

Mastering React Native

Mastering React Native helps the reader master the React Native
framework for faster and more robust mobile app development.

React Native is an open-source JavaScript framework that allows you to
create applications for many platforms, including iOS, Android, and the
web, all with the same code base. It is built on the React framework, and it
provides all of React’s power to mobile app development.

React Native was a natural continuation of React. It is a mobile
framework that includes JavaScript to create near-native apps. JSX, a
hybrid of JavaScript and XML-like markup, is used to make React Native
applications. Te React Native “bridge” then calls the native rendering
APIs in Objective-C (for iOS) or Java (for Android) behind the scenes (for
Android). As a result, your app will appear and feel like any other mobile
app, as it will be rendered using genuine mobile UI components instead of
web views. React Native also ofers JavaScript interfaces for platform APIs,
allowing your React Native apps to use features such as user location and
the phone camera.

If your app is UI focused, React Native is an excellent choice
because it comes with an extensive UI library. Becoming a React
Native developer gives you access to exciting, cutting-edge projects
which frequently incorporate innovative technology like Augmented
Reality. Job opportunities for React Native devs are aplenty, and it is
undoubtedly a skill worthy of consideration owing to its popularity
with startups and corporates alike.

With Mastering React Native, learning React Native becomes easy and
will help readers undoubtedly advance their careers.

Te Mastering Computer Science series is edited by Sufyan bin Uzayr,
a writer and educator with more than a decade of experience in the
computing feld.

Mastering Computer Science
Series Editor: Sufyan bin Uzayr

Mastering React Native: A Beginner’s Guide
Lokesh Pancha, Jaskiran Kaur, and Divya Sachdeva

Mastering Visual Studio Code: A Beginner’s Guide
Jaskiran Kaur, D Nikitenko, and Mathew Rooney

Mastering Rust: A Beginner’s Guide
Divya Sachdeva, Faruq KC, and Aruqqa Khateib

Mastering Bootstrap: A Beginner’s Guide
Lokesh Pancha, Divya Sachdeva, and Rubina Salafey

Mastering Django: A Beginner’s Guide
Jaskiran Kaur, NT Ozman, and Reza Nafm

Mastering React: A Beginner’s Guide
Mohammad Ammar, Divya Sachdeva, and Rubina Salafey

For more information about this series, please visit: https://www.routledge.
com/Mastering-Computer-Science/book-series/MCS

Te “Mastering Computer Science” series of books are authored by the
Zeba Academy team members, led by Sufyan bin Uzayr.

Zeba Academy is an EdTech venture that develops courses and content
for learners primarily in STEM felds, and ofers education consulting
to Universities and Institutions worldwide. For more info, please visit
https://zeba.academy

https://www.routledge.com/Mastering-Computer-Science/book-series/MCS
https://zeba.academy

Mastering React Native

A Beginner’s Guide

Edited by Sufyan bin Uzayr

First Edition published 2023
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2023 Sufyan bin Uzayr

Reasonable eforts have been made to publish reliable data and information, but the author and publisher
cannot assume responsibility for the validity of all materials or the consequences of their use. Te authors
and publishers have attempted to trace the copyright holders of all material reproduced in this publica-
tion and apologize to copyright holders if permission to publish in this form has not been obtained. If
any copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, trans-
mitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafer
invented, including photocopying, microflming, and recording, or in any information storage or retrieval
system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or
contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-
8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used
only for identifcation and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Names: Bin Uzayr, Sufyan, editor.
Title: Mastering React Native : a beginner’s guide / edited by Sufyan bin
Uzayr.
Description: First edition. | Boca Raton : CRC Press, 2022. | Includes
bibliographical references and index.
Identifers: LCCN 2022021427 (print) | LCCN 2022021428 (ebook) | ISBN
9781032315898 (hbk) | ISBN 9781032314723 (pbk) | ISBN 9781003310440
(ebk)
Subjects: LCSH: JavaScript (Computer program language) | React Native. |
Application sofware--Development. | Mobile apps--Development. |
Cross-platform sofware development. | Cellphones--Programming.
Classifcation: LCC QA76.73.J39 M38 2022 (print) | LCC QA76.73.J39
(ebook) | DDC 005.2/762--dc23/eng/20220729
LC record available at https://lccn.loc.gov/2022021427
LC ebook record available at https://lccn.loc.gov/2022021428

ISBN: 9781032315898 (hbk)
ISBN: 9781032314723 (pbk)
ISBN: 9781003310440 (ebk)

DOI: 10.1201/ 9781003310440

Typeset in Minion
by Deanta Global Publishing Services, Chennai, India

http://www.copyright.com
http://www.mpkbookspermissions@tandf.co.uk
https://lccn.loc.gov/2022021427
https://lccn.loc.gov/2022021428
https://dx.doi.org/10.1201/ 9781003310440

Contents

Mastering Computer Science Series Preface, xxi

About the Editor, xxiii

CHAPTER 1 ◾ Getting Started with React Native 1
WHAT IS REACT NATIVE 1

JSX 2
Building and Testing the React Native App 3
About React Native Release 3

Prerequisite 3
Installation 4

HISTORY OF REACT NATIVE 5

VARIOUS STEPS TO OPTIMIZING THE PERFORMANCE OF
THE REACT NATIVE APPLICATIONS 5

Reduce System Size 6
Reduce Image Size 6
Photo Caching 7
Improving Application Release Time 7
JSON Data Upgrade 7
Do Not Give if Not Needed 8
Memory Leaks 8
Animation in React Native 8
Navigation Development 8
Lack of Multithreading 9
Improving Screen Orientations 9

v

vi ◾ Contents

Make Maps Better 9
Benefts of React Native 9

ADVANTAGES 10

Key Benefts 10
Community Support 10
Proper Performance 11
Reusable Code and Advanced Components 11
Benefts of Live and Hot Reloads 11
Expensive Solution 12
Simplifed UI 12
External Plugin Support 12
Modular Architecture 12
Growing Stability and Reliability 12
Access to Libraries and Ready-to-Do Solutions 13

DISADVANTAGES OF NATIVE REACT 13

Immaturity 13
Hard to Learn 13
Low Security 14
Complex UI 14
Long Initialization Time 14
Memory Management 14

CONCLUSION 14

CHAPTER 2 ◾ Working with React Native 15
HOW DOES REACT NATIVE WORK? 15

PROCESS INVOLVED IN WORKING OF REACT NATIVE 16

React Native Architecture 16
Development Process 17
React Native Features 17
NPM Repository Support 17
Reuse of Code 18
Flexible Planning Language 18
A Powerful Community 18

        

Contents ◾ vii

Supports 3D Group Libraries 18
Use High Performance in Mobile Environments 18
HMR (Hot Module Replacement) 19
UI-rich Skills 19
Te Future of React Native 19
Development of Broadcast Model 19

Advances in Platform-Agnosticism 19
Ease of the Bridge 20

Async Skills Expansion 20
What Does the Development Process Look Like? 20

REACT NATIVE COMPONENT LIFE CYCLE PHASES 20

Mounting Phase 21
Constructor() 22
static getDerivedStateFromProps() 22
render() 22
ComponentDidMount() 22

Updating Phase 22
Static getDerivedStateFromProps() 22
shouldComponentUpdate() 23
render() 23
getSnapshotBeforeUpdate() 23
componentDidUpdate() 23

Unmounting Phase 23
componentWillUnmount() 23

Error Handling Phase 23
getDerivedStateFromError() 23
componentDidCatch() 24

Creates Components in a Traditional Responsive Way 24
WHAT IS THE COMPONENT OF REACT NATIVE? 27

React Native – Class Component 27
Description 27

React Native – Function Component 28
Description 28

viii ◾ Contents

HOST PLATFORM APIS 28

Platform Module 29
Detecting Android version 30
Getting iOS Version 30
Platform-Specifc Extensions 31
Native-specifc Extensions (i.e. Sharing Code with
NodeJS and Web) 31

CONCLUSION 32

CHAPTER 3 ◾ Building Your First Application 33
INSTALLATION OF REACT NATIVE CLI 33

Installing Windows Terminal 34
Ways to Install Windows Terminal 34

Installing Git 36
How to Download Git? 36
Install Git 36

Installing Node.js and NPM package manager 37
Introduction 37
Requirements 37

Installing Node.js and NPM on Windows System 37
What Is NPM? 38
How to Install or Update NPM 38

Installing React Native CLI 40
Installing Python 40
React Native CLI 41
Installing Android JDK 41

JAVA_HOME FLEXIBLE ENVIRONMENT 42

Installing Android Studio 42
Android Studio: https://developer.android.com/studio 42
Android Studio Confguration 42

Installing Android SDK 44
Android Studio SDK confguration 44

        

Contents ◾ ix

Installing Visual Studio Code (IDE) 45
How to Download and Install Visual Studio Code? 45
How to Install VStudio Code on Windows? 46
Why Do You Use React Native? 46

SETTING UP YOUR ENVIRONMENT 47

Running React Native Application 48
Modifying Your App 48
Exploring the Sample code 48

BUILDING AN APP 49

Building an Android App with React Native 49
STEP 1: Blank React Native Project Creation 49
STEP 2: Connect Android Device 50
STEP 3: Getting Information from the Moviedb API 50
STEP 4: Defning the fetchMoviesData Method 51
STEP 5: Creating the Life Cycle componentDidMount Method 51
STEP 6: View Creation 51
STEP 7: Reconstructing the Return Method 52
STEP 8: Running the App 53
Conclusion 53

React Native – Default Application 53
Props and State Defnition 54
State 56
Diference between State and Props 57
Using State 57
Updating State 58

Build Your First App with React Native 59
Creating an App 60
At the Start of NPM 60
What Is Cross-Platform Development? 61
What Are Some of the Features of Cross-Platform
Development? 61

A Lot of Listeners 61

x ◾ Contents

Stability of the Court 61
Reusable Code 61
Rapid Development 62
Reduced Costs 62
Requires Additional Technology to Ensure High Performance 62

CHAPTER SUMMARY 62

CHAPTER 4 ◾ Components for Mobile Development 63
COMPONENTS FOR MOBILE 63

Analogies between HTML and Native Components 63
Te Text Component 64

THE IMAGE COMPONENT 66

WORKING WITH TOUCH AND GESTURES 67

USING TOUCHABLEHIGHLIGHT 68

Touch/PressDemo.js illustrates the use of TouchableHighlight 69
GESTURERESPONDER SYSTEM 70

PanResponder 72
Creating a PanResponder requires us to pass a set of callbacks 73
Attaching the PanResponder using spread syntax 74
Touch/PanDemo.js explain the use of PanResponder 74

CHOOSING A TOUCH MANAGEMENT METHOD 78

WORKING WITH ORGANIZATIONAL COMPONENTS 79

Using ListView 79
For _renderRow, we only pass along the suitable data to the
<BookItem> 81
Adding methods render to header and footer elements in
BookListV2.js 81
Bestsellers/BookItem.js 85

USING NAVIGATORS 86

OTHER ORGANIZATIONAL COMPONENTS 87

PLATFORM-SPECIFIC COMPONENTS 87

iOS- or Android-Only Components 87
Components with Platform-Specifc Versions 88

        

Contents ◾ xi

Switch.ios.js 88
CrossPlatform.js Makes Use of the <Switch> Component 90

WHEN TO USE PLATFORM-SPECIFIC COMPONENTS 91

SUMMARY 92

CONCLUSION 92

CHAPTER 5 ◾ Styles and Layouts 93
1. STYLES ARE IMPORTANT: MAKE THEM EASY TO FIND 94

2. GET ATOMIC! 94

3. STYLES ARE IMPORTANT: MAKE THEM EASY TO USE 95

4. KEEP STYLES CLOSE 98

Caveats 99
Container Component 100
Presentational Component 101

REACT NATIVE STYLE METHOD 102

Style Props 102
REACT NATIVE APPLICATION: THE FLEXBOX
ARCHITECTURE 102

Using StyleSheet 103
Styled-Component in React Native 105
Using React Native SVG to Draw Certain Conditions 108

ORGANIZATION AND INHERITANCE 112

Style Inheritance of React Native 112
Realistic Way to Implement Custom Fonts to Your App 113
Creating React Application 115

Step to Run Application 116
Output: Positioning and Designing Layouts 116

Positioning 116
Starting with the View 116
Positioning Basics 116

LAYOUT WITH FLEXBOX 122

Flex 122
Flex Direction 122

xii ◾ Contents

Layout Direction 123
Justify Content 123
Align Items 124
Align Yourself 124
Align Content 125
Flex Wrap 125
Flex Basis, Grow, and Shrink 125
Width and Height 126
Absolute and Relative Layout 126

CONCLUSION 127

CHAPTER 6 ◾ Platform APIs 129
PLATFORM APIS 129

What Is an API Platform? 131
Adding to the Traditional Look in Managing the Full Life API 131

USING GEOLOCATION 133

Detecting Geolocation Support 134
Using getCurrentPosition 135

Position Error Timeout 135
Managing Position Errors 136
Tracking Position Changes 137

Setting Links Using Chromium Developer Tools 138
How the Position Is Determined 139
Nearby iOS Location 140
Find User Location 140
Using the Geolocation API 140
Handling Errors and Rejections 141
Showing the Result in the Map 142
Location-Specifc Information 142

