
H
0W

2

Get Started with the 
MAX78000FTHR

Development Board

G
et Started w

ith the
M
A
X78000FTH

R
D

evelopm
ent Board     D

ogan Ibrahim

knows how

Dogan Ibrahim

Build your own AI microcontroller 
applications from scratch

Volume  2

2

H0W2The MAX78000FTHR from Maxim Integrated is a small development 
board based on the MAX78000 MCU. The main usage of this board 
is in artificial intelligence applications (AI) which generally require 
large amounts of processing power and memory. It marries an Arm 
Cortex-M4 processor with a floating-point unit (FPU), convolutional 
neural network (CNN) accelerator, and RISC-V core into a single 
device. It is designed for ultra-low power consumption, making it 
ideal for many portable AI-based applications.

This book is project-based and aims to teach the basic features 
of the MAX78000FTHR. It demonstrates how it can be used in 
various classical and AI-based projects. Each project is described in 
detail and complete program listings are provided. Readers should 
be able to use the projects as they are, or modify them to suit 
their applications. This book covers the following features of the 
MAX78000FTHR microcontroller development board:

> Onboard LEDs and buttons
> External LEDs and buttons
> Using analog-to-digital converters
> I2C projects
> SPI projects
> UART projects
> External interrupts and timer interrupts
> Using the onboard microphone
> Using the onboard camera
> Convolutional Neural Network (CNN)
> Artificial Intelligence projects

Elektor International Media BV
www.elektor.com

About the Author
Prof Dr Dogan Ibrahim has 
a BSc degree in electronic 
engineering, an MSc degree in 
automatic control engineering, 
and a PhD degree in digital 
signal processing. Dogan 
has worked in many indus-
trial organizations before he 
returned to academic life. 
Prof Ibrahim is the author of 
over 60 technical books and 
over 200 technical articles on 
microcontrollers, microproces-
sors, and related fields. He is a 
Chartered electrical engineer 
and a Fellow of the Institution 
of Engineering Technology.





How2: Get Started with the 
MAX78000FTHR Development 

Board

●

an Elektor Publication

Dogan Ibrahim

design > share > sell

dogan 2.indd   3dogan 2.indd   3 08/06/2021   22:20:3608/06/2021   22:20:36



Elektor is part of EIM, the world's leading source of essential technical information and electronics products for pro 
engineers, electronics designers, and the companies seeking to engage them. Each day, our international team develops 
and delivers high-quality content - via a variety of media channels (e.g., magazines, video, digital media, and social media) 
in several languages - relating to electronics design and DIY electronics. www.elektor.com

● This is an Elektor Publication. Elektor is the media brand of  

Elektor International Media B.V. 

78 York Street 

London W1H 1DP, UK 

Phone: (+44) (0)20 7692 8344 

© Elektor International Media BV 2021 

First published in the United Kingdom 2021

● All rights reserved. No part of this book may be reproduced in any material form, including 

photocopying, or storing in any medium by electronic means and whether or not transiently or incidentally 

to some other use of this publication, without the written permission of the copyright holder except in 

accordance with the provisions of the Copyright, Designs and Patents Act 1988 or under the terms of a 

licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London, England W1P 9HE. 

Applications for the copyright holder's written permission to reproduce any part of this publication should be 

addressed to the publishers. The publishers have used their best efforts in ensuring the correctness of the 

information contained in this book. They do not assume, and hereby disclaim, any liability to any party for 

any loss or damage caused by errors or omissions in this book, whether such errors or omissions result from 

negligence, accident or any other cause.

● British Library Cataloguing in Publication Data 

Catalogue record for this book is available from the British Library

● ISBN: 978-3-89576-447-9

● EISBN: 978-3-89576-448-6

Prepress production: DMC ¦ dave@daverid.com 

Printed in the Netherlands by Ipskamp

design > share > sell

dogan 2.indd   4dogan 2.indd   4 08/06/2021   22:20:3608/06/2021   22:20:36



To my wife Nadire, my daughter Alev, and my son Ahmet, for their love and wisdom.

dogan 2.indd   5dogan 2.indd   5 08/06/2021   22:20:3608/06/2021   22:20:36



How2: Get Started with the MAX78000FTHR Board

● 6

● Declaration

The author and publisher have used their best efforts in ensuring the correctness of the 
information contained in this book. They do not assume, or hereby disclaim, any liability to 
any party for any loss or damage caused by errors or omissions in this book, whether such 
errors or omissions result from negligence, accident, or any other cause.

The author expresses his sincere thanks to Maxim Integrated for permitting to include 
various tables, figures, and program codes in this book. 

Additionally, the author would like to thank Mr. Ole Dreessen (Principal MTS, Field 
Applications of Maxim Integrated, Munich) and his team for reviewing the manuscript.

dogan 2.indd   6dogan 2.indd   6 08/06/2021   22:20:3608/06/2021   22:20:36



● Preface

● 7

● Preface

A microcontroller is a single-chip microprocessor system that contains data and program 
memory, serial and parallel I/O, timers, external and internal interrupts, all integrated into 
a single chip that can be purchased for as little as $2.00. About 40% of microcontroller 
applications are in office automation, such as PCs, laser printers, fax machines, intelligent 
telephones, and so forth. About one-third of microcontrollers are found in consumer 
electronic goods. Products like CD and DVD players, hi-fi equipment, video games, washing 
machines, cookers, and so on fall into this category. The communications, automotive, and 
military markets share the rest of the application areas.  

The MAX78000FTHR (from Maxim Integrated) is a small development board based on a 
MAX78000 microcontroller unit (MCU). This MCU is targeted at artificial intelligence (AI) 
applications running at the edge of the technology. AI applications require large amounts 
of processing power and memory. This is why the MAX78000 combines an Arm Cortex-M4 
processor with a floating-point unit (FPU), convolutional neural network (CNN) accelerator, 
and a RISC-V core into a single device. The MAX78000 microcontroller also has the 
important feature that it is designed for ultra-low power consumption, thus making it ideal 
in many AI-based portable applications.

The MAX78000 microcontroller uses a Convolutional Neural Network (CNN) based 
approach. A CNN is a special kind of neural network where convolution is used at its heart. 
Convolution is a kind of matched filtering and is often used in signal and image processing. 
Since CNNs are particularly used in these applications, the MAX78000FTHR development 
board integrates an onboard camera and microphone interfaced with I2S for streaming 
audio applications.

The board is recognised as a USB device when connected to a computer. It comes preloaded 
with an audio keyword spotting (KWS) demo, where the flashing rate of an onboard LED 
can be changed by speech commands. When it detects the word "Go" the demo enters 
number recognition mode in which it will blink an LED the number of times as commanded 
by the speaker. In other words, after saying "Four", the LED will blink four times. "Stop" 
returns to normal mode.

The MAX78000FTHR development board includes the following peripheral devices on-board:

• Tiny VGA camera
• Digital microphone
• microSD card slot
• 1 MB RAM
• SWD debugger/programmer over USB
• LiPo battery charger
• RGB LEDs and user pushbuttons for projects

An Eclipse-based SDK is provided by Maxim that can be used to develop programs for the 
MAX78000FTHR. The development environment contains the Eclipse IDE, MinGW, GCC 

dogan 2.indd   7dogan 2.indd   7 08/06/2021   22:20:3608/06/2021   22:20:36



How2: Get Started with the MAX78000FTHR Board

● 8

toolchains for Arm and RISC-V processors, OpenOCD, and a few other utilities. Additionally, 
libraries and many example programs are provided to help the starters develop projects.

This book is project-based and its main aim has been to teach the basic features of the 
MAX78000FTHR development board and show how it can be used in various projects. 
Many fully tested projects are given in the book, where each project is described fully and 
in detail, and the complete program listings are given for each project. Readers should be 
able to use the projects as they are, or modify them to suit their own needs. The following 
sub-headings are used while describing each project:

• Description of the project
• Aim of the project
• Background (if applicable)
• Block diagram
• Circuit diagram
• Program listing
• Suggestions for future work (if applicable)

Knowledge of C will be useful to readers. Also, familiarity with at least one microcontroller 
development board (preferably with an Arm processor) will be an advantage. Knowledge of 
assembly language programming is not required because all projects in the book are based 
on using C. Some knowledge of the theory of neural networks will make it easier for the 
readers to follow the chapter on Convolutional Neural Networks. 

This book is written for students, practising engineers, and for hobbyists interested in 
developing artificial interface applications using the MAX78000FTHR development board. 
An attempt has been made to include as many projects as possible, limited only by the size 
of the book.

Dogan Ibrahim
London, 2021

dogan 2.indd   8dogan 2.indd   8 08/06/2021   22:20:3608/06/2021   22:20:36



● Table of Contents

● 9

● Table of Contents

● Declaration .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6

● Preface  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 7

Chapter 1 ● The MAX78000FTHR Development Board  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 13

1.1 ● Overview  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 13
1.2 ● Basic features  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 13
1.3 ● Pushbuttons and LEDs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 15
1.4 ● GPIO Pinout  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 16
1.5 ● The FTHR board component interface signals  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 18
1.6 ● The startup and the demo application  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 18
1.7 ● The voltage regulator/battery charger  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 19
1.8 ● DAP-link/SWD debug interface  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 19

Chapter 2 ● The MAX78000 Microcontroller  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 21

2.1 ● Overview  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 21
2.2 ● Basic features of the MAX78000  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 21

2.2.1 ● The Convolutional Neural Network Accelerator (CNN)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 23

2.2.2 ● The memory  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 23

2.2.3 ● Comparators  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 23

2.2.4 ● Clocking  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 23

2.2.5 ● General-purpose input-output (GPIO) and special function pins  .  .  .  .  .  .  .  . 24

2.2.6 ● Parallel Camera Interface (PCIF)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 25

2.2.7 ● Analog-to-Digital Converter (ADC) .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 25

2.2.8 ● Power management (PMU) .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 26

2.2.9 ● Real-time clock (RTC)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 27

2.2.10 ● Programmable timers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 27

2.2.11 ● Watchdog timer (WDT)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 28

2.2.12 ● Pulse train engine (PTE) .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 28

2.2.13 ● I2C Interface (I2C)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 28

2.2.14 ● I2S Interface (I2S)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 28

2.2.15 ● Serial Peripheral Interface (SPI)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 28

2.2.16 ● UART (UART, LPUART)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 29

2.2.17 ● 1-Wire Master (OWM)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 29

2.2.18 ● DMA Controller .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 29

dogan 2.indd   9dogan 2.indd   9 08/06/2021   22:20:3608/06/2021   22:20:36



How2: Get Started with the MAX78000FTHR Board

● 10

2.2.19 ● Security (AES)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 29

2.2.20 ● True Random Number Generator (TRNG) Non-Deterministic Random Bit 
Generator (NDRBG)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 29

2.2.21 ● CRC  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 29

2.2.22 ● Bootloader .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 30

2.2.23 ● Device Resets  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 30

2.2.24 ● Interrupts and Exceptions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 30

Chapter 3 ● Beginning with the MAX78000FTHR Development Board .  .  .  .  .  .  .  .  .  .  .  .  . 31

3.1 ● Overview  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 31
3.2 ● Installing the Eclipse MaximSDK Software  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 31
3.3 ● Using the Eclipse MaximSDK – example MAX78000FTHR program  .  .  .  .  .  .  .  .  .  . 32
3.4 ● Project 1 – Creating a C program – display message  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 41

Chapter 4 ● Simple MAX78000FTHR Hardware Projects  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 46

4.1 ● Overview  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 46
4.2 ● Project 1 – External flashing LED (+1.8V output port voltage)  .  .  .  .  .  .  .  .  .  .  .  .  . 46
4.3 ● Project 2 – Alternately flashing LEDs (+1.8V output port voltage)  .  .  .  .  .  .  .  .  .  . 50
4.4 ● Project 3 – Alternately flashing LEDs (+3.3V output port voltage)  .  .  .  .  .  .  .  .  .  . 53
4.5 ● Project 4 – Rotating LEDs – same port pins  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 55
4.6 ● Project 5 – Rotating LEDs – different port pins  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 58
4.7 ● Project 6 – Binary up counter with LEDs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 60
4.8 ● Project 7 – Random flashing LEDs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 63
4.9 ● Project 8 – Push button and LED – using an on-board button  .  .  .  .  .  .  .  .  .  .  .  .  . 65
4.10 ● Project 9 – Two pushbuttons and two LEDs  – using external buttons  .  .  .  .  .  .  . 67
4.11 ● Project 10 – Using an external button – external interrupts  .  .  .  .  .  .  .  .  .  .  .  .  .  . 71
4.12 ● Using LCDs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 73
4.13 ● Project 11 – LCD seconds counter  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 76

Chapter 5 ● Analog-To-Digital converters (ADC)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 89

5.1 ● Overview  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 89
5.2 ● Project 1 – Voltmeter with LCD .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 89
5.3 ● Project 2 – Temperature measurement  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 94
5.4 ● Project 3 – ON/OFF temperature controller .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 97
5.5 ● Project 4 – ADC with completion interrupt – displaying the temperature  .  .  .  .  . 101

Chapter 6 ● Serial Communication – UART  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 104

6.1 ● Overview  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 104
6.2 ● MAX78000FTHR UART serial ports .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 106
6.3 ● Project 1 – Sending the temperature readings to a terminal with relative time 
stamping  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 108
6.4 ● Project 2 – Calculator project using a terminal  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 111
6.5 ● Project 3 – MAX78000FTHR and Arduino Uno serial communication  .  .  .  .  .  .  .  . 114
6.6 ● Project 4 – UART interrupts  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 118

dogan 2.indd   10dogan 2.indd   10 08/06/2021   22:20:3608/06/2021   22:20:36



● Table of Contents

● 11

Chapter 7 ● I2C Bus Interface .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 121

7.1 ● Overview  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 121
7.2 ● The I2C Bus  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 121
7.3 ● I2C pins of the MAX78000 microcontroller  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 122
7.4 ● Project 1 – I2C port expander  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 123
7.5 ● Project 2 – TMP102 temperature sensor  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 128

Chapter 8 ● SPI Bus Interface .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 136

8.1 ● Overview  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 136
8.2 ● MAX78000 microcontroller SPI ports  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 137
8.3 ● Project 1 – SPI send/receive  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 137

Chapter 9 ● Timers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 142

9.1 ● Overview  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 142
9.2 ● Timer operation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 143
9.3 ● 32-bit single/cascade and dual 16-bit modes  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 143
9.4 ● Project 1 – Time delay – using a one-shot timer (monostable) .  .  .  .  .  .  .  .  .  .  .  . 143
9.5 ● Project 2 – Continuously running timer (astable) .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 149
9.6 ● Project 3 – Refreshing a 2-digit 7-segment display – seconds counter .  .  .  .  .  .  . 153
9.7 ● Project 4 – Refreshing a 4-digit 7-segment display – seconds counter .  .  .  .  .  .  . 165
9.8 ● Pulse width modulation (PWM)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 171

9.8.1 ● MAX78000 PWM  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 173

9.9 ● Project 5 - Pulse width modulation (PWM) – generating 10 kHz square wave  .  . 175
9.10 ● Project 6 - Pulse width modulation (PWM) – changing the brightness of an LED 177
9.11 ● Project 7 - Pulse width modulation (PWM) – brushed DC motor speed control . 180

Chapter 10 ● Pulse Train Engine (PT) .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 184

10.1 ● Overview  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 184
10.2 ● Project 1 – Generate a pulse train with a specified sequence  .  .  .  .  .  .  .  .  .  .  .  . 184
10.3 ● Project 2 – Generate a pulse train with a specified frequency .  .  .  .  .  .  .  .  .  .  .  . 186

Chapter 11 ● True Random Number Generator Engine (TRNG)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 189

11.1 ● Overview  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 189
11.2 ● Project 1 – Generate random numbers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 189

Chapter 12 ● 1-Wire Master (OWM)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 192

12.1 ● Overview  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 192
12.2 ● MAX78000 microcontroller 1-Wire pins  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 192
12.3 ● Project 1 – DS1820 1-Wire digital thermometer  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 192

Chapter 13 ● I2S Bus Interface  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 200

13.1 ● Overview  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 200
13.2 ● MAX78000 microcontroller I2S support  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 201
13.3 ● MAX78000 microcontroller I2S pins .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 201
13.4 ● Project 1 - I2S Bus - receiving microphone data  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 202

dogan 2.indd   11dogan 2.indd   11 08/06/2021   22:20:3608/06/2021   22:20:36



How2: Get Started with the MAX78000FTHR Board

● 12

Chapter 14 ● Using the Camera .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 208

14.1 ● Overview  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 208
14.2 ● Project 1 – Using the camera  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 210

Chapter 15 ● The Instruction Cache .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 214

15.1 ● Overview  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 214
15.2 ●  Project 1 – Enabling/disabling the instruction cache  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 214

Chapter 16 ● Using a TFT Display  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 217

16.1 ● Overview  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 217
16.2 ● 2.4 inch TFT display  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 217
16.3 ● Project 1 – Displaying various shapes and text on the display  .  .  .  .  .  .  .  .  .  .  . 219

Chapter 17 ● Convolutional Neural Networks (CNN)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 225

17.1 ● Overview  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 225
17.2 ● Artificial neural networks (ANNs)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 225
17.3 ● The ANN structure  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 225
17.4 ● Convolutional Neural Networks (CNNs)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 229
17.5 ● The MAX78000 CNN accelerator  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 232
17.6 ● Demonstration programs .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 233
17.7 ● Using the kws20_demo  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 234
17.8 ● Project 1 - Modified program - flashing the on-board LED with the spoken 
word count  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 239
17.9 ● Operation of the kws20_demo program  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 240
17.10 ● Modelling, Training, and Synthesis .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 242
17.11 ● Software/hardware requirements and software installation for training and  . . . . 
synthesis  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 246
17.12 ● Project 2 – Training for a new keyword  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 248

Appendix A ● Running the Programs in this Book  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 258

Appendix B ● References to Useful Files and Web Links  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 260

B.1 ● Useful files  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 260
B.2 ● Useful Weblinks  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 263

● Index .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 264

dogan 2.indd   12dogan 2.indd   12 08/06/2021   22:20:3608/06/2021   22:20:36



Chapter 1 ● The MAX78000FTHR Development Board

● 13

Chapter 1 ● The MAX78000FTHR Development Board

1.1 ● Overview

The MAX78000FTHR is an advanced ultra-low-power microcontroller development board, 
created to help implement artificial intelligence (AI) solutions. Based on the Arm Cortex-
M4F processor, the MAX78000 includes an integrated Convolution Neural Network (CNN) 
accelerator. In this chapter, we will be looking at the basic hardware details of this board.

1.2 ● Basic features

The MAX78000FTHR development board (see Figure 1.1 for top view, and Figure 1.2 for 
bottom view) has the following basic features:

• Arm Cortex-M4 100MHz processor with FPU and RISC-V core 
• 32-bit RISC-V coprocessor
• 512KB Flash memory
• 128KB SRAM
• 16KB Cache
• Convolution Neural Network Accelerator (CNN)
• 12-bit camera interface (parallel)
• Wearable PMIC (MAX20303)
• On-board DAPLink Debug and programming
• Micro-USB connector
• Micro SD card holder
• SPI, I2C, LPUART, I2S interfaces
• LPTIMER and analog comparators
• Breadboard compatible pins (dual-row header)
• Digital microphone (Knowledge Acoustics SPH0645LM4H-B) 
• 3 x RGB indicator LEDs
• 5 x pushbuttons
• CMOS VGA image sensor (Omnivision OVM7692-RYAA)
• Stereo audio CODEC (Maxim MAX9867)
• Virtual UART console
• 10-pin Cortex Debug Header for RISC-V Coprocessor
• Li-Ion battery charger (battery not included)

dogan 2.indd   13dogan 2.indd   13 08/06/2021   22:20:3608/06/2021   22:20:36



How2: Get Started with the MAX78000FTHR Board

● 14

Figure 1.1 Top view of the MAX78000FTHR board

Figure 1.2 Bottom view of the MAX78000FTHR board

dogan 2.indd   14dogan 2.indd   14 08/06/2021   22:20:3808/06/2021   22:20:38



Chapter 1 ● The MAX78000FTHR Development Board

● 15

1.3 ● Pushbuttons and LEDs
There are 5 pushbuttons (named SW1 to SW5) and 3 RGB LEDs (named D1 to D3) on the 
board as shown in Figure 1.3.

The functions of the pushbuttons are:

SW1: User-programmable function button connected to the MAX78000 Port 0_2 through 
a debouncer IC.

SW2: User-programmable function button connected to the MAX78000 Port 1_7 through 
a debouncer IC.

SW3: PMIC Power Button. When the board is in a powered-on state, pressing this button 
for 12 seconds performs a hard power-down. When the board is in a powered-off state, 
pressing this button powers on the board. This button can also be read by the MAX78000 
firmware, PMIC_PFN2 signal connected to Port 3_1 is a buffered input of the button status. 
When the button is pressed, this signal goes to a logic-low state.

SW4: Resets the MAX78000 through the RSTN input of the MAX78000.

Figure 1.3 Pushbuttons and LEDs on the board

dogan 2.indd   15dogan 2.indd   15 08/06/2021   22:20:3908/06/2021   22:20:39



How2: Get Started with the MAX78000FTHR Board

● 16

SW5: DAPLink adapter button. Keep this button pressed while applying power to the 
board to put the MAX32625 DAPLink adapter onboard to MAINTENANCE mode for DAPLink 
firmware updates.

The functions of the LEDs are:

D1: Connected to the MAX78000 GPIO ports. This LED can be controlled by user firmware.

 Port 2_0 : Red
 Port 2_1 : Green
 Port 2_2 : Blue

D2: Connected to MAX20303 PMIC LEDx outputs. These LEDs can be controlled through 
I2C commands. They also can be configured as charge status indicators by issuing I2C 
commands.

D3: DAPLink adapter MAX32625 status LED. Controlled by the DAPLink adapter and cannot 
be used as a user LED.

1.4 ● GPIO Pinout

There are two headers at either side of the board where GPIO signals are terminated. 
As shown in Figure 1.3, Header J4 has 12 pins and Header J8 has 16 pins. The board 
includes the following GPIO port pins:

 PORT0: P0_5, P0_6, P0_7, P0_8, P0_9, P0_11, P0_16, P0_17, P0_19
 PORT1: P1_0, P1_1
 PORT2: P2_3, P2_4, P2_6, P2_7
 PORT3: P3_1

Tables 1.1 and 1.2 show the J4 and J8 pin names and their descriptions. Notice some pins are 
shared. For example, P1_0 and p1_1 are shared with the UART RX and TX pins respectively. 
Similarly, P2_3 and P2_4 are shared with analog inputs AIN3 and AIN4 respectively.

dogan 2.indd   16dogan 2.indd   16 08/06/2021   22:20:3908/06/2021   22:20:39



Chapter 1 ● The MAX78000FTHR Development Board

● 17

Table 1.1 Header J4 pins

Table 1.2 Header J8 pins

dogan 2.indd   17dogan 2.indd   17 08/06/2021   22:20:3908/06/2021   22:20:39



How2: Get Started with the MAX78000FTHR Board

● 18

1.5 ● The FTHR board component interface signals

Figure 1.4 shows the MAX78000FTHR Application Platform. The figure shows the application 
interface signals, buttons, and LEDs for:

• RISC-V JTAG
• Camera module
• PMIC
• Digital microphone
• Audio CODEC
• UART
• RGB LED
• Buttons

1.6 ● The startup and the demo application

The MAX78000FTHR is pre-programmed with the Audio Keyword Spotting demo 
application. This demo application is useful for checking if the board is working correctly.

Figure 1.4 The application platform

dogan 2.indd   18dogan 2.indd   18 08/06/2021   22:20:4008/06/2021   22:20:40



Chapter 1 ● The MAX78000FTHR Development Board

● 19

The steps to startup the MAX78000FTHR and the demo application are:

• Connect the MAX78000FTHR to the USB port of your PC using a micro-USB cable
• RGB LED (D2) will turn ON green to indicate that the pre-programmed demo application 

Audio Keyword Spotting is running
• The on-board microphone (see Figure 1.3) starts listening for the keyword GO
• When the keyword GO is detected, RGB LED (D2) turns yellow
• In this mode, when one of nine keywords is detected, the RGB LED (D1) blinks blue 

one to nine times based on the number detected by the convolutional neural network. 
For example, speak the word FOUR and  the blue LED blinks 4 times

• The STOP command exits number keyword detection, and the RGB LED (D2) turns on 
green again, and RGB LED (D1) turns off

1.7 ● The voltage regulator/battery charger

The MAX20303 PMIC chip is used to power the MAX78000FTHR board and also to charge 
a Li-Ion battery (not included). The MAX20303 has an internal MOSFET that connects the 
battery to system output. The smart power selector unit inside the PMIC seamlessly controls 
power to the board when a battery is present and when the board is connected to a USB 
power source (for more information, see document: MAX78000FTHR Application Platform, 
Rev. 11/20, Maxim Integrated Products Inc. at link: https://datasheets.maximintegrated.
com/en/ds/MAX78000FTHR.pdf).

1.8 ● DAP-link/SWD debug interface

The onboard MAX32625 microcontroller is pre-programmed with DAPLink firmware. It allows 
the debugging and programming of the MAX78000 Arm core through a USB interface. A 
standard 10-pin DAP-link/SWD interface (header J2) is provided as shown in Figure 1.5 
with the pin configuration shown in Figure 1.6. DAPLink adapter button SW5 must be kept 
pressed while applying power to the board to put the MAX32625 DAPLink adapter onboard 
to MAINTENANCE mode for DAPLink firmware updates (see link: https://os.mbed.com/
teams/MaximIntegrated/wiki/MAX32625PICO-Firmware-Updates). The DAPLink adapter 
status LED D3 is controlled by the DAPLink adapter. The board comes pre-installed with a 
bootloader enabling driverless drag-n-drop updates. This bootloader can be used to update 
or restore the DAPLink firmware on the MAX32625, or to load your custom application on 
the board. To activate the bootloader, simply hold the SW5 button down while applying 
power to the board. When the bootloader detects the button press at power on, it will 
connect to the PC as a drive named "MAINTENANCE". Simply Drag-n-Drop the desired 
image onto the MAINTENANCE drive to load new firmware into the board.

We can use a virtual com port and send data from the development board to a terminal 
emulation program (e.g. Putty) using e.g. printf statements. This can be very helpful during 
debugging a program.

dogan 2.indd   19dogan 2.indd   19 08/06/2021   22:20:4008/06/2021   22:20:40



How2: Get Started with the MAX78000FTHR Board

● 20

A standard 10-pin JTAG header J1 (Figure 1.5) allows debugging and programming the 
RISC-V core of the MAX78000.

Figure 1.5 Headers J1 and J2

Figure 1.6 Header J2 pin configuration

dogan 2.indd   20dogan 2.indd   20 08/06/2021   22:20:4008/06/2021   22:20:40



Chapter 2 ● The MAX78000 Microcontroller

● 21

Chapter 2 ● The MAX78000 Microcontroller

2.1 ● Overview

The MAX78000 is an advanced ultra-low-power microcontroller, developed to help implement 
artificial intelligence (AI), as well as standard embedded microcontroller solutions. Among 
the Arm Cortex-M4F processor, the MAX78000 includes an integrated Convolutional Neural 
Network (CNN) accelerator. In this chapter, we will be looking at some of the basic hardware 
details of this microcontroller (much of this Chapter has been taken from the MAX78000 
User Guide: MAX78000 User Guide, UGXXXX; Rev 0.5; 08/31/2020)

2.2 ● Basic features of the MAX78000

One of the problems with developing Artificial Intelligence (AI) based products is the 
requirement for extreme computational power. This can only be achieved by having a fast 
processor in addition to using a processor dedicated to AI. The MAX78000 is a new AI 
microcontroller built to enable neural network applications to be executed with ultra-low-
power and ease of use.

The MAX78000 is an advanced microcontroller featuring an Arm Cortex-M4 with FPU CPU 
for efficient system control and a Convolutional Neural Network (CNN) accelerator. The 
CNN has a weight storage SRAM memory of 442 KB, and can support 1-, 2-, 4-, and 
8-bit weights, enabling AI network updates to be made on the fly. Additionally, the CNN 
engine has 512 KB of data memory, and because of its highly flexible architecture, it 
allows networks to be trained in conventional toolsets (e.g. PyTorch and TensorFlow) and 
converted for execution on the MAX78000 using Maxim tools.

In addition to the memory in the CNN engine, the MAX78000 has large 512 KB flash 
core memory and 128 KB SRAM. The microcontroller supports high-speed communication 
interfaces, such as I2S, I2C, SPI, UART, camera interface, and so on.

The MAX78000 microcontroller can be used in the following applications where high 
processing speeds are required:

• Audio processing (e.g. sound classification, noise cancellation, multi-keyword 
recognition, etc)

• Facial recognition
• Time-series data processing (heart rate signal analysis, health signal analysis, multi-

sensor analysis, etc)

The MAX78000 microcontroller is available in 81-pin and 130-pin packages. Figure 2.1 
shows the simplified internal structure of the MAX78000 microcontroller. On the top right 
of the figure is the CNN engine communicating over the internal multi-layer bus matrix. 
RISC-V and the clock circuitry are located on the top left of the figure. Below the CNN 
engine we can see the peripheral control devices which consist of the following modules:

dogan 2.indd   21dogan 2.indd   21 08/06/2021   22:20:4008/06/2021   22:20:40



How2: Get Started with the MAX78000FTHR Board

● 22

• I2S master/slave
• 3 x I2C
• 3 x UART and 1 x LPUART
• 2 x SPI
• 1-wire master
• 4 x pulse train engines
• 4 x 32-bit timers and wake-up timer
• 2 x 32-bit LPTIMERS
• 1 x parallel camera interface

In the middle left part of the figure we can see the various memory modules, including the 
cache and boot memories. The bottom left part of the figure is where voltage regulation, 
dynamic voltage scaling, and power control are handled. Finally, at the bottom part of the 
figure, we can see the DMA, security modules, ADC, and comparator modules.

Figure 2.1 Internal structure of the MAX78000 microcontroller

dogan 2.indd   22dogan 2.indd   22 08/06/2021   22:20:4208/06/2021   22:20:42



Chapter 2 ● The MAX78000 Microcontroller

● 23

2.2.1 ● The Convolutional Neural Network Accelerator (CNN)

The CNN engine is at the heart of the MAX78000 and it consists of 64 parallel processors 
with 512 KB of SRAM. Each of the processors includes a pooling unit and a convolutional 
engine with dedicated weight memory, where 4 processors share one 32KB data memory. 
These are further organised into groups of 16 processors that share common controls. A 
group of 16 processors operates as a slave to another group or independently. Data is read 
from SRAM associated with each processor and written to any data memory located within 
the accelerator. Any given processor has the visibility of its dedicated weight memory and 
to the data memory instance it shares with the three others. 

Further information on the CNN engine features can be obtained from the document: 
MAX78000 Ultra-Low-Power Arm Cortex-M4 Processor with FPU-Based 
Microcontroller with Convolutional Neural Network Accelerator, located on the 
website: 

https://www.maximintegrated.com/en/products/microcontrollers/MAX78000.html

2.2.2 ● The memory

The internal flash memory providing non-volatile storage of programs and data is 512 KB.
Internal SRAM is 128 KB that provides the retention of application data in all power modes 
except POWER DOWN. The SRAM is divided into 4 banks (see Figure 2.1): SRAM0 and 
SRAM1 are both 32 KB, SRAM2 is 48 KB and SRAM3 is 16 KB.

2.2.3 ● Comparators

The eight AIN[7:0] inputs can be configured as four pairs and deployed as four independent 
comparators with the following features:

• Comparison events can trigger interrupts
• Events can wake the CM4 from SLEEP, LOW POWER, MICRO POWER, STANDBY, or 

BACKUP operating modes
• Can be active in all power modes

2.2.4 ● Clocking

The following can be selected as the clock sources (Figure 2.2):

• Internal primary oscillator (IPO) at a nominal frequency of 100MHz
• Internal secondary oscillator (ISO) at a nominal frequency of 60MHz
• Configurable internal nano-ring oscillator (INRO) at 8kHz, 16kHz, or 30kHz
• External RTC oscillator at 32.768kHz (ERTCO) (external crystal required)
• Internal baud rate oscillator at 7.3728MHz (IBRO)
• External square-wave clock up to 80MHz

dogan 2.indd   23dogan 2.indd   23 08/06/2021   22:20:4208/06/2021   22:20:42



How2: Get Started with the MAX78000FTHR Board

● 24

There are multiple external clock inputs:

• LPTMR0 and LPTMR1 can be clocked from unique external sources
• I2S can be clocked from its own external source

2.2.5 ● General-purpose input-output (GPIO) and special function pins

The MAX78000 microcontroller provides up to 52 GPIO pins. Most general-purpose I/O 
(GPIO) pins share both a firmware-controlled I/O function and one or more alternate 
functions, associated with peripheral modules. Pins can be individually enabled for GPIO or 
peripheral special function use.

Configuring a pin as a special function usually supersedes its use as a firmware-controlled 
I/O. Although this multiplexing between peripheral and GPIO functions is usually static, 

Figure 2.2 Clock sources

dogan 2.indd   24dogan 2.indd   24 08/06/2021   22:20:4308/06/2021   22:20:43



Chapter 2 ● The MAX78000 Microcontroller

● 25

it can also be done dynamically. In GPIO mode, pins are logically divided into ports of 32 
pins. Each pin of a port has an interrupt function that can be independently enabled and 
configured as a level or edge-sensitive interrupt. All GPIOs of a given port share the same 
interrupt vector.

When configured as GPIO, the following features are provided, which can be independently 
enabled or disabled:

• Configurable as input, output, bidirectional, or high impedance
• Optional internal pull-up resistor or internal pull-down resistor when configured as 

input
• Exit from low-power modes on rising or falling edge
• Selectable standard- or high-drive modes

2.2.6 ● Parallel Camera Interface (PCIF)

The Parallel Camera Interface (PCIF) is a peripheral designed to read data from camera 
sensors. The PCIF is a low voltage interface suited for CMOS image sensors. It provides up 
to 12-bits of parallel access capability with single capture and continuous mode operation.

2.2.7 ● Analog-to-Digital Converter (ADC)

The ADC resolution is 10-bits with an 8MHz maximum clock rate, providing an integrated 
reference generator and single-ended input multiplexer. The multiplexer selects an input 
channel from one of the eight external analog input signals (AIN0–AIN7) or the internal 
power supply inputs.

There are two sources for ADC reference voltage:

• Internal 1.22V bandgap
• VSSA analog supply

An optional feature allows samples captured by the ADC to be automatically compared 
against user-programmable high and low limits. Up to four-channel limit pairs can 
be configured in this way. The comparison allows the ADC to trigger an interrupt (and 
potentially wake the CPU from a power mode) when a captured sample goes outside the 
pre-programmed limit range. Since this comparison is performed directly by the sample 
limit monitors, it can be performed even while the CPU is in SLEEP, LOW POWER, or MICRO 
POWER mode. The eight AIN[7:0] inputs of the ADC can be configured as four pairs and 
deployed as four independent comparators.

In addition to the 8 inputs, the ADC can measure several other voltages (see the MAX78000 
datasheet for further information)

dogan 2.indd   25dogan 2.indd   25 08/06/2021   22:20:4308/06/2021   22:20:43



How2: Get Started with the MAX78000FTHR Board

● 26

2.2.8 ● Power management (PMU)

The power management unit (PMU) provides high-performance operation while minimising 
power consumption. It exercises intelligent, precise control of power distribution to the 
CPUs and peripheral circuitry.

The following modes of operation are available (see Table 2.1):

ACTIVE Mode

This is the normal operational mode, all digital and analog peripherals are available on 
demand. Peripherals not in use can be disabled by dynamic clocking.

SLEEP Mode

This mode consumes less power but wakes faster because the clocks can optionally be 
enabled.

LOW POWER Mode (LPM)

This mode is suitable for running the RISC-V processor to collect and move data from 
enabled peripherals.

MICRO POWER Mode (μPM)

This mode is used for extremely low power consumption while using a minimal set of 
peripherals to provide wake-up capability.

STANDBY Mode

This mode is used to maintain the system operation while keeping time with the RTC.

BACKUP Mode

This mode is used to maintain the system RAM.

POWER DOWN Mode (PDM)

This mode is used during product level distribution and storage. All oscillators are powered 
down and there is no data retention in this mode, however values in the flash are preserved.

dogan 2.indd   26dogan 2.indd   26 08/06/2021   22:20:4308/06/2021   22:20:43



Chapter 2 ● The MAX78000 Microcontroller

● 27

In all operating modes other than ACTIVE, wakeup sources are required to re-enter ACTIVE 
operation.

2.2.9 ● Real-time clock (RTC)

The Real-Time Clock (RTC) is a 32-bit binary timer that keeps the time of day up to 136 
years. It provides time-of-day and sub-second alarm functionality in the form of system 
interrupts. The 32-bit seconds register can count up to approximately 136 years and be 
translated to calendar format by application software. The RTC provides a time-of-day 
alarm that can be programmed to any future value between 1 second and 12 days. When 
configured for long intervals, the time-of-day alarm can be used as a power-saving timer, 
allowing the device to remain in an extremely low-power mode, but still awaken periodically 
to perform assigned tasks. A second independent 32-bit 1/4096 sub-second alarm can be 
programmed with a tick resolution of 244μs. Both can be configured as recurring alarms. 
When enabled, either alarm can cause an interrupt or wake the device from most low-power 
modes. The time base is generated by a 32.768kHz crystal or an external clock source.

2.2.10 ● Programmable timers

32-Bit Timer/Counter/PWM (TMR, LPTMR)

General-purpose, 32-bit timers provide timing, capture/compare, or generation of pulse-
width modulated (PWM) signals with minimal software interaction.

The timer provides the following features:

• 32-bit up/down auto-reload
• Programmable prescaler
• PWM output generation
• Capture, compare, and capture/compare capability
• External pin multiplexed with GPIO for timer input, clock gating, or capture

Table 2.1 Power management modes comparison

dogan 2.indd   27dogan 2.indd   27 08/06/2021   22:20:4308/06/2021   22:20:43



How2: Get Started with the MAX78000FTHR Board

● 28

• Timer output pin
• TMR0–TMR3 can be configured as 2 × 16-bit general-purpose timers
• Timer interrupt

The MAX78000 provides six 32-bit timers (TMR0, TMR1, TMR2, TMR3, LPTMR0, and 
LPTMR1). LPTMR0 and LPTMR1 are capable of operation in the SLEEP, LOW POWER, and 
MICRO POWER modes.

I/O functionality is supported for all of the timers. Note that the function of a port can be 
multiplexed with other functions on the GPIO pins, so it might not be possible to use all of 
the ports depending on the device configuration. See Table 3 for individual timer features

2.2.11 ● Watchdog timer (WDT)

The WDT on the MAX78000 is a 32-bit, free-running counter with a configurable Prescaler. 
When enabled, the WDT must be periodically reset by the application software. Failure to 
reset the WDT within the user-configurable timeout period indicates that the application 
software is not operating correctly and results in a WDT timeout. A WDT timeout can trigger 
an interrupt, system reset, or both.

2.2.12 ● Pulse train engine (PTE)

Multiple, independent pulse train generators can provide either a square-wave or a repeating 
pattern from 2 to 32 bits in length. Any single pulse train generator or any desired group of 
pulse train generators can be synchronized at the bit level, allowing for multibit patterns. 
Each pulse train generator is independently configurable.

2.2.13 ● I2C Interface (I2C)

The I2C interface is a bidirectional, two-wire serial bus that provides a medium-speed 
communications network. It can operate as a one-to-one, one-to-many, or many-to-many 
communications medium.

2.2.14 ● I2S Interface (I2S)

The I2S interface is a bidirectional, four-wire serial bus that provides serial communications 
for codecs and audio amplifiers compliant with the I2S Bus Specification. Stereophonic (2 
channel) and monophonic (left or right channel option) both master and slave formats are 
supported.

2.2.15 ● Serial Peripheral Interface (SPI)

SPI is a highly configurable, flexible, and efficient synchronous interface among multiple 
SPI devices on a single bus. The bus uses a single clock signal and multiple data signals, 
and one or more slave select lines to address only the intended target device. The SPI 
operates independently and requires minimal processor overhead.

dogan 2.indd   28dogan 2.indd   28 08/06/2021   22:20:4308/06/2021   22:20:43



Chapter 2 ● The MAX78000 Microcontroller

● 29

2.2.16 ● UART (UART, LPUART)

The universal asynchronous receiver-transmitter (UART, LPUART) interface supports full-
duplex asynchronous communication with optional hardware flow control (HFC) modes to 
prevent data overruns. If HFC mode is enabled on a given port, the system uses two extra 
pins to implement the industry-standard request to send (RTS) and clear to send (CTS) 
flow control signalling. Each instance is individually programmable.

2.2.17 ● 1-Wire Master (OWM)

Maxim's 1-Wire bus consists of one signal that carries data and also supplies power to the 
slave devices and a ground return. The bus master communicates serially with one or more 
slave devices through the bidirectional, multi-drop 1-Wire bus. The single-contact serial 
interface is ideal for communication networks requiring minimal interconnection.

2.2.18 ● DMA Controller

The standard DMA controller allows high-speed automatic one-way data transfer between 
two entities. These entities can be either memories or peripherals. The transfers are done 
without using CPU resources. Interrupts can be enabled for each DMA channel.

2.2.19 ● Security (AES)

The dedicated hardware-based AES engine supports the following algorithms:

• AES-128
• AES-192
• AES-256

The AES keys are automatically generated by the engine and stored in dedicated flash to 
protect against tampering. Key generation and storage are transparent to the user.

2.2.20 ● True Random Number Generator (TRNG) Non-Deterministic Random Bit Generator 
(NDRBG)

The device provides a non-deterministic entropy source that can be used to generate 
cryptographic seeds or strong encryption keys as part of an overall framework for a 
secure customer application. Software can use random numbers to trigger asynchronous 
events that add complexity to program execution to thwart replay attacks or key search 
methodologies.

2.2.21 ● CRC

A Cyclic Redundancy Check (CRC) hardware module provides fast calculations and 
data integrity checks by application software. It supports a user-defined programmable 
polynomial up to 32-bits.

dogan 2.indd   29dogan 2.indd   29 08/06/2021   22:20:4308/06/2021   22:20:43



How2: Get Started with the MAX78000FTHR Board

● 30

2.2.22 ● Bootloader

The bootloader allows loading and verification of program memory through a UART or SWD 
interface.

2.2.23 ● Device Resets

Four device resets are available:

• Peripheral
• Soft
• System
• Power-On

All peripherals are reset with the Peripheral Reset, the CPU retains its state. The GPIO, 
watchdog timers, General Control Registers (GCR), including the clock configuration, are 
unaffected.

Soft Reset is similar to Peripheral Reset, but it also resets the GPIO to its power-on reset 
state.

System Reset is similar to Soft Reset except it also resets all GCR, resetting the clocks and 
the CPU to their default state.

Everything is reset to their default states with the Power-On Reset.

2.2.24 ● Interrupts and Exceptions

Interrupts and exceptions are managed by the Arm Cortex-M4 with FPU Nested Vector 
Interrupt Controller (NVIC) or the RV32 interrupt controller. 8 programmable priority levels 
are provided with nested exception and interrupt support, and interrupt masking.

dogan 2.indd   30dogan 2.indd   30 08/06/2021   22:20:4308/06/2021   22:20:43



Chapter 3 ● Beginning with the MAX78000FTHR Development Board

● 31

Chapter 3 ● Beginning with the MAX78000FTHR Development 
Board

3.1 ● Overview

In this chapter, we will learn how to install software on a PC so we can start writing 
programs for the MAX78000FTHR microcontroller development board.

3.2 ● Installing the Eclipse MaximSDK Software

The quickest and most recommendable way to develop programs for the MAX78000FTHR 
is to install Eclipse MaximSDK on your PC (Windows 10).

The steps are:

• Open the following link on your web browser:

https://www.maximintegrated.com/en/design/software-description.html/
swpart=SFW0010820A

• Click on MaximMicrosSDK.exe (Figure 3.1)

• Click the Download button to download the Maxim Micros SDK (you will find some 
other useful files in this link, such as the MAX78000FTHR schematic, bill of materials, 
PCB, etc). See Figure 3.2

Figure 3.1 Click on MAX78000FTHR

dogan 2.indd   31dogan 2.indd   31 08/06/2021   22:20:4408/06/2021   22:20:44



How2: Get Started with the MAX78000FTHR Board

● 32

• You will have to register at this point with Maxim before you can download the file. 
Follow the required registration details. You will get an email to validate your registration

• The program will be copied to your Download folder. Double click to install the 
program, after accepting the license conditions. The installation will take some time.

• After the installation is complete, the program Eclipse MaximSDK should be under 
Maxim Integrated SDK. You should always start the SDK using the command 
C:\MaximSDK\Tools\Eclipse\cdt\eclipse.bat. This is because the .bat sets 
environment variables and also calls the SDK updater to update documentation 
provided with the SDK, bug fixes, and potentially newer examples.

3.3 ● Using the Eclipse MaximSDK – example MAX78000FTHR program

The SDK contains many example projects for all integrated peripherals, such as I2C, GPIO, 
UART, etc. Looking at these example projects could be very helpful while developing new 
programs. In this section, we will look at a simple example program (Hello_World) which 
flashes the onboard LED every 0.5 seconds and also displays count on a terminal through 
its UART output.

Loading all of the example programs (except the CNN based programs):

The steps to load all the example programs from the installation folders are as follows:

• Start Eclipse MaximSDK and enter a new Workspace name
• Click File -> Import -> General -> Existing Projects -> Next (Figure 3.3)

Figure 3.2 Click on Download

Figure 3.3 Click New and the Maxim Microcontrollers

dogan 2.indd   32dogan 2.indd   32 08/06/2021   22:20:4408/06/2021   22:20:44



Chapter 3 ● Beginning with the MAX78000FTHR Development Board

● 33

• Browse to C:\MaximSDK\Examples\MAX78000 if you didn't change your install 
path.

• Make sure to check Copy projects into workspace
• Click Finish

You should now see all the example projects loaded into your workspace (Figure 3.4)

• Now, let us select, compile and run the program named Hello_World. Expand this 
program and then double click on file Makefile. Change the line shown in Figure 3.5 
so that the program is configured for the MAX78000FTHR board.

Figure 3.4 All example projects loaded into workspace

Figure 3.5 Edit file Makefile

dogan 2.indd   33dogan 2.indd   33 08/06/2021   22:20:4508/06/2021   22:20:45



How2: Get Started with the MAX78000FTHR Board

● 34

• Double click on main.c to list the program
• Click on Project -> Build Project to build the project. Check the console display at 

the bottom part of the screen to make sure that there are no build errors (see Figure 
3.6).

This example was built in debug mode. At the beginning of the program, the header files 
of the functions used in the library are included. The program displays the message Hello 
World! on a terminal and then flashes the LED every 500ms. Additionally, a counter is 
incremented and displayed on a terminal emulation program, e.g. using e.g. Putty or 
Terraterm or HyperTerm. In this project, we will run the program in debug mode and 
observe the LED flashing and the counter updating on the terminal.

Running in debug mode

The steps to run the program in debug mode are:

• Connect the MAX78000FTHR development board to your PC using a micro USB cable
• Open Device Manager on your PC and note the COM port name assigned to 

MAX78000FTHR  (e.g. COM5)
• Run a terminal emulation program on your PC. For example, run Putty and set the 

Connection type to Serial, Serial line to COM5, and Speed to 115200 (see Figure 
3.7)

• Click Open on Putty

Figure 3.6 Make sure there are no build errors

dogan 2.indd   34dogan 2.indd   34 08/06/2021   22:20:4508/06/2021   22:20:45



Chapter 3 ● Beginning with the MAX78000FTHR Development Board

● 35

• Click Run, followed by Debug Configurations on your Eclipse
• Click GDB OpenOCD Debugging and then click Hello_World (Figure 3.8)

• Click Debug to start the debugging session
• You should now see the cursor positioned at the first executable statement of the 

program. The green LED should be flashing on your hardware to indicate that we are 
in the debug session

• Perhaps the easiest thing to do now is single-step through the program statements. 
Press Function key F6 to move between the statements of the program. You should 
see the cursor moving to the next statements. The LED should turn ON just after the 

Figure 3.7 Configure Putty

Figure 3.8 Debug Configuration

dogan 2.indd   35dogan 2.indd   35 08/06/2021   22:20:4608/06/2021   22:20:46



How2: Get Started with the MAX78000FTHR Board

● 36

LED_On statement is executed. Keep pressing F6 for a few iterations of the loop to 
make sure that the program is stepping through the statements correctly.

• We can examine the variables as we single-step through the program. For example, the 
value of variable count is displayed on the top right side of the screen (debug watch 
window) and this value will increment every time we go round the loop (Figure 3.9)

• Make sure the Variables tab is selected at the debug watch window. Write click 
on variable count and you should be able to change the number base (decimal, 
hexadecimal, binary, and octal), display as array, etc.

• We can set breakpoints in the program and then run the program up to the breakpoint 
and examine the variables. For example, to set a breakpoint at the printf statement, 
place the cursor on the blue line at the left of line number 69 and right-click the mouse. 
Then, select Add Breakpoint. You should see a small green mark on the left-hand 
side of the statement to indicate the presence of the breakpoint. Now press keys 
Ctrl+R. You should see the program running and then stopping at the point where the 
breakpoint is placed. At the same time, the value of count will be incremented.

