r-th row + z × t-th row.

9.9. Repeat the previous exercise for columns instead of the rows.

9.10. Write an algorithm to read an m × n real matrix and multiply its r-
th row by the real number z.

9.11. Repeat the previous exercise for columns instead of the rows.

9.12. Write an algorithm to read the two positive integers m and n which
are at most 10 and then print all the base m × n integer matrices. A base

matrix Eij

 is a matrix where the (i, j)-entry is considered 1 while
the remaining entries are 0.

9.13. Write an algorithm to read the entries of a 6 × 6 real matrix and
convert it into an upper triangular matrix using the elementary row
operations.

9.14. Repeat the above exercise for the lower triangular case.

9.15. Write a function named searchFmat() to receive the m × n real
matrix A and a real number t. Then, return 1 if t is an entry of A;
otherwise, return 0. Now, write a main algorithm to read a 4 × 6 real
matrix as well as 10 real numbers one by one and each time determine
whether the number is a member of the matrix by printing one of the
messages Yes or No calling the function searchFmat().

9.16. Write an algorithm to read the student number and grade of 36
students and save them in a 2 × 36 real matrix. Then, read a number and
announce whether the corresponding student passed or failed by
printing one of the messages Passed or Failed if this number is among
the 36 student numbers. Otherwise, print the message Not in list.

9.17. Using the Cramer method, write a program to solve the system AX
= Y of 10 equations in 10 unknowns.

9.18. Repeat the previous exercise for the Gauss method.

Supplementary exercises

9.1*. Write a program for printing each of the patterns below. The logic
of the program should be in a way so that the pattern can be developed

to larger sizes by changing only a single number.

9.2*. Write an algorithm to read the 5 × 7 real matrix A. Then, calculate
and print the maximum entry in each row together with its position.
Finally, print the last position of the maximum entry if it is repeated.

9.3*. Write an algorithm to replace every entry of an integer matrix by
its reverse using the rev() function in Example 7.4.

9.4*. Write an algorithm to read an 8 × 8 real matrix A and sort its rows
alternately in ascending and descending orders. Then, print the resulted
matrix.

9.5*. A magic matrix is a square matrix in which the sum of the entries
on each row and each column is equal to the sum of the entries of the
main diagonal and secondary diagonal. Write a sub-algorithm named
Magic() to receive an n × n square integer matrix and determine

whether or not the matrix is a magic matrix by returning one of the
integers 1 or 0, respectively.

9.6*. Write a sub-algorithm named Aij() to receive an n × n square real
matrix A, a row number i, and a column number j. Then, return an (n −
1) × (n − 1) matrix (with the same name Ahat) which is obtained from A
by removing the row i and column j of A.

9.7*. Write a function to receive a real n × n matrix A and then calculate
and return its determinant using the recursive method.

9.8*. Given an n × n real matrix A, the adjacent matrix adj(A) is defined
as follows.

(adj (A))ij = (−1)i+j det(A
îj
), i = 1, 2, … , n, j = 1, 2, … , n,

where the matrix A
îj

 is obtained from A by removing row i and

column j of A. The adjacent matrix is used for calculating the inverse of
a matrix A using the following formula.

A−1 = 1
det(A) adj (A).

Write a sub-algorithm to receive a real square matrix A and then

calculate and return A−1

using this method.

9.9*. An m × n matrix A is called row-reduced if:
a) The first nonzero entry in each nonzero row of A is equal to 1;
b) Each column of A which contains the leading non-zero entry of some

row has its other entries 0.

Write an algorithm to read an m × n real matrix A. Then, convert A into
a row-reduced matrix and print it using the elementary row operations.

9.10*. An m × n matrix A is called a row-reduced echelon matrix if:
a) A is row-reduced;
b) Every row of A which has all its entries 0 occurs below every row

which has a nonzero entry;
c) If rows 1, 2, …, r are the nonzero rows of ki, i = 1, 2, … , r,

A ki < ki < … < ki.

and if the leading nonzero entry of row i
occurs in column then In other words, no zero row occurs above any
nonzero row.

Write an algorithm to read a real m × n matrix A. Then, convert A into a
row-reduced echelon matrix using the elementary row operations and
then print it. It is assumed that there is no zero row in the resulted row-
reduced echelon matrix.

Hints for the exercises

To solve the exercises, you fail to obtain a good result and you are
unable to develop your ability in algorithm writing and thus
programming if you first refer to their solutions without attacking
these exercises. Therefore, you should draw the flowcharts of the
exercises by yourself and test them by arranging their
implementation table. Then, you should write their program and be
assured of their correctness by running it in the computer. It is
worth mentioning that the algorithms and the programs should
work for various inputs rather than just certain ones. Next, you can
take a look at the hints of the exercises in this part. However, your
technique may differ from the technique used in the present part
which is natural since the techniques suggested here are not
unique!

You can follow its hints in this section and solve it accordingly if
you are really unable to find the solution for a certain exercise.
These hints are written such that they offer the path for solving the
exercise and the reader should complete the process of solving the
exercise by themselves. There is a hint for nearly all the exercises
except for the simple problems and repeated ideas. The codes of
mathematical library functions are often in C++. Therefore, in Java
you should add the prefix ‘Math.’ to them.

4.2. A number is a multiple of n if the remainder of the division of
that number by n is zero.

4.3. Comparing the real value of √n

with the integer part of

√n

is one way to find whether or not the number n is square.

4.4. In a triangle, any pair of edges satisfy the condition: the sum of
two edges is greater than the third edge. Therefore, you should use
an if template with the condition containing three parts separated
by the && operator.

4.5. In a right-angle triangle, the pair of edges adjacent to the right
angle satisfy the Pythagorean relation. Thus, you should use an if
template with the condition containing three parts separated by the
|| operator. Note that the establishment of the Pythagorean
relation is sufficient to conclude that the shape is a right-angle
triangle.

4.6. Use an if template with a single condition checking the equality
of the three numbers.

4.7. Use an if template with the following condition.

4.8. The areas of a circle with the radius r as well as the inscribed
and circumscribed squares are πr2, r2, and r2/2,

respectively.

4.9. A number is even if the remainder of its division by 2 is zero.

4.10. The required number of digits for the arbitrary integer n is
log10(abs(n))+1.

4.11. Use an if-else-if template.

4.12. Consider the divisibility of n−1980 by 4.

4.13. In an if-else-if template, print 31 if 1 ≤ n ≤ 6; otherwise, print
30 if 7 ≤ n ≤ 11. Furthermore, print 29 if n = 12; otherwise, print the
requested message. Moreover, you can use the switch template.

4.14. Consider the first six months separately from the second six
months in a two-way branching. The required formula can be
easily achieved by a manual calculation of two or three cases: in
the first six months the required number is (m − 1) × 31 + d while in
the second six months this number is equal to (m − 7) × 30 + d +
186.

4.15. Use an if-else-if template and locate the process in Exercise 4.1
4 in the else-part.

4.16. The result of n + 3 modulo 7 is the required day.

4.17. The corresponding number for Saturday is 4. Therefore, the
result of n + f − 1 modulo 7 is the required day.

4.18. Consider the quotient of n − 10 divided by 30.

There is no code for the following three exercises in Java language
due to the existence of the goto statement if we fail to use the loops.
However, the codes can be easily written if either while or do-while
loop is used (refer to Chapter 7) in which case, there is no need for
the goto statement even in C++. The following hints regarding the
above-mentioned exercises are valid in the C++ language.

4.19. Use the logic of Exercise 4.15. Label the input template as ‘100’
and add an if template just after the if-else-if template such that the
implementation control goes to the label 100 if the condition m=0
&& n=0 is true. Note that the if statement is as follows in the C++
codes:

4.20. Use the switch template. In the division case, print the
message if the dividend is zero (you can use the if-else template for
this purpose). For repetition, see the hint of the last part of Exercise
4.19.

4.21. Use a switch or an if-then-if template to provide the multi-way
branching process. Label the reading c construction as ‘100’. Then,
print Quit? and label this construction as ‘200’. Read a character
type variable, say p. Next, in an if-else-if template,
− if one of the characters n or N is entered, terminate the

algorithm using the exit(0) construction;
− otherwise, transfer the implementation control to the label 100

if one of the characters y or Y is entered;
− otherwise, transfer the control to the label 200.

