

Mastering Unity

Mastering Computer Science
Series Editor: Sufyan bin Uzayr

Mastering Unity: A Beginner’s Guide
Divya Sachdeva and Aruqqa Khateib

Mastering Unreal Engine: A Beginner’s Guide
Divya Sachdeva and Aruqqa Khateib

Mastering UI Mockups and Frameworks:
A Beginner’s Guide
Mohamed Musthafa MC and Kapil Kishnani

Mastering Ruby on Rails: A Beginner’s Guide
Mathew Rooney and Madina Karybzhanova

Mastering Sketch: A Beginner’s Guide
Mathew Rooney and Md Javed Khan

Mastering Java: A Beginner’s Guide
Divya Sachdeva and Natalya Ustukpayeva

For more information about this series, please visit: https://
www.routledge.com/Mastering-Computer-Science/
book-series/MCS

The “Mastering Computer Science” series of books are
authored by the Zeba Academy team members, led by
Sufyan bin Uzayr.

Zeba Academy is an EdTech venture that develops
courses and content for learners primarily in STEM
fields, and offers education consulting to Universities
and Institutions worldwide. For more info, please visit
https://zeba.academy

https://www.routledge.com/Mastering-Computer-Science/book-series/MCS
https://www.routledge.com/Mastering-Computer-Science/book-series/MCS
https://www.routledge.com/Mastering-Computer-Science/book-series/MCS
https://zeba.academy

Mastering Unity

A Beginner’s Guide

Edited by Sufyan bin Uzayr

First edition published 2022
by CRC Press

6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2022 Sufyan bin Uzayr

Reasonable efforts have been made to publish reliable data and information, but the
author and publisher cannot assume responsibility for the validity of all materials or
the consequences of their use. The authors and publishers have attempted to trace
the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted,
reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other
means, now known or hereafter invented, including photocopying, microfilming, and
recording, or in any information storage or retrieval system, without written permission
from the publishers.

For permission to photocopy or use material electronically from this work, access www.
copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC
please contact mpkbookspermissions@tandf.co.uk

Trademark Notice: Product or corporate names may be trademarks or registered
trademarks and are used only for identification and explanation without intent to
infringe.

ISBN: 9781032103198 (hbk)
ISBN: 9781032103174 (pbk)
ISBN: 9781003214755 (ebk)

DOI: 10.1201/9781003214755

Typeset in Minion
by KnowledgeWorks Global Ltd.

https://www.copyright.com
https://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
https://doi.org/10.1201/9781003214755

v

Contents

About the Editor, xix

Chapter 1 ◾ Introduction to Unity 1
WHAT EXACTLY IS THE UNITY IDE? 2

What Is the Language Used by Unity? 2
What Is Unity 3D, and How Is It Used? 3
Other Game Engines vs. Unity 4
Unity 3D Game Development 5

All Gaming Solutions under One Roof 7
NINE SIGNIFICANT BENEFITS OF UNITY 3D
GAME DEVELOPMENT 8

Options for Licensing 10
Overall Views 11
System Requirements for Unity Editor 12
System Requirements for Unity Player 12

ARCHITECTURE OF UNITY 13

.NET Overview in Unity 13
Backend Scripting 14

vi ◾ Contents

Directed Code Stripping 14
Collection of Garbage 15
System Libraries for .NET 15
Making Use of Third-Party .NET
Libraries 17
Overhead Reflection in C# 17
UnityEngine.Object Unique Behavior 18
UnityEngine Objects Are Shared by Unity C#
and Unity C++ 19
Avoid the Use of Async and Await 19

Reloading Code in the Unity Editor 20
Serialization of Scripts 20
Script Compilation 20

WHICH OF THE SEVEN UNITY GAME
DEVELOPMENT LANGUAGES SHOULD WE
LEARN? 21

C# Is the Best Option 21
JavaScript Is the Current Alternative 22
The Traditional Third Option: Boo 22
IronPython Is an Unusual Choice 23
Lua Is an Intriguing Option 23
C/C++ Is the Best Language for Plugins 24
Rust Is a New Programming Language for
Plugins 24
Ten Benefits of the C# Programming
Language for Unity Developers 25

Contents ◾ vii

Chapter 2 ◾ Setting Up Unity 29
INSTALLATION AND CONFIGURATION 29

System Requirements for Unity Hub 30
CREATING A UNITY ACCOUNT 32

DEVELOPING YOUR FIRST PROJECT 33

HOW DOES UNITY WORK? 34

CREATING SPRITES IN UNITY 37

CHANGING SPRITES IN UNITY 38

TRANSFORMS AND OBJECT PARENTING
IN UNITY 39

WHAT EXACTLY IS OBJECT PARENTING? 40

UNITY INTERNAL ASSETS 40

SCENE SAVING AND LOADING IN UNITY 41

OUR VERY FIRST SCRIPT 42

BASIC MOVEMENT SCRIPTING IN UNITY 44

UNDERSTANDING COLLISIONS IN
UNITY 46

RIGIDBODIES AND PHYSICS IN UNITY 48

CUSTOM COLLISION BOUNDARIES IN
UNITY 49

UNDERSTANDING PREFABS AND
INSTANTIATION IN UNITY 50

DESTRUCTION OF GAMEOBJECTS IN
UNITY 52

COROUTINES IN UNITY 54

THE CONSOLE IN UNITY 57

viii ◾ Contents

INTRODUCTION TO AUDIO IN UNITY 58

Components of Audio 59
Making a Noise 60

STARTING WITH THE UI IN UNITY 62

THE BUTTON OF UNITY 65

TEXT ELEMENT IN UNITY 66

THE SLIDER IN UNITY 68

MATERIALS AND SHADERS IN UNITY 69

What Exactly Is a Material? 70
What Exactly Is a Shader? 70

THE PARTICLE SYSTEM IN UNITY 71

USING THE ASSET STORE IN UNITY 72

Chapter 3 ◾ Working with Scenes and
GameObjects 73

WHAT ARE SCENES? 73

Scene Creation, Loading, and Saving 74
Multi-Scene Editing 77

Baking Lightmaps across Multiple
Scenes 80
Baking Navmesh Data with a Variety
of Scenes 80
Baking Data for Occlusion Culling with
Several Scenes 81
Play Mode 82
Scene-Specific Settings 82
Scripting 83

Contents ◾ ix

Scene Templates 84
Creating Scene Templates 85
Modifying Scene Templates 87

Customizing the Creation of New Scenes 90
The Sequence of Scene Template
Instantiation 91

Settings for the Scene Template 93
New Scene Settings 93
Types Settings by Default 94

WHAT ARE GAMEOBJECTS? 94

Specifications 95
Transforms 96

The Component of Transform 96
Properties 97
Transform Editing 97
Parenting 98
Non-Uniform Scaling Limitations 99
Scale’s Importance 100
Working with Transforms: Some Pointers 101

Components Are Introduced 101
Configurations of Common Components 102
Component Transformation 102
Components of the Main Camera
GameObject 102
Making Use of Components 102
Adding Components 103

x ◾ Contents

Components Editing 104
Commands from the Component Context
Menu 105
Property Experimentation 106

Objects That Are Primitive or Placeholders 107
Cube 107
Sphere 107
Capsule 108
Cylinder 108
Plane 108
Quad 109

Primitive 2D GameObjects 109
Sprite and Pixels-per-Unit by Default 110
Square 110
Circle 110
Capsule 110
Isometric Diamond 111
Flat-Top Hexagon 111
Point-Top Hexagon 111
Nine-Sliced 111

Scripting Is Used to Create Components 112
Deactivating GameObjects 112

Deactivating a Parent GameObject 112
Tags 113

 114
Using a Tag 114
New Tags Creation

Contents ◾ xi

GameObjects That Remain Static 115
The Property Static Editor Flags 115

Keeping Our Work Safe 117
The Scene Changes 117
Project-Wide Modifications 117
Immediate Saving 119

PREFABS 120

Prefabs Creation 121
Making Prefabricated Assets 121
Prefab Instance Creation 122
Replacement of Existing Prefabs 122

Prefab Editing in Prefab Mode 123
Prefab Mode Entry and Exit 123
Isolation Editing 123
Contextual Editing 124
Save Automatically 125
Changing from Isolation to Context Mode 126
Undo 126
Environment for Editing 127

Overrides for Instances 127
Overrides Are Given Precedence 128
The Alignment Is Unique to the Prefab
Instance 129

Changing a Prefab’s Occurrences 129
Dropdown Overrides 130
Menus in Context 131

xii ◾ Contents

Prefabs That Are Nested 132
In Prefab Mode, Add a Nested Prefab 132
Prefabs Can Be Nested Using Their
Instances 133

Prefabs That Are Nested 133
In Prefab Mode, Add a Nested Prefab 134
Prefabs Can Be Nested Using Their
Instances 134
Prefab Variations 135
Developing a Prefab Variant 135
Prefab Variant Editing 136

Multiple Layers of Override 138
Apply Target Selection 138

Prefab Instance Unpacking 139
Unity3D Fundamentals—A Quick Look
at Game Physics 141
Physics 142

Object-Oriented Projects with Built-In
Physics Engines 143
For Object-Oriented Tasks, Use 3D
Physics 143
2D Physics Reference 143

Chapter 4 ◾ Animation in Unity 145
OVERVIEW OF THE ANIMATION
SYSTEM 145

WORKFLOW FOR ANIMATION 146

Contents ◾ xiii

SYSTEM OF LEGACY ANIMATION 148

Clips of Animation 148
Externally Sourced Animation 149
Unity Was Used to Create and Edit the
Animation 149

EXTERNALLY SOURCED ANIMATION 149

Importing Animation Files 151
Data from Imported Animation Files May
Be Seen and Copied 151

AVATARS WITH HUMANOID 151

ADDING HUMANOID MOVEMENTS
TO A MODEL 152

Overview 152
Avatar Setup 154
Configure the Avatar 155
Strategy Mapping 156
Changing the Pose 157
How to Make an Avatar Mask 157

ADDING NON-HUMANOID (GENERIC)
ANIMATIONS TO A MODEL 158

Outline 159
Setting Up the Rig 160
How to Make an Avatar Mask 161
Model Import Settings Dialogue Box 162

THE MODEL TAB 163

Scene 164
Blend Shapes Importing 165

xiv ◾ Contents

Visibility Importing 166
Cameras Importing 167
Light Import 167
Restrictions 168

THE RIG TAB 168

Types of Generic Animation 169
TAB AVATAR MAPPING 171

Avatar Data Saving and Reuse 172
Making Use of Avatar Masks 173

THE AVATAR MUSCLE AND SETTINGS TAB 173

Changes Being Previewed 174
Degree of Freedom Translate 174

THE WINDOW FOR AVATAR MASK 175

Choosing a Humanoid Body 175
Selection of a Transform 176

HUMAN TEMPLATE WINDOW 177

ANIMATION WINDOW INSTRUCTIONS 177

MAKING USE OF THE ANIMATION VIEW 177

Viewing Animations on a GameObject 178
The List of Animated Properties 178
Timeline of Animation 179
Timeline Mode in Dopesheet 179
Timeline Mode for Curves 179
Fitting Our Choice to the Window 180
Controls for Playback and Frame Navigation 181
Window Locking 182

Contents ◾ xv

MAKE A NEW ANIMATION CLIP 182

Including Another Animation Clip 183
How It All Works Together 183

ADDING ANIMATION TO A
GAMEOBJECT 184

Keyframes Recording 185
Time Line 187
In Preview Mode, You May Create
Keyframes 187
Making Keyframes by Manually 187

CONTROLLERS FOR ANIMATORS 188

UNITY’S NAVIGATION SYSTEM 189

Designing User Interfaces (UI) 190
Toolkit for UIs 190
The Unity UI Package 191
Immediate Mode Graphical UI 191
Choosing a UI System for our Project 191

Audio 192

Chapter 5 ◾ Scene Performance
Optimization 193

APPLICATION PROGRAMMING INTERFACE
(API) SUPPORT FOR GRAPHICS 193

DirectX 194
Shaders for the Surface 194
Geometry Shaders and Tessellation 195
Shaders Computed 195

xvi ◾ Contents

Metal 195
Restrictions and Requirements 196
Metal Enabling 196
Metal API Validation 197

Core OpenGL 197
Activating OpenGL Core 197
OpenGL Specifications 198
Limitations of the macOS OpenGL
Driver 198
Features of OpenGL Core 198
Command-Line Parameters for the OpenGL
Core Profile 199
Native OpenGL ES Command-Line
Parameters on Desktop 200

GRAPHICS PERFORMANCE OPTIMIZING 200

Find High-Impact Graphics 200
CPU Enhancement 202
OnDemandRendering CPU
Optimization 203
GPU: Model Geometry Optimization 204
Lighting Efficiency 205
Forward Drawing of Lights 206

 207
Mipmaps for Textures 208
LOD and Cull Distances Per Layer 208
Shadows in Real Time 208

Texture Compression and Mipmaps
on the GPU

Contents ◾ xvii

GPU: Guidelines for Creating High-
Performance Shaders 209
A Simple Checklist to Help Us Improve Our
Game’s Speed 210

Batching of Draw Calls 211
Material Preparation for Batching 212
Dynamic Batching 213
Dynamic Batching (Particle Systems, Line
Renderers, Trail Renderers) 214
Batching That Is Static 215

Instancing of GPUs 216
Including Instancing in Our Materials 217

Displaying the Statistics Window 217
Statistics 218

Debugger for Frames 219
Making Use of Frame Debugger 219
The debugger of Remote Frames 220
Options for Render Target Display 221

Streaming of Mip Maps 221
To Begin With 222
Restrictions 223
Mipmap Streaming Troubleshooting 224

Chapter 6 ◾ Completing the Game 227
DEBUGGING C# CODE IN UNITY 227

Setting up the Code Editor 228
Choosing an External Script Editor in Unity 229

xviii ◾ Contents

Editor Debugging 229
The Code Optimization Option in Unity
Offers Two Options 229

Attaching to the Editor and Setting
Breakpoints 230
In-Player Debugging 231
Android and iOS Device Debugging 232
Using the Debugger to Troubleshoot 232

Make Certain That the Debugger Is
Attached to the Right Unity Instance 233
Check Our Network Connection to the
Unity Instance 233
Ascertain That the Device Only Has One
Active Network Interface 233
Examine the Firewall Settings 234
Test to See if the Managed Debugging
Information Is Available 234
Prevent the Device from Locking 235

TESTING OF UNITS 235

APPRAISAL, 237

INDEX, 247

xix

About the Editor

Sufyan bin Uzayr is a writer, coder, and entrepreneur with
more than a decade of experience in the industry. He has
authored several books in the past, pertaining to a diverse
range of topics, ranging from History to Computers/IT.

Sufyan is the Director of Parakozm, a multinational IT
company specializing in EdTech solutions. He also runs
Zeba Academy, an online learning and teaching vertical
with a focus on STEM fields.

Sufyan specializes in a wide variety of technologies,
such as JavaScript, Dart, WordPress, Drupal, Linux, and
Python. He holds multiple degrees, including ones in
Management, IT, Literature, and Political Science.

Sufyan is a digital nomad, dividing his time between
four countries. He has lived and taught in universities and
educational institutions around the globe. Sufyan takes a
keen interest in technology, politics, literature, history, and
sports, and in his spare time, he enjoys teaching coding
and English to young students.

Learn more at sufyanism.com.

http://taylorandfrancis.com

1DOI: 10.1201/9781003214755-1

C h a p t e r 1

Introduction
to Unity

Unity is a sophisticated cross-platform integrated develop-
ment environment (IDE) for developers as well as a three-
and two-dimensional (3D/2D) game engine. Let’s take a
closer look at what this entails.

Like a game engine, Unity can provide many of the
most crucial built-in elements that make a game run. This
includes physics, 3D rendering, and collision detection.
From the standpoint of a developer, this indicates that
there is no need to reinvent the wheel. Instead of starting
a new project by developing a new physics engine from the
ground up—calculating every individual movement of
each substance or the way light should bounce off various
surfaces.

What makes Unity even more potent is the presence
of a booming “Asset Store.” This is simply a location where

https://doi.org/10.1201/9781003214755-1

2 ◾ Mastering Unity

developers may post their inventions and share them with
the community.

Want a stunning fire effect and do not have the time
to create one from scratch? We should be able to find
something in the asset store. Want to add tilt controls to
our game without the time-consuming process of fine-
tuning the sensitivity? There is most likely an asset for
that as well.

All of this means that the game developer can concen-
trate on what is important: creating a unique and enjoyable
experience while coding just the elements specific to that
vision.

WHAT EXACTLY IS THE UNITY IDE?
Unity is an IDE as well as a game engine. The term “inte-
grated development environment” refers to an interface
that provides access to all development tools in one loca-
tion. The Unity program has a visual editor that allows
developers to drag and drop items into scenes and adjust
their characteristics.

The Unity Software also includes a slew of other essen-
tial features and tools, such as browsing between project
folders and creating animations using a timeline tool.

When it comes to coding, Unity will use an alternate
editor of your choosing. The most prevalent option is
Microsoft’s Visual Studio, which integrates most of the
time.

What Is the Language Used by Unity?

Unreal utilizes C# to manage code and logic, with a slew
of classes and application programming interface (APIs)

Introduction to Unity ◾ 3

that you’ll need to understand. The good news is that you
can do a lot in Unity without dealing with a lot of code.
However, knowing how to program opens up many new
possibilities for what you can do, and Unity allows you to
customize practically anything.

Fortunately, C# is also one of the more approachable
programming languages for beginners. It’s also well worth
knowing because it’s extensively used in the business and
has a lot in common with other prominent languages like
C and Java. In other words, studying Unity with C# is a
terrific way to get started with coding.

What Is Unity 3D, and How Is It Used?

Simply said, Unity is the most popular gaming engine in
the world. It has many features and is versatile enough to
create practically any game you can think of.

Unity is popular among both amateur developers and
AAA studios because of its unequaled cross-platform func-
tionality. It’s been used to make games such as Pokemon
GO, Hearthstone, RimWorld, Cuphead, and many more.

While the name implies 3D, Unity 3D also includes
capabilities for 2D game production.

Because of the C# scripting API and built-in Visual
Studio integration, programmers adore it. For those look-
ing for an alternative to Visual Studio, Unity provides
JavaScript as a scripting language and MonoDevelop as an
IDE.

On the other hand, designers adore it since it has
robust animation tools that make it simple to create our
3D sequences or develop 2D animations from scratch. In
Unity, almost anything can be animated.

4 ◾ Mastering Unity

Also, Unity 3D has a free version that allows creators
to release games produced using Unity Personal without
paying for the program as long as they generate less than
$100,000 from the games.

For those willing to pay, Unity provides specific addi-
tional capabilities and a customizable licensing plan via
a tiered subscription approach. Premium customers will
also get access to the Unity source code and development
assistance.

Because Unity has been around since 2005, it has
amassed a significant user base and an incredible library
of materials. Not only does Unity offer excellent documen-
tation, but videos and tutorials are abundantly available
online.

For this reason alone, beginners should begin using
Unity. Unity acts as a knowledge and resource center
among many video game engines based simply on its great
community.

Other Game Engines vs. Unity

Other large game engines are available for development.
Unreal Engine and Cryengine are among the gaming
engines that compete with Unity. So, what makes Unity so
appealing?

Because you’re on an Android website, you’re probably
interested in mobile development. This is where Unity
shines as a programming tool. While it was once known as
“Unity 3D,” the program has evolved to be as powerful as a
2D creation tool. Not only has that, but the way visuals are
handled made porting experiences to lower-end hardware
quite simple.

Introduction to Unity ◾ 5

Unity powers the great majority of products on the
Google Play Store for these reasons.

However, because Unity is cross-platform, making
games on iOS, PC, or even gaming consoles is just as sim-
ple. Unity also provides outstanding virtual reality (VR)
compatibility for developers who want to create apps for
the Oculus Rift or HTC Vive.

Unity 3D Game Development

Graphics, networks, technological augmentation, and real-
time performance have all evolved tremendously in game
development. Multiple market participants currently seek
to provide game creation and development to more people
and across more platforms.

One game engine stands out from the crowd: Unity 3D.
It is a sophisticated game engine that works on several
platforms and is highly user-friendly for both profession-
als and beginners. Unity 3D is the game engine to choose
if you want a sophisticated game engine that can generate
real-world images without consuming much computing
power.

Consider these statistics! Unity is responsible for 34%
of the free mobile games available on the Google Play
Store and the Apple App Store. Isn’t it fascinating?
Unity 3D’s gaming platforms have assisted in devel-
oping games that have reached more than 500 million
players globally, a figure that is growing year after year.
Without question, it is one of the most popular gaming
engines on the market.

Unity 3D Gaming Solutions: Unity 3D gaming solutions
are among the finest in the industry. The cross-platform

6 ◾ Mastering Unity

engine aids game creators in creating games that may be
utilized in a variety of contexts, including:

• PC and Console Games: This provides rich graphics
and developer-friendly tools and toolkits, which not
only boosts your capacity to make modifications but
also ensures that your games function optimally.

• Instant Games: Project Tiny, a flagship product of
Unity Technologies, creates light, quick, and compact
games with new runtime and stability across segments.

• Mobile Games: One of the most popular platforms
for using Unity 3D game solutions. This platform is a
master in mobile gaming, with device-ready content,
optimization, and revenue potential.

• AR/VR Games: Augmented/virtual reality (AR/VR)
games have grown in popularity over the last decade.
Unity 3D makes such ambitions a reality by providing
immediate real-time tools that enable a wide range of
creative possibilities in AR/VR engines.

In terms of visuals, game creators frequently want their
game to be as similar to reality as possible. The images
should give the gamer the sensation of “being in the game.”
Asset shop for Unity3D provides outstanding 3D models
for animations, shaders, and textures—components that
make the experience more realistic. If we acquire sound
effects and gaming assets, Unity 3D allows us to do so since
it excels at everything if you want to acquire sound effects.

Consider this: some individuals are brilliant develop-
ers, others are great at graphics or animation, and some

Introduction to Unity ◾ 7

are fantastic with musical diversity. Unity 3D is a ter-
rific asset tool that helps unite various characteristics
into a single platform and create something original and
indigenous.

All Gaming Solutions under One Roof
If we seek end-to-end game creation with excellent devel-
opment modules and additional support and maintenance,
Juego Studios is the place to go.

We at Juego Studios offer one of the greatest, if not the
most comprehensive, solutions to help you design, create,
and promote your product. We are professionals in devel-
oping and designing cost-effective, dependable, and expan-
sive game concepts and features.

We are a market leader in game design and game pro-
duction, providing end-to-end solutions. Our team of over
150 designers, developers, illustrators, animators, graphic
designers, and others will assist us in bringing our game
from concept to reality.

We create and deliver games for various platforms,
including PC, web, mobile, and console. We are gradually
developing or leaving our imprint in the creation of AR
and VR games. Our various games have garnered multi-
ple honors employing the newest technology and network
connectivity. From the 2D platform to the 3D engine to the
AR/VR environment, we create games.

Juego Studios takes pleasure in making exciting games
that push the boundaries of the industry using the most
powerful technologies and frameworks available. We deal
with a variety of game engines, but the one showcased here
is Unity 3D.

8 ◾ Mastering Unity

NINE SIGNIFICANT BENEFITS OF
UNITY 3D GAME DEVELOPMENT

• Multiple Platforms: One of the most important rea-
sons Unity 3D is valued by game creators worldwide
is the ability to construct, manage, and deliver cross-
platform games. This implies that game creators are
not restricted to a single platform and may thus ren-
der to over 25 big platforms including mobile, PC,
console, television, and, more recently, AR and VR;
this type of easiness and flexibility is what makes
game creation such an exciting and refreshing
vocation.

• Effective and Reliable: According to a 2018 research,
Unity Technologies and its flagship gaming engine
Unity 3D held more than 60% of the market share in
the AR and VR field, with more than 40% of mobile
gaming platforms using the platform to produce
games. It is efficient, dependable, and widely used by
players all around the world.

• Editor and Developer: Play Mode, Timeline
Story Tools, Real-Time Global Illumination, and
Comprehensive Memory Profiling with Retargetable
Animators are just a few of the features that make
Unity 3D a powerful and advanced yet easy-to-use
editor.

• Multiple Rendering: Unity 3D, which has received
several honors for its game creation system, is perhaps
one of the top three systems in the world for game
rendering and deployment. While it is extremely

Introduction to Unity ◾ 9

quick with 2D rendering models, it is equally excel-
lent with 3D rendering.

• Play Mode: One of the most excellent tools for quick
iterative editing is Play Mode. The play mode func-
tion in Unity 3D is one of the game engine’s most
popular features. It allows the developer to quickly
see and play inside the game and test and evaluate
it. It facilitates the convenience of testing how things
can work out without much difficulty. If one meets a
glitch or believes the game isn’t running correctly, it
can be paused and tweaked to the game developer’s
satisfaction, promptly updating results. Frame-to-
frame referencing is also possible in Play or Play Plus
Mode.

• Multiplayer Systems: Using the Unity 3D platform
is one of the most straightforward ways to develop
a networked and real-time gaming system. This
game engine’s outstanding multiplayer experience is
not only flexible but also quickly implemented and
expandable. Unity 3D allows you to create integrated
multiplayer systems that leverage matchmakers and
relay servers as a platform.

• Great Visual Experience: Unity 3D is a fantastic
visual platform and an excellent platform for devel-
oping visual experience games. The application is
fantastic, and it is less complicated and easy when
compared to many other technologies.

• Analytics: Unity 3D has analytics that any game
developer or client may access through the editor.

10 ◾ Mastering Unity

With Unity Analytics, we can get, discover, and use
game-related insights. It may provide you with valu-
able information to establish a more robust platform
and make tiny tweaks to offer a fantastic experience
for the gamers.

• Developer Community: The Unity Developer
Community is a forum for all developers to come
and discuss their issues and recommendations for
enhancing the system and get immediate familiarity
with the engine.

Overall, Unity 3D Game Development is a multi-platform,
all-in-one product. Game creators may import games cre-
ated on other platforms such as iOS, PC, Play Store, and
game consoles. Developers can opt to make just minor
changes to their games to take full use of Unity 3D’s
features.

Options for Licensing

Unity has three pricing tiers: personal, plus, and
professional.

While the free version will get you started, we’ll want
to upgrade to plus or pro if we’re serious about producing
commercial games.

Those who do not pay the monthly subscription must
prove earnings of less than $100,000 for the games they
create with Unity.

Hobbyists may subscribe to the Plus plan to obtain
access to additional features and training materials, which
will help them monetize their games and enhance their

Introduction to Unity ◾ 11

skills. This is wonderful for indie devs that are just getting
started with Unity development.

The Pro tier is intended for game studios and profes-
sional teams that require in-house assistance and those
that earn more than $200,000 from Unity projects.

Overall Views

We’ve been using Unity 3D for many years so that we can
share firsthand comments and pitfalls.

First and foremost, we believe Unity is an excellent
engine. It’s not the finest, but it’s a fantastic, well-rounded
tool that’s ideal for novices.

Second, there is no such thing as the most refined gam-
ing engine. There are only tools available for the job. Some
are superior to others, and it all depends on the require-
ments of the unique project. While we’ll need coding abili-
ties to utilize Unity, tools can help us learn anything we
choose.

A short Google search yields code samples and mate-
rials for everything from first-person shooters to candy-
crush-style matching games and everything in between.
However, there are compelling reasons to master coding in
addition to 3D/computer graphics (CG) jobs. Unity is, at its
core, a well-rounded game engine that simplifies game pro-
duction. While there may be better engines to use based on
our project’s requirements, understanding Unity can only
help us improve as a game developer.

Unity is the way to go if we’re a complete newbie because
the community will assist learns, and the tools will last a
long time. If we’re more experienced, we could prefer

12 ◾ Mastering Unity

Unity due to its cross-platform deployment possibilities
and quicker development process. Keep in mind that many
AAA game developers use Unity, making it a solid choice
in the vast field of video games.

System Requirements for Unity Editor

• System Requirements

• Operating system version: Windows 7 (SP1+),
Windows 10, and Windows 11, 64-bit versions
only.

• CPU: X64 architecture with SSE2 instruction set
support.

• Graphics API: DX10, DX11, and DX12-capable
GPUs.

• Additional requirements: Hardware vendor offi-
cially supported drivers.

System Requirements for Unity Player

• Mobile

• Operating system

• Version: 4.4 (API 19)+

• CPU: ARMv7 with Neon Support (32-bit) or
ARM64

• Graphics API: OpenGL ES 2.0+, OpenGL ES
3.0+, and Vulkan

• Additional requirements: 1GB+ RAM

Introduction to Unity ◾ 13

• Desktop

• Operating system

• Version: Windows 7 (SP1+), Windows 10, and
Windows 11.

• CPU: x86, x64 architecture with SSE2 instruction
set support.

• Graphics API: DX10, DX11, DX12 capable.

• Additional requirements: Drivers were officially
supported by the hardware vendor.

The Intermediate Language To C++ (IL2CPP) script-
ing backend requires Visual Studio 2015 with the C++
Tools component or later and the Windows 10 SDK for
development.

ARCHITECTURE OF UNITY
The Unity engine is written in native C/C++, but we
interface with it through a C# layer. As a result, we must
be familiar with some of the fundamental notions of C#
scripting. This part of the User Manual describes how
Unity implements .NET and C#, as well as any errors you
may see when coding.

.NET Overview in Unity

Unity takes advantage of the open-source .NET platform
to ensure that apps created with Unity may operate on a
broad range of hardware configurations. .NET provides
support for various languages and API libraries.

14 ◾ Mastering Unity

Backend Scripting
Unity features two scripting backends: Mono and IL2CPP
(Intermediate Language To C++), each with its compila-
tion technique:

• Mono employs just-in-time (JIT) compilation and
builds code as needed during runtime.

• IL2CPP employs ahead-of-time (AOT) compilation,
which builds our complete program before execution.

The advantage of employing a JIT-based scripting backend
is that it compiles significantly quicker than AOT and is
platform-independent.

The Unity Editor is JIT-based, with Mono serving as
the scripting backend. We may select which programming
backend to utilize when creating a player for your applica-
tion. To accomplish this in the Editor, go to Edit > Project
Settings > Player, open the Other Settings panel, click on
the Scripting Backend option and pick the desired backend.

Directed Code Stripping

When you develop your program, Unity searches the built
assemblies (.DLLs) for unnecessary code and removes it.
This method minimizes the final binary size of our build
while increasing build time.

When using Mono, code stripping is disabled by
default; however, code stripping cannot be deactivated
for IL2CPP. Unity’s aggressiveness while stripping code
may be adjusted. Open the Other Settings panel, click the
Managed Stripping Level dropdown, and pick the code
level denying that desire.

Introduction to Unity ◾ 15

Collection of Garbage

For both the Mono and IL2CPP backend, Unity employs
the Boehm garbage collector. By default, Unity employs
the Incremental mode. Although Unity suggests using
Incremental mode, you may disable it to employ “stop the
world” trash collection.

To switch between Incremental mode and “stop the
world,” navigate Edit > Project Settings > Player, open the
Other Settings panel, and tick the Use incremental GC
checkbox. In Incremental mode, Unity’s garbage collector
runs for a limited duration and may not always gather all
objects in a single pass. This distributes the time it takes
to acquire things across many frames, reducing stuttering
and CPU spikes.

Use the Unity Profiler to examine the amount of allo-
cations and potential CPU spikes in your application. We
may also use the GarbageCollector API to deactivate trash
collection entirely in players. When the collector is turned
off, we should take care not to allocate too much memory.

System Libraries for .NET

Unity supports a wide range of systems and may employ
a variety of scripting backend depending on the platform.
In several circumstances, the .NET system libraries require
platform-specific implementations to function correctly.
While Unity makes every effort to support as much of the
.NET ecosystem as possible, there are several exceptions to
sections of the .NET system libraries that Unity expressly
does not support.

Unity offers no assurances about the speed or allocation
of the .NET system libraries across Unity versions. Unity,

16 ◾ Mastering Unity

as a general rule, does not correct any performance regres-
sions in the .NET system libraries.

Unity does not support the System. It is not guaranteed
that the drawing library will function on all systems.

A JIT scripting backend allows us to generate dynamic
C#/.NET Intermediate Language (IL) code during the run-
time of our application, whereas an AOT scripting back-
end does not. This is critical to keep in mind while using
third-party libraries since they may utilize distinct code
paths for JIT and AOT or employ code paths that rely on
dynamically produced code.

Although Unity supports multiple .NET API profiles, for
all new applications, we should utilize the .NET Standard
2.0 API Compatibility Level for the following reasons:

• Because .NET Standard 2.0 has a lower API surface,
it also has a smaller implementation. The size of our
final executable file is reduced as a result of this.

• Because .NET Standard 2.0 has improved cross-plat-
form compatibility, our code is more likely to run on
all platforms.

• Because .NET Standard 2.0 is supported by all .NET
runtimes, our code will function in a broader range
of VM/runtime scenarios (e.g., .NET Framework,
.NET Core, Xamarin, Unity).

• More mistakes are moved to the build time in .NET
Standard. Several APIs in .NET 4.7.1 are available at
build time; however, some platforms’ implementa-
tions throw an error during runtime.

Introduction to Unity ◾ 17

Other profiles may be handy if we need to support an
older existing application, for example. Change the .NET
Profile in the Player Settings if we desire a different API
compatibility level. To do so, navigate to Edit > Project
Settings > Player > Other Settings and choose the desired
level from the API Compatibility Level selection.

Making Use of Third-Party .NET Libraries

Third-party .NET libraries should only be used if thor-
oughly tested on a broad range of Unity setups and systems.

We should profile the use of your .NET system libraries
on all target platforms since their performance character-
istics may differ based on the scripting backend, .NET ver-
sions, and profiles we employ.

Consider the following aspects while reviewing a third-
party library:

• Compatibility: Some Unity platforms and script-
ing backend may not be compatible with third-party
libraries.

• Performance: Third-party libraries may perform
significantly differently in Unity than in other .NET
runtimes.

• AOT Binary Size: Because of the number of depen-
dencies used by the library, third-party libraries may
dramatically increase AOT binary size.

Overhead Reflection in C#

All C# reflection (System.Reflection) objects are cached
internally by Mono and IL2CPP, and Unity does not trash

18 ◾ Mastering Unity

collect them by design. As a result of this behavior, the gar-
bage collector constantly searches the cached C# reflection
objects during the lifetime of our program, causing unnec-
essary and potentially considerable garbage collector costs.

Avoid approaches such as reducing trash collector
overhead Assembly.GetTypes and Type.GetMethods()in
our application generates a large number of C# reflection
objects at runtime. Instead, scan assemblies in the Editor
for the necessary data and serialize and codegen for run-
time usage.

UnityEngine.Object Unique Behavior

UnityEngine: In Unity, an object is a specific C# object
since it is connected to a native C++ counterpart object.
For example, when we utilize a Camera component, Unity
does not keep the object’s state on the C# object but rather
on its native C++ equivalent.

The usage of the C# WeakReference class with
UnityEngine.Objects are currently not supported by Unity.
As a result, we should never use a WeakReference to refer
to a loaded item.

FIGURE 1.1 Objects in Unity.

Introduction to Unity ◾ 19

UnityEngine Objects Are Shared by
Unity C# and Unity C++
When we use a method such as an Object.Destroy or
Object.DestroyImmediate to destroy a UnityEngine.
Unity removes (unloads) the native counter object when
it is derived from an object. Because the garbage collector
maintains the memory, we cannot explicitly remove the C#
object. The trash collector gathers and destroys the man-
aged object once there are no more references to it.

If a destroyed UnityEngine.Object is reaccessed, Unity
recreates the native counterpart object for most types. Two
exceptions to this recreation behavior are MonoBehaviour
and ScriptableObject:Unity never reloads them once
destroyed.

The equality (==) and inequality (!=) operators are over-
ridden by MonoBehaviour and ScriptableObject. When a
destroyed MonoBehaviour or ScriptableObject is compared
to null, the operators return true if the managed object is
still present and has not yet been garbage collected.

Because the ?? and ?. operators are not overloadable, they
are incompatible with objects derived from UnityEngine.
Object. When used on a destroyed MonoBehaviour or
ScriptableObject while the managed object is still active,
the operators do not produce the same results as the equal-
ity and inequality operators.

Avoid the Use of Async and Await

Because the Unity API is not thread-safe, we should avoid
using async and await tasks. When executed, async jobs
frequently allocate objects, which might cause performance
difficulties if used excessively. Furthermore, Unity does

20 ◾ Mastering Unity

not instantly halt async processes running on managed
threads when we quit Play Mode.

In both Edit and Play modes, Unity replaces the
default SynchronizationContext with a bespoke
UnitySynchronizationContext and executes all tasks on
the main thread. To use async tasks, we must manually
generate and manage our threads using a TaskFactory, and
we must use the default SynchronizationContext rather
than the Unity version.

To manually halt the jobs, use EditorApplication.
playModeStateChanged to listen for entry and exit play
mode events. However, because we are not utilizing the
UnitySynchronizationContext, most of the Unity scripting
APIs are unavailable.

Reloading Code in the Unity Editor
Domain information reloads and how they affect application
performance. It also includes information about running
code when the Editor is launched and how to rapidly enter
and exit Play mode using Configurable Enter Play Mode.

Serialization of Scripts
Serialization is the act of automatically converting data
structures or object states into a format that Unity can
store and rebuild later. This section includes information
on how to utilize serialization effectively in our Project.

Script Compilation
How and in what sequence Unity builds your programs.
This section also includes information on Assembly
Definitions and best practices for utilizing them.

Introduction to Unity ◾ 21

WHICH OF THE SEVEN UNITY
GAME DEVELOPMENT LANGUAGES
SHOULD WE LEARN?
It has never been easier to create games. Unity game devel-
opment platforms enable the creation of everything from
simple 2D platformers to highly sophisticated 3D first-per-
son shooters. Unity is available for free to small developers,
and there are several instructions on utilizing the editor to
prototype your ideas.

Learning how to utilize the Unity software can only take
you so far. The code that dictates the behavior of your game
will be the true heart of it. Choosing a language to learn
for game production might be difficult, but Unity’s case is
straightforward.

C# Is the Best Option

C# is the best language to learn for Unity for anyone new to
the platform or has prior experience with object-oriented
programming. In fact, for a good reason, C# is the only
language worth knowing for the platform.

Mono, a cross-platform adaptation of Microsoft’s .NET
framework, is used by Unity. C# is the core programming
language of .NET, and all of Unity’s libraries are written in
C#. It would not be an exaggeration to state that C# is the lan-
guage of Unity. Unity has said unequivocally that C# would
be the only language supported by the engine in the future.

This is excellent news because C# is a robust language
that is also simple to learn. Unity is only one of many com-
pelling reasons to learn C#, and as a novice, we may even
find it more approachable. Creating games offers a learning
structure, and project-based goals lead to a better compre-
hension of new subjects.