• To remove the breakpoint, place the cursor on the breakpoint marker and right-click 
the mouse. Select Disable Breakpoint. Alternatively, click Run, followed by Remove 
All Breakpoints to remove all breakpoints.

• All other breakpoint instructions are available by clicking Run.
• After testing a program, we may want to run it continuously. This can be done by 

clicking Run, followed by Resume, or simply by pressing Function key F8. You should 
now see the LED flashing continuously every 0.5 seconds and the count incrementing 
on the terminal emulation screen (Figure 3.10).

Figure 3.9 Examine the value of count

dogan 2.indd   36dogan 2.indd   36 08/06/2021   22:20:4708/06/2021   22:20:47



Chapter 3 ● Beginning with the MAX78000FTHR Development Board

● 37

• To terminate the program, click Run, followed by Terminate, or simply Ctrl+F2.
• To return to normal programming mode, click the button C/C++ on the top right 

corner of the screen (Figure 3.11)

You can also run the program continuously by restarting the MAX78000FTHR.

Notice the console of the MAX78000FTHR is routed to UART0 (this can be a header), 
connected to the MAX32625 debugger. You can display the output of the virtual com port 
with putty (blue flashing LED on the FTHR board indicate UART traffic). Nevertheless; this 
behaviour can be changed in file board.h in C:\MaximSDK\Libraries\Boards\MAX78000\
FTHR_RevA\Include by changing #define CONSOLE_UART 0. If you want to have the 
console on pins 7 and 8 change it to 2.

Examining the program

The program listing is shown in Figure 3.12. Although the program is very simple, it is 
worthwhile to look at the operation of this program.

Figure 3.10 Counting on the display

Figure 3.11 Click C/C++

dogan 2.indd   37dogan 2.indd   37 08/06/2021   22:20:4708/06/2021   22:20:47



How2: Get Started with the MAX78000FTHR Board

● 38

/***** Includes *****/
#include <stdio.h>
#include <stdint.h>
#include "mxc_device.h"
#include "led.h"
#include "board.h"
#include "mxc_delay.h"

/***** Definitions *****/

/***** Globals *****/

/***** Functions *****/

// *****************************************************************************
int main(void)
{
    int count = 0;
    
    printf("Hello World!\n");
    
    while (1) {
        LED_On(LED1);
        MXC_Delay(500000);
        LED_Off(LED1);
        MXC_Delay(500000);
        printf("count : %d\n", count++);
    }
}

<stdio.h> and <stdint.h> are the standard C header files. 

board.h defines the configurations of the components on the board. For example, the 
UART port and speed, I2C ports, on-board LED states (LED_ON, LED_OFF), on-board LED 
ports (LED1 = 0, LED2 = 1), console initialisation, microphone power control, and camera 
power control.

led.h defines the on-board LED states, LED initialisation, and LED toggle

mxc_device.h defines the target device

Figure 3.12 Program listing

dogan 2.indd   38dogan 2.indd   38 08/06/2021   22:20:4708/06/2021   22:20:47



Chapter 3 ● Beginning with the MAX78000FTHR Development Board

● 39

mxc_delay.h defines the following delay functions:
 MXC_Delay(n)   n microseconds delay (blocking)
 MXC_DelayAsync(n)  n microseconds delay (non-blocking)
 MXC_DelayCheck()  returns the status of a non-blocking delay   
     request
 MXC_DelayAbort()  stop a delay started earlier
 MXC_DelayHandler()  process the delay interrupt

Additionally, the following Macros are defined by mxc_delay.h:

 MXC_Delay_SEC()
 MXC_Delay_MSEC()
 MXC_Delay_US()

For example, we can use the function call MXC_Delay(SEC(1)) to introduce a 1-second 
delay.

Loading a single example program

There are several ways a single example program can be loaded from the SDK installation 
folders. The steps given below will load the example program Hello_World:

• Start Eclipse MaximSDK and enter a new Workspace name
• Click File -> New, followed by Maxim Microcontrollers (Figure 3.13)

• Enter a name for your project, e.g. Project1, and click Next
• Fill in the Select Project Configuration form as follows (see Figure 3.14). Notice 

Hello_World is the example program we will be using:

Figure 3.13 Click New and the Maxim Microcontrollers

dogan 2.indd   39dogan 2.indd   39 08/06/2021   22:20:4808/06/2021   22:20:48



How2: Get Started with the MAX78000FTHR Board

● 40

Chip type:    MAX78000
Select board type:   FTHR_RevA
Select example type:   Hello_World
Select adapter type:   MAX32625_PICO

• Click Finish. Eclipse will open your project so that you may edit, compile and debug. 
Alter the Makefile and change the board to FTHR_RevA as described earlier. Open 
main.c by double-clicking on it. The Eclipse Project Explorer window is shown in 
Figure 3.15. Figure 3.16 shows part of the program listing (the Maxim Copyright text at 
the beginning of the program has been omitted to save space. This text must however 
be included in all example programs as provided by Maxim).

Figure 3.14 Fill in the project configuration

Figure 3.15 Eclipse Project Explorer window

dogan 2.indd   40dogan 2.indd   40 08/06/2021   22:20:4808/06/2021   22:20:48



Chapter 3 ● Beginning with the MAX78000FTHR Development Board

● 41

• Build the program by clicking Project, followed by Build All (or Ctrl+B).
• Click Run, followed by Debug Configurations. Click GDB OpenOCD Debugging and 

click Project1. The program should start in debug mode after a short while.
• Click Run -> Resume to run the program without any breakpoints

3.4 ● Project 1 – Creating a C program – display message

Description: In this section, we will create a program that displays the message !!!Hello 
World!!!  on a PC screen. This program is independent of the MAX78000FTHR and is not 
loaded to its memory.

The steps are:

• Start Eclipse MaximSDK
• Give a name to your Workspace (e.g. Work2) as shown in Figure 3.17

Figure 3.16 Part of the program listing

dogan 2.indd   41dogan 2.indd   41 08/06/2021   22:20:4908/06/2021   22:20:49



How2: Get Started with the MAX78000FTHR Board

● 42

• Click New followed by Projects under Maxim Microcontrollers (Figure 3.18)

• Click to expand C/C++ and then press C Project (Figure 3.19). Click Next to continue

Figure 3.17 Give a name to your workspace

Figure 3.18 Select Projects

dogan 2.indd   42dogan 2.indd   42 08/06/2021   22:20:5008/06/2021   22:20:50



Chapter 3 ● Beginning with the MAX78000FTHR Development Board

● 43

• Select Hello World ANSI C Project under Project type, and select MINGW GCC as 
the Toolchain give a name to your project (e.g. Project2) and click Next

• Give a name to the author field and click Next
• Check both Debug and Release
• Click Next and Finish
• You should now see your workspace with the program as shown in Figure 3.20

Figure 3.19 Click C Project

Figure 3.20 Workspace with the program

dogan 2.indd   43dogan 2.indd   43 08/06/2021   22:20:5108/06/2021   22:20:51



How2: Get Started with the MAX78000FTHR Board

● 44

• Click Project -> Build configurations -> Set Active and select Release
• Click Project, followed by Build All (or simply click Ctrl+B) to build the project. Make 

sure there are no error messages are displayed at the bottom part (Console) of the 
screen

• Click Run, followed by Run configurations
• Double click C/C++ Application, and click Run
• You should see the message !!!Hello World!!! Displayed on the screen

Description: In this project, we will turn ON/OFF the onboard RGB LED in sequence as 
follows: First the Red colour will be ON, then after a second the Red will be OFF and the 
Green colour will be ON. Then the Green will be OFF and the Blue colour will be ON. Finally, 
all colours will be OFF. This sequence will be repeated until stopped by the user.

The steps to access this simple example are the same as in Section 3.3 and are repeated 
below:

• Start the Eclipse MaximSDK and click New, followed by Maxim Microcontrollers
• Enter a name for your project, e.g. RGB, and click Next
• Fill in the Select Project Configuration form. Notice Hello_World is the example program 

we will be using:

Chip type:    MAX78000
Select board type:   FTHR_RevA
Select example type:   Hello_World
Select adapter type:   MAX32625_PICO

• Alter the Makefile and change the board to FTHR_RevA as described earlier. Open 
main.c by double-clicking. Delete the main program code and enter the code shown in 
Figure 3.21. In this program, function LED_RGB is called to turn ON/OFF a specified 
colour of the onboard RGB LED. For example, calling LED_RGB(1, 0, 0) turns ON the 
Red LED and so on.

/*******************************************************************************
       ON-BOARD RGB LED CONTROL
       ========================

This program flashes the on-booard RGB LED colours

Author: Dogan Ibrahim
File: LED
Date: March 2021
 ******************************************************************************/
#include "mxc_device.h"
#include "led.h"
#include "board.h"
#include "mxc_delay.h"

dogan 2.indd   44dogan 2.indd   44 08/06/2021   22:20:5208/06/2021   22:20:52



Chapter 3 ● Beginning with the MAX78000FTHR Development Board

● 45

//
// Turn ON/OFF the on-board RGB LED colours
//
void LED_RGB(uint8_t r, uint8_t g, uint8_t b)
{
 if (r == 0)
  LED_Off(LED_RED);
 else
  LED_On(LED_RED);

 if (g == 0)
  LED_Off(LED_GREEN);
 else
  LED_On(LED_GREEN);

 if (b == 0)
  LED_Off(LED_BLUE);
 else
  LED_On(LED_BLUE);
}

int main(void)
{
 while(1)
 {
  LED_RGB(1,0,0);    // RED ON
  MXC_Delay(SEC(1));   // Wait 1 second
  LED_RGB(0,1,0);    // GREEN ON
  MXC_Delay(SEC(1));   // Wait 1 second
  LED_RGB(0,0,1);    // BLUE ON
  MXC_Delay(SEC(1));   // Wait 1 second
  LED_RGB(0,0,0);    // All OFF
  MXC_Delay(SEC(1));   // Wait 1 second
 }
}

Build the program by clicking Project, followed by Build All (or Ctrl+B) to build the 
program. Click Run, followed by Debug Configurations. Click GDB OpenOCD Debugging 
and click LED. The program should start to run after a short while.

Figure 3.21 Program listing

dogan 2.indd   45dogan 2.indd   45 08/06/2021   22:20:5208/06/2021   22:20:52



How2: Get Started with the MAX78000FTHR Board

● 46

Chapter 4 ● Simple MAX78000FTHR Hardware Projects

4.1 ● Overview

In this chapter, we will develop simple embedded projects to show how the MAX78000FTHR 
board can be used in projects. These projects aim to make readers more familiar with the 
various features of the MAX78000FTHR development board.

The following sub-headings are given (where appropriate) for each project:

• Title
• Description
• Aim of the project
• Block diagram
• Circuit diagram
• Project construction
• Program listing and a full description
• Suggestions for more work

It is recommended that the readers start from the first project since some of the later 
projects may depend on the hardware/software of the earlier projects.

4.2 ● Project 1 – External flashing LED (+1.8V output port voltage)

Description: In this project, an external LED is connected to one of the GPIO ports of the 
MAX78000. The project flashes the LED every 250ms.

Aim: This project aims to show how an external LED can be connected and controlled from 
a program.

Block diagram: Figure 4.1 shows the block diagram of the project

Figure 4.1 Block diagram of the project

dogan 2.indd   46dogan 2.indd   46 08/06/2021   22:20:5208/06/2021   22:20:52



Chapter 4 ● Simple MAX78000FTHR Hardware Projects

● 47

Circuit diagram: There are two basic ways that we can connect an LED to a microcontroller 
output port: in source mode, and sink mode.

Figure 4.2 shows the connection in source mode. Here, the cathode of the LED is connected 
to ground. The anode is connected to the output port through a current limiting resistor. 
In this configuration, the LED is turned ON when logic 1 is applied to the output port pin.

The value of the current limiting resistor can be calculated as follows: The voltage drop 
across a red LED is about 2V. The current through the LED depends on the LED specifications 
and can vary from a few milliamperes to up to 16mA. In this project, we will be using small 
LEDs with 1mA operating current. The required resistor value is then given by:

 R = (Voh – 2) / 1mA

Where Voh is the output HIGH voltage of the microcontroller, and R is in KOhms.

The output HIGH voltage of the MAX78000 microcontroller in default mode is only 
+1.8V and therefore the LED cannot be connected in source mode since the voltage is less 
than the required LED operating voltage (we will see in a later project how to change the 
port output voltage to +3.3V).

Figure 4.3 shows the LED connected in current sink mode. In this configuration, the anode 
of the LED is connected to the supply voltage. The LED is turned ON when the port output 
pin is at logic 0. In this configuration, the value of the current limiting resistor is calculated 
as:

 R = (Vs - Vol – 2) / 1mA

Figure 4.2 Connecting in current source mode

dogan 2.indd   47dogan 2.indd   47 08/06/2021   22:20:5208/06/2021   22:20:52



How2: Get Started with the MAX78000FTHR Board

● 48

Where Vs is the supply voltage, Vol is the output low voltage of the port pin and R is in 
KOhms. The typical Vol of the MAX78000 microcontroller is 0.2V. Using a supply voltage 
of Vs = 3.3V, the required resistor value is:

 R = (3.3 – 0.2 – 2) / 1mA

Which gives R = 1100 Ohm. We will choose 1K for a slightly higher current than 1mA which 
will give a slightly higher brightness.

Figure 4.4 shows the circuit diagram of the project where the LED is connected in current 
sink mode. Pin 7 of Port 2 (P2_7) is used in this project. Power is supplied from +3.3V (pin 
2) of the MAX78000FTHR.

Construction: Figure 4.5 shows the project constructed on a breadboard and connections 
made using jumper wires.

Figure 4.3 Connecting in current sink mode

Figure 4.4 Circuit diagram of the project

dogan 2.indd   48dogan 2.indd   48 08/06/2021   22:20:5208/06/2021   22:20:52



Chapter 4 ● Simple MAX78000FTHR Hardware Projects

● 49

Program listing: The program listing (FlashLED) is shown in Figure 4.6. The program 
was built in workspace FlashLED. At the beginning of the program, the header files of the 
modules used are included.

/*------------------------------------------------------------------
   FLASH EXTERNAL LED

This program flashes an external LED connecte to port pin P2_7
every 250ms

Author: Dogan Ibrahim
Date  : March 2021
Work  : FlashLED
-------------------------------------------------------------------*/
/***** Includes *****/
#include <stdio.h>
#include <stdint.h>
#include "mxc_device.h"
#include "mxc_delay.h"

/***** Main program *****/
int main(void)
{
 mxc_gpio_cfg_t gpio_out;

/* Setup output pin P2_7 */
    gpio_out.port = MXC_GPIO2;    // Port 2
    gpio_out.mask = MXC_GPIO_PIN_7;   // Pin 7
    gpio_out.pad = MXC_GPIO_PAD_NONE;   // None
    gpio_out.func = MXC_GPIO_FUNC_OUT;   // Output
    MXC_GPIO_Config(&gpio_out);
    
    while (1)      // Do forever

Figure 4.5 Construction of the project

dogan 2.indd   49dogan 2.indd   49 08/06/2021   22:20:5208/06/2021   22:20:52



How2: Get Started with the MAX78000FTHR Board

● 50

    {
     MXC_GPIO_OutSet(gpio_out.port, gpio_out.mask); // LED OFF
        MXC_Delay(250000);    // Wait 250ms
        MXC_GPIO_OutClr(gpio_out.port, gpio_out.mask); // LED ON
        MXC_Delay(250000);    // Wait 250ms
    }
}

Port pin P2_7 (Port 2 pin 7) is configured as an output port using the structure mxc_gpio_
cfg_t. The remainder of the program runs in an endless loop. Inside this loop, the LED is 
turned ON and OFF every 250000 microseconds (i.e. 250 ms). The port pin is set to logic 1 
(i.e. LED OFF) with the function call:

MXC_GPIO_OutSet(gpio_out.port, gpio_out.mask);  // LED OFF

And to logic 0 (i.e. LED ON) with the function call:

MXC_GPIO_OutClr(gpio_out.port, gpio_out.mask);  // LED ON

4.3 ● Project 2 – Alternately flashing LEDs (+1.8V output port voltage)

Description: In this project, two LEDs are connected to four GPIO ports. The LEDs are 
turned ON/OFF alternately

Aim: This project aims to show how more than one LED can be connected to the 
MAX78000FTHR.

Block diagram: The block diagram of the project is shown in Figure 4.7.

Figure 4.6 Program listing

Figure 4.7 Block diagram of the project

dogan 2.indd   50dogan 2.indd   50 08/06/2021   22:20:5308/06/2021   22:20:53



Chapter 4 ● Simple MAX78000FTHR Hardware Projects

● 51

Circuit diagram: The circuit diagram of the project is shown in Figure 4.8. The two LEDs 
are connected to the port pins P2_6 and P2_7 through 1K current limiting resistors in 
current sink mode.

Construction: Figure 4.9 shows the project constructed on a breadboard and connections 
made using jumper wires.

Program listing: The program listing (Flash2LED) is shown in Figure 4.10. At the 
beginning of the program, the header files of the modules used are included. Pins P2_6 and 
P2_7 are then configured as outputs. The remainder of the program runs in a loop where 
the two LEDs are flashed alternately.

Figure 4.8 Circuit diagram of the project

Figure 4.9 Construction of the project

dogan 2.indd   51dogan 2.indd   51 08/06/2021   22:20:5308/06/2021   22:20:53



How2: Get Started with the MAX78000FTHR Board

● 52

/*------------------------------------------------------------------ 
  FLASH EXTERNAL LED 
 
This program flashes an external LED connected to port pin P2_7 
every 250ms 
 
Author: Dogan Ibrahim 
Date  : March 2021 
Work  : Flash2LED 
-------------------------------------------------------------------*/ 
/***** Includes *****/ 
#include <stdio.h> 
#include <stdint.h> 
#include "mxc_device.h" 
#include "mxc_delay.h" 
 
/***** Main program *****/ 
int main(void) 
{ 
    mxc_gpio_cfg_t gpio_out7; 
    mxc_gpio_cfg_t gpio_out6; 
 
/* Setup output pin P2_7 */ 
    gpio_out7.port = MXC_GPIO2;     // Port 2 
    gpio_out7.mask = MXC_GPIO_PIN_7;    // Pin 7 
    gpio_out7.pad = MXC_GPIO_PAD_NONE;    // None 
    gpio_out7.func = MXC_GPIO_FUNC_OUT;    // Output 
    MXC_GPIO_Config(&gpio_out7); 
 
/* Setup output pin P2_6 */ 
    gpio_out6.port = MXC_GPIO2;     // Port 2 
    gpio_out6.mask = MXC_GPIO_PIN_6;    // Pin 6 
    gpio_out6.pad = MXC_GPIO_PAD_NONE;    // None 
    gpio_out6.func = MXC_GPIO_FUNC_OUT;    // Output 
    MXC_GPIO_Config(&gpio_out6); 
     
    while (1)       // Do forever 
    { 
     MXC_GPIO_OutSet(gpio_out6.port, gpio_out6.mask); // LED at P2_6 OFF 
     MXC_GPIO_OutClr(gpio_out7.port, gpio_out7.mask); // LED at P2_7 ON 
        MXC_Delay(250000);     // Wait 250ms 
        MXC_GPIO_OutSet(gpio_out7.port, gpio_out7.mask); // LED at P2_7 OFF 
        MXC_GPIO_OutClr(gpio_out6.port, gpio_out6.mask); // LED at P2_6 ON 
        MXC_Delay(250000);     // Wait 250ms 
    } 
}

Figure 4.10 Program listing

dogan 2.indd   52dogan 2.indd   52 08/06/2021   22:20:5308/06/2021   22:20:53



Chapter 4 ● Simple MAX78000FTHR Hardware Projects

● 53

4.4 ● Project 3 – Alternately flashing LEDs (+3.3V output port voltage)

Description: This project is similar to the previous one where two LEDs are used and 
flashed alternately. In this program, the port output voltage is set to +3.3V and the LEDs 
are connected in current source mode, i.e. an LED is turned ON when logic 1 is applied to it.

Aim: This project aims to show how the port pins can be set to +3.3V (rather than the 
default +1.8V).

Block diagram: The block diagram of the project is the same as in Figure 4.7.

Circuit diagram: Figure 4.11 shows the circuit diagram of the project. The two LEDs 
are connected to the MAX78000FTHR in current source mode through 1K current limiting 
resistors.

Program listing: The program listing (Flash3LED) is shown in Figure 4.12. At the 
beginning of the program, the header files of the modules used are included. Pins P2_6 and 
P2_7 are then configured as outputs. Notice the two pins are logically Ored in the same 
structure. Port output voltage is set to +3.3V by the following function call:

gpio.out.vssel = MXC_GPIO_VSSEL_VDDIOH;  // Set port to +3.3V

To set the output port to +1.8V use the following option:

MXC_GPIO_VSSEL_VDDIO

The remainder of the program runs in a loop where the two LEDs are alternately flashed

Figure 4.11 Circuit diagram of the project

dogan 2.indd   53dogan 2.indd   53 08/06/2021   22:20:5308/06/2021   22:20:53



How2: Get Started with the MAX78000FTHR Board

● 54

/*------------------------------------------------------------------
  FLASH EXTERNAL LED

This program flashes alternately 2 external LED connected to port
pins P2_6 and P2_7 every 250ms.

In this version, the LEDs are connected in current sourcing mode
and the port output is set to +3.3V

Author: Dogan Ibrahim
Date  : March 2021
Work  : Flash3LED
-------------------------------------------------------------------*/
/***** Includes *****/
#include <stdio.h>
#include <stdint.h>
#include "mxc_device.h"
#include "mxc_delay.h"

/***** Main program *****/
int main(void)
{
 mxc_gpio_cfg_t gpio_out;
 
/* Setup output pins P2_6 and P2_7 */
    gpio_out.port = MXC_GPIO2;     // Port 2
    gpio_out.mask = MXC_GPIO_PIN_6 | MXC_GPIO_PIN_7;  // Pins 6, 7
    gpio_out.pad = MXC_GPIO_PAD_NONE;    // None
    gpio_out.func = MXC_GPIO_FUNC_OUT;    // Output
    gpio_out.vssel = MXC_GPIO_VSSEL_VDDIOH;   // Set port to +3.3V
    MXC_GPIO_Config(&gpio_out);
    
    while (1)       // Do forever
    {
     MXC_GPIO_OutSet(gpio_out.port, MXC_GPIO_PIN_6);  // LED at P2_6 ON
     MXC_GPIO_OutClr(gpio_out.port, MXC_GPIO_PIN_7);  // LED at P2_7 OFF
        MXC_Delay(250000);     // Wait 250ms
        MXC_GPIO_OutSet(gpio_out.port, MXC_GPIO_PIN_7);  // LED at P2_7 ON
        MXC_GPIO_OutClr(gpio_out.port, MXC_GPIO_PIN_6);  // LED at P2_6 OFF
        MXC_Delay(250000);     // Wait 250ms
    }
}

From now onwards, we will be setting the output port logic HIGH voltages to +3.3V in the 
remaining projects where the GPIO ports are used.

Figure 4.12 Program listing

dogan 2.indd   54dogan 2.indd   54 08/06/2021   22:20:5308/06/2021   22:20:53



Chapter 4 ● Simple MAX78000FTHR Hardware Projects

● 55

The absolute maximum current ratings of the MAX78000FTHR GPIO ports are as follows 
(these limits must not be exceeded, otherwise the chip may be damaged):

 Output sink current by any GPIO pin: 25 mA
 Output source current by any GPIO pin: -25 mA
 Combined pins (sink with LOW output): 100 mA
 Combined pins (sink with HIGH outputs): 100 mA

4.5 ● Project 4 – Rotating LEDs – same port pins

Description: In this project, four LEDs are connected to four pins of the same GPIO port. 
The LEDs are turned ON/OFF in a rotating manner where only one LED is ON at any given 
time. i.e., the required LED pattern is as shown in Figure 4.13.

Aim: This project aims to show how an array and a for loop can be used in a program to 
control multiple devices (LEDs) connected to the GPIO ports.

Block diagram: The block diagram of the project is shown in Figure 4.14.

Figure 4.13 Rotating LEDs

Figure 4.14 Block diagram of the project

dogan 2.indd   55dogan 2.indd   55 08/06/2021   22:20:5408/06/2021   22:20:54



How2: Get Started with the MAX78000FTHR Board

● 56

Circuit diagram: The circuit diagram of the project is shown in Figure 4.15. The LEDs 
are connected to the port pins P0_7, P0_5, P0_6, and P0_17 through 1K current limiting 
resistors. The LEDs are connected to Port 0 pins. All the LEDs are connected in current 
source mode.

Program listing: Figure 4.16 shows the program listing (RotateLED). At the beginning of 
the program, the LEDs are assigned to Port 0 pins:

#define led0 MXC_GPIO_PIN_7
#define led1 MXC_GPIO_PIN_5
#define led2 MXC_GPIO_PIN_6
#define led3 MXC_GPIO_PIN_17

An array called LEDS is created which stores the LED assignments:

int LEDS[] = {led0, led1, led2, led3};

The LEDs are configured as outputs. The remaining parts of the program run in a while 
loop. Inside this loop, a for loop is formed which iterates 4 times and turns the LEDs ON 
and OFF to give the rotating effect. Notice in this program all the used port pins are from 
the same port (Port 0).

Figure 4.15 Circuit diagram of the project

dogan 2.indd   56dogan 2.indd   56 08/06/2021   22:20:5408/06/2021   22:20:54



Chapter 4 ● Simple MAX78000FTHR Hardware Projects

● 57

/*------------------------------------------------------------------
  ROTATE LEDs

In this program 4 LEDs are connected to PORT 0. The program turns
the LEDs ON/OFF in a rotating manner as descibed in the text
Author: Dogan Ibrahim
Date  : March 2021
Work  : RotateLED
-------------------------------------------------------------------*/
/***** Includes *****/
#include <stdio.h>
#include <stdint.h>
#include "mxc_device.h"
#include "mxc_delay.h"

#define led0 MXC_GPIO_PIN_7
#define led1 MXC_GPIO_PIN_5
#define led2 MXC_GPIO_PIN_6
#define led3 MXC_GPIO_PIN_17
int LEDS[] = {led0, led1, led2, led3};

/***** Main program *****/
int main(void)
{
 int j;
 mxc_gpio_cfg_t gpio_out;
 
/* Setup output pins P0_7,P0_5,P0_6,P0_17 */
    gpio_out.port = MXC_GPIO0;     // Port 2
    gpio_out.mask = led0 | led1 | led2 | led3;   // Pins 6, 7
    gpio_out.pad = MXC_GPIO_PAD_NONE;    // None
    gpio_out.func = MXC_GPIO_FUNC_OUT;    // Output
    gpio_out.vssel = MXC_GPIO_VSSEL_VDDIOH;   // Set port to +3.3V
    MXC_GPIO_Config(&gpio_out);
    
    while (1)       // Do forever
    {
     for(j = 0; j < 4; j++)     // Do for 4 LEDs
     {
      MXC_GPIO_OutSet(gpio_out.port, LEDS[j]); // LED[j] ON
      MXC_Delay(250000);    // Wait 250ms
      MXC_GPIO_OutClr(gpio_out.port, LEDS[j]); // LED[j] OFF
      MXC_Delay(250000);    // Wait 250ms
        }
    }
}

Figure 4.16 Program listing

dogan 2.indd   57dogan 2.indd   57 08/06/2021   22:20:5408/06/2021   22:20:54



How2: Get Started with the MAX78000FTHR Board

● 58

4.6 ● Project 5 – Rotating LEDs – different port pins

Description: This project is similar to the previous one, but the LEDs are not all connected 
to the same port. The LEDs are turned ON/OFF in a rotating manner as in the previous 
project where only one LED is ON at any given time. i.e. the required LED pattern is as 
shown in Figure 4.13.

Block diagram: The block diagram of the project is as in Figure 4.14.

Circuit diagram: The circuit diagram of the project is shown in Figure 4.17. The LEDs 
are connected to the port pins P0_5, P0_6, P2_6, and P2_7 through 1K current limiting 
resistors in current source mode.

Program listing: Figure 4.18 shows the program listing (Rotate2LED). An array called PORTS 
is created to store the port numbers. Corresponding pin numbers are stored in array LEDS:

#define led0 MXC_GPIO_PIN_7
#define led1 MXC_GPIO_PIN_5
#define led2 MXC_GPIO_PIN_6
#define led3 MXC_GPIO_PIN_17

int LEDS[] = {led0, led1, led2, led3}; // 0,1 on P0, 2,3 on P2
int PORTS[] = {0, 0, 2, 2};   // Ports 0, 0, 2, 2

Port 0 and Port 2 are then configured. The remaining parts of the program run in a while 
loop. Inside this loop, a for loop is formed which iterates 4 times. The port number is 
checked and if it is 0, gpio0_out is used, otherwise gpio2_out.

Figure 4.17 Circuit diagram of the project

dogan 2.indd   58dogan 2.indd   58 08/06/2021   22:20:5408/06/2021   22:20:54



Chapter 4 ● Simple MAX78000FTHR Hardware Projects

● 59

/*--------------------------------------------------------------------
   ROTATE LEDs

In this program 4 LEDs are connected to PORT 0 and Port 2. The program
turns the LEDs ON/OFF in a rotating manner as descibed in the text.

In this version of the program different ports are used

Author: Dogan Ibrahim
Date  : March 2021
Work  : Rotate2LED
----------------------------------------------------------------------*/
/***** Includes *****/
#include <stdio.h>
#include <stdint.h>
#include "mxc_device.h"
#include "mxc_delay.h"

#define led0 MXC_GPIO_PIN_5   // P0_5
#define led1 MXC_GPIO_PIN_6   // P0_6
#define led2 MXC_GPIO_PIN_6   // P2_6
#define led3 MXC_GPIO_PIN_7   // P2_7
int LEDS[] = {led0, led1, led2, led3};  // 0,1 on P0, 2,3 on P2
int PORTS[] = {0, 0, 2, 2};   // Ports 0,0,2,2

/***** Main program *****/
int main(void)
{
 int j;
 mxc_gpio_cfg_t gpio0_out;
 mxc_gpio_cfg_t gpio2_out;
 
/* Setup output pins P0_5,P0_6 */
    gpio0_out.port = MXC_GPIO0;   // Port 0
    gpio0_out.mask = led0 | led1;  // Pins 5, 6
    gpio0_out.pad = MXC_GPIO_PAD_NONE;  // None
    gpio0_out.func = MXC_GPIO_FUNC_OUT;  // Output
    gpio0_out.vssel = MXC_GPIO_VSSEL_VDDIOH; // Set port to +3.3V
    MXC_GPIO_Config(&gpio0_out);
    
/* Setup output pins P2_6,P2_7 */
    gpio2_out.port = MXC_GPIO2;   // Port 2
    gpio2_out.mask = led2 | led3;  // Pins 6, 7
    gpio2_out.pad = MXC_GPIO_PAD_NONE;  // None
    gpio2_out.func = MXC_GPIO_FUNC_OUT;  // Output
    gpio2_out.vssel = MXC_GPIO_VSSEL_VDDIOH; // Set port to +3.3V

dogan 2.indd   59dogan 2.indd   59 08/06/2021   22:20:5408/06/2021   22:20:54



How2: Get Started with the MAX78000FTHR Board

● 60

    MXC_GPIO_Config(&gpio2_out);    
    
    while (1)       // Do forever
    {
     for(j = 0; j < 4; j++)     // Do for 4 LEDs
     {
      if(PORTS[j] == 0)     // If PORT 0
       MXC_GPIO_OutSet(gpio0_out.port, LEDS[j]); // LED[j] ON
      else if(PORTS[j] == 2)     // If Port 2
       MXC_GPIO_OutSet(gpio2_out.port, LEDS[j]);
      MXC_Delay(250000);    // Wait 250ms
      
      if(PORTS[j] == 0)     // If Port 0
       MXC_GPIO_OutClr(gpio0_out.port, LEDS[j]); // LED[j] ON
      else if(PORTS[j] == 2)     // If Port 2
       MXC_GPIO_OutClr(gpio2_out.port, LEDS[j]);     
      MXC_Delay(250000);    // Wait 250ms
        }
    }

4.7 ● Project 6 – Binary up counter with LEDs

Description: In this project 4 LEDs are connected to Port 0 pins P0_7, P0_5, P0_6, P0_17 
as in Project 4. The program counts up from 0 to 15 continuously and turns ON/OFF the 
appropriate LEDs to show the count. A one second delay is inserted between each count. 
Figure 4.19 shows the count with the LEDs.

Figure 4.18 Program listing

Figure 4.19 Counting up in binary

dogan 2.indd   60dogan 2.indd   60 08/06/2021   22:20:5408/06/2021   22:20:54



Chapter 4 ● Simple MAX78000FTHR Hardware Projects

● 61

Aim: This project aims to show how several port pins can be grouped together and then 
accessed as a group. Here, 4 pins are grouped and accessed as a single nibble. P0_7 is 
assumed to be the LSB bit and P0_17 is assumed to be the MSB bit.

The block diagram and circuit diagram of the project are as in Figure 4.14 and Figure 4.15 
respectively.

Construction: The project is built on a breadboard as shown in Figure 4.20.

Program listing: Figure 4.21 shows the program listing (BinCount). At the beginning 
of the program, the connections to the LEDs are defined. P0_17 is configured as the LSB 
and P0_7 the MSB. Function Display has two arguments: No and L. No is the number to be 
displayed on the LEDs, and L is the LED count (4 in this example). This function turns ON/
OFF the LED corresponding to No. For example, if No = 1 then the LED at P0_17 is turned 
ON, and so on. The main program runs in a loop where variable Count is incremented 
by one and function Display is called to display the number. A one second delay is used 
between each output.

/*-------------------------------------------------------------------- 
      LED BINARY COUNTER 
 
In this program 4 LEDs are connected to PORT 0 pins. The program 
counts up every second and displays the count on the LEDs 
 
Author: Dogan Ibrahim 
Date  : March 2021 
Work  : BinCount 
----------------------------------------------------------------------*/ 
/***** Includes *****/ 
#include <stdio.h> 

Figure 4.20 Project built on a breadboard

dogan 2.indd   61dogan 2.indd   61 08/06/2021   22:20:5408/06/2021   22:20:54



How2: Get Started with the MAX78000FTHR Board

● 62

#include <stdint.h> 
#include "mxc_device.h" 
#include "mxc_delay.h" 
#include "math.h" 
 
#define led0 MXC_GPIO_PIN_7    // P0_7 (MSB) 
#define led1 MXC_GPIO_PIN_5    // P0_5 
#define led2 MXC_GPIO_PIN_6    // P0_6 
#define led3 MXC_GPIO_PIN_17    // P0_17 (LSB) 
int LEDS[] = {led0, led1, led2, led3}; 
 
mxc_gpio_cfg_t gpio_out; 
 
 
// 
// Group the port pins together. L is the number of bits (4 here) 
// and No is the data to be displayed 
// 
void Display(int No, int L) 
{ 
 int j, m, i; 
 m = L - 1; 
 for(i = 0; i < L; i++) 
 { 
  j = pow(2, m); 
  if((No & j) != 0) 
   MXC_GPIO_OutSet(gpio_out.port, LEDS[i]); 
  else 
      MXC_GPIO_OutClr(gpio_out.port, LEDS[i]); 
  m--; 
 } 
} 
 
 
/***** Main program *****/ 
int main(void) 
{ 
 int Count = 0; 
  
 /* Setup output pins P0_7,P0_5,P0_6,P0_17 */ 
 gpio_out.port = MXC_GPIO0;       
// Port 0 
 gpio_out.mask = led0 | led1 | led2 | led3; // Pins 7,5,6,17 
 gpio_out.pad = MXC_GPIO_PAD_NONE;  // None 
 gpio_out.func = MXC_GPIO_FUNC_OUT;  // Output 
 gpio_out.vssel = MXC_GPIO_VSSEL_VDDIOH;  // Set port to +3.3V 

dogan 2.indd   62dogan 2.indd   62 08/06/2021   22:20:5408/06/2021   22:20:54



Chapter 4 ● Simple MAX78000FTHR Hardware Projects

● 63

 MXC_GPIO_Config(&gpio_out); 
 
     
    while (1)      // Do forever 
    { 
     Display(Count, 4);    // Display Count 
     if(Count == 15)     // If 15 
         Count = 0;     // Reset to 0 
     else      // If not 15 
         Count++;     // Increment Count 
     MXC_Delay(1000000);    // Wait 1 second 
    } 
}

Suggestion for more work: As an exercise, try to extend the LED count to 8.

4.8 ● Project 7 – Random flashing LEDs

Description: In this project, 4 LEDs are connected to the MAX78000FTHR development 
board as in the previous project. The program flashes the LEDs randomly so that they look 
like flashing Christmas lights.

Aim: This project aims to show how random numbers can be generated.

The block diagram and circuit diagram of the project are as in Figure 4.14 and Figure 4.15 
respectively.

Program listing: Figure 4.22 shows the program listing (RandomLED). The program is 
very similar to Figure 4.21, except that here an integer random number is generated using 
the built-in function rand. This function generates a random number between 0 and 32767 
and modulo 16 is used to configure the number to be between 0 and 15. The process is 
repeated every 250ms.

/*--------------------------------------------------------------------
  RANDOM FLASHING LEDs

In this program 4 LEDs are connected to PORT 0 pins. The program
turns ON/OFF the LEDs randomly every 250ms

Author: Dogan Ibrahim
Date  : March 2021
Work  : RandomLED
----------------------------------------------------------------------*/
/***** Includes *****/
#include <stdio.h>

Figure 4.21 Program listing

dogan 2.indd   63dogan 2.indd   63 08/06/2021   22:20:5508/06/2021   22:20:55



How2: Get Started with the MAX78000FTHR Board

● 64

#include <stdint.h>
#include "mxc_device.h"
#include "mxc_delay.h"
#include "math.h"

#define led0 MXC_GPIO_PIN_7    // P0_7 (MSB)
#define led1 MXC_GPIO_PIN_5    // P0_5
#define led2 MXC_GPIO_PIN_6    // P0_6
#define led3 MXC_GPIO_PIN_17    // P0_17 (LSB)
int LEDS[] = {led0, led1, led2, led3};
int rand();

mxc_gpio_cfg_t gpio_out;

//
// Group the port pins together. L is the number of bits (4 here)
// and No is the data to be displayed
//
void Display(int No, int L)
{
 int j, m, i;
 m = L - 1;
 for(i = 0; i < L; i++)
 {
  j = pow(2, m);
  if((No & j) != 0)
   MXC_GPIO_OutSet(gpio_out.port, LEDS[i]);
  else
      MXC_GPIO_OutClr(gpio_out.port, LEDS[i]);
  m--;
 }
}

/***** Main program *****/
int main(void)
{
 int r;
 
 /* Setup output pins P0_7,P0_5,P0_6,P0_17 */
 gpio_out.port = MXC_GPIO0;    // Port 0
 gpio_out.mask = led0 | led1 | led2 | led3;  // Pins 7,5,6,17
 gpio_out.pad = MXC_GPIO_PAD_NONE;   // None
 gpio_out.func = MXC_GPIO_FUNC_OUT;   // Output
 gpio_out.vssel = MXC_GPIO_VSSEL_VDDIOH;   // Set port to +3.3V
 MXC_GPIO_Config(&gpio_out);

dogan 2.indd   64dogan 2.indd   64 08/06/2021   22:20:5508/06/2021   22:20:55



Chapter 4 ● Simple MAX78000FTHR Hardware Projects

● 65

    
    while (1)       // Do forever
    {
     r = rand() % 16;     // Random number 
0-15
     Display(r, 4);      // Display
     MXC_Delay(250000);     // Wait 250ms
    }
}

4.9 ● Project 8 – Push button and LED – using an on-board button

Description: In this project, an onboard button is used to toggle an external LED.

Aim: This project aims to show how the state of a button can be read in a program.

Circuit diagram: Figure 4.23 shows the circuit diagram of the project. An LED is connected 
to port pin P0_7 through a 1K current limiting resistor. There are two user-programmable 
buttons on the MAX78000FTHR development board. SW1 is connected to P0_2 and SW2 
is connected to P1_7. A pin of the buttons is connected to GND, while the other pins are 
connected to a MAX6817EUT+ type dual contact debouncing chip. The output states of the 
buttons are normally floating, but they can be pulled up in software so that their output 
becomes normally logic 1 and go to logic 0 when pressed. In this project, the onboard 
button at pin P0_2 (SW1) is used.

Program listing: Figure 4.24 shows the program listing (ButtonLED). At the beginning of 
the program, input and output pins are configured. Input pin P0_2 is pulled up using option 
MXC_GPIO_PAD_PULL_UP. The program loop runs in a while loop. Inside this loop, the state 
of the button is checked. If the button is pressed, the program waits until it is released. As 
soon as the button is released the state of the LED is toggled (i.e. if it is ON it turns OFF, 
and if it is OFF it turns ON).

Figure 4.22 Program listing

Figure 4.23 Circuit diagram of the project

dogan 2.indd   65dogan 2.indd   65 08/06/2021   22:20:5508/06/2021   22:20:55



How2: Get Started with the MAX78000FTHR Board

● 66

/*--------------------------------------------------------------------
  PUSHBUTTON TO TOGGLE AN LED

In this program an external LED is connected to P0_7. The LED state
is toggled by pressing the on-board button SW1

Author: Dogan Ibrahim
Date  : March 2021
Work  : ButtonLED
----------------------------------------------------------------------*/
/***** Includes *****/
#include <stdio.h>
#include <stdint.h>
#include "mxc_device.h"
#include "mxc_delay.h"

#define LED MXC_GPIO_PIN_7    // LED at P0_7
#define Button MXC_GPIO_PIN_2    // Button at P0_2

mxc_gpio_cfg_t gpio_out;
mxc_gpio_cfg_t gpio_in;

/***** Main program *****/
int main(void)
{ 
 /* Setup output pins P0_7 */
 gpio_out.port = MXC_GPIO0;   // Port 0
 gpio_out.mask = LED;    // Pins 7
 gpio_out.pad = MXC_GPIO_PAD_NONE;  // None
 gpio_out.func = MXC_GPIO_FUNC_OUT;  // Output
 gpio_out.vssel = MXC_GPIO_VSSEL_VDDIOH;  // Set port to +3.3V
 MXC_GPIO_Config(&gpio_out);
 
 /* Setup input pin at P0_2 (SW1) */
 gpio_in.port = MXC_GPIO0;
 gpio_in.mask = Button;
 gpio_in.pad = MXC_GPIO_PAD_PULL_UP;
 gpio_in.func = MXC_GPIO_FUNC_IN;
 MXC_GPIO_Config(&gpio_in);

//
// Detect when button SW1 is pressed. Wait until the button is released and then
// toggle the LED
//
    while (1)      // Do forever
    {

dogan 2.indd   66dogan 2.indd   66 08/06/2021   22:20:5508/06/2021   22:20:55



Chapter 4 ● Simple MAX78000FTHR Hardware Projects

● 67

     if(MXC_GPIO_InGet(gpio_in.port, Button) == 0)
     {
      while(MXC_GPIO_InGet(gpio_in.port, Button) == 0);
      MXC_GPIO_OutToggle(gpio_out.port, LED);
     }
    }
}

An output port pin is toggled using the MXC_GPIO_OutToggle function as in the following 
example:

 MXC_GPIO_OutToggle(gpio_out.port, LED);

pad supports the following options:

MXC_GPIO_PAD_NONE                 /* No pull-up or pull-down */
MXC_GPIO_PAD_PULL_UP              /* Set pad to strong pull-up */
MXC_GPIO_PAD_PULL_DOWN           /* Set pad to strong pull-down */
MXC_GPIO_PAD_WEAK_PULL_UP        /* Set pad to weak pull-up */ 
MXC_GPIO_PAD_WEAK_PULL_DOWN      /* Set pad to weak pull-down */    

func supports the following options:

MXC_GPIO_FUNC_IN          /*  GPIO Input */
MXC_GPIO_FUNC_OUT         /* GPIO Output */
MXC_GPIO_FUNC_ALT1        /* Alternate Function Selection */
MXC_GPIO_FUNC_ALT2        /* Alternate Function Selection */
MXC_GPIO_FUNC_ALT3        /* Alternate Function Selection */
MXC_GPIO_FUNC_ALT4        /* Alternate Function Selection */

4.10 ● Project 9 – Two pushbuttons and two LEDs  – using external buttons

Description: In this project, two external buttons (Button1 and Button2) and LEDs (LED1 
and LED2) are used. Pressing Button1 toggles LED1, and pressing Button2 toggles LED2.

Aim: This project aims to show how external buttons can be connected to the MAX78000FTHR 
development board.

Block diagram: Figure 4.25 shows the block diagram of the project.

Figure 4.24 Program listing

dogan 2.indd   67dogan 2.indd   67 08/06/2021   22:20:5508/06/2021   22:20:55



How2: Get Started with the MAX78000FTHR Board

● 68

Circuit diagram: In general, buttons can be connected in two different ways: normally 
HIGH, and LOW. Figure 4.26 shows normally HIGH mode where the output state of the 
button is at logic 1 and goes to logic 0 when the button is pressed.

Figure 4.27 shows the normally LOW mode where the output state of the button is at logic 
0 and goes to logic 1 when the button is pressed.

In this project, switch states are pulled HIGH by software and there is no need to use 

Figure 4.25 Block diagram of the project

Figure 4.26 Normally HIGH button

Figure 4.27 Normally LOW button

dogan 2.indd   68dogan 2.indd   68 08/06/2021   22:20:5508/06/2021   22:20:55



Chapter 4 ● Simple MAX78000FTHR Hardware Projects

● 69

resistors. Figure 4.28 shows the circuit diagram of the project. P2_6 and P2_7 are used 
as the Button1 and Button2 buttons respectively. LED1 and LED2 are connected to P0_6 
and P0_5 respectively.

Program listing: Figure 4.29 shows the program listing (ButtonsLED). At the beginning 
of the program, the input and output pins are configured. Input pins P2_6 and P2_7 of 
PORT 2 are pulled up. The program loop runs in a while loop. Inside this loop, the state of 
the two buttons is checked. If Button1 is pressed, LED1 is toggled. Similarly, if Button2 is 
pressed, LED2 is toggled.

/*--------------------------------------------------------------------
  USING TWO BUTTONS AND TWO LEDs

In this program an two external buttons named Buton1 and Button2 are
connected to the MAX78000FTHR. Also, two LEDs, LED1 and LED2 are
connected. Pressing Button1 toggles LED1, pressing Button2 toggles LED2

Author: Dogan Ibrahim
Date  : March 2021
Work  : ButtonsLED
----------------------------------------------------------------------*/
/***** Includes *****/
#include <stdio.h>
#include <stdint.h>
#include "mxc_device.h"
#include "mxc_delay.h"

#define LED1 MXC_GPIO_PIN_6    // LED1 at P0_6
#define LED2 MXC_GPIO_PIN_5    // LED2 at P0_5
#define Button1 MXC_GPIO_PIN_6    // Button1 at P2_6
#define Button2 MXC_GPIO_PIN_7    // Button2 at P2_7

mxc_gpio_cfg_t gpio_out;

Figure 4.28 Circuit diagram of the project

dogan 2.indd   69dogan 2.indd   69 08/06/2021   22:20:5508/06/2021   22:20:55



How2: Get Started with the MAX78000FTHR Board

● 70

mxc_gpio_cfg_t gpio_in;

/***** Main program *****/
int main(void)
{ 
 /* Setup output pins P0_6 */
 gpio_out.port = MXC_GPIO0;   // Port 0
 gpio_out.mask = LED1 | LED2;   // Pin 6
 gpio_out.pad = MXC_GPIO_PAD_NONE;  // None
 gpio_out.func = MXC_GPIO_FUNC_OUT;  // Output
 gpio_out.vssel = MXC_GPIO_VSSEL_VDDIOH;  // Set port to +3.3V
 MXC_GPIO_Config(&gpio_out);
 
 /* Setup input pins at P2_6 and P2_7 */
 gpio_in.port = MXC_GPIO2;
 gpio_in.mask = Button1 | Button2;
 gpio_in.pad = MXC_GPIO_PAD_PULL_UP;
 gpio_in.func = MXC_GPIO_FUNC_IN;
 MXC_GPIO_Config(&gpio_in);

//
// Detect when buttons are pressed and change the LED flashing rate
//
    while (1)      // Do forever
    {
     if(MXC_GPIO_InGet(gpio_in.port, Button1) == 0)
     {
      while(MXC_GPIO_InGet(gpio_in.port, Button1) == 0);
      MXC_GPIO_OutToggle(gpio_out.port, LED1);
     }
     else if(MXC_GPIO_InGet(gpio_in.port, Button2) == 0)
     {
      while(MXC_GPIO_InGet(gpio_in.port, Button2) == 0);
      MXC_GPIO_OutToggle(gpio_out.port, LED2);
     }
    }
}

It may be necessary to use contact debouncing circuits or chips (e.g. MAX6817EUT+) at 
the outputs of the buttons to eliminate the contact bouncing problems associated with 
mechanical switches.

Figure 4.30 shows the project built on a breadboard.