5.3. Refer to the hint of Exercise 4.3.

5.4. Consider the remainder of the division n by 2.

5.7. Refer to the hint of Exercise 4.4.

5.8. Refer to the hint of Exercise 4.5.

5.9. Use the if-else-if template with three conditions. Additionally,
the nested if-else templates can be used.

5.10. Refer to the hint of Exercise 4.14.

5.11. Refer to the hint of Exercises 4.16 and 4.17.

5.12. Refer to the hint of Exercise 4.19 for the function (consider
also the paragraph before this exercise). Use an if-else-if template
for the main algorithm. Perform the repetition using the goto
instruction. It is easier to use the switch template for printing the
names of the week.

5.13. The recursive equation for defining the n-th term of the
sequence is as follows.

f (n) = {

5.14. This is similar to the Fibonacci sequence (refer to the previous
exercise) except that here we are dealing with three cases.

5.15. The recursive function is as follows:

P (n,x) =

5.16. A recursive function for power is defined as below:

1, if n = 1 or 2,

f (n − 1) + f (n − 2), otherwise.

1, if n = 0,

x, if n = 1,
2n−1
n P (n − 1, x) − n−1

n P (n − 2,x), otherwise.

Power (x,n) =

In the main algorithm, print the message using an if-else template,
if the undefined case happens; otherwise, call the method.

5.17. Use the same way as Exercise 5.15.

6.4. You need to calculate the series ∑ n
i=12i − 1.

6.5. You need to calculate the series ∑ n
i=1 m.

6.6. Take the variable sum with the initial value of 0. In the range of
a for template with the specification i=1,n, replace sum by its
addition to i if i is a multiple of 4. An integer i is a multiplication of
4 if the remainder of division i / 4 is zero. Another way is to

calculate the series ∑ n/4
i=14i.

6.7. Similar to the first way in the hint of Exercise 6.6.

6.8. Take the variables n and g for the ID number and grade. In
addition, take the counter variable c. Read n and g in the range of a

1, if n = 0,

xPower (x,n − 1), if n > 0,
1
x
Power (x,n + 1), otherwise.

for template. Then, increase c by 1 along with printing n and g if g <
12. Finally, Print c after exiting the loop.

6.9. You need to calculate the series ∑ 60
t=1
√h2 + (vt)2.

6.10. In the range of a for template with the specification i=1,300,
first read n, h, and s, and then print 200s + 1.5(h − 200)s if h > 200;
otherwise, print hs as salary.

6.11. Take the variables nP, nZ, and nN for the number of positive,
zero, and negative numbers, respectively. Further, take x for the
read numbers as well as sumP and sumN for the sum of positive
and negative numbers, respectively. First read x in the range of a
for template with the specification i=1,50. Then, using an if-else-is
template, print it with an appropriate heading if x > 0 and increase
sumP and nP by x and 1, respectively; Otherwise, if x < 0, print it
with an appropriate heading, increase sumN and nN by x and 1,
respectively; otherwise, increase nZ by 1. Eventually, print the
required quantities with appropriate headings after exiting the
loop.

6.12. Take the variables x, max, and min for the read number,
maximum and minimum, respectively. Read the first number and
assign it for both max and min. Then, in the range of a for template
with the specification i=2,n, first read x. Next, substitute x for max if
x > max and substitute x for min if x < min. Note that these two if
templates are successive, not nested. After exiting the loop, max
and min are the maximum and the minimum of all the numbers.

6.13. In the range of a for template with the specification i=2,n-1,
print i if it is a prime number.

6.14. In the range of a for template with the specification i=5,999,4,
print i if it is prime. Or, in the range of a for template with the
specification i=1,249, print 4i + 1 if it is prime.

6.15. Use the logic of Example 6.4.

For Exercises 6.16 to 6.24 we hint for the case where we do not use
the necessary user-defined functions. Using these functions makes
the algorithms easier.

6.16. Use the idea of Example 6.13.

6.17. The main body of Flowchart 6.2(c) calculates the factorial of n.

However, the main body of Flowchart 6.8(a) computes xn

 if
the absolute value is discarded. You should compose these two
flowcharts. First, apply the former flowchart replacing the loop
specification by k=1,i and then apply the latter flowchart replacing
the loop specification and x by k=1,f and i, respectively. What p

carries after leaving the latter flowchart is ii!.

Consider this as
the common term of the required series and complete it using a for
loop with the specification i=1,5.

6.18. Take the variables sum and sign for the repetitive sum and
providing the signs, respectively. Assign 0 and –1 for sum and sign,
respectively. In the range of a for template with the specification
t=1,n,2, first place the processes for calculating the common term ii!

 in the hint of Exercise 6.17. Then, change the sign by

substituting –sign for sign. Finally, substitute the addition of sum
and p for sum.

6.19. Fix the former flowchart in the hint of Exercise 6.17 and
change the latter one by interchanging the roles of i and f.

6.20. See the hints of Exercises 6.18 and 6.19.

6.21. As mentioned in the hint of Exercise 6.17, the main body of Fl
owchart 6.8(a) calculates xn

discarding the absolute value of n.
In this flowchart, replace the loop specification by k=1,i. Now
change the sign by substituting –sign for sign and take pi2sign

as the common term of the given series using a for
template with the specification i=1,7. Bear in mind to assign –1 to
sign as the initial value before the outer loop.

6.22. Create the common term of the double series as follows. Take
the variable p1 with the initial value of 0. Substitute the
multiplication of p1 by i for p1 in the range of a for template with
the specification k=1,n. Take another variable p2 with the initial
value of 0. Then, substitute the multiplication of p2 by i for p2 in the
range of another for template with the same specification. The
common term is p1 + p2.

6.23. Calculate two series ∑ 15
i=1i

n

 and ∑ 15
i=1i

in a single for template with the specification i=1,15 with
two repetitive sums, namely, sum1 and sum2 for which the initial
value of 0 are assigned before the loop. The common terms of sum1
and sum2 are the p1 in the hint of Exercise 6.22 and i, respectively.

After exiting the loop, calculate (sum2)n

using Flo
wchart 6.8(a) discarding the absolute value of n. It suffices to
replace x by sum2.

6.24. We focus on ij
k

since the other terms are known. Write
pow(i,pow(j,k)) to use the library function pow(). Then, take the
variable p with the initial value of 1 in order to be a common term
of a series. Substitute the multiplication of p by j for p in the range
of a for template with the specification t=1,k. Here, p carries jk

with itself. Now, take the variable q with the initial value of 1
and substitute the multiplication of q by i for q in the range of a for
template with the specification t=1,p. At this point q carries ij

k

.

6.25. The same tasks as the trapezoid method are performed with
only one replacement in the range of the for loop in the series of
function Trap() as follows. Substitute the addition of sum and

4f (a + ih)

for sum if i is odd (the remainder of
i / 2 is 1); otherwise, substitute the addition of sum and 2f (a + ih)

 for sum. Another way is to substitute the
addition of sum and 4f (a + 2ih) + 2f (a + (2i + 1)h)

 for sum
in the range of a for template with the specification i=1,n/2-1.

6.26. Substitute x + 1/x

 for x in the range of a for
template with the specification i=1,n.

6.27. Take the series variable sum with the initial value of 1 / x.

Substitute the inverse of i + 1/x

for x in the range of
a for template with the specification i=1,n-1and then take it as the
common term of the series.

6.28. First work with positive signs. As shown, the denominator of

the k-th term is the series s =∑ k
i=1ix

i.

Now, 1 / s is the common term of the required 10-term series. Apply
the positive and negative signs using a sign maker variable.

6.29. Examine the divisibility of n by i in the range of a for template
with the specification i=1,n/2.

6.30. For the function, take the variable sum with the initial value
of 0. In each repetition of the for loop in the algorithm of the
previous exercise, instead of printing the divisor, add it to sum and
substitute the result for sum. After exiting the loop, return 1 if sum
= n; otherwise return 0.

6.1*. We give hints for the odd numbers; for even numbers, it
suffices to reverse the specification of the outer loop.
1. In the range of two nested for loops with the specification i=1,n

and j=1,i, respectively, print “* ␣ ”. After exiting the inner loop,
break the line. This is performed by cout<<endl and
System.out.println() statements in C++ and Java codes,
respectively.

3. In item 1, before the inner loop, provide the necessary space
using the following statements:

Do the following tasks in the rang of a for loop with the
specification i=1,n in Jave due to the different nature of the
formats in C++ and Java:
I. Print a whitespace character using the statement System.

out.print(" ") in the range of a for loops with the
specification j=1,2*(n-i);

II. Print an asterisk followed by a whitespace character with
the System.out.print("* ") statement in the range of a for
loops with the specification k=1,i;

III. Break the line using the System. out.println() statement.
5. In items 3 as well as 3I, remove the coefficients 2.

6.2*. Use Example 6.7.