22 ◾ Mastering Unity

Unity is pushing the boundaries of what C# can achieve
by introducing the C# job system and ECS, and the new
Burst compiler makes it quicker than ever before.

JavaScript Is the Current Alternative

UnityScript, which is based on JavaScript, is also sup-
ported. Since its first release, JavaScript has coexisted with
C# as a fully complete Unity programming language. The
Unity scripting documentation included sample code in
C# and JavaScript for most of the library’s parts.

This was handy for developers from a JavaScript back-
ground since they could utilize similar syntax, although varia-
tions in the code were organized. There was, however, an issue.

While UnityScript appears to be similar to JavaScript,
it is not. UnityScript has classes, whereas JavaScript does
not. UnityScript lacks JavaScript features such as multiple
variable declaration and optional semi-colons.

Perhaps most importantly, looking for JavaScript exper-
tise on Unity projects has been difficult since most people
referred to it as JavaScript rather than UnityScript. The site
design and game development results were muddled, and
the distinction between the languages was a source of dis-
pute among pure JavaScript developers.

Unsurprisingly, Unity stated that it would discontinue
support for UnityScript, and a timeframe for its decom-
missioning has been established.

The Traditional Third Option: Boo

Boo, a Python-like language, was available in the early days
of Unity. This is somewhat unexpected given that Boo’s
designer, Rodrigo B. De Oliveira, formerly worked with

Introduction to Unity ◾ 23

Unity. The language is .NET and Mono compatible, and
it would be completely integrated with the game engine.
Where did things go wrong?

Few people used it, most likely because they assumed it
was only an attempt to emulate Python. Unity eliminated
support for Boo over time, and upcoming UnityScript
updates will render all previous Boo scripts obsolete in
Unity. Some may consider this a squandered opportunity,
as Boo was a fantastic attempt at Python-like syntax for
.NET programming.

IronPython Is an Unusual Choice

Python is generally not the language for us if we want to
create games, although it is doable. Charlie Calvert explains
how to run Python from C# in his Microsoft Developer
Community blog, but it’s not for the faint of heart.
IronPython is still in active development over ten years later.

To summarize, we must get the IronPython libraries
from GitHub and include them in your C# project. This
allows us to call Python scripts from C# scripts as we
would any other library.

IronPython also allows Python to call .NET libraries.
As handy as this seems, because Unity is based on C#, it is
ineffective.

IronPython and its sister project, IronRuby, which con-
nects C# with the Ruby programming language, are beau-
tiful projects, but they aren’t feasible for usage with Unity.

Lua Is an Intriguing Option

MoonSharp—a Lua interpreter—is one of the most accept-
able implementations of an external language for Unity.

24 ◾ Mastering Unity

This project is not intended to replace C# as a program-
ming language but rather serve as a bridge. The ideal use
case for MoonSharp would be to provide a means for our
game’s users to develop game modifications in the Lua pro-
gramming language.

We might also use it to individually define items and
design levels from our primary game code.

MoonSharp is worth considering if we are already
working in C# and seeking an exciting method to connect
with our code. You may import it straight into our projects
because it is accessible on Unity’s Asset store.

C/C++ Is the Best Language for Plugins

Despite the rich Unity library and all of the tools provided
by C#, we may wish to create our plugins from time to time.
The primary reasons people choose plugins are speed and
access to a codebase written in another language. Building
these scripts into dynamic-link library (DLL) plugins saves
time and, in certain circumstances, improves speed.

C++ will be used to create plugins in most situations,
although C would work just as well. The code may be stored
in Unity’s plugin folder and referenced in code as long as
it builds into a DLL. However, if we are already familiar
with writing in C/C++, learning C# should be a reasonably
straightforward effort.

Rust Is a New Programming Language for Plugins

Rust is a language that has a lot of hype about it. Experienced
programmers adore it because it provides an enormous
degree of control while avoiding the problems of coding in
less secure languages such as C++. Mozilla designed rust

Introduction to Unity ◾ 25

in 2009 as a tool for developers to construct high-perfor-
mance applications swiftly.

While it is not feasible to directly write Rust in Unity,
we may use Rust-written functions and methods from our
Unity code. In his Medium piece, Jim Fleming explains
how to accomplish it in detail. If this looks familiar, it’s
because it’s another method for creating Native Plugins. We
may use Unity’s DllImport feature to access Rust functions
straight from C# code by using Rust’s ability to interact
with other languages. Naturally, there are different stages
in between, and reading Jim’s follow-up piece and learning
about FFIs (foreign function interfaces) is recommended.

• A Simple Option: Unity’s stance toward any lan-
guage that isn’t C# is unmistakable, and the continu-
ous advancements to Unity rely on this unwavering
focus. When we combine this with Microsoft’s ongo-
ing enhancements to C# as a language, mastering C#
for Unity game production is a no-brainer. Also, for a
more straightforward approach to learning game cre-
ation, check out Unity Learn.

However, Unity is only one engine among many, and there
are several game production software alternatives to select
from.

Ten Benefits of the C# Programming
Language for Unity Developers

In programming, C# is one of the most accepted, struc-
tured, and popular programming languages. C# is widely
regarded as one of the most prominent and potent program-
ming languages. One of the compatible languages is C#. It
completes work quickly and runs smoothly. In this essay,

26 ◾ Mastering Unity

we will look at the benefits of C# over other programming
languages:

• Object-Oriented Language: Because C# is an object-
oriented language, you may construct modular,
maintainable programs and reusable code. This is
one of the most significant benefits of C# versus C++.

• Automatic Rubbish Collection: C# offers a highly
effective technique for erasing and removing all gar-
bage from the system. C# does not cause a mess in the
system and does not cause the system to hang during
execution.

• There Is No Problem if Memory Leaks: C# offers a
significant edge in memory backup. Memory leaks
and other similar issues would not exist in C#, as they
do in C++. In this scenario, C# outperforms all other
languages.

• Easy-to-Develop: The extensive class libraries make
it simple to develop numerous functionalities. C# has
influenced most of the world’s programmers and has
a long history in the programming world.

• Cross-Platform: Our program will only execute prop-
erly if the system has the NET framework installed.
This is the most critical C# prerequisite. This might
also be an excellent chance for novice programmers
to get their feet wet with the .NET framework.

• Better Integration: .NET applications will have bet-
ter integration and interoperability with other NET
technologies. C# is based on common language

Introduction to Unity ◾ 27

runtime (CLR), making it simple to interface with
components written in other languages (specifically,
CLR-compatible languages).

• More Understandable Coding: The idea of get-set
methods has been formalized, making the codes more
legible. We also don’t have to bother about header
files in C#. Coding in C# would be worthwhile.

• Scarcity of Options: In the Microsoft stack, there is
a tool for everything. So, we just match your needs
to the tool and use it. That is why we propose C# as a
beneficial language, especially for novices.

• Programming Support: In C# (.NET framework),
you may purchase support from Microsoft, as
opposed to Java, where the community is our sup-
port. So, if something goes wrong, we may contact
Microsoft for assistance.

• Backward Compatibility: .NET apps are only com-
patible with Windows systems, and Microsoft is dis-
continuing support for older Windows platforms. If
we upgrade to a new version of Windows, you will
always need to upgrade our .NET framework. This
might be both a benefit and a drawback. A desire to
continually improve motivates us to work hard and
flourish in our area. This, in my opinion, is a positive
thing.

https://taylorandfrancis.com

29DOI: 10.1201/9781003214755-2

C h a p t e r 2

Setting Up Unity

In this chapter, we will be starting with the setup of Unity
on our machines.

INSTALLATION AND CONFIGURATION
The fundamental need for creating content with Unity is to
download the Unity engine and development environment.
We may download extra modules for delivering to multiple
platforms, as well as tools for integrating Unity scripting
into Visual Studio, in addition to the main engine.

To get Unity, go to https://unity3d.com/get-unity/
download.

Once there, select: Choose your Unity + Download.

https://unity3d.com
https://unity3d.com
https://doi.org/10.1201/9781003214755-2

30 ◾ Mastering Unity

On the following screen, under Personal, click the Try
Now option. This is Unity’s free alternative, which includes
all of the key features. As we begin this course, it is prefera-
ble to understand how to utilize the engine before upgrad-
ing to Plus or Pro.

System Requirements for Unity Hub

Operating systems: Windows 7 SP1+, 8, 10, 64-bit only;
Mac OS X 10.12+; Ubuntu 16.04, 18.04, and CentOS 7.

GPU: A graphics card that supports DX10 (shader
model 4.0).

• Run the installation that we downloaded.

• Accept the license and terms, and then press the Next
button.

• Select the components we want to install with Unity
and then click “Next.” Please keep in mind that we
may always re-run the installation if we wish to mod-
ify the components.

• We can alter the location where Unity will be installed
or leave the default location and click “Next.”

• We may see additional questions before installation,
depending on the components we choose. Follow
the on-screen instructions and then click “Install.”
It may take some time to install Unity. Unity will be
installed on our computer after the installation is
complete.

Setting Up Unity ◾ 31

32 ◾ Mastering Unity

CREATING A UNITY ACCOUNT

• To use Unity, you must first create an account. Begin
by launching Unity, which may be done via the
Desktop or Start Menu shortcuts.

• If we already have a Unity account, sign in here and
skip the remainder of this instruction. If we do not
already have a Unity account, click the “create one”
button.

• To create a Unity account, fill out the blanks. Then,
select “Create a Unity ID.” Alternatively, we can join
up using our Google or Facebook account.

Setting Up Unity ◾ 33

• The email account we used to sign up for a Unity ID
will receive a confirmation email. To confirm our email
address, click the “Link to Confirm Email” button.

• After verifying our email, return to the Unity appli-
cation and select “Continue.”

• Click “Next” after selecting “Unity Personal.”

DEVELOPING YOUR FIRST PROJECT

• Unity works well for both two-dimensional (2D) and
three-dimensional (3D) games. From the Startup
Screen, all Unity games begin as Projects.

• Launch the newly installed Unity; existing projects
will appear in the hazy area.

• As illustrated above, the New icon is located in the
upper-right corner of the window. When we click the
button, we will be sent to the Project Setup screen.

• We may give our project a name, choose where it
will be saved, the type of project, and add existing
assets.

• For the time being, let’s call our first project “Hello
World!” and set it to 2D mode.

• Click Create Project to allow Unity to create your
project’s core files. This may take some time depend-
ing on our computer’s performance, pre-added assets,
and Project type.

• Once our new project has been created, and Unity has
been launched.

34 ◾ Mastering Unity

• Let’s take a quick look at what’s visible in this win-
dow. For the time being, we are focused on four pri-
mary areas:

• This is the window where we will create our
Scenes. Scenes are the stages in which our game
takes place. If we click on the tiny Game tab, we’ll
get a preview window that shows how the game
will seem to the player. For the time being, it
should have a plain blue backdrop.

• The Inspector lives in this location. For the time
being, it is empty because there are no items in
our scenario. We’ll see how the Inspector is used
in the future.

• The Scene Hierarchy is displayed in this win-
dow. It shows a list of all the objects in your cur-
rently active scene, along with their parent–child
hierarchy. We will be adding things to this list
shortly.

• Finally, the Project Assets window is located in
this section. All assets in our current project are
saved and preserved in this folder. Externally
imported assets, including textures, fonts, and
sound files, are saved here before being utilized
in a scene.

HOW DOES UNITY WORK?
All gaming in Unity takes place in scenes. Scenes are lev-
els in which all components of our game occur, including
gaming levels, the title screen, menus, and cut scenes.

Setting Up Unity ◾ 35

A new Scene in Unity will contain a Camera object
named the Main Camera by default. It is possible to add
numerous cameras to the scene, but we will deal with the
primary camera for the time being.

The primary camera depicts what it observes or “cap-
tures” in a space known as the viewport. Everything that
enters this zone is visible to the player.

By placing our mouse inside the scene view and scroll-
ing down to zoom out the scene view, we can see this view-
port as a gray rectangle. (We may also accomplish this by
holding Alt and dragging the Right-click button.)

A scene is composed of items known as GameObjects.
GameObjects can range from the player’s model to the
screen’s graphical user interface (GUI), from buttons
and adversaries to unseen “managers” such as sound
sources.

GameObjects are associated with a set of components
that explain how they behave in the scene and how they
relate to others in the scene.

We can look into it right now. Look at the Inspector
by clicking on the Main Camera in the Scene Hierarchy.
It will no longer be empty; instead, it will include several
“modules.”

The Transform component is the most critical compo-
nent of any GameObject. Any item in a scene will have a
transform that describes its position, rotation, and scale
about the game world or, if applicable, its parent.

By clicking Add Component and choosing the required
component, we may attach more elements to an object.
In the following tutorials, we will also connect Scripts to
GameObjects to give them programmed behavior.

36 ◾ Mastering Unity

Consider the following examples of components:

• Renderer: The person or program in charge of ren-
dering and making items visible.

• Collider: Specifies the physical collision bounds for
objects.

• Rigidbody: Provides an object with real-time physics
attributes like weight and gravity.

• Audio Source: Provides object characteristics for
playing and storing sound.

• Sounds Listener: This component “hears” audio and
sends it to the player’s speakers. One is present by
default in the primary camera.

• Animator: This allows an item to interact with the
animation system.

• Light: Causes the item to function as a light source
with a range of effects.

Setting Up Unity ◾ 37

In this diagram, we can see how Unity composes itself into
scenes using GameObjects.

CREATING SPRITES IN UNITY

• Sprites are basic 2D objects with graphical graphics
(called textures) on them.

• When the engine is in 2D mode, sprites are used by
default. Because sprites have no Z-width, they seem
paper-thin when seen in 3D space. Unless turned in
3D space, sprites always face the camera at a perpen-
dicular angle.

• When Unity creates a new sprite, it employs the utili-
zation of a texture.

• This texture is then transferred to a new GameObject,
subsequently attached to a Sprite Renderer compo-
nent. This renders our gameObject apparent with our
texture and gives it properties that control how it dis-
plays on screen.

• To make a sprite in Unity, we must first provide a tex-
ture to the engine.

• Let’s start by making our texture. Select a typical
image file, such as a PNG or JPG, save it, and drag the
picture into Unity’s Assets section.

• Drag the picture from the Assets folder into the Scene
Hierarchy. We’ll see that as soon as we let go of the
mouse button, a new GameObject with the name of
our texture appears in the list.

38 ◾ Mastering Unity

• While creating a sprite, keep the following points in
mind:

• We are adding an Asset to Unity by dragging it
from an external source.

• Because this Asset is an image, it gets converted
to a texture.

• By sliding this texture into the scene hierarchy, we
create a new GameObject and a Sprite Renderer
to the same name as our texture.

• This sprite renderer draws the picture in the game
using that texture. In our scenario, we’ve now
included a sprite.

CHANGING SPRITES IN UNITY
The sprite we just imported may also be altered in a variety
of ways to modify its appearance.

A toolbar may be seen in the upper left corner of the
engine’s interface.

Let us now go through the functionalities of buttons:

• The Hand tool is used to navigate about the scene
without interfering with any of the items.

• Then there’s the Move tool. This is used to move items
around in the game environment.

• We have the Rotate tool in the middle, which allows
us to rotate things together with the game world’s
Z-axis (or parent object).

Setting Up Unity ◾ 39

• The Scaling tool is positioned to the right. This tool
allows you to change the size (scale) of objects along
specific axes.

• Finally, there is the Rect tool. This tool functions sim-
ilarly to a combination of the Move and Scaling tools;
however, it is prone to losing precision. It is more ben-
eficial for organizing user interface (UI) components.

As the project’s complexity grows, these tools become
more valuable.

TRANSFORMS AND OBJECT
PARENTING IN UNITY
When we first started, we spoke about how the transforma-
tion of a gameObject is likely its most significant component.
In this chapter, we will go through the element in depth.

We will also be introduced to the notion of Object
Parenting.

Transforms have three discernible properties: position,
rotation, and scale. Each of them has three possible values
for each of the three axes. When it comes to placement,
2D games often do not emphasize the Z-axis. The Z-axis is
most commonly used in 2D games to create parallax.

The rotation attributes provide the amount of rotation
(in degrees) an object has about that axis about the game
environment or the parent object.

When relative to its original or native size, an object’s
scale determines how huge it is.

As an example, consider a square with dimensions of
2 × 2. If we scale this square by 3 against the X-axis and 2
against the Y-axis, we get a 6 × 4 square.

40 ◾ Mastering Unity

WHAT EXACTLY IS OBJECT PARENTING?
Objects in Unity follow a hierarchical architecture.
GameObjects can become “parents” of other GameObjects
using this mechanism.

When a GameObject has a parent, all transform modi-
fications are performed about another GameObject rather
than the game world.

For instance, an object with no parent placed at (10,
0, and 0) will be 10 units distant from the game globe’s
centre.

Nevertheless, a gameObject with a parent at (10, 0, 0)
will consider the parent’s current location to be the
center.

It is as basic as dragging and dropping GameObjects
onto the designated parent to parent them. A “child” item
is represented in the object list by a small indentation and
an arrow next to the parent object.

Parenting GameObjects have a variety of applications.
For example, all of the numerous tank sections may be par-
ented under a single GameObject named “tank.”

As a result, when this “tank” parent GameObject moves,
the entire pieces move with it since their location is con-
tinually updated according to their parent.

UNITY INTERNAL ASSETS
In addition to importing external assets from other appli-
cations such as audio files, photos, 3D models, and so on,
Unity allows you to create internal assets. These assets are
developed within Unity and do not require an additional
application to create.

Setting Up Unity ◾ 41

The following are some notable instances of internal
assets:

• Scenes: These serve as “levels.”

• Animations: These include information on the ani-
mations of a gameObject.

• Materials: These dictate how lighting influences an
object’s look.

• Scripts: This is the code that will be written for the
gameObjects.

• Prefabs: These serve as “blueprints” for GameObjects,
allowing them to be produced during runtime.

Placeholders, Sprites, and Models are also essential assets.
These are used when we require rapid placeholder graph-
ics and models to be updated later with actual graphics
and models.

Right-click in the Assets folder and select Create to cre-
ate an internal asset. We’ll make a Triangle and a Square
in this example. Scroll down to the Sprites section and pick
Triangle.

Repeat for Square and you should have two new graphic
assets.

SCENE SAVING AND LOADING IN UNITY
When we’ve completed a substantial amount of work, we’ll
want to save our progress. In Unity, using Ctrl + S will not
save our project.

Everything in Unity takes place in scenes. Saving and
loading are also required; we must save our current work
as a scene (.unity extension) in our assets.

42 ◾ Mastering Unity

Let us put it to the test. If we press Ctrl + S and name our
scene, we will see a new asset in our Assets area. The scene
file may be found here.

Let’s try to make a new scene now. To do so, go to the
Assets menu and select Create - > Scene. Give our new
scene a name and press the Enter key.

Scenes may be loaded into the editor by double-clicking
them in the Editor mode (while the game is not running).
When we load a scene with unsaved modifications on our cur-
rent one, we will be prompted to save or discard our changes.

OUR VERY FIRST SCRIPT
Importing photos and having them stay motionless in our
game will not get us very far. It could make a great picture
frame, but it’s not a game.

Scripting is required for creating games in Unity.
Scripting is the process of authoring blocks of code that
are attached to GameObjects in the scene like components.
Scripting is among the most effective tools at our disposal,
with the ability to make or break a good game.

Scripting in Unity is done using either C# or Unity’s
JavaScript implementation, known as UnityScript
(although, with the 2018 cycle, UnityScript is currently
entering its deprecation phase; therefore, it is not recom-
mended to utilize it). We’ll be using C# for the rest of this
series.

To make a new script, right-click in the Assets folder
and select Create -> C# Script. We may also use the Assets
tab in the engine’s top bar.

A new asset should appear when we create a new script.
For the time being, keep the name as it is, and double-click it.

Setting Up Unity ◾ 43

Along with running the script, our default integrated devel-
opment environment (IDE) should launch.

Let’s take a closer look at what it is:

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
public class NewBehaviourScript :
MonoBehaviour
{
// This should be used for startup
void Start()
{
}
// The update function is called once each
frame
void Update()
{
}
}

Our script name will appear as a class deriving from
MonoBehaviour. What exactly is MonoBehaviour? It is an
extensive collection of classes and methods. It aids in the
development of all scripts in Unity in one way or another.
The more programs that create in Unity, the more we’ll dis-
cover how helpful MonoBehaviour is.

As we continue, we have two private scripts with no
return types, notably the Start and Update procedures.
The Start function is called once for the first frame that the
gameObject on which it is called is active in the scene.

Following the Start function, the Update method exe-
cutes each frame of the game. Usually, Unity games run at

44 ◾ Mastering Unity

60 FPS (frames per second), which means the Update func-
tion is called 60 times every second while the item is active.

You may use Unity scripting to access the full
MonoBehaviour class, as well as key C# functionality like
generic collections, lambda expressions, and XML parsing,
to mention a few.

BASIC MOVEMENT SCRIPTING IN UNITY
Based on the user’s input, we will develop code that causes a
gameObject to move up, down, left, and right. It should make
it easier for us to understand the Unity scripting workflow.

Keep in mind that each GameObject has at least one
component—Transform. What’s unique about a gameObject’s
Transform is that it appears as a variable on Unity’s script-
ing side, allowing us to manipulate it using code. This is
not limited to the Transform; all components in Unity have
attributes that may be accessed via variables in scripting.

Let’s begin with the movement script. Make a new script
and call it “Movement.”

Now, launch the script, and you should see the same
information as in the previous lesson.

Let’s make a speed public float variable. Creating a vari-
able public in Unity has several benefits:

The variable appears as an editable field within the
editor, eliminating the need to modify the values
in code manually.

public class Movement: MonoBehaviour
{
public float speed;
}

Setting Up Unity ◾ 45

This script should compile in Unity if we save it without
touching the other functions.

Then, from the Assets, drag and drop the script onto
the GameObject. If we do it right, we should see the
GameObject’s properties.

We may use the update() function instead of start()
since the speed value is configurable and does not need to
be modified in code all the time ().

Consider the following goals for the Update method:

• Examine for user-input.

• Read the input directions if there is any.

• Change the transform of the item’s position values
based on its speed and direction. We will use the fol-
lowing code:

void Update()
{
float hi = Input.
GetAxisRaw("Horizontal");
float vi = Input.GetAxisRaw("Vertical");
gameObject.transform.position = new
Vector2 (transform.position.a + (hi *
speed), transform.position.b + (vi *
speed));

Let us now quickly go through the code.
First, we create a floating-point variable called hi (for

horizontal), whose value is determined by the Input.
The GetAxisRaw method. Depending on the player’s

key hit on the up/down/left/right arrows, this function
returns −1, 0, or 1.

46 ◾ Mastering Unity

The Input class is in charge of receiving user input in
the form of key presses, mouse input, controller input, etc.
The GetAxisRaw technique is a little more challenging to
grasp, so we’ll return to it later.

The location of our gameObject is then updated to a
new point determined by constructing a new Vector2. The
Vector2 requires two arguments, which are the x and y val-
ues. We supply the total of the object’s current location and
speed for the x value, thereby adding some amount to its
position every frame the key is pushed.

Return to Unity and save this script. Unity will auto-
matically update all scripts after a successful build, so we
won’t have to reattach the script repeatedly.

After that, alter the value of the speed in the GameObject’s
attributes to 0.8. This is significant since a greater number
will lead the player to move too quickly.

Now, press the Play button to watch our first mini-game
in action.

Try moving around using the arrow keys. Simply hit
the Play button again to end the game. We can also change
the speed in real time, so we don’t have to stop and start the
machine all the time.

UNDERSTANDING COLLISIONS IN UNITY
Collisions in Unity are detached from the real Sprite, con-
nected as distinct components, and computed indepen-
dently. Let us now investigate the reason behind this.

Every GameObject in your game is a GameObject. Even
the individual tiles that comprise your level are GameObjects
in their own right.

Setting Up Unity ◾ 47

When we consider each component to be a GameObject,
we see that there may be thousands of GameObjects in a
scene, all interacting in some way.

If Unity introduced collisions to every single GameObject,
it would be impracticable for the engine to compute colli-
sions for every one of them.

We’ll go ahead and construct a rudimentary “wall”
against which our player character can collide. Create
another sprite and scale it up with the Rect tool to do this.
We’ll additionally tint it red using the Color property of
the Sprite Renderer component.

Now, in the Inspector, select Add Component and enter
“Box Collider 2D.” When you click the first component, a
new one should emerge.

A bright green line will appear around the circumfer-
ence of our GameObject. This is the point at which two
objects collide. It determines the primary form of collid-
able items.

Repeat the process with our moveable GameObject.
Of course, collisions in Unity aren’t only confined to

boxes. They can take many different shapes and sizes, and
they are not necessarily precise replicas of the object’s attri-
butes. They can also be polygonal in form.

It is relatively uncommon for developers and designers
to employ approximate forms in collision borders to sim-
plify colliders and eliminate extra engine computations.
We’ll soon learn how to use our colliders to make different
shapes and sizes.

Now that we’ve established our collision limits, press
play to see how it works. Our mobile item is not acting nor-
mally, as we will discover.

48 ◾ Mastering Unity

RIGIDBODIES AND PHYSICS IN UNITY
We will now change the values of the GameObject’s posi-
tion directly. We just add a value to the position when the
player presses a key. We need a method to have the player
move so that it responds appropriately to borders and other
GameObjects.

To do so, we must first define rigidbodies. Rigidbodies
are GameObject components that allow them to respond
to real-time physics. This includes responses to forces and
gravity, as well as mass, drag, and velocity.

Simply click Add Component and type Rigidbody2D
into the search area to add a Rigidbody to your GameObject.

By selecting Rigidbody2D, we may link the component
to our GameObject. We’ll note that several more fields
have opened up now that it’s connected.

The GameObject will tumble vertically down owing to
gravity if the default parameters are used. Set the Gravity
Scale to 0 to avoid this.

Because the GameObject does not yet have anything to
do with its physics component, there will be no observable
difference when we play the game.

Let us reopen our code and rewrite it to address our
problem:

public class Movement: MonoBehaviour
{
public float speed;
public Rigidbody2D body;
// Update function is called once each
frame
void Update()
{

Setting Up Unity ◾ 49

float hi = Input.GetAxisRaw("Horizontal");
float vi = Input.GetAxisRaw("Vertical");
body.velocity = new Vector2(hi * speed, vi
* speed);
}
}

We can see that in the definitions, we reference a
Rigidbody2D, and our update method uses that reference
rather than the Object’s transform. This signifies that the
Rigidbody has now been assigned the task of moving.

Because we haven’t set anything to the body reference,
we may anticipate raising a NullReferenceException. If we
compile and run the game as is, we will get the following
error in the editor’s bottom left corner.

Let’s look at the component generated by the script to
see how we can remedy this. Remember that public proper-
ties in Unity produce their fields.

Play the game after increasing the pace to roughly 5.
Our collisions will now function properly.

CUSTOM COLLISION BOUNDARIES IN UNITY
Let’s begin with the Box Collider. The Box Collider (2D) is
a rectangle with four movable sides. Click on the box in the
Collider’s component.

The collider will display four “handles.” We may resize
these handles by dragging them around.

Unity determines the best feasible match for the col-
lider’s form for basic shapes, assuming we select the cor-
rect one. Choosing the circle collider on a circle sprite, for
example, will match it to its radius.

50 ◾ Mastering Unity

Unity will strive to construct the simplest yet most
sophisticated collision form for increasingly complex
shapes. We must use the Polygon Collider 2D for this.

Try clicking the Edit Collider button and experimenting
with the colliders.

UNDERSTANDING PREFABS AND
INSTANTIATION IN UNITY
During gaming, it is critical to be able to instantiate and
delete objects. Instantiating simply implies bringing some-
thing into being. Items “spawn” in the game, adversaries
die, GUI components disappear, and sceneries are loaded
in game at all times. Knowing how to effectively get rid of
unnecessary stuff and bring in those we do becomes even
more important.

Let us first define prefabrication. Prefabs are thought to be
essential for understanding how Instantiation works in Unity.

Prefabs are blueprints for GameObjects. Prefabs are, in
some ways, a duplicate of a GameObject that may be formed
and placed in a scene even if the GameObject did not exist
at the time the scene was built; in other words, prefabs can
be used to dynamically construct GameObjects.

Drag the relevant GameObject from our scene hierarchy
into the project Assets to create a prefab. Now, in our script,
we call the Instantiate() function to make a GameObject.
This MonoBehaviour method accepts a GameObject as
a parameter to determine which GameObject to create/
duplicate. It also provides several overrides for modifying
the transform of the freshly made object and parenting.

Let’s see if we can make a new hexagon anytime we press
the Space key. Make a new script called Instantiator and

Setting Up Unity ◾ 51

launch it. Enter the following code in the Update method.
In this case, we’re utilizing the Input class’s GetKeyDown
function to see if the player pushed a particular button dur-
ing the previous frame. Because we want it to keep checking,
we put it under Update, which runs 60 times per second.
If the key supplied by the KeyCode enum (which specifies
all possible keys on a conventional keyboard) is pressed in
that frame, the GetKeyDown function returns true.

public class Instantiator: MonoBehaviour
{
public GameObject Hexagon1;
// The update function is called once each
frame
void Update ()
{
if (Input.GetKeyDown(KeyCode.Space))
{
Instantiate(Hexagon1);
}
}
}

The public GameObject declaration at the top generates a
slot identical to our earlier courses for the Rigidbody2D.
This slot, however, only takes prefabs (in editor time) and
gameObjects (at runtime).

Save the script and wait for it to compile. After that, go
to our object hierarchy’s right-click menu and pick Create
Empty to create a new, empty GameObject.

Give this Object a memorable name, such as Instatiator
Object, connect our freshly constructed script to it. Drag
the prefab we made into the slot that appears for the
GameObject.

52 ◾ Mastering Unity

When we run the game now, hitting the Spacebar will
generate a new Hexagon object similar to the one we used
to construct the prefab. In the object hierarchy, we can
watch each hexagon being generated. We can’t see them in
the game because they’re all being made one after the other
at the moment.

DESTRUCTION OF GAMEOBJECTS IN UNITY
It is just as crucial to destroy GameObjects as it is to create
them. This session will teach us how to destroy GameObjects.

Thankfully, destroying GameObjects is as simple as cre-
ating them. All you need is a reference to the object to be
destroyed and then call the Destroy() function with that
reference as an argument.

Let us now attempt to create five hexagons that will self-
destruct when a specific key is pushed.

Open Visual Studio and create a new script named
HexagonDestroyer. To get started, we’ll make a public
KeyCode variable. A KeyCode is used to indicate a key on
a standard keyboard, and it is utilized by the Input class in
its methods. We can make this variable accessible through
the editor by making it public like we did with Rigidbody
and Prefabs earlier. When making the variable public,
we don’t need to hardcode values like “KeyCode.A” into
the code. We can make the code as versatile as we like by
including as many objects as we desire.

public class HexagonDestroyer: MonoBehaviour
{
public KeyCode keyToDestroy;
// The update function is called once each
frame

Setting Up Unity ◾ 53

void Update ()
{
if (Input.GetKeyDown(keyToDestroy))
{
Destroy (gameObject);
}
}
}

Take a look at how we utilized the variable “gameObject”
(small g, capital O) in the procedure.

This new gameObject variable (of type GameObject)
refers to the gameObject this script is associated with. If we
connect this script to many objects, they will all react the
same way whenever this variable is present.

However, don’t get them mixed up.

• The class GameObject with a capital G and O cov-
ers all GameObjects and offers basic methods such as
Instantiate, Destroy, and ways to obtain components.

• The particular instance of a GameObject, marked by
a small g and a capital O, refers to the gameObject
with which this script is now attached.

Let’s now build our code and return to Unity.
We’ll now make a new hexagon sprite and link our script

to it. Then, in the hierarchy, right-click the gameObject and
select Duplicate. In the hierarchy, a new sprite is produced;
use the Move tool to reposition it. Repeat the procedures to
make more hexagons.

Examine the script components of each hexagon by
clicking on it. We may now program a GameObject to

54 ◾ Mastering Unity

destroy itself when a particular key is hit. For example, let’s
make five hexagons and program them to explode when
the A, S, D, F, and G keys are pushed.

We may set the same key on numerous hexagons, and
they will all destroy themselves at the same time when the
key is hit; this is an example of the gameObject reference,
which we can use to refer to particular objects using the
script without having to set them separately.

The same key may be put on numerous hexagons, and
they will all destroy themselves at the same time when
the key is pushed; this is an example of how to utilize the
gameObject reference, which we can use to refer to par-
ticular objects in the script without having to set them
separately.

It is critical to realize that destroying a GameObject
does not result in the object shattering or exploding. In
terms of the game (and its programming), destroying an
item simply (and instantly) ends its existence. The links
to this object and its references are just no longer work-
ing, and trying to either access or use will usually result in
errors and crashes.

COROUTINES IN UNITY
When creating games with Unity, the most valuable tools
are coroutines. Consider the following piece of code to
grasp better what coroutines are all about.

IEnumerator MyCoroutineMethod()
{
// code
yield return null;
}

Setting Up Unity ◾ 55

In general, when we call a function in Unity (or C#, for that
matter), the function will execute from beginning to end. In
terms of your code, this is what you would consider “typi-
cal” behavior. However, there are occasions when we wish to
purposefully slow down a function or make it wait for a more
extended period than the split-second length that it runs for.
A coroutine can do just that: a coroutine is a function that
can wait and time its activity and pause it completely.

Look at some examples of how a coroutine works.
Assume we want to create a square that alternates between
red and blue at one-second intervals.

To begin, we’ll make a sprite. Then, create a new script
and call it ColorChanger.

We receive a reference to the Sprite Renderer of the
sprite in this script. However, we shall obtain the compo-
nent differently. Instead of drag and drop the component
into a slot, we will ask the script to detect the element itself.

This is accomplished using the GetComponent func-
tion, which returns the first matching component found.
We can use this function to automatically identify and
obtain a reference to our renderer because we only utilize
one Sprite Renderer per object.

Remember that the renderer is in charge of making the
sprite visible on screen.

The renderer contains a color property that affects the
sprite’s global color; this value must be changed. Making
the Color values public allows us to select them using the
editor in our operating system’s default color picker.

private SpriteRenderer srr;
public Color color1;
public Color color2;

56 ◾ Mastering Unity

void Start ()
{
srr = GetComponent<SpriteRenderer>();
StartCoroutine(ChangeColor());
}
IEnumerator ChangeColor()
{
while (true)
{
if (srr.color == color1)
sr.color = color2;
else
srr.color = color1;
yield return new WaitForSeconds(3);
}
}

Now we’ll use a while loop to catch our coroutine function.
In C#, we simply construct a method that returns an

IEnumerator to establish a coroutine. A yield return state-
ment is also required. The yield return line is unique in
that it informs Unity to pause the script and resume on the
next frame.

There are several methods for yielding a return, one of
which is to create an instance of the WaitForSeconds class.
This causes the coroutine to pause for a certain number of
real-world seconds before continuing.

Let’s build our code and return to Unity. Select our alter-
nating colors and press the play button. Our object should
now alternate between the two colors at three-second

Setting Up Unity ◾ 57

intervals. We can also make the interval a public variable
and vary the frequency of the color changes.

Coroutines are commonly used for timed procedures
like the one we just accomplished. Each of the WaitForX
methods has its own set of applications. Coroutines can
also be used to execute “on the side” programs that run
independently while the game is running. This is handy for
loading off-screen elements of a vast level while the player
starts at a specific location, for example.

THE CONSOLE IN UNITY
The Developer outputs will be read in the Console. These
outputs can be used to quickly test bits of code that do not
require further testing functionality.

In the default console, there are three categories of mes-
sages. Most compiler standards can be associated with
these messages:

• Errors: Errors are problems or exceptions that pro-
hibit the code from operating.

• Warning Signals: Warnings are defects that will
not prevent your code from executing but may cause
problems during execution.

• Messages: Messages are outputs that communi-
cate information to the user; they seldom reveal
concerns.

We may even instruct the Console to display our messages,
cautions, and failures. We will make use of the Debug class.

58 ◾ Mastering Unity

The Debug class is a component of MonoBehaviour that
provides methods for writing messages to the Console,
much to how we would produce typical output messages in
our beginning applications.

The Console may be found on the tab above the Assets
region. The console’s outputs are more valuable to the pro-
grammer than to the end user or player.

Let’s send an important message to the Console. This
will alert us if the Space key is pressed. We’ll use the Log
method for this, which accepts an Object as an argument,
which we’ll fill with a string.

We may start from scratch or edit an existing script.

void Update()
{
if (Input.GetKeyDown(KeyCode.Space))
Debug.Log("Space-key pressed!");
}

After we’ve saved, compiled, and ran this code (by con-
necting it to a GameObject, of course), try hitting the
spacebar. Our message will be written out if we click on
the Console tab.

Similarly, the LogWarning and LogError methods can
be used to produce cautions and errors, respectively. These
will be handy for testing tiny pieces of code without having
to implement them.

INTRODUCTION TO AUDIO IN UNITY
There is a reason why audio is so important in games; it is
essential for adding esthetic value to the game. From the
first Pong, one can hear beeps and boops when the ball

Setting Up Unity ◾ 59

alternately hits the paddles. At the time, it was a very rudi-
mentary short square wave sample, but what more could
you ask from the grandfather of all video games?

Many factors influence how we hear sound in real life,
including the speed of the item, the sort of context it is in,
and the direction it is coming from. A variety of variables
might place an undue strain on our engine. Instead, we
attempt to imagine how our sound might operate in our
game and then design around that.

This is especially noticeable in 3D games because there
are three axes to contend with.

We have specialized audio perception and playback com-
ponents in Unity. These elements work together to produce
an effective sound system that feels natural in the game.

Unity offers a plethora of essential tools and effects, such
as reverb, the Doppler effect, real-time mixing and effects,
and so on.

Components of Audio

We will learn about the three essential audio components
in Unity.

• AudioSource: The AudioSource component is the
main component attached to a GameObject for it to
play sound. It will playback an AudioClip when acti-
vated by the mixer, code, or when it awakens by default.

An AudioClip is nothing more than a sound file
that has been inserted into an AudioSource. It can
be any standard audio file format, such as.mp3,.wav,
or others. An AudioClip is also a component in and
of itself.

60 ◾ Mastering Unity

• AudioListener: An AudioListener is a component that
listens to all audio in the scene and sends it to the com-
puter’s speakers. It serves as the game’s ears. All audio we
hear is from the perspective of this AudioListener. For
a scenario to operate correctly, just one AudioListener
should be present. The Listener is tied to the primary
camera by default. The Listener has no exposed attri-
butes that the designer would be interested in.

• Audio Filters: Audio Filters can be used to modify
the output of an AudioSource or the intake of an
AudioListener. These are individual components that
may alter the reverb, chorus, filtering, and so forth.
Each filter comes as its component with accessible
settings for fine-tuning how it sounds.