THE GETCURRENTPOSITION() METHOD – RETURN DATA 143

GEOLOCATION OBJECT – OTHER INTERESTING METHODS 143

@capacitor/geolocation 144
Install 144

        

Contents ◾ xiii

iOS 144
Android 144

Variables 145
API 145

getCurrentPosition(…) 146
watchPosition(…) 146
clearWatch(…) 146
checkPermissions() 146
requestPermissions(…) 147
Interfaces 147
Type Aliases 148

Accessing the User’s Images and Camera 149
CREATE THE PAGE 149

ADD FILE INPUT 149

ADD A CANVAS 150

RESPOND TO CHANGE 150

DRAW INTO THE CANVAS 151

OPTIONS 153

Storing Persistent Data with asyncstore 153
Importing AsyncStorage Library 153
Persisting Data 153
Fetching Data 154

Methods 154
getItem() 154
setItem() 154
removeItem() 155
mergeItem() 155
clear() 156
getAllKeys() 157
fushGetRequests() 157
multiGet() 157
multiSet() 158

xiv ◾ Contents

multiRemove() 159
multiMerge() 159

CONCLUSION 162

CHAPTER 7 ◾ React Native Modules 163
MODULES 163

Native Modules Intro 163
INSTALLING JAVASCRIPT LIBRARIES WITH NPM 164

What Exactly Is NPM? 164
How to Download NPM? 164
How to Download Packages Using NPM? 164
How to Download Packages Globally with NPM 165
How to Use the package 165

IOS NATIVE MODULES 166

Create a Calendar Native Module 166
Setup 166

Create Custom Native Module Files 167
Module Name 167
Export a Native Method to JavaScript 168
Synchronous Methods 169
Test What You Have Built 170
Building as You Iterate 171
Recap 171

Beyond a Calendar Native Module 172
Better Native Module Export 172
Argument Types 173
Exporting Constants 174
Callbacks 175
Promises 178
Sending Events to JavaScript 179
Treading 180
Dependency Injection 181

        

Contents ◾ xv

Exporting Swif 182
Reserved Method Names 183

NATIVE MODULES FOR ANDROID 183

Create a Calendar Native Module 183
Setup 184
Create Custom Native Module File 184
Module Name 185
Export a Native Method to JavaScript 185
Synchronous Methods 186
Register the Module (Android Specifc) 187
Test What You Have Built 189
Building as You Iterate 190
Recap 190

Beyond a Calendar Native Module 190
Better Native Module Export 190
Argument Types 192
Exporting Constants 193
Callbacks 194
Promises 196
Sending Events to JavaScript 198
Getting Activity Result from startActivityForResult 199
Listening to Lifecycle Events 201
Treading 202

CROSS-PLATFORM NATIVE MODULES 202

WHAT ARE THE ADVANTAGES OF CROSS-PLATFORM
APPLICATION DEVELOPMENT FRAMEWORKS? 203

Code Reusability 203
Reduced Costs and Resources 203
Easy Deployment and Maintenance 203
Wider Market Reach 203
Uniform Design 203

CONCLUSION 204

xvi ◾ Contents

CHAPTER 8 ◾ Debugging and Developer Tools 205
DEBUGGING AND DEVELOPER TOOLS 205

Enabling Fast Refresh 206
Enabling Keyboard Shortcuts 206
LogBox 206

Console Errors and Warnings 206
Unhandled Errors 206
Syntax Errors 207

Chrome Developer Tools 207
Debugging Using a Custom JavaScript Debugger 207

Safari Developer Tools 208
React Developer Tools 208

Integration with React Native Inspector 209
Inspecting Component Instances 209

Performance Monitor 209
Debugging Application State 209
Native Debugging 210

Projects with Native Code Only 210
Accessing Console Logs 210
Debugging on a Device with the Chrome Developer Tools 210
Debugging Native Code 211

JAVASCRIPT DEBUGGING PRACTICES TRANSLATED 211

Best Practices 211
Beautify to Debug 211

Debugging Methods 211
Console Method 211
Using a Debugger 212
Breakpoints 212
Unconditional Breakpoints 213
Using a Breakpoint List 213
Adding Logpoints 213
Unsetting Breakpoints 213

        

Contents ◾ xvii

Using Watches 213
Using Call Stack 214

Debugging Tools 214
Rookout 214
NodeJS Inspector 214
Using a Code Editor 214
Framework Debugging Tools (Angular, React, Vue) 215
JSON Formatter and Validator 215
“use strict” Mode 215

REACT NATIVE DEBUGGING TOOLS 215

Top 6 Debugging Tools for React Native Developers 215
Chrome’s DevTools 215
React Developer Tools 216
React Native Debugger 216
Redux DevTools 217
Nuclide – Atom’s Plug-in 218
Reactotron 218

DEBUGGING BEYOND JAVASCRIPT 219

Te Basics of Console Logging 219
Beyond the Basics of Console Logging 220

console.table() 220
console.assert() 220
console.trace() 221
console.count() 221
console.memory 221
console.time() 221

CONCLUSION 221

CHAPTER 9 ◾ Putting It All Together 223
THE FLASHCARD APPLICATION 226

React Native Flashcards 226
How to Install 226
How to Run 226

xviii ◾ Contents

MODELING AND STORING DATA 226

STORING DATA IN THE REACT NATIVE LOCAL STORAGE
WITH EXAMPLES 227

USING THE NAVIGATOR 248

React Navigation 5.0 248
Installing React Navigation 248
Te React Native Stack Navigator 250
React Native Navigation Examples 250

Using Stack Navigator to Navigate between the Screen
Components 250
Using Tab Navigation 254
Using Drawer Navigation 255

CONCLUSION 259

CHAPTER 10 ◾ Deploying to the iOS App Store 261
COMPLY WITH THE DEVELOPER’S SPECIFICATIONS 262

CHOOSE AN IOS PROGRAMMING LANGUAGE 263

TAP INTO APIS AND LIBRARIES 263

EXPAND INTO THE CLOUD 264

TEST LOCALLY, TEST GLOBALLY 264

PUBLISH YOUR APP TO THE APP STORE 265

Creating an Xcode Project for an App 265
Overview 265
Prepare Confguration Information 266
Important 266
Create a Project 266
Manage Files in the Main Window 267

BETA TESTING WITH TESTFLIGHT 268

Testfight Is Used for Beta Testing 268
Advantages of Beta Testing 268
Beta Testing by Using Testfight 269
Main Functions of Testfight 269
Algorithm for Testing the Application’s Beta Versions 269

        

Contents ◾ xix

Internal Testers 270
External Testers and Groups 270

Using E-mail to Invite Testers 271
Using Public Links to Invite Testers 271
Test Information 271
Getting Feedback 271

SUBMITTING THE APPLICATION FOR REVIEW 272

Code Signing: Create iOS Distribution Provisioning Profle
and Distribution Certifcate 272
Create App Store Connect Record for Your App

Confgure App’s Metadata and Further Details in its App

273
For Paid Apps 273
Add a New App 274

Archive and Upload App Using Xcode 274

Store Connect Record 275
Submit Your App for Review 276
Check on the Status of App 277

How Long Does It Take to Get Approval from an App Store? 277
If Your Application Has Been Rejected 277
If Your Application Has Been Approved 277

SUMMARY 277

CONCLUSION 278

CHAPTER 11 ◾ Deploying Android Applications 279
LIST THE PODS, WITH THEIR ATTACHED LABELS 281

SELECT PODS WITH THE LABEL PROVIDED 282

DEPLOY A WEBSERVER USING THE CLI 282

LIST REPLICASETS AND PODS 283

EXPOSING AN APPLICATION 283

ACCESSING AN APPLICATION 285

LIFE AND READINESS TO TEST 285

BUILDING THE APK FOR RELEASE 288

xx ◾ Contents

USING THE REACT NATIVE CLI 289

STEP 1: Generate a Keystore 289
STEP 2: Adding Keystore to Your Project 290
STEP 3: Uninstall the APK Generation 291

Generate React Native Release Build with Android Studio 293
HOW TO SEND E-MAIL FROM REACT NATIVE
APPLICATION 294

DISTRIBUTING THE REACT NATIVE APP WITH
MICROSOFT APP CENTER 297

Getting Started 298
Tree Ways to Send E-mails from React Native App 299

Confguring Linking API 299
Working with Your Own Server 300
Using Tird-Party Tools 300
Wrap Up 301
Submit Your Request to the Google Play Store 301
Produces the Upload Key 302

Add a Signing Setting to Gradle for Your App 303
Generating the Release AAB 304

Testing the Release Build of Your App 304
Publishing in Other Stores 305
Enables Proguard to Reduce APK Size (Optional) 305
Modify Old Android React Native Apps to Use Google Play
Signing App 306

CONCLUSION 306

APPRAISAL, 307

BIBLIOGRAPHY, 313

INDEX, 321

Mastering Computer
Science Series Preface

The Mastering Computer Science covers a wide range of topics,
spanning programming languages as well as modern-day technolo-

gies and frameworks. Te series has a special focus on beginner-level con-
tent, and is presented in an easy to understand manner, comprising:

• Crystal-clear text spanning various topics sorted by relevance

• Special focus on practical exercises, with numerous code samples
and programs

• A guided approach to programming, with step-by-step tutorials for
absolute beginners

• Keen emphasis on the real-world utility of skills, thereby cutting
the redundant and seldom-used concepts and focusing instead on
industry-prevalent coding paradigm

• A wide range of references and resources to help both beginner and
intermediate-level developers gain the most out of the books

Te Mastering Computer Science series of books start from the core con-
cepts and then quickly moves on to industry-standard coding practices to
help learners gain efcient and crucial skills in as little time as possible.
Te books assume no prior knowledge of coding, so even the absolute
newbie coders can beneft from this series.

Te Mastering Computer Science series is edited by Sufyan bin Uzayr, a
writer and educator with more than a decade of experience in the comput-
ing feld.

xxi

https://taylorandfrancis.com/

About the Editor

Sufyan bin Uzayr is a writer, coder, and entrepreneur with more than a
decade of experience in the industry. He has authored several books in
the past, pertaining to a diverse range of topics, ranging from History to
Computers/IT.

Sufyan is the Director of Parakozm, a multinational IT company spe-
cializing in EdTech solutions. He also runs Zeba Academy, an online
learning and teaching vertical with a focus on STEM felds.

Sufyan specializes in a wide variety of technologies, such as JavaScript,
Dart, WordPress, Drupal, Linux, and Python. He holds multiple degrees,
including ones in Management, IT, Literature, and Political Science.

Sufyan is a digital nomad, dividing his time between four countries. He
has lived and taught in universities and educational institutions around
the globe. Sufyan takes a keen interest in technology, politics, literature,
history, and sports, and in his spare time, he enjoys teaching coding and
English to young students.

Learn more at sufyanism.com.

xxiii

http://www.sufyanism.com.

https://taylorandfrancis.com/

C H A P T E R 1

Getting Started with
React Native

IN THIS CHAPTER

¾ What is React Native

¾ Advantages and disadvantages

¾ Risks and drawbacks

In this chapter, you will learn about React Native, what it is and how it can
be used, and advantages and disadvantages of React Native, and risks and
drawbacks of it. Now let’s jump toward the frst section of our chapter and
learn what React Native is.

WHAT IS REACT NATIVE
React Native is an open-source framework for JavaScript Mobile from
Facebook that is specifcally designed to build iOS and Android mobile
apps. React Native is based on the ReactJS JavaScript library, which helps
build user interaction for mobile platforms.

React Native can be used directly within the existing IOS or Android
app or you can create a traditional app from scratch. Currently, React
Native is used in other popular apps like Facebook mobile app, Instagram,
Pinterest, Skype, etc.

DOI: 10.1201/9781003310440-1 1

https://dx.doi.org/10.1201/ 9781003310440-1

 
     

       

     
 

2 ◾ Mastering React Native

Some of the key features of React Native that make mobile development
so popular today are:

• Cross‑Platform Support: To improve mobile applications, you
do not need a team specialist in iOS and Android applications,
JavaScript engineers who are passionate about building applications
can use React Native to build native applications without learning
Kotlin or Java for Android and Swif or Objective-C for IOS apps.
You can also write one common code and React Native will take care
to display it on iOS and Android.

• React Native Components: React Native provides native compo-
nents such as View, Text, and Image that can be converted to native
iOS or Android UI.

Here is a simple example of using a native native that displays the text
Hello World:

Example:

import React from ‘react’;
import { Text, View} from ‘react-native’;
const App = () => {
 return (

<View style={{flex :1, justifyContent: ‘center’,
margin: 15}}>
<Text style={{color:’red’, fontSize:30}}>Hello
World</Text>
</View>

);
}
export default App;

JSX

Since React JS belongs to the web world, React Native is designed for the
world of mobile applications. React Native uses JSX i.e., XML coding
replacement for HTML and CSS. Te benefts of JSX are as follows:

• It is faster because it makes improvements while compiling code in
JavaScript.

• It is also safe and most errors can be caught during integration.

• It makes it easier to write templates if you are good with HTML.