6.3*. Use the hint of part 5 in Exercise 6.1*.

6.4*. First, determine the number of digits of n using the function
digits() of Exercise 5.1 and then assign it to k. Now, assign the

remainder of the quotient of n/10k−1−i

 by 10i

 to an integer variable, say t, in the range of a for template
with the specification i=k-1,0,-1 and then print it.
6.5*. In the range of the for template mentioned in the hint of Exerc
ise 6.4*, print t if i = 3 or 2 and t is even; or, i = 1 or 0 and t is odd.
Count the number of such integers in this path.

6.6*. In the range of a for template with the specification i=2,[n/2],
assign i to an integer variable, say k, if it is prime as well as a
divisor of n. Here, [] stands for the least integer closer to the
number. Then, use the function prim() in Example 6.10 in order to
distinguish the primality. The integer i is a divisor of n if the

remainder of n by i is zero. After exiting the loop, k is the largest
prime divisor of n.

6.7*. Use the hints of Exercises 6.29 and 6.30.

6.8*. You have to calculate two multiplicative series

P1 =
r

∏
i=1

pi, P2 =
r

∏
i=1

(1 − pi)

in the same for loop with the specification i=1,r inside which, in the
range of an inner for loop with the specification j=1,√n, apply j as
the common term of the first series and 1 – j as the common term of
the second series if j is a prime divisor of n. To distinguish whether
or not j is the prime divisor, refer to the hint of Exercise 6.6*.

6.9*. Use the hint of Exercise 6.13.

7.1. Take the counting variable i, summing variable sum with the
initial value of 0, and the sign making variable sign with the initial
value of –1. In the range of a while template, apply the following
instructions while i < 19 (the denominator of the tenth term):

1. Change the mark of sign;

2. Add sign × 4 / i to sum and substitute the result for sum;

3. Increase i by 2.

Print sum after exiting the loop. You can solve this exercise using
the for templates. It suffices to put the first two above-mentioned

instructions in the range of a for template with the specification
i=1,19,2.

7.2. Use the tool of tolerance quoted before Example 7.10. This time
use a do-while template. Do the three instructions in the hint of Exe
rcise 7.1 while 4 / i < 0.00005. Note the absolute value of two
consecutive approximations is 4 / i. If you have solved Exercise 7.1
using a for template, select a large number instead of the initial
value of 19 of the loop. At the end of the range, terminate the
algorithm by printing sum if 4 / i < 0.00005.

7.3. Use the hint of Exercise 7.1. Here, the increment of i is by 1 and
the common term in each repetition is

1
i
(x−1

x
)
i
.

Use the library function pow() for powering. Note that the tenth
term is the above term for i = 10.

7.4. Use the hint of Exercise 7.2.

7.5. Take the counter variable q with the initial value of 0 for the
quotient. In a while loop, perform the following instructions in
each repetition while m ≥ n:

1. Subtract n from m and substitute the result for m.

2. Increase q by one unit.

After exiting the loop, q and m are the quotient and remainder,
respectively.

7.6. To generate the terms of this sequence, we observe that after
the third term, each term is equal to the double of the previous
term subtracted by the term before the previous one, plus 1. Now
use Example 7.3 replacing the substitution of a + b for a, by 2a – b
for a. Furthermore, you should change the initial values of a and b.
From the viewpoint of recursive functions,

fn = 2fn−1 − fn−2 + 1.

7.7. Considering the hint of Exercise 7.6, use the logic of Flowchart
7.3(e).

7.8. In Flowchart 7.3(c) replace 50 by 150 and print a if a > 100.

7.9. In Flowchart 7.3(c) replace 50 by 100. Then, taking two
variables c and sum with initial values of 0, increase sum by a and c
by 1 instead of printing a.

7.10. In Flowchart 7.3(c), first take the variable c with initial value
of 0. Then, increase c by 1 after printing a. Finally, replace the loop
condition by c < 20.

7.11. Take the variables r and sum, with the initial values of 0, for
the remainder and sum of digits which are returned to the call unit.
Then, perform the following instructions in the range of a do-while
loop:

1. Assign the remainder of the division n by 10 to r;

2. Increase sum by r;

3. Substitute n /10 for n.

Repeat the above instructions while n > 0.

7.12. Use the function SumDig() of Exercise 7.11.

7.13. Use the function SumDig() of Exercise 7.11.

7.14. Take the variable u for the number which is read each time.
After reading n, read u inside a for loop with the specification i=1,n
and print the reverse of u using the function rev() of Example 6.3.

7.16. In the range of a for loop with the specification i=1001,9999,
print and count the symmetric integers using the function rev() of E
xample 6.3.

7.17. Take the variable d for the decimal part of t. Then, d is equal
to t subtracted by the integer part of t. Now, in the range of a do-
while loop, substitute the multiplication of d by 10 and repeat this
while d ≥ 1. After exiting the loop, first store d in an integer
variable, say k, and then return it.

7.18. Use the sub-algorithm DecPart() in Exercise 7.17 to receive the
decimal part of t as an integer by removing the decimal point and
name it as m in the main algorithm. Moreover, name the integer
part of t as n. Calculate the number of digits of m and n and name
them as nD and mD, respectively. Now, print first a minus sign if t is
negative (use the built-in System.out.print() method to do this in
Java). Next, print consecutively the reverse of m in mD columns, the
dot character, and the reverse of n in nD columns using the
function rev() of Example 7.4. Use appropriate formats in C++ and
Java to print the above-mentioned items.

7.19. Take the counter integer c. Substitute the multiplication of t by
10 for t and increase c by 1 in the range of a do-while template.
Repeat this range while the remainder of the integer part of t by 10
is 0, that is, while the decimal point moves to the rightmost
position. Upon exiting the loop, assign t in an integer variable, say

k. Take the number of digits of k subtract by c as u. Now the real
value of the division of k by 10u

is the required number.

7.20. The function gcd() in Example 7.7 is used in this algorithm.
After reading n, first read an integer and assign it to an integer
variable, say g. Now, in the range of a for loop with the specification
i=2,n, read an integer, say s, each time and substitute gcd(g, s) for g.
The value of g is the required number after exiting the loop.

7.21. Use the hint of Exercise 7.20.

7.22. In the range of two nested for loops with the specification
i=1,n and j=i+1,n, respectively, count the pairs (i, j) which are
coprime using the function gcd()in Example 7.7. The requested

probability follows from the division of this count by n(n

+
1) / 2.

7.23. Take the integer variables c (for counting) and k with the
initial values of 0 and of 1, respectively. In the range of a do-while
loop, first, increase k by 1 to generate an integer. Then, if k is prime,
print it and increase the counter c by 1. Repeat these instructions
while c < 20. Finally, use the function prime() to check the primality.

7.24. In the hint of Exercise 7.23, take the printing of k out of the
loop.

7.25. Appealing to the function perfect() in Exercise 6.26, use the
hint of Exercise 7.23.

7.26. Using the function perfect() in Exercise 6.26, use the hint of Ex
ercise 7.24.

7.27. In the range of a do-while loop, create the factorial of the
consecutive numbers k and compare k! with n, while k < n.

7.28. In the range of a for loop with the specification i=1,n-1, print i
and add 1 to the counter of this number if gcd(i, n) = 1.

7.29. Combine Flowcharts 7.7(b) and 7.8(b), or, Flowcharts 7.7(b)
and 7.8(b).

7.30. Use the hint of Exercise 7.2. Additionally, you can use the
recursive method. The return point is the estimated root of x0 if the
recursive methods is employed.

7.30. There are easy flowcharts and codes. It suffices to use the
related hints as all or part of the range.

7.1*. In the divisible case, examine i for being the answer (i is the
answer if ai = c) in the range of a for template with the specification
i=0,m-1.

7.2*. If gcd(m, n) = 1, examine i and j for being the answers of the
first and second congruent equations in the range of two nested for
templates with the specification i=0,m-1 and j=0,n-1, respectively.

7.3*. The trivial way is to calculate the remainder of ak

by m
which is time consuming for the large values of k and may cause
the memory overlap error. The other way is to take a variable p.
Then, in the range of a for template with the specification i=0,m-1,
substitute the remainder of pa by m for p (compare the resulted
flowchart with Flowchart 6.8(a)). In this way, we do not have any
memory overlap error, however, it is still time-consuming.

7.4*. In the range of a for loop with the specification k=1,n, if ak

 modulo n is equal to 1, terminate the sub-algorithm by
returning k using the function akmodm() of Exercise 7.3*. In
addition, you can write this sub-algorithm using a do-while
template with the same range.

