

Mastering NativeScript

Mastering NativeScript helps readers master the NativeScript framework for faster
and more robust mobile app development.

Mobile devices have progressed from a mere means of communication to
becoming a critical business tool in recent years. People are increasingly glued to
their smartphones as technology advances at breakneck speed. The significance of
mobile app development cannot be overstated.

And when it comes to mobile app development, NativeScript is a hot topic.

NativeScript was introduced by Telerik, and it allows you to develop truly native
apps for iOS and Android under a single code base using JavaScript or TypeScript,
XML, and a subset of CSS. The charm of NativeScript is that it enables us to code
once for multiple platforms (iOS≤7.1 and Android≤4.1), simultaneously sharing
code amongst them while still allowing developers to add platform-specific in-
structions with flawless execution. As a result, you may release an app for both
platforms using a single code base.

NativeScript is comprised of three parts: a JavaScript (JS) virtual machine, a
runtime, and a bridge module. The JS virtual machine is used for interpretation
and execution of JavaScript code. The bridge module then converts the calls to
platform-specific API calls and returns the outcome to the caller.

NativeScript is a very appealing paradigm, and is rising in popularity as we speak.
It can be used to construct practically any program, including communication
apps (news and social networking), gaming applications (Chess, Tic-tac-toe, pin-
ball), and chat apps. It can also handle maps and geolocation apps.

With Mastering NativeScript, learning NativeScript becomes straightforward,
which will undoubtedly help readers advance their careers.

The Mastering Computer Science series is edited by Sufyan bin Uzayr, a writer and
educator with over a decade of experience in the computing field.

Mastering Computer Science
Series Editor: Sufyan bin Uzayr

Mastering NativeScript: A Beginner’s Guide
Divya Sachdeva, D Nikitenko and Aruqqa Khateib

Mastering React: A Beginner’s Guide
Mohammad Ammar, Divya Sachdeva, and Rubina Salafey

Mastering Visual Studio Code: A Beginner’s Guide
Jaskiran Kaur, D Nikitenko, and Mathew Rooney

Mastering Vue.js: A Beginner’s Guide
Lokesh Pancha, Divya Sachdeva, and Faruq KC

Mastering GNOME: A Beginner’s Guide
Jaskiran Kaur, Mathew Rooney, and Reza Nafim

Mastering Kotlin: A Beginner’s Guide
Divya Sachdeva, Faruq KC, and Aruqqa Khateib

For more information about this series, please visit: https://www.routledge
.com/Mastering-Computer-Science/book-series/MCS

The “Mastering Computer Science” series of books are authored by the
Zeba Academy team members, led by Sufyan bin Uzayr.

Zeba Academy is an EdTech venture that develops courses and content
for learners primarily in STEM fields, and offers education consulting
to Universities and Institutions worldwide. For more info, please visit
https://zeba.academy

https://www.routledge.com/Mastering-Computer-Science/book-series/MCS
https://www.routledge.com/Mastering-Computer-Science/book-series/MCS
https://zeba.academy

Mastering NativeScript
A Beginner’s Guide

Edited by
Sufyan bin Uzayr

First Edition published 2023
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2023 Sufyan bin Uzayr

Reasonable efforts have been made to publish reliable data and information, but the author and
publisher cannot assume responsibility for the validity of all materials or the consequences of their use.
The authors and publishers have attempted to trace the copyright holders of all material reproduced in
this publication and apologize to copyright holders if permission to publish in this form has not been
obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com
or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.
co.uk

Trademark Notice: Product or corporate names may be trademarks or registered trademarks and are
used only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Names: Bin Uzayr, Sufyan, editor.
Title: Mastering NativeScript : a beginner’s guide / edited by Sufyan bin Uzayr.
Description: First edition. | Boca Raton : CRC Press, 2023. | Series:
Mastering computer science
Identifiers: LCCN 2022021415 (print) | LCCN 2022021416 (ebook) |
ISBN 9781032289762 (hardback) | ISBN 9781032289731 (paperback) |
ISBN 9781003299394 (ebook)
Subjects: LCSH: NativeScript (Software framework) | JavaScript (Computer
program language) | Software frameworks. | Mobile apps. | Application
software--Development.
Classification: LCC QA76.76.N38 M37 2023 (print) | LCC QA76.76.N38 (ebook) |
DDC 005.2/762--dc23/eng/20220810
LC record available at https://lccn.loc.gov/2022021415
LC ebook record available at https://lccn.loc.gov/2022021416

ISBN: 9781032289762 (hbk)
ISBN: 9781032289731 (pbk)
ISBN: 9781003299394 (ebk)

DOI: 10.1201/9781003299394

Typeset in Minion
by KnowledgeWorks Global Ltd.

https://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
mailto:mpkbookspermissions@tandf.co.uk
https://lccn.loc.gov/2022021415
https://lccn.loc.gov/2022021416
https://doi.org/10.1201/9781003299394

v

Contents

Preface, xix

About the Author, xxi

Chapter 1    ◾   � The Basics� 1
JavaScript FRAMEWORK OVERVIEW� 2

Angular� 2
Vue.js� 3
ReactJS� 3
Node.js� 3

NativeScript OVERVIEW� 3

HOW ARE NativeScript APPS CREATED?� 4

WHAT NativeScript MEANS IN THE CONTEXT OF MOBILE
DEVELOPMENT� 5

Various Sorts of Mobile Apps� 5
WHY IS NativeScript IMPORTANT?� 6

Getting to Market Quickly� 6
WHAT KINDS OF APPS MAY BE CREATED WITH NativeScript?� 6

Graphic Intensive Games� 6
Line-of-Business and Consumer Apps� 7

FEATURES OF NativeScript� 7

BENEFITS OF NativeScript� 7

WORKING WITH NativeScript� 8

Taking a Deeper Dive� 9
INSTALLATION OF NativeScript� 10

vi    ◾    Contents

Prerequisites� 10
Verify Node.js� 10

CLI Setup� 10
setupcli� 11
cli� 11
Installing the NativeScript Playground Application� 11
Configuration for Android and iOS� 11

ARCHITECTURE IN NativeScript� 12

Overview of the NativeScript Framework at a High Level� 13
A NativeScript APPLICATION’S WORKFLOW� 14

Root Modules� 14
Page Modules� 15

ANGULAR-BASED NativeScript APPLICATION WORKFLOW� 15

ANGULAR APPLICATION IN NativeScript� 17

Developing the Application� 17
Application Architecture� 18
Configuration� 19
Modules of Node� 21
Source Code of Android� 21
Source Code of iOS� 21
The Application’s Source Code� 21
Run Our App� 26
Run Our App on Our Device� 26

TEMPLATES FOR NativeScript� 27

Using a Template� 27
Template for Navigation� 27
Template for Tab Navigation� 27
Template for Master-Detail� 28
Customized Template� 28
Structure� 28

WIDGETS IN NativeScript� 29

Button� 30

Contents    ◾    vii

Label� 31
TextField� 31
TextView� 32
SearchBar� 32
Switch� 32
Slider� 32
Progress� 33
ActivityIndicator� 33
Image� 33
WebView� 33
DatePicker� 33
TimePicker� 34

LAYOUT CONTAINERS IN NativeScript� 34

AbsoluteLayout� 34
DockLayout� 35
GridLayout� 36
StackLayout� 38
WrapLayout� 38
FlexboxLayout� 39

Chapter 2    ◾   � Structuring Your App� 45
NAVIGATION IN NativeScript� 45

Fundamental Ideas� 46
Forward Navigation� 46
Backward Navigation� 47
Lateral Navigation� 47
Bottom and Tab Navigation� 48

Angular-Based Navigation� 48
Page-Router-Outlet� 49
Router Link (nsRouterLink)� 49
Router Extension� 49
Custom Route Reuse Strategy� 50
Routes� 50

viii    ◾    Contents

EVENTS HANDLING IN NativeScript� 51

Observable Class� 51
Event Listener� 51
Modifying BlankNgApp� 52

DATA BINDING IN NativeScript� 54

One-Way Data Binding� 54
Two-Way Data Binding� 56

MODULES FOR NativeScript� 58

Application� 58
Console� 58
Application-settings� 58
Image-source� 60
Timer� 61
Trace� 62
ui/image-cache� 62
Connectivity� 62
Modules of Functionality� 62
The Module of UI� 63

PLUGINS FOR NativeScript� 63

Adding Plugins� 64
Importing Plugins� 64
Updating Plugins� 65
Removing Plugin� 65
Building Plugins� 65
Creating Plugins� 65

NATIVE APIs USING JavaScript� 65

Marshaling� 66
Numeric Values� 66
Android Environment� 66
Strings� 67

Android� 67
iOS Environment� 67

Contents    ◾    ix

Arrays� 68
Declaration of an Array� 68
Array Declaration in Android� 68

Classes and Objects� 69
Android Environment� 69
iOS Environment� 70

NativeScript – ANDROID APPLICATION DEVELOPMENT� 71

Sidekick for NativeScript� 71
Publish Our Sidekick App to Google Play Console� 71
Publish Our App to Google Play� 72

Procedure for Releasing our App� 72
OUR FIRST APPLICATION� 73

Setting Up NativeScript� 73
Creating the APP� 74
The Entry Point File� 75
UI Markup Adding� 75
JavaScript Code� 80

Initialization� 80
The pageLoaded() Function� 82
The newNote() Function� 84
The btnLoaded() Function� 84
The openCamera() Function� 85
The saveNote() Function� 85
The deleteNote() Function� 86

Adding Styles� 87
Running and Debugging the App� 88

DEBUGGING� 88

LAYOUTS IN NativeScript� 89

GridLayout� 89
StackLayout� 90
ScrollView� 92

UI LAYOUT CONTAINERS� 95

AbsoluteLayout� 95

x    ◾    Contents

DockLayout� 96
stretchLastChild� 96

The GridLayout� 98
StackLayout� 101
WrapLayout� 103
FlexboxLayout� 105

Chapter 3    ◾   � Refining Your App� 111
EIGHT STEPS FOR LAUNCHING OUR NativeScript APP
INTO APP STORES� 111

Step 1: Design Our App Icons� 112
Step 2: Create Our Splash Screens� 114
Step 3: Set Up Our Metadata� 114

Application id� 114
Display Name� 115
Other Metadata� 116

Step 4 (Optional): Install Webpack� 117
Step 5: Create an Android Release Build� 117
Step 6: Google Play� 119

Screenshots� 119
Feature Graphic� 120
APK� 120

Step 7: Create an iOS Release Build� 120
Apple Developer Account� 121
Certificates, Identifiers, and Profiles� 121
Generating Your .ipa File� 121

Step 8: Connect to iTunes� 122
Create a New App� 122
Screenshots� 122
Uploading Your .ipa File� 123

IN NativeScript, WORK WITH DATA� 124

Why Do We Require Dynamic User Interfaces?� 124

Contents    ◾    xi

The Path to a More Dynamic UI� 125
Data Binding� 126

GETTING OUR APP READY FOR DISTRIBUTION� 127

Overview� 127
Set the Bundle ID� 127
Configure the Bundle ID for a Mac App Created with Mac
Catalyst� 128
Configure the Version Number and Build String� 128
Configure the App Category� 129
Assign a Team to the Project� 129
Edit the Deployment Info Settings� 129
Add an App Icon and an App Store Icon� 129
Provide a Launch Screen (iOS)� 130
To Get Access to Protected Resources, Provide Usage
Descriptions� 130
Set Up the App Sandbox and Hardened Runtime (macOS)� 130
Configure the Copyright Key (macOS)� 131
Add Export Compliance Data� 131

NativeScript SIDEKICK ALLOWS US TO CREATE iOS APPS
ON WINDOWS� 131

What Exactly Is a Cloud Build?� 131
But What If We Weren’t Required to Use this Method?� 131
Is It Still Possible for Us to Build Locally?� 132
How Do We Create a Build with Sidekick?� 132
iOS Development on Windows� 132
How Do Continuous Integration Build Work?� 132

PROTECT OUR MOBILE APP� 133

Source Code Protection� 133
Obfuscation and Minification� 134
Jscrambler (Protection+++)� 136
Restriction of Access via Private App Stores� 136
Options for Enterprise MAM/MDM� 136

xii    ◾    Contents

Apple Developer Enterprise Program� 136
Maintain Business Logic on the Cloud� 137
Take Caution When Sharing Keys� 139

Chapter 4    ◾   � Angular and NativeScript� 141
CREATE A WEB AND MOBILE APPLICATION WITH
Angular AND NativeScript� 141

Install the Global NPM Dependencies That Are Necessary� 142
Create a New Angular CLI Project That Includes NativeScript
Support� 142
Understanding the Schematic Changes and Angular
Development Process� 143
Using the NativeScript CLI to Run an Angular CLI Project
on Android or iOS� 145
Angular 10 Upgrading Suggestions� 146
Upgrading Our Angular 10 Project� 146

Package Should Be Updated .json� 147
Fixing Imports� 148

Additional Suggestions� 150
USING Angular, CREATE A NativeScript APP� 151

Angular BOOTSTRAP� 155

The Bootstrap Process� 155
NativeScript Application Option� 156
Customizing DI Providers� 156
Objects Injected by the Platform� 157
Autoinjected Objects� 157
Advanced Bootstrap� 158

NAVIGATION� 158

NativeScript Route Module� 158
Page-Router-Outlet� 159
Router Link� 160
Router Extention� 160
Custom Route Reuse Strategy� 161

Contents    ◾    xiii

Configuration� 162
Mobile Navigation Patterns� 163
Angular Navigation� 164
Forward Navigation� 165
Backward Navigation� 167
Lateral Navigation� 168
Hub Navigation� 168
Bottom Navigation and Tab Navigation� 169
Model View Navigation� 172
SideDrawer Navigation� 174

DATA BINDING� 176

One-Way vs. Two-Way Data Binding� 176
Interpolation� 178
Data Converters� 178

USING PLUGINS� 179

Finding Plugins� 179
Installing Plugins� 179
Installing Plugins as Developer Dependencies� 180
Importing and Using Plugins� 180
Removing Plugins� 181

Chapter 5    ◾   � Digging Deeper� 183
INSTALL ANDROID EMULATORS� 183

Creating an Android Virtual Device in Android Studio� 184
Using a Command-Line Tool to Create an Android Virtual
Device� 184

CUSTOM webpack CONFIGURATION� 185

What Exactly Is webpack Configuration?� 185
How to Use Custom webpack Configuration� 185
Custom Application and Activity (Android)� 187
Add More Rules for Specific Files� 188
Delete the Default Plugin� 188

xiv    ◾    Contents

iOS APP EXTENSIONS� 189

NativeScript App Extensions� 189
Including an App Extension in an Existing Application� 189
Adding an App Extension to a Plugin� 190
iOS WatchOS Applications� 190
NativeScript Application for WatchOS� 191

USING JavaScript TO ACCESS NATIVE APIs� 192

Numeric Types� 192
String� 193
Boolean� 194
Array� 194
Class and Object� 194
Using Classes and Objects on iOS� 195
NSDictionary� 195
Undefined and Null� 196
TypeScript via IntelliSense and Access to Native APIs� 196

METADATA� 198

Metadata Filtering� 198
Rule Syntax� 199
Rule Semantics� 199
Troubleshooting� 200

MEMORY MANAGEMENT� 201

Terms� 202
iOS� 204

Splice LifeCycle� 204
Implementation Characteristics� 205

Android� 206
Splice LifeCycle� 206

Implementation Characteristics� 207
Premature Collection� 207
Leaks� 208

Contents    ◾    xv

Half-Dead Splice� 208
Splices Die Fast� 208
Splices Die Hard� 209
Java Friendly� 209

Common Tips� 209
USER INTERFACE LAYOUT PROCESS� 210

Measure Pass� 210
Layout Pass� 210
Layout Properties� 211

Margins� 211
Padding� 211
Alignments� 212

Percentage Support� 212
iOS Safe Area Support� 213
iosOverflowSafeArea Property� 213
Layout� 214
Predefined Layouts� 214
Default Layouts Provided by NativeScript� 214

COMPONENTS� 214

Action Bar� 214
Usage� 214
ActionItem� 215
NavigationButton� 215
Styling� 216
Properties� 217
Animation� 218

Animation Properties� 218
Button� 219

Usage� 219
Styling� 220

Gestures� 221
Slider� 221

xvi    ◾    Contents

Usage� 221
Styling� 221

Switch� 222
Usage� 222
Styling� 222

DatePicker� 222
Usage� 222
Styling� 223

HtmlView� 223
Usage� 223

TimePicker� 224
Usage� 224

Tabs� 224
Usage� 225
Styling� 226

WebView� 227
Usage� 227
Tips & Tricks� 227

USER INTERFACE STYLING� 228

Applying CSS Styles� 228
Application-Wide CSS� 228
Component-Specific CSS� 228
Adding CSS String� 229
Adding CSS File� 229
Inline CSS� 229
Platform-Specific CSS� 229
Supported Selectors� 230

Type Selector� 231
Class Selector� 231
ID Selector� 231
Hierarchical Selector� 231

Contents    ◾    xvii

Attribute Selector� 232
Pseudo Selector� 233

BASICS OF THE NativeScript COMMAND-LINE INTERFACE� 234

Developing Applications� 234
Running Applications� 235
Using PREVIEW Quick Setup� 235
Use tns Preview Command� 235

APPRAISAL, 237

BIBLIOGRAPHY, 245

INDEX, 249

http://www.taylorandfrancis.com

xix

Preface

The Mastering Computer Science covers a wide range of topics, spanning
programming languages as well as modern-day technologies and frame-
works. The series has a special focus on beginner-level content, and is pre-
sented in an easy-to-understand manner, comprising:

•	 Crystal-clear text, spanning various topics sorted by relevance,

•	 A special focus on practical exercises, with numerous code samples
and programs,

•	 A guided approach to programming, with step-by-step tutorials for
the absolute beginners,

•	 Keen emphasis on real-world utility of skills, thereby cutting the
redundant and seldom-used concepts and focusing instead of indus-
try-prevalent coding paradigm, and

•	 A wide range of references and resources to help both beginner and
intermediate-level developers gain the most out of the books.

The Mastering Computer Science series of books start from the core con-
cepts, and then quickly move on to industry-standard coding practices, to
help learners gain efficient and crucial skills in as little time as possible.
The books assume no prior knowledge of coding, so even the absolute
newbie coders can benefit from this series.

The Mastering Computer Science series is edited by Sufyan bin Uzayr, a
writer and educator with more than a decade of experience in the comput-
ing field.

http://www.taylorandfrancis.com

xxi

About the Author

Sufyan bin Uzayr is a writer, coder, and entrepreneur with over a decade of
experience in the industry. He has authored several books in the past, per-
taining to a diverse range of topics, ranging from History to Computers/
IT.

Sufyan is the Director of Parakozm, a multinational IT company spe-
cializing in EdTech solutions. He also runs Zeba Academy, an online
learning and teaching vertical with a focus on STEM fields.

Sufyan specializes in a wide variety of technologies such as JavaScript,
Dart, WordPress, Drupal, Linux, and Python. He holds multiple degrees,
including ones in Management, IT, Literature, and Political Science.

Sufyan is a digital nomad, dividing his time between four countries. He
has lived and taught in universities and educational institutions around
the globe. Sufyan takes a keen interest in technology, politics, literature,
history, and sports, and in his spare time, he enjoys teaching coding and
English to young students.

Learn more at sufyanism.com.

http://www.taylorandfrancis.com

1DOI: 10.1201/9781003299394-1

C h a p t e r 1

The Basics

IN THIS CHAPTER

➢ Intro to NativeScript

➢ Getting started

➢ Anatomy of a NativeScript app

In the early days of mobile applications (pre-iPhone), there was little
emphasis on building code once and releasing it to numerous platforms.
Developers were only concerned with getting an app into the Apple or
Google Play stores as soon as possible. And if it meant that their software
wouldn’t work on all platforms, it was an acceptable trade-off.

Today, the mobile world is constantly evolving, making it increasingly
challenging to stay up with the latest technologies. As developers create
apps, they must reach the broadest potential audience: concentrating on a
single platform is no longer an option. Apps must be available on several
platforms and devices.

To stay up with the ever-changing environment, developers value any
technology to streamline the mobile app development process.

Developers now have several options for creating mobile apps target-
ing numerous platforms from a single code base. NativeScript is one of
these options, but it is far from the only one. Others, such as PhoneGap,
Xamarin, and React Native, may be familiar to us. Each of these frame-
works can create code once and deliver it to both Android and iOS, but
we’re not here to dispute which framework is superior.

https://doi.org/10.1201/9781003299394-1

2    ◾    Mastering NativeScript: A Beginner’s Guide

Instead, we want to learn how to create great cross-platform mobile
apps utilizing our current abilities. We can develop a mobile app using
NativeScript whether we’re a newbie who knows the fundamentals
of writing web apps with HTML, JavaScript, and CSS or a seasoned
professional.

We’ll teach how to create cross-platform programs from a single code
base utilizing NativeScript’s structured approach. When we’re completed,
we’ll be able to construct our own Android and iOS mobile apps using
our choice of technologies: HTML, JavaScript, and CSS or Angular,
TypeScript, and CSS.

In general, creating a mobile application is a time-consuming and
challenging operation. There are several frameworks available for cre-
ating a mobile application. Android provides a native framework based
on the Java programming language, whereas iOS provides a native
framework based on the Objective-C/Shift programming language.
However, to create an application that works with both operating sys-
tems, we must write in two distinct languages and use two different
frameworks.

Mobile frameworks support this functionality to solve this complica-
tion. The primary motivation for using a cross-platform or hybrid frame-
work is to maintain a single code base more accessible. NativeScript,
Apache Cordova, Xamarin, and more well-known frameworks are
included.

JavaScript FRAMEWORK OVERVIEW
JavaScript is a multi-paradigm programming language. It allows for func-
tional, object-oriented, and prototype-based programming. Initially,
JavaScript was employed on the client-side. JavaScript is now also employed
as a server-side programming language. JavaScript frameworks are tools
that make working with JavaScript easier and more fluid.

Using this framework, programmers may quickly create a device-
responsive application. One of several factors why this framework is
becoming so popular is its responsiveness.

Let’s have a look at a few of the most popular JavaScript frameworks.

Angular

Angular is a robust, efficient, and open-source JavaScript framework. We
can create both mobile and desktop applications. Google uses this frame-
work. It is used to create a Single Page Application (SPA).

The Basics    ◾    3

Vue.js

Vue.js is a progressive JavaScript framework for creating dynamic web
interfaces. It is a well-known framework for making web development
easier. It can be readily integrated into large projects for front-end develop-
ment. One of the most appealing characteristics for developing high-end
SPAs is its dual integration option.

ReactJS

ReactJS is a JavaScript toolkit for creating reusable user interface (UI)
components. Facebook created it. It is presently one of the most popular
JavaScript libraries with a solid base and a vast community.

Node.js

Node.js is a cross-platform open-source runtime environment for creat-
ing server-side and networking applications. It is based on the JavaScript
Engine of Google Chrome (V8 Engine). Applications built with Node.js are
written in JavaScript and may be executed on OS X, Microsoft Windows,
and Linux. It includes an extensive collection of JavaScript modules that
simplify the construction of web applications.

NativeScript OVERVIEW
NativeScript is a free and open-source framework for creating native iOS
and Android mobile apps. It is a framework that has been just-in-time
(JIT)-compiled. NativeScript code is executed on the JavaScript virtual
machine. It makes use of the V8 engine runtime on both the Android and
iOS platforms. NativeScript is built with XML, JavaScript, and CSS. It fea-
tures a WebIDE called PlayGround. This PlayGround includes an easy-to-
use interface, project management, hot reloading, and device debugging.

NativeScript enables developers to rapidly and effectively construct
native, cross-platform programs while saving money on the development,
testing, and training. As a result, native applications will continue to be rich
and powerful for years to come to make them better and simpler to use.

Furthermore, NativeScript provides a plethora of features that make it
simple to get started and use existing skills:

•	 Uses your existing understanding of HTML, JavaScript, and CSS (no
knowledge of Objective C, Swift, or Java is required).

•	 Your code is only written once.

4    ◾    Mastering NativeScript: A Beginner’s Guide

•	 Access to Android and iOS native platform APIs.

•	 An opinionated approach to app development that aids in the orga-
nization of our code base.

•	 Natively integrates with Angular (but is not required to).

Learning a new language can sometimes be a barrier to entering a new
world. When developing NativeScript apps, we’ll use our prior exper-
tise in HTML applications to swiftly design an app that targets numer-
ous platforms (Android and iOS). Because we already have these abilities,
designing NativeScript apps will be a breeze. Plus, we won’t have to learn
Objective C, Swift, or Java.

HOW ARE NativeScript APPS CREATED?
As shown in the following diagram, NativeScript apps are created in a mix
of JavaScript, XML, and CSS.

App in NativeScript.

When we build NativeScript apps, our code is divided into three sections:
JavaScript, XML, and CSS. The JavaScript component executes business logic,
retrieves data, and controls the app’s flow. The XML part defines the UI, and
CSS is used to customize the UI the same way that an HTML application is.

NativeScript programs have a similar structure and code to HTML
apps, but that’s where the similarities end. NativeScript is unique in the
cross-platform mobile app arena since it allows you to write your UI
(XML) code only once.

When the UI code is executed, it renders native UI components in the
app. On iOS, for example, UI components are represented as native iOS

The Basics    ◾    5

buttons, dropdowns, and lists. Similarly, UI elements on Android are rep-
resented as native Android components.

Other cross-platform frameworks may need to spend time implement-
ing platform-specific view code. The ability to write our UI code once and
have it rendered as native UI components, on the other hand, distinguishes
NativeScript from other frameworks.

Another distinguishing characteristic of NativeScript is the availability
of Native APIs.

As we learn more about NativeScript, we’ll see that it runs all of our
code as native code on the device. This enables us to benefit from the per-
formance benefits of native code without having to learn or write Objective
C, Swift, or Java.

WHAT NativeScript MEANS IN THE CONTEXT
OF MOBILE DEVELOPMENT
Consider yourself 15 years ago, when we were lugging around a Windows
6 mobile phone or obsessing over the latest Samsung Blackjack: this was
before Android and iOS. There were just fewer platforms and gadgets
available back then. New devices are released regularly nowadays. As the
volume and diversity of mobile app creation have increased, the develop-
ment community has begun to explore more effective approaches to design
mobile apps that target all platforms.

Various Sorts of Mobile Apps

Mobile apps are classified into four types: native, hybrid, cross-compiled,
and JIT-compiled.

Different sorts of mobile apps and the most popular frameworks:

Mobile App Type Framework

Native Android, iOS
Hybrid PhoneGap/Cordova
Cross-compiled Xamarin
JIT-compiled NativeScript

With the exception of native applications, the other three app categories
in the table share the same goal: create our app code once and publish
it across various platforms (which is what people mean when they say
cross-platform).

Although the cross-platform frameworks described above achieve com-
parable aims, they do it in different ways.

6    ◾    Mastering NativeScript: A Beginner’s Guide

WHY IS NativeScript IMPORTANT?
Aside from JIT compilation, NativeScript differs from other mobile app
frameworks in several ways. We believe the most significant distinction is
our ability to develop completely native apps from a single code base and
distribute them unchanged to both Android and iOS.

We’ve dealt with several mobile app frameworks in the past, and
NativeScript stands out in our perspective. We had to build a lot of
shim code in other frameworks. This shim code functions similarly to
a piece of wood used to level a stove in your kitchen or to assist frame
a doorway.

To extend the idea, assume we’re putting in a new door and frame.
Most doors are made to set width, height, and depth and fit virtually per-
fectly. However, in all situations, a little shim here and a little shim there is
required to get it to fit perfectly. When building code in other frameworks,
it’s similar: we add a little UI code to make a button seem exactly right on
the Android version of the app and a little more UI code to make it appear
just right on iOS.

Getting to Market Quickly

So, what does all of this mean? Less shim code, write once, deploy everywhere,
and so on. We don’t want to squander your time, whether we’re a business, an
individual developer, or a casual hobbyist. And, because we’ll spend less time
creating a new app (less shim code, write-one, and deploy everywhere), we’ll
have more time to innovate and deliver more features in less time.

WHAT KINDS OF APPS MAY BE CREATED WITH NativeScript?
Now that we understand how NativeScript works, we must understand the
kind of mobile apps we can create. NativeScript apps, as we may recall, run
directly on the device and are interpreted by a JavaScript virtual machine
running within the app. This implies that NativeScript apps may access
native device APIs and hardware; therefore, any software can be created as
a NativeScript app.

Let’s start with app kinds that shouldn’t be created using NativeScript.

Graphic Intensive Games

To begin with, don’t use NativeScript to create graphically heavy games.
Assume we’re working on the next great mobile game, Floppy Bunny,

which uses a lot of graphical and processing capacity to generate dense

The Basics    ◾    7

3D visuals. While NativeScript is reasonably performant out of the box,
there are probably better platforms designed specifically for producing
high-performance 3D games.

After all, NativeScript programs operate within a JavaScript virtual
machine, so there is an additional, if minor, layer of abstraction between
our app and the raw metal. To get the most out of a gadget and make
Floppy Bunny a smashing success, we might consider building a native
Android or iOS app.

Line-of-Business and Consumer Apps

Don’t be discouraged since we dashed our hopes of authoring Floppy
Bunny. NativeScript is also useful for creating various sorts of applica-
tions. Unlike our game example, NativeScript is ideal for creating a line-
of-business app such as a news feed, companion app for a website, social
networking app, or even an app to control all of our home’s intelligent
gadgets. In reality, there are currently many apps created in NativeScript
spanning a wide range of sectors.

FEATURES OF NativeScript
NativeScript has a thriving community behind it. The following are some
of NativeScript’s standout features:

•	 Replacement of a Hot Module

•	 It is simple to set up

•	 Extensible

•	 We can create complex animations, graphs, charts, and lists

•	 Any view may be used as the root of an application by developers

•	 Coding that is sluggish

BENEFITS OF NativeScript
NativeScript assists small- and large-scale businesses in developing cross-
platform mobile apps. Among the many advantages are as follows:

•	 It is open-source and free. This means we may contribute to the code
and use it in any way we choose as long as we don’t breach the Apache
2.0 license.

8    ◾    Mastering NativeScript: A Beginner’s Guide

•	 It enables the creation of genuinely native apps for Android and iOS
devices. Each UI component exposed by NativeScript is converted
into its equivalent native UI component.

•	 It allows us to use JavaScript code to access native platform APIs. We
don’t need to know Java or Objective-C to leverage native platform
APIs because we can write everything in JavaScript. This implies that
if we need to access a specific device feature, we can learn how to use
JavaScript to access native APIs, and we’ll be ready to go.

•	 It provides consumers with a more native-like experience than hybrid
mobile app frameworks such as Cordova.

•	 It enables developers to effortlessly create, deploy, and manage
NativeScript apps using the Telerik platform.

•	 It supports new native platforms with zero-day vulnerabilities. This
means we’ll be able to access the most recent native APIs and UI
components as soon as Google or Apple upgrades their platforms.

•	 TypeScript may be used to create NativeScript applications.
TypeScript is a language that transpiles to JavaScript and extends
JavaScript with object-oriented programming features.

•	 Any JavaScript library that does not rely on the browser or the
DOM that you discover on npm may be used within NativeScript.
Utility libraries, such as lodash and underscore, are examples of such
libraries.

•	 The NativeScript CLI allows us to accomplish practically anything.
The fundamentals are covered by establishing a new project, adding
a platform, running on a device, and deploying to a specific platform.
In addition, we may install plugins, debug the app, and publish it to
the app store.

WORKING WITH NativeScript
Writing native mobile apps with JavaScript, XML, and CSS isn’t some-
thing we hear about very often. Instead, we’ve probably heard of developing
native mobile apps in Objective C, Swift, or Java. NativeScript enables the
creation of native mobile apps through multiple components, including the
NativeScript runtime, core modules, JavaScript virtual machines, our app
code, and the NativeScript command-line interface (CLI). The following

The Basics    ◾    9

diagram depicts how these components interact to produce native Android
and iOS projects, then developed into native programs that run on mobile
devices.

Components of NativeScript.

We already know: the code for our app is written in JavaScript, CSS,
and XML. After we’ve developed our code, it will communicate with the
NativeScript runtime and code modules. Finally, the NativeScript CLI
tool combines your code, the NativeScript runtime, and NativeScript core
modules into a native program that includes a JavaScript virtual machine.
This native app is then available for both Android and iOS.

Taking a Deeper Dive

After constructing our UI with XML, we style the UI with CSS (like CSS
is used to style HTML apps). Then we create JavaScript to enhance our
UI. Writing business logic that responds to events (such as the app launch
event) and interactions will be part of our JavaScript code (like a button tap
or finger swipe). These three components (UI written in XML, CSS, and
business logic written in JavaScript) work together to form our app code.

Our app code does not have all it needs to function on a mobile device
on its own; it also requires the assistance of three extra components: the
NativeScript runtime, core modules, and a JavaScript virtual engine.
Remember that our app code and these three components constitute the
foundation of our NativeScript program.

After we’ve finished developing our program, it’s fed into the
NativeScript CLI. The CLI is in charge of developing native Android and
iOS projects and integrating the NativeScript app core into each project.
When Executed, the CLI invokes the native Android or iOS software devel-
opment kits (SDKs) to create and assemble a native app. Subsequently, the

10    ◾    Mastering NativeScript: A Beginner’s Guide

built program is deployed (through the command line interface) and runs
on a physical device, simulator, or emulator.

As we can see, the appeal of NativeScript resides in its universality: we
don’t need to spend time learning native programming languages like
Objective C, Swift, and Java because we can utilize JavaScript. Furthermore,
the NativeScript CLI’s platform-agnostic commands eliminate the need to
learn how the native tools and SDKs for Android and iOS function.

INSTALLATION OF NativeScript
This section describes how to install NativeScript on our computer.

Prerequisites

Before proceeding with installation, the following conditions must be met:

•	 Node.js

•	 iOS

•	 Android

Verify Node.js
Node.js is a JavaScript runtime engine built on top of Google Chrome’s
internal JavaScript engine, v8. NativeScript actively employs Node.js for
various purposes, such as developing the initial template application, com-
piling the application, etc. Node.js must be installed on your PC.

Hopefully, we have Node.js installed on your PC. If it isn’t already
installed, go to https://nodejs.org/ and download and install the newest
LTS package.

To see if Node.js is correctly installed, run the following command in
our terminal:

node –version

CLI Setup

NativeScript CLI is a command-line program that allows us to construct
and develop NativeScript applications. NativeScript CLI is installed on our
PC via the Node.js package manager npm.

To install NativeScript CLI, run the following command:

npm install -g nativescript

https://nodejs.org

The Basics    ◾    11

setupcli

We have the most recent NativeScript CLI, tns, installed on our machine.
Now, on our terminal, enter the following command:

tns

cli

Even without any further configuration, we can utilize tns to construct
and develop applications. However, we were unable to install the program
on a real device. Instead, we may use the NativeScript PlayGround iOS/
Android app to launch the program.

Installing the NativeScript Playground Application

Navigate to the iOS App Store or Google Play Store and look for the
NativeScript Playground app. When the program appears in the search
results, click the install button. It will download and install the NativeScript
Playground software into our smartphone.

The NativeScript Playground application will allow you to test your apps on
Android or iOS devices without deploying them to a real device or emulator.
This would shorten the time required to construct the application and provide
an easier approach to getting started with creating our mobile application.

Configuration for Android and iOS

In this section, we will learn how to configure the system to write and
execute iOS and Android apps in an emulator or on a real device.

•	 Step 1: Dependency of Windows: Run the following command as an
administrator at our Windows command prompt.

@powershell -NoProfile -ExecutionPolicy Bypass
-Command "iex
((new-object net.webclient).DownloadString
('https://www.nativescript.org/setup/win'))"

Following this command, the scripts are downloaded, and the
dependencies are installed and configured.

•	 Step 2: Dependency of macOS: To install in macOS, we must first
check to see if Xcode is installed. NativeScript requires the use of
Xcode. If Xcode is not already installed, go to https://developer.apple
.com/xcode/ and download; then install it.

https://developer.apple.com
https://developer.apple.com

12    ◾    Mastering NativeScript: A Beginner’s Guide

Now, on the terminal, type the following command:

sudo ruby -e "$(curl -fsSL https://www
.nativescript.org/setup/mac)"

Following the above command’s execution, the script will install
the necessary for both iOS and Android development. When it’s fin-
ished, shut and restart the terminal.

•	 Step 3: Dependency of Android: Hopefully, we’ve set up the neces-
sary prerequisites:

•	 JDK 8 or higher

•	 Android Support Repository

•	 Google Repository

•	 Android Studio

•	 Android SDK

•	 Android SDK Build-tools 28.0.3 or higher

If the prerequisites listed above are not met, go to https://
developer.android.com/studio/ and install it. Finally, add the envi-
ronment variables JAVA HOME and ANDROID HOME.

•	 Step 4: Confirm dependencies: Everything is now completed. We
can test the dependence using the following command:

tns doctor

ARCHITECTURE IN NativeScript
NativeScript is a sophisticated framework for developing mobile
applications. It conceals the complexities of developing mobile appli-
cations and provides a straightforward API for developing highly
efficient and powerful mobile applications. NativeScript allows even
inexperienced developers to create mobile applications for both
Android and iOS.

Let’s have a look at the NativeScript framework’s architecture.
The NativeScript framework’s fundamental notion is to allow devel-

opers to construct hybrid-style mobile applications. A hybrid application
hosts a web application within a standard mobile application using the

https://developer.android.com
https://developer.android.com

The Basics    ◾    13

platform-specific browser API and offers system access to the application
via the JavaScript API.

NativeScript places a high value on the JavaScript programming lan-
guage to create an efficient environment for developers. Because JavaScript
is the de-facto standard for client-side programming (Web develop-
ment) and every developer is familiar with the JavaScript language, it
makes it easier for developers to get started with the NativeScript frame-
work. NativeScript provides the native API at the lowest level via a set of
JavaScript plugins known as Native plugins.

NativeScript expands based on Native plugins by providing a plethora
of high-level and simple-to-use JavaScript modules. Each module per-
forms a specific job, such as accessing a camera or constructing a screen.
All of these modules may be integrated with a variety of ways to create a
complicated mobile application.

Overview of the NativeScript Framework at a High Level

•	 NativeScript application: NativeScript framework enables develop-
ers to use either an Angular or a Vue style application.

•	 JavaScript modules: The NativeScript framework has many
JavaScript modules explicitly labeled as UI modules, Application
modules, Core modules, and so on. All modules may be accessible
at any moment by the program, allowing it to create any degree of
complicated application.

•	 JavaScript plugins: NativeScript framework has a vast array of
JavaScript plugins for accessing platform-related functions. Modules
use JavaScript plugins to offer platform-specific functionality.

•	 Native plugins: Native plugins are built in a platform-specific lan-
guage to cover the system functionality utilized by the JavaScript
plugin.

•	 Platform API: APIs given by platform manufacturers are referred to
as platform APIs.

In a nutshell, modules are used to construct and organize NativeScript
applications. Modules are written in pure JavaScript, and modules access
platform-related functionality via plugins, which, in turn, bridge the plat-
form API and JavaScript API.

14    ◾    Mastering NativeScript: A Beginner’s Guide

A NativeScript APPLICATION’S WORKFLOW
NativeScript applications are made up of modules. Each module allows
a different functionality. The following are the two most critical types of
modules for bootstrapping a NativeScript application:

•	 Page modules

•	 Root modules

Application modules include the Root and Page modules. The application
module serves as the NativeScript application’s entry point. It bootstraps a
page, allowing the developer to design the page’s UI, and lastly, allows the
page’s business logic to be executed. An application module is made up of
the three things listed below:

•	 XML-based UI design (e.g., page.xml/page.component.html)

•	 CSS-coded styles (e.g., page.css/page.component.css)

•	 Actual module business logic in JavaScript (e.g., page.js/page.com-
ponent.ts)

NativeScript has a plethora of UI components for designing the application
page. In an Angular-based application, UI components can be expressed
in XML or HTML format. The application module uses the UI component
to create the page, saved in a separate XML file, page.xml/page.compo-
nent.html. CSS may be used to style the design.

The design style is stored in a different CSS file, page.css/page.compo-
nent.css, in application modules. The page’s functionality may be imple-
mented using JavaScript/TypeScript, which has full access to the design
and platform functionalities. The actual functionality of the page is coded
in a different file, page.js/page.component.ts, by the application module.

Root Modules

NativeScript uses UI containers to control the UI and user interaction.
Every UI container should have a root module via which it maintains its
UI. There are two types of UI containers in NativeScript applications:

•	 Application container: Each NativeScript application should have
one application container, which is configured using the application.
run() function. It sets up the application’s UI.

The Basics    ◾    15

•	 Mobile view container: NativeScript manages Modal dialogues with
the help of a model view container. Any number of model view con-
tainers can be used in a NativeScript application.

Like its content, each root module should only have one UI component.
The UI component, in turn, might have children that are other UI com-
ponents. NativeScript has many UI components with child functional-
ity, such as TabView, ScrollView, and others. These can be used as the
primary UI component. The frame is an exception since it does not have
a child option but may be used as the root component. The frame has
options for loading Page modules as well as navigating to other Page
modules.

Page Modules

Every page in NativeScript is essentially a Page module. The Page mod-
ule is built with NativeScript’s extensive range of UI components. Page
modules are loaded into the application via the Frame component (by its
defaultPage attribute or the navigate() function), which is then loaded via
Root modules, which is then loaded via the application. While the pro-
gram is running, use run().

ANGULAR-BASED NativeScript APPLICATION WORKFLOW
As previously said, the NativeScript framework offers a variety of
approaches to appeal to various types of developers. NativeScript supports
the following methodologies:

•	 NativeScript Core is the foundational notion of the NativeScript
Framework.

•	 Angular + NativeScript methodology based on Angular.

•	 Vuejs + NativeScript methodology based on Vue.js.

Let’s have a look at how the Angular framework is integrated into the
NativeScript framework.

•	 Step 1: To bootstrap the Angular application, NativeScript offers
an object (platformNativeScriptDynamic). The bootstrapMod-
ule function of platformNativeScriptDynamic is used to start the
program.

16    ◾    Mastering NativeScript: A Beginner’s Guide

The following is the syntax for bootstrapping the application with
the Angular framework:

import { platformNativeScriptDynamic } from
"nativescript-angular/platform";
import { AppModule } from "./app/app.module";
platformNativeScriptDynamic().bootstrapModule
(AppModule);

•	 Step 2: A basic implementation of the app module:

import { NgModule } from "@angular/core";
import { NativeScriptModule } from "nativescript-
angular/nativescript.module";
import { AppRoutingModule } from "./app-routing
.module";
import { AppComponent } from "./app.component";
@NgModule(
 {
 bootstrap: [
 AppComponent
], imports: [
 NativeScriptModule,
 AppRoutingModule
], declarations: [
 AppComponent
]
 }
) export class AppModule { }

AppModule loads the AppComponent component to begin the
application. Angular components are similar to pages in that they
are utilized for design as well as programming functionality.

The following is a small implementation of AppComponent (app.
component.ts) and its display logic (app.component.css):

•	 app.component.ts:

import { Component } from "@angular/core";
@Component(
 {
 selector: "ns-app",
 templateUrl: "app.component.html"
 }
)
export class AppComponent { }

The Basics    ◾    17

•	 app.component.html:

<page-router-outlet></page-router-outlet>

The Angular application is linked to the page-router-outlet.

In summary, the Angular framework comprises modules that are compara-
ble to those found in the NativeScript framework but differ somewhat. Each
Angular module will contain an Angular component and a router setup file
(page-routing.mocdule.ts). The router is configured per module and handles
navigation. Pages in NativeSctipt core are analogous to Angular components.

Each component will have a UI design (page.component.html), a style
sheet (page.component.css), and a JavaScript/TypeScript code file (page.
component.ts).

ANGULAR APPLICATION IN NativeScript
To understand the workflow of the NativeScript application, let us build a
small, bare-bones application.

Developing the Application

Let’s look at how to make a small application with NativeScript CLI, tns.
To start a new project with NativeScript, use the tns command create.

The following is the fundamental syntax for creating a new application:

tns create <projectname> --template <template_name>

where,

•	 The project’s name is projectname.

•	 Template name refers to the Project template. NativeScript has a
plethora of starter templates for building various types of applica-
tions. Make use of an Angular-based template.

To begin on our new program, let us establish a new directory called
NativeScriptSamples. Now, start a new terminal, navigate to our directory,
and enter the following command:

tns create BlankNgApp --template tns-template-blank-ng

Whereas tns-template-blank-ng refers to a blank AngularJS mobile
application.

18    ◾    Mastering NativeScript: A Beginner’s Guide

Application Architecture

Let’s learn about the structure of a NativeScript application by examining
our first program in this chapter, BlankNgApp. The NativeScript program
is divided into several sections, which are as follows:

•	 Section on configuration

•	 Modules for nodes

•	 Sources for Android

•	 Sources for iOS

•	 Source code for an application.

The application’s general structure is as follows:

│ angular.json
│ LICENSE
│ nsconfig.json
│ package-lock.json
│ package.json
│ tsconfig.json
│ tsconfig.tns.json
│ tsfmt.json
│ webpack.config.js
│
├───App_Resources
│ ├───Android
│ │
│ └───iOS
│
├───hooks
│
├───node_modules
|
└───src
 │ app.css
 │ main.ts
 │ package.json
 │
 └───app

The Basics    ◾    19

 │ app-routing.module.ts
 │ app.component.html
 │ app.component.ts
 │ app.module.ts
 │
 └───home
 home-routing.module.ts
 home.component.html
 home.component.ts
 home.module.ts

Let us examine each element of the application and how it contributes to
the development of our application.

Configuration

All of the files in the application’s root directory are configuration files.
The configuration files are in JSON format, making it easier for the devel-
oper to comprehend the setup specifics. The NativeScript program relies
on these files to obtain all configuration information. In this part, we’ll go
through all of the configuration files.

•	 package.json: package.json files set the identity (id) of the application
and all the modules that the application depends on for its proper
working. Below is our package.json:

{
 "nativescript": {
 "id": "org.nativescript.BlankNgApp",
 "tns-android": {
 "version": "6.3.1"
 }, "tns-ios": {
 "version": "6.3.0"
 }
 }, "description": "NativeScript Application",
 "license": "SEE LICENSE IN
<your-license-filename>",
 "repository": "<fill-your-repository-here>",
 "dependencies": {
 "@angular/animations": "~8.2.0",
 "@angular/common": "~8.2.0",
 "@angular/compiler": "~8.2.0",
 "@angular/core": "~8.2.0",
 "@angular/forms": "~8.2.0",

20    ◾    Mastering NativeScript: A Beginner’s Guide

 "@angular/platform-browser": "~8.2.0",
 "@angular/platform-browser-dynamic":
"~8.2.0",
 "@angular/router": "~8.2.0",
 "@nativescript/theme": "~2.2.1",
 "nativescript-angular": "~8.20.3",
 "reflect-metadata": "~0.1.12",
 "rxjs": "^6.4.0",
 "tns-core-modules": "~6.3.0",
 "zone.js": "~0.9.1"
 },
 "devDependencies": {
 "@angular/compiler-cli": "~8.2.0",
 "@ngtools/webpack": "~8.2.0",
 "nativescript-dev-webpack": "~1.4.0",
 "typescript": "~3.5.3"
 },
 "gitHead":
"fa98f785df3fba482e5e2a0c76f4be1fa6dc7a14",
 "readme": "NativeScript Application"
}

Here,

•	 Application identity (nativescript/id): It sets the application’s
id to org.nativescript.BlankNgApp. This id will be used when we
upload our software to the Play Store or iTunes. This identifier
will serve as our Application Identifier or Package Name.

•	 Dependencies: Specifies all of our dependent node modules.
Angular modules are included since the default NativeScript
implementation is based on Angular framework.

•	 Development dependencies: Specifies all of the tools on which
the program is dependent. Because we are constructing our
application in TypeScript, typescript is included as one of the
dependent modules.

•	 angular.json: angular.json contains configuration information
for the Angular framework.

•	 nsconfig.json: NativeScript framework configuration data is
stored in nsconfig.json.

The Basics    ◾    21

•	 tsconfig.json, tsfmt.json, and tsconfig.tns.json: TypeScript lan-
guage configuration information may be found in tsconfig.json,
tsfmt.json, and tsconfig.tns.json.

•	 webpack.config.js: webpack.config.js JavaScript configuration
for WebPack.

Modules of Node

Because NativeScript is a node-based project, all of its dependencies are
stored in the node_modules folder. To download and install all applica-
tion dependencies into the node_moduels, we may use npm (npm install)
or tns.

Source Code of Android

NativeScript produces the android source code and saves it in the App_
Resources\Android folder. It will be used to construct an Android app
using the Android SDK.

Source Code of iOS

NativeScript produces the iOS source code and saves it in the App_
Resources\iOS folder. It will be used to develop iOS applications with the
iOS SDK and XCode.