         

Getting Started with React Native ◾ 3

Building and Testing the React Native App

It is extremely easy to build your app in a responsive traditional way and
test the changes without covering the head. Changes are available and
quickly displayed when you save your code.

About React Native Release

Te frst version of React Native was released by Facebook in 2015 and
from then on, they have been reviewing and making upgrades to it. It
became very popular afer its release as it is one of the leading frameworks
for mobile app development. As per the ofcial React Native website, in
2018, React Native had the second-highest number of contributors as
compared to other repositories on GitHub. Today, React Native is sup-
ported by donations from individuals and companies around the globe,
including Callstack, Microsof, Expo, Infnite Red, and Sofware Mansion.
Te Facebook community has been extremely active and updates projects
regularly with new updates across all platforms.

If you would like to build mobile apps for Android and iOS, what should
you learn? Each of the native languages of each application, namely Java
for Android and Swif/Objective-C for iOS? Actually NO. Te traditional
upgrades for Android and iOS are quite diferent and expensive – frstly,
the language itself is quite diferent, and secondly, all the basic APIs are
diferent – how to use GPS is diferent, how to make photos is diferent,
how you make network calls is diferent.

We are always looking for shorter upgrade cycles, faster feed time, and
better app performance. And there are many interactive mobile frame-
works such as NativeScript, React Native, Ionic, Xamarin, PhoneGap, etc.

React Native is a framework developed by Facebook to create tradi-
tional-style apps for iOS and Android under one common language,
JavaScript. Initially, Facebook developed the React Native only to support
iOS. However, with its latest support for the Android operating system,
the library is now able to ofer mobile UI for both platforms.

Prerequisite

• Basic knowledge of HTML, CSS, and JS.

• Basic knowledge of ReactJS.

• NodeJs should be installed in your system.

Building with React Native works extremely well and is very addictive but
getting started can be tricky. React Native uses Node.js, a JavaScript term,

http://www.Node.js,

4 ◾ Mastering React Native

to generate your JavaScript code. If you don’t have Node.js installed, it is
time to get it!

Installation
Here we use the Expo CLI version that will be much easier to use in your
React Native applications. You should follow the steps below one by one to
set up your native React location.

Step 1: Open your terminal and use the command below.

npm install -g expo-cli

Step 2: Now the Expo CLI is installed worldwide, so you can create a
project folder using the command below.

expo init “projectName”

Step 3: Now create one folder and start the server by using the following
command given below:

cd “projectFolder”

npm start application_name

Project structure.

http://www.Node.js

         

Getting Started with React Native ◾ 5

HISTORY OF REACT NATIVE
Facebook developed React Native in 2013 through their in-house hack-
athon project. Later, it was released publicly in January 2015 as React.js,
and in March 2015, Facebook announced that React Native was open and
available on GitHub. React Native was originally designed for the iOS app.
However, recently it also supports the Android operating system.

In 2012 Mark Zuckerberg commented that “the biggest mistake we
have made as a company is to bet more on HTML than on the native.”
Using HTML5 in the mobile version of Facebook has resulted in an unsta-
ble application that has slowed data recovery. He promised that Facebook
would soon bring better mobile information.

Inside Facebook, Walke found a way to create iOS UI elements from
the JavaScript thread domain, which was to become the basis for the React
web framework. Tey decided to set up an internal hackathon to complete
this prototype so they could make constructive applications with this
technology.

In 2015, afer several months of development, Facebook released the
frst version of the React JavaScript Confguration. During a technical talk,
Christopher Chedeau explained that Facebook was already using React Native
in the production of their Group Program and their Ad Manager program.

VARIOUS STEPS TO OPTIMIZING THE PERFORMANCE
OF THE REACT NATIVE APPLICATIONS
Facebook’s React Native has become one of the most popular JavaScript
library code frameworks for creating cross-platform applications.
Although the frst launch was fve years ago, in 2013 on GitHub, it has cre-
ated a lot of noise compared to Xamarin and Ionic. One feature that sup-
ports React Native is that it allows developers to improve mobile and web
applications at faster speeds. Additionally, you can build both Android
and iOS apps by sharing and reusing codes easily.

Another advantage ofered by React Native is that there is not much
diference between completed applications created using Objective-C or
Java and React Native. React Native enjoys the support of a large network
of experienced developers.

However, it also has some drawbacks. One of the great pitfalls of React
Native is that it has its limitations and is therefore on the road to develop-
ment. You will not fnd any other custom modules, which means you must
invest extra time to create your own module. Terefore, we will easily dis-
cuss some of the most important ways you can improve the performance
of your React Native applications.

http://www.React.js,

6 ◾ Mastering React Native

Before we give you a glimpse of how you can fx problems based on
React Native-related functionality, you need to fully understand that the
functionality of this JavaScript library depends on a highly rated structure.

An increase in the number of navigation controls, animations, and tabs
reduces the use of speed seen in the application. In addition, during the
development of the app, the version is ofen modifed and can be a key
bottleneck in the performance of the app.

React Native connects to the native cable with the help of a bridge. And
the architecture of React Native can be divided into two categories, namely,
React Native is developed in Java, Swif, or Objective-C, and natively cre-
ated in JavaScript. Terefore, we can focus on these important parameters
to improve performance.

Reduce System Size

JavaScript framework applications rely heavily on native components and
third-party libraries. Additional use of components improves application size.

• So, if you must reduce the app size, you should use ProGuard and
upgrade apps of varied sizes with a list of device properties.

• In addition, please focus on photo features and images.

• You can also take another step to reduce the size, such as changing
parts from native to traditional, reducing the size of the bridge used
by JavaScript to integrate with traditional.

• You can also go through open-source libraries to check their stability
before using them.

• Do not use the main thread to transfer parts that rely on heavy mes-
sage lines.

Reduce Image Size

If you want to improve the performance of your React Native apps, you
also need to reduce the image size without reducing the app size.

You should be aware that images ofen consume a substantial portion of
memory. Tere are other various ways to achieve your goals.

• Te frst one uses images that are smaller in size.

• Second, you must select a PNG fle format to upload an image com-
pared to the most widely used JPG or JPEG format.

         

Getting Started with React Native ◾ 7

• However, it may be best to convert your image version to a WebP
format.

• Tis is because the Web ofers several benefts, such as increasing
download speeds up to 28% and reducing iOS and Android binary
sizes by 25%. Apart from that, it also reduced Code Push by 66% and
made the sailor’s transition smoother.

Photo Caching

Image cache is considered a crucial step if you plan to improve the perfor-
mance of React Native applications. Helps to load photos faster. However,
React Native only supports image storage in the iOS repository. For
Android OS, you get the help of npm image storage libraries, but it does
not ofer the best performance.

Otherwise, you may face a few other problems, such as library failure by
not being able to import previously uploaded images when the app page is
updated. Tis is known as cache miss. Another problem that may support
operational efciency is when cache logic is running on the JS side of the
application.

Improving Application Release Time

Improving the release time of your React Native app should also be a
major goal for developers. However, it can be any task as you need to
evaluate each component to improve the performance of the libraries.
Therefore, if you are looking for the desired result here you should
focus on Object.Finalize element, which is considered the main obsta-
cle in reducing the performance of the application. Therefore, even if
you use subtle conclusions, you will still have to deal with memory-
related problems or errors, even after having enough memory space.
The main reason graduates are obstacles is that they work in a single
series. So, if there are a few graduates who need to be run, you can
only imagine how much it costs time they would eat up in this entire
process.

JSON Data Upgrade

Applications search the cargo we receive on the service or the URL of the
remote control for the purpose of receiving requests to download data
from the server. Data obtained from a private or public API are usually
accessed via the JSON method with integrated components embedded in
the nest.

8 ◾ Mastering React Native

Performance ofen decreases because editors retain the same data to
gain local ofine access as JavaScript renders data gradually. Terefore, it
may be best to turn raw JSON data into simple items before donating.

Do Not Give if Not Needed

It is highly recommended that you do not combine diferent life cycles
with resources. Tis is because, initially, it is important to decide whether
you can upgrade the components or not and make sure you do not over-
load the component with unnecessary work, which can reduce the FPS of
the JavaScript cable.

Memory Leaks

It has always been said that memory leaks have become a major problem
with the Android app as there are a few unwanted processes running in
the background.

However, you can fx this problem by scrolling through diferent lists,
including Virtual List, Section List, and Flat List etc. You do not need to
use List view. Tere are other benefts to scrolling as well as the smooth-
ness of the scrolling.

Animation in React Native

React Native provides an easy episode to create animation and always
looks clean. Tis can be achieved with the help of a cartoon library that
allows a React Native engineer to authorize a native driver. Animation is
sent to the traditional side before it starts.

Animation also aids in the independent use of the main series of
blocked JavaScript series as it provides seamless animation. And a few
independent drops. You can use Indigenous Drive to confgure animation.

Navigation Development

Navigation is the backbone of the application; you should focus more on
bringing improvements to navigation and better functionality between
JavaScript and native objects.

Tus, you can use the four main roaming components in the app. Tese
include Navigator, iOS Navigator, Navigation Experiment, and React
Navigation.

• Navigator is used sparingly for prototyping and small applications
and does not provide the same native functionality.

         

Getting Started with React Native ◾ 9

• IOS Navigator is widely used in iOS applications.

• Navigation experiment is used to develop pending projects based on
GitHub, and a few applications use it similarly.

• Lastly, React Navigation provides a smooth and seamless experience
and is used by many applications.

Lack of Multithreading

We have previously shown that React Native works in a single series which
makes it difcult to perform multiple tasks at once.

When the JS library ofers a section, some must wait until the process is
complete. For example, you cannot combine live chat and live video feeds
at the same time.

Improving Screen Orientations

Developers also must solve a serious screen layout problem where users
have complained about the app crashing as they change the screen layout
from standalone to landscape.

React Native navigation has been thought of as a viable solution to the
problem, but it really is not, especially for iOS devices where it has failed
to identify stop lock.

Make Maps Better

Maps in React Native also face the challenge of slowing down during navi-
gation. So, if you want to fx this problem, you need to remove console.l
og and not allow it to store any data in XCode and disable auto location
updates. You need to reduce the load on the JavaScript string to improve
map usage.

Benefts of React Native

Tere are a few React Native benefts of building mobile apps. Some of
these are given below:

1. Use of Cross‑Platform: Provide “Read and write everywhere” area,
which works on both Android platforms and iOS devices.

2. Class Performance: React Native written code is integrated into
native code, which enables it to work in both applications and to
work parallelly in both forums.

http://www.console.log
http://www.console.log

10 ◾ Mastering React Native

3. JavaScript: JavaScript information is used to build mobile
applications.

4. Community: Te large React and React Native community nearby
helps us get whatever feedback we need.

5. Hot Reload: Making a few changes to your app code will appear
immediately during upgrades. When a business idea is changed, its
display is reloaded live on the screen.

6. Upgrade Time: Some features of iOS and Android are not yet sup-
ported, and the community is constantly developing advanced
processes.

7. Indigenous Components: We will need to write a specifc code
for the platform if we want to create a native design that is not yet
designed.

8. Presence Uncertain: As Facebook develops this framework, its exis-
tence is uncertain because it retains all rights to execute the project
at any time. As React Native thunderstorms rise, it is less likely to
occur.

ADVANTAGES
Key Benefts

Te benefts of React Native are numerous and varied and ensure that
engineers enjoy a unique coding experience.

Community Support

As an open-source framework, React Native allows the entire developer
community to browse all documentation related to this technology for
free and allows them to contribute to it whenever they want.

A fully community-based, React Native organization can always access
the guidance of other engineers, search for relevant information, and
assist other engineers who are struggling with something. Engineers can
also beneft the community by asking other engineers to review or provide
appropriate feedback about their ongoing responsibilities. In addition,
developers are encouraged to share their fndings and lessons, making it
a truly engaging experience for everyone involved. Tis is one of the most
amazing benefts of using React Native.

         

Getting Started with React Native ◾ 11

Proper Performance

Te performance of the platform lies in improving performance using
traditional modules and controls. It works with native Android and iOS
components and continues to generate codes in native APIs without
interruption.

Performance enhancement and performance are a direct result of a
framework that uses a clearly diferent thread, which difers from native
APIs and UIs. You may also be open to other options such as WebView,
but remember, it may adversely afect the performance of your application.

Reusable Code and Advanced Components

Tis helps to reduce project time and cost and is the god of all businesses
and app developers. Even better is the situation where the business already
has a request written in the React – in which case, the development costs
are also reduced because a substantial portion of the existing code can be
reused to create a new application.

Advanced features in the open library allow developers to access codes
freely. Tese codes are already written and engineers will be preparing to
use them. Te result? Fast development!

Benefts of Live and Hot Reloads

Live uploads can include and read code-modifed changes. It also provides
a new fle in the template, which then automatically reads the application
from scratch.

Hot Reload, based on Hot Module Replacement (HMR), was intro-
duced afer the initial reloading process was performed. While retaining
features and sequence of functions, Hot Load has an added advantage
– afer saving changes to the fle, and the HMR architect then contin-
ues to keep the updated fles in the required locations as the application
continues to run in the background. Te main advantage of using Hot
Reloading lies in its ability to authorize changes to the source code in a
way that allows the developer to view the codes, even if it does not reas-
semble the application.