Making a Noise

Let’s attempt to build a button that emits a sound when
pressed. To begin, we will create a Circle sprite and color
it red.

Let us now add an Audio Source to this sprite. We must
provide a sound for the item for it to play one. Let’s put this
sound effect to good use:

https://orangefreesounds.com/ding-sfx/.
Drag the sound effect into the Assets folder.
When Unity imports this asset as a sound file, it con-

verts it to an AudioClip automatically. As a result, we may
drag this sound clip directly from the Assets to the Audio
Clip slot in our sprite’s Audio Source.

Remember to deselect “Play on Awake” in the Audio
Source attributes after dragging the sound clip from the
Assets straight onto the Audio Clip slot in our sprite’s

https://orangefreesounds.com

Setting Up Unity ◾ 61

Audio Source; otherwise, the sound will play the instant
the game begins.

Let’s get started with our coding. Make a new script
called “BellSound” and launch it.

Because our Audio Source is controlled by code, we
must first obtain a reference to it.

We’ll utilize the GetComponent function again.

public class BellSound: MonoBehaviour
{
AudioSource mySource;
// for initialization Use this
void Start ()
{
mySource = GetComponent<AudioSource>();
}

Let us now put up the technique for detecting the object that
has been clicked. MonoBehaviour provides us with the method
we require, OnMouseDown. When the mouse is within the
range of a collider of that gameObject, the function is invoked.

Let us connect a collider to our button now because we
haven’t done so yet.

We won’t require a Rigidbody for this one nor will we
need to access it via code. It only needs to be present for the
procedure to operate.

Let us put the approach to the test and see whether it works.
Add the following code to our script and link it to the button.

void OnMouseDown()
{
Debug.Log("Click");
}

62 ◾ Mastering Unity

Play the game after saving and attaching the script. When
we click the button, a message should appear in the Console.

We are now one step closer to hearing the sound. All
that remains is to invoke the Play method on the Audio
Source object.

void OnMouseDown()
{
mySource.Play();
}

Save your script and execute it in the game. When we press
the button, we should hear the sound play.

STARTING WITH THE UI IN UNITY
This session will teach about the design process for UI
components in Unity. This provides the basic setup as well
as an overview of the common Unity parts.

The approach for designing UI in Unity differs some-
what from the one we’ve been following thus far. To begin
with, UI components are not normal GameObjects and
hence cannot be utilized as such. UI elements are created
differently; for example, a menu button that looks correct
in a 4:3 resolution may appear stretched or deformed in a
16:9 screen if not correctly set up.

In Unity, UI components are not immediately put on the
scene. They are constantly added as children of a particular
GameObject known as the Canvas. The canvas serves as a
“drawing sheet” for the scene’s UI, where all UI compo-
nents are rendered. Without an existing Canvas, creating
a UI element from the Create context menu will produce
one for us.

Setting Up Unity ◾ 63

Let’s have a look at the Canvas GameObject now to learn
about the new components:

The Rect Transform at the top looks to contain a slew
of additional features that a conventional GameObject’s
Transform lacks.

Whereas the Transform of a standard GameObject rep-
resents an imaginary point in 3D space, the RectTransform
specifies an imaginary rectangle. This implies we’ll need
more attributes to determine where the rectangle is, how
wide it is, and how it’s orientated.

We can see several conventional rectangle attributes like
Height and Width and two new Anchor properties.

Anchors are spots on the Canvas that other things can
“lock” onto. This implies that if a UI element (say, a button) is
attached to the Canvas on the right, resizing the Canvas will
keep the Button on the relative right of the Canvas at all times.

By default, we will not be able to change the shape of the
canvas area, which will be a colossal rectangle around our
scene.

The Canvas Component comes next. This is the master
component, which has a few global parameters for how the
UI is rendered.

The Render Mode is the first choice we encounter. This
property specifies the mechanism for drawing the Canvas
onto the game’s display.

In the dropdown menu, we have three possibilities. Let
us learn about the possibilities in the parts that follow.

• Overlay for Screen Space: This is the most common
mode for menus, HUDs, and so on. It renders the
UI on top of everything else in the scene, exactly as

64 ◾ Mastering Unity

it is laid out and without exception. It also adjusts
the UI elegantly as the size of the screen or game
window changes. This is Canvas’s default Render
Mode.

• Camera Screen Space: The camera produces an
imagined projection plane a predetermined dis-
tance away from the camera and projects every-
thing UI onto it. This implies that the look of the
UI in the scene is highly influenced by the camera
settings, such as perspective, the field of view, and
so on.

• World Space: UI elements act in World Space mode
as if they were regular GameObjects put in the world.
Because they are similar to sprites, they are often
employed as part of the game world rather than for
the player, such as in-game monitors and displays.
Because of this, we may change the settings of the
Canvas RectTransform directly in this mode.

The Canvas Scaler is a set of settings that allows us to alter
the scale and look of UI components; it will enable us to
specify how UI elements resize themselves when the size of
the screen changes.

For example, UI components can be the same size inde-
pendent of and in proportion to the screen size, or they can
scale following a Reference Resolution.

The Graphics Raycaster is mainly responsible for ray-
casting (link to Unity Documentation for Raycasting) the
UI components and ensuring that user-initiated activities
like clicks and drags function properly.

Setting Up Unity ◾ 65

THE BUTTON OF UNITY
We’ll learn how to add UI components to our scene and
how to operate with them.

Let us begin with a Button. To add a button, right-click
anywhere in the Scene Hierarchy and select Create ->
UI -> Button. If we don’t already have a Canvas and an
EventSystem, Unity will build one for us and set the button
within the Canvas.

Remember that the size of the Canvas is independent of
the size of the camera in Overlay rendering mode, which is
the default mode. We may try it out by going to the Game
tab.

When we play the scenario, we’ll note that the but-
ton already has standard functionality, such as detecting
mouse hover and changing color when pressed.

To be helpful in the UI, a Button must have functional-
ity. Its attributes can be used to implement this capability.

Let’s make a new script called ButtonBehaviour:

public class ButtonBehaviour: MonoBehaviour
{
int a;
public void OnButtonPress()
{
a++;
Debug.Log("Button clicked " + a + "
times.");
}
}

We created a simple technique that records how many
times we pressed the button.

66 ◾ Mastering Unity

Let’s start with a blank GameObject and connect this
script to it. We do this because a button does nothing on
its own; it simply calls the function defined in its scripting.

Now, navigate to the Button’s properties and look for the
OnClick() property.

When we click the Plus icon on the bottom tab, a new
entry should appear in the list.

This item specifies which object the button click affects
and which function of that object’s script is invoked.
Because of the event mechanism utilized in the button
push, we can add more functions to the list to activate
them.

Navigate to the No Function dropdown menu and
choose our OnButtonPress method.

(Remember that we may call it whatever you wish;
OnButtonPress is just a predefined naming convention.) It
should be in the ButtonBehavior section.

If we play the game now, we may test the button, and the
console will tell us how many times you pressed it.

TEXT ELEMENT IN UNITY
Even if more powerful and efficient community-built ele-
ments overtake it, Unity’s inherent text UI is a beautiful
starting place for beginners to get started developing UI.

For our purposes, the default Text element is more than
adequate.

The fact that text is a unique UI element on its own is
primarily due to its dynamism. Printing the player’s cur-
rent score to the screen, for example, requires the numeric
value of the score to be converted to a string, often using
the .toString() function.

Setting Up Unity ◾ 67

To add a Text UI element, navigate to the Scene Hierarchy
and select Create -> UI -> Text.

In your Canvas area, a new Text element should appear.
When we look at its attributes, we can see that it has several
beneficial choices.

The Text box, on the other hand, is the most important.
We can put whatever we want the text box to say in that
field, but we’d want to go a step farther.

To alter the font of the text, first, import the font file
from your computer as an Asset into Unity. A typeface does
not need to be explicitly tied to anything in the scene and
maybe accessed straight from the Assets.

The Text element may also be accessible via scripting,
emphasizing the significance of dynamic UI.

using UnityEngine;
using UnityEngine.UI;
public class ButtonBehaviour: MonoBehaviour
{
int a;
public Text myText;
public void OnButtonPress()
{
a++;
myText.text = "Button clicked " + a + "
times.";
}
}

The first modification we made was to create a new
namespace reference. We include using UnityEngine.UI
line because this reference is utilized to deal with Unity’s
UI components.

68 ◾ Mastering Unity

Following that, we establish a public Text variable to
drag and drop our Text UI element.

Finally, we use myText.text to get at the text that this UI
element holds.

If we save our script, we will notice a new slot in our
ButtonManager for the Text UI element. Drag and drop
the gameObject containing the Text element into the slot,
then press the Play button.

THE SLIDER IN UNITY
We will learn about the last UI element. The Slider is fre-
quently used when a value must be set between a maxi-
mum and lowest value pair. One of the most typical
applications for this is to control audio volume or screen
brightness.

To make a slider, navigate to Create -> UI -> Slider. On
our scene, a new Slider element should appear.

If we go to the Slider’s properties, you’ll discover a slew
of customization possibilities.

Let’s see if we can build a volume slider out of this slider.
To do so, open the ButtonBehaviour script (rename the
ButtonManager GameObject as it is doing more than sim-
ply managing a button now) and include a reference to the
Slider. We’ll also tweak the code a little further.

public class ButtonBehaviour:
MonoBehaviour
{
int a;
public Text myText;
public Slider mySlider;

Setting Up Unity ◾ 69

void Update()
{
myText.text = "Current Volume: " +
mySlider.value;
 }
}

Understand how we’re utilizing the Update method to keep
the value of myText.text updated.

Check the “Whole Numbers” box in the slider settings
and set the maximum value to 100.

We will change the color of the text using its attributes
to make it more noticeable.

Let us repeat the process of dragging the Slider
GameObject onto the new slot and pressing play.

We are strongly advised to study and experiment with
the other UI controls to discover which ones operate in
which method.

MATERIALS AND SHADERS IN UNITY
In this section, we will study a bit of material and shaders.
We’ll start a new 3D project instead of our present 2D one
to make things more transparent. This will make it easier
for us to notice the numerous changes.

After we’ve created the new project, go to the Hierarchy,
right-click, and select 3D Object -> Cube. This will place
a new cube in the scene’s center. In the Scene View, we
may look around the cube by right-clicking and dragging
the mouse. We may also use the scroll wheel to zoom in
and out.

Now, click on the cube and examine its attributes.

70 ◾ Mastering Unity

The attribute at the bottom looks to have a Default mate-
rial and a Standard shader.

What Exactly Is a Material?

A Material in Unity (and many other elements of 3D mod-
eling) is a file that holds information on the lighting of an
item with that material. Take note of how a gray sphere
represents the material with some light streaming in from
the top.

Don’t be misled by the name; a Material has nothing
to do with mass, collisions, or physics in general. A mate-
rial defines how illumination affects an item made of that
material.

Let us attempt to make our substance. Right-click in the
Assets section, select Create -> Material, and call it “My
Material.”

These qualities are unlike anything we’ve seen before.
This is because they are shader-programmed attributes
rather than material-programmed properties.

The materials that your products are made of are what
make them visible in the first place. Even in 2D, we employ
a specific material that doesn’t require as much illumina-
tion. Of course, Unity produces and applies it to every-
thing, so we aren’t even aware of its presence.

What Exactly Is a Shader?

A shader is software that determines how every pixel on
the screen is rendered. Shaders are not written in C# or
any other object-oriented programming (OOPS) language.
They are written in GLSL, a C-like language that can send
direct instructions to the GPU for quick processing.

Setting Up Unity ◾ 71

THE PARTICLE SYSTEM IN UNITY
Particle Systems aid in the efficient generation of a large
number of particles with short lifetimes. These systems
have their rendering mechanism and can spawn particles
even when hundreds or thousands of objects.

In the Particle System, particles are an ambiguous phrase;
a particle is any particular texture, material instance, or
object formed by the particle system. These aren’t necessar-
ily dots floating around in space (though they could be!),
and they may be employed in various contexts.

A GameObject maintains a Particle System with the
Particle System component connected; particle systems
do not require any Assets to set up; however, various
materials may be necessary depending on the effect you
desire.

To make a particle system, use the Add Component
option to add the Particle System component, go to the
Hierarchy and select Create -> Effects -> Particle System.
This will create a new GameObject that includes the par-
ticle system.

When we examine the Particle System’s characteris-
tics, we will notice that it comprises several modules. Only
three modules are active by default: Emission, Shape, and
Renderer. Other modules can be accessed by clicking the
little circle next to their names.

We may see a little black arrow to the right of some num-
bers. This gives us more control over the values of indi-
vidual particles. For example, we may instruct the Particle
System to depict different sized, random particles like a
water hose by setting the Start Size to Random Between
Two Constants.

72 ◾ Mastering Unity

USING THE ASSET STORE IN UNITY
The Asset Store is one of Unity’s most potent assets in the
game engine industry; it contains a significant number of
assets, tools, scripts, and even complete prepackaged proj-
ects that we may download.

We must have a valid Unity ID to utilize the Asset Store.
If we don’t already have one, we can make one on the Unity
website.

After creating a Unity ID, go to the Asset Store tab,
which is in the same row as the Scene View.

When we log in, you should be able to see our username
in the upper right corner.

We’ll import the Survival Shooter Tutorial project in
this example. To do so, we’ll look for it in the tab and then
click on the asset released by Unity.

We’ll click Download and wait for it to finish. The
Download button will change to Import; click it again to
add our new Asset to the currently active project when it’s
done.

A new window will appear, showing the contents of the
newly imported Asset.

Depending on what we downloaded, this may be a sin-
gle file, a group of files, or an entire tree containing folder
and file hierarchies. When you press the Import button in
Unity, it will automatically import all asset components,
precisely what we want. Now, let’s let Unity do its thing by
clicking Import.

Attempting to download materials without paying for
them is against the law, and there is always the risk of
viruses, problems, or a lack of updates.

73DOI: 10.1201/9781003214755-3

C h a p t e r 3

Working with
Scenes and
GameObjects

Having installed Unity, we will be starting with scene
management in this chapter.

WHAT ARE SCENES?
In Unity, scenes are where you work with the material.
They are assets that contain the entirety or a portion of a
game or program. For example, a primary game may be
built in a single scene, but a more complicated game could
require one scene per level, each setting, characters, obsta-
cles, decorations, and user interface (UI). The number of
scenes that can be included in a project is unlimited.

https://doi.org/10.1201/9781003214755-3

74 ◾ Mastering Unity

When we launch a new project for the first time, Unity
displays an example scene with simply a Camera and a Light.

Scene Creation, Loading, and Saving

Let us start by scene creation and loading.

• Creating a Scene: There are various methods for
making a new scene:

• To create a new scene from a specified scene tem-
plate, use the New Scene dialog.

• Without accessing the New Scene dialog, use the
menu or the Project window to create new scenes
from your Project’s Basic scene template.

• Create a scene straight from a C# script using a
specified template.

Using the New Scene dialog to create a new scene: Use the
New Scene dialog to generate new scenes from specified
scene templates in our Project. The New Scene dialog may
also be used to identify and manage scene templates. See
The New Scene dialog for more information.

The New Scene dialog appears by default when we cre-
ate a new scene through the menu (File > New Scene) or by
using a keyboard shortcut (Ctrl/Cmd + n).

To make a new Scene, follow these steps:

• Choose a template from the drop-down menu.

• Enable Load Additively if we want Unity to load the
new scene additively.

• To make a new scene from the template, click Create.

Working with Scenes and GameObjects ◾ 75

If there are no cloneable dependencies in the template,
Unity loads the new scene in memory but does not
save it.

If the template contains cloneable dependencies, Unity
invites us to save it to a place in the Project. Unity pro-
duces a folder with the same name and location as the new
scene when we save the scene. The cloneable dependencies
are then copied into the new folder, and the new scene is
updated to use the cloned assets rather than the original
assets used by the template scene.

• Using the Menu to Create a New Scene: To create a
new scene without activating the New Scene dialog,
use the menu (Assets > Create > Scene).

When we select New Scene from the menu, Unity copies
the project’s Basic template and adds it all to the folder that
is now open in the application window.

• Using the Project Window to Create a New Scene:
Use the menu bar in the Project window to make a
new scene without opening the New Scene dialog.

Navigate to the folder in which we wish to save the new
scene.

Select Create > Scene from the context menu by right-
clicking the folder in the left-hand pane or an empty space
in the right-hand pane.

When creating a new scene from the menu, Unity repli-
cates the project’s Basic template and adds the new scene to
the folder we specify.

76 ◾ Mastering Unity

• Creating a New Scene from a C# Script: Use the
Instantiate function to generate a new scene from a
C# script that uses a specific scene template.

Tuple < Scene, SceneAsset >
SceneTemplate.
Instantiate(SceneTemplateAsset
sceneTemplate, bool loadAdditively,
string newSceneOutputPath = null);

The Instantiate function creates a new scene based on a
scene template. It returns the newly formed Scene handle
as well as the SceneAsset that corresponds to it. This sce-
nario may be created in an additive manner. If the scene
contains assets that must be cloned, we must specify a loca-
tion for Unity to save the scene to disc.

• New Scene Events: When we create a new scene
using a template, either through a script or by
using the New Scene dialog, Unity generates an
event. Unity triggers this event once the template
is instantiated and after the EditorSceneManager.
new SceneCreated and EditorSceneManager.scene-
Opened events.

public class SceneTemplate1
{
public delegate void NewTemplateInstan
tiated(SceneTemplateAsset
sceneTemplateAsset, Scene scene,
SceneAsset sceneAsset, bool
additiveLoad);

Working with Scenes and GameObjects ◾ 77

public static event
NewTemplateInstantiated
newSceneTemplateInstantiated;

}

• Scenes Are Being Loaded: Start a scene by doing one
of the following:

• Double-click the scene asset in the Project
window.

• Choose File > New Scene from the menu.

• Select File > Recent Scenes > [NAME-OF-SCENE]
from the menu.

If we have unsaved modifications in our current
scene, Unity will urge us to save the scene or delete
the changes.

• Opening Several Scenes at the Same Time: We can
edit numerous scenes at the same time.

• Saving Scenes: Choose File > Save Scene from the
menu, or press Ctrl + S (Windows) or Cmd + S (Mac)
to save the scene we’re now working on (macOS).

Multi-Scene Editing

This feature allows us to have numerous scenes open in the
editor simultaneously, making it easier to handle scenes at
runtime.

The option to access several scenes in the editor allows
us to construct massive streaming worlds and enhances
efficiency while working on scene editing together.

78 ◾ Mastering Unity

This session will go over:

• The Editor’s multi-scene editing integration.

• The application programming interface (APIs) for
Editor scripting and Runtime scripting.

• Current concerns that are known.

Select Open Scene Additive from the menu that displays
for a scene asset in the editor, or dragging one or even
more scenes from the Project window into the Hierarchy
Window to open new scene and add it to the most recent
list of scenes in Hierarchy.

When we have many scenes open in the editor, the
hierarchy pane displays the contents of each scene sep-
arately. The contents of each scene are shown behind a
scene divider bar that displays the scene’s name and saves
state.

Scenes can be loaded and unloaded while they are pres-
ent in the hierarchy to expose or conceal the gameobjects
stored inside each scene. This is not the same as adding or
deleting them from the hierarchy pane.

If we have many scenes loaded, the scene dividers can be
compressed in the hierarchy to the scene’s contents, which
may assist us in traversing our hierarchy.

When working on several scenes, each updated scene
must have its changes saved; therefore, numerous unsaved
scenes can be viewed simultaneously. In the scene divider
bar, scenes with unsaved changes will have an asterisk next
to the name.

Working with Scenes and GameObjects ◾ 79

The context menu in the divider bar allows us to save
each Scene independently. Saving changes to all open
scenes is as simple as selecting “Save Scene” from the file
menu or hitting Ctrl/Cmd + S.

The menu bar in the scene divider bars allows us to do
extra actions on the currently selected scene.

For loaded Scenes, the Scene divider menu appears:

• Set Active Scene: This allows us to choose the sce-
nario in which new Game Objects are created/instan-
tiated. One scene must always be designated as the
current scene.

• Save Scene: Only the modifications to the specified
scene are saved.

• Save Scene As: Saves the currently chosen scene
(along with any current changes) to a new Scene asset.

• Save All: Changes to all scenes are saved.

• Unload Scene: The scene is unloaded, yet it remains
in the Hierarchy window.

• Remove Scene: The scene is unloaded and removed
from the Hierarchy window.

• Select Scene Asset: In the Project window, select the
asset for the scene.

• GameObject: Provides a sub-menu for creating
GameObjects in the specified scene. The menu rep-
licates the items that may be created in Unity’s main
GameObject menu.

80 ◾ Mastering Unity

The Scene divider menu for unloaded Scenes is as follows:

• Load Scene: Loads the contents of the scene.

• Remove Scene: Take the scene out of the Hierarchy
window.

• Choose a Scene Asset: In the Project window, select
the asset for the scene.

Baking Lightmaps across Multiple Scenes
To bake Lightmap data for many scenes at once, open
the scenes you wish to bake, disable “Auto” mode in the
Lighting Window, and then click the Build button.

The lighting computations use static geometry and
lights from all scenes. As a result, shadows and GI light
bounces will operate in all scenarios. On the other hand,
the lightmaps and real-time GI data are divided into data
that is loaded and unloaded independently for each scene.
Lightmaps and real-time GI data atlases are divided into
scenes. This implies that lightmaps between scenes are
never exchanged and may be securely emptied when a
scene is unloaded.

At the moment, lightprobe data is always shared, and all
lightprobes for all scenes baked together are loaded at the
same time.

Alternatively, we may use the Lightmapping tool to
automate the creation of lightmaps for various situations.

In an editor script, use the BakeMultipleScenes method.

Baking Navmesh Data with a Variety of Scenes
To bake navmesh data for numerous scenes at once, open
each scene and click the Bake button in the Navigation

Working with Scenes and GameObjects ◾ 81

Window. The navmesh data will be integrated into a
single object that all loaded scenes will share. The data is
saved in the folder with the same name as the currently
active scene (for example, ActiveSceneName/NavMesh.
asset). This navmesh component will be shared by all
loaded scenes. Save the impacted scenes after baking the
navmesh to maintain the scene-to-navmesh reference
permanently.

Alternatively, we may use the NavMeshBuilder.
BuildNavMeshForMultipleScenes method in an editor
script to automate the creation of navmesh data for numer-
ous scenes.

Baking Data for Occlusion Culling with Several Scenes
To bake occlusion culling data for many scenes simultane-
ously, open the Scenes you wish to bake, open the Occlusion
Culling window (menu: Window > Rendering > Occlusion
Culling) and click the Bake button. The occlusion culling
data is saved as an asset named OcclusionCullingData.
asset in a folder named after the currently active scene.
Assets/ActiveSceneName/OcclusionCullingData.asset,
for example. In each open Scene, a reference to the data is
added. Save the Scenes impacted after baking the occlusion
culling data to make the Scene-to-occlusion-data reference
durable.

If a Scene is loaded additively and has the same occlu-
sion data reference as the current Scene, the occlusion data
is used to initialize the static renderers and portals culling
information for that Scene. Following that, the occlusion
culling mechanism behaves as if all static renderers and
portals had been baked into a single Scene.

82 ◾ Mastering Unity

Play Mode
In-Play mode, when there are several scenes in the
Hierarchy, an additional scene called DontDestroyOnLoad
will appear.

Prior to Unity 5.3, any objects constructed in Playmode
and marked as “DontDestroyOnLoad” would stay in the
hierarchy. These items are not considered part of any
scene, but they are now presented as part of the unique
DontDestroyOnLoad scene for Unity to display and for
you to study.

The DontDestroyOnLoad scene is not accessible to us,
and it is not available during runtime.

Scene-Specific Settings
Each scenario has its own set of settings. They are as
follows:

Navmesh configuration Scene settings in the
RenderSettings and LightmapSettings sections of the
Occlusion Culling Window (both located in the Lighting
Window)

Each scene manages its settings, and only the param-
eters connected with that scene are saved to the scene
file.

If we have several scenes open, the rendering and
navmesh settings from the active scene are utilized. This
implies that if we wish to modify the settings of a scene,
we must either open only one scene and do so or make the
scene in question the active scene and do so.

When we change the current scene in the editor or dur-
ing runtime, all of the settings from the new scene are
applied and replace all prior settings.

Working with Scenes and GameObjects ◾ 83

Scripting

• Scripting by an Editor: We provide a Scene struct,
an EditorSceneManager API, and a SceneSetup util-
ity class for editor scripting.

The Scene struct is accessible both in the editor and at run-
time, and it includes a few read-only values related to the
scene itself, such as its name and asset path.

The EditorSceneManager class can only be found in the
editor. It is derived from SceneManager and contains sev-
eral methods to use editor scripting to accomplish all of the
Multi Scene Editing functionality discussed above.

The SceneSetup class is a simple utility class that stores
information about the current scene in the hierarchy.

Multiple scenes are now supported by the Undo and
PrefabUtility classes. We may now use [PrefabUtility.
InstantiatePrefab] to instantiate a prefab in a specified
scene, and we can use (Undo.MoveGameObjectToScene)
[ScriptRef:Undo.MoveGameObjectToScene]] to move
objects to the root of a scene in an un-doable way.

• Runtime Scripting: The SceneManager class has
methods for working with numerous scenes at run-
times, such as LoadScene and UnloadScene.

• Remember: The Save Scene As option in the File
menu will only save the currently active scene. Save
Scene will save all updated scenes and offer us to
name the Untitled scene if one exists.

• Tricks and Tips: Holding Alt while dragging allows us
to add a scene to the hierarchy while keeping it empty.
This allows us to load the scenario later if necessary.

84 ◾ Mastering Unity

The Create option in the project window may be used
to create new scenes. The default configuration of Game
Objects will be used in new scenarios.

We may utilize EditorSceneManager to prevent setting
up our hierarchy every time we restart Unity or make it
easier to keep multiple settings.

Use GetSceneManagerSetup to retrieve a list of
SceneSetup objects that describe the current configura-
tion. We may then serialize these into a ScriptableObject
or something else, along with any additional information
about our scene setup that we wish to save.

To acquire the list of loaded scenes at runtime, use scene-
Count and loop through the scenes using GetSceneAt.

GameObject.scene returns the scene to which a
GameObject belongs, and (SceneManager.MoveGame-
ObjectToScene).) moves a GameObject to the root of a
scene.

It is best to avoid using DontDestroyOnLoad to persist
management GameObjects that we wish to keep between
scene loads. Instead, use SceneManager to construct a
manager scene with all of your managers. SceneManager
and LoadScene(path>, LoadSceneMode.Additive). To con-
trol our game progress, use UnloadScene.

Scene Templates

Unity replicates scene templates to generate new scenes.
Consider a scene template to be a pre-configured scene
with all of the stuff we wish to begin with. The Basic
template, for example, generally includes a Camera and
a light.

Working with Scenes and GameObjects ◾ 85

We can tailor the sorts of new scenes created in a project
by creating our scene templates. Create templates for every
level in a game for illustration, so everyone working on the
project may begin their scenes with the appropriate mate-
rials and settings.

A template may be made from any Unity scene. After
creating a template, we may use it to generate an unlimited
number of new scenarios.

Creating Scene Templates
We may make a new scene template in one of three ways:

• Begin with an empty template.

• Make a template out of a pre-existing scene asset.

• Make a template out of the current scenario.

After creating a template, we may modify its properties or
use it to build new scenarios.

Making a Blank Scene Template We may build blank
scene templates and then customize them afterward. An
empty template does not display in the New Scene dia-
log unless its attributes are edited to connect it with a
scene asset.

To make an empty scene template in the current project
folder, do the following:

• Select Assets > Create > Scene Template from the
menu.

86 ◾ Mastering Unity

To create an empty scene template in a specific project
folder, do the following:

Choose one of the following options:

• Right-click the folder in the Project window to open
the context menu.

• Right-click the asset pane to access the context menu,
then open the folder in the Project window.

• Choose to Create > Scene Template from the menu.

Making a Template from an Existing Asset in a Scene Any
current scene may be converted into a scene template. After
creating a template from an existing scene, we may wish to
update its attributes to designate which of its dependencies
Unity clones when creating a new scene from it.

To make a template from an existing scene asset, enter
the Project window and choose one of the following
options:

• To open the context menu, right-click a scene asset.
Then go to Scene Templates > Create Scene Template
From Scene.

• Select the scene asset, then choose Assets > Create >
Scene Template From Scene from the main menu.

Making a Template Out of the Current Scene Select File >
Save As Scene Template from the menu to generate a scene
template from the current scene.

If we have any unsaved modifications, Unity will prompt
us to save the scene before saving the template.

Working with Scenes and GameObjects ◾ 87

After creating a template from the current scene, we may
wish to update its attributes to designate its dependencies
on Unity clones when creating a new scene.

• Creating Scene Templates from C# Scripts: Scene
templates may be created from C# scripts.

Use the CreateSceneTemplate function to generate
an empty scene template.

SceneTemplate.CreateSceneTemplate(string
sceneTemplatePath)

Use the CreateTemplateFromScene function to con-
struct a template from an existing scene. Unity con-
nects the scene with the template and extracts the
scene’s dependencies automatically.

SceneTemplate.CreateTemplateFromScene(
SceneAsset sourceSceneAsset, string
sceneTemplatePath);

Modifying Scene Templates
To edit a scene template, open it in an Inspector window
after selecting it in the Project window.

The Inspector scene template has the following sections:

• Details: Specifies the scene the template will utilize
and the template description that will display in the
New Scene dialog.

• Thumbnail: This allows us to create a preview picture
for the template.

88 ◾ Mastering Unity

• Scene Template Pipeline: Defines an optional cus-
tom script that will be executed when Unity builds a
new scene from the template.

• Dependencies: They use the dependenciesdependen-
cies** element in their manifests to specify the col-
lection of packages they need. These are considered
direct dependencies for projects but indirect or tran-
sitive dependencies for packages.

Details The Details section defines which scene to use as
a template and how the template appears in the New Scene
dialog.

Property Description
Template scene Specify which scene will be used as a

template. This might be from any
scenario in the Project.

Title The name of the template. The name you
provide here will be shown in the New
Scene dialog.

Description The description of the template. The
explanation we put here will be shown in
the New Scene dialog.

Pin in New Scene dialog This setting determines whether or not
this template gets pinned in the New
Scene dialog.

Pinned templates are always displayed at
the top of the Scene Templates list in the
Project list.

Thumbnail The Thumbnail section has choices for pro-
ducing a template preview picture. In the New Scene dia-
log, the preview picture shows.

Working with Scenes and GameObjects ◾ 89

Property Description
Texture This property specifies a Texture asset to be

used as a thumbnail for this template. In the
Project, we may utilize any Texture asset.

If we don’t provide a Texture, the template
will utilize the asset icon from the default
scene template.

[Thumbnail Preview] If the template contains a thumbnail texture,
it will be shown.

Snapshot This template has options for capturing a
thumbnail picture.

View Specifies whether the Main Camera view or
the Game View should be captured.

Take Snapshot To save the selected View, click this button.

Pipeline for Scene Templates To add a Scene Template
Pipeline script to this template, use these settings.

A Scene Model When we build a new scene from a tem-
plate, the pipeline script allows us to run custom code. See
Customizing fresh scene creation for further information.

Dependencies This section includes all of the Dependencies
for the template scene. When we build a new scene using
the template, we may choose whether or not to clone each
dependency.

To clone or reference a dependency, turn the Clone
option on or off for each dependence in the list.

When we build a new scene from a template, Unity
examines the template scene to see if it contains cloneable
dependencies. If it does, Unity generates a folder with the
same name as the new scene and stores any copied depen-
dencies in it.

90 ◾ Mastering Unity

Customizing the Creation of New Scenes

Make a Scene Template Pipeline script and link it to the
template to execute custom code whenever Unity creates a
new scene from a template. Unity produces a new instance
of the pipeline script every time you build a new scene
from the template.

To link the script to a template, do the following:

• Edit the template’s properties by inspecting it.

• Set the Scene Template Pipeline attribute to our Scene
Template Pipeline script’s path.

We may also link the script to the template using C# using
the SceneTemplateAsset.templatePipeline function.

A Scene Template Pipeline script must be
based on the [ISceneTemplatePipeline] or
[SceneTemplatePipelineAdapter] interface. It should
implement the events we wish to react to, such as
BeforeTemplateInstantiation or AfterTemplateInstantiation
in the code below.

Example:

using UnityEditor.SceneTemplate;
using UnityEngine;
using UnityEngine.SceneManagement;
public class
DummySceneTemplatePipeline1 :
ISceneTemplatePipeline
{

Working with Scenes and GameObjects ◾ 91

 public void BeforeTemplateInstantiat
ion(SceneTemplateAsset sceneTemplateAsset,
bool isAdditive, string sceneName)
 {
 if (sceneTemplateAsset)
 {
 Debug.Log($"Before Template
Pipeline {sceneTemplateAsset.name}
isAdditive: {isAdditive} sceneName:
{sceneName}");
 }
 }

 public void AfterTemplateInstantiati
on(SceneTemplateAsset sceneTemplateAsset,
Scene scene, bool isAdditive, string
sceneName)
 {
 if (sceneTemplateAsset)
 {
 Debug.Log($"After Template
Pipeline {sceneTemplateAsset.name} scene:
{scene} isAdditive: {isAdditive}
sceneName: {sceneName}");
 }
 }
}

The Sequence of Scene Template Instantiation
Unity executes multiple file actions when you build a new
scene from a template with cloneable dependencies. The
majority of these actions generate Unity events, which you
can listen for and respond to in scripts.

92 ◾ Mastering Unity

The following is the instantiation sequence:

1. In the New Scene dialog, you select Create. Unity
refers to the following:

• The scene template is an asset.

• Scene Template: This is the Unity Scene that
corresponds to the template.

• A New scene: This is a new instance of the
Scene template.

Unity triggers the ISceneTemplatePipeline. The tem-
plate asset’s BeforeTemplateInstantiation event ties
the asset to an ISceneTemplatePipeline script that it
activates.

2. Unity triggers the SceneTemplate.

3. The event NewTemplateInstantiating.

4. Unity generates a new scene that is a duplicate of the
template scene.

5. Unity generates a folder named the same as the
new scene and transfers all cloneable dependencies
into it.

6. Unity loads the new scene into memory and sets off
the following events:

• EditorSceneManager.sceneOpening

• MonoBehavior.OnValidate

• EditorSceneManager.sceneOpened

Working with Scenes and GameObjects ◾ 93

7. Unity remaps all cloneable asset references, so the
new scene refers to the clones.

8. Unity saves the new scene and causes the following
actions to occur:

• EditorSceneManager.sceneSaving

• EditorSceneManager.sceneSaved

9. Unity triggers the ISceneTemplatePipeline.After-
TemplateInstantiation for the template asset and
binds the asset to an ISceneTemplatePipeline script
that it triggers.

10. Unity triggers the SceneTemplate.NewTemplate-
Instantiated event.

Settings for the Scene Template

Open the Project Options window (menu: Edit > Project
Settings) and choose Scene Template from the category list
to view the scene template Project settings.

New Scene Settings
The New Scene settings regulate what occurs when you
create a new scene from the File menu (File > New Scene)
or by using the Ctrl/Cmd + n keyboard shortcut.

Option: Description:
New Scene menu
New Scene dialog The New Scene dialog box is being shown.
Built-in Scene Without opening the New Scene dialog, this

command creates a new scene. The new scene is
a clone of the Basic template from the Project.

94 ◾ Mastering Unity

Types Settings by Default
The Default Types options determine whether Unity auto-
matically clones particular types of assets when creating a
new scene from a scene template.

Enable the Clone option for that asset type in the list to
have Unity clone it by default.

Disable the Clone option for that asset type in the list to
make Unity reference that asset type by default.

The Clone option for All Other Categories, whether
enabled or disabled, sets the default clone/reference behav-
ior for asset categories that do not appear in the list.

Click the Remove button to remove an asset type from
the list.

To add an asset type to the list, do one of the following:
In the Add-Type field, enter a specific asset type. Click the
Browse button to start a search window to seek and select a
particular asset type.

Then, to add the asset type to the list, click the Add
button.

Click the Reset Defaults button to return to Unity’s
default asset type list and settings.

WHAT ARE GAMEOBJECTS?
The Unity Editor’s most significant notion is the
GameObject.

Every object in your game, from people and collectibles
to lighting, cameras, and special effects, is a GameObject.
A GameObject, on the other hand, cannot do anything
on its own; it must be given characteristics before it can
become a character, an environment, or a special effect.

Working with Scenes and GameObjects ◾ 95

Unity’s primary objects are GameObjects, which rep-
resent characters, props, and scenery. They don’t perform
anything on their own, but they serve as containers for
Components, which implement the functionality.

Components are used to provide a GameObject with
the attributes it requires to become a light, a tree, or a
camera.

We may add different combinations of components to
a GameObject depending on the type of item we want to
construct.

Unity includes a plethora of built-in component types,
and we may even create our own using the Unity Scripting
API.

A Light object, for example, is generated by connecting
a Light component to a GameObject.

A solid cube object contains a Mesh Filter and Mesh
Renderer element to depict the cube’s surface and a Box
Collider component to express the solid volume of the
object in physics terms.

Specifications

A Transform component (which represents position and
orientation) is constantly associated with a GameObject
and cannot be removed. The additional components
that provide the object’s functionality can be added
using the editor’s Component menu or a script. There
are also numerous helpful pre-constructed objects
(basic shapes, Cameras, and so on) accessible under the
GameObject > 3D Object menu; see Primitive Objects
for more information.

96 ◾ Mastering Unity

Because GameObjects are such a vital element of
Unity, there are a plethora of content manuals that go
into great detail about them. More information on utiliz-
ing GameObjects in Unity may be found in the sections
below.

• Transforms.

• Introduction to components.

• Primitive and placeholder objects.

• Using Components.

• Deactivating GameObjects.

• Tags.

• Creating components with scripting.

• Static GameObjects.

• Saving your work.

Transforms

The Transform is used to hold the position, rotation, scale,
and parenting status of a GameObject and is thus highly
significant. A Transform component is always associated
with a GameObject; it is impossible to delete or construct a
GameObject without one.

The Component of Transform
Each item in the scene. Every GameObject has a Transform
that governs its Position, Rotation, and Scale.

Working with Scenes and GameObjects ◾ 97

Properties

Property: Function:
Position The Transform’s position in X, Y, and Z coordinates.
Rotation Rotation of the Transform in degrees around the X, Y,

and Z axes.
Scale The Transform’s scale along the X, Y, and Z axes. The

original size is represented by the value “1.” (The size at
which the object was imported).

A Transform’s position, rotation, and scale values are all
measured in relation to the Transform’s parent. If there is
no parent for the Transform, the attributes are measured
in world space.

Transform Editing
Transforms can be controlled in three-dimensional (3D)
space along the X, Y, and Z axes or two-dimensional (2D)
space along the X and Y axes. These axes are represented in
Unity by the colors red, green, and blue, respectively.