Figure 4.29 Program listing

dogan 2.indd   70dogan 2.indd   70 08/06/2021   22:20:5508/06/2021   22:20:55



Chapter 4 ● Simple MAX78000FTHR Hardware Projects

● 71

4.11 ● Project 10 – Using an external button – external interrupts

Description: In this project, an external button and LED are connected to the project. 
Pressing the button generates an interrupt. The state of the LED is toggled inside the 
interrupt service routine.

Aim: This project aims to show how external interrupts can be generated and serviced.

Circuit diagram: Figure 4.31 shows the circuit diagram of the project. The button is 
connected to P2_6, and the LED is connected to P0_6.

Program listing: Figure 4.32 shows the program listing (LEDInt). At the beginning of 
the program LED and Button connections are defined. Inside the main program, P0_6 is 
configured as an output, and P2_6 as input. Pin P2_6 is then configured as an external 
interrupt pin such that interrupts will be recognised on the FALLING edge of P2_6. The call-
back function is called gpio_ISR and no data is passed to the interrupt service routine. 
Interrupts are enabled and the main program with in a loop until an interrupt is generated. 
When the button is pressed an external interrupt is generated and the program jumps to 
function gpio_ISR. Inside this function, the state of the LED is toggled.

The following functions are called to configure and enable external interrupts.

Figure 4.30 Project built on a breadboard

Figure 4.31 Circuit diagram of the project

dogan 2.indd   71dogan 2.indd   71 08/06/2021   22:20:5608/06/2021   22:20:56



How2: Get Started with the MAX78000FTHR Board

● 72

 MXC_GPIO_RegisterCallback(&gpio_interrupt, gpio_ISR, 0);
 MXC_GPIO_IntConfig(&gpio_interrupt, MXC_GPIO_INT_FALLING);
 MXC_GPIO_EnableInt(gpio_interrupt.port, Button);
 NVIC_EnableIRQ(MXC_GPIO_GET_IRQ(MXC_GPIO_GET_IDX(MXC_GPIO2)));

/*--------------------------------------------------------------------
  EXTERNAL INTERRUPTS

In this program an external button is connected to MAX78000FTHR. Also,
an external LED is connected. Pressing the button generates an interrupt
where inside the ISR the state of the LED is toggled

Author: Dogan Ibrahim
Date  : March 2021
Work  : LEDInt
----------------------------------------------------------------------*/
/***** Includes *****/
#include <stdio.h>
#include <stdint.h>
#include "mxc_device.h"
#include "mxc_delay.h"

#define LED MXC_GPIO_PIN_6    // LED at P0_6
#define Button MXC_GPIO_PIN_6    // Button at P2_6

mxc_gpio_cfg_t gpio_out;
mxc_gpio_cfg_t gpio_interrupt;

//
// Interrupt service routine. Toggle the state of the LED
//
void gpio_ISR(void* dummy)
{
 MXC_GPIO_OutToggle(gpio_out.port, LED);
}

/***** Main program *****/
int main(void)
{ 
 /* Setup output pin P0_6 (LED) */
 gpio_out.port = MXC_GPIO0;   // Port 0
 gpio_out.mask = LED;    // Pin 6
 gpio_out.pad = MXC_GPIO_PAD_NONE;  // None
 gpio_out.func = MXC_GPIO_FUNC_OUT;  // Output
 gpio_out.vssel = MXC_GPIO_VSSEL_VDDIOH;  // Set port to +3.3V

dogan 2.indd   72dogan 2.indd   72 08/06/2021   22:20:5608/06/2021   22:20:56



Chapter 4 ● Simple MAX78000FTHR Hardware Projects

● 73

 MXC_GPIO_Config(&gpio_out);
 
 /* Setup external interrupt on pin P2_6 (Button) */
 gpio_interrupt.port = MXC_GPIO2;
 gpio_interrupt.mask = Button;
 gpio_interrupt.pad = MXC_GPIO_PAD_PULL_UP;
 gpio_interrupt.func = MXC_GPIO_FUNC_IN;
 MXC_GPIO_Config(&gpio_interrupt);
 
//
// Interrupts will be configured at FALLING edge of P2_6
//
 MXC_GPIO_RegisterCallback(&gpio_interrupt, gpio_ISR,0);
 MXC_GPIO_IntConfig(&gpio_interrupt, MXC_GPIO_INT_FALLING);
 MXC_GPIO_EnableInt(gpio_interrupt.port, Button);
 NVIC_EnableIRQ(MXC_GPIO_GET_IRQ(MXC_GPIO_GET_IDX(MXC_GPIO2)));

//
// The main programs does nothing. It waits for interrupts to occur
//
    while (1)
    {
    }
}

The following interrupt polarity modes are supported:

MXC_GPIO_INT_FALLING             /* Interrupt triggers on falling edge */
MXC_GPIO_INT_HIGH                /* Interrupt triggers when level is high*/
MXC_GPIO_INT_RISING              /* Interrupt triggers on rising edge */
MXC_GPIO_INT_LOW                 /* Interrupt triggers when level is low */
MXC_GPIO_INT_BOTH                /* Interrupt triggers on either edge */

Interrupts can be disabled by the function call:

 MXC_GPIO_DisableInt(mxc_gpio_port, mask);

4.12 ● Using LCDs

In microcontroller-based systems, we usually want to interact with the system for example 
to enter a parameter, change the value of a parameter, or to display the output of a 
measured variable. Data is usually entered into a system using a switch, small keypad, 
or full-blown keyboard. Data is usually displayed using an indicator such as one or more 
LEDs, 7-segment, or LCD type displays. LCDs have the advantage that they can display 
alphanumeric as well as graphical data. Some LCDs have 40 or more character lengths with 

Figure 4.32 Program listing

dogan 2.indd   73dogan 2.indd   73 08/06/2021   22:20:5608/06/2021   22:20:56



How2: Get Started with the MAX78000FTHR Board

● 74

the capability to display data in several lines. Other LCDs can be used to display graphical 
images (Graphical LCDs, or simply GLCDs), such as animation. Some displays are in single 
or multi-colour, while others incorporate backlighting so they can be viewed in dimly lit 
conditions.

LCDs can be connected to a microcontroller either in parallel or through the I2C interface. 
Parallel LCDs (e.g. Hitachi HD44780) are connected using more than one data line and 
several control lines and data is transferred in parallel. It is common to use either 4 or 8 
data lines and two or more control lines. Using a 4-wire connection saves I/O pins, but is 
slower since the data is transferred in two stages. I2C based LCDs on the other hand are 
connected to a microcontroller using only 2 wires, the data, and the clock. I2C based LCDs 
are in general much easier to use and require less wiring, but cost more than parallel. In 
this chapter, we will learn to use both parallel and I2C based LCDs in projects.

The programming of LCDs is a complex task, requiring a good understanding of the internal 
operations of the LCD controllers, including knowledge of their exact timing requirements. 
Fortunately, several libraries can be used to simplify the use of both parallel and serial 
LCDs.

HD44780 LCD module

Although there are several types of LCDs, the HD44780 is currently one of the most popular 
modules used in industry and hobbyists (Figure 4.33). This module is an alphanumeric 
monochrome display and comes in different sizes. Modules with 16 columns are popular 
in most small applications, but other modules with 8, 20, 24, 32, or 40 columns are also 
available. Although most LCDs have two lines (or rows) as standard, it is possible to 
purchase models with 1 or 4. LCDs are available with standard 14-pin connectors, although 
16-pin modules are also available, providing terminals for backlighting. Table 4.1 gives the 
pin configuration and functions of a 16-pin LCD module. A summary of the pin functions is 
given below:

dogan 2.indd   74dogan 2.indd   74 08/06/2021   22:20:5608/06/2021   22:20:56



Chapter 4 ● Simple MAX78000FTHR Hardware Projects

● 75

Pin no Name Function

1 VSS Ground

2 VDD + ve supply

3 VEE Contrast

4 RS Register select

5 R/W Read/write

6 E Enable

7 D0 Daat bit 0

8 D1 Data bit 1

9 D2 Data bit 2

10 D3 Data bit 3

11 D4 Data bit 4

12 D5 Data bit 5

13 D6 Data bit 6

14 D7 Data bit 7

15 A Backlight anode (+)

16 K Backlight cathode (GND)

VSS (pin 1) and VDD (pin 2) are the ground and power supply pins. The power supply should 
be +5V.

VEE is pin 3 and this is the contrast control pin used to adjust the contrast of the display. The 
arm of a 10K potentiometer is normally connected to this pin and the other two terminals 
of the potentiometer are connected to the ground and power supply pins. The contrast of 
the display is adjusted by rotating the potentiometer arm.

Pin 4 is the Register Select (RS) and when this pin is LOW, data transferred to the display 
is treated as commands. When RS is HIGH, character data can be transferred to and from 
the display.

Pin 5 is the Read/Write (R/W) line. This pin is pulled LOW to write commands or character 
data to the LCD module. When the pin is HIGH, character data or status information can be 
read from the module. The pin is normally connected permanently LOW so commands or 
character data can be sent to the LCD module.

Enable (E) is pin 6 which is used to initiate the transfer of commands or data between the 
LCD module and the microcontroller. When writing to the display, data is transferred only 
on the HIGH to LOW transition of this pin. When reading from the display, data becomes 
available after the LOW to HIGH transition of the enable pin and this data remains valid as 
long as the enable pin is at logic HIGH.

Figure 4.33 HD44780 compatible parallel LCD

dogan 2.indd   75dogan 2.indd   75 08/06/2021   22:20:5608/06/2021   22:20:56



How2: Get Started with the MAX78000FTHR Board

● 76

Pins 7 to 14 are the eight data bus lines (D0 to D7). Data can be transferred between the 
microcontroller and the LCD module using either a single 8-bit byte or two 4-bit nibbles. 
In the latter case, only the upper four data lines (D4 to D7) are used. 4-bit mode has the 
advantage that four fewer I/O lines are required to communicate with the LCD. 4-bit mode 
is on the other hand slower since the data is transferred in two stages. In this book, we will 
use the 4-bit interface only. 

Pins 15 and 16 are for background brightness control. To enable the background brightness, 
a 220 Ohm resistor should be connected from pin 15 to +5V supply, and pin 16 should be 
connected to ground.

In 4-bit mode, the following pins of the LCD are used. The R/W line is permanently connected 
to ground. This mode uses 6 GPIO port pins of the microcontroller:

 VSS, VDD, VEE, E, R/S, D4, D5, D6, D7

In the next section, we will create an LCD library of functions that can be used to send data 
and text to standard HD44780 type character LCDs.

4.13 ● Project 11 – LCD seconds counter

Description: In this project, we will develop several functions that can be used to send 
data and text to 16 x 2 character LCDs. The program in this project counts up every second 
and displays the count on the LCD.

Aim: This project aims to develop a library of functions that can be used to control LCDs. 
These functions can be used in projects to send text and numbers to LCDs.

Block diagram: Figure 4.34 shows the block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 4.35. The LCD is 
connected to the MAX78000FTHR using 4 data wires (D4 – D7) and 2 control wires (E and 
R/S). The connections between the LCD and development board are as follows:

Figure 4.34 Block diagram of the project

dogan 2.indd   76dogan 2.indd   76 08/06/2021   22:20:5608/06/2021   22:20:56



Chapter 4 ● Simple MAX78000FTHR Hardware Projects

● 77

LCD pin MAX78000FTHR pin

E P0_6

R/S P0_17

D4 P0_8

D5 P0_11

D6 P0_19

D7 P0_16

The LCD requires +5V for its operation. This is obtained from the VBUS pin of the 
MAX78000FTHR. The contrast of the LCD is controlled using a 10K potentiometer.

Program listing: Figure 4.36 shows the functions listing (Program: LCD). The connections 
between the LCD and MAX78000FTHR are defined at the beginning and can be changed 
if desired. The remainder of the functions should not be changed for proper control of the 
LCD. These functions implement the initialisation and control of the LCD. Variable count is 
initialised to 0. It is then incremented every second and displayed on the second row of the 
LCD. The text Counter is displayed on the first row.

The following LCD control functions are available:

lcd_init: this is the LCD initialisation function and must be called first before any other  
functions are called

lcd_clear: clears the LCD

lcd_home: homes the cursor (top-left position)

lcd_cursor_blink: enables blinking cursor

Figure 4.35 Circuit diagram of the project

dogan 2.indd   77dogan 2.indd   77 08/06/2021   22:20:5608/06/2021   22:20:56



How2: Get Started with the MAX78000FTHR Board

● 78

lcd_cursor_on: enables visible cursor

lcd_cursor_off: disables visible cursor

lcd_puts(s): displays string s

lcd_putch(c): displays character c

lcd_goto(col, row): positions the cursor at the specified column and position. (0, 0) is the 
left corner of the LCD. The first row is row 0. The second is row 1 and so on.

/*--------------------------------------------------------------------
  USING LCDs - LCD SECONDS COUNTER

In this program an LCD is connected to MAX78000FTHR. The program counts
up by one every second and displays the count on the LCD

Author: Dogan Ibrahim
Date  : March 2021
Work  : LCD
----------------------------------------------------------------------*/
/***** Includes *****/
#include <stdio.h>
#include <stdint.h>
#include "mxc_device.h"
#include "mxc_delay.h"
#include "string.h"
#include "stdlib.h"

#define D4 MXC_GPIO_PIN_8    // D4 pin
#define D5 MXC_GPIO_PIN_11    // D5 pin
#define D6 MXC_GPIO_PIN_19    // D6 pin
#define D7 MXC_GPIO_PIN_16    // D7 pin
#define RS MXC_GPIO_PIN_17    // RS pin
#define E MXC_GPIO_PIN_6    // E pin
int DataPin[] = {D4, D5, D6, D7};

mxc_gpio_cfg_t gpio_out;

//======================================================================
// START OF LCD FUNCTIONS
//
void lcd_strobe()
{
 MXC_GPIO_OutSet(gpio_out.port, E);
 MXC_Delay(1000);

dogan 2.indd   78dogan 2.indd   78 08/06/2021   22:20:5608/06/2021   22:20:56



Chapter 4 ● Simple MAX78000FTHR Hardware Projects

● 79

 MXC_GPIO_OutClr(gpio_out.port, E);
 MXC_Delay(1000);
}

void lcd_write(char c, int mode)
{
 int i,b;
 char d;
 
    d = c;
    d = d >> 4;
    for(i = 0; i < 4; i++)
    {
        b = d & 1;
        if(b == 0)
         MXC_GPIO_OutClr(gpio_out.port, DataPin[i]);
        else
         MXC_GPIO_OutSet(gpio_out.port, DataPin[i]);
        d = d >> 1;
    }
    if(mode == 1)
     MXC_GPIO_OutSet(gpio_out.port, RS);
    else
     MXC_GPIO_OutClr(gpio_out.port, RS);
    lcd_strobe();
    
    d = c;
    for(i = 0; i < 4; i++)
    {
        b = d & 1;
        if(b == 0)
         MXC_GPIO_OutClr(gpio_out.port, DataPin[i]);
        else
         MXC_GPIO_OutSet(gpio_out.port, DataPin[i]);
        d = d >> 1;
    }
    if(mode == 1)
      MXC_GPIO_OutSet(gpio_out.port, RS);
     else
      MXC_GPIO_OutClr(gpio_out.port, RS);
     lcd_strobe();
     MXC_Delay(1000);
     MXC_GPIO_OutSet(gpio_out.port, RS);
}

void lcd_clear()

dogan 2.indd   79dogan 2.indd   79 08/06/2021   22:20:5608/06/2021   22:20:56



How2: Get Started with the MAX78000FTHR Board

● 80

{
    lcd_write(0x01, 0);
    MXC_Delay(10000);
}

void lcd_home()
{
    lcd_write(0x02, 0);
    MXC_Delay(5000);
}

void lcd_cursor_blink()
{
    lcd_write(0x0D, 0);
    MXC_Delay(1000);
}

void lcd_cursor_on()
{
    lcd_write(0x0E, 0);
    MXC_Delay(1000);
}

void lcd_cursor_off()
{
    lcd_write(0x0C, 0);
    MXC_Delay(1000);
}

void lcd_putch(char c)
{
    lcd_write(c, 1);
}

void lcd_puts(char *s)
{
 int i, l;
    l = strlen(s);
    for(i = 0; i < l; i++)
    {
       lcd_putch(*s);
       s++;
    }
}

void lcd_goto(int col, int row)

dogan 2.indd   80dogan 2.indd   80 08/06/2021   22:20:5608/06/2021   22:20:56



Chapter 4 ● Simple MAX78000FTHR Hardware Projects

● 81

{
 int c, address;
    c = col + 1;
    if(row == 0)
        address = 0;
    if(row == 1)
        address = 0x40;
    address = address + c - 1;
    lcd_write(0x80 | address, 0);
}

void lcd_init()
{
 int i;
    MXC_Delay(120000);
    for(i = 0; i < 4; i++)
     MXC_GPIO_OutClr(gpio_out.port, DataPin[i]);
    MXC_Delay(50000);
    MXC_GPIO_OutSet(gpio_out.port, D4);
    MXC_GPIO_OutSet(gpio_out.port, D5);
    lcd_strobe();
    MXC_Delay(10000);
    lcd_strobe();
    MXC_Delay(10000);
    lcd_strobe();
    MXC_Delay(10000);
    MXC_GPIO_OutClr(gpio_out.port, D4);
    lcd_strobe();
    MXC_Delay(5000);
    lcd_write(0x28, 0);
    MXC_Delay(1000);
    lcd_write(0x08, 0);
    MXC_Delay(1000);
    lcd_write(0x01, 0);
    MXC_Delay(10000);
    lcd_write(0x06, 0);
    MXC_Delay(5000);
    lcd_write(0x0C, 0);
    MXC_Delay(10000);
}
//
// END OF LCD FUNCTIONS
//======================================================================

/***** Main program *****/
int main(void)

dogan 2.indd   81dogan 2.indd   81 08/06/2021   22:20:5608/06/2021   22:20:56



How2: Get Started with the MAX78000FTHR Board

● 82

{ 
 int count = 0;
 char buff[10];
 
 /* Setup output pins */
 gpio_out.port = MXC_GPIO0;    // Port 0
 gpio_out.mask = D4 | D5 | D6 | D7 | RS | E;  // D4,D5,D6,D7
 gpio_out.pad = MXC_GPIO_PAD_NONE;   // None
 gpio_out.func = MXC_GPIO_FUNC_OUT;   // Output
 gpio_out.vssel = MXC_GPIO_VSSEL_VDDIOH;   // Set port to +3.3V
 MXC_GPIO_Config(&gpio_out);
 
 lcd_init();      // Initialize LCD
 lcd_clear();      // Clear display
 lcd_puts("Counter");     // Display Counter
 
    while (1)       // Do forever
    {
     lcd_goto(0, 1);      // Cursor at 0,1
     itoa(count, buff, 10);     // Convert to string
     lcd_puts(buff);      // Display count
     count++;      // Increment count
     MXC_Delay(1000000);     // Wait 1 second
    }
}

You should press the Reset button on the MAX78000FTHR to start the program from the 
beginning.

Storing the LCD functions in a library

We can easily combine all LCD functions in a library and then include the file at the 
beginning of our program. Perhaps the easiest option is to put all LCD functions in a .c file 
called lcdfuncs.c and save it in the working folder of the project (where the main program 
main.c program is). Figure 4.37 shows the program listing lcdfuncs.c.

//======================================================================
//     LCD FUNCTIONS
//
//
#define D4 MXC_GPIO_PIN_8    // D4 pin
#define D5 MXC_GPIO_PIN_11    // D5 pin
#define D6 MXC_GPIO_PIN_19    // D6 pin
#define D7 MXC_GPIO_PIN_16    // D7 pin
#define RS MXC_GPIO_PIN_17    // RS pin

Figure 4.36 Program LCD

dogan 2.indd   82dogan 2.indd   82 08/06/2021   22:20:5608/06/2021   22:20:56



Chapter 4 ● Simple MAX78000FTHR Hardware Projects

● 83

#define E MXC_GPIO_PIN_6    // E pin

int DataPin[] = {D4, D5, D6, D7};

mxc_gpio_cfg_t gpio_out;

void lcd_write(char, int);
void lcd_clear();
void lcd_home();
void lcd_cursor_blink();
void lcd_cursor_on();
void lcd_cursor_off();
void lcd_putch(char);
void lcd_puts(char *);
void lcd_goto(int, int);
void lcd_init();

void Config()
{
 /* Setup output pins */
 gpio_out.port = MXC_GPIO0;    // Port 0
 gpio_out.mask = D4 | D5 | D6 | D7 | RS | E;  // D4,D5,D6,D7
 gpio_out.pad = MXC_GPIO_PAD_NONE;   // None
 gpio_out.func = MXC_GPIO_FUNC_OUT;   // Output
 gpio_out.vssel = MXC_GPIO_VSSEL_VDDIOH;   // Set port to +3.3V
 MXC_GPIO_Config(&gpio_out);
}

void lcd_strobe()
{
 MXC_GPIO_OutSet(gpio_out.port, E);
 MXC_Delay(1000);
 MXC_GPIO_OutClr(gpio_out.port, E);
 MXC_Delay(1000);
}

void lcd_write(char c, int mode)
{
 int i,b;
 char d;
 
    d = c;
    d = d >> 4;
    for(i = 0; i < 4; i++)
    {
        b = d & 1;

dogan 2.indd   83dogan 2.indd   83 08/06/2021   22:20:5608/06/2021   22:20:56



How2: Get Started with the MAX78000FTHR Board

● 84

        if(b == 0)
         MXC_GPIO_OutClr(gpio_out.port, DataPin[i]);
        else
         MXC_GPIO_OutSet(gpio_out.port, DataPin[i]);
        d = d >> 1;
    }
    if(mode == 1)
     MXC_GPIO_OutSet(gpio_out.port, RS);
    else
     MXC_GPIO_OutClr(gpio_out.port, RS);
    lcd_strobe();
    
    d = c;
    for(i = 0; i < 4; i++)
    {
        b = d & 1;
        if(b == 0)
         MXC_GPIO_OutClr(gpio_out.port, DataPin[i]);
        else
         MXC_GPIO_OutSet(gpio_out.port, DataPin[i]);
        d = d >> 1;
    }
    if(mode == 1)
      MXC_GPIO_OutSet(gpio_out.port, RS);
     else
      MXC_GPIO_OutClr(gpio_out.port, RS);
     lcd_strobe();
     MXC_Delay(1000);
     MXC_GPIO_OutSet(gpio_out.port, RS);
}

void lcd_clear()
{
    lcd_write(0x01, 0);
    MXC_Delay(15000);
}

void lcd_home()
{
    lcd_write(0x02, 0);
    MXC_Delay(5000);
}

void lcd_cursor_blink()
{
    lcd_write(0x0D, 0);

dogan 2.indd   84dogan 2.indd   84 08/06/2021   22:20:5608/06/2021   22:20:56



Chapter 4 ● Simple MAX78000FTHR Hardware Projects

● 85

    MXC_Delay(1000);
}

void lcd_cursor_on()
{
    lcd_write(0x0E, 0);
    MXC_Delay(1000);
}

void lcd_cursor_off()
{
    lcd_write(0x0C, 0);
    MXC_Delay(1000);
}

void lcd_putch(char c)
{
    lcd_write(c, 1);
    MXC_Delay(2000);
}

void lcd_puts(char *s)
{
    int i, l;
    l = strlen(s);
    for(i = 0; i < l; i++)
    {
       lcd_putch(*s);
       s++;
    }
}

void lcd_goto(int col, int row)
{
    int c, address;
    c = col + 1;
    if(row == 0)
        address = 0;
    if(row == 1)
        address = 0x40;
    address = address + c - 1;
    lcd_write(0x80 | address, 0);
}

void lcd_init()
{

dogan 2.indd   85dogan 2.indd   85 08/06/2021   22:20:5608/06/2021   22:20:56



How2: Get Started with the MAX78000FTHR Board

● 86

    int i;
    Config();
    MXC_Delay(120000);
    for(i = 0; i < 4; i++)
     MXC_GPIO_OutClr(gpio_out.port, DataPin[i]);
    MXC_Delay(50000);
    MXC_GPIO_OutSet(gpio_out.port, D4);
    MXC_GPIO_OutSet(gpio_out.port, D5);
    lcd_strobe();
    MXC_Delay(10000);
    lcd_strobe();
    MXC_Delay(10000);
    lcd_strobe();
    MXC_Delay(10000);
    MXC_GPIO_OutClr(gpio_out.port, D4);
    lcd_strobe();
    MXC_Delay(5000);
    lcd_write(0x28, 0);
    MXC_Delay(1000);
    lcd_write(0x08, 0);
    MXC_Delay(1000);
    lcd_write(0x01, 0);
    MXC_Delay(10000);
    lcd_write(0x06, 0);
    MXC_Delay(5000);
    lcd_write(0x0C, 0);
    MXC_Delay(10000);
}
//
// END OF LCD FUNCTIONS
//======================================================================

File lcdfuncs.c is included in the simplified main program (LCD2) as shown in Figure 4.38. 
Figure 4.39 shows the project built on a breadboard.

Figure 4.37 Program lcdfuncs.c

dogan 2.indd   86dogan 2.indd   86 08/06/2021   22:20:5608/06/2021   22:20:56



Chapter 4 ● Simple MAX78000FTHR Hardware Projects

● 87

/*--------------------------------------------------------------------
  USING LCDs - LCD SECONDS COUNTER

In this program an LCD is connected to MAX78000FTHR. The program counts
up by one every second and displays the count on the LCD.

In this program the LCD functions are stored in lcdfuncs.c

Author: Dogan Ibrahim
Date  : March 2021
Work  : LCD2
----------------------------------------------------------------------*/
/***** Includes *****/
#include <stdio.h>
#include <stdint.h>
#include "mxc_device.h"
#include "mxc_delay.h"
#include "string.h"
#include "stdlib.h"
#include "lcdfuncs.c"

/******* Main program *******/
int main(void)
{ 
 int count = 0;
 char buff[10];

 lcd_init();    // Initialize LCD
 lcd_clear();    // Clear display
 lcd_puts("Counter");   // Display Counter
 
    while (1)     // Do forever
    {
     lcd_goto(0, 1);    // Cursor at 0,1
     itoa(count, buff, 10);   // Convert to string
     lcd_puts(buff);    // Display count
     count++;    // Increment count
     MXC_Delay(1000000);   // Wait 1 second
    }
}

Figure 4.38 Simplified program listing

dogan 2.indd   87dogan 2.indd   87 08/06/2021   22:20:5608/06/2021   22:20:56



How2: Get Started with the MAX78000FTHR Board

● 88

Figure 4.39 Project built on a breadboard

dogan 2.indd   88dogan 2.indd   88 08/06/2021   22:20:5708/06/2021   22:20:57



Chapter 5 ● Analog-To-Digital converters (ADC)

● 89

Chapter 5 ● Analog-To-Digital converters (ADC)

5.1 ● Overview

Most real-world sensors provide an analog output such as resistance, voltage, or current 
which is proportional to a measured variable. Such sensors cannot be connected directly to 
digital computers without using an ADC. In this chapter, we will learn how to use the ADC 
channels of the MAX78000FTHR development board to interface to analog sensors.

Most ADCs for general purpose applications are 8 or 10-bits wide, although some higher-
grade professional ones are 16 or even 32-bit wide. The conversion time of an ADC is one 
of its important specifications. This is the time taken for the ADC to convert an analog 
input into digital. The smaller the conversion time the better. Some cheaper ADCs give 
the converted digital data in serial format, while other more expensive professional ones 
provide parallel digital outputs.

The MAX78000 microcontroller has 8 ADC channels with a maximum clock rate of 8MHz. 
Only 2 of the ADC channels (AIN3 at pin 5, and AIN4 at pin 6) are available at the 
MAX78000FTHR GPIO pins (see Figure1.1).

The ADC has a resolution of 10-bits, thus converting an analog input voltage into 1024 (0 
to 1023) levels. The reference voltage of the ADC can either be +1.22V or VDDA/2. Using 
the ADC with +1.22V reference voltage, the resolution is 1220 mV/1024 = 1.19 mV per bit. 
Therefore, an analog input voltage of 1.19 mV gives a digital output of 00 0000001, 2.38 
mV gives 00 00000010, and so on. The default reference voltage is +1.22V.

The main features of the MAX78000FTHR ADC are:

• 8MHz maximum ADC clock rate
• Two reference sources, an internal 1.22V bandgap or the VDDA analog supply
• 8 External analog inputs that can be configured as 4 two-input comparators
• 10 Internal power supply monitor inputs
• Fixed 10-bit word conversion time of 1024 ADC clock cycles
• Programmable out-of-range (limit) detection
• Interrupt generation for limit detection, conversion start, conversion complete, and 

internal reference powered on
• Serial ADC data measurements
• ADC conversion 10 output either MSB or LSB aligned

In this chapter, we will develop several projects using the ADC of the MAX78000 
microcontroller.

5.2 ● Project 1 – Voltmeter with LCD

Description: This is a simple voltmeter project where the voltage of an external voltage 
source is measured and displayed on the LCD in millivolts every second.

dogan 2.indd   89dogan 2.indd   89 08/06/2021   22:20:5708/06/2021   22:20:57



How2: Get Started with the MAX78000FTHR Board

● 90

Aim: This project aims to show how the MAX78000 ADC channels can be used to read 
analog input voltage

Circuit diagram: Figure 5.1 shows the circuit diagram of the project. In this project, the 
voltage to be measured is applied to analog input AIN3 (pin 5). You must make sure the 
input voltage does not exceed +1.22 V. If it is a requirement to measure higher voltages, 
use resistive potential divider circuits at the input of the ADC.

Program listing: Figure 5.2 shows the program listing (Voltmeter). At the beginning of 
the program module channel 3 is defined, LCD and ADC are both initialised. The remaining 
parts of the program run in a while loop. Inside this loop, analog voltage is converted into 
millivolts and stored in variable mV. This variable is then converted into integer and string 
and displayed on the LCD. The above process is repeated every second. The following 
function reads data from ADC channel 3 and stores the converted data in variable adc_val:

 adc_val = MXC_ADC_Start(ADC_CHANNEL);

Figure 5.1 Circuit diagram of the project

dogan 2.indd   90dogan 2.indd   90 08/06/2021   22:20:5708/06/2021   22:20:57



Chapter 5 ● Analog-To-Digital converters (ADC)

● 91

/*--------------------------------------------------------------------
  VOLTMETER WITH LCD

In this program an LCD is connected to MAX78000FTHR. The program
measures analog voltage at pin AIN3 and displays on LCD in mV

Author: Dogan Ibrahim
Date  : March 2021
Work  : Voltmeter
----------------------------------------------------------------------*/
/***** Includes *****/
#include <stdio.h>
#include <stdint.h>
#include "mxc_device.h"
#include "mxc_delay.h"
#include <mxc.h>
#include "string.h"
#include "stdlib.h"
#include "lcdfuncs.c"

#define ADC_CHANNEL MXC_ADC_CH_3   // Use CH 3

/******* Main program *******/
int main(void)
{ 
 int MV;
 int adc_val=0;
 float mV;
 char buff[10];
 
 lcd_init();     // Initialize LCD
 MXC_ADC_Init();     // Initialize ADC
 
    while (1)      // Do forever
    {
     adc_val=MXC_ADC_StartConversion(ADC_CHANNEL); // Start conversion
     lcd_clear();
     mV = 1220.0 * adc_val / 1024;   // Convert to mV
     MV = (int)mV;     // As integer
     itoa(MV, buff, 10);    // Convert to string
     lcd_puts(buff);     // Display measured mV
     MXC_Delay(1000000);    // Wait 1 second
    }
}

Figure 5.2 Program listing

dogan 2.indd   91dogan 2.indd   91 08/06/2021   22:20:5708/06/2021   22:20:57



How2: Get Started with the MAX78000FTHR Board

● 92

An optional feature allows samples captured by the ADC to be automatically compared against 
user-programmable high and low limits. Up to four channel limit pairs can be configured 
in this way. The comparison allows the ADC to trigger an interrupt (and potentially wake 
the CPU from a power mode) when a captured sample goes outside the pre-programmed 
limit range. Since this comparison is performed directly by the sample limit monitors, it can 
be performed even while the CPU is in SLEEP, LOW POWER or MICROPOWER mode. The 
eight AIN[7:0] inputs can be configured as four pairs and deployed as four independent 
comparators.

Some frequently used ADC functions are (see adc.h for a complete list of functions):

MXC_ADC_INIT(void): initialise the ADC

MXC_ADC_Shutdown(void): shutdown the ADC

MXC_ADC_Busy(void): check if ADC is busy

MXC_ADC_EnableInt (uint32_t flags): enable specific ADC interrupts

MXC_ADC_DisableInt (uint32_t flags): disable specific ADC interrupts

MXC_ADC_SetConversionSpeed (uint32_t hz): set ADC conversion speed

MXC_ADC_SetExtScale (mxc_adc_scale_t scale): set ADC scaling factor

MXC_ADC_RefSelect (mxc_adc_ref_t ref): set ADC reference source

MXC_ADC_EnableMonitor (mxc_adc_monitor_t monitors): enable channel HIGH/
LOW monitor

MXC_ADC_DisableMonitor (mxc_adc_monitor_t monitors): disable channel HIGH/
LOW monitor

MXC_ADC_SetMonitorHighThreshold (mxc_adc_monitor_t monitor, uint32_t 
threshold): set channel HIGH limit for monitoring

MXC_ADC_SetMonitorLowThreshold (mxc_adc_monitor_t monitor, uint32_t 
threshold): set channel LOW limit for monitoring

MXC_ADC_SetMonitorChannel (mxc_adc_monitor_t monitor, mxc_adc_chsel_t 
channel): Set a monitor to use a specific channel

MXC_ADC_StartConversion (mxc_adc_chsel_t channel): perform conversion on a 
specific channel

dogan 2.indd   92dogan 2.indd   92 08/06/2021   22:20:5708/06/2021   22:20:57



Chapter 5 ● Analog-To-Digital converters (ADC)

● 93

MXC_ADC_Convert (mxc_adc_conversion_req_t* req): perform conversion on a 
specific channel

MXC_ADC_GetData (uint16_t *outdata): get results of the previous conversion

Figure 5.3 shows the block diagram of the MAX78000 ADC module. There are 8 external 
inputs and several internal inputs to the ADC multiplexer. The internal inputs are from 
various voltage sources of the microcontroller. For small signals, the ADC and reference 
(or both) can be scaled by 50%. This enables flexibility to achieve better resolution on the 
ADC conversion. Each input channel, supports the default of no scaling of the input (ADC_
CTRL.scale = 0) and no scaling of the reference (ADC_CTRL.ref_scale = 0).

The external inputs, AIN0 through AIN7, support scaling of the input by 50%, the reference 
by 50%, or both by 50%. Also, the scaling can further be modified by additional factors 
of 2, 3, or 4 as defined by ADC_CTRL.adc_divsel. The converted data is 16-bits. It can 
either be LSB left-justified or LSB right-justified. By default, the data is LSB left-justified, 
so the upper 6 bits of the data are filled with zeroes.

dogan 2.indd   93dogan 2.indd   93 08/06/2021   22:20:5708/06/2021   22:20:57



How2: Get Started with the MAX78000FTHR Board

● 94

5.3 ● Project 2 – Temperature measurement

Description: In this project, an external analog temperature sensor chip is used to 
measure and display the ambient temperature on the LCD

Aim: This project aims to show how an external analog temperature sensor chip can be 
used to measure external temperature

Figure 5.3 Block diagram of the ADC module

dogan 2.indd   94dogan 2.indd   94 08/06/2021   22:20:5908/06/2021   22:20:59



Chapter 5 ● Analog-To-Digital converters (ADC)

● 95

Block Diagram: Figure 5.4 shows the block diagram of the project

Circuit diagram: The circuit diagram of the project is shown in Figure 5.5. In this project, 
a TMP36 type temperature sensor chip is used. (Figure 5.6) It is connected to ADC channel 
AIN3 (pin 5). The chip is powered from the +3.3V supply (pin 2) of the MAX78000FTHR. 
This chip provides an analog output voltage proportional to the measured temperature. The 
relationship between the measured temperature and the output voltage is given by:

 T = (Vo – 500) / 10

Where T is the measured temperature in degrees Celsius, and Vo is the sensor output 
voltage in millivolts. For example, at 20ºC the output voltage is 700mV, at 30ºC it is 
800mV, and so on.

Figure 5.4 Block diagram of the project

Figure 5.5 Circuit diagram of the project

dogan 2.indd   95dogan 2.indd   95 08/06/2021   22:20:5908/06/2021   22:20:59



How2: Get Started with the MAX78000FTHR Board

● 96

Program listing: Figure 5.7 shows the program listing (TMP36). Sensor voltage is read 
by channel 3 of the ADC. This voltage is then converted into millivolts, 500 subtracted and 
divided by 10. The result is in degrees Celsius and is displayed on the LCD every second.

/*--------------------------------------------------------------------
  TEMPERATURE MEASUREMENT WITH LCD

In this program an LCD is connected to MAX78000FTHR. Also, a TMP36
type temperature sensor chip is connected to analog input AIN3. The
program displays teh ambient temperature on the LCD

Author: Dogan Ibrahim
Date  : March 2021
Work  : TMP36
----------------------------------------------------------------------*/
/***** Includes *****/
#include <stdio.h>
#include <stdint.h>
#include "mxc_device.h"
#include "mxc_delay.h"
#include <mxc.h>
#include "string.h"
#include "stdlib.h"
#include "lcdfuncs.c"

#define ADC_CHANNEL MXC_ADC_CH_3  // Use CH 3
static uint16_t adc_val;

/******* Main program *******/
int main(void)
{ 
 int T;
 float mV;
 char buff[10];
 
 lcd_init();    // Initialize LCD
 MXC_ADC_Init();    // Initialize ADC

Figure 5.6 TMP36 sensor chip

dogan 2.indd   96dogan 2.indd   96 08/06/2021   22:20:5908/06/2021   22:20:59



Chapter 5 ● Analog-To-Digital converters (ADC)

● 97

    while (1)     // Do forever
    {
     adc_val = MXC_ADC_StartConversion(ADC_CHANNEL); // Start conversion
     lcd_clear();    
     mV = 1220.0 * adc_val / 1023;  // Convert to mV
     mV = (mV - 500.0)/ 10.0;  // Temperature in C
     T = (int)mV;    // As integer
     itoa(T, buff, 10);   // Convert to string
     lcd_puts(buff);    // Display measured mV
     MXC_Delay(1000000);   // Wait 1 second
    }
}

5.4 ● Project 3 – ON/OFF temperature controller

Description: Temperature control is important in many industrial, commercial, and domestic 
chemical applications. A temperature control system consists of a temperature sensor, 
heater, fan (optional), actuator to operate the heater, and a controller. Negative feedback 
is used to control the heater so the temperature is at the desired set-point value. Accurate 
temperature control systems are based on the PID (Proportional+Integral+Derivative) 
algorithm. In this project, an ON/OFF type simple control system is designed. ON/OFF 
temperature control systems commonly use relays to turn the heater ON or OFF depending 
on the set-point temperature and the measured temperature. If the measured temperature 
is below the set-point value, the relay is activated which turns the heater ON. If on the other 
hand, the measured temperature is above the set-point value, the relay is de-activated to 
turn OFF the heater so that the temperature is lowered.

In this project, a TMP36 type temperature sensor chip, a relay, and a heater are used 
to control the temperature of a small room. The heater is turned ON by the relay if the 
measured room temperature (RoomTemp) is below the set-point temperature (SetTemp), 
and it is turned OFF if it is above the set-point value. This process is repeated every 3 
seconds.

Aim: This project aims to show how an ON/OFF temperature control system can be designed 
using a low-cost temperature sensor chip with the MAX78000FTHR development board. 

Block diagram: Figure 5.8 shows the block diagram of the project.

Figure 5.7 Program listing

dogan 2.indd   97dogan 2.indd   97 08/06/2021   22:20:5908/06/2021   22:20:59



How2: Get Started with the MAX78000FTHR Board

● 98

Circuit diagram: The circuit diagram of the project is shown in Figure 5.9. A TMP36 sensor 
chip is connected to analog channel 3 as in the previous project. The relay is connected to 
port pin P0_5 (pin 12) through a transistor switch (any NPN type transistor) and is activated 
when logic 1 is applied to it. The LCD is connected as in the previous projects using LCDs.

Operation of the project

The operation of the project is described in Figure 5.10 as a PDL (Program Description 
Language).

Figure 5.8 Block diagram of the project

Figure 5.9 Circuit diagram of the project

dogan 2.indd   98dogan 2.indd   98 08/06/2021   22:21:0008/06/2021   22:21:00



Chapter 5 ● Analog-To-Digital converters (ADC)

● 99

BEGIN
 Configure and turn OFF the relay
 Initialise the LCD
 Initialise the ADC
 Specify the Set temperature
 Display the Set temperature at top row of LCD
 DO WHILE
  Read the analog sensor data
  Convert to Room temperature in Celsius
  IF Set temperature > Room temperature THEN
   Turn ON relay
  ELSE
   Turn OFF relay
  ENDIF
  Display the Room temperature at bottom row of LCD
  Wait 3 seconds
 ENDDO
END

Program listing: Figure 5.11 shows the program listing (ONOFF). The desired temperature 
is set to 27ºC and is stored in variable SetTemp. The Relay is assigned to P0_5 and is 
turned OFF at the beginning of the program (so that the heater is OFF).

The LCD and the ADC are initialised and the SetTemp converted into a floating-point string 
(in buffset) so it can be displayed on the LCD. The remaining parts of the program run in a 
while loop. Inside this loop, the room temperature is read from the sensor, converted into 
digital, and stored in variable RoomTemp. If the SetTemp is higher than the RoomTemp 
then the relay is activated so the heater turns ON. If on the other hand, the SetTemp is 
less than or equal to the RoomTemp then the relay is deactivated so the heater is turned 
OFF. Both the SetTemp and the RoomTemp are displayed on the LCD. This process is 
repeated every 3 seconds.

/*--------------------------------------------------------------------
 ON-OFF TEMPERATURE CONTROL WITH LCD

In this program an LCD is connected to MAX78000FTHR. Also, a TMP36
type temperature sensor chip in a room is connected to analog input AIN3.
The program controls the temperature in the room using ON-OFF technique.
Both the measured and the set temperature are displayed on the LCD

Author: Dogan Ibrahim
Date  : March 2021
Work  : ONOFF
----------------------------------------------------------------------*/
/***** Includes *****/

Figure 5.10 PDL of the project

dogan 2.indd   99dogan 2.indd   99 08/06/2021   22:21:0008/06/2021   22:21:00



How2: Get Started with the MAX78000FTHR Board

● 100

#include <stdio.h>
#include <stdint.h>
#include "mxc_device.h"
#include "mxc_delay.h"
#include <mxc.h>
#include "string.h"
#include "stdlib.h"
#include "lcdfuncs.c"

#define ADC_CHANNEL MXC_ADC_CH_3   // Use CH 3
static uint16_t adc_val;
#define Relay MXC_GPIO_PIN_5    // Relay at pin 5
mxc_gpio_cfg_t gpio_out;

/******* Main program *******/
int main(void)
{ 
 float mV;
 char buffroom[10], buffset[10];
 float SetTemp, RoomTemp;
 
 /* Setup output pins */
 gpio_out.port = MXC_GPIO0;   // Port 0
 gpio_out.mask = Relay;    // Relay
 gpio_out.pad = MXC_GPIO_PAD_NONE;  // None
 gpio_out.func = MXC_GPIO_FUNC_OUT;  // Output
 gpio_out.vssel = MXC_GPIO_VSSEL_VDDIOH;  // Set port to +3.3V
 MXC_GPIO_Config(&gpio_out);
 
 MXC_GPIO_OutClr(gpio_out.port, Relay);  // Relay OFF at beginning
 
 lcd_init();     // Initialize LCD
 MXC_ADC_Init();     // Initialize ADC
 SetTemp = 27.0;     // Set temp
 sprintf(buffset, "%5.2f", SetTemp);  // Convert to string
 
    while (1)      // Do forever
    {
     adc_val = MXC_ADC_StartConversion(ADC_CHANNEL); // Start conversion
     lcd_clear();     // Clear LCD
     lcd_puts("Set : ");    // Display heading
     lcd_puts(buffset);    // Display set point
     mV = 1220.0 * adc_val / 1023;   // Convert to mV
     RoomTemp = (mV - 500.0)/ 10.0;   // Temperature in C
     
     if(SetTemp > RoomTemp)    // IF SetTemp > RoomTemp

dogan 2.indd   100dogan 2.indd   100 08/06/2021   22:21:0008/06/2021   22:21:00



Chapter 5 ● Analog-To-Digital converters (ADC)

● 101

      MXC_GPIO_OutSet(gpio_out.port, Relay); // Relay ON
     else
      MXC_GPIO_OutClr(gpio_out.port, Relay); // Relay OFF
     
     sprintf(buffroom, "%5.2f", RoomTemp);  // Convert to string
     lcd_goto(0, 1);     // Cursor at 2nd row
     lcd_puts("Room: ");    // Display heading
     lcd_puts(buffroom);    // Display room temp
     MXC_Delay(3000000);    // Wait 3 second
    }
}

Figure 5.12 shows an example display.

5.5 ● Project 4 – ADC with completion interrupt – displaying the temperature

Description: Interrupt-based ADC can be a very useful feature, especially in real-time 
systems where a quick response is required. The basic operation is such that the ADC 
generates an interrupt whenever the data has been converted. A flag is then set in the 
interrupt service routine to inform the main program that the ADC conversion has been 
completed. An example is given in this section. In this example, the temperature is read 
from the TMP36 temperature sensor chip after detecting that the conversion is complete, 
and is displayed on the LCD.

Aim: This project aims to show how the ADC can be configured to generate completion 
interrupts and how the converted data can be extracted.
The block diagram and circuit diagram of the project are as in Figures 5.4 and 5.5 
respectively.

Program listing: Figure 5.13 shows the program listing (ADCInt). LCD and ADC are 
initialised in the main program and ADC interrupts are enabled. The program starts the 
conversion and waits until flag adc_done is set in the callback function adc_complete. 
The converted data is then read by calling function MXC_ADC_GetData. The temperature 
is then calculated in degrees Celsius and displayed on the LCD as in the previous projects. 

Figure 5.11 Program listing

Figure 5.12 Example display

dogan 2.indd   101dogan 2.indd   101 08/06/2021   22:21:0008/06/2021   22:21:00

.



How2: Get Started with the MAX78000FTHR Board

● 102

The ADC interrupt must be enabled and MXC_ADC_Handler called in the ISR places data 
in the error parameter of the callback function.

/*--------------------------------------------------------------------
 ADC WITH COMPLETION INTERRUPT-DISPLAYING THE TEMPERATURE

In this program an LCD is connected to MAX78000FTHR. Also, a TMP36
type temperature sensor chip is conencted to the board. ADC comletion
interrupt sets a flag which enables the main program to continue and
display the temperature on the LCD

Author: Dogan Ibrahim
Date  : March 2021
Work  : ADCInt
----------------------------------------------------------------------*/
/***** Includes *****/
#include <stdio.h>
#include <stdint.h>
#include "mxc_device.h"
#include "mxc_delay.h"
#include <mxc.h>
#include "string.h"
#include "stdlib.h"
#include "lcdfuncs.c"

#define ADC_CHANNEL MXC_ADC_CH_3   // Use CH 3
static uint16_t adc_val;
volatile unsigned int adc_done = 0;

//
// ADC interrupt service routine. Set flag adc_done
//
void adc_complete(void* req, int error)
{
    adc_done = 1;     // Interrupt occured flag
    return;
}

void ADC_IRQHandler(void)
{
    MXC_ADC_Handler();
}

/******* Main program *******/
int main(void)

dogan 2.indd   102dogan 2.indd   102 08/06/2021   22:21:0008/06/2021   22:21:00



Chapter 5 ● Analog-To-Digital converters (ADC)

● 103

{ 
 float mV, T;
 char buffer[10];
 
 lcd_init();     // Initialize LCD
 MXC_ADC_Init();     // Initialize ADC
    NVIC_EnableIRQ(ADC_IRQn);    // Enable ADC interrupts
    
    while (1)      // Do forever
    {
        adc_done = 0;
        MXC_ADC_StartConversionAsync(ADC_CHANNEL, adc_complete);
        while (!adc_done) {};
        
        MXC_ADC_GetData(&adc_val);   // GEt converted data
     lcd_clear();     // Clear LCD   
 
     mV = 1220.0 * adc_val / 1023;   // Convert to mV
     T = (mV - 500.0)/ 10.0;    // Temperature in C
     sprintf(buffer, "%5.2f", T);   // Convert to string
     lcd_puts(buffer);    // Display temperature
     MXC_Delay(3000000);    // Wait 3 second
    }
}

Figure 5.13 Program listing

dogan 2.indd   103dogan 2.indd   103 08/06/2021   22:21:0008/06/2021   22:21:00



How2: Get Started with the MAX78000FTHR Board

● 104

Chapter 6 ● Serial Communication – UART

6.1 ● Overview

Serial communication is a simple means of sending data over long distances quickly and 
reliably. The most commonly used serial communication method is based on the RS232 
standard. In this standard, data is sent over a single line from a transmitting device to a 
receiving device in bit-serial format at a pre-specified speed, also known as the Baud rate, 
or the number of bits sent each second. Typical Baud rates are 4800, 9600, 19200, 38400, 
etc.