The Application’s Source Code

The application code is stored in the src folder. In the src folder of our pro-
gram, we will find the files listed below:

└───src
 │ app.css
 │ main.ts
 │ package.json
 │
 └───app
 │ app-routing.module.ts
 │ app.component.html
 │ app.component.ts
 │ app.module.ts
 │
 └───home

22    ◾    Mastering NativeScript: A Beginner’s Guide

 home-routing.module.ts
 home.component.html
 home.component.ts
 home.module.ts

Let us first understand the function of all files in this part and how they
are organized.

•	 Step 1: main.ts – The application’s entry point.

// This import should be performed initially in
order to load certain necessary parameters (like
globals and reflect-metadata)
import { platformNativeScriptDynamic } from
"nativescript-angular/platform";
import { AppModule } from "./app/app.module";
platformNativeScriptDynamic()
.bootstrapModule(AppModule);

The AppModule has been designated as the application’s boot-
strapping module in this case.

•	 Step 2: app.css – The application’s main style sheet is displayed
here.

@import "~@nativescript/theme/css/core.css";
@import "~@nativescript/theme/css/brown.css";
/* Put any CSS rules that wish to apply to both
iOS and Android in this section.
This is where the vast majority of CSS code will
be placed.*/

Here,
The NativeScript framework’s core style sheet and brown color

themes style sheet are imported by app.css.

•	 Step 3: app\app.module.ts – The application’s root module.

import { NgModule, NO_ERRORS_SCHEMA } from "@
angular/core";
import { NativeScriptModule } from "nativescript-
angular/nativescript.module";
import { AppRoutingModule } from "./app-routing.
module";
import { AppComponent } from "./app.component";
@NgModule(

The Basics    ◾    23

 {
 bootstrap: [
 AppComponent
],
 imports: [
 NativeScriptModule,
 AppRoutingModule
],
 declarations: [
 AppComponent
], schemas: [
 NO_ERRORS_SCHEMA
]
 }
)
export class AppModule { }

Here,
AppModule is built on NgModule and configures the appli-

cation’s components and modules. It includes two modules,
NativeScriptModule and AppRoutingModule, as well as a component,
AppComponent. It also made the AppComponent the application’s
root component.

•	 Step 4: app.component.ts – The application’s root component.

import { Component } from "@angular/core";
@Component(
 {
 selector: "ns-app",
 templateUrl: "app.component.html"
 }
)
export class AppComponent { }

Here,
AppComponent defines the component’s template and style sheet.

The template is written in plain HMTL and employs NativeScript UI
components.

•	 Step 5: app-routing.module.ts – AppModule routing module.

import { NgModule } from "@angular/core";
import { Routes } from "@angular/router";

24    ◾    Mastering NativeScript: A Beginner’s Guide

import { NativeScriptRouterModule } from
"nativescript-angular/router";
const routes: Routes = [
 { path: "", redirectTo: "/home", pathMatch:
"full" },
 { path: "home", loadChildren: () =>
 import("~/app/home/home.module").then((m) =>
m.HomeModule) }
];
@NgModule(
 {
 imports: [NativeScriptRouterModule.
forRoot(routes)],
 exports: [NativeScriptRouterModule]
 }
)
export class AppRoutingModule { }

Here,
AppRoutingModule utilizes the NativeScriptRouterModule to

configure the AppModule’s routes. It essentially redirects the empty
route to/home and refers/home to HomeModule.

•	 Step 6: app\home\home.module.ts – Creates a new module called
HomeModule.

import { NgModule, NO_ERRORS_SCHEMA } from
"@angular/core";
import { NativeScriptCommonModule } from
"nativescript-angular/common";
import { HomeRoutingModule } from "./home-routing.
module";
import { HomeComponent } from "./home.component";
@NgModule(
 {
 imports: [
 NativeScriptCommonModule,
 HomeRoutingModule
],
 declarations: [
 HomeComponent
],
 schemas: [
 NO_ERRORS_SCHEMA

The Basics    ◾    25

]
 }
)
export class HomeModule { }

Here,
HomeModule imports two modules, HomeRoutingModule

and NativeScriptCommonModule, as well as one component,
HomeComponent.

•	 Step 7: app\home\home.component.ts – Defines the Home compo-
nent used as the application’s home page.

import { Component, OnInit } from "@angular/core";
@Component(
 {
 selector: "Home", templateUrl: "./home.
component.html"
 }
)
export class HomeComponent implements OnInit {
 constructor() {
 // Use the component constructor to inject
providers.
 }
 ngOnInit(): void {
 // Init your component properties here.
 }
}

Here,
HomeComponent configures the home component’s template and

selector.

•	 Step 8: app\home\home-routing.module.ts – HomeModule rout-
ing module, used to specify routing for the home module.

import { NgModule } from "@angular/core";
import { Routes } from "@angular/router";
import { NativeScriptRouterModule } from
"nativescript-angular/router";
import { HomeComponent } from "./home.component";
const routes: Routes = [
 { path: "", component: HomeComponent }
];

26    ◾    Mastering NativeScript: A Beginner’s Guide

@NgModule(
 {
 imports: [NativeScriptRouterModule.
forChild(routes)],
 exports: [NativeScriptRouterModule]
 }
)
export class HomeRoutingModule { }

Here,
The empty path was set to HomeComponent by HomeRoutingModule.

•	 Step 9: app.component.html and home.component.html – These
files are used to construct the application’s UI with NativeScript UI
components.

Run Our App

If we wish to execute your program without utilizing a device, use the
command below:

tns preview

After running this command, a QR code will be generated to scan and link
with our smartphone.

Run Our App on Our Device

If we wish to test the connected device in our application, use the follow-
ing syntax:

'tns device <Platform> --available-devices'

After that, we may run our program with the following command:

tns run

The program above is used to develop your apps locally and then install
them on Android or iOS devices. If we wish to execute our program on an
Android simulator, use the command below:

tns run android

We can use the following command on an iOS device:

run ios

The Basics    ◾    27

TEMPLATES FOR NativeScript
NativeScript has many ready-made templates for everything from a simple
blank but completely functioning application to a complicated Tab-based
application.

Using a Template

A new application may be built by using the create subcommand of the tns
command:

tns create <app-name> --template <tns-template-name>

Here,
The template’s name is tns-template-name in this case.
If we wish to use JavaScript to generate a template with only one page

and no custom styles, use the following command:

tns create <app-name> --template tns-template-blank

TypeScript may be used to construct the same template as seen above:

tns create <app-name> --template tns-template-blank-ts

Template for Navigation

The navigation template is used to construct applications ranging from
modest to complicate. It includes a pre-configured SideDrawer component
with several pages. The SideDrawer component provides a hidden view for
navigation UI or common settings. To develop a navigation-based applica-
tion, use the command below:

tns create <app-name> --template tns-template-drawer-
navigation

Template for Tab Navigation

To construct a tab-based application, a tab navigation template is utilized.
It includes a pre-configured TabView component with several pages. To
construct a tab-based application, use the following command:

tns create <app-name> --template tns-template-tab-
navigation

28    ◾    Mastering NativeScript: A Beginner’s Guide

Template for Master-Detail

The Master-Detail template is used to develop a list-based application that
includes a detail page for each item in the list:

tns create <app-name> --template tns-template-master-
detail

Customized Template

To make a basic customized template, we must first clone blank templates.
NativeScript, as you may know, supports JavaScript, TypeScript, Angular,
and Vue.js templates, allowing us to select any language and design your
own.

For example, use the following command to clone a customized and
straightforward template from a git repository.

git clone https://github.com/NativeScript/template-
blank-ts.git

It will now generate the mobile app framework, allowing you to make
adjustments and run your Android/iOS device. This structure is built on a
set of rules. Let’s take a quick look at the guidelines.

Structure

Our modified template must meet the following conditions:

•	 Do not put our code in the root folder of our app.

•	 Make a new folder and place the feature area inside.

•	 The page, view models, and service should all be placed in the feature
section. This aids in the creation of excellent and clear code.

•	 Create a page folder and place.ts,.xml,.scss/css, and other files within.

package.json: Place the package.json file in the app template’s root folder.
Use the format to provide a value for the name property.

{
 "name": "tns-template-blank-ts",
 displayName": "template-blank",
}

https://github.com
https://github.com

The Basics    ◾    29

Give the version attribute a value. It is defined further down.

"version": "3.2.1",

Assign a value to the main property that specifies our app’s principal entry
point. It is defined further down:

"main": "app.js",

Give the android property a value. It is defined further down:

"android": {
 "v8Flags": "--expose_gc"
},

The repository attribute should be defined as follows in our code:

"repository": {
 "type": "git",
 "url": "https://github.com/NativeScript/
template-master-detail-ts"
},

Style: Use the syntax below to import styles and themes into our app
template:

@import '~nativescript-theme-core/scss/light';

We may also use the code below to set a custom background color:

/* Color */
$background: #fff;
$primary: lighten(#000, 13%);

WIDGETS IN NativeScript
NativeScript has many UI components known as “widgets.” Each widget
performs a specific function and has a set of methods. In this part, we’ll go
over NativeScript widgets in depth.

30    ◾    Mastering NativeScript: A Beginner’s Guide

Button

A button is a component that is used to carry out the tap event action.
When a user taps the button, the relevant actions are carried out. It is
defined further down.

<Button text="Click-here" tap="onTap"></Button>

Let’s add the button to our BlankNgApp as seen below.

•	 Step 1: Navigate to src\app\home\home.component.html. This is the
home component’s UI design page.

•	 Step 2: Insert a button into the GirdLayout component. The full code
is as follows:

<ActionBar>
 <Label text="Home"></Label>
</ActionBar>
<GridLayout>
 <button text="Click-Here"></button>
</GridLayout>

•	 Step 3: We may style the button with CSS, as seen below:

<ActionBar>
 <Label text="Home"></Label>
</ActionBar>
<GridLayout>
 <button text="Click-Here" class="-primary">
</button>
</GridLayout>

The -primary class is used to represent the primary button in this
case.

•	 Step 4:

<GridLayout>
 <Button class="-primary">
 <FormattedString>

 </FormattedString>
 </Button>
</GridLayout>

The Basics    ◾    31

.fa {
 font-family: "FontAwesome",
"fontawesome-webfont";
}

Here,
 specifies the position of the icon in the FontAwesome

font. Download the most recent Font Awesome font and save fon-
tawesome-webfont.ttf in the src\fonts folder.

•	 Step 5:

<Button text="Button.-primary.-rounded-sm"
class="-primary -rounded-sm"></Button>

Label

Static text is shown using the Label component. Change the home page to
the one shown below:

<GridLayout>
 <Label text="NativeScript is an open source
framework for creating native apps in JavaScript or
TypeScript. There are several frameworks available for
creating a mobile application." textWrap="true">
 </Label>
</GridLayout>

TextField

The TextField component is used to collect data from the user. Let us mod-
ify our home page to the one listed below:

<GridLayout>
 <TextField hint="User-name"
 color="lightblue"
 backgroundColor="yellow"
 height="65px">
 </TextField>
</GridLayout>

Here,
Color represents the color of the text.
backgroundColor is the color of the text box’s background.
The height of the text box is represented by height.

32    ◾    Mastering NativeScript: A Beginner’s Guide

TextView

The TextView Component is used to receive multiline text information
from the user. Let us modify our home page to the one listed below:

<GridLayout>
 <TextView loaded="onTextViewLoaded" hint="Enter
text" returnKeyType="done" autocorrect="false"
maxLength="90">
 </TextView>
</GridLayout>

SearchBar

This component is used to search for and submit queries. It is defined
further down:

<StackLayout>
 <SearchBar id="bar" hint="click-here to
search.."></SearchBar>
<StackLayout>

We can use styles:

<StackLayout>
 <SearchBar id="bar" hint="click-here to search.."
color="green" backgroundColor="green"></SearchBar>
</StackLayout>

Switch

To choose between choices, switch is based on a toggle. The default value is
false. It is defined further down:

<StackLayout>
 <Switch checked="false" loaded="onSwitchLoaded">
</Switch>
</StackLayout>

Slider

A slider is a sliding component used to choose a numerical range. It is
defined further down:

<Slider value="25" minValue="0" maxValue="55"
loaded="onSliderLoaded"></Slider>

The Basics    ◾    33

Progress

The Progress widget displays the status of an operation. The current state
is indicated by a bar. It is defined further down:

<StackLayout verticalAlign="center" height="50">
 <Progress value="85" maxValue="110"
backgroundColor="yellow" color="green" row="0">
</Progress>
</StackLayout>

ActivityIndicator

The ActivityIndicator displays a task that is in process. It is defined further
down:

<StackLayout verticalAlign="center" height="40">
 <ActivityIndicator busy="true" color="blue"
width="50"
 height="40"></ActivityIndicator>
</StackLayout>

Image

To show a picture, an image widget is utilized. It may be accessed using the
“ImageSource” URI. It is defined further down:

<StackLayout class="m-15"
backgroundColor="lightyellow">
 <Image src="~/images/logo1.png"
stretch="aspectFill"></Image>
</StackLayout>

WebView

WebView displays web pages. URLs may be used to load web pages. It is
defined further down:

<WebView row="1" loaded="onWebViewLoaded"
id="myWebView" src="http://www.facebook.com">
</WebView>

DatePicker

DatePicker is used to select a date. It is defined further down:

<StackLayout class="m-15" backgroundColor="lightgray">

34    ◾    Mastering NativeScript: A Beginner’s Guide

 <DatePicker year="1980" month="4" day="20"
verticalAlignment="center"></DatePicker>
</StackLayout>

TimePicker

The TimePicker component is used to select a time. It is defined further
down:

<StackLayout class="m-15" backgroundColor="lightgray">
<TimePicker hour="8"
 minute="28"
 maxHour="23"
 maxMinute="59"
 minuteInterval="5">
</TimePicker>
</StackLayout>

LAYOUT CONTAINERS IN NativeScript
NativeScript provides a container component collection for the primary
purpose of setting up UI widget components. Layout containers perform
as the parent component and can have one or more child components.
A layout container’s child components can all be organized using the
approach offered by its parent layout container.

NativeScript has six layout containers, which are as follows:

•	 Container for absolute layout

•	 Container for dock arrangement

•	 Container for grid layout

•	 Container for stack arrangement

•	 Wrap layout container

•	 FlexibleBox is a layout container

In this session, we’ll go over all of the layout container principles in depth.

AbsoluteLayout

The AbsoluteLayout container is NativeScript’s most basic layout con-
tainer. AbsoluteLayout imposes no constraints on its children and will

The Basics    ◾    35

position them inside it using a two-dimensional coordinate system with
the top-left corner as the origin.

AbsoluteLayout positions its children using four attributes, which are
as follows:

•	 top: Defines the child’s position in the y direction, starting at the
origin and progressing downward.

•	 left: The child is placed to the left of the origin, traveling sideways in
the x direction.

•	 width: Defines the child’s width.

•	 height: Defines the child’s height.

Let us add the AbsoluteLayout container to our application’s main page as
shown below:

<ActionBar>
 <Label text="Home"></Label>
</ActionBar>
<AbsoluteLayout width="210" height="310"
backgroundColor="blue">
 <Label text="Top Left" left="0" top="0" width="110"
height="140" backgroundColor="green">
 </Label>
 <Label text="Top Right" left="100" top="0"
width="110" height="140" backgroundColor="blue">
</Label>
 <Label text="Bottom Left" left="0" top="140"
width="110" height="140" backgroundColor="orange">
 </Label>
 <Label text="Bottom Right" left="110" top="140"
width="110" height="140" backgroundColor="red">
</Label>
</AbsoluteLayout>

DockLayout

The DockLayout container component allows its children to dock within
it. A child component can dock on each side of the container (top, bottom,
left, and right). The DockLayout container docks its children appropriately
by using their dock property.

36    ◾    Mastering NativeScript: A Beginner’s Guide

The dock property can have the following values:

•	 top: Dock the child component at the top corner of the layout
container.

•	 bottom: Dock the child component at the bottom corner of the
Layout container.

•	 left: Dock the child component in the left corner of the Layout
container.

•	 right: Dock the child component in the right corner of the Layout
container.

DockLayout containers dock their final child component by default. It can
override this behavior by setting the stretchLastChild parameter to zero.

Let us add the DockLayout container to our application’s main page as
seen below:

<ActionBar>
 <Label text="Home"></Label>
</ActionBar>
<DockLayout width="240" height="310"
backgroundColor="blue" stretchLastChild="false">
 <Label text="left" dock="left" width="60"
backgroundColor="green"></Label>
 <Label text="top" dock="top" height="60"
backgroundColor="orange"></Label>
 <Label text="right" dock="right" width="60"
backgroundColor="red"></Label<
 <Label text="bottom" dock="bottom" height="60"
 backgroundColor="orange"></Label>
</DockLayout>

GridLayout

GridLayout is a complicated layout container that arranges child items in
a tabular form with rows and columns. It has one row and one column by
default. It has the following characteristics:

1.	columns: Used to denote the default width of each column, sepa-
rated by a comma. There are three potential values: number, *, and
auto keyword.

The Basics    ◾    37

where,

•	 the number represents the absolute column width.

•	 specifies a column’s width concerning other columns. A number
can follow it to specify how many times the column width should
be relative to the other column. For example, 2* indicates that the
column’s width should be twice the width of the smallest column.

•	 auto specifies that the width of the column is the same as the
width of its widest child.

For example, *, 2* denotes two columns, the second of which will
be double the size of the first.

2.	rows: Used to denote the default height of each row, separated by a
comma. Columns are used to represent values.

GridLayout layouts its children using the attributes listed below:

•	 row: The row number.

•	 col: The number of the column.

•	 rowSpan: rowSpan is the total number of rows that a layout’s
child content spans.

•	 colSpan: colSpan is the total number of columns that a layout’s
child content spans.

Let us add the GridLayout container to our application’s main page as seen
below:

<ActionBar>
 <Label text="Home"></Label>
</ActionBar>
<GridLayout columns="40, auto, *" rows="40, auto,
*" width="220" height="220"
 backgroundColor="blue">
 <Label text="Row: 0; Column 0" row="0" col="0"
backgroundColor="yellow"></Label>
 <Label text="Row: 0; Column 1" row="0" col="1"
colSpan="1" backgroundColor="brown"></Label>
 <Label text="Row: 1; Column 0" row="1" col="0"
rowSpan="1" backgroundColor="red"></Label>

38    ◾    Mastering NativeScript: A Beginner’s Guide

 <Label text="Row: 1; Column 1" row="1" col="1"
backgroundColor="red"></Label>
</GridLayout>

StackLayout

StackLayout arranges its children in a one-dimensional line that can be hor-
izontally or vertically oriented. It may be sized using layout choices based
on the available space in the layout. It features an orientation property that
may determine whether the direction should be horizontal or vertical.

Let us add a StackLayout container to our application’s home page as
seen below:

<ActionBar>
 <Label text="Home"></Label>
</ActionBar>
<StackLayout orientation="vertical" width="210"
height="210" backgroundColor="blue">
 <Label text="Label1" width="40" height="40"
backgroundColor="green"></Label>
 <Label text="Label2" width="40" height="40"
backgroundColor="brown"></Label>
 <Label text="Label3" width="40" height="40"
backgroundColor="red"></Label>
 <Label text="Label4" width="40" height="40"
backgroundColor="orange"></Label>
</StackLayout>

WrapLayout

WrapLayout is a layout that is used to wrap information on new rows or
columns.

It possesses the three qualities listed below:

•	 orientation: Display the information horizontally or vertically.

•	 itemWidth: itemWidth specifies the layout width for each child.

•	 itemHeight: itemHeight specifies the layout height for each child.

Let us add the WrapLayout container to our application’s main page as
seen below:

<ActionBar>
 <Label text="Home"></Label>

The Basics    ◾    39

</ActionBar> <WrapLayout orientation="horizontal"
width="200" height="200" backgroundColor="blue">
 <Label text="Label1" width="70" height="70"
backgroundColor="green"></Label>
 <Label text="Label2" width="70" height="70"
backgroundColor="brown"></Label
 <Label text="Label3" width="70" height="70"
backgroundColor="red"></Label>
 <Label text="Label4" width="70" height="70"
backgroundColor="orange"></Label>
</WrapLayout>

FlexboxLayout

One of the sophisticated layout container components is the FlexboxLayout
container component. It allows us to produce simple layouts up to highly
complicated and refined layouts. It is built with CSS Flexbox.

The FlexboxLayout component has several attributes, which are as
follows:

1.	flexDirection: It denotes the order in which the child components
are placed. The following are the potential values for flexDirection:

•	 row: child components are stacked one on top of the other.

•	 row-reverse: row-reverse arranges child components side by side
but in the other direction.

•	 column: child components are stacked one on top of the other.

•	 column-reverse: child components are organized in a col-
umn-reverse fashion, one below the other but in the opposite
direction.

Let us add the FlexLayout container to our application’s homepage
as seen below:

<ActionBar>
 <Label text="Home"></Label>
</ActionBar>
<FlexboxLayout flexDirection="row">
 <Label text="First Item"
backgroundColor="yellow"></Label>
 <Label text="Second Item"
backgroundColor="red"></Label>

40    ◾    Mastering NativeScript: A Beginner’s Guide

 <Label text="Third Item"
backgroundColor="green"></Label>
 <Label text="Fourth Item"
backgroundColor="red"></Label>
 <Label text="Fifth Item"
backgroundColor="yellow"></Label>
</FlexboxLayout>

Change the flexDirection value from row to row-reverse and see how
it impacts the layout.

<ActionBar>
 <Label text="Home"></Label>
</ActionBar> <FlexboxLayout
flexDirection="row-reverse">
 <Label text="First Item"
backgroundColor="yellow"></Label>
 <Label text="Second Item"
backgroundColor="red"></Label>
 <Label text="Third Item"
backgroundColor="green"></Label>
 <Label text="Fourth Item"
backgroundColor="yellow"></Label>
 <Label text="Fifth Item"
backgroundColor="orange"></Label>
</FlexboxLayout>

Let’s try changing the f lexDirection value from row-reverse to
column to see how it impacts the layout:

<ActionBar>
 <Label text="Home"></Label>
</ActionBar>
<FlexboxLayout flexDirection="column">
 <Label text="First Item"
backgroundColor="green"></Label>
 <Label text="Second Item"
backgroundColor="red"></Label>
 <Label text="Third Item"
backgroundColor="yellow"></Label>
 <Label text="Fourth Item"
backgroundColor="red"></Label>
 <Label text="Fifth Item"
backgroundColor="green"></Label>
</FlexboxLayout>

The Basics    ◾    41

Let’s try changing the flexDirection value from column to column-
reverse and see how it impacts the layout:

<ActionBar>
 <Label text="Home"></Label>
</ActionBar>
<FlexboxLayout flexDirection="column-reverse">
 <Label text="First Item"
backgroundColor="green"></Label>
 <Label text="Second Item"
backgroundColor="red"></Label>
 <Label text="Third Item"
backgroundColor="yellow"></Label>
 <Label text="Fourth Item"
backgroundColor="red"></Label>
 <Label text="Fifth Item"
backgroundColor="green"></Label>
</FlexboxLayout>

2.	flexWrap: It specifies whether the child components will be shown in
a single row/column or will flow into several rows by wrapping in the
direction specified by flexDirection.

The following are the potential values:

•	 wrap: If no space is available in the specified direction, wrap the
child components (flexDirection).

•	 wrap-reverse: The same as a wrap, except the component flow is
in the other direction.

Add the flexWrap property and set its value to wrap. Also, as seen
below, add three more children:

<ActionBar>
 <Label text="Home"></Label>
&tl;/ActionBar>
<FlexboxLayout flexDirection="row"
flexWrap="wrap">
 <Label text="First Item"
backgroundColor="green"></Label>
 <Label text="Second Item"
backgroundColor="red"></Label>
 <Label text="Third Item"
backgroundColor="yellow"></Label>

42    ◾    Mastering NativeScript: A Beginner’s Guide

 <Label text="Fourth Item"
backgroundColor="red"></Label>
 <Label text="Fifth Item"
backgroundColor="green"></Label>
 <Label text="Sixth Item"
backgroundColor="red"></Label>
 <Label text="Seventh Item"
backgroundColor="green"></Label>
 <Label text="Eighth Item"
backgroundColor="red"></Label>
</FlexboxLayout>

3.	JustifyContent: It depicts how child components are placed in rela-
tion to one another and the overall structure. It has three properties,
which are listed below:

•	 flex-end: It pushes the child component to the end of the line.

•	 space-between: It packs the child component by distributing it
evenly in line.

•	 space-around: Similar to space-between, except it packs the
child component by evenly distributing it in line and equal space
surrounding it.

Let us also include justifyContent and see how it behaves:

<ActionBar>
 <Label text="Home"></Label>
</ActionBar>
<FlexboxLayout flexDirection="row" flexWrap="wrap"
justifyContent="space-around">
 <Label text="First Item"
backgroundColor="green"></Label>
 <Label text="Second Item"
backgroundColor="red"></Label>
 <Label text="Third Item"
backgroundColor="green"></Label>
 <Label text="Fourth Item"
backgroundColor="yellow"></Label>
 <Label text="Fifth Item"
backgroundColor="green"></Label>
 <Label text="Sixth Item"
backgroundColor="red"></Label>

The Basics    ◾    43

 <Label text="Seventh Item"
backgroundColor="yellow"></Label>
 <Label text="Eighth Item"
backgroundColor="red"></Label>
</FlexboxLayout>

The FlexLayout container adds two new parameters for its children
to control the order and shrinkability. These are their names:

•	 order: It sets the order in which the FlexLayout container’s chil-
dren will be displayed.

•	 flexShrink: It determines the children’s ability to shrink to level 0.

In this chapter, we learned about NativeScript’s introduction, how
NativeScript apps are made, why NativeScript is significant, and what sorts
of apps may be created with NativeScript. We also discussed NativeScript’s
benefits, features, and operation. We also spoke about installation and
architecture. In addition, we learned about Angular application in
NativeScript.

https://taylorandfrancis.com

45DOI: 10.1201/9781003299394-2

C h a p t e r 2

Structuring Your App

IN THIS CHAPTER

➢➢ Pages and navigation

➢➢ Understanding the basics of app layouts

➢➢ Using advanced layouts

➢➢ Styling NativeScript apps

In the last chapter, we learned about NativeScript’s architecture, installa-
tion, and use. This chapter will teach us about pages, navigation, layout,
and how to style apps in NativeScript.

NAVIGATION IN NativeScript
Users may utilize the navigation to swiftly swipe in to their preferred
screen, move across an app, or complete a specific activity. The naviga-
tion component assists us in implementing navigation from simple button
clicks to more complicated patterns.

The navigation differs significantly between the core and angular ver-
sions of NativeScript. While the core framework navigation is the founda-
tion for the navigation process, NativeScript’s Angular model incorporates
and extends the core navigation notion to make it compatible with the
Angular framework.

In this section, we’ll look at both basic navigation concepts and angular
navigation adoption.

https://doi.org/10.1201/9781003299394-2

46    ◾    Mastering NativeScript: A Beginner’s Guide

Fundamental Ideas

In this section, we’ll look at how navigation works in core NativeScript.
NativeScript divides navigation into four categories depending on the

direction it applies:

•	 Forward navigation

•	 Backward navigation

•	 Lateral navigation

•	 Bottom navigation

Forward Navigation
Forward navigation refers to directing users to the next level of hierarchy.
It’s built using two NativeScript components: Frame and Page.

Frame  The root level component for navigation is the frame. It is not a
visible container, but it serves as a container for page transitions.

As an example, consider the following:

<Frame id="featured" defaultPage="featured-page" />

Here,
Frame navigates to and renders the featured-page page component.

Page  The Page component is located next to the Frame component and
serves as a container for the user interface (UI) component. A simple
example is shown below:

<Page loaded="onPageLoaded">
 <ActionBar title="Item" class="action-bar"></
ActionBar>
 <AbsoluteLayout>
 <Label text="label"/<
 <Button text="navigate('another-page')"
tap="onTap"/>
 </AbsoluteLayout>

</Page>

Structuring Your App    ◾    47

Here, initially, Page loads and produces all of the UI components of the
screen.

When the user hits the button, they will be sent to another page.

Backward Navigation
The reverse navigation mechanism allows for backward travel via screens
within the same app or across apps. It is the total opposite of forward navi-
gation. To return to the previous page, use the simple goBack() function.

It is defined as follows:

<Page class="page" loaded="onPageLoaded">
 <ActionBar title="Item" class="action-bar">
</ActionBar>
 <StackLayout class="home-panel">
 <Button class="btn btn-primary" text="Hack"
tap="doHack"/>
 </StackLayout>
</Page>

Here,
When the user touches the button, the goBack() function is called. If a

previous page is accessible, goBack() returns the user to it.

Lateral Navigation
Lateral navigation is the movement of displays at the same level of hier-
archy. It is built on the hub pattern. BottomNavigation, Tabs, TabView,
SideDrawer, and Modal View are the navigation components that
enable it.

A basic example is as follows:

<Page class="pages" xmlns="http://www.nativescript.
org/tns.xsd">
 <ActionBar title="Hub" class="action-bar">
</ActionBar>
 <StackLayout class="home-panel">
 <Button class="btn btn-primary"
text="navigate('featuredpage')"
tap="navigateToFeatured" />
 <Button class="btn btn-primary"
text="navigate('searchpage')" tap="navigateToSearch" />
 </StackLayout>
</Page>

48    ◾    Mastering NativeScript: A Beginner’s Guide

The navigateToFeatured function here uses the navigate() method to
direct the visitor to the featured page.

Similarly, the navigateToSearch function takes the user to the search page.
The hub page may also be visited using the navigate method on the page

screen, and the goBack() function can be used to exit the hub page.
As an example, consider the following:

<Page class="page">
 <ActionBar title="Item" class="action-bar">
</ActionBar>
 <StackLayout class="home-panel">
 <Button class="btn btn-primary"
text="navigate('hubpage')" tap="navigateToHub" />
 <Button class="btn btn-primary" text="doHack()"
tap="doHack" />
 </StackLayout>
</Page>

Bottom and Tab Navigation
Tab-based navigation is the most frequent type of navigation in mobile
apps. The Tab navigation is either at the bottom of the screen or the top of
the screen, below the header. It is accomplished by combining the TabView
and BottomNavigation components.

Angular-Based Navigation

NativeScript’s navigation paradigm is extended to suit the Angular rout-
ing idea. NativeScriptRouterModule is a new module created by extending
Angular RouterModule.

The NativeScript angular navigation notion may be divided into the
sections listed below:

•	 Page-router-outlet tag

•	 nsRouterLink attractive

•	 RouterExtension class

•	 Custom RouterReuseStrategy

In this part, we’ll go through all of the angular navigation topics men-
tioned above.

Structuring Your App    ◾    49

Page-Router-Outlet
As previously stated, the page-router-outlet is Angular’s replacement for
the router-outlet. The page-router-outlet covers the NativeScript core navi-
gation framework’s Frame and Page strategy. Each page-router-outlet gen-
erates a new Frame component, and the outlet’s defined components are
wrapped in a Page component. The native navigate function is then used
to travel to a different page or route.

Router Link (nsRouterLink)
nsRouterLink is Angular’s RouterLink substitute. It allows a UI compo-
nent to use a route to link to another page. nsRouterLink additionally
offers the following two options:

•	 page Transition: This property is used to control the animation of
page transitions. True enables the default transition. False disables
the transition. The transition is determined by specific variables such
as slide, fadein, and so on.

•	 clearHistory: Boolean true clears nsRouterLink’s navigation history.

Here’s a basic example of code:

<Button text="Go Home" [nsRouterLink]="['/home']"
 pageTransition="slide" clearHistory="true">
</Button>

Router Extension
NativeScript provides the RouterExtensions class, which exposes the basic
NativeScript navigation mechanism.

RouterExtensions exposes the following methods:

•	 back

•	 canGoBack

•	 navigateByUrl

•	 backToPreviousPage

•	 navigate

•	 canGoBackToPreviousPage

50    ◾    Mastering NativeScript: A Beginner’s Guide

The following is a simple example of code utilizing RouterExtensions:

import { RouterExtensions } from "nativescript-
angular/router";
@Component({
 //
})
export class HomeComponent {
 constructor(private routerExtensions:
RouterExtensions) { }
}

Custom Route Reuse Strategy
To support the architecture of a mobile application, NativeScript employs
a bespoke route reuse approach (RouterReuseStrategy). A mobile applica-
tion varies from a web application in several ways.

For example, in a web application, the page can be deleted when the
user navigates away from the page and recreates when the user navigates
back to the page. However, with a mobile application, the page is saved and
reused. These ideas are taken into account when constructing the routing
concept.

Routes
A basic routing module in a NativeScript Angular application will look
like this:

import { NgModule } from "@angular/core";
import { Routes } from "@angular/router";
import { NativeScriptRouterModule } from
"nativescript-angular/router";
import { HomeComponent } from "./home.component";
import { SearchComponent } from "./search.component";
const routes: Routes = [
 { path: "", redirectTo: "/home", pathMatch: "full"
},
 { path: "home", component: HomeComponent },
 { path: "search", component: SearchComponent },
];
@NgModule({
 imports: [NativeScriptRouterModule.
forRoot(routes)],

Structuring Your App    ◾    51

 exports: [NativeScriptRouterModule]
})
export class AppRoutingModule { }

Here,
Except for a few differences, the routing module is relatively identical to

the Angular version. In actuality, NativeScript exposes its primary navigation
technique in a manner comparable to the Angular framework.

EVENTS HANDLING IN NativeScript
Events play a critical role in facilitating user interaction in any GUI
program. When a user interacts with the application, an event is triggered,
and a matching action is performed.

For example, the login procedure is initiated when a user hits the Login
button on an application’s login page.

Two people are involved in events:

•	 Event sender: The real event is raised by the event sender object.

•	 Event listener: Event listener is a function that listens for a particular
event and executes it when it occurs.

Observable Class

It is a predefined class for dealing with events. It is defined further down:

const Observable = require("tns-core-modules/data/
observable").Observable;

Almost every object in NativeScript inherits from the Observable class,
and hence every object supports events.

Event Listener

This section will learn how to build an object and add an event listener to it.

•	 Step 1: Create a button that is used to produce an event in the man-
ner shown below:

const Button = require("tns-core-modules/ui/
button").Button;
const testButton = new Button();

52    ◾    Mastering NativeScript: A Beginner’s Guide

•	 Step 2: Then, as seen below, add text to the button:

testButton.text = "Click";

•	 Step 3: Create a function called onTap as shown below:

let onTap = function(args) {
 console.log("clicked!");
};

•	 Step 4: Attach the tap event to the onTap function as seen below:

testButton.on("tap", onTap, this);

An alternative method for adding an event listener is as follows:

testButton.addEventListener("tap", onTap, this);

•	 Step 5: An alternate method of attaching an event is through the UI
itself, as detailed below:

<Button text="click" (tap)="onTap($event)"></Button>

Here,
$event is of the EventData type in this case. EventData has two

properties, which are as follows:

1.	Object: An observable instance used to trigger an event. It is the
Button object in this situation.

2.	EventName: This is the name of the event. It is a tap event in this
circumstance.

•	 Step 6: Finally, as mentioned below, an event listener can be detached/
removed at any moment:

testButton.off(Button.onTap);

We can also use the following format:

testButton.removeEventListener(Button.onTap);

Modifying BlankNgApp

Let’s change the BlankNgApp app to grasp the NativeScript events better.

•	 Step 1: Open the UI for the home component, src/app/home/home.
component.html, and add the following code:

<ActionBar>
 <Label text="Home"></Label>
</ActionBar>

Structuring Your App    ◾    53

<StackLayout>
 <Button text='Fire event' class="-primary"
color='white' (tap)='onButtonTap($event)'>
</Button>
</StackLayout>

Here,
The event is represented by tap, while Button represents the event

raiser.
The event listener is onButtonTap.

•	 Step 2: Open the code for the home component, “src/app/home/
home.component.ts,” and edit the code below:

import { Component, OnInit } from "@angular/
core";
import { EventData } from "tns-core-modules/data/
observable";
import { Button } from "tns-core-modules/ui/
button"
@Component({
 selector: "Home",
 templateUrl: "./home.component.html"
})
export class HomeComponent implements OnInit {
 constructor() {
 // Use the component constructor to inject
providers.
 }
 ngOnInit(): void {
 // Init your component properties here.
 }
 onButtonTap(args: EventData): void {
 console.log(args.eventName);
 const button = <Button>args.object;
 console.log(button.text);
 }
}

Here,
A new event listener, onButtonTap, has been added.
In the console, print the event name, tap and button text, and fire

an event.

54    ◾    Mastering NativeScript: A Beginner’s Guide

•	 Step 3: Start the app and press the button. It outputs the following
line to the console:

LOG from device <device name>: tap
LOG from device <device name>: Fire an event

DATA BINDING IN NativeScript
One of the advanced ideas provided by NativeScript is data binding.
NativeScript adheres as closely as possible to the Angular data binding
idea. Data binding allows the UI component to display/update the current
value of the application data model without the need for scripting.

NativeScript allows for two types of data binding. They are listed below:

•	 One-way data binding: When the model changes, the UI is updated.

•	 Two-way data binding: Sync the UI and the model. When the model
is changed, the UI is immediately updated, and when the UI receives
data from the user (the UI is updated), the model is likewise updated.

In this part, we’ll go through both notions.

One-Way Data Binding

To allow one-way data binding in a UI component, NativeScript provides
a simple option. To enable one-way data binding, just include a square
bracket in the target UI’s property and then assign it the relevant model’s
property.

To edit the text content of a Label component, for example, just change
the UI code as follows:

<Label [text]='this.model.prop' />

Here,
The term “this.model.prop” refers to the model’s property, this.model.
Let’s modify our BlankNgApp to understand one-way data binding

better.

•	 Step 1: Create a new model, User (src/model/user.ts), as shown below:

export class User {
 name: string
}

Structuring Your App    ◾    55

•	 Step 2: Open the UI for our component, src/app/home/home.com-
ponent.html, and make the following changes to the code:

<ActionBar>
 <Label text="Home"></Label>
</ActionBar>
<GridLayout columns="*" rows="auto, auto, auto">
 <Button text="Click-here to greet" class="-
primary" color='gray'
 (tap)='onButtonTap($event)' row='1'
column='0'>
 </Button>
 <Label [text]='this.user.name' row='2'
column='0'
 height="40px" textAlignment='center'
style='font-size: 15px;
 font-weight: bold; margin: 0px 32px 0
25px;'>
 </Label>
</GridLayout>

Here,
The text of the Label is set to the property name of the user model

in this case.
The onButtonTap method is associated with the button tap event.

•	 Step 3: Open the code for the home component, src/app/home/home.
component.ts, and make the changes shown below:

import { Component, OnInit } from "@angular/core";
import { User } from "../../model/user"
@Component({
 selector: "Home",
 templateUrl: "./home.component.html"
})
export class HomeComponent implements OnInit {
 public user: User;
 constructor() {
 // Use the component constructor to inject
providers.
 this.user = new User();
 this.user.name = "User1";
 }
 ngOnInit(): void {

56    ◾    Mastering NativeScript: A Beginner’s Guide

 // Init your component properties here.
 }
 onButtonTap(args: EventData) {
 this.user.name = 'User2';
 }
}

Here,
The user model is imported.
The constructor of the component creates the user object.
The onButtonTap event has been implemented. onButtonTap

implementation The User object is updated, and the property’s name
is changed to User2.

•	 Step 4: Compile and run the program, then click the button to
change the model, and the Label text will be changed automatically.
The application’s initial and final states will also change.

Two-Way Data Binding

For sophisticated functionality, NativeScript also supports two-way data
binding. It ties the model data to the UI and the data changed in the UI to
the model.

To do two-way data binding, utilize the ngModel property and sur-
round it with [] and (), as seen below:

<TextField [(ngModel)] = 'this.user.name'></TextField>

To further understand the two-way data binding, let’s modify the
BlankNgApp application.

•	 Step 1: Import the NativeScriptFormsModule into the HomeModule
(src/app/home/home.module.ts) as shown below:

import { NgModule, NO_ERRORS_SCHEMA } from
"@angular/core";
import { NativeScriptCommonModule } from
"nativescript-angular/common";
import { HomeRoutingModule } from "./home-routing.
module";
import { HomeComponent } from "./home.component";
import { NativeScriptFormsModule } from
"nativescript-angular/forms";

Structuring Your App    ◾    57

@NgModule({
 imports: [
 NativeScriptCommonModule,
 HomeRoutingModule,
 NativeScriptFormsModule
],
 declarations: [
 HomeComponent
],
 schemas: [
 NO_ERRORS_SCHEMA
]
})
export class HomeModule { }

The NativeScriptFormsModule supports two-way data binding in
this case. Otherwise, the two-way data binding will not function
properly.

•	 Step 2: Modify the UI of the home component as shown below:

<ActionBar> <Label text="Home"></Label>
</ActionBar>
<GridLayout columns="*" rows="auto, auto">
 <TextField hint="Username" row='0' column='0'
color="white"
 backgroundColor="lightyellow" height="74px"
[(ngModel)]='this.user.name'>
 </TextField>
 <Label [text]='this.user.name' row='1'
column='0' height="40px"
 textAlignment='center' style='font-size:
14px; font-weight: bold;
 margin: 0px 32px 0 25px;'>
 </Label>
</GridLayout>

Here,
The text attribute of the Label component is set to one-way data

binding. If the model user is modified, the text property will also be
updated.

The ngModel is assigned to this.user.name by the TextField com-
ponent. If the model user is modified, the text property will also be
updated. Simultaneously, if the user changes TextField’s value, the

58    ◾    Mastering NativeScript: A Beginner’s Guide

model is updated. When the model is modified, the text attribute of
the Label is also changed. As a result, if the user modifies the data, it
will be shown in the Label’s text attribute.

•	 Step 3: Start the program and try changing the value of the text field.
The application’s initial and final states will be comparable.

MODULES FOR NativeScript
A NativeScript module is a collection of linked features packed into a single
library. Let’s have a look at the NativeScript framework’s modules.

It includes the NativeScript framework’s fundamental functionality.
Let’s go through the main modules in this session.

Application

The application includes platform-specific mobile application implemen-
tation. A basic core module is defined below:

const applicationModule = require("tns-core-modules/
application");

Console

Messages are logged using the Console module. It employs the following
methods:

console.log("My FirstApp project");
console.info("Native apps!");
console.warn("Warning message!");
console.error("Exception occurred");

Application-settings

The application-settings module offers a way for managing application
settings. To include this module, we must include the following code:

const appSettings = require("tns-core-modules/
application-settings");

The following are a few techniques accessible in the application-setting:

•	 setBoolean (key: string, value: boolean): creates a boolean object.

•	 setNumber(key: string, value: number): creates a number object.

Structuring Your App    ◾    59

•	 setString(); (key: string, value: string): creates a string object.

•	 getAllKeys(): returns a list of all keys that have been saved.

•	 hasKey(key: string): determines whether or not a key is present.

•	 Clean: removes all previously saved values.

•	 Delete: deletes any entry depending on the key.

The following is a simple example of an application setting:

function onNavigatingTo(args) {
 appSettings.setBoolean("isTurnedOff", false);
 appSettings.setString("name", "nativescript");
 appSettings.setNumber("locationX", 54.321);
 const isTurnedOn = appSettings.
getBoolean("isTurnedOn");
 const username = appSettings.getString("username");
 const locationX = appSettings.
getNumber("locationX");
 // if there is no value for "noKey" return "not
present"
 const someKey = appSettings.getString("noKey",
"not-present");
}
exports.onNavigatingTo = onNavigatingTo;
function onClear() {
 // Removing single entry
 appSettings.remove("isTurnedOff");
 // Clearing whole settings
 appSettings.clear();
}

•	 http: This module handles http requests and responses. Add the
following code to our application to include this module:

const httpModule = require("tns-core-modules/http");

•	 getString: This method is used to perform a request and download
data from a URL as a string. It is defined further down:

httpModule.getString("https://.../get").then(
 (r) => {
 viewModel.set("getStringResult", r);
 }, (e) =>

60    ◾    Mastering NativeScript: A Beginner’s Guide

 {
 }
);

•	 getJSON: It is used to access JSON data. It is defined further down:

httpModule.getJSON("https://.../get").then((r) => {
}, (e) => {
});

•	 getImage: Downloads the specified URL’s content and returns an
ImageSource object. It is defined further down:

httpModule.getImage("https://.../image/jpeg")
.then((r) => {
}, (e) => {
});

•	 getFile: It takes two arguments: the URL and the file location.

•	 URL: The data is downloaded.

•	 File path: Save URL data to a file using the file path. It is defined as
follows:

httpModule.getFile("https://").then((resultFile)
=> {
}, (e) => {
});

•	 request: It has a choice argument. Its purpose is to request options
and provide an HttpResponse object. It is defined as follows:

httpModule.request({
 url: "https://.../get",
 method: "GET"
}).then((response) => {
}, (e) => {
});

Image-source

The image-source module is used to store the picture. We may add this
module using the following statement:

const imageSourceModule = require("tns-core-modules/
image-source");

Structuring Your App    ◾    61

If we wish to load pictures from a resource, use the code below:

const imgFromResources = imageSourceModule
.fromResource("icon");

Use the command below to add a picture from a local file:

const folder = fileSystemModule.knownFolders
.currentApp();
const path = fileSystemModule.path.join(folder.path,
"images/sample1.png");
const imageFromLocalFile = imageSourceModule
.fromFile(path);

Use the command below to save a picture to a file path:

const img = imageSourceModule.fromFile(imagePath);
const folderDest = fileSystemModule.knownFolders.
documents();
const pathDest = fileSystemModule.path.
join(folderDest.path, "sample1.png");
const saved = img.saveToFile(pathDest, "png"); if
(saved) {
 console.log(" sample image saved successfully!");
}

Timer

This module is used to run programs at specific time intervals. To do so,
we’ll need to utilize require:

const timerModule = require("tns-core-modules/
timer");

It is based on two approaches.

•	 setTimeout: This function is used to postpone the execution. It is
measured in milliseconds.

•	 setInterval: This method is used to apply to repeat at predefined
intervals.

62    ◾    Mastering NativeScript: A Beginner’s Guide

Trace

This module can be used for debugging. It provides logging information.
This module can be denoted as:

const traceModule = require("tns-core-modules/
trace");

If we wish to activate it in your application, use the command below:

traceModule.enable();

ui/image-cache

Image download requests are handled by the image-cache module, which
caches downloaded images. This module is illustrated as follows:

const Cache = require("tns-core-modules/ui/image-
cache").Cache;

Connectivity

This module is used to receive the connected network’s connection infor-
mation. It can be written as:

const connectivityModule = require("tns-core-modules/
connectivity");

Modules of Functionality

A large number of system/platform specific modules are included
in functionality modules. The following are some of the essential
modules:

•	 platform: A platform is used to display information about our device.
It can be defined as follows:

const platformModule = require("tns-core-modules/
platform");

•	 fps-meter: A tool that measures the number of frames per second. It
can be defined as follows:

const fpsMeter = require("tns-core-modules/
fps-meter");

Structuring Your App    ◾    63

•	 file-system: This function is used to interact with our device’s file
system. It is defined further down:

const fileSystemModule = require("tns-core-
modules/file-system");

•	 ui/gestures: This is used to work with UI gestures.

The Module of UI

The UI component and its associated capabilities are included in the UI
module. The following are some of the essential UI modules:

•	 frame

•	 page

•	 animation

•	 text/formatted-string

•	 xml

•	 color

•	 styling

PLUGINS FOR NativeScript
The npm package is used to provide native functionality to a project. We
may use this package to install, search for, and uninstall plugins. This
section goes into great detail on plugins.

Commands:

•	 add: It’s used to install plugins.

•	 update: This function updates the given plugin and modifies its
dependencies.

•	 remove: Uninstall the plugin.

•	 build: This command is used to create plugins for iOS or Android
projects.

•	 create: This command generates a plugin for your project.

64    ◾    Mastering NativeScript: A Beginner’s Guide

Adding Plugins

The syntax shown below is used to create a new plugin:

tns plugin add <plugin-name>

For example, if we want to include nativescript-barcodescanner, we may
use the code below:

tns plugin add nativescript-barcodescanner

We may also use npm module to add the plugin mentioned above:

npm install nativescript-barcodescanner

NativeScript CLI now fetches the plugin from npm and installs it in our
node modules folder.

If we want to directly add the plugin to our package.json and avoid any
dependency concerns, use the following command instead of the previous
one:

npm i nativescript-barcodescanner

If we wish to install developer requirements while developing, use the code
below:

npm i tns-platform-declarations --save-dev

Here,
tns-platform-declarations is a developer dependency that is only neces-

sary for intelliSense during development.