7.5*. In this sub-algorithm, use the idea that the reverse of a
number is printed starting from the rightmost digit backward. The
contents of the sub-algorithm for the receiving number n is as
follows. Using an if template print the remainder of n by 10 if it is
not zero (use the System. out.print() method in Java). Then, call the
function for the quotient of n by 10; otherwise return to the call
unit.

7.6*. By assigning the initial values of 0 and 1 to the variables sum
and p, respectively, apply the following instructions in the range of
a do-while loop:
1. Assign the remainder of the division n by 10 to r;
2. Add the r times p to sum and substitute the result for sum;
3. Substitute 2p for p;
4. Substitute the quotient of n by 10 for n.

Repeat this range while n is equal to zero (no number is left). Then,
return sum after exiting the loop.

7.7*. First, calculate the number of the digits of n using Exercise 4.1
0 and then assign it to the variable d. Further, assign the quotient of
d / 3 to the variable q. Now, print the quotients of n by 1000q

 in the range of a for template with the specification
i=q,0,-1 and then, substitute the remainder of n by 1000q

for n. To print the comma separator use an if template so that the
item "," is printed if q ≠ 0. The System.out.print() statement should
be used in the Java codes.

7.8*. In the hint of Exercise 7.7*, instead of printing each group,
convert that group to the base-10 numeral system using the
function dec() in Exercise 7.6* and print it in its position. The
System. out.print() statement should be used in the Java codes.

7.9*. First, calculate the number of digits of n and assign it to the

variable d. Further, assign the quotients of n by 10d−1

to
the variable p in the range of a for template with the specification
i=d,1,-1 and then replace n by the remainder of n by 10d−1.

 Furthermore, convert p to the base-2 numeral system
using the function bin1() in Example 7.6 and assign the result to q.
Now, it is time to print. In Java, use the format "%03d" followed by q
as the print arguments in order to prevent loosing zeroes when q
has less than three digits. However, in C++, first, calculate the
number of digits of q and assign it to the variable e. Then, using an
if-else-if template or a switch template,
− print 00 followed by q if e =1;
− print 0 followed by q if e =2;
− otherwise, print q itself

8.1. Use the function Fib() in Example 7.3.

8.2. A trivial way is to use the hint of Exercise 8.1. Further, another
way is by a do-while template using the idea of the function Fibo()
in Example 7.3. The required sub-algorithm FibArray() includes two
arguments including the array F and the number n of its entries.
First, assign the initial value of 1 for the variables a and b and 0 for

the counter variable i. Then, apply the following instructions in the
range of a do-while loop:

1. Assign a to Fi;
2. Increase i by 1;
3. Substitute a + b for a;
4. Swap a and b.

Repeat these instructions while i < 20.

8.3. In the range of a for template with the specification i=1,n,
terminate the sub-algorithm by returning i as soon as t matches
with an entry. Exiting the loop implies that there is no matching
and thus 0 should be returned.

8.4. Take the counting variable c with the initial value of 0. In the

range of a for template with the specification i=1,40, print Ni

and Gi

and increase c by 1 if g = Gi.

After exiting
the loop, print the message if c = 0; otherwise print c.

8.5. Follow Flowchart 8.8(b) until the exit from the loop. Now, use
Algorithms 8.11(b) or 8.11(c) for (b, n) instead of (a, 40). For the
second part, you may call the sub-algorithm Sort() in Exercise 8.12

8.6. Take the index maker variable m with the initial value of 0. In
the range of a for template with the specification i=1,20, if ai

 is
not in the array b, and if ai

is not in the m-entry array c, make a
new index m (increase m by 1) and assign ai

for cm

using
the search() function in Example 8.7.

In the above discussion, you can use two successive if templates
or merge them using the && operator. It is worth mentioning that

in the second search (searching ai

 in cm),

 the
inconsistency in the loop of the search() function causes the
substitution of a1

for c1.

8.7. Take an index maker variable k. First put A in C: Substitute

Ai forCi

 in the range of a for template with the
specification i=1,m. Now, in the range of a for template with the

specification i=1,n, if Bi

is not in the array A, make a new index

(increase k by 1) and put Bi inCk

using the search()
function in Example 8.7. After exiting the loop, print the (m + k)-
entry array C. Declare A and B with lengths 101 and C with length
201.

8.8. Note that in each of the sorting Flowcharts 7.11(b) or 7.11(c) in
ascending order, changing the inequality ‘>’ to ‘<’ turns it to
descending order. Therefore, you can sort C simultaneously in both
orders. It suffices to use the same nested loops and the successive if
templates.

8.9. Take the counter variable c with the initial value of 0. In the range
of a for template with the specification i=1,n, increase c by 1 if x = ai.

8.10. In the range of a for templates with the specification i=1,20, if the
number of repetitions of ai

in the array a is greater than 1, print

the required three items ai, i,

and the number of repetitions
of ai

 in a and then terminate the algorithm using the function
repeat() in Exercise 8.9. Put the message printing after exiting the
loop.

8.11. Using the repeat() function in Exercise 8.9, create another array

named t such that ti,

for 1 ≤ i ≤ n, is the number of repetitions of
ui

in the array u. Then, calculate the maximum entry of the array
t and assign it in a variable, say e, using the function max() in Example
8.5. Finally in the range of a for template with the specification

j=n,1,-1, if tj = e,

print uj.

8.12. The array is returned to the call unit with the same name as it
enters the sub-algorithm. In Flowchart 8.11(b), remove the middle
part including the basic process of sorting and place the instruction of
calling the sub-algorithm Sort() instead. Now put the removed part as
the basic process of the sub-algorithm Sort() changing 39 to
n − 1.

8.13. First, it is worth mentioning that in each of the sorting
Flowcharts 7.11(b) or 7.11(c) in ascending order, changing the
inequality ‘>’ to ‘<’ turns it to descending order. Take one of the above-
mentioned flowcharts and replace 39 by 19 in its main part. Then,
after the if template in the range of the inner loop use another if

template: if a20+i < a21+i,

 then swap them.
After exiting the nested loops, print the first half of the array using the
sub-algorithm writeIvec() and the second half directly from index 21
onwards.

8.14. First, combine the arrays a and b in the array c. To do this, in the
range of a for template with the specification i=1,20, substitute ai

and bi

 for ci

 and c20+i,

 respectively. Now use
Algorithm 8.11(b) or Sub-algorithm Sort() in Exercise 8.12 to sort c.

8.15. In Flowchart 8.12(b), remove the middle part including the basic
process of ranking and place the instruction of calling the sub-
algorithm Rank() instead. Now, put the removed part as the basic
process of the sub-algorithm Rank() changing 39 and 41 to n – 1 and n
+ 1, respectively.

Print the first, the second, and the third lists from
N1 to N40, G40 to + G1, and R1

 to R40

 with
appropriate headings in each case, respectively.

8.16. Use the logic of Algorithm 7.13(c) with the exception of replacing
3 by m + 1.

8.17 Substitute ai for ai+7

in the range of a for loop
with the specification i=40,6,-1. After exiting the loop, read one

number and assign it to ai+5

 in the range of another for
template with the specification i=1,7. Declare the array a with the
length of 48.

8.18. Apply the following instructions in the range of a for template
with the specification k=1,q:
1. Read t and m;
2. In the range of a for template with the specification i=39+k,m+1,-1,

substitute ai for ai+1;

3. Substitute t for am+1.

8.19. First, read the 20-entry ascending array a. Now, use the main
body of Flowchart 8.15 and change the specification of the outer loop
to i=21,20+n. Finally, print the (20 + n)-entry real array a using the sub-
algorithm writeFvec() instead of printing the 20-entry integer array a
using the sub-algorithm writeIvec().

8.20. Pay attention that in this exercise, the entries of the array should
be read one by one in the sub-algorithm itself.

8.21. Assign the initial value of –1 to the index maker variable k. In the
sub-algorithm of Figure 7.6(b) remove the instructions concerned with
the variables new and p and change the range of the do-while
template to the following:

1. Make a new index (increase k by 1);

2. Assign the remainder of n by 2 to ei;

3. Substitute the quotient of n by 2 for n.

Now reverse the position of entries of the k-entry array e using the
sub-algorithm revive() in Example 8.3.

8.22. Use the hint of Exercise 8.21 with replacing 2 by 16. The final
array b should be converted to the string data, however, we perform
this, along with the printing processes. To do this, in the main
algorithm, first, receive the array b from the sub-algorithm. Then, use
a switch (or if-else-if) template in the range of a for template with the
specification i=1,k such that in the cases
bi = 10, 11, 12, 13, 14, 15,

 print the characters ‘A’,

‘B’, ‘C’, ‘D’, ‘E’, ‘F’, respectively, and print bi

itself in the default case.