Terefore, if a developer has two or more windows open with the code
and screen of the app, he can see the results immediately afer making the
necessary changes to the code. Tus, Hot Relocation ensures that the wait-
ing time is reduced.

 12 ◾ Mastering React Native

Expensive Solution

Reusable Revenue Beneft provided by React Native helps to reduce the
cost of creating the app on a large scale. With this framework, codes do
not have to write diferent codes for iOS and Android and can even code
codes in an existing language. Tis creates the need for a small team of
indigenous engineers in all application development businesses and
ensures a reduction in project completion time with the help of the React
Native community.

Simplifed UI

Te motivating force behind the use of React Native Technology is that it
ensures easy and seamless user interaction. Te JavaScript library is more
like an open-source framework than a standard framework. With the help
of this technology, developers can achieve the right sequence of creating
applications.

Typically, React Native-built applications have a responsive UI, a seam-
less UX, and take less time to download.

External Plugin Support

Te main structure of React Native has no specifc components. To address
this defciency, it ensures that developers have access to third-party plugins
such as JavaScript modules and native modules.

Modular Architecture

A popular sofware design strategy, modular editing ensures the divi-
sion of program functions into free and fexible blocks called modules. It
makes the application build process easier by helping developers run each
other’s projects whenever needed. It also improves the team collaboration
needed to produce and receive updates.

React Native engineers can beneft from its natural and accurate modu-
lar design, given its ability to improve applications quickly. Modules can
be reused while working with mobile phones and web APIs.

Growing Stability and Reliability

React Native is also helpful in simplifying data binding in a way that pro-
tects the parent’s data and does not allow it to be touched on the part of
the child, thus making the apps stronger and more reliable. To make any
changes to an item, engineers need to change their status frst before sys-
tematically applying all the updates. Tis function will ensure that only
approved components can be updated.

         

Getting Started with React Native ◾ 13

Access to Libraries and Ready-to-Do Solutions

React Native comes with a list of pre-made solutions and libraries available
for free, so engineers can access them. Its solutions not only help simplify
app building, but also help developers focus on creating more error-free
code.

Now that you should be aware of the benefts of using React Native, let
us know more about its drawbacks.

DISADVANTAGES OF NATIVE REACT
Below is a comprehensive list of React Native malpractices that developers
should be aware of before choosing to create their own operating system.

Immaturity

React Native is a new programming language compared to its older
Android and iOS counterparts. React Native life style cycles have not been
fully explored, which is why they can sometimes have negative or unpre-
dictable efects on app activities. Here are some similar examples:

1. Te React Native framework is rapidly evolving, with new and
updated updates being released weekly. So, app creators need to
keep updating their apps regularly because each update introduces
many changes. Failure to update the application for a few months
will deactivate it. Popular apps like Airbnb have struggled with this
challenge in the past.

2. Engineers also face the problem of writing additional native code for
parts that do not comply with React Native, as well as working on
existing codes that need to be written.

3. Sometimes, parts of React Native do worse than their traditional
equality, as in the extensive list. It can be exceedingly difcult to use a
detailed and complex list with React Native compared to other com-
ponents related to a mature platform, which provides a better layout.

Hard to Learn

Learning React Native can be incredibly challenging, especially for new
app developers who may fnd it difcult to create applications with JSX in
the JavaScript syntax extension. In addition to React Native, app develop-
ers must know the app’s native code as well. React Native has its libraries
with native bridges for features such as maps, videos, etc., but it requires
highly experienced engineers for the three forums. Developers who do not

14 ◾ Mastering React Native

have experience of many platforms can fnd some inconsistencies in both
iOS and Android platforms exceedingly difcult. Te learning curve is
steep and may delay growth.

Low Security

React Native is a JavaScript library and open-source framework because
developers ofen face the challenge of keeping the application secure.
JavaScript is very fexible, and this results in some developers experiencing
lower security standards. If you are developing applications that require
additional layers of security, such as banking or fnancial applications, you
need to be extra careful. If not, malicious code captions may pose a seri-
ous threat to the security features of the application. Tat is why engineers
sometimes avoid building fnancial applications in React Native.

Complex UI

According to many codes, React Native is not the right choice for appli-
cations that require complex touch, screen modifcation, animation, or
require more interaction. Unless React Native has a touch response sys-
tem, codes may continue to struggle with screens with complex touches
because iOS and Android touch subsystems are diferent from others, and
using a compact API can be a challenge.

Long Initialization Time

Another problem with coding that they have with React Native is that it
takes a long time to start working time before it is professionally delivered
for the frst time. Te problem exists even with hi-tech devices and can
be caused because JavaScript threads usually take too long to get started.

Memory Management

React Native is not suitable for use on computer applications because it is
totally based on JavaScript. It reduces performance and speed in these appli-
cations, and foat counting is also handled in an inefcient way, making
memory management and usage extremely difcult. Tese are some of the
good and bad things that have been acknowledged about using React Native.

CONCLUSION
In this chapter, we learned about what React Native is, what are the advan-
tages and disadvantages of it, and risks and drawbacks of it. Let us go
forward with the next chapter and learn more exciting things about React
Native.

C H A P T E R 2

Working with
React Native

IN THIS CHAPTER

¾ How does React Native work

¾ Rendering lifecycle

¾ Creating components in React Native

¾ Host platform APIS

Te previous chapter is about what React Native is, its advantages, and
risks and drawbacks. In this chapter, we are going to work in app develop-
ment with React Native.

HOW DOES REACT NATIVE WORK?

1. UI Tread, also known as Main Series: Tis is used for native ren-
dering of Android or iOS UI. For example, on Android, this series is
used for simulation/structure/drawing of Android.

2. JS Tread: A JS Tread or JavaScript thread is a thread where the
mind will work. For example, this is a series where the JavaScript
code of the application is used, the API calls are made, touch events
are processed, and much more. Indigenous view updates are com-
piled and posted to the traditional side at the end of each event loop
in the JS series (and released at the end of the UI series).

DOI: 10.1201/9781003310440-2 15

https://dx.doi.org/10.1201/ 9781003310440-2

16 ◾ Mastering React Native

3. Integrated Updates: In order to maintain good performance, the JS
series must be able to send integrated updates to the UI series prior to
the next draf delivery deadline. For example, iOS displays 60 frames
per second and this leads to a new frame every 16.67 ms. If you do
complex processing in the loop of your JavaScript event that leads to a
UI change and takes more than 16.67 ms, then the UI will appear lazy.

4. Native View: One exception is the native view that occurs entirely in
the UI series for example, navigatorIOS or scroll view works fully in
the UI series and therefore is not blocked due to the slow JS series.

5. Native Module Tread: Sometimes an application requires access to
the platform API, and this happens as part of a series of traditional
modules.

6. Render Tread: For Android L only (5.0), the traditional react series
is used to generate real OpenGL commands used to map your UI.

PROCESS INVOLVED IN WORKING OF REACT NATIVE

1. At the beginning of the application, the main cable starts working
and starts loading JS loads.

2. If the JavaScript code is successfully uploaded, the main thread sends
it to another JS thread because when JS performs heavy calculations,
it temporarily installs the cable, and the UI string will not sufer at
any time.

3. When the React starts delivering, the Reconciler starts to “vary”,
and when it produces a new DOM (structure), it sends changes to
another series (Shadow Cable).

4. Te shadow string calculates the structure and sends the parame-
ters/properties of the structure to the main sequence (UI). (Here you
are wondering why we call it “shadow”? Because it produces shade
nodes.)

5. Since only the main thread is able to render something on the screen,
the shadow string must send the generated structure to the main
series, and then the UI renders.

React Native Architecture

Te cross-platform power of React Native is possible due to its unique
properties.

         

Working with React Native ◾ 17

A key feature of the React Native buildings is the bridge. This appli-
cation uses the React library to provide applications to the device.
Simply put, the bridge converts JS code into native parts and vice
versa. The bridge translates JavaScript into specific domain-specific
objects. Receives JS call, using APIs (Kotlin, Objective C, Java), which
allows native application rendering. The process does not affect user
self-awareness because these async leaders occur outside the main
sequence.

However, if your application uses a lot of threads and a large amount of
data, this structure can cause delays.

Development Process

React Native is based on React and uses a single JavaScript codebase to
reuse code on a variety of platforms. Unlike Ionic and many other plat-
form development frameworks, React Native provides traditional com-
ponents by recruiting API-specifc platforms. For example, to provide UI
components on iOS, React Native uses Objective C or Swif APIs. As for
Android mobile apps, it will be Java or Kotlin. In fact, a developer does not
need to know Objective C or Java to create applications.

Te React Native development process takes place in JavaScript,
TypeScript, and JSX. Engineers can also use key components (up to 100%)
of code.

Another unique feature of React Native is its component creation
instructions. Replace HTML components such as <div> <a>
<p> etc. (React), RN has certain components that replace it:

Also, features such as 3d group library support, hot reload, and large
UI libraries make the development process easier and more productive for
developers. When the app is ready, you can connect it with a cloud or a
local website to provide storage capacity.

React Native Features

Here, we will discuss the features of React Native that make the frame-
work stand out.

NPM Repository Support

NPM (Node Package Manager) broadcasts the process of developing
native React applications. NPM is a repository of prefabricated libraries
that engineers can use to work with the React Native framework. Tis
will make the development process much faster, allowing React Native
developers to download code patterns from the NPM library.

 18 ◾ Mastering React Native

Reuse of Code

Tis is a key feature of any diferent platform development framework.
However, the % of code you can reuse varies depending on the platform.
In the case of React Native, you can apply the entire code to all diferent
forums. Tis will save a lot of time and reduces costs.

Flexible Planning Language

Language planning and its fexibility play a signifcant role in the func-
tioning and success of the framework. When the primary language
becomes the most common framework for cross-feld development, the
learning process becomes faster and easier. It means you will have no
problems training your JS developers to work with React Native. While, if
you want to create a new app quickly, it makes sense to hire experienced
React Native engineers.

Alternatively, React Native uses JavaScript as a base and supports
TypeScript out of the box. Tese features make the React Native platform
accessible to a large group of engineers. According to a recent developer
study, JS is the most popular programming language, with about 70% of
engineers using it.

A Powerful Community

Te React Native framework became popular among engineers around
the world soon afer its launch in 2015. Since then, the community has
been growing and contributing to an open-source framework, expanding
its operations, and accelerating it. Tis feature protects the future of the
React Native cross-platform framework and makes it attractive to other
engineers.

Supports 3D Group Libraries

Another feature that makes React Native stand out from other platforms
is the support of 3d group libraries. Integration with 3d team libraries
empowers developers with out-of-the-box solutions and increases devel-
opment opportunities.

Use High Performance in Mobile Environments

React Native has been working with mobile platforms such as iOS and
Android since its frst day of existence. Not surprisingly, it has excellent
performance in the development of mobile applications. React Native
developers can also use more code in the mobile space than any other,
making it the fastest platform for mobile apps right now.

         

Working with React Native ◾ 19

HMR (Hot Module Replacement)

Te HMR (Hot Module Replacement) allows React Native to modify, add,
and modify modules while the system is in operation. As a result, this fea-
ture informs the application development process in the following ways:

• Save time by updating only modifed code;

• Maintains application status (lost during reload);

• Updates the browser as soon as changes are made to the JS code.

Te React Native live feature lets changes on the screen you change them.
Tis feature is especially useful in the development of mobile applications.

UI-rich Skills

Te React Native framework is an option to go to if you pay close attention
to the UI of your app. Te framework has special render capabilities as
well as many UI libraries for all types of applications.

The Future of React Native

Te Facebook team, along with all stakeholders from the developer com-
munity, continue to develop the React Native environment. Tey can add
new features, expand React Native functionality, and expand its multiplat-
form capacity.

Tere is no doubt that with high performance and a community of dedi-
cated engineers behind you, React Native is here to stay and will continue to
emerge. Currently, the React Native framework emerges in the following ways:

Development of Broadcast Model

Currently, the React Native community is reviving the Fabric project
which should change the way it is at last. It will allow developers to request
JavaScript by synchronizing in each series. Tis feature will reduce the
loading time of a large series without blocking the response.

Advances in Platform-Agnosticism
Platform-agnosticism is a specifc application development philosophy
aimed at creating cross-platform applications. In hindsight, a good app
is one that you can make once and use it across the platform without the
added deception of code. Although it is not easy to achieve, the React
Native community strives to enable the framework to create completely
diferent applications.

20 ◾ Mastering React Native

Ease of the Bridge
Te next step in developing the React Native community you go to is to
make the bridge easier. Tis will improve the direct interaction between
native and JavaScript and allow for the creation of new debugging tools.

Async Skills Expansion

Te development of Async aims to improve the harmonious delivery of
the React Native framework. Tis, in turn, will facilitate compliant and
consistent data management.

What Does the Development Process Look Like?

We now understand the basics of React Native structures. It would be
interesting to examine what the development process looks like. We start
by opening our project using our favorite editor. Suppose we have a sec-
tion called Greetings, which only shows the text “Hello!”