Importing Plugins

We have now installed the nativescript-barcodescanner plugin. Let us
insert the following command into our project:

const maps = require("nativescript-barcodescanner");
maps.requestPermissions();

Structuring Your App    ◾    65

Updating Plugins

This approach updates a specific plugin by uninstalling the previous ver-
sion, installing the new version, and modifying its dependencies. It is
defined further down:

tns plugin update <Plugin name version>

Removing Plugin

If we wish to uninstall the plugin, use the syntax below if it is not necessary:

tns plugin remove <plugin-name>

For example, if we wish to remove the previously installed nativescript-
google-maps-sdk, use the command below:

tns plugin remove nativescript-barcodescanner

We could see the following response:

Successfully removed plugin
nativescript-barcodescanner

Building Plugins

It generates the plugin’s Android-specific project files, which may be found
at platforms/android. Let us create the nativescript-barcodescanner plugin
using the command below:

tns plugin build nativescript-barcodescanner

Creating Plugins

NativeScript plugins are specific JavaScript modules. It is defined in the
srcpackage.json file of our application. This module is used to build a new
project for the creation of NativeScript plugins. It is defined further down:

tns plugin create <Plugin Repository Name> [--path
<Directory>]

NATIVE APIs USING JavaScript
This section provides an overview of how to use JavaScript to access Native
APIs.

66    ◾    Mastering NativeScript: A Beginner’s Guide

Marshaling

For both Android and iOS platforms, the NativeScript Runtime supports
implicit type conversion. This is referred to as marshaling. NativeScript-iOS
platform, for example, may implicitly translate JavaScript and Objective-C
data types, and Java/Kotlin can be readily mapped to JavaScript project
types and values. Let’s take a quick look at how to marshal in each category.

Numeric Values

We can simply convert numeric data types from iOS and Android to
JavaScript numbers. The following defines a simple number translation for
iOS into JavaScript:

console.log('max(6,9) = ${max(6,9)}');

Here,
The JavaScript number is converted from the native max() method.

Android Environment

Java offers a variety of numeric types, including byte, short, int, float, dou-
ble, and long. JavaScript only supports the numeric type.

Consider the following simple Java class:

class Demo extends java.lang.Object {
 public int maxMethod(int c,int d) {
 if(c>d) {
 return c;
 } else {
 return d;
 }
 }
}

The preceding code has two integer parameters. We may use JavaScript to
invoke the above code object, as demonstrated below:

//Create an instance for the Demo class
var obj = new Demo();

//implicit integer conversion for calling the above
method
obj.maxMethod(6,9);

Structuring Your App    ◾    67

Strings

Strings for Android are defined in java.lang.string, while strings for iOS are
specified in NSSring. Let’s take a look at how to marshal on both platforms.

Android
Strings are immutable; however, String buffers can handle mutable strings.

An example of basic mapping is shown in the code below:

//Create widget of android label
var label = new android.widget.Label();

// JavaScript string Create
var str = "Label1";

//Convertion of JavaScript string into java label
.setText(str);
// text converted to java.lang.String

Java.lang.Boolean defines the Boolean class. This class encapsulates a bool-
ean value in an object. We can convert boolean to String and vice versa
with ease. A simple example is shown below:

// java string creation
let data = new java.lang.String('NativeScript');

//map of java String to JavaScript string,
let result = data.startsWith('N');

// result return
console.log(result);// true

iOS Environment

Although the NSString class is immutable, its subclass NSMutableString
is not. This class includes a set of methods for interacting with strings. It
is said as follows:

class NSString : NSObject

Consider the following objective-c declaration:

NSString *str = @"nativescript";

68    ◾    Mastering NativeScript: A Beginner’s Guide

// the string to uppercase convertion
NSString *str1;
str1 = [str uppercaseString];
NSLog(@"Uppercase String : %@\n", str1);

JavaScript strings can be simply mapped to NSStrings.

Arrays

This section describes how to implement array marshaling. Let’s start with
an example from the iOS ecosystem.

Declaration of an Array

class NSArray : NSObject

In this case, NSArray is utilized to handle an ordered collection of objects
known as arrays. It’s used to make a static array. NSMutableArray, a sub-
class of it, is used to build dynamic arrays.

Consider the following: NSArray objects may be built using array literals:

let array: NSArray = ["React","Vue","TypeScript"]

Now, as seen below, we can map this array into JavaScript.

// native array creation
let nsArr = NSArray.arrayWithArray("React","Vue","Type
Script"]);

// simple javascript array creation
let jsArr = ["Hello,World","NativeScript"];

//compare the two arrays,
let compare = nsArr.isEqual(jsArr);
console.log(comapre);

Array Declaration in Android
Arrays in Java are defined in java.util.Arrays. This class offers different
array manipulation methods. An example is shown below:

//javascript array
let data = [13,46,22,54,32,79,51];

Structuring Your App    ◾    69

// java array creation
let result = ns.example.Math.maxElement(data);
console.log(result);

Classes and Objects

Object-Oriented Programming’s fundamental ideas are classes and
objects. Class is a prototype that the user has defined. An object is a class
instance. A class is a collection of attributes or methods common to all
objects of the same kind. Let’s look at native classes and objects in both
mobile development environments.

Android Environment
The whole package name serves as a unique identification for Java and
Kotlin classes.

As an example:
android.view.View: It is a simple UI class for screen layout and user inter-

action. This class may be accessed using JavaScript, as illustrated below:

const View = android.view.View;

First, we import the class using the following expression:

import android.view.View;

Then, as seen below, build a class:

public class MyClass {
 public static void staticMethod(context) {
 // view instance creation
 android.view.View myview = new android.view.
View(context);
 }
}

We may access JavaScript functions in the class mentioned above by using
the code below:

const myview = new android.view.View(context);

Similarly, within java.lang packages, we may access interfaces, constants,
and enumerations.

70    ◾    Mastering NativeScript: A Beginner’s Guide

iOS Environment
Classes in Objective-C are divided into two sections: @interface and
@implementation. The term @interface is followed by the name of the
interface(class) in the class specification. All classes in Objective-C are
derived from the fundamental class NSObject.

It is the superclass class for all Objective-C classes. The Simple Circle
class is defined as follows:

@interface Circle:NSObject {
 //Instance-variable
 int radius;
}
@end

Consider the following class, which has only one method:

@interface MyClass : NSObject
+ (void)baseStaticMethod;
@end

The code below may be used to convert this class to javascript:

function MyClass() { /* native call */ };
Object.setPrototypeOf(MyClass, NSObject);
BaseClass.baseStaticMethod = function () { /* native
call */ };

The instanceof operator in JavaScript is used to determine whether an
object derives from a specific class. This can be expressed as:

var obj = MyClass.alloc().init(); // creation of
object
console.log(obj instanceof NSObject); //return
value(true)

In this case, Objective-C objects are created with the alloc, init, or new
methods. In the above example, we can easily generate object initialization
by utilizing the new method as shown below:

var obj = MyClass.new();

Static methods and properties can also be accessed in the same way.

Structuring Your App    ◾    71

NativeScript – ANDROID APPLICATION DEVELOPMENT
When we create and publish our app, it becomes available to all users. Google
Play is a well-developed publishing platform. It allows us to publish and dis-
tribute our Android applications to individuals around the globe. This session
will walk through the process of publishing our Native app to Google Play.

Sidekick for NativeScript

SideKick is a graphical UI client that works with all operating systems. It
streamlines the NativeScript CLI process and aids in the development of
mobile applications.

Publish Our Sidekick App to Google Play Console
The download and installation of sidekick are dependent on our operating
system. To run our app in Sidekick, follow the steps below:

•	 Step 1: Launch Sidekick

•	 Step 2: Create our device
Now, run our app on your smartphone and pick the build option

from the toolbar, then Android.

•	 Step 3: Properties
Select the properties tab and add our Android setup.

•	 Step 4: Plugins
Sidekick assists us in determining which plugins rely on for our

application. Select the Plugins tab.

•	 Step 5: Android certificates
Click the cogwheel icon on Android and select Browse, then

choose a certificate from our file system.
Close the dialogue box when we’ve made our selection.

•	 Step 6: Build our application
Finally, from the build, choose local build, and then from the con-

figuration drop-down menu, select release. After that, we’ll create
our application.

•	 Step 7: Application package
When the build is finished, it will produce a directory and an apk

file. Save the application package’s location. This apk file is needed to
upload to Google Play.

72    ◾    Mastering NativeScript: A Beginner’s Guide

•	 Step 8: Publish in Google Play
Select Google Play from the toolbar’s publish option. Then, in the
Manage Android Certificates for Google Play Store window, click Add.

Then, choose Build type and enter our Service Account JSON key,
select Alpha, Beta, or Production tracks, and click Upload.

Publish Our App to Google Play
To publish our app on Google Play Console, we must first complete the
following requirements:

•	 We must be logged in to Google Play.

•	 We have a Google Play self-signed code signing identity that is valid.

Procedure for Releasing our App

The methods below will help us understand how to publish our app on the
Google Play store.

•	 Step 1: Access the Google Play console
Open the Google Play interface and sign in with our Google account.

•	 Step 2: Develop an app
Create a new app by going to the All Applications page and click-

ing Create Application. Now, add the default language, application
title, and finally click go to begin.

•	 Step 3: Complete the essential fields
Navigate to the shop listing page, fill in the appropriate data, and

finish the required assets and save all changes.

•	 Step 4: Determine a price and a distribution strategy
Go to the Pricing and Distribution page, complete all of the

parameters, and save all our changes.

•	 Step 5: Release your app
Select Alpha, Beta from the App Releases tab. It is used to put

our application through its paces. Also, choose Production tracks.
It’s utilized to get our software onto Google Play. Finally, include the
application package (apk).

•	 Step 6: Review our app
This is the last step. Check the Review to see if there are any prob-

lems. If there are no difficulties, confirm rollout to publish our app.

Structuring Your App    ◾    73

OUR FIRST APPLICATION
Make our First NativeScript Application:

From setting up our development environment to launching the app on
our device, We’ll guide through the whole process of creating an app with
NativeScript. Here’s a synopsis of what I’ll be talking about:

1.	 Installing NativeScript

2.	Creating the app

3.	Launching the app

4.	Application debugging

We’ll be operating the app, particularly on the Android platform.
However, if we want to deploy to iOS, we can still follow along because the
code will be identical. The only differences are in the process of installing
NativeScript and the instructions that are executed when the program is
launched.

Setting Up NativeScript

To get NativeScript up and running, we must first install Node.js. After
installing Node.js, run npm install -g nativescript in your terminal to
install the NativeScript command-line utility.

The last step is to install the development tool for each platform to
which we intend to deploy. The Android SDK is what we’re looking for
if we’re looking for a way to get started with Android. It’s XCode for iOS.
After configuring our environment, run tns doctor to ensure that it’s ready
for NativeScript development.

Note:

•	 Only Mac OS X computers may be used to build for iOS.

•	 To work with iOS devices and projects, we must have Mac OS X
Mavericks or later.

•	 Our components are updated.

•	 There were no problems discovered.

There’s a statement stating that we can only create for iOS on Mac OS X
PCs. This implies that if we’re using a PC, we can only deploy to Android

74    ◾    Mastering NativeScript: A Beginner’s Guide

devices. However, if we’re working on a Mac, we’ll be able to deploy to both
the iOS and Android platforms.

If we run into any issues during the setup, we may request an invitation
to the NativeScript Slack Community, and once there, head to the getting
started to channel and express our concerns there.

Creating the APP

The app that we will create is a note-taking app. It will allow the user to
make notes, each with the option of attaching a picture obtained with the
device’s camera. The notes are saved using NativeScript application set-
tings and can be erased separately.

To begin, use the following command to generate a new NativeScript
project:

tns create noter --appid "com.yourname.noter"

The project’s name is noter, and the app ID is com.yourname.noter. This
will be used to identify our software once submitted to the Play or App
Store. The tns create command will automatically generate the following
folders and files for us:

•	 app

•	 node_modules

•	 platforms

•	 package.json

Typically, we’ll just need to touch the files in the app directory. Nevertheless,
there may be situations when we need to make changes to files under the
platforms/android directory. One example is when a plugin we’re attempt-
ing to utilize does not immediately link the dependencies and files required.

Then, in the app directory, remove all files except the App Resources
folder. After that, make the following files:

•	 app.js

•	 app.css

•	 notes-page.js

•	 notes-page.xml

Structuring Your App    ◾    75

These are the files that the NativeScript runtime will make use of .css files are
used for style, and.js files are utilized for functionality, much like when con-
structing web pages. However, for the app’s markup, we utilize XML rather
than HTML. Typically, each app screen (e.g., login, sign up, or dashboard)
would have its folder with XML, CSS, and JavaScript files. However, because
our app has one screen, we generated all of the files in the root directory.

The Entry Point File

Open and Add the following code to the app.js file:

var application = require("application");
application.start({ moduleName: "notes-page" });

This is where a NativeScript application begins. It specifies the module
used for the app’s initial page using the application module and its start
function. In this situation, we specified notes-page, which implies the
module is notes-page.js, the markup is notes-page.xml, and the page style
is notes-page.css. This is a NativeScript convention that requires all files for
a single page to have same name.

UI Markup Adding

Open the notes-page.xml file and add the following code:

<Page xmlns="http://schemas.nativescript.org/tns.xsd"
loaded="pageLoaded">
 <Page.actionBar>
 <ActionBar title="{{ app_title }}">
 <ActionBar.actionItems>
 <ActionItem tap="newNote" ios.
position="left" android.position="actionBar">
 <ActionItem.actionView>
 <StackLayout
orientation="horizontal">
 <Label text="New Item"
color="yellow" cssClass="header-item" />
 </StackLayout>
 </ActionItem.actionView>
 </ActionItem>
 </ActionBar.actionItems>
 </ActionBar>
 </Page.actionBar>

76    ◾    Mastering NativeScript: A Beginner’s Guide

 <StackLayout>
 <StackLayout id="form"
cssClass="form-container">
 <TextView text="{{ item_title }}"
hint="Title" />
 <Button text="Attach Image" cssClass="link
label" tap="openCamera" />
 <Image src="{{ img }}" id="img"
cssClass="image" visibility="{{ attachment_img?
'visible' : 'collapsed' }}" />
 <Button text="Note Save" tap="Notesave"
cssClass="primary-button" />
 </StackLayout>

 <ListView items="{{ notes }}" id="list"
visibility="{{ showForm? 'collapsed' : 'visible' }}">
 <ListView.itemTemplate>
 <GridLayout columns="*,*"
rows="auto,auto" cssClass="item">
 <Label text="{{ title's }}"
textWrap="true" row="0" col="0" />
 <Image src="{{ photo's }}"
horizontalAlignment="center"
verticalAlignment="center" cssClass="image" row="1"
col="0" visibility="{{ photo? 'visible' : 'collapsed'
}}" />
 <Button text="Delete" index="{{
index }}" cssClass="delete-button" tap="deleteNote"
row="0" col="1" horizontalAlignment="right"
loaded="btnLoaded" />
 </GridLayout>
 </ListView.itemTemplate>
 </ListView>
 </StackLayout>
</Page>

When building app pages in NativeScript, always begin with the <Page>
tag. This is how NativeScript detects that we are attempting to create a new
page. The xmlns property gives the URL to the XML file’s schema.

If we go to the supplied schema URL, we will see the definitions of
all the XML tags that we may use in NativeScript. The loaded property
provides the function that will be run after the page has been loaded.

Structuring Your App    ◾    77

This function declaration will be examined later in the notes-page.js
file.

<Page xmlns="http://schemas.nativescript.org/tns.xsd"
loaded="pageLoaded">
 ...
</Page>

By default, the app header merely contains the program’s title. If we wanted
to add other UI components, we’d have to redefine it using <Page.action-
Bar>. Then, within, we describe what we wish to appear in the header. The
title is given by using <ActionBar> and setting the title property to the
desired page title.

The moustache syntax is used below to print the value of app title defined
in the notes-page.js file. This is how we output values connected to a page.

<Page.actionBar>
 <ActionBar title="{{ app_title }}">
 ...

 </ActionBar>
</Page.actionBar>

To define buttons, use <ActionBar.actionItems> as the parent, and each
ActionItem> will represent the buttons that we wish to specify. The tap
property defines a method that will be run when the button is tapped,
whereas os.position and android.position are the button’s positions in iOS
and Android, respectively.

We might utilize the text property of the <ActionItem> to provide
the button text. However, at the moment, NativeScript does not support
altering the text color of the button using CSS. As a result, we’ve used
ActionItem.actionView> to specify the content of the button and set its
text color instead.

<ActionBar.actionItems>
 <ActionItem tap="newNote" ios.position="left"
android.position="actionBar">
 <ActionItem.actionView>
 <StackLayout orientation="horizontal">
 <Label text="New Item" color="lightgrey"
cssClass="header-item" />

78    ◾    Mastering NativeScript: A Beginner’s Guide

 </StackLayout>
 </ActionItem.actionView>
 </ActionItem>
</ActionBar.actionItems>

The actual page content comes afterward. We may organize the various
elements by using one or more of the layout containers. We’ve utilized two
of the possible layouts in the examples below StackLayout and GridLayout.

StackLayout allows us to stack all of the components included inside it.
This layout’s orientation is vertical by default; thus, each UI component is
stacked below the last. Consider lego blocks in a downhill flow.

GridLayout, on the other hand, allows you to arrange components in
a table structure. If we’ve used Bootstrap or other CSS grid frameworks
before, this should seem intuitive. The GridLayout enables us to specify
the rows and columns in which each UI component will be positioned.

We’ll look into how this is done eventually. For the time being, let’s get
to the coding.

Let’s start by defining the form for adding a new note. You may specify
elements like id and cssClass (similar to HTML’s class property) just as in
HTML. If we wish to alter an element from code, the id attribute is associ-
ated with it. In our scenario, we want to animate the shape later. cssClass
specifies the CSS class that will be used to style the element.

A text area for inputting the note title, a button for adding an image, the
selected picture, and a button for saving the note are all included within
the form.

The image element is only displayed if the attachment img property is
set to true. If an image was previously connected, this will be the case.

<StackLayout id="form" cssClass="form-container">
 <TextView text="{{ item_title }}" hint="Title" />
 <Button text="Attach-Image" cssClass="link label"
tap="openCamera" />
 <Image src="{{ attachmentimg }}" id="attachmentimg"
cssClass="image" visibility="{{ attachment_img?
'visible' : 'collapsed' }}" />
 <Button text="Note Save" tap="saveNote"
cssClass="primary-button" />
</StackLayout>

Following that is a collection of the user’s previously added notes. The
ListView component is used to construct lists. Items are accepted as a

Structuring Your App    ◾    79

necessary attribute. The value might be a simple array or an observable
array.

A normal JavaScript array will suffice if we do not need to conduct any
type of modification (e.g., deleting or updating a field) on each item in
the array. Otherwise, utilize an observable array, which allows us to make
changes to the array and have them automatically reflected in the UI.

It’s also worth noting that a ListView may have an itemTap property,
which allows us to define the function that should be called when a
ListView item is tapped. However, we haven’t truly included it in this case
because we don’t need to take any action when an item is tapped.

<ListView items="{{ notes }}" id="list" visibility="{{
showForm? 'collapsed' : 'visible' }}">
 ...
</ListView>

<ListView.itemTemplate> may be used to specify the items in the ListView.
We’re going to use a<GridLayout> to make two rows and two columns. The
columns property is used to indicate the number of columns in each row.

In this situation, *,* indicates two columns, each taking up an equal
amount of space in the current row. So, if the entire row is 300 pixels big,
each column will be 150 pixels wide. So, each * symbolizes one column,
and a comma separates each one.

The rows property is similar, except it regulates how much space a single
row takes up. It will only take up the space required by the children of each
row if it is set to auto.

After establishing the GridLayout’s columns and rows, we must spec-
ify which of its children belongs to which row and column. The first row
includes the item’s title (1st column) and the delete button (2nd column).
The picture that was connected to the item is shown in the second row
(1st column). The row and column attributes for each element are used to
specify the row and columns.

Take note of the use of horizontalAlignment and verticalAlignment as
well. Consider this the NativeScript counterpart of the HTML text-align
property. We’re aligning UI components instead of text. VerticalAlignment
may be set to top, bottom, center, or stretch, whereas horizontalAlignment
can be set to right, left, center, or stretch. Most of them are self-explana-
tory, except for stretch, which expands to take up the available horizontal
or vertical space.

80    ◾    Mastering NativeScript: A Beginner’s Guide

HorizontalAlignment and verticalAlignment are used in this sce-
nario to center the image both horizontally and vertically within its
column.

And on the delete button, horizontalAlignment is used to align it to the
right-most area of the second column.

<ListView.itemTemplate>
 <GridLayout columns="*,*" rows="auto,auto"
cssClass="item">
 <Label text="{{ title's }}" textWrap="true"
row="0" col="0" />
 <Image src="{{ photo's }}"
horizontalAlignment="center"
verticalAlignment="center" cssClass="image" row="1"
col="0" visibility="{{ photo? 'visible' : 'collapsed'
}}" />

 <Button text="Delete" index="{{ index }}"
cssClass="delete-button" tap="deleteNote" row="0"
col="1" horizontalAlignment="left" loaded="btnLoaded" />
 </GridLayout>
</ListView.itemTemplate>

The ListView does not have an itemTap property. Instead, we’d want to add
a delete action that would be done a delete button anytime within a list
item is touched. Each item has an index attribute, which we pass as a cus-
tom attribute to the delete button. This is the unique key used to identify
each object to refer to it when needed simply.

Take note of the loaded property as well. Buttons can have a loaded
property, much like <Page>. You’ll see how this is utilized later.

JavaScript Code

Now we’ll have a look at the JavaScript that makes everything work. We’ll
write the notes-page.js file in this part.

Initialization
First, we import the modules data/observable and data/observable-array.
These are NativeScript built-in modules that allow us to construct observ-
able objects and arrays. Observables enable us to update the UI as these
objects and arrays change automatically.

Structuring Your App    ◾    81

PageArray is used in our program to store the array of notes, and page-
Data connects it to the page. pageData additionally acts as a basic con-
tainer for any data that will be displayed in the UI.

var Observable = require("data/observable");
var ObservableArray = require("data/
observable-array");
var pageArray = new ObservableArray.ObservableArray();
var pageData = new Observable.Observable({
 notes: pageArray
});

Import all of the additional modules that we’ll be utilizing on this page next:

•	 camera: for use with the device’s camera.

•	 view: used to refer to certain items on the page. Consider it the docu-
ment’s equivalent. In NativeScript, use getElementById.

•	 ui/enums: global dictionary of constant values for anything UI-related.

•	 ui/animation: used to animate items.

•	 application-settings: used for storing local data.

•	 file-system: used to work with the filesystem.

var cameraModule = require("camera");
var view = require("ui/core/view");
var uiEnums = require("ui/enums");
var animation = require("ui/animation");
var appSettings = require("application-settings");
var fs = require("file-system");

Then, set the values for the variables that will be used throughout the file.
page is used to store a reference to the current page, notesArr is a simple
array copy of the page’s current notes, and current_index is the index’s
starting value, which is used as the unique ID for every note.

var page;

var notesArr = [];

var current_index = -1;

82    ◾    Mastering NativeScript: A Beginner’s Guide

The pageLoaded() Function
Using exports, functions become available in the context of the page. We
noticed earlier in the notes-page.xml file that the pageLoaded() method is
called when the page is loaded.

exports.pageLoaded = function(args) {
 ...
}

We’ll begin by obtaining a reference to the page within the pageLoaded()
method. The form for creating a new note is then shown, and the applica-
tion settings are queried to retrieve the presently stored data for the new
note title and notes.

page = args.object;
pageData.set('showForm', true);

var new_note_title = appSettings.
getString('new_note_title');
var notes = appSettings.getString('notes');

Next, while remaining within the pageLoaded() method, see if any notes
have been saved locally. If not, we generate a series of notes. This array will
be the app’s default content for new users. If any notes are already stored
locally, we convert them to an array and push that data to the observable
array.

It’s worth noting that before we push the items into the observable array,
we check to see whether it’s empty. We must do this because utilizing the
camera module causes the page’s loaded event to be re-executed once an
image is picked. This implies that if we aren’t cautious, we will add dupli-
cates to the array every time the user uses the camera.

if(!notes){
 notes = [
 {
 index: 0,
 title: '100 push ups'
 },
 {
 index: 1,
 title: '100 sit ups'

Structuring Your App    ◾    83

 },
 {
 index: 2,
 title: '100 squats'
 },
 {
 index: 3,
 title: '10km running'
 }
];
}else{
 notes = JSON.parse(notes);
}
notesArr = notes;
if(!pageArray.length){
 for(var x = 0; x < notes.length; x++){
 current_index += 1;
 pageArray.push(notes[x]);
 }
}

Now that we’ve added the notes data, we can change the page title by updat-
ing the item title property to the value we obtained from the application
settings earlier. Then, tie pageData to the page to automatically change the
UI anytime we’ve set changes.

pageData.set('item_title', new_note_title);
args.object.bindingContext = pageData;

Animate the form for creating new notes. We do this by calling the get-
ViewById method in the view and handing in the context (the current
page) as the first parameter and the id property associated with the ele-
ment we wish to change.

Then, call the animate function. This accepts an object holding the ani-
mation settings. In this case, we want the form to go down 160 pixels from
its initial location over 800 milliseconds.

view.getViewById(page, 'form').animate({
 translate: { x: 0, y: 160 },
 duration: 800,
});

84    ◾    Mastering NativeScript: A Beginner’s Guide

The newNote() Function
When user taps on the New Item action item in the header, the newNote()
method is called. Depending on the current value of showForm, this hides
and reveals the new item ListView and slides the form up or down.

If showForm is true, which indicates that it is currently visible, we
change the opacity of the ListView to 1 over 400 milliseconds and then
slide the form up to conceal it. Otherwise, the ListView is hidden and the
form is slid down.

exports.newNote = function() {
 var showForm = pageData.get('showForm');
 var top_position = (showForm)? -160 : 160;
 var list_visibility = (showForm)? 1 : 0;
 view.getViewById(page, 'list').animate({
 opacity: list_visibility,
 duration: 400
 });
 view.getViewById(page, 'form').animate({
 translate: { x: 0, y: top_position },
 duration: 800,
 });
 pageData.set('showForm', !showForm);
}

The btnLoaded() Function
We have a loaded property in the button for removing a note in the notes-
page.xml file. This is the function that is called when the event occurs.

When a button is created within a ListView item, the function associated
to the ListView’s itemTap property is not run by default. This is because
NativeScript expects that those buttons can only trigger the actions for
each list item.

The following code is a workaround for the default behavior. This effec-
tively takes the emphasis off the delete button, allowing continuing to per-
form a function when a user taps on a ListView item. We don’t need this
code in this example because we haven’t assigned any behavior to item
taps, but it’s a handy tool to have when working with lists.

exports.btnLoaded = function (args) {
 var btn = args.object;
 btn.android.setFocusable(false);
}

Structuring Your App    ◾    85

The openCamera() Function
The next function is openCamera(), which is called when the user presses
the Attach Image button. Because the current state is not preserved while
utilizing the camera module, we must first store the title of the new note in
the application settings.

After that, we can use the takePicture() function to activate the device’s
default camera app. This function takes an object holding the photo set-
tings as an argument. The promise resolves, and the callback function sup-
plied to then() is run once the user has taken a photo and touched on the
Save button in Android or the utilize image button in iOS.

The actual picture is passed to the method as a parameter, and we uti-
lize this to save the file to the document’s directory. After that, we store the
whole file path and the current app state to the app settings so that we can
obtain the value later before storing note.

exports.openCamera = function()
{
 appSettings.setString('new_note_title', pageData.
get('itemtitle'));
 cameraModule.takePicture({height: 250,width: 250,
keepAspectRatio: true}).then(function(img)
{
 var filepath = fs.path.join(fs.knownFolders.
documents().path, "img_" + (new Date().getTime() /
1000) + ".jpg");
 img.saveToFile(filepath, uiEnums.ImageFormat.jpeg);
 appSettings.setString('new_note_photo', filepath);
 pageData.set('attachmentimg', filepath);
 });
}

The saveNote() Function
When the user presses the Save Note button, the saveNote() method is
called. This retrieves the current value of the note title text field and image
path, increases the current_index, and inserts the new item into the plain
notes and observable notes arrays. Then it stores the current notes and the
current_index into the application settings, removes the values for the new
note from the application settings, adjusts the UI so that the form is empty,
and presents the list while concealing the new note form.

exports.saveNote = function() {
 var new_note_title = pageData.get('item_title');

86    ◾    Mastering NativeScript: A Beginner’s Guide

 var new_note_photo = pageData.get('attachment_img');
 current_index += 1;
 var new_index = current_index;
 var new_item = {
 index: new_index,
 title: new_note_title,
 photo: new_note_photo,
 show_photo: false
 };
 notesArr.push(new_item);
 pageArray.push(new_item);
 appSettings.setString('notes', JSON.
stringify(notesArr));
 appSettings.setNumber('current_index', new_index);
 appSettings.remove('new_note_title');
 appSettings.remove('new_note_photo');
 pageData.set('showForm', false);
 pageData.set('item_title', '');
 pageData.set('attachment_img', null);
 view.getViewById(page, 'list').animate({
 opacity: 1,
 duration: 400
 });

 view.getViewById(page, 'form').animate({
 translate: { x: 0, y: -160 },
 duration: 800,
 });
}

The deleteNote() Function
Finally, the deleteNote() method is called when a user hits the remove but-
ton within a list item. As seen by previous functions, an object is supplied
as an input to functions connected as an event handler for a certain com-
ponent. The object attribute of this object relates to the component itself.

We may then get the value of an attribute that was passed to it. In this
situation, we acquire the index attribute’s value and utilize it to determine
the actual index of the object we wish to remove.

exports.deleteNote = function(args){
 var target = args.object;
 var index_to_delete = notesArr.map(function(e) {

Structuring Your App    ◾    87

 return e.index;
 }).indexOf(target.index);
 notesArr.map(function(item, index){
 if(index == index_to_delete){
 notesArr.splice(index_to_delete, 1);
 pageArray.splice(index_to_delete, 1);
 return false;
 }
 });
 appSettings.setString('notes', JSON.
stringify(notesArr));
}

Adding Styles

Add the following global styles to the app.css file:

ActionBar {
 background-color: #b898ff;
 color: #fff;
}
.header-item {
 text-transform: uppercase;
}
.item {
 padding: 20;
 font-size: 20px;
}
.form-container {
 background-color: #fff;
 margin-top: -160px;
 padding: 20px;
 z-index: 10;
}
.label {
 font-size: 18px;
}

.link {
 text-align: left;
 background-color: transparent;
 color: #0275d8;
 padding: 5px;
 margin: 10px 0;

88    ◾    Mastering NativeScript: A Beginner’s Guide

 text-transform: uppercase;
 font-size: 15px;
}
.image {
 width: 300;
 margin: 20 0;
}
.primary-button {
 padding: 5px;
 color: #fff;
 background-color: #0723bb;
 text-transform: uppercase;
}
.delete-button {
 font-size: 15px;
 background-color: #f50029;
 color: #fff;
}

We may also create a notes-page.css file and set our styles there to apply
page-specific styles.

Running and Debugging the App

We may run the app on our smartphone by typing tns run followed by the
platform we wish to deploy. For Android, here’s an example:

tns run android

If the Android platform hasn’t already been installed, this will install it
for us and then execute the program on our device after it’s been installed.
Once the app is running, type tns livesync android – watch to automati-
cally refresh whenever we make changes to the source files.

DEBUGGING
NativeScript, like any other app framework, allows developers to debug
their program. This is accomplished using the Chrome dev tools. There are
two approaches to this:

1.	 If we already have an app running, open a new terminal window
and type tns debug android – start to attach a debugger to the app
instance that is already executing.

Structuring Your App    ◾    89

2.	If we don’t already have an app running, use tns debug android –
debug-brk to create a debugger attached instance of the app.

Whatever choice we select, a new tab in the Google Chrome browser
will open, debugging the app just like a regular JavaScript web app. This
implies that we can utilize console. Inspect the contents of the variables
we’re working with by logging into our source code.

LAYOUTS IN NativeScript
The Fundamentals: When developing an app, design for devices of differ-
ent shapes and sizes must be designed. NativeScript has a variety of layout
containers to let us create a versatile UI for any circumstance. NativeScript
has very great documentation on their layout containers here, but these
applications demonstrate the capabilities.

That app appears to be quite helpful, but we’re going to demonstrate
the greater potential of layout containers and how we can produce rich UI
with basic markup.

By redesigning the layout of a popular app … the standard weather app
on iOS, we’ll show how to leverage layouts to create complex UI.

Let’s begin by building a small NativeScript Angular app. Open a ter-
minal window and type tns create. The NativeScript CLI will guide us
through the available options. Give it a name, select Angular as the flavor,
and then select the Hello World template. This creates a basic app with
a list of soccer players and a detailed view for each. We’ll just delete the
items.component.html file and utilize it to build our clone weather app.

The weather view has a panel at the top that displays the location,
weather, and temperature. Then there’s a part with today’s hourly infor-
mation and the weather forecast for the following seven days.

GridLayout

<GridLayout rows="*, auto, auto">
</GridLayout>

GridLayout is a layout that generates columns and rows in which addi-
tional views can reside. The above HTML defines a GridLayout that will
span the entire screen and contain three rows. Because we didn’t declare
any columns, it will just have one column that takes up the entire screen.
The first row (*) takes up the rest of the screen, thus any empty space after

90    ◾    Mastering NativeScript: A Beginner’s Guide

the following two rows measures. The following two rows (auto) indicate
that the rows will be the height of the content. So, regardless of the device,
this app will have a great huge top space for the current weather.

StackLayout

<GridLayout rows="*, auto, auto">
 <StackLayout>
 <Label text="Dover"></Label>
 <Label text="Sunny"></Label>
 <Label text="79"></Label>
 </StackLayout>
</GridLayout>

The next layout we’ll use is StackLayout. This layout just layers views on
top of one another. It also contains a property orientation that, when set to
horizontal, stacks views left to right. With the markup above, we’ve gener-
ated the first row of our weather app. It may not look great now, but we
are using NativeScript layouts to display data in our app, which is quite
exciting.

We want the applications I develop to appear beautiful as we go, so let’s
clean this up a little before we get too far. All of this data is hardcoded, and
we’ll go over the data layer in another blog to decide what the weather is
like. Let’s imagine it’s 79 degrees and sunny. Our app’s backdrop image
will indicate the current climate; therefore, choose a good sunny image.

<GridLayout rows="*, auto, auto">
 <Image src="https://s7d2.scene7.com/is/image/
TWCNews/1031_nc_sunny_weather_2-1"
iosOverflowSafeArea="true" stretch="aspectFill"
rowSpan="3"></Image>
 <StackLayout>
 <Label text="Dover"></Label>
 <Label text="Cloudy"></Label>
 <Label text="79"></Label>
 </StackLayout>
</GridLayout>

An essential feature of GridLayout is the ability to pile views on top of each
other. Our image will be shown behind the StackLayout, acting as a back-
drop image. We set rowSpan to 3 because we want it to appear beneath

Structuring Your App    ◾    91

all of our content. We set iosOverflowSafeArea to true to have it appear
beneath the notch and status bar.

Keep in mind that the first row is now filling up the full screen. Because
no new content is added to the following rows, they measure 0 high
because they are set to auto, and the * row takes up all available space, in
this instance the entire screen.

Another issue we must address is that the StackLayout is taking up the
entire screen, with the content at the top. The text should be centered in the
row. Such we’re going to try something new: we’re going to rearrange our
rows so that the material in the first row is always in the center.

rows="*, auto, *, auto, auto

Now we can put our StackLayout with the current weather in the second
row so that its height is appropriately measured, and the first and third
rows take up the remainder of the available space. As a result, our addi-
tional material will now be put in rows 4 and 5.

When stating which row the material should go in when indicating
which column the content should go in, the rows start at 0.

<GridLayout rows="*, auto *, auto, auto">
 <Image src="https://s7d2.scene7.com/is/image/
TWCNews/1031_nc_sunny_weather_2-1" rowSpan="5"
iosOverflowSafeArea="true" stretch="aspectFill">
</Image>
 <StackLayout row="1">
 <Label text="Dover"></Label>
 <Label text="Sunny"></Label>
 <Label text="79"></Label>
 </StackLayout>
</GridLayout>

StackLayout is in row #1, indicating that it belongs in the GridLayout’s
auto row.

To make it appear lovely, let’s add some utility classes and some inline styl-
ing. The following helper classes are included in a standard NativeScript app:

<GridLayout rows="*, auto *, auto, auto">
 <Image src="https://s7d2.scene7.com/is/image/
TWCNews/1031_nc_sunny_weather_2-1" rowSpan="5"
iosOverflowSafeArea="true" stretch="aspectFill"></Image>

92    ◾    Mastering NativeScript: A Beginner’s Guide

 <StackLayout row="1" class="text-center">
 <Label text="Dover" class="h1" style="color:
white;"></Label>
 <Label text="Sunny" class="h2" style="color:
white;"></Label>
 <Label text="79" class="h1" style="color:
white;"></Label>
 </StackLayout>
</GridLayout>

Now, let’s put a Label in each of the other rows and watch what happens:

<GridLayout rows="*, auto *, auto, auto">
 <Image src="https://s7d2.scene7.com/is/image/
TWCNews/1031_nc_sunny_weather_2-1" rowSpan="5"
iosOverflowSafeArea="true" stretch="aspectFill">
</Image>
 <StackLayout row="1" class="text-center">
 <Label text="Dover" class="h1" style="color:
white;"></Label>
 <Label text="Cloudy" class="h2" style="color:
white;"></Label>
 <Label text="79" class="h1" style="color:
white;"></Label>
 </StackLayout>
 <Label text="Hourly data goes here" row="3">
</Label>
 <Label text="7 day forecast goes here" row="4">
</Label>
</GridLayout>

ScrollView

ScrollView is not a layout, but it is a view that we will frequently use in our
layouts. To produce this view, we’ll combine ScrollView with a horizon-
tally oriented StackLayout:

<GridLayout rows="*, auto *, auto, auto">
 <Image src="https://s7d2.scene7.com/is/image/
TWCNews/1031_nc_sunny_weather_2-1" rowSpan="5"
iosOverflowSafeArea="true" stretch="aspectFill">
</Image>
 <StackLayout row="1" class="text-center">

Structuring Your App    ◾    93

 <Label text="Dover" class="h2" style="color:
white;"></Label>
 <Label text="Cloudy" class="h3" style="color:
white;"></Label>
 <Label text="79" class="h1" style="color:
white;"></Label>
 </StackLayout>
 <ScrollView row="3" orientation="horizontal">
 <StackLayout orientation="horizontal">
 <StackLayout style="color: white; margin: 10;
font-size: 13;" class="text-center">
 <Label text="Now"></Label>
 <Image src="https://cdn.pixabay.com/
photo/2015/12/03/15/43/sun-1075154_960_720.png"
height="20" margin="5"></Image>
 <Label text="79"></Label>
 </StackLayout>
 <StackLayout style="color: white; margin: 10;
font-size: 13;" class="text-center">
 <Label text="10am"></Label>
 <Image src="https://cdn.pixabay.com/
photo/2015/12/03/15/43/sun-1075154_960_720.png"
height="20" margin="5"></Image>
 <Label text="81"></Label>
 </StackLayout>
 </StackLayout>
 </ScrollView>
 <Label text="7 day forecase goes here" margin="50"
row="4"></Label>
</GridLayout>

It’s worth noting that we’ve designated the ScrollView as the view that will
occupy row #3. Because ScrollView can only have one immediate child, we
use it as our horizontal StackLayout and then add a few of StackLayouts to
represent the time, weather icon, and temperature. To test the ScrollView,
we are going to duplicate a large number of the StackLayouts in the hori-
zontal StackLayout.

Rows 0 and 2 take up the rest of the available space.
We are going to hardcode the data because this blog is only about lay-

outs. Of course, this isn’t how an app like this would function; the hourly
data would be delivered by an API as an array and bound to the display,

94    ◾    Mastering NativeScript: A Beginner’s Guide

but that’s a topic for another article. For the time being, we’ll create a UI
mockup using hardcoded HTML.

We failed to include the High and Low bar directly above the horizontal
hourly scroller, so let’s do that now. We’ll need to restructure a little, but we
can just put everything in a StackLayout and add it to the row where the
scroller is. Row 3 becomes as follows:

<StackLayout row="3">
 <GridLayout columns="auto, *, auto, auto"
style="color: white; border-bottom-width: 1; border-
bottom-color: rgba(255,255,255,0.2)">
 <Label text="Friday" class="m-x-10 m-b-10"></
Label>
 <Label text="TODAY" col="1" class="m-x-10 m-b-
10"></Label>
 <Label text="91" col="2" class="m-x-10 m-b-10"></
Label>
 <Label text="65" col="3" class="m-x-10 m-b-10"
opacity=".5"></Label>
 </GridLayout>
 <ScrollView orientation="horizontal">
 <StackLayout orientation="horizontal">
 <StackLayout style="color: white; margin: 10;
font-size: 13;" class="text-center">
 <Label text="Now"></Label>
 <Image src="https://cdn.pixabay.com/
photo/2015/12/03/15/43/sun-1075154_960_720.png"
height="20" margin="5"></Image>
 <Label text="79"></Label>
 </StackLayout>
 <!--...repeated hourly views go here.-->
 </StackLayout>
 </ScrollView>
</StackLayout>

For the bar above the hourly scroller, we utilized a GridLayout. Important:
If we do not specify a row or col for a view in the GridLayout, it will be put
in row 0.

We utilized the helper classes m-x-10 for horizontal margins and m-b-
10 for margin bottoms.

Structuring Your App    ◾    95

We’ll use GridLayout again to build those rows in the same way we did
before:

<GridLayout rows="auto" columns="auto, *, auto, auto">
 <Label text="Saturday" class="m-x-10 m-b-10"></
Label>
 <Image col="1" src="https://cdn.pixabay.com/
photo/2015/12/03/15/43/sun-1075154_960_720.png"
height="20" margin="5"></Image>
 <Label col="2" text="88" class="m-x-10"></Label>
 <Label col="3" text="66" class="m-x-10"
opacity=".5"></Label>
</GridLayout>

UI LAYOUT CONTAINERS
AbsoluteLayout

The AbsoluteLayout is NativeScript’s most basic layout. It positions
its children using absolute left-top coordinates. When the size of the
AbsoluteLayout changes, it will not impose any layout restrictions on its
children and will not resize them at runtime.

AbsoluteLayout Child Properties

Property Description

Left The pixel distance between the child’s left edge and the left edge of its
parent AbsoluteLayout client area is get or set.

Top Gets or sets the pixel distance between the child’s top edge and the top edge
of its parent AbsoluteLayout client area.

First Source Code:

<Page xmlns="http://schemas.nativescript.org/tns.xsd">
 <AbsoluteLayout width="200" height="200"
backgroundColor="lightgray">
 <Label text="11, 10" left="10" top="10" width="80"
height="80" backgroundColor="red"/>
 <Label text="100, 10" left="110" top="10"
width="80" height="80" backgroundColor="green"/>
 <Label text="100, 110" left="110" top="110"
width="80" height="80" backgroundColor="blue"/>
 <Label text="11, 110" left="10" top="110"
width="80" height="80" backgroundColor="yellow"/>

96    ◾    Mastering NativeScript: A Beginner’s Guide

 </AbsoluteLayout>
</Page>

Second Source Code:

<Page xmlns="http://schemas.nativescript.org/tns.xsd">
 <AbsoluteLayout width="200" height="200"
backgroundColor="lightgray">
 <Label text="no margin" left="9" top="9"
width="100" height="100" backgroundColor="red"/>
 <Label text="margin='30'" left="9" top="9"
margin="30" width="100" height="90"
backgroundColor="green"/>
 </AbsoluteLayout>
</Page>

DockLayout

The DockLayout is a layout that allows child components to dock to the
left, right, top, bottom, or center of the layout. Use the dock attribute of
a child element to define its docking side. To dock a child element to the
DockLayout’s center, it must be the DockLayout’s final child and have the
stretchLastChild property set to true.

DockLayout Properties
PROPERTY
DESCRIPTION

stretchLastChild
Gets or sets a value that indicates whether the final child element in a
DockLayout grows to fill the available space. The default value is true.

DockLayout Child Properties

Property Description

Dock This property specifies the Dock location of a child element included within a
DockLayout. There are four possible values: left, top, right, and bottom.

stretchLastChild=“false” example:

<Page xmlns="http://schemas.nativescript.org/tns.xsd">
 <DockLayout width="200" height="200"
backgroundColor="lightgray" stretchLastChild="false">

Structuring Your App    ◾    97

 <Label text="left" dock="left" width="50"
backgroundColor="green"/>
 <Label text="top" dock="top" height="50"
backgroundColor="blue"/>
 <Label text="right" dock="right" width="50"
backgroundColor="yellow"/>
 <Label text="bottom" dock="bottom" height="50"
backgroundColor="red"/>
 </DockLayout>
</Page>

stretchLastChild= “true” example:

<Page xmlns="http://schemas.nativescript.org/tns.
xsd">
 <DockLayout width="200" height="200"
backgroundColor="lightgray" stretchLastChild="true">
 <Label text="left" dock="left"
backgroundColor="green"/>
 <Label text="top" dock="top"
backgroundColor="blue"/>
 <Label text="right" dock="right" backgroundColor=
" yellow "/>
 <Label text="bottom" dock="bottom"
backgroundColor="red"/>
 </DockLayout>
</Page>

Multiple child elements on one side example:

<Page xmlns="http://schemas.nativescript.org/tns.xsd">
 <DockLayout width="200" height="200"
backgroundColor="lightgray" stretchLastChild="true">
 <Label text="left1" dock="left"
backgroundColor="green"/>
 <Label text="left2" dock="left"
backgroundColor="blue"/>
 <Label text="left3" dock="left"
backgroundColor="yellow"/>
 <Label text="last child" backgroundColor="red"/>
 </DockLayout>
</Page>

98    ◾    Mastering NativeScript: A Beginner’s Guide

The GridLayout

The GridLayout is a layout that organizes its child objects into rows and
columns in a table. A cell can have several child components; they can span
multiple rows and columns, and even overlap. By default, the GridLayout
has one column and one row. To add more columns and rows, provide
column definition items (separated by commas) in the GridLayout’s col-
umns property and row definition items (separated by commas) in the
GridLayout’s rows property. The width and height of a column and row
can be provided as an absolute number of pixels, as a percentage of avail-
able space, or automatically:

•	 Absolute: Pixels have a fixed size.

•	 Star (*): Uses all available space (after filling all auto and fixed sized
columns), proportionately split among all star-sized columns. So 3/7
is equivalent to 30/70.

•	 Auto: Uses as much space as the enclosed child element(s) requires.

GridLayout Properties

Property Description

Columns A comma-separated text value indicates column widths. Column widths can
be specified as an exact number, an auto value, or a *. A number represents
the absolute column width, auto makes the column the width of its widest
child, and * makes the column take up all available horizontal space.

Rows A string value bounded by commas represents row heights. Row heights
can be specified as an absolute number, an auto value, or a *. A number
denotes the absolute row height, auto makes the row as tall as its highest
kid, and * makes the row take up all available vertical space.

GridLayout Child Properties

Property Description

Row Gets or sets a value indicating which row child content inside a GridLayout
should be shown.

Column Gets or sets a value indicating which column child content inside a
GridLayout should be shown.

rowSpan Gets or sets a value indicating the total number of rows spanned by child
content within a GridLayout.

colSpan Gets or sets a value indicating the total number of columns spanned by child
content inside a GridLayout.

Structuring Your App    ◾    99

A simple Grid use example:

<Page xmlns="http://schemas.nativescript.org/tns.xsd">
 <GridLayout columns="40, auto, *" rows="50, auto, *"
width="200" height="200" backgroundColor="lightgray" >
 <Label text="Label 1" row="0" col="0"
backgroundColor="yellow"/>
 <Label text="Label 2" row="0" col="1" colSpan="2"
backgroundColor="purple"/>
 <Label text="Label 3" row="1" col="0" rowSpan="2"
backgroundColor="green"/>
 <Label text="Label 4" row="1" col="1"
backgroundColor="orange"/>
 <Label text="Label 5" row="1" col="2"
backgroundColor="green"/>
 <Label text="Label 6" row="2" col="1"
backgroundColor="yellow"/>
 <Label text="Label 7" row="2" col="2"
backgroundColor="pink"/>
 </GridLayout>
</Page>

Sizing with a star (*) example:

<Page xmlns="http://schemas.nativescript.org/tns.xsd">
 <GridLayout columns="*,2*" rows="2*,3*" width="250"
height="250" backgroundColor="lightgray" >
 <Label text="Label 1" col="0" row="0"
backgroundColor="yellow"/>
 <Label text="Label 2" col="1" row="0"
backgroundColor="blue"/>
 <Label text="Label 3" col="0" row="1"
backgroundColor="red"/>
 <Label text="Label 4" col="1" row="1"
backgroundColor="green"/>
 </GridLayout>
</Page>

Fixed and auto sizing example:

<Page xmlns="http://schemas.nativescript.org/tns.xsd">
 <GridLayout columns="90,auto" rows="90,auto"
width="200" height="200" backgroundColor="lightgray" >
 <Label text="Label 1" col="0" row="0"
backgroundColor="green"/>

100    ◾    Mastering NativeScript: A Beginner’s Guide

 <Label text="Label 2" col="1" row="0"
backgroundColor="blue"/>
 <Label text="Label 3" col="0" row="1"
backgroundColor="yellow"/>
 <Label text="Label 4" col="1" row="1"
backgroundColor="red"/>
 </GridLayout>
</Page>

For no width and horizontalAlignment!= stretch, consider the following
example. The star columns will not occupy the complete available area if
the GridLayout has no explicit width specified and its horizontalAlign-
ment is set but not extend (200 from parent StackLayout).