RS232 serial communication is a form of asynchronous data transmission where data is 
sent character by character. Each character is preceded with a Start bit, seven or eight data 
bits, an optional parity bit, and one or more stop bits. The most commonly used format is 
eight data bits, no parity bit, and one stop bit. Therefore, a data frame consists of 10-bits. 
With a Baud rate of 9600, we can transmit and receive 960 characters every second. The 
least significant data bit is transmitted first, and the most significant bit is transmitted last.

In standard RS232 communication, logic high is defined to be at -12V, and logic 0 at +12V. 
Figure 6.1 shows how character "A" (ASCII binary pattern 0010 0001) is transmitted over a 
serial line. The line is normally idle at -12V. The start bit is first sent by the line going from 
high to low. Then eight data bits are sent starting from the least significant bit. Finally, the 
stop bit is sent by raising the line from low to high.

In serial communication a minimum of three lines are used for communication: transmit 
(TX), receive (RX), and ground (GND). Some high-speed serial communication systems use 
additional control signals for synchronisation, such as CTS, DTR, and so on. Some systems 
use software synchronisation techniques where a special character (XOFF) is used to tell 
the sender to stop sending. Another character (XON) is used to tell the sender to restart 
transmission. RS232 devices are connected using two types of connectors: 9-way and 25-
way. Table 6.1 shows the TX, RX, and GND pins of each type of connector. The connectors 
used in RS232 serial communication are shown in Figure 6.2.

Figure 6.1 Sending character "A" in serial format

dogan 2.indd   104dogan 2.indd   104 08/06/2021   22:21:0008/06/2021   22:21:00



Chapter 6 ● Serial Communication – UART

● 105

9-pin connector

Pin Function

2 Transmit (TX)

3 Receive (RX)

5 Ground (GND)

25-pin connector

Pin Function

2 Transmit (TX)

3 Receive (RX)

7 Ground (GND)

As described above, RS232 voltage levels are at ±12V. On the other hand, microcontroller 
input-output ports operate at 0 to +3.3V voltage levels. It is therefore necessary to translate 
voltage levels before a microcontroller can be connected to an RS232 compatible device. 
Thus, the output signal from the microcontroller has to be converted into ±12V, and the 
input from an RS232 device must be converted into 0 to +3.3V before it can be connected 
to a microcontroller. This voltage translation is normally done using special RS232 voltage 
converter chips. One such popular chip is the MAX232. This is a dual converter chip having 
the pin configuration as shown in Figure 6.3. This particular device requires four external 
1μF capacitors for its operation.

Table 6.1 Minimum pins required for RS232 serial communication

Figure 6.2 RS232 connectors

dogan 2.indd   105dogan 2.indd   105 08/06/2021   22:21:0008/06/2021   22:21:00



How2: Get Started with the MAX78000FTHR Board

● 106

Nowadays, serial communication is made using standard TTL logic levels instead of ±12V, 
where logic 1 is +5V (or greater than +3.3V) and logic 0 is 0V. A serial line is idle when the 
voltage is at +5V. The start bit is identified on the high-to-low transition of the line, i.e. the 
transition from +5V to 0V.
In this chapter, we will develop programs using the UART of MAX78000FTHR development 
board.

6.2 ● MAX78000FTHR UART serial ports

The MAX78000 microcontroller has normal and low power UART (LPUART). The LPUART is 
a special version of UART that can receive characters at 9600 Baud while in a low power 
mode. The basic features of the UART are:

• Flexible baud rate generation up to 12.5Mbps
• Programmable character size of 5-bits to 8-bits
• Stop bit settings of 1, 1.5, or 2-bits
• Parity settings of even, odd, mark (always 1), space (always 0), and no parity
• Automatic parity error detection with selectable parity bias
• Automatic framing error detection
• Separate 8-byte transmit and receive FIFOs
• Flexible interrupt conditions
• Hardware flow control for RTS and CTS
• DMA capable

The LPUART provides these additional features:

• Flexible baud rate generation up to 1.85Mbps 
• Ability to receive characters at 9600 Baud in ACTIVE, SLEEP, LPM, and µPM modes
• Fractional baud rate divisor settings to allow greater accuracy at slow baud rates

Figure 6.3 MAX232 pin configuration

dogan 2.indd   106dogan 2.indd   106 08/06/2021   22:21:0008/06/2021   22:21:00



Chapter 6 ● Serial Communication – UART

● 107

• Wakeup to ACTIVE on multiple RX FIFO conditions

The MAX78000 microcontroller has three UART ports and one LPUART port with the names:

 UART0 (includes hardware flow control)
 UART1
 UART2
 LPUART

UART0 is the console/DAPLink UART at pins P0_1 (TXD) and P0_0 (RXD). This UART is used 
to communicate with a PC over a virtual COM port using terminal emulation software as 
we have already seen while using the printf statement. This behaviour can be changed 
in board.h in C:\MaximSDK\Libraries\Boards\MAX78000\FTHR_RevA\Include 
by altering #define CONSOLE_UART 0. If you want to have a console on pins 7 and 8 
change it to 2.

UART2 is at pins 7 (TX) and 8 (RX), and LPUART at pins 15 (TX) and 14 (RX) on the 
MAX78000FTHR development board (see Figure 6.4).

Figure 6.5 shows the block diagram of the UART. Separate read (RX FIFO) and write (TX 
FIFO) FIFOs are provided. TX FIFO pointer is incremented after data is written to the data 
register. Similarly, reading data returns the character in the RX FIFO and decrements the 
FIFO pointer.

Figure 6.4 MAX78000FTHR board UART serial ports

dogan 2.indd   107dogan 2.indd   107 08/06/2021   22:21:0108/06/2021   22:21:01



How2: Get Started with the MAX78000FTHR Board

● 108

Some example UART-based projects are given in the next sections.

6.3 ● Project 1 – Sending the temperature readings to a terminal with relative time 
stamping

Description: In this project, we will be using a TMP36 temperature sensor chip to read 
ambient temperature every 5 seconds. The readings will be displayed on the terminal with 
relative seconds stampings since the program started.

Aim: This project aims to show how the UART can be used in a project.

Block diagram: Figure 6.6 shows the block diagram of the project. A virtual com port 
is used to get the readings from the development board and send them to a terminal 
emulation program running on the PC.

Figure 6.5 UART block diagram

dogan 2.indd   108dogan 2.indd   108 08/06/2021   22:21:0208/06/2021   22:21:02



Chapter 6 ● Serial Communication – UART

● 109

Circuit diagram: The circuit diagram of the project is shown in Figure 6.7. The 
MAX78000FTHR is connected to a PC through its USB port.

Program listing: The program listing (TMP36UART) is shown in Figure 6.8. The 
program initialises the ADC and displays a heading message using the printf statement. 
The remaining parts of the program are executed in a while loop. Inside this loop, the 
temperature is read, converted into degrees Celcius and displayed on the terminal with 
relative time in seconds. The printf statement is used to display the data. Notice that \t 
in the printf statement is the TAB character which moves the cursor by one tab position.

Figure 6.6 Block diagram of the project

Figure 6.7 Circuit diagram of the project

dogan 2.indd   109dogan 2.indd   109 08/06/2021   22:21:0208/06/2021   22:21:02



How2: Get Started with the MAX78000FTHR Board

● 110

/*-------------------------------------------------------------------------
  TEMPERATURE MEASUREMENT WITH UART

In this program a TMP36 type temperature sensor chip is connected to analog
input AIN3.The program displays the ambient temperature on a terminal

Author: Dogan Ibrahim
Date  : March 2021
Work  : TMP36UART
-------------------------------------------------------------------------*/
/***** Includes *****/
#include <stdio.h>
#include <stdint.h>
#include "mxc_device.h"
#include "mxc_delay.h"
#include <mxc.h>

#define ADC_CHANNEL MXC_ADC_CH_3   // Use CH 3
static uint16_t adc_val;

/******* Main program *******/
int main(void)
{ 
 float mV, T;
 int Secs = 0;
 
 MXC_ADC_Init();     // Initialize ADC
 printf("Time (secs)\tTemperature\n");  // Display heading
 
    while (1)      // Do forever
    {
     adc_val = MXC_ADC_StartConversion(ADC_CHANNEL); // Read data from sensor
     mV = 1220.0 * adc_val / 1023;   // Convert to mV
     T = (mV - 500.0)/ 10.0;    // Temperature in C
     printf("%d\t\t%5.2f\n", Secs, T);  // Display temperature
     Secs = Secs + 5;
     MXC_Delay(5000000);    // Wait 5 seconds
    }
}

Figure 6.9 shows an example output from the program. In this project, the Putty terminal 
emulation software was used in serial mode with the Baud rate set to 115200 (the default 
Baud rate of the MAX78000FTHR), and port COM5 was used (you will have to find the serial 
port number of the virtual com port using Device Manager on your PC).

Figure 6.8 Program listing

dogan 2.indd   110dogan 2.indd   110 08/06/2021   22:21:0208/06/2021   22:21:02



Chapter 6 ● Serial Communication – UART

● 111

6.4 ● Project 2 – Calculator project using a terminal

Description: This is a 4-function calculator that can add, subtract, multiply, and divide 
numbers. In this project, we will be using a terminal to enter the numbers to be manipulated. 
The calculation is performed on the MAX78000FTHR development board and the result is 
sent and displayed on the terminal.

Aim: This project aims to show how UART output and input functions can be used in a 
simple program.

The block diagram of the project is as in Figure 6.6. There is no TMP36 in this project.

Circuit diagram: Figure 6.10 shows the circuit diagram of the project.

Program listing: Figure 6.11 shows the program listing (UARTCALC). At the beginning of 
the program, the user is prompted to enter numbers and the required operation. Function 
scanf is used to read numbers and the required operation. For example, to add numbers 5 
and 4, enter as:

 5+4 or as 5 + 4

The result is calculated, stored in variable result, and is displayed on the terminal.

Figure 6.9 Example data displayed on the terminal

Figure 6.10 Circuit diagram of the project

dogan 2.indd   111dogan 2.indd   111 08/06/2021   22:21:0208/06/2021   22:21:02



How2: Get Started with the MAX78000FTHR Board

● 112

/*-------------------------------------------------------------------------
   CALCULATOR PROGRAM

This is a simple 4 function calculator program that can add,subtarct,multiply
and divide the given numbers. The numebrs are entered from a terminal. The
program calculates the required operation and sends teh result to the terminal

Author: Dogan Ibrahim
Date  : March 2021
Work  : UARTCALC
-------------------------------------------------------------------------*/
/***** Includes *****/
#include <stdio.h>
#include <stdint.h>
#include "mxc_device.h"
#include "mxc_delay.h"
#include <mxc.h>

/******* Main program *******/
int main(void)
{ 
 float no1, no2, result = 0;
 char oper;
 
    while (1)      // Do forever
    { 
     printf("\n\nCALCULATOR");
     printf("\n==========\n");
     printf("Enter the numbers and operation (separated with a space):\n");
     scanf("%f %c %f", &no1, &oper, &no2);
     
     switch(oper)
     {
      case '+':    // Add?
       result = no1 + no2;
       break;
      case '-':    // Subtract?
       result = no1 - no2;
       break;
      case '*':    // Multiply?
       result = no1 * no2;
       break;
      case '/':    // Divide?
       result = no1 / no2;
       break;
     }   

dogan 2.indd   112dogan 2.indd   112 08/06/2021   22:21:0208/06/2021   22:21:02



Chapter 6 ● Serial Communication – UART

● 113

     printf("\nResult = %f\n", result);  // Display result
    }
}

Figure 6.12 shows an example run of the program.

There are many functions related to UART. Some of the important functions are (see file 
uart.h for full details):

int MXC_UART_Init(mxc_uart_regs_t* uart, unsigned int baud, mxc_uart_clock_t clock): 
this function initialises UART. The following parameters are set by default:
 
 * UART Data Size    - 8 bits
 * UART Stop Bits    - 1 bit
 * UART Parity       - None
 * UART Flow Control - None
 
int MXC_UART_SetDataSize(mxc_uart_regs_t* uart, int dataSize): This function 
sets the data size (5-8 bits).

int MXC_UART_SetStopBits(mxc_uart_regs_t* uart, mxc_uart_stop_t stopBits): 
This function sets the number of stop bits.

Figure 6.11 Program listing

Figure 6.12 Example run of the program

dogan 2.indd   113dogan 2.indd   113 08/06/2021   22:21:0308/06/2021   22:21:03



How2: Get Started with the MAX78000FTHR Board

● 114

int MXC_UART_SetParity(mxc_uart_regs_t* uart, mxc_uart_parity_t parity): 
This function sets the parity.

int MXC_UART_SetFlowCtrl(mxc_uart_regs_t* uart, mxc_uart_flow_t flowCtrl, 
int rtsThreshold): This function sets the flow control.

int MXC_UART_SetClockSource(mxc_uart_regs_t* uart, mxc_uart_clock_t 
clock): This function sets the clock source.

Stop bits can be:

MXC_UART_STOP_1
MXC_UART_STOP_2

Parity options are:

MXC_UART_PARITY_DISABLE
MXC_UART_PARITY_EVEN_0
MXC_UART_PARITY_EVEN_1
MXC_UART_PARITY_ODD_0
MXC_UART_PARITY_ODD_1

Flow control options are:

MXC_UART_FLOW_DIS
MXC_UART_FLOW_EN

Clock options are:

/*8MHz clock can only be used for UART 0, 1 & 2*/ 
MXC_UART_8M_CLK = 2,

Some commonly used low-level functions are:

int MXC_UART_WriteCharacterRaw(mxc_uart_regs_t* uart, uint8_t character): 
This function writes a character to UART.

int MXC_UART_ReadCharacterRaw(mxc_uart_regs_t* uart): This function reads 
the next available character from UART.

6.5 ● Project 3 – MAX78000FTHR and Arduino Uno serial communication

Description: In this project, an Arduino Uno computer is connected to the MAX78000FTHR. 
The Arduino Uno counts up and sends the count over a serial link to the MAX78000FTHR 
which displays the count on an LCD.

dogan 2.indd   114dogan 2.indd   114 08/06/2021   22:21:0308/06/2021   22:21:03



Chapter 6 ● Serial Communication – UART

● 115

The Baud rate will be set to 9600 in this project.

Aim: This project aims to show how the communication parameters (e.g. Baud rate) can 
be changed.

Block diagram: Figure 6.13 shows the block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 6.14. Arduino pin 
2 is used as a software serial port and this pin is connected to the UART2 RX pin (pin 8) 
of the MAX78000FTHR development board. A resistive potential divider circuit is used to 
lower output voltage (+5V) of the Arduino Uno to +3.3V so that it is compatible with the 
MAX78000FTHR input voltage range.

Program listing (MAX78000FTHR): Figure 6.15 shows the program listing (UARTREAD) 
of the project. At the beginning of the program, the Baud rate is defined as 9600. Function 
MXC_UART_Init is called in the main program to set the Baud rate. UART2 at pins 7 
(TX) and 8 (RX) is selected in this project by setting READING_UART to 2 and using 
this variable as the first argument of function MXC_UART_Init. The LCD is initialised and 
the display is cleared. The remaining parts of the program run in a loop. Inside this loop, 

Figure 6.13 Block diagram of the project

Figure 6.14 Circuit diagram of the project

dogan 2.indd   115dogan 2.indd   115 08/06/2021   22:21:0308/06/2021   22:21:03



How2: Get Started with the MAX78000FTHR Board

● 116

function ReadData is called to read data from the UART. This function reads characters 
until a new line is detected. The received characters are stored in the character array 
RxData. The data is terminated with a NULL character and is displayed on the LCD. The 
loop is repeated every 2 seconds.

/*-------------------------------------------------------------------------
  READ FROM ARDUINO UNO

This program receives data (count) from Arduino Uno and displays on LCD.
The UART baud rate is set to 9600

Author: Dogan Ibrahim
Date  : March 2021
Work  : UARTREAD
-------------------------------------------------------------------------*/
/***** Includes *****/
#include <stdio.h>
#include <stdint.h>
#include "mxc_device.h"
#include "mxc_delay.h"
#include <mxc.h>
#include "string.h"
#include "uart.h"
#include "lcdfuncs.c"

#define READING_UART        2
#define UART_BAUD           9600
#define BUFF_SIZE           10
char RxData[BUFF_SIZE];

//
// This function reads UART data until newline character is detected.
// Data is returned in array RxData
//
void ReadData()
{
 int i,ch;
 i=0;

 while(1)
 {
  ch=MXC_UART_ReadCharacterRaw(MXC_UART_GET_UART(READING_UART));
  if(ch == '\n')break;
  if(ch > 0)
  {
   RxData[i] = ch;

dogan 2.indd   116dogan 2.indd   116 08/06/2021   22:21:0308/06/2021   22:21:03



Chapter 6 ● Serial Communication – UART

● 117

   i++;
  }
 }
 RxData[i-1]='\0';
}

/******* Main program. Read data from Arduino every 2 seconds and display it 
*******/
int main(void)
{ 
 lcd_init();
 lcd_clear();
 MXC_UART_Init(MXC_UART_GET_UART(READING_UART), UART_BAUD, MXC_UART_APB_CLK);
 
    while (1)      // Do forever
    {
     ReadData();     // Receive data
     lcd_clear();     // Clear LCD
     lcd_puts(RxData);    // Display data
     MXC_Delay(2000000);    // Wait 2 seconds
    }
}

Program listing (Arduino Uno): Figure 6.16 shows the Arduino Uno program listing 
(Counter.c). Pins 2 and 3 are configured as soft serial RX and TX pins (the RX pin is not 
used in this project). The Baud rate is set to 9600. The program increments a variable 
called count every 3 seconds and sends its value to the serial line.

Figure 6.15 Program listing (MAX78000FTHR)

dogan 2.indd   117dogan 2.indd   117 08/06/2021   22:21:0308/06/2021   22:21:03



How2: Get Started with the MAX78000FTHR Board

● 118

/***********************************************************
 *                    COUNTER
 *                    ========
 * This program counts up every 3 seconds and sends the count         
 * to MAX78000FTHR for displaying on LCD
 * 
 * Author: Dogan Ibrahim
 * Date  : February, 2021
 * File  : Counter.c
 ***********************************************************/
#include <SoftwareSerial.h>
SoftwareSerial MySerial(2, 3);           // RX, TX

int count = 0;
String cntstr;

void setup() 
{
  MySerial.begin(9600);                  // Soft serial speed 9600
}

void loop() 
{
  cntstr = String(count);               // Convert to string
  MySerial.println(cntstr);             // Send to MAX78000
  count++;                              // Increment count
  delay(3000);                          // Wait 3 seconds
}

6.6 ● Project 4 – UART interrupts

Description: This project is similar to the previous project where the count is displayed on 
LCD. In this project, UART interrupts are used to read the data from the Arduino.

The Baud rate is set to 9600 as in the previous project.

Aim: This project aims to show how UART interrupts can be configured and used.

The block and circuit diagrams are as in Figures 6.13 and 6.14 respectively.

The Arduino program listing is the same as in Figure 6.16.

Program listing (MAX78000FTHR): Figure 6.17 shows the MAX78000FTHR program 
listing (UARTINT). Again, UART2 is used in this project with pin 7 as the TX, and pin 8 the 
RX. The main program configures UART interrupts. Function UART_Handler is called when 

Figure 6.16 Program listing (Arduino Uno)

dogan 2.indd   118dogan 2.indd   118 08/06/2021   22:21:0408/06/2021   22:21:04



Chapter 6 ● Serial Communication – UART

● 119

a character is received by the UART. Received data is stored in array RxData as it arrives. 
The function extracts the characters up to a new line and displays them on the LCD. You 
should press the Reset button on the development board after loading the program.

/*-------------------------------------------------------------------------
  READ FROM ARDUINO UNO - UART INTERRUPTS

This program receives data (count) from Arduino Uno and displays on LCD.
The UART baud rate is set to 9600.

In this version of the program, UART interrupts are used.

Author: Dogan Ibrahim
Date  : March 2021
Work  : UARTINT
-------------------------------------------------------------------------*/
/***** Includes *****/
#include <stdio.h>
#include <stdint.h>
#include "mxc_device.h"
#include "mxc_delay.h"
#include <mxc.h>
#include "string.h"
#include "uart.h"
#include "nvic_table.h"
#include "lcdfuncs.c"

#define READING_UART     2
#define UART_BAUD        9600
#define BUFF_SIZE        1024

volatile int READ_FLAG;
volatile int indx=0;
volatile int indxs = 0;
mxc_uart_req_t read_req;
uint8_t RxData[BUFF_SIZE];

//
// UART interrupt service routine. Read and display the data on LCD
//
void UART_Handler(void)
{
 char buffer[10];
    MXC_UART_AsyncHandler(MXC_UART_GET_UART(READING_UART));
    lcd_goto(0,0);      // Cursor at 0,0
    if(RxData[indx] == '\n')     // Newline?

dogan 2.indd   119dogan 2.indd   119 08/06/2021   22:21:0408/06/2021   22:21:04



How2: Get Started with the MAX78000FTHR Board

● 120

    {
     RxData[indx-1] = '\0';    // Terminate with Null
     sprintf(buffer, "%s", RxData+indxs);  // Convert to string
     lcd_puts(buffer);    // Display on LCD
     indxs = indx+1;
    }
    indx++;
}

void readCallback(mxc_uart_req_t* req, int error)
{
    READ_FLAG = error;
}

/******* Main program. Read data from Arduino every 2 seconds and display it 
*******/
int main(void)
{ 
 lcd_init();
 lcd_clear();
 MXC_UART_Init(MXC_UART_GET_UART(READING_UART), UART_BAUD, MXC_UART_APB_CLK);
 
    read_req.uart = MXC_UART_GET_UART(READING_UART);
    read_req.rxData = RxData;
    read_req.rxLen = BUFF_SIZE;
    read_req.txLen = 0;
    read_req.callback = readCallback;
    
    NVIC_ClearPendingIRQ(MXC_UART_GET_IRQ(READING_UART));
    NVIC_DisableIRQ(MXC_UART_GET_IRQ(READING_UART));
    NVIC_SetVector(MXC_UART_GET_IRQ(READING_UART), UART_Handler);
    NVIC_EnableIRQ(MXC_UART_GET_IRQ(READING_UART));
    
    MXC_UART_ClearRXFIFO(MXC_UART_GET_UART(READING_UART));
    MXC_UART_TransactionAsync(&read_req);
    
    while (1)       // Do forever
    {
    }
}

Figure 6.17 Program listing

dogan 2.indd   120dogan 2.indd   120 08/06/2021   22:21:0408/06/2021   22:21:04



Chapter 7 ● I2C Bus Interface

● 121

Chapter 7 ● I2C Bus Interface

7.1 ● Overview

The I2C (or I2C) bus is commonly used in microcontroller-based projects. In this chapter, 
we will look at the use of this bus on the MAX78000FTHR development board. The aim is to 
make the reader familiar with I2C bus library functions and to show how they can be used 
in real projects. Before looking at the details of the project, it is worthwhile to look at the 
basic principles of the I2C bus.

7.2 ● The I2C Bus

The I2C bus is one of the most commonly used microcontroller communication protocols for 
communicating with external devices such as sensors and actuators. It is is a single master, 
multiple slave bus that can operate in standard mode: 100 Kbit/s, full speed: 400 Kbit/s, 
fast mode: 1 Mbit/s, and high speed: 3.2 Mbit/s. The bus consists of two open-drain wires, 
pulled-up with resistors:

 SDA: data line
 SCL: clock line

Figure 7.1 shows the structure of an I2C bus with one master and three slaves.

Because the I2C bus is based on just two wires, there should be a way to address an 
individual slave device on the same bus. For this reason, the protocol defines that each 
slave device provides a unique slave address for the given bus. This address is usually 
7-bits wide. When the bus is free both lines are HIGH. All communication on the bus is 
initiated and completed by the master which initially sends a START bit, and completes a 
transaction by sending a STOP bit. This alerts all the slaves that some data is coming on the 
bus and all the slaves listen on the bus. After the start bit, 7 bits of unique slave address 
are sent. Each slave device on the bus has its own address ensuring only the addressed 
slave communicates on the bus at any time to avoid any collisions. The last sent bit is a 
read/write bit such that if this bit is 0, it means the master wishes to write to the bus (e.g. 

Figure 7.1 I2C bus with one master and three slaves

dogan 2.indd   121dogan 2.indd   121 08/06/2021   22:21:0408/06/2021   22:21:04



How2: Get Started with the MAX78000FTHR Board

● 122

to a register of a slave), if this bit is a 1, it means that the master wishes to read from the 
bus (e.g. from the register of a slave). The data is sent on the bus with the MSB bit first. 
An acknowledgment (ACK) bit takes place after every byte and this allows the receiver to 
signal to the transmitter that the byte was successfully received. As a result, another byte 
may be sent. ACK bit is sent at the 9th clock pulse.

The communication over the I2C bus is as follows:

• On the bus, the master sends the address of the slave it wants to communicate with
• The LSB is the R/W bit which establishes the direction of data transmission, i.e. from 

master to slave (R/W = 0), or from slave to master (R/W = 1)
• Required bytes are sent, each interleaved with an ACK bit until a stop condition occurs

Depending on the type of slave device used, some transactions may require a separate 
transaction. For example, the steps to read data from an I2C compatible memory device 
are:

• Master starts the transaction in write mode (R/W = 0) by sending the slave address 
on the bus

• The memory location to be retrieved are then sent as two bytes (assuming 64Kbit 
memory)

• The master sends a STOP condition to end the transaction
• The master starts a new transaction in read mode (R/W = 1) by sending the slave 

address on the bus
• The master reads the data from the memory. If reading the memory in sequential 

format, more than one byte will be read
• The master sets a stop condition on the bus

7.3 ● I2C pins of the MAX78000 microcontroller

MAX78000 microcontroller I2C bus supports the following basic features:

• Operates as either a master or slave device as a transmitter or receiver
• Supports I2C Standard Mode, Fast Mode, Fast Mode Plus, and High Speed (Hs) mode
• Transfers data at rates up to 3.4Mbps (in High-Speed mode)
• Supports 7- and 10-bit addressing
• Supports RESTART condition and clock stretching
• Provides transfer status interrupts, DMA transfers, and flags
• Provides glitch filter and Schmitt trigger hysteresis on SDA and SCL
• Provides control, status, and interrupt events for maximum flexibility
• Provides independent 8-byte RX FIFO and 8-byte TX FIFO (with pre-loading)
• Provides programmable interrupt threshold levels for the TX and RX FIFO

There are 3 I2C bus interface modules on the MAX78000 microcontroller: I2C0, I2C1, and 
I2C2. The MAX78000FTHR development board only supports the I2C1at pins P0_16 (SCL), 
and P0_17 (SDA) as shown in Figure 7.2.

dogan 2.indd   122dogan 2.indd   122 08/06/2021   22:21:0408/06/2021   22:21:04



Chapter 7 ● I2C Bus Interface

● 123

In the remaining parts of this chapter, we will develop projects using the I2C bus.

7.4 ● Project 1 – I2C port expander

Description: A simple project is given in this section to show how the I2C functions can be 
used in a program. In this project, an I2C bus compatible Port Expander chip (MCP23017) 
is used to give an additional 16 I/O ports to the MAX78000FTHR development board. This 
is useful in some applications where a large number of I/O ports may be required. In this 
project, an LED is connected to MCP23017 port pin GPA0 (pin 21) and the LED is flashed 
ON and OFF every 500 milliseconds so that the operation of the program can be verified. A 
1K current limiting resistor is used in series with the LED.

Aim: This project aims to show how the I2C bus can be used on the MAX78000FTHR 
development board.

Block diagram: The block diagram of the project is shown in Figure 7.3.

Figure 7.2 MAX78000FTHR I2C pins

Figure 7.3 Block diagram of the project

dogan 2.indd   123dogan 2.indd   123 08/06/2021   22:21:0508/06/2021   22:21:05



How2: Get Started with the MAX78000FTHR Board

● 124

The MCP23017

The MCP23017 is a 28 pin chip with the following features. Pin configuration is shown in 
Figure 7.4:

• 16 bi-directional I/O ports
• Up to 1.7MHz operation on I2C bus
• Interrupt capability
• External reset input
• Low standby current
• +1.8 to +5.5V operation
• 3 address pins so that up to 8 devices can be used on the I2C bus
• 28-pin DIL package

Pin descriptions are given in Table 7.1.

Pin Description

GPA0-GPA7 Port A pins

GPB0-GPB7 Port B pins

VDD Power supply

VSS Ground

SDA I2C data pin

SCL I2C clock pin

RESET Reset pin

A0-A2 I2C address pins

The MCP23017 is addressed using pins A0 to A2. Table 7.2 shows the address selection. In 

Figure 7.4 Pin configuration of the MCP23017

Table 7.1 MCP23017 pin descriptions

dogan 2.indd   124dogan 2.indd   124 08/06/2021   22:21:0508/06/2021   22:21:05



Chapter 7 ● I2C Bus Interface

● 125

this project, the address pins are connected to ground, thus the address of the chip is 0x20. 
The chip address is 7 bits wide with the low bit set or cleared depending on whether we 
wish to read data from the chip or write data to the chip respectively. Since in this project 
we will be writing to the MCP23017, the low bit should be 0, making the chip byte address 
(also called the device opcode) 0x40.

A2 A1 A0 Address

0 0 0 0x20

0 0 1 0x21

0 1 0 0x22

0 1 1 0x23

1 0 0 0x24

1 0 1 0x25

1 1 0 0x26

1 1 1 0x27

The MCP23017 chip has 8 internal registers that can be configured for its operation. The 
device can either be operated in 16 or two 8-bit modes by configuring bit IOCON.BANK. On 
power-up, this bit is cleared which chooses the two 8-bit mode by default.

The I/O direction of the port pins is controlled with registers IODIRA (at address 0x00) and 
IODIRB (at address 0x01). Clearing a bit to 0 in these registers makes the corresponding port 
pin(s) as output(s). Similarly, setting a bit to 1 in these registers makes the corresponding 
port pin(s) input(s). GPIOA and GPIOB register addresses are 0x12 and 0x13 respectively. 
This is shown in Figure 7.5.

Figure 7.6 shows the circuit diagram of the project. Notice the I2C pins of the port expander are 
connected to pins P0_17 (SDA) and P0_16 (I2C0 SCL) of the MAX78000FTHR development 
board and are pulled up using 10K resistors as required by the I2C specifications. The LED 
is connected to port pin GPA0 of the MCP23017 (pin 21) through a current limiting resistor. 

Table 7.2 Address selection of the MCP23017

Figure 7.5 Configuring the I/O ports

dogan 2.indd   125dogan 2.indd   125 08/06/2021   22:21:0508/06/2021   22:21:05



How2: Get Started with the MAX78000FTHR Board

● 126

The address select bits of the MCP23017 are all connected to ground.

More information on the MCP23017 chip can be obtained from the datasheet:

http://docs-europe.electrocomponents.com/webdocs/137e/0900766b8137eed4.pdf

Program listing: Figure 7.7 shows the program listing (MCP23017). At the beginning 
of the program, the MCP23017 device address and the registers used are defined. The 
I2C device address when A0, A1, and A2 pins are connected to GND is 0x20. The device 
address when A2 = A1 = 0 and A0 = 1 is 0x22 and so on. Up to 8 MCP23017 devices can 
be connected to the MAX78000FTHR, thus adding up to 8 x 16 = 128 additional GPIO ports. 
The I2C bus speed is set to 1MHz (the MCP23017 data sheet specifies that it can be from 
100 kHz to up to 1.7 MHz):

#define MCP_SLAVE_ADDR 0x20   // MCP23017 I2C address
#define MCP_GPIOA_REG 0x12   // MCP23017 GPIOA address
#define MCP_IODIRA_REG 0   // MCP23017 IODIRA Address
#define I2C_MASTER MXC_I2C1   // Use I2C1
unsigned int hz= 1000000;   // I2C frequency

The MAX78000 microcontroller is set as the bus MASTER, using I2C1 (P0_16 and P0_17):

 MXC_I2C_Init(I2C_MASTER, 1, 0);

mxc_i2C_req_t structure is then initialised with the following settings:

reqMaster.i2c = I2C_MASTER;   // We are the MAster
reqMaster.addr = MCP_SLAVE_ADDR;  // Slave address
reqMaster.tx_buf = txdata;   // Transmit buffer
reqMaster.tx_len = 2;    // 2 bytes to transfer
reqMaster.rx_buf = rxdata;

Figure 7.6 Circuit diagram of the project

dogan 2.indd   126dogan 2.indd   126 08/06/2021   22:21:0508/06/2021   22:21:05



Chapter 7 ● I2C Bus Interface

● 127

reqMaster.rx_len = 0;    // No receive data
reqMaster.restart = 0;
reqMaster.callback = 0;   // No callback

The transmit buffer length is set to 2 since two bytes are sent to the slave on each 
transaction: the register address, followed by the data. Notice that setting the receive 
buffer length to 0 disables receiving data from the I2C bus which is the case in this example 
project. Also, this disables the callback.

Register IODIRA is set to 0 so that the GPA ports are all configured as outputs:

txdata[0]=MCP_IODIRA_REG;    // IODIRA register
txdata[1]=0;      // Set to outputs
MXC_I2C_MasterTransaction(&reqMaster);

Port pin GPA0 is then flashed every 500 ms by setting it to 1, waiting for 500 ms, setting it 
to 0, and waiting for 500 ms again.

/*-------------------------------------------------------------------------
  I2C PORT EXPANDER

In this project an I2C compatible port expander chip (MCP23017) is connected
to the MAX78000FTHR. An LED is connected to the port expander. The program
flashes the LED every 0.5 second

Author: Dogan Ibrahim
Date  : March 2021
Work  : MCP23017
--------------------------------------------------------------------------*/
/***** Includes *****/
#include <stdio.h>
#include <stdint.h>
#include "mxc_device.h"
#include "mxc_delay.h"
#include <mxc.h>
#include "i2c_regs.h"
#include "i2c.h"

#define MCP_SLAVE_ADDR 0x20    // MCP23017 I2C address
#define MCP_GPIOA_REG 0x12    // MCP23017 GPIOA address
#define MCP_IODIRA_REG 0    // MCP23017 IODIRA Address
#define I2C_MASTER MXC_I2C1    // Use I2C1
unsigned int hz= 1000000;    // I2C frequency
unsigned char txdata[10];    // Transmit buffer
unsigned char rxdata[10];    // Receive buffer (unused)

dogan 2.indd   127dogan 2.indd   127 08/06/2021   22:21:0508/06/2021   22:21:05



How2: Get Started with the MAX78000FTHR Board

● 128

mxc_i2c_req_t reqMaster;

/******* Main program *******/
int main(void)
{
 MXC_I2C_Init(I2C_MASTER, 1, 0);   // Initialize as MASTER
 MXC_I2C_SetFrequency (I2C_MASTER,hz);  // Set frequency
 
 reqMaster.i2c = I2C_MASTER;   // We are the MAster
 reqMaster.addr = MCP_SLAVE_ADDR;  // Slave address
 reqMaster.tx_buf = txdata;   // Transmit buffer
 reqMaster.tx_len = 2;    // 2 bytes to tranfer
 reqMaster.rx_buf = rxdata;
 reqMaster.rx_len = 0;    // No receive data
 reqMaster.restart = 0;
 reqMaster.callback = 0;    // No callback
 
 txdata[0]=MCP_IODIRA_REG;   // IODIRA register
 txdata[1]=0;     // Set to outputs
 MXC_I2C_MasterTransaction(&reqMaster);  // Send to slave
 
 while(1)     // Do forever
 {
     txdata[0]=MCP_GPIOA_REG;   // GPIOA register
     txdata[1]=1;    // Set GPA0 to 1
     MXC_I2C_MasterTransaction(&reqMaster);    // Send to slave
     MXC_Delay(500000);    // WaIt 0.5 second
     
     txdata[0]=MCP_GPIOA_REG;   // GOIOA register
     txdata[1]=0;    // SEt GPA0 to 0
     MXC_I2C_MasterTransaction(&reqMaster); // Send to slave
     MXC_Delay(500000);    // Wait 0.5 second
  }
}

7.5 ● Project 2 – TMP102 temperature sensor

Description: In this project, the I2C compatible TMP102 temperature sensor chip is used. 
Ambient temperature is read every second and is sent and displayed on a terminal.

Aim: This project aims to show how a TMP102temperature sensor chip can be used in a 
program.

Figure 7.7 Program: MCP23017

dogan 2.indd   128dogan 2.indd   128 08/06/2021   22:21:0508/06/2021   22:21:05



Chapter 7 ● I2C Bus Interface

● 129

The TMP102

The TMP102 is a highly accurate I2C compatible temperature sensor chip with a built-in 
thermostat, having the following basic features:

 Supply voltage: 1.4V to 3.6V
 Supply current: 10μA
 Accuracy: ±0.5ºC
 Resolution: 12 bits (0.0625ºC)
 Operating range: -40ºC to +125ºC

The TMP102 is a 6-pin chip as shown in Figure 7.8. the pin descriptions are:

Pin Name Description

1 SCL I2C line

2 GND power supply ground

3 ALERT
Over temperature alert. 
Open-drain output. requires 
a pull-up resistor

4 ADD0 Address select

5 V+ power supply

6 SDA I2C line

The TMP102 has the following operational modes:

• Continuous conversion: by default, an internal ADC converts the temperature into 
digital format with the default conversion rate of 4Hz, with a conversion time of 26ms. 
The conversion rate can be selected using bits CR1 and CR0 of the configuration 
register as: 0.25Hz, 1Hz, 4Hz (default), and 8Hz. In this project, the default 4Hz is 
used.

• Extended mode: Bit EM of the configuration register selects normal mode (EM = 0), 
or extended mode (EM = 1). In normal mode (default mode) the converted data is 12 
bits. Extended mode is used if the temperature is above 128ºC and the converted data 
is 13 bits. In this project, normal mode is used.

Figure 7.8 TMP102 pin layout

dogan 2.indd   129dogan 2.indd   129 08/06/2021   22:21:0608/06/2021   22:21:06



How2: Get Started with the MAX78000FTHR Board

● 130

• Shutdown mode: This mode is used to save power where the current consumption is 
reduced to less than 0.5μA. Shutdown mode is entered when configuration register bit 
SD = 1. The default mode is normal operation (SD = 0).

• One-shot conversion: Setting configuration register bit OS to 1 selects the one-shot 
mode which is a single conversion mode. The default mode is continuous conversion 
(OS = 0).

• Thermostat mode: This mode indicates whether to operate in comparator mode (TM 
= 0) or in interrupt mode (TM = 1). The default is comparator mode. In comparator 
mode, the Alert pin is activated when the temperature equals or exceeds the value 
in the THIGH register, and remains active until the temperature drops below TLOW. In 
interrupt mode, the Alert pin is activated when the temperature exceeds THIGH or goes 
below TLOW registers. The Alert pin is cleared when the host controller reads the 
temperature register.

A Pointer Register selects various registers in the chip as shown in Table 7.3. The upper 
6 bits of this register are 0s.

P1 P0 Register Selected

0 0 Temperature register (read only)

0 1 Configuration register

1 0 TLOW register

1 1 THIGH register

Table 7.4 shows the temperature register bits in normal mode (EM = 0).

BYTE 1

D7 D6 D5 D4 D3 D2 D1 D0

T11 T10 T9 T8 T7 T7 T5 T4

BYTE 2

D7 D6 D5 D4 D3 D2 D1 D0

T3 T2 T1 T0 0 0 0 0

Table 7.3 Pointer register bits

Table 7.4 Temperature register bits

dogan 2.indd   130dogan 2.indd   130 08/06/2021   22:21:0608/06/2021   22:21:06



Chapter 7 ● I2C Bus Interface

● 131

Table 7.5 Configuration register bits

Table 7.5 shows the configuration register bits. The power-up default bit configuration is 
shown in the table.

BYTE 1:

D7 D6 D5 D4 D3 D2 D1 D0

OS R1 R0 F1 F0 POL TM SD

0 1 1 0 0 0 0 0

BYTE 2:

D7 D6 D5 D4 D3 D2 D1 D0

CR1 CR0 AL EM 0 0 0 0

1 0 1 0 0 0 0 0

The Polarity bit (POL) allows the user to adjust the polarity of the Alert pin output. If set to 
0 (default), the Alert pin becomes active low. When set to 1, the Alert pin becomes active 
high.    

The default device address is 0x48. TMP102 is available as a module (breakout module) 
as shown in Figure 7.9. The temperature register address is 0x00 and this should be sent 
after sending the device address. This is then followed by a read command where 2 bytes 
are read from the TMP102. These 2 bytes contain the temperature data. 

The temperature read sequence is as follows:

• Master sends the device address 0x48 with the R/W set to 0
• Device responds with ACK
• Master sends the temperature register address 0x00
• Device responds with ACK
• Master re-sends device address 0x48 with the R/W bit set to 1
• Master reads upper byte of temperature data
• Device sends ACK
• Master reads lower byte of temperature data
• Device sends ACK
• Master sends stop condition on the bus

Figure 7.9 TMP102 as a module

dogan 2.indd   131dogan 2.indd   131 08/06/2021   22:21:0608/06/2021   22:21:06



How2: Get Started with the MAX78000FTHR Board

● 132

Block diagram: Figure 7.10 shows the block diagram of the project.

Circuit diagram: The circuit diagram of the project is shown in Figure 7.11. On-chip pull-
up resistors are available on the TMP102 I2C bus lines and therefore there is no need to 
use external pull-up resistors.

Program listing: Figure 7.12 shows the program listing (TMP102). At the beginning of 
the program, the I2C address of TMP102 and the Pointer register addresses are defined. 
The Pointer register is set to 0 to select the temperature register.

The transmit buffer length tx_len is set to 1 and it is loaded initially with 0 so that a byte 
is sent to the TMP102 chip to configure it to send the temperature readings. The receive 
buffer rxdata length rx_len is set to 2 so that it receives the two bytes of temperature 
data.

The program runs inside a while loop every second. Two bytes of the temperature data 
are read and stored in rxdata[0] and rxdata[1]. The temperature is then converted 
into positive (or negative) degrees Celsius and stored in variable temperature. If the 
temperature is negative, it is in 2's complement form and its complement is taken and 
1 is added to find the true negative value. By multiplying temp with the LSB we find the 
temperature in degrees Centigrade. The temperature reading is sent to the PC as a floating-
point number using the printf statement.

Figure 7.11 Circuit diagram of the project

Figure 7.10 Block diagram of the project

dogan 2.indd   132dogan 2.indd   132 08/06/2021   22:21:0608/06/2021   22:21:06



Chapter 7 ● I2C Bus Interface

● 133

Table 7.6 shows the data output format of the temperature. Let us look at two examples:

Example 1: Measured value = 0011 00100000 = 0x320 = 800 decimal

This is a positive temperature, so the temperature is 800 x 0.0625 = +50ºC

Example 2: Measured value = 1110 01110000 = 0xE70

This is a negative temperature, complement is 0001 10001111, adding 1 gives 0001 
10010000 = 400 decimal. The temperature is 400 x 0.0625 = 25 or, -25ºC.

Temperature Digital Output (Binary) Digital Output (HEX)

128 011111111111 7FF

100 011001000000 640

50 001100100000 320

0.25 000000000100 004

-0.25 111111111100 FFC

-25 111001110000 E70

-55 110010010000 C90

/*-------------------------------------------------------------------------
 I2C TMP102 TEMPERATURE SENSOR

In this project an I2C compatible TMP102 temperature sensor chip is connected
to the MAX78000FTHR. The program sends the temperature readings to a terminal
over serial link

Author: Dogan Ibrahim
Date  : March 2021
Work  : TMP102
--------------------------------------------------------------------------*/
/***** Includes *****/
#include <stdio.h>
#include <stdint.h>
#include "mxc_device.h"
#include "mxc_delay.h"
#include <mxc.h>
#include "i2c_regs.h"
#include "nvic_table.h"
#include "i2c.h"
#include "string.h"

Table 7.6 The data output for some temperature readings

dogan 2.indd   133dogan 2.indd   133 08/06/2021   22:21:0608/06/2021   22:21:06



How2: Get Started with the MAX78000FTHR Board

● 134

#define TMP102_PointerReg 0                    //TMP102 register
#define TMP102_SLAVE_ADDR 0x48    // MCP23017 I2C address
#define I2C_MASTER MXC_I2C1    // Use I2C1
unsigned int hz= 1000000;    // I2C frequency
unsigned char rxdata[10];    // Receive buffer (unused)
unsigned char txdata[10];    // Transmit buffer
volatile int I2C_FLAG;
volatile int flag=0;
mxc_i2c_req_t reqMaster;

void I2C1_IRQHandler(void)
{
    MXC_I2C_AsyncHandler(I2C_MASTER);
    return;
}

//
//I2C callback function
//
void I2C_Callback(mxc_i2c_req_t* req, int error)
{
    I2C_FLAG = error;
    return;
}

/******* Main program *******/
int main(void)
{
 float temperature;
 int temp;
 float LSB = 0.0625;
 MXC_I2C_Init(I2C_MASTER, 1, 0);   // Initialize as MASTER
 MXC_I2C_SetFrequency (I2C_MASTER,hz);  // Set frequency
 
 NVIC_SetVector(I2C1_IRQn, I2C1_IRQHandler);
 NVIC_EnableIRQ(I2C1_IRQn);
     
 reqMaster.i2c = I2C_MASTER;   // We are the MAster
 reqMaster.addr = TMP102_SLAVE_ADDR;  // Slave address
 reqMaster.tx_buf = txdata;   // Transmit buffer
 reqMaster.tx_len = 1;    // 1 byte to tranfer
 reqMaster.rx_buf = rxdata;   // Receive buffer
 reqMaster.rx_len = 2;    // Receive 2 bytes
 reqMaster.restart = 0;
 reqMaster.callback=I2C_Callback;  // Callback routine
     I2C_FLAG = 1; 

dogan 2.indd   134dogan 2.indd   134 08/06/2021   22:21:0608/06/2021   22:21:06



Chapter 7 ● I2C Bus Interface

● 135

 txdata[0]=0;     // Prepare to send 0
 MXC_I2C_MasterTransactionAsync(&reqMaster); // Configure to read temp
 reqMaster.tx_len=0;    // No more to trenamit
 
 while(1)     // Do forever
 {
  MXC_I2C_MasterTransaction(&reqMaster);
  while(I2C_FLAG == 1) {};  // Wait for completion
  
     temp = (rxdata[0] << 4) | (rxdata[1] >> 4); // Extract temperature
     if(temp > 0x7FF)
     {
         temp = (~temp) & 0xFF;   // If negative temperature
         temp = temp + 1;
         temperature = -temp * LSB;
     }
     else
     {
         temperature = temp * LSB;
     }
  printf("Temperature = %+5.2f\n",temperature); // Send readings 
  MXC_Delay(1000000);    // Wait 1 second
  
  }
}

Example output from the program is shown in Figure 7.13.

Figure 7.13 Example output from the program

Figure 7.12 Program listing

dogan 2.indd   135dogan 2.indd   135 08/06/2021   22:21:0708/06/2021   22:21:07



How2: Get Started with the MAX78000FTHR Board

● 136

Chapter 8 ● SPI Bus Interface

8.1 ● Overview

In this chapter, we will develop projects using the SPI bus (Serial Peripheral Interface) 
with the MAX78000FTHR development board. The SPI bus is one of the commonly used 
protocols to connect sensors and many other devices to microcontrollers. The SPI bus 
is a master-slave type bus protocol. In this protocol, one device (the microcontroller) is 
designated as the master, and one or more other devices (usually sensors) are designated 
as slaves. In a minimum bus configuration, there is one master and only one slave. The 
master establishes communication with the slaves and controls all the activity on the bus.
Figure 8.1 shows an SPI bus example with one master and 3 slaves. The SPI bus uses 3 
signals: clock (SCK), data in (SDI, or RX), and data out (SDO, or TX). The SDO of the master 
is connected to the SDIs of the slaves. SDOs of the slaves are connected to the SDI of the 
master. The master generates SCK signals to enable data to be transferred on the bus. In 
every clock pulse, one bit of data is moved from master to slave, or from slave to master. 
The communication is only between a master and a slave. Slaves cannot communicate with 
each other. It is important to note that only one slave can be active at any time since there 
are no mechanisms to identify the slaves. Thus, slave devices have enable lines (e.g. CS or 
CE) which are normally controlled by the master. Typical communication between a master 
and several slaves is as follows:

• Master enables slave 1
• Master sends SCK signals to read or write data to slave 1
• Master disables slave 1 and enables slave 2
• Master sends SCK signals to read or write data to slave 2
• The above process continues as required

The SPI signal names are also called MISO (Master in, Slave out), and MOSI (Master out, 
Slave in). Clock signal SCK is also called SCLK and the CS is also called SSEL. In the SPI 
projects in this chapter, the MAX78000FTHR is the master and one or more slaves are 

Figure 8.1 SPI bus with one master and 3 slaves

dogan 2.indd   136dogan 2.indd   136 08/06/2021   22:21:0708/06/2021   22:21:07



Chapter 8 ● SPI Bus Interface

● 137

connected to the bus. Transactions over the SPI bus are started by enabling the SCK 
line. The master then asserts the SSEL line LOW so data transmission can begin. Data 
transmission involves two registers, one in the master and one in the slave device. Data 
is shifted out from the master into the slave with the MSB bit first. If more data is to be 
transferred, the process is repeated. Data exchange is complete when the master stops 
sending clock pulses and deselects the slave device.