8.23. Assign a1

to a variable, say g. Then, using the function gcd()

in Example 7.7, each time substitute gcd (g, ai)

for g
in the range of a for template with the specification i=2,20. The value
of g is the required number after exiting the loop.

8.1*. Take the integer variables k and m. Then, perform the following
instructions in the range of a do-while template:

1. Print the pattern mentioned in the exercise;
2. Read k;
3. If k is 1, sort the array N in ascending order such that the entries of

the arrays G and R with the same indices are swapped in the
swapping step in either Flowcharts 8.11(b) or 8.11(c);

4. Otherwise, do the same tasks as in item 3 for the arrays G, N, and
R, respectively, if k is 2. Note that the sorting is in descending order
here;

5. Otherwise, do the same works as in item 3 for the arrays R, N, and
G, respectively, if k is 3;

6. Otherwise, read m and in the range of a for template with the
specification i=1,40, if k is 4, print Ni, Gi, and Ri

 if m = Ni and then exit the
loop using the break statement. Finally, print the message Not in
list after exiting the loop;

7. Otherwise, print the message Wrong number.

Repeat the above instructions while k ≠ 0. You may use either an if-
else-if template or a switch template for the instructions 3 to 7.

8.2*. Use the hint of Exercise 8.1*. Use the ideas in Example 8,1 for
items 1 and 2. For item 3, first find the maximum grade using the
function max() in Example 8.5. Item 4 uses the same way as above,
using the function min() in Exercise 8.5.1 in the text.

For item 5, first calculate the average and name it as M. Second,
take a counter variable, say c, with the initial value of 0. Third, in the
range of a for template with the specification i=1,40, increase c by 1 if

M = Gi.

Finally, print c after exiting the loop. Items 6
and 7 have the same manner.

For item 8, first, create the array t as mentioned in the hint of Exerc
ise 8.11. Then, find the maximum of the array t and name it as x using
the function max() in Example 8.5. Now, similar to item 5, count the

number of the entries Ni

with x = Ni.

8.3*. Read the thirty numbers as a real array, say a. Perform the
following instructions in the range of a for template with the
specification i=1,29:
1. Continue the loop if ai = ai+1;

2. Otherwise, if ai < ai+1,

 print the message Not
sorted in the range of a for template with the specification j=i+1,29

and then terminate the algorithm if aj >

 aj+1.

Next, print the message Increasing array after exiting this loop.

3. Otherwise, print the message Not sorted in the range of a for
template with the specification j=i+1,29 and then terminate the

algorithm if aj < aj+1.

Finally, print the message
Decreasing array after exiting this loop.

8.4*. Take the variable n for the number of entries of the array a with
the initial value of 40 and the variable i for counting with the initial
value 0. Perform the following instructions in the range of a do-while
template:
1. Increase i by 1;
2. Do the following if x = ai :

2.1.
Substitute aj+1 for aj in the range of a for
template with the specification j=i,n-1;

2.2. Decrease n by 1;
2.3. Decrease i by 1;

Repeat the above instructions while i < n. Finally, print the n-entry
deformed array a after exiting the do-while loop.

8.5*. Take the variable n for the number of entries of the array a with
the initial value of 40 and the variables k and i for counting with the
initial value of 0 for k. Use two nested do-while loops as follows.
Perform the following in the range of the outer do-while loop:
1. Increase k by 1;
2. Assign k to i;
3. Perform the following instructions in the range of the inner do-

while loop:
3.1. Increase i by 1;
3.2. Do the following if ak = ai :

3.2.1. Substitute aj+1 for aj in the range of
a for template with the specification j=i,n-1;

3.2.2. Decrease n by 1;
3.2.3. Decrease i by 1;

Repeat the inner do-while loop (from 3.1) while i < n.
Repeat the outer do-while loop (from 1) while k < n.
Print the n-entry deformed array a after exiting the outer do-while
loop.

8.6*. Create two integer arrays T and N for the repeated entries and
the number of their repetitions, respectively. Take an index maker
variable k. In the range of a for template with the specification i=1,40,
calculate the repetition of ai

 and assign it to a variable, say r,
using the function repeat() in Exercise 8.9. Then, make a new index

(increase k by 1) and store ai in Tk

if r > 1 and ai

has
not already stored in the k-entry array T. To check whether or not ai
has already been stored in T, use the function search() in Example 8.7

(see Example 8.9). Now, print Ti and Ni

in the range
of a for template with the specification i=1,k.

8.7*. Take an index maker variable k. Modify Flowchart 7.9 as follows.
Remove the single print before the for loop. After exiting the while
loop, make a new index (increase k by 1) if c > 0 and then store i and c

in pk and rk,

 respectively. This is the k-entry
arrays p and r which are returned.

8.8*. Using the sub-algorithm prim_dec() in Exercise 8.7*, store the
prime factors and their multiplicities of the primary decomposition of
m in the km-entry arrays pm and rm, respectively, while storing those
of n in the kn-entry arrays pn and rn, respectively. Take the variables

gcd and lcm with the initial values of 1. Furthermore, take the variable
Rm and Rn. Now, do the following in the range of a for template with
the specification i=2,max(m,n):
1. Assign 0 to Rm;
2. In the range of a for template with the specification j=1,km, if

i = pmj, assign rmj to Rm;
3. After exiting the recent for loop assign 0 to Rn;
4. In the range of a for template with the specification j=1,kn, assign

rnj to Rn if i = pnj;
5. After exiting the recent for loop, multiply gcd by i to the power of

minimum of Rm and Rn and substitute the result for gcd;
6. Multiply lcm by i to the power of maximum of Rm and Rn and

substitute the result for lcm.

Finally, print gcd and lcm after exiting the outer for loop.

8.9*. Using an if-else template, return 1 if n = 1; otherwise, do the
following:
1. Call the sub-algorithm prim_dec() of Exercise 8.7* for n, and

receive the k-entry arrays p and r. Note that all entries of r are
positive;

2. In the range of a for template with the specification i=1,k, the

second case for the function happens if ri > 1, thus,
terminate the sub-algorithm by returning 0;

3. The natural exit of the for loop occurs when all the entries of r are
1. In this circumstance, return –1 to the power of k, or, return 1
instead if k is even (the remainder of k by 2 is zero) using an if-else
template; otherwise, return -1.

8.10*. Take the two arrays f and g and declare them with a large
lengths, say 100 (or larger if needed). Assign zero for the above arrays

as follows. Assign 0 to both fi

 and gi

 in the range of a for
template with the specification i=1,100. Now, read m and n and then

read the coefficients of f and g: read fi

 in the range of a for
template with the specification i=0,m and read gi

 in the range of
another for template with the specification i=0,n.

Denote the function f + g by h and let k be its degree which is the
maximum of m and n. Define the coefficients of h as follows. Assign

fi + gi to hi

in the range of a for template with
the specification i=0,k. Determine the first nonzero coefficient of h as
follows. In the range of a for template with the specification i=0,k,

assign i to a variable, say u if hi ≠ 0.

Now it is time to
print the following:
1. Print the string f(x)+g(x)=;
2. Print 0 if u = k (h = 0);

3. Print h0 and increase u by 1 if u=0 (the constant coefficient). Be
careful not to break the line after printing!

4. Print the following pattern in the range of a for template with the

specification i=u,k if hi ≠ 0 :

8.11*. Use the hint of Exercise 8.10* with the following changes.
1. Assign m + n (not the maximum of them) to the degree k of h.
2. To define the coefficients of h, in the range of a for template with

the specification i=0,k, first calculate the series ∑
i

s=0
fsgi−s

 as sum (Section 6.2). Then, assign sum for hi.

3. Print the string f(x)*g(x)= in the printing item 1.

8.12*. Receive the k-entry array e calling the sub-algorithm Bin() in Ex
ercise 8.21 for n. That is to say that,

n =
k

∑
i=0

ei2
i.

Take 1 as the initial value of b. Take another variable p with the initial
value of 1. In the range of a for template with the specification i=0,k,
do the following:
1. Substitute apei for a;
2. Substitute the remainder of b × a by m for b;
3. Substitute 2p to p.

After exiting the loop, b is the required number to print.