Transforms can be modified in the Scene View or by
changing their attributes in the Inspector. Transforms in
the scene may be modified using the Move, Rotate, and
Scale tools. These tools may be found in the Unity Editor’s
top left-hand corner.

The tools are applicable to any item in the scene. When
we click on an object, the tool gizmo will appear within it.
The look of the gadget is determined by the tool picked.

When we click and drag on one of the three gizmo axes,
its color will be yellow. The item will translate, rotate, or
scale along the specified axis as we move the mouse. When
we release the mouse button, the axis remains selected.

98 ◾ Mastering Unity

In Translate mode, there is also the ability to lock move-
ment to a particular plane (i.e., allow dragging in two axes
while keeping the third unchanged). The three little col-
ored squares in the center of the Translate gizmo activate
the lock for each plane; the colors correspond to the axis,
which will be locked when the square is clicked(e.g., blue
locks the Z-axis).

Parenting
When utilizing Unity, one of the most fundamental things
to grasp is parenting. When a GameObject is the Parent
of another GameObject, the Child GameObject moves,
rotates, and scales the same way as its Parent. Parenting
may be compared to the interaction between our arms
and our body; anytime our body moves, our arms move
as well. Child items can have their children, and so on.
So our hands may be seen as “children” of our arms, with
each hand having numerous fingers, and so on. There can
be several offspring for each item, but only one parent.
These several layers of parent–child interactions form a
Transform hierarchy.

The root is the object at the very top of a hierarchy (e.g.,
the only item in the hierarchy that does not have a parent).

Drag any GameObject in the Hierarchy View onto
another to create a Parent. The two GameObjects will form
a Parent–Child connection as a result of this.

It’s worth noting that the Transform values in the
Inspector for any child GameObject are displayed relative
to the Transform values of the Parent. These values are
known as local coordinates. Returning to the analogy of
the body and arms, our body’s position may change while

Working with Scenes and GameObjects ◾ 99

we walk, but our arms will remain attached at the same
relative position. Working with local coordinates for child
items usually is adequate for scene development. Still,
gaming is frequently helpful to discover their actual posi-
tion in world space or global coordinates. The Transform
component’s scripting API contains distinct properties for
the local and global position, rotation, and scale and the
ability to transform any point between local and global
coordinates.

Non-Uniform Scaling Limitations
When the Scale in a Transform has distinct values for x, y,
and z, this is referred to as non-uniform scaling (2, 4, 2).
On the other hand, Uniform scaling has the same value
for x, y, and z, for example (3, 3, 3). Non-uniform scaling
can be advantageous in a few specific instances, although it
introduces a few anomalies that uniform scaling does not:

• Some components do not entirely support Non-
uniform scaling. Some features, such as the Sphere
Collider, Capsule Collider, Light, and Audio Source,
have a circular or spherical element specified by a
radius attribute. In such circumstances, the circular
shape will not become elliptical due to non-uniform
scaling but instead, stay round.

• When a child item is rotated relative to a non-uni-
formly scaled parent, it may seem skewed or “sheared.”
Some components accept basic non-uniform scaling
but do not function properly when skewed like this. A
skewed Box Collider, for example, will not correctly
match the form of the displayed mesh.

100 ◾ Mastering Unity

• A child object of a non-uniformly scaled parent will
not have its scale automatically updated as it rotates
for performance reasons. As a result, when the scale
is ultimately updated, such as if the child object is
disconnected from the parent, the child’s form may
appear to shift abruptly.

Scale’s Importance
The Transform scale defines the difference in size between
a mesh in your modeling application and a mesh in Unity.
The size of the mesh in Unity (and hence the scale of the
Transform) is critical, especially during physics model-
ing. The physics engine thinks that one unit in world space
equals one meter by default. If an item is particularly enor-
mous, it may appear to fall in “slow-motion”; the simula-
tion is accurate since we see a vast thing fall a long distance.

The size of our item can be affected by three factors:

1. In your 3D modeling application, the size of our
mesh.

2. The Mesh Scale Factor parameter in the Import
Settings of the item.

3. Our Transform Component’s Scale values.

We should not, ideally, change the Scale of your object in
the Transform Component. The ideal method is to develop
your models at a real-life scale so that we don’t have to adjust
the scale of our Transform. The next best approach is to
change the scale at which your mesh is imported under our
individual mesh’s Import Settings. Specific optimizations

Working with Scenes and GameObjects ◾ 101

occur based on the import size, and instantiating an object
with a modified scale value might reduce speed.

Working with Transforms: Some Pointers

• It is helpful to set the parent’s position to 0,0,0>
before adding the kid when parenting Transforms.
This implies that the kid’s local coordinates will be
the same as global coordinates, making it easy to
ensure that the child is in the correct place.

• If we’re going to use Rigidbodies for physics model-
ing, be sure to learn about the Scale property on the
Rigidbody component reference page.

• The colors of the Transform axes (and other UI com-
ponents) may be changed in the settings (Menu: Unity
> Preferences, then pick the Colors & keys panel).

• The location of child morphs is affected by changing
the Scale. Scaling the parent to (0,0,0) will, for exam-
ple, place all children at (0,0,0) relative to the parent.

Components Are Introduced

A GameObject is a Unity Editor object that contains
components. Components describe how a GameObject
behaves.

This section explains how to see and interact with com-
ponents in Unity and a quick overview of the most typical
component settings.

To see a GameObject’s components, pick it in the Scene
or Hierarchy windows, then go to the Inspector window to
get a list of its components and their settings.

102 ◾ Mastering Unity

Components can be interacted with directly in the
Editor or via script. For information on how to control and
interact with components using a script, see the Scripting
section.

Configurations of Common Components
This section describes some of Unity’s basic default com-
ponent setups.

Component Transformation
In Unity, every GameObject has a Transform component.
This component specifies the location, rotation, and scale
of the GameObject in the game world and Scene view. This
component cannot be removed.

The Transform component also supports the idea of
parenting, which allows us to make a GameObject a child
of another GameObject and control its position using the
Transform component of the parent. This is a critical com-
ponent of working with GameObjects in Unity.

Components of the Main Camera GameObject
Every new scene begins with a GameObject named Main
Camera by default. This GameObject is set up to be the pri-
mary camera in our game. It includes the Transform com-
ponent, the Camera component, and an Audio Listener for
capturing audio in our application.

Making Use of Components
Components are the nuts and bolts of a game’s objects
and actions. They are the essential components of every
GameObject. Before proceeding, read the GameObjects

Working with Scenes and GameObjects ◾ 103

page if you do not yet grasp the link between Components
and GameObjects.

A GameObject is a container for a variety of Components.
By default, all GameObjects include a Transform
Component. This is due to the Transform determining
where the GameObject is positioned and how it is rotated
and scaled. If the GameObject did not have a Transform
Component, it would not have a position in the world. As
an example, try making an empty GameObject now. Select
GameObject->Create Empty from the menu. Examine the
Inspector after selecting the new GameObject.

We can always use the Inspector to examine which
Components are associated with the specified GameObject.
The Inspector will always show you which Components are
currently connected when they are added and deleted. The
Inspector will be used to modify all of the characteristics
of any Component.

Adding Components
The Components menu allows us to add Components
to the specified GameObject. We’ll give it a shot now
by attaching a Rigidbody to the empty GameObject
we just made. Select it and then go to the Component->
Physics->Rigidbody menu. When we do this, the
Rigidbody’s characteristics will display in the Inspector.
We can receive a surprise if you press Play while the empty
GameObject is still chosen. Try it out and note how the
Rigidbody has given the otherwise empty GameObject
functionality. (The GameObject’s transform’s Y position
begins to decrease. This is due to Unity’s physics engine
forcing the GameObject to fall under gravity.)

104 ◾ Mastering Unity

The Component Browser, which can be accessed via the
Add Component button in the object’s inspector, is another
alternative.

The browser allows us to quickly traverse the compo-
nents by category and also contains a search bar that we
can use to find components by name.

A single GameObject can have any number or combi-
nation of Components attached to it. Some Components
perform best when combined with others. The Rigidbody,
for example, maybe used with any Collider. The NVIDIA
PhysX physics engine controls the Rigidbody, and the
Collider lets the Rigidbody collide and interact with other
Colliders.

If we want to learn more about using a specific
Component, we may do so by visiting the corresponding
Component Reference page.

We may also view a Component’s reference page from
Unity by clicking on the small? in the Component’s header
in the Inspector.

Components Editing
Components’ versatility is one of its best features. When we
connect a Component to a GameObject, the Component
has several values or Properties that may be changed in the
editor when developing a game or by scripts while running
the game. Properties are classified into two types: Values
and References.

It’s a blank GameObject with an Audio Source
Component attached to it. All of the Audio Source settings
in the Inspector are the defaults.

There is a single Reference property and seven Value
properties in this Component. The Reference property is

Working with Scenes and GameObjects ◾ 105

an audio clip. When this Audio Source starts playing, it
will play the audio file specified in the Audio Clip attribute.
An error will occur if no reference is created since there is
no audio to be played. Within the Inspector, you must refer
to the file. It is as simple as dragging an audio file from
the Project View onto the Reference Property or using the
Object Selector to do this.

References to any other type of Component, GameObject,
or Asset can be included in Components. More informa-
tion on assigning references may be found on the Editing
Properties page.

The Audio Clip’s remaining characteristics are all Value
properties. These may be changed right in the Inspector.
The Audio Clip’s Value attributes are all toggles, numeric
values, and drop-down fields, but they may also be text
strings, colors, curves, and other sorts. More information
on these, as well as altering value properties, may be found
in the article about editing value properties.

Commands from the Component Context Menu
A component’s context menu contains a number of essen-
tial commands.

The exact instructions are also accessible in the inspec-
tor through the kebab menu (three vertical dots) icon at the
extreme top-right of the component’s panel.

• Reset: This command returns the component’s prop-
erties to their previous settings before the most recent
editing session.

• Remove: If we no longer require the component asso-
ciated with the GameObject, we may remove it with

106 ◾ Mastering Unity

the Remove Component command. It’s worth not-
ing that some component combinations rely on one
another (for example, a Hinge Joint only functions
if a Rigidbody is also attached); removing compo-
nents that others rely on will result in a warning
message.

• Move Up/Down: To alter the order of components of
a GameObject in the Inspector, use the Move Up and
Move Down commands.

• Copy/Paste: The Copy Component command cop-
ies a component’s type and current property set-
tings. With Paste Component Values, these may
then be copied into another element of the same
kind. We may also use Paste Component As New
to create a new component with the copied data on
an object.

Property Experimentation
While our game is in Play Mode, we may alter any
GameObject’s attributes in the Inspector. For example, we
might wish to experiment with different leaping heights. If
we add a Jump Height attribute to a script, we may test it by
entering Play Mode, changing the value, and pressing the
jump button to see what occurs. Then, without leaving Play
Mode, we may make another modification and see the con-
sequences in seconds. When we quit Play Mode, our prop-
erties will restore to their pre-Play Mode settings, ensuring
no effort is lost. This method provides impressive flexibility
to explore, tweak, and perfect your gameplay without com-
mitting to lengthy iteration cycles.

Working with Scenes and GameObjects ◾ 107

Objects That Are Primitive or Placeholders

Unity can deal with 3D models of any shape developed
using modeling tools. However, various elementary object
types, such as the Cube, Sphere, Capsule, Cylinder, Plane,
and Quad, may be produced directly within Unity. These
objects are frequently helpful in and of themselves (for
example, a plane is typically used as a level ground sur-
face), but they also provide a rapid method to generate
placeholders and prototypes for testing reasons. Using the
relevant item from the GameObject > 3D Object menu, any
primitives can be added to the scene.

Cube
This is a basic cube with one-unit-long sides that are tex-
tured such that the picture repeats on each of the six faces.
A cube isn’t a particularly frequent object in most games as
it is, but when scaled, it may be beneficial for walls, posts,
boxes, steps, and other similar objects. It is also a help-
ful placeholder object for programmers to utilize during
development when a completed model is unavailable. An
automobile body, for example, can be crudely recreated
using an extended box of nearly the proper size. Although
this isn’t appropriate for the entire game, it works well as
a small symbolic object for testing the car’s control code.
Because the edges of a cube are one unit long, we may
examine the proportions of a mesh imported into the scene
by placing a cube nearby and comparing the sizes.

Sphere
This is a unit diameter (0.5 unit radius) sphere that has been
textured such that the entire picture revolves around once,

108 ◾ Mastering Unity

with the top and bottom “pinched” at the poles. Spheres are
clearly helpful for portraying balls, planets, and missiles,
but a semi-transparent sphere may also be used to show
the radius of an effect in a graphical user interface (GUI).

Capsule
A capsule is a cylinder with two hemispherical covers on
either end. The item has a diameter of one unit and a height
of two units. It’s textured such that the picture loops around
precisely once, squeezed at the apex of each hemisphere.
While there aren’t many real-world things with this form,
the capsule is a handy prototype placeholder. For specific
activities, the mechanics of a rounded item are sometimes
superior to those of a box.

Cylinder
This is a primary two-unit-high and one-unit-diameter
cylinder that has been textured such that the image wraps
once around the tube form of the body but also appears
independently in the two flat, circular ends. Cylinders help
make posts, rods, and wheels but keep in mind that the col-
lider’s form is a capsule (there is no primitive cylinder col-
lider in Unity). If you require an exact cylindrical collider for
physics purposes, you should generate a mesh of the proper
shape in a modeling application and attach a mesh collider.

Plane
This is a flat square with ten-unit-long edges aligned in
the local coordinate space’s XZ plane. It’s textured such
that the entire image only displays once within the square.
Most flat surfaces, such as floors and walls, benefit from

Working with Scenes and GameObjects ◾ 109

the usage of a plane. A surface is also required for display-
ing pictures or videos in GUI and special effects. Although
a plane may be utilized for this, the simpler quad primitive
is generally a better match for the job.

Quad
The quad primitive is similar to the plane, except its edges
are only one unit long, and the surface is orientated in the
local coordinate space’s XY plane. In addition, a quad is
made up of only two triangles, whereas a plane has two
hundred. A quad is proper when a scene object is only uti-
lized as a display screen for an image or video. Quads may
be used to create simple GUI and information displays and
particles, sprites, and “impostor” graphics that stand in for
solid objects when viewed from a distance.

Primitive 2D GameObjects

Unity includes 2D Primitive GameObjects to let us quickly
prototype our Project without importing our Assets. To
make 2D primitive, navigate to GameObject > 2D Object >
Sprites and choose one of the following options:

• Square.

• Circle.

• Nine-Sliced.

• Isometric Diamond.

• Capsule.

• Hexagon Point-Top.

• Hexagon Flat-Top.

110 ◾ Mastering Unity

Sprite and Pixels-per-Unit by Default
The default Sprite size for most 2D primitives is 256 × 256
pixels, with a pixels-per-unit (PPU) size of 256, making
their size equivalent to one unit in the Scene. The Capsule
primitive, which is 256 × 512 pixels (1:2 units), and the
Isometric Diamond primitive, which is 256 × 128 pixels,
are the exceptions (1:0.5 units).

Square
The Square 2D primitive is a white square with a dimen-
sion of 1 × 1 Unity units. We may use it to build platforms
rapidly or as a placeholder for other items such as barriers
such as crates. We may interact with other GameObjects
and 2D physics by adding the Box Collider 2D component
to the GameObject. Select the Nine-Sliced option instead
for a more scalable Sprite that resizes dynamically.

Circle
The Circle 2D primitive is a white circle with a diameter
of one Unity unit. It may be used as a placeholder for vari-
ous objects in our Scene, such as obstacles or props such as
pick-ups or power-ups. We may use the Circle Collider 2D
to interact with other objects and 2D physics by adding it
to the GameObject.

Capsule
The Capsule 2D primitive is a white capsule with a size of
1 × 2 units. This Capsule can be used as a placeholder for
many aspects of our scene, such as an obstacle, an object,
or a character stand-in. We may interact with other objects
and 2D physics by adding a Capsule Collider 2D to the
GameObject.

Working with Scenes and GameObjects ◾ 111

Isometric Diamond
The Isometric Diamond 2D primitive is a 1 × 0.5 unit white
diamond-shaped Sprite. This Sprite is intended to act as a
placeholder for Isometric Tilemaps. To optimize tiling,
the pixels at the top and bottom of this Sprite have been
chopped significantly.

Flat-Top Hexagon
The Hexagon Flat-Top 2D primitive is a regular hexagon
with sides to the top and bottom 1 unit wide. It’s intended to
be used as a basic Sprite placeholder for Tiles in Hexagonal
Flat-Top Tilemaps. On optimize tiling, the pixels to the left
and right of this Sprite have been chopped significantly.

Point-Top Hexagon
The Hexagon Point-Top 2D primitive is a one-unit-tall
regular hexagon with points at the top and bottom. It’s
intended to be used as a basic Sprite placeholder for Tiles
in Hexagonal Pointed-Top Tilemaps. To optimize tiling,
the pixels at the top and bottom of this Sprite have been
chopped significantly.

Nine-Sliced
The Nine-Sliced 2D primitive is a white 1 × 1 unit square
with rounded corners. This Sprite has been nine-sliced,
with 64-pixel boundaries on each side. It is intended
for use with the Sprite Renderer’s Sliced and Tiled draw
modes. The nine-sliced Sprite may be used as a versatile
placeholder for numerous items in our Scene and Project.
To make the Sprite interact with other objects and 2D
physics, add a Box Collider 2D with Auto Tiling enabled.

112 ◾ Mastering Unity

Scripting Is Used to Create Components

Scripting (or script creation) is the process of adding our
own code modifications to the Unity Editor’s capabilities
utilizing the Unity Scripting API.

When we build a script and connect it to a GameObject,
the script shows in the GameObject’s Inspector the same
way that a built-in component does. This is due to the fact
that when we save a script in your project, it becomes a
component.

Technically, every script we write compiles as a type of
component; thus, the Unity Editor treats our script as if it
were a built-in component. The Inspector exposes the ele-
ments of the script that we define, and the Editor performs
any functionality we’ve created.

Deactivating GameObjects

To remove a GameObject from the Scene momentarily,
label it as inactive. To do so, go to the Inspector and
uncheck the checkbox next to the GameObject’s name or
use the SetActive method in the script. Check the active-
Self attribute in the script to see if an object is active or
inactive.

Deactivating a Parent GameObject
When you deactivate a parent GameObject, all of its child
GameObjects are likewise deactivated.

Deactivation overrides the activeSelf setting on all child
GameObjects, rendering the whole hierarchy inactive
from the parent down. Because this does not modify the

Working with Scenes and GameObjects ◾ 113

value of the activeSelf property on the child GameObjects,
they revert to their previous state when the parent is
reactivated.

This implies that accessing the activeSelf property of a
child GameObject will not tell you whether or not it is cur-
rently active in the Scene because even if it is set to active,
one of its parents may be set to inactive.

Instead, if we need to know if it’s now active in the scene,
use the activeInHierarchy property, which considers its
parents’ overriding influence.

Tags

A Tag is a term that may be assigned to one or more
GameObjects. We might, for example, create “Player” Tags
for player-controlled characters and “Enemy” Tags for
non-player-controlled characters. A “Collectable” Tag can
be used to identify things that the player can gather in a
Scene.

Tags aid in the identification of GameObjects for script-
ing reasons. They eliminate the need to manually add
GameObjects to a script’s public attributes through drag
and drop, saving time when utilizing the same script code
in several GameObjects.

Tags are essential in Collider control scripts for deter-
mining if the player is interacting with an opponent, a
prop, or a collectible, for example.

We may find a GameObject by instructing the
GameObject.FindWithTag() method to seek for any
object that contains the desired Tag. GameObject is used
in the following example: FindWithTag(). It creates the

114 ◾ Mastering Unity

respawnPrefab at the position of GameObjects with the
“Respawn” Tag:

using UnityEngine;
using System.Collections;
public class Example : MonoBehaviour
{
 public GameObject respawnPrefab;
 public GameObject respawn;
 void Start()
{
 if (respawn = = null)
 respawn = GameObject.
FindWithTag("Respawn");
 Instantiate(respawnPrefab, respawn.
transform.position, respawn.transform.
rotation) as GameObject;
 }
}

New Tags Creation
The Inspector displays the Tag and Layer drop-down
choices directly below the name of any GameObject.

To add a new Tag, click Add Tag.… This opens the
Inspector’s Tag and Layer Manager. It is crucial to note that
after a Tag has been named, it cannot be renamed.

Layers, like Tags, are used to specify how Unity should
render GameObjects in the Scene.

Using a Tag
The Inspector displays the Tag and Layer drop-down
choices directly below the name of any GameObject. To
apply an existing Tag to a GameObject, enter the Tags

Working with Scenes and GameObjects ◾ 115

menu and select the desired Tag. This Tag is now con-
nected with the GameObject.

GameObjects That Remain Static

A static GameObject does not move during execution. A
dynamic GameObject moves during the course of a game.

In Unity, several systems may precompute informa-
tion about static GameObjects in the Editor. Because the
GameObjects do not move, the results of these computa-
tions are still valid during runtime. This implies Unity can
save money on runtime computations while potentially
improving performance.

The Property Static Editor Flags
The Static Editor Flags property identifies the Unity
systems that can use a static GameObject in their pre-
computations. Select which systems should include the
GameObject in their precomputations using the drop-
down menu. These systems have no impact when Static
Editor Flags are set at runtime.

We should only include a GameObject in the precom-
putations if the system needs to know about it. Including a
GameObject in precomputations for a system that does not
need to know about that GameObject might lead to waste-
ful calculations, needlessly essential data files, or unex-
pected behavior.

The Static Editor Flags attribute is found in the Inspector
for a GameObject, in the top-right corner. It consists of a
checkbox that sets the value to Everything or Nothing and
a drop-down menu that allows us to select which values to
include.

116 ◾ Mastering Unity

These are the following values available:

Property: Function:
Nothing Do not include the GameObject in any system’s

precomputations.
Everything Include the GameObject in the

precomputations for all of the systems listed
below.

Contribute GI While we enable this parameter, Unity takes
the target Mesh Renderer into account when
calculating global illumination. These
computations are done during the baking
period when lighting data is being
precomputed. The ContributeGI property
exposes the ReceiveGI property. The
ContributeGI feature has no impact unless
we activate a global illumination option for
the target Scene, such as Baked Global
Illumination or Realtime Global
Illumination. This flag is described in detail
in a Unity Blog post regarding static lighting
using lightprobes.

Occluder Static In the occlusion culling system, mark the
GameObject as a Static Occluder.

Occludee Static In the occlusion culling mechanism, mark the
GameObject as a Static Occludee.

Batching Static Combine the Mesh of the GameObject with
other suitable Meshes to potentially
minimize runtime rendering costs.

Navigation Static When precompiling navigation data, include
the GameObject.

Off Mesh Link
Generation

When precomputing navigation data, try to
construct an Off-Mesh Link that begins with
this GameObject.

Reflection Probe Include this GameObject in the precomputed
data for Reflection Probes with the Type
attribute set to Baked.

Working with Scenes and GameObjects ◾ 117

Keeping Our Work Safe

The majority of saved data in Unity is divided into Scene
modifications and Project-wide updates.

• Go to File > Save to save all Scene and Project-wide
changes (or Save as). This is the quickest method for
saving everything at once.

• Go to File > Save Project to save Project-wide changes
but not Scene modifications.

Keep in mind that there is an exception to this rule while
editing in Prefab Mode. File > Save just saves modifications
to the currently open Prefab in this situation. It does not
store changes to Scenes or Projects.

While we’re working in the Editor, Unity automatically
stores certain information.

The Scene Changes
Scene alterations involve changes to GameObjects within
the Scene, such as when oneself:

• A GameObject can be added, moved, or deleted.

• In the Inspector, modify the parameters of a
GameObject.

Project-Wide Modifications
Project-wide modifications in Unity affect the whole Project
rather than a single Scene. Go to File > Save Project to save
Project-wide settings without storing Scene modifications.

118 ◾ Mastering Unity

This may be beneficial if, for example, we want to build a
temporary Scene to test some changes.

Among the project-wide modifications are:
When we save a project, Unity saves any changes to the

Project Settings in the Library folder. The settings are saved
in the following files:

Input: InputManager.asset
Player: ProjectSettings.asset
Tags And Layers: TagManager.asset
Time: TimeManager.asset
Physics: DynamicsManager.asset
Graphics: GraphicsSettings.asset
Physics 2D: Physics2DSettings.asset
Quality: QualitySettings.asset
Editor: EditorUserSettings.asset
Network: NetworkManager.asset
Audio: AudioManager.asset

• Build Settings: Unity stores modifications to the
Build Settings as EditorBuildSettings.asset in the
Library folder.

• Modified/Changed Assets: Unity saves any unsaved
changed Assets during a save that saves Project-wide
settings. This mainly pertains to Asset types that
lack an Apply button in their Inspector for instant
saving.

• Dirty Assets: Any Assets that are designated as dirty
are also saved by Unity (meaning that something has
touched or modified it). Custom Editors and Scripts

Working with Scenes and GameObjects ◾ 119

can be used to indicate an Asset as dirty in one of the
following ways:

• Use the SerializedObject class in conjunction
with SerializedProperties.

• To save changes, use the Undo class.

• If none of the other methods work, we can try
SetDirty.

Immediate Saving
When certain modifications occur, Unity quickly saves
them to disc. These are some examples:

• New Assets: Unity saves new Assets as they are cre-
ated, but not future modifications to those Assets.

• Asset Import Settings: Most Asset kinds’ Import
Settings need us to hit a “Apply” button for the
changes to take effect. When we click, Apply, Unity
saves our modifications.

• Baked Data: Some sorts of data are “baked” into our
Project. When each bake completes, Unity automati-
cally stores this data. This includes the following:

• Data on Baked Lighting.

• Baked navigation information.

• Data for baked occlusion culling.

• Changes in Script Execution Order: Unity automat-
ically stores this information to each script’s. meta
file when we press the Apply button.

120 ◾ Mastering Unity

PREFABS
The Prefab system in Unity allows us to build, config-
ure, and save a GameObject as a reusable Asset, replete
with all of its components, property values, and child
GameObjects. The Prefab Asset serves as a template for
creating new Prefab instances in the Scene.

Converting a GameObject set in a certain way—such as
a non-player character (NPC), prop, or piece of scenery—
to a Prefab allows us to reuse it in numerous places in our
Scene or across several Scenes in our Project. This is pref-
erable to copying and pasting the GameObject since the
Prefab system automatically keeps all copies in sync.

Any changes we make to a Prefab Asset are instantly
mirrored in all instances of that Prefab, allowing us
to make broad changes throughout our whole Project
without making identical changes to each copy of the
Asset.

Prefabs may be nestled inside other Prefabs to construct
complicated object hierarchies that are straightforward to
change at numerous levels.

This does not, however, imply that all Prefab instances
must be similar. If we want certain Prefab instances to be
different from others, we may override settings on specific
prefab instances. We may also construct Prefab variations,
which allow us to organize a collection of overrides into a
meaningful version of a Prefab.

Prefabs are particularly useful when we wish to cre-
ate GameObjects during runtime that did not exist in
our Scene at the start, such as making powerups, special
effects, projectiles, or NPCs appear at the appropriate time
points throughout gameplay.

Working with Scenes and GameObjects ◾ 121

Some typical applications of prefabrication include:

• Environmental assets, such as a particular variety of
tree that is utilized several times around a level.

• NPCs—for example, a specific type of robot may
appear several times in our game over various levels.
They can differ in their travel pace or the sound they
emit (through overrides).

• Projectiles, such as a pirate’s cannon, may create a
cannonball Prefab each time it is fired.

• The player’s primary character—the player prefab—
might be put at the beginning of each level (separate
Scene) of our game.

Prefabs Creation

Prefab Assets serve as templates in Unity’s Prefab system.
Prefab Assets are created in the Editor and stored as an
asset in the Project window. Prefab Assets may be used
to build an unlimited number of Prefab instances. Prefab
instances may be produced in the editor and stored as part
of Scenes, or they can be instantiated during runtime.

Making Prefabricated Assets
To make a Prefab Asset, drag a GameObject from
the Hierarchy window into the Project window. The
GameObject, along with all of its components and child
GameObjects, is added to our Project window as a new
Asset. Prefabs Assets are represented in the Project window
by a thumbnail depiction of the GameObject or the blue
cube Prefab icon, based on how our Project window is set up.

122 ◾ Mastering Unity

The original GameObject is also converted into a
Prefab instance during the Prefab Asset creation process.
It is now a child of the newly formed Prefab Asset. Prefab
instances are displayed in blue text in the Hierarchy, and
the root GameObject of the Prefab is indicated with the
blue cube Prefab icon rather than the red, green, and blue
GameObject icons.

Prefab Instance Creation
We may construct instances of the Prefab Asset in the Editor
by dragging it from the Project view to the Hierarchy view.

Scripting may also be used to construct Prefab objects
at runtime.

Replacement of Existing Prefabs
We may change a Prefab asset in the Project window by
dragging a new GameObject from the Hierarchy window
and putting it on top of an existing Prefab object.

When we replace an existing Prefab, Unity strives to keep
references to the Prefab and its constituent pieces, such as
child GameObjects and Components, intact. This is accom-
plished by matching the names of GameObjects between
the new Prefab and the current Prefab that is being replaced.

Because this matching is done by only name, it is dif-
ficult to predict which GameObject will be matched if the
Prefab’s hierarchy contains several GameObjects with the
same name.

As a result, if we want to save our references while sav-
ing over an existing prefab, we must give each GameObject
in the Prefab a unique name.

Also, if a single GameObject within the Prefab has
more than one of the same Component type connected,

Working with Scenes and GameObjects ◾ 123

we may have a similar difficulty when saving over an exist-
ing Prefab to retain references to existing Components. It
is impossible to foresee which of them will be matched to
the current references in this scenario.

Prefab Editing in Prefab Mode

Open a Prefab Asset in Prefab Mode to alter it. Prefab
Mode lets us examine and modify the Prefab Asset’s con-
tents independently of any other GameObjects in our
Scene. Changes made in Prefab Mode have an effect on all
instances of that Prefab.

Prefab Mode Entry and Exit
A Prefab Asset can be edited in isolation or in context.

• When we edit a Prefab in isolation, Unity conceals
the rest of our current working Scene and only shows
us the GameObjects that are related to the Prefab.

• When we modify a Prefab in context, the remainder of
our current working Scene stays visible but not editable.

Isolation Editing
In Prefab Mode, we may start editing a Prefab in a variety
of ways. We may open a Prefab Asset and change it sepa-
rately in the following ways:

• In the Project window, double-click the Prefab Asset.

• In the Project window, choose a Prefab Asset and then
click the Open Prefab button in the Inspector window.

When we enter Prefab Mode by itself, Unity displays
only the contents of that Prefab in the Scene view and

124 ◾ Mastering Unity

the Hierarchy pane. The root of the Prefab is a standard
GameObject; it lacks the blue Prefab instance indicator.

The Scene view in Prefab Mode has a breadcrumb bar at
the top. The Prefab that is now open is the one on the right.
To return to the main Scenes or other Prefab Assets that we
may have opened, use the breadcrumb bar.

At the top of the Hierarchy window, there is a Prefab
header bar that displays the currently active Prefab. We
may move back one step by clicking the back arrow in the
header bar, identical to clicking the breadcrumb in the
breadcrumb bar in the Scene view.

Contextual Editing
We may also open a Prefab Asset in Context by using an
instance of that Prefab. There are several ways to accom-
plish this, including:

In the Inspector window, choose a Prefab instance from
the Hierarchy pane and click the Open button.

In the Hierarchy pane, choose a Prefab instance and hit
P on the keyboard. This is the standard keyboard binding.

In the Hierarchy pane, click the arrow button next to the
Prefab instance.

Unity shows the visual representation of the context in
grey scale by default to visually separate it from the Prefab
contents you change. However, we can utilize the Prefab bar’s
Context: control to change it to any of the following states:

• Normal: Displays the context in its default colors.

• Grayscale: Displays the context in grayscale.

• Hidden: Hides the context thoroughly, revealing
only the Prefab content.

Working with Scenes and GameObjects ◾ 125

The GameObjects that are part of the context cannot be
selected, nor do they appear in the Hierarchy. This allows
us to focus on developing our Prefab without unintention-
ally choosing unrelated GameObjects or having a messy
Hierarchy pane. When we move GameObjects that are
part of the Prefab contents, we may utilize Unity’s snap-
ping functionality to snap to GameObjects in the context,
as long as the context is not set to Hidden.

In Prefab Mode in Context, Unity shows the Prefab con-
tents in the same place as the Prefab instance from which it
was accessed. This implies that we may see a preview of the
Prefab contents’ base transform with different position and
rotation values than the Prefab Asset possesses.

These settings are not editable in Context’s Prefab Mode.
If we need to make changes, we may either open the Prefab
in isolation or select the Prefab Asset in the Project win-
dow and make changes in the Inspector.

Aside from the root Transform attributes, we may also
override additional characteristics of a Prefab instance,
which may radically alter its look compared to the Prefab
Asset of which it is an instance. To see these overridden val-
ues from the Prefab instance, activate the Show Overrides
checkbox in the Prefab bar when in Prefab Mode in Context.
Any properties that we override on the Prefab instance are
previewed the same way on the Prefab contexts while this
option is active, and we cannot alter them. Disable the Show
Overrides option once again to change those properties.

Save Automatically
In the upper right corner of the Scene view, an Auto Save is
setting for Prefab Mode. When we activate it, Unity stores

126 ◾ Mastering Unity

any changes we make to a Prefab to the Prefab Asset. By
default, Auto Save is enabled.

Disable the Auto Save option if we want to make
changes without immediately storing them in the Preset
Asset. When we exit Prefab Mode for the current Prefab,
Unity asks if we will save unsaved modifications. Turning
off Auto Save may assist if editing a Prefab in Prefab Mode
appears sluggish.

Changing from Isolation to Context Mode
When we launch Prefab Mode from a Prefab Asset, Unity
isolates the Prefab’s contents. When we activate Prefab
Mode through a Prefab instance in the Hierarchy window,
Prefab Mode in Context is launched.

When we launch Prefab Mode in this manner, the con-
text of the Prefab instance is visible in the Scene view, even
though you are not changing the instance but rather the
Prefab Asset itself. For example, if we activate Prefab Mode
in Context through a Prefab instance in a Scene, we may see
the Scene’s surroundings while editing the Prefab. The light-
ing conditions in the Prefab are also the same as in the Scene.

If we wish to access a Prefab instance in isolation rather
than context, hold down the Alt key and click the Activate
button or the arrow button to open Prefab Mode. We can
also create a custom shortcut in the Shortcuts box using
the command Stage > Edit Prefab in Isolation.

Undo
When we make changes to a Prefab Asset while it is in
Prefab Mode, you can only undo those changes while it
is still in Prefab Mode. When we quit Prefab Mode for a

Working with Scenes and GameObjects ◾ 127

specific Prefab Asset, our modifications for that Prefab
Asset are no longer visible in the undo history.

Environment for Editing
In Isolation, we may utilize a Scene as an editing envi-
ronment for Prefab Mode. This allows us to change your
Prefab against a custom backdrop rather than an empty
Scene. This might be beneficial if we want to examine how
our Prefab looks against a specific backdrop of our choos-
ing. When you enter Prefab Mode in Isolation, Unity only
utilizes this editing environment.

In Prefab Mode, you cannot pick the GameObjects in
the Scene that we have assigned as the editing environment,
nor do they appear in the Hierarchy. This allows us to focus
on developing our Prefab without unintentionally choosing
unrelated GameObjects or having a messy Hierarchy pane.

Open the Editor window (top menu: Edit > Project
Settings, then choose the Editor category) and navigate
to the Prefab Editing Environment section to designate a
Scene as the editing environment.

For “non-UI” Prefabs, use the Regular Environment set-
ting, while for UI Prefabs, use the UI Environment setting.
UI Prefabs have a Rect Transform component on the root
instead of a standard Transform component. Prefabs with
a regular Transform component are considered “non-UI.”

Overrides for Instances

Instance overrides enable us to define differences amongst
Prefab instances while still connecting them to the same
Prefab Asset.

When we make modifications to a Prefab Asset, they are
mirrored in all of its instances. However, we may also make

128 ◾ Mastering Unity

changes to a specific instance. This establishes an instance
override in that particular instance.

For example, suppose we had a Prefab Asset called
“Robot” that we used in many levels of our game. Each
“Robot” instance, on the other hand, has a different speed
value and an allocated audio clip.

Instance overrides are classified into four types:

1. Overriding a property’s value.

2. Including a new component.

3. Taking out a component.

4. Creating a new child GameObject.

Prefab instances have several limitations: you cannot repar-
ent a GameObject that is part of a Prefab, and you cannot
delete a GameObject that is part of the Prefab. However,
we may deactivate a GameObject, which is an acceptable
option for uninstalling a GameObject (this counts as a
property override).

In the Inspector window, instance overrides are high-
lighted with a bold name label and a blue line in the left
margin. The blue line in the margin covers the whole com-
ponent when we add a new element to a Prefab instance.

Added and deleted components have plus and minus
badges on their Inspector icons, while added GameObjects
have a plus badge on their Hierarchy icon.

Overrides Are Given Precedence
A Prefab instance’s overridden property value always takes
priority over the value from the Prefab Asset. This implies

Working with Scenes and GameObjects ◾ 129

that changing a Prefab Asset’s property does not affect
instances when that property is overridden.

Whether we make a modification to a Prefab Asset and it
does not update all instances as intended, we should check
to see if that property on the instance is overridden. It is
advisable to utilize instance overrides only when required.
If our Project has a significant number of instance over-
rides, it might be challenging to know whether our modi-
fications to the Prefab Asset will or will not affect all
instances.

The Alignment Is Unique to the Prefab Instance
A Prefab instance’s alignment is a specific circumstance
that is treated differently than other attributes. Alignment
values are never sent from the Prefab Asset to the Prefab
instances. This implies they can always deviate from the
alignment of the Prefab Asset without requiring an explicit
instance override. In particular, the alignment refers to the
Position and Rotation properties of the Prefab instance’s
root Transform, and for a Rect Transform, this also includes
the Width, Height, Margins, Anchors, and Pivot values.

This is due to the rarity of requiring numerous copies of
a Prefab to adopt the same position and rotation. Most of
the time, you’ll want our prefab instances to be in various
locations and rotations, so Unity doesn’t consider these to
be Prefab overrides.

Changing a Prefab’s Occurrences

The Inspector for a Prefab instance’s root contains three
extra controls than a standard GameObject: Open, Select,
and Overrides.

130 ◾ Mastering Unity

The Open button in Prefab Mode opens the Prefab Asset
from which the instance is derived, allowing us to edit the
Prefab Asset and thereby change all of its instances. The
Select button in the Project window picks the Prefab Asset
from which this instance is created. The Overrides button
activates the Overrides drop-down menu.