To start the iOS app, we need to run “run-ios” from the command line.
Tis will start the application in the simulator or on the actual device if we
have it connected to a computer. Te result will look like this:

If you want the app to say “Hello!” instead of “Hello!” you can open the
editor and change the text. Ten, in the template, we can press Command
+ R, as we do when reloading a web page. Change will soon appear! Instead
of waiting for a construction process that can take a minute or more, we
have a quick response. Tis makes development much faster.

To launch our Android app, we need to make run-android react-
native. With it, we can also use our part of the greeting completely.
Tis is because the component does not have a feld-specifc code. React
Native will ensure that it provides AndroidTextView instead of iOSU-
IView. Tis code re-operation is one of the strongest aspects of this
technology.

But, the interesting part is how we can fx bugs in our app. From the
device developer menu, we can select “Remove JS error remotely.” Tis will
open Google Chrome and launch our JavaScript in the browser instead of
opening it on the device. React Native sets up a web socket connection
between the device and browser. Tis will enable us to use the powerful
developer console. By using it, debugging becomes easy, especially if you
come from a web development domain.

REACT NATIVE COMPONENT LIFE CYCLE PHASES
A component’s life cycle in React Native can be divided into four phases.

         

Working with React Native ◾ 21

Life cycle of React Native.

1. Mounting: In this section, a partial model is created and installed in
the DOM.

2. Updating: In this phase, the reaction component is said to be born
and begins to grow with the latest updates.

3. Unmounting: At this stage, part of the react is removed from the
actual DOM.

4. Error Handling: It is called in case any error occurs while assigning
a part.

Now let us talk about the separate ways in which these categories are
defned.

Mounting Phase

Below are some ways in which a component model is created and installed
in the DOM.

• Constructor ()

• static getDerivedStateFromProps()

22 ◾ Mastering React Native

• render ()

• ComponentDidMount()

Constructor()
It is the frst method called the life cycle of the traditional part of the reac-
tion. It is used to start the part with the original shape. In the builder no
UI rendering is performed. It gets props as an argument and we can set
the situation this way.

static getDerivedStateFromProps()
It is called just before the delivery method, both at the frst launch and the
next update. It is to replace the componentWillReceiveProps method. We
could not update the status within this method. If we want to review the
situation, we have to come back, and another object of opposition is also
empty.

render()
It is the only method required in the reaction component. Say what should
be displayed on the screen. render () method is pure function which
means it does not change the state. It returns the same result every time it
is requested and does not link directly to the browser.

ComponentDidMount()
Tis method is called when the native part of the react has fnished sup-
plying. It is a wonderful place to upload data from remote storage and
update the status as a result. Tis will update the UI of our mobile screen.
Whenever we make any changes to the situation and provide () the so-
called methods that will refect the changes on the screen.

Updating Phase

Whenever there is any change in their status or props, the partial review
process begins. Below are the methods used to update sections of the react
component.

Static getDerivedStateFromProps()
As we have discussed above, this method is used whenever any changes in
the situation or props occur.

         

Working with React Native ◾ 23

shouldComponentUpdate()
It is used before the dedication when new buildings or circuits are adopted.
Te default value for this method is approximate. Tis method is not used
the frst ofer or when forceUpdate is used. If we wish to discontinue
rewriting to change status or props, we may return the lie in the manner
of shouldComponentUpdate ().

render()
Whenever there is any change in the state or props then render methods
are used again.

getSnapshotBeforeUpdate()
This method is used before the newly released output. Allows our
component to retrieve certain information from DOM before it is
modified.

componentDidUpdate()
componentDidUpdate () method is used immediately afer partial
rewriting is complete. It is important to note that it is not called the frst
ofer.

Unmounting Phase
componentWillUnmount()
componentWillUnmount () method is used when a component is removed
from DOM. We can perform cleanup tasks in this way, such as doing ille-
gal things, canceling an ongoing network request.

Error Handling Phase

Whenever any error occurs afer a part is assigned, then the response error
response phase is used following the method below.

• static getDerivedStateFromError()

• componentDidCatch()

getDerivedStateFromError()
It is used whenever an error occurs while delivering. It detects an error as
a parameter and returns the value to update the status.

 
   
   
   
   
   
   
   
   
 

 
 
 

24 ◾ Mastering React Native

componentDidCatch()
Tis is requested if any error is cast on the genealogy. It gets two
parameters.

1. error: Te error that was thrown

2. info: It is an object having information about which component
threw that error.

Creates Components in a Traditional Responsive Way

React Native has all the features and functionality that work very well
in app development, but both Android and iOS work diferently in the
design language. Satisfying both design language and making both look
like a traditional app, custom components play a key role in application
development.

Let’s start with a section for Custom Text feld for Android & platform
iOS that will look similar in their design language.

Step 1: Create a Custom section and specify props that will customize
our Custom section.

export default class CustomTextInput extends
Component {
 static propTypes = {
containerStyle: PropTypes.style,
style: PropTypes.style,
autoFocus: PropTypes.bool,
editbale: PropTypes.bool,
textColor: PropTypes.string,
onChangeText: PropTypes.func,
value: PropTypes.string,
placeholder: PropTypes.string,
}
}

Step 2: Ten let us start with the render() method

import React, { Component } from ‘react’;
import {
View,
Platform,
TextInput

http://www.PropTypes.style,
http://www.PropTypes.style,
http://www.PropTypes.bool,
http://www.PropTypes.bool,
http://www.PropTypes.string,
http://www.PropTypes.func,
http://www.PropTypes.string,
http://www.PropTypes.string,

         

 
   
     
       

         

           
             
             

             
             
             
             
             
             
             
             
         
       
     
   
     
       

         
           
           

           
           
           
           
           
           

Working with React Native ◾ 25

} from ‘react-native’;
import CustomTextInputStyle from ‘./
CustomTextInputStyle’;
import { TextField } from
‘react-native-material-textfield’;
export default class CustomTextInput extends
Component {
render() {
if(Platform.OS === ‘ios’) {
return(
<View style={[CustomTextInputStyle.mainBlock,

this.props.containerStyle]}>
<View style={CustomTextInputStyle.

textboxBlock}>
<TextInput
textColor={Colors.brandText}
style={[CustomTextInputStyle.textInput,this.p

rops.style]}
labelFontSize={12}
autoCapitalize={false}
editable={this.props.editable}
value={this.props.value}
onChangeText={this.props.onChangeText}
placeholder={this.props.placeHolder}
placeholderTextColor={Colors.placeHolderText}
autoFocus={this.props.autoFocus} />

</View>
</View>
)
} else {
return(
<View style={[this.props.containerStyle,

CustomTextInputStyle.mainBlock]}>
<TextField
textColor={Colors.brandText}
style={[CustomTextInputStyle.textInputAndroid

,this.props.style]}
labelFontSize={12}
value={this.props.value}
editable={this.props.editable}
activeLineWidth={1}
autoCapitalize={false}
labelTextStyle={{fontFamily: ‘Roboto-Regular’}}

http://www.this.props.containerStyle
http://www.CustomTextInputStyle.textInput,this.props.style
http://www.CustomTextInputStyle.textInput,this.props.style
http://www.this.props.editable
http://www.this.props.value
http://www.this.props.onChangeText
http://www.this.props.placeHolder
http://www.this.props.autoFocus
http://www.this.props.containerStyle,
http://www.CustomTextInputStyle.textInputAndroid,this.props.style
http://www.CustomTextInputStyle.textInputAndroid,this.props.style
http://www.this.props.value
http://www.this.props.editable
https://if(Platform.OS

           
           
           
           
           
           
       
     
   
 

    

 
 
 
 
 
 
 
 

26 ◾ Mastering React Native

tintColor={Colors.brandSecondaryText}
onChangeText={this.props.onChangeText}
renderAccessory={this.renderIcon.bind(this)}
label={this.props.placeHolder}
placeholderTextColor={Colors.placeHolderText}
autoFocus={this.props.autoFocus} />

</View>
)
}
}
}

Here the Platform item separates the iOS and Android code but the
Components are controlled by various utilities. For the native part, we are
unable to access the essential Android Text Field which can be solved by
installing and importing android “react-native-material-textfeld.”

Step 3: Import the Custom Text feld section to the parent section and
make sure you provide the correct part of the section.

import CustomTextInput from ‘./CommonComponents/
CustomTextInput’;

Step 4: Enter the Custom Section within the render () path of the parent
section where we want the display to go.

<CustomTextInput
textColor=‘#111111’
style={style.textInput}
containerStyle={style.textInputContainer}
editable={true}
value={this.state.username}
onChangeText={this.setUsername.bind(this)}
placeHolder=“Username”
autoFocus={true} />
}
}

You can now use this on iOS and Android to see the diference in
the text feld which is ofen difcult to automatically access part of

http://www.this.props.onChangeText
http://www.this.renderIcon.bind
http://www.this.props.placeHolder
http://www.this.props.autoFocus
http://www.this.state.username
http://www.this.setUsername.bind

         

 
   
     
   
 

Working with React Native ◾ 27

the traditional text response feld. You can create a custom section for
Button, Text Label, Search Bar etc. You can use the reusable code in
React Native.

WHAT IS THE COMPONENT OF REACT NATIVE?
Traditionally, a section is a place where we add our real-time active code,
just as we add all of our code to the body tag on a web page. In the tradi-
tional way, we add all the active code and other components to our basic
component (class/function).

Let’s understand both classroom-based and work-based aspects with
examples.

React Native – Class Component

Here is a simple example of a classroom-based component that just prays
Hello, React Native on screen

import React, { Component } from ‘react’;
import { Text } from ‘react-native’;
class New extends Component {
render() {
return (
<Text>Hello, React Native</Text>
);
}
}
export default New;
}

Description
In the code above, we imported the ReactandComponent from the react
library. Tese are used to form part. Ten, we introduce a Text component
which is an integral part of the react-native.

Ten we create a classroom with a new name that expands the Building
phase. Ten we present the Text component as a response to a new class,
which is returned that way. Remember, for example, the class must have a
sub-method and a retrieval method to be used.

Ten we export New class as default. So, anytime any other part uses
this fle then it will automatically replace part of the class as part of the
default.

 
   
 

28 ◾ Mastering React Native

React Native – Function Component

Here is a simple example of a work-based component that simply returns
a Hello, React NativeText.

import React from ‘react’;
import { Text } from ‘react-native’;
const New = () => {
return (
<Text>Hello, React Native</Text>
);
}
export default New;

Description
In the code above, we announced functionNew that restores the text fea-
ture. Remember, any part of the return function is provided as a response.
Terefore, no need to use the render() method within it.

HOST PLATFORM APIS
When you create mobile applications, you will naturally want to take
advantage of certain forum APIs. React Native makes it easy to access
things like phone camera, location, and ongoing storage. These plat-
form APIs are made available to React Native through the included
modules, providing us with JavaScript links that are easy to use for
these tasks.

React Native does not bind the functionality of the default platform;
some APIs require writing modules, or can use modules written in
the React Native community. We will cover that process in Chapter 7.
Documentation is the best place to test whether the API is supported.

Tis chapter covers some of the available APIs. As our example, we will
make some changes to the weather system from the beginning. We will
add geolocation to the application so that it can detect the user’s location
automatically. We’ll also add “memory” to the app, so it can remember
your previously searched locations. Finally, we will use the camera roll to
transform the background image into one of the user’s photos.

When you create a cross-platform application, you want to reuse as
much code as possible. Circumstances may arise where it makes sense that
the code is diferent, for example, you may want to use diferent visual
components for Android and iOS.

         

 

 
   
   
     
       
     
     
       
     

Working with React Native ◾ 29

React Native provides two methods to organize code and separate it by
platform:

1. Using the Platform module.

2. Using platform-specifc fle extensions.

Some components may have properties that operate in only one location.
All of these properties have annotations via the platform and have a small
badge next to them on the website.

Platform Module

React Native provides a platform that detects the platform on which the
application operates. You can use the discovery mind to use a feld-specifc
code. Use this option when only a small portion of the part is facing the
feld

import { Platform, StyleSheet } from ‘react-native’;
const styles = StyleSheet.create({
height: Platform.OS === ‘ios’ ? 200 : 100
});

Platform.OS will work when running on iOS and android when run-
ning on Android.

Tere is also a Platform. ‘android’ | ‘traditional’ | ‘default’, which returns
the most appropriate value for the feld you are currently working on. Tis
means that when you use the phone, iosandandroid keys will choose your
preference. If that is not specifed, the native key will be used and then the
default key.

import { Platform, StyleSheet } from ‘react-native’;
const sty = StyleSheet.create({
container: {
flex: 2,
...Platform.select({
ios: {
backgroundColor: ‘yellow’
},
android: {
backgroundColor: ‘red’
},

http://www.StyleSheet.create
http://www.StyleSheet.create
http://www....Platform.select
https://Platform.OS
https://Platform.OS

     
       
       
     
   
 

 
 

 
 

 

30 ◾ Mastering React Native

default: {
// other platforms, web for example
backgroundColor: ‘blue’
}
})
}
});

Tis will result in the container being fexible: 1 on all platforms, red
background on iOS, green background on Android, and blue background
on some platforms.