Both the master and slave must agree on clock polarity and phase on the line, which are 
known as the SPI bus modes. These two settings are named Clock Polarity (CPOL) and 
Clock Phase (CPHA) respectively. CPOL and CPHA can have the following values:

 CPOL             Clock active state
 0                Clock active HIGH
 1            Clock active LOW

 CPHA            Clock phase
 0      Clock out of phase with data
 1     Clock in phase with data

The four SPI modes are:

 Mode CPOL CPHA
   0     0    0
   1     0    1
   2     1    0
    3     1    1

When CPOL = 0, the active state of the clock is 1, and its idle state is 0. For CPHA = 0, 
data is captured on the rising clock, and data is shifted out on the falling clock. For CPHA 
= 1, data is captured on the falling edge of the clock and is shifted out on the rising edge 
of the clock.

When CPOL = 1, the active state of the clock is 0, and its idle state is 1. For CPHA = 0, 
data is captured on the falling edge of the clock and is output on the rising edge. For CPHA 
= 1, data is captured on the rising edge of the clock and is shifted out on the falling edge.

8.2 ● MAX78000 microcontroller SPI ports

There are 2 SPI ports on the MAX78000 microcontroller: SPI0 and SPI1. Only the SPI0 pins 
are available on the MAX78000FTHR development board: MOSI at P0_5 (pin 12), MISO at 
P0_6 (pin 13), and SCK at P0_7 (pin 11). These pins are shared with microSD pins at P0_8, 
P0_9, and P0_11.

8.3 ● Project 1 – SPI send/receive

Description: In this project, the MOSI and MISO pins of the MAX78000FTHR development 

dogan 2.indd   137dogan 2.indd   137 08/06/2021   22:21:0708/06/2021   22:21:07



How2: Get Started with the MAX78000FTHR Board

● 138

board are connected. Numbers 0123456789 are sent to the SPI bus through port MOSI. 
This data is received by the MISO port and then sent to the PC where it is displayed.

Aim: This project aims to show how the SPI ports of the MAX78000FTHR development 
board can be used.

Block diagram: Figure 8.2 shows the block diagram of the project.

Circuit diagram: Figure 8.3 shows the circuit diagram of the project. MOSI (P0_5) pin is 
connected to the MISO (P0_6).

Program listing: Figure 8.4 shows the program listing (SPISNDRCV). At the beginning 
of the program, SPI0 is defined, data length is set to 10 bytes, and the SPI bus speed is set 
to 1MHz. Inside the main program, the SPI pins are configured, data (0123456789) to be 
transmitted is stored in array txdata. The receive data rxdata is cleared to 0s. Then, the 
SPI request structure is configured with the transmit and receive data length set to DATA_
LENGTH, character size is set to 8bits/character. Function MXC_SPI_MasterTransaction 
is then called in blocking mode. The received data is sent to a terminal using the printf 
statement.

Figure 8.2 Block diagram of the project

Figure 8.3 Circuit diagram of the project

dogan 2.indd   138dogan 2.indd   138 08/06/2021   22:21:0708/06/2021   22:21:07



Chapter 8 ● SPI Bus Interface

● 139

/*-------------------------------------------------------------------------
 SPI SEND/RECEIVE PROGRAM

In this program the MOSI (SPI output) of the MAX78000FTHR is connected to
its MISO (SPI input). The program sends out numbers 0123456789, which are
received and displayed on a terminal

Author: Dogan Ibrahim
Date  : March 2021
Work  : SPISNDRCV
--------------------------------------------------------------------------*/
#include <stdio.h>
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include "mxc_device.h"
#include "mxc_delay.h"
#include "mxc_pins.h"
#include "spi.h"
#include "board.h"
#include "stdlib.h"

#define SPI             MXC_SPI0   // SPI port
#define DATA_LENGTH     10            // Data length
#define SPI_SPEED       1000000         // Bit Rate

char rxdata[DATA_LENGTH];    // Receive data buffer
char txdata[DATA_LENGTH];    // Transmit data buffer

//
// Start of MAIN program
//
int main(void)
{
    int j;
    mxc_spi_req_t req;
    mxc_spi_pins_t spi_pins;

//
// Configure the SPI pins
//    
    spi_pins.clock = TRUE;
    spi_pins.miso = TRUE;
    spi_pins.mosi = TRUE;
    spi_pins.sdio2 = FALSE;
    spi_pins.sdio3 = FALSE;

dogan 2.indd   139dogan 2.indd   139 08/06/2021   22:21:0708/06/2021   22:21:07



How2: Get Started with the MAX78000FTHR Board

● 140

    spi_pins.ss0 = TRUE;
    spi_pins.ss1 = FALSE;
    spi_pins.ss2 = FALSE;
//
// Convert j to character and store in txdata
//
    for (j = 0; j < DATA_LENGTH; j++) 
    {
        itoa(j, &txdata[j], 10);   // Load the TX buffer
    }
        
    MXC_SPI_Init(SPI, 1, 0, 1, 0, SPI_SPEED, spi_pins); //Init SPI
    memset(rxdata, 0x0, DATA_LENGTH);   // Fill rxdata with 0s

//
// SPI Request structure
//
    req.spi = SPI;
    req.txData = (uint8_t*) txdata;
    req.rxData = (uint8_t*) rxdata;
    req.txLen = DATA_LENGTH;
    req.rxLen = DATA_LENGTH;
    req.ssIdx = 0;
    req.ssDeassert = 1;
    req.txCnt = 0;
    req.rxCnt = 0;
    req.completeCB = 0;
        
    MXC_SPI_SetDataSize(SPI, 8);   // 8 bits/char
    MXC_SPI_SetWidth(SPI, SPI_WIDTH_STANDARD);  // Standard comms
        
    MXC_SPI_MasterTransaction(&req);   // Master transaction

    printf("\nReceived data is:\n");   // DIsplay received data
    for(j = 0; j < DATA_LENGTH; j++)
        printf("%c",rxdata[j]);
   
    MXC_SPI_Shutdown(SPI);    // Shutdown SPI
    
    printf("\n\nEnd of pogram...\n");
}

Figure 8.5 shows the received data displayed on a terminal. In this figure, HyperTrm 
terminal emulation software is used (you could use any other terminal emulation software 
if you wish, e.g. Putty, Terra Term, etc). The Baud rate is set to 115200.

Figure 8.4 Program listing

dogan 2.indd   140dogan 2.indd   140 08/06/2021   22:21:0708/06/2021   22:21:07



Chapter 8 ● SPI Bus Interface

● 141

Figure 8.5 Received data on the PC terminal

dogan 2.indd   141dogan 2.indd   141 08/06/2021   22:21:0708/06/2021   22:21:07



How2: Get Started with the MAX78000FTHR Board

● 142

Chapter 9 ● Timers

9.1 ● Overview

The MAX78000 microcontroller provides a large number of general-purpose timers with 
rich features. The timers can be used for timing, capture, compare, or for the generation of 
pulse-width-modulated (PWM) signals with minimal software interaction.

There are multiple 32-bit and dual 16-bit reloadable timers with the features including:
• Operation as a single 32-bit counter or single/dual 16-bit counters
• Programmable pre-scalers with values from 1 to 4096
• PWM output generation
• Capture, compare and capture/compare capability
• Configurable input pin for event triggering, clock gating, or capture signal
• Independent interrupts

The timers provide multiple operating modes:

• One-shot - counts up to a terminal value and halts
• Continuous – timer counts up to a terminal value and then repeats
• Counter – counts input edges on the input pin
• PWM output
• Capture – captures a snapshot of the current timer count on edge transitions
• Compare – the timer pin toggles when the timer exceeds the terminal count
• Gated – timer increments only when timer input is asserted
• Capture/compare – timer counts when timer input is asserted, captures timer count 

when input is de-asserted

The MAX78000 microcontroller provides 4 normal power timers (TMR0, TMR1, TR2, TMR3) 
and 2 low-power timers (LPTMR0 or TMR4 and LPTMR1 or TMR5). Normal power timers are 
cascadable to 32-bits or can be operated in dual 16-bit modes. Low power timers can only 
operate in 16-bit mode and are not cascadable.

Table 9.1 shows a list of the available timers with their output pin configurations. The 
terminologies TimerA and TimerB are used to differentiate the organisation of the 32-
bit registers. Notice N as the last character in the signal names refers to complementary 
outputs.

dogan 2.indd   142dogan 2.indd   142 08/06/2021   22:21:0808/06/2021   22:21:08



Chapter 9 ● Timers

● 143

9.2 ● Timer operation

Timers operate by incrementing a readable timer counter register, driven by either the 
timer clock, an external stimulus on the timer pin, or a combination of both. Each timer has 
a user-configurable timer period which terminates on the timer clock cycle following the 
end of timer period condition. At the end of a timer period, a timer can:

• Change the state of the timer pin
• Capture a timer value
• Reload the counter register with a new starting value
• Disable the counter

A timer interrupt is generated at the end of a timer period. Although the timer counter is 
set to 0 after a reset, it is set to 1 at the end of a timer period.

9.3 ● 32-bit single/cascade and dual 16-bit modes

In cascade 32-bit mode, the timer counts [31:0] using the TimerA control registers. In dual 
16-bit mode, the timer counts [15:0] using the TimerA control registers for the lower 16-bit 
counter, and counts [31:16] using the TimerB control registers for the upper 16-bit counter. 
In single 16-bit mode, the timer counts [15:0] using the TimerA control registers while the 
TimerB controls are ignored.

Some projects are given in the remaining parts of this chapter to show how timers can be 
used.

9.4 ● Project 1 – Time delay – using a one-shot timer (monostable)

Description: In this project, a timer is configured to operate as a one-shot (sometimes 
called a monostable). The onboard LED and button are used in this project. When the 
button is pressed, the LED is toggled after a given time. In this case, the time is taken as 
10 seconds. For example, if the LED is OFF, it turns ON after 10 seconds of pressing the 
button. Similarly, if the LED is ON, it turns OFF after 10 seconds of pressing the button.

Table 9.1 Timers and pin configurations

dogan 2.indd   143dogan 2.indd   143 08/06/2021   22:21:0808/06/2021   22:21:08



How2: Get Started with the MAX78000FTHR Board

● 144

Aim: This project aims to show how a one-shot timer can be created on a MAX78000FTHR 
development board.

Circuit diagram: The onboard RED LED on port P2_0 and the button SW1 on port P0_2 
are used in this program. The button output is debounced by the onboard hardware.
Program listing: Figure 9.1 shows the program listing (ONESHOT). At the beginning of the 
program TMR0 is used, and the clock source 32K (32768 Hz) is selected:

 #define OST_TIMER          MXC_TMR0            // Using TMR0
 #define OST_CLOCK_SOURCE    MXC_TMR_32K_CLK       // Timer clock

The on-board RED LED and the on-board SW1 button are defined as PIN_0 and PIN_2 
respectively:

 #define RedLED MXC_GPIO_PIN_0  // On-board RED LED
 #define Button MXC_GPIO_PIN_2  // On board SW1 button

Inside the main program the TMR0 interrupts are enabled, and the LED and the button are 
configured as output and input respectively. The pull-up resistor is enabled at the input of 
the button (i.e. at port P0_2). The remainder of the main program consists of a while loop. 
Inside this loop, the program waits until button SW1 is pressed (i.e. until its output is at 
logic 0). When this happens, function OneShot is called:

while(1)
 {
  if(MXC_GPIO_InGet(gpio_in.port, Button) == 0)
  {
   OneshotTimer();
  }
 }

Function Oneshot configures and starts the timer so that an interrupt is generated at the 
end of the timer period. This function performs the following operations:

1. Get the period count for the required frequency
2. Disable the timer
3. Set the prescaler value
4. Configure the timer for one-shot mode
5. Set polarity, timer parameters
6. Initialise timer clock
7. Enable timer
8. Start timer

The timer counts up until it reaches the specified compare register value (cmp_cnt) and it 
then generates a timer interrupt. At this point, it is automatically disabled and stops. In this 
program, the timer interrupt service routine is the function OneshotTimerHandler which 

dogan 2.indd   144dogan 2.indd   144 08/06/2021   22:21:0808/06/2021   22:21:08



Chapter 9 ● Timers

● 145

toggles the LED every time it is called:

void OneshotTimerHandler()
{
     MXC_TMR_ClearFlags(OST_TIMER); // Clear timer interrupt
     MXC_GPIO_OutToggle(gpio_out.port, RedLED);
}

Timer parameters are set using the structure: mxc_tmr_cfg_t. The following parameters 
are configured:

    tmr.pres = TMR_PRES_1;   // Prescaler
    tmr.mode = TMR_MODE_ONESHOT;  // Mode=One shot
    tmr.bitMode = TMR_BIT_MODE_32;  // 32-bit
    tmr.clock = OST_CLOCK_SOURCE;  // Clock source
    tmr.cmp_cnt = periodTicks;       // Compare register value
    tmr.pol = 0;    // Passive Polarity

The Prescaler value can only take the values of the powers of 2. i.e. valid prescaler values 
are 1, 2, 4, 8, 16, 32, 64. 128. 256, 512, 1024, 2048, 4096.

The timer mode is set to one shot with tmr.mode = TMR_MODE_ONESHOT

The timer bit mode is set to 32-bits using the statement tmr.bitMode = TMR_BIT_
MODE_32. Valid timer bit modes are:

 TMR_BIT_MODE_32   // Timer mode 32 bit
 TMR_BIT_MODE_16A   // Timer mode lower 16 bit
 TMR_BIT_MODE_16B   // Timer mode upper 16 bit

The timer clock is set to OST_CLOCK_SOURCE which was defined as 32K (i.e. 32768 
Hz) at the beginning of the program. i.e. #define OST_CLOCK_SOURCE MXC_TMR_32K_CLK. 
Different timers can have different clock rates as follows:

 Timers 0, 1, 2, and 3:  8M and 60M
 Timers 0, 1, 2, 3, and 4:  32K
 Timers 4 and 5:   8K

Timer frequencies are identified with the following names:

 60M: MXC_TMR_60M_CLK
 8M: MXC_TMR_8M_CLK
 32K: MXC_TMR_32K_CLK
 8K: MXC_TMR_8K_CLK

Timer polarity is the default logic value of the timer output. At the end of the timer period, 

dogan 2.indd   145dogan 2.indd   145 08/06/2021   22:21:0808/06/2021   22:21:08



How2: Get Started with the MAX78000FTHR Board

● 146

the timer will be automatically disabled and the logic state of the timer output pin will 
generate a pulse with a duration equal to the timer clock period.

/*-------------------------------------------------------------------------
  ONESHOT TIME DELAY

In this project the on-board button and LED are used. Pressing the button
turns ON the Red LED toggles the LED after 10 second.

Author: Dogan Ibrahim
Date  : March 2021
Work  : ONESHOT
--------------------------------------------------------------------------*/
#include <stdio.h>
#include <stdint.h>
#include "mxc_device.h"
#include "mxc_sys.h"
#include "nvic_table.h"
#include "mxc.h"
#include "led.h"

//
// Parameters for one shot  timer
//
#define OST_TIMER           MXC_TMR0             // Using TMR0
#define OST_CLOCK_SOURCE    MXC_TMR_32K_CLK       // Timer clock

#define RedLED MXC_GPIO_PIN_0    // On-board RED LED
#define Button MXC_GPIO_PIN_2    // On board SW1 button
mxc_tmr_cfg_t tmr;
mxc_gpio_cfg_t gpio_out;
mxc_gpio_cfg_t gpio_in;

//
// One shot timer handler. Toggle the LED
//
void OneshotTimerHandler()
{
    MXC_TMR_ClearFlags(OST_TIMER);   // Clear timer interrupt
    MXC_GPIO_OutToggle(gpio_out.port, RedLED);  // Toggle LED
}

void OneshotTimer()
{   
    MXC_TMR_Shutdown(OST_TIMER);   // Stop the timer
//

dogan 2.indd   146dogan 2.indd   146 08/06/2021   22:21:0808/06/2021   22:21:08



Chapter 9 ● Timers

● 147

// Set timer parameters
//
    tmr.pres = TMR_PRES_128;   // Prescaler
    tmr.mode = TMR_MODE_ONESHOT;  // Mode=One shot
    tmr.bitMode = TMR_BIT_MODE_32;  // 32-bit
    tmr.clock = OST_CLOCK_SOURCE;  // Clock source
    tmr.cmp_cnt = 2561;          // Compare register for 10 secs
    tmr.pol = 0;    // Passive Polarity
    
    MXC_TMR_Init(OST_TIMER, &tmr, true); // Initialize timer clock  
    MXC_TMR_EnableInt(OST_TIMER);  // Enable timer
    MXC_TMR_Start(OST_TIMER);   // Start timer
}

int main(void)
{
    NVIC_SetVector(TMR0_IRQn, OneshotTimerHandler); // Timer interrupt handler
    NVIC_EnableIRQ(TMR0_IRQn);          // Enable timer interrupts
    
    /* Setup output pin P2_0 */
    gpio_out.port = MXC_GPIO2;    // Port 2
    gpio_out.mask = RedLED;    // Pin 0
    gpio_out.pad = MXC_GPIO_PAD_NONE;   // None
    gpio_out.func = MXC_GPIO_FUNC_OUT;   // Output
    MXC_GPIO_Config(&gpio_out);
        
    /* Setup input pin P0_2 */
    gpio_in.port = MXC_GPIO0;    // Port 0
    gpio_in.mask = Button;    // Pin 2
    gpio_in.pad = MXC_GPIO_PAD_PULL_UP;   // Pull-up
    gpio_in.func = MXC_GPIO_FUNC_IN;   // Input
    MXC_GPIO_Config(&gpio_in);
    
 while(1)
 {
  if(MXC_GPIO_InGet(gpio_in.port, Button) == 0) // Wait for button
  {
   OneshotTimer();    // Call OneshotTimer
  }
 }        
}

Testing the program: Compile and load the program to the MAX78000FTHR. Press button 
SW1. You should see the RED LED turning ON after 10 seconds. Press the button again, and 

Figure 9.1 Program listing

dogan 2.indd   147dogan 2.indd   147 08/06/2021   22:21:0808/06/2021   22:21:08



How2: Get Started with the MAX78000FTHR Board

● 148

this time the RED LED will turn OFF after 10 seconds.

Figure 9.2 shows one shot operation mode. Notice when the timer is enabled that the 
count is compared to the compare value (green horizontal line). When the count is equal 
to the compare value, the count stops, a timer interrupt is generated by the rising edge 
of TMRn_INTFL.irq (cleared by software). At the same time, a rising pulse is generated, 
shown as TMRn_CTRL0.pol=0 if the polarity was set to 0, or a falling pulse if the polarity 
was set to 1. The width of this pulse is equal to the width of the clock period.

At the end of the one shot, the counter is loaded with 1 (not 0). The required delay in 
seconds depends on the clock frequency and the selected prescaler value. The value to be 
loaded into the comparator register cmp_cnt for a required delay can be calculated using 
the following formula:

cmp_cnt = counter clock frequency (Hz) x Required delay in seconds / Prescaler + 1

As an example, assuming that the clock frequency is 32K, and the selected prescaler value 
is 128, we have:

 cmp_cnt = 32768 x 10 / 128 + 1 = 2561

Therefore,

 tmr.pres = TMR_PRES_128;
 tmr.cmp_cnt = 2561;

dogan 2.indd   148dogan 2.indd   148 08/06/2021   22:21:0808/06/2021   22:21:08



Chapter 9 ● Timers

● 149

9.5 ● Project 2 – Continuously running timer (astable)

Description: In this project, a timer is configured to operate continuously and generate 
interrupts every 2 seconds. The onboard LED is toggled in the interrupt service routine.

Aim: This project aims to show how a continuous timer can be created on a MAX78000FTHR 
development board.

Circuit diagram: The onboard RED LED at port P2_0 is used in this project. The LED 
flashes every 2 seconds.

Program listing: Figure 9.3 shows the program listing (CONTTMR). At the beginning of 
the program, TMR1 is used. The clock source 8M (8192 kHz) is selected:

#define CONT_TIMER          MXC_TMR1             // Use TMR1
#define CONT_CLOCK_SOURCE   MXC_TMR_8M_CLK       // Timer clock

Inside the main program, the onboard RED LED is configured as an output. Timer1 

Figure 9.2 One shot mode

dogan 2.indd   149dogan 2.indd   149 08/06/2021   22:21:0908/06/2021   22:21:09



How2: Get Started with the MAX78000FTHR Board

● 150

interrupts are configured and enabled. The interrupt service routine function is named 
ContinuousTimerHandler:

NVIC_SetVector(TMR1_IRQn, ContinuousTimerHandler);  // Timer interrupt
NVIC_EnableIRQ(TMR1_IRQn);     // Enable interrupt

The operation of a timer in continuous mode is as follows. The counter starts counting up 
and when it reaches the compare register value (cmp_cnt), an interrupt is generated and 
the counter is reset to 1 and the counting continues. At the same time, a pulse is generated 
with the specified polarity at the end of every timer period.
 
The program then calls function ContinuousTimer where Timer1 is configured to operate 
continuously. The configuration of the timer in continuous mode is similar to the one shot 
mode. The timer is stopped and the following parameters are configured:

tmr.pres = TMR_PRES_128;    // Prescaler
tmr.mode = TMR_MODE_CONTINUOUS;   // Continuous
tmr.bitMode = TMR_BIT_MODE_16B;   // Bit mode
tmr.clock = CONT_CLOCK_SOURCE;   // Clock source
tmr.cmp_cnt = periodTicks;          // Period ticks
tmr.pol = 0;

Time delay between the timer interrupts (i.e. the period of the timer interrupts) can be 
calculated using the following formula:

    cmp_cnt = counter clock frequency (Hz) x Required delay between interrupts (secs) / 
Prescaler + 1

As an example, assuming the clock frequency is 8M (8192000 Hz), and the selected 
prescaler value is 1024, we have:

 cmp_cnt = 8192000 x 2 / 1024 + 1 = 16001

Therefore,

 tmr.pres = TMR_PRES_1024;
 tmr.cmp_cnt = 16001;

The onboard RED LED is flashed inside the timer interrupt service routine. Notice that timer 
interrupts must be cleared inside the interrupt service routine so that further interrupts can 
be accepted by the processor:

dogan 2.indd   150dogan 2.indd   150 08/06/2021   22:21:0908/06/2021   22:21:09



Chapter 9 ● Timers

● 151

void ContinuousTimerHandler()
{
    MXC_TMR_ClearFlags(CONT_TIMER);    // Clear interrupt
    MXC_GPIO_OutToggle(gpio_out.port, RedLED);  // Toggle LED
}

/*-------------------------------------------------------------------------
 CONTINUOUS TIMER

In this project the on-board LED is flashed every 2 seconds using a
continuously running timer

Author: Dogan Ibrahim
Date  : March 2021
Work  : CONTTMR
--------------------------------------------------------------------------*/
#include <stdio.h>
#include <stdint.h>
#include "mxc_device.h"
#include "mxc_sys.h"
#include "nvic_table.h"
#include "mxc.h"

//
// Parameters for Continuous timer
//
#define CONT_TIMER          MXC_TMR1             // Use TMR1
#define CONT_CLOCK_SOURCE   MXC_TMR_8M_CLK       // Timer clock
#define RedLED MXC_GPIO_PIN_0    // On-board RED LED

mxc_tmr_cfg_t tmr;
mxc_gpio_cfg_t gpio_out;

//
// Timer interrupt service routine. Toggle the LED
//
void ContinuousTimerHandler()
{
    MXC_TMR_ClearFlags(CONT_TIMER);   // Clear interrupt
    MXC_GPIO_OutToggle(gpio_out.port, RedLED);  // Toggle LED
}

//
// COntinuous timer routine
//
void ContinuousTimer()

dogan 2.indd   151dogan 2.indd   151 08/06/2021   22:21:0908/06/2021   22:21:09



How2: Get Started with the MAX78000FTHR Board

● 152

{   
    MXC_TMR_Shutdown(CONT_TIMER);
    
    tmr.pres = TMR_PRES_1024;    // Prescaler
    tmr.mode = TMR_MODE_CONTINUOUS;   // Continuous
    tmr.bitMode = TMR_BIT_MODE_16B;   // Bit mode
    tmr.clock = CONT_CLOCK_SOURCE;   // Clock source
    tmr.cmp_cnt = 16001;          // Period ticks
    tmr.pol = 0;
    
    MXC_TMR_Init(CONT_TIMER, &tmr, true);  // Init timer   
}

int main(void)
{   
    /* Setup output pin P2_0 */
    gpio_out.port = MXC_GPIO2;    // Port 2
    gpio_out.mask = RedLED;    // Pin 0
    gpio_out.pad = MXC_GPIO_PAD_NONE;   // None
    gpio_out.func = MXC_GPIO_FUNC_OUT;   // Output
    MXC_GPIO_Config(&gpio_out);
        
    NVIC_SetVector(TMR1_IRQn, ContinuousTimerHandler); // Timer interrupt
    NVIC_EnableIRQ(TMR1_IRQn);    // Enable timer interrupt
    ContinuousTimer();     // Call timer routine
}

Figure 9.4 shows the timer operating in continuous mode. Notice when the timer is enabled, 
the count is compared to the compare value (green horizontal line). When the count is 
equal to the compare value, the counter is reset to 1 and the counting continues. A timer 
interrupt is generated by the rising edge of TMRn_INTFL.irq (cleared by software). At the 
same time, a rising pulse is generated, shown as TMRn_CTRL0.pol=0 if the polarity was 
set to 0, or a falling pulse if the polarity was set to 1. The width of this pulse is equal to the 
period of the timer cycle. i.e. 2 seconds in this example.

Figure 9.3 Program listing

dogan 2.indd   152dogan 2.indd   152 08/06/2021   22:21:0908/06/2021   22:21:09



Chapter 9 ● Timers

● 153

9.6 ● Project 3 – Refreshing a 2-digit 7-segment display – seconds counter

Description: In this project, a 7-segment LED display is used as a counter to count up 
every second from 0 to 99. Multi-digit 7-segment displays require continuous refreshing of 
their digits so that the human eye sees the digits as steady and non-flashing. The general 
technique used is to enable each digit for a short time (e.g. 10 ms) so that the human eye 
sees both digits ON at any time. This process requires the digits to be enabled alternately 
and continuously. As a result, the processor cannot perform any other task and is busy 
all the time, refreshing the digits. One technique used in non-multitasking systems is to 
use timer interrupts and refresh the digits in the timer interrupt service routines. In this 
project, we will be employing a multitasking approach to refresh the display digits so that 
the processor can carry out other tasks. The project aims to show how the digits of a 
multiplexed 2-digit 7-segment LED display can be refreshed, while the main program sends 
data to the display to count up in seconds from 00 to 99.

Aim: This project aims to show how a continuous timer can be created on a MAX78000FTHR 
development board.

Figure 9.4 Continuous mode

dogan 2.indd   153dogan 2.indd   153 08/06/2021   22:21:1008/06/2021   22:21:10



How2: Get Started with the MAX78000FTHR Board

● 154

7-Segment LED Displays: Displaying data is one of the fundamental output activities of 
any microcontroller system. For example, displays are used to show the sensor data such 
as temperature, humidity, pressure, etc. Several types of display devices can be used 
in microcontroller-based systems. LCDs and 7-segment displays are probably two of the 
most commonly used display devices. There are several types of LCD, such as text-based, 
graphics, colour, touch screen, etc. 7-segment displays are used to display numeric or 
alphanumeric values, and they can have one or more digits. One-digit displays can only 
display numbers from 0 to 9. Two-digit displays can display numbers from 0 to 99, three-
digit displays numbers from 0 to 999, and so on. In this project, a two-digit 7-segment 
display is used.

As shown in Figure 9.5, a 7-segment LED display consists of 7 LEDs connected such that 
numbers from 0 to 9 and some letters can be displayed. Segments are identified by letters 
a to g. Figure 9.6 shows the segment names of a typical 7-segment display.

Figure 9.7 shows how numbers 0 to 9 can be obtained by turning different segments of the 
display ON or OFF.

Figure 9.5 Some 7-segment displays

Figure 9.6 Segment names of a 7-segment display

dogan 2.indd   154dogan 2.indd   154 08/06/2021   22:21:1008/06/2021   22:21:10



Chapter 9 ● Timers

● 155

7-segment LED displays are available in two different configurations: common cathode 
and anode. As shown in Figure 9.8, in common cathode configuration all cathodes of 
all segment LEDs are connected to ground. The segments are turned ON by applying a 
logic 1 to the required segment LED via current limiting resistors. In common cathode 
configuration, the 7-segment LED is connected to the microcontroller in current sourcing 
mode.

In a common anode configuration, the anode terminals of all the LEDs are connected 
as shown in Figure 9.9. This common point is normally then connected to the supply 
voltage. A segment is turned ON by connecting its cathode terminal to logic 0 via a current 
limiting resistor. In common anode configuration, the 7-segment LED is connected to the 
microcontroller in current sinking mode.

Figure 9.7 Displaying numbers 0 – 9

Figure 9.8 Common cathode 7-segment LED display

Figure 9.9 Common anode 7-segment LED display

dogan 2.indd   155dogan 2.indd   155 08/06/2021   22:21:1008/06/2021   22:21:10



How2: Get Started with the MAX78000FTHR Board

● 156

In multiplexed LED applications (for example, see Figure 9.10 for a 2-digit multiplexed LED 
display), the LED segments of all digits are tied together and the common pins of each 
digit are turned ON separately by the microcontroller. By displaying each digit for several 
milliseconds, the eye can not distinguish that digits are not ON all of the time. This way 
we can multiplex any number of 7-segment displays together. For example, to display the 
number 57, we have to send 5 to the first digit and enable its common pin. After a few 
milliseconds, number 7 is sent to the second digit and the common point of the second digit 
is enabled. When this process is repeated continuously, the user sees as if both displays 
are always ON.

Some manufacturers provide multiplexed multi-digit displays in single packages. For 
example, we can purchase 2,4, or 8 digit multiplexed displays in a single package. The 
display used in this project is the DC56-11EWA which is a red 0.56 inch height common-
cathode two-digit multiplexed display having 18 pins, where the pin configuration is shown 
in Table 9.1. This display can be controlled from the microcontroller as follows:

• Send the segment bit pattern for digit 1 to segments a to g
• Enable digit 1
• Wait for a few milliseconds
• Disable digit 1
• Send the segment bit patter for digit 2 to segments a to g
• Enable digit 2
• Wait for a few milliseconds
• Disable digit 2
• Repeat the above process continuously

Figure 9.10 2-digit multiplexed 7-segment LED display

dogan 2.indd   156dogan 2.indd   156 08/06/2021   22:21:1108/06/2021   22:21:11



Chapter 9 ● Timers

● 157

Pin no Segment

1,5 e

2,6 d

3,8 c

14 digit 1 Enable

17,7 g

15,10 b

16,11 a

18,12 f

13 digit 2 Enable

4 decimal Point1

9 decimal Point 2

The segment configuration of the DC56-11EWA display is shown in Figure 9.11. In a 
multiplexed display application, the segment pins of corresponding segments are connected. 
For example, pins 11 and 16 are connected as the common a segment. Similarly, pins 15 
and 10 are connected as the common b segment and so on.

Table 9.1 Pin configuration of DC56-11EWA dual display

Figure 9.11 DC56-11EWA display segment configuration

dogan 2.indd   157dogan 2.indd   157 08/06/2021   22:21:1108/06/2021   22:21:11



How2: Get Started with the MAX78000FTHR Board

● 158

Block Diagram: Figure 9.12 shows the block diagram of the project.

Circuit Diagram: The circuit diagram of the project is shown in Figure 9.13. In this project, 
the following pins of the MA78000FTHR development board are used to interface with the 
7-segment LED display:

7-Segment Display pin MAX78000FTHR pin Physical pin no

a P0_7 11

b P0_5 12

c P0_6 13

d P0_19 20

e P0_11 21

f P0_8 22

g P0_9 23

E1 P2_7  (via transistor) 15

E2 P2_6  (via transistor) 14

7-segment display segments are driven from the port pins through 1K current limiting 
resistors. Digit enable pins E1 and E2 are driven from port pins P2_7 and P2_6 respectively 
through two BC108 type NPN transistors (any other NPN transistor can be used here), used 
as switches. The collectors of these transistors drive the segment digits. The segments are 
enabled when the base of the corresponding transistor is set to logic 1. Notice the following 
pins of the display are connected to form a multiplexed display:

16 and 11, 15 and 10, 3 and 8, 2 and 6, 1 and 5, 17 and 7, 18 and 12.

Figure 9.12 Block diagram of the project

dogan 2.indd   158dogan 2.indd   158 08/06/2021   22:21:1108/06/2021   22:21:11



Chapter 9 ● Timers

● 159

The input-output map of the project is shown in Figure 9.14 where all port pins are outputs.

Program Listing: Before driving the display, we have to know the relationship between 
the numbers to be displayed and the corresponding segments to be turned ON. This is 
shown below:

Figure 9.13 Circuit diagram of the project

Figure 9.14 Input-output map

dogan 2.indd   159dogan 2.indd   159 08/06/2021   22:21:1108/06/2021   22:21:11



How2: Get Started with the MAX78000FTHR Board

● 160

Number to be displayed LED bit pattern (a,b,c,d,e,f,g)

0 1,1,1,1,1,1,0 (0x7E)

1 0,1,1,0,0,0,0 (0x30)

2 1,1,0,1,1,0,1 (0x6D)

3 1,1,1,1,0,0,1 (0x79)

4 0,1,1,0,0,1,1 (0x33)

5 1,0,1,1,0,1,1 (0x5B)

6 1,0,1,1,1,1,1 (0x5F)

7 1,1,1,0,0,0,0 (0x70)

8 1,1,1,1,1,1,1 (0x7F)

9 1,1,1,1,0,1,1 (0x7B)

Figure 9.15 shows the program listing (SevenCount). Timer1 (TMR1) is used in this 
program with the timer clock set to 8M.

The connections between the LED segments, segment control bits, and the MAX78000FTHR 
are then defined:

#define a MXC_GPIO_PIN_7     // a pin
#define b MXC_GPIO_PIN_5     // b pin
#define c MXC_GPIO_PIN_6     // c pin
#define d MXC_GPIO_PIN_19     // d pin
#define e MXC_GPIO_PIN_11     // e pin
#define f MXC_GPIO_PIN_8     // f pin
#define g MXC_GPIO_PIN_9     // g pin
#define E1 MXC_GPIO_PIN_7     // E1 pin
#define E2 MXC_GPIO_PIN_6     // E2 pin

Array segs stores the pin definitions a - g. Array data stores the bit patterns 0 to 9 
corresponding to the digits to be displayed. For example, sending 0x30 displays number 1 
and so on. 
Inside the main program, PORT0 and PORT2 are configured as outputs, timer interrupts are 
configured, and a while loop is set up. Inside this while loop, variable count is incremented 
by one with a one-second delay between each count.

The main program calls function ContinuousTimer where the timer is configured to 
operate continuously and generate interrupts every 10 milliseconds. The following timer 
setup is used:

dogan 2.indd   160dogan 2.indd   160 08/06/2021   22:21:1108/06/2021   22:21:11



Chapter 9 ● Timers

● 161

 tmr.pres = TMR_PRES_1024;    // Prescaler
     tmr.mode = TMR_MODE_CONTINUOUS;   // Continuous
     tmr.bitMode = TMR_BIT_MODE_16B;   // Bit mode
     tmr.clock = CONT_CLOCK_SOURCE;   // Clock source
    tmr.cmp_cnt = 81;          // 10 ms
     tmr.pol = 0;

With the Prescaler set to 1024 and a clock frequency of 8M, the required comparator value 
for 10ms (0.01 seconds) interrupts is calculated as:

cmp_cnt = counter clock frequency (Hz) x Required delay between interrupts (secs) / 
Prescaler + 1

or,
 cmp_cnt = 8192000 x 0.01 / 1024 + 1 = 81

Function send groups several bits together and sends data to them. The function has two 
arguments: No is the number to be displayed and L is the number of bits to be grouped, 
which is 7 in this project. For example, if No is 0, the segments to display number 0 will be 
turned ON.

The timer interrupt service routine is the function ContinuousTimerHandler. On entry to 
this function, the timer interrupt flag is cleared so further timer interrupts can be accepted 
by the program. A variable called flag is used to determine whether to enable digit E1 or 
digit E2. These digits are enabled alternately with each digit being ON for 10 milliseconds. 
MSD and LSD are the upper and the lower digits of the number to be displayed. For 
example, if the number is 25, MSD = 2 and LSD = 5. Leading zeroes are disabled if the 
number to be displayed is less than 10. Therefore, for example, the number 5 is displayed 
as 5 and not as 05. Function send is called inside the timer interrupt service routine to 
display the required number on the 7-segment LED. Each digit is enabled (i.e. refreshed) 
for 10 milliseconds and the human eye sees both digits as ON all the time.

/*-------------------------------------------------------------------------
 7-SEGMENT 2-DIGIT COUNTER

In this project a 2-digit 7-segent display is connected to the MAX78000FTHR.
The display counts up from 00 to 99 with 1 second delay between each count

Author: Dogan Ibrahim
Date  : March 2021
Work  : SevenCount
--------------------------------------------------------------------------*/
#include <stdio.h>
#include <stdint.h>
#include "mxc_device.h"
#include "mxc_sys.h"

dogan 2.indd   161dogan 2.indd   161 08/06/2021   22:21:1108/06/2021   22:21:11



How2: Get Started with the MAX78000FTHR Board

● 162

#include "nvic_table.h"
#include "mxc.h"
#include "math.h"

//
// Parameters for Continuous timer
//
#define CONT_TIMER          MXC_TMR1             // Use TMR1
#define CONT_CLOCK_SOURCE   MXC_TMR_8M_CLK       // Timer clock

#define a MXC_GPIO_PIN_7    // a pin
#define b MXC_GPIO_PIN_5    // b pin
#define c MXC_GPIO_PIN_6    // c pin
#define d MXC_GPIO_PIN_19    // d pin
#define e MXC_GPIO_PIN_11    // e pin
#define f MXC_GPIO_PIN_8    // f pin
#define g MXC_GPIO_PIN_9    // g pin
#define E1 MXC_GPIO_PIN_7    // E1 pin
#define E2 MXC_GPIO_PIN_6    // E2 pin

mxc_tmr_cfg_t tmr;
mxc_gpio_cfg_t gpio_out;
mxc_gpio_cfg_t gpio2_out;

//
// GPIO pins used for the display (PORT0): 7,5,6,19,11,8,9
// GPIO pins used for display control (PORT2): 7, 6
//
int segs[] = {a, b, c, d, e, f, g};

//
// Define 7-segment display bit patterns for digita 0 - 9
//
int data[] = {0x7E, 0x30, 0x6D, 0x79, 0x33, 0x5B, 0x5F, 0x70, 0x7F, 0x7B};

int cnt = 0;
int flag = 0;

//
// This function groups 7 port pins together and sends data to them
//
void send(unsigned int No, unsigned int L)
{
 unsigned int j, i, m, r;
 m = L - 1;
 for(i = 0; i < L; i++)

dogan 2.indd   162dogan 2.indd   162 08/06/2021   22:21:1108/06/2021   22:21:11



Chapter 9 ● Timers

● 163

 {
  j = 1;
  j=pow(2,m);
  r = No & j;
  if(r > 0)
   MXC_GPIO_OutSet(gpio_out.port, segs[i]);  // Set a segment
  else
   MXC_GPIO_OutClr(gpio_out.port, segs[i]);  // Clear a segment
  m--;
 }
}

//
// Timer interrupt service routine. The program jumps to this routine every 10 ms.
// Here, the count to be displayed is broken into its MSD and LSD digits and are
// displayed on the 7-segment LED. This routine refreshes the display every 10 ms
//
void ContinuousTimerHandler()
{
 unsigned int LSD, MSD;

    MXC_TMR_ClearFlags(CONT_TIMER);    // Clear interrupt
  
 if(flag == 0)
 {
  flag = 1;
  MXC_GPIO_OutClr(gpio2_out.port, E1);  // Disable digit E1
  if(cnt > 9)     // If > 9
  {
   MSD = cnt / 10;
   send(data[MSD], 7);
   MXC_GPIO_OutSet(gpio2_out.port, E2); // Enable digit E2
  }
 }

 else
 {
  MXC_GPIO_OutClr(gpio2_out.port, E2);  // Disable digit E2
  LSD = cnt % 10;
  send(data[LSD], 7);
  MXC_GPIO_OutSet(gpio2_out.port, E1);  // Enable digit E1
  flag=0;
 }
}

//

dogan 2.indd   163dogan 2.indd   163 08/06/2021   22:21:1108/06/2021   22:21:11



How2: Get Started with the MAX78000FTHR Board

● 164

// Configure the continuous timer for 10 ms 
//
void ContinuousTimer()
{   
    MXC_TMR_Shutdown(CONT_TIMER);
    
    tmr.pres = TMR_PRES_1024;       // Prescaler
    tmr.mode = TMR_MODE_CONTINUOUS;      // Continuous
    tmr.bitMode = TMR_BIT_MODE_16B;      // Bit mode
    tmr.clock = CONT_CLOCK_SOURCE;      // Clock source
    tmr.cmp_cnt = 81;             // 10 ms
    tmr.pol = 0;
    
    MXC_TMR_Init(CONT_TIMER, &tmr, true);     // Init timer   
}

int main(void)
{   
    /* Setup output pins of PORT0 */
    gpio_out.port = MXC_GPIO0;       // Port 0
    gpio_out.mask = a|b|c|d|e|f|g;      // Segments
    gpio_out.pad = MXC_GPIO_PAD_NONE;      // None
    gpio_out.func = MXC_GPIO_FUNC_OUT;      // Output
    gpio_out.vssel = MXC_GPIO_VSSEL_VDDIOH;     // Set port to +3.3V
    MXC_GPIO_Config(&gpio_out);
    
    /* Setup output pins of PORT2 */
    gpio2_out.port = MXC_GPIO2;       // Port 2
    gpio2_out.mask = E1|E2;       // Segment controls
    gpio2_out.pad = MXC_GPIO_PAD_NONE;             // None
    gpio2_out.func = MXC_GPIO_FUNC_OUT;      // Output
    gpio2_out.vssel = MXC_GPIO_VSSEL_VDDIOH;     // Set port to +3.3V
    MXC_GPIO_Config(&gpio2_out);
    
    NVIC_SetVector(TMR1_IRQn, ContinuousTimerHandler);    // Timer interrupt
    NVIC_EnableIRQ(TMR1_IRQn);       // Enable timer interrupt
    ContinuousTimer();        // Call timer routine
    
 while(1)        // Do Forever
 {
  cnt++;        // Increment count
  if(cnt == 100)cnt = 0;      // If 100...
  MXC_Delay(1000000);             // 1 sec delay
 }
    
}

Figure 9.15 Program listing

dogan 2.indd   164dogan 2.indd   164 08/06/2021   22:21:1108/06/2021   22:21:11



Chapter 9 ● Timers

● 165

Suggestions: The 2-digit 7-segment display requires 9 output ports. You may try to use 
the MCP23017 port expander chip to expand the MAX78000FTHR development board input-
output port count and use the 7-segment display with this chip.

9.7 ● Project 4 – Refreshing a 4-digit 7-segment display – seconds counter

Description: In this project, a 7-segment 4-digit multiplexed LED display is used as a 
counter to count up every second from 0 to 9999. The project is very similar to the previous 
one, except 4 digits are used instead of 2.

The operation of a 4 digit multiplexed display (Figure 9.16) is similar to the 2 digit display, 
where the LED segments of all the digits are tied together and the common pins of each 
digit are turned ON separately by the microcontroller. By displaying each digit for several 
milliseconds, the eye can not differentiate that the digits are not ON all the time. This way 
we can multiplex any number of 7-segment displays together. For example, to display the 
number 5734, we have to send 5 to the first digit and enable its common pin. After a few 
milliseconds, number 7 is sent to the second digit and the common point of the second digit 
is enabled, and so on. When this process is continuously repeated the user sees it as if both 
displays are continuously ON.

The display used in this project is the DC56-11EWA which is a red 0.56-inch height common-
cathode two-digit multiplexed display having 18 pins. The pin configuration is shown in 
Table 3.1. Two such display modules are used to construct a 4 digit display. Each module 
has E1 and E2 enable pins.

In a multiplexed display application, the segment pins of corresponding segments are 
connected. For example, pins 11 and 16 are connected as the common a segment. Similarly, 
pins 15 and 10 are connected as the common b segment and so on.

Block Diagram: Figure 9.17 shows the block diagram of the project.

Figure 9.16 4-digit multiplexed 7-segment LED display

dogan 2.indd   165dogan 2.indd   165 08/06/2021   22:21:1208/06/2021   22:21:12



How2: Get Started with the MAX78000FTHR Board

● 166

Circuit Diagram: The circuit diagram of the project is shown in Figure 9.18. In this project, 
the following pins of the MAX78000FTHR development board are used to interface with the 
7-segment LED display:

7-Segment Display pin MAX78000FTHR pin Physical pin no

a P0_7 11

b P0_5 12

c P0_6 13

d P0_19 20

e P0_11 21

f P0_8 22

g P0_9 23

E1 P2_7  (via transistor) 15

E2 P2_6  (via transistor) 14

E3 P2_3  (via transistor) 5

E4 P2_4  (via transistor) 6

7-segment display segments are driven from the port pins through 1K current limiting 
resistors. Digit enable pins E1, E2, E3 and E4 are driven from port pins P2_7, P2_6, P2_3, 
and P2_4 respectively (in point of fact, E3 and E4 are the E1 and E2 pins of the second dual 
display module) through two BC108 type NPN transistors (any other NPN transistor can be 
used here), used as switches. The collectors of these transistors drive the segment digits. 
The segments are enabled when the base of the corresponding transistor is set to logic 1. 
Notice the following pins of the display are connected to form a multiplexed display:

16 and 11, 15 and 10, 3 and 8, 2 and 6, 1 and 5, 17 and 7, 18 and 12.

Figure 9.17 Block diagram of the project

dogan 2.indd   166dogan 2.indd   166 08/06/2021   22:21:1208/06/2021   22:21:12



Chapter 9 ● Timers

● 167

Program Listing: Figure 9.19 shows the program listing (SevenCount4). The program is 
very similar to the one with 2 digits. Here, the connections to digit control bits E3 and E4 
are also defined:

#define a MXC_GPIO_PIN_7      // a pin
#define b MXC_GPIO_PIN_5      // b pin
#define c MXC_GPIO_PIN_6      // c pin
#define d MXC_GPIO_PIN_19      // d pin
#define e MXC_GPIO_PIN_11      // e pin
#define f MXC_GPIO_PIN_8      // f pin
#define g MXC_GPIO_PIN_9      // g pin
#define E1 MXC_GPIO_PIN_7      // E1 pin
#define E2 MXC_GPIO_PIN_6      // E2 pin
#define E3 MXC_GPIO_PIN_3      // E3 pin
#define E4 MXC_GPIO_PIN_4      // E4 pin

The timer interrupt service routine ContinuousTimerHandler has been modified to 
display numeric data for 4 digits instead of 2. The timer interrupt processing time (LED 
refreshing rate) changed to 5ms since there are 4 digits and less time is required for each 
digit. The Prescaler is set to 1024 as before and the timer comparator value is set to 41 to 
give 5 ms time for each interrupt processing time. Variable flag determines which digit to 
process. It is initially set to 1 so that the first digit is processed initially. It is then set to 2 
for the second digit and so on. The digits are extracted and each is displayed in its correct 
sequence.