Dropdown Overrides
The Customizations drop-down pane displays all of the
Prefab instance’s overrides. It also allows us to add instance
overrides to the Prefab Asset or revert instance overrides to
the Prefab Asset’s values. The Overrides drop-down but-
ton shows only for the root Prefab instance, not for Prefabs
inside Prefabs.

The Overrides drop-down box allows us to apply or
revert individual prefab overrides or to apply or revert all
prefab overrides at once.

• The Prefab Asset is altered when an override is
applied. This adds the override (which is presently
only available on our Prefab instance) to the Asset.
This indicates that the Prefab Asset now has that
alteration, and the Prefab instance no longer contains
it as an override.

• The Prefab instance is altered when an override is
reverted. This effectively discards our override and
returns the Prefab Asset to its original state.

The drop-down pane displays a list of modifications made
to the instance, such as changed, added, and removed com-
ponents and new GameObjects.

Working with Scenes and GameObjects ◾ 131

To view an entry, click on it. This opens a floating
window that displays the modification and allows you to
reverse or apply it.

The view compares the component’s values on the Prefab
Asset with the changed component on the Prefab instance for
components with modified values. This enables us to com-
pare the original Prefab Asset values to the current overrides
and determine whether to rollback or apply those values.

The “GermOBlaster” child GameObject in the exam-
ple exists on both the Prefab Asset and the Prefab
instance, but its scale has been raised on the instance.
This increase in scale is an instance override, and it
can be viewed in the Overrides drop-down pane as a
side-by-side comparison.

Revert All and Apply All options are now available in
the Overrides drop-down menu for reversing or apply-
ing all modifications at once. If we have Prefabs within
Prefabs, the Apply All button always applies to the outer-
most Prefab, which has the Overrides drop-down button
on its root GameObject.

When we choose several items at the same time, the
Revert All and Apply All buttons are replaced by Revert
Selected and Apply Selected buttons. These can be used to
rollback or apply numerous overrides at the same time. The
Apply Selected button, like the Apply All button, always
applies to the outermost Prefab.

Menus in Context
Instead of utilizing the Overrides drop-down window,
you may rollback and apply specific overrides using the
Inspector’s context menu.

132 ◾ Mastering Unity

Overridden attributes are shown in bold. They can be
undone or applied via a context menu:

Modified components can be reversed or applied using
the component header’s cog drop-down button or context
menu:

Components that have been added have a plus badge
that appears above the icon. They may be reversed or
applied using the component header’s cog drop-down
button.

Components that have been removed have a minus badge
that appears over the icon. The removal can be reversed
or applied using the component header’s cog drop-down
button or context menu. Reverting the removal restores
the component, whereas performing the removal deletes it
from the Prefab Asset.

When a GameObject (including other Prefabs) is
added as a child to a Prefab instance, a plus badge appears
above the icon in the Hierarchy. They may be reversed
or applied through the context menu on the Hierarchy
object.

Prefabs That Are Nested

Prefab instances can be included within other Prefabs. This
is known as nested Prefabs. Nested Prefabs keep ties to
their respective Prefab Assets while simultaneously being
a component of another Prefab Asset.

In Prefab Mode, Add a Nested Prefab
In Prefab Mode, we may add and operate with Prefab
instances in the same way we would in Scenes. We may
move a Prefab Asset from the Project window to the

Working with Scenes and GameObjects ◾ 133

Hierarchy window or Scene view by dragging it from the
Project window to make a Prefab instance from that Asset
within the Prefab you’re working on.

Take note of the root GameObject the blue cube Prefab
icon is not displayed for the Prefab that is open in Prefab
Mode, but it is displayed for any instances of other Prefabs.
Like with Prefab instances in scenes, we can also apply
overrides to these Prefab instances.

Prefabs Can Be Nested Using Their Instances
We may also add a Prefab instance as a child to another
Prefab instance in the Scene without entering Prefab Mode,
just like any other GameObject. In the Hierarchy, such an
extra Prefab instance has a plus badge overlaid on the icon,
indicating that it is an override on that specific instance of
the outer Prefab.

The additional Prefab can be reversed or applied to
the outer Prefab in the same manner as other overrides
(through the Overrides drop-down window or the context
menu on the GameObject in the Hierarchy) detailed in
Editing a Prefab via its instances. Only the outer Prefab
has the Overrides drop-down button. Once applied, the
Prefab no longer displays the plus badge since it is no
longer an override but is instead nested within the outer
Prefab Asset itself. It keeps its blue cube symbol because
it is a Prefab instance in its own right, and it keeps its link
to its Prefab Asset.

Prefabs That Are Nested

Prefab instances can be included within other Prefabs. This
is known as nested Prefabs. Nested Prefabs keep ties to

134 ◾ Mastering Unity

their respective Prefab Assets while simultaneously being
a component of another Prefab Asset.

In Prefab Mode, Add a Nested Prefab
In Prefab Mode, we may add and operate with Prefab
instances in the same way we would in Scenes. Drag a
Prefab Asset from the Project window to the Hierarchy
window or Scene view to create a Prefab instance from that
Asset within the open Prefab.

Note that the blue cube Prefab icon does not appear on
the root GameObject of a Prefab that is open in Prefab
Mode, but it does appear on any instances of other Prefabs.
Like with Prefab instances in scenes, we can also apply
overrides to these Prefab instances.

Prefabs Can Be Nested Using Their Instances
We may also add a Prefab instance as a child to another
Prefab instance in the Scene without entering Prefab Mode,
just like any other GameObject. In the Hierarchy, such an
extra Prefab instance has a plus badge overlaid on the icon,
indicating that it is an override on that specific instance of
the outer Prefab.

The additional Prefab can be reversed or applied to the
outer Prefab in the same manner as other overrides (through
the Overrides drop-down window or the context menu
on the GameObject in the Hierarchy) detailed in Editing
a Prefab via its instances. Only the outer Prefab has the
Overrides drop-down button. Once applied, the Prefab no
longer displays the plus badge since it is no longer an over-
ride but is instead nested within the outer Prefab Asset itself.
It keeps its blue cube symbol because it is a Prefab instance
in its own right, and it keeps its link to its Prefab Asset.

Working with Scenes and GameObjects ◾ 135

Prefab Variations
Prefab Variants come in handy when we need a collection
of predefined versions of a Prefab.

For example, we could wish to include a variety of
GermSlimeTargets in our game, all of which are built on
the same core GermSlimeTarget Prefab. However, we may
want some GermSlimeTargets to carry objects, travel at
various speeds, or produce additional sound effects.

To do this, we might configure our first GermSlimeTarget
Prefab to execute all of the core activities that all
GermSlimeTarget should share and then construct numer-
ous Prefab Variants to:

• Use a property override on a script to adjust the pace
of a GermSlimeTarget.

• Attach an extra GameObject to a GermSlimeTarget’s
arm to have it hold an object.

• Add an AudioSource component that plays a squelch-
ing sound to GermSlimeTarget to give it a slug-like
squelch.

A Prefab Variant inherits the attributes of another Prefab,
which is referred to as the base. Overrides applied to the
Prefab Variant take precedence over the settings of the basic
Prefab. A Prefab Variant can be based on any other Prefab,
including Model Prefabs and different Prefab Variants.

Developing a Prefab Variant
There are several methods for creating a Prefab Variant
based on another Prefab.

136 ◾ Mastering Unity

In the Project view, right-click on a Prefab and choose
to Create > Prefab Variant. This generates a variation of the
specified Prefab with no overrides at first. To begin adding
overrides to the Prefab Variant, open it in Prefab Mode.

In addition, we may drag a Prefab instance from the
Hierarchy into the Project window. When we do this, a
dialogue box appears asking us whether we want to create
a new Original Prefab or a Prefab Variant.

When we select Prefab Variant, a new Prefab Variant
is created based on the Prefab instance that dragged. Any
customizations we had on that instance have now been
included in the new Prefab Variant. We may open it in
Prefab Mode to add more overrides and change or remove
existing ones.

Prefab Variants that have the blue Prefab icon with
arrows.

Prefab Variant Editing
When we open a Prefab Variant in Prefab Mode, the root
is displayed as a Prefab instance with the blue Prefab icon.
This Prefab instance represents the basic Prefab from
which the Prefab Variant derives, not the Prefab Variant
itself. Any changes we make to the Prefab Variant become
overrides to the Variant’s base.

Because the Prefab instance is an instance of the base
Prefab GermSlimeTarget and the Select button always
selects the Prefab Asset from which an example is created, if
we choose the GermSlimeTarget With GermOBlaster root
GameObject and then click the Select button in the Inspector,
it will select the base Prefab GermSlimeTarget rather than
the Variant GermSlimeTarget With GermOBlaster.

Working with Scenes and GameObjects ◾ 137

Prefab overrides, such as updated property values, new
components, deleted components, and additional child
GameObjects, may be used in a Prefab Variant just like
any other Prefab instance. There are also the same restric-
tions: we cannot reparent GameObjects in the Prefab
Variant derived from its original Prefab. We can’t also
remove a GameObject from a Prefab Variant if it’s still in
its base Prefab. However, we may deactivate GameObjects
(through a property override) to have the same result as
uninstalling a GameObject.

When updating a Prefab Variant in Prefab Mode, con-
sider that applying these overrides (through the Overrides
drop-down window or context menus) will result in our
variant’s variants being applied to the underlying Prefab
Asset. This is frequently not what we desire. The purpose of
a Prefab Variant is to give a handy method to store a valu-
able and reusable collection of overrides; therefore, they
should generally remain as overrides and not be applied to
the underlying Prefab Asset. To demonstrate, if we added
the GermOBlaster GameObject to the basic Prefab Asset
(the “GermSlimeTarget”), the Prefab Asset would also
include the GermOBlaster.

The whole idea of the GermSlimeTarget With
GermOBlaster version is that it is the only one with a
GermOBlaster; hence, the additional GermOBlaster
GameObject should be left as an override inside the Prefab
Variant.

When we open the Overrides drop-down window, we
can always see in the header which object the overrides are
for and which context the overrides reside in. The header
for a Prefab Variant will state that the overrides are to the

138 ◾ Mastering Unity

basic Prefab and reside in the Prefab Variant. To be sure,
the Apply All button also states Apply All to Base.

Multiple Layers of Override

Overrides can exist at numerous levels when working with
Prefabs inside other Prefabs or with Prefab Variants, and
the same overrides can be applied to multiple distinct
Prefabs.

Apply Target Selection
When we have a Prefab instance with nested Prefabs or a
Prefab Variant, we may be able to choose which Prefab an
override should be applied to.

Consider a Prefab “Vase” that is nested within a Prefab
“Table,” and the scene has a “Table” Prefab instance.

If a property on “Vase” is overridden in this case, the
override might be applied to either the “Vase” or the
“Table.”

The Apply, All button in the Overrides drop-down menu
only allows us to apply the override to the outer Prefab—in
this example, the “Table.” However, when applying using
the context menu or the comparative view for individual
components in the Overrides drop-down window, we may
select an apply target.

If we pick Apply to Prefab “Vase” in this example, the
value is applied to the “Vase” Prefab Asset and is utilized
for all instances of the “Vase” Prefab.

Furthermore, if we select Apply as Override in Prefab
“Table,” the value becomes an override on the example
of “Vase” contained within the “Table” Prefab. The prop-
erty on the instance in the Scene is no longer tagged as an

Working with Scenes and GameObjects ◾ 139

override, but if we open the “Table” Prefab in Prefab Mode,
the property on the “Vase” Prefab example is marked as an
override.

When overriding as an override in the “Table” Prefab
Asset, the “Vase” Prefab Asset is unaffected. This implies
that all instances of the “Table” Prefab have the updated
value on their “Vase” Prefab instance, but other instances
of the “Vase” Prefab are not part of the “Table” Prefab are
unaffected.

If the property on the “Vase” Prefab is updated later,
it will affect all instances of the “Vase” Prefab unless that
property is overridden. Because it is overridden on the
“Vase” instance within the “Table” Prefab, the modifica-
tion will not affect any of the “Vase” instances that are part
of “Table” instances.

Applying to inner prefabs may have an impact on out-
side prefabs as well.

When one or more properties are applied to an inner
Prefab Asset, its overrides are reverted in the outer Prefabs,
occasionally resulting in changes to outer Prefab Assets.

In our example, if Apply to Prefab “Vase” is selected
and the “Table” Prefab contains an override of the value,
the override in the “Table” Prefab is reverted and property
simultaneously on the instance preserves the value that
was just applied. If this were not the case, the value of the
example would change immediately after it was applied.

Prefab Instance Unpacking

Unpacking a Prefab instance returns the contents of the
Prefab instance to a standard GameObject. This is the
exact opposite of generating (packing) a Prefab, except

140 ◾ Mastering Unity

that it does not delete the Prefab Asset and just impacts the
Prefab instance.

Unpacking a Prefab instance is as simple as right-click-
ing on it in the Hierarchy and selecting Unpack Prefab. The
generated GameObject in the Scene is no longer linked to
its previous Prefab Asset. This procedure does not affect
the Prefab Asset itself, and there may still be instances of it
in our Project.

If we override your Prefab instance before unpacking it,
they will be “baked” onto the resultant GameObjects. That
is, the values will remain unchanged, but they will no lon-
ger have the status as overrides since there is no Prefab to
override.

When we unpack a Prefab containing nested Prefabs,
the nested Prefabs continue to be Prefab instances with
connections to their respective Prefab Assets. Similarly,
when we unpack a Prefab Variant, a new Prefab instance
is created at the root that is an instance of the basic Prefab.

In general, unpacking a Prefab instance returns the
same items that we see when we enter Prefab Mode for that
Prefab. This is due to the fact that Prefab Mode displays
the contents of a Prefab, and unpacking a Prefab instance
unpacks the contents of a Prefab.

If we wish to replace a Prefab instance with normal
GameObjects and delete any ties to any Prefab Assets,
right-click on it in the Hierarchy and select Unpack Prefab
Completely. This is identical to unpacking the Prefab and
continuing to unpack any Prefab instances that occur due
to being nested or base Prefabs.

Prefab instances that reside in Scenes or inside other
Prefabs can be unpacked.

Working with Scenes and GameObjects ◾ 141

Unity3D Fundamentals—A Quick Look
at Game Physics

Unity is an undeniably powerful game engine. As a result,
it develops its method for modeling physics in a highly effi-
cient manner. Unity defines it as:

To identify interactions between GameObjects, Unity
uses Rigidbodies and Colliders. It should be remembered
that Unity contains two distinct systems that cannot com-
municate with one another: a 3D Physics system and a 2D
Physics system.

• In a Nutshell:

• Rigidbody Element: This component is in charge
of applying physics simulations to GameObjects
such as Gravity and attributes such as Mass and
Velocity. It is a necessary component in identi-
fying collisions. In Unity, there are two sorts of
Rigidbody Components: 3D and 2D. It is critical
to choose the appropriate one for the kind of set-
ting in which you operate.

• Collider Component: Consider this component
to be the volume of space that our item occupies.
Colliders provide a method for registering colli-
sions between objects in the scene. They come in
a variety of forms and sizes to suit our needs. The
Collider, like the Rigidbody, must be chosen cor-
rectly for Unity to detect collisions accurately. If
we’re working in 3D, ensure sure our GameObjects
aren’t accidentally utilizing 2D Colliders. Fortunately,
all Colliders are labeled explicitly.

142 ◾ Mastering Unity

Let’s take a brief look at an example of elementary phys-
ics applied to a GameObject. We will make a cube to serve
as our floor and a spherical to act as a ball for physics
simulations:

Colliders are linked to both the floor and the ball. The
Sphere Collider tied to our ball may be seen in the inspector,
but nothing happens when pressing the Play button. Unity
has no means of knowing what that GameObject should do.

Let’s give the sphere a Rigidbody. It is not essential to
add one to the floor because the sphere will handle all col-
lision occurrences in this case:

We chose “RigidBody” rather than “RigidBody2D”
because this is a 3D project using 3D Colliders.

Now, let’s press the Play button:
Our ball is now impacted by the Rigidbody’s Gravity

and proceeds to fall until it finds a contact. This example
collides with the floor and is halted by the Box Collider
tied to it. The inspector displays the numbers for the ball’s
Speed, Velocity, and World Center of Mass as they change
during its descent.

Only the ball has a Rigidbody Component linked to it,
and it can detect the collider on the floor and simulate their
contact.

Physics

Unity allows us to simulate physics in our project to verify
that objects accelerate and behave appropriately to colli-
sions, gravity, and other forces. Unity has many physics
engine implementations that we may utilize depending
on the demands of our project: 3D, 2D, object-oriented, or
data-oriented.

Working with Scenes and GameObjects ◾ 143

Object-Oriented Projects with Built-In Physics Engines
If our project is object-oriented, utilize the physics engine
integrated with Unity that best suits our needs:

• 3D physics built-in.

• There is built-in 2D physics.

For Object-Oriented Tasks, Use 3D Physics
This section outlines the primary components accessible
via Unity’s built-in 3D physics engine, which may be used to
object-oriented programs. It contains the following items:

• A summary of the major physics concepts:
Rigidbodies, Collisions, and Joints Character
Controllers, physics articulations, and physics
articulations.

• Some examples of explanations for certain physics
contexts: Continuous collision detection as well as
multi-scene physics.

• The Physics Debug Visualization is described in detail.

Furthermore, the 3D Physics Reference part includes a full
description of all accessible components, and the Physics
HOWTOs section includes a few pointers on typical phys-
ics-related activities.

2D Physics Reference
Use the above attributes as global settings for Physics 2D. If
we wish to manage the global 3D physics parameters, use
the Physics Manager settings instead.

144 ◾ Mastering Unity

The Physics 2D parameters define the physics simula-
tion’s precision. More processing overhead is required for
a more realistic simulation, and these options allow us to
modify the trade-off between accuracy and performance
that is best suited to our project.

145DOI: 10.1201/9781003214755-4

C h a p t e r 4

Animation in Unity

Retargetable animations, complete control over animation
weights at runtime, event calling from within the anima-
tion playback, advanced state machine hierarchies and
transitions, blend shapes for face animations, and many
more capabilities are available in Unity Animation. Let us
take a closer look at animations in Unity.

OVERVIEW OF THE ANIMATION SYSTEM
Unity features a complex and powerful animation system
(known as “Mecanim”). It includes:

• Simple workflow and animation setup for all Unity
elements, including objects, characters, and attributes.

• Humanoid animation retargeting the ability to apply
animations from one character model to another.
Support for imported animation clips and animation
developed within Unity.

https://doi.org/10.1201/9781003214755-4

146 ◾ Mastering Unity

• Workflow for aligning animation clips has been
simplified.

• Convenient previewing of animation clips, transi-
tions, and interactions. This enables animators to
work independently of programmers, prototyping
and previewing their animations before the gameplay
code is hooked in.

• A visual programming tool is used to manage intri-
cate relationships between animations.

• Animating various body sections using different
reasoning.

• Layering and masking are valuable features.

WORKFLOW FOR ANIMATION
The animation system in Unity is built on the notion
of Animation Clips, which hold information about how
specific objects’ position, rotation, or other attributes
should change over time. Each clip can be considered
a single linear recording. External animation clips are
made by artists or animators using third-party technol-
ogies such as Autodesk® 3ds Max® or Autodesk® Maya®,
or they originate from motion capture studios or other
sources.

The animation clips are then organized into a flowchart-
like system known as an Animator Controller.

The Animator Controller functions as a “State Machine,”
keeping track of which clip should be played at any given
time and when the animations should change or blend.

Animation in Unity ◾ 147

A straightforward Animator Controller could com-
prise one or two clips, for example, to manage the spin-
ning and bouncing of a powerup or to animate a door
opening and closing at the appropriate moment. A more
powerful Animator Controller may have hundreds of
humanoid animations for all of the main character’s
motions and the ability to mix between numerous clips at
once to give a smooth motion as the player walks across
the area.

Unity’s Animation system also includes several unique
features for working with humanoid characters, such as
the ability to retarget humanoid animation from any
source (for example, motion capture, the Asset Store, or
another third-party animation library) to our charac-
ter model, as well as adjust muscle definitions. Unity’s
Avatar system, which maps humanoid avatars to a
standard internal structure, enables several particular
functionalities.

The Animator Component connects each of these
parts—the Animation Clips, the Animator Controller, and
the Avatar—to a GameObject. This component contains
a reference to an Animator Controller and (if applicable)
the Avatar for this model. The Animator Controller, in
turn, stores references to the Animation Clips that it
employs.

• The animation clips are either imported from another
source or generated within Unity.

• An Animator Controller is where the animation clips
are inserted and organized. In the Animator window,

148 ◾ Mastering Unity

this is a view of an Animator Controller. States
(which can represent animations or nested sub-state
machines) are defined as nodes connected by lines.
This Animator Controller may be found in the Project
window as an Asset.

• The rigged character model has a unique bone struc-
ture that is transferred to Unity’s standard Avatar
format. This mapping is saved as an Avatar Asset as
part of the imported character model, and it is also
visible in the Project window.

• When animating the character model, an Animator
component is linked to it. The Animator Component,
which has both the Animator Controller and the
Avatar assigned, may be seen in the Inspector view.
The animator combines these to animate the model.
When animating a humanoid figure, the Avatar ref-
erence is only essential. Only an Animator Controller
is required for other sorts of animation.

SYSTEM OF LEGACY ANIMATION
While Mecanim is preferred in most cases, Unity has kept
its heritage animation technology before Unity 4. When
working with older content generated before Unity 4, we
may need to utilize it.

Clips of Animation

Animation Clips are a key component of Unity’s anima-
tion system. Unity allows for the import of animation from
other sources and creating animation clips from scratch
within the editor through the Animation window.

Animation in Unity ◾ 149

Externally Sourced Animation

Externally imported animation clips might include:

• Humanoid animations shot at a motion capture studio.

• An artist creates animations from scratch in an
external three-dimensional (3D) application (such as
Autodesk® 3ds Max® or Autodesk® Maya®).

• Third-party library animation sets (for example,
from Unity’s Asset shop).

• A single imported timeline was used to trim and slice
several clips.

Unity Was Used to Create and Edit the Animation

We may also generate and edit animation clips in Unity’s
Animation Window. These clips are capable of animating:

• GameObjects’ location, rotation, and scale.

• Component attributes include material color, light
intensity, and the sound loudness.

• We may use float, integer, enum, vector, and Boolean
variables in our scripts.

• The order in which functions are called within our scripts.

EXTERNALLY SOURCED ANIMATION
External animation is imported into Unity in the same man-
ner that standard 3D files are. These files can contain ani-
mation data in the form of a linear recording of the motions
of objects inside the file, whether they are Generic FBX files

150 ◾ Mastering Unity

or native formats from 3D applications such as Autodesk®
Maya®, Cinema 4D, Autodesk® 3ds Max®, or BlenderTM.

In some cases, the item to be animated (for example,
a character) and the animations associated with it can be
found in the same file. In other circumstances, the anima-
tions may be stored in a different file from the object being
animated.

It’s possible that animations are model-specific and can-
not be reused on other models. A big octopus end-boss in
your game, for example, may have a unique arrangement of
limbs and bones, as well as its own set of motions.

In other cases, we may have a library of animations that
we want to utilize on different models in our scenario.
For example, several humanoid figures may all utilize the
same walk and run animations. In these cases, it’s typical to
include a small placeholder model in our animation files for
previewing. Alternatively, animation files can be used even
if they contain no geometry and only the animation data.

When importing several animations, they can reside as
different files within our project folder, or we can extract
numerous animation clips from a single FBX file if pro-
duced as takes from Motion Builder or with a plugin/
script for Autodesk® Maya®, Autodesk® 3ds Max®, or other
3D products. If our file has numerous different animations
grouped on a single timeline, we may wish to do this. A
long motion-recorded timeline, for example, may have the
animation for a few distinct jump motions, and we may
want to trim out specific bits of this to utilize as individual
clips and delete the rest. When we load all animations into
one timeline, Unity includes animation cutting tools that
allow us to set the frame range for each clip.

Animation in Unity ◾ 151

Importing Animation Files

Any animation must be imported into our project before it
can be utilized in Unity. Unity supports native Autodesk®
Maya® (.mb or.ma), Autodesk® 3ds Max® (.max), and
BlenderTM (.blend) files, as well as Generic FBX files gen-
erated from most animation packages. It should be noted
that importing from .blend files necessitates the installa-
tion of BlenderTM locally.

Data from Imported Animation Files
May Be Seen and Copied

In the Animation pane, we can see the keyframes and
curves of imported animation clips. When these imported
clips include a lot of bones and keyframes, the amount of
information might appear overwhelming.

Select the individual bones we want to look at to narrow
down the view. The keyframes or curves for those bones
are then displayed in the Animation window.

When examining imported Animation keyframes, the
Animation window displays the Animation data in a read-
only mode.

To modify this data, open Unity and create a new
empty Animation Clip (see Creating a New Animation
Clip), then select, copy, and paste the Animation data
from the imported Animation Clip into your new, editable
Animation Clip.

AVATARS WITH HUMANOID
The Unity Animation System includes features designed
specifically for working with humanoid characters.
Because humanoid figures are ubiquitous in games, Unity

152 ◾ Mastering Unity

consists of a specific workflow and a comprehensive toolset
for humanoid animations.

Unity’s Avatar system determines if an animated model
is humanoid in layout and which model portions correlate
to the legs, arms, head, and body.

Because the bone structures of numerous humanoid fig-
ures are identical, it is possible to transfer motions from
one to the other, permitting retargeting and inverse kine-
matics__ (IK)__.

ADDING HUMANOID MOVEMENTS
TO A MODEL
This webinar will guide us through the steps of importing
a model for use with Unity’s Animation System.

The Animation System supports two kinds of models:

1. A humanoid model is a specialized structure contain-
ing at least 15 bones that are structured to adhere to
a real human skeleton loosely. This page offers infor-
mation on how to import this type of model.

2. Everything else is a Generic model. This might range
from a teakettle to a dragon. See Importing a model
with non-humanoid animations for details on how to
do so.

Overview

When Unity imports Model files containing Humanoid
Rigs and Animation, it must reconcile the Model’s bone
structure to its Animation. It accomplishes this by map-
ping each bone in the file to a Humanoid Avatar so that
the Animation may be correctly played. Because of all this,

Animation in Unity ◾ 153

it is critical to prepare our Model file before importing it
into Unity thoroughly.

• Create the Avatar and define the Rig type.

• Correct or confirm the mapping of the Avatar.

• When we’re done with the bone mapping, we may go
to the Muscles & Settings tab to change the Avatar’s
muscle configuration.

• We may save the mapping of your skeleton’s bones to
the Avatar as a Human Template (.ht) file if you like.

• By designing an Avatar Mask, we may limit the ani-
mation that is imported on certain bones.

• Enable the Import Animation option from the
Animation tab before configuring the other Asset-
specific settings.

• If the file has numerous animations or actions, you
may use Animation Clips to specify particular action
ranges.

• Alter the posture and root transformation.

• Looping should be optimized.

• The animation should be replicated on both sides
of the humanoid skeleton.

• To animate the timings of other things, add
curves to the clip.

• Add events to the clip to activate specific actions
in sync with the animation.

154 ◾ Mastering Unity

• Discard a portion of the animation the same way
as a runtime Avatar Mask would, but this time at
import time.

• To drive the action, select a different Root Motion
Node.

• Read any messages from Unity regarding the
import of the clip.

• View a sneak peek of the animation clip.

• To save our changes, select the Apply button at the
bottom of the Import Settings window, or Revert to
reverse them.

Avatar Setup

Set the Animation Type to Humanoid on the Inspector
window’s Rig tab. The Avatar Definition attribute is set
to Create from This Model by default. If we preserve this
option, Unity will attempt to map the set of bones described
in the file to a Humanoid Avatar.

In certain circumstances, we may alter this option to
Copy From Other Avatar to utilize an Avatar we’ve already
created for another Model file. For example, suppose we
construct a Mesh (skin) in our 3D modeling application
with multiple individual animations. In that case, you may
export the Mesh to a single FBX file and each animation to
a separate FBX file. When importing these files into Unity,
we need to make one Avatar for the first file (usually the
Mesh). We may reuse that Avatar for the rest of the files as
long as they all utilize the same bone structure (for exam-
ple, all the animations).

Animation in Unity ◾ 155

If we activate this option, we must set the Source attri-
bute to designate the Avatar we wish to use.

We can also change the maximum number of bones that
can affect a single vertex with the Skin Weights property.
This parameter restricts impact to four bones by default,
but we can select more or less.

Unity attempts to match the current bone structure to
the Avatar bone structure when clicking the Apply button.
It can accomplish this automatically in many circumstances
by examining the relationships between the bones in the rig.

A check mark displays next to the Configure menu if
the match is successful. In addition, Unity adds an Avatar
sub-Asset to the Model Asset, which can be found in the
Project view.

Unity was able to match the essential bones, resulting
in a successful match. However, for best results, match the
optional bones and place the model in a suitable T-pose.

If Unity is unable to build the Avatar, across shows next
to the Configure button, and there is no Avatar sub-Asset
in the Project view.

Because the Avatar is such a crucial part of the anima-
tion system, we must configure it correctly for our Model.

As a result, regardless of whether the automated Avatar
creation succeeds or fails, we should constantly double-
check that our Avatar is legitimate and correctly set up.

Configure the Avatar

If we wish to verify that Unity correctly mapped your model’s
bones to the Avatar, or if Unity failed to construct the Avatar
for your model, we may enter the Avatar configuration mode
by clicking the Configure… button on the Rig tab.

156 ◾ Mastering Unity

If Unity produces an Avatar successfully, the Avatar
appears as a sub-Asset of the model Asset. Pick the Avatar
Asset in the Project window and click the “Configure
Avatar” button in the Inspector to enter the Avatar con-
figuration mode. This mode enables us to see and modify
how Unity maps your model’s bones to the Avatar layout.

When we enter Avatar configuration mode, the Avatar
window in the Inspector displays, displaying bone mapping.

Check that the bone mapping is proper and that Unity
did not assign any optional bones to be mapped.

For Unity to create a valid match, our skeleton must
have at least the required bones in place. To increase our
chances of discovering a match for the Avatar, name our
bones after the body parts they represent. For example,
the terms “LeftArm” and “RightForearm” make it obvious
what these bones regulate.

Strategy Mapping

If the model does not produce a proper match, we can use
a similar procedure to the one Unity employs:

• To clear any mapping that Unity tried, select Clear from
the Mapping option at the bottom of the Avatar window.

• To mimic the Model’s original modeling stance,
select Sample Bind-position from the Pose menu at
the bottom of the Avatar window.

• To construct a bone-mapping from an initial posture,
go to Mapping > Automap.

• Select Pose > Enforce T-Pose to return the Model to
the desired T-pose.

Animation in Unity ◾ 157

If the automapping fails totally or partially, we may
manually assign bones by dragging them from the Scene
or Hierarchy views. If Unity feels a bone is appropriate, it
will display green on the Avatar Mapping tab; otherwise, it
will appear red.

Changing the Pose

The T-position is the default stance required by Unity ani-
mation and is the best pose to build in any 3D modeling
software. If, on the other hand, you did not use the T-pose
to build our character and the animation does not operate
as planned, we may reset the animation by selecting Reset
from the Pose drop-down menu:

If the bone assignment is accurate, but the character
is not in the proper posture, the message “Character not
in T-Pose” will appear. We can attempt to correct this by
selecting Enforce T-Pose from the Pose option. If the posi-
tion remains incorrect, manually rotate the other bones
into a T-pose.

How to Make an Avatar Mask

Masking allows us to remove some of the animation data
from a clip, enabling it to animate specific bits of an object
or figure rather than the entire thing. For example, we may
have a conventional walking animation that includes both
arm and leg action, but if a character carries a massive
object with both hands, we wouldn’t want their arms swing-
ing to the side while they walk. We could, however, utilize
the usual walking animation while carrying the object by
masking the upper body element of the carrying animation
and playing it over the top of the walking motion.

158 ◾ Mastering Unity

Masking may be applied to animation clips during
import or runtime. Masking during import time is desir-
able since it allows rejected animation data to be removed
from our build, making the files smaller and therefore con-
suming less RAM. It also speeds up processing because less
animation data need to be combined at runtime. Import
masking may not be appropriate for your needs in some
circumstances. In such a situation, we may apply a mask at
runtime by generating an Avatar Mask Asset and utilizing
it in our Animator Controller’s layer settings.

To make an empty Avatar Mask Asset, you can do one
of two things:

1. From the Assets menu, select Create > Avatar Mask.

2. In the Project view, choose the Model object for which
we wish to define the mask, then right-click and select
Create > Avatar Mask.

ADDING NON-HUMANOID (GENERIC)
ANIMATIONS TO A MODEL
This section outlines how to import a model for use with
Unity’s Animation System. See Creating models for ani-
mation for information on how to create a model for use
with the Animation System.

The Animation System supports two kinds of models:

1. A humanoid model is a specialized structure con-
taining at least 15 bones that are structured to adhere
to a real human skeleton loosely. Importing a model
with humanoid animations includes instructions on
how to do it.

Animation in Unity ◾ 159

2. Everything else is a Generic model. This might range
from a teakettle to a dragon. This page offers infor-
mation on how to import this type of model.

Outline

When we import a Generic model into Unity, we must
specify which bone is the Root node. This effectively deter-
mines the center of mass of the model.

Generic setups do not use the Humanoid Avatar win-
dow since there is only one bone to map. Consequently,
preparing to import a non-humanoid model file into Unity
needs fewer steps than preparing a humanoid model.

• Configure our Rig to be Generic.

• By designing an Avatar Mask, you may limit the ani-
mation that is imported on certain bones.

• Enable the Import Animation option from the
Animation menu, and then configure the other
Asset-specific parameters.

• If the file has many animations or actions, we may
use Animation Clips to define specified frame ranges.

• We may do the following for each Animation Clip
described in the file:

• Configure the posture and root transform.

• Looping should be optimized.

• To animate the timings of other things, add
curves to the clip.

160 ◾ Mastering Unity

• Add events to the clip to activate specific actions
in sync with the animation.

• Discard a portion of the animation the same way
as a runtime Avatar Mask would, but this time at
import time.

• To drive the action, select a different Root Motion
Node.

• Read any messages from Unity regarding the
import of the clip.

• View a sneak peek of the animation clip.

• Click the Apply button at the bottom of the Import
Settings box to preserve our changes, or Revert to
undo them.

Setting Up the Rig

Set the Avatar (animation) type to Generic on the Inspector
window’s Rig tab. The Avatar Definition property is set to
Create From This Model by default, and the Root node
option is set to None.

In some circumstances, we may change the Avatar
Definition option to Copy From Other Avatar to utilize
an Avatar we already created for another Model file by
changing the Avatar Definition option to Copy From
Other Avatar. For example, suppose we construct a Mesh
(skin) in your 3D modeling application with multiple
individual animations. In that case, we may export the
Mesh to a single FBX file and each animation to a sepa-
rate FBX file.

Animation in Unity ◾ 161

When importing these files into Unity, we just need to
make one Avatar for the first file (usually the Mesh). We may
reuse that Avatar for the rest of the files as long as they all
utilize the same bone structure.

If we keep the Create From This Model option selected,
we’ll need to choose a bone from the Root node property.

If we choose Copy From Other Avatar as the Avatar
Definition option, we must indicate which Avatar you wish
to use by selecting the Source attribute.

We can also modify the maximum number of bones
impacting a specific vertex with the Skin Weights property.
This parameter restricts impact to four bones by default,
but we can select more or less.

Unity produces a Generic Avatar and adds an Avatar
sub-Asset under the Model Asset in the Project view when
clicking the Apply button.

It should be noted that the Generic Avatar is not the
same as the Humanoid Avatar, although it does display in
the Project view and has the Root node mapping. However,
when we click on the Avatar icon in the Project view to
expose its properties in the Inspector, only its name dis-
plays, and no Configure Avatar button appears.

How to Make an Avatar Mask

Masking may be applied to animation clips either during
import or at runtime. Masking during import time is desir-
able since it allows rejected animation data to be removed
from our build, making the files smaller and therefore
consuming less RAM. It also speeds up processing because
less animation data need to be combined at runtime.

162 ◾ Mastering Unity

Import masking may not be appropriate for our needs in
some circumstances. In such a situation, we may apply a
mask at runtime by generating an Avatar Mask Asset and
utilizing it in our Animator Controller’s layer settings.

To make an empty Avatar Mask Asset, we can do one of
two things:

1. From the Assets menu, select Create > Avatar Mask.

2. In the Project view, choose the Model object for
which we wish to define the mask, then right-click
and select Create > Avatar Mask.

We may now select which bones to include or omit from
a Transform hierarchy before adding the mask to an
Animation Layer or adding a reference inside the Mask
portion of the Animation tab.

Model Import Settings Dialogue Box

Bear in mind that these options are only for import-
ing models and animations made in most 3D modeling
software. Models built in SketchUp and SpeedTree, on
the other hand, make use of particular parameters. See
SketchUp Settings and SpeedTree Import Settings for fur-
ther details.

When we place Model files in our Unity Project’s Assets
folder, Unity automatically imports and saves them as
Unity Assets. Select the file in the Project window to open
the Inspector window and examine the import settings.
Set the settings on the four tabs on this window to modify
how Unity imports the specified file:

Animation in Unity ◾ 163

A 3D Model might depict a person, a structure, or a
piece of furniture. Unity generates numerous Assets from
a single model file in certain circumstances. The main
imported item in the Project window is a model Prefab.
Typically, the model Prefab will additionally reference sev-
eral Mesh objects.

A Rig (also known as a skeleton) is a collection of
deformers organized in a hierarchy that animate a Mesh
(also known as skin) on one or more models built in a
3D modeling application such as Autodesk® 3ds Max® or
Autodesk® Maya®. Unity generates an Avatar for Humanoid
and Generic (non-humanoid) Models to reconcile the
imported Rig with the Unity GameObject.

As an Animation Clip, we may describe any number
of various stances that occur throughout a set of frames,
such as walking, running, or simply idling (moving from
one foot to the other). We may reuse clips for any Model
with the same Rig. A single file may include numerous dis-
tinct actions, each of which may be defined as a separate
Animation Clip.

Materials and textures can be extracted or left included
in the model. You may also change how Material is repre-
sented in the Model.

THE MODEL TAB
When we pick a Model, the Import Settings for that Model
display on the Model tab of the Inspector window. These
options have an impact on the Model’s numerous compo-
nents and attributes. Unity imports each Asset using these
parameters; thus, we may change any settings to apply to
various Assets in our Project.

164 ◾ Mastering Unity

This section contains information on each of the Model
tab’s sections:

A. Scene-level settings, such as whether to import Lights
and Cameras and what scale factor to apply.

B. Meshes-specific properties.

C. Geometry-related features, such as topology, UVs,
and normals.

Scene

Property Function
Scale Factor When the original file scale (from the Model

file) does not meet the specified scale in your
Project, set this value to apply a global scale to
the imported Model, the physics system in
Unity expects 1 meter in the game world to
equal 1 unit in the imported file.