Since it accepts a limited amount, you can also use it to replace feld-
specifc components, such as below:

const Component = Platform.select({
ios: () => require(‘ComponentIOS’),
android: () => require(‘ComponentAndroid’)
})();
<Component />;
const Component = Platform.select({
native: () => require(‘ComponentForNative’),
default: () => require(‘ComponentForWeb’)
})();
<Component />;

Detecting Android version

For Android, the Platform module can also be used to get the Android
Platform version where the app is running.

import { Platform } from ‘react-native’;
if (Platform.Version === 25) {
console.log(‘Running on Nougat!’);
}

Getting iOS Version

For iOS, Version is the result of [UIDevice systemVersion], which is a series
with the current version of the operating system. An example of a system
version is “10.3”. For example, getting a larger version of iOS:

http://www.Platform.select
http://www.Platform.select
http://www.console.log

         

 

Working with React Native ◾ 31

import { Platform } from ‘react-native’;
const majorVersionIOS = parseInt(Platform.Version, 10);
if (majorVersionIOS <= 9) {
console.log(‘Work change in behavior’);
}

Platform-Specifc Extensions

If your domain code is too complex, you should consider splitting the code
into separate fles. React Native will get when the fle has a -i.ios. noma.
android. Expand and upload the appropriate platform fle if needed in
other sections. For example, it says you have the following fles in your
project.

BigButton.ios.js
BigButton.android.js

You can require the component as follows:

import BigButton from ‘./BigButton’;

React Native will pick up the fle based on the running platform.

Native-specifc Extensions (i.e. Sharing Code with NodeJS and Web)

You can also use .native.js extension if you want the module to be shared
between NodeJS and React Native, because it does not have Android/iOS
diferences. Tis is especially helpful for projects with a common code
shared between React Native and ReactJS.

For example, it says you have the following fles in your project:

Container.js # picked up by Webpack, Rollup or any
other Web bundler
Container.native.js # picked up by the React Native
bundler for both Android and iOS (Metro)

You can use it without the .native extension, as follows:

import Container from ‘./Container’;

http://www.console.log
http://www.-i.ios.
http://www.BigButton.ios.js
http://www.BigButton.android.js
http://www..native.js
http://www.Container.js
http://www.Container.native.js

32 ◾ Mastering React Native

Pro tip: You can confgure the bundler to ignore.native.js extensions
to avoid code in your production bundle, thus reducing the fnal bundle
size.

CONCLUSION
In this chapter, we learned about how React Native works, rendering life
cycle, creating components in React Native host platform, etc. In the next
chapter we are going to learn about building the frst application in React
Native.

http://www.ignore.native.js

C H A P T E R 3

Building Your First
Application

IN THIS CHAPTER

¾ Building your frst application

¾ Setting up your environment

¾ Creating a new application

¾ Exploring the sample code

¾ Building an app

In the previous chapter, we learned about how React Native works and the
rendering of the life cycle etc. In this chapter, we will learn about building
our frst project with React Native, so let us get started.

In this chapter, you build on the beginnings of a desktop app and cre-
ate some rich features that make the app a usable, minimally viable prod-
uct. You also had a chance to explore how you can evolve a desktop app’s
codebase to remain readable and how you can organize the code for a
desktop app.

INSTALLATION OF REACT NATIVE CLI
In this section, we will learn how to setup your React Native CLI envi-
ronment on your Windows machine. Also, we will cover everything from
the installation of node.js dependencies and other prerequisites, including

DOI: 10.1201/9781003310440-3 33

http://www.node.js
https://dx.doi.org/10.1201/ 9781003310440-3

34 ◾ Mastering React Native

Android Studio and Rack Native CLI that we will need in our develop-
ment process, so without further delay, let us get started.

What do we do next?

Installing Windows Terminal

You will learn many ways to uninstall and install Windows Terminal
on your computer. Let us take a look at some of the basics of Windows
Terminal and installation steps.

When you open Windows 11, Windows Terminal is installed automati-
cally. To launch Windows Terminal in Windows 11, right-click the Start
button and select “Windows Terminal” from the menu.

According to Microsof, Windows Terminal is a modern, fast, power-
ful, and efcient application of command-line tools and shell tools, such as
Command Prompt, PowerShell, and WSL. It can run any command-line
program, including all Windows terminal emulators, in another tab. In
simple terms, Terminal combines Command Prompt (cmd), PowerShell,
Azure Cloud Shell, and WSL into one. If you have Windows 10 open, you
must install Windows Terminal. Windows Terminal needs Windows 10
1903 (build 18362) or later. In Windows 11, Windows Terminal will be
installed automatically.

Ways to Install Windows Terminal
Tere are several ways to install Windows Terminal on a PC, and they are
listed below.

• Installing Windows Terminal on Microsof Store: Tis is the pre-
ferred way to install Windows Terminal on your computer. When
you install it in a Microsof store, it lets you keep up to date with the
latest updates.

• Windows Terminal Installation using PowerShell: If you do not
want to use the Microsof store, you can use PowerShell. It will
require you to install Chocolatey frst and then install Windows
Terminal.

• Get Windows Terminal from GitHub: It involves downloading
Windows Terminal from GitHub and then installing it. If you
install from GitHub, the terminal does not update with newer
versions.

         

Building Your First Application ◾ 35

Method 1: Installing Windows Terminal from Microsof Store
On your Windows computer, click Start and open the Microsof Store
(MS). In the MS Store, click the “Search” option and type Windows
Terminal. Select the Windows Terminal app and click Discover.

You do not need to sign in to the Microsof Store to download Windows
Terminal. When you are asked to sign in, just select No, and the Windows
Terminal download starts and is installed.

Method 2: Install Windows Terminal using PowerShell | Chocolatey
Chocolatey is a high-performance Windows automation management
sofware that integrates installer, usable, zips, and text into integrated
packages. Tis is a very popular tool which is one of the tools of many
PowerShell users.

If you have not yet installed Chocolatey, you can install it in
PowerShell. Launch PowerShell as administrator and use the following
command.

Set-ExecutionPolicy Bypass -Scope Process -Force;
[System.Net.ServicePointManager] :: SecurityProtoco
l=[System.Net.ServicePointManager] ::
SecurityProtocol -bor 3072; iex ((New Object System.
Net.WebClient) .DownloadString (‘https://chocolatey
.org/install.ps1’))

Afer installing Chocolatey, let us install Windows Terminal in the
same PowerShell window.

>>> choco install microsoft-windows-terminal

If you use the command above, the tool downloads the latest version
of Windows Terminal. Te latest version of Windows Terminal has been
downloaded and installed on your computer.

Method 3: Download and install Windows Terminal from GitHub
For anyone who can install Windows Terminal in the Microsof store, you
can download it yourself at the GitHub Uninstall page. On the GitHub
Windows Terminal release page, you will get both stable versions, preview
versions of Windows Terminal. Select a stable Windows Terminal release
and scroll down to Assets, download the fle ending in .msixbundle. To

https://chocolatey.org
https://chocolatey.org

36 ◾ Mastering React Native

install Windows Terminal on your computer, right-click on Microsof.
WindowsTerminal.msixbundle and select Open.

In the Install Windows Terminal window, click Install. Terminal
installs now. Te tool should start afer installation.

Installing Git

To use Git, you will need to install it on your computer. Even if you
have already installed Git, it is to upgrade to the latest version. You can
install it as a package or use another installer or download it from its
ofcial site.

Now the inquiry arises as to how to download the Git Installer pack-
age. Below is a slow installation process that helps you download and
install Git.

How to Download Git?

Step 1: To download Git Installer, visit the ofcial Git site and go to
the download page. Te download page link is https://git-scm.com
/downloads. Click the package provided on the page as the release
version (version can be changed) in windows. Te download will
start afer selecting the package.

Now, the Git Installer pack has been downloaded.

Install Git

Step 2: Click on the downloaded fle and select yes to continue. Afer
selecting yes installation frst. Click on the following to continue.

Step 3: By default, the components are automatically selected in this
step. You can also select your required component. Click next to
continue.

Step 4: Git command-line options are selected automatically. You can
choose your preferred preferences. Click next to continue.

Step 5: Te default transport backend options are selected in this step.
Click next to continue.

Step 6: Select the required end line option and click next to continue.

Step 7: Select your favorite emulator and click next to continue.

https://git-scm.com
https://git-scm.com

         

Building Your First Application ◾ 37

Step 8: Tis is the last step that provides some additional features such
as system temporary backup, verifcation management, and sym-
bolic link. Select the features and click on the following option.

Step 9: Files are removed from this step. Terefore, Git installation is
complete. You can now access Git Gui and Git Bash.

It helps with three aspects.

1. Create a New Store

2. Clone Archive Existing

3. Open Existing Archive

Installing Node.js and NPM package manager
Introduction
Node.js is a workspace that covers everything you need to run a JavaScript
program. Used to use scripts on a server to deliver content before being
delivered to a web browser.

NPM is known for Node Package Manager which is a repository and
application for developing and sharing JavaScript code.

Tis guide helps you to install and update Node.js and NPM in the
Windows operating system along with other useful Node.js instructions.

Requirements
User account with administrator rights (or the ability to download and
install sofware).

Windows command-line access (search> cmd> right click> use as
administrator) OR Windows PowerShell (Search> Powershell> right
click> use as administrator).

Installing Node.js and NPM on Windows System

Step 1: First, download Node.js Installer

In a browser, navigate to https://nodejs.org/en/download/. Click
on the Installer button to download the latest version. At the time
of writing, version 10.16.0-x64 was the latest version. Te Node.js
installer includes an NPM package manager.

Step 2: Install Node.js and NPM from the Browser

http://www.Node.js
http://www.Node.js
http://www.Node.js
http://www.Node.js
http://www.Node.js
http://www.Node.js
https://nodejs.org
http://www.Node.js
http://www.Node.js

38 ◾ Mastering React Native

1. When the installer has fnished downloading, launch it. Now
open the download link in the browser and click on the fle.
Browse fle to the location where you saved the fle then double-
click to launch it.

2. Te program will ask if you want to use the sofware – click Run.

3. You will be accepted into the Node.js Setup Wizard – click Next.

4. On the next screen, update the license agreement. Click the
“Next” button when you agree to the terms and conditions, then
installation of the sofware begins.

5. Te installer will tell you the installation location. Leave the
default location until you have a need to relocate it – then click
Next.

6. Te wizard will allow you to select the components to install or
remove from the installation. Also, unless you have a specifc
need, accept the default by clicking Next.

7. Finally, click the Install button to launch the installer. When
done, click Finish.

What Is NPM?
NPM is the default package manager for your projects. NPM includes a
command-line (CLI) tool that gives you access to the NPM package reg-
ister. Te register stores most JavaScript packages made available through
NPM CLI, as well as its metadata. Te NPM website gives you an efortless
way to search for JavaScript packages and learn information about them.
Te package.json fle created by NPM CLI helps to manage project depen-
dencies. It also ensures consistent project implementation in all areas.

How to Install or Update NPM
Te steps show you how to install NPM and Node.js. It also gives you ways
to update your NPM installation.

How to Install NPM
Since NPM is integrated with Node.js, you need to install Node.js. Te
NPM recommended installation method uses Node Version Manager
(NVM). Tis version manager helps to avoid permissions and confict
issues with NPM packages. To install NPM, follow the steps in their guide.

http://www.Node.js
http://www.package.json
http://www.Node.js.
http://www.Node.js,
http://www.Node.js.

         

Building Your First Application ◾ 39

How to Install and Use Node Version Manager NPM
Using NPM, you can install the stable version of Node.js, the same version
of NPM using the following command:

npm install node

To confrm your NPM installation, check the installed NPM version.
npm -v

How to Update NPM
When working with NVM to manage Node.js versions, updating your
NPM version requires you to update your Node.js version. To verify that
you are the latest version of NPM, use the NPM installation command to
install the stable version of Node.js.

Ten, tell NPM to use the latest version.

npm install node

If you want to update NPM, use the dedicated NPM command without
updating,

npm install-latest-npm

NPM ofers two main ways to incorporate specifc packages into your
project. You can install a specifc package with the NPM installation com-
mand. In the example below, NPM installs the latest stable version of the
package. An example includes the Express web application framework.

npm install express

Alternatively, you can specify the version of the package you want
installed on your system.

npm install express@4.17.1

You can specify the width of the version of the package you want to
install. Put the translation sentence between quotes, and precede the
translation number with the comparison operator you want to use. You
can use multiple boundary versions, separating them from spaces.

npm install express @ “> =4.1.0<4.17.1”

http://www.Node.js,
http://www.Node.js
http://www.Node.js
http://www.Node.js.
mailto:express@4.17.1

40 ◾ Mastering React Native

Te above command includes the latest available version of the Express
JS package equal to or larger than 4.1.0 and below 4.17.1.

Step 3: Confrm Installation

Now, open the prompt, and enter the following:

C:\Users\PC>node -v
v14.15.0

Te program should display a version of Node.js installed on your sys-
tem. You can do the same with NPM:

C:\Users\PC>npm -v
8.5.3

Installing React Native CLI

Now we will see how we can install and confgure the React Native devel-
opment environment on Windows. If you want how to install React Native
on Mac, check out the blog post below. You can use Expo CLI & also React
Native CLI to improve the React Native app on Windows.