Figure 9.18 Circuit diagram of the project

dogan 2.indd   167dogan 2.indd   167 08/06/2021   22:21:1208/06/2021   22:21:12



How2: Get Started with the MAX78000FTHR Board

● 168

/*-------------------------------------------------------------------------------
 7-SEGMENT 4-DIGIT COUNTER

In this project a 2 x 2-digit 7-segment displays are connected to the MAX78000FTHR.
to form a 4-digit display. The display counts up from 0000 to 9999 with 1 second 
delay between each count

Author: Dogan Ibrahim
Date  : March 2021
Work  : SevenCount4
--------------------------------------------------------------------------------*/
#include <stdio.h>
#include <stdint.h>
#include "mxc_device.h"
#include "mxc_sys.h"
#include "nvic_table.h"
#include "mxc.h"
#include "math.h"

//
// Parameters for Continuous timer
//
#define CONT_TIMER          MXC_TMR1              // Use TMR1
#define CONT_CLOCK_SOURCE   MXC_TMR_8M_CLK        // Timer clock

#define a MXC_GPIO_PIN_7     // a pin
#define b MXC_GPIO_PIN_5     // b pin
#define c MXC_GPIO_PIN_6     // c pin
#define d MXC_GPIO_PIN_19     // d pin
#define e MXC_GPIO_PIN_11     // e pin
#define f MXC_GPIO_PIN_8     // f pin
#define g MXC_GPIO_PIN_9     // g pin
#define E1 MXC_GPIO_PIN_7     // E1 pin
#define E2 MXC_GPIO_PIN_6     // E2 pin
#define E3 MXC_GPIO_PIN_3     // E3 pin
#define E4 MXC_GPIO_PIN_4     // E4 pin

mxc_tmr_cfg_t tmr;
mxc_gpio_cfg_t gpio_out;
mxc_gpio_cfg_t gpio2_out;

//
// GPIO pins used for the display (PORT0): 7,5,6,19,11,8,9
// GPIO pins used for display control (PORT2): 7, 6
//
int segs[] = {a, b, c, d, e, f, g};

dogan 2.indd   168dogan 2.indd   168 08/06/2021   22:21:1208/06/2021   22:21:12



Chapter 9 ● Timers

● 169

//
// Define 7-segment display bit patterns for digita 0 - 9
//
int data[] = {0x7E, 0x30, 0x6D, 0x79, 0x33, 0x5B, 0x5F, 0x70, 0x7F, 0x7B};

int cnt = 0;
int flag = 1;
unsigned int LSD, MSD, MSDD, LSDD, LSDD2, LSDD3;

//
// This function groups 7 port pins together and sends data to them
//
void send(unsigned int No, unsigned int L)
{
 unsigned int j, i, m, r;
 m = L - 1;
 for(i = 0; i < L; i++)
 {
  j = 1;
  j=pow(2,m);
  r = No & j;
  if(r > 0)
   MXC_GPIO_OutSet(gpio_out.port, segs[i]);  // Set a segment
  else
   MXC_GPIO_OutClr(gpio_out.port, segs[i]);  // Clear a segment
  m--;
 }
}

//
// Timer interrupt service routine. The program jumps to this routine every 10 ms.
// Here, the count to be displayed is broken into its MSD and LSD digits and are
// displayed on the 7-segment LED. This routine refreshes the display every 10 ms
//
void ContinuousTimerHandler()
{
    MXC_TMR_ClearFlags(CONT_TIMER);    // Clear interrupt
  
 if(flag == 1)     // Process first digit
 {
  flag = 2;    // Next digit 2
  MXC_GPIO_OutClr(gpio2_out.port, E2); // Disable digit E1
  MXC_GPIO_OutClr(gpio2_out.port, E3); // Disable digit E1
  MXC_GPIO_OutClr(gpio2_out.port, E4); / Disable digit E1
  MSD = cnt / 1000;   // MSD
  MSDD = cnt % 1000;

dogan 2.indd   169dogan 2.indd   169 08/06/2021   22:21:1208/06/2021   22:21:12



How2: Get Started with the MAX78000FTHR Board

● 170

  send(data[MSD], 7);
  MXC_GPIO_OutSet(gpio2_out.port, E1); // Enable digit E2
 }

 else if(flag == 2)    // Process second digit
 {
  flag = 3;    // Next digit 3
  MXC_GPIO_OutClr(gpio2_out.port, E1); // Disable digit E2
  MXC_GPIO_OutClr(gpio2_out.port, E3); // Disable digit E1
  MXC_GPIO_OutClr(gpio2_out.port, E4); // Disable digit E1
  LSDD = MSDD / 100;
  LSD = MSDD % 100;
  send(data[LSDD], 7);
  MXC_GPIO_OutSet(gpio2_out.port, E2); // Enable digit E1
 }
 else if(flag == 3)    // Process third digit
 {
  flag = 4;    // Next digit 4
  MXC_GPIO_OutClr(gpio2_out.port, E1); // Disable digit E2
  MXC_GPIO_OutClr(gpio2_out.port, E2); // Disable digit E1
  MXC_GPIO_OutClr(gpio2_out.port, E4); // Disable digit E1
  LSDD2 = LSD / 10;
  LSDD3 = LSD % 10;
  send(data[LSDD2], 7);
  MXC_GPIO_OutSet(gpio2_out.port, E3); // Enable digit E1
 }
 else if(flag == 4)    // Process fourth digit
 {
  flag = 1;    // Next digit 1
  MXC_GPIO_OutClr(gpio2_out.port, E1); // Disable digit E2
  MXC_GPIO_OutClr(gpio2_out.port, E2); // Disable digit E1
  MXC_GPIO_OutClr(gpio2_out.port, E3); // Disable digit E1
  send(data[LSDD3], 7);
  MXC_GPIO_OutSet(gpio2_out.port, E4); // Enable digit E1 
 
 }
}

//
// Configure the continuous timer for 5 ms 
//
void ContinuousTimer()
{   
    MXC_TMR_Shutdown(CONT_TIMER);
    
    tmr.pres = TMR_PRES_1024;    // Prescaler

dogan 2.indd   170dogan 2.indd   170 08/06/2021   22:21:1208/06/2021   22:21:12



Chapter 9 ● Timers

● 171

    tmr.mode = TMR_MODE_CONTINUOUS;   // Continuous
    tmr.bitMode = TMR_BIT_MODE_16B;   // Bit mode
    tmr.clock = CONT_CLOCK_SOURCE;   // Clock source
    tmr.cmp_cnt = 41;          // 5 ms
    tmr.pol = 0;
    
    MXC_TMR_Init(CONT_TIMER, &tmr, true);  // Init timer   
}

int main(void)
{   
    /* Setup output pins of PORT0 */
    gpio_out.port = MXC_GPIO0;    // Port 0
    gpio_out.mask = a|b|c|d|e|f|g;   // Segments
    gpio_out.pad = MXC_GPIO_PAD_NONE;   // None
    gpio_out.func = MXC_GPIO_FUNC_OUT;   // Output
    gpio_out.vssel = MXC_GPIO_VSSEL_VDDIOH;  // Set port to +3.3V
    MXC_GPIO_Config(&gpio_out);
    
    /* Setup output pins of PORT2 */
    gpio2_out.port = MXC_GPIO2;    // Port 2
    gpio2_out.mask = E1|E2|E3|E4;   // Segment controls
    gpio2_out.pad = MXC_GPIO_PAD_NONE;   // None
    gpio2_out.func = MXC_GPIO_FUNC_OUT;   // Output
    gpio2_out.vssel = MXC_GPIO_VSSEL_VDDIOH;  // Set port to +3.3V
    MXC_GPIO_Config(&gpio2_out);
    
    NVIC_SetVector(TMR1_IRQn, ContinuousTimerHandler); // Timer interrupt
    NVIC_EnableIRQ(TMR1_IRQn);    // Enable timer interrupt
    ContinuousTimer();     // Call timer routine
    
 while(1)     // Do Forever
 {
  cnt++;     // Increment count
  if(cnt == 10000)cnt = 0;  // If 10000...
  MXC_Delay(1000000);   // 1 sec delay
 }
    
}

9.8 ● Pulse width modulation (PWM)

Pulse Width Modulation (PWM) is a commonly used technique for controlling the power 
delivered to analog loads using digital waveforms. Although analog voltages (and currents) 
can be used to control the delivered power, they have several drawbacks. Controlling large 

Figure 9.19 Program listing

dogan 2.indd   171dogan 2.indd   171 08/06/2021   22:21:1208/06/2021   22:21:12



How2: Get Started with the MAX78000FTHR Board

● 172

analog loads requires large voltages and currents that cannot easily be obtained using 
standard analog circuits and DACs. Precision analog circuits can be heavy, large, and 
expensive and they are also sensitive to noise. By using the PWM technique, the average 
value of voltage (and current) fed to a load is controlled by switching the supply voltage 
ON and OFF at a fast rate. The longer the power-on time, the higher is the voltage supplied 
to the load.

Figure 9.20 shows a typical PWM waveform where the signal is a repetitive positive pulse, 
having the period T, ON time TON, and OFF time of T – TON seconds. The minimum and 
maximum values of voltage supplied to the load are 0 and VP respectively. PWM switching 
frequency is usually set very high (usually in the order of several kHz) so that it does not 
affect the load that uses the power. The main advantage of PWM is that the load is operated 
efficiently since power loss in the switching device is very low. When the switch is ON there 
is almost no voltage drop across the switch. When the switch is OFF, there is no current 
supplied to the load.

The duty cycle (or D) of a PWM waveform is defined as the ratio of the ON time to its period. 

Expressed mathematically,

 Duty Cycle (D) = TON / T

The duty cycle is usually expressed as a percentage and therefore,

 D = (TON / TOFF) x 100 %

By varying the duty cycle between 0% and 100% we can effectively control the average 
voltage supplied to the load between 0 and Vp.

The average value of voltage applied to the load can be calculated by considering a general 
PWM waveform shown in Figure 1. The average value A of waveform f(t) with period T and 
peak value ymax and minimum value ymin is calculated as:

Figure 9.20 PWM waveform

dogan 2.indd   172dogan 2.indd   172 08/06/2021   22:21:1208/06/2021   22:21:12



Chapter 9 ● Timers

● 173

or,

In a PWM waveform ymin = 0 and the above equation becomes:

or,

As can be seen from the above equation, the average value of the voltage supplied to the 
load is directly proportional to the duty cycle of the PWM waveform and by varying the 
duty cycle we control the average load voltage. Figure 9.21 shows the average voltage for 
different values of the duty cycle.

9.8.1 ● MAX78000 PWM

In PWM mode, the timer sends a Pulse-Width Modulated (PWM) output using the timer's 
output signal. The timer first counts up to the match value stored in the PWM register. At the 
end of the cycle where the timer count matches the PWM register value, the timer output 
signal toggles state. The timer continues counting until it reaches the timer comparator 
register value. The timer period ends on the rising edge of the timer clock, following the 
point when the timer matches the compare register value.

Figure 9.21 Average voltage (shown as dashed line) supplied to a load

dogan 2.indd   173dogan 2.indd   173 08/06/2021   22:21:1308/06/2021   22:21:13



How2: Get Started with the MAX78000FTHR Board

● 174

The timer peripheral automatically performs the following actions at the end of the timer 
period:

• The timer count is reset to 0x00000001, and the timer resumes counting.
• The timer output signal is toggled.
• The corresponding timer interrupt field will be set to 1 to indicate a timer interrupt 

event occurred.

When timer polarity is 0, the timer output signal starts low and then transitions to high 
when the timer count value matches the timer PWM value. The timer output signal remains 
high until the timer count value reaches the timer compare value, resulting in the timer 
output signal transitioning low, and the timer count value resetting to 0x0000 0001.
The PWM period in seconds is given by:

PWM (secs) = TMR count value / timer clock

If the polarity is set to 0, the Duty Cycle of the waveform is given by:

Duty Cycle (%) = 100 x (Timer compare value – Timer PWM value) / Timer compare value

If the polarity is set to 1, the Duty Cycle of the waveform is given by:

Duty Cycle (%) = 100 x (Timer PWM value) / Timer compare value

Two parameters are required to set a timer PWM waveform specifications: the PWM period 
and duty cycle.

Figure 9.22 shows a timer operating in PWM mode.

Figure 9.22 Timer operating in PWM mode

dogan 2.indd   174dogan 2.indd   174 08/06/2021   22:21:1308/06/2021   22:21:13



Chapter 9 ● Timers

● 175

9.9 ● Project 5 – Pulse width modulation (PWM) – generating 10 kHz square wave

Description: In this project, a 10 kHz PWM waveform is generated with a 50% duty cycle.

Aim: The project aims to show how a PWM waveform can be generated with the given 
period and duty cycle.

Circuit diagram: Figure 9.23 shows the circuit diagram of the project. In this project, 
Timer 4 is used with its output at pin P1_6 (see Table 9.1). This pin is connected to a digital 
oscilloscope to display the waveform.

Program listing: Figure 9.24 shows the program listing (PWM10K). At the beginning of 
the program, PWM parameters are defined. Timer 3 is used in this project with the clock 
source selected as 8 MHz, the frequency and duty cycle of the desired PWM waveform 
selected as 10K (10000 Hz) and 50% respectively.:

#define PWM_CLOCK_SOURCE  MXC_TMR_8M_CLK       // Timer clock
#define FREQ             10000                 // 10 kHz
#define DUTY_CYCLE       50                   // 50%
#define PWM_TIMER        MXC_TMR3             // Timer3

The PWM waveform is generated inside function PWMTimer. The number of ticks for the 
PWM period is stored in variable periodTicks using function MXC_TMR_GetPeriod. The 
first argument of this function is the timer used. The second is the clock used. The third is 
the prescaler value. The last argument is the desired frequency. Duty cycle is set to 50%.

The timer is configured with the Prescaler set to 16, mode set to PWM, 32-bit counter 
selected with the clock source as 8 MHz, comparator value set to periodTicks. Polarity is 
set to 0 so the output signal is normally at logic 0.

tmr.pres = TMR_PRES_16;    // Prescaler=16
tmr.mode = TMR_MODE_PWM;    // Mode=PWM
tmr.bitMode = TMR_BIT_MODE_32;       // 32-bit mode
tmr.clock = PWM_CLOCK_SOURCE;   // Clock source

Figure 9.23 Circuit diagram of the project

dogan 2.indd   175dogan 2.indd   175 08/06/2021   22:21:1308/06/2021   22:21:13



How2: Get Started with the MAX78000FTHR Board

● 176

tmr.cmp_cnt = periodTicks;    // Comparator value
tmr.pol = 0;      // Polarity

The timer is initialised, and the duty cycle set using the MXC_TMR_Init function. Starting 
the timer generates the required PWM waveform.

/*-------------------------------------------------------------------------------

 10 kHz PULSE WIDTH MODULATED WAVEFORM

In this project a 10 kHz pulse width modulated waveform is generated using Timer 3

of the MAX78000 microcontroller. The waveform is output at pin P1_6

Author: Dogan Ibrahim

Date  : March 2021

Work  : PWM10K

--------------------------------------------------------------------------------*/

#include <stdio.h>

#include <stdint.h>

#include "mxc_device.h"

#include "mxc_sys.h"

#include "mxc.h"

//

// Parameters for PWM timer

//

#define PWM_CLOCK_SOURCE    MXC_TMR_8M_CLK       // Timer clock

#define FREQ             10000                 // 10 kHz

#define DUTY_CYCLE       50                   // 50%

#define PWM_TIMER        MXC_TMR3             // Timer3

mxc_tmr_cfg_t tmr;

void PWMTimer(void)

{   

     unsigned int periodTicks = MXC_TMR_GetPeriod(PWM_TIMER, PWM_CLOCK_SOURCE, 16, FREQ);

     unsigned int dutyTicks   = periodTicks * DUTY_CYCLE / 100;

     

     MXC_TMR_Shutdown(PWM_TIMER);

     

     tmr.pres = TMR_PRES_16;   // Prescaler=16

     tmr.mode = TMR_MODE_PWM;  // Mode=PWM

     tmr.bitMode = TMR_BIT_MODE_32;     // 32-bit mode

     tmr.clock = PWM_CLOCK_SOURCE;  // Clock source (Timer3)

     tmr.cmp_cnt = periodTicks;  // Comparator value

     tmr.pol = 0;    // Polarity

     

dogan 2.indd   176dogan 2.indd   176 08/06/2021   22:21:1308/06/2021   22:21:13



Chapter 9 ● Timers

● 177

     MXC_TMR_Init(PWM_TIMER, &tmr, true); // Initialize timer

     

     MXC_TMR_SetPWM(PWM_TIMER, dutyTicks); // Set Duty Cycle

     MXC_TMR_Start(PWM_TIMER);  // Start timer

}

int main(void)

{   

 PWMTimer();

 

 while(1);

}

The generated waveform is shown in Figure 9.25. In this display, the horizontal axis was 
0.1ms/division. The vertical axis was 1V/division. The frequency of the generated waveform 
is 10 kHz.

9.10 ● Project 6 – Pulse width modulation (PWM) – changing the brightness of an 
LED

Description: In this project, an external LED is connected to port pin P1_6 of the 
MAX78000FTHR development board through a current limiting resistor. The project sends a 
PWM waveform to the LED where the duty cycle is changed from 0% to 100%. As a result, 

Figure 9.24 Program listing

Figure 9.25 Generated waveform

dogan 2.indd   177dogan 2.indd   177 08/06/2021   22:21:1408/06/2021   22:21:14



How2: Get Started with the MAX78000FTHR Board

● 178

the brightness of the LED changes accordingly.

Aim: This project aims to show how the duty cycle of a PWM waveform can be continuously 
changed.

Circuit diagram: Figure 9.26 shows the circuit diagram of the project. The LED is connected 
in current sinking mode with a 220 Ohm current limiting resistor. The LED is ON when the 
output of the microcontroller is at logic 0 and will be OFF when it is at 1. The LED is supplied 
from the +3.3V supply. Therefore, assuming a 2V voltage drop across the LED, the current 
through the LED will be about I = 3.3 – 2 / 470 = 6 mA at 100% duty cycle. The reason 
for using a low resistance value is so the LED is very bright when full voltage is applied.

Program listing: Figure 9.27 shows the program listing (FADELED). At the beginning 
of the program, PWM frequency is set to 1000 Hz and Timer3 is used as in the previous 
project with an 8 MHz clock rate. The part of the program that configures the timer for the 
PWM operation is the same as in the previous project. A while loop is formed inside the 
PWMTimer routine to vary the duty cycle of the generated signal. The duty cycle starts 
from 1% to 100% in steps of 10%. A 500-millisecond delay is inserted between each 
output. The result is that the brightness of the LED changed from OFF to fully ON. Variable 
dutyTicks sets the ratio of the periodTicks to the duty cycle and this value is used in 
function MXC_TMR_SetPWM to set the duty cycle by configuring the PWM register.

/*-------------------------------------------------------------------------------

 LED FADING USING PWM

In this project an external LED is connected to the MAX78000FTHR. The brightness

of the LED is changed by sending PWM signak to it with varying duty cycle

Author: Dogan Ibrahim

Date  : March 2021

Work  : FADELED

--------------------------------------------------------------------------------*/

#include <stdio.h>

Figure 9.26 Circuit diagram of the project

dogan 2.indd   178dogan 2.indd   178 08/06/2021   22:21:1408/06/2021   22:21:14



Chapter 9 ● Timers

● 179

#include <stdint.h>

#include "mxc_device.h"

#include "mxc_sys.h"

#include "mxc.h"

//

// Parameters for PWM timer

//

#define PWM_CLOCK_SOURCE    MXC_TMR_8M_CLK        // Timer clock

#define FREQ             1000                  // 1000 Hz

#define PWM_TIMER        MXC_TMR3              // Timer3

mxc_tmr_cfg_t tmr;

int DUTY_CYCLE = 1;                     // 1%

void PWMTimer(void)

{   

     unsigned int periodTicks = MXC_TMR_GetPeriod(PWM_TIMER, PWM_CLOCK_SOURCE, 16, FREQ);

     unsigned int dutyTicks   = periodTicks * DUTY_CYCLE / 100;

     

     MXC_TMR_Shutdown(PWM_TIMER);

     

     tmr.pres = TMR_PRES_16;    // Prescaler=16

     tmr.mode = TMR_MODE_PWM;   // Mode=PWM

     tmr.bitMode = TMR_BIT_MODE_32;      // 32-bit mode

     tmr.clock = PWM_CLOCK_SOURCE;   // Clock source (Timer3)

     tmr.cmp_cnt = periodTicks;   // Comparator value

     tmr.pol = 0;     // Polarity

     

     MXC_TMR_Init(PWM_TIMER, &tmr, true);  // Initialize timer

     

     MXC_TMR_SetPWM(PWM_TIMER, dutyTicks);  // Set Duty Cycle

     MXC_TMR_Start(PWM_TIMER);   // Start timer

     

  while(1)

  {

   dutyTicks   = periodTicks * DUTY_CYCLE / 100; // Cal periodtick ratio

   MXC_TMR_SetPWM(PWM_TIMER, dutyTicks); // Change duty cycle

   DUTY_CYCLE = DUTY_CYCLE + 10;  // Increment duty cycle

   if(DUTY_CYCLE > 100)DUTY_CYCLE = 1;  // Reset suty cycle

   MXC_Delay(500000);    // Wait 500 ms

  }

}

dogan 2.indd   179dogan 2.indd   179 08/06/2021   22:21:1408/06/2021   22:21:14



How2: Get Started with the MAX78000FTHR Board

● 180

int main(void)

{   

 PWMTimer();

}

9.11 ● Project 7 – Pulse width modulation (PWM) – brushed DC motor speed 
control

Description: This is a simple project where a small brushed DC motor is connected to 
the MAX78000FTHR development board through a power MOSFET transistor. In addition, 
a potentiometer is connected to one of the analog inputs of the microcontroller. In this 
project, motor speed is varied by moving the potentiometer arm.

Block Diagram: Figure 9.28 shows the block diagram of the project. A motor driver 
(MOSFET transistor) and potentiometer are connected to the microcontroller.

The DC motor in this project is controlled using PWM waves as in the previous project. By 
varying the potentiometer arm, the analog voltage read by the microcontroller is varied and 
this, in turn, changes the PWM duty cycle of the voltage applied to the motor, thus causing 
the motor speed to change.

Circuit diagram: The circuit diagram of the project is shown in Figure 9.29. The 
potentiometer is connected to analog input AIN3 (pin 5). The DC motor is connected to 
PWM output P1_6 (pin 25) through an IRL540 type MOSFET switch. It is suggested to use 
an external power supply for the motor. Additionally, the output voltage of the MAX78000 
microcontroller is +1.8V which is not enough to drive the MOSFET. A logic level converter 
module is used to raise +1.8V to +5V as shown in the figure.

Figure 9.27 Program listing

Figure 9.28 Block diagram of the project

dogan 2.indd   180dogan 2.indd   180 08/06/2021   22:21:1408/06/2021   22:21:14



Chapter 9 ● Timers

● 181

Program listing: Figure 9.30 shows the program listing (Motor). The data read from the 
ADC varies between 0 and 1023 as the potentiometer arm is fully moved from one side to 
the other. This data is used to change the duty cycle from 0% to 100%. What is necessary 
is to map 0 to 1023 to 0 to 100. This can be done easily using the following formula:

 y = x *100 / 1023

Where x is the input (i.e. the ADC reading) and y is the required output (i.e. the duty cycle). 
For example, when x = 0, y becomes 0. When x is 512, y becomes 50. When x is 1023, y 
becomes 100. Variables ADCMAX and DUTYMAX are set to 1023 and 100 respectively, 
and variable conv is the ratio of DUTYMAX to ADCMAX. The timer is then started and the 
ADC is initialised. The remainder of the program runs in a while loop. Inside this loop, the 
potentiometer setting is read by the ADC and is converted to DUTY_CYCLE by mapping as 
described above. The duty cycle must not be less than or equal to zero. It is set to 1 if less 
than or equal to zero. dutyTicks (ratio to periodTicks) is calculated and the duty cycle of 
the waveform is set by calling function MXC_TMR_SetPWM.

Note the speed of the motor will change as the potentiometer arm is moved.

/*-------------------------------------------------------------------------------
 DC MOTOR SPEED CONTROL

In this project a small DC motor is connected to the MAX78000FTHR development
board. Also a potentiometer is connected. The speed of the motor is controlled
by varying the potentiometer arm

Author: Dogan Ibrahim
Date  : March 2021
Work  : MOTOR
--------------------------------------------------------------------------------*/
#include <stdio.h>

Figure 9.29 Circuit diagram of the project

dogan 2.indd   181dogan 2.indd   181 08/06/2021   22:21:1408/06/2021   22:21:14



How2: Get Started with the MAX78000FTHR Board

● 182

#include <stdint.h>
#include "mxc_device.h"
#include "mxc_sys.h"
#include "mxc.h"

//
// Parameters for PWM timer
//
#define PWM_CLOCK_SOURCE    MXC_TMR_8M_CLK       // Timer clock
#define FREQ             1000                 // 1000 Hz
#define PWM_TIMER        MXC_TMR3             // Timer3

#define ADC_CHANNEL MXC_ADC_CH_3   // Use CH 3

mxc_tmr_cfg_t tmr;

unsigned int dutyTicks;
unsigned int periodTicks;
int DUTY_CYCLE = 1;                     // 1%

void PWMTimer(void)
{   
     periodTicks = MXC_TMR_GetPeriod(PWM_TIMER, PWM_CLOCK_SOURCE, 16, FREQ);
     dutyTicks   = periodTicks * DUTY_CYCLE / 100;
     
     MXC_TMR_Shutdown(PWM_TIMER);
     
     tmr.pres = TMR_PRES_16;   // Prescaler=16
     tmr.mode = TMR_MODE_PWM;   // Mode=PWM
     tmr.bitMode = TMR_BIT_MODE_32;      // 32-bit mode
     tmr.clock = PWM_CLOCK_SOURCE;  // Clock source (Timer3)
     tmr.cmp_cnt = periodTicks;   // Comparator value
     tmr.pol = 0;    // Polarity
     
     MXC_TMR_Init(PWM_TIMER, &tmr, true); // Initialize timer
     MXC_TMR_SetPWM(PWM_TIMER, dutyTicks); // Set Duty Cycle
     MXC_TMR_Start(PWM_TIMER);   // Start timer
}

int main(void)
{   
 int adc_val=0;
 float conv;
 float ADCMAX = 1023.0;
 float DUTYMAX = 100.0;

dogan 2.indd   182dogan 2.indd   182 08/06/2021   22:21:1508/06/2021   22:21:15



Chapter 9 ● Timers

● 183

 conv = DUTYMAX / ADCMAX;    // e.g. 100/1024
 PWMTimer();
 MXC_ADC_Init();      // Initialize ADC
 
 while(1)
    {
  adc_val=MXC_ADC_StartConversion(ADC_CHANNEL); // Start conversion

  DUTY_CYCLE = (int)(adc_val * conv);
  if(DUTY_CYCLE > 100)DUTY_CYCLE = 100;
  if(DUTY_CYCLE <= 0)DUTY_CYCLE = 1;
  dutyTicks   = periodTicks * DUTY_CYCLE / 100; // Calc periodTicks
  MXC_TMR_SetPWM(PWM_TIMER, dutyTicks);  // Change duty cycle
    }
}

Figure 9.30 Program listing

dogan 2.indd   183dogan 2.indd   183 08/06/2021   22:21:1508/06/2021   22:21:15



How2: Get Started with the MAX78000FTHR Board

● 184

Chapter 10 ● Pulse Train Engine (PT)

10.1 ● Overview

The Pulse Train engine (PT) generates either square wave signals with a 50% duty cycle, or 
a continuous bit pattern with a length of 2 to 32 bits. There are 16 PTs, and each one can 
be used independently. They may also be synchronised together. The frequency of each 
generated output can be set separately.

The basic features of the PT are:

• Independent pulse train outputs
• Square wave output (50% duty cycle)
• Pattern output mode (2 to 32 bits)
• Global clock for all outputs
• Individual rate configuration for each output
• Pulse train outputs can be halted and resumed at the same point

The MAX78000 provides up to four instances of the pulse train engine peripheral, as 
PT0, PT1, PT2, and PT3. Only PT1 at port pin P0_19 is available on the MAX78000FTHR 
development board.

In pulse train mode, bits are sent out with the LSB bit sent out first.
Two example projects are given in this section to show how the pulse train engine can be 
used.

10.2 ● Project 1 – Generate a pulse train with a specified sequence

Description: In this project, an 8-bit pulse train is generated with the sequence 0x96 and 
bit rate set to 2 bits/second. The generated pulse sequence is 1001 0110, with the LSB 
bit sent out first. The waveform is output from port P0_19 of the MAX78000 development 
board.

Aim: This project aims to show how a pulse train can be generated using the MAX78000.

Circuit diagram: Port P0_19 (pin 20) of the MAX78000FTHR development board is 
connected to an oscilloscope to display the generated waveform.

Program listing: Figure 10.1 shows the program listing (PT). At the beginning of the 
program the bit rate and the required bit pattern are specified:

#define CONT_WV_BPS   2  // Bit rate (Bits/sec)
#define CONT_WV_PATTERN 0x96  // Bit pattern (1001 0110)

The main program initialises the pulse train and calls function PulseTrain to create the 
required waveform. Inside this function, the PT channel number is set to 1 (i.e. port pin 

dogan 2.indd   184dogan 2.indd   184 08/06/2021   22:21:1508/06/2021   22:21:15



Chapter 10 ● Pulse Train Engine (PT)

● 185

P0_19), the bit rate is set to 2, the number of bits is set to 8, the required pattern is 
specified, the continuous loop is set to 0 so that the loop is repeated continuously, and 
the delay is set to 0 so that there are no delays between the loops. The pulse train is then 
configured and is started.
 
ptConfig.channel = 1;                     // PT1 (Port P0_9)
ptConfig.bps = CONT_WV_BPS;               // Bit rate
ptConfig.ptLength = 8;                    // No of bits
ptConfig.pattern = CONT_WV_PATTERN;   // Pattern
ptConfig.loop = 0;                        // Continuous loop
ptConfig.loopDelay = 0;    // No delay
    
MXC_PT_Config(&ptConfig);    // Configure PT
MXC_PT_Start(MXC_F_PTG_ENABLE_PT1);   // Start PT1

/*-------------------------------------------------------------------------------
   GENERATE PULSE TRAIN

In this project the pulse sequence 0x96 (1001 0110) is generated and output from
port P0_9 of the MAX78000 development board.

Author: Dogan Ibrahim
Date  : March 2021
Work  : PT
--------------------------------------------------------------------------------*/
#include <mxc.h>

#define  CONT_WV_BPS   2  // Bit rate (Bits/sec)
#define  CONT_WV_PATTERN  0x96  // Bit pattern (1001 0110)

mxc_pt_cfg_t ptConfig;

//
// This function configures the Pulse Train PT1 (channel 1)
//
void PulseTrain(void)
{
    ptConfig.channel = 1;                     // PT1 (Port P0_9)
    ptConfig.bps = CONT_WV_BPS;               // Bit rate
    ptConfig.ptLength = 8;                    // No of bits
    ptConfig.pattern = CONT_WV_PATTERN;   // Pattern
    ptConfig.loop = 0;                        // Continuous loop
    ptConfig.loopDelay = 0;    // No delay
    
    MXC_PT_Config(&ptConfig);    // Configure PT
    MXC_PT_Start(MXC_F_PTG_ENABLE_PT1);   // Start PT1

dogan 2.indd   185dogan 2.indd   185 08/06/2021   22:21:1508/06/2021   22:21:15



How2: Get Started with the MAX78000FTHR Board

● 186

}

int main(void)
{    
    MXC_PT_Init(MXC_PT_CLK_DIV1);       // Initialize PT  
   
    PulseTrain();     // Call function PulseTrain
    
    while (1);
}

Figure 10.2 shows the signal generated by the program on a digital oscilloscope. Notice 
the pulse train is 1001 0110 with the LSB sent first. i.e. from left to right the generated 
sequence is: 0110 0110.

10.3 ● Project 2 – Generate a pulse train with a specified frequency

Description: In this project, a 2 kHz square wave signal is generated using the Pulse Train 
Engine. The duty cycle is set to 50% by default. The output is available on pin P0_19.

Aim: This project aims to show how the Pulse Train Engine can be used to generate a 
square wave signal.

Circuit diagram: Port P0_19 (pin 20) of the MAX78000FTHR development board is 
connected to an oscilloscope to display the generated waveform.

Program listing: Figure 10.3 shows the program listing (PTSQR). The frequency is defined 
as 2 kHz. The main program calls function SquareWave. Inside this function channel 1 and 

Figure 10.1 Program listing

Figure 10.2 Signal generated

dogan 2.indd   186dogan 2.indd   186 08/06/2021   22:21:1508/06/2021   22:21:15



Chapter 10 ● Pulse Train Engine (PT)

● 187

the frequency are specified, and the pulse train is started:

    uint32_t freq = SQ_WV_HZ;  // Frequency (Hz)
    MXC_PT_SqrWaveConfig(1, freq);      // Configure channel & freq
    MXC_PT_Start(MXC_F_PTG_ENABLE_PT1); // Enable PT1

/*-------------------------------------------------------------------------------
   GENERATE SQUARE WAVE

In this project the pulse train engine is used to generate a 2 kHz square wave
signal with 50% duty cycle

Author: Dogan Ibrahim
Date  : March 2021
Work  : PTSQR
--------------------------------------------------------------------------------*/
#include <mxc.h>

#define SQ_WV_HZ 2000     // 2 kHz square wave

//
// Generate square wave with frequency 2000 Hz, 50% duty cycle on channel 1 
// (port pin P0_19), enable PT1
//
void SquareWave(void)
{   
    uint32_t freq = SQ_WV_HZ;    // Frequency (Hz)
    MXC_PT_SqrWaveConfig(1, freq);        // Configure channel & freq
    MXC_PT_Start(MXC_F_PTG_ENABLE_PT1);   // Enable PT1
}

int main(void)
{   
    MXC_PT_Init(MXC_PT_CLK_DIV1);       //init PT with the clock
   
 SquareWave();     // Generate square wave
    
    while (1) {}
}

Figure 10.4 shows the waveform generated on an oscilloscope. Here, the horizontal axis 
was 0.5 ms and the vertical axis was 1V/division. The frequency is 2 kHz and the duty cycle 
is 50%.

Figure 10.3 Program listing

dogan 2.indd   187dogan 2.indd   187 08/06/2021   22:21:1508/06/2021   22:21:15



How2: Get Started with the MAX78000FTHR Board

● 188

Figure 10.4 Signal generated

dogan 2.indd   188dogan 2.indd   188 08/06/2021   22:21:1608/06/2021   22:21:16



Chapter 11 ● True Random Number Generator Engine (TRNG)

● 189

Chapter 11 ● True Random Number Generator Engine (TRNG)

11.1 ● Overview

The True Random Number Generator Engine (TRNG) is a non-deterministic engine that can 
be used to generate true random numbers in security applications, such as encryption keys 
(e.g. as AES keys), or in other applications which require true random numbers.
In this chapter, we will develop an application to generate random numbers.

11.2 ● Project 1 – Generate random numbers

Description: In this project, five 32-bit numbers and five 1-byte numbers are generated. 
The numbers are sent to a PC and displayed on a terminal.

Aim: This project aims to show how true random numbers can be generated.

Circuit diagram: Figure 11.1 shows the circuit diagram of the project. The MAX78000FTHR 
development board is connected to a PC through a USB cable as in the previous projects.

Program listing: Figure 11.2 shows the program listing (RND). Function GenerateTRNG 
is used to generate the numbers. Function MXC_TRNG_RandomInt generates a 32-bit 
true random number. Similarly, function MXC_TRNG_random generates a true random 
number of the required number of bytes. The results are sent to a terminal emulation 
software running on a PC.

/*-------------------------------------------------------------------------------
   GENERATE RANDOM NUMBERS

In this project 5 32-bit and 5 1-byte numbers are generated and sent to a terminal
through a TTL-USB module

Author: Dogan Ibrahim
Date  : March 2021
Work  : RND

Figure 11.1 Circuit diagram of the project

dogan 2.indd   189dogan 2.indd   189 08/06/2021   22:21:1608/06/2021   22:21:16



How2: Get Started with the MAX78000FTHR Board

● 190

--------------------------------------------------------------------------------*/
#include <stdio.h>
#include <stdint.h>
#include "mxc_device.h"
#include "trng.h"

volatile int wait;
volatile int callback_result;

//
// Generate 32-bit and 8-bit random numbers
//
void GenerateTRNG()
{
    uint32_t rnd32;
    uint8_t rnd8;
    int i;
    
    MXC_TRNG_Init();     // Initialize TRNG
    
    printf("5 32-bit random numbers:\n");
    for(i = 0; i < 5; i++)
    {
     rnd32 = MXC_TRNG_RandomInt();   // Generate 32-bit number
     printf("0x%x\n", rnd32);   // Print them
    }
    
    printf("5 8-bit random numbers:\n");
    for(i = 0; i < 5; i++)
    {
     MXC_TRNG_Random(&rnd8, 1);   // Generate 1 byte number
     printf("0x%x\n", rnd8);    // Print them
    }
    
    MXC_TRNG_Shutdown();    // Shutdown TRNG engine
}

int main(void)
{  
    GenerateTRNG();
}

Figure 11.3 shows an example output from the program. In this project, HyperTerm terminal 
emulation software is used on a PC. Baud rate was set to 115200 with no flow control.

Figure 11.2 Program listing

dogan 2.indd   190dogan 2.indd   190 08/06/2021   22:21:1608/06/2021   22:21:16



Chapter 11 ● True Random Number Generator Engine (TRNG)

● 191

Figure 11.3 Example output

dogan 2.indd   191dogan 2.indd   191 08/06/2021   22:21:1608/06/2021   22:21:16



How2: Get Started with the MAX78000FTHR Board

● 192

Chapter 12 ● 1-Wire Master (OWM)

12.1 ● Overview

The MAX78000 microcontroller provides a 1-Wire master that can be used to communicate 
with one or more external 1-Wire slaves.

1-Wire master has the basic features:

• 1-Wire timing generation
• 1-Wire reset generation and presence-pulse detection
• Generation of 1-Wire read and write time slots for single and eight-bit byte transmissions.
• Search ROM Accelerator (SRA) mode, which simplifies the generation of multiple-

bit time slots and discrepancy resolution required when completing the Search ROM 
function to determine the IDs of multiple, unknown 1-Wire slaves on the bus

• Transmit data completion, received data available, presence pulse detection, and 
1-Wire line-error condition

• Long-line compensation

12.2 ● MAX78000 microcontroller 1-Wire pins

1-Wire devices require a bi-directional I/O pin (OWM_IO) for their operation. Optionally, a 
pull-up enable (OWM_PE) signal can be provided to enable an external pull-up device on 
the 1-Wire bus. The MAX78000 microcontroller supports the following 1-Wire pins:

 1-Wire OWM_IO at P0_6

 1-Wire OWM_PE at P0_7

A project is given in this chapter to show how the 1-Wire protocol can be used with the 
MAX78000 microcontroller.

12.3 ● Project 1 – DS1820 1-Wire digital thermometer

Description: In this project a DS1820 type 1-Wire compatible temperature sensor chip is 
used. Ambient temperature is measured and sent to a PC where it is displayed.

Aim: This project aims to show how the 1-Wire protocol can be used.

Block diagram: Figure 12.1 shows the block diagram of the project.

dogan 2.indd   192dogan 2.indd   192 08/06/2021   22:21:1608/06/2021   22:21:16



Chapter 12 ● 1-Wire Master (OWM)

● 193

Circuit diagram: The circuit diagram of the project is shown in Figure 12.2. The DS1820 
chip has 3 pins: DQ, GND, and VDD. Pin DQ is the bi-directional input-output pin that is 
connected to port pin P0_6 of the microcontroller. VDD is connected to +3.3V and GND is 
connected to the supply ground pin. Notice VDD is optional and can be connected to GND 
for operation in parasite power mode. In this project, the DS1820 is powered from the 
+3.3V pin of the MAX78000FTHR development board.

DS1820 chip

It is worthwhile to review the operation of the DS1820 temperature sensor chip before 
developing the program. The DS18S20 digital thermometer chip (Figure 12.3) operates 
over a 1-Wire interface and provides 9-bit Celsius temperature measurements and has an 
alarm function with non-volatile user-programmable upper and lower trigger points. The 
chip can derive power directly from the data line ("parasite power"), eliminating the need 
for an external power supply. Each DS18S20 chip has a unique 64-bit serial code, allowing 
multiple DS18S20s to function on the same 1-Wire bus. The chip operates from +3.3V to 
+5.5V and can measure temperature from -10ºC to +85ºC with ±0.5ºC accuracy (or -55ºC 
to +125ºC with ±2ºC accuracy). The chip is calibrated to operate in degrees Centigrade 
(for Fahrenheit applications, a look-up table or a conversion routine can be used).

Figure 12.1 Block diagram of the project

Figure 12.2 Circuit diagram of the project

dogan 2.indd   193dogan 2.indd   193 08/06/2021   22:21:1608/06/2021   22:21:16



How2: Get Started with the MAX78000FTHR Board

● 194

The temperature sensor output has a 9-bit resolution, which corresponds to 0.5°C steps. 
The DS1820 powers up in a low-power idle state.

The transaction sequence is:

1. Initialisation
2. ROM commands
3. Function commands

Initialisation: All transactions on the 1-Wire bus begin with an initialisation sequence. The 
initialisation sequence consists of a reset pulse transmitted by the bus master followed by 
a presence pulse(s) transmitted by the slave(s). The presence pulse lets the bus master 
know that slave devices (such as the DS1820) are on the bus and ready to operate.

ROM commands: After the bus master has detected a presence pulse, it can issue a ROM 
command. These commands operate on the unique 64-bit ROM codes of each slave device 
and allow the master to single out a specific device if many are present on the 1-Wire bus. 
Some commonly used ROM commands are:

Search ROM (0xF0)

When a system is initially powered up, the master must identify the ROM codes of all slave 
devices on the bus, which allows the master to determine the number of slaves and their 
device types. If there is only one slave on the bus, which is the case in this project, the 
simpler Read ROM command can be used in place of the Search ROM process.

Figure 12.3 The DS1820 chip

dogan 2.indd   194dogan 2.indd   194 08/06/2021   22:21:1708/06/2021   22:21:17



Chapter 12 ● 1-Wire Master (OWM)

● 195

Read ROM (0x33)

This command can only be used when there is only one slave on the bus. It allows the bus 
master to read the slave's 64-bit ROM code without using the Search ROM procedure.

Skip ROM (0xCC)

The master can use this command to address all devices on the bus simultaneously without 
sending out any ROM code information. For example, the master can make all DS1820s on 
the bus perform simultaneous temperature conversions by issuing a Skip ROM command 
followed by a Convert T (0x44h) command. The Read Scratchpad (0xBE) command can 
follow the Skip ROM command if there is a single slave device on the bus. In this case, time 
is saved by allowing the master to read from the slave without sending the device's 64-bit 
ROM code.

Convert T (0x44)

This command initiates a single temperature conversion. Following the conversion, the 
resulting thermal data is stored in the 2-byte temperature register in the scratch-pad 
memory and the DS1820 returns to its low-power idle state.

Read Scratchpad (0xBE)

This command allows the master to read the contents of the scratchpad. The data transfer 
starts with the LSB bit of byte 0 and continues through the scratchpad until the 9th byte 
(byte 8 – CRC) is read.

There are some other ROM commands but they are not covered in this book. Interested 
readers can refer to the DS1820 datasheet.

The steps to read the temperature when there is only one DS1820 on the bus are as 
follows:

• Master issues a Skip ROM command (0xCC)
• Master issues a Convert T command (0x44)
• Wait until the data is ready. If the DS18S20 is powered by an external supply, the 

master can issue "read-time slots" after the Convert command and the DS1820 will 
respond by transmitting 0 while the temperature conversion is in progress and 1 when 
the conversion is done.

• Send a Reset command
• Send a Skip ROM command
• Issue a Read Scratchpad command (0xBE)
• The resulting 16-bit sign-extended two's complement temperature data is stored in the 

scratchpad memory register. The sign bit indicates if the temperature is positive (S = 
0) or negative (S = 1)

• DS1820 returns to its idle state

dogan 2.indd   195dogan 2.indd   195 08/06/2021   22:21:1708/06/2021   22:21:17



How2: Get Started with the MAX78000FTHR Board

● 196

Table 12.1 gives some examples of the temperature/data relationship of the DS1820 chip.

Each DS1820 contains a unique 64-bit code stored in ROM. The least significant 8 bits of 
the ROM code contain the DS1820's 1-Wire family code: 10h. The next 48 bits contain a 
unique serial number. The most significant 8 bits contain a cyclic redundancy check (CRC) 
byte that is calculated from the first 56 bits of the ROM code.

Figure 12.4 shows the memory map of the DS1820 chip. The memory consists of an SRAM 
scratchpad with nonvolatile EEPROM storage for the temperature alarm (TH and TL) bytes. 
Byte 0 and byte 1 of the scratchpad contain the LSB and the MSB of the temperature 
register, respectively.

Program listing: Figure 12.5 shows the program listing (DS1820). At the beginning of 
the program, the ConvertT and ReadScractchPad commands are defined. Inside the 
main program, P0_6 is configured as an input with the pull-up resistor enabled. The 1-Wire 
bus is configured by specifying that an internal pull-up resistor is used and there is no long 
line. The remaining parts of the program run in a while loop. Inside this loop, the 1-Wire 
bus is initialised, the Skip ROM command, and the ConvertT commands are issued. The 
program then waits until the data is ready. Port pin P0_6 (i.e. DQ pin of DS1820 is 0 while 
polling, and becomes 1 when data is ready). The program then resets the bus, issues 

Table 12.1 Temperature/data relationship

Figure 12.4 Memory map of the DS1820

dogan 2.indd   196dogan 2.indd   196 08/06/2021   22:21:1808/06/2021   22:21:18



Chapter 12 ● 1-Wire Master (OWM)

● 197

a Skip ROM command and a ReadScratchPad command. 9 bytes of data is read into 
integer array buffer.

The MSD and LSD bytes of the temperature are then combined into a 16-bit register called 
Temp. The temperature can be positive or negative. If the temperature is negative, the 
most significant bit of Temp is 1. Negative temperature is in 2's complement form and its 
value is calculated by taking its complement and adding 1. Finally, the resulting temperature 
is stored in the floating point variable Temperature and displayed on the terminal.

MXC_OWM_Init (&owm);        // Init 1-Wire bus
MXC_OWM_Reset ();        // Reset the bus
MXC_OWM_WriteByte (SKIP_ROM_COMMAND );     // Send SKIP ROM command
MXC_OWM_WriteByte(ConvertT_COMMAND);     // END ConvertT command
while(MXC_GPIO_InGet(gpio_in.port, DQ) == 0);  // Wait until ready

MXC_OWM_Reset();        // Reset 1-Wire bus
MXC_OWM_WriteByte(SKIP_ROM_COMMAND);     // Send SKIP ROM command
MXC_OWM_WriteByte(ReadScratchPad_COMMAND);     // Send ReadScratchPad
MXC_OWM_Read(buffer, len);       // Read ScratchPad (9 bytes)
Temp = (buffer[1] << 8) | buffer[0];     // Temperature in Temp

Negative temperature is handled as follows:

if((Temp & 0x8000) != 0)             // If negative
{
 Temp = ~Temp;              // Complement
 Temp++;         // 2s complement
 Temperature = -Temp * 0.5;      // Negative
}

/*-------------------------------------------------------------------------------

   1-WIRE TEMPERATURE SENSOR

In this project a DS1820 type 1-Wire temperature sensor chip is used. The ambient

temperature is read, sent to the PC, and displayed on a terminal emulation window

every second

Author: Dogan Ibrahim

Date  : March 2021

Work  : DS1820

--------------------------------------------------------------------------------*/

#include <stdio.h>

#include <stdint.h>

#include "mxc_device.h"

#include "mxc_sys.h"

#include "owm_regs.h"

dogan 2.indd   197dogan 2.indd   197 08/06/2021   22:21:1808/06/2021   22:21:18



How2: Get Started with the MAX78000FTHR Board

● 198

#include "owm.h"

#include "mxc_delay.h"

#define ConvertT_COMMAND   0x44         // ConvertT

#define ReadScratchPad_COMMAND   0xBE   // Read ScratchPad

#define DQ MXC_GPIO_PIN_6     // DQ at P0_6

mxc_owm_cfg_t owm;

mxc_gpio_cfg_t gpio_in;

//

// Main program

//

int main(void)

{

 int len = 9;

 float Temperature;

 uint16_t Temp;

 uint8_t buffer[9];

 

 //

 // Configure input pin at P0_6 (DQ)*/

 //

 gpio_in.port = MXC_GPIO0;    // PORT0

 gpio_in.mask = DQ;    // Pin DQ

 gpio_in.pad = MXC_GPIO_PAD_PULL_UP;  // Internal pull-up

 gpio_in.func = MXC_GPIO_FUNC_IN;   // Input

 MXC_GPIO_Config(&gpio_in);

 

 //

 // Configure 1-Wire bus

 //

 owm.int_pu_en = 1;                 // Internal pull-up

 owm.ext_pu_mode = MXC_OWM_EXT_PU_UNUSED;        // No external pull-up

 owm.long_line_mode=0;            // No long line

 

 while(1)

 { 

  MXC_OWM_Init (&owm);   // Init 1-Wire bus

  MXC_OWM_Reset ();    // Reset the bus

  MXC_OWM_WriteByte (SKIP_ROM_COMMAND ); // Send SKIP ROM command

  

  MXC_OWM_WriteByte(ConvertT_COMMAND); // END ConvertT command

  while(MXC_GPIO_InGet(gpio_in.port, DQ) == 0); // Wait until ready

dogan 2.indd   198dogan 2.indd   198 08/06/2021   22:21:1808/06/2021   22:21:18



Chapter 12 ● 1-Wire Master (OWM)

● 199

  MXC_OWM_Reset();    // Reset 1-Wire bus

  MXC_OWM_WriteByte(SKIP_ROM_COMMAND); // Send SKIP ROM command

  MXC_OWM_WriteByte(ReadScratchPad_COMMAND); // Send ReadScratchPad command

  MXC_OWM_Read(buffer, len);  // Read ScratchPad (9 bytes)

  Temp = (buffer[1] << 8) | buffer[0]; // Temperature

  

  if((Temp & 0x8000) != 0)   // If negative

  {

   Temp = ~Temp;   // Complement

   Temp++;    // 2s complement

   Temperature = -Temp * 0.5; // Negative

  }

  else

   Temperature = Temp * 0.5;        // Positive

  printf("Temperature = %+5.2f\n", Temperature);   // Display temperature

  MXC_Delay(1000000);         // Wait 1 second

 }

}

Figure 12.6 shows example output from the program.

Figure 12.5 Program listing

Figure 12.6 shows example output from the program

dogan 2.indd   199dogan 2.indd   199 08/06/2021   22:21:1808/06/2021   22:21:18



How2: Get Started with the MAX78000FTHR Board

● 200

Chapter 13 ● I2S Bus Interface

13.1 ● Overview

I²S (or I2S, or Inter-IC Sound) is a serial audio interface, created by Philips, for 
communicating PCM data information between devices. I2S was created in the 1980s for 
the transmission of audio data using a standardised interface. It is a two-channel protocol 
because it was designed for stereo sound.