Convert Units Enabling this option causes the Model scaling
defined in the Model file to be converted to
Unity’s scale.

Bake Axis
Conversion

When we import a Model that utilizes a different
axis system than Unity, enable this feature to
bake the results of axis conversion directly into
our application’s Asset data (for example, vertex
or animation data). Disable this parameter to
adjust the root GameObject’s Transform
component at runtime to mimic axis conversion.

Import
BlendShapes

Allow Unity to import blend shapes with our
Mesh by enabling this feature. For further
information, see Importing blend shapes.

Import Visibility Import the FBX parameters that determine
whether MeshRenderer components are
enabled or not (visible).

(Continued)

Animation in Unity ◾ 165

Import Cameras Cameras from our .FBX files can be imported.
Import Lights Lights from our .FBX file should be imported.
Preserve Hierarchy Even if this model only has one root, always

generate an explicit prefab root. As an
optimization tactic, the FBX Importer usually
removes any empty root nodes from the model.
If we have multiple FBX files with different
parts of the same hierarchy, we may use this
option to keep the original structure.

File1.fbx, for example, has a rig and a Mesh, but
file2.fbx contains the same rig but simply the
animation for that rig. If we import file2.fbx
without checking this box, Unity removes the
root node, the hierarchies do not match, and
the animation breaks.

Sort Hierarchy By
Name

Enable this feature to rank GameObjects inside
the hierarchy alphabetically. To keep the
hierarchical order defined in the FBX file,
disable this parameter.

Blend Shapes Importing

Unity supports blend shapes (morphing) and can import
blend shapes from 3D modeling programs’ FBX and DAE
files. Animated FBX files can also be imported. Blend
forms on vertices, normals, and tangents may be animated
at the vertex level in Unity.

Meshes can be affected by both skins and blend forms
at the same time. When Unity imports Meshes with blend
shapes, it utilizes the SkinnedMeshRenderer component
(rather than the MeshRenderer component), yet if the
mesh has skin or not.

Unity imports blend shape animation as part of stan-
dard animation: it animates blend shape weights on
SkinnedMeshRenderers.

Property Function

166 ◾ Mastering Unity

To import blend shapes using normals, use one of the
two following methods:

1. Set the Blend Shape Normals to attribute to Import so
that Unity may use the FBX file’s normals.

2. Set the Blend Shape Normals option to Compute, and
Unity will use the same logic to calculate normals on
a Mesh and blend shapes.

Visibility Importing

The Import Visibility feature in Unity may read visibil-
ity properties from FBX files. By adjusting the Renderer.
enabled property, values and animation curves can acti-
vate or disable MeshRenderer components.

Visibility inheritance is enabled by default, although it
may be disabled. For example, if a parent Mesh’s visibility
is set to 0, all children’s renderers are similarly disabled. In
this scenario, one animation curve is constructed for each
Renderer.enabled parameter of the child.

Some 3D modeling software does not support or have
restrictions on visibility attributes. More information may
be found at:

• Importing Models from Autodesk® Maya® into Unity
has several limitations.

• Importing Blender models into Unity has certain
limitations.

Animation in Unity ◾ 167

Cameras Importing

When importing Cameras from an .FBX file, Unity supports
the following properties:

Property Function
Projection mode Perspective or orthographic. Animation is

not supported.
Field of View Animation is supported.
All Physical Camera
characteristics

When we import a Camera with Physical
Properties (for example, from Maya),
Unity builds a Camera with the Physical
Camera attribute enabled and the values
from the FBX file for Focal Length,
Sensor Type, Sensor Size, Lens Shift, and
Gate Fit.

Near and Far Clipping
Plane distance

On these settings, Unity does not import
any animation. Enable the Clip Manually
setting when exporting from 3ds Max;
otherwise, the default settings are used
on import.

Target Cameras When importing a Target Camera, Unity
constructs a camera with a LookAt
constraint that uses the source as the
target object.

Light Import

The following light kinds are supported:

• Spot.

• Omni.

• Area.

• Directional.

168 ◾ Mastering Unity

Light characteristics such as the ones listed below are
supported:

Property Function
Range If UseFarAttenuation is enabled, the

FarAttenuationEndValue is utilized. Animation is
not supported by FarAttenuationEndValue.

Color Animation is supported.
Intensity Animation is supported.
Spot Angle Animation is supported. Spot lights are the only ones

that have this option.

Restrictions

Scaling on light characteristics is used in several 3D mod-
eling applications. For example, we may change the light
cone by scaling a spot light based on its hierarchy. Because
Unity does not perform this, lighting may seem different
in the game.

The width and height of area lights are not defined in
the FBX format. Some 3D modeling software lacks this fea-
ture and must rely on scaling to determine the rectangular
region. As a result, when imported, area lights always have
a size of 1.

Targeted light animations aren’t supported unless
they’re baked.

THE RIG TAB
The Rig tab options control how Unity assigns the deform-
ers to the Mesh in the imported Model to be animated.
This entails giving or establishing an Avatar for humanoid
characters. This entails locating a Root bone in the skeleton
for non-humanoid (Generic) characters.

Animation in Unity ◾ 169

When we pick a Model in the Project view, Unity auto-
matically calculates which Animation Type best suits the
Model and presents it in the Rig tab. If the file has never
been imported into Unity, the Animation Type is set to
None.

Property Function
Animation Type Specify the animation style.
None There is no animation.
Legacy The Legacy Animation System should be used.

Import and utilize animations in the same way
as we did in Unity 3.x and before.

Generic If our rig is not humanoid, use the Generic
Animation System (quadruped or any entity
to be animated). Unity chooses a root node
for us, but we may specify another bone to
serve as the root node instead.

Humanoid If our rig is humanoid, use the Humanoid
Animation System (two legs, two arms, and a
head). Unity typically recognizes the skeleton
and accurately transfers it to the Avatar. In
some circumstances, we may need to update
the Avatar Definition and manually configure
the mapping.

Types of Generic Animation

Avatars are not used in Generic Animations, as they are
in Humanoid Animations. We must indicate which bone
is the Root node since the skeleton might be arbitrary. The
Root node enables Unity to maintain consistency across
Animation clips for a Generic model and blend appropri-
ately between Animations that were not created “in place”
(that is, where the whole model moves its world position
while animating).

170 ◾ Mastering Unity

Specifying the root node assists Unity in distinguishing
between the movement of the bones relative to one another
and the movement of the Root node in the environment
(controlled from OnAnimatorMove).

Property Function
Avatar Definition Select where we want to acquire the Avatar

definition.
Create from this
model

Create an Avatar with this model.

Copy from Other
Avatar

Point to an Avatar that has been set up on another
model.

Root Node Choose a bone to serve as the Avatar’s root node.
This option is only accessible if the Avatar
Definition is set to Create From This Model.

Source Import animation clips from another Avatar
with the same setup.

If the Avatar Definition is set to Copy from Other
Avatar, this feature is only available.

Skin Weights Set a maximum number of bones that can
influence a single vertex.

Standard
(4 Bones)

Use a maximum of four bones to exert maximum
influence. This is the default option and is
preferred for best results.

Custom Set our limit for the number of bones.
The Max Bones/Vertex and Max Bone Weight
attributes appear when we pick this option.

Max Bones/
Vertex

Set the maximum number of bones that a
specific vertex can influence. We can specify one
to 32 bones per vertex; however the more
bones we utilize to impact a vertex, the higher
the performance penalty.

This option is only accessible if the Skin Weights
parameter is set to Custom.

(Continued)

Animation in Unity ◾ 171

Max Bone Weight Set the lower limit for taking into account bone
weights. The weighting formula disregards
anything less than this number, and Unity
ramps up bone weights more than this value to
a total of 1.0.

Only if the Skin Weights attribute is set to
Custom is this option available.

Optimize Game
Object

Remove and save the imported character’s
GameObject Transform hierarchy in the Avatar
and Animator component. When enabled, the
character’s SkinnedMeshRenderers utilize the
internal skeleton of the Unity animation
system, which increases the performance of
animated figures.

If the Avatar Definition is set to Create From
This Model, this option is only available.

Extra Transforms
to Expose

When Optimize Game Object is enabled, we
may specify which Transform routes Unity
should disregard. See Including Extra
Transforms for further details.

This section is only shown if Optimize Game
Object is enabled.

TAB AVATAR MAPPING
When the Unity Editor is in Avatar Configuration mode,
the Avatar Mapping tab appears.

To enter Avatar Configuration mode, do one of the
following:

1. In the Project window, choose the Avatar Asset and
then click “Configure Avatar” in the Inspector, or

2. Select the Model Asset in the Project window,
navigate to the Inspector’s “Rig” tab, and click
“Configure…” under the Avatar Definition menu.

Property Function

172 ◾ Mastering Unity

When we are in Avatar Configuration mode, the
Inspector displays the Avatar Mapping tab, which displays
Unity’s bone mapping:

A. Toggle between the Mapping and Muscles & Settings
tabs using these buttons. Before going between tabs,
we must Apply or Revert any changes we’ve made.

B. Buttons for switching between the Avatar’s sections:
Body, Head, Left Hand, and Right Hand.

C. Menus with numerous Mapping and Pose tools to
assist us in mapping the bone structure to the Avatar.

D. Buttons for accepting modifications (Accept), revert-
ing changes (Revert), and exiting the Avatar window
(Done). Before exiting the Avatar window, we must
Apply or Revert any changes we’ve made.

Avatar Data Saving and Reuse

The mapping of bones in our skeleton to the Avatar can
be saved on disc as a Human Template file (extension *.ht).
This mapping may be used for any character. For example,
suppose we want to commit the Avatar mapping to source
control and prefer text-based files; or suppose we want to
parse the file with our custom tool.

Choose Store from the Mapping drop-down option at
the bottom of the Avatar window to save the Avatar data in
a Human Template file.

Unity shows a dialogue window in which we may spec-
ify the name and location of the saved file.

To load a previously prepared Human Template file, go
to Mapping > Load and pick the file.

Animation in Unity ◾ 173

Making Use of Avatar Masks

It might be advantageous to limit animation to particular
body parts at times. For example, in a strolling motion, the
figure may sway their arms, but if they pick up a torch, they
should hold it up to shed light. An Avatar Body Mask may
be used to determine which areas of a character’s anima-
tion should be confined to.

THE AVATAR MUSCLE AND SETTINGS TAB
Using Muscles, we may control the range of motion of vari-
ous bones in Unity’s animation system.

When the Avatar is appropriately set, the animation sys-
tem “understands” the bone structure and allows us to use
the Muscles & Settings tab of the Avatar’s Inspector. Use
the Muscles & Settings page to fine-tune the character’s
range of motion and verify that the character deforms con-
vincingly, without visual artifacts or self-overlaps.

The Muscle & Settings tab has the following sections:

A. Switches between the Mapping and Muscles &
Settings tabs. Before going between tabs, we must
Apply or Revert any changes we’ve made.

B. Manipulate the character using predetermined defor-
mations in the Muscle Group Preview box. These have
an impact on many bones at the same time.

C. Adjust particular bones in the body using the Per-
Muscle Settings section. We may adjust the range
limitations of any option by expanding the muscle set-
tings. For example, Unity’s Head-Nod and Head-Tilt

174 ◾ Mastering Unity

parameters have a default range of –40 to 40 degrees,
but you may drop these ranges even more to stiffen
these motions.

D. Adjust particular effects in the body using the
Additional Settings.

E. The Muscles menu has a Reset button that resets all
muscle parameters to their preset levels.

F. Buttons for accepting modifications (Accept), revert-
ing changes (Revert), and exiting the Avatar window
(Done). Before exiting the Avatar window, we must
Apply or Revert any changes we’ve made.

Changes Being Previewed

We may see the changes in the Muscle Group Preview and
Per-Muscle Settings sections right in the Scene view. We
can view the range of mobility for each setting applied
to our character by dragging the sliders left and right.

Through the Mesh, we can see the skeleton’s bones.

Degree of Freedom Translate

To enable translation animations for the humanoid, activate
the Translate DoF option in the Additional Settings. When
this option is deactivated, Unity only uses rotations to ani-
mate the bones. Translation DoF is accessible for the fol-
lowing muscles: Chest, UpperChest, Neck, LeftUpperLeg,
RightUpperLeg, LeftShoulder, and RightShoulder.

Enabling Translate DoF may raise performance require-
ments since the animation system must execute an addi-
tional step to retarget humanoid animation. As a result,

Animation in Unity ◾ 175

we should only use this option if we know our animation
incorporates animated translations of some of our charac-
ter’s bones.

THE WINDOW FOR AVATAR MASK
There are two methods for specifying which elements of
our animation should be masked:

1. By choosing a humanoid body map.

2. By specifying which bones should be included or
excluded from a Transform hierarchy.

Choosing a Humanoid Body

If our animation includes a Humanoid Avatar, we may
use the simplified humanoid body diagram to determine
where to hide the animation.

The body diagram divides the body into the following
sections:

• Head.

• Right Arm.

• Left Arm.

• Right Hand.

• Left Hand.

• Right Leg.

• Left Leg.

• Root.

176 ◾ Mastering Unity

To add motion to one of these bodily parts, click the Avatar
diagram for that part until it turns green. To turn off ani-
mation, click the body part until it turns red. Double-click
the empty space around the Avatar to include or omit
everything.

Toggle Inverse Kinematics__ (IK)__ for hands and feet,
which regulates whether or not IK curves are included in
animation mixing.

Selection of a Transform

If our animation does not employ a Humanoid Avatar,
or if we want more control over which specific bones are
masked, we can pick or deselect elements of the Model’s
hierarchy:

• Assign a reference to the Avatar whose transforma-
tion we want to hide.

• Select the Import Skeleton option. In the inspector,
we can see the avatar’s hierarchy.

• We may check each bone in the hierarchy to see
which one we want to use as our mask.

Mask Assets can be utilized in Animator Controllers when
defining Animation Layers or in the import settings of
our animation files to apply masking during the import
animation.

Masks have the advantage of reducing memory over-
heads since body parts that are not active do not require
their corresponding animation curves. Furthermore, the
unused curves do not need to be computed during play-
back, which reduces the animation’s CPU cost.

Animation in Unity ◾ 177

HUMAN TEMPLATE WINDOW
A Human Template file (*.ht) is a YAML file that holds a
humanoid bone mapping for a Model that we saved in the
Avatar window.

The contents of Human Template files are shown
as ordinary Unity text fields in the Human Template
window.

Each grouping corresponds to a YAML file entry, with
the name of the bone mapping target labeled First and the
name of the bone in the Model file labeled Second.

This attribute allows us to alter most of the data in
this file; however, any modification we make to the file is
instantaneously updated by Unity. We may, however, undo
any changes made while this window is open.

ANIMATION WINDOW INSTRUCTIONS
The Animation Window in Unity allows us to create
and edit Animation Clips from within the program. It is
intended to be a strong and simple alternative to external
3D animation applications. In addition to animating move-
ment, the editor allows us to animate material and compo-
nent variables and supplement our Animation Clips with
Animation Events, which are functions that are invoked at
specific times along the timeline.

MAKING USE OF THE ANIMATION VIEW
In Unity, the Animation view is used to examine and mod-
ify Animation Clips for animated GameObjects. In Unity,
navigate to Window > Animation to get the Animation
view.

178 ◾ Mastering Unity

Viewing Animations on a GameObject

The Hierarchy window, the Project window, the Scene view,
and the Inspector window are all related to the Animation
window. The Animation window, like the Inspector, dis-
plays the timeline and keyframes of the Animation for the
currently chosen GameObject or Animation Clip Asset.
We may select a GameObject from the Hierarchy window
or the Scene View, or we can select an Animation Clip
Asset from the Project Window.

The List of Animated Properties

The Animation view (left) displays the Animation used
by the currently chosen GameObject and any child
GameObjects controlled by this Animation. The Scene
and Hierarchy views are on the right, indicating that the
Animation view displays the Animations associated with
the currently chosen GameObject.

A list of animated attributes may be seen on the
left side of the Animation view. This list is empty in a
newly produced clip when no animation has yet been
captured.

When we start animating specific attributes in this clip,
the animated properties will display here.

If the animation controls many child objects, the list
will also include hierarchical sub-lists of the animated
attributes of each child item. Different sections of the
Robot Arm’s GameObject hierarchy are animated within
the same animation clip in the preceding example.

When animating a hierarchy of GameObjects within
a single clip, ensure the Animation is created on the root
GameObject in the hierarchy.

Animation in Unity ◾ 179

Each property may be folded and unfolded to display the
precise values captured at each keyframe. The value fields dis-
play the interpolated value if the playback head (the white line)
is between keyframes. We may directly modify these fields.

When adjustments are made while the playback head is
over a keyframe, the values of that keyframe are updated if
modifications are made when the playback head is between
keyframes, a new keyframe with the new value that we
input is produced at that point.

A property in the Animation View has been unfurled,
enabling the keyframe value to be put in directly.

Timeline of Animation

The timeline for the current clip is shown on the right side
of the Animation View. This timeline displays the key-
frames for each animation property. The timeline view
is available in two modes: Dopesheet and Curves. Go to
the bottom of the animated property list area and click
Dopesheet or Curve to switch between these modes.

These provide two different perspectives on the
Animation timeline and keyframe data.

Timeline Mode in Dopesheet

Dopesheet mode provides a more condensed view, letting
us see each property’s keyframe sequence on its horizontal
track. This provides a quick summary of the keyframe
timing for several properties or GameObjects.

Timeline Mode for Curves

Curves mode shows a resizable graph that shows how the
values of each animation attribute vary over time. Within the
same graph view, all chosen attributes display the stack.

180 ◾ Mastering Unity

This mode gives us complete control over how the val-
ues are shown and edited and how they are interpolated
between them.

Fitting Our Choice to the Window

When viewing our Animation in Curves mode, remem-
ber that the varied ranges for each parameter might
vary substantially at times. Consider an introductory
Animation clip of a spinning, bouncing cube. The bounc-
ing Y position value may range from 0 to 2 (meaning the
cube bounces two units high during the animation); how-
ever, the rotation value can range from 0 to 360. (repre-
senting its degrees of rotation). When viewing these two
curves concurrently, the animation curves for the posi-
tion values will be difficult to discern since the view will
be zoomed out to suit the 0–360 range of rotation values
inside the window.

The position and rotation curves of a bouncing spin-
ning cube are chosen, but because the screen is zoomed
out to meet the rotation curve’s 0–360 range, the bouncing
Y position curve is difficult to distinguish.

To zoom in on the currently selected keyframes, press F
on the keyboard. This is excellent for quickly focusing and
resizing the window on a section of our Animation time-
line for better editing.

Click on specific properties in the list and hit F on the
keyboard to re-scale the display to suit the value range.
We may also manually magnify the Curves window by
dragging the handles at either end of the view’s scrollbar
sliders. The Animation Window is zoomed in to show
the bouncing Y position Animation. The beginning of the

Animation in Unity ◾ 181

yellow rotating curve is still visible, but it has now extended
well beyond the top.

To fit and re-scale the window to show all the keyframes
in the clip, press A on the keyboard. If we wish to see the
entire timeline while keeping your current selection, try this.

Controls for Playback and Frame Navigation

Use the Playback Controls at the upper left of the Animation
view to control the playback of the Animation Clip.

These are the controls, from left to right:

• Toggle preview mode on/off.

• Recording mode (on/off) If record mode is enabled,
the preview mode is always enabled.

• Set the playback head to the start of the clip.

• Reposition the playback head to the previous keyframe.

• The animation should be played.

• Navigate the playback head to the next keyframe.

• Place the playback head at the conclusion of the clip.

We may also control the playback head using the keyboard
shortcuts listed below:

• To return to the previous frame, press the Comma (,).

• To go to the next frame, use the Period (.) key.

• To return to the previous keyframe, hold Alt and hit
Comma (,).

• To go to the next keyframe, hold Alt and hit Period (.).

182 ◾ Mastering Unity

Window Locking

We may prevent the Animation editor window from
automatically switching to reflect the currently chosen
GameObject in the Hierarchy or Scene by locking it.
Locking the window is essential if we want to concentrate
on the Animation of one GameObject while still selecting
and manipulating other GameObjects in the Scene.

MAKE A NEW ANIMATION CLIP
Select a GameObject in our Scene and open the Animation
Window to create a new Animation Clip (top menu:)
Animation may be accessed via Window > Animation >
Animation.

If no Animation Clips have been added to the
GameObject, the “Create” button shows in the Animation
Window timeline area.

Select the Create option. Unity invites us to save our
newly created empty Animation Clip to our Assets folder.

Unity does the following actions when you save this new
empty Animation Clip:

• This function generates a new Animator Controller
Asset.

• The new clip is added as the default state to the
Animator Controller.

• Adds an Animator Component to the GameObject to
which animation is being applied.

• The new Animator Controller is assigned to the
Animator Component.

Animation in Unity ◾ 183

Including Another Animation Clip

The “Create” button is not shown if the GameObject
already has allocated one or more Animation Clips. In
the Animation window, instead, one of the existing clips
is displayed. To switch between Animation Clips, utilize
the menu located in the top-left corner of the Animation
window, next to the playback controls.

Select Create New Clip from this menu to add a new
Animation Clip to an existing GameObject’s animations.
Before we can start on your new empty Animation Clip,
Unity invites us to save it.

How It All Works Together

The preceding steps automatically create the necessary
components and references. It is, nonetheless, beneficial to
understand how the components fit together.

• An Animator component is required for a GameObject.

• An Animator Controller Asset must be attached to
the Animator component.

• One or more Animation Clips must be attached to
the Animator Controller Asset.

Following the creation of a new Animation Clip, we will
now be able to see:

• The Animation Window (top left) displays a timeline
with a white playback headline, ready for recording
new keyframes. The name of the clip may be seen in
the clip menu, directly below the playback controls.

184 ◾ Mastering Unity

• The Inspector (center) reveals that the “Cube”
GameObject contains an Animator Component. The
Controller field of the component reveals that it is
assigned to an Animator Controller Asset named Cube.

• The Project Window (bottom right) displays two new
Assets: an Animator Controller Asset called Cube and
an Animation Clip Asset called Cube Animation Clip.

• The Animator Window (bottom left) displays the
Animator Controller’s contents. There is a Cube
Animation Clip on the controller, and it is in the
default state (as indicated by the orange color).
Subsequent clips added to the controller are grey,
indicating that they are not in the default condition.

ADDING ANIMATION TO A GAMEOBJECT
After we’ve saved the new Animation Clip Asset, we can
start adding keyframes to the clip.

In the Animation window, we have two options for ani-
mating GameObjects: Record Mode and Preview Mode.

1. Record Mode: When we move, rotate, or otherwise
adjust any animatable property on our animated
GameObject in record mode, Unity automatically
produces keyframes at the playback head. To enable
record mode, press the button with the red circle.
When in record mode, the Animation window time
line is shaded red.

2. Preview Mode: Modifying our animated GameObject
in preview mode does not immediately produce
keyframes. Each time we change the state of your

Animation in Unity ◾ 185

GameObject, we must manually add keyframes (for
example, moving or rotating it). To enable preview
mode, click the Preview button. When in preview
mode, the Animation window time line is shaded blue.

Keyframes Recording

Click the Animation Record button to start recording
keyframes for the selected GameObject. This activates
Animation Record Mode, which records changes to the
GameObject into the Animation Clip.

Once in Record mode, we may add keyframes by drag-
ging the white Playback head to the desired time on the
Animation time line and then modifying our GameObject
to the correct state at that point in time.

Changes to the GameObject are saved as keyframes at
present, shown by the white line in the Animation Window.

Any modification to an animatable property (such as its
position or rotation) will result in the appearance of a key-
frame for that property in the Animation window.

Selecting or dragging in the time line bar changes the
playback head and displays the status of the animation at
the current time of the playback head.

The Animation window is seen in record mode. The
time line bar has a red tint, indicating that it is in record
mode, and the animation properties have a red backdrop
in the inspector.

By pressing the Record button again, we can exit the
Record Mode at any moment. When we exit Record mode,
the Animation window transitions to Preview mode,
allowing us to see the GameObject at its current position
along the animation time line.

186 ◾ Mastering Unity

We may animate any GameObject property by altering
it while in Animation Record Mode. Moving, rotating, or
scaling the GameObject adds keyframes to the animation
clip for those attributes.

While in Record mode, adjusting values directly in the
GameObject’s inspector inserts keyframes. This is true
for each animatable property in the inspector, including
numeric values, checkboxes, colors, and the majority of
other values.

Any GameObject attributes that are now animated are
listed on the left side of the Animation Window. This win-
dow does not display properties that are not animated. Any
new properties that you animate, including those on child
objects, are added to the property list area as soon as they
are active.

Transform attributes are unique in that the .x, .y, and .z
properties are connected, allowing curves to be inserted
for all three simultaneously.

By pressing the Add Property button, you may also add
animatable properties to the current GameObject (and
its descendants). When we click this button, a list of the
GameObject’s animateable characteristics appears in a
pop-up window.

These correspond to the properties specified in the
inspector.

The white vertical line in Preview or Record mode indi-
cates which frame of the Animation Clip is presently being
previewed. The GameObject is visible in the Inspector and
Scene View at that frame of the Animation Clip. The ani-
mated properties’ values at that frame are also displayed in
a column to the right of the property names.

Animation in Unity ◾ 187

Time Line

We may shift the playback head to any frame on the
Animation window time line by clicking anywhere and
then previewing or adjusting that frame in the Animation
Clip. The numbers on the time line are shown in sec-
onds and frames; thus, 1:30 equals one second and thirty
frames.

In Preview Mode, You May Create Keyframes

In addition to using Record mode to produce keyframes
automatically when you alter a GameObject, we may create
keyframes in Preview mode by modifying a GameObject
property and then manually choosing to create a keyframe
for that property.

In preview mode, animation properties in the Inspector
window are shaded blue. When we notice this blue tint, it
implies that these values are being driven by the animation
clip’s keyframes that are now displayed in the animation
window.

If we change any of these blue-tinted properties while
previewing, the GameObject enters a changed animation
state. This is indicated by a pink hue shift in the tone of the
inspection field. Because we are not in record mode, your
change has not yet been stored as a keyframe.

Making Keyframes by Manually

When we have edited a GameObject in preview mode, there
are three ways to generate a keyframe manually.

We may add a keyframe by right-clicking the prop-
erty label of the property we’ve updated and selected

188 ◾ Mastering Unity

“Add a keyframe for just that property” or “Add a key-
frame for all animated properties”:

When we add a keyframe, the new keyframe appears as
a diamond symbol in the animator window. The property
field returns to a blue tint, indicating that our change was
stored as a keyframe and that we are now seeing a value
driven by the animation keyframes.

In the Animation window, we can also create a key-
frame by clicking the Add Keyframe button:

Alternatively, we may insert a keyframe using the hot-
keys K or Shift-K, as indicated below:

• Keyboard shortcuts:

• K: Key all animated. Adds a keyframe for all ani-
mated properties in the animation window at the
current location of the playback head.

• Shift-K: Modify all keys. Only adds a keyframe
for animated properties that have been changed
at the current location of the playback head in the
animation window.

CONTROLLERS FOR ANIMATORS
An Animator Controller is used to create and manage a
collection of animations for a character or other animated
Game Object.

The controller contains references to the animation clips
utilized inside it. It controls the many animation states and
transitions among them using a State Machine, which may
be thought of as a flowchart or a basic program written in
Unity’s visual programming language.

Animation in Unity ◾ 189

UNITY’S NAVIGATION SYSTEM
We may design characters that can travel the game
environment using the Navigation System. It enables
our characters to comprehend that they must use stairs
to reach the second storey or leap to cross a ditch. The
Unity NavMesh system is made up of the following
components:

• NavMesh (short for Navigation Mesh) is a data struc-
ture that defines the game world’s walkable surfaces
and allows us to identify a path from one walkable
area to another. The data structure is generated auto-
matically based on your level geometry.

• The NavMesh Agent component allows us to design
characters who avoid one other as they go toward
their goal. Agents use the NavMesh to reason about
the gaming world, and they know how to avoid each
other as well as moving obstacles.

• The Off-Mesh Link component enables us to provide
navigation shortcuts that a walkable surface can-
not represent. Off-mesh linkages include things like
jumping over a ditch or a fence or unlocking a door
before stepping through it.

• We may use the NavMesh Obstacle component to
define moving impediments that agents avoid while
navigating the globe. An obstacle is anything like a
barrel or a container that is regulated by the physics
system. The agents try their best to avoid the obsta-
cle while it is moving. Still, once it gets stationary,

190 ◾ Mastering Unity

it will cut a hole in the NavMesh so that the agents
may modify their courses to steer around it, or if the
stationary obstruction is blocking the primary way,
the agents can choose another route.

Designing User Interfaces (UI)

Unity offers three UI systems for creating UI for the Unity
Editor and apps created in the Unity Editor:

1. The Unity UI package.

2. UI Toolkit.

3. IMGUI.

Toolkit for UIs
The UI Toolkit is Unity’s newest UI system. It is built on
standard web technologies and is intended to improve per-
formance across platforms. When we install the UI Toolkit
package, we may use it to develop extensions for the Unity
Editor as well as runtime UI for games and applications.

The UI Toolkit comprises the following:

• A retained-mode UI system including the essential
features and capabilities necessary to construct UIs is
included in the UI Toolkit.

• Types of UI Assets are influenced by standard web
formats such as HTML, XML, and CSS. Use them to
organize and style UIs.

• Tools and resources for learning how to use UI
Toolkit, as well as developing and debugging
interfaces.

Animation in Unity ◾ 191

Unity wants UI Toolkit to be the default UI system for
new UI development projects, although it lacks several
functionalities present in Unity UI (uGUI) and IMGUI.

The Unity UI Package
The Unity UI (Unity UI) package (also known as uGUI)
is an older, GameObject-based UI framework for develop-
ing runtime UI for games and apps. You utilize compo-
nents and the Game view to structure, position, and design
the UI in Unity UI. It has powerful text and rendering
functions.

Immediate Mode Graphical UI
Immediate Mode Graphical UI is a code driven UI Toolkit
that draws and manages UIs using the OnGUI function
and scripts that implement it. IMGUI may be used to con-
struct custom Inspectors for script components, Unity
Editor extensions, and in-game debugging displays. It is
not recommended for creating runtime UIs.

Choosing a UI System for our Project
Unity wants UI Toolkit to be the default UI system for
new UI development projects, although it lacks several
functionalities present in Unity UI (uGUI) and IMGUI.
These older technologies are superior in specific use situ-
ations and must be supported in order to sustain legacy
projects.

The type of UI system you select for a specific project is
determined by the type of UI you intend to create and the
features we require support.

192 ◾ Mastering Unity

Audio

Full 3D spatial sound, real-time mixing and mastering,
mixer hierarchies, snapshots, preconfigured effects, and
many more capabilities are available in Unity Audio. This
includes in-game sounds as well.

That said, we will turn our attention to Performance
Optimization in the next chapter.

193DOI: 10.1201/9781003214755-5

C h a p t e r 5

Scene Performance
Optimization

Now that we have created and handled Scenes, it is time to
turn our attention toward actual performance optimization.

APPLICATION PROGRAMMING INTERFACE
(API) SUPPORT FOR GRAPHICS
Unity supports the DirectX, Metal, OpenGL, and Vulkan
graphics APIs, depending on the API’s availability on a given
platform. Unity employs either a pre-installed set of graphics
APIs or the graphics APIs that you specify in the Editor.

To utilize Unity’s default graphics APIs, follow these steps:

• Navigate to the Player settings (Edit > Project Settings,
then pick the Player category).

• Navigate to Other Settings and tick the Auto Graphics
API box.

https://doi.org/10.1201/9781003214755-5

194 ◾ Mastering Unity

When the Auto Graphics API for a platform checkbox is
selected, the Player build contains a set of built-in graphics
APIs and utilizes the best one at runtime to deliver the best
case scenario.

When the Auto Graphics API for a platform is
unchecked, the Editor employs the first API in the list.
To observe how our program performs on OpenGL in the
Editor, for example, drag OpenGLCore to the top of the
list, and the Editor switches to OpenGL rendering.

Uncheck the applicable Auto Graphics API, click the
addition (+) button, then select the graphics API from the
drop-down box to override the default graphics APIs for
the Editor and Player.

The default API is the graphics API at the top of the
Auto Graphics API list. If the platform does not support
the default API, Unity falls back to the following API in the
Auto Graphics API list.

See Platform-specific rendering differences for informa-
tion on how graphics rendering differs between systems
and Shader language semantics. Only a fraction of graphics
APIs allows tessellation and geometry shaders. The Shader
Compilation Target level governs this.

DirectX
Navigate to the Player settings (menu: Edit > Project Settings,
then choose the Player category) and select DirectX11
as our chosen Graphics API in the Editor or Standalone
Player. Disable the Auto Graphics API for Windows setting
and select DirectX11 from the drop-down menu.

Shaders for the Surface
Because some sections of the Surface Shader compilation
pipeline do not comprehend DX11-specific HLSL syntax,

Scene Performance Optimization ◾ 195

we must wrap it in a DX11-only preprocessor macro if we
use HLSL features like StructuredBuffers, RWTextures,
and other non-DX9 vocabularies.

Geometry Shaders and Tessellation
Surface Shaders support simple tessellation and
displacement.

We may use the entire range of DX11 Shader model 5.0
capabilities when manually building Shader programs,
including Geometry, Hull, and Domain Shaders.

Only a fraction of graphics APIs allows tessellation and
geometry shaders. The Shader Compilation Target level
governs this.

Shaders Computed
Compute Shaders are graphics card-based programs that
can speed up rendering.

Metal

Metal is Apple’s industry-standard graphics API. Unity
works with Metal on iOS, tvOS, and macOS (Standalone
and Editor).

On Apple systems, Metal provides more features than
OpenGL ES.

Metal has the following advantages:

• Reduce the CPU overhead associated with graphics
API requests.

• The API validation layer.

• On multi-graphics processing unit (GPU) systems,
better GPU control.

196 ◾ Mastering Unity

• On iOS/tvOS, memory-less render targets are supported.

• Apple has established a new norm.

• Shaders for computers.

• Shaders for tessellation.

The drawbacks of using Metal:

• There is no support for low-end devices.

• Geometry shaders are not supported.

Restrictions and Requirements

• The Metal support is available in iOS and tvOS for
Apple A7 or newer SoCs.

• The Metal support is available in macOS for Intel HD
and Iris Graphics from the HD 4000 series or later,
AMD GCN-based GPUs, and Nvidia Kepler-based
GPUs or later.

• The minimum shader compilation goal is 3.5.

• Metal does not support geometry shaders.

Metal Enabling
To set Metal the default graphics API for the Unity Editor
and Standalone Player, perform one of the following:

• Go to the Edit > Project Settings menu in the Editor,
choose the Player category, and activate Metal Editor
Support.

Scene Performance Optimization ◾ 197

• Alternatively, if we’re using macOS, launch Terminal
and use the -force-metal command line parameter.

• On iOS, tvOS, and macOS Standalone Players, Metal
is enabled by default.

Metal API Validation
Metal API validation is provided by Xcode and may be
used to track down obscure bugs. To enable Metal API
validation in Xcode, follow these steps:

• Create an iOS project in Unity. This produces an
Xcode project.

• In Xcode, open the produced Xcode project and
choose Edit Scheme.

Core OpenGL

OpenGL Core is a backend that can handle the most recent
OpenGL capabilities on Windows, macOS X, and Linux.
Depending on the OpenGL driver support, this ranges
from OpenGL 3.2 to OpenGL 4.5.

Activating OpenGL Core
Navigate to the Player settings (menu: Edit > Project
Settings, then choose the Player category) and navigate
to Other Settings to designate OpenGL Core as your pre-
ferred Graphics API in the Editor or Standalone Player.
Disable the Auto Graphics API for Windows property and
select OpenGLCore from the drop-down menu.

198 ◾ Mastering Unity

OpenGL Specifications
The following are the minimal requirements for OpenGL
Core:

• Mac OS X 10.8 (OpenGL 3.2), Mac OS X 10.9.
(OpenGL 3.2 to 4.1).

• Windows has used NVIDIA GPUs since 2006
(GeForce 8), AMD GPUs since 2006 (Radeon HD
2000), and Intel GPUs since 2012 (HD 4000/IvyBridge)
(OpenGL 3.2 to OpenGL 4.5).

• GNU/Linux (OpenGL 3.2 to OpenGL 4.5).

Limitations of the macOS OpenGL Driver
OpenGL 3.x and 4.x capabilities such as tessellation and
geometry shaders are supported by the macOS OpenGL
backend for the Editor and Standalone.

However, Apple limits the OpenGL version on the Mac
OS X desktop to 4.1 at maximum. It does not support all
DirectX 11 capabilities (such as Unordered Access Views
or Compute Shaders). This implies that any shaders set to
target Shader Level 5.0 (by #pragma target 50) will fail to
load on OS X.

As a result, a new shader target level is added: #pragma
target gl4.1. This target level necessitates at least OpenGL
4.1 or DirectX 11.0 Shader Level 5 on a desktop or OpenGL
ES 3.1 + Android Extension Pack on a mobile device.

Features of OpenGL Core
The new OpenGL back-end adds a slew of new functional-
ity (formerly limited to DX11/GLES3):

Scene Performance Optimization ◾ 199

• Shaders that compute (together with ComputeBuffers
and “random write” render textures).

• Shaders for tessellation and geometry.

• Indirect drawing (Graphics.DrawProcedural.
Graphics.DrawProceduralIndirect).

• Modes of the advanced blend.

Command-Line Parameters for the OpenGL Core Profile
The following command-line options can be used to launch
the editor or player using OpenGL:

• -force-opengl: Forces the usage of the legacy OpenGL
backend.

• -force-glcore: Forces the usage of the latest OpenGL
back-end. With this parameter, Unity will identify all
of the features that the platform supports to run with
the best OpenGL version and all accessible OpenGL
extensions.

• -force-glcoreXY: The value of XY can be 32, 33, 40,
41, 42, 43, 44, or 45, with each number signifying a
different version of OpenGL. If the platform does not
support a given version of OpenGL, Unity will fall
back to a supported version.

• -force-clamped: Request that Unity does not employ
OpenGL extensions, ensuring that the same code path
is executed on different systems. This is a method for
determining whether a problem is platform-specific
(a driver bug, for example).

200 ◾ Mastering Unity

Native OpenGL ES Command-Line
Parameters on Desktop
The OpenGL ES graphics API is accessible on Windows com-
puters with Intel or NVIDIA GPUs with OpenGL ES drivers.

• -force-gles: Forces the new OpenGL backend to be
used in OpenGL ES mode. With this parameter,
Unity will identify all of the features that the plat-
form supports to run with the best OpenGL ES ver-
sion and all accessible OpenGL ES extensions.