Expo CLI is a package that incorporates many native features (location,
camera, etc.) when developing an application with React Native. For the
frst time, when you develop a traditional reaction with the Expo CLI, you
can feel comfortable. However, this package includes many native features
that you do not use, and that makes the system build process even bigger.
Also, if you want to integrate a native feature that does not include Expo
CLI, it is difcult to do. Terefore, we do not recommend using Expo CLI.

Tis section is about how to install and confgure the React Native CLI
site. Also, we will create a React Native project with React Native CLI and
test its efectiveness.

We need to install Nodejs, Watchman, Xcode, etc., to improve the appli-
cation with native responses. Let us see how we can put them one by one.

Installing Python

Te React Native building system uses Python. Python is basically installed
on Mac, so this process is not required, but for Windows, this is required.

Open Command Prompt (cmd) as Administrator, then execute the
Chocolatey command below to install Python.

http://www.Node.js

         Building Your First Application ◾ 41

choco install -y python2

Afer installation, we need to restart the computer in order to use
Python. Afer a reboot, open Command Prompt (cmd), and then execute
the command below to check if Python is properly installed.

python --version

React Native CLI

Let us install React Native CLI to improve the application with native
responses. Use the NPM command below to install React Native CLI
worldwide.

npm install -g react-native-cli

Afer installation, download the command below to check the React
Native CLI is properly installed.

npx react-native --version

If the React Native CLI is properly installed, you can see the React
Native CLI version as below.

react-native-cli: 2.0.1

Installing Android JDK

We need to install JDK (Java Development Kit) to upgrade the Android
application with React Native. Open Command Prompt (cmd) as
Administrator, then use the Chocolatey command below to install JDK.

choco insert -y jdk8

Afer installation, restart Command Prompt (cmd) and then execute
the command below to check that Java is installed properly.

Java -version

If Java is installed by installing JDK, you can see the Java version below.

OpenJDK version “1.8.0_222”

42 ◾ Mastering React Native

OpenJDK Runtime Environment (AdoptOpenJDK) (build
1.8.0_222-b10)
OpenJDK 64-Bit Server VM (AdoptOpenJDK) (build
25.222-b10, mixed mode)

If JDK is installed, Java compiler is installed. Perform the command
below to check that the Java compiler is installed properly.

Javac -version

JAVA_HOME FLEXIBLE ENVIRONMENT
Te next step is to set the variable JAVA_HOME to point to the input
list. We have marked down the Installation directory in the previous step,
located in the C: \ Program Files \ Java \ jdk1.8.0_bxx folder where bxx is
the update number. Follow these steps:

• Go to Control Panel –> System (Control Panel –> System and
security)

• Click on Advanced System Settings

• Under the Advanced tab, Select Local Variables

• Under the System Variables tab (in the window below), check to see if
JAVA_HOME is available. Once found, double-click on it or click new

• Enter a Font Name = JAVA_HOME & Folder = C: \ Program Files \
Java \ jdk1.8.0_181.

• Click OK when done.

Installing Android Studio

We need to install Android Studio to upgrade the Android app with React
Native. Click the below-given link to go to the Android Studio ofcial site
and download the installation fle.

Android Studio: https://developer.android.com/studio
Afer downloading, use the installation fle to install Android Studio.

Android Studio Confguration

• You can see the screenshot below afer using the Android Studio
installation fle.

https://developer.android.com

         

Building Your First Application ◾ 43

• Click the Next button and go to the next screen. When you go to
the next screen, you can see the Select Components screen as below.
Select the Android Device and click the Next button and go to the
next screen.

• If you go to the next screen, you can see the Android Studio Install
Path screen as below. Set the Install Method or save default, click the
Next button to go to the next screen.

• When you go to the next screen, you can see the startup menu screen
as below. Just click the Apply button to install.

• Afer installation, you can see the screen below. Click the Next but-
ton to complete the installation of Android Studio.

• When you click the Next button to complete the installation, you
will see the screen. Check Start Android Studio and click the Finish
button to complete the installation of Android Studio.

• When you click the Finish button, you can see Android Studio done
below. Select Do Not Enter Settings, then click the OK button to sign
up for Android Studio.

• If you click the OK button to use Android Studio, you can see the
Android Studio Setup Wizard below. Click the Next button and go
to the next screen.

• When you go to the next screen, you can see the input type screen
as below. Select Custom, then click the Next button to go to the next
screen.

• When you go to the next screen, you can see the Select Teme UI
screen as below. Select your favorite theme, then click the Next but-
ton to go to the next screen.

• When you go to the next screen, you can see the SDK component
setup screen as below. Select the operating option (Intel ® HAXM)
and the Android Virtual Device option, then click the Next button.

• On the next screen, they will see the Emulator settings screen as
below. Click the Next button without changing the particular.

• Te next process is the installation of a standard system, so I do not
explain the details. Just click the Finish button to proceed with the
installation of the Android Studio to complete it.

44 ◾ Mastering React Native

Afer the installation of the Android Studio, you can see the Android
Studio being created below.

Installing Android SDK
Android Studio SDK confguration
Click Confgure> SDK Manager Menu in the right pane to go to the
Android SDK confguration.

If the screen is displayed at the top as below, select the Show Details
Package option at the bottom right. Find and select an option below the list.

Android SDK Platform 29
Image of Intel x86 Atom System
Google APIs Intel x86 Atom System Image
Google APIs Intel x32 Atom_64 System Image

When you have selected all of the options above, click the OK button at
the bottom right to enter them.

Confgure the Android Studio Environment variable.
Android Studio installation and adjustment done. Now, we need a fex-

ible setup environment. Right-click Te PC and then click the Properties
menu as below.

When you click the Properties menu, you can see the System and
Security screen. Click Advanced Settings in the menu on the lef.

When you click the Advanced System Settings menu, you can see the
system objects screen as below. Click the Advanced tab, then select the
Environmental Variables button under Advanced.

When you click the local variable, you can see the box below. Click the
new button for user variables in your wording.

When you see the box above, enter the ANDROID_HOME name in the
Variable name, along with your Android Studio SDK path to the Variable
value. If you do not know your Android Studio SDK path, use the Android
Studio SDK debug screen as below. You can see the Android Studio SDK
location at the top of the Android Studio SDK confguration screen.

If you have added the ANDROID_HOME fexible environment, you
need to set the Android Studio feld tools path. Click through the user
interface to get a list of your names to go to the edit dialog.

If you can see the screen as above, enter the paHt tools tool folder along
the Android SDK such as C: \ Users \ [username] \ AppData \ Local \
Android \ Sdk \ platform-tools at the bottom of the list and click the OK
button.

         

Building Your First Application ◾ 45

Afer that, open Command Prompt (cmd) and execute the command
below.

adb

If the natural variable is properly confgured, you can see the result
below.

Version of Android Debug Bridge 1.0.41
Version 29.0.1-5644136
Installed as / Users / jeonghean_kim / Library /
Android / sdk / platform-tools / adb

Installing Visual Studio Code (IDE)

In this section, we will have a look at the steps for how to download and
install Visual Studio Code for Windows and Mac operating systems.

To improve each programing language, there are IDEs (Integrated
Development Environments) available. In JavaScript, there are also many
IDEs, the Visual Studio editor is one of them. It is a lightweight and
robust source code editor that works on your desktop and is available for
Windows, macOS, and Linux. Visual Studio Code has built-in JavaScript,
TypeScript, Node.js support. It has an extensive ecosystem for extensions
for other languages (such as C++, C #, Java, Python, PHP, Go) and oper-
ating times (such as .NET and Unity). At ToolsQA we use VS Code for
Protractor, Cypress, JavaScript, etc.

How to Download and Install Visual Studio Code?
Getting up and working with Visual Studio Code is fast and straightfor-
ward. It is a download so you also install it quickly & also try VS Code. VS
Code is a free code editor. Additionally, it works on macOS, Linux, and
Windows operating systems. Let us see how we can set the same ones on
diferent platforms that we use.

Te frst step is shared across all platforms regardless of which OS you
are using.

Download Visual Studio Code
You can download the Visual Studio code at the URL “https://code.visual-
studio.com/download” by selecting the appropriate feld:

You can click on the icons depending on the operating system you plan
to download for the visual studio code editor.

http://www.Node.js
https://code.visualstudio.com
https://code.visualstudio.com

46 ◾ Mastering React Native

How to Install VStudio Code on Windows?

• First, download the Visual Studio Code installer for Windows. Once
downloaded, use the installer (VSCodeUserSetup- {version} .exe). It
will only take a minute.

• Second, accept the agreement and click next.

• Tird, click on “create desktop icon” to access the desktop and then
click Next.

• Afer that, click the install button.

• Finally, afer completing the installation, click the end button, and
the virtual studio code will open.

• By default, VS Code under C: \ users {username} \ AppData \ Local \
Programs \ Microsof VS Code.

• Afer successful installation, let us move on to the next section to
understand the various components of the Visual Studio User Code
Editor.

Why Do You Use React Native?
Yes, there are methods other than React Native like ionic and f lutter,
but ionic is used to create a blended application that does not give
us a natural feeling. It is just a sugar-coated HTML with JavaScript
wrapped and the f lutter experience is better than the native because
it does not require a bridge to communicate with native objects, but
f lutter uses Dart, which is also a new programming language you
need to learn to create applications. in f light. However, the enquiry
arises as to why we should use React Native? Examine the points men-
tioned below.

Tings we have covered include the following:

• Refactoring the code by using Node.js’s module functionality

• Using third-party libraries to implement search features

• Applying Electron and NW.js’s shell API to handle opening fles
with their default applications

• Improving app navigation to make the desktop app more usable

http://www.Node.js
http://www.NW.js

         

Building Your First Application ◾ 47

The main thing to take away from this chapter is that with a couple of
hundred lines of code and some external files, you can build an app
that replicates what a native desktop app can do (and one that has rela-
tively complex functionality). Not only that, you have been able to use
third-party libraries like lunr.js to help provide this functionality and
structure the code in such a way that it can be used in web apps and
allow for building apps for both the web and desktop from the same
source code.

SETTING UP YOUR ENVIRONMENT
Tis page will help the user to install and build the frst React Native app.

If you are new to mobile development, an easy way to get started is with
Expo CLI. Expo is a set of tools that are built around React Native and,
although it has various features, the main thing for us now is that it allows
you to write a React Native app within minutes. You will only need the
latest version of Node.js as well as a phone or emulator. If you like to try
React Native directly in the browser before installing any tools, you can
try Snack.

Once you are familiar with mobile development, you may want to use
the React Native CLI. It requires Xcode or Android Studio to get started.
If you have one of these tools installed, you can get up and work within
a few minutes. If not installed, you should expect to spend about an hour
re-installing them.

• Expo CLI Quickstart

• React Native CLI Quickstart

Assuming that you have Node 12 LTS or greater installed, you can use
NPM to install the Expo CLI command-line utility.

• NPM

• Yarn

>>>npm install -g expo-cli

Ten run the commands to create the latest React Native project called
“AwesomeProject”:

http://www.lunr.js
http://www.Node.js

48 ◾ Mastering React Native

• npm

• Yarn

>>>expo init MyProject
cd MyProject
npm start # you can use: expo start

Tis starts a development server for you.

Running React Native Application

Ten, install the Expo client app on your iOS or Android phone and con-
nect to a wireless network like your computer. For Android, use the Expo
app to scan a QR code on your terminal to unlock your project. For iOS,
use the built-in QR code scanner for the Camera app.

Modifying Your App

Now that you’ve successfully used the app, let’s fx it. OpenApp.js in the
text editor of your choice and edit specifc lines. Te app should automati-
cally reload once you have saved your changes.

Now, it is running app on a simulator or virtual device.
Expo CLI allows you to use your React Native application on a mobile

device without having to set up an upgrade. If you want to run the app
on iOS or Android Device, please refer to use the “React Native CLI
Quickstart” instructions and learn how to install Xcode or set up your
Android upgrade.

Once you set these up, you can launch your app on the Android Visible
Device using runnpm use android, or in iOS Simulator with runnpm run
iOS (macOS only). Here are some of the descriptive elements:

Exploring the Sample code

React Native is starting to change the game in the world of mobile devel-
opment. By using the skills, you already have, as a web developer, you
can fnd a set of common ways to build user links on mobile devices.
In this section, we shall talk about many aspects of React Natives as
we develop a note-taking app, which we call React notes. While build-
ing up key features, such as taking notes, saving notes to the device,
viewing a list of saved notes, and navigating between screens, you will
learn the basic skills you have to improve your app. You will have the
chance to go beyond the basics by adding the ability to store images

http://www.OpenApp.js

         

Building Your First Application ◾ 49

and geolocation data in notes. Performance is just part of what makes
an app great – it should look good too, so we made sure to provide you
with a complete understanding of structure and styles. By the end of
this book, you will have launched a fully installed app from start to fn-
ish and have all the skills you need to share with the world your React
Native apps!

BUILDING AN APP
Building a modern app requires modern tools. Tat’s why we’ve seen a
trend in the use of React Native. JavaScript frameworks, for example,
provide excellent features beyond the use of basic development methods.
Frames open up a new way to deal with problems associated with the
development of a mobile app.

React Native allows you to make direct calls using APIs that ofer addi-
tional customizable liquid upgrades. React Native can be used well to build
native Android and iOS apps. Tis is done by using React on the server
side rather than in the browser. Technically, React Native starts working
on an embedded JavaScript Core model, and then advanced components
provide it.