8.13*. First, calculate the number of digits of n using Exercise 4.10 and
assign it to a variable, say d. Then, store the digits of n from left to
right in a d-entry array named D. To do this, store the quotients of n by

10d−1

in the entry Dd+1−i

in the range of a for
template with the specification i=d,1,-1 and then replace n by the

remainder of n by 10d−1.

Now, the required format for the
output can be performed using the appropriate formats in both C++
and Java.

9.2. Use the swap algorithm in Example 5.4 to swap the entries Aij

and Aji

 inside two nested for templates. Pay attention to
the final values of the loop (refer to Algorithm 7.3).

9.3. Compare the corresponding entries inside two nested for loops
and return 0 as soon as an inequality occurs. Moreover, return 1 after
the (natural) exit from the outer loop.

9.4. The entry Aij

 is on the secondary diagonal if i + j=6.
Therefore, using an if template, if i = j or i + j = 6 then, assign 1 to Aij

 inside two nested for templates; otherwise, assign 0 to Aij.

9.5. In a for template with the specification i=1,7, swap the (i, i)- and (i,
8- i)-entries using the swap algorithm.

9.6. In a for template with the specification j=1,m, swap the (r, j)- and
(s, j)-entries of A by the swap algorithm.

9.8. In a for template with the specification j=1,m, apply the following
substitution.

Arj ← Arj + zAtj.

9.10. In a for template with the specification j=1,m, apply the
following substitution.

Arj ← zArj

9.12. First, define E as a 10 × 10 matrix and, initialize zero to all of its
entries using two nested for loops. Then, perform the following three

instructions respectively in the range of two nested for loops with the
variables i and j:

1. Assign 1 to Aij;
2. Print A using the sub-algorithm weiteImat();

3. Assign 0 to Aij.

9.13. The algorithm of this exercise is similar to Flowchart 9.8. It
suffices to change the following two instructions in Case 1:
− Remove the instruction which substitutes –d to d;
− Transfer the implementation control to the beginning of the

leading for loop which is supposed to have the label ‘a’ instead of
the instruction which returns zero. This can be done by goto a and
continue a statements in C++ and Java codes, respectively.

9.15. Use a similar logic as in the search() function of Example 8.7.
Here two nested for templates should be used. The main algorithm
can be achieved using a for template.

9.16. Use the function searchFmat() of the previous exercise.

9.17. First, assign the coefficients matrix A in another matrix, say B.
Then, apply the following instructions in the range of a for template
with the specification j=1,10.
1. Swap the vector y and the i-th column of A. To do this, swap the

entries yi and Aij using a for template with the
specification i=1,10;

2. Divide det(B) by det(A);

3. Print it as xj.

9.18. Use the idea in Programs P9_9.

9.1*. For parts 1, 2, and 3, use the hints of the parts 1, 5, and 2 of Exerc
ise 6.1*, respectively. The other parts have similar algorithms.

9.2*. Apply the following instructions in the range of a for template
with the specification i=1,5.

1. Assign Ai1 and 1 to the real variable max and integer variable
p, respectively;

2. In the range of a for template with the specification j=2,7,

substitute Aij for max if it is greater than or equal to max.
Further, substitute j for p;

3. After exiting this inner loop, the (i, p)-entry is the position of the
maximum entry in row i. Print max together with this position
with an appropriate design and continue.

9.3*. Use the function rev() in Example 7.4

9.4*. Read the matrix A. Consider the main part of either of
Algorithms 8.11(b) or 8.11(c) including the two nested loops. In that

algorithm, replace 39, ai, and ai+1

 by 7,

Aki, and Ak(i+1),

 respectively. In the
analogous algorithm for descending order, the inequality ‘<’ is
replaced by ‘>’. Accordingly, you have two algorithms, namely, one for
sorting in ascending order of 7 entries in row k and the other for
sorting in descending order of the same entries.

Now, in the range of a for template with the specification k=1,8,
place the above-mentioned ascending algorithm if k is odd and
descending algorithm otherwise. Finally, print the deformed matrix A
after exiting this loop.

9.5*. First, simultaneously, calculate the sum of the main and the
secondary diagonals. For this purpose, take two variables sD and sS

with the initial values of 0. Then, substitute the addition of Akk

and sD for sD and the addition of Ak(n+1−k)

 and sS
for sS in the range of a for template with the specification k=1,n. Upon
exiting this loop, print the message Not magic and terminate the
algorithm if sD ≠ sS; otherwise, calculate the sum of the entries in the
k-th row and compare it with sD (or sS) in the range of a for template
with the specification i=1,n. To this end, take the variable sR with the
initial values of 0. Then, in the range of a for template with the

specification j=1,n, substitute the addition of Aij

and sR for sR.
Upon exiting this loop, print the message Not magic and terminate the
algorithm if sD ≠ sR.

Repeat the recent procedure for the column instead of row. Now,
print the message Magic after exiting the outer loop.

9.6*. Remove column j of A and pull the entries of the next columns
one column backward. To this aim, substitute Aik+1 for Aik

 in the range of two nested for loops with the
specifications i=1,n and k=j,n-1, respectively. Similarely, remove row i
of A.

9.7*. Define the determinant as follows if n = 2.

pet = A11A22 − A12A21;

Otherwise, use the method of extending the determinant based on the
first row (or the first column). For this purpose, use the function of the
previous exercise.

9.8*. Use the sub-algorithm Aij() in Exercise 9.6* and the function det()
in Example 9.8. Name the adjacent matrix as adjA and define it as
follows. In the range of two nested for loops with the specifications
j=1,n and i=1,n, respectively, first, call the sub-algorithm Aij() for A, i,
and j and receive the return matrix in the name of Ahat. Now, define
the (j, i)-entry of adjA using the following formula.

adjAji = −1i+j det (Ahat), i = 1, 2, … , n, j = 1, 2, … , n.

9.9*. Perform the following in the range of an outer for loop with the
specification k=1,n:
1. Using an if template, if Akk = 0 then, perform the

following instructions in the range of an inner for loop with the
specification i=k+1,n:
1.1. Using an if template, if Aik ≠ 0 then, perform

the instructions from the label ‘b’ onward in Case 2 (Part 1
and Part 2) of Flowchart 9.9;

1.2. Otherwise, continue the inner for loop;
2. Otherwise, continue the outer for loop.

9.10*. Use the idea in Flowchart 9.9 removing the instructions
concerned the matrix B. Moreover, transfer the control to the
beginning of the leading for loop which is supposed to have the label
‘a’ instead of the instructions after exiting the inner loop in Case 1.
This can be done by the goto a statement in C++ codes and continue a
statement in Java codes.

Bibliography

[1] Allain A. Jumping into C++. CProgramming.com 2013.

[2] Atzori R. (Online e-book containing more than 300 flowcharts): http://www.flowg

orithm.org/

[3] Burd B. A. Beginning programming with Java for Dummies, 5th Edition. For

Dummies 2017.

[4] Byrne P. and Lyons G. The Effect of Student Attributes on Success in

Programming. Proceeding of 6th Annual Conference on Innovation and

Technology in Computer Science Education ITiCSE United Kingdom 49–52, 2001.

[5] Cadenhead R. Sams teach yourself Java in 21 days (Covering Java 8), 3rd Edition.

Sam Publishing 2016.

[6] Chaudhuri A. B. The art of programming through flowcharts and algorithms.

Laxmi Publications 2005.

[7] Cook D. D. Flowgorithm: Principles for Teaching Introductory Programming

Using Flowcharts. Proceedings of the 2015 American Society for Engineering

Education/Pacific South West. 158–167, 2015.

[8] Davis G. B. Fortran 77: A structured disciplined style (ISE Editions). McGraw-Hill

Education 1984.

[9] Deitel P. J. and Deitel H. C++: How to program, 10th Edition. Pearson

International 2017.

[10] Eckel B. Thinking in Java, 4th Edition. Prentice Hall 2006.

[11] Erosa A. M. and Hendren L. J. Taming control flow: a structured approach to

eliminating goto statements. Proceedings of the 994 IEEE International

Conference on Computer Languages, 229–240, May1994.

http://cprogramming.com/
http://www.flowgorithm.org/

[12] Flanagan D. Java in a Nutshell, 5th Edition. O'Reilly Media Inc. 2005.

[13] Farrell J. Computer Programming Logic Using Flowcharts. Boyd & Fraser Pub.

Co. 1994.

[14] Gamow G. One, two, three...infinity facts and speculations of science (Dover

Books on Mathematics) Revised Edition (1947, revised 1961), Viking Press

(copyright renewed by Barbara Gamow, 1974), reprinted by Dover Publications,

illustrated by the author; eBook edition, Dover 2012.