<Page xmlns="http://schemas.nativescript.org/tns.xsd">
 <StackLayout width="210" height="210"
backgroundColor="palegreen">
 <GridLayout columns="*,2*"
horizontalAlignment="right" verticalAlignment="top"
backgroundColor="gray">
 <Label text="Label 1" col="0"
backgroundColor="green"/>
 <Label text="Label 2" col="1"
backgroundColor="red"/>
 </GridLayout>
 </StackLayout>
</Page>

Label 3 has a set width of 150 pixels as an example of column stretching.
Because Label 3 stretches the auto column, Label 1 is given more space
than it requires.

<Page xmlns="http://schemas.nativescript.org/
tns.xsd">
 <GridLayout columns="auto,100" rows="auto,auto"
width="240" height="240" backgroundColor="lightgray" >
 <Label text="Label 1" col="0" row="0"
backgroundColor="green"/>
 <Label text="Label 2" col="1" row="0"
backgroundColor="blue"/>

Structuring Your App    ◾    101

 <Label text="Label 3" width="150" col="0" row="1"
backgroundColor="red"/>
 </GridLayout>
</Page>

Exemplification of a Complex Structure: The image has a set width and
height of 72 pixels and spans both rows. The first Label is given additional
space by setting colSpan=“2.” Because the fourth Label extends the auto
column, the third Label is given more space than required.

<Page xmlns="http://schemas.nativescript.org/tns.xsd">
 <GridLayout columns="auto, *, auto" rows="auto, 25"
verticalAlignment="top" backgroundColor="gray">
 <Image src="~/cute.jpg" rowSpan="2" width="71"
height="72" margin="3" verticalAlignment="top"/>
 <Label text="My cat loves camera" textWrap="true"
col="1" colSpan="2" minHeight="40" fontSize="25"
margin="3"/>
 <Label text="John-Smith" col="1" row="1"
fontSize="12" horizontalAlignment="left"
verticalAlignment="bottom" margin="3"/>
 <Label text="comments: 26" col="2" row="1"
color="green" fontSize="13" verticalAlignment="bottom"
margin="3"/>
 </GridLayout>
</Page>

StackLayout

Depending on its orientation, the StackLayout stacks its child elements
below or beside each other. Making lists is quite beneficial.

StackLayout Properties

Property Description

Orientation Gets or sets whether the child items should be stacked horizontally or
vertically. Vertical and horizontal values are both possible. Vertical is
the default setting.

StackLayout Child Properties
As an example of orientation=“vertical,”:

<Page xmlns="http://schemas.nativescript.org/tns.xsd">
 <StackLayout orientation="vertical" width="200"
height="200" backgroundColor="lightgray">

102    ◾    Mastering NativeScript: A Beginner’s Guide

 <Label text="Label 1" width="40" height="40"
backgroundColor="green"/>
 <Label text="Label 2" width="40" height="40"
backgroundColor="yellow"/>
 <Label text="Label 3" width="40" height="40"
backgroundColor="red"/>
 <Label text="Label 4" width="40" height="40"
backgroundColor="blue"/>
 </StackLayout>
</Page>

As an example of orientation= “horizontal,”:

<Page xmlns="http://schemas.nativescript.org/tns.xsd">
 <StackLayout orientation="horizontal" width="200"
height="200" backgroundColor="lightgray">
 <Label text="Label 1" width="40" height="40"
backgroundColor="yellow"/>
 <Label text="Label 2" width="40" height="40"
backgroundColor="blue"/>
 <Label text="Label 3" width="40" height="40"
backgroundColor="green"/>
 <Label text="Label 4" width="40" height="40"
backgroundColor="red"/>
 </StackLayout>
</Page>

As an example, consider the horizontal alignment of children:

<Page xmlns="http://schemas.nativescript.org/tns.xsd">
 <StackLayout orientation="vertical" width="200"
height="200" backgroundColor="lightgray">
 <Label text="Label 1" horizontalAlignment="left"
backgroundColor="yellow"/>
 <Label text="Label 2" horizontalAlignment="center"
backgroundColor="blue"/>
 <Label text="Label 3" horizontalAlignment="right"
backgroundColor="green"/>
 <Label text="Label 4"
horizontalAlignment="stretch" backgroundColor="red"/>
 </StackLayout>
</Page>

Structuring Your App    ◾    103

As an illustration, consider the vertical alignment of children:

<Page xmlns="http://schemas.nativescript.org/tns.xsd">
 <StackLayout orientation="horizontal" width="200"
height="200" backgroundColor="lightgray">
 <Label text="Label 1" verticalAlignment="top"
backgroundColor="green"/>
 <Label text="Label 2" verticalAlignment="center"
backgroundColor="blue"/>
 <Label text="Label 3" verticalAlignment="bottom"
backgroundColor="yellow"/>
 <Label text="Label 4" verticalAlignment="stretch"
backgroundColor="red"/>
 </StackLayout>
</Page>

WrapLayout

The WrapLayout is similar to the StackLayout in that it stacks all child
components to one column/row, but it also wraps them to additional col-
umns/rows if there is no space left. The WrapLayout is frequently used
with elements of the same size, but this is not required.

WrapLayout Properties

Property Description

Orientation This function returns or sets a value representing the flow direction.
Items are grouped in rows when the orientation is horizontal. Items
are placed in columns when the orientation is vertical. The horizontal
setting is the default.

itemWidth The width used to layout and measure each child is returned or set. The
default value is Number.NaN, which does not limit the number of
children.

itemHeight This method returns or sets the height used to measure and layout each
child. The default value is Number.NaN, which does not limit the
number of children.

WrapLayout Child Properties
Example of “horizontal” orientation:

<Page xmlns="http://schemas.nativescript.org/tns.xsd">
 <WrapLayout orientation="horizontal" width="200"
height="200" backgroundColor="lightgray">

104    ◾    Mastering NativeScript: A Beginner’s Guide

 <Label text="Label 1" width="60" height="60"
backgroundColor="green"/>
 <Label text="Label 2" width="60" height="60"
backgroundColor="blue"/>
 <Label text="Label 3" width="60" height="60"
backgroundColor="yellow"/>
 <Label text="Label 4" width="60" height="60"
backgroundColor="red"/>
 </WrapLayout>
</Page>

Example of orientation=“vertical,”:

<Page xmlns="http://schemas.nativescript.org/tns.xsd">
 <WrapLayout orientation="vertical" width="200"
height="200" backgroundColor="lightgray">
 <Label text="Label 1" width="60" height="60"
backgroundColor="green"/>
 <Label text="Label 2" width="60" height="60"
backgroundColor="blue"/>
 <Label text="Label 3" width="60" height="60"
backgroundColor="yellow"/>
 <Label text="Label 4" width="60" height="60"
backgroundColor="red"/>
 </WrapLayout>
</Page>

For instance, itemWidth=“30” and itemHeight=“30”:

<Page xmlns="http://schemas.nativescript.org/tns.xsd">
 <WrapLayout itemWidth="30" itemHeight="30"
width="200" height="200" backgroundColor="lightgray">
 <Label text="Label 1" width="60" height="60"
backgroundColor="green"/>
 <Label text="Label 2" width="60" height="60"
backgroundColor="blue"/>
 <Label text="Label 3" width="60" height="60"
backgroundColor="yellow"/>
 <Label text="Label 4" width="60" height="60"
backgroundColor="red"/>
 </WrapLayout>
</Page>

Structuring Your App    ◾    105

FlexboxLayout

The FlexboxLayout is a non-conforming CSS Flexible Box Layout imple-
mentation based on an existing Apache-2 licensed flexbox implementation
provided at github.com/google/flexbox-layout.

FlexboxLayout Properties

Property Description Values

flexDirection Gets or sets a value
specifying the orientation
of flex items in the flex
container.

•	 row (the same as text direction) is the
default.

•	 row reversal (opposite to text direction).
•	 a column (same as row but top to

bottom).
•	 column reversal (same as the row-

reverse top to bottom).
flexWrap Gets or sets a value

indicating whether the
flex elements must be on
a single line or flowing
into multiple lines. If it is
set to many lines, it also
sets the cross-axis, which
dictates the direction in
which new lines are piled.

•	 default nowrap (single-line, which may
cause the container to overflow).

•	 wrap (multilines, direction is defined by
flexDirection).

•	 reverse-wrap (multilines, opposite to
direction defined by flexDirection).

justifyContent This method returns or
sets a value showing the
alignment along the main
axis. It aids in distributing
extra free space when all
of the flex items on a line
are either inflexible or
have reached their
maximum size. It also has
some influence over the
alignment of items that
overflow the line.

•	 flex-start (items are packed closer to the
start line) is the default.

•	 flexible-end (items are packed toward
end line).

•	 the center (items are centered along line).
•	 space-between (The items in the line are

uniformly distributed; the first item is
on the start line, and the last item is on
the finish line.).

•	 space-around (The objects on the line
are uniformly spaced, with equal space
surrounding them.).

alignItems Gets or sets a value
specifying how flex items
on the current line are
laid out along the cross
axis. Consider it the
justifyContent variant for
the cross-axis
(perpendicular to the
main-axis).

•	 flex start (The items’ cross-start margin
edge is put on the cross-start line.).

•	 flex-end (The items’ cross-end margin
edge is positioned on the cross-end line.).

•	 the center (The cross-axis is centered on
the items.).

•	 baseline (Items are aligned in the
notion that their baselines are aligned.).

•	 stretch (extend to fill the container
while keeping the min/max widths in
mind) default.

(Continued)

106    ◾    Mastering NativeScript: A Beginner’s Guide

Property Description Values

alignContent Gets or sets a value that
aids in aligning the lines
within a flex container
when there is additional
space in the cross-axis, in
the same way that
justifyContent aligns
individual items inside
the main-axis.

•	 flex start (lines packed to the container’s
beginning).

•	 flex-end (lines packed to the container’s
end).

•	 the center (lines packed to the
container’s center).

•	 space-between (lines are distributed
uniformly; the first line begins at the
beginning of the container and the final
one ends at the end).

•	 space-around (lines that are distributed
uniformly and have equal space
between them).

•	 stretch (lines stretch to fill the
remaining space). When the flexbox has
simply a single line, this attribute has no
impact.

FlexboxLayout Child Properties

Property Description

Order This property returns or sets a value that alters the default ordering of
flex components.

flexGrow Gets or sets a unitless number that acts as a percentage to indicate if
the flex item can increase if necessary. It specifies how much space the
item should take up inside the flex container.

flexShrink Gets or sets a value showing the “flex shrink factor,” which defines how
much the flex item shrinks in comparison to the rest of the flex items
in the flex container when there is insufficient space on the row. When
it is missing, it is set to 1, and when distributing negative space, the
flex shrink factor is increased by the flex basis.

alignSelf Gets or sets a value that allows the alignItems value for certain flex
items to be overridden. This property accepts the same five values as
alignItems: flex-start (cross-start margin edge of the item is placed on
the cross-start line), flex-end (cross-end margin edge of the item is
placed on the cross-end line), center (item is centered in the cross-
axis), baseline (items are aligned such that their baseline is aligned),
and stretch (stretch to fill the container but still respect min-width).
The default setting is stretch.

flexWrapBefore Gets or sets the boolean value that controls item wrapping. When we
set it to true on a flexbox item, it will compel it to wrap on a new line.
The value false is the default. This attribute is not included in the
flexbox definition.

Structuring Your App    ◾    107

FlexDirection=“row” and alignItems=“stretch” (default) example:

<Page xmlns="http://schemas.nativescript.org/tns.xsd">
 <FlexboxLayout width="250" height="250"
backgroundColor="lightgray">
 <Label text="Label 1" width="60" height="60"
backgroundColor="yellow"/>
 <Label text="Label 2" width="60" height="60"
backgroundColor="blue"/>
 <Label text="Label 3" width="60" height="60"
backgroundColor="green"/>
 <Label text="Label 4" width="60" height="60"
backgroundColor="red"/>
 </FlexboxLayout>
</Page>

FlexDirection=“column” and alignItems=“stretch” (default) example:

<Page xmlns="http://schemas.nativescript.org/tns.xsd">
 <FlexboxLayout flexDirection="column" width="250"
height="250" backgroundColor="lightgray">
 <Label text="Label 1" width="60" height="60"
backgroundColor="green"/>
 <Label text="Label 2" width="60" height="60"
backgroundColor="blue"/>
 <Label text="Label 3" width="60" height="60"
backgroundColor="yellow"/>
 <Label text="Label 4" width="60" height="60"
backgroundColor="red"/>
 </FlexboxLayout>
</Page>

flexDirection=“row” and alignItems=“flex-start” example:

<Page xmlns="http://schemas.nativescript.org/tns.xsd">
 <FlexboxLayout alignItems="flex-start" width="250"
height="250" backgroundColor="lightgray">
 <Label text="Label 1" width="60" height="60"
backgroundColor="green"/>
 <Label text="Label 2" width="60" height="60"
backgroundColor="blue"/>
 <Label text="Label 3" width="60" height="60"
backgroundColor="yellow"/>

108    ◾    Mastering NativeScript: A Beginner’s Guide

 <Label text="Label 4" width="60" height="60"
backgroundColor="red"/>
 </FlexboxLayout>
</Page>

flexDirection=“row”, custom order example:

<Page xmlns="http://schemas.nativescript.org/tns.xsd">
 <FlexboxLayout alignItems="flex-start" width="250"
height="250" backgroundColor="lightgray">
 <Label order="3" text="Label 1" width="60"
height="60" backgroundColor="green"/>
 <Label order="4" text="Label 2" width="60"
height="60" backgroundColor="blue"/>
 <Label order="2" text="Label 3" width="60"
height="60" backgroundColor="yellow"/>
 <Label order="1" text="Label 4" width="60"
height="60" backgroundColor="red"/>
 </FlexboxLayout>
</Page>

flexWrap= “wrap” example:

<Page xmlns="http://schemas.nativescript.org/tns.xsd">
 <FlexboxLayout flexWrap="wrap" height="250"
width="250" backgroundColor="lightgray">
 <Label text="Label 1" width="90" height="50"
backgroundColor="blue"/>
 <Label text="Label 2" width="90" height="50"
backgroundColor="yellow"/>
 <Label text="Label 3" width="90" height="50"
backgroundColor="red"/>
 <Label text="Label 4" width="90" height="50"
backgroundColor="green"/>
 </FlexboxLayout>
</Page>

flexDirection=“column-reverse”, justifyContent=“space-around” and
alignItems=“stretch” example:

<Page xmlns="http://schemas.nativescript.org/tns.xsd">
 <FlexboxLayout flexDirection="column-reverse"
justifyContent="space-around" alignItems="stretch"

Structuring Your App    ◾    109

 height="300" width="300" backgroundColor="white">
 <Label text="Label 1" width="40" height="40"
backgroundColor="red"/>
 <Label alignSelf="center" text="Label 2"
width="40" height="40" backgroundColor="lightgray"/>
 <Label alignSelf="flex-end" text="Label 3"
width="40" height="40" backgroundColor="yellow"/>
 <Label text="Label 4" width="40" height="40"
backgroundColor="blue"/>
 </FlexboxLayout>
</Page>

In this chapter, we discussed the structure of an application in NativeScript
and page navigation. We also talked about the basic layout and its many
forms through examples.

https://taylorandfrancis.com

111DOI: 10.1201/9781003299394-3

C h a p t e r 3

Refining Your App

IN THIS CHAPTER

➢➢ Working with data

➢➢ Native hardware

➢➢ Deploying an Android app

➢➢ Preparing an iOS app for distribution

➢➢ iOS security and building our app with Xcode

In the last chapter, we discussed the app’s structure, including navigation
pages and the app’s layout. This chapter discusses dealing with data, native
hardware, enhancing user experience, deploying an Android app, and pre-
paring an iOS app.

EIGHT STEPS FOR LAUNCHING OUR NativeScript
APP INTO APP STORES
This section contains a step-by-step guide for submitting a NativeScript-
built app to the iOS App Store and Google Play.

•	 Step 1: Design our app’s icons.

•	 Step 2: Create our splash screens.

•	 Step 3: Set up our metadata.

•	 Step 4 (optional): Install Webpack.

https://doi.org/10.1201/9781003299394-3

112    ◾    Mastering NativeScript: A Beginner’s Guide

•	 Step 5: Create an Android release build.

•	 Step 6: Google Play.

•	 Step 7: Create an iOS release build.

•	 Step 8: Connect to iTunes.

Step 1: Design Our App Icons

The icon of our app is the first thing customers notice about it. When we
create a new NativeScript app, we are given a placeholder icon, which is OK
for development, but we must change the placeholder icon with the image
we want to use in the stores for production.

To receive our production-ready app icon files, first, generate a 1024 ×
1024 pixel.png image asset that symbolizes our app. As an example, here’s
the graphic we used for Pokémon Types.

If we deal with designers, this is the point at which we should ask them
to generate the final picture file for us. There are a few websites that can
assist us if we do not deal with expert designers. For example, we pur-
chased the Pokémon Types icon from VectorStock, which sells high-quality
graphic assets for a few bucks.

VectorStock is one of several websites that provide high-quality picture
files that may be used as icons for a reasonable fee.

To make matters harder, both iOS and Android demand that we sup-
ply a wide range of icon pictures in several sizes. But don’t panic; once
we have a 1024 × 1024 image, a few websites will produce photos in the
different sizes that Android and iOS demand. We propose the Brosteins’
superb NativeScript Image Builder, accessible at nsimage.brosteins.com,
for NativeScript development.

Visit the website, locate the “Upload an Icon” box, choose a freshly created.
png file, and select the “Upload App Icon” button.

How to utilize the NativeScript Image Builder to generate the icon files
required for our iOS and Android apps.

When the Image Builder is finished, we’ll be prompted to download an
icons.zip file. This download includes Android and iOS files containing
the image assets we require.

To place those images, begin by accessing our app’s app/App Resources/
iOS/Assets.xcassets/AppIcon.appiconset folder. The NativeScript place-
holder graphics for iOS may be found in this folder. Delete the whole

Refining Your App    ◾    113

contents of this folder and replace them with the files from our icons.zip
download in the iOS folder.

How to use the NativeScript Image Builder to replace the default
NativeScript icon images with our image files.

After adding these new pictures, run our NativeScript app on iOS to
confirm the new icons appear good. On the iOS simulator, the Pokémon
Types icon looks like this.

TIP: Both iOS and Android cache these icon files to save our time
during development. If the icon changes do not appear, run tns platform
remove ios to delete any current native iOS files. Then, using tns run ios,
relaunch our app with our new image assets in place.

Now that we’ve finished our iOS icons let’s move on to Android. To
make matters worse, Android has an entirely distinct set of protocols for
dealing with icons. (By the way, different processes for iOS and Android
are a frequent topic in this section, so we’re prepared.)

There is one more significant distinction we should be aware of before
creating our Android images. Almost all app icons on iOS have solid color
backgrounds. To blend in with other iOS icons, my Pokémon Types icon
graphic has a solid white background.

The backgrounds of iOS icons are often solid colors.
On Android, though, icons often have a translucent backdrop. As a

result, my Pokémon Types icon has a translucent background to blend in
with other Android icons.

The backgrounds of Android icons are often translucent.
That means we should upload two separate 1024 × 1024 pictures to the

NativeScript Image Builder, one with a solid background color for iOS and
one with a transparent background for Android. That’s exactly what I did
with Pokémon Types.

Whatever design option we make, open our app’s app/App
Resources/Android folder once we have our picture assets ready for
Android.

Then, copy the icon.png files from our icons.zip file’s Android folder
and place them in the app/App Resources/Android folder.

How to use the NativeScript Image Builder to replace the default
NativeScript Android icon pictures with our image files.

After installing these files, launch our app on Android to confirm that
our updated icons appear as expected.

114    ◾    Mastering NativeScript: A Beginner’s Guide

Step 2: Create Our Splash Screens

Splash screens are what users view when they launch our app before it is
ready to use. For example, when a user opens Pokémon Types on iOS, this
is what they see.

Although a splash screen may be used for various purposes, most apps
display the app’s logo and possibly the app’s logo. NativeScript has a set of
standards to make creating this type of splash screen for iOS and Android
reasonably simple.

Let’s begin with iOS. Open the app/App_Resources/Assets.xcas-
sets folder in our app and look for two folders entitled LaunchScreen.
AspectFill.imageset and LaunchScreen.Center.imageset.

These are the default splash screens that we’ve used in our app up to this
point. The AspectFill images serve as the backdrop for our splash screen,
and the Center images are centered on top of the background. Assuming
we desire a straightforward splash screen, our objective is to alter the back-
ground color of the AspectFill photos and insert our logo into the Center
images.

At this stage, launch our iOS app to ensure that our updated splash
screen files are operating properly.

Once we’ve completed our iOS setup, we’re ready to go on to Android,
where our instructions are practically identical this time. A sequence of
background.png and logo.png files may be found in our app’s app/App_
Resources/Android folder. NativeScript, like iOS, utilizes the background.
png file as the splash screen’s backdrop and centers the logo.png file on top
of it. We can use the relevant files under Pokémon Types as a guide, but
this step is simply additional image altering.

When we’re finished, launch our app on Android to ensure everything
is in order and then proceed to configure our app’s metadata.

Step 3: Set Up Our Metadata

Before deploying our apps to their separate stores, we must set up a lot of
information in iOS and Android applications. Many of these settings have
intelligent defaults in NativeScript, but there are a few we should double-
check before deploying.

Application id
Our application id is a one-of-a-kind identifier for our app that uses reverse
domain name notation. Pokémon Types, for example, has the application
id com.tjvantoll.pokemontypereference. The NativeScript CLI includes a

Refining Your App    ◾    115

standard for specifying the application id during app creation, tns build
MyApp – appid com.mycompany.myappname, but it’s simple to alter our
app id if we didn’t use that option.

Locate the “nativescript” key in our app’s base package.json file. Check
that the “id” property has the value we want to use.

{
 "nativescript": {
 "id": "com.tjvantoll.pokemontypereference",
 "tns-android": {
 "version": "2.5.0"
 },
 "tns-ios": {
 "version": "2.5.0"
 }
 },
……
}

Note: If we update our application id in our package.json file, we may
also need to modify the value in our app/App Resources/Android/app.
gradle file (look for the applicationId key) for the change to be effective on
Android.

Display Name
The display name of our app is the name that appears next to our icon on
the user’s screen.

Our app’s display name appears next to its icon.
NativeScript, by default, determines our app’s display name depending

on the value we gave to tns create, which is frequently not what we want
the user to see. Running tns create pokemon-types, for example, produces
an app with the display name “pokemontypes.”

To alter that value on iOS, enter the app/App Resources/iOS/Info.plist
file in our app. The Info.plist file is the configuration file for iOS, and it con-
tains a variety of parameters that we may wish to experiment with before
launching our app. We’ll want to change the CFBundleDisplayName value
for the display name. This is how this value appears for Pokémon Types.

<key>CFBundleDisplayName</key>
<string>PokéTypes</string>

116    ◾    Mastering NativeScript: A Beginner’s Guide

One thing to keep in mind: while there is no true character restriction for
display names, both iOS and Android will truncate them after about 10–12
characters. For example, when I tried to use “Pokémon Types” as my app’s
display name, we got the truncated display.

Long display names are truncated by iOS and Android. In this case, iOS
is truncating the display name “Pokémon Types.”

Because the shortened display is less than ideal, we may need to be cre-
ative when naming our program.

The procedure for updating our display name on Android is identical.
Look for a file called app/App Resources/Android/values/strings.xml in
our app. If the file does not already exist (it does not by default), create it
and put in the following code.

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">PokéTypes</string>
 <string name="title_activity_kimera">PokéTypes
</string>
</resources>

Then, replace the two “PokéTypes” references with the display name of our
app. After we’ve finished, re-run our app on Android to ensure everything
is in order.

Other Metadata
Although the application id and display name are the two most popular
choices, there are a few more that we should look at before deploying
our app.

We may alter additional settings in our app’s app/App Resources/iOS/
Info.plist file, such as our app’s supported orientations.

On Android, extra configuration variables may be found in the app/
App Resources/Android/AndroidManifest.xml file. One thing to look is
the permissions we’re presently seeking and if they’re current with the sta-
tus of our app.

Finally, our Info.plist and AndroidManifest.xml files include our app’s
version numbers, which NativeScript defaults to 1.0. If we want to modify
those settings, or if we need to update them for an app update, consult the
NativeScript instructions on versioning here for iOS and here for Android.

When we’re happy with our settings and are ready to begin, let’s move
on to optimizing our code.

Refining Your App    ◾    117

Step 4 (Optional): Install Webpack

NativeScript’s source code contains JavaScript, and just like JavaScript
code on the web, we may want to optimize it before pushing it to produc-
tion. Webpack, which NativeScript has built-in support for, is the optimi-
zation tool of choice for NativeScript projects.

Before we begin, it’s important to note that webpack use is optional
for NativeScript projects. Because webpack minimizes the amount of
JavaScript code in our app, it will load faster and have a reduced app size
when published to app stores.

The amount of value you get using webpack is determined by the app
we’re creating, most notably its present size.

The drawback of utilizing webpack with NativeScript is that now we
have another item to configure and manage. Although NativeScript’s
webpack plugin is simple to install and use, it might be not easy to
customize for advanced use, particularly if we’ve never used webpack
previously. If the deployment processes in this post have already over-
whelmed us, we may try publishing our applications to the stores as
a first step and then optimizing those apps with webpack in a later
release.

It’s entirely up to us, but if we want to give webpack a chance, browse
over the NativeScript webpack docs. If we run into problems, consider
posting a question in the NativeScript community forum.

Let’s get started on constructing our apps now that we’re all set.

Step 5: Create an Android Release Build

Now that we’ve completed all of our settings, we’re ready to build our app
and submit it to the app stores. Let’s begin with Android because getting
our app into Google Play is much easier than working with the iOS App
Store.

Before proceeding to Google Play to register and publish our app (the
next step), we must first create an Android executable file for your applica-
tion. This file has an .apk extension on Android and may be generated with
the NativeScript CLI.

The tns run command we’ve been using during NativeScript devel-
opment creates an .apk file for us and downloads it on an Android
emulator or device. However, the build required for a genuine Google
Play release must also be code signed. If we want to get into the crypto-
graphic intricacies, we may refer to Android’s code signing instructions,

118    ◾    Mastering NativeScript: A Beginner’s Guide

but we need to accomplish two things to build a release version of our
Android app.

•	 Make a file with the extension .keystore or .jks (Java keystore).

•	 During a build, use that .keystore or .jks file to sign our program.

The Android manual provides several alternatives for creating our key-
store file. Our favourite method is to use the keytool command-line soft-
ware, which is included with the Java JDK on which NativeScript is based
and should be available on our development machine’s command line.

To use keytool to build a keystore for code signing, run the following
command, replacing tj-vantoll with our name or the name of our firm and
NameOfYourApp with the name of our app.

•	 keytool -genkey -v -keystore tj-vantoll.jks -keyalg RSA

•	 -keysize 2048 -validity 10000 -alias NameOfYourApp

The keytool software will prompt various questions, some of which are
optional (such as the name of our company and the names of our city/
state/country). Still, the most critical are the passwords for both the key-
store and the alias (more on that momentarily). Here’s how the keytool
process looks when I build the keystore for Pokémon Types.

Before we get into how to use this .jks file, there’s one thing you need to
know. Put this .jks file somewhere secure, and don’t forget the keystore or
alias passwords. (To make my life easier, we like to use the same password
for my keystore and aliases.) Android mandates us to use the same .jks file
to sign any app updates. This means that if we lose the .jks file or its pass-
word, we will not update your Android app. We’ll have to establish a whole
new entry in Google Play, and existing users will be unable to update.

We’ll want to use a single keystore file to sign all of our personal or com-
pany’s Android apps in most circumstances. Remember how we gave the
keytool utility a -alias flag, and how that alias had its password? It turns
out that a single keystore may have several aliases, and we should establish
one for each Android app we develop. (Note: Adding an alias to an existing
keystore is simplest in Android Studio.)

So, now that we have this .jks file and have it safely stored somewhere,
the remainder of the process is fairly simple. Run the tns build android
command, passing it the information we needed to make the .jks file. For

Refining Your App    ◾    119

example, here’s the command we use to generate a Pokémon Types release
build.

•	 tns build android --release

•	 --key-store-path ~/path/to/tj-vantoll.jks

•	 --key-store-password my-very-secure-password

•	 --key-store-alias PokemonTypes

•	 --key-store-alias-password my-very-secure-password

When the command is finished, we’ll have a release .apk file in our pro-
gram’s platforms/android/app/build/outputs/apk folder. Make a note of
location of that file since we’ll need it in the following step, which is to
publish our app on Google Play.

Step 6: Google Play

Google Play is where Android users can locate and install apps, while the
Google Play Developer Console allows developers to register and publish
apps for consumers to discover.

We will not replicate all of Android’s guidance on uploading applica-
tions and setting up our store listing here because it’s relatively friendly.
Instead, we’ll share a few pointers that we might find useful when submit-
ting our NativeScript apps to Google Play.

Screenshots
You must offer at least two screenshots of your app in operation on the
“Store Listing” tab in the Google Play Developer Console. Although there
are other methods for creating these screenshots, I thought we’d outline
our favorite method.

Using the tns run android command, we may launch your program in
an Android Virtual Device (AVD). The AVDs offer a built-in method for
taking screenshots, which can be accessed via the small camera icon in the
emulator’s sidebar.

The button for taking screenshots from an Android Virtual Device.
Use this button to snap a few screenshots of our app’s most essential

screens, and the image files will display on our desktop. We could then
submit those files directly into the Google Play Developer Console. Still,
we prefer to use a service like DaVinci to add a little flare to our screenshots

120    ◾    Mastering NativeScript: A Beginner’s Guide

and convert them into a short mini instructional of what our app does.
Here are the screenshots we use for Pokémon Types, for example.

Little details like polished screenshots might be the difference
between a user clicking the Install button or leaving; therefore, it’s well
worth investing a few extra minutes in creating high-quality screenshot
files.

Feature Graphic
We must also upload a 1024 × 500 “Feature Graphic” image file to Google
Play. This file will be shown at the very top of our store listing.

The position of a “Feature Graphic” in a Google Play app listing
Designing a feature graphic may be difficult, and we don’t believe we

did an excellent job with Pokémon Types as someone who lacks design
skills. If we’re having problems creating one of these graphics, we may try
just utilizing our app’s logo against a solid backdrop color. Several major
apps, including Facebook, use this strategy.

For its Feature Graphic, many popular programs, such as Facebook,
employ a primary symbol.

APK
The .apk file produced in the previous stage of this section should be
uploaded to the Google Play Developer Console’s “App Releases” section.
As a reminder, that file is placed in our program’s platforms/android/app/
build/outputs/apk folder. Once we’ve uploaded our APK and filled out
all of our app’s details in the Developer Console, we’re ready to submit
our app. Android app evaluations typically take a few hours, and unless
Google notices any issues, our app should be published in Google Play
within a half-day or so.

With Android out of the way, we’re now prepared to handle iOS.

Step 7: Create an iOS Release Build

There’s no point in lying to us; submitting an iOS app to the iOS App Store
is one of the most challenging tasks we’ll face in our software development
career. So, if we get stuck or puzzled throughout these phases, remember
that we’re not alone; everyone gets annoyed while publishing iOS apps for
the first time.

As with the previous stages, we will not go through every step for gen-
erating an iOS release build in this section because the required steps vary
regularly and because the NativeScript documentation already goes into

Refining Your App    ◾    121

great length on the subject. What we’ll do is lay out a few things that we
should be aware of.

Apple Developer Account
We must have an active Apple Developer account to publish iOS apps to
the iOS App Store. The program costs $99 USD per year, and we can join
up at developer .apple.com/register.

Certificates, Identifiers, and Profiles
Once we have an Apple Developer account, we must use the Apple
Developer portal to establish a production certificate, an app ID, and a
distribution provisioning profile. This is the most time-consuming aspect
of the procedure since it takes some time to learn what each of these differ-
ent files does and how to utilize them.

The NativeScript documentation includes instructions that will lead us
through the process, but the best thing you can do is locate someone who
has already gone through these procedures to walk through the essential
stages. If we get stuck, post a question on the NativeScript community
forum.

Generating Your .ipa File
An .ipa file is the iOS counterpart of an .apk file, and we’ll need it to post
our program to the iOS App Store.

There are several ways to produce this file with NativeScript. The
NativeScript CLI’s tns build iOS command with the following option is
my favorite method.

•	 tns build ios --release --for-device

Note: The above command needs us to provide the code signing infor-
mation in our app/App Resources/iOS/build.xcconfig file specifically,
uncomment the CODE SIGN IDENTITY and DEVELOPMENT TEAM
lines and provide the proper values. The CODE SIGN IDENTITY should
be the same as the name of our distribution iOS certificate, and our
DEVELOPMENT TEAM id may be found at https://developer.apple.com/
account/#/membership (search for “Team ID”).

After this command completes, we will have the .ipa file required in our
platforms/ios/build/device folder. Make a note of the file’s location since
we’ll need it in the final stage of this instruction.

https://developer.apple.com
https://developer.apple.com

122    ◾    Mastering NativeScript: A Beginner’s Guide

Hopefully, we’ve made it to this point unscathed. We’re now ready for
the next step, which we wish we could say is simple iTunes Connect.

Step 8: Connect to iTunes

iTunes Connect is essentially Apple’s version of the Google Play Developer
site, except worse. And by worse, we just mean that it takes at least 50%
longer to fill in the required information and figure out what you’re sup-
posed to accomplish.

As with the previous stages, I’m not going to walk us through the pro-
cess of submitting our apps to iTunes Connect. Apple updates the portal
far too frequently, and their documentation on iTunes Connect is quite
outstanding. However, we will provide some pointers on how to register
our software for iOS distribution.

Create a New App
The first step is to register our application. To do so, go to https://
itunesconnect.apple.com/, pick “My Apps,” then click the “+” button (now
in the top-left corner of the page), and then choose “New App.”

Use the “New App” link above to register a new app in iTunes Connect.
We’ll need to provide some information about our app here, including

its name and app id. Here’s what we had to say about Pokémon Types.
An example of the information required to register a new app in iTunes

Connect.
After giving this information, we will be sent to our app’s dashboard, where

we will be required to supply further metadata about your application. The
majority of this information is rather easy, such as descriptions, price, and
so on, but there are a few “interesting” bits to deal with, such as screenshots.

Screenshots
In order to publish our apps, iOS, like Android, requires us to sup-
ply screenshot files. Previous versions of iTunes Connect demanded five
screenshots for each supported iPhone and iPad resolution, which is as
terrible as it sounds.

We just need to upload two sets of screenshots to iTunes Connect now:
one for the most significant iPhone devices (5.5-inch displays) and another
for the largest iPad devices (12.9-inch devices). Apple still allows us to offer
optimal screenshots for every iOS device dimension; however, if we only
supply 5.5-inch and 12.9-inch pictures, Apple will automatically rescale
our given screenshots for lower display devices.

https://itunesconnect.apple.com
https://itunesconnect.apple.com

Refining Your App    ◾    123

We could run our program on actual iPhone Plus and iPad Pro devices
to capture those screenshots, but we find it significantly easier to get these
screenshots through iOS simulators. To do so, launch any iOS simulator
and execute our iOS app.

tns run ios –emulator

Once our iOS simulator is up and running, go to the simulator’s “Hardware”
–> “Device” menu and select an “iPhone 7 Plus,” which is a device that can
take 5.5-inch screenshots.

To switch between iOS devices, utilize the Hardware menu in the iOS
simulator.

Note: Once we’ve launched the correct-sized simulator, we must re-run
tns run ios-emulator to deploy our app to the new simulator.

When the relevant emulated device is running, we may use the simulator’s
Cmd + S keyboard shortcut to capture a screenshot of our program, saving
the appropriate picture file to our desktop. Take a few screenshots of the most
critical areas of our app in operation, much like we did with Android.

When we’re finished, utilize the simulator’s “Hardware” –> “Device”
option to switch to an “iPad Pro (12.9 inches),” as it’s a device that can take
screenshots of that size. Use the tns run ios-emulator command to deploy
our app to the iPad simulator, and then use the Cmd + S keyboard shortcut
to retrieve a few iPad-sized photos.

We’re all set at this moment. We may use a service like DaVinci to polish
our picture files, but when we’re finished, drag them into the “App Preview
and Screenshots” section of iTunes Connect.

TIP: In this part of iTunes Connect, we may want to consider including
an app preview video for our application. App previews are short movies
that demonstrate our app in action and may help boost download if done
correctly. Refer to Apple’s documentation on App preview videos to learn
more about them and make successful ones.

Uploading Your .ipa File
We’re nearly there! Once we’ve submitted our information into iTunes
Connect, the final step is to correlate our built .ipa file with everything we just
typed out. We must specifically complete this step within iTunes Connect.

The default appearance of the “Build” section in iTunes Connect.
According to Apple’s reply, there are other ways to upload our .ipa file,

including using Xcode or a tool called Application Loader. However, we
prefer to use the NativeScript CLI’s built-in upload behavior.

124    ◾    Mastering NativeScript: A Beginner’s Guide

To submit our software to iTunes Connect, use the following command:

tns publish ios --ipa <path to your ipa file>

TIP: Remember to put our.ipa file in the platforms/ios/build/device folder
of your app. The complete command I used for Pokeémon Types was tns
publish ios – ipa platforms/ios/build/device/pokemontypes.ipa.

And that should be the end of it. However, there is a significant wait
between the moment we submit our iOS app and the time it appears in
iTunes Connect for some inexplicable reason. We’ve witnessed delays of as
little as 30 seconds and as much as an hour. It’s strange, as iTunes Connect
offers no indication that anything is going on. So be patient and keep hit-
ting the refresh button until our build file arrives.

The “Build” area in iTunes Connect after uploading a valid.ipa file.
We may be ready to go once we’ve chosen a build. Hit the vast “Submit

for Review” button… and cross fingers.
Apple’s assessment of the iOS apps that submit is notoriously irregular.

At time of writing, the average review time on the iOS App Store is about
two days. It took nearly precisely two days for me to receive a response
about Pokémon Types.

TIP: The website appreviewtimes.com/collects app review times to esti-
mate current app review times.

IN NativeScript, WORK WITH DATA
As a developer, we’ll be learning the ins and outs of a new framework
regularly. Although they differ, most frameworks appear to provide three
key user interface (UI)-related functionalities: defining the UI, collect-
ing data, and marrying the two together. NativeScript is no exception: we
build our UI with XML, we retrieve data by writing JavaScript code, and
NativeScript’s data binding framework and observable objects make them
work together.

Why Do We Require Dynamic User Interfaces?

We’ve known the value of dynamic UIs since the inception of the Internet: with-
out them, we’d have to rely on vast volumes of text-based data on web pages.
We’d manually update the data whenever it needed to be changed. We were
lucky if we just had one copy of the data, but we had many copies in most situ-
ations. One option was to store the data centrally and program the UI to pull
data from the central location, dynamically modifying what the UI presented.

Refining Your App    ◾    125

NativeScript in action walks us through the transition from static to
dynamic UIs. We learn to develop static UIs in the book by building the
Tekmo app, a mobile storefront for the Tekmo firm, which sells antique
video games to aficionados.

Examine the Tekmo app’s products page. Although it’s difficult to
notice, the UI is static and hard-coded.

The Tekmo app’s products page, displaying many hard-coded goods.
Each product is hard-coded in the XML file for the product page. Yes,

there are few goods, but what if there were dozens? What if the products
were to change regularly? Updating hard-coded UI components would
rapidly become cumbersome. In addition, we’d have to redeploy the soft-
ware for consumers to receive an updated version.

Let’s try something different: what if we got the Tekmo app’s product
lists via a file, database, or publicly accessible API endpoint? After obtaining
the data, we could update the product listing with it. We’d be able to write
less code, and our software would be more dynamic because we wouldn’t
be hard-coding everything. So, how can we write less code while still allow-
ing customers to create several scrapbook pages? It may not be evident, but
we’ll use templates to do this.

“Templates allow us to construct the UI element structure of a page
without adding the actual text or picture data. When a template is built,
the UI components in it serve as placeholders for the actual element dis-
played on the screen.”

The Path to a More Dynamic UI

Let’s move from the Tekmo app and look at a second app we created in
NativeScript in Action: the Pet Scrapbook. The Pet Scrapbook allows users
to create a virtual scrapbook of pages filled with photographs and text to
preserve the exciting times in their pet’s life.

It makes it logical to design a template in the Pet Scrapbook that repre-
sents the structure of a single scrapbook page structure. The template will
have placeholders for a pet’s name, age, page title, photos, and captions.
We may be wondering how this will help us save time and write less code.
Consider this in the context of a simple scrapbook.

Assume we’re making an actual scrapbook and want to add a page to it.
We begin by arranging the page by measuring and using a ruler to verify
objects are aligned, straight, and organized similarly to previous pages in
our scrapbook. This is done for each image, sticker, and text added to the
page. This seems time-consuming, but what if we started with a template:

126    ◾    Mastering NativeScript: A Beginner’s Guide

a page with placeholders for the page’s title, our pet’s name, images, and
other design elements? Adding a new page suddenly becomes a lot easier
because the heavy work has been done, and we only need to worry about
the page’s content.

Using templates in our software is similar to using a scrapbook tem-
plate. When creating a new page in the NativeScript pet scrapbook, we
may use the same design but display different details. We’ll reuse the code
we wrote for the page because we’re utilizing the same template.

Using such a template for the left list view makes sense since we can
reuse the template when pages are added, filling in the slots for the pet’s
image and name. The right-side details view is likewise a good candidate
for a template. As the pages on the left are picked, a template might be used
to fill in the pet’s name, birth date, and so on.

Data Binding

Now that we’re familiar with templates, we’d like to show how a single UI
template may be reused to display multiple details. The underlying tech-
nology utilized to accomplish this is known as data-binding.

“The technique of attaching UI components to objects in code is known
as data binding. When a UI element connected to an object in code is
changed, the change is reflected in the object or property. Data-bound UI
components are those that are related to objects in code.”

Data binding refers to the process of connecting a JavaScript object and
UI components. Data binding is significant since it eliminates the need to
hardcode products into the Tekmo app’s product page or update an age
field on the Pet Scrapbook app depending on a user’s birthday. Before we
get started with data binding, let’s look at another idea that powers the
inner workings of data binding: observables.

“Observables are JavaScript objects that provide alerts to our code when
one of their values changes.”

We prefer to see observables as students in a classroom: if anything
changes, they raise their hands to alert their teacher. It might be because
they have a runny nose, need to use the restroom, or want to show their
instructor the great robot image they made. It doesn’t matter what has
changed, but they will raise their hand anytime something has changed
to ensure that their instructor knows it. Children are similar to observable
objects (also known as observables), except that observables do not raise
their hands; instead, they raise an event. We may have observable tracking
of our pet’s name and birthdate in the context of the Pet Scrapbook.

Refining Your App    ◾    127

When one of our app’s internal values changes, it may reply to an
observable object.

We may be asking how this all fits together at this point. Templates,
data binding, observables, and events, these notions, when combined, cre-
ate the framework upon which we will strive to address the hard-coding
challenge.

Data binding, templates, observables, and observable change events are
all interconnected.

Data binding is the act of connecting a UI template and an observable.
Once connected, the template monitors the observable for change events.
When the value of observable changes, an event is triggered. The regis-
tered event listener then displays the observable’s new value in response to
the observable’s change.

GETTING OUR APP READY FOR DISTRIBUTION
Before we release our program, configure the information property list
and add icons.

Overview

Before we publish a build to App Store Connect or export a build to dis-
tribute it outside of the App Store, prepare our Xcode project for distri-
bution. Provide all necessary app information, such as a unique bundle
ID, build string, app icon, and launch screen. Choose our options wisely
because most of the data is no longer changeable after deploying a build via
TestFlight or the App Store.

Set the Bundle ID

When we use a template to create an Xcode project, the bundle ID
(CFBundleIdentifier), which uniquely identifies our app throughout the
system, defaults to the organization ID appended to the app name you
enter in reverse-DNS format; for example, the bundle ID becomes com.
example.mycompany.HelloWorld.

Our default bundle ID should be unique if our organization ID is unique
across all developers and our app name is unique inside our company. For
example, to guarantee that the bundle ID is unique, use our business’s
domain name as the organization ID.

To deploy our app through TestFlight and the App Store, create an app
record in App Store Connect and input the bundle ID from our project.
We can’t modify the bundle ID once we submit our first build to App Store

128    ◾    Mastering NativeScript: A Beginner’s Guide

Connect, so pick the organization ID carefully when creating the project
or adjust the bundle ID later. We can change the name of the app until it is
submitted to App Review.

Set the bundle ID for an app target in the Identity section of the project
editor’s General tab.

Configure the Bundle ID for a Mac App Created with Mac Catalyst

By default, a Mac app produced with Mac Catalyst utilizes the same bun-
dle ID as an iPad app, allowing us to sell the applications together on the
App Store as a universal buy.

If we want to offer the Mac version separately, modify the bundle ID
in Xcode, then create a new app record in App Store Connect for the Mac
app. Select the iOS target in the project editor and then select the Signing
and Capabilities pane. Unselect the Use iOS Bundle Identifier option in
macOS. Enter a bundle ID for the Mac version in the text field that displays
below.

If we have Via-App Purchases or Subscriptions, we must rebuild them
in App Store Connect for the Mac app.

Note: If we construct our Mac app using Mac Catalyst using an earlier
version of Xcode than 11.4, the Mac app bundle ID will have a maccata-
lyst prefix followed by the iPad app bundle ID. Change the Derive Mac
Catalyst Product Bundle Identifier build parameter from YES to NO to
utilize the same bundle ID for both versions.

Configure the Version Number and Build String

The version number (CFBundleShortVersionString) and build string
(CFBundleVersion) are used across the system to identify the build of our
app uniquely. The report service creates crash, energy, and metrics reports
for each build of an app version for apps deployed through TestFlight
or the App Store. The version is also displayed in the App Store, and for
macOS products, the version number and build string are displayed in the
About window.

The build string and version number are supposed to be in the format
“[Major].[Minor]. [Patch],” where Patch refers to a maintenance release,
such as 10.14.1. The App Store requires both keys.

After we’ve created the project, enter the version number and build
string. Before you archive a build that we intend to share, increment the
build string. Then, whenever we build a new version of our app, for exam-
ple, through App Store Connect, increment the version number.

Refining Your App    ◾    129

Before distributing a new build of a macOS program, the build string
must be incremented.

Set the version number and build string beneath the bundle ID in the
project editor’s General pane.

Configure the App Category

On the Software Store, categories help consumers find our app. In Program
Store Connect, we specify the primary and secondary categories our app
will be displayed on the App Store. For macOS apps, we must also provide
the primary category in the project, matching the primary category speci-
fied in App Store Connect.

Select a category from the App Category pop-up menu in the Identity
section of the project editor’s General pane.

Assign a Team to the Project

Assign the project to a team if we haven’t previously. For example, if we
wish to deploy our software via TestFlight or the App Store, assign all of
the targets in a project to an Apple Developer Program team. Xcode pro-
duces the appropriate signing assets in the associated developer account
when we upload or export our build.

Select a team from the Team pop-up option in the project editor’s
Signing and Capabilities pane.

Edit the Deployment Info Settings

Edit deployment info settings because some parameters, such as the oper-
ating system and devices supported by our program, are later utilized by
the App Store.

Choose the oldest operating-system version that can execute our pro-
gram from the Target pop-up menu in the Deployment Info settings on
the project editor’s General pane.

Select the compatible devices under the Device column for iOS and
watchOS apps. Check both the iPad and Mac boxes under Device to
develop a Mac version of an iPad app.

Select the “Supports multiple windows” checkbox at the bottom of the
Deployment Info settings to allow multiple windows for an iPad app. Then
click the Configure arrow to adjust other options.

Add an App Icon and an App Store Icon

Add an icon to represent our app in different places on a device and in the
App Store.

130    ◾    Mastering NativeScript: A Beginner’s Guide

If we wish to release the program through the App Store, include an
App Store-specific icon.

The image collection for app icons is already included in a project gen-
erated using a template. To view the asset catalogue, click the arrow next
to the AppIcon image set in the General pane’s App Icons and Launch
Images section. Then, drag versions of the app icon to the wells in the asset
catalog’s detail tab.

The platform determines the position of the App Store icon wells in the
asset catalogue. Drag a resolution for the App Store to the App Store iOS
well for iOS apps, and drag it to the App Store - 2x well for macOS apps.