As shown in Figure 13.1, in I2S bus applications, 3 signals are mainly used: Data is on 
the SD line, the WS line corresponds to the audio channel (left or right) that is being 
transmitted, and the SCK carries the serial clock. A device in the I2S bus can be a master 
or a slave. The WS and SCK are generated by the master. A master can be a transmitter 
or a receiver.

Serial data (SD): The serial data is transmitted to MSB first. The master and slave do not 
need to have an agreed word length. The slave receives whatever is sent by the master. 
Data is out from the master on the rising or the falling edge of the clock. Data must 
however be received on the rising edge of the clock.

Word select (WS): A logic HIGH indicates that data is currently being transmitted for the 
right-channel, and a logic LOW indicates left-channel.

Clock (SCK): The clock runs continuously and the maximum data rate is not specified by 
the protocol.

Some devices can act both as master and slave, in which case they may have additional 
lines, such as serial data input (SDI), interrupt lines, etc. Figure 13.2 shows a typical I2S 
timing diagram.

Figure 13.1 Basic I2S bus

dogan 2.indd   200dogan 2.indd   200 08/06/2021   22:21:1908/06/2021   22:21:19



Chapter 13 ● I2S Bus Interface

● 201

13.2 ● MAX78000 microcontroller I2S support

The I2S bus on the MAX78000 microcontroller is a bidirectional 4-wire serial bus, having 
the following basic features:

• Master and slave operation
• 8, 16, 24, and 32-bit frames
• DMA support for both receive and transmit
• Stereo (2 channel) and mono (one channel) formats
• Configurable sampling rate
• Programmable word size
• Word select polarity control
• 8-byte receiver FIFO and 8-byte transmitter FIFO

13.3 ● MAX78000 microcontroller I2S pins

MAX78000 microcontroller supports an I2S channel with the name I2S0, having different 
input (SDI) and output (SDO) lines. The I2S pins are as follows:

 I2S pin       MAX78000 pin
   SCK        P1_2
   WS        P1_3
   SDI        P1_4
   SDO        P1_5

The MAX78000FTHR development board incorporates a digital microphone, audio CODEC, 
and a stereo in- and output on 3.5mm sockets placed at the edge of the board. The 
SPH0645LM4H-B type I2S bus compatible digital microphone is used on the board, having 
the following basic features:

• 1.8V - 3.6V operating voltage
• 600μA supply current
• 100Hz - 10kHz flat frequency response

The SPH0645LM4H microphone operates as an I2S slave. The master must provide the SCK 

Figure 13.2 I2S timing diagram

dogan 2.indd   201dogan 2.indd   201 08/06/2021   22:21:1908/06/2021   22:21:19



How2: Get Started with the MAX78000FTHR Board

● 202

and WS signals. WS signal must be SCK/64 and synchronized to the SCK. Clock frequencies 
from 2,048Mhz to 4,096MHz are supported so sampling rates from 32KHz (2,048 / 64) to 
64KHz (4,096 / 64) can be used. The Data Format is 24-bit, 2s complement, MSB first, 
where data precision is 18 bits with unused bits set to zeroes.

Figure 13.3 shows the SPH0645LM4H-B microphone and its connection diagram on the 
MAX78000FTHR development board.

A project is given in this chapter to show how the I2S bus can be used.

13.4 ● Project 1 - I2S Bus – receiving microphone data

Description: This project shows how microphone data can be received. In this project the 
microphone captures data either until the specified receive buffer is full, or if the elapsed 
time is one second. Messages are sent to a terminal as the program is started and data is 
captured.

Program listing: Figure 13.4 shows the program listing (I2S). The program uses a one 
shot timer with the timeout period set to one second. Data capturing starts when the 
one shot is started. At the end of one second, the timer stops and a timer interrupt is 
generated. A flag is set in the timer interrupt service routine to inform the main program 
that one second has elapsed. The program stops when the receive buffer is full, or when 
the timer expires after one second.

At the beginning of the program the receive buffer size, receive buffer, and I2S interrupt 
flag are defined:

Figure 13.3 SPH0645LM4H-B microphone

dogan 2.indd   202dogan 2.indd   202 08/06/2021   22:21:2008/06/2021   22:21:20



Chapter 13 ● I2S Bus Interface

● 203

#define RX_BUFFER_SIZE  30000   // I2S RX buffer size
int32_t RX_BUFFER[RX_BUFFER_SIZE];   // I2S BUFFER
volatile uint8_t I2S_Flag = 0;
int Wait_Flag = 0;

Also, the one shot timer parameters and the timer interrupt flag are defined:

#define OST_TIMER           MXC_TMR0              // Using TMR0
#define OST_CLOCK_SOURCE    MXC_TMR_32K_CLK        // Timer clock
volatile uint8_t Timer_Flag = 0;    // Timer flag

The main program enables the cache, sets the system clock to 100MHz, initialises and turns 
ON the microphone, and initialises the receive buffer. The I2S parameters are then set as 
follows:

Sample size of 32, normal polarity, left channel used, MSB first clock divider of 5, and the 
receive buffer and its size specified.

    req.wordSize    = MXC_I2S_DATASIZE_WORD;
    req.sampleSize  = MXC_I2S_SAMPLESIZE_THIRTYTWO;
    req.justify     = MXC_I2S_MSB_JUSTIFY;
    req.wsPolarity  = MXC_I2S_POL_NORMAL;
    req.channelMode = MXC_I2S_INTERNAL_SCK_WS_0;
    req.stereoMode  = MXC_I2S_MONO_LEFT_CH;
    req.bitOrder    = MXC_I2S_MSB_FIRST;
    req.clkdiv      = 5;
    req.rawData     = NULL;
    req.txData      = NULL;
    req.rxData      = RX_BUFFER;
    req.length      = RX_BUFFER_SIZE;  

The I2S clock rate is given by:

I2S clock = 12,288MHz / (2*(clkdiv+1)) = 1,024MHz

The one shot timer parameters are defined inside function OneShotTimer as follows:

    tmr.pres = TMR_PRES_128;    // Prescaler
    tmr.mode = TMR_MODE_ONESHOT;   // Mode=One shot
    tmr.bitMode = TMR_BIT_MODE_32;   // 32-bit
    tmr.clock = OST_CLOCK_SOURCE;   // Clock source
    tmr.cmp_cnt = 254;          // For 1 second
    tmr.pol = 0;

The one shot timer is set for one second (see Chapter 9) so it generates an interrupt when 
the timer expires.

dogan 2.indd   203dogan 2.indd   203 08/06/2021   22:21:2008/06/2021   22:21:20



How2: Get Started with the MAX78000FTHR Board

● 204

Receive FIFO threshold is then configured and I2S interrupts are enabled. Also, one shot 
timer interrupts are enabled. The I2S interrupt service routine is named I2SHandler. 
Similarly, the one shot timer interrupt service routine is named OneshotTimerHandler. 
The remaining parts of the program run in a while loop. Inside this loop, the program waits 
until microphone data arrives, reads the data, and shifts it right by 14 bits since the actual 
data is 18 bits. The data capturing continues until the received buffer is full, or until the one 
shot timer expires. The captured data in the integer array buf_current is displayed on a 
terminal emulation program running on a PC. Remember to set the Baud rate to 115,200 
with 8 bits of data, no parity, 1 stop bit, and no flow control.

/*-------------------------------------------------------------------------------
   I2S - CAPTURE MICROPHONE DATA
     
This project shows how data can be captured from the microphone on the MAX7800FTHR
development board. Data is captured for 1 second or until the specified buffer is 
full

Author: Dogan Ibrahim
File  : I2S
Date  : March 2020
-----------------------------------------------------------------------------------
*/
#include <stdio.h>
#include <string.h>
#include "board.h"
#include "icc.h"
#include "i2s.h"
#include "i2s_regs.h"
#include "max20303.h"
#include "nvic_table.h"
#include "mxc_device.h"
#include "mxc_sys.h"
#include "mxc.h"

//
// I2S Definitions
//
#define RX_BUFFER_SIZE  30000    // I2S RX buffer size
int32_t RX_BUFFER[RX_BUFFER_SIZE];   // I2S BUFFER
volatile uint8_t I2S_Flag = 0;
int Wait_Flag = 0;
mxc_i2s_req_t req;

//
// OneShot timer definitions
//

dogan 2.indd   204dogan 2.indd   204 08/06/2021   22:21:2008/06/2021   22:21:20



Chapter 13 ● I2S Bus Interface

● 205

#define OST_TIMER           MXC_TMR0             // Using TMR0
#define OST_CLOCK_SOURCE    MXC_TMR_32K_CLK       // Timer clock
volatile uint8_t Timer_Flag = 0;   // Timer flag
mxc_tmr_cfg_t tmr;

//
// One shot interrupt service routine. Set variable Timer_Flag when oneshot finished
//
void OneshotTimerHandler()
{
    MXC_TMR_ClearFlags(OST_TIMER);   // Clear timer interrupt
    Timer_Flag = 1;     // Set timer flag
}

//
// I2S interrupt service routine. Set variable I2S_Flag when data is captured
//
void I2SHandler(void)
{
    I2S_Flag = 1;     // Set I2S flag
    MXC_I2S_ClearFlags(MXC_F_I2S_INTFL_RX_THD_CH0); // Clear interrupt flag
}

//
// This function implements the OneShot timer. The timer expires after 1 second
// and this causes a timer interrupt where a flag is set to stop data capturing
//
void OneShotTimer()
{   
    MXC_TMR_Shutdown(OST_TIMER);   // Stop the timer
//
// Set timer parameters
//
    tmr.pres = TMR_PRES_128;    // Prescaler
    tmr.mode = TMR_MODE_ONESHOT;   // Mode=One shot
    tmr.bitMode = TMR_BIT_MODE_32;   // 32-bit
    tmr.clock = OST_CLOCK_SOURCE;   // Clock source
    tmr.cmp_cnt = 254;           // For 1 second
    tmr.pol = 0;     // Passive Polarity
    
    MXC_TMR_Init(OST_TIMER, &tmr, true);  // Initialize timer clock  
    MXC_TMR_EnableInt(OST_TIMER);   // Enable timer
    MXC_TMR_Start(OST_TIMER);    // Start timer
}

//

dogan 2.indd   205dogan 2.indd   205 08/06/2021   22:21:2008/06/2021   22:21:20



How2: Get Started with the MAX78000FTHR Board

● 206

// Start of MAIN program
//
int main()
{
    uint32_t cnt, i, rx_size;
    int32_t* buf_current, *buf_start;
    
    MXC_ICC_Enable(MXC_ICC0);    // Enable cache
    MXC_SYS_Clock_Select(MXC_SYS_CLOCK_IPO);  // System clock to 100 MHz
    SystemCoreClockUpdate();

    max20303_init(MXC_I2C1);    // Init microphone
    max20303_mic_power(1);    // Turn ON microphone
    MXC_Delay(MXC_DELAY_MSEC(200));   // Wait 200ms

    memset(RX_BUFFER, 0, sizeof(RX_BUFFER));  // Clear I2S_RX buffer
    
    /* Configure I2S interface parameters */
    req.wordSize    = MXC_I2S_DATASIZE_WORD;  // Datasize Word
    req.sampleSize  = MXC_I2S_SAMPLESIZE_THIRTYTWO; // Sample size 32
    req.justify     = MXC_I2S_MSB_JUSTIFY;  // MSB justify
    req.wsPolarity  = MXC_I2S_POL_NORMAL;  // Polarity normal
    req.channelMode = MXC_I2S_INTERNAL_SCK_WS_0;
    req.stereoMode  = MXC_I2S_MONO_LEFT_CH;  // Only left channel
    req.bitOrder    = MXC_I2S_MSB_FIRST;  // MSB first
    req.clkdiv      = 5;    //
    req.rawData     = NULL;    //
    req.txData      = NULL;    // No TX data
    req.rxData      = RX_BUFFER;   // I2S buffer
    req.length      = RX_BUFFER_SIZE;   // I2S buffer size
    
    MXC_I2S_Init(&req);     // Init I2S
    
    MXC_I2S_SetRXThreshold(4);    // RX FIFO threshold
    NVIC_SetVector(I2S_IRQn, I2SHandler);  // I2S interrupt vector
    NVIC_EnableIRQ(I2S_IRQn);
    MXC_I2S_EnableInt(MXC_F_I2S_INTEN_RX_THD_CH0); // Enable RX FIFO thresh int
    MXC_I2S_RXEnable();       // Enable RX
    
    NVIC_SetVector(TMR0_IRQn, OneshotTimerHandler); // Timer interrupt handler
    NVIC_EnableIRQ(TMR0_IRQn);          // Enable timer interrupts
    
    buf_start = &RX_BUFFER[0];    // Buffer start
    buf_current = buf_start;
    
    i = 0;

dogan 2.indd   206dogan 2.indd   206 08/06/2021   22:21:2008/06/2021   22:21:20



Chapter 13 ● I2S Bus Interface

● 207

    OneShotTimer();     // Call OneShot timer
    
    while(Timer_Flag == 0)
    {
        while (I2S_Flag == 0);    // Wait for I2S interrupt
        
        I2S_Flag = 0;        // Clear flag
        rx_size = MXC_I2S->dmach0 >> MXC_F_I2S_DMACH0_RX_LVL_POS; // RX FIFO samples
        i = i + rx_size;
        
        if(i > RX_BUFFER_SIZE)break;    // If buffer is full
        
        while (rx_size--) 
        {
            *buf_current++ = ((int32_t) MXC_I2S->fifoch0) >> 14; // 18BitActualvalue
        }
        
       if(!Wait_Flag && *(buf_current-1) != 0) 
        {
         printf("Capturing microphone data...\n");
         Wait_Flag = 1;
        }
    }
    
//
// End of data capture from microphone (Either buffer is full or timer has elapsed)
//
    buf_current=buf_start;
    for(cnt = 0; cnt < i; cnt++)printf("%x",*buf_current++);
    printf("\nEnd\n");
}

Figure 13.4 Program listing

dogan 2.indd   207dogan 2.indd   207 08/06/2021   22:21:2008/06/2021   22:21:20



How2: Get Started with the MAX78000FTHR Board

● 208

Chapter 14 ● Using the Camera

14.1 ● Overview

The MAX78000FTHR development board has an onboard OVM7692 type miniature camera 
(link: https://www.ovt.com/sensors/OVM7692). There is a small plastic lid on the camera 
lens that must be removed before using it. This is a 640 x 480 pixel VGA camera in a 1/3 
inch optical format, having the following basic features (see Figure 14.1):

• Automatic exposure control (AEC)
• Automatic gain control (AGC)
• Automatic black level calibration (ABLC)
• 50/60Hz luminance detection
• Programmable gamma correction
• Flip, scaling, and windowing
• Image quality controls
• 2.8V power supply with built-in 1.5V regulator
• Digital video port
• 1.15mm focal length
• Output format: RAW 8-bit, YUV422, RGB565/444
• Built-in 10-bit ADC
• Input clock frequency: 6-24 MHz
• Maximum image transfer rate: VGA (640x480 – 30fps), CIF (352x288 – 20fps), 

QVGA(320x240 – 60fps), QCIF(176x144 – 60fps)

Figure 14.1 shows the OVM7692 camera and its interface to the MAX78000FTHR 
development board.

dogan 2.indd   208dogan 2.indd   208 08/06/2021   22:21:2008/06/2021   22:21:20



Chapter 14 ● Using the Camera

● 209

Figure 14.1 OVM7692 camera

dogan 2.indd   209dogan 2.indd   209 08/06/2021   22:21:2108/06/2021   22:21:21



How2: Get Started with the MAX78000FTHR Board

● 210

In this chapter, we will learn how to use the camera in a project.

14.2 ● Project 1 – Using the camera

Description: In his project, an image is captured and its properties are displayed on a 
terminal using emulation software (e.g. Putty, Terraterm, HyperTerm, etc).

Camera functions

The following camera functions are commonly used (see file camera.h for full descriptions):

int camera_init(camera_freq, MXC_TMRn): This function initialises the camera 
interface. This function must be called before any other camera functions. camera_freq is 
the camera frequency and MXC_TMRn is the timer used.

int camera_get_slave_address(): returns the I2C slave address of the camera. The 
onboard camera slave address in this project is 0x3C.

int camera_get_product_id(&id): returns the product ID of the camera. The on-board 
camera product ID in this project is 7692

int camera_get_manufacture_id(&id): returns the manufacturer ID of the camera. 
The on-board camera manufacturer ID in this project is 0x7FA2

int camera_dump_registers(): dump all registers of the camera

int camera_reset(): reset the sensor to its default state

int camera_setup(int xres, int yres, pixformat_t pixformat, fifomode_t fifo_mode, 
dmamode_t dma_mode, int dma_channel): this function sets the camera resolution, 
pixel format, expand bits option, FIFO byte mode, and DMA option.

RGB888 format is supported by expanding from RGB565 by camera interface hardware. 
With RGB888 we have 8-bits of Red, Green, and Blue, making 24-bits. The following pixel 
formats are supported:

 PIXFORMAT_GRAYSCALE    // 2BPP/GRAYSCALE
 PIXFORMAT_RGB444       // 2BPP/RGB444
 PIXFORMAT_RGB565       // 2BPP/RGB565
 PIXFORMAT_RGB888       // 3BPP/RGB888
 PIXFORMAT_YUV422       // 2BPP/YUV422
 PIXFORMAT_BAYER         // 1BPP/RAW

dogan 2.indd   210dogan 2.indd   210 08/06/2021   22:21:2108/06/2021   22:21:21



Chapter 14 ● Using the Camera

● 211

Supported FIFO modes are:

 FIFO_THREE_BYTE
 FIFO_FOUR_BYTE

Supported DMA modes are:

 NO_DMA
 USE_DMA (the DMA channel must be specified)

Supported expand bit modes are:

 BIT_EXPAND_OFF
 BIT_EXPAND_565_TO_888

int camera_set_contrast(int level): set the sensor contrast level (-3 to +3)

int camera_set_brightness(int level): set the sensor brightness level (-3 to +3)

int camera_set_saturation(int level): set the sensor saturation level (-3 to +3)

int camera_start_capture_image(void): start to capture image

int camera_is_image_rcv(void): check whether all image data received or not

uint8_t* camera_get_pixel_format(void): retrieve the camera pixel format

void camera_get_image(uint8_t** img, uint32_t* imgLen, uint32_t* w, uint32_t* 
h): get the camera frame buffer, image length and resolution

As an example, to return and display the I2C slave address of the on-board camera on a 
terminal, use the following statements:

 CamAddress = camera_get_slave_address();
     printf("Camera slave address is: %x\n", CamAddress);

Similarly, to return the on-board camera product ID, use the following statements. It is 
always good programming practice to check the return status of functions:

     RetStatus = camera_get_product_id(&id);
     if (RetStatus != STATUS_OK) 
 {
         printf("Error reading camera id, error: %d\n", RetStatus);
         return -1;
     }
Figure 14.2 shows the program listing (CAMCAPTURE). At the beginning of the program, 

dogan 2.indd   211dogan 2.indd   211 08/06/2021   22:21:2108/06/2021   22:21:21



How2: Get Started with the MAX78000FTHR Board

● 212

the resolution of the image and camera frequency are defined. A DMA channel is thennn 
specified and the camera is initialised.

The camera is set up with the following parameters:

x-resolution: 64
y-resolution: 64
pixel format: RGB888
FIFO byte format: FIFI_THREE_BYTE
DMA used

An image is then captured by calling function camera_start_capture_image. When an 
image is received, its properties are displayed by calling function camera_get_image. 
Figure 14.3 shows the data displayed on a terminal emulation screen.

/*-------------------------------------------------------------------------------

   CAPTURE CAMERA DATA

     

This project shows how an image can be captured from the camera on the MAX7800FTHR

development board

Author: Dogan Ibrahim

File  : CAMCAPTURE

Date  : March 2020

-----------------------------------------------------------------------------------*/

#include <stdio.h>

#include "mxc_device.h"

#include "board.h"

#include "mxc_delay.h"

#include "camera.h"

#include "dma.h"

#define IMAGE_XRES  64     // X-resolution

#define IMAGE_YRES  64     // Y-resolution

#define CAMERA_FREQ 10000000    // Frequency (10M)

int main(void)

{

    int dma_channel;

    uint8_t*   RawData;

    uint32_t  ImageLength, ImageWidth, ImageHeight;

    

    MXC_DMA_Init();     // Initialize the DMA

    dma_channel = MXC_DMA_AcquireChannel();   // DMA channel

    printf("\nMAX78000FTHR Camera example...\n");  // Heading   

dogan 2.indd   212dogan 2.indd   212 08/06/2021   22:21:2108/06/2021   22:21:21



Chapter 14 ● Using the Camera

● 213

    camera_init(CAMERA_FREQ, MXC_TMR1);   // Initialize the camera

//

// Setup the camera properties: camera resolution,pixel format,FIFO byte mode,DMA channel

//

    camera_setup(IMAGE_XRES, IMAGE_YRES, PIXFORMAT_RGB888, FIFO_THREE_BYTE, USE_DMA, dma_channel);

    

    camera_start_capture_image();    // Capture image

//

// Capture an image and display its properties

//

    while(1) 

    {

        if (camera_is_image_rcv())     // If image received...

        {

            camera_get_image(&RawData, &ImageLength, &ImageWidth, &ImageHeight);

            printf("raw=%d imglen=%d w=%d h=%d\n", RawData,ImageLength,ImageWidth,ImageHeight);

            MXC_Delay(SEC(10));

            break;

        }

    }

Figure 14.2 Program listing

Figure 14.3 Data displayed on a terminal emulation screen

dogan 2.indd   213dogan 2.indd   213 08/06/2021   22:21:2108/06/2021   22:21:21



How2: Get Started with the MAX78000FTHR Board

● 214

Chapter 15 ● The Instruction Cache

15.1 ● Overview

The instruction cache helps speed up the CPU processing. In this chapter, we will present 
an example project to see how enabling the cache improves the performance enormously.

15.2 ●  Project 1 – Enabling/disabling the instruction cache

Description: In this project, we will write a program and measure the processing speed by 
enabling and then disabling the instruction cache. Terminal emulation software is started on 
a PC at 115200 Baud to display the data.

Program listing: Figure 15.1 shows the program listing (Cache).

/*------------------------------------------------------------------
  INSTRUCTION CACHE ENABLE/DISABLE

This program displays the elapsed time when executing a time consuming
function with and without the instruction cache

Author: Dogan Ibrahim
Date  : March 2021
Work  : Cache
-------------------------------------------------------------------*/
#include <stdio.h>
#include "mxc_device.h"
#include "icc.h"
#include "tmr.h"

#define ICC MXC_ICC0

//
// This is a dummy function which does some calculations to waste some time
//
void Dummy(void)
{
    float i, j, k = 0.0;

    for (i = 1; i < 1000; i++)
    {
        for (j = 1; j < 5000; j++)
        {
            k = k + i * j;
        }
    }

dogan 2.indd   214dogan 2.indd   214 08/06/2021   22:21:2108/06/2021   22:21:21



Chapter 15 ● The Instruction Cache

● 215

}

//
// This function starts the timer
//
void start_timer(void)
{
    MXC_TMR_SW_Start(MXC_TMR0);
    return;
}

//
// This function stops the timer and calculates the elapsed time
//
void stop_timer(void)
{
    int time_elapsed = MXC_TMR_SW_Stop(MXC_TMR0); // Elapsed time in us
    float sec = (float)time_elapsed / 1000000.0; // In seconds
    printf("Elapsed time=%f seconds\n", sec);  // Display elapsed time
}

//
// Start of MAIN program
//
int main(void)
{
    printf("\nINSTRUCTION CACHE EXAMPLE\n");
    printf("=========================\n");

    MXC_ICC_Flush(ICC);

    printf("\nResult with instruction cache enabled:\n");
    MXC_ICC_Enable(ICC);    // Enable ICC
    start_timer();     // Start stopwatch
    Dummy();       // Dummy function
    stop_timer();     // Stop stopwatch

    printf("\n\nResult with instruction cache disabled:\n");
    MXC_ICC_Disable(ICC);    // Disable ICC
    start_timer();     // Start stopwatch
    Dummy();       // Dummy function
    stop_timer();     // Stop stopwatch

    printf("\nEnd of testing\n");
    while (1);
}

Figure 15.1 Program listing

dogan 2.indd   215dogan 2.indd   215 08/06/2021   22:21:2108/06/2021   22:21:21



How2: Get Started with the MAX78000FTHR Board

● 216

The program initially enables the cache, starts the stopwatch, and calls function DUMMY 
which executes nested for loops to waste time. The stopwatch is stopped at the end of the 
function and the elapsed time is displayed in seconds. Then, the cache is disabled and the 
same process is repeated by starting the stopwatch, calling the same function, and then 
stopping the stopwatch. Again the elapsed time is displayed on the terminal. It is clear 
from the figure that the processing time with the instruction cache enabled is much faster.

Figure 15.2 shows the processing powers with and without the instruction cache.

The following functions are available for controlling the instruction cache (see header file 
icc.h for more details):

MXC_ICC_Enable (mxc_icc_regs_t* icc): Enable the instruction cache controller

MXC_ICC_Disable (mxc_icc_regs_t* icc): Disable the instruction cache controller

MXC_ICC_Flush (mxc_icc_regs_t* icc): Flush the instruction cache controller

MXC_ICC_ID (mxc_icc_regs_t* icc, mxc_icc_info_t cid): Read the data from the 
cache ID register

The enumeration type for the cache ID register is:

 ICC_INFO_RELNUM  // Identifies the RTL release version
 ICC_INFO_PARTNUM  // Specifies the value of C_ID Port Number
 ICC_INFO_ID        // Specifies the value of Cache ID

Figure 15.2 Example output

dogan 2.indd   216dogan 2.indd   216 08/06/2021   22:21:2208/06/2021   22:21:22



Chapter 16 ● Using a TFT Display

● 217

Chapter 16 ● Using a TFT Display

16.1 ● Overview

A TFT display is a kind of LCD that uses thin-film-transistor technology. These displays 
are active-matrix LCDs and offer improved image qualities compared to standard passive 
matrix LCDs. TFT-based displays have a transistor for each pixel on the screen. As a result, 
each pixel can be controlled at a fast rate resulting in bright and smooth displays. Several 
layers of filters are used sandwiched between two glass panels. Standard TFT displays use 
a white back-light to generate the picture. Newer panels utilise LEDs to generate their light.
There are several differences between the LCDs and TFT. A standard LCD works well for 
low-resolution simple displays but performs poorly for larger more graphic display intended 
designs, such as televisions, computer displays, games consoles, etc. Before TFTs, it was 
not possible to use fast graphics with standard LCDs in game consoles. There are several 
variants of TFT displays, such as TN, STN, FSTN, DSTN, etc. Such displays create high 
contrast, sharp and fast images compared to standard LCDs. Another important advantage 
of TFT displays is that they are available in many colours. Perhaps one of the main 
disadvantages of TFT displays is their higher cost compared to LCDs. TFT displays also use 
more power.

In this chapter, we will learn how to use TFT displays in MAX78000FTHR applications. A 2.4 
inch TFT colour display will be used in a project as an example. 

16.2 ● 2.4 inch TFT display

The display used in this Chapter is the 2.4-inch Adafruit FeatherWing TFT display with 
touch screen (Figure 16.1), having the following features:

• 240x320 pixels
• 16-bit color pixel control
• On-board SD card slot
• SPI interface
• Size: 65 x 53 x 9.5mm 
• 2.4 Diagonal LCD TFT display with resistive touch screen
• 4-white LED backlight
• On-board 3.3 V (300mA LDO regulator) 
• 5 V compatible, use with 3.3 V or 5 V logic  

Figure 16.2 shows the rear side of the display with the pin configuration. The display has 
two columns of pins which is compatible with the MAX78000FTHR development board. All 
you have to do is plug the display into the development board (see Figure 16.3, where the 
rear side of the display is shown).

dogan 2.indd   217dogan 2.indd   217 08/06/2021   22:21:2208/06/2021   22:21:22



How2: Get Started with the MAX78000FTHR Board

● 218

Figure 16.4 shows the coordinates of the display, where (0, 0) is the top left corner, X-axis 
runs horizontally from left to right, and Y-axis runs vertically from top to bottom.

Figure 16.1 2.4 inch TFT display

Figure 16.2 Rear side of the display

Figure 16.3 Connecting the display to the development board

dogan 2.indd   218dogan 2.indd   218 08/06/2021   22:21:2308/06/2021   22:21:23



Chapter 16 ● Using a TFT Display

● 219

16.3 ● Project 1 – Displaying various shapes and text on the display

Description: In this project, we display various geometrical shapes and text on the TFT 
display.

Aim: This project aims to show how a TFT display can be used with the MAX78000FTHR 
development board.

Program listing: The shapes and texts shown in Figure 16.5 are drawn on the display. 
The coordinates of the shapes and the texts are shown in the Figure. Figure 16.6 shows the 
program listing (TFTDEMO). The program draws the following shapes and writes the texts. 
Some delay is introduced between each output to see the shapes being drawn:

• Set background color to white
• Clear the screen
• Draw a line
• Draw a rectangle
• Draw a circle
• Draw a circle filled with green colour
• Draw a rectangle filled with red colour
• Write text MAX78000 in font Arial 12x12
• Write text MAX78000 in font Arial 24x23

The instruction cache is enabled and the system clock speed is set to 100 MHz to speed up 
the processing.

Figure 16.4 Coordinates of the screen

dogan 2.indd   219dogan 2.indd   219 08/06/2021   22:21:2408/06/2021   22:21:24



How2: Get Started with the MAX78000FTHR Board

● 220

/*------------------------------------------------------------------
 TFT - DISPLAYING VARIOUS SHAPES AND TEXT

In this program a 2.4 inch FeatherWing TFT display is connected to
the MAX78000FTHR development board. Various shapes and text are drawn

Author: Dogan Ibrahim
Date  : March 2021
Work  : TFTDEMO
-------------------------------------------------------------------*/
#include "mxc.h"
#include "icc.h"
#include "mxc_device.h"
#include "mxc_delay.h"
#include "utils.h"
#include "state.h"
#include "tft_fthr.h"

text_t text;

//
// Display various shapes and text
//
void DisplayTest(void)
{
 area_t _area;
 area_t* area;

 MXC_TFT_SetRotation(ROTATE_90);   // 90 Degrees rotation
 MXC_Delay(SEC(2));
 MXC_TFT_SetBackGroundColor(WHITE);  // Background colour White

Figure 16.5 Drawing shapes on the display (not to scale)

dogan 2.indd   220dogan 2.indd   220 08/06/2021   22:21:2408/06/2021   22:21:24



Chapter 16 ● Using a TFT Display

● 221

 MXC_Delay(SEC(2));
 MXC_TFT_ClearScreen();    // Clear screen
 MXC_Delay(SEC(1));

 MXC_TFT_Line(0, 0, 100, 100, RED);  // Draw a line
 MXC_Delay(SEC(1));
 MXC_TFT_Rectangle(10, 120, 160, 220, BLUE); // Draw a rectangle
 MXC_Delay(SEC(1));
 MXC_TFT_Circle(270, 110, 30, BLACK);  // Draw a circle
 MXC_Delay(SEC(1));
 MXC_TFT_FillCircle(270, 40, 30, GREEN);  // Draw a filled circle
 MXC_Delay(SEC(1));

 area = &_area;
     area->x = 200;     // X coordinate
     area->y = 150;     // Y coordinate
     area->w = 100;     // Width
     area->h = 50;     // HEight
 MXC_TFT_FillRect(area, RED);   // Draw a filled rectangle
 MXC_Delay(SEC(1));

 text.data = "MAX78000";    // Text to be displayed
 text.len = 8;
 MXC_TFT_PrintFont(60, 10, (int)&Arial12x12[0], &text, NULL);
 MXC_TFT_PrintFont(60, 30, (int)&Arial24x23[0], &text, NULL);
}

int main(void)
{
 MXC_Delay(200000);   // Wait for 1.8V to be available
     MXC_ICC_Enable(MXC_ICC0);  // Enable instr cache

     MXC_SYS_Clock_Select(MXC_SYS_CLOCK_IPO); // Set clock to 100MHz
     SystemCoreClockUpdate();

     MXC_TFT_Init(MXC_SPI0, 1, NULL, NULL);  // Initialize TFT display
 DisplayTest();     // Call display

 while(1);
}

Figure 16.7 shows the output of the program on the display.

Figure 16.6 Program listing

dogan 2.indd   221dogan 2.indd   221 08/06/2021   22:21:2408/06/2021   22:21:24



How2: Get Started with the MAX78000FTHR Board

● 222

The MAX78000FTHR supports large number of TFT display functions (see header file tft-
fthr.h for full details). Some commonly used functions are described below:

MXC_TFT_Init(mxc_spi_regs_t* tft_spi, int ss_idx, mxc_gpio_cfg_t* reset_ctrl, 
mxc_gpio_cfg_t* bl_ctrl): Initialize the TFT display. The arguments are:

tft_spi: The SPI instance the TFT is connected to

ss_idx: The SSEL index to use when communicating with the attached TFT

reset_ctrl: The GPIO pin configuration for the TFT's reset pin.  Use NULL if the reset pin of 
the TFT is not connected to the microcontroller.

bl_ctrl: The GPIO pin configuration for the backlight enable pin.  Use NULL if the 
microcontroller does not have control of the backlight enable.

MXC_TFT_Backlight(int on): Turn the backlight ON

MXC_TFT_ClearScreen(void): Clear the screen

MXC_TFT_FillRect(area_t* area, int color): Draw and fill a rectangle. The arguments 
are:

area_t: Location and size of rectangle

color: Palette index of rectangle color

Figure 16.7 Output of the program

dogan 2.indd   222dogan 2.indd   222 08/06/2021   22:21:2508/06/2021   22:21:25



Chapter 16 ● Using a TFT Display

● 223

area_t is a structure with the following members

    uint16_t    x   (X coordinate)
    uint16_t    y   (Y coordinate)
    uint16_t    w  (Width in pixels)
    uint16_t    h   (Height in pixels)

color can take the following values:

BLACK
NAVY
DARK_GREEN
DARK_CYAN
MAROON
PURPLE
OLIVE
LIGHT_GREY
DARK_GREY
BLUE
GREEN
CYAN
RED
MAGENTA
YELLOW
WHITE
ORANGE
GREEN_YELLOW

MXC_TFT_WritePixel(int pixelX, int pixelY, int width, int height, uint32_t color): 
Write a pixel in the display. The arguments are:

pixelX: x location of image
pixelY: y location of image
width: width of pixel
height: height of pixel
color: RGB value of image

MXC_TFT_SetBackGroundColor(unsigned int index_color): Set the background color

MXC_TFT_SetForeGroundColor(unsigned int color): Set the foreground color

MXC_TFT_ConfigPrintf(area_t* area): Set the area of the printf

MXC_TFT_ResetCursor(void): Set cursor to top left for printf

dogan 2.indd   223dogan 2.indd   223 08/06/2021   22:21:2508/06/2021   22:21:25



How2: Get Started with the MAX78000FTHR Board

● 224

MXC_TFT_Print(int x0, int y0, text_t* str, area_t* area): Print string with current 
font

MXC_TFT_SetRotation(tft_rotation_t rotation): Set TFT screen rotation
tft_rotation_t is a structure with following members:
    ROTATE_0
 ROTATE_90
 ROTATE_180
 ROTATE_270

MXC_TFT_Circle(int x0, int y0, int r, int color): Draw a circle. The arguments are:

x0: x location on screen
y0: y location on screen
r: circle radius
color: circle color

MXC_TFT_FillCircle(int x0, int y0, int r, int color): Fill a circle with specified color

MXC_TFT_Line(int x0, int y0, int x1, int y1, int color): Draw a line from x0,y0 to x1,y1 
with specified color

MXC_TFT_Rectangle(int x0, int y0, int x1, int y1, int color): Draw a rectangle with a 
specified color. x0 and y0 are the starting points x1,y1 are the endpoints.

MXC_TFT_PrintFont(x, y, font, &text, NULL): Display text with the specified font. The 
following fonts are available:

Arial12x12
Arial24x23
Arial28x28
SansSerif16x16
SansSerif19x19

dogan 2.indd   224dogan 2.indd   224 08/06/2021   22:21:2508/06/2021   22:21:25



Chapter 17 ● Convolutional Neural Networks (CNN)

● 225

Chapter 17 ● Convolutional Neural Networks (CNN)

17.1 ● Overview

The most important feature of the MAX78000 microcontroller that makes it unique is its 
Convolutional Neural Network (CNN) accelerator. This feature allows the microcontroller 
to be used in Artificial Intelligence (AI) applications, such as image processing (e.g. face 
and object recognition), sound processing (e.g. voice-based command system design), 
machine intelligence, and so on. In this chapter, we will briefly review the principles of 
Artificial Neural Networks (ANN) which help us to understand CNNs. There are many books, 
tutorials, and papers published on ANNs and interested readers can find tons of information 
on the Internet. The principles and use of the MAX78000 CNN accelerator will be presented 
in later sections of this chapter with some examples.

17.2 ● Artificial neural networks (ANNs)

ANNs are software imitations of the structure of our brains. Our brains contain neurons that 
act like organic switches. These switches can change their output states depending on their 
inputs which can be electrical or chemical stimuli. Neural networks in our brain are a very 
complex interconnected network of neurons where the output of a neuron may be input to 
thousands of other neurons. Learning is a result of activating certain neural connections so 
that these connections are reinforced.

ANNs can be trained in a supervised or unsupervised manner and they attempt to mimic 
the behaviour of the brain in software. Supervised ANNs learn by providing large numbers 
of input and output data samples so that they learn and provide the desired output for 
a given input. For example, an ANN can be trained to learn to identify mature apples 
by passing large numbers of apples over a conveyor belt. The network can then learn 
to identify and notify when it encounters unripe apples. Supervised learning is the most 
commonly used form of ANNs.

Unsupervised learning is done without supervision or a teacher. There is no feedback from 
the environment as to what should be the desired output (and whether it is correct or not). 
Here, the inputs are combined to form clusters, and when a new input pattern is applied, 
the neural network gives an output response to indicate the class to which the input pattern 
belongs. ANNs attempt to learn the structure of the input data on its own.

17.3 ● The ANN structure

In biological neurons, the outputs of some neurons are inputs to others. This is represented 
in software by connected layers of nodes, where each node has multiple weighted inputs 
and the sum of these inputs generates an output as shown in Figure 17.1. The circle 
represents the node that takes the weighted inputs, sums them, and inputs them to the 
activation function. The output of the activation function is shown as yj. Notice weights are 
not binary values but are real-valued numbers.

dogan 2.indd   225dogan 2.indd   225 08/06/2021   22:21:2508/06/2021   22:21:25



How2: Get Started with the MAX78000FTHR Board

● 226

The activation function has switching characteristics such that if its input is greater than 
a certain value, its output changes state (e.g. from 0 to 1, from -1 to 1, or from 0 to 
greater than 0), therefore simulating the activation of a biological neuron. A commonly 
used activation function is the sigmoid function, given by the following equation (note 
the sigmoid function is not the only activation function, and there are many activation 
functions). As can be seen in Figure 17.2, the function is switched (i.e. activated) from 0 to 
1 when the input z is greater than a certain value. Notice that the sigmoid function looks 
like an S shape and the output does not instantaneously change.

It is interesting to know how the output changes with the change of the input weightings. 
Let us consider a simple node with only one input x with weighing W, where the input to 
the activation function is xW. Figure 17.3 shows the change of the output as the weighing 
is changed between 0.5 and 2. Note that changing the weighing changes the slope of the 
output of the sigmoid function.

Figure 17.1 A node with inputs

Figure 17.2 The sigmoid function

dogan 2.indd   226dogan 2.indd   226 08/06/2021   22:21:2608/06/2021   22:21:26



Chapter 17 ● Convolutional Neural Networks (CNN)

● 227

In some applications, we may want the output of the sigmoid function to change when its 
input is greater than or less than 0. This can be done by applying a bias to the input node 
as shown in Figure 17.4.

Figure 17.5 shows the output as the bias b is changed. Notice that the switching point 
changes as b is changed.

Figure 17.3 Changing the input weighing

Figure 17.4 Applying bias to the node

Figure 17.5 Changing the input bias

dogan 2.indd   227dogan 2.indd   227 08/06/2021   22:21:2708/06/2021   22:21:27



How2: Get Started with the MAX78000FTHR Board

● 228

Just like the biological interconnected network of neurons, ANNs are in the form of 
interconnected structures. There are three layers: input, hidden, and output. As shown in 
Figure 17.6, data enters the ANN through the input layer. Hidden layers are between the 
input and output layers. The output layer is where the output of the ANN is available. There 
are many connections between the input and hidden layers. Each node of the input layer is 
connected to all nodes of the hidden layer. Similarly, each hidden layer is connected to the 
output layer. In real applications, there could be many inputs and outputs.

A neural network can be in one of two states at any time: learning state (i.e. being trained) 
or normally operating state (i.e. after being trained). In normal operation, information 
flows from the input to the output through the hidden layers. This form of data flow in the 
network is called a feedforward network.  

Learning requires feedback and this is also true for neural networks. Children learn by being 
told what they are doing is right or wrong, and next time they are expected not to do the 
same thing wrongly. Let us look at a simple learning process:

When an input is given to a neural network, it returns an output. On the first try, the 
network cannot get the correct output on its own (except by luck). Next, the weights are 
changed and the output is observed again. The weights are the only variables that can be 
changed during the learning process. To determine which weights are better to modify, the 
process called backpropagation is performed. In summary, neural networks learn things 
by a feedback process called backpropagation. This involves comparing the network output 
with the expected output and using the difference between them (i.e. the error) to modify 
the weights of the connections in the network, working from the outputs to the inputs, 
through the hidden layers. This process of going backward causes the network to learn in 
time, and hence reduces the error. The learning process requires the network to be trained 
with enough learning examples.

After a network has learned enough, it can be presented with an entirely new set of inputs 
it has never seen before and it is expected to respond correctly. For example, suppose you 
have trained a network by showing it many pictures of cars and busses. If you now show 
the picture of a lorry, the network will attempt to categorise the lorry as either a car or a 
bus, depending on its past experience. Properly trained neural networks can have many 

Figure 17.6 ANN structure with multiple hidden layers

dogan 2.indd   228dogan 2.indd   228 08/06/2021   22:21:2708/06/2021   22:21:27



Chapter 17 ● Convolutional Neural Networks (CNN)

● 229

domestic, commercial, and industrial applications. Some application areas are listed below.

• Automotive: Intelligent automotive guidance systems
• Financial: Loan advisor, financial analysis, credit application evaluation
• Electronics: Chip failure analysis, machine vision
• Industrial: Product design and analysis, quality inspection, quality prediction, planning 

and management
• Medical imaging: ECG and EEG analysis, cancer analysis, medical diagnosis, 

examining pathology reports
• Speech: Speech recognition, voice-activated command systems, text to speech 

conversion
• Imaging: Face recognition, object recognition, pattern recognition
• Signal processing: hearing aid design
• Transportation: vehicle recognition, vehicle scheduling
• Communication: Data compression, image compression, real-time spoken language 

translation
• Security: Face recognition, fire detection, brake-in detection
• Domestic: Intelligent appliances, such as washing machine, TV, dishwasher, 

microwave, etc

The backpropagation algorithm is complex and requires good knowledge of higher 
mathematics, and it is not covered in any more detail in this book. Interested readers can 
find many books, tutorials, and papers on this topic.

17.4 ● Convolutional Neural Networks (CNNs)

CNNs are network architectures for deep learning where learning is directly from data, 
eliminating the need for feature extraction. CNNs are used in recognising images and 
objects (object recognition and computer vision), as well as in non-image data such as in 
audio voice recognition, signal data, etc.

Some important features of CNNs are:

• CNNs produce very accurate recognition results
• CNNs eliminate manual feature extraction since the features are learned directly
• CNNs can be used to build on pre-existing networks, thus they can be retained for new 

recognition tasks

Just like neural networks, CNNs have input, output, and many hidden layers in between. 
A CNN can have hundreds of layers where each layer learns to detect different features of 
an image or identify different parts of a sound. Like traditional neural networks, a CNN has 
neurons with weights and biases. The values of the weights are learned during the training 
process. 

In CNN, instead of feeding entire images into our neural network as one set of numbers, 
we divide the image into small parts using filters and then feed these parts of the image. 

dogan 2.indd   229dogan 2.indd   229 08/06/2021   22:21:2708/06/2021   22:21:27



How2: Get Started with the MAX78000FTHR Board

● 230

Filters are used at different resolutions, and the output of each convolved image is used as 
the input to the next layer in the network. The complexity of the filters can vary, as they 
can start as simple features such as edges or brightness of an image, and then gradually 
increase in complexity to features that uniquely define the object to be recognised.

The most commonly used operations are: Convolution, Rectified linear unit (ReLU), 
Pooling (or subsampling), and Classification as described below briefly. These 
operations are repeated over many layers, where each layer identifies different features 
of the object.

Convolution is used to put the input through a set of filters, each of which activates certain 
features of the object. Convolution networks drive their names from the convolution 
operator. The primary purpose of the convolution is to extract features from the input, 
where small squares of the input data are extracted. An example 5 x 5-pixel image is 
shown in Figure 17.7, having pixel values of only 0 and 1 (in a grayscale image the pixel 
values vary between 0 and 255). Also, a 3 x 3-pixel matrix is shown in the same figure. The 
convolution of the 5 x 5 matrix by the 3 x 3 matrix is computed by multiplying and summing 
the elements of the two matrices as the 3 x 3 matrix is moved over (or strided) the 5 x 5 
matrix. The 3 x 3 matrix is known as the filter or feature detector. The resultant matrix 
is the convolved feature (or the feature map).

The filters slide over the input image to produce the feature maps. The convolution of 
another filter over the same image gives a different feature map. Users specify the number 
of filters, filter sizes, the architecture of the network, etc and the CNN learns the values 
of these filters during the training process. In general, more filters result in more image 
features to be extracted and this causes the network to recognise unseen image patterns 
more effectively.

ReLU is used after every convolution operation to map the negative values to zero, and 
maintain only the positive values so that faster and more effective training can be done. 
ReLU is a non-linear operation with its output shown in Figure 17.8. After ReLU, only the 
activated features are sent to the next layer.

Figure 17.7 5 x 5 and 3 x 3 matrices

dogan 2.indd   230dogan 2.indd   230 08/06/2021   22:21:2808/06/2021   22:21:28



Chapter 17 ● Convolutional Neural Networks (CNN)

● 231

Pooling reduces the number of parameters (i.e. dimensionality) of each feature map while 
retaining the most important information. Pooling can be Max, Average, Sum, etc. In Max 
pooling, we define a window and take the largest element from the feature map within that 
window (see Figure 17.9). We could also take the average, sum, etc.

Figure 17.10 shows the basic CNN operations applied to an image. In this figure, we have 
two sets of Convolution, ReLU, and Pooling layers. The 2nd Convolution layer performs 
convolution on the output of the first Pooling Layer using six filters to produce a total of six 
feature maps. ReLU is then applied individually on all of these six feature maps. We then 
perform the Max Pooling operation separately on each of the six rectified feature maps, 
thus extracting the useful features from the images and reducing the dimensions.

Figure 17.8 ReLu output

Figure 17.9 Max pooling

Figure 17.10 Basic CNN operations

dogan 2.indd   231dogan 2.indd   231 08/06/2021   22:21:2808/06/2021   22:21:28



How2: Get Started with the MAX78000FTHR Board

● 232

The Fully Connected layer uses the features extracted by the convolution and pooling layers 
to classify the input image based on the training dataset. The Fully Connected layer gives 
probabilities for the identified objects, where the sum of these probabilities is 1, and the 
object with the highest probability is the identified object.

Although it is a complex process mathematically, the training of the CNN may be summarised 
as follows in non-mathematical terms:

• Initialise the parameters and all filters with random values
• Find the output probabilities by using Forwardpropagation. i.e. by going through 

convolution, ReLU, pooling, and classification. The output probabilities will be random 
for the first training

• Calculate the total error at the output layer using the target and output probabilities
• Use Backpropagation to calculate the gradients of the error concerning all weights and 

use gradient descent to update all filter values/weights to optimise these parameters 
and minimise the output error. Repeat the process until the probability of the identified 
object is high (ideally 1).

Further details on the simplified CNN operation can be obtained from the following links: 

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/

https://medium.com/@ageitgey/machine-learning-is-fun-part-3-deep-learning-and-
convolutional-neural-networks-f40359318721#.2gfx5zcw3

17.5 ● The MAX78000 CNN accelerator

The hardware-based CNN accelerator enables battery-powered applications to execute 
AI inferences while spending only microjoules of energy. As shown in Figure 17.11, the 
MAX78000 microcontroller has two functional parts: the embedded microcontroller part, 
and CNN accelerator. Developing AI applications requires a new set of skills. People who 
are well trained to create neural networks may find it hard to enter the world of embedded 
development. Similarly, people with embedded developing training may find it hard to enter 
the AI field. It is usually difficult to start an AI application from the scratch. The author 
recommends readers use an existing AI application and modify it for their own needs.

dogan 2.indd   232dogan 2.indd   232 08/06/2021   22:21:2808/06/2021   22:21:28



Chapter 17 ● Convolutional Neural Networks (CNN)

● 233

The CNN accelerator on the MAX78000 microcontroller consists of 64 parallel processors with 
512KB of SRAM-based storage. Each processor includes a pooling unit and a convolutional 
engine with dedicated weight memory. Four processors share one 32KB data memory. 
These are further organised into groups of 16 processors that share common controls. A 
group of 16 processors operates as a slave to another group or independently. Data is read 
from SRAM associated with each processor and written to any data memory located within 
the accelerator. A given processor has visibility of its dedicated weight memory and to the 
data memory instance it shares with the three others.