• -force-glesXY: The value of XY can be 20, 30, 31,
31aep, or 3.2, with each number signifying a differ-
ent version of OpenGL ES. If the platform does not
support a given version of OpenGL ES, Unity will
fall back to a supported version. Unity will utilize an
alternative graphics API if the platform does not help
OpenGL ES.

• -force-clamped: Request that Unity does not employ
OpenGL extensions, ensuring that the same code path
is executed on different systems. This is a method for
determining whether a problem is platform-specific
(a driver bug, for example).

GRAPHICS PERFORMANCE OPTIMIZING
Many games rely on a strong performance to be successful.
Here are some essential tips for increasing the speed of our
game’s rendering.

Find High-Impact Graphics

The graphical elements of our game might have a signifi-
cant influence on two computer systems: the GPU and

Scene Performance Optimization ◾ 201

the CPU. Because tactics for optimizing for GPU vs. CPU
are generally different (and might even be contrary—for
example, it’s fairly usual to make the GPU do more work
when optimizing for CPU, and vice versa), the first rule
of any optimization is to discover where the performance
problem is.

Common bottlenecks and how to detect them:

• GPU performance is frequently constrained by fill-
rate or memory bandwidth.

• Reduce the display resolution and start the
game. If lowering the display resolution makes
the game run quicker, you may be limited by
GPU fillrate.

• The CPU is frequently constrained by the number of
batches that must be rendered.

• In the Rendering Statistics panel, choose
“batches.” The greater the number of batches ren-
dered, the greater the cost to the CPU.

Less common bottlenecks include:

• There are too many vertices to process on the GPU.
The number of vertices suitable for excellent per-
formance is determined by the GPU and the com-
plexity of vertex shaders. In general, strive for no
more than 100,000 vertices on mobile. Even though
a PC can handle several million vertices, it is still
best to keep this number as low as possible through
optimization.

202 ◾ Mastering Unity

• There are too many vertices for the CPU to handle.
Skinned meshes, fabric simulation, particles, and
other game elements and meshes might all benefit
from this. As previously stated, it is typically best
practice to keep this number as low as possible with-
out sacrificing game quality.

• If rendering is not an issue on the GPU or CPU, there
may be a fault somewhere, such as in our script or
physics. To pinpoint the issue, use the Unity Profiler.

CPU Enhancement
To render things on the screen, the CPU must conduct con-
siderable processing work, such as detecting whether lights
effect that object, establishing the shader and shader param-
eters, issuing drawing orders to the graphics driver, and
preparing the commands for graphics card transmission.

All of this “per object” CPU utilization is resource-
intensive, and it may pile up if you have a lot of visible
items. For example, if we have a thousand triangles, it is
much easier on the CPU, and they’re all in one mesh rather
than one mesh per triangle. The cost of both cases on the
GPU is roughly comparable, but the CPU effort required to
render a thousand items is much greater.

Reduce the number of visible objects. To minimize the
amount of work the CPU must perform:

• Combine nearby items manually or with the help of
Unity’s draw call batching.

• By combining individual textures into a more promi-
nent texture atlas, you may use fewer materials in
your models.

Scene Performance Optimization ◾ 203

• Reduce the number of items that cause objects to be
displayed several times (such as reflections, shadows,
and per-pixel lights).

Combine items such that each mesh has at least a few hun-
dred triangles, and just one Material is used for the whole
mesh. It’s worth noting that joining two things that don’t
share a substance yields any performance boost. The most
common cause for requiring multiple materials is that two
models do not share the same textures, ensure that any
objects you combine have the same textures to improve
CPU efficiency.

Combining objects may not make sense when utilizing
many pixel lights in the Forward rendering process.

OnDemandRendering CPU Optimization
OnDemandRendering can help you enhance CPU perfor-
mance by allowing you to change the rendering pace of
your application.

In the following cases, we may want to reduce the frame
rate:

• Menus, such as the application’s launcher or a pause
menu: Menus are often primary sequences that do
not require full-speed rendering. To save power and
limit the device temperature from rising to the point
where the CPU frequency is throttled, we can draw
menus at a lower frame rate.

• Chess and other turn-based games: Players either
wait for other users to move or think about their
move. During moments of low activity, we can reduce

204 ◾ Mastering Unity

the frame rate to avoid wasting power and extending
battery life.

• Applications with largely static material, such as
Automotive user interface (UI).

Adjusting the rendering speed allows you to regulate power
consumption and device thermals to maximize battery life
and avoid CPU throttling. It’s especially effective when
used with the Adaptive Performance package. Even when
frames are displayed less often, the program continues to
deliver events to scripts at a standard rate (for example, it
may accept input during a non-rendered frame). We may
use OnDemandRendering to avoid input latency. render-
FrameInterval = 1 for the input length to keep motions,
buttons, and so on responsive.

This API is not helpful for situations that require a lot
of programming, physics, animation, but not rendering.
Visuals in our program may stall with no impact on power
utilization.

VR apps do not support demand rendering. When not
rendering every frame, the graphics go out of sync with
head movement, potentially increasing the risk of motion
sickness.

GPU: Model Geometry Optimization
There are two primary rules for maximizing a Model’s
geometry:

1. Use no more triangles than are necessary.

2. Reduce the amount of ultraviolet (UV) mapping
seams and harsh edges.

Scene Performance Optimization ◾ 205

It is crucial to note that the actual number of vertices
that graphics hardware must process is not always the
same as the number presented by a three-dimensional (3D)
application. Modeling software often displays the number
of different corner points that comprise a model (known
as the geometric vertex count). However, some geometric
vertices must be divided into two or more logical vertices
for rendering reasons on a graphics card.

If a vertex has several normals, UV coordinates, or ver-
tex colors, it must be divided. As a result, the vertex count
in Unity is generally more than the count provided by the
3D application.

While the quantity of geometry in Models is most sig-
nificant for the GPU, several Unity also features process
Models on the CPU (for example, Mesh skinning).

Lighting Efficiency
The quickest method is to produce lighting that does
not require any computation at all. To do this, utilize
Lightmapping to “bake” static lighting once rather than
compute it per frame. The process of creating a light-
mapped environment in Unity takes only a bit longer than
simply adding a light in the area, but:

• It is significantly quicker (two–three times faster for
two per-pixel lighting).

• It looks much better now that you can bake global illu-
mination and use the lightmapper to smooth the results.

In many circumstances, simple approaches may be used
instead of installing several more lights. Instead of adding

206 ◾ Mastering Unity

a light that shines directly into the camera to create a Rim
Lighting effect, include a specialized Rim Lighting calcula-
tion right into our shaders (see Surface Shader Examples to
learn how to do this).

Forward Drawing of Lights
Per-pixel dynamic lighting increases the amount of ren-
dering effort required for each impacted pixel, resulting in
objects being drawn in numerous passes. On less powerful
devices, such as mobile or low-end PC GPUs, avoid hav-
ing more than one Pixel Light illuminating any one item
and instead utilize lightmaps to light static objects rather
than calculating their lighting every frame. Because per-
vertex dynamic lighting may add a large amount of effort
to vertex transformations, avoid instances where numer-
ous lights illuminate a single object.

Combining models that are far enough to be influenced
by various sets of pixel lighting is not a good idea. Each
mesh must be rendered as many times as the number
of pixel lights that illuminates it when using pixel light-
ing. When two meshes that are very far apart are joined,
the effective size of the resultant object grows. Because
all pixel lights that illuminate any area of this compos-
ite object are considered during rendering, the number of
rendering passes required might be increased. In general,
the number of passes required to render the combined
item equals the total of the number of passes needed to
draw each component object; hence, merging meshes
yields no benefit.

During rendering, Unity detects all lights in the vicin-
ity of a mesh and determines which of those lights most

Scene Performance Optimization ◾ 207

influence it. The Quality window parameters control how
many lights are pixel lights and how many are vertex lights.
Each light calculates its value depending on how distant
it is from the mesh and how bright its illumination is—
and certain lights are more essential than others merely
based on the game scenario. As a result, each light has a
Render Mode setting that can be set to either Important or
Not Important; lights identified as Not Important have a
smaller rendering overhead.

Consider a driving game where the player’s automo-
bile is driving in the dark with the headlights turned on.
Because the headlights are the most visually noticeable
light source in the game, their Render Mode should be set
to Important. Other lights in the game, such as other cars’
backlights or distant lampposts, may be less relevant and
may not increase the visual impression much by becoming
pixel lights. To prevent wasting rendering power in regions
where it is ineffective, set the Render Mode for such lights
to Not Important.

Per-pixel lighting optimization saves both CPU and
GPU work: the CPU has fewer draw calls, and the GPU has
fewer vertices to compute and pixels to rasterize for all the
additional object renderings.

Texture Compression and Mipmaps on the GPU
Compressed textures can be used to reduce the size
of your textures. This can lead to faster load times, a
reduced memory footprint, and much-improved render-
ing speed. Uncompressed 32-bit RGBA textures need
a fraction of the memory bandwidth required by com-
pressed textures.

208 ◾ Mastering Unity

Mipmaps for Textures
Always turn on Make mipmaps for textures in a 3D envi-
ronment. For tiny triangles, a mipmap texture allows the
GPU to use a lower resolution texture. This is analogous to
how to texture compression can help limit the amount of
texture data transmitted by the GPU when rendering.

The only exception is when a texel (texture pixel) is
known to map 1:1 to a visible screen pixel, like in UI com-
ponents or a two-dimensional (2D) game.

LOD and Cull Distances Per Layer
Culling items entails making them invisible. This is an effi-
cient method for reducing both CPU and GPU burdens.

In many games, culling small items more aggressively
than large ones is a quick and effective technique without
sacrificing the user experience. Small pebbles and rubbish,
for example, may be made invisible from a great distance
while massive buildings remain visible.

There are various techniques we might use to do this:

• Make use of the Level Of Detail mechanism.

• Set the camera’s per-layer culling distances manually.

• Put little items on a separate layer and use the
Camera.layerCullDistances script function to build
up per-layer cull distances.

Shadows in Real Time
Realtime shadows are lovely, but they may significantly
impact speed, both in terms of more CPU draw calls and
extra GPU processing.

Scene Performance Optimization ◾ 209

GPU: Guidelines for Creating High-Performance
Shaders
Performance capabilities vary significantly between plat-
forms; a high-end PC GPU can handle far more graph-
ics and shaders than a low-end mobile GPU. A fast GPU
is dozens of times quicker than a poorly integrated GPU,
even on the same platform.

GPU efficiency on mobile platforms and low-end PCs
will almost certainly be significantly lower than on your
development computer. To obtain decent performance
across low-end GPU devices, it’s advised that we manu-
ally tune your shaders to decrease calculations and tex-
ture reads. Some built-in Unity shaders, for example, have
“mobile” versions that are substantially quicker but have
some limits or approximations.

Complex Mathematical Operations Transcendental math-
ematical functions (such as pow, exp, log, cos, sin, tan)
consume many resources, thus using them sparingly. If
applicable, consider employing lookup textures as an alter-
native to complex math operations.

Avoid developing our businesses (such as normalize,
dot, inversesqrt). The built-in features in Unity ensure that
the driver generates significantly better code. Keep in mind
that the Alpha Test (discard) action frequently slows down
our fragment shader.

The Precision of Floating Points While f loating-point
variables’ precision (float vs. half vs. fixed) is often over-
looked on desktop GPUs, it is critical for mobile GPU
performance.

210 ◾ Mastering Unity

A Simple Checklist to Help Us Improve
Our Game’s Speed

• When creating for PC, keep the vertex count around
200K and the frame count under 3M. (depending on
the target GPU).

• Choose shaders from the Mobile or Unlit category if
we’re utilizing built-in shaders. They are also com-
patible with non-mobile systems; however, they are
reduced and approximated counterparts of the more
complicated shaders.

• Keep the number of distinct materials per scene as
little as possible, and share as many materials as fea-
sible across various items.

• To enable internal optimizations such as static batch-
ing, set the Static attribute on a non-moving object.

• Instead of multiples, use a single (ideally directed)
pixel light to affect our geometry.

• Rather than utilizing dynamic lighting, bake lighting.

• When feasible, choose compressed texture formats
and 16-bit textures over 32-bit textures.

• When at all possible, avoid employing fog.

• In complicated static scenes with many occlusions,
use Occlusion Culling to limit the amount of visible
geometry and draw-calls. Consider occlusion culling
while creating our levels.

• Skyboxes can be used to “fake” distant geometry.

Scene Performance Optimization ◾ 211

• Instead of a multi-pass technique, use pixel shaders
or texture combiners to combine several textures.

• When feasible, use half-precision variables.

• Reduce the usage of complex mathematical opera-
tions in pixel shaders such as pow, sin, and cos.

• Reduce the number of textures per fragment.

Batching of Draw Calls

The engine must submit a draw call to the graphics API
in order to draw a GameObject on the screen (such as
OpenGL or Direct3D). Draw calls are frequently resource-
intensive, with the graphics API performing substantial
work for each draw request, resulting in CPU performance
overhead. This is primarily due to state changes made
between draw calls (such as switching to a new Material),
which need resource-intensive validation and translation
processes in the graphics driver.

To remedy this, Unity employs two methods:

1. Dynamic batching: for small enough Meshes, this
changes the vertices on the CPU, combines several
similar vertices together, and draws them all at once.

2. Static batching: aggregates static (non-moving)
GameObjects into large Meshes, which are then ren-
dered more quickly.

As opposed to manually merging GameObjects together,
built-in batching has various advantages; the most impor-
tant is that GameObjects may still be culled separately.

212 ◾ Mastering Unity

However, it has certain drawbacks; static batching incurs
memory and storage expense, whereas dynamic batching
incurs some CPU overhead.

Material Preparation for Batching
Only GameObjects with the same Material can be batched.
As a result, if you want to achieve effective batching, try to
distribute Materials across as many distinct GameObjects
as feasible.

If you have two similar Materials that only differ in
texture, you may merge their Textures into a single large
Texture. A texture atlas is a term used to describe this
procedure. Once Textures are in the same atlas, a single
Material can be used instead.

Only GameObjects with the same Material can be
batched. As a result, if we want to achieve effective batch-
ing, try to distribute Materials across as many distinct
GameObjects as feasible.

If we have two similar Materials that only differ in
texture, we may merge their Textures into a single large
Texture. A texture atlas is a term used to describe this
procedure. Once Textures are in the same atlas, a single
Material can be used instead.

If we need to access shared Material properties from
scripts, keep in mind that changing Renderer.material pro-
duces a duplicate of the Material. To keep Materials shared,
use Renderer.sharedMaterial instead.

Even though their Materials are different, shadow cast-
ers can typically be batched together during rendering. In
Unity, shadow casters can employ dynamic batching with
various Materials as long as the values in the Materials

Scene Performance Optimization ◾ 213

required by the shadow pass are the same. Many crates, for
example, might employ Materials with different Textures on
them, but the textures are irrelevant for shadow caster draw-
ing; therefore, they can be batched together in this scenario.

Dynamic Batching
If two GameObjects have the same Material and meet addi-
tional requirements, Unity can automatically batch move
them into the same draw call. Dynamic batching occurs
automatically and requires no further effort on our part.

• Because batching dynamic GameObjects incurs some
expense per vertex, it is limited to Meshes with no
more than 900 vertex attributes and no more than
300 vertices.

• We may batch up to 300 verts if our Shader uses
Vertex Position, Normal, and single UV, but
only 180 verts if our Shader uses Vertex Position,
Normal, UV0, UV1, and Tangent.

• GameObjects cannot be batched if the transform
contains mirroring (for example, GameObject A with
+1 scale and GameObject B with −1 scale cannot be
batched together).

• Using separate Material instances prevents
GameObjects from batching together, even if they
are otherwise identical. The shadow caster rendering
is an exception.

• Lightmap-enabled GameObjects have two new ren-
derer parameters: lightmap index and offset/scale

214 ◾ Mastering Unity

into the lightmap. In general, dynamic lightmapped
GameObjects should all point to the exact lightmap
location to be batched.

• Multi-pass shaders break batching.

• Almost all Unity Shaders allow multiple Lights
in forwarding rendering, essentially performing
additional passes for them. The “extra per-pixel
lights” requested in the draw are not batched.

• Because it must draw GameObjects twice, the
Legacy Deferred (light pre-pass) rendering
approach disables dynamic batching.

Because dynamic batching works by translating all
GameObject vertices into world space on the CPU, it is
only helpful if the effort is less than that of a draw call. The
resource needs of a draw call are determined by various
factors, the most important of which is the graphics API
utilized. For example, on consoles or contemporary APIs
like Apple Metal, the draw call cost is often substantially
more minor, and dynamic batching is often ineffective.

Dynamic Batching (Particle Systems,
Line Renderers, Trail Renderers)
Dynamic batching works differently for components with
geometry generated dynamically by Unity than it does for
Meshes.

• Unity merges all batchable material for each suitable
renderer type into a single big Vertex Buffer.

• The renderer creates the batch’s Material state.

Scene Performance Optimization ◾ 215

• The Vertex Buffer is bound to the Graphics Device
by Unity.

• Unity changes the offset in the Vertex Buffer for each
Renderer in the batch before submitting a new draw
request.

When calculating the cost of Graphics Device calls, the
setup of the Material state is the slowest component of
drawing a Component. In comparison, submitting draw
calls at multiple offsets into a standard Vertex Buffer is
extremely fast.

This method is quite similar to how Unity submits draw
calls when Static batching is used.

Batching That Is Static
Static batching enables the engine to decrease draw calls
for the geometry of any size as long as it is made of the
same material and does not move. It is frequently more
efficient than dynamic batching (since it does not convert
vertices on the CPU), but it consumes more memory.

To use static batching, we must explicitly define that
particular GameObjects are static and do not move, rotate,
or scale in the game. To do so, use the Inspector’s Static
checkbox to mark GameObjects as static.

Static batching necessitates the use of extra memory to
store the combined geometry. If numerous GameObjects
shared the same geometry before static batching, a dupli-
cate of that geometry is made for each GameObject, either
in the Editor or at runtime. This isn’t always a smart idea;
to preserve a lower memory footprint, we may have to trade
rendering performance by eliminating static batching for

216 ◾ Mastering Unity

some GameObjects. For example, labeling trees as static at a
thick forest level might have a significant memory influence.

Static batching works internally by converting static
GameObjects into world space and creating a single shared
vertex and index buffer for them. If we activate Optimized
Mesh__ Data__ (in the Player settings), Unity eliminates
vertex elements that are not utilized by any shader varia-
tion while constructing the vertex buffer. To do this, cer-
tain specific keyword checks are used; for example, if Unity
does not detect the LIGHTMAP ON keyword, it eliminates
lightmap UVs from a batch. Then, for visible GameObjects
in the same batch, Unity executes a series of basic draw
calls with essentially no state changes in between.

Technically, Unity does not preserve API draw calls
but rather the state changes between them (which is the
resource-intensive part). On most systems, batch limi-
tations are 64k vertices and 64k indices (48k indices on
OpenGLES, 32k indices on macOS).

Instancing of GPUs

Using a limited number of draw calls, use GPU Instancing
to draw (or render) several copies of the same Mesh simul-
taneously. This is handy for sketching items that recur regu-
larly in a Scene, such as houses, trees, grass, or other things.

Each draw call merely produces identical Meshes, but
each instance might have various parameters (for example,
color or size) to add diversity and lessen the perception of
repetition.

GPU Instancing has the potential to minimize the
number of draw calls utilized per Scene. This dramatically
increases our project’s rendering performance.

Scene Performance Optimization ◾ 217

Including Instancing in Our Materials
To enable GPU Instancing on Materials, choose our Material
in the Project window and click the Enable Instancing
option in the Inspector.

This checkbox appears in Unity only if the Material Shader
supports GPU Instancing. This covers all surface Shaders as
well as Standard, StandardSpecular, and StandardSpecular.

GPU Instancing is enabled, while it is not in the bottom
image. Take note of the differences in FPS, Batches, and
Time Saved by Batching.

The following constraints apply when using GPU
instancing:

• Unity automatically selects MeshRenderer and
Graphics components. Instancing is required
by DrawMesh. It should be noted that Skinned
MeshRenderer is not supported.

• In a single GPU instancing draw call, Unity only
groups GameObjects with the same Mesh and
Material. To improve instancing efficiency, use a lim-
ited amount of Meshes and Materials. Modify our
shader scripts to include per-instance data to gener-
ate variations.

Displaying the Statistics Window

The Game view includes a statistics box that displays real-
time rendering information about your program during
Play mode. Select the Stats button in the upper right corner
to open this window. The window appears as an overlay in
the upper right corner of the Game view. Its statistics are
essential for optimizing performance. The specific statis-
tics accessible depend on the build target.

218 ◾ Mastering Unity

Statistics

Statistics Description
FPS Updates to the frame per second, Unity

performs.
CPU The overall amount of time required to process

one frame. This includes the time Unity took
to execute our application’s frame update and
the time Unity spent in the Editor updating
the Scene view, other Editor Windows, or
other Editor-only operations.

Rendering time: The number of times it takes
to render one frame. This figure includes the
time Unity took to render the Game View,
but not the time Unity used in the Editor to
render the Scene View or create the
Inspector.

Batches The total number of batches processed by
Unity during a frame. This figure contains
both static and dynamic batches, as well as,
for instance, batches.

Saved by batching The total number of batches created by Unity.
Share materials across distinct GameObjects
as often as feasible to guarantee optimal
batching. Changing the rendering state
divides batches into groups that have the
same state.

Tris The amount of triangles processed by Unity
during a frame. This is especially true when
optimizing for low-end hardware.

Verts The number of vertices processed by Unity
during a frame. This is especially true when
optimizing for low-end hardware.

Screen The screen’s resolution, as well as the quantity
of RAM it employs.

(Continued)

Scene Performance Optimization ◾ 219

SetPass The number of times Unity changes between
shader passes while rendering GameObjects
during a frame. A shader can have several
shader passes, each of which renders
GameObjects in the scene differently. Each
pass necessitates the binding of a new shader,
which may result in CPU cost.

Shadow casters The number of GameObjects in the frame that
throw shadows.

Visible skinned
meshes

Unity rendered the amount of Skinned Mesh
Renderers in the frame.

Animations The amount of animations that are active
throughout the frame.

Debugger for Frames

The Frame Debugger allows us to stop a running game on
a specific frame and inspect the individual draw calls used
to create that frame. In addition to identifying the draw
calls, the debugger allows us to walk through them one at a
time, allowing us to examine in great detail how the Scene
is built from its graphical pieces.

Making Use of Frame Debugger
Frame Debugger window (menu: Window > Analysis >
Frame Debugger) displays draw call information and allows
us to change the “playback” of the frame as it is being created.

The main list displays the series of draw calls (and
other events such as framebuffer clean) in a hierarchy that
specifies where they originated. More information about
the draw call is shown in the panel to the right of the list,
including geometry data and the shader used for rendering.

When we choose an item from the list, the Scene, includ-
ing the draw call, is presented entirely. The left and right

Statistics Description

220 ◾ Mastering Unity

arrow buttons on the toolbar and the arrow keys go forward
and backward in the list in a single step. Furthermore, the
slider at the top of the window allows us to swiftly “scrub”
through the draw calls to find an item of interest. When a
draw call corresponds to the geometry of a GameObject,
the item is highlighted in the main Hierarchy window to
aid identification.

If the selected draw call renders into a RenderTexture,
the contents of that RenderTexture are displayed in the
Game view. This is handy for studying how different
off-screen render targets, such as the diffuse G-buffer in
deferred shading, are constructed:

The debugger of Remote Frames
To use Frame Debugger remotely, the player must sup-
port multithreaded rendering (for example, WebGL does
not support it; thus, frame debugger cannot operate on it),
most Unity platforms enable it, and you must pick the
“Development Build” option while creating.

Note for Desktop platforms: check the “Run In
Background” option before building; otherwise, when
we connect Frame Debugger to the player, it won’t reflect
any rendering changes until it has focus; assuming you’re
running both Editor and the player on the same machine,
when you control Frame Debugger in Editor, we’ll take the
focus away from the player.

Quickly Begin:

• Build the project from the Editor to the target plat-
form (select Development Player).

• The player should be run.

Scene Performance Optimization ◾ 221

• Return to the Editor.

• Launch the Frame Debugger window.

• Active Profile Rendering, animating, or in our game
logic.

• When you click Enable, the frame debugger should
be enabled on the player.

Options for Render Target Display
A toolbar at the top of the information panel allows us to iso-
late the red, green, blue, and alpha channels for the current
state of the Game view. Similarly, using the Levels slider to
the right of these channel buttons, we may separate sections
of the display based on brightness levels. These options are
only available when rendering into a RenderTexture.

When rendering into several render targets simulta-
neously, we may choose which one to show in the game
view. The diffuse, specular, normals, and emission/indirect
lighting buffers are shown in 5.0 deferred shading mode.

We may also view the depth buffer contents by selecting
“Depth” from the dropdown menu.

By isolating the render texture’s alpha channel, we can
observe the occlusion (stored in RT0 alpha) and smooth-
ness (stored in RT1 alpha) of the delayed G-buffer.

This Scene’s emission and ambient/indirect lighting are
rather dark; we may make them more apparent by using
the Levels slider.

Streaming of Mip Maps

We may control which mipmap levels Unity loads into mem-
ory using the Mip Map Streaming mechanism. Unity must

222 ◾ Mastering Unity

draw the current Camera position in a Scene rather than
loading them by default since it just loads the mipmaps;
this technique reduces the overall amount of memory
Unity requires for Textures. It sacrifices a small amount
of CPU resources for the possibility of saving a substantial
quantity of GPU memory.

We may also establish a total memory limit for all
Textures in a Project using the Memory Budget. To keep
under this limit, the Mip Map Streaming mechanism auto-
matically cuts mip map levels.

The Mip Map Streaming API may be used to request
particular mip map levels for specified Textures. Unity
includes example C# code that replicates the engine logic
for mip map selection, which we may use to alter the engine
logic in our Projects.

Mip Map Streaming saves 25–30% of Texture RAM
in Unity’s Viking Village sample project, depending on
Camera placement.

To Begin With
To enable Mip Map Streaming, navigate the Quality
Settings in Unity (Edit > Project Settings > Quality) and
tick the Texture Streaming checkbox. This displays the
Mip Map Streaming system’s options.

Then, for each Texture, activate Mip Map Streaming to
allowing the Mip Map Streaming system to stream each
Texture’s mip maps from the disc into memory. To do so,
choose the Texture to which we wish to apply Mip Map
Streaming, then go to the Inspector window and look at
the Texture Import settings. Enable the Streaming Mip
Maps option in the Advanced settings.

Scene Performance Optimization ◾ 223

If we’re working on Android, you also need to enter the
Build Settings and change the Compression Method to
LZ4 or LZ4HC. For asynchronous Texture loading, Unity
requires one of these compression algorithms, on which
the Mip Map Streaming system is based.

Unity loads mip maps with the best feasible resolution
while adhering to the Texture Memory Budget. Use the C#
API to provide mip map levels for each Texture for more
precise control or fine-tune the Mip Map Streaming sys-
tem’s automated output.

Restrictions
Mipmap Streaming can be told to compute the required
mipmap levels using one of the ways listed below:

• Each Texture is allocated to a Material, which is sub-
sequently assigned to a Unity Renderer.

• Texture2D.requestedMipmapLevel is used to request
mip levels manually.

Unity cannot determine which mip level to utilize if we do
not instruct Mipmap Streaming to generate mipmap levels
using one of these ways. As a result, Unity loads the texture
with low-quality mips that seem fuzzy.

The systems listed below do not use conventional
Renderers. This implies that we must manually configure
the desired mipmaps for these systems; otherwise, Unity
will utilize low-resolution textures:

• Textures for decal projectors.

• Reflection meter Textures: Lower resolution
mipmaps serve as a roughness lookup table. As a

224 ◾ Mastering Unity

result, if Unity chooses a lower mipmap level, it
renders materials with incorrect roughness.

• Textures in the Terrain system of Unity:
Mipmap Streaming on Terrain Textures is not
supported by Unity. This is because Terrain
Textures must be available at full quality at all
times for Unity to tile and mix the textures.

• Shaders that behave differently than Unity’s built-in
shaders when it comes to texture UV coordinates.
Unity always expects that textures are sampled using
UV0 and saved in the Msh. Any shader-based changes
to the texture coordinates, with the exception of scale
and translation, or the use of UV1, are ignored.

When a renderer is running, the mesh the renderer is using
requires accurate UV distribution metrics to determine
the required mipmap level. As part of the mesh importing
procedure, Unity automatically generates dispersion met-
rics. This may also be calculated in a script using Mesh.
GetUVDistributionMetric.

When Unity displays a streaming Texture via an API
(such as Graphics.DrawMeshNow), the system lacks the
renderer limits and other information needed to deter-
mine the mip level; therefore, we must manually define the
Texture mip level (or disable Mipmap Streaming on this
Texture).

Mipmap Streaming Troubleshooting
Unity has a Mipmap Streaming debugging view mode.
To access it, pick Texture Streaming from the Scene view

Scene Performance Optimization ◾ 225

control drop-down menu. Depending on their state in
the Mipmap Streaming system, this view mode tints
GameObjects the following colors:

• Green for textures with decreased mipmaps as a
result of the Mipmap Streaming technology.

• Textures with fewer mipmaps are shown in red
because the Mipmap Streaming system does not have
the resources to load them.

• Textures that are not configured to stream, or if there
is no renderer calculating the mip levels, are shown
in blue.

Using the Debugging API, we can also create our own debug
tools and visualizations.

http://taylorandfrancis.com

227DOI: 10.1201/9781003214755-6

C h a p t e r 6

Completing
the Game

As of now, we have covered all the basics pertaining to Unity,
right from installation and setup to scene management,
optimization, and world physics.

However, at times our code might run into certain prob-
lems. This is where debugging comes in to play.

DEBUGGING C# CODE IN UNITY
We may view our source code while our application or game
is running by using a debugger. The following code editors
are available for debugging C# programs in Unity:

• Visual Studio (in conjunction with the Visual Studio
Tools for Unity plug-in).

• Visual Studio for Mac is a software development tool.

https//doi.org/10.1201/9781003214755-6

228 ◾ Mastering Unity

• Rider by Jetbrains.

• Code in Visual Studio.

Although the debugger capabilities supported by these code
editors differ widely, they all enable essential functions such
as break points, single stepping, and variable examination.

Except for WebGL, managed code debugging in Unity
works on all platforms. It is compatible with the Mono and
IL2CPP scripting backends.

Setting up the Code Editor

• In Visual Studio (Windows): The installer for the
Unity Editor gives the option to install Visual Studio
together with the Visual Studio Tools for Unity plug-
in. This is the recommended method for configuring
Visual Studio for debugging with Unity.

If we already have Visual Studio installed on
our computer, navigate the Tools > Get Tools and
Features… menu to find and install the Visual Studio
Tools for Unity plug-in.

• In Visual Studio for Mac: The installation for Unity
Editor gives the option to install Visual Studio for
Mac. This is the recommended method for installing
Visual Studio for Mac in order to debug with Unity.

If we already have Visual Studio for Mac installed
on our computer, utilize its Extension Manager to find
and install the Visual Studio Tools for Unity plug-in.

• JetBrains Rider: The JetBrains Rider installation by
default can debug code in Unity on Windows or Mac.
To install it, please go to the JetBrains website.

Completing the Game ◾ 229

• VS Code: To debug code in Unity, we must install the
relevant extension from VS Code. For instance, the
Debugger for Unity: https://marketplace.visualstu-
dio.com/items?itemName=Unity.unity-debug or the
Unity Tools extension: https://marketplace.visualstu-
dio.com/items?itemName=Tobiah.unity-tools.

Choosing an External Script Editor in Unity

After installing a code editor, navigate to Preferences >
External Tools and change the External Script Editor to
our preferred code editor.

Editor Debugging

We can debug the C# code that is running in the Unity
Editor while it is in Play Mode.

To debug in the Editor, change the Editor’s Code
Optimization mode to Debug Mode, then attach a code
editor with debugging capabilities.

To change the Code Optimization mode, click the
Debug button in the Unity Editor Status Bar’s bottom right
corner.

The Code Optimization Option in Unity
Offers Two Options

1. Debug Mode, which allows us to attach external
debugger software, results in reduced C# performance
when running our Project in the Editor in Play Mode.

2. When we run our Project in Play Mode in the Editor,
we get quicker C# performance, but we can’t attach
any external debuggers.

https://marketplace.visualstudio.com
https://marketplace.visualstudio.com
https://marketplace.visualstudio.com
https://marketplace.visualstudio.com

230 ◾ Mastering Unity

When we click the Debug button in the status bar, a little
pop-up window appears with a mode switch button. It also
shows information about the current mode and explains
what occurs when we switch modes.

To modify the mode in which the Unity Editor
launches, navigate to Edit > Preferences > General > Code
Optimization On Startup.

Use the following API to control these settings from a script:
Compilation.Compilation, ManagedDebugger Compilation.
CodeOptimization, and Pipeline-codeOptimization.

We can also alter the Editor’s startup mode or disable
the debugger listen to the socket. To accomplish this, run
the Editor with the following command line arguments:

• -releaseCodeOptimization: Enables release code opti-
mization in the Editor.

• -debugCodeOptimization: Enables debug code opti-
mization in the Editor.

• -disableManagedDebugger: starts the Editor with-
out the debuggers listening to the socket.

Attaching to the Editor and Setting Breakpoints

Set a breakpoint in our external code editor on a line of
script code where the debugger should halt. For instance,
in Visual Studio, click on the column to the left of our code
on the line where we want to stop the debugger. A red line
appears, highlighting the line.

Public class ExampleScript : MonoBehaviour
{
Use for initialization

Completing the Game ◾ 231

Void Start()
{
Debug.Log("Debug message");
}
}

Next, connect the code editor to the Unity Editor. This
option varies based on the code editor and is frequently dis-
tinct from the code editor’s standard debugging procedure.

Some code editors may allow us to choose a Unity instance
to debug. In Visual Studio, for example, the Debug > Attach
Unity Debugger option offers this possibility.

Return to the Unity Editor and select Play Mode after the
code editor has been attached. When the code at the break-
point is run, the debugger will come to a halt, as shown below:

Public class ExampleScript : MonoBehaviour
{
Use for initialization
Void Start()
{
Debug.Log("Debug message");
}
}

We may inspect the contents of variables when the code
editor is at a breakpoint. The Unity Editor will be inac-
tive until we select the debugger’s continue option or exit
debugging mode.

In-Player Debugging

To analyze script code running in a Unity Player, first select
the “Development Build” and “Script Debugging” options

232 ◾ Mastering Unity

before constructing the Player (these choices may be found
in File > Build Settings). Enabling the “Wait For Managed
Debugger” option causes the Player to wait for a debugger
to be attached before running any script code.

Select the IP address and port of our Unity Player to
attach the code editor. The drop-down menu in Visual
Studio’s “Attach To Unity” option.

Android and iOS Device Debugging

• Android: When debugging a Player on an Android
device, connect to it through USB or TCP. To connect
to an Android device, for example, in Visual Studio
(Windows), select Debug > Attach Unity Debugger.

• Chrome OS with Android: Unity is unable to detect
Chrome OS devices automatically. To initiate a con-
nection, connect to the device using its IP address
using Android Debug Bridge (adb), and then manu-
ally enter the IP address in the debugging window.

• Ios: Connect to the device using TCP while debug-
ging a Player running on an iOS device. To connect
to an iOS device, for instance, in Visual Studio (Mac),
select Debug > Attach Unity Debugger.

Using the Debugger to Troubleshoot

The majority of debugger issues occur because the code edi-
tor cannot identify the Unity Editor or Player. This signifies
that it is unable to attach the debugger correctly. The net-
work frequently generates connection problems since the
debugger requires a TCP connection to the Editor or Player.

Completing the Game ◾ 233

Here are some measures we may take to troubleshoot com-
mon connectivity problems.

Make Certain That the Debugger Is Attached
to the Right Unity Instance
We may connect the code editor to any Unity Editor or
Unity Player on our local network that supports debugging.
When attaching the debugger, make sure we’re attaching it
to the right instance. If we know the device’s IP address or
machine name where we are executing the Unity Player, we
may use it to find the relevant instance.

Check Our Network Connection to the Unity Instance
The code editors use the same logic as the Unity Profiler to
find a Unity instance to debug. If the code editor cannot
locate the Unity instance you need it to locate, try attach-
ing the Unity Profiler to that instance. If the Unity Profiler
can’t discover it, there might be a firewall on the system
where we’re running the code editor or the machine where
we’re running the Unity instance (or possibly both).

Ascertain That the Device Only Has One Active
Network Interface
A large number of gadgets have several network interfaces.
A mobile phone, for example, may have both an active
cellular connection and an active Wi-Fi connection. To
successfully connect the debugger for TCP, the IDE must
establish a network connection to the device’s appropriate
interface. If we intend to debug through Wi-Fi, for exam-
ple, put the device in airplane mode to deactivate all other
interfaces before enabling Wi-Fi.

234 ◾ Mastering Unity

In the Player Log, we can see the Unity Player’s IP address
instructing the IDE to use.

Examine the Firewall Settings
A TCP connection connects the Unity instance to the code
editor. This TCP connection takes place on an arbitrary
port on most Unity systems. Usually, we shouldn’t need to
know this port because the code editor will detect it for
us. If it doesn’t work, try using a network analysis tool to
establish which ports could be restricted, either on the sys-
tem where the code editor is running or on the machine or
device where the Unity instance is running. When we’ve
found the ports, make sure our firewall permits access to
both the port on the code editor system and the port on the
Unity instance machine.

Test to See if the Managed Debugging
Information Is Available
If the debugger attaches, but no breakpoints are loaded, the
debugger may not locate the code’s controlled debugging
information. Managed code debugging information is
kept on disc in .pdb files alongside the managed assembly
(.dll file).

When the appropriate settings and build parameters
are enabled. Unity will automatically generate this debug-
ging information. On the other hand, Unity cannot create
this debugging information for controlled plugins in the
Project. Debugging code from managed plugins is feasible
if the associated.pdb files are in the Unity project on disc
next to the managed plugins.

Completing the Game ◾ 235

Prevent the Device from Locking
If the device we’re using to debug the app has a screen lock,
make sure it’s turned off. Screen locks detach the debug-
ger and prevent it from reconnecting. When debugging
controlled programs, it is best to avoid locking the screen.
If the screen does lock, we must restart the program on the
device before reconnecting to the debugger.

TESTING OF UNITS
As our project develops in size and the number of scripts,
classes, and methods grow, it can be challenging to verify
that a change in one section of our code does not break
things in another.

Automated testing allows us to ensure that all elements
of our code are working correctly. It saves time by identi-
fying where and when problems arise as soon as they are
introduced during development instead of depending on
manual testing or, worse, bug reports from our end users.