[15] Gomes A. and Mendes A. J. Learning to program-difficulties and solutions.

International Conference on Engineering Education-ICEE, 2007: http://icee2007.

dei.uc.pt/proceedings/papers/411.pdf

[16] Gomes A. Carmo L. Bigotte E. and Mendes A. J. Mathematics and programming

problem solving. Proceeding of the 3rd E-Learning Conference in Computer

Science Education (CD-ROM), Coimbra, Portugal, September 2006.

[17] Janfada A. S. FORTRAN 77: Programming and comprehensive reference (a

textbook in Persian language). Urmia University Publications 1994.

[18] Janfada A. S. Elementary programming in Pascal, related by algorithm (a

textbook in Persian language). Urmia University Publications 2009.

[19] Janfada A. S. Elementary programming in C++, via algorithm (a textbook in

Persian language). Urmia University Publications 2018.

[20] Kernighan B. W. and Ritchie D. M. C Programming Language, 2nd Edition.

Prentice Hall 1988.

[21] Liberty J. and Jones B. Sams teach yourself C++ in 21 days, 5th Edition. Sams

Publishing, 2004.

[22] Merritt S. M. and Stix A. Migrating from Pascal to C++. Springer 1997.

[23] Moore D., Musciano C., Liebhaber M. J., Lott S. F., and Starr L. “goto considered

harmful’ considered harmful’ considered harmful? Communications of the ACM

30(5): 351–355, 1987.

http://icee2007.dei.uc.pt/proceedings/papers/411.pdf

[24] Mueller F. and Whalley D. Avoiding unconditional jumps by code replication.

Proceedings of the ACM SIGPLAN 1992 conference on Programming language

design and implementation, 322–330, 1992.

[25] Murphy J. Ridout D. and McShane B. Numerical analysis algorithms and

computation. Halsted Press 1988.

[26] Parhami B. Introduction to computer (in Persian language). Iran University of

Science and Technology Publishing 1984.

[27] Peterson W., Kasami T., and Tokura N. On the capabilities of while, repeat, and

exit statements.

Communications of the ACM 16(8): 503–512, 1973.

[28] Ramshaw L. Eliminating go to’s while preserving program structure. Journal of

the ACM (JACM), 35(4): 893–920, 1988.

[29] Rubin F. ‘goto considered harmful’ considered harmful. Communications of the

ACM, 30(3):

195–196, 1987.

[30] Savitch W. Problem solving with C++, 10th Edition. Pearson Education 2017.

[31] Scheid F. Computer science (Schaum’s Outline Series). McGraw-Hill Companies

1970.

[32] Scheinerman E. C++ for Mathematicians: An Introduction for students and

professionals. CRC Press 2006.

[33] Schildt H. C++: The complete reference, 4th Edition. McGraw-Hill Education 2002.

[34] Schildt H. Herb Schildt’s C++ programming cookbook. McGraw-Hill Education

2008.

[35] Sleeman, D. The Challenges of Teaching Computer Programming.

Communications of the ACM.

29(9): 840–841, 1986.

[36] Sierra K. and Bates B. Head first Java, 2nd Edition. O’Reilly Media Inc. 2005.

[37] Stroustrup B. The C++ programming language, 4th Edition. Addison-Wesley

Professional 2013.

[38] Stroustrup B. Programming: Principles and practice using C++, 2nd Edition.

Addison-Wesley Professional 2014.

[39] Sutter H. and Alexandrescu A. C++ coding standards: 101 rules, guidelines, and

best practices.

Addison-Wesley Professional 2004.

[40] Swan T. Mastering Turbo Pascal 5.5, 3rd Edition. Hayden Books 1989.

[41] Wing J. M. Computational thinking. Communications of the ACM. 49(3): 33–35,

2006.

[42] Wolfram, S. How to Teach Computational Thinking. Stephen Wolfram Blog: htt

p://blog.stephenwolfram.com/2016/09/how-to-teach-computational-thinking/.

Websites

[43] A Crash Course from C++ to Java: http://www.horstmann.com/ccc/c_to_java.pdf

[44] artima Scala, consulting, training, books, and tools: https://www.artima.com/obj

ectsandjava/

[45] BeginnersBook.com - Tutorials for Beginners: https://beginnersbook.com/

[46] Codequiz.in: http://www.codequiz.in/category/c-programs-2/

[47] Computer Science University of Toronto: http://www.cs.toronto.edu/

[48] Cprogramming.com: https://cboard.cprogramming.com/c-programming/

[49] GeeksforGeeks: https://www.geeksforgeeks.org/

[50] IncludeHelp.com: https://www.includehelp.com/

[51] infocodify.com: http://www.infocodify.com/

[52] javaTpoint: https://www.javatpoint.com/

[53] Learning a New Programming Language: Java for C++ Programmers:

http://pages.cs.wisc.edu/~hasti/cs368/JavaTutorial/

http://blog.stephenwolfram.com/2016/09/how-to-teach-computational-thinking/
http://www.horstmann.com/ccc/c_to_java.pdf
https://www.artima.com/objectsandjava/
http://beginnersbook.com/
https://beginnersbook.com/
http://www.cs.toronto.edu/
http://cprogramming.com/
https://cboard.cprogramming.com/c-programming/
https://www.geeksforgeeks.org/
http://includehelp.com/
https://www.includehelp.com/
http://infocodify.com/
http://www.infocodify.com/
https://www.javatpoint.com/

[54] MathBits.com: https://mathbits.com/JavaMathBits/JavaResourcesOpening.html

[55] Oracle Java Documentation: https://docs.oracle.com/javase/tutorial/java/

[56] Programize: https://www.programiz.com/java-programming/

[57] Simple Snippets, Quality Edu-Tech Videos & Tutorials: https://simplesnippets.tec

h/

[57] SitePoint Pty Ltd [AU]: https://www.sitepoint.com/

[59] Software Development & Entrepreneurship Tutorials: http://tutorials.jenkov.co

m/

[60] StudyTonight: https://www.studytonight.com/

[61] Study.com: https://study.com/

[62] ThoughtCo.: https://www.thoughtco.com/

[63] Tutorial Dost: http://www.tutorialdost.com/

[64] TutorialsPoint simply easy learning: https://www.tutorialspoint.com/java/

[65] w3schools.com: https://www.w3schools.com/

http://mathbits.com/
https://mathbits.com/JavaMathBits/JavaResourcesOpening.html
https://docs.oracle.com/javase/tutorial/java/
https://www.programiz.com/java-programming/
https://simplesnippets.tech/
https://www.sitepoint.com/
http://tutorials.jenkov.com/
https://www.studytonight.com/
http://study.com/
https://study.com/
https://www.thoughtco.com/
http://www.tutorialdost.com/
https://www.tutorialspoint.com/java/
https://www.w3schools.com/

Index

access specifier, 1

– private, 1

– protected, 1

– public, 1, 2

algorithm, 1, 2, 3, 4, 5, 6

– bubble sorting, 1

– definition, 1

– designing, 1

– Euclidean, 1

– features, 1

– figurative form, 1

– flow of, 1

– general steps of writing, 1

– generalized Euclidean, 1

– good, 1

– implementing, 1, 2, 3, 4

– standard, 1

– swap, 1, 2

– symbolic form, 1

– writing, 1, 2, 3

– writing form, 1

algorithm-writing, 1

al-Khawrizmi, 1

approximated integration

– Simpson, 1

– trapezoidal, 1

argument, 1, 2, 3, 4

array

– as parameter, 1, 2

– declaring, 1

– length, 1, 2, 3, 4, 5

– one-dimensional, 1

– two-dimensional, 1

base-2 decimal system, 1

bisection method (for finding roots), 1

Bjarne Stroustrup, 1

block, 1

– static, 1

brain, 1, 2

– commands, 1, 2, 3

– process, 1, 2, 3

– reaction, 1, 2

branching

– multi-way, 1, 2, 3

– two-way, 1, 2

call unit, 1

character

– control, 1, 2

– conversion, 1

– whitespace, 1, 2

class, 1

constant, 1

– declaring, 1

constructor, 1

– calling, 1

– copy, 1

– default, 1

– parameterized, 1

dangling else problem, 1

data, 1

data member, 1

– static, 1

data type, 1, 2

– boolean, 1

– byte, 1

– char, 1, 2, 3

– const, 1

– double, 1, 2, 3

– float, 1, 2, 3, 4

– int, 1, 2, 3

– long, 1, 2

– primitive, 1

– reference, 1

– short, 1, 2

– signed, 1

– unsigned, 1

– void, 1, 2, 3

Denis Ritchie, 1

destructor, 1

elementary row operations, 1

Enter key symbol, 1

escape sequence. See control sequence

expression

– algebraic, 1

– arithmetic, 1

Fibonacci sequence, 1, 2

flowchart, 1

– shapes, 1, 2

format (C++), 1, 2, 3

– setprecision, 1

– setw, 1

format (Java), 1, 2

format specifier (Java)