Provide a Launch Screen (iOS)

A launch screen is a UI file that appears when our app initially opens and
is rapidly replaced by our program’s first screen. The start screen simply
improves the user experience by giving the user something to look at while
launching our program.

When we build a project using a template, we may edit the
LaunchScreen.storyboard file. We may also add a start screen file to an
existing project.

To Get Access to Protected Resources, Provide Usage Descriptions

When our program attempts to access a protected resource for the first
time, the system requests the user for permission. It then produces a win-
dow with our app’s name and a usage description that you supply. For
example, “Our location is utilized to deliver turn-by-turn instructions
to our destination” may be the usage description for obtaining the user’s
location data. When a user provides permission, the system remembers
and does not prompt for that resource again. If the user refuses permis-
sion, access to that resource and all further attempts are denied.

In the Information Property List, we must include usage descriptions
for every protected resource our app accesses, such as the user’s location,
calendar, reminders, and contacts. Include details of how to use peripher-
als like the camera and microphone.

Set Up the App Sandbox and Hardened Runtime (macOS)

We must activate Program Sandbox, if we plan to release our macOS app
through the App Store. If we want to distribute our macOS program out-
side the App Store, we must activate hardened runtime and, optionally,
App Sandbox.

Refining Your App    ◾    131

Configure the Copyright Key (macOS)

Set the copyright key (NSHumanReadableCopyright) in the informa-
tion property list before uploading our software to App Store Connect for
macOS applications.

If we don’t explicitly supply a copyright string to the orderFrontStan-
dardAboutPanel(_:) function that displays the About panel in macOS, a
translated version of the copyright key is shown instead. If we set the copy-
right key to @2002-2019 My Company, it will show at the bottom of the
About window. For each language that you support, we may localize the
information property list.

Add Export Compliance Data

If we distribute our app outside the United States or Canada, it is subject to
United States export rules. If our app employs encryption, it must comply
with US export regulations. By submitting export compliance information
in the Information Property List, we may avoid answering the questions
that App Store Connect asks you every time we submit our app for review.

NativeScript SIDEKICK ALLOWS US TO CREATE iOS APPS
ON WINDOWS
What Exactly Is a Cloud Build?

When we build an IPA file (for iOS) or an APK file (for Android), we typi-
cally use the native SDKs installed on your workstation. The Xcode tools
are used for iOS, whereas the Android SDK is used for Android. The issue
with developing apps locally is the time it takes to download, install, and
set up these tools. Is it feasible? Definitely.

But What If We Weren’t Required to Use this Method?

With NativeScript Sidekick, we can practically leave SDK administration
to us. Simply instruct Sidekick to develop our app in our cloud, and we will
return the IPA and APK app package to us. Your NativeScript materials
are sent securely to our cloud servers.

Cloud builds often regarded as significantly slower than local builds.
This is understandable given that local builds operate on our hardware,
and no data must be sent over a network. Sidekick cloud buildup, on the
other hand, is quick. Extremely quick. There’s a potential that our cloud
builds will be faster than our local builds. Why? Sidekick builds are con-
ducted on the most recent Mac Pros with a high-speed network connection

132    ◾    Mastering NativeScript: A Beginner’s Guide

to ensure that our files are uploaded, compiled, and downloaded as quickly
as possible.

Is It Still Possible for Us to Build Locally?

If we already have the necessary SDKs installed locally, we can simply
select a “local” build inside Sidekick.

As part of our getting started tutorials, we give a complete installation
guide for setting up the dependencies necessary for local builds. Sidekick,
on the other hand, will install dependencies for us if we lack any.

How Do We Create a Build with Sidekick?

It doesn’t get much easier than this. Go to the Run menu in Sidekick when
an app is open and select Build.

Choose between iOS and Android builds in the provided window, and
make sure Cloud Build is chosen.

“Sidekick caches several intermediate files between builds to guarantee
the fastest possible cloud builds. Select Clean build if we need to rebuild
our app totally. Please keep in mind that this will drastically slow down
the construction.”

The catch is that we need a certificate and a provisioning profile to build
on iOS. A certificate is also required for publishing to Google Play with
Android release builds.

iOS Development on Windows

The ability to build an iOS app from Windows utilizing Sidekick is a sig-
nificant benefit to Windows developers. However, there are certainly more
features that we highlight to make our life easier.

Sidekick also provides the ability to produce certificates for app signing,
beginning with a CSR.

Not to add, if we don’t already have a valid iOS provisioning profile
and certificate pair, Sidekick can produce these for us using a free Apple
account.

App store submissions are the final piece of the jigsaw. We can’t submit
our binary IPA file to the Apple App Store unless we have a Mac. Sidekick,
on the other hand, lets us develop and launch directly to the app store.

How Do Continuous Integration Build Work?

As a graphical user interface (GUI) desktop program, Sidekick isn’t the
first thing that comes to mind when thinking about our continuous

Refining Your App    ◾    133

integration (CI) process. However, we are actively investigating solutions
for exposing our cloud build services through the NativeScript CLI.

PROTECT OUR MOBILE APP
Whether we’re creating a classic native app, a cross-compiled app with
Appcelerator or Xamarin, a hybrid app with Ionic, or a JavaScript-native
app with NativeScript or React Native, app security is a common thread
that runs through all of them.

Mobile security is no longer something to be taken casually. Almost
everyone has sensitive data, access to company secrets, and protected
health information in their pockets.

A Little History:

•	 Storing user passwords in plain text.

•	 Sending queries with SSNs in the query string.

•	 Accepting credit card payments in the absence of SSL.

Users have always depended on public app stores as the ultimate app
gatekeepers, functioning as virus guardians and blocking fraudulent API
usage. The fact is that we developers must install more security measures
before releasing our next fantastic program.

This four-part series on the NativeScript blog will go into various
security-related tips and tactics for us to implement in our project. Most
of them are quite simple to build because our renowned community of
plugin developers has already done the heavy lifting.

•	 Part One: Safeguarding Your Source Code.

•	 Part Two: Data Security at Rest.

•	 Part Three: Ensuring Data Integrity between the Device and the
Server.

•	 Part Four: Authentication and Authorization of Enterprise Users.

Source Code Protection

The majority of us have a background in web development. We’re used to
send our code to a user’s browser via a server. Yes, there are intellectual
property (code copying) concerns, but we can do nothing to prevent them.

134    ◾    Mastering NativeScript: A Beginner’s Guide

On the other hand, desktop and mobile developers are more accustomed
to compiling code into mostly unreadable bits to secure code and reduce
attempts to find flaws.

So, how do these challenges be addressed in this new wave of
“JavaScript native” apps developed with technologies like React Native and
NativeScript? What about hybrid apps created with Ionic?

We hate to break the collective bubble, but source code supplied to the
client is fundamentally insecure because it is theoretically readable by the
end-user in some way. None of NativeScript, React Native, or Cordova/
Ionic is compiled to native byte code. JavaScript is interpreted on the
device in the same way that a web browser does.

So we’re a typical native app developer who believes we’re safe? Think
again – there are a plethora of tools available to decompile our code and
read our secrets.

But everything is not lost. Take a look at some methods for encrypting
our source code and keeping prying eyes away from our items – preserv-
ing our intellectual property while also minimizing any assaults on our
applications and backend systems.

Obfuscation and Minification

The first and, admittedly, weakest technique of safeguarding our code is
by minification/obfuscation. This is a time-honored method for rendering
our code unreadable to human eyes. Uglify, a popular obfuscation pack-
age, can accept readable JavaScript code like this.

cons app = require("tns-core-modules/application");
cons HomeViewModel = require("./home-view-model");
function onNavigatingTo(args)
 {
 cons page = args.object;
 page.bindingContext = new HomeViewModel();
}
function onDrawerButtonTap(args)
{
 cons sideDrawer = app.getRootView();
 sideDrawer.showDrawer();
}
exports.onNavigatingTo = onNavigatingTo;
exports.onDrawerButtonTap = onDrawerButtonTap;

Refining Your App    ◾    135

and convert it to significantly less understandable code, like follows:

const app=require("tns-core-modules/application");
HomeViewModel=require("./home-view-model");
function onNavigatingTo(o)
{
o.object.bindingContext=new HomeViewModel
}
functiononDrawerButtonTap(o)
{
app.getRootView().showDrawer()
}
exports.onNavigatingTo=onNavigatingTo;
exports.onDrawerButtonTap=onDrawerButtonTap;

The NativeScript CLI lets us uglify our app right out of the box, provided
we’re already using Webpack. To compile and uglify our code, simply run
the following command:

tns build android|ios --bundle --env.uglify

Warning: This is the equivalent of the low-cost bike locks we used in middle
school.

It will keep the casual hacker at bay, but the problem is that there are lots
of “beautification” resources available that will take uglified code and make
it a bit more legible. Using one of these services on the above-mentioned
obfuscated code yielded the following results:

cons app = require("tns-core-modules/application"),
 HomeViewModel = require("./home-view-model");
function onNavigatingTo(o)
{
 o.object.bindingContext = new HomeViewModel
}
function onDrawerButtonTap(o)
{
 app.getRootView().showDrawer()
}
exports.onNavigatingTo = onNavigatingTo;
exports.onDrawerButtonTap = onDrawerButtonTap;

136    ◾    Mastering NativeScript: A Beginner’s Guide

Jscrambler (Protection+++)

We have been in contact with the guys at Jscrambler for many years now,
dating back to our days of hybrid app development. Jscrambler is a service
that offers extensive JavaScript obfuscation and protection, to the point
that the code is unintelligible even after beautifying.

Jscrambler protects our code against tampering by converting our
JavaScript into a resistant form to reverse-engineering using automated
static analysis techniques. Jscrambler also supports “code locks,” limiting
when, where, and by whom the JavaScript may be run.

For example, in a NativeScript app, we can execute some JavaScript
using Jscrambler.

With NativeScript compatibility confirmed, Jscrambler is undoubtedly
worth a try.

We’ve taken some suitable precautions to safeguard and protect the
code we’re distributing to our end users at this time.

Restriction of Access via Private App Stores

There are almost no limits on who may download your program from pub-
lic app stores. Regardless of the aim or audience, a 14-year old in Australia
has roughly the same access as an 80-year old in Arizona. Granted, we may
limit our applications by age and geo-restrict them to only be available in
particular areas, but this has little to do with app security.

A private app store may be a preferable alternative if we build an app
that only has to be provided to a single entity (i.e., a group of users or a
single company/organization).

Options for Enterprise MAM/MDM

If we work for a large enough firm, chances are we rely on Mobile App
Management (MAM) or Mobile Device Management (MDM) software to
help protect our internal applications and devices. With a MAM provider,
such as MobileIron or AirWatch, we have an internal “business” app store,
so we don’t have to worry about an unauthorized third party downloading
our apps.

Apple Developer Enterprise Program

The Apple Developer Enterprise Program allows us to bypass the public
iOS App Store and offer our apps directly to the users of our enterprise.
While the cost is more than a standard developer agreement, the distribu-
tion flexibility is invaluable.

Refining Your App    ◾    137

The code signing and provisioning profile creation processes are identi-
cal to the normal technique. Simply put, an extra, distinct provisioning
option for in-house/ad hoc app deployment is available.

Android Private Distribution: When it comes to releasing applications
outside of Google Play, Google is significantly less conservative. We may
build up our private app marketplace (or even design our app that operates
as an app store) without troubling the apple cart. Google even lets us dis-
tribute programs using email, our website, or a controlled Google Play store.

The only catch is that our end customers must consent to the installa-
tion of unfamiliar apps.

If we don’t want to build our own, various businesses provide compa-
rable functionality. An example of such a service is Applivery.

Maintain Business Logic on the Cloud

Why not transfer private business logic to a backend system instead of try-
ing to protect it on the device? We can retain complicated business logic
on the backend of our mobile app in the same manner that web apps do.

For many cases, whether for security or speed, we may be considerably
better off migrating critical business logic from our app to the cloud.

FlexServices, lightweight Node.js microservices supplied by Progress
Kinvey, provide a simple method to accomplish this using NativeScript.

We may have certain private business logic in our app that would be
better served in the cloud (whether for IP protection, performance rea-
sons, or even hiding other API keys on the server). Instead of retaining this
logic in our app, we can use Kinvey to create a FlexService.

For example, the FlexService below collects financial transaction data
and rates our performance using a proprietary algorithm:

const sdk = require('kinvey-flex-sdk');
function getTransactions(modules)
 {
 return new Promise((resolve, reject) => {
 const store = modules.dataStore({ useUserContext:
false });
 const collection = store.
collection('Transactions');
 const query = new modules.Query();

 collection.find(query, (err, result) => {
 if (err)

138    ◾    Mastering NativeScript: A Beginner’s Guide

{
 reject(err);
 }

else

{
 resolve(result);
 }
 });
 });
}
function determineScore(transactions)
{
 var score = 110;
 transactions.forEach((transaction) => {
 if (transaction.amount < 0)
{
 score -= 5;
 }
 if (transaction.amount > 5)
{
 score += 11;
 }
 if (transaction.category === "restaurant")
{
 score -= 6;
 }
 });
 return score.toString();
}

sdk.service((err, flex) => {
 function getBudgetScore(context, complete, modules)
{
 getTransactions(modules).then((transactions) => {
 complete().setBody({
 score: determineScore(transactions)
 }).done();
 }).catch((err) => {
 complete().setBody(new Error(err)).runtimeError()
.done();

Refining Your App    ◾    139

 });
 }
 flex.functions.register('getBudgetScore',
getBudgetScore);
});

And this FlexService is accessed within our app using a Kinvey
endpoint:

return this.http.post(
 "https://baas.kinvey.com/rpc/kid_<ID>/custom/
BudgetScore",
 {},
 {
 headers: new HttpHeaders({
 "Content-Type": "application/json",
 "Authorization": "Basic <OUR AUTH KEY>"
 })
 }
);

Using this strategy, our intellectual property is protected, our business
logic is not accessible to our users in any manner and we benefit from the
performance and dependability of a fully scaled Kinvey instance.

Take Caution When Sharing Keys

Okay, this may seem overly simple, but it happens far more frequently than
we think: make sure we aren’t exchanging private keys.

When we utilize GitHub public repositories, we frequently do not con-
trol which files are posted. And some bots constantly check repositories
for private AWS or Firebase keys, which they then utilize for nefarious
purposes, such as:

The simplest approach to avoid this is using a .gitignore file that excludes
the.ts/.js file(s) stored in our private keys. Here is the standard .gitignore
file we use for our NativeScript projects (assuming TypeScript is used, this
also excludes JavaScript files from app directory):

•	 .vscode/

•	 .cloud/

•	 platforms/

140    ◾    Mastering NativeScript: A Beginner’s Guide

•	 node_modules

•	 app/**/*.js

•	 app/**/*.map

•	 npm-debug.log

•	 app/keys.*

•	 hooks/

•	 app/**/google-services.json

•	 app/**/GoogleService-Info.plist

This excludes private keys and stops the platforms and node modules fold-
ers from being shared (which are entirely unneeded if we’re cloning the
app, much alone complete of hundreds of files).

In this chapter, we discussed refining apps working with data in
NativeScript, as well as releasing an app and preparing an iOS app for
release. We also learned about iOS security.

141DOI: 10.1201/9781003299394-4

C h a p t e r 4

Angular and NativeScript

IN THIS CHAPTER

➢➢ Creating a NativeScript app with Angular

➢➢ Using Angular components and routing

➢➢ Branstein/The NativeScript Book

➢➢ Angular data binding and services

➢➢ Using plugins

We discussed working with data in NativeScript and launching an app in
the last chapter. We also learned about iOS distribution and security. This
chapter will teach us about Angular in NativeScript, including its develop-
ment, components, Angular data binding, and services.

CREATE A WEB AND MOBILE APPLICATION
WITH Angular AND NativeScript
Angular has been available for a few years and has proved effective in
creating various types of apps, including online and mobile. The issue, at
least, has always been that the experience of developing these various apps
has been uneven and frequently perplexing, even though the driving tech-
nology has always been the same.

Custom schematics may now be used with the official Angular CLI,
which has improved things. So, what does this imply for us? We can take
an Angular CLI project, add a NativeScript schematic, and end up with a
CLI that works on both web and mobile.

https://doi.org/10.1201/9781003299394-4

142    ◾    Mastering NativeScript: A Beginner’s Guide

Install the Global NPM Dependencies That Are Necessary

Before we can construct and manage NativeScript apps using the Angular
CLI, we must first ensure that we have the necessary global NPM depen-
dencies on our machine. Assuming you already have Node.js installed and
configured, run the following command from the command line:

npm install -g @angular/cli@6.1.0-beta.0
npm install -g @nativescript/schematics
npm install -g nativescript

The Angular CLI, NativeScript CLI, and NativeScript schematics for the
Angular CLI will be installed via the instructions listed above. We must
keep in mind that schematics are just for building and sustaining projects.
For creating and deploying mobile applications, the NativeScript CLI is
still necessary.

Take note of the Angular CLI version that is being utilized. As of
June 29th, 2018, beta.2 and rc.0 contain several flaws that will be resolved
in rc.1. Until then, make sure we’re running beta.0.

We won’t go into it in this section, but if we want to build locally, our
machine must also be set up for Android and iOS development.

Create a New Angular CLI Project That Includes NativeScript Support

We may add NativeScript support to an Angular CLI project after install-
ing the necessary components. While we may apply it to an existing proj-
ect, we’ll start with a new one for simplicity’s sake. Execute the following
commands from the command line:

ng new angular-project

The preceding command will generate a new Angular project, which will
by default be for web apps rather than native mobile applications. We may
add mobile application support by using the following command:

ng add @nativescript/schematics

Before running the command above, make sure we’ve gone inside our
project. We must be in an Angular CLI-generated project; thus we don’t
believe schematics can be included in a NativeScript project made using
the NativeScript CLI.

Angular and NativeScript    ◾    143

If we’re genuinely starting from scratch with a code-sharing project, as
an alternative we may build an Angular with NativeScript project using
the command:

ng new --c=@nativescript/schematics --name=angular-
project --shared

If we’re adding schematics to an existing project, however, the previous
command should be used.

Understanding the Schematic Changes and
Angular Development Process

When we add the NativeScript schematics to our Angular project, we’ll see
that it generates a slew of new files and even modifies a few settings files.
Don’t be concerned about anything negative occurring to our initial idea.

The first thing we’ll notice is that we have some .tns.ts and .tns.html
files. At first sight, we may believe that we must now handle two separate
code-sets, which are not exactly correct.

Because NativeScript is a native mobile application framework, we can-
not utilize normal HTML markup for the user interface (UI). As a result,
we must maintain both a web UI and a NativeScript UI. We could have a
web version and a NativeScript version for everything in TypeScript, but we
don’t have to. It makes sense in the modules and routing sections because
there exist services like NativeScriptRoutingModule and RoutingModule
that perform the same thing but are platform specific.

Let’s tweak our new app to demonstrate the value of having so many plat-
forms under “nearly” a single CLI. Beginning with the project’s src/app/app.
routing.tns.ts file, clone it to src/app/app.routing.ts and modify it to look like this:

import { NgModule } from '@angular/core';
import { RouterModule } from '@angular/router';
import { Routes } from '@angular/router';
const routes: Routes = [
 { path: '', redirectTo: '/players', pathMatch:
'full' },
];
@NgModule({
 imports: [RouterModule.forRoot(routes)],
 exports: [RouterModule]
})
export class AppRoutingModule { }

144    ◾    Mastering NativeScript: A Beginner’s Guide

If we haven’t noticed, the differences are in the nomenclature of the
modules that are being utilized. We deleted the tns from the filename and
used the Angular vanilla modules because this file is for the web.

We’re not out of the woods yet. To be more in accordance with the
NativeScript version, we must modify our project’s src/app/app.module.ts file:

import { BrowserModule } from '@angular/
platform-browser';
import { NgModule } from '@angular/core';
import { AppRoutingModule } from './app.routing';
import { AppComponent } from './app.component';
import { BarcelonaModule } from './barcelona/
barcelona.module';
@NgModule({
 declarations: [
 AppComponent,
 AboutComponent
],
 imports: [
 BrowserModule,
 AppRoutingModule,
 BarcelonaModule
],
 providers: [],
 bootstrap: [AppComponent]
})
export class AppModule { }

We’ll most likely be playing catch-up with the NativeScript version if we’re
coming from an existing Angular project. In other words, we’re doing the
opposite of what we’re doing.

The final step is to make any necessary changes to the src/app/app.compo-
nent.html file. In our Angular project, as of June 2018, we have a default land-
ing page with no routing. We must complete the route configuration. Replace
everything in the project’s src/app/app.component.html with the following:

<router-outlet></router-outlet>

We’re simply attempting to match the behavior of the two programs.
Because the program is new, the NativeScript version achieved far more
than the online version. The original material reinforced this.

Angular and NativeScript    ◾    145

Our project is complete, but what if we wanted to continue using
the Angular CLI? Let’s make a new component with the following
command:

ng g component about

The preceding command will utilize the CLI to construct a component
called about, resulting in the following:

src/app/about/about.component.css
src/app/about/about.component.html
src/app/about/about.component.tns.html
src/app/about/about.component.ts
src/app/about/about.component.spec.ts

We mean that we can utilize the Angular CLI in the same way that
we would any other Angular application. We’ll be left with a .tns.
html file to add our custom mobile UI. There are a plethora of addi-
tional commands available beyond producing components, so don’t
feel confined.

Using the NativeScript CLI to Run an Angular
CLI Project on Android or iOS

We can now worry about executing our application that the project has
been built, modified, and ready to go. In its most basic version, we can
verify that the project still functions as a web application. Execute the fol-
lowing commands from the command line:

ng serve

When the command is finished, go to http://localhost:4200 in our web
browser to see it in action. We may also execute the following on a mobile
device to launch the application:

tns run ios --bundle

The command above will launch the app on iOS. We may quickly switch
from iOS to Android if that is more convenient for us. The --bundle option
is the most significant component of the command. If the program is not
packaged, it will crash with a slew of perplexing errors.

http://localhost:4200

146    ◾    Mastering NativeScript: A Beginner’s Guide

Angular 10 Upgrading Suggestions

The NativeScript team has done it again, delivering the most recent Angular
10 support for NativeScript. The recent release of the @nativescript/
schematics package marks another significant step forward in the drive
for integrating codebases across online and mobile and improving the
developer experience when creating NativeScript with Angular. If we are
unfamiliar with @nativescript/schematics, you should look at the pack-
age source repository on Github. If we want to give it a try right now, do
the following:

tns run ios --bundle
npm i -g @angular/cli // You could be needing to
prefix sudo on GNU/Linux and other Unix-like OSes.
npm i -g nativescript // You could be needing to
prefix sudo on GNU/Linux and other Unix-like OSes.
npm i -g @nativescript/schematics // You could be
needing to prefix sudo on GNU/Linux and other Unix-
like OSes.
ng new workspace
cd workspace
ng add @nativescript/schematics
--skipAutoGeneratedComponent

// start apps:
npm run ios
npm run android
ng serve

Upgrading Our Angular 10 Project

Updating our project today prepares us for the future NativeScript 7
release because it relies on the current running @nativescript/core rc’s,
which employ es2017 target builds for Angular 10 compliance. After all,
es5 support was formally withdrawn by default. This is a great and wel-
come update that will be available in NativeScript 7 and will allow for good
optimizations with the v8 engine, sophisticated tree shaking, and aligning
your NativeScript code with contemporary JS ecosystems.

If we already use NativeScript with Angular and want to keep up to date
on project updates, here’s how to upgrade to Angular 10:

Warning: Make sure to commit and push our project updates to our
remote repository. The procedure includes several modifications that
might benefit from a changeset diff against our current project.

Angular and NativeScript    ◾    147

Package Should Be Updated .json
package.json is the definitive reference for what our project includes and is
dependent on. It presently uses prior versions of our project dependencies
for this purpose. Nathan Walker, a TSC member, has described and imple-
mented the form that package.json must take. Based on his suggestion,
we wrote a sample node script that reads our existing package.json and,
using Spread syntax, changes the packages that need to be updated while
keeping our other project dependencies intact. The script also removes
the platform version declarations from our package’s nativescript section
.json, since updating the platform versions alongside the @nativescript/
angular packages is recommended.

1.	The file may be downloaded at https://gist.github.com/mahmoudaja
wad/351b7e90460b5d78942046049a6f7598. to the root of our project
(the same level in which package.json is at).

2.	After configuring our working directory to our project path, run:
node update_package.tns-ng10.js with our favorite terminal app.

3.	The script would be executed, and hopefully, it would result in an
Updated package.json!.

a.	 If not, and we get the message “package.json.bak” was discov-
ered…, it’s likely we tried to execute the script earlier, and our
package.json file was already modified.

b.	 Open package.json and check to see if the @nativescript/angular
package version is set to 10.0.0.

c.	 If this is the case, our package.json was most likely previously
changed by a previous run of the script.

d.	 Otherwise, remove “package.json.bak”.

e.	 If the problem persists, please let me know to collaborate with us
to resolve it.

4.	Examine the revised package.json file to ensure that everything is in
order.

5.	Webpack.config.js should be removed.

a.	 Suppose we have made any modifications to webpack.config.js.
In that case, we must remember to re-implement them later, as

https://gist.github.com
https://gist.github.com

148    ◾    Mastering NativeScript: A Beginner’s Guide

NativeScript packages will attempt to construct an updated web-
pack.config.js file if it is missing.

6.	Run npm run clean followed by npm run PLATFORM, where
PLATFORM is the platform we seek to deploy the app.

a.	 The app will not operate because the – no-hmr argument must
be supplied when calling tns run PLATFORM. Using npm run
PLATFORM will provide us with a shortcut to the required
activity.

b.	 Running projects in preview mode with NativeScript Preview
apps for Android and iOS is currently not feasible since an
upgrade for Preview applications is required and is in the works:
https://github.com/NativeScript/nativescript-schematics/pull/28
6#issuecomment-667577731.

7.	If our app doesn’t operate, there’s a good likelihood that certain
imports are broken, which you’ll address next. If we prefer to handle
things on our own. What you must do is as follows:

a.	 Package has been updated. Versions of json packages according
to this comment.

b.	 Remove the version of the platform from the nativescript section
while keeping the id attribute.

c.	 Webpack.config.js should be removed.

d.	 Run npm run clean && npm run PLATFORM, where PLATFORM
is the platform we seek to deploy the app.

e.	 If our app doesn’t operate, there’s a good likelihood that certain
imports are broken, which we’ll address next.

Fixing Imports

NativeScript with Angular 10 provides a more uniform framework experi-
ence. Importing the framework’s tools and classes is one element. This will
increase your project’s future upgrade resistance to framework changes
since the core team can make improvements beneath the hood to the
arrangement of the framework classes without altering lots of deep import
pathways that can vary significantly from project to project. This implies
that some of our project’s existing import styles will need to be modified.

https://github.com
https://github.com

Angular and NativeScript    ◾    149

To do so, utilize our IDE or editor to search for and substitute the follow-
ing terms:

tns-core-modules

Warning: Our search results may include package.json, package-lock.json,
package.json.bak, and webpack.config.js. We should not try to change
these files.

This package provides all of NativeScript’s essential tools and classes.
We’d need to find any import statements importing from tns-core-modules
and replace them with @nativescript/core. If we have an import statement,
we may import from a nested module, for example:

import { screen } from 'tns-core-modules/platform';

To become, we would need to replace the import as top-level:

import { screen } from '@nativescript/core'; // and
not @nativescript/core/platform
// give error

Because of the switch from tns-core-modules to @nativescript/core, spe-
cific class names have changed, such as screen, which is now Screen. We
may determine this by using our IDE or editor’s auto-complete combina-
tion (often, Ctrl+Space, Cmd+Space) to display all classes accessible in the
@nativescript/core package and look for a possible new class name.

Other imports are now completely invalid, such as:

import * as applicationSettings from 'tns-core-
modules/application-settings';

which must be imported as:

import { ApplicationSettings } from '@nativescript/
core';

While we don’t get any results when searching for tns-core-modules or
@nativescript/core/in our codebase, we’re done with this stage.

This comment suggests top-level import, which was required for proj-
ects to be converted to Angular 10. Deep imports appear to damage

150    ◾    Mastering NativeScript: A Beginner’s Guide

projects, and merely switching to top-level importing as suggested in the
comments cured upgrading concerns.

nativescript-angular

Warning: Our search results may include package.json, package-lock.json,
package.json.bak, and webpack.config.js. We should not try to change
these files.

Similarly, any imports to nativescript-angular must be replaced with
@nativescript/angular. The same top-level rule applies here, so if we
wind up with search results for @nativescript/angular/after updating our
imports, we’ll need to remove those deep import lines and rebase them
for top-level imports. The import statement in app-routing.module.tns.ts,
which is generated by @nativescript/schematics, is a popular example.

import { NativeScriptRouterModule } from
'nativescript-angular/router';

which, if simply changed to:

import { NativeScriptRouterModule } from
'@nativescript/angular/router';

It will still damage the app; however, we should remove the deep import
entirely as follows:

import { NativeScriptRouterModule } from
'@nativescript/angular';

Some classes, such as DEVICE, which used to be imported for injecting
into our Angular classes, are no longer available following the change. We
must now use the Device from @nativescript/core without injecting it.

While we don’t get any results when searching for the phrases nativescript-
angular or @nativescript/angular/in our codebase, we’re done with this step.

Additional Suggestions
As previously said, we may use one of the following methods to execute
our NativeScript with Angular 10 app:

npm run PLATFORM
tns run PLATFORM --no-hmr

Angular and NativeScript    ◾    151

When using tns, building the app would fail if the --no-hmr parameter
was not present.

If we used this fantastic hack to add re-routing to HMR, we must reverse
it because it will damage our program. Simply comment out the import
“./livesync-navigation.tns”; line in our main.tns.ts file.

Finally, if we receive the following error:

com.tns.NativeScriptException: Calling js method
onCreate failed

On Android and iOS, this was followed by the following error:

java.lang.IllegalArgumentException: Cannot add a null
child view to a ViewGroup

Root should be either UIViewController or UIView
Then we’re probably suffering the same problem we did, which is having

app.component.tns.html look like this:

<page-router-outlet></page-router-outlet>

Wrapping the page-router-outlet in any layout component, such as
GridLayout or StackLayout, also addressed the problem. As a result, our
app.component.tns.html should look something like this:

<GridLayout>
 <page-router-outlet></page-router-outlet>
</GridLayout>

“Core Team Note: It is advantageous to surround a page-router-outlet with
a GridLayout, and additional information on the benefits of this layout will
be published in the future, which is why it is now the default and needed.”

USING Angular, CREATE A NativeScript APP
Angular has been there for a few years and has shown to be useful in the
development of a broad variety of applications, including web and mobile
applications.

Even while driving technology has always been the same, some devel-
opers believe that the experience of designing these various apps may be
inconsistent and confusing.

152    ◾    Mastering NativeScript: A Beginner’s Guide

It may, however, be utilized with the standard Angular CLI with modi-
fied schematics. This enables us to start a project with the Angular CLI,
add a schematic, such as NativeScript, and finish with a CLI that works on
both web and mobile.

With the NativeScript schematics, we will utilize the Angular CLI to
create a web and mobile-compatible application.

•	 Step 1: Installing the NPM requirements
Before creating and managing the NativeScript application using
the Angular CLI, we must ensure that all NPM requirements are
installed on our workstation. If Node.js® and npm are not currently
installed on our PC, install them. Now, using the command line, do
the following to install the Angular CLI:

npm install @angular/cli@6.1.0-beta.0

•	 Step 2: Make an Angular CLI project with NativeScript support
Remember that angular schematics are only used to create and main-
tain projects. Building and deploying mobile apps still necessitate the
use of the NativeScript CLI.

Navigate to the angular-native-project project and run the com-
mand below to install the NativeScript CLI and the NativeScript
schematics.

npm install nativescript@rc
npm install --save-dev @nativescript/schematics
@rc

Now that we’ve installed all of the required dependencies, we can add
NativeScript functionality to our new Angular CLI project. Navigate
to the command line and run the following command:

ng new angular-native-project

The preceding will generate a new Angular project, which will by
default be for web apps rather than native mobile applications.

The schematics cannot be included if we are in a project built
using the Angular CLI; for example, if we created a NativeScript
project with the NativeScript CLI, the schematics cannot be
included.

ng add @nativescript/schematics

Angular and NativeScript    ◾    153

Code-Sharing Initiative: We may also easily establish a code-sharing
project for us, allowing to build for both web and mobile by using
a –shared parameter. As an example:

ng new -c=@nativescript/schematics angular-native-
project2 --prefix=my --no-theme --style=scss
--no-webpack

•	 Step 3: Schematic modifications and the Angular development
process
After adding the NativeScript schematics to our project, we’ll note
that some new files with the .tns extension have been produced, and a
few configuration files have been modified. Look in the project direc-
tory for the .tns.ts and .tns.html files.

Because NativeScript is a native mobile application framework, we
cannot utilize standard HTML markup for the UI. As a result, we
will need to maintain both a web UI and a NativeScript UI. When it
comes to TypeScript, we can have a web version and a NativeScript
version for everything, but we don’t have to.

However, it makes sense in the modules and routing sections
because services like NativeScriptRoutingModule and Routing
Module perform the same thing but are platform-specific.

src/app/app.routing.ts
import {NgModule }from "@angular/core"; import
{RouterMod ule }from "@angular/router"; import
{Routes }from "@angular/router";
const routes: Routes = [
{path: '', redi rectTo: '/players', pathMatch:
'full' },
];
@NgModule({
imports: [RouterModule.forRoot(routes)], exports:
[RouterMod ule]
})
export class AppRoutingModule {}

The only distinction here is in the nomenclature of the modules in
use. We deleted the tns from the filename and utilized the vanilla
Angular modules because this file will be used for the web.

154    ◾    Mastering NativeScript: A Beginner’s Guide

Following that, we must modify the project’s src/app/app.module.ts
file to be more in line with the NativeScript version:

src/app/app.module.ts
import { BrowserModule }from '@angular/platform-bro
wser '; import { NgModule }from '@angular/core';
import { AppRoutingModule }from './app.routing' ;
import { AppComponent }from './app.component ';
@NgModule ({
declarations: [AppComponent,
],
imports: [
BrowserModule, AppRoutingModule,
],
provide rs :[],
bootstrap:[AppComponent]
})
export class AppModule {}

The final step is to make changes to the src/app/app.component.html
file. At the time of writing, the Angular project contains a default
landing page with no routing. As a result, we must complete the rout-
ing configuration. Replace everything in src/app/app.component.
html with the following:

<router-outlet></router-outlet>

We’re attempting to match the behavior of the two applications.
Because the program is still in its early stages, the NativeScript ver-
sion did far more than the plain web version. The original material
reinforced this.

Our project is complete at this time. But what if we require a new
component in the future? Let’s give this a try using the following
command:

ng g component home

The command above will utilize the CLI to build a component named
home. As a consequence, the following files will be generated:

•	 src/app/home/home.component.css

•	 src/app/home/home.component.html

•	 src/app/home/home.component.tns.html

Angular and NativeScript    ◾    155

•	 src/app/home/home.component.ts

•	 src/app/home/home.component.spec.ts

We may utilize the Angular CLI in the same way that we would
utilize any other Angular application. We’ll finish up with a.tns
.html file to which we may add your custom mobile UI.

•	 Step 4: Using the NativeScript CLI to run an Angular CLI project
on Android or iOS
We can now start the application when the project has been built,
modified, and ready. To see if the project still works as a web applica-
tion, use the following commands:

ng serve

When the command is finished, navigate to http://localhost:4200 in
your web browser to see it in action. To run the program on a mobile
device, use the following command:

tns run ios --bundle

The command above will launch the app on iOS. And, if necessary,
we can quickly swap the iOS component to Android. The --bundle
flag is the most crucial component of the command. If we don’t pack-
age the program, it will crash with a slew of issues.

Angular BOOTSTRAP
The Bootstrap Process

A typical NativeScript program begins by initializing global objects, config-
uring global CSS rules, and building and navigating the main page. Angular
is unconcerned about any of this; all it needs is a location in the DOM to
attach. Naturally, Angular apps must handle their initialization: modules,
components, directives, routes, and DI providers. To make both paradigms
operate together in a NativeScript Angular project, we create a wrapper plat-
form object, platformNativeScriptDynamic, which sets up a NativeScript
application and may bootstrap the Angular framework in a default place on
the main UI page.

platformNativeScriptDynamic().bootstrapModule(AppModule);

One of our main design goals here is to provide an interface almost
identical to the default Angular bootstrap process so that folks who are

156    ◾    Mastering NativeScript: A Beginner’s Guide

acquainted with the web version of Angular can get started with as little
friction as possible.

NativeScript Application Option

NativeScript application settings are set when the program is launched.
Angular apps might be an issue because the normal application startup
procedure is buried behind the platformNativeScriptDynamic black box.
We added an extra AppOptions parameter to the platform startup method
to enable modifications, allowing us to preconfigure some parts of our
application’s behavior. At present, they are as follows:

•	 cssFile: Overrides the path to a file containing global CSS rules
applied to all visual objects in the application. The default path is
app.css.

•	 createFrameOnBootstrap: If our application does not utilize a page-
router-outlet, we will not receive the default Page and Frame, which
means we will not be able to inject them into our components or dis-
play the ActionBar. We may use the bootstrap createFrameOnBoot-
strap boolean option to make things seem as they did before 4.0.0:

platformNativeScriptDynamic({ createFrameOnBootstrap:
true });

Customizing DI Providers

The dependency injection (DI) mechanism is used to customize several
features of Angular applications. NgModules are often the mechanism
for configuring DI providers and exposing them to all application objects.
Several Angular libraries, such as the router and the http client, have their
modules for registering providers. NativeScript wraps the built-in modules
(router, forms, and HTTP) that should be utilized in mobile apps:

import { platformNativeScriptDynamic,
NativeScriptModule } from "nativescript-angular/
platform";
import { NgModule } from "@angular/core";
import { NativeScriptRouterModule } from
"nativescript-angular/router";
import { NativeScriptHttpModule } from "nativescript-
angular/http";

Angular and NativeScript    ◾    157

import { NativeScriptFormsModule } from "nativescript-
angular/forms";
import { routes } from "./app.routes";
import { AppComponent } from "./app.component";
@NgModule({
 declarations: [
 AppComponent,
],
 bootstrap: [AppComponent],
 imports: [
 NativeScriptModule,
 NativeScriptHttpModule,
 NativeScriptRouterModule,
 NativeScriptRouterModule.forRoot(routes),
],
})
class AppModule {}
platformNativeScriptDynamic().bootstrapModule(AppModule);

Objects Injected by the Platform

Because the DI system is so important in Angular apps, it makes sense to
expose specific platform objects to client code. It is thus as easy as defin-
ing a constructor parameter of the appropriate type to access them. For
example, here’s how the component below obtains a native Page object:

@Component({
 selector: "user-details",
 template: "..."
})
export class UserDetailsView {
 constructor(private page: Page) {
 }
}

Autoinjected Objects

•	 “ui/page”. Page: The native page on which the component renders.
When loading components on separate pages, the router implemen-
tation ensures that the right instance is injected.

•	 “platform”.Device: Information about the device on which the pro-
gram is executing.

158    ◾    Mastering NativeScript: A Beginner’s Guide

Advanced Bootstrap

Certain application circumstances may need bootstrapping an Angular
app within an existing NativeScript app. The requirement for this typically
emerges in automated tests that require the creation and destruction of
apps in various configurations. Advanced bootstraps may also be benefi-
cial for moving vanilla NativeScript apps to Angular-- we may begin the
transfer by integrating Angular and building new features with it, then
migrate old features one at a time.

The sophisticated bootstrap API entry point is our buddy’s platformNa-
tiveScriptDynamic factory method, but this time, the bootInExistingPage
application option must be passed. We’ll also need a DI provider to return
the visual element of the application’s root view. Here’s an example of a
normal bootstrap:

const root = new StackLayout();
const rootViewProvider = {provide: APP_ROOT_VIEW,
useValue: root};
@NgModule({
 //...
 providers: [
 rootViewProvider,
]
})
class AdvancedBootstrapModule {}
platformNativeScriptDynamic({bootInExistingPage: true})
.bootstrapModule(AdvancedBootstrapModule);

NAVIGATION
In this piece, we’ll go through how to use Angular to navigate in a
NativeScript application and present some practical examples of typical
mobile navigation patterns.

The Angular Component Router is used for navigating in Angular. We can
find thorough instructions on how to operate the router here. In this topic, we
will assume that we are familiar with the fundamental ideas and will focus
on the intricacies of implementing them in a NativeScript program.

NativeScript Route Module

NativeScript enhances the Angular RouterModule with its
NativeScriptRouterModule. It includes several modifications and changes

Angular and NativeScript    ◾    159

required for routing to operate in a mobile context and choices for bring-
ing the entire native mobile navigation UX to Angular.

There are a few UX details that are difficult to duplicate using the default
Angular router alone:

•	 Transitions in native navigation.

•	 Handling back navigation – on Android, the hardware back button,
and on iOS, the navigation bar back button.

•	 View state preservation while traveling back in the mobile navigation
lifecycle.

•	 Mobile-specific history – instead of global history, retain history for
each navigation controller.

•	 BottomNavigation, Tabs, SideDrawer, Modal View, and more mobile
lateral navigation widgets.

NativeScript adds them to Angular via the extensions, directives, and
techniques listed below:

•	 page-router-outlet: An alternative to the conventional router-outlet
that acts as a placeholder for where native mobile navigation will take
place.

•	 nsRouterLink is a routerLink directive that works with mobile ges-
tures as an alternative to the standard routerLink directive.

•	 The RouterExtensions class, like the Router and Location classes,
provides a native mobile navigation API.

•	 Custom RouteReuseStrategy: This approach requires Angular to
cache and reuse components loaded in a page-router-outlet in line
with the native navigation lifecycle.

•	 Custom PlatformLocation and LocationStrategy: Instead of global
linear history, this approach preserves history per outlet.

Page-Router-Outlet

The page-router-outlet in NativeScript is analogous to the router-out-
let in Angular. It acts as a stand-in for native mobile navigation. Each
page-router-outlet generates a NativeScript Frame internally, and each

160    ◾    Mastering NativeScript: A Beginner’s Guide

component displayed by the router in the outlet is wrapped in a Page wid-
get. This is the primary integration point for Angular’s native navigation.
Because of the Frame and Page combo, we may also utilize the ActionBar
widget in these components.

We propose utilizing the page-router-outlet for our primary mobile
navigation pattern and the standard router-outlet for internal component
navigations if necessary. We may alternatively use merely the router-outlet
if it makes more sense in our situation.

Router Link

The Angular routerLink directive cannot be used in a NativeScript appli-
cation. NativeScript has its nsRouterLink directive that works similarly. It
also supports two NativeScript-specific properties, which we may add to
our nsRouterLink element in the HTML.

•	 pageTransition: We may use this parameter to describe the native
transition for nsRouterLink navigation. True, false, one of the stan-
dard transitions mentioned above, or a new NavigationTransition
object are valid values.

•	 clearHistory: This attribute accepts a boolean value and specifies
whether the navigation initiated by the nsRouterLink will clear the
current outlet’s navigation history.

<Button text="Button" [nsRouterLink]="['/main']"
pageTransition="slide" clearHistory="true"></Button>

Router Extention

The RouterExtensions class provides methods for imperative navigation,
similar to how the Angular Router and Location classes provide naviga-
tion. Simply inject the class into our component’s constructor to use it:

import { RouterExtensions } from "nativescript-
angular/router";
@Component({
 // ...
})
export class MainComponent {
 constructor(private routerExtensions:
RouterExtensions) {
 }
}

Angular and NativeScript    ◾    161

Here is a list of the available ways:

•	 navigate(): Similar to Angular Router’s navigate() function, enables
navigations in a page-router-outlet.

•	 navigateByUrl(): Similar to the preceding method, this is an alter-
native to the Router navigateByUrl() method, which works with
page-router-outlet.

•	 back() is the equivalent of the Angular Location back() function. It
will return to the last outlet visited.

•	 canGoBack(): It is a NativeScript-introduced method. It produces a
boolean result indicating if the user can return to the previous route.

•	 backToPreviousPage(): This function is identical to back(), except it
skips navigations performed in an Angular router-outlet.

•	 canGoBackToPreviousPage(): This function provides a boolean
value indicating if the user can travel back to a route that was loaded
in a page-router-outlet.

Custom Route Reuse Strategy

NativeScript also imports a custom RouteReuseStrategy, which alters the
lifespan of components browsed through a page-router-outlet.

A component in the Angular router-outlet is destroyed when we navi-
gate away from it and recreate when we go back to it. The component lifes-
pan differs in no way between forward and backward navigation.

Outlet of Router.

The system will keep the navigation views alive in a native mobile appli-
cation so that when you return to them, their view state will be pre-
served. Views are only damaged when we move away from them. Because
the page-router-outlet contains native navigations, the lifespan of its
components must mirror the lifecycle of the native views. The special
NSRouteReuseStrategy does this.

162    ◾    Mastering NativeScript: A Beginner’s Guide

Outlet of Page Router.

When we go ahead to the next page, we may wish to do specific housekeep-
ing steps (e.g., unsubscribe from a service to stop updates). If we’re using
page-router-outlet, we can’t do it in the ngOnDestroy() hook since it won’t
be invoked when we go ahead. We may conduct the cleaning by injecting
the Page instance within our component and attaching it to page naviga-
tion events (e.g., navigatedFrom). We may get a list of all available page
events here.

Configuration

Typically, router configuration consists of the following steps.

•	 Make a RouterConfig object that associates pathways with compo-
nents and parameters:

export const routes = [
 { path: "log-in", component: LoginComponent },
 { path: "grocerie", component:
GroceryListComponent },
 { path: "grocery/:id", component:
GroceryComponent }
];

•	 Import our routes using the NativeScriptRouterModule API:

import { NativeScriptRouterModule } from
"nativescript-angular/router";

@NgModule({
 bootstrap: [GrocerieApp],
 imports: [
 NativeScriptRouterModule,
 NativeScriptRouterModule.forRoot(routes)
]
})
export class GrocerieAppModule { }

Angular and NativeScript    ◾    163

•	 To begin our program, as normal, send our module to the bootstrap-
Module function:

import {platformNativeScriptDynamic} from
"@nativescript/angular";
platformNativeScriptDynamic().bootstrapModule(Groc
erieAppModule);

Mobile Navigation Patterns

The act of moving across the screens of your application is referred to as
navigation. Based on the information it attempts to display, each mobile
app has its distinct navigation schema. The following diagram depicts a
typical mobile navigation scenario.

Scenario of Mobile navigation.

According to the schema, there are three main navigational directions a
user can go in while using mobile navigation:

•	 Forward: Refers to moving to the next level of the hierarchy and
selecting a screen.

•	 Backward: Refers to returning to a screen on a prior level of the hier-
archy or chronologically.

•	 Lateral: Navigating between screens on the same level of the hierar-
chy is referred to as lateral.

In terms of navigation choices, the combination of NativeScript with
Angular is quite strong. Angular has its well-known navigation system as

164    ◾    Mastering NativeScript: A Beginner’s Guide

well as a router. NativeScript, on the other hand, gives developers access to
native mobile navigation patterns. Because of the nature of the integration,
we can employ any of them or a mix that best meets our needs. In the fol-
lowing sections, we will show how to implement several mobile navigation
patterns.

Angular Navigation

The default Angular navigation is designed for use on the web with a
browser. It solely provides methods for forward and backward travel, no
lateral navigation. However, the schema above can be implemented by
merely moving ahead and backward.

Component of app.

In mobile jargon, this is known as the hub navigation pattern, in which
we have a screen that navigates to all of our application’s capabilities.

We’ll utilize a router-outlet in conjunction with the nsRouterLink direc-
tive and the back() function of the Angular Location class. Only two of the
components are shown in the code example below. For a more detailed
example, see the playground demo below.

Angular and NativeScript    ◾    165

APP-ROUTING.MODULE.TS

import { NgModule } from "@angular/core";
import { Route } from "@angular/router";
import { NativeScriptRouterModule } from
"nativescript-angular/router";
import { HubComponent } from "./hub.component";
import { FeaturedComponent } from "./featured.
component";
import { ItemComponent } from "./item.component";
import { BrowseComponent } from "./browse.component";
import { CategoryComponent } from "./category.
component";
import { SearchComponent } from "./search.component";
const route: Route = [
 { path: "", redirectTo: "/hub", pathMatch: "full" },
 { path: "hub", component: HubComponent },
 { path: "featured", component: FeaturedComponent },
 { path: "item", component: ItemComponent },
 { path: "browse", component: BrowseComponent },
 { path: "category", component: CategoryComponent },
 { path: "search", component: SearchComponent },
];
@NgModule({
 imports: [NativeScriptRouterModule.forRoot(routes)],
 exports: [NativeScriptRouterModule]
})
export class AppRoutingModule { }

Forward Navigation

Navigation of forwarding.