The Unity Test Framework package is a tool that allows
us to test our code in both Edit and Play modes and on
target platforms, including Standalone, Android, and iOS.

https://taylorandfrancis.com

237DOI: 10.1201/9781003214755-7

Appraisal

Unity is an all-purpose gaming engine that is popular for
game creation across all paradigm. It supports both two-
dimensional (2D) and two-dimensional (3D) graphics, as
well as scripting in C# and drag-and-drop capability.
It is a cross-platform gaming engine created by Unity
Technologies. People used it to create simulations and
video games for consoles, PCs, and mobile devices in their
early days.

The first formal unveiling of Unity occurred in 2005
at Apple’s Worldwide Developers Conference. It was only
compatible with OS X at the time. It has now developed
and expanded to target as many as 27 platforms. Despite
its broad range of uses, Unity gets the most popular for its
mobile game creation.

Hence, a large portion of their attention is directed
toward mobile platforms as well.

WHAT DOES UNITY HAVE IN STORE
FOR DEVELOPERS?
Unity is a powerful game engine that offers its creators a
plethora of built-in functional capabilities. 3D rendering,
physics, and collision detection are examples of these.

https://doi.org/10.1201/9781003214755-7

238 ◾ Appraisal

From the standpoint of a developer, this effectively elimi-
nates the need to reinvent the wheel. It spares them from
developing a new physics engine and defining all compo-
nent materials’ intrinsic properties and attributes from the
start. The inclusion of a built-in Visual Studio and its C#
scripting application programming interface (API) also
works in its favor.

The availability of a thriving “Asset Store” is what endears
Unity to its creators. The Asset Store allows developers to
upload their works and share them with the rest of the
community.

WHAT EXACTLY IS THE UNITY IDE?
Unity is also known as an Integrated Development
Environment (IDE), apart from being just a game engine.
This implies that Unity gives developers an interface via
which they can access all necessary tools in one location.

Additionally, the Unity program has a visual editor that
allows developers to alter the attributes of various objects
and construct their scenes using the drag and drop tool.

Aside from that, Unity provides its users with a slew
of additional helpful tools and capabilities. These include
using a timeline tool to create animations and browse
between several directories in a project. Unity provides you
the option of switching to a different editor of your choos-
ing to meet our coding needs.

WHAT IS THE LANGUAGE USED BY UNITY?
The Unity game engine employs C# in conjunction with
several other related classes and APIs to deal with code
and logic.

Appraisal ◾ 239

The most excellent thing about utilizing Unity is that it
allows us to complete various jobs without requiring us to
manage or understand a large amount of code. However, if
we are proficient in coding, we will do far more on the plat-
form than the ordinary user. Given how adaptable Unity is
in tweaks and alterations, having a solid grasp of coding
will undoubtedly offer us an advantage.

C# is a programming language that is exceptionally
user-friendly for beginners. This is the fundamental rea-
son why Unity has become the game production platform
of choice, especially for young and inexperienced creators.

WHAT IS INCLUDED IN THE UNITY INTERFACE?
It is divided into the five sections listed below:

1. Scene View: This is the portion in which the devel-
oper designs the many levels for their 3D projects,
games, and other sceneries. This category contains all
of our design components and game items. We are
free to modify them to meet your needs.

2. Game View: This is the area where we can see our
outcomes. In essence, the Game View provides a
good depiction of the scenario or level that we have
in mind. However, to view this effect, a camera must
be present on the scene. As a result, this part is also
referred to as the Camera View Section.

3. Hierarchy: In the Hierarchy section, we will see all
the game objects we have put directly in our scene or
level. In a nutshell, we must register everything that
the Game View displays. This applies to both visible
and non-visual game items.

240 ◾ Appraisal

4. Project: The Project Window’s job is to display the
contents of the Assets folder on our disc. This part
provides access to various aspects, including Scripts,
Folders, Textures, Audio, Models, Video, and Game
Objects.

5. Inspector: The Inspector panel allows us to view the
many qualities and properties of each selected Game
Object. The user’s selection determines the compo-
nents and characteristics that are presented.

NEW UNITY USERS SHOULD FOLLOW
THIS ADVICE
Make Something

Most of the advice we’ve received for aspiring Unity devel-
opers, students, or newbies focuses on one basic guideline
that extends beyond this specific engine: make something,
even if it’s just a straightforward game. Completing even a
little endeavor from conception to completion has excel-
lent worth.

“If we’re just starting in game creation, we should simply
do things and make them work in any way we can,” Williams
advises. “Then, if we accomplish that, we should subse-
quently broaden your horizons and attempt to understand
topics outside of game creation, to go beyond and discover
what more we can achieve than the standard Unity manner.”

However, Playtonic’s Price feels that without a frame-
work, we should not enter.

“Set ourselves some targets and benchmarking tests and
give it a shot,” he suggests. “Don’t base our decision just on
our views and conjectures.”

Appraisal ◾ 241

Discover How to Make Our Tools

After completing a few simple tasks, we should prog-
ress beyond the fundamentals and investigate other
functionalities.

“Learn how to create our tools with Unity,” Foster sug-
gests. “It’s all written in C#. Find out what our code does
when it generates garbage. The garbage collector is a mon-
ster that will slow down our game when we attempt to
place stuff on mobile, Switch, Xbox, and PS4. And if we
build garbage-free code, our code will dash, and we won’t
have to worry about it again.”

Make an Effort to Reach Out to the Community

If we’re thinking about using Unity as our game engine, the
good news is that its community is large enough that most
of our problems are likely simply a Google search away
from a solution. There are dozens of tutorials available for
whatever degree of development, from novice to heavy
optimizations, so we should lean on that community.

Gerges describes games as “interesting monsters,” and he
hasn’t “worked on one yet that didn’t produce proper head-
scratching moments.” And we’re talking about someone
who has been working in the games industry for 15 years.
He continues: “We’ve benefited from the community and
direct support from Unity on multiple occasions to help us
overcome obstacles and challenging circumstances.”

Price ends by highlighting. Unity’s established track
record creates amazing games across a wide range of plat-
forms and genres that are already available.

“As a developer, regardless of the engine we choose, we
must be innovative in how you utilize it to realize a goal,”

242 ◾ Appraisal

he adds. “Unity can construct whatever game our imagina-
tion can dream up.”

IS THERE A HIGH NEED FOR
UNITY DEVELOPERS?
Aside from the gaming business, an increasing number
of sectors and companies perceive potential in employing
Unity. The possibility of what this engine can achieve gives
an incredible opportunity for Unity developers, who may
anticipate multiple career prospects in the road.

As a Unity developer, we must keep an eye out for new
features that Unity publishes and stay up to date to appeal
to our future employer. Brush up on skills required in areas
such as medical or automotive if we want to work in these
professions.

The top Unity developers continuously learn and stay
up to date on emerging game standards and development
technology.

UNITY DEVELOPER—REQUIRED SKILLS
Unity web development necessitates specific abilities and
expertise in video games.

A Unity developer will sometimes focus solely on the
game’s design and more creative aspects, while other times
will focus exclusively on the code. An excellent idea would
be to find a happy medium.

To construct sophisticated projects, absolute coding
abilities (C#, UnityScript, Boo) are required. Unity devel-
opers must stay up to date on the current coding tech-
niques in the game industry.

Appraisal ◾ 243

Furthermore, having a great visual sense is advanta-
geous being able to create gorgeous interactive visuals is
a crucial ability to have as a Unity Developer. If we want
to improve our abilities, Unity’s Asset Store has a wealth
of materials that may assist game creators with minimal
coding expertise. Visual scripting, for example, is available
with PlayMaker or Bolt.

As Unity Developer, We Must Have the
Following Skills

• Excellent understanding of Unity, including script-
ing, texturing, animation, GUI styles, and user ses-
sion management.

• Scripts require C# programming expertise.

• Experience with level design and planning.

• Understanding of game physics and particle systems.

• Experience developing mobile and console games.

• Ability to minimize memory and space utilization
for outdated hardware support.

• Extensive knowledge in 3D and 2D development.

• Experiment with Virtual Reality or Augmented Reality.

• Exceptional understanding of Object-Oriented
Programming (OOP) and Data-Oriented Programming
(DOOP).

• Extensive knowledge of the Entity Component System
(ECS).

244 ◾ Appraisal

• Knowledge of contemporary design and architectural
patterns.

• A talent for developing code that is clear, legible, and
easy to maintain.

• Extensive experience with automated testing tools
and unit tests.

• Understanding of code versioning tools (Git).

A UNITY DEVELOPER’S RESPONSIBILITIES
A Unity developer in the gaming business is creating
games for numerous target platforms using the Unity
framework.

Their key responsibility will be to translate design ideas,
concepts, and requirements into a practical and exciting
game. Dedication to collaborative problem solving, intel-
ligent design, and a high-quality result is required.

What Responsibilities Does a Unity
Developer Have?

• Implement game features following the stated design.

• Convert the design requirements into a playable game.

• Implement features in a quick and agile manner.

• Communicate with other team members to create an
efficient pipeline and incorporate media assets.

• Create, design, and maintain code that is efficient,
reusable, and dependable.

Appraisal ◾ 245

• Ensure that apps have the most excellent possible per-
formance, quality, and responsiveness.

• Identify bottlenecks and glitches and come up with
strategies to solve and minimize these issues.

• Integrate player input to improve game aspects.

• Assist in maintaining code quality, structure, and
automation.

• Adding code to remote repositories like Git.

http://taylorandfrancis.com

247

Index

A

Account creation of Unity,
32–33

Add Component, 35
Ahead-of-time (AOT)

compilation, 14
Android and iOS device

debugging, 232
Animation, 145

Avatar Mapping tab, 171
Avatar data saving and

reuse, 172
making use of Avatar

masks, 173
Avatar Muscle and Settings

tab, 173
changes being previewed,

174
degree of freedom

translate, 174–175
Avatars with humanoid,

151–152
controllers for animators, 188
externally sourced animation,

149–151
GameObject, adding

animation to, 184

creating keyframes in
preview mode, 187

keyframes recording,
185–186

making keyframes by
manually, 187–188

time line, 187
humanoid movements

addition to a model,
152

Avatar mask, making,
157–158

Avatar setup, 154–155
changing the pose, 157
configure the Avatar,

155–156
strategy mapping, 156–157

Human Template Window, 177
importing animation files,

151
legacy animation, system of,

148
clips of animation, 148
externally sourced

animation, 149
Unity to create and edit

the animation, 149

248 ◾ Index

Model tab, 163
blend shapes importing,

165–166
cameras importing, 167
light import, 167–168
restrictions, 168
scene, 164–165
visibility importing, 166

navigation system of Unity,
189

Audio, 192
user interfaces (UI),

designing, 190–191
new Animation Clip, making,

182–184
non-humanoid animations

addition to a model,
158

Avatar mask, making,
161–162

model import settings
dialogue box, 162–163

outline, 159–160
setting up the rig, 160–161

Rig tab, 155, 168
generic animation, types

of, 169–171
system, 145–146
Window for Avatar mask,

175
humanoid body, choosing,

175–176
selection of transform,

176
workflow for, 146–148

Animation Clips, 148
Animation view, making use of,

177

Curves, timeline mode for,
179–180

Dopesheet, timeline mode
in, 179

GameObject, viewing
animations on, 178

list of animated properties,
178–179

playback and frame
navigation, controls
for, 181

timeline of animation, 179
Window, fitting our choice to,

180–181
Window locking, 182

Animation Window, 177, 183
Animator Component, 147–148
Animator Controller, 146,

147–148
Animator Window, 184
AOT compilation, see Ahead-of-

time compilation
API, see Application

programming interface
Application programming

interface (API), 2, 78
Application programming

interface (API) support
for graphics, 193

DirectX, 194
geometry shaders and

tessellation, 195
Shaders Computed, 195
Shaders for the Surface,

194–195
Metal, 195

metal API validation, 197
metal enabling, 196–197

Index ◾ 249

restrictions and
requirements, 196

OpenGL Core, 197
activating OpenGL Core,

197
command-line parameters

for the OpenGL Core
profile, 199

features of OpenGL Core,
198–199

limitations of the macOS
OpenGL Driver, 198

native OpenGL ES
command-line
parameters on desktop,
200

OpenGL specifications,
198

Architecture of Unity, 13
Async and Await, avoiding

the use of, 19
reloading code in the

Unity Editor, 20
serialization of scripts, 20

directed code stripping, 14
.NET overview in Unity, 13

backend scripting, 14
garbage collector, 15
making use of third-party

.NET libraries, 17
overhead reflection in C#,

17–18
script compilation, 20
system libraries for .NET,

15–17
UnityEngine Objects,

 18, 19
Asset store in Unity, 72

Async and Await, avoiding the
use of, 19

scripts, serialization of, 20
Unity Editor, reloading code

in, 20
Audio Clip’s Value attributes, 105
Audio Filters, 60
Audio in Unity, 58, 192

components of, 59–60
noise, making, 60–62

AudioListener, 60
AudioSource component, 59
Avatar

configure, 155–156
setup, 154–155

Avatar Body Mask, 173
Avatar Mapping tab, 171

Avatar data saving and reuse,
172

making use of Avatar masks,
173

Avatar mask
making, 157–158, 161–162
Window for, 175

humanoid body, choosing,
175–176

selection of transform, 176
Avatar Muscle and Settings tab,

173
changes being previewed, 174
degree of freedom translate,

174–175

B

BellSound, 61
Boo, 22–23
Box Collider, 49

250 ◾ Index

ButtonBehaviour, 65
Button of Unity, 65–66

C

C# programming language,
21–22

benefits of, 25–27
overhead reflection in, 17–18

C# programs debugging in
Unity, 227

Android and iOS device
debugging, 232

attaching to the editor and
setting breakpoints,
230–231

code editor, setting up,
228–229

editor debugging, 229–230
external script editor,

choosing, 229
in-player debugging, 231–232
using the debugger to

troubleshoot, 232
active network interface,

233–234
checking network

connection to Unity
instance, 233

debugger, 233
firewall settings,

examining, 234
locking, preventing the

device from, 235
managed debugging

information,
availability of, 234

Canvas Scaler, 64

Capsule, 108
Capsule 2D primitive, 110
C/C++, 24
Circle 2D primitive, 110
Code editor, setting up, 228–229
Collisions in Unity, 46–47
Configuration of Unity, 29
Console tab, 57–58
Coroutines in Unity, 54–57
Create New Clip, 183
Create option, 84, 183
Cube, 107
Curves, timeline mode for, 179–180
Custom collision boundaries in

Unity, 49–50
Cylinder, 108

D

Debug class, 58
Destroy() function, 52
Developer Community, 10
Developer outputs, 57
Developers, 237–238, 246–249
Directed code stripping, 14
DirectX, 194

geometry shaders and
tessellation, 195

Shaders Computed, 195
Shaders for the Surface,

194–195
DLL plugins, see Dynamic-link

library plugins
DontDestroyOnLoad scene, 82,

84
Dopesheet, timeline mode in, 179
.NET, 13

backend scripting, 14

Index ◾ 251

system libraries for, 15–17
third-party .NET libraries,

making use of, 17
Draw calls, batching of, 211

dynamic batching, 213–215
material preparation, 212–213
static batching, 215–216

Dynamic batching, 211
Dynamic-link library (DLL)

plugins, 24

E

Editor debugging, 229–230
EditorSceneManager class, 83, 84
Errors, 57
Externally sourced animation, 149

importing animation files, 151
data from, 151

External script editor, choosing,
229

F

FBX file, 154, 160
First project, developing, 33–34
Frame Debugger, 219

making use of, 219–220
remote frames, debugger of,

220–221
render target display, options

for, 221

G

GameObject.FindWithTag()
method, 113

GameObjects, 35, 37, 40, 45, 48,
71, 94

adding animation to, 184
creating keyframes in

preview mode, 187
keyframes recording,

185–186
making keyframes by

manually, 187–188
time line, 187

components, 101
adding, 103–104
commands from

component context
menu, 105–106

components of
GameObject, 102

configurations of common
components, 102

editing, 104–105
making use of

components, 102–103
property experimentation,

106
transformation, 102

components of, 102
deactivating, 112–113
destruction, 52–54
GameObjects, deactivating,

112
parent GameObject,

112–113
keeping our work safe, 117

immediate saving, 119
project-wide

modifications, 117–119
scene changes, 117

objects that are primitive or
placeholders, 107

capsule, 108

252 ◾ Index

cube, 107
cylinder, 108
plane, 108–109
quad, 109
sphere, 107–108

parent GameObject,
deactivating, 112–113

scripting, 112
specifications, 95–96
static GameObject, 115

property static editor flags,
115

Tag, 113
new tags creation, 114
using, 114–115

Transforms, 96
component of transform,

96
non-uniform scaling

limitations, 99–100
parenting, 98–99
properties, 97
scale’s importance,

100–101
transform editing, 97–98
working with transforms,

101
2D Primitive GameObjects, 109

Capsule, 110
Circle, 110
flat-top hexagon, 111
Isometric Diamond, 111
nine-sliced, 111
point-top hexagon, 111
sprite and pixels-per-unit

by default, 110
Square, 110

viewing animations on, 178

Game View, 239
Garbage collector, 15
Generic Avatar, 161
Generic FBX files, 149
Geometry shaders and

tessellation, 195
GermOBlaster, 136
GermSlimeTargets, 135, 136
GetAxisRaw method, 45
GetComponent function, 55, 61
GetSceneManagerSetup, 84
Graphical user interface (GUI),

35, 108
Graphics, 200

draw calls, batching of, 211
dynamic batching,

213–215
material preparation,

212–213
static batching, 215–216

Frame Debugger, 219
making use of, 219–220
remote frames, debugger

of, 220–221
render target display,

options for, 221
high-impact graphics,

finding, 200
checklist, 210–211
CPU enhancement,

202–203
forward drawing of lights,

206–207
high-performance shaders,

creating, 209
lighting efficiency, 205–206
LOD and cull distances

per layer, 208

Index ◾ 253

mipmaps for textures, 208
model geometry

optimization, 204–205
OnDemandRendering

CPU optimization,
203–204

Shadows in real time, 208
texture compression and

mipmaps on the GPU,
207

instancing of GPUs, 216–217
Mip Maps, streaming of, 221

enabling, 222–223
mipmap streaming

troubleshooting,
224–225

restrictions, 223–224
statistics window, displaying,

217–219
Graphics Raycaster, 64
GUI, see Graphical user interface

H

Hand tool, 39
Hexagon Flat-Top 2D primitive,

111
Hexagon Point-Top 2D primitive,

111
Hierarchy section, 239
High-impact graphics, finding,

200
checklist, 210–211
CPU enhancement, 202–203
forward drawing of lights,

206–207
high-performance shaders,

creating, 209

lighting efficiency, 205–206
LOD and cull distances per

layer, 208
mipmaps for textures, 208
model geometry

optimization, 204–205
OnDemandRendering CPU

optimization, 203–204
Shadows in real time, 208
texture compression and

mipmaps on the GPU,
207

High-performance shaders,
creating, 209

Humanoid movements addition
to a model, 152

Avatar mask, making,
157–158

Avatar setup, 154–155
changing the pose, 157
configure the Avatar, 155–156
strategy mapping, 156–157

Human Template Window, 177

I

IDE, see Integrated development
environment

Immediate Mode Graphical UI,
191

Import Visibility feature, 166
In-player debugging, 231–232
Input class, 46
Inspector panel, 184, 240
Inspector scene template, 87–88
Installation of Unity, 29
Instantiate() function, 50
Instantiation in Unity, 50–52

254 ◾ Index

Instantiator, 50–51
Integrated development

environment (IDE), 1,
2, 43, 238

game development, Unity
3D, 5–7

game engines vs. Unity, 4–5
language used by Unity, 2–3
usefulness of Unity 3D, 3–4

Internal assets of Unity, 40–41
IronPython, 23
Isometric Diamond 2D

primitive, 111

J

JavaScript, 22
JetBrains Rider, 228
JIT compilation, see Just-in-time

compilation
Juego Studios, 7
Just-in-time (JIT) compilation,

14

K

KeyCode variable, 52

L

Languages to be learned for
Unity, 21

Boo, 22–23
C# programming language,

21–22
benefits of, 25–27

C/C++, 24
IronPython, 23

JavaScript, 22
Lua, 23–24
Rust, 24–25

Language used by Unity, 238–239
Legacy animation, system of, 148

clips of animation, 148
externally sourced animation,

149
Unity to create and edit the

animation, 149
Lightmap data, baking, 80
Loading in Unity, 41–42
Lua, 23–24

M

Mac, Visual Studio for, 228
MacOS OpenGL driver,

limitations of, 198
Material in Unity, 70
Messages, 57
Metal, 195

Metal API validation, 197
Metal enabling, 196–197
restrictions and requirements,

196
Mip Map Streaming system, 221,

222
enabling, 222–223
mipmap streaming

troubleshooting,
224–225

restrictions, 223–224
troubleshooting, 224–225
for textures, 208

Model import settings dialogue
box, 162–163

Model tab, 163

Index ◾ 255

blend shapes importing,
165–166

cameras importing, 167
light import, 167–168
restrictions, 168
scene, 164–165
visibility importing, 166

MonoBehaviour method, 43,
50, 61

MoonSharp, 23–24
Movement scripting in Unity,

44–46
Move tool, 39
Multiplayer systems, 9
Multi-scene editing, 77

Lightmap data, baking, 80
navmesh data, baking, 80–81
occlusion culling data,

baking, 81
Play Mode, 82
scene-specific settings, 82
scripting, 83

Muscle & Settings tab, 173

N

Navigation system of Unity, 189
Audio, 192
user interfaces (UI),

designing, 190
choosing a UI system for

our project, 191
Immediate Mode

Graphical UI, 191
toolkit for UIs, 190–191
Unity UI package, 191

NavMesh, 189
NavMesh Agent, 189

Navmesh data, baking, 80–81
NavMesh Obstacle component,

189–190
Nested Prefabs, 132–133
New Scene dialog, 74
New Unity users, 244–246
Nine-Sliced 2D primitive, 111
Non-humanoid animations

addition to a model,
158

Avatar mask, making,
161–162

model import settings
dialogue box, 162–163

outline, 159–160
setting up the rig, 160–161

NullReferenceException, 49

O

Object parenting in Unity, 39, 40
Objects in Unity, 18
Occlusion culling data, baking,

81
Off-Mesh Link, 189
OnDemandRendering CPU

optimization, 203–204
OpenGL Core, 197

activating, 197
command-line parameters,

199
features of, 198–199
macOS OpenGL driver,

limitations of, 198
native OpenGL ES command-

line parameters on
desktop, 200

OpenGL specifications, 198

256 ◾ Index

P

Parent–Child connection, 98
Particle System in Unity, 71
Per-pixel lighting optimization,

207
Physics component, 48–49
Plane, 108–109
Play Mode, 82
Play mode function, 9
Polygon Collider 2D, 50
Prefab Editing in Prefab Mode,

123
changing from isolation to

context mode, 126
contextual editing, 124–125
environment for editing, 127
isolation editing, 123–124
prefab mode entry and exit,

123
save automatically, 125–126
undo, 126–127

Prefabs, 50, 120
changing a occurrences of,

129
dropdown overrides,

130–131
menus in context, 131–132

creation, 121
existing prefabs,

replacement of,
122–123

prefab instance creation,
122

prefabricated assets,
making, 121–122

and instantiation in Unity,
50–52

nested Prefabs, 132–133

adding, 134
developing a Prefab

variant, 135–136
Prefab variant editing,

136–138
Prefab variations, 135
using their instances, 134

override, multiple layers of,
138

target selection, applying,
138–139

overrides, 127
alignment of Prefab

instance, 129
precedence given to,

128–129
physics, 142

object-oriented projects
with built-in physics
engines, 143

for object-oriented tasks,
use 3D physics, 143

2D physics reference,
143–144

prefab instance unpacking,
139–140

Unity3D fundamentals,
141–142

Prefab Variant, 135–136,
137–138

Preview Mode, 184–185
Project Window, 184, 240
Pro tier, 11
Python, 23

Q

Quad, 109
Quality window parameters, 207

Index ◾ 257

R

Record button, 185
Record Mode, 184
Rect tool, 39
Rect Transform, 63
Render Mode, 207
RenderTexture, 220
Rigidbodies and physics in

Unity, 48–49
Rigidbody2D, 48
Rig tab, 155, 168

generic animation, types of,
169–171

Rotate tool, 39
Rust, 24–25

S

Save Scene As option, 83
Scaling tool, 39
SceneManager class, 83
Scene performance optimization,

193
application programming

interface (API) support
for graphics, 193

DirectX, 194–195
Metal, 195–197
OpenGL Core, 197–200

graphics performance
optimizing, 200

displaying the statistics
window, 217–219

draw calls, batching of,
211–216

find high-impact graphics,
200–211

Frame Debugger, 219–221

instancing of GPUs,
216–217

streaming of Mip Maps,
221–225

Scenes, 73
creation, loading, and saving,

74–77
multi-scene editing, 77

Lightmap data, baking, 80
navmesh data, baking,

80–81
occlusion culling data,

baking, 81
Play Mode, 82
scene-specific settings, 82
scripting, 83

new scene settings, 93
types settings by default,

94
settings for the scene

template, 93
Scene saving and loading in

Unity, 41–42
SceneSetup class, 83
Scene templates, 84

customizing the creation of
new scenes, 90–91

making a blank scene
template, 85–86

making a template
from an existing asset in a

scene, 86
out of the current scene,

86–87
modifying, 87–89
sequence of scene template

instantiation, 91–93
Scene View, 239

258 ◾ Index

Script compilation, 20
Scripting, 42–44, 83, 112
Scripts, serialization of, 20
SetActive method, 112
Shader in Unity, 70
Shaders Computed, 195
Shaders for the Surface, 194–195
Shadows in real time, 208
SkinnedMeshRenderer

component, 165
Slider in Unity, 68–69
Sphere, 107–108
Sprite and pixels-per-unit by

default, 110
Sprites change in Unity, 38–39
Sprites creation in Unity, 37–38
Square 2D primitive, 110
Start function, 43
Static batching, 211
Static Editor Flags attribute, 115
Statistics window, displaying,

217–219
System Requirements for Unity

Hub, 30–31

T

“Table” Prefab, 138, 139
Tag, 113

new tags creation, 114
using, 114–115

TCP connection, 234
Terrain Textures, 224
Text element, 67
Text element in Unity, 66–68
Third-party .NET libraries,

making use of, 17
Thumbnail section, 88

Timeline mode
for Curves, 179–180
in Dopesheet, 179

.toString() function, 66
T-position, 157
Transforms, 96

component of transform, 96
non-uniform scaling

limitations, 99–100
and object parenting in Unity,

39
parenting, 98–99
properties, 97
scale’s importance, 100–101
transform editing, 97–98
working with transforms,

101
2D Primitive GameObjects,

109
Capsule, 110
Circle, 110
flat-top hexagon, 111
Isometric Diamond, 111
nine-sliced, 111
point-top hexagon, 111
sprite and pixels-per-unit by

default, 110
Square, 110

U

UI components, see User
interface components

Units, testing of, 235
Unity developers

need for, 246
required skills, 247–248
responsibilities, 248–249

Index ◾ 259

Unity Editor
reloading code in, 20
system requirements for, 12

UnityEngine Objects, 18, 19
Unity IDE, 238
Unity Interface, 239–240
Unity Player, system

requirements for, 12–13
Unity Profiler, 233
Unity Test Framework package,

235
Unity 3D game development, 4, 5

benefits of, 8
licensing, options for, 10–11
overall views, 11–12
system requirements for

Unity Editor, 12
system requirements for

Unity Player, 12–13
User interface (UI) components,

39, 62–64, 190
choosing a UI system for our

project, 191
Immediate Mode Graphical

UI, 191
toolkit for, 190–191
Unity UI package, 191

V

“Vase” Prefab, 138, 139
Viewport, 35
Virtual reality (VR)

compatibility, 5
Visual Studio

for Mac, 228
for Windows, 228

VR compatibility, see Virtual
reality compatibility

VS Code, 229

W

Warning signals, 57
Windows

for Avatar mask, 175
humanoid body, choosing,

175–176
selection of transform, 176

locking, 182
Visual Studio for, 228

Working of Unity, 34–37

Y

YAML file, 177

	Cover
	Half Title
	Series Page
	Title Page
	Copyright Page
	Contents
	About the Editor
	CHAPTER 1: Introduction to Unity
	WHAT EXACTLY IS THE UNITY IDE?
	What Is the Language Used by Unity?
	What Is Unity 3D, and How Is It Used?
	Other Game Engines vs. Unity
	Unity 3D Game Development
	All Gaming Solutions under One Roof

	NINE SIGNIFICANT BENEFITS OF UNITY 3D GAME DEVELOPMENT
	Options for Licensing
	Overall Views
	System Requirements for Unity Editor
	System Requirements for Unity Player

	ARCHITECTURE OF UNITY
	.NET Overview in Unity
	Backend Scripting

	Directed Code Stripping
	Collection of Garbage
	System Libraries for .NET
	Making Use of Third-Party .NET Libraries
	Overhead Reflection in C#
	UnityEngine.Object Unique Behavior
	UnityEngine Objects Are Shared by Unity C# and Unity C++
	Avoid the Use of Async and Await
	Reloading Code in the Unity Editor
	Serialization of Scripts
	Script Compilation

	WHICH OF THE SEVEN UNITY GAME DEVELOPMENT LANGUAGES SHOULD WE LEARN?
	C# Is the Best Option
	JavaScript Is the Current Alternative
	The Traditional Third Option: Boo
	IronPython Is an Unusual Choice
	Lua Is an Intriguing Option
	C/C++ Is the Best Language for Plugins
	Rust Is a New Programming Language for Plugins
	Ten Benefits of the C# Programming Language for Unity Developers

	CHAPTER 2: Setting Up Unity
	INSTALLATION AND CONFIGURATION
	System Requirements for Unity Hub

	CREATING A UNITY ACCOUNT
	DEVELOPING YOUR FIRST PROJECT
	HOW DOES UNITY WORK?
	CREATING SPRITES IN UNITY
	CHANGING SPRITES IN UNITY
	TRANSFORMS AND OBJECT PARENTING IN UNITY
	WHAT EXACTLY IS OBJECT PARENTING?
	UNITY INTERNAL ASSETS
	SCENE SAVING AND LOADING IN UNITY
	OUR VERY FIRST SCRIPT
	BASIC MOVEMENT SCRIPTING IN UNITY
	UNDERSTANDING COLLISIONS IN UNITY
	RIGIDBODIES AND PHYSICS IN UNITY
	CUSTOM COLLISION BOUNDARIES IN UNITY
	UNDERSTANDING PREFABS AND INSTANTIATION IN UNITY
	DESTRUCTION OF GAMEOBJECTS IN UNITY
	COROUTINES IN UNITY
	THE CONSOLE IN UNITY
	INTRODUCTION TO AUDIO IN UNITY
	Components of Audio
	Making a Noise

	STARTING WITH THE UI IN UNITY
	THE BUTTON OF UNITY
	TEXT ELEMENT IN UNITY
	THE SLIDER IN UNITY
	MATERIALS AND SHADERS IN UNITY
	What Exactly Is a Material?
	What Exactly Is a Shader?

	THE PARTICLE SYSTEM IN UNITY
	USING THE ASSET STORE IN UNITY

	CHAPTER 3: Working with Scenes and GameObjects
	WHAT ARE SCENES?
	Scene Creation, Loading, and Saving
	Multi-Scene Editing
	Baking Lightmaps across Multiple Scenes
	Baking Navmesh Data with a Variety of Scenes
	Baking Data for Occlusion Culling with Several Scenes
	Play Mode
	Scene-Specific Settings
	Scripting

	Scene Templates
	Creating Scene Templates
	Modifying Scene Templates

	Customizing the Creation of New Scenes
	The Sequence of Scene Template Instantiation

	Settings for the Scene Template
	New Scene Settings
	Types Settings by Default

	WHAT ARE GAMEOBJECTS?
	Specifications
	Transforms
	The Component of Transform
	Properties
	Transform Editing
	Parenting
	Non-Uniform Scaling Limitations
	Scale’s Importance
	Working with Transforms: Some Pointers

	Components Are Introduced
	Configurations of Common Components
	Component Transformation
	Components of the Main Camera GameObject
	Making Use of Components
	Adding Components
	Components Editing
	Commands from the Component Context Menu
	Property Experimentation

	Objects That Are Primitive or Placeholders
	Cube
	Sphere
	Capsule
	Cylinder
	Plane
	Quad

	Primitive 2D GameObjects
	Sprite and Pixels-per-Unit by Default
	Square
	Circle
	Capsule
	Isometric Diamond
	Flat-Top Hexagon
	Point-Top Hexagon
	Nine-Sliced

	Scripting Is Used to Create Components
	Deactivating GameObjects
	Deactivating a Parent GameObject

	Tags
	New Tags Creation
	Using a Tag

	GameObjects That Remain Static
	The Property Static Editor Flags

	Keeping Our Work Safe
	The Scene Changes
	Project-Wide Modifications
	Immediate Saving

	PREFABS
	Prefabs Creation
	Making Prefabricated Assets
	Prefab Instance Creation
	Replacement of Existing Prefabs

	Prefab Editing in Prefab Mode
	Prefab Mode Entry and Exit
	Isolation Editing
	Contextual Editing
	Save Automatically
	Changing from Isolation to Context Mode
	Undo
	Environment for Editing

	Overrides for Instances
	Overrides Are Given Precedence
	The Alignment Is Unique to the Prefab Instance

	Changing a Prefab’s Occurrences
	Dropdown Overrides
	Menus in Context

	Prefabs That Are Nested
	In Prefab Mode, Add a Nested Prefab
	Prefabs Can Be Nested Using Their Instances

	Prefabs That Are Nested
	In Prefab Mode, Add a Nested Prefab
	Prefabs Can Be Nested Using Their Instances
	Prefab Variations
	Developing a Prefab Variant
	Prefab Variant Editing

	Multiple Layers of Override
	Apply Target Selection

	Prefab Instance Unpacking
	Unity3D Fundamentals—A Quick Look at Game Physics
	Physics
	Object-Oriented Projects with Built-In Physics Engines
	For Object-Oriented Tasks, Use 3D Physics
	2D Physics Reference

	CHAPTER 4: Animation in Unity
	OVERVIEW OF THE ANIMATION SYSTEM
	WORKFLOW FOR ANIMATION
	SYSTEM OF LEGACY ANIMATION
	Clips of Animation
	Externally Sourced Animation
	Unity Was Used to Create and Edit the Animation

	EXTERNALLY SOURCED ANIMATION
	Importing Animation Files
	Data from Imported Animation Files May Be Seen and Copied

	AVATARS WITH HUMANOID
	ADDING HUMANOID MOVEMENTS TO A MODEL
	Overview
	Avatar Setup
	Configure the Avatar
	Strategy Mapping
	Changing the Pose
	How to Make an Avatar Mask

	ADDING NON-HUMANOID (GENERIC) ANIMATIONS TO A MODEL
	Outline
	Setting Up the Rig
	How to Make an Avatar Mask
	Model Import Settings Dialogue Box

	THE MODEL TAB
	Scene
	Blend Shapes Importing
	Visibility Importing
	Cameras Importing
	Light Import
	Restrictions

	THE RIG TAB
	Types of Generic Animation

	TAB AVATAR MAPPING
	Avatar Data Saving and Reuse
	Making Use of Avatar Masks

	THE AVATAR MUSCLE AND SETTINGS TAB
	Changes Being Previewed
	Degree of Freedom Translate

	THE WINDOW FOR AVATAR MASK
	Choosing a Humanoid Body
	Selection of a Transform

	HUMAN TEMPLATE WINDOW
	ANIMATION WINDOW INSTRUCTIONS
	MAKING USE OF THE ANIMATION VIEW
	Viewing Animations on a GameObject
	The List of Animated Properties
	Timeline of Animation
	Timeline Mode in Dopesheet
	Timeline Mode for Curves
	Fitting Our Choice to the Window
	Controls for Playback and Frame Navigation
	Window Locking

	MAKE A NEW ANIMATION CLIP
	Including Another Animation Clip
	How It All Works Together

	ADDING ANIMATION TO A GAMEOBJECT
	Keyframes Recording
	Time Line
	In Preview Mode, You May Create Keyframes
	Making Keyframes by Manually

	CONTROLLERS FOR ANIMATORS
	UNITY’S NAVIGATION SYSTEM
	Designing User Interfaces (UI)
	Toolkit for UIs
	The Unity UI Package
	Immediate Mode Graphical UI
	Choosing a UI System for our Project

	Audio

	CHAPTER 5: Scene Performance Optimization
	APPLICATION PROGRAMMING INTERFACE (API) SUPPORT FOR GRAPHICS
	DirectX
	Shaders for the Surface
	Geometry Shaders and Tessellation
	Shaders Computed

	Metal
	Restrictions and Requirements
	Metal Enabling
	Metal API Validation

	Core OpenGL
	Activating OpenGL Core
	OpenGL Specifications
	Limitations of the macOS OpenGL Driver
	Features of OpenGL Core
	Command-Line Parameters for the OpenGL Core Profile
	Native OpenGL ES Command-Line Parameters on Desktop

	GRAPHICS PERFORMANCE OPTIMIZING
	Find High-Impact Graphics
	CPU Enhancement
	OnDemandRendering CPU Optimization
	GPU: Model Geometry Optimization
	Lighting Efficiency
	Forward Drawing of Lights
	Texture Compression and Mipmaps on the GPU
	Mipmaps for Textures
	LOD and Cull Distances Per Layer
	Shadows in Real Time
	GPU: Guidelines for Creating High-Performance Shaders
	A Simple Checklist to Help Us Improve Our Game’s Speed

	Batching of Draw Calls
	Material Preparation for Batching
	Dynamic Batching
	Dynamic Batching (Particle Systems, Line Renderers, Trail Renderers)
	Batching That Is Static

	Instancing of GPUs
	Including Instancing in Our Materials

	Displaying the Statistics Window
	Statistics

	Debugger for Frames
	Making Use of Frame Debugger
	The debugger of Remote Frames
	Options for Render Target Display

	Streaming of Mip Maps
	To Begin With
	Restrictions
	Mipmap Streaming Troubleshooting

	CHAPTER 6: Completing the Game
	DEBUGGING C# CODE IN UNITY
	Setting up the Code Editor
	Choosing an External Script Editor in Unity
	Editor Debugging
	The Code Optimization Option in Unity Offers Two Options

	Attaching to the Editor and Setting Breakpoints
	In-Player Debugging
	Android and iOS Device Debugging
	Using the Debugger to Troubleshoot
	Make Certain That the Debugger Is Attached to the Right Unity Instance
	Check Our Network Connection to the Unity Instance
	Ascertain That the Device Only Has One Active Network Interface
	Examine the Firewall Settings
	Test to See if the Managed Debugging Information Is Available
	Prevent the Device from Locking

	TESTING OF UNITS

	APPRAISAL
	INDEX