– flag, 1

– precision, 1

– width, 1

function, 1, 2, 3

– 1-return, 1

– body, 1, 2

– calling, 1

– int main(), 1

– library, 1, 2

– no-return, 1

– recursive, 1, 2

– self-calling. See recursive function

– void (calling), 1

– void main(), 1

Gosling, James, 1

greatest common divisor, 1

Green Team, 1

hanging problem, 1

IDE workspace

– C++, 1

– Java, 1

identifier, 1

implementation table, 1, 2, 3

– arranging, 1, 2

incompatibility (in the for loop), 1

infinity value (in Java), 1

input

– entering, 1

– notification, 1, 2, 3

– unit, 1

keyword, 1, 2, 3

– const, 1

– static, 1, 2

– this, 1

– void, 1

Khayyam-Pascal triangle, 1

Lagrange interpolation polynomial, 1

literal, 1

– Boolean, 1

– character, 1

– numerical, 1

– string, 1

loop

– automated. See for loop

– conditional, 1, 2, 3

– do-while, 1

– for, 1

– infinite for, 1

– while, 1

matrix. See two-dimensional array

– determinant, 1

– identity, 1

– inverse, 1

– row-reduced, 1

– row-reduced echelon, 1

member function, 1, 2

method, 1, See member function

– class, 1, 2

– instance, 1

– main (Java), 1

– member. See class method

– static, 1

namespace, 1

– std, 1

NaN value (in Java), 1

Naughton, Patrick, 1

nested

– conditional statements, 1

– conditional templates, 1

– if-else templates, 1

object, 1, 2

– creating, 1

– scanner, 1

operator, 1

– &, 1

– *, 1

– ,, 1, 2

– ::, 1

– ?, 1, 2

– address-of, 1

– arithmetic, 1

– assignment, 1, 2

– comparative. See relational operator

– dereference, 1

– logical, 1

– relational, 1

– scope resolution, 1, See :: operator

– sizeof, 1, 2

output

– heading, 1, 2, 3

– unit, 1

package, 1

parameter, 1, 2, 3

– actual. See argument

– formal. See parameter

– pass-by-reference, 1

– pass-by-value, 1

– reference. See pass-by-reference

– value. See pass-by-value

pointer, 1

– const, 1

– declaring, 1

preprocessor directive, 1

– conio.h, 1

– iomanip.h, 1, 2

– iostream.h, 1

– math.h, 1

prime numbers, 1

priority of operators, 1

problem solving, 1, 2, 3, 4

program, 1, 2, 3

– C++, 1

– complete, 1, 2

– Java, 1

– writing, 1, 2, 3

programming, 1, 2, 3

– object-oriented, 1

– styles, 1, 2

programming language, 1, 2, 3

– C, 1, 2

– C++, 1

– Fortran, 1

– Java, 1

punch card, 1

Puzzle of Hanoi Towers, 1

reflexing point, 1, 2, 3

reserved word. See keyword

revisions

– C++, 1

– Java, 1

rule

– 1 of arranging implementation table, 1

– 2 of arranging implementation table, 1

– calling the array-return methods, 1

– calling 1-return function, 1

– calling a void function, 1

– constructing the sub-algorithms, 1

– directions, 1

– ending the sub-algorithms, 1

– grouping, 1

– implementation table for nested loops, 1

– intersection of the T- and F-paths, 1

– making the if-else-if template, 1

– merging the conditions, 1

– multi-using the reading methods, 1

– naming identifiers, 1

– parameter list in functions, 1

– parameter-argument, 1

– parameters of multi-return subprograms, 1

– priority of operators, 1

– starting the sub-algorithms, 1

series, 1

– double, 1

– single, 1

Sheridan, Mike, 1

slogan of the book, 1

solution analysing, 1, 2

solving linear equations system

– backward displacement method, 1

– Cramer method, 1

– forward displacement method, 1

– Gauss eliminated method, 1

– matrix method, 1

– triangular decomposition method, 1

sorting method

– bubble, 1, 2

– insertion, 1

specification (of the for loop), 1

statement, 1

– assignment, 1, 2

– break, 1, 2, 3, 4, 5

– cin, 1, 2

– clrscr, 1

– continue, 1, 2, 3

– cout, 1, 2

– do-while, 1

– exit(0), 1, 2

– frequent assignment, 1

– getch(), 1

– goto, 1, 2, 3

– if, 1

– if-else, 1

– if-else-if, 1

– print, 1

– printf, 1

– println, 1

– return, 1

– return 0, 1

– switch, 1

– System.exit(0), 1

– using namespace std, 1

– while, 1

sub-algorithm, 1

– function. See function

– multi-return, 1

subprogram, 1, 2

– multi-return, 1

syntax, 1

– assignment statement, 1

– constant declaration, 1

– continue, 1

– creating an object, 1

– defining class, 1

– do-while, 1

– for, 1

– formatted print, 1

– function (method) defining statement, 1

– if-else, 1

– if-else-if, 1

– input statement, 1

– namespace, 1

– output statement, 1

– switch, 1

– this keyword, 1

– variable declaration, 1, 2

– while, 1

template

– assignment, 1, 2

– compound, 1

– conditional, 1

– do-while, 1

– for, 1

– if, 1, 2

– if-else, 1

– if-else-if, 1

– input, 1

– output, 1

– simple, 1

– switch, 1

– while, 1

variable, 1, 2, 3, 4

– class, 1

– declaring, 1, 2, 3, 4, 5

– global, 1

– instance, 1

– local, 1

– static local, 1

vector. See One-dimensional array

Endnotes

1

Muhammad ibn Musa al-Khawrizmi (780 A.D. – 850 A.D.).

2

The verbs “implement” and “run” or “execute” are used for algorithms and

programs, respectively.

3

The “implementation table” is used for both algorithms and programs.

	Title Page
	Copyright
	Dedication
	Foreword
	Contents
	1 Basic concepts of Algorithm
	1.1 Algorithm
	1.2 Flowchart

	2 Fundamental concepts of programming in C++
	2.1 Primary concepts
	2.1.1 Reserved words
	2.1.2 Identifiers
	2.1.3 Data types
	2.1.4 Variables
	2.1.5 Constants
	2.1.6 Operators
	2.1.7 Library (predefined) functions
	2.1.8 Arithmetic and logical expressions

	2.2 Introduction to programming in C++ language
	2.2.1 Output statement
	2.2.2 Input statement
	2.2.3 Formatted output

	2.3 Pointers

	3 Fundamental concepts of programming in Java
	3.1 Primary concepts
	3.1.1 Data types
	3.1.2 Literals and variables
	3.1.3 Operators

	3.2 Introduction to programming in Java
	3.2.1 Output and input statements
	3.2.2 Formatted output

	3.3 Object-oriented programming (OOP) system
	3.3.1 Objects and class
	3.3.2 Types of variables
	3.3.3 Constructors and destructors
	3.3.4 Destructors and namespaces (C++ only)
	3.3.5 Static elements
	3.3.6 The this keyword

	4 Decision making and branching templates
	4.1 The if-else template
	4.2 The if template
	4.3 The if-else-if template
	4.4 The switch statement
	4.5 More applications of the if template
	4.5.1 Transferring the program execution
	4.5.2 Terminating the program execution

	Exercises

	5 Sub-algorithms and subprograms
	5.1 Sub-algorithms
	5.2 Subprograms
	5.2.1 Functions
	5.2.2 Multi-return sub-algorithm (subprograms)

	5.3 Self-calling (recursive) functions
	Exercises

	6 Automated loops
	6.1 The for template
	6.2 Series
	Exercises
	Supplementary exercises

	7 Conditional loops
	7.1 The while and do-while templates
	7.2 More applications of the conditional loops
	7.3 The if-goto loops (C++ only)
	Exercises
	Supplementary exercises

	8 One-dimensional arrays
	8.1 vectors
	8.2 More applications of the arrays
	Exercises
	Supplementary exercises

	9 Two-dimensional arrays
	9.1 Matrices
	9.2 Solving linear equations system
	9.2.1 Direct ways
	9.2.2 Iterative methods

	Exercises
	Supplementary exercises

	Hints for the exercises
	Bibliography
	Index