166    ◾    Mastering NativeScript: A Beginner’s Guide

Because we are moving down in our navigation hierarchy, forward naviga-
tion is also known as downward navigation. A page-router-outlet would
handle this form of navigation in a NativeScript Angular app.

Using a page-router-outlet has the extra benefit of allowing us to use the
ActionBar widget in our component. When we browse to a second page on
iOS, the widget automatically adds a back button. On Android, the page-
router-outlet takes advantage of the hardware back button, which allows
us to go back to your components. Check out the playground example,
which is located below the code sample.
APP-ROUTING.MODULE.TS

import { NgModule } from "@angular/core";
import { Routes } from "@angular/router";
import { NativeScriptRouterModule } from
"nativescript-angular/router";
import { FeaturedComponent } from "./featured.
component";
import { ItemComponent } from "./item.component";
const routes: Routes = [
 { path: "", redirectTo: "/featured", pathMatch:
"full" },
 { path: "featured", component: FeaturedComponent },
 { path: "item", component: ItemComponent }
];
@NgModule({
 imports: [NativeScriptRouterModule
.forRoot(routes)],
 exports: [NativeScriptRouterModule]

Angular and NativeScript    ◾    167

})
export class AppRoutingModule { }

Backward Navigation

Navigation of Backward.

It is also known as upward navigation since you are moving up in our nav-
igation hierarchy. This style of navigation reflects the inverse of forward
navigation. Simply invoke the RouterExtensions back() function to force a
navigation back to the prior route. Here’s an example of how to accomplish
that in the item.component:
ITEM.COMPONENT.TS

import { Component, OnInit } from "@angular/core";
import { RouterExtensions } from "nativescript-
angular/router";
@Component({
 selector: "Item",
 templateUrl: "./item.component.html",
 styleUrls: ['./item.component.css']
})
export class ItemComponent implements OnInit {
 constructor(private routerExtensions:
RouterExtensions) {
 }
 ngOnInit(): void {
 }

168    ◾    Mastering NativeScript: A Beginner’s Guide

 goBack(): void {
 this.routerExtensions.back();
 }
}

Lateral Navigation

Navigation of Lateral.

Implementing lateral navigation in NativeScript often entails incorporat-
ing sister router outlets into our navigation and allowing the user to move
between them. This is usually performed by utilizing certain navigation
components. BottomNavigation, Tabs, SideDrawer, Modal View, and even
the page-router-outlet are examples of these, each of which provides a dis-
tinct mobile navigation pattern.

Hub Navigation

The hub navigation pattern is the most straightforward and straightfor-
ward approach to execute lateral navigation. It comprises a screen called
a hub that has navigation buttons that lead to various functionalities.
In essence, this design employs the same principle for the lateral move-
ment that it does for forward travel. We can do this in NativeScript by
using a page-router-outlet and having one Component act as the hub
screen.

Angular and NativeScript    ◾    169

Navigation of Hub.

HUB.COMPONENT.TS

import { Component, OnInit } from "@angular/core";
@Component({
 selector: "Hub",
 templateUrl: "./hub.component.html",
 styleUrls: ['./hub.component.css']
})
export class HubComponent implements OnInit {
 constructor() {
 }

 ngOnInit(): void {
 }
}

Bottom Navigation and Tab Navigation

The TabView component allows the user to browse freely between many
UI containers at the same level. This component’s significant feature is that

170    ◾    Mastering NativeScript: A Beginner’s Guide

it maintains the state of containers that are not visible. This implies that
when the user returns to a primary tab, the contents, scroll position, and
navigation state should be exactly as they were when they left it. Here’s a
diagram showing how the navigation schema may be implemented using a
BottomNavigation (or alternatively with Tabs).

Navigation of Bottom.

The BottomNavigation container handles lateral navigation logic auto-
matically by presenting the user with tabs from which to choose. To cre-
ate a BottomNavigation, just describe the UI of each container using a
TabItemContent and specify the title and icon using the matching tab-
StripItem (details on the basic structure here). The TabContentItem
component represents each UI container. You may enable forward and
backward navigation within each container, just like we do with other
containers, by embedding a page-router-outlet in it. In this situation, three
sibling outlets are required. Using named outlets with the Angular router
is the method to do this.

Using named outlets with the Angular router is the method to do this.
Each of our outlets will be called for the functionality it represents.

Angular and NativeScript    ◾    171

The BottomNavigation widget also has two essential lateral naviga-
tion features:

•	 The selectedIndex attribute may be used to browse between tabs
programmatically.

•	 The selectedIndexChanged event is used to handle the user’s naviga-
tion across tabs.

Here’s a code sample for the BottomNavigation declaration, which cor-
responds to the diagram above. See the whole playground example after
the code sample.

APP-ROUTING.MODULE.TS

import { NgModule } from "@angular/core";
import { Routes } from "@angular/router";
import { NativeScriptRouterModule } from
"nativescript-angular/router";
import { FeaturedComponent } from "./featured.component";
import { ItemComponent } from "./item.component";
import { BrowseComponent } from "./browse.component";
import { CategoryComponent } from "./category.component";
import { SearchComponent } from "./search.component";
const routes: Routes = [
 { path: "", redirectTo: "/(featured:featured//
browse:browse//search:search)", pathMatch: "full" },

 { path: "featured", component: FeaturedComponent,
outlet: "featured" },
 { path: "item", component: ItemComponent, outlet:
"featured" },
 { path: "browse", component: BrowseComponent,
outlet: "browse" },
 { path: "category", component: CategoryComponent,
outlet: "browse" },
 { path: "item", component: ItemComponent, outlet:
"browse" },
 { path: "search", component: SearchComponent,
outlet: "search" },
];
@NgModule({
 imports: [NativeScriptRouterModule.forRoot(routes)],
 exports: [NativeScriptRouterModule]
})
export class AppRoutingModule { }

172    ◾    Mastering NativeScript: A Beginner’s Guide

Model View Navigation

A frequent mobile navigation strategy is to open a new navigation con-
troller as a full-screen modal window. Opening the modal window in
this scenario symbolizes lateral travel to a new feature. The integrated
page-router-outlet may then be used to go forward and backward in
this feature. When you close the modal, we will be navigated laterally
back to where the modal view was accessed. The following diagram
shows how the navigation paradigm may be implemented using modal
views.

In NativeScript Angular, you open a modal view by injecting the
ModalDialogService into our component and using its showModal()
function. There are two arguments to this method: a component and an
options object. The component sent to the showModal() function becomes
the base of the modal view UI container. We are traveling to this compo-
nent laterally rather than forwardly, and we are doing it without the router.
It does not have a matching route, and we cannot register it as a route
in our routes configuration; instead, we must manually register it as an
Angular Entry Component in our module.

Model View Navigation

Angular and NativeScript    ◾    173

When the modal view is opened, the component’s UI is rendered. To put
the diagram above into action, we must create forward navigation within
the modal. We do this by including a page-router-outlet in the compo-
nent’s template and using the component’s ngOnInit hook to go to the first
route in the modal. We’re also giving the outlet a name since we will have
two modals, so their outlets will be siblings. In general, we advocate nam-
ing router outlets within modal views.

Close a modal view by invoking the closeCallback() function of the
injected params or by obtaining a NativeScript View and calling its close-
Modal() method.

The example shows how to construct the Search modal view and page from
the design above. See the whole playground example after the code sample.

APP-ROUTING.MODULE.TS

import { NgModule } from "@angular/core";
import { Routes } from "@angular/router";
import { NativeScriptRouterModule } from
"nativescript-angular/router";

import { FeaturedComponent } from "./featured
.component";
import { ItemComponent } from "./item.component";
import { BrowseComponent } from "./browse.component";
import { CategoryComponent } from "./category.
component";
import { SearchComponent } from "./search.component";
const route: Route = [
 { path: "", redirectTo: "/featured", pathMatch:
"full" },
 {
 path: "featured", component:
FeaturedComponent, children: [
 { path: "browse", component:
BrowseComponent, outlet: "browse" },
 { path: "category", component:
CategoryComponent, outlet: "browse" },
 { path: "item", component: ItemComponent,
outlet: "browse" },

 { path: "search", component: SearchComponent,
outlet: "search" },
]

174    ◾    Mastering NativeScript: A Beginner’s Guide

 },
 { path: "item", component: ItemComponent },
];
@NgModule({
 imports: [NativeScriptRouterModule.
forRoot(routes)],
 exports: [NativeScriptRouterModule]
})
export class AppRoutingModule { }

SideDrawer Navigation

NativeScript UI’s built-in components include the SideDrawer component.
It allows the user to open a hidden view, such as a drawer, containing navi-
gation controls or settings from the screen’s edges. A SideDrawer may be
used to build a variety of navigation patterns. A typical application would
be to add UI controls that accomplish one of two things:

•	 Forward navigation entails moving forward in a page-router-outlet.

•	 Open a modal view using lateral navigation.

The easiest navigation pattern to create is the hub navigation pattern;
however, the SideDrawer serves as the hub this time.

SideDrawer Navigation

Angular and NativeScript    ◾    175

The component, unlike the BottomNavigation, does not offer navi-
gation logic automatically. Instead, it is designed with more f lexibility
in mind and allows you to change its content. It exposes two UI con-
tainers with two directives: tkDrawerContent contains the UI of the
concealed side view, and tkMainContent includes the UI that will be
displayed on the screen. To put the diagram above into action, insert a
page-router-outlet into the main content container. Three buttons can
be included in the concealed drawer content. They will each navigate
to one of the three features. See the whole playground example after
the code sample.

APP-ROUTING.MODULE.TS

import { NgModule } from "@angular/core";
import { Route } from "@angular/router";
import { NativeScriptRouterModule } from
"nativescript-angular/router";
import { FeaturedComponent } from "./featured
.component";
import { ItemComponent } from "./item.component";
import { BrowseComponent } from "./browse.component";
import { CategoryComponent } from "./category.
component";
import { SearchComponent } from "./search.component";
const route: Route = [
 { path: "", redirectTo: "/featured", pathMatch:
"full" },
 { path: "featured", component: FeaturedComponent
},
 { path: "item", component: ItemComponent },
 { path: "browse", component: BrowseComponent },
 { path: "category", component: CategoryComponent
},
 { path: "search", component: SearchComponent },
];
@NgModule({
 imports: [NativeScriptRouterModule.
forRoot(routes)],
 exports: [NativeScriptRouterModule]
})
export class AppRoutingModule { }

176    ◾    Mastering NativeScript: A Beginner’s Guide

DATA BINDING
Data Binding is a fundamental element in both the NativeScript and the
Angular frameworks. Data Binding, by definition, refers to a link (bind-
ing) between a Data Model (Model) and a UI. Because this link or interac-
tion mainly concerns data, we refer to it as Data Binding.

One-Way vs. Two-Way Data Binding

Data flows can occur in a variety of ways (data bindings):

•	 One-way data binding: It is the most often used method of binding
from Model to UI. A text saved in Model and shown on the UI in a
text area control is an excellent example of such coupling.

•	 One-way to the source (to model): Binding that changes Model in
response to UI action. The best illustration of this is a button click
event (tap).

•	 Two-way data binding: Binding that combines the two preced-
ing methods of binding. A common example is a text box field that
receives its value from the Model and alters the Model based on user
input.

The NativeScript-angular plugin makes it easier to determine which data
binding will be utilized. The binding infrastructure’s NativeScript com-
ponent ties Model data to real native components (Android and iOS). The
Angular component is used to provide proper binding context, change
detection, and notifications. Using data binding in a NativeScript-Angular
application is similar to using data binding in a conventional Angular web
application.

Let’s look at several instances of data binding with the NativeScript-
angular plugin.

•	 One-way data binding entails enclosing the target (UI) property in
square brackets.

<Label [text]='model.mytext' ></Label>

•	 One-way source data binding entails enclosing the source event in
brackets.

<Button (tap)='onButtonTap($event)'></Button>

Angular and NativeScript    ◾    177

•	 Two-way data binding entails encircling the target property with
square and normal brackets.

import { NativeScriptFormsModule } from
"nativescript-angular/forms"
@NgModule({
 imports: [
 NativeScriptModule,
 NativeScriptRouterModule,
 NativeScriptFormsModule, // RIGHT HERE
],
})

Two-way data binding was the default binding method in Angular 1.x.
However, the status of two-way data binding is not the same with Angular,
owing to too many performance issues created by the ambiguity of what
or who triggered the change of the value within Model, which sometimes
leads in far too many changes (and change notifications). So, by default,
Angular does not support two-way data binding; instead, it utilizes events
to tell the Model that something has changed.

<TextField [(ngModel)]='model.mytext'></TextField>

When utilizing two-way data binding with Angular, there are several con-
straints. Instead of the property name, the ngModel directive is used to
initiate two-way binding. Under the hood, this produces two basic one-
way and one-way to source data bindings:

<TextField [(ngModel)]='model.mytext' ></TextField>
<!-- becomes -->
<TextField [ngModel]='model.mytext'
(ngModelChange)='model.mytext=$event' ></TextField>

This is how Angular handles two-way data binding. It works in virtu-
ally all circumstances, except that we can only utilize one property with
two-way data binding (in the case of TextField this is the text property).
The ngModel directive also provides an interface for updating proper-
ties in both ways properly. The NativeScript-Angular plugin offers the
underlying architecture to enable native controls using ngModel direc-
tive for all NativeScript controls (the same way as Angular syntax). It is
accomplished by defining a single value property for each control that

178    ◾    Mastering NativeScript: A Beginner’s Guide

can be utilized with ngModel syntax. The following are the accessible
properties:

•	 TextField, TextView, and SearchBar all have a text attribute.

•	 DatePicker is a date picker.

•	 TimePicker is a time-related property.

•	 ListPicker and SegmentedBar have a property called selectedIndex.

•	 The switch is checked Property.

•	 Slider is a Value attribute.

Interpolation

A NativeScript-Angular application may also use the Angular mustache
({{}}) syntax for binding, often known as interpolation. It is simply another
type of one-way binding used in the middle of a text.

<Label text='{{model.deliveryHour}}:{{model
.deliveryMinute}}'></Label>

Data Converters

Data inside a Data Model is frequently stored in a manner optimized for
the most outstanding performance of actions such as search, replace, and
so on. Unfortunately, the way computers store data differs significantly
from that in a human-readable format. The Date object is perhaps the fin-
est example. Date in JavaScript is an extremely large number represent-
ing milliseconds from January 1, 1970, which means nothing to a person.
Here comes the usage of data converters, which are essentially functions
that format the data (from the Model) in a human-readable manner (dis-
play in UI).

Angular employs the same notion and refers to it as a pipe (as in UNIX
pipe) – a value is supplied to the pipe function, which alters it, and the final
result is shown to the user. Using pipe is straightforward and follows the
same syntax as UNIX pipe.

<Label [text]='model.deliveryDate | date:"fullDate"'
></Label>

Angular and NativeScript    ◾    179

Pipes, like UNIX pipes, can be chained and used sequentially, with each
pipe receiving the result of the preceding pipe or the value of the property:

<Label [text]='model.deliveryDate | date:"fullDate" |
testPipe' ></Label>

USING PLUGINS
NativeScript plugins are npm packages that have some native functionality
added to them. As a result, locating, installing, and deleting NativeScript
plugins is similar to dealing with npm packages in Node.js or front-end
web development.

Finding Plugins

The NativeScript team runs an official marketplace, which offers a filtered list
of npm plugins connected to NativeScript. All plugins featured in the market-
place come with information that describes their quality. A search for “acceler-
ometer” on the plugins marketplace will lead us to the required plugin.

Alternatively, because NativeScript plugins are npm packages, we may
locate NativeScript plugins by searching for “nativescript-plugin-name”
on npm’s homepage. For example, a search for “nativescript accelerom-
eter” will direct us to the NativeScript accelerometer plugin.

If we can’t find a plugin, you can always ask for help on Stack Overflow.
The NativeScript team and community may be able to assist us in locating
what we are searching for.

Also, check over the NativeScript core modules, shipped as a depen-
dency with every NativeScript project. There’s a chance the functionality
we want is already built-in. If we still can’t find what we’re looking for, we
may post a request for the plugin as an idea in the NativeScript community
forum or try our hand at building it.

Installing Plugins

Once we’ve identified the plugin we’re looking for, use the tns plugin add
command to include it into our project:

tns plugin add <pluginname>

The following command, for example, installs the NativeScript camera plugin:

tns plugin add @nativescript/camera

180    ◾    Mastering NativeScript: A Beginner’s Guide

We may also use the NPM command npm install instead of the NativeScript
CLI command plugin add if we like:

npm i @nativescript/camera –save

The installation of a NativeScript plugin is similar to that of a npm pack-
age. The NativeScript CLI gets the plugin from npm and places it in our
project’s root node modules folder. The NativeScript CLI adds the plugin
to our project’s root package.json file and resolves the plugin’s dependen-
cies throughout this process.

Installing Plugins as Developer Dependencies

The command tns plugin add, as described above, is performing npm i
--save behind the scenes. If we need to install a developer dependent (e.g.,
@nativescript/types or @nativescript/webpack), we must explicitly save it
as a devDependency. Use the npm install command with the --save-dev
parameter to do this. As an example:

npm i @nativescript/types --save-dev

The distinction between dependencies and developer dependencies is that
dependencies are necessary for running, whereas devDependencies are
only required during development. As an example of dependence, con-
sider the @nativescript/camera plugin, which is needed at runtime to
access the hardware camera. The @nativescript/types, on the other hand,
is a developer dependency that is only necessary for intelliSense during
the development process. The devDependencies should not be installed as
dependents (large application size) to prevent massive output build files.
We can find an example package.json file that uses both dependencies and
devDependencies here.

Importing and Using Plugins

After installing the required plugin, you may begin utilizing it in our proj-
ect. It should be noted that each plugin may have its setup requirements;
therefore, always read the plugin’s instructions and the README file
thoroughly. The code sample below demonstrates the fundamentals of the
@nativescript/camera plugin.

import { requestPermissions } from "@nativescript/
camera";
requestPermissions();

Angular and NativeScript    ◾    181

Removing Plugins

Run the following command from the command line to delete a
NativeScript plugin from our project:

tns plugin remove <pluginname>

The following command, for example, removes the NativeScript camera
plugin:

tns plugin remove @nativescript/camera

The removal of a NativeScript plugin is similar to the removal of an npm
package.

The NativeScript CLI deletes any plugin files from our app’s node mod-
ules folder in the project’s root. The CLI also removes any plugin depen-
dencies and the plugin from the root package.json file of our project.

The removal of a NativeScript plugin is similar to the removal of an
npm package.

The NativeScript CLI deletes any plugin files from our app’s node mod-
ules folder in the project’s root. The CLI also removes any plugin depen-
dencies and the plugin from the root package.json file of our project.

In this chapter, we covered Angular in NativeScript. We learned how to
create a Web and Mobile and upgrade our project by using Angular 10. We
also covered data binding in NativeScript, as well as plugins.

https://taylorandfrancis.com

183DOI: 10.1201/9781003299394-5

C h a p t e r 5

Digging Deeper

IN THIS CHAPTER

➢➢ Android emulator tips

➢➢ Custom webpack configuration

➢➢ Creating custom UI controls

➢➢ Styling

➢➢ NativeScript Conventions

In the previous chapter, we learned how to create an App with Angular
and Angular components and routing, and we also covered Angular data
binding, services, and plugins. This chapter covers the Android emulator,
UI controls, styling and convention, as well as CLI in NativeScript.

INSTALL ANDROID EMULATORS
Aside from utilizing genuine Android devices, downloading, installing,
and using an Android emulator is a feasible option. All Android emulators
that are connected and identified by the tns device command can be used
in NativeScript. This command’s details may be found in the tns device
section.

Tip: Emulators sometimes take a while to boot up. Start the emulator
before performing other CLI commands as a best practice and to mini-
mize timing difficulties. After starting the emulator, leave it open to avoid
the initial load time when we need to deploy an Android application.

https://doi.org/10.1201/9781003299394-5

184    ◾    Mastering NativeScript: A Beginner’s Guide

Creating an Android Virtual Device in Android Studio

Follow the official guidelines on Creating and Managing Virtual Devices,
which cover the process of downloading, installing, and utilizing Android
Emulators in Android Studio.

Note: If our top-level “Tools” menu lacks the “Android” option (a com-
mon problem in versions >3.0.0), follow the instructions in this Stack
Overflow answer to add it to the toolbar and activate the AVD Manager.

Using a Command-Line Tool to Create an Android Virtual Device

The avdmanager is a command-line program for creating and managing
Android Virtual Devices (AVDs). The avdmanager utility is included in
the Android SDK Tools package (25.3.0 and above) and may be found at
ANDROID HOME PATH HERE>/tools/bin/. See the official avdmanager
documentation for further information on the avdmanager and how to
use it to build AVDs.

To build a new AVD, use the following command syntax:

$ cd $ANDROID_HOME/tools/bin
$ avdmanager create avd -n name -k "sdk_id" [-c
{path|size}] [-f] [-p path]

We must give the AVD a name and indicate the ID of the SDK package
to use for the AVD using sdk_id enclosed in quotes. The following com-
mand, for example, builds an AVD called test using the x86 system image
for API level 25:

avdmanager create avd -n test -k
"system-images;android-25;google_apis;x86"

It should be noted that the command indicates that the system image has
already been downloaded. Use the sdkmanager to download an image.
sdkmanager “system-images;android-25;google apis;x86” is an example.

The following illustrates how to use the other options: -c path|size: the
path to this AVD’s SD card image or the size of a new SD card image to
generate for this AVD, in KB or MB, represented by K or M. -c path/to/
sdcard/, for example, or -c 1000M. -f: force the AVD to be created. Use this
option if we need to replace an existing AVD with a new AVD with the
same name. -p path: the path to the directory where the files for this AVD
will be produced. If no path is specified, the AVD will be produced under
~/.android/avd/.

Digging Deeper    ◾    185

The list command may be used to display a list of all the downloaded
system images.

avdmanager list

CUSTOM webpack CONFIGURATION
What Exactly Is webpack Configuration?

The webpack configuration file webpack.config.js provides all of the con-
figuration, plugins, loaders, and required to generate the JavaScript portion
of the NativeScript application. The file resides in the NativeScript applica-
tion’s root directory. The content of the file vary for each flavor (Angular,
Vue.js, React, TypeScript, JavaScript) because the way the files are pro-
cessed in the application differs. The default configuration file comes from
the @nativescript/webpack plugin during its postinstall stage (or when we
run the update-ns-webpack --configs script found in your project dir>/
node modules/.bin/directory).

We are continuously working to enhance the content of the default
webpack.config.js files; therefore, we implemented a check to see if our
application’s webpack.config.js file varies from the new default one and
show a warning if it does. However, we’ll need to add some specific logic
to our webpack.config.js file in many circumstances, such as if we have
particular files to transfer or custom Android activity. In this situation,
the above warning will appear every time we update @nativescript/web-
pack. Also, if we want to ensure that we have all of the essential modifica-
tions from the default webpack.config.js that comes with the new version
of @nativescript/webpack, we must manually combine the two webpack
settings.

How to Use Custom webpack Configuration

We may use a custom path to webpack settings starting with NativeScript
v6.4.0 and @nativescript/webpack v1.5.0. To achieve this we need to set
webpackConfigPath property in our nsconfig.json file:

Set in nsconfig.json

{
 "webpackConfigPath": "./my-custom.webpack.config.js"
}

186    ◾    Mastering NativeScript: A Beginner’s Guide

Create the real file my-custom.webpack.config.js in the application’s
root directory (as specified in nsconfig.json). We can put custom logic in
this file.

First Example:

const webpackConfig = require("./webpack.config");
module.exports = (env) => {
 // Here we can modify env before passing them
to the default config
 const config = webpackConfig(env);

 // Here, we can modify everything created by
the default configuration
 return config;
}

Note: Although we are not required to utilize the default webpack.config.js
file, we highly advise that. It includes the basic rules and logic for convert-
ing our application scripts into NativeScript applications.

Execute the build/run operation to ensure that everything works as
expected:

$ tns run <platform>

[Optional] Delete webpack.config.js from our application and put it
to.gitignore – If we no longer want to see the warnings for different web-
pack settings, we may safely remove webpack.config.js from our applica-
tion and add it to our .gitignore file, where no one will commit it. As a
result, during dependency installation, the @nativescript/webpack postin-
stall script will always insert the current default configuration file. If we
want to review all changes while updating the webpack.config.js file, we
may still commit it to our repository with the default content and avoid
this step.

Second Example: It explains how to utilize custom webpack configura-
tion files.

Add new assets to the list of assets to be copied:

Digging Deeper    ◾    187

If we wish to add more assets to our application, we may do so using the
following method:

const webpackConfig = require("./webpack.config");
const CopyWebpackPlugin =
require("copy-webpack-plugin");
module.exports = env => {
 const config = webpackConfig(env);
 const customCopyInstance = new CopyWebpackPlugin([
 { from: { glob: "my-custom-dir/**" } },
]);
 config.plugins.unshift(customCopyInstance);
 return config;
};

In this situation, we add a new CopyWebpackPlugin instance that will
copy all files from our my-custom-dir directory to the build folder.

Custom Application and Activity (Android)

We may accomplish the following if we have a custom application and
activity for Android:

const webpackConfig = require("./webpack.config");
const path = require("path");
module.exports = env => {
 env = env || {};
 env.appComponents = env.appComponents || [];
 env.appComponents.push(path.resolve(__dirname,
"app", "activity.android.ts"));
 env.entries = env.entries || {};
 env.entries.application = "./application.android";
 const config = webpackConfig(env);
 return config;
};

Note: In this example, our activity code is located in the app directory, in
the file activity.android.ts. The application may be found in the app direc-
tory, in the application.android.ts file.

188    ◾    Mastering NativeScript: A Beginner’s Guide

Add More Rules for Specific Files

If we wish to have some files processed further:

const webpackConfig = require("./webpack.config");
const path = require("path");
module.exports = env => {
 const config = webpackConfig(env);
 const babelOptions = {
 babelrc: false,
 presets: [
 "@babel/preset-react"
],
 plugins: []
 };
 config.module.rules.push(
 {
 test: /\.js(x?)$/,
 exclude: /node_modules/,
 use: {
 loader: "babel-loader",
 options: babelOptions
 },
 }
);
 config.resolve.extensions = [".js", ".jsx",
".scss", ".css"];
 return config;
};

Delete the Default Plugin

In some instances, we may wish to delete some of the preset plugins that
the default setup includes:

const webpackConfig = require("./webpack.config");
const path = require("path");
module.exports = env => {
 env = env || {};
 const config = webpackConfig(env);
 if (env.ios) {
 config.plugins = config.plugins.filter
(p => !(p && p.constructor && p.constructor.name ===
"HotModuleReplacementPlugin"));
 }
 return config;
};

Digging Deeper    ◾    189

In this example, we show how to deactivate the HotModuleReplacement
Plugin plugin while developing for iOS.

iOS APP EXTENSIONS
iOS App extensions allow users to access the app’s functionality and con-
tent from anywhere on iOS. App extensions allow users to engage with
other programs while also accessing the app’s functionality without
launching it. There are over 25 distinct App extensions templates in the
most recent version of XCode. They encompass sharing, photo editing,
file system access, widgets, custom alerts, actions, custom keyboards, and
many other features. Each extension is a component of the app, but they
also function independently.

NativeScript App Extensions

NativeScript CLI 5.3.0 included Beta support for iOS App extensions.
While the extension should be created and developed in Xcode (using
Objective-C), the resulting files can be integrated into an existing
NativeScript app via a plugin (that contains the extension) or directly by
introducing the extension files in a separate folder named the extension
inside/App_Resources/iOS/extensions/.

For example, if we have a TestExtension extension, the extension files
should be stored under/App_Resources/iOS/extensions/TestExtension.

Including an App Extension in an Existing Application

Prerequisites:

•	 The App extension that was generated.

•	 Pre-existing NativeScript applications, we may use the create com-
mand to construct a basic application for testing purposes.

tns create today-extension --tsc

To incorporate the App extension, follow these steps:

1.	Create a folder called extensions in /app/App_Resources/iOS/.

2.	Create a primary folder in the extensions folder that includes the
extension files. Create a folder called TestExtension that contains all
of the extension files, for example.

190    ◾    Mastering NativeScript: A Beginner’s Guide

3.	Create a file named extension.json in the TestExtension folder (where
the extension files are stored). This configuration file specifies the
SDK frameworks used in the extension (through the frameworks
key) and the optional image resources used for the extension icon
(via assetcatalogCompilerAppiconName key).

As an example:

{
 "frameworks": ["NotificationCenter
.framework"],
 "assetcatalogCompilerAppiconName":
"AppIconExtension"
}

frameworks is a key with an array of framework names as the
value.

assetcatalogCompilerAppiconName key – the value is the name
of the .appiconset from the .xcassets catalogue within the extension
folder – (AppIconExtension.appiconset in the example above).

4.	Rebuild the program, and our extension should be ready to use.

Adding an App Extension to a Plugin

The method for adding an App extension to a plugin is the same as stated
above, with the exception that the extension is stored in a different loca-
tion. Create the extensions folder (along with all associated files) under our
plugin’s platforms/ios folder.

iOS WatchOS Applications

With version 5.4, the NativeScript CLI adds Beta support for integrating a
WatchOS application in your NativeScript-created iOS mobile app.

Basic requirements:

•	 NativeScript CLI versions 5.4 and above are supported

•	 The NativeScript project

•	 Xcode 10 and later

•	 Devices that have been paired or simulated (iPhone and iWatch run-
ning WatchOS 4.x/5.x or above)

Digging Deeper    ◾    191

Keep in mind that the default Watch App produced with Xcode will not
operate with WatchOS 4.x. WATCHOS DEPLOYMENT TARGET must
be explicitly specified in the configuration json by the user.

•	 Objective-C was used to construct the WatchOS app (Swift code is
not supported yet).

NativeScript Application for WatchOS

Execute the following steps to incorporate your current WatchOS applica-
tion into your NativeScript project:

•	 Using Xcode, create a Single View App.

•	 Add a target for a watch app by going to File > New > Target >
WatchKit App.

•	 Give our watch app a name, such as MyFirstWatchApp. Verify that
Objective-C is selected as our language on the same screen.

Note: We can skip steps 1–3 if our Watch app is already created.

•	 Copy the MyFirstWatchApp and MyFirstWatchAppExtension files
to…/apps/MyApp/app/App_Resources/iOS/watchapp/MyFirst
WatchApp and…/apps/MyApp/app/App_Resources/iOS/watchextension/
MyFirstWatchAppExtension, respectively.

•	 Replace the value of WKCompanionAppBundleIdentifier in the
Watch App’s Info.plist with $(WK_APP_BUNDLE_IDENTIFIER).

•	 Replace WKAppBundleIdentifier with $(WK_APP_BUNDLE_
IDENTIFIER) in the Watch Extension’s Info.plist.

•	 We may populate the Watch App’s Assets.xcassets and add the
appiconset’s name to the …/apps/MyApp/app/App_Resources/iOS/
watchapp/MyFirstWatchApp/watchapp.json.

{
 "assetcatalogCompilerAppiconName": "AppIcon"
}

192    ◾    Mastering NativeScript: A Beginner’s Guide

•	 We may change the WATCHOS_DEPLOYMENT_TARGET of the
Watch App by adding the following value to the _watchapp.json_ file:

{
 "assetcatalogCompilerAppiconName": "AppIcon",
 "targetBuildConfigurationProperties": {
 "WATCHOS_DEPLOYMENT_TARGET": 4.1
 }
}

•	 Create and run the NativeScript application

tns run ios

•	 The application will be installed and launched on our iOS device/
simulator. Ascertain if the test iPhone is already linked to the test
iWatch. When the iOS app is launched, the Watch app is instantly
installed on the testing iWatch device.

USING JavaScript TO ACCESS NATIVE APIs
In this part, we’ll go through the fundamentals of using JavaScript to access
native APIs. This section focuses on how basic types are mapped between
JavaScript and the relevant native platform. After that, we’ll go through
how complicated things are represented and accessed. Finally, we discuss
TypeScript and the @nativescript/types add-on, which provide TypeScript
definitions for both the Android and iOS development platforms.

NativeScript provides access to all native APIs provided by the under-
lying platform. Many things happen behind the scenes to produce this
behavior. One of these is marshaling, which is transferring JavaScript and
Objective-C data types for iOS to Java data types for Android.

This section will teach us how to use JavaScript to access native APIs
with various data type arguments.

Numeric Types

All native numeric types (e.g., char, short, int, double, float on iOS and
byte, short, int, long, double, float on Android) are implicitly transformed
to JavaScript numbers and vice versa. For example, on iOS, run the follow-
ing code:

•	 iOS

console.log('pow(3.5, 4) = ${pow(3.5, 4)}');

Digging Deeper    ◾    193

The JavaScript number literals are converted to native doubles by the iOS
Runtime and sent to the native pow(double x, double y) function. The
native integer that is returned is automatically translated to a JavaScript
number and supplied to console.log (). The same holds true for Android.

•	 Android

console.log('min(4, 5) = ${java.lang.Math.
min(4, 5)}');

The java.lang.Math.min() function takes two numbers as input. The
Android Runtime recognizes the function signature java.lang.Math.min()
and converts literals 4 and 5 to their Java integer data type representation.
In addition, the returned integer is immediately converted to a JavaScript
number and provided to console.log ().

String

Strings in JavaScript are implicitly marshalled to java.lang. String on
Android is equivalent to NSString on iOS, and vice versa.

•	 iOS

let button = new UIButton();
button.setTitleForState('Button title',
UIControlStateNormal); // 'Button title' converted
to NSString
console.log(button.titleLabel.text); // returned
NSString is converted to JavaScript string

•	 Android

const file = new java.io.File('myfile.txt');
// 'myfile.txt' converted to java.lang.String

The methods on NSString classes that are stated as returning
instancetype – init and factory methods are an exception. This implies
that in Objective-C, a call to NSString.stringWithString with the return
type instancetype will return a wrapper over an NSString instance
rather than a JavaScript string.

Exception: Methods on NSString classes marked as returning
instancetype constitute an exception (e.g., init methods and factory meth-
ods). Calls to NSString.stringWithString, for example, return instancetype
in Objective-C. Such calls will return a wrapper over an NSString object
rather than a JavaScript string in our NativeScript code.

194    ◾    Mastering NativeScript: A Beginner’s Guide

Boolean

On Android, boolean values are implicitly marshalled to boolean and
BOOL on iOS, and vice versa.

•	 iOS

let str = NSString.stringWithString('YES');
let isTrue = str.boolValue();

•	 Android

let str = new java.lang.String('Hello everyone');
let result = str.endsWith(' everyone ');
console.log(result); // true

Array

JavaScript arrays on Android correspond to specialized Java arrays and
NSArray on iOS.

•	 iOS

let nsArray = NSArray.arrayWithArray(['Fours',
'Fives', 'Twos', 'Sevens']);
let jsArray = ['Ones', 'Twos', 'Threes']; // pure
- JavaScript array
let firstCommon = nsArray.firstObjectCommonWithArr
ay(jsArray);
console.log(firstCommon); // Twos

•	 Android

The code shows how to call an ns.example.Math.minElement(int[] array)
from JavaScript:

let numbers = [4, 5, 18, -2, 5, 7];
let min = ns.example.Math.minElement(numbers); // -2

Class and Object

A constructor represents all native classes in the JavaScript environment.
Every static method on a native class becomes a function on its JavaScript
constructor function, and every instance method becomes a function on
the JavaScript prototype. Although relatively simple, instantiating objects
and invoking JavaScript functions have specific nuances (especially on
iOS), discussed more below.

Digging Deeper    ◾    195

Using Classes and Objects on iOS

An example of how to create and consume an instance of the
NSMutableArray class in JavaScript:

let array = new NSMutableArray();
array.addObject(new NSObject());

This code sample creates an NSMutableArray instance and adds an object
using the addObject(object) function. Here’s what happens behind the
scenes: The iOS Runtime converts the new NSMutableArray() function to
a [[NSMutableArray alloc] init] call. This instance is then encapsulated in
a JavaScript object and saved in the array variable. It has in its prototype
chain all public properties and methods accessible by NSMutableArray
(and its parent classes). While calling addObject(object) is easy, calling
Objective-C methods with more parameters follows a set of basic rules
that determine how Objective-C selectors are mapped to JavaScript func-
tions. Take a look at the following NSMutableArray selector: replaceObje
ctsInRange:withObjectsFromArray:range:. It is represented in JavaScript
by the following function:

Replace ObjectsInRangeWith ObjectsFromArrayRange(objectsToR
ange, sourceArray, sourceRange) (argument names are arbitrary). It is
worth noting that the function name is formed by attaching the names
of the arguments as defined by the Objective-C selector, beginning with a
small letter for the first argument and ending with a capital letter for each
consecutive argument.

NSDictionary

We will very certainly come across methods that take NSDictionary
objects as arguments. There are just a few ways to make an NSDictionary
instance:

•	 Using NSDictionary and arrays to transmit keys and values.

let dict = new NSDictionary([".example.com",
"cookieName", "/", "cookieValue"],
[NSHTTPCookieDomain, NSHTTPCookieName, NSHTTPCooki
ePath,NSHTTPCookieValue]);
let cookie = NSHTTPCookie.
cookieWithProperties(dict);

196    ◾    Mastering NativeScript: A Beginner’s Guide

•	 Using JSON literals
let cookie = NSHTTPCookie.cookieWithProperties({[N
SHTTPCookieDomain]:".example.com", [NSHTTPCookieNa
me]:"cookieName", [NSHTTPCookiePath]:"/", [NSHTTPC
ookieValue]:"cookieValue"});

In the second example, we send the method a JSON literal.
NSHTTPCookieDomain is a variable, and we must use a calcu-
lated property name to acquire its value (otherwise, we are getting
“NSHTTPCookieDomain” as key).

On Android, we may work with classes and objects:
The code demonstrates how an instance of the android.widget.Button is

created in JavaScript:

let context = ...;
let button = new android.widget.Button(context);
button.setText("My Button");

As we can see, the native Java types are made available via their respective
packages. In other words, to access a native Java type, you merely need
to know and explicitly mention the package in which it is housed. Native
Java methods are accessible in the same manner as standard JavaScript
methods: invoking the method identifier and passing in the necessary
parameters.

Undefined and Null

Undefined and Null in JavaScript correspond to the Java null pointer and
nil in Objective-C. Native null values correspond to JavaScript null values.

•	 iOS

console.log(NSStringFromClass(null));

•	 Android

let context = ...;
const button = new android.widget.Button(context);
button.setOnClickListener(undefined);

TypeScript via IntelliSense and Access to Native APIs

To get access and Intellisense for native APIs, we must add a developer
dependency to @nativescript/types.

Digging Deeper    ◾    197

Install and enable steps:

•	 npm install @nativescript/types --save-dev

Note: To prevent including the tremendously large declaration files
in the output build file, always install the plugin as a devDependency
(npm I @nativescript/types --save-dev option).

In the root project directory, create reference.d.ts and add the following:

/// <reference path="node_modules/@nativescript/
types/index.d.ts" />

The file android.d.ts comes with typings produced for API level 17 by
default. We may require access to a newer API level’s class, method,
or property as an Android developer. The @nativescript/types plugin
includes produced typings for all API levels 17 through 27 and asso-
ciated typings from the relevant support library. To utilize typings
for a specific Android level, replace the reference to the default dec-
laration file with the one we choose. The files for each API level are
prefixed with a dash followed by the API level number (e.g., for API
21 the file is named android-21.d.ts).

Assume we’re constructing an API 21+ application and we require
typings created for that API level:

/// <reference path="node_modules/@nativescript/
types-android/lib/android-21.d.ts" />

Note: Caution should be exercised while utilizing newer API level
functions. The program will crash if we try to utilize a class, method,
or property from a higher API level on a lower API level device.

•	 Change the following values in tsconfig.json:

{
 "compilerOptions": {
 ...
 "module": "esnext",
 "target": "es2015",
 "moduleResolution": "node",
 "lib": ["es2018", "dom"],
}

It should be noted that d.ts files take a significant amount of memory and
CPU power. Consider adding the option skipLibCheck to tsconfig.json.

198    ◾    Mastering NativeScript: A Beginner’s Guide

METADATA
Both NativeScript runtimes require metadata to allow JavaScript code to
invoke native iOS or Android code. It contains all of the necessary infor-
mation about each of the supported native classes, interfaces, protocols,
structures, enumerations, functions, variables, and so on. It is created at
build time by inspecting the native libraries from the SDKs for the Android
and iOS operating systems, and any third-party libraries and frameworks
that the N application employs.

Metadata Filtering

NativeScript contains all supported entities in the metadata by default.
This enables app and plugin developers to use JavaScript to call any native
API. While it is useful during development, having information for all
APIs is not always ideal. There may be security problems; runtime perfor-
mance may suffer (due to a bigger metabase that must be queried when an
unfamiliar item is encountered or at startup); or app size may rise owing
to needless metadata that is never utilized.

There is support for blacklisting and whitelisting symbols by their
native name, giving developers control over what is or is not included in
the output data.

Metadata Filtering rules in plugins:
Plugins can specify their list of APIs that are called from JavaScript in a

file called native-api-usage.json, which can be found in each platform direc-
tory (platforms/android or platforms/ios). It follows the same format as:

{
 "uses": [
 "java.util:List"
]
}

Metadata Filtering rules in apps:
Applications have the last say on what metadata filtering will be used.

They supply native-api-usage.json files with the following format, which
may be found in App_Resources/Android and App_Resources/iOS:

{
 "whitelist-plugins-usages": true,
 "whitelist": [
 "java.util:Base64*"
],

Digging Deeper    ◾    199

 "blacklist": [
 "java.util:Locale*"
]
}

Rule Syntax

Each list is made up of pattern items that share the following characteristics:
The <pattern1>[:pattern2] format is used for entries.
Pattern1 is matched against Java package names on Android, whereas

matched pattern2--against classes, interfaces, and enums.
On iOS, pattern1 matches Clang module/submodule names, whereas

matched pattern2--structs, global functions, enums, Objective-C inter-
faces, protocols, categories, constants, and so on.

Wildcards (“*”: - any number of characters and “?”: - any single character)
are supported in patterns.

An unnamed or empty pattern is equal to being set to "*." (matching
everything).

Rule Semantics

After assessing a platform’s filtering criteria, N CLI generates final whitelist
and blacklist files in the native project for use by the corresponding meta-
data generator. The blacklist is always the same as the one set by the app.
While the flag whitelist-plugins-usages determine the whitelist:

•	 If this is correct, the final whitelist is a concatenation of the use lists
of all plugins and the app’s whitelist.

•	 Otherwise, it is equivalent to the whitelist of the app.

These two lists unambiguously dictate how filtering is carried out:

•	 If the whitelist is empty, everything is assumed to be whitelisted by
default.

•	 Only entities that match a rule are deemed whitelisted if it contains
at least one rule.

•	 All entities that are not whitelisted or that meet a rule on the blacklist
are removed from metadata.

•	 The metadata includes all other entities.

200    ◾    Mastering NativeScript: A Beginner’s Guide

Troubleshooting

Missing metadata entities may cause runtime errors. For example, if a
native class is mistakenly filtered out; its constructor method will be unde-
fined, resulting in an exception when it is invoked. Because the reasons for
something being undefined might vary, determining what the reason is
can be challenging. After a successful build, investigate the metadata gen-
erator’s verbose logs to see whether metadata filtering is to blame:

•	 On iOS, look for platforms/ios/build/<configuration>-<platform>/
metadata-generation-stderr-<arch>.txt (e.g., platforms/ios/build/
Debug-iphonesimulator/metadata-generation-stderr-x86_64.txt).

•	 They may be found in platforms/android/build-tools/buildMetadata.
log on Android.

•	 For each global symbol detected by the generator, there should be
a line indicating whether it was included in metadata or not and
whether rules or exceptions resulted in this.

Examples:

•	 verbose: Blacklisted kCFBuddhistCalendar from CoreFoundation.
CFLocale (disabled by ‘CoreFoundation*:*’) – when no whitelist rules
exist, a blacklisted symbol will display only the rule that disabled it.

•	 verbose: Blacklisted NSString from Foundation.NSString – Some black-
listed symbols will not define a rule when at least one whitelist rule. This
signifies that the symbol did not meet any of the whitelist criteria.

•	 verbose: Blacklisted PHImageContentModeDefault from Photos.
PhotosTypes (enabled by ‘Photos.PhotosTypes:*’, disabled by ‘Photos.
PhotosTypes:PHImageContentMode*’).

•	 verbose: Blacklisted String from java.lang (enabled by java.lang:*,
disabled by java.lang:String) – Blacklisted entry that meets both
whitelist rule and blacklist rule will be specified in both cases.

•	 verbose: It included NSObject from ObjectiveC.NSObject – When
there’s no whitelist rules, an included symbol will not identify the
rule that allowed to be included.

Digging Deeper    ◾    201

•	 verbose: Included PHCollectionListType from Photos.PhotosTypes
(enabled by ‘Photos.PhotosTypes:*’).

•	 verbose: It included StrictMath from java.lang (enabled by java.
lang:*) – When symbol can be included because it matched a
rule as from whitelist (but not any from the blacklist), that rule is
printed.

•	 verbose: Exception [Name: ‘vfwprintf ’, JsName: ‘vfwprintf ’,
Module: ‘Darwin.C.wchar’, File: ‘/Applications/Xcode.app/Contents/
Developer/Platforms/iPhoneSimulator.platform/Developer/SDKs/
iPhoneSimulator13.2.sdk/usr/include/wchar.h’]: It Can’t create type
dependency. –> [Type Decayed]: It Can’t create type dependency. –>
[Type Typedef]: The VaList type is not supported. – If symbol is not
included because it is not supported for whatever reason, the logged
error will mention this. Because {N} does not permit calling func-
tions with variable parameter lists, the symbol cannot be utilized
from JavaScript in this circumstance.

•	 verbose: Exception [Name: ‘GLKVector3Make’, JsName:
‘GLKVector3Make’, Module: ‘GLKit.GLKVector3’, File: ‘/Applications/
Xcode.app/Contents/Developer/Platforms/iPhoneSimulator.plat-
form/Developer/SDKs/iPhoneSimulator13.2.sdk/System/Library/
Frameworks/GLKit.framework/Headers/GLKVector3.h’]: Can’t cre-
ate type dependency. –> [Type Typedef]: It Can’t create type depen-
dency. –> [Type Elaborated]: Can’t create type dependency. –> [Type
Record]: The record is a union – More example of an unsupported
symbol, this time because unions are not supported.

MEMORY MANAGEMENT
NativeScript enables the execution of JavaScript code from native code
and vice versa. It does this by constructing bridge counterparts for each
instance exposed to the “other world” (native or JavaScript). These allow
JavaScript developers to access and consume native APIs by: * implement-
ing native interfaces or inheriting from native classes in JavaScript * creat-
ing and accessing native instances and calling into their functions from
JavaScript.

In this part, we discuss the life cycle of JavaScript and native instances
and certain problematic possibilities that may develop as a result of the

202    ◾    Mastering NativeScript: A Beginner’s Guide

complexities of having two garbage-collected runtimes (Android) or a
garbage-collected runtime and reference counting (iOS).

•	 Terms

•	 iOS

•	 Android

•	 Common tips

Terms

•	 Disclaimer: These terminologies are not necessarily well established
in the literature, but we present them in the following sections for
your convenience.

•	 Native instance: Objective-C class instance (iOS) or Java class
instance (Android).

•	 Reference counting: The Objective-C runtime in iOS employs refer-
ence counting for lifetime management. Instances retain a counter
that can be increased and decremented internally. The instance’s ref-
erence count is increased each time a strong reference is set to point
to it. When a strong reference is updated, the reference count of the
previous instance it referenced to is decremented. When the count
hits zero, the instance is deallocated.

•	 GC: It stands for garbage collection in general. When the GC runs,
it first blocks all threads to discover all strong instances on the
stack. The execution then precedes until the GC tags all accessible
objects in a separate thread. The threads are then blocked again to
complete the marking. Finally, it finalizes and deallocates any dis-
covered unreachable instances. While the real GC mechanism may
be far more advanced, all implementations in virtual machines used
for UI attempt to keep the main thread stopped as little as possi-
ble. NativeScript uses three state-of-the-art virtual machines with
garbage collectors: the Android Java VM, Android’s V8, and iOS’s
JavaScriptCore.

•	 Weak/strong reference: Instances can make weak or strong refer-
ences to one another. When there’s a path in the graph of strong

Digging Deeper    ◾    203

references from one instance to another (one held by a local variable
on the stack, a static field, etc.), the second instance cannot be gar-
bage collected. Weak references, however, they do not obstruct the
gathering of their referent.

•	 Splice: Let’s introduce a new NativeScript term: splice. A splice is a
link formed between a native instance and its JavaScript equivalent
by a JavaScript instance. In certain circumstances, the splice may be
instantiated in native first (e.g., the iOS AppDelegate class, Android’s
Application, Activity, and Fragment classes).

The splices include a reference to both a JavaScript and a native
instance:

•	 If the splice has a solid reference to an instance, it will prevent the
GC from collecting it.