The full features of the MAX78000 microcontroller CNN can be found at the MAX78000 User 
Guide, UG7456; Rev 0;  03/2021, which can be found on GitHub in the MaximIntegratedAI/
MaximAI_Documentation repo. The README file in the MaximIntegratedAI/ai8x-training 
repo further describes the MAX78000 CNN architecture and features.

17.6 ● Demonstration programs

Several AI-based convolutional neural network demonstration programs are supplied with 
the Eclipse MaximSDK. These programs are available in the following folder:

 MaximSDK\Examples\Maxim78000\CNN

Users can modify and debug the existing CNN demonstration programs. The following 
programs are compatible with the MAX78000FTHR development board (all of the AI 
programs are compatible with the MAX78000EVKIT development board):

Figure 17.11 Embedded part and the CNN engine

dogan 2.indd   233dogan 2.indd   233 08/06/2021   22:21:2908/06/2021   22:21:29



How2: Get Started with the MAX78000FTHR Board

● 234

• cifar-10
• cifar-100
• mnist
• mnist-riscv
• mnist-streaming
• kws20
• kws20_demo

The steps to load and run a CNN-based program are given below.

17.7 ● Using the kws20_demo

The applications of digital voice-activated user interfaces have increased in recent years. 
This is a Keyword Spotting Demo that demonstrates recognition of several keywords using 
the MAX78000FTHR development board. The program recognises the following 20 words 
(from a set of 31 words):

'up', 'down', 'left', 'right', 'stop', 'go', 'yes', 'no', 'on', 'off', 'one', 'two', 'three', 
'four', 'five', 'six', 'seven', 'eight', 'nine', 'zero'

The program recognises the above keywords and reports results and confidence levels. The 
steps to load this program into Eclipse are as follows:

• Start Eclipse MaximSDK and give a name to the new Workspace (e.g. Workspace20)
• Click File -> Import and then, when prompted select General -> Existing Projects 

into Workspace (Figure 17.12) and click Next

• Navigate to Examples\MAX78000\CNN and you should see a list of all the CNN 
based demonstration programs (Figure 17.13)

Figure 17.12 Select Existing Projects into Workspace

dogan 2.indd   234dogan 2.indd   234 08/06/2021   22:21:2908/06/2021   22:21:29



Chapter 17 ● Convolutional Neural Networks (CNN)

● 235

• Click on the left to select kws20_demo and click Finish (make sure to check "copy 
projects into workspace", otherwise, changes will be made in the source files)

• You should see the program loaded into the workspace
• All example programs are targeted for the EVKIT by default. To change to the 

MAX78000FTHR, double click to open file Makefile, and change the board type to 
FTHR_RevA as shown in Figure 17.14.

• Click the cross to close Makefile and save it

Figure 17.13 CNN demonstration programs

Figure 17.14 Change the board type to FTHR_RevA

dogan 2.indd   235dogan 2.indd   235 08/06/2021   22:21:3008/06/2021   22:21:30



How2: Get Started with the MAX78000FTHR Board

● 236

• Click Project -> Properties followed by C/C++ Build and make the change shown 
in Figure 17.15.

• Click Apply and Close
• Click Project followed by Clean
• We are now ready to compile the program
• Click Project -> Build All to compile the program
• Check the Console tab at the bottom of the screen and make sure there are no build 

errors (see Figure 17.16)

Testing the program

If you have an Adafruit 2.4-inch FeatherWing TFT display, make sure you plug it into the 
MAX78000FTHR development board and enable the TFT display by uncommenting the line 
in the file Makefile as shown in Figure 17.17.

Figure 17.15 Modify the build configuration

Figure 17.16 Make sure there are no build errors

dogan 2.indd   236dogan 2.indd   236 08/06/2021   22:21:3108/06/2021   22:21:31



Chapter 17 ● Convolutional Neural Networks (CNN)

● 237

Also, connect the TTL-USB module to the TX pin of the development board and connect the 
module to the USB port of your PC. Start a terminal emulation program at 115200 Baud 
rate.

Click Run -> Run Configurations and expand GDB OpenOCD Debugging. Click to 
select kws20_demo, and then Run to start the program running (Figure 17.18)

You should see the TFT displaying the text as shown in Figure 17.19. Also, the data displayed 
on the terminal is shown in Figure 17.20. Press button PB1 to start the program.

Figure 17.17 Enable the TFT display

Figure 17.18 Running the program

dogan 2.indd   237dogan 2.indd   237 08/06/2021   22:21:3308/06/2021   22:21:33



How2: Get Started with the MAX78000FTHR Board

● 238

Now, say the word One. You should see the terminal and TFT display showing the Detected 
word as One as shown in Figure 17.21 and 17.22 respectively.

Figure 17.19 TFT display

Figure 17.20 Terminal display

Figure 17.21 The word One is detected (terminal)

dogan 2.indd   238dogan 2.indd   238 08/06/2021   22:21:3408/06/2021   22:21:34



Chapter 17 ● Convolutional Neural Networks (CNN)

● 239

17.8 ● Project 1 - Modified program - flashing the on-board LED with the spoken 
word count

In this section, we will modify the kws20_demo program so that the onboard red LED 
flashes the number of times specified by the spoken word. For example, the LED will 5 
times if the word FIVE is spoken, etc.

Two parts of the main kws20_demo program have been modified. Figure 17.23 
shows a function called Detected_Word which should be inserted just before the main 
program. This function uses a built-in function strcmp to compare the spoken words (in 
keywords[out_class]) with the numbers ONE to NINE. For example, if the spoken word 
is FIVE, the function returns the integer number 5 and so on.

int Detected_Word(int16_t out_class)
{
 if(strcmp(keywords[out_class], "ONE") == 0)return 1;
 else if(strcmp(keywords[out_class], "TWO") == 0)return 2;
 else if(strcmp(keywords[out_class], "THREE") == 0)return 3;
 else if(strcmp(keywords[out_class], "FOUR") == 0)return 4;
 else if(strcmp(keywords[out_class], "FIVE") == 0)return 5;
 else if(strcmp(keywords[out_class], "SIX") == 0)return 6;
 else if(strcmp(keywords[out_class], "SEVEN") == 0)return 7;
 else if(strcmp(keywords[out_class], "EIGHT") == 0)return 8;
 else if(strcmp(keywords[out_class], "NINE") == 0)return 9;
 else return 0;
}

Figure 17.22 Word One is detected (TFT display)

Figure 17.23 Function Detected_Word

dogan 2.indd   239dogan 2.indd   239 08/06/2021   22:21:3508/06/2021   22:21:35



How2: Get Started with the MAX78000FTHR Board

● 240

Figure 17.24 shows the other code added to the main program. This code is added just 
after the main program code shown in the Figure (the code added by the author is enclosed 
within the comments //******* DI). A for loop is used which calls function Detected_
Word to find out what the spoken number is, and then flashes the red LED with this count.

printf("Detected word: %s (%0.1f%%)", keywords[out_class],
       probability);
printf("\n----------------------------------------- \n");

//******** DI START
if(probability > 95)
{
      for(Max = 0; Max < Detected_Word(out_class); Max++)
      {
                LED_On(LED_RED);
                MXC_Delay(SEC(1));
                LED_Off(LED_RED);
                MXC_Delay(SEC(1));
      }
}
//******** DI END

Max = 0;
Min = 0

If you have a TFT display you should connect it to the MAX78000FTHR development board. 
You may also connect a TTL-USB module and start a terminal emulation software on the 
PC. The program is ready when the green LED is ON. Speak a number and you should see 
the red LED flashing the required amount of times.

Figure 17.24 Added program code

dogan 2.indd   240dogan 2.indd   240 08/06/2021   22:21:3508/06/2021   22:21:35



Chapter 17 ● Convolutional Neural Networks (CNN)

● 241

17.9 ● Operation of the kws20_demo program

Figure 17.25 shows the files and folders inside the kws20_demo folder.

The flow of the demo software is shown in Figure 17.26 (see Maxim Application Note: 
7359 by Niktash & Loginov). The onboard I2S microphone samples an 18-bit, 16kHz 
audio signal, and streams it to the MAX78000. A simple high-pass filter is used to remove 
the DC offset of the microphone and store the samples in a circular buffer. The signal level 
is averaged over 128-sample windows and compared to an adjustable threshold to find the 
beginning of a word. The level below this threshold is categorised as the silence before the 
word in an utterance. The beginning of a word is detected once the signal level passes the 
threshold. 16kHz, 8-bit samples (one second) are needed to start an inference on the CNN 
accelerator. The signal level at the end of a spoken word is monitored. The inference can 
start if the average level goes and stays below an adjustable threshold for several back-to-
back 128-sample windows or if the 16k samples are already collected. The inference on the 
CNN accelerator for this network takes about 2.5ms. The inference result and confidence 
level are shown on the TFT display and serial port.

Figure 17.25 kws20_demo folder

dogan 2.indd   241dogan 2.indd   241 08/06/2021   22:21:3508/06/2021   22:21:35



How2: Get Started with the MAX78000FTHR Board

● 242

The 20 words to be recognised are stored in character array keywords:

const char keywords[NUM_OUTPUTS][10] = 
{ 
"UP", "DOWN", "LEFT", "RIGHT", "STOP", "GO", "YES", "NO", "ON", "OFF", "ONE", 
"TWO", "THREE", "FOUR", "FIVE", "SIX", "SEVEN", "EIGHT", "NINE", "ZERO", 
"Unknown"
};

17.10 ● Modelling, Training, and Synthesis

The development of an AI software project is done in 5 stages: 

• Modelling (e.g. using PyTorch or TensorFlow-Keras)
• Training (e.g. using ai8x-training)
• Synthesis (e.g. using ai8x-synthesis)
• C Code generation for MAX78000 (e.g. using ai8x-synthesis)
• Embedded design (e.g. using Eclipse MaximSDK)

Modelling

PyTorch or TensorFlow-Keras can be used to develop a model for the MAX78000 (see 
Figure 17.27). The details of PyTorch or TensorFlow are beyond the scope of this book, 
but brief details of the modelling process will be discussed in this section. A series of 

Figure 17.26 Flow of the demo software

dogan 2.indd   242dogan 2.indd   242 08/06/2021   22:21:3608/06/2021   22:21:36



Chapter 17 ● Convolutional Neural Networks (CNN)

● 243

subclasses are used to represent the hardware. Pooling and activations are fused to 1D 
or 2D convolution layers. The model is trained with floating-point weights and training 
data. The result of quantisation can be evaluated over the evaluation dataset to check the 
accuracy degradation due to weight quantisation.

In this section, we will consider the kws20_demo. Figure 17.28 shows the PyTorch model of 
the project (see file: ai8x/-training/models/ai85net-kws20.py in link: https://github.
com/MaximIntegratedAI/ai8x-training/tree/master/models. The model consists of two 
back-to-back CNNs: 1D (Conv1D) and 2D (Conv2D) convolutional networks. The Conv1D 
CNN includes four layers and extracts speech features. The Conv2D CNN is comprised of 
five layers, followed by a fully connected layer to classify the utterances. The model is 
trained with an augmented dataset for 20 keywords.

###########################################################################################

########

#

# Copyright (C) Maxim Integrated Products, Inc. All Rights Reserved.

#

# Maxim Integrated Products, Inc. Default Copyright Notice:

# https://www.maximintegrated.com/en/aboutus/legal/copyrights.html

#

###########################################################################################

########

Figure 17.27 AI development flow

dogan 2.indd   243dogan 2.indd   243 08/06/2021   22:21:3608/06/2021   22:21:36



How2: Get Started with the MAX78000FTHR Board

● 244

"""

Keyword spotting network for AI85/AI86

"""

import torch.nn as nn

import ai8x

class AI85KWS20Net(nn.Module):

    """

    Compound KWS20 Audio net, starting with Conv1Ds with kernel_size=1

    and then switching to Conv2Ds

    """

    # num_classes = n keywords + 1 unknown

    def __init__(

            self,

            num_classes=21,

            num_channels=128,

            dimensions=(128, 1),  # pylint: disable=unused-argument

            fc_inputs=7,

            bias=False,

            **kwargs

    ):

        super().__init__()

        self.voice_conv1 = ai8x.FusedConv1dReLU(num_channels, 100, 1, stride=1, padding=0,

                                                bias=bias, **kwargs)

        self.voice_conv2 = ai8x.FusedConv1dReLU(100, 100, 1, stride=1, padding=0,

                                                bias=bias, **kwargs)

        self.voice_conv3 = ai8x.FusedConv1dReLU(100, 50, 1, stride=1, padding=0,

                                                bias=bias, **kwargs)

        self.voice_conv4 = ai8x.FusedConv1dReLU(50, 16, 1, stride=1, padding=0,

                                                bias=bias, **kwargs)

        self.kws_conv1 = ai8x.FusedConv2dReLU(16, 32, 3, stride=1, padding=1,

                                              bias=bias, **kwargs)

        self.kws_conv2 = ai8x.FusedConv2dReLU(32, 64, 3, stride=1, padding=1,

                                              bias=bias, **kwargs)

        self.kws_conv3 = ai8x.FusedConv2dReLU(64, 64, 3, stride=1, padding=1,

                                              bias=bias, **kwargs)

dogan 2.indd   244dogan 2.indd   244 08/06/2021   22:21:3608/06/2021   22:21:36



Chapter 17 ● Convolutional Neural Networks (CNN)

● 245

        self.kws_conv4 = ai8x.FusedConv2dReLU(64, 30, 3, stride=1, padding=1,

                                              bias=bias, **kwargs)

        self.kws_conv5 = ai8x.FusedConv2dReLU(30, fc_inputs, 3, stride=1, padding=1,

                                              bias=bias, **kwargs)

        self.fc = ai8x.Linear(fc_inputs * 128, num_classes, bias=bias, wide=True, **kwargs)

        for m in self.modules():

            if isinstance(m, nn.Conv2d):

                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')

    def forward(self, x):  # pylint: disable=arguments-differ

        """Forward prop"""

        # Run CNN

        x = self.voice_conv1(x)

        x = self.voice_conv2(x)

        x = self.voice_conv3(x)

        x = self.voice_conv4(x)

        x = x.view(x.shape[0], x.shape[1], 16, -1)

        x = self.kws_conv1(x)

        x = self.kws_conv2(x)

        x = self.kws_conv3(x)

        x = self.kws_conv4(x)

        x = self.kws_conv5(x)

        x = x.view(x.size(0), -1)

        x = self.fc(x)

        return x

def ai85kws20net(pretrained=False, **kwargs):

    """

    Constructs a AI85KWS20Net model.

    """

    assert not pretrained

    return AI85KWS20Net(**kwargs)

models = [

    {

        'name': 'ai85kws20net',

        'min_input': 1,

        'dim': 1,

    },

]
Figure 17.28 kws20_demo PyTorch model

dogan 2.indd   245dogan 2.indd   245 08/06/2021   22:21:3608/06/2021   22:21:36



How2: Get Started with the MAX78000FTHR Board

● 246

Training

The training process (ai8x-training) optimises the network weights to minimise the output 
error. Depending on the complexity of the network, the type of processor, and the graphics 
card used, the training process can take many hours.

Synthesis

The MAX78000 synthesiser tool (ai8xize) accepts the PyTorch checkpoint or TensorFlow 
exported ONNX files as an input, as well as the model description in the YAML format. 
The MAX78000 synthesiser automatically generates C code, which can be compiled and 
executed on the MAX78000. The C code includes Application Programming Interface (API) 
calls to load the weights as well as the provided sample data to the hardware to execute 
an inference on the sample data and compare the classification outcome with the expected 
result as a pass/fail sanity test. This generated C code can be used as an example to create 
own applications.

17.11 ● Software/hardware requirements and software installation for training and 
synthesis

To train neural networks for the MAX78000, it is strongly recommended that you use an 
NVIDIA CUDA capable GPU inside your computer. It is recommendable to have a Maxwell 
generation chip (NVIDIA GTX9 series) or NVIDIA Tesla K80 at the very least. When 
going beyond simple models, model training does not work well without CUDA hardware 
acceleration. Such GPUs are costly and you may prefer to use your CPU to do all the 
required calculations for the training process. This may however increase the required 
processing time by a factor of 10 or more.

The software supports Ubuntu Linux 18.04 LTS and 20.04 LTS. The server version is 
sufficient (see link: https://ubuntu.com/download/server). Alternatively, Ubuntu Linux can 
also be used inside the Windows Subsystem for Linux (WSL2) by following the guide: 
https://docs.nvidia.com/cuda/wsl-user-guide/. Please note however that WSL2 with CUDA 
is a pre-release, and unexpected behaviour might occur. The recommendation is to install 
the latest version of CUDA 11 on Ubuntu 20.04 LTS (see link: https://developer.nvidia.com/
cuda-toolkit-archive).

Software installation

The following software should be installed on your Ubuntu 20.04 system before you can 
train and synthesise a network (for full details, see the Maxim link: 
https://github.com/MaximIntegratedAI/ai8x-training)

dogan 2.indd   246dogan 2.indd   246 08/06/2021   22:21:3708/06/2021   22:21:37



Chapter 17 ● Convolutional Neural Networks (CNN)

● 247

$ sudo apt-get install -y make build-essential libssl-dev zlib1g-dev \
  libbz2-dev libreadline-dev libsqlite3-dev wget curl llvm \
  libncurses5-dev libncursesw5-dev xz-utils tk-dev libffi-dev liblzma-dev \
  libsndfile-dev portaudio19-dev

$ curl -L https://github.com/pyenv/pyenv-installer/raw/master/bin/pyenv-
installer | bash

Then, add to either ~/.bash_profile, ~/.bashrc, or ~/.profile (as shown by the terminal 
output of the previous step):

eval "$(pyenv init -)"
eval "$(pyenv virtualenv-init -)"

For convenience, define a shell variable named AI_PROJECT_ROOT:

$ export AI_PROJECT_ROOT="$HOME/Documents/Source/AI"

Add this line to ~/.profile.

Install the following packages:

$ mkdir –p $AI_PROJECT_ROOT
$ cd $AI_PROJECT_ROOT
$ curl -sS https://dl.yarnpkg.com/debian/pubkey.gpg | sudo apt-key add -
$ echo "deb https://dl.yarnpkg.com/debian/ stable main" | sudo tee /etc/apt/
sources.list.d/yarn.list

$ curl -sL https://deb.nodesource.com/setup_13.x | sudo -E bash -
$ sudo apt-get update
$ sudo apt-get install -y nodejs yarn

$ git clone https://github.com/uber/manifold.git
$ cd manifold
$ yarn
# ignore warnings
$ cd examples/manifold
$ yarn
# ignore warnings

Change to the project root and run the following commands. Use your GitHub credentials 
when prompted.

$ cd $AI_PROJECT_ROOT
$ git clone https://github.com/MaximIntegratedAI/ai8x-training.git
$ git clone https://github.com/MaximIntegratedAI/ai8x-synthesis.git

dogan 2.indd   247dogan 2.indd   247 08/06/2021   22:21:3708/06/2021   22:21:37



How2: Get Started with the MAX78000FTHR Board

● 248

To create the virtual environment and install basic wheels:

$ cd ai8x-training

Then continue with the following (make sure a local Python3 version is already installed, 
using: pyenv install 3.8.6):

$ git submodule update --init
$ pyenv local 3.8.6 
$ python3 -m venv .
$ source bin/activate
(ai8x-training) $ pip3 install -U pip wheel setuptools

The next step differs depending on whether the system uses Linux with CUDA 11.x, or any 
other setup.

For CUDA 11.x on Linux:

(ai8x-training) $ pip3 install -r requirements-cu111.txt

For all other systems, including CUDA 10.2 on Linux:

(ai8x-training) $ pip3 install -r requirements.txt

You are advised to check the link: https://github.com/MaximIntegratedAI/ai8x-training for 
updates.

We are now ready to train and synthesise a CNN with an available model. An example 
project is given below.

17.12 ● Project 2 – Training for a new keyword

Description: In this project, we will introduce a new keyword (HAPPY), and when this 
keyword is detected, the onboard red LED will flash 5 times. We will be using the kws20_
demo skeleton programs in this project.

Aim: This project aims to show a new keyword can be trained and synthesised for the 
MAX78000.

The kws20_demo application has been trained to recognise the following 20 words out of 
a total set of 35 words:

"up", "down", "left", "right", "stop", "go", "yes", "no", "on", "off", "one", "two", 
"three", "four", "five", "six", "seven", "eight", "nine", "zero"

The complete set of 35 words is taken from version 2 of the speech command dataset 

dogan 2.indd   248dogan 2.indd   248 08/06/2021   22:21:3708/06/2021   22:21:37



Chapter 17 ● Convolutional Neural Networks (CNN)

● 249

created by Google (see: Pete Warden, "Speech Commands: A Dataset for Limited-Vocabulary 
Speech Recognition", Apr. 2018). The dataset consists of over 100k of utterances of 35 
different words stored as one-second wave format files sampled at 16kHz:

"backward", "bed", "bird", "cat", "dog", "down", "eight", "five", "follow", 
"forward", "four", "go", "happy", "house", "learn", "left", "marvin", "nine", "no", 
"off", "on", "one", "right", "seven", "sheila", "six", "stop", "three", "tree", "two", 
"up", "visual", "wow", "yes", "zero""

For this application, we will still train 20 words from the same set but replace the word go 
with the word happy. The 20 words that we will be training are therefore as follows:

"up", "down", "left", "right", "stop", "happy", "yes", "no", "on", "off", "one", 
"two", "three", "four", "five", "six", "seven", "eight", "nine", "zero"

In our application, the onboard red LED will flash 5 times when the word happy is detected.

1.   The Training (see link: https://github.com/MaximIntegratedAI/ai8x-training)

The computer used by the author for training had the following specifications:

• Operating system: Windows 10, version: 10.0.18363 Build 18363
• System model: HP ENVY x360 Convertible 15-cn0xxx
• System type: x64-based PC
• Processor: Intel Core i7-8550U CPU @ 1.80GHZ
• Memory: 16GB
• Graphics card: NVIDIA GeForce MX150
• Hard disk: 512GB SSD

VMWare was used to create a workstation with the Ubuntu 20.04 operating system. The 
workstation was configured as follows:

• 100GB SSD drive
• 12GB memory
• 1 processor, 8 cores

The steps to start the training process are as follows:

• Install the required software on your Ubuntu machine
• Click Files on your Desktop to navigate to folder ai8x-training (see Figure 17.29)

dogan 2.indd   249dogan 2.indd   249 08/06/2021   22:21:3708/06/2021   22:21:37



How2: Get Started with the MAX78000FTHR Board

● 250

• Inside the folder, edit the file: ./datasets/kws20.py and replace the word go with 
happy (Figure 17.30). Save and exit the file

• Open the terminal mode and navigate to the ai8x-training folder. Start the training 
by entering the following command (see Figure 17.31):

 ./scripts/train_kws20_v3.sh

Optionally, the above command can be terminated using the keyword --cpu for only CPU 
based training without a GPU, or the keyword --gpu 0 for GPU based (CUDA) training.

Figure 17.29 Navigate to folder ai8x-training

Figure 17.30 Edit file kws20.py in folder datasets

dogan 2.indd   250dogan 2.indd   250 08/06/2021   22:21:3808/06/2021   22:21:38



Chapter 17 ● Convolutional Neural Networks (CNN)

● 251

The contents of the above shell command is as follows:

/train.py --epochs 200 --optimizer Adam --lr 0.001 --deterministic 
--compress schedule_kws20.yaml --model ai85kws20netv3 --dataset KWS_20 
--confusion --device MAX78000 "$@"

Depending on your hardware, the training process can take many hours or even days. It 
took about 18 hours on the author's computer to complete the training. Figure 17.32 shows 
the last page of the training process.

When the training ends, you will find in  ./logs/ a new time and date encoded folder 
that contains your training results. In this example project, the following folder is created 
in folder logs after the training (notice the path latest_log_dir points to the latest log 
folder):
 
 2021.03.26-022147

Figure 17.31 Starting the training process

Figure 17.32 Last page of the training

dogan 2.indd   251dogan 2.indd   251 08/06/2021   22:21:3908/06/2021   22:21:39



How2: Get Started with the MAX78000FTHR Board

● 252

After the training, the log folder contained the following files (see Figure 17.33):
 2021.03.26-022147.log
 best.pth.tar
 checkpoint.pth.tar
 configs (folder)
 events.out.tfevents.1616750508.ubuntu.2715.0

The configs folder contains the following file:

 schedule-kws20.yaml

The files best.pth.tar (or checkpoint.pth.tar) and schedule-kws20.yaml will be inputs 
to the synthesiser. We will choose best.pth.tar which contains the best-quantised weights 
of the network. The file schedule-kws20.yaml contains the network configuration.

2.   The Synthesis (see link: https://github.com/MaximIntegratedAI/ai8x-
synthesis)

The synthesis is done after training and puts the files into a form that can be loaded to 
the MAX78000. Quantisation converts the floating-point values into an integer which is the 
format the CNN accelerator understands. The synthesis does not require CUDA. 

The steps for the synthesis are as follows:

• Deactivate the ai8x-training environment if it is active:

  (ai8x-training) $ deactivate

• Create a virtual environment and move to folder ai8x-synthesis:

  cd $AI_PROJECT_ROOT
  cd ai8x-synthesis

• Delete all contents of folder trained to make sure that any old data is not used
• Move to folder ai8x-training:

  cd $AI_PROJECT_ROOT
  cd ai8x-training

Figure 17.33 logs folder after the training

dogan 2.indd   252dogan 2.indd   252 08/06/2021   22:21:3908/06/2021   22:21:39



Chapter 17 ● Convolutional Neural Networks (CNN)

● 253

• Copy files from the logs folder in the ai8x-training folder into folder trained in ai8x-
synthesis:

cp -R logs/2021.03.26-022147/*.* $AI_PROJECT_ROOT/ai8x-synthesis/trained/

• Move to folder ai8x-synthesis:

  cd $AI_PROJECT_ROOT
  cd ai8x-synthesis

• Install the following packages:

 $ git submodule update --init
 $ pyenv local 3.8.6
 $ python3 -m venv .
 $ source bin/activate
 (ai8x-synthesis) $ pip3 install -U pip setuptools
 (ai8x-synthesis) $ pip3 install -r requirements.txt

• We can now do a quantisation of our copied trained model with the following command 
(see Figure 17.34). This command will generate the quantised file called ai85-kws20-
v3-qat8-q.pth.tar inside the trained folder:

./quantize.py trained/best.pth.tar trained/ai85-kws20-v3-qat8-q.pth.tar 
--device MAX78000 -v "$@"

Figure 17.35 shows the contents of the trained folder after the quantisation.

Figure 17.34 Quantise the trained model

dogan 2.indd   253dogan 2.indd   253 08/06/2021   22:21:4008/06/2021   22:21:40



How2: Get Started with the MAX78000FTHR Board

● 254

• After quantisation we can generate code and the final usable files for the MAX78000. 
Enter the following command in the ai8x-synthesis command prompt (see Figure 
17.36):

./ai8xize.py --verbose --log --test-dir ~/MAX78000/ --prefix kws20_v3 
--checkpoint-file trained/ai85-kws20-v3-qat8-q.pth.tar --config-file 
networks/kws20-v3-hwc.yaml --softmax --device MAX78000 --compact-data 
--mexpress --timer 0 --display-checkpoint --board-name FTHR_RevA

The above command will generate a folder called MAX78000 inside the Home directory 
(/home/dogan/ in the author's computer) that contains a small basic application that 
tests itself against predefined test data inside the code. Folder MAX78000 contains a 
folder called kws20_v3 with the contents like cnn.c, cnn.h, main.c, weights.h etc. 
as shown in Figure 17.37. The example test code can be compiled and deployed to the 
MAX78000.

The synthesised model parameters and the created basic program main.c can be evaluated 
by compiling and running the created program. This is left as an exercise to the reader. 

Figure 17.35 Folder trained after the quantisation

Figure 17.36 Generate final usable files

Figure 17.37 Contents of folder MAX78000/kws20_v3

dogan 2.indd   254dogan 2.indd   254 08/06/2021   22:21:4108/06/2021   22:21:41



Chapter 17 ● Convolutional Neural Networks (CNN)

● 255

We are now ready to develop our embedded application and use the generated files cnn.c, 
cnn.h, weights.h  etc.

3.   Developing the embedded program

Now that we have trained and synthesised our network, the next stage is the development 
of the embedded program. In this section, this will be done using the Eclipse MaximSDK as 
per our other projects.

In this section, we will be using the kws20_demo project supplied by Maxim, and modify 
this program as required. Just to remind ourselves, we wish to flash the red LED 5 times 
when the word HAPPY is detected. Before modifying the original program, we need to copy 
the generated CNN files cnn.c, cnn.h, and weights.h to the following folder on our PC: 

MaximSDK/Examples/MAX78000/kws20_demo

(you may want to rename and save the original files before copying the new ones 
to the folder)

Training and synthesising were done using Ubuntu Linux. The required files can be copied 
to our Windows-based system using the following steps:

Install the following packages on your Ubuntu system:

• sudo apt install net-tools
• sudo apt install openssh-server
• sudo service ssh start
• sudo service ssh enable

Enter the following command to see the status of SSH:

• sudo service ssh status

Enter the following command on your Linux system to get the IP address of your Linux 
system:

• ifconfig
• Start the file copy program WinSCP on your PC.
• Enter the IP address, username, and password for your Linux machine
• Set to the HOME directory on the Linux machine and drag and drop the required files 

from Linux to the kws20_demo folder on the PC
• Exit WinSCP

Start Eclipse, expand program main.c, and modify/add the following statements:

• Edit the Makefile and set it to FTHR_RevA as described earlier

dogan 2.indd   255dogan 2.indd   255 08/06/2021   22:21:4108/06/2021   22:21:41



How2: Get Started with the MAX78000FTHR Board

● 256

• Enable the TFT display as described earlier if you have a TFT display attached to 
MAX78000 FTHR development board

• Connect the TX pin of the MAX78000FTHR development board to a TTL-USB module 
and connect the module to your PC. Start a terminal emulation program on your PC 
with the Baud rate set to 115200

• Change array keywords as follows:

const char keywords[NUM_OUTPUTS][10] = { "UP", "DOWN", "LEFT", "RIGHT", 
"STOP", "HAPPY", "YES", "NO", "ON", "OFF", "ONE", "TWO", "THREE", "FOUR", 
"FIVE", "SIX", "SEVEN", "EIGHT", "NINE", "ZERO", "Unknown"
                                       };
• Insert the following function before the main program main.c (the points where the 

code is inserted are marked with comments //******* DI ):

int Detected_Word(int16_t out_class)
{
 if(strcmp(keywords[out_class], "HAPPY") == 0)
  return 1;
 else
  return 0;
}

• Insert the following statements to flash the Red LED 5 times when word HAPPY is 
detected:

                printf("Detected word: %s (%0.1f%%)", keywords[out_class],
                       probability);

                printf("\n----------------------------------------- \n");
//******** DI START
                if(probability > 95)
                {
                 if(Detected_Word(out_class) == 1)
                 {
                      for(Max = 0; Max < 5; Max++)
                      {
                       LED_On(LED_RED);
                       MXC_Delay(SEC(1));
                       LED_Off(LED_RED);
                       MXC_Delay(SEC(1));
                      }
                 }
                }
//******** DI END
                Max = 0;
                Min = 0;
                //------------------------------------------------------------

dogan 2.indd   256dogan 2.indd   256 08/06/2021   22:21:4108/06/2021   22:21:41



Chapter 17 ● Convolutional Neural Networks (CNN)

● 257

Testing the program

• Compile the program, making sure there are no errors, and run in debug mode as 
described earlier.

• You should see a message asking you to press the button PB1 (SW1) to start detecting 
spoken words. Press the button

• Speak the word HAPPY. The red LED should flash 5 times

dogan 2.indd   257dogan 2.indd   257 08/06/2021   22:21:4108/06/2021   22:21:41



How2: Get Started with the MAX78000FTHR Board

● 258

Appendix A ● Running the Programs in this Book

All programs in this book are available online. Each program and its associated files are in 
separate folders. This appendix shows the steps on how the programs given in this book 
can be loaded, compiled, and run.

• Make sure the MAX78000FTHR development board is connected to your PC
• You may have to start a terminal emulation program (e.g. Putty, Terraterm. HyperTerm, 

etc) on your PC for some of the programs where data is sent to the PC over the serial 
link

• Start Eclipse MaximSDK
• Select a Workspace by specifying the folder name of the program. For example, to 

run the program Flash2LED, select folder Flash2LED as the Workspace name by 
browsing the programs folder (see Figure A.1), and click Launch

• Click Project -> Build All to build the project
• Click Run -> Run Configurations
• Click GDB OpenOCD Debugging and select Project 1 (Figure A.2)

Figure A.1 Select a Workspace by the name of the program

Figure A.2 Select Project 1

dogan 2.indd   258dogan 2.indd   258 08/06/2021   22:21:4108/06/2021   22:21:41



Appendix A ● Running the Programs in this Book

● 259

• Click Run to run the program

Note: As described in chapter 3, you can also load all the programs into your workspace 
and select the ones you wish to compile and run.

dogan 2.indd   259dogan 2.indd   259 08/06/2021   22:21:4108/06/2021   22:21:41



How2: Get Started with the MAX78000FTHR Board

● 260

Appendix B ● References to Useful Files and Web Links

B.1 ● Useful files

There are many MAX78000 related files distributed with the MaximSDK that can be very 
useful during program development. The folders containing these files are given below:

1. Folder: MaximSDK\Examples\MAX78000

This folder contains many example MAX78000 programs (Figure B.1)

2. Folder: MaximSDK\Libraries\PeriphDrivers\Include\MAX78000

This folder contains the header files (.h) for the example programs. One can see the 
available structures and functions for a given utility by examining these header files (Figure 
B.2)

Figure B.1 Example programs

dogan 2.indd   260dogan 2.indd   260 08/06/2021   22:21:4208/06/2021   22:21:42



Appendix B ● References to Useful Files and Web Links

● 261

3. Folder: MaximSDK\Libraries\Boards\MAX78000\Include

This folder contains some additional header files (.h) for the example programs (Figure B.3)

4. Folder: MaximSDK\Libraries\PeriphDrivers\Documentation

This folder contains useful documents on various functions

Figure B.2 Header files

Figure B.3 Additional header files

dogan 2.indd   261dogan 2.indd   261 08/06/2021   22:21:4308/06/2021   22:21:43



How2: Get Started with the MAX78000FTHR Board

● 262

5.   Folder: MaximSDK\Libraries\PeriphDrivers\Source

This folder contains the source files (.c) of the functions (Figure B.4)

6.    This folder contains some useful software tools (Figure B.5)

This folder contains some useful software tools (Figure B.5)

Figure B.4 Source files

Figure B.5 Useful tools

dogan 2.indd   262dogan 2.indd   262 08/06/2021   22:21:4308/06/2021   22:21:43



Appendix B ● References to Useful Files and Web Links

● 263

7.   Folder: MaximSDK\Libraries\Boards\MAX78000\Include

This folder contains TFT, camera, and microphone header files.

B.2 ● Useful Weblinks

You will find below data sheets and application notes on the MAX78000 microcontroller and 
the MAX78000FTHR development board.

https://datasheets.maximintegrated.com/en/ds/MAX78000.pdf

https://www.maximintegrated.com/en/design/technical-documents/app-notes/7/7417.
html

https://www.maximintegrated.com/en/design/videos.html/vd_1_rtp4xipe#popupmodal

https://datasheets.maximintegrated.com/en/ds/MAX78000FTHR.pdf

https://www.maximintegrated.com/en/design/software-description.html/
swpart=SFW0010820A

https://github.com/MaximIntegratedAI/MaximAI_Documentation/blob/master/
MAX78000_Feather/README.md

https://www.maximintegrated.com/en/design/technical-documents/app-notes/7/7359.
html

https://www.maximintegrated.com/en/products/microcontrollers/MAX78000.html

https://www.maximintegrated.com/en/design/videos.html

https://www.maximintegrated.com/en/design/technical-documents/app-notes/7/7364.
html

https://www.elektormagazine.com/articles/ai-edge-get-started-maxim-max78000fthr

https://www.electronicproducts.com/maxims-first-ai-chip-a-game-changer-for-battery-
powered-devices/#

https://www.nasdaq.com/press-release/maxim-integrateds-neural-network-accelerator-
chip-enables-iot-artificial-intelligence

dogan 2.indd   263dogan 2.indd   263 08/06/2021   22:21:4308/06/2021   22:21:43



How2: Get Started with the MAX78000FTHR Board

● 264

● Index

Symbols

1-Wire Master  9, 11, 29, 192
7-Segment  154, 158, 166

A

ABLC  208
ACTIVE Mode  26
AEC  208
AGC  208
Analog-To-Digital converters  10, 89
ANN structure  12, 225, 228
Audio Keyword Spotting  18, 19

B

BACKUP Mode  26
Baud rate  104, 110, 115, 117, 118, 140, 190, 204, 237, 256
board.h  37, 38, 44, 107, 139, 204, 212
Bootloader  10, 30

C

callback  101, 102, 120, 127, 128, 134, 190
common anode  47, 75, 155
common cathode  155
Convolution  7, 13, 230, 231
Convolutional Neural Network  7, 9, 21, 23, 225
Cyclic Redundancy Check  29

D

DAPLink  13, 15, 16, 19, 107
debug mode  34, 41, 257
DMA Controller  9, 29

E

Eclipse MaximSDK  10, 31, 32, 39, 41, 44, 233, 234, 242, 255, 258
Eclipse Project Explorer  40
Exceptions  10, 30

dogan 2.indd   264dogan 2.indd   264 08/06/2021   22:21:4308/06/2021   22:21:43



● Index

● 265

G

GDB OpenOCD Debugging  35, 41, 45, 237, 258

H

HD44780  74, 75, 76

I

I2C functions  123
I2C Interface  9, 28
I2S Interface  9, 28
Independent pulse train outputs  184
Interrupts  10, 29, 30, 71, 73
IODIRA  125, 126, 127, 128

L

led.h  38, 44, 146
LOW POWER Mode  26

M

MAX32625  16, 19, 37, 40, 44
MCP23017  123, 124, 125, 126, 127, 128, 134, 165
MICRO POWER Mode  26
mxc_device.h  38, 44, 52, 59, 62, 72, 87, 91, 96, 112, 116, 139, 146, 151, 161, 176, 220

O

OVM7692  13, 208, 209

P

Pattern output mode  184
Philips  200
PMIC  13, 15, 16, 18, 19
Pooling  230, 231, 243
potentiometer  75, 77, 180, 181
POWER DOWN Mode  26
printf statement  36, 107, 109, 132, 138
Pulse train engine  9, 28
PWMTimer  175, 176, 177, 178, 179, 180, 182, 183
PyTorch  21, 242, 243, 245, 246

dogan 2.indd   265dogan 2.indd   265 08/06/2021   22:21:4408/06/2021   22:21:44



How2: Get Started with the MAX78000FTHR Board

● 266

R

ReadData  116, 117
ReLU  230, 231, 232
ROM commands  194, 195
RS232  104, 105
RxData  116, 117, 119, 120

S

SCL  121, 122, 124, 125, 129
Scratchpad command  195
SDA  121, 122, 124, 125, 129
Search ROM Accelerator  192
Search ROM function  192
Serial communication  104
Serial Peripheral Interface  9, 28, 136
sigmoid function  226, 227
SLEEP Mode  26
SPI Bus Interface  11, 136
Square wave output  184
STANDBY Mode  26

T

TensorFlow-Keras  242
Terminal emulation  214
TFT display  12, 217, 218, 219, 220, 221, 222, 236, 237, 238, 239, 240, 241, 256
The Instruction Cache  12, 214
TMP102  11, 128, 129, 131, 132, 133, 134
True Random Number Generator  10, 11, 29, 189

U

UART  9, 13, 16, 21, 29, 30, 37, 104, 107
UART interrupt  119

W

Watchdog timer  9, 28
while loop  56, 58, 65, 69, 90, 99, 109, 132, 144, 160, 178, 181, 196, 204

dogan 2.indd   266dogan 2.indd   266 08/06/2021   22:21:4408/06/2021   22:21:44





H
0W

2

Get Started with the 
MAX78000FTHR

Development Board

G
et Started w

ith the
M
A
X78000FTH

R
D

evelopm
ent Board     D

ogan Ibrahim

knows how

Dogan Ibrahim

Build your own AI microcontroller 
applications from scratch

Volume  2

2

H0W2The MAX78000FTHR from Maxim Integrated is a small development 
board based on the MAX78000 MCU. The main usage of this board 
is in artificial intelligence applications (AI) which generally require 
large amounts of processing power and memory. It marries an Arm 
Cortex-M4 processor with a floating-point unit (FPU), convolutional 
neural network (CNN) accelerator, and RISC-V core into a single 
device. It is designed for ultra-low power consumption, making it 
ideal for many portable AI-based applications.

This book is project-based and aims to teach the basic features 
of the MAX78000FTHR. It demonstrates how it can be used in 
various classical and AI-based projects. Each project is described in 
detail and complete program listings are provided. Readers should 
be able to use the projects as they are, or modify them to suit 
their applications. This book covers the following features of the 
MAX78000FTHR microcontroller development board:

> Onboard LEDs and buttons
> External LEDs and buttons
> Using analog-to-digital converters
> I2C projects
> SPI projects
> UART projects
> External interrupts and timer interrupts
> Using the onboard microphone
> Using the onboard camera
> Convolutional Neural Network (CNN)
> Artificial Intelligence projects

Elektor International Media BV
www.elektor.com

About the Author
Prof Dr Dogan Ibrahim has 
a BSc degree in electronic 
engineering, an MSc degree in 
automatic control engineering, 
and a PhD degree in digital 
signal processing. Dogan 
has worked in many indus-
trial organizations before he 
returned to academic life. 
Prof Ibrahim is the author of 
over 60 technical books and 
over 200 technical articles on 
microcontrollers, microproces-
sors, and related fields. He is a 
Chartered electrical engineer 
and a Fellow of the Institution 
of Engineering Technology.


	HOW2_Get Started with the MAX78000FTHR Development Board
	All rights reserved.
	Declaration
	Preface

	Search...
	Table of Contents
	1 ● The MAX78000FTHR Development Board
	1.1 ● Overview
	1.2 ● Basic features
	1.3 ● Pushbuttons and LEDs
	1.4 ● GPIO Pinout
	1.5 ● The FTHR board component interface signals
	1.6 ● The startup and the demo application
	1.7 ● The voltage regulator/battery charger
	1.8 ● DAP-link/SWD debug interface

	2 ● The MAX78000 Microcontroller
	2.1 ● Overview
	2.2 ● Basic features of the MAX78000
	2.2.1 ● The Convolutional Neural Network Accelerator (CNN)
	2.2.2 ● The memory
	2.2.3 ● Comparators
	2.2.4 ● Clocking
	2.2.5 ● General-purpose input-output (GPIO) and special function pins
	2.2.6 ● Parallel Camera Interface (PCIF)
	2.2.7 ● Analog-to-Digital Converter (ADC)
	2.2.8 ● Power management (PMU)
	2.2.9 ● Real-time clock (RTC)
	2.2.10 ● Programmable timers
	2.2.11 ● Watchdog timer (WDT)
	2.2.12 ● Pulse train engine (PTE)
	2.2.13 ● I2C Interface (I2C)
	2.2.14 ● I2S Interface (I2S)
	2.2.15 ● Serial Peripheral Interface (SPI)
	2.2.16 ● UART (UART, LPUART)
	2.2.17 ● 1-Wire Master (OWM)
	2.2.18 ● DMA Controller
	2.2.19 ● Security (AES)
	2.2.20 ● True Random Number Generator (TRNG) Non-Deterministic Random Bit Generator(NDRBG)
	2.2.21 ● CRC
	2.2.22 ● Bootloader
	2.2.23 ● Device Resets
	2.2.24 ● Interrupts and Exceptions


	3 ● Beginning with the MAX78000FTHR DevelopmentBoard
	3.1 ● Overview
	3.2 ● Installing the Eclipse MaximSDK Software
	3.3 ● Using the Eclipse MaximSDK – example MAX78000FTHR program
	3.4 ● Project 1 – Creating a C program – display message

	4 ● Simple MAX78000FTHR Hardware Projects
	4.1 ● Overview
	4.2 ● Project 1 – External flashing LED (+1.8V output port voltage)
	4.3 ● Project 2 – Alternately flashing LEDs (+1.8V output port voltage)
	4.4 ● Project 3 – Alternately flashing LEDs (+3.3V output port voltage)
	4.5 ● Project 4 – Rotating LEDs – same port pins
	4.6 ● Project 5 – Rotating LEDs – different port pins
	4.7 ● Project 6 – Binary up counter with LEDs
	4.8 ● Project 7 – Random flashing LEDs
	4.9 ● Project 8 – Push button and LED – using an on-board button
	4.10 ● Project 9 – Two pushbuttons and two LEDs – using external buttons
	4.11 ● Project 10 – Using an external button – external interrupts
	4.12 ● Using LCDs

	5 ● Analog-To-Digital converters (ADC)
	5.1 ● Overview
	5.2 ● Project 1 – Voltmeter with LCD
	5.3 ● Project 2 – Temperature measurement
	5.4 ● Project 3 – ON/OFF temperature controller
	5.5 ● Project 4 – ADC with completion interrupt – displaying the temperature

	6 ● Serial Communication – UART
	6.1 ● Overview
	6.2 ● MAX78000FTHR UART serial ports
	6.3 ● Project 1 – Sending the temperature readings to a terminal with relative time stamping
	6.4 ● Project 2 – Calculator project using a terminal
	6.5 ● Project 3 – MAX78000FTHR and Arduino Uno serial communication
	6.6 ● Project 4 – UART interrupts

	7 ● I2C Bus Interface
	7.1 ● Overview
	7.2 ● The I2C Bus
	7.3 ● I2C pins of the MAX78000 microcontroller
	7.4 ● Project 1 – I2C port expander
	7.5 ● Project 2 – TMP102 temperature sensor

	8 ● SPI Bus Interface
	8.1 ● Overview
	8.2 ● MAX78000 microcontroller SPI ports
	8.3 ● Project 1 – SPI send/receive

	9 ● Timers
	9.1 ● Overview
	9.2 ● Timer operation
	9.3 ● 32-bit single/cascade and dual 16-bit modes
	9.4 ● Project 1 – Time delay – using a one-shot timer (monostable)
	9.5 ● Project 2 – Continuously running timer (astable)
	9.6 ● Project 3 – Refreshing a 2-digit 7-segment display – seconds counter
	9.7 ● Project 4 – Refreshing a 4-digit 7-segment display – seconds counter
	9.8 ● Pulse width modulation (PWM)
	9.9 ● Project 5 – Pulse width modulation (PWM) – generating 10 kHz square wave
	9.10 ● Project 6 – Pulse width modulation (PWM) – changing the brightness of an LED
	9.11 ● Project 7 – Pulse width modulation (PWM) – brushed DC motor speed control

	10 ● Pulse Train Engine (PT)
	10.1 ● Overview
	10.2 ● Project 1 – Generate a pulse train with a specified sequence
	10.3 ● Project 2 – Generate a pulse train with a specified frequency

	11 ● True Random Number Generator Engine (TRNG)
	11.1 ● Overview
	11.2 ● Project 1 – Generate random numbers

	12 ● 1-Wire Master (OWM)
	12.1 ● Overview
	12.2 ● MAX78000 microcontroller 1-Wire pins
	12.3 ● Project 1 – DS1820 1-Wire digital thermometer

	13 ● I2S Bus Interface
	13.1 ● Overview
	13.2 ● MAX78000 microcontroller I2S support
	13.3 ● MAX78000 microcontroller I2S pins
	13.4 ● Project 1 - I2S Bus – receiving microphone data

	14 ● Using the Camera
	14.1 ● Overview
	14.2 ● Project 1 – Using the camera

	15 ● The Instruction Cache
	15.1 ● Overview
	15.2 ● Project 1 – Enabling/disabling the instruction cache

	16 ● Using a TFT Display
	16.1 ● Overview
	16.2 ● 2.4 inch TFT display
	16.3 ● Project 1 – Displaying various shapes and text on the display

	17 ● Convolutional Neural Networks (CNN)
	17.1 ● Overview
	17.2 ● Artificial neural networks (ANNs)
	17.3 ● The ANN structure
	17.4 ● Convolutional Neural Networks (CNNs)
	17.5 ● The MAX78000 CNN accelerator
	17.6 ● Demonstration programs
	17.7 ● Using the kws20_demo
	17.8 ● Project 1 - Modified program - flashing the on-board LED with the spoken word count
	17.9 ● Operation of the kws20_demo program
	17.10 ● Modelling, Training, and Synthesis
	17.11 ● Software/hardware requirements and software installation for training andsynthesis
	17.12 ● Project 2 – Training for a new keyword

	Appendix A ● Running the Programs in this Book
	Appendix B ● References to Useful Files and Web Links
	B.1 ● Useful files
	B.2 ● Useful Weblinks

	Index
	Blank Page
	Blank Page