•	 If the splice contains a weak reference to an instance that is nor-
mally unreachable, that instance can be collected.

•	 If both JavaScript and native instances are collected, the splice
will be deallocated.

•	 While any one of its instances is alive and the other one is dead,
the splice will be half-dead.

The splices display the following characteristics:

•	 Return the native instance of a JavaScript instance.

•	 Get the JavaScript instance from a native instance.

•	 Synchronize the two instances’ life cycles.

•	 Method calls to and from JavaScript and native instances are
proxy.

•	 When methods are invoked while in a half-dead state, throw
exceptions.

A splice is created:

•	 A splice is produced when a native instance is returned from a
constructor, method, property, block, anonymous interface,
lambda, or any JavaScript function.

204    ◾    Mastering NativeScript: A Beginner’s Guide

•	 When a native instance is supplied as an argument to a JavaScript
constructor, method, property, block, anonymous interface,
lambda, and so on.

•	 When a JavaScript-extended native class is instantiated in either
native or JavaScript.

iOS

The Objective-C runtime lacks a garbage collector and instead depends
on reference counting. The iOS runtime intercepts the retain and
release calls of each Objective-C object. The Objective-C association
API allows native objects to be dynamically given key-value pairs.
JavaScriptCore provides an API for protecting JavaScript instances,
which may be used to make them strong or weak (i.e., allow or deny
them from being garbage collected). The word “splice” refers to the
process of connecting an Objective-C instance of a class to a JavaScript
instance.

Splice LifeCycle
A splice increases the ref-count of the Objective-C instance by one, and if
the ref-count is more significant than one, the splice makes the JavaScript
instance strong. From that moment forward:

•	 When the Objective-C instance ref-count increases from 1 to
2, the splice strengthens its weak reference to the JavaScript
instance.

•	 If the Objective-C instance ref-count is reduced from 2 to 1, the
splice converts its strong reference to the JavaScript instance to a
weak reference.

•	 Only when the ref-count of the Objective-C instance is one will
the splice have a weak reference to the JavaScript instance, making
the JavaScript instance suitable for trash collection. If the GC can-
not contact this JavaScript instance from an alive JavaScript object,
it will mark it for collection. After that, when JSC finalizes the
JavaScript instance, the splice will schedule a decrementation of the
Objective-C instance’s ref-count, finally deallocating it and dispos-
ing of the splice.

Digging Deeper    ◾    205

Implementation Characteristics

1.	Native Instances Can Easily Leak: Because the JavaScript GC does
not traverse native objects and fails to detect cycles, we may cre-
ate a reference cycle in Objective-C that leaks native and JavaScript
instances. Native tools (such as Xcode and Instruments) may be used
to detect and locate leaking instances.

2.	Native Instances Might Be Deallocated Prematurely: We can allow
instances to be prematurely collected when utilizing weak properties
or APIs that include methods like setTarget:selector:… They add the
Objective-C instance as a native target, but only via a weak Objective-C
reference that does not increase the ref-count of the Objective-C
instance. When the target ref-count stays 1, and the JavaScript GC col-
lects the JavaScript instance of the splice, the Objective-C instance is
likewise deallocated. The frustrating aspect is that the code works most
of the time correctly. Still, owing to the non-deterministic completion
of the GC, it will occasionally cause the aforementioned deallocation
and cause the application to raise an exception or crash.

3.	Half-Dead Splice: The native Objective-C object is scheduled for
deallocation when the JavaScript equivalent of a splice is collected.
The native instance has a relatively short time window in which a
message may be submitted (e.g., a method call on a delegate normally
held in a weakref property). This will result in a call to a JavaScript
instance that has already been collected.

4.	Extremely Objective-C Friendly: The implementation is very
Objective-C friendly and predictable overall. Working with native
APIs necessitates more attention to memory management, but noth-
ing more than normal iOS understanding. It is incredibly user-
friendly and does not cause interruptions in the main UI thread.

5.	Deep Hierarchies Die Hard: Based on number of nodes in the list,
the amount of GC cycles required to collect a linked list exposed
from Objective-C to JavaScript is linear.

Consider the following scenario (which is based on a genuine
problem handled in @nativescript/core):

Page -> StackPanel -> Button
|.ios |.ios |.ios
UIViewController UIView UIButton

206    ◾    Mastering NativeScript: A Beginner’s Guide

When set to “Visible,” the UIViewController’s root view property
points to the UIView, which contains a collection containing a refer-
ence to the UIButton. Each one has its JavaScript wrapper. While the
visual tree is displayed, the Objective-C UIViewController, UIView,
and UIButton have reference counts of two. The JavaScript references
are “protected” (which means that the JavaScript GC will consider
these objects to be rooted and will not collect them).

When user Navigates Away from page, the parent
UINavigationController will delete the UIViewController and
reduce its reference count to one, “unprotecting” its JavaScript wrap-
per and making it trash collection-eligible.

The next GC then collects the Page, but the UIView still has a ref-
erence count of 2 and its JavaScript wrapper is protected.

Android

The Java and JavaScript VMs in Android are both GC-based. For subscrib-
ing to GC events, the Android Java VM provides a restricted public API.
In contrast, the V8 has a richer API for subscribing to GC prologue and
epilogue, as well as notifications when a JavaScript instance is marked for
collection, allowing us to optionally revive it if we discover that it is still
being referenced from outside.

Splice LifeCycle
The Android splice comes in three varieties:

•	 When a splice is formed for an “anonymous interface,” such as new
ClickListener({…}), it is deemed to “have implementation object.”

•	 For a “extended native class,” such as var MyView = View.extends({…});
var MyView = new MyView();, a splice is formed.

•	 When a splice is made for var button = new android.widget, it is
regarded as not “having implementation object.”

•	 Button(…) for instantiating a native class.

•	 When a Java instance is returned by the getValue() method, a splice
is produced for val i = anAndroidObject.getValue().

Digging Deeper    ◾    207

When a splice is constructed: It has a strong reference to the Java instance,
which the Android Java VM GC cannot collect.

On the V8 GC collection phase: All additional accessible JavaScript
instances will be explored from the JavaScript instances of any splice that
has an implementation object. For each of these JavaScript objects that
may be accessed:

•	 If the object reached is an implementation object, the splice will be
tagged as “implementation reachable.”

•	 Otherwise, it will be ignored.

Following that, all splices are handled in the following order:

•	 Suppose a JavaScript instance is designated for collection but does not
have an implementation object. In that case, the JavaScript instance
is left to be collected, and the reference to the Java instance is made
weak.

•	 If the JavaScript instance is designated for collection, contains an
implementation object, and is weakly referenced, The JavaScript
instance is revived if the Java object is alive.

•	 If the Java object is no longer alive, the JavaScript instance is left
to collect.

•	 If a JavaScript instance is tagged for collection, contains an
implementation object, and is strongly referred to, the JavaScript
instance of the splice is resurrected.

•	 If the splice was not tagged “implementation accessible” in the pre-
ceding phase, the reference to its Java instance is rendered weak.

•	 The splice’s JavaScript instance is resurrected.

•	 If the splice was not tagged “implementation accessible” in the pre-
ceding phase, the reference to its Java instance is rendered weak.

Implementation Characteristics
Premature Collection
Unlike iOS, the Android runtime manages both Java and JavaScript.
Because the native framework rarely utilizes weak references, premature

208    ◾    Mastering NativeScript: A Beginner’s Guide

collection is rarely seen. Half-dead splices are the most typical problem
with GC for Android.

Leaks
Memory leaks are uncommon. Suppose there is a pool of unreach-
able splices from Java or JavaScript. In that case, the V8 GC will tell the
JavaScript instances that they are designated for collection at some time,
and the reference to the Java equivalent will be rendered weak. The follow-
ing Android VM GC will collect the Java instances, followed by the V8
GC, which will collect the JavaScript instances (because the Java counter-
parts will be dead).

Half-Dead Splice
Because garbage collectors drive collection, it is feasible to keep a weak
reference to the JavaScript instance of a splice. The splice can reference the
Java instance weak after a V8 GC, allowing the Android VM GC to col-
lect it. Then, if the JavaScript instance is acquired through the weak refer-
ence and its methods are accessed before the next V8 GC, it will access a
half-dead splice (since the Java counterpart is dead already). The runtime
error indicates that we were unable to locate an object with the supplied id.
These issues are seen as random and are difficult to replicate.

Splices Die Fast
Several splices and JavaScript instances can be produced; however, proper-
ties may be lost.

JavaScript instances may be easily retrieved from splices that lack an
implementation object. Consider the following execution sequence:

•	 In JavaScript, a splice is constructed by obtaining an existing Java
instance.

•	 It is used for some work, and new JavaScript properties are assigned
to it.

•	 The JavaScript instance reference is removed.

•	 During GC, V8 gathers the JavaScript instance, and the splice is
deallocated.

•	 The same Java instance is acquired a second time, and a new splice
with a new JavaScript object is constructed and returned.

Digging Deeper    ◾    209

As a result, because the new instance can only obtain the Java properties of
its matching native object, the property set to the initial JavaScript object is lost.

Splices Die Hard
Working with large, short-lived objects can easily result in out-of-memory
crashes. Because of the Android splice’s life cycle, disposing of large native
instances necessitates a V8 GC followed by an Android VM GC (such as
bitmaps).

Java Friendly
In general, the implementation is rather Java-friendly. It seldom necessi-
tates the extra understanding of the runtime’s inner workings.

Common Tips

Large native objects may survive longer than necessary due to the intrinsic
memory management of objects in runtimes. This might occur if the JS
garbage collector does not execute for an extended period after the object
has become GC-eligible. As a consequence, this object will retain a strong
reference on the native side.

One solution is to do several trash collections – both in JS/TS and on the
native side (in case of running on Android). This is not, however, a low-cost
business. Hand-triggering garbage pickups are not only time-consuming,
but it may also interrupt routine garbage management.

Another solution is to use the releaseNativeCounterpart method, which
takes an instance of a native class as an argument and removes its strong
reference in the runtimes. By doing so, the Android native garbage col-
lector can destroy the potentially hefty native object on its next run if it
considers it dead. Because there is no trash collector on iOS, invoking this
function reduces the reference count of the native object by one, and if
there are no other uses for this object, it is removed.

If we try to utilize the native object in JS/TS after using the releaseNa-
tiveCounterpart function, the behavior is unclear, thus only use this func-
tion if we are certain the object will not be used again.

In JS/TS, here’s an example of how to use the releaseNativeCounterpart
function:

const heavyNativeObject = new com.native.HeavyObject();
releaseNativeCounterpart(heavyNativeObject); // All
heavyNativeObject usages following this line would
have unknown behavior

210    ◾    Mastering NativeScript: A Beginner’s Guide

USER INTERFACE LAYOUT PROCESS
NativeScript has a recursive layout framework that allows you to scale and
arrange views on the screen. The process of measuring and placing layout
containers and their child views is known as layout. The layout is a time-
consuming technique, with the number of children and the complexity
of the layout container determining its speed and performance. A basic
layout container, such as AbsoluteLayout, may outperform a more compli-
cated layout container, such as GridLayout.

The layout is done in two passes: a measure pass and a layout pass. To
that aim, each View has measurement and layout tools. Furthermore, each
layout container has its onMeasure and onLayout methods for achieving
its unique layout.

Measure Pass

Each View is measured during the measure pass to determine its target
size. The measure pass evaluates the following qualities:

•	 height

•	 width

•	 visibility

•	 minWidth

•	 minHeight

•	 marginTop

•	 marginLeft

•	 marginBottom

•	 marginRight

Layout Pass

Each View is assigned to a single layout slot during the layout stage. The
intended size of the view (as defined by the measure pass) and the follow-
ing characteristics determine this slot:

•	 marginTop

•	 marginRight

Digging Deeper    ◾    211

•	 horizontalAlignment

•	 verticalAlignment

•	 marginLeft

•	 marginBottom

Layout Properties
Margins
The distance between view and its parent is described by the four margin
attributes (marginRight, marginTop, marginLeft, and marginBottom).

When you set margins using XML, you have the option of using one of
the following methods:

•	 Set a single value: Please provide a single value that will be applied
to all sides of the view.

•	 Set the following two values: Provide two values. The first value is
applied to the top-side, and the second to the right-side. The first
value is then put to the bottom, while the second value is placed to
the left-side (in that order).

•	 Set the following four values: Give each margin four values. The
first value is applied to the top, the second to the right, the third to
the bottom, and the fourth to the left.

Padding
The padding attributes (paddingRight, paddingTop, paddingLeft, and
paddingBottom) define the space between the layout container and its
children.

When you set paddings using XML, we can choose one of three
techniques:

•	 Set a single value: Provide a single value applied to all sides of the
view.

•	 Set the following two values: Provide two values. The first value is
applied to the top side and the second to the right side. The first value
is then put to the bottom, while the second value is placed on the left
side (in that order).

212    ◾    Mastering NativeScript: A Beginner’s Guide

•	 Set the following four values: For each padding, provide four values.
The first value is applied to the top, the second value to the right, and
the third value to the bottom, as well the fourth value to the left side
(in that order).

Alignments
The layout uses horizontal and vertical alignment only when an element is
given more space than it requires.

The following table lists the permissible horizontalAlignment values.

Member Description

Left The view is aligned to the left of parent element’s layout slot.
Center The view is aligned to the center of parent element’s layout slot.
Right The view is positioned to the right of the parent element’s layout slot.
Stretch The view is extended to fill the parent element’s layout slot; if the width

is specified, it takes priority.

The following table lists the permissible verticalAlignment values.

Member Description

Top The view is positioned at the top of the parent element’s layout slot.
Centre The view is aligned to the center of the parent element’s layout slot.
Bottom The view is positioned at the bottom of the parent element’s layout slot.
Stretch The view is extended to fill the parent element’s layout slot; if height is

specified, it takes priority.

Percentage Support

NativeScript allows us to provide % values for width, height, and margin.
When a layout pass begins, the percent values are initially calculated based
on the parent available size. This implies that if we position two buttons
with height=‘50%’ on a vertical StackLayout, they will take up the entire
available height (e.g., they will fill the StackLayout vertically). The same
holds true for margin characteristics. For example, if we specify margin-
Left=‘5%’, the element will have a margin equal to 5% of the parent’s avail-
able width.

Digging Deeper    ◾    213

iOS Safe Area Support

The iOS Safe Area is a concept introduced by Apple in iOS 11. It is the
screen region that is free to utilize and will not be impeded by system
hardware or software. The safe zone does not always exist. It is influenced
by the notch, the rounded edges of the screen, the status bar, the home
indication, and elements of our program, such as the action bar and the
tab bar. Refer to the Apple documentation for a better understanding.

NativeScript has included a default handling method for the iOS Safe
Area since version 5.0. Certain container View components (those that can
have children) overflow the safe area and are spread out to the screen’s
boundaries by default. These container components are as follows:

•	 Layouts

•	 ListView

•	 Repeater

•	 WebView

•	 ScrollView

The internal workflow is as follows:

•	 Measure pass: All components are measured in the screen’s safe
region.

•	 Layout pass: All components are displayed in full screen but are off-
set to the safe area borders.

•	 Layout pass: If the component is close to the safe region, it is altered
and enlarged to the screen’s edges.

iosOverflowSafeArea Property

The default behavior described above should give decent UX right out of
the box. Additionally, NativeScript 5.0 introduces the iosOverflowSafeArea
property, which may be used to modify how components handle the iOS
Safe Area. If we want the component to extend to the screen’s boundaries
when it borders the safe region, set this property value to true. To expressly
avoid this behavior, set it to false. True is the default value for container
components. All other components are considered content that should be
limited to the safe region and is set to false by default.

214    ◾    Mastering NativeScript: A Beginner’s Guide

Layout

LayoutBase is the root class for all views that enable child element
placement.

Elements may be positioned using the various layout containers. They
assess View’s fundamental features, such as width, height, minWidth, and
alignments, and reveal extra properties for arranging child views.

Predefined Layouts

The following table lists the default layouts provided by NativeScript.

Default Layouts Provided by NativeScript

Layouts Description

[FlexboxLayout][FlexboxLayout] This is a non-conforming CSS Flexible Box Layout
implementation.

[AbsoluteLayout][AbsoluteLayout] This layout allows us to specify the exact placement
of its children (left/top coordinates).

[DockLayout][DockLayout] This layout places its children on the outside edges and
allows the last kid to take up the remaining space.

[GridLayout][GridLayout] This layout specifies a rectangle layout area with
columns and rows.

[StackLayout][StackLayout] The children in this layout are arranged horizontally
or vertically. The orientation attribute determines
the direction.

[WrapLayout][WrapLayout] Based on the orientation parameter, this layout arranges
its children in rows or columns until the space is filled,
then wraps them on a new row or column.

COMPONENTS
Action Bar

NativeScript’s ActionBar is an abstraction of the Android ActionBar and
iOS NavigationBar. It is a toolbar that appears at the top of the activity
window and can include a title, application-level navigation, and other
custom interactive objects.

Usage

The ActionBar has a title property and may be expanded with one or more
ActionItem components and one NavigationButton.

<ActionBar title="ActionBar Title">
 <NavigationButton icon="res://ic_arrow_back_
black_24dp" (tap)="goBack()"></NavigationButton>

Digging Deeper    ◾    215

 <ActionItem icon="font://" class="fas" ios.
position="left" (tap)="openSettings()"></ActionItem>
</ActionBar>

ActionItem

For iOS and Android, the ActionItem components enable platform-specific
position and systemIcon.

<ActionBar title="Action Items">
 <ActionItem (tap)="onShare()" ios.systemIcon="10"
ios.position="right"
 android.systemIcon="ic_menu_share"
android.position="actionBar">
 </ActionItem>
 <ActionItem text="delete" (tap)="onDelete()"
 ios.systemIcon="15" ios.
position="left" android.position="popup">
 </ActionItem>
</ActionBar>

Android establishes position using android.position:

•	 actionBar: Inserts an item into the ActionBar. The action item might
be shown as text or as an icon.

•	 popup: Displays the item’s options menu. Items will be shown in text.

•	 actionBarIfRoom: It places the item in the ActionBar if there is
space. Otherwise, it is added to the options menu.

iOS determines location using ios.position:

•	 left: Positions the item on the ActionBar’s left side.

•	 right: Positions the item on the ActionBar’s right side.

NavigationButton

The NavigationButton component is a generalization of the iOS back but-
ton and the Android navigation button.

•	 iOS Specifications: The navigation button’s default text is the previous
page’s title. The back button is expressly used for navigating in iOS.

216    ◾    Mastering NativeScript: A Beginner’s Guide

It navigates to the previous page, and we can’t alter this behavior using
the tap event. We may use ActionItem with ios.position=“left” to add a
button on the left side of the ActionBar and handle the tap event.

•	 Android Specifics: We cannot set text within the navigation button in
Android. We may utilize the icon attribute to provide an image (e.g., ~\
images\nav-image.png or res:ic_nav). We may use android.systemIcon
to set one of the system icons available in Android. In this scenario,
there is no default behavior for the NavigationButton tap event, and we
must declare the callback code that will be called explicitly.

Styling

Only the background-color and color attributes may be used to custom-
ize the ActionBar. We could also use @nativescript/theme and utilize
the default styles for each theme. Icon Fonts with the font://prefix can be
used in the icon attribute of ActionItem. A new image will be created and
assigned as an ActionItem’s icon resource by specifying this prefix. We
must supply the font size while utilizing this capability, which will com-
pute the size of the output picture based on the device’s dpi.

<!-- The default background-color and colour of
ActionBar and ActionItem are controlled by
nativescript-theme (if used) -->
<ActionBar title="Styling">
 <!-- Explicitly hiding the NavigationBar to
prevent the default one on iOS-->
 <NavigationButton visibility="collapsed">
</NavigationButton>

 <!-- Using icon property and Icon Fonts -->
 <ActionItem position="left"
icon="font://" class="fas" (tap)="goBack()">
</ActionItem>

 <!-- Creating custom views for the ActionItem-->
 <ActionItem ios.position="right">
 <GridLayout width="110">
 <Button text="Theme" class="-primary
-rounded-lg"></Button>
 </GridLayout>
 </ActionItem>
</ActionBar>

Digging Deeper    ◾    217

Properties

ActionBar Properties

Name Type Description

Title string Gets or sets the title of the action bar.
titleView View This method returns or sets the title view. When configured, a

custom view replaces the title.

ActionItem Properties

Name Type Description

Text string Gets or sets the text of the action
item.

Icon string Gets or sets the icon of the action
item. Supports local images (~/),
resources (res://), and icon fonts
(fonts://).

ios.position enum: “left”, “right” Sets the position of the item (default
value is left).

android.position enum: “actionBar”, “popup”,
“actionBarIfRoom”

Sets the position of the item (default
value is actionBar).

ios.systemIcon number iOS only: Sets the icon of the action
item while using
UIBarButtonSystemIcon
enumeration.

android.systemIcon string Android only: Sets a path to a
resource icon (see the list of
Android system drawables).

NavigationButton Properties

Name Type Description

Text string Gets or sets the action item’s text.
Icon string Gets or sets the action item’s icon.

Events

Name Description

Loaded When the view is loaded, this event is emitted.
Unloaded When the view is unloaded, this event is emitted.
layoutChanged When the layout limits of a view change due to layout processing,

this event is emitted.

218    ◾    Mastering NativeScript: A Beginner’s Guide

API References

Name Type

ActionBar Module
ActionBar Class
ActionItem Class
ActionItems Class
NavigationButton Class

Animation

Adding animations to your application is one method to make it more
appealing. NativeScript presents a simple and easy-to-use API that is
strong enough to allow us to animate practically any native element in
your application.

Animation Properties
We may use NativeScript to animate the properties of any element we
desire. The properties will be animated after the animate method param-
eters (e.g., scale, rotate, duration, etc.) are specified.

The following NativeScript attributes can be animated: Opacity back-
groundColor, translateX and translateY, scaleX and scaleY rotate the width
and height.

In every animation, we can control the following properties:

•	 duration: The duration of the animation.

•	 delay: The length of time to wait before beginning the animation.

•	 iterations: The number of times the animation should be performed.

•	 curve: The animation’s speed curve. The available alternatives are
shown below.

Properties

Javascript Property Value Description

backgroundColor Accepts hex or Color value.
Curve Timing function that uses the AnimationCurve enumeration.
Delay Delay the animation started in milliseconds.
Duration Duration of animation in milliseconds.

(Continued)

Digging Deeper    ◾    219

Javascript Property Value Description
Iterations The number of times to repeat animation.
Opacity The number value (0–1 where 0 is full opacity).
Rotate The number value for degrees (0–360 degrees).
Scale Object value { x:1, y:2 } (1 = Original scale).
Translate Object value { x:110, y:210 }.
Width Value of number.
Height Value of number.

Animating the opacity and background of a label is a basic example:

label.animate({
 opacity: 0.74,
 backgroundColor: new Color("Blue"),
 translate: { x: 210, y: 210 },
 scale: { x: 3, y: 3 },
 rotate: 180,
 duration: 2500,
 delay: 22,
 iterations: 5,
 curve: enums.AnimationCurve.easeIn
}).then(() => {
 console.log("Animation-finished");
}).catch((e) => {
 console.log(e.message);
});

Button

A Button component provides a simple means of interacting with the
application and running custom code in response. When the user presses
it, the button executes any associated actions.

Usage
The tap event of a Button component can be used to execute custom logic.
It is as simple as using (tap) in HTML and adding a tap handler in our
component to handle the event.

<Button text="Tap me!" (tap)="onTap($event)"></Button>

220    ◾    Mastering NativeScript: A Beginner’s Guide

Styling
CSS or comparable attributes may be used to style the Button component.

<StackLayout>
 <!-- No styles applied -->
 <Button text="Button"></Button>
 <!-- Using local CSS class -->
 <Button text=".my-button" class="my-button">
</Button>
 <!-- Using @nativescript/theme CSS classes -->
 <Button text="Button.-primary" class="-primary">
</Button>
 <Button class="-primary">
 <FormattedString>

 </FormattedString>
 </Button>
 <Button text="Button.-outline" class="-outline">
</Button>
 <Button text="Button.-primary.-rounded-sm"
class="-primary -rounded-sm"></Button>
 <Button text="Button.-primary.-rounded-lg"
class="-primary -rounded-lg"></Button>
 <Button text="Button.-outline.-rounded-sm"
class="-outline -rounded-sm"></Button>
 <Button text="Button.-outline.-rounded-lg"
class="-outline -rounded-lg"></Button>
 <Button text="Button.-outline[isEnabled=false]"
isEnabled="false" class="-outline"></Button>
 <Button text="Button.-primary[isEnabled=false]"
isEnabled="false" class="-primary"></Button>
</StackLayout>

Specific Styling Properties

Name CSS Name Type Description

androidElevation android-elevation Number (Only for Android) The elevation of
the android view may be retrieved
or adjusted.

androidDynamic
ElevationOffset

android-dynamic-
elevation-offset

Number (Only for Android) The dynamic
elevation offs are obtained or set.

Digging Deeper    ◾    221

Gestures

Users may interact with our app by manipulating UI components on the
screen using gestures, such as tap, slide, and pinch.

View, the foundation class for all NativeScript UI elements, contains on
and off methods in NativeScript that allow us to subscribe or unsubscribe
to any events and gestures detected by the UI element.

As the first argument, you specify whether the method should be turned
on or off and the sort of gesture we wish to capture. The second argument is
a function that is called each time the gesture supplied is recognized. If appli-
cable, the function parameters include extra information about the gesture.

NativeScript gestures that are supported include:

•	 Tap

•	 Rotation

•	 Double Tap

•	 Long Press

•	 Touch

•	 Pan

•	 Pinch

•	 Swipe

Slider

The NativeScript Slider component allows the user to pick a value by drag-
ging a control. Set the component’s minValue and maxValue to specify the
particular range to be used.

Usage

<Slider value="11" minValue="0" maxValue="90"
 (valueChange)="onSliderValueChange($event)">
</Slider>

Styling

<Slider value="9" minValue="0" maxValue="90"
 backgroundColor="green" color="blue">
</Slider>

222    ◾    Mastering NativeScript: A Beginner’s Guide

Switch

The Switch component lets users switch between two states of a control.
The component’s default state is off or false, but we may modify it by
changing the checked property to a boolean value. The checkedChange
property, which informs the app when the value changes, may manage the
state change event.

Usage

<Switch checked="true" (checkedChange)="onCheckedChange
($event)"></Switch>

Styling
The Swtich control’s style characteristics are as follows:

•	 color: Sets the color of the handle.

•	 backgroundColor (background-color in CSS): Sets the color of the
background when the switch is turned on.

•	 offBackgroundColor (off-background-color in CSS): Sets the
background color when the switch is turned off.

<Switch color="blue" backgroundColor="yellow"
offBackgroundColor="green">
</Switch>

DatePicker

As a ready-to-use dialog, the DatePicker control allows the user to select a
date. Each date portion – for day, month, and year – may be chosen inde-
pendently by its relevant area of control.

Usage
Using DatePicker is as simple as setting the year, month, and day. We may
also change the date property (accepts a Date object). We may also specify
a minDate and a maxDate if necessary.

<DatePicker year="1990" month="5" day="23"
 [minDate]="minDate" [maxDate]="maxDate"
 (dateChange)="onDateChanged($event)"
 (dayChange)="onDayChanged($event)"

Digging Deeper    ◾    223

 (monthChange)="onMonthChanged($event)"
 (yearChange)="onYearChanged($event)"
 (loaded)="onDatePickerLoaded($event)"
 verticalAlignment="center">
</DatePicker>

Styling

.date-picker {
 background-color: olivedrab;
 border-color: lightgrey;
 border-width: 3;
 border-radius: 10;
 color: whitesmoke;
 vertical-align: middle;
}

Properties

Name Type Description

Date Date This method gets or sets the comple date as a Date object.
minDate Date gets or sets the minimum date.
maxDate Date Gets or sets the maximum date.
Day number Gets or sets the day, and the days start from 1.
Month number Gets or sets the month, and the months start from 1.
Year number Gets or sets year.

HtmlView

The HtmlView represents a view that contains HTML content. When we
want to display static HTML content with base HTML support, use this
component instead of a WebView.

Usage

<HtmlView [html]="htmlString" ></HtmlView>

Properties

Name Type Description

Html string This method returns or sets the HTML string. HTML support is limited;
for more extensive support, try WebView.

224    ◾    Mastering NativeScript: A Beginner’s Guide

TimePicker

As a ready-to-use dialog, NativeScript includes a TimePicker control that
allows users to select a time. Each time component may be chosen indepen-
dently by its appropriate control area for the hour, minutes, and AM/PM.

Usage
The TimePicker component may be defined by the hour and minute
(numeric values only) or by defining the date attribute (accepts a Date
object).

<TimePicker hour="8"
 minute="24"
 maxHour="22"
 maxMinute="57"
 minuteInterval="4"
 (timeChange)="onTimeChanged($event)">
</TimePicker>

Properties

Name Type Description

Hour number Gets or sets time hour.
maxHour number Gets or sets maximum time hour.
maxMinute number Gets or sets maximum time minute.
minHour number Gets or sets minimum time hour.
minMinute number Gets or sets minimum time minute.
Minute number Gets or sets time minute.
minuteInterval number Gets or sets time hour.
Time Date Gets or sets time while passing a Date object.

Tabs

The Tabs component allows us to easily switch between multiple views
while maintaining a consistent user interface across iOS and Android
devices. A mid-level navigation scenario is proposed for Tabs.

Roundup of Tabs components:

•	 Semantic: Navigation at the Mid-Level.

•	 Usage: We can have an unlimited number of tabs with the same
purpose.

Digging Deeper    ◾    225

•	 Transitions: A slide transition that indicates their relative location
to one another.

•	 Swipe Gesture is a gesture.

•	 Preloading: At least one to each side (because of the swipe gesture).

Usage
The Tabs component is divided into two sub-components:

•	 The bottom bar and its TabStripItem components are defined and
rendered by the TabStrip.

•	 Multiple TabContentItem components, the total number of which
should equal the number of tabs (TabStripItem components). Each
TabContentItem serves as a container for the content of our tabs.

<Tabs selectedIndex="1">
 <!-- The bottom tab UI is created via TabStrip and
TabStripItem (for each tab)-->
 <TabStrip>
 <TabStripItem>
 <Label text="Home"></Label>
 <Image src="font://" class="fas">
</Image>
 </TabStripItem>
 <TabStripItem class="special">
 <Label text="Account's"></Label>
 <Image src="font://" class="fas">
</Image>
 </TabStripItem>
 <TabStripItem class="special">
 <Label text="Searchs"></Label>
 <Image src="font://" class="fas">
</Image>
 </TabStripItem>
 </TabStrip>
 <!-- Number of TabContentItem components should
corespond to the number of TabStripItem components -->
 <TabContentItem>
 <GridLayout>
 <Label text="Home-Page" class="h2
text-center"></Label>

226    ◾    Mastering NativeScript: A Beginner’s Guide

 </GridLayout>
 </TabContentItem>
 <TabContentItem>
 <GridLayout>
 <Label text="Account-Page" class="h2 text-
center"></Label>
 </GridLayout>
 </TabContentItem>
 <TabContentItem>
 <GridLayout>
 <Label text="Search-Page" class="h2 text-
center"></Label>
 </GridLayout>
 </TabContentItem>
</Tabs>

Styling
Three unique parameters that should be specified on the TabStrip compo-
nent are used to introduce the significant style possibilities.

•	 selectedItemnColor: This property specifies the text color of the cho-
sen tab strip item. When icon is an icon font (font://), it also changes
the color of the tab strip icon.

•	 unSelectedItemColor: Changes the text color of the tab strip items
that are not selected. When icon is an icon font (font://), it also
changes the color of the tab strip icon.

•	 highlightColor: This property determines the color of the underlin-
ing for the specified tab strip item.

These attributes can be changed dynamically, inline, or using CSS:

TabStrip {
 selected-item-color: blueviolet;
 un-selected-item-color: brown;
 highlight-color: brown;
}

TabContentItem.first-tabcontent {
 background-color: seashell;
 color: green;

Digging Deeper    ◾    227

}
TabContentItem.second-tabcontent {
 background-color: slategray;
 color: yellow;
}
TabContentItem.third-tabcontent {
 background-color: blueviolet;
 color: white;
}

WebView

The WebView component is used in our application to show web resources.
We utilize the control by specifying src property that takes a URL, a path
to a local HTML file, or an HTML string directly.

Usage

<WebView [src]="webViewSrc"
 (loadStarted)="onLoadStarted($event)"
 (loadFinished)="onLoadFinished($event)">
</WebView>

In the above code, we are configuring loadStarted and loadFinished events.
When the source of the WebView component changes, both events are
emitted (change the URL or load local HTML file). The loadStarted event
is fired when the WebView source begins loading, and the loadFinished
event is fired after the source is fully loaded. The events will produce data
of the type LoadEventData.

Tips & Tricks
Gestures in WebView:

<GridLayout rows="52 52 *">
 <Label row="0" #touchlabel [text]="touchResult"
textWrap="true" ></Label>
 <Label row="1" #panlabel [text]="panResult"
textWrap="true" ></Label>
 <WebView row="2" (loaded)="onWebViewLoaded($ev
ent)" (touch)="webViewTouch($event)" (pan)=
"webViewPan($event)" [src]="webViewSrc" ></WebView>
</GridLayout>

228    ◾    Mastering NativeScript: A Beginner’s Guide

USER INTERFACE STYLING
In a NativeScript application, we alter the looks and appearance of views
(elements) in the same way we do in a web application, either using
Cascading Style Sheets (CSS) or by modifying the style object of the com-
ponents in JavaScript. CSS language support is limited to a subset of the
CSS language.

Similar to the DOM Style Object, each View instance provides a style
property that contains all of the view’s style attributes. All of the view’s
style attributes are applied to the underlying native widget when it is
presented.

Applying CSS Styles

CSS styles may be applied at three distinct levels:

•	 CSS that applies to all application pages is known as application-wide
CSS.

•	 Component-specific CSS: This only applies to components.

•	 Inline CSS: CSS that is applied straight to a UI view.

If CSS is defined at many levels, all of them will be applied. The inline CSS
will be prioritized, whereas the application CSS will be prioritized last.

Platform-specific CSS can also be used.

Application-Wide CSS

NativeScript checks if the file app.css exists when the program starts. If it
does, any CSS styles contained in it are loaded and applied to all applica-
tion pages. This file is a handy place to keep styles that will be used on
several pages.

The name of the file from which the application-wide CSS is loaded can
be changed. We must modify before starting the program, often in the
app.js or app.ts file, as seen below:

platformNativeScriptDynamic({
bootInExistingPage:false, cssFile:"style.css" });

Component-Specific CSS

Because everything in an Angular application is a component, it is a
fairly typical task to add some CSS code that should only apply to one

Digging Deeper    ◾    229

component. Using a component’s styles or styleUrls property to add com-
ponent-specific CSS to a NativeScript-Angular app.

@Component({
 selector: 'list-test',
 styles: ['.third { background-color: yellow; }'],
 template:. .

The CSS rules in each of these instances will only apply to the stated com-
ponent and not to other UI components in the application.

Adding CSS String

This snippet adds a new style to the existing collection. This is quite handy
when we need to add a small CSS chunk to an element (for testing reasons,
for example):

page.addCss("button {background-color: yellow}");

Adding CSS File

This code snippet adds additional CSS styles to the existing collection.
This approach, on the other hand, reads them from a file. It may be used to
organize styles in files and reuse them across numerous pages.

page.addCssFile(cssFileName);

Inline CSS

CSS, like HTML, may be specified inline in the XML markup for a UI view:

<Button text="inline style" style="background-color:
yellow;"></Button>

Platform-Specific CSS

NativeScript principles make it simple to use platform-specific CSS, either
through separate style sheets or in-line declarations. This page in the doc-
umentation provides an overview of NativeScript’s convention-based file
naming conventions for aiming files at various platforms and screen sizes.

Note: When using Angular, filename rules do not function to target
specific screen sizes or orientations. To the runtime, JavaScript is neces-
sary to target styles at various displays. See this post for an example of
Angular aiming styles toward tablets.

230    ◾    Mastering NativeScript: A Beginner’s Guide

There are four basic methods for targeting styles on iOS or Android:

•	 Platform specific style sheets (styles.component.ios.css, styles.
component.android.css)

•	 Platform specific markup blocks (<ios> ... </ios>, <android> ...
</android>)

•	 Platform specific attributes (<Label ios:style=“...” android:style=“...”)

•	 Platform specific CSS rules (:host-content(.ns-ios) .mystyle { ... },
:host-context(.ns-android) .mystyle { ... })

Multiple style sheets and CSS imports are the most frequent and stable
techniques for handling platform-agnostic and platform-specific styles
in NativeScript. To see this pattern in action, try out this Playground
example.

Using this pattern, a page (or component) contains three different style
sheets: common, iOS, and Android. For example, for the page home.com-
ponent.html, there would be three style sheets:

•	 home-common.css

•	 home.component.ios.css

•	 home.component.android.css

Supported Selectors

NativeScript recognizes a subset of CSS selector syntax. Here’s how to uti-
lize the selectors that are supported:

•	 Class selector

•	 Type selector

•	 Hierarchical selector

•	 ID selector

•	 Pseudo selector

•	 Attribute selector

Digging Deeper    ◾    231

Type Selector
Type selectors in NativeScript, like CSS element selectors, select all views
of a specified type. Because type selectors are not case sensitive, we may
use both button and Button.

button { background-color: yellow }

Class Selector
Class selectors choose all views that belong to a specific class. The class is
specified using the view’s className attribute.

Note: To add a class to an element in JS/TS, the class rule must be
in a CSS file higher up the component tree than the element, such as
app.css.

.title { font-size: 30 }

ID Selector
Id selectors pick all views that have the same id. The view’s id is set using
the id attribute.

#login-button { background-color: grey }

Hierarchical Selector
A CSS selector may contain more than one basic selector, and a combina-
tory symbol may be added between selectors.

•	 Descendant selection (space). For example, the following code will
pick all buttons within StackLayouts.

StackLayout Button { background-color: blue; }

•	 (>) – A selection for direct children. Using the preceding example, if
the CSS is modified to:

StackLayout > Button { background-color: blue; }

The background-color regulation is not going to be enforced. To use
the selector, the WrapLayout element must be deleted so that the
Button becomes a direct child of the StackLayout.

•	 (+) – An adjacent sibling selector allows us to choose all elements that
are siblings to a given element.

232    ◾    Mastering NativeScript: A Beginner’s Guide

Classified Direct Sibling Test:

<StackLayout class="layout-class">
 <Label text="Direct sibling test by id"></Label>
 <Button class="test-child" text="FirstButton">
</Button>
 <Button class="test-child-2"
text="SecondButton"></Button>
</StackLayout>

Classified Direct Sibling ID:

<StackLayout class="layout-class">
 <Label text="Direct sibling test by id"></Label>
 <Button id="test-child" text="FirstButton">
</Button>
 <Button id="test-child-2" text="SecondButton">
</Button>
</StackLayout>

Classified Direct Sibling Type:

<StackLayout class="direct-sibling--type">
 <Label text="Direct sibling by type"></Label>
 <Button text="TestButton"></Button>
 <Label text="TestLabel"></Label>
 <Button text="TestButton"></Button>
 <Label text="TestLabel"></Label>
 <Button text="TestButton"></Button>
 <Label text="TestLabel"></Label>
</StackLayout>

Attribute Selector

button[testAttr]{ background-color: green; }

This selector will pick all buttons that have the testAttr attribute set to
some value.

Some more sophisticated situations are also supported:

•	 button[testAttr=‘flower’] {…}: CSS will be applied to all buttons
with the testAttr attribute set to the value flower.

Digging Deeper    ◾    233

•	 button[testAttr˜=‘flower’] {…}: All buttons having a testAttr attri-
bute containing a space-separated list of words, one of which is
“flower,” are selected.

•	 button[testAttr|=‘flower’] {…}: Selects all buttons with a testAttr
property value that starts with “flower.” The value has to be a whole
word, either alone like btn[‘testAttr’] = ‘flower’, or followed by hyphen
(-), like btn[‘testAttr’] = ‘flower-house’.

•	 button[testAttr^=‘flower’] {…}: All buttons having a testAttr attri-
bute value that starts with “flower” are selected. It is not necessary for
the value to be a whole word.

•	 button[testAttr$=‘flower’] {…}: All buttons having a testAttr attri-
bute value that ends in “flower” are selected. It is not necessary for the
value to be a whole word.

•	 button[testAttr*=‘flo’] {…}: All buttons having a testAttr attribute
value of “flo” are selected. It is not necessary for the value to be a
whole word.

Attribute selectors could be used alone or could be combined with all type
of CSS selectors.

#login-button[testAttr='flower'] { background-color:
white; }
[testAttr] {color: yellow;}

Pseudo Selector
A pseudo selector, also known as a pseudo class, is used to specify an ele-
ment’s specific state. NativeScript currently only supports the highlighted
pseudo selector.

Root Views CSS Classes   NativeScript adds a CSS class to the application’s
root views for particular states to enable flexible style and theme.

The following are the default CSS classes:

•	 .ns-root: class that is associated with the application’s root view.

•	 .ns-modal: class that is associated with the modal root view.

234    ◾    Mastering NativeScript: A Beginner’s Guide

CSS classes for each application and modal root view are as follows:

•	 .ns-android and .ns-ios are classes that define the application platform.

•	 .ns-phone and .ns-tablet are device-specific classes.

•	 .ns-portrait, .ns-landscape, and .ns-unknown classes that define the
application orientation.

•	 .ns-light and .ns-dark are classes that define the look of the system.

BASICS OF THE NativeScript COMMAND-LINE INTERFACE
In this section, we’ll learn the fundamentals of the NativeScript com-
mand-line interface, such as creating new applications, getting those apps
running on devices, and setting up a development pipeline that allows us
to iterate quickly.

Developing Applications

The NativeScript CLI is used to develop and run programs in NativeScript.
After installation, the NativeScript CLI is available as a tns command
(Telerik NativeScript) on our terminal or command prompt.

In this part, we will become acquainted with the NativeScript CLI and
use the CLI’s create command to launch our first NativeScript app.

Try with the tns create command.
To build a new NativeScript application, open our terminal or com-

mand prompt and type the following command:

tns create HelloEveryone --template
tns-template-blank-ng

We’re telling the NativeScript CLI to build an app using a predetermined
template named “tns-template-blank-ng” by supplying two arguments to
the create command: HelloEveryone, which specifies the app’s name we’re
constructing, and the template option.

Because the NativeScript CLI needs to download a few dependencies
while setting up our new project, the create command will take a minute
to finish.

When the program completes, use the cd command (change directory)
to go to our new app folder.

cd HelloEveryone

Digging Deeper    ◾    235

Running Applications

Once our NativeScript mobile project has been established, we have two
options for starting the application:

•	 Using the preview command to run a preview build. This option
allows us to test NativeScript quickly.

•	 Using the run command to perform a local build. This option pro-
vides us with the complete development experience (building and
deploying on local emulators and devices).

Using PREVIEW Quick Setup

Now that we’ve scaffolded an app on our local computer, we’re ready to
execute it on a device.

Use tns Preview Command

We’re working locally to the NativeScript Playground app for our iOS or
Android device to link the app, so use the CLI’s tns preview command.
Let’s have a look at how it works.

In our terminal or command prompt, type the following command:

tns preview

•	 In your terminal, we’ll notice a QR code.

•	 Then, on your iOS or Android smartphone, launch the NativeScript
Playground app.

•	 Scan the QR code that displays in our terminal or commands prompt
using the Scan QR code option in the Playground app.

•	 After scanning, our app should appear on our smartphone.

•	 Now that we’ve installed the program, we could discover that the
tns preview command in your terminal or command prompt never
completed. That is, we are unable to type on our terminal.

This is because the tns preview command is now monitoring our project for
updates. When the tns preview command detects a code change, it automat-
ically refreshes or livesyncs our app so we can see the changes right away.

In this chapter, we covered Android emulator tips and how to create UI
controls. We also covered custom webpack configuration and styling in
NativeScript. Moreover, we learned about NativeScript conventions.

https://taylorandfrancis.com

237DOI: 10.1201/9781003299394-6

Appraisal

NativeScript is a well-known framework for front-end, cross-platform
programming that creates genuinely native apps with JavaScript.

Progress created it in 2014, and it was rated “visionary” in Gartner’s
Magic Quadrant for Mobile App Dev Platforms (MADP).

It provides direct access to all native platform APIs using JavaScript,
TypeScript, or Angular, resulting in enhanced native-like experiences on
the web, iOS, and Android.

NativeScript is a free and open-source mobile app development frame-
work for iOS and Android. It’s a framework that was JIT-compiled. The JS
virtual machine runs NativeScript code. On Android and iOS platforms,
it makes use of the V8 engine runtime.

NativeScript helps developers create native, cross-platform programs
quickly and efficiently while saving money on the development, testing,
and training. As a result, native apps will remain rich and powerful for
many years to come, making them better and easier to use.

NativeScript apps, as seen, are written in a combination of JavaScript,
XML, and CSS.

Advantages of NativeScript:

•	 Simple learning curve

•	 Supported by a solid community

•	 Completely native performance

•	 One code, many platforms

•	 Direct, unrestricted access to iOS and Android APIs

•	 JavaScript, TypeScript, Angular, Vue, and CSS are all well supported

•	 A large number of plugins and templates are available to help with
development speed

https://doi.org/10.1201/9781003299394-6

238    ◾    Appraisal

NativeScript is popular among developers and companies because of its
use of XML for platform-independent user interfaces (UIs), Angular and
Vue.js integration, code reusability, and native speed.

NativeScript-powered apps include Triodos Bank, Daily Nanny,
Sennheiser, MyPUMA, Portable North Pole, and SAP.

Limitations of NativeScript:

•	 Apps take up more space than native apps.

•	 Plugins are required.

•	 An app is currently being debugged.

WHAT IS THE SIGNIFICANCE OF NativeScript?
NativeScript varies from other mobile app frameworks in various areas,
aside from JIT compilation. The most important difference, we feel, is our
ability to create native apps from a single code base and publish them unal-
tered to both Android and iOS.

We’ve worked with several mobile app frameworks in the past, and
NativeScript stands out in our opinion.

QUICKLY REACHING THE MARKET
Write once, deploy everywhere, and so on. We don’t want to waste your
time, whether we’re a company, a single developer, or a casual hobbyist.
We’ll also have more time to develop and provide more features in less
time because we’ll spend less time constructing a complete app.

WHAT ARE THE CAREER PROSPECTS IN NativeScript?

•	 NativeScript Developer

•	 Software Engineer – NativeScript Platform – Mobile Applications

•	 Angular with Nativescript (Mobile Application Developer)

•	 Nativescript App Developer

•	 Mobile Application Developer (Native script)

Appraisal    ◾    239

NativeScript outperforms React Native in three crucial ways:

•	 It is intended to be written once and run anywhere. React Native
continues to necessitate platform-specific programming.

•	 Angular 2 is more user-friendly than React. It’s simple to use
Angular. React is difficult. Angular 2 (which has first-class support
in NativeScript) seems to be even simpler than Angular 1.

•	 In NativeScript, we can write directly to native APIs from
JavaScript (we don’t need to develop a native plug-in to access a
native API).

REACT Native VS. NativeScript: HOW TO SELECT
THE BEST FRAMEWORK
While app growth and expansion have been ongoing in recent years,
cross-platform mobile apps, for better or worse, are altering the commer-
cial environment of every industry. As a result, the technological stack
should be chosen as well. Let’s look at the two lists that will assist us in
creating the structure for developing our app concept.

NativeScript is the ideal option for programs that will be required to
use JS or TypeScript:

•	 combines common iOS and Android capabilities

•	 where we will access web components using Angular or Vue

•	 jsweb application

With React Native, we’ll remain ahead of the competition if our app:

•	 It has native-like performance on Android and iOS.

•	 In addition to Kotlin/Java and Objective-C/Swift, its codebase will
feature UI components.

•	 It will be able to access hardware functions without the use of third-
party extensions.

•	 The MVP is scheduled to be available in 3–4 weeks.

240    ◾    Appraisal

WHO IS MAKING USE OF NativeScript?
MyPumma, Raiffeisenbank, California Court Access App, Dockbooking,
Regelneef, Daily Nanny, GeoAgro, BitPoints Wallet, and many more are
among the NativeScript apps on display.

The framework shares the issue and goal knowledge of companies in
the following industries:

•	 retail and shopping

•	 banking

•	 education

•	 government services

•	 booking services

•	 agriculture

•	 communication

•	 lifestyle

SIX THINGS WE SHOULD KNOW BEFORE
LEARNING NativeScript
Javascript (TypeScript as Well)

Because NativeScript is a JavaScript framework, the first thing we’ll need
to learn is JavaScript. We also recommend studying TypeScript, which
should be simple to understand if we already know JavaScript.

Although we can create NativeScript Core and NativeScript Vue appli-
cations using plain JavaScript, understanding TypeScript may be advanta-
geous in the job market because more and more firms are incorporating it
into their development workflow.

TypeScript is a JavaScript superset that adds optional static typing to the
language. It features excellent tools that are beneficial both when working
in a team and on big projects.

It features a strict structure that allows developers to produce less buggy
code while also making it easier to comprehend.

If a junior developer joins a TypeScript-using organization, we will find
it easier to comprehend and follow the codebase.

Because Angular utilizes TypeScript by default, NativeScript Angular
does as well. If we’re working on a NativeScript Angular application, we

Appraisal    ◾    241

can’t avoid learning TypeScript because NativeScript Angular doesn’t
allow us to create in plain JavaScript.

We may use either ordinary JavaScript or TypeScript with NativeScript
Core and NativeScript Vue.

UI Layouts

The second thing we’ll need to be familiar with is UI layouts. We’re not
talking about NativeScript-specific layouts here. What we mean is that we
will need to be conversant with the layout of a UI. For example, suppose
we’re from the web. In that case, we’re probably aware of the box model,
which states that a UI may be divided into rectangles that include other
rectangles and other items such as text and images. We’d also be familiar
with layering – not only can we have rectangles next to each other in a 3D
world, but we can also have rectangles on top of each other, so we won’t
only be dealing with x and y coordinates, but occasionally we’ll also be
dealing with the Z index.

We should apply this understanding to NativeScript since there are par-
allels between setting up DOM components and NativeScript Views. We
may also render our rectangles in NativeScript to contain additional rect-
angles and items (in NativeScript, we call these Views because they inherit
from the root View class). In a 3D environment, we may also stack our
Views on top of one another.

We must be familiar with UI layouts. When we are given a design docu-
ment for an app, we can dismantle it and know which individual widgets
to utilize when constructing the NativeScript app.

User Experience

The third concept we should be acquainted with is User Experience (UX).
NativeScript enables us to create a single code base for both iOS and

Android apps. As a result, we may wind up launching an app for both plat-
forms that appears and functions identically on both. This may be OK for
certain apps, but it may not be perfect for others.

While certain things are the same on iOS and Android, other UI design
patterns are unique to that platform, and users of that platform will be
accustomed to how the UI is set out and performs on that platform.

We should be familiar with the many UI design patterns that are sug-
gested for both platforms. Both platforms include design rules that we
should know while developing our app: the Human Interface Guidelines
for iOS and the Material Design Guidelines for Android.

242    ◾    Appraisal

The beauty of NativeScript is that we can retain a single code base for
both iOS and Android apps, sharing code between them while having the
flexibility of adding different platform-specific code for each.

Software Design Patterns

Another point to remember relates to Software Design Patterns.
Before we begin coding, we should have a plan for structuring the code,

the many components that will comprise our app, and how each compo-
nent will interact with others.

Different Software Design Patterns are often used to structure code. For
example, in NativeScript Core, the Model View ViewModel (MVVM) par-
adigm is extensively employed. MVVM allows us to divide our code into
distinct concerns. The Model represents the app’s data and business logic.
The ViewModel is located between the Model and the View and serves as
a conduit for information between the two. When there is a change in the
Model, the ViewModel notifies the View so that the View may update itself
appropriately.

It can also communicate events from the View to the Model. The View
is in charge of the app’s UI. It subscribes to the ViewModel to receive data
and change UI components accordingly.

The Model View Controller (MVC) paradigm is used by default in
NativeScript Angular and NativeScript Vue. The Controller is in terms of
maintaining the Model and View up to date. It receives input and updates
the associated variables. It communicates data between the Model and the
View.

Core Modules

When studying NativeScript, we should also be well familiar with the
framework’s Core Modules.

NativeScript has several modules that are automatically packaged into
your application when we create a new project. The Core Modules offer
the necessary abstraction for accessing the underlying native platforms.
The Gesture module, for example, exposes a standard JS API for translat-
ing application TypeScript/JavaScript code into native gestures API calls.
The Core Modules also include a simple XML-based method for designing
UIs, data binding, and navigation.

Core Modules have available modules that aid in the creation of our
app’s UI. For example, the layouts module under tns-core-modules offers
layouts such as the StackLayout that assist us in arranging our UI elements.

Appraisal    ◾    243

UI components such as Buttons and Labels may also be found in tns-core-
modules. Core Modules additionally provide networking, timing, appli-
cation settings, and data features such as working with observables and
observable arrays.

Learning Partners

We could learn NativeScript independently, but it’s typically best to work
with a Learning Partner. A Learning Partner can hold us accountable and
keep us disciplined as we go through the learning process. Having some-
one to explain what we’ve just learned may help absorb things faster, and
they can correct us when we’re incorrect while also sharing their expertise.
We may also collaborate on projects, sharing the amount of effort neces-
sary to create a comprehensive app.

https://taylorandfrancis.com

245

Bibliography

7 Things to Know When Learning NativeScript | NativeScripting. (n.d.). 7 Things
to Know When Learning NativeScript | NativeScripting; nativescript-
ing.com. Retrieved July 11, 2022, from https://nativescripting.com/posts/
7-things-to-know-when-learning-nativescript

8 Steps to Publish Your NativeScript App to the App Stores | The NativeScript Blog.
(n.d.). 8 Steps to Publish Your NativeScript App to the App Stores | The
NativeScript Blog; blog.nativescript.org. Retrieved July 11, 2022, from
https://blog.nativescript.org/steps-to-publish-your-nativescript-app-
to-the-app-stores/

Ancheta, W. (2016, August 5). Create Your First NativeScript App. Code Envato
Tuts+; code.tutsplus.com. https://code.tutsplus.com/tutorials/create-your-
first-nativescript-app--cms-26957

Ancheta, W. (2016, August 5). Create Your First NativeScript App. Code Envato
Tuts+; code.tutsplus.com. https://code.tutsplus.com/tutorials/create-your-
first-nativescript-app--cms-26957

Ancheta, W. (2016, July 15). An Introduction to NativeScript. Code Envato Tuts+;
code.tutsplus.com. https://code.tutsplus.com/articles/an-introduction-to-
nativescript--cms-26771

Angular Tutorial | NativeScript. (n.d.). Angular Tutorial | NativeScript; docs.
nativescript.org. Retrieved July 11, 2022, from https://docs.nativescript.org/
tutorial/angular.html#create-a-new-nativescript-angular-application

Angular Tutorial | NativeScript. (n.d.). Angular Tutorial | NativeScript; docs.
nativescript.org. Retrieved July 11, 2022, from https://docs.nativescript.org/
tutorial/angular.html

Build web and mobile apps with Angular and NativeScript. (n.d.). Build Web and
Mobile Apps with Angular and NativeScript; school.geekwall.in. Retrieved
July 11, 2022, from https://school.geekwall.in/p/B1uK7M6LQ

CLI Basics – NativeScript Docs. (n.d.). CLI Basics – NativeScript Docs; v6.docs.
nativescript.org. Retrieved July 11, 2022, from https://v6.docs.nativescript.
org/angular/start/cli-basics

Components – NativeScript Docs. (n.d.). Components – NativeScript Docs; v7.docs
.nativescript.org. Retrieved July 11, 2022, from https://v7.docs.nativescript.
org/ui/overview

https://nativescripting.com
https://nativescripting.com
https://blog.nativescript.org
https://blog.nativescript.org
https://code.tutsplus.com
https://code.tutsplus.com
https://code.tutsplus.com
https://code.tutsplus.com
https://code.tutsplus.com
https://code.tutsplus.com
https://docs.nativescript.org
https://docs.nativescript.org
https://docs.nativescript.org
https://docs.nativescript.org
https://school.geekwall.in
https://v6.docs.nativescript.org
https://v6.docs.nativescript.org
https://v7.docs.nativescript.org
https://v7.docs.nativescript.org

246    ◾    Bibliography

Creating a mobile app in NativeScript (Pt 1). (2019, July 26). Creating a Mobile App
in NativeScript (Pt 1); www.merixstudio.com. https://www.merixstudio
.com/blog/creating-mobile-app-nativescript-pt-1/

Data Binding – NativeScript Docs. (n.d.). Data Binding – NativeScript Docs;
v7.docs.nativescript.org. Retrieved July 11, 2022, from https://v7.docs
.nativescript.org/core-concepts/data-binding

Data binding · nativescript-batch. (n.d.). Nativescript-Batch; nativescript-batch.
readme.io. Retrieved July 11, 2022, from https://nativescript-batch.readme.
io/docs/data-binding

Develop iOS Apps on Windows With NativeScript Sidekick – DZone Mobile.
(n.d.). Dzone.Com; dzone.com. Retrieved July 11, 2022, from https://dzone
.com/articles/develop-ios-apps-on-windows-with-nativescript-side

Develop iOS Apps on Windows with NativeScript Sidekick | The NativeScript Blog.
(n.d.). Develop iOS Apps on Windows with NativeScript Sidekick | The
NativeScript Blog; blog.nativescript.org. Retrieved July 11, 2022, from https://
blog.nativescript.org/develop-ios-apps-on-windows-with-nativescript-
sidekick/

EDUCBA. (n.d.). Introduction to NativeScript Layouts. Retrieved July 11, 2022,
from https://www.educba.com/nativescript-layouts/

Environment Setup | NativeScript. (n.d.). Environment Setup | NativeScript; docs.
nativescript.org. Retrieved July 11, 2022, from https://docs.nativescript.org/
environment-setup

EPS Software Corp., Nic Raboy, C. M. (n.d.). NativeScript, iOS, Android – An
Introduction to Native Android and iOS Development with NativeScript.
NativeScript, iOS, Android – An Introduction to Native Android and iOS
Development with NativeScript; www.codemag.com. Retrieved July 11,
2022, from https://www.codemag.com/article/1711051/An-Introduction-
to-Native-Android-and-iOS-Development-with-NativeScript

Gutta, S. (2015, August 28). What is: Javascript Frameworks – An Introduction. Atlantic.
Net; www.atlantic.net. https://www.atlantic.net/vps-hosting/what-is-javascript-
frameworks-introduction/

https://www.trustradius.com/products/nativescript/reviews#:~:text=It’s%20
a%20great%20place%20to,the%20internet%20to%20get%20started.

INDIA, S. (2019, October 31). What Is NativeScript? Quick Overview In 200
Words | by SPEC INDIA | Tech in 200 Words | Medium. Medium; medium.
com. https://medium.com/tech-in-200-words/what-is-nativescript-quick-
overview-in-200-words-aa79dea932bc

iOS App Extensions – NativeScript Docs. (n.d.). iOS App Extensions – NativeScript
Docs; v7.docs.nativescript.org. Retrieved July 11, 2022, from https://v7.docs.
nativescript.org/tooling/ios-app-extensions#:~:text=iOS%20App%20
extensions%20give%20users,without%20having%20to%20open%20it

Layout Process – NativeScript Docs. (n.d.). Layout Process – NativeScript Docs;
v6.docs.nativescript.org. Retrieved July 11, 2022, from https://v6.docs
.nativescript.org/ui/layouts/layouts

Layouts – NativeScript Docs. (n.d.). Layouts – NativeScript Docs; v7.docs
.nativescript.org. Retrieved July 11, 2022, from https://v7.docs.nativescript.
org/angular/ui/ng-components/layouts

https://www.merixstudio.com
https://www.merixstudio.com
https://www.merixstudio.com
https://v7.docs.nativescript.org
https://v7.docs.nativescript.org
https://nativescript-batch.readme.io
https://nativescript-batch.readme.io
https://dzone.com
https://dzone.com
https://blog.nativescript.org
https://blog.nativescript.org
https://blog.nativescript.org
https://www.educba.com
https://docs.nativescript.org
https://docs.nativescript.org
https://www.codemag.com
https://www.codemag.com
https://www.codemag.com
https://www.atlantic.net
https://www.atlantic.net
https://www.atlantic.net
https://www.trustradius.com
https://www.trustradius.com
https://medium.com
https://medium.com
https://v7.docs.nativescript.org
https://v7.docs.nativescript.org
https://v7.docs.nativescript.org
https://v6.docs.nativescript.org
https://v6.docs.nativescript.org
https://v7.docs.nativescript.org
https://v7.docs.nativescript.org

Bibliography    ◾    247

Layouts – NativeScript Docs. (n.d.). Layouts – NativeScript Docs; v7.docs.nati-
vescript.org. Retrieved July 11, 2022, from https://v7.docs.nativescript.org/
angular/ui/ng-components/layouts

Matviichuk, M. (2021, February 25). NativeScript vs React Native: Choosing a Cross-
Platform Framework | by Mariia Matviichuk | React Native Hub | Medium.
Medium; medium.com. https://medium.com/react-native-hub/nativescript-
vs-react-native-choosing-a-cross-platform-framework-be066e928687#:~:
text=NativeScript%20would%20be%20the%20best,you%20drop%20us%
20a%20line

Metadata – NativeScript Docs. (n.d.). Metadata – NativeScript Docs; v6.docs.nati-
vescript.org. Retrieved July 11, 2022, from https://v6.docs.nativescript.org/
core-concepts/metadata

Modules – NativeScript Docs. (n.d.). Modules – NativeScript Docs; v7.docs
.nativescript.org. Retrieved July 11, 2022, from https://v7.docs.nativescript.
org/core-concepts/android-runtime/getting-started/modules

NativeScript – Architecture. (n.d.). NativeScript – Architecture; www.tutorialspoint
.com. Retrieved July 11, 2022, from https://www.tutorialspoint.com/nati-
vescript/nativescript_architecture.htm#:~:text=NativeScript%20is%20
an%20advanced%20framework,optimized%20and%20advanced%20
mobile%20application

NativeScript – Data Binding. (n.d.). NativeScript – Data Binding; www.tutorial-
spoint.com. Retrieved July 11, 2022, from https://www.tutorialspoint.com/
nativescript/nativescript_data_binding.htm#:~:text=Data%20binding%
20is%20one%20of,model%20without%20any%20programming%20effort

NativeScript – Installation. (n.d.). NativeScript – Installation; www.tutorialspoint
.com. Retrieved July 11, 2022, from https://www.tutorialspoint.com/
nativescript/nativescript_installation.htm

NativeScript – Modules. (n.d.). NativeScript – Modules; www.tutorialspoint.com.
Retrieved July 11, 2022, from https://www.tutorialspoint.com/nativescript/
nativescript_modules.htm

NativeScript – Native APIs Using JavaScript. (n.d.). NativeScript – Native APIs
Using JavaScript; www.tutorialspoint.com. Retrieved July 11, 2022, from
https://www.tutorialspoint.com/nativescript/nativescript_native_apis_
using_javascript.htm

NativeScript – Navigation. (n.d.). NativeScript – Navigation; www.tutorialspoint.
com. Retrieved July 11, 2022, from https://www.tutorialspoint.com/nati-
vescript/nativescript_navigation.htm

NativeScript – Navigation. (n.d.). NativeScript – Navigation; www.tutorialspoint.
com. Retrieved July 11, 2022, from https://www.tutorialspoint.com/nati-
vescript/nativescript_navigation.htm#:~:text=Navigation%20enables%20
users%20to%20quickly,clicks%20to%20more%20complex%20patterns

nativescript Tutorial – Accessing native apis. (n.d.). Nativescript Tutorial – Accessing
Native Apis; sodocumentation.net. Retrieved July 11, 2022, from https://
sodocumentation.net/nativescript/topic/5188/accessing-native-apis

nativescript Tutorial => Getting started with nativescript. (n.d.). Nativescript
Tutorial => Getting Started with Nativescript; riptutorial.com. Retrieved
July 11, 2022, from https://riptutorial.com/nativescript

https://v7.docs.nativescript.org
https://v7.docs.nativescript.org
https://medium.com
https://medium.com
https://v6.docs.nativescript.org
https://v6.docs.nativescript.org
https://v7.docs.nativescript.org
https://v7.docs.nativescript.org
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://sodocumentation.net
https://sodocumentation.net
https://riptutorial.com
https://medium.com
https://medium.com

248    ◾    Bibliography

NativeScript Tutorial. (n.d.). NativeScript Tutorial; www.tutorialspoint.com. Retrieved
July 11, 2022, from https://www.tutorialspoint.com/nativescript/index.htm

NativeScript UI is Now Free—Here’s How to Get Started | The NativeScript Blog.
(n.d.). NativeScript UI Is Now Free—Here’s How to Get Started | The
NativeScript Blog; blog.nativescript.org. Retrieved July 11, 2022, from
https://blog.nativescript.org/nativescript-ui-is-now-free-here-s-how-to-
get-started/#:~:text=That%20means%20you%20can%20use,without%20
signing%20up%20for%20anything

Navigation – NativeScript Docs. (n.d.). Navigation – NativeScript Docs; v7.docs.
nativescript.org. Retrieved July 11, 2022, from https://v7.docs.nativescript.
org/core-concepts/angular-navigation

Patoliya, S. (2018, July 19). How to Build Nativescript Angular ToDo Mobile App
in 8 Steps | Blogs. Blogs; www.teclogiq.com. https://www.teclogiq.com/blog/
nativescript-todo-application/

Removing Short Imports in NativeScript, the Easy Way (with VS Code) – DEV
Community. (2019, July 17). DEV Community; dev.to. https://dev.to/toddanglin/
removing-short-imports-in-nativescript-the-easy-way-with-vs-code-660

Setting Up Android Emulators for NativeScript Development | Johannes’ Blog.
(n.d.). Setting Up Android Emulators for NativeScript Development |
Johannes’ Blog; blog.johanneshoppe.de. Retrieved July 11, 2022, from
https://blog.johanneshoppe.de/2016/06/setting-up-android-emulators-
for-nativescript-development/

Setup Android Emulators – NativeScript Docs. (n.d.). Setup Android Emulators –
NativeScript Docs; v7.docs.nativescript.org. Retrieved July 11, 2022, from
https://v7.docs.nativescript.org/tooling/android-virtual-devices

TekTutorialsHub. (2018, August 11). Nativescript HelloWorld Example App with
Angular – TekTutorialsHub. TekTutorialsHub; www.tektutorialshub.com.
https://www.tektutorialshub.com/nativescript/nativescript-helloworld-
example-app-with-angular/

Tudip. (2020, July 16). Create NativeScript App with Angular | Tudip Technologies.
Tudip; tudip.com. https://tudip.com/blog-post/create-nativescript-app-with-
angular/

UI & Styling | NativeScript. (n.d.). UI & Styling | NativeScript; docs.nativescript.
org. Retrieved July 11, 2022, from https://docs.nativescript.org/ui-and-styl-
ing.html

What Is a JavaScript Framework? – Skillcrush. (2018, July 23). Skillcrush; skillcrush.
com. https://skillcrush.com/blog/what-is-a-javascript-framework/#:~:text=
At%20their%20most%20basic%2C%20JS,websites%20or%20web%20
applications%20around

Why Choose NativeScript for AngularJS Mobile App Development? (n.d.).
Radixweb; radixweb.com. Retrieved July 11, 2022, from https://radixweb.
com/blog/angularjs-mobile-app-development-using-nativescript

Working with Data in NativeScript | The NativeScript Blog. (n.d.). Working
with Data in NativeScript | The NativeScript Blog; blog.nativescript.org.
Retrieved July 11, 2022, from https://blog.nativescript.org/working-with-
data-in-nativescript/

https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://blog.nativescript.org
https://blog.nativescript.org
https://blog.nativescript.org
https://v7.docs.nativescript.org
https://v7.docs.nativescript.org
https://www.teclogiq.com
https://www.teclogiq.com
https://www.teclogiq.com
https://dev.to
https://dev.to
https://blog.johanneshoppe.de
https://blog.johanneshoppe.de
https://v7.docs.nativescript.org
https://www.tektutorialshub.com
https://www.tektutorialshub.com
https://www.tektutorialshub.com
https://tudip.com
https://tudip.com
https://docs.nativescript.org
https://docs.nativescript.org
https://skillcrush.com
https://skillcrush.com
https://skillcrush.com
https://radixweb.com
https://radixweb.com
https://blog.nativescript.org
https://blog.nativescript.org

249

Index

A

AbsoluteLayout, 34–35, 95–96
ActionBar, 214, 217
ActionItem, 215, 217
ActivityIndicator, 33
Adding plugin, 64
Advantages of NativeScript, 237
alignContent, 106
alignItems, 105
alignSelf, 106
Android, 2, 66, 206

array declaration in, 68–69
configuration for Android and iOS,

11–12
source code of, 21
splice lifecycle, 206–207
strings for, 67

Android application development, 71
SideKick for NativeScript, 71

Google Play, publishing app to, 72
Google Play console, publishing

SideKick app to, 71–72
Android release build, creating, 117–119
Android Virtual Device (AVD)

creating, in Android Studio, 184
using command-line tool to create,

184–185
Angular, 2
Angular 10 project, upgrading, 146–148
Angular and NativeScript, 141

Angular bootstrap, 155
advanced bootstrap, 158
autoinjected objects, 157
bootstrap process, 155–156
customizing DI providers,

156–157

NativeScript application option, 156
objects injected by the platform, 157

creating web and mobile application
with, 141

Angular 10 project, upgrading,
146–148

angular CLI project, using
NativeScript CLI to run, 145

global NPM dependencies,
installing, 142

imports, fixing, 148–151
new angular CLI project, creating,

142–143
schematic changes and angular

development process, 143–145
data binding, 176

data converters, 178–179
interpolation, 178
one-way vs. two-way, 176–178

NativeScript app creation using
Angular, 151–155

navigation, 158
angular navigation, 164–165
backward navigation, 167–168
bottom navigation and tab

navigation, 169–171
configuration, 162–163
custom route reuse strategy,

161–162
forward navigation, 165–167
hub navigation, 168–169
lateral navigation, 168
mobile navigation patterns, 163–164
model view navigation, 172–174
NativeScript route module, 158–159
page-router-outlet, 159–160

250    ◾    Index

RouterExtensions class, 160–161
router link, 160
SideDrawer navigation, 174–175

plugins, 179
finding, 179
importing and using, 180
installing, 179–180
installing plugins as developer

dependencies, 180
removing, 181

Angular application in NativeScript, 17
application architecture, 18–19
application’s source code, 21–26
developing the application, 17
modules of node, 21
running the app, 26
section on configuration, 19–21
source code of Android, 21
source code of iOS, 21

Angular-based NativeScript application
workflow, 15–17

Angular-based navigation, 48
Angular bootstrap, 155

advanced bootstrap, 158
autoinjected objects, 157
bootstrap process, 155–156
customizing DI providers,

156–157
NativeScript application

option, 156
objects injected by the platform, 157

Angular CLI project, using NativeScript
CLI to run, 145

Angular navigation, 164–165
Animation, 218

properties, 218–219
API references, 218
APK, 120
App category, configuring, 129
App icon and App Store icon, adding,

129–130
App icons, designing, 112–113
Apple developer enterprise program,

136–137
Application id, 114–115
Application-settings module, 58–60
Application-wide CSS, 228
AppRoutingModule, 23–24

Apps created with NativeScript, 6
graphic intensive games, 6–7
line-of-business and consumer apps, 7

Architecture in NativeScript, 12–13
Array, 68, 194

array declaration in Android, 68–69
declaration of, 68

Attribute selector, 232–233
Autoinjected objects, 157
AVD, see Android Virtual Device

B

Backward navigation, 47, 167–168
Benefits of NativeScript, 7–8
BlankNgApp, modifying, 52–54
Boolean, 194
Bootstrap process, 155–156
Bottom and Tab Navigation, 48
BottomNavigation, 170
Bottom navigation and tab navigation,

169–171
BtnLoaded() function, 84
Building plugins, 65
Bundle id, setting, 127–128
Bundle ID configuration for Mac App

created with Mac catalyst, 128
Button component, 30–31, 219

styling, 220
usage, 219

C

Career prospects in NativeScript, 238–239
Cascading Style Sheets (CSS), 228

adding CSS file, 229
adding CSS string, 229
application-wide CSS, 228
applying, 228
component-specific CSS, 228–229
inline CSS, 229
platform-specific CSS, 229–230

Classes and objects, 69, 194
Android environment, 69
iOS environment, 70

Class selector, 231
clearHistory, 49, 160
CLI, see Command-line interface

Index    ◾    251

closeCallback() function, 173
Cloud build, 131
Command-line interface (CLI), 8–9, 10,

11, 234
developing applications, 234
running applications, 235
using preview quick setup, 235

Components, 214
ActionBar, 214
ActionItem component, 215
animation, 218

properties, 218–219
button component, 219

styling, 220
usage, 219

DatePicker, 222
styling, 223
usage, 222–223

gestures, 221
HtmlView, 223

usage, 223
NavigationButton component, 215–216
properties, 217

ActionBar properties, 217
ActionItem properties, 217
API references, 218
events, 217
NavigationButton properties, 217

slider component, 221
styling, 221
usage, 221

styling, 216
switch component, 222

styling, 222
usage, 222

Tabs component, 224
styling, 226–227
usage, 225–226

TimePicker, 224
usage, 224

usage, 214–215
WebView component, 227

tips and tricks, 227
usage, 227

Component-specific CSS, 228–229
Configuration, 162–163
Connectivity module, 62
Console module, 58

Consumer apps, 7
Continuous integration build, working of,

132–133
Copyright key, configuring (macOS), 131
Core Modules, 242–243
Creation of NativeScript apps, 4–5, 74–75
CSS, see Cascading Style Sheets
Custom route reuse strategy, 50, 161–162
Custom webpack configuration, 185

adding more rules for specific files, 188
custom application and activity, 187
default plugin, deleting, 188–189
how to use, 185–187

D

Data, working with, 124
data binding, 126–127
dynamic user interfaces, requiring,

124–125
path to a more dynamic UI, 125–126

Data binding, 54, 176
data converters, 178–179
interpolation, 178
one-way, 54–56, 176–178
two-way, 56–58, 176–178

Data converters, 178–179
DatePicker, 33–34, 222

styling, 223
usage, 222–223

Debugging, 3, 62, 73, 88–89
Default layouts provided by NativeScript,

214
DeleteNote() function, 86–87
Dependency injection (DI) mechanism,

156
DI mechanism, see Dependency injection

mechanism
Display name, 115–116
Distribution, getting app ready for, 127

app category, configuring, 129
App icon and App Store icon, adding,

129–130
assigning a team to the project, 129
bundle id, setting, 127–128
bundle ID configuration, 128
copyright key, configuring, 131
editing deployment info settings, 129

252    ◾    Index

export compliance data, adding, 131
launch screen, providing (iOS), 130
protected resources, getting access to,

130
setting up App Sandbox and hardened

runtime, 130
version number configuration and

building string, 128–129
DockLayout, 35–36, 96

stretchLastChild, 96–97

E

Entry point file, 75
Event listener, 51–52
Events handling in NativeScript, 51

BlankNgApp, modifying,
52–54

event listener, 51–52
Observable class, 51

Export compliance data, adding, 131

F

Feature Graphic, 120
Features of NativeScript, 7
file-system, 63
FlexboxLayout, 39–43, 105–109
flexDirection, 39–41, 105
flexGrow, 106
FlexServices, 137
flexShrink, 106
flexWrap, 41–42, 105
flexWrapBefore, 106
Forward navigation, 46–47, 165–167
fps-meter, 62

G

Gestures, 221
Global NPM dependencies,

installing, 142
goBack() function, 47
Google Play, 119

APK, 120
Feature Graphic, 120
publishing app to, 71
screenshots, 119–120

Google Play console, publishing SideKick
app to, 71–72

Graphical user interface (GUI) desktop
program, 132

Graphic intensive games, 6–7
GridLayout, 36–38, 78, 89–90, 98–101
GUI desktop program, see Graphical user

interface desktop program

H

Hierarchical selector, 231–232
High level, NativeScript framework

at, 13
highlightColor, 226
HomeRoutingModule, 25
horizontalAlignment, 80
HtmlView, 223

usage, 223
Hub navigation, 168–169

I

ID selector, 231
Image-source, 60–61
Image widget, 33
Importance of NativeScript, 6
Importing plugins, 64
Installation of NativeScript, 10

Android and iOS, configuration for,
11–12

command-line interface (CLI), 10, 11
NativeScript Playground application,

installing, 11
prerequisites, 10

Node.js, verifying, 10
setupcli, 11

Interpolation, 178
iOS, 67–68, 204

app extensions, 189
adding app extension to plugin, 190
including app extension in an

existing application, 189–190
iOS WatchOS applications, 190–191
NativeScript app extensions, 189
NativeScript application for

WatchOS, 191–192
configuration for, 11–12

Index    ◾    253

creating iOS release build, 120
Apple developer account, 121
certificates, identifiers, and

profiles, 121
.ipa file, generating, 121–122

development, on Windows, 132
implementation characteristics,

205–206
safe area support, 213
source code of, 21
splice lifecycle, 204

iosOverflowSafeArea property, 213
iTunes, connecting to, 122

.ipa file, uploading, 123–124
new app, creating, 122
screenshots, 122–123

J

JavaScript, 192, 240–241
array, 194
Boolean, 194
class and object, 194
NSDictionary, 195–196
numeric types, 192–193
String, 193
TypeScript via IntelliSense and access

to native APIs, 196–197
Undefined and Null in, 196
using classes and objects on iOS, 195

JavaScript, native APIs using, 65
Android environment, 66
array, 68

array declaration in android, 68–69
declaration of an array, 68

classes and objects, 69
Android environment, 69
iOS environment, 70

iOS environment, 67–68
marshaling, 66
numeric values, 66
strings for Android, 67

JavaScript code, 80
btnLoaded() function, 84
initialization, 80–81
newNote() function, 84
openCamera() function, 85
pageLoaded() function, 82–83

JavaScript framework, 2
Angular, 2
Node.js, 3
ReactJS, 3
Vue.js, 3

Jscrambler, 136
justifyContent, 42–43, 105

K

Keytool software, 118

L

Label component, 31
Lateral navigation, 47–48, 168
Launching NativeScript app into app

stores, 111
Android release build, creating,

117–119
app icons, designing, 112–113
Google Play, 119

APK, 120
Feature Graphic, 120
screenshots, 119–120

iOS release build, creating, 120
.ipa file, generating, 121–122
Apple developer account, 121
certificates, identifiers, and profiles,

121
iTunes, connecting to, 122

.ipa file, uploading, 123–124
new app, creating, 122
screenshots, 122–123

metadata, setting up, 114, 116
application id, 114–115
display name, 115–116

splash screens, creating, 114
webpack, installing, 117

Launch screen, providing, 130
LayoutBase, 214
Layout containers in NativeScript, 34

AbsoluteLayout container, 34–35
DockLayout container, 35–36
FlexboxLayout, 39–43
GridLayout, 36–38
StackLayout, 38
WrapLayout, 38–39

254    ◾    Index

Layout pass, 210–211
Layouts in NativeScript, 89

GridLayout, 89–90
ScrollView, 92–95
StackLayout, 90–92

Learning Partners, 243
Limitations of NativeScript, 238
Line-of-business and consumer apps, 7
ListView, 76, 78, 79, 80, 84, 213

M

MADP, see Mobile App Dev Platforms
MAM, see Mobile App Management
Marshaling, 66
Master-detail, template for, 28
MDM, see Mobile Device Management
Measure pass, 210
Memory management, 201

Android, 206
splice lifecycle, 206–207

common tips, 209
implementation characteristics, 207

half-dead splice, 208
Java friendly, 209
leaks, 208
premature collection, 207–208
splices die fast, 208–209
splices die hard, 209

iOS, 204
implementation characteristics,

205–206
splice lifecycle, 204

terms, 202–204
Metadata, 198

filtering, 198–199
rule semantics, 199
rule syntax, 199
setting up, 114, 116

application id, 114–115
display name, 115–116

troubleshooting, 200–201
Mobile app, protecting, 133

access restriction via private app stores,
136

Apple developer enterprise program,
136–137

Jscrambler (Protection+++), 136

maintaining business logic on the
cloud, 137–139

Mobile App Management (MAM), 136
Mobile Device Management (MDM),

136
obfuscation and minification, 134–135
source code protection, 133–134
taking caution when sharing keys,

139–140
Mobile App Dev Platforms (MADP), 237
Mobile App Management (MAM), 136
Mobile development, NativeScript in the

context of, 5
Mobile Device Management (MDM), 136
Mobile navigation patterns, 163–164
Model View Controller (MVC) paradigm,

242
Model view navigation, 172–174
Model View ViewModel (MVVM)

paradigm, 242
Modules for NativeScript, 58

application, 58
application-settings module, 58–60
connectivity module, 62
Console module, 58
functionality, modules of, 62–63
image-source, 60–61
timer module, 61
trace module, 62
ui/image-cache, 62
user interface (UI), module of, 63

MVC paradigm, see Model View
Controller paradigm

MVVM paradigm, see Model View
ViewModel paradigm

N

Native APIs using JavaScript, 65
Android environment, 66
array, 68

array declaration in android,
68–69

declaration of an array, 68
classes and objects, 69

Android environment, 69
iOS environment, 70

iOS environment, 67–68

Index    ◾    255

marshaling, 66
numeric values, 66
strings for Android, 67

NativeScript, 3–4
NativeScript app extensions, 189
NativeScriptCommonModule, 25
NativeScriptModule, 23
NativeScript Playground application,

installing, 11
NativeScriptRouterModule, 24,

158–159
NativeScript Sidekick, 131

cloud build, 131
continuous integration build, working

of, 132–133
creating a build with Sidekick, 132
iOS development on Windows, 132
possibility to build locally, 132

Navigation, 158
angular navigation, 164–165
backward navigation, 167–168
bottom navigation and tab navigation,

169–171
configuration, 162–163
custom route reuse strategy, 161–162
forward navigation, 165–167
hub navigation, 168–169
lateral navigation, 168
mobile navigation patterns, 163–164
model view navigation, 172–174
NativeScript route module, 158–159
page-router-outlet, 159–160
RouterExtensions class, 160–161
router link, 160
SideDrawer navigation, 174–175
template for, 27

NavigationButton, 215–216, 217
Navigation in NativeScript, 45

angular-based navigation, 48
backward navigation, 47
Bottom and Tab Navigation, 48
custom route reuse strategy, 50
forward navigation, 46–47
lateral navigation, 47–48
page-router-outlet, 49
router extension, 49–50
router link (nsRouterLink), 49
routes, 50–51

New angular CLI project, creating,
142–143

NewNote() function, 84
ngModel, 57
Node.js, 3

verifying, 10
NSDictionary, 195–196
Numeric values, 66

O

Obfuscation and minification,
134–135

Observable class, 51
One-way data binding, 54–56
One-way vs. two-way data binding,

176–178
OpenCamera() function, 85
Order, 106

P

PageLoaded() function, 82–83
Page modules, 15
Page-router-outlet, 49, 159–160
pageTransition, 160
Platform, 62
platformNativeScriptDynamic, 155
Platform-specific CSS, 229–230
Plugins, 63, 179

adding, 64
building, 65
creating, 65
finding, 179
importing, 64, 180
installing, 179–180

as developer dependencies, 180
removing, 65, 181
updating, 65
using, 180

Progress, 33
Pseudo selector, 233–234

R

ReactJS, 3
React Native vs. NativeScript, 239
Removing plugin, 65

256    ◾    Index

Reverse navigation mechanism, 47
Root modules, 14–15
Router extension, 49–50
RouterExtensions class, 160–161
Router link, 49, 160
Routes, 50–51
Rule semantics, 199
Rule syntax, 199

S

SaveNote() function, 85
deleteNote() function, 86–87

Schematic changes and angular
development process,
understanding, 143–145

ScrollView, 92–95
SDKs, see Software development kits
SearchBar component, 32
selectedItemnColor, 226
setInterval method, 61
setTimeout function, 61
Setting up NativeScript, 73–74
Setupcli, 11
SideDrawer component, 27
SideDrawer navigation, 174–175
SideKick for NativeScript, 71

publish app to Google Play, 72
publish SideKick app to Google Play

console, 71–72
Significance of NativeScript, 238
Single Page Application (SPA), 2
Slider component, 32, 221

styling, 221
usage, 221

Software Design Patterns, 242
Software development kits

(SDKs), 9
Source code protection, 133–134
SPA, see Single Page Application
Splash screens, creating, 114
StackLayout, 38, 78, 90–92, 101–103
stretchLastChild, 96–97
String, 193

for Android, 67
Switch component, 32, 222

styling, 222
usage, 222

T

TabItemContent, 170
Tab navigation, template for, 27
Tabs component, 224

styling, 226–227
usage, 225–226

takePicture() function, 85
Templates for NativeScript, 27

customized template, 28
master-detail, template for, 28
navigation, template for, 27
structure, 28–29
tab navigation, template for, 27
using a template, 27

TextField component, 31
TextView component, 32
TimePicker component, 34, 224

usage, 224
Timer module, 61
tkDrawerContent, 175
Trace module, 62
Two-way data binding, 56–58
TypeScript via IntelliSense and access to

native APIs, 196–197
Type selector, 231

U

UI, see User interface
ui/image-cache, 62
UI markup adding, 75–80
Undefined and Null in JavaScript, 196
unSelectedItemColor, 226
Updating plugins, 65
User Experience (UX), 241–242
User interface (UI), 143

layout containers, 95
AbsoluteLayout, 95–96
DockLayout, 96–97
FlexboxLayout, 105–109
GridLayout, 98–101
StackLayout, 101–103
stretchLastChild, 96–97
WrapLayout, 103–104

User interface layout process, 210, 241
default layouts provided by

NativeScript, 214

Index    ◾    257

iosOverflowSafeArea property, 213
iOS safe area support, 213
layout, 214
layout pass, 210–211
layout properties, 211

alignments, 212
margins, 211
padding, 211–212

measure pass, 210
percentage support, 212
predefined layouts, 214

User interface styling, 228
Cascading Style Sheets (CSS) styles

adding CSS file, 229
adding CSS string, 229
application-wide CSS, 228
applying, 228
component-specific CSS, 228–229
inline CSS, 229
platform-specific CSS, 229–230

supported selectors, 230
attribute selector, 232–233
class selector, 231
hierarchical selector, 231–232
ID selector, 231
pseudo selector, 233–234
type selector, 231

UX, see User Experience

V

VectorStock, 112
Version number configuration and

building string, 128–129

ViewModel, 242
Vue.js, 3, 15, 28, 185, 238

W

WatchOS, NativeScript application for,
191–192

Webpack
configuration, 185
installing, 117

WebView, 33, 227
tips and tricks, 227
usage, 227

Widgets in NativeScript, 29
ActivityIndicator, 33
button, 30–31
DatePicker, 33–34
image, 33
Label, 31
Progress, 33
SearchBar, 32
slider, 32
switch, 32
TextField, 31
TextView, 32
TimePicker, 34
WebView, 33

Workflow of NativeScript
application, 14

page modules, 15
root modules, 14–15

Working of NativeScript, 8–10
WrapLayout, 38–39, 103–104

	Cover
	Half Title
	Series Page
	Title Page
	Copyright Page
	Contents
	Preface
	About the Author
	CHAPTER 1: The Basics
	JavaScript FRAMEWORK OVERVIEW
	Angular
	Vue.js
	ReactJS
	Node.js

	NativeScript OVERVIEW
	HOW ARE NativeScript APPS CREATED?
	WHAT NativeScript MEANS IN THE CONTEXT OF MOBILE DEVELOPMENT
	Various Sorts of Mobile Apps

	WHY IS NativeScript IMPORTANT?
	Getting to Market Quickly

	WHAT KINDS OF APPS MAY BE CREATED WITH NativeScript?
	Graphic Intensive Games
	Line-of-Business and Consumer Apps

	FEATURES OF NativeScript
	BENEFITS OF NativeScript
	WORKING WITH NativeScript
	Taking a Deeper Dive

	INSTALLATION OF NativeScript
	Prerequisites
	Verify Node.js

	CLI Setup
	setupcli
	cli
	Installing the NativeScript Playground Application
	Configuration for Android and iOS

	ARCHITECTURE IN NativeScript
	Overview of the NativeScript Framework at a High Level

	A NativeScript APPLICATION’S WORKFLOW
	Root Modules
	Page Modules

	ANGULAR-BASED NativeScript APPLICATION WORKFLOW
	ANGULAR APPLICATION IN NativeScript
	Developing the Application
	Application Architecture
	Configuration
	Modules of Node
	Source Code of Android
	Source Code of iOS
	The Application’s Source Code
	Run Our App
	Run Our App on Our Device

	TEMPLATES FOR NativeScript
	Using a Template
	Template for Navigation
	Template for Tab Navigation
	Template for Master-Detail
	Customized Template
	Structure

	WIDGETS IN NativeScript
	Button
	Label
	TextField
	TextView
	SearchBar
	Switch
	Slider
	Progress
	ActivityIndicator
	Image
	WebView
	DatePicker
	TimePicker

	LAYOUT CONTAINERS IN NativeScript
	AbsoluteLayout
	DockLayout
	GridLayout
	StackLayout
	WrapLayout
	FlexboxLayout

	CHAPTER 2: Structuring Your App
	NAVIGATION IN NativeScript
	Fundamental Ideas
	Forward Navigation
	Backward Navigation
	Lateral Navigation
	Bottom and Tab Navigation

	Angular-Based Navigation
	Page-Router-Outlet
	Router Link (nsRouterLink)
	Router Extension
	Custom Route Reuse Strategy
	Routes

	EVENTS HANDLING IN NativeScript
	Observable Class
	Event Listener
	Modifying BlankNgApp

	DATA BINDING IN NativeScript
	One-Way Data Binding
	Two-Way Data Binding

	MODULES FOR NativeScript
	Application
	Console
	Application-settings
	Image-source
	Timer
	Trace
	ui/image-cache
	Connectivity
	Modules of Functionality
	The Module of UI

	PLUGINS FOR NativeScript
	Adding Plugins
	Importing Plugins
	Updating Plugins
	Removing Plugin
	Building Plugins
	Creating Plugins

	NATIVE APIs USING JavaScript
	Marshaling
	Numeric Values
	Android Environment
	Strings
	Android

	iOS Environment
	Arrays
	Declaration of an Array
	Array Declaration in Android

	Classes and Objects
	Android Environment
	iOS Environment

	NativeScript – ANDROID APPLICATION DEVELOPMENT
	Sidekick for NativeScript
	Publish Our Sidekick App to Google Play Console
	Publish Our App to Google Play

	Procedure for Releasing our App

	OUR FIRST APPLICATION
	Setting Up NativeScript
	Creating the APP
	The Entry Point File
	UI Markup Adding
	JavaScript Code
	Initialization
	The pageLoaded() Function
	The newNote() Function
	The btnLoaded() Function
	The openCamera() Function
	The saveNote() Function
	The deleteNote() Function

	Adding Styles
	Running and Debugging the App

	DEBUGGING
	LAYOUTS IN NativeScript
	GridLayout
	StackLayout
	ScrollView

	UI LAYOUT CONTAINERS
	AbsoluteLayout
	DockLayout
	stretchLastChild

	The GridLayout
	StackLayout
	WrapLayout
	FlexboxLayout

	CHAPTER 3: Refining Your App
	EIGHT STEPS FOR LAUNCHING OUR NativeScript APP INTO APP STORES
	Step 1: Design Our App Icons
	Step 2: Create Our Splash Screens
	Step 3: Set Up Our Metadata
	Application id
	Display Name
	Other Metadata

	Step 4 (Optional): Install Webpack
	Step 5: Create an Android Release Build
	Step 6: Google Play
	Screenshots
	Feature Graphic
	APK

	Step 7: Create an iOS Release Build
	Apple Developer Account
	Certificates, Identifiers, and Profiles
	Generating Your .ipa File

	Step 8: Connect to iTunes
	Create a New App
	Screenshots
	Uploading Your .ipa File

	IN NativeScript, WORK WITH DATA
	Why Do We Require Dynamic User Interfaces?
	The Path to a More Dynamic UI
	Data Binding

	GETTING OUR APP READY FOR DISTRIBUTION
	Overview
	Set the Bundle ID
	Configure the Bundle ID for a Mac App Created with Mac Catalyst
	Configure the Version Number and Build String
	Configure the App Category
	Assign a Team to the Project
	Edit the Deployment Info Settings
	Add an App Icon and an App Store Icon
	Provide a Launch Screen (iOS)
	To Get Access to Protected Resources, Provide Usage Descriptions
	Set Up the App Sandbox and Hardened Runtime (macOS)
	Configure the Copyright Key (macOS)
	Add Export Compliance Data

	NativeScript SIDEKICK ALLOWS US TO CREATE iOS APPS ON WINDOWS
	What Exactly Is a Cloud Build?
	But What If We Weren’t Required to Use this Method?
	Is It Still Possible for Us to Build Locally?
	How Do We Create a Build with Sidekick?
	iOS Development on Windows
	How Do Continuous Integration Build Work?

	PROTECT OUR MOBILE APP
	Source Code Protection
	Obfuscation and Minification
	Jscrambler (Protection+++)
	Restriction of Access via Private App Stores
	Options for Enterprise MAM/MDM
	Apple Developer Enterprise Program
	Maintain Business Logic on the Cloud
	Take Caution When Sharing Keys

	CHAPTER 4: Angular and NativeScript
	CREATE A WEB AND MOBILE APPLICATION WITH Angular AND NativeScript
	Install the Global NPM Dependencies That Are Necessary
	Create a New Angular CLI Project That Includes NativeScript Support
	Understanding the Schematic Changes and Angular Development Process
	Using the NativeScript CLI to Run an Angular CLI Project on Android or iOS
	Angular 10 Upgrading Suggestions
	Upgrading Our Angular 10 Project
	Package Should Be Updated .json

	Fixing Imports
	Additional Suggestions

	USING Angular, CREATE A NativeScript APP
	Angular BOOTSTRAP
	The Bootstrap Process
	NativeScript Application Option
	Customizing DI Providers
	Objects Injected by the Platform
	Autoinjected Objects
	Advanced Bootstrap

	NAVIGATION
	NativeScript Route Module
	Page-Router-Outlet
	Router Link
	Router Extention
	Custom Route Reuse Strategy
	Configuration
	Mobile Navigation Patterns
	Angular Navigation
	Forward Navigation
	Backward Navigation
	Lateral Navigation
	Hub Navigation
	Bottom Navigation and Tab Navigation
	Model View Navigation
	SideDrawer Navigation

	DATA BINDING
	One-Way vs. Two-Way Data Binding
	Interpolation
	Data Converters

	USING PLUGINS
	Finding Plugins
	Installing Plugins
	Installing Plugins as Developer Dependencies
	Importing and Using Plugins
	Removing Plugins

	CHAPTER 5: Digging Deeper
	INSTALL ANDROID EMULATORS
	Creating an Android Virtual Device in Android Studio
	Using a Command-Line Tool to Create an Android Virtual Device

	CUSTOM webpack CONFIGURATION
	What Exactly Is webpack Configuration?
	How to Use Custom webpack Configuration
	Custom Application and Activity (Android)
	Add More Rules for Specific Files
	Delete the Default Plugin

	iOS APP EXTENSIONS
	NativeScript App Extensions
	Including an App Extension in an Existing Application
	Adding an App Extension to a Plugin
	iOS WatchOS Applications
	NativeScript Application for WatchOS

	USING JavaScript TO ACCESS NATIVE APIs
	Numeric Types
	String
	Boolean
	Array
	Class and Object
	Using Classes and Objects on iOS
	NSDictionary
	Undefined and Null
	TypeScript via IntelliSense and Access to Native APIs

	METADATA
	Metadata Filtering
	Rule Syntax
	Rule Semantics
	Troubleshooting

	MEMORY MANAGEMENT
	Terms
	iOS
	Splice LifeCycle
	Implementation Characteristics

	Android
	Splice LifeCycle

	Implementation Characteristics
	Premature Collection
	Leaks
	Half-Dead Splice
	Splices Die Fast
	Splices Die Hard
	Java Friendly

	Common Tips

	USER INTERFACE LAYOUT PROCESS
	Measure Pass
	Layout Pass
	Layout Properties
	Margins
	Padding
	Alignments

	Percentage Support
	iOS Safe Area Support
	iosOverflowSafeArea Property
	Layout
	Predefined Layouts
	Default Layouts Provided by NativeScript

	COMPONENTS
	Action Bar
	Usage
	ActionItem
	NavigationButton
	Styling
	Properties
	Animation
	Animation Properties

	Button
	Usage
	Styling

	Gestures
	Slider
	Usage
	Styling

	Switch
	Usage
	Styling

	DatePicker
	Usage
	Styling

	HtmlView
	Usage

	TimePicker
	Usage

	Tabs
	Usage
	Styling

	WebView
	Usage
	Tips & Tricks

	USER INTERFACE STYLING
	Applying CSS Styles
	Application-Wide CSS
	Component-Specific CSS
	Adding CSS String
	Adding CSS File
	Inline CSS
	Platform-Specific CSS
	Supported Selectors
	Type Selector
	Class Selector
	ID Selector
	Hierarchical Selector
	Attribute Selector
	Pseudo Selector

	BASICS OF THE NativeScript COMMAND-LINE INTERFACE
	Developing Applications
	Running Applications
	Using PREVIEW Quick Setup
	Use tns Preview Command

	APPRAISAL
	BIBLIOGRAPHY
	INDEX