In section, we will focus on how to build an Android app with React
Native. We will be developing a basic “movidedb” application that will
include a list of movies and related information. So, let’s get started.

Building an Android App with React Native
STEP 1: Blank React Native Project Creation
Our step is to create a blank React Native project. To do so, you need to
install a Node on your system that will build your Android app. Once the
Node is installed, you now need to create a project in the directory of your
choice. npm install -g react-native-cli

Are you still confused? Ten, follow the guide to get a better
understanding.

Once it is installed, you have to create the new project in the directory
of choice. If you are in the folder, type the command to install the required
modules.

>>>react-native init Movies

Tis will create a new folder named “Movies” and the required modules
within it.

 
   
     
       
         

       
       
         
       
       
         
       
     
 

50 ◾ Mastering React Native

As React Native is used for iOS and Android apps together, JavaScript
code can share between the two fles, index.ios.js, index.android.js. As we
are building an Android application, we will use index.android.js

STEP 2: Connect Android Device
It is time to connect the Android device to the system. Afer connecting,
you need to run the following command.

>>>react-native run-android

If you did it well, you will see the blank app on the device.

STEP 3: Getting Information from the Moviedb API
It is time to setup the app to connect to the themoviedb database. To get
started, you frst need to get the required API. Once you get the API, you
can start to write your app code. Te Moviester class should look like the
below.

class Moviester extends Component {
render() {
return (
<View style={styles.container}>
<Text style={styles.welcome}>
Welcome to React Native Android App

Development!
</Text>
<Text style={styles.instructions}>
To get started, edit index.android.js

</Text>
<Text style={styles.instructions}>
Press menu button for Menu List

</Text>
</View>

);
 }
}

Te basic code initializes the Moviester module, however, it still needs a
constructor to work efectively. A constructor will also initialize the vari-
ables. For now, we will focus on moviesData array as it will store all the
JSON data that is fetched using the API.

http://www.index.ios.js,
http://www.index.android.js.
http://www.index.android.js
http://www.index.android.js

         

   
   

   
     
 

   

   
      
     
       
         

     
   
   

   

 

Building Your First Application ◾ 51

constructor(props) {
super(props);
var ds=new ListView.DataSource({rowHasChanged:

(r1, r2)=> r1 !==r2});
this.state={
movieData: ds.cloneWithRows([]),

 };
 }

STEP 4: Defning the fetchMoviesData Method
Now, we need to code the module for fetching the data using the API. For
the same, we will use the code below.

fetchMoviesData() {
var url=‘http://api.themoviedb.org/2/movie/now

_playing?api_key=API_KEY’;
fetch(url)
.then(response=>response.json())
.then(jsonData=> {
this.setState({
movieData: this.state.moviesData.cloneWithRows

(jsonData.results),
 });
 })
. catch(error=> console.log (‘Error: ‘+error));

 }

STEP 5: Creating the Life Cycle componentDidMount Method
Lastly, we create the componentDidMount method that will act as a life
cycle method. It will be executed once the frst rendering takes place.

componentDidMount() {
this.fetchMoviesData();

 }

STEP 6: View Creation
Te last few steps are to create the front end of your app. To do so, you
need to import some components. Tese components will be used to cre-
ate the view for your React Native Android app.

import {
AppRegistry,

http://www.this.state
http://api.themoviedb.org
http://api.themoviedb.org
http://www.response.json
http://www.this.state.moviesData.cloneWithRows
http://www.jsonData.results
http://www.console.log

 
 
 
 
 

   
     
        
       
       
     
 

   
     
       
         

52 ◾ Mastering React Native

StyleSheet,
Text,
View,
ListView,
Image
} from ‘react-native’;

Te few components that we need to learn about include the following:

1. ListView: It is used to show the vertical scrolling lists in an app
efectively.

2. Image: Te component is used to display various types of images
on the app. It includes static resources, network, temporary local
images, and so on.

STEP 7: Reconstructing the Return Method
Now, that we have written others modules which handle the various aspect
of the application, we now need to edit the return() method and make it
readable.

render () {
return (
<ListView
dataSource={this.state.moviesData}
renderRow={this.renderRow}
style={styles.container}
/>

);
 }

We have written the code for the dataSource method which will fetch
the movie data from the moviedb using the API. However, the “render-
Row” method takes the template required to be rendered for each row. We
will now defne it below. Also, the renderRow method should be defned
within the Moviester module.

renderRow(rowData){
return (
<View style={styles.thumb}>
<Image
source={{uri:’PUT URL HERE’}}

http://www.this.state.moviesData
http://www.styles.thumb

         

         
         
         

     
 

 
     
       
           

           

Building Your First Application ◾ 53

resizeMode=‘cover’
style={styles.img} />
<Text style={styles.txt}>{rowData.title}

(Rating: {Math.round(rowData.vote_average * 10) /
10})</Text>

</View>
);
 }

You need to put the source URI correctly for the above code to work
properly. We are set to make the app work as intended. However, we need
to create some style sheets to give the application some looks. You can do
this by using the following code.

var styles=StyleSheet.create({“Code part”});

STEP 8: Running the App
Te step is to run the app using the following command.

>>> react-native run-android

Tis will start your app on smartphone/device.
Wow! You have created the app successfully.

Conclusion
In this section, we learned about Setting Up Your Environment, creating
a New Application, Exploring the Sample Code, Building an App. In the
next section, we will learn about components for mobile.

React Native – Default Application

If you double click on the default app you can feel that the app.js fle looks like

import React from ‘react’;
import {StyleSheet, Text, View} from ‘react-native’;
export default class App extends React.Component {
 render() {
return (

<View style={styles.container}>
<Text>Open up App.js to working on your app!</

Text>
<Text>Changes you make will automatically

reload.</Text>

http://www.styles.img
http://www.styles.txt
http://www.rowData.title
http://www.Math.round
http://www.StyleSheet.create
http://www.app.js
http://www.App.js

           
       
   

 
     
       
           
       
   
 

 

 
     
     
     
     
 

54 ◾ Mastering React Native

<Text>Shake phone to open the menu.</Text>
</View>

);

To display a normal message saying “Welcome to World” remove the
CSS code and add the message to be printed wrapped inside the <text>
</text> tags inside <view></view> as shown below.

Te rest of the code is the same as react application basic code.

import React from ‘react’;
import {StyleSheet, Text, View} from ‘react-native’;
export default class App extends React.Component {
 render() {
return (

<View>
<Text>Welcometo World</Text>

</View>
);
}
}
}
}
const styles=StyleSheet.create({
 container: {
flex: 1,
backgroundColor: ‘#fff’,
alignItems: ‘center’,
justifyContent: ‘center’,

},
});

Te data inside React Components are handled by state and props. In
this section, you will learn about the state.

Props and State Defnition
Props is a JavaScript object that React components receive as a non-com-
pliant installation to produce a React element. Tey provide data fow
between components. Transferring data (props) from one component to
another as a parameter:

In the class section you need to defne custom HTML attributes to
which you assign your data and transfer it via the special React JSX syntax:

http://www.StyleSheet.create

         

 
   
   
     
       
     
 

 
    

 
   
   
     
       
     
 

Building Your First Application ◾ 55

import React, {Component} from ‘react’;
class App extends Component {
render() {
const greeting=‘Welcome to React’;
return (
<div>
<Greeting greeting={greeting} />

</div>
);
 }
}
class Greeting extends Component {
render() {
return<h1>{this.props.greeting}</h1>;

 }
}
export default App;

To receive props class components, you can use the JavaScript key-
word this. For functional component props are passed as an argument to
a function:

import React, {Component} from ‘react’;
class App extends Component {
render() {
const greeting=‘Welcome to React’;
return (
<div>
<Greeting greeting={greeting} />

</div>
);
 }
}
const Greeting=props=><h1>{props.greeting}</h1>; //
here an arrow function receives with the name
greetings
export default App;

In our example, data was a string variable. But props can be anything
such as integers, objects, arrays, and even React components.

http://www.this.props.greeting
http://www.props.greeting

 
   
   

 
   
      
 

 
 
   
     
     
       
     
   

56 ◾ Mastering React Native

State
State is a JavaScript object that contains data that infuences how a compo-
nent looks in a particular area at a time. Te second part is what makes the
world diferent compared to resources. Te world is just a picture of an app
at a time. All user interaction with your app may result in a change in the
default state and the overall UI as a result. Te situation changes during
the life span of the React section. Examples of status:

To get part of the class you need to call the class builder within the
React section:

Import React, {Part} from ‘react’;
Class button expands {
builder (resources) {
super (buildings);
this.state={counter: 1};

 }
give () {
return (
<button>{this.state.counter}</ton>>

);
 }
}

Release the default button.
To get the active part you need to use the State Hook:

Import React from ‘react’;
Activity counter () {
const [count, setCount]=React.useState (1);
return (
<div>
<p> You clicked {count} times</p>
<button onClick={()=> setCount (count+1)}>
Click me

</button>
</div>

);
}
export Default Counter;

Te state breathes life into your app and is something that makes your
app work. Te status may be Boolean, numbers, character units, or more
complex JavaScript objects.

http://www.this.state
http://www.this.state.counter

         

 
     

Building Your First Application ◾ 57

Stateful and stateless componentsStateless Component may only con-
tain props, no status. Such a component can be linked with a function:
it receives an input (‘object’ object) and returns the result (React object).
Non-standard parts are used if you want to represent props and the part
does not need to be connected. Tey are easy to use and test.

Te Stateful Component may contain props but must-have status. Te
decent part owns its status and can change it. When a component changes
position, it reloads. Ofcial components help when the application needs
to respond to user input and actions. Tey provide fexible user interaction
through client-server communication and help create interactive pages.
Te parts that work normally have no shape, while the parts of the class
add deception to the world. However, it has changed with the introduction
of Hooks inactive components. Te State was one of the most important
advantages of class parts, but today the Hooks have added state adminis-
tration and life cycle systems to the functional parts, so they can also be
called independent components.

• React components give a reset if props or conditions have changed.
Any update from anywhere in the code change the redeployment of
the appropriate part of the user interface.

• Props and conditions are JS objects, which means they both contain
the many structures and methods we need.

• Te same combination of props and state locations should produce
the same output.

Difference between State and Props
Te state is mutable, while props are immutable. Tis means that the state
can be updated further while props cannot be updated.

Using State
Tis is our root component. We are importing components Home which
will be used in most of the chapters.

App.js

import React from ‘react’;
import {StyleSheet, Text, View} from ‘react-native’;
export default class App extends React.Component {
state={
myState: laboris nisi ut aliquip ex ea consequat.

http://www.App.js

     

     

     

 
 
     
     
        
     
   
 

 
     

       
       

       
       
       
 
 

 
     
       
           
             

58 ◾ Mastering React Native

Duis aute irure dolor reprehenderit in voluptate
velit esse dolore eu

fugiat nulla pariatur. sint occaecat cupidatat
non, sunt in

qui officia deserunt mollit id est .’ipsum dolor
sit amet, consectetur.
}
 render() {
return (
<View>
<Text>{this.state.myState}</Text>

</View>
);
}

Updating State
Since state is mutable that means we can update it by adding function
deleteState and call it using the onPress = {this.deleteText} event.

App.js

import React, {Component} from ‘react’
import {Text, View} from ‘react-native’
class App extends Component {
state={
myState: ‘Lorem dolor sit amet, adipisicing elit,

sed
 do eiusmod incididunt ut et dolore aliqua.
 Ut enim ad minim veniam, quis nostrud ullamco

laboris nisi
 ut aliquip ex ea consequat. Duis aute irure in
 in velit esse eu fugiat nulla pariatur.
 mollit anim id est laborum.’

}
updateState=()⇒ this.setState({myState: ‘Updated

State’})
 render() {
return (

<View>
<Text onPress={this.updateState}>
{this.state.myState}

http://www.this.state.myState
http://www.App.js
http://www.this.setState
http://www.this.state.myState

         

           
       
   
 

 
     
      
 
 
     
 
 
     
 

Building Your First Application ◾ 59

</Text>
</View>

);
}
}
export default App;
}

We will use class syntax for mean parts (container) and functional syntax
for seamless parts (presentations). We will learn more about that in the
next chapter. We will also learn how to use the syntax of the updateState
arrow function. You should remember that this syntax uses lexical scope,
and this keyword will be tied to a natural object (Class). Tis will some-
times lead to unexpected behavior.

Another way to describe the methods is to use the EC5 functions, but
in that case, we will need to tie this by hand to the builder. Consider the
following example to understand this.

class Home extends Component {
 constructor() {
super()
this.updateState=this.updateState.bind(this)

}
 updateState() {
//

}
 render() {
//

}
}

Build Your First App with React Native

Once React is installed, it starts with Folder Layout

• Add a folder to the root and name its ‘application.’

• Now move the App.js fle to the root of the ‘application.’

• Ten update index.js import statement to ‘import Application from
./app/App.js.’

• Finally, create folders within the ‘app.’

http://www.this.updateState
http://www.this.updateState.bind
http://www.App.js
http://www.index.js
http://www.App.js.

60 ◾ Mastering React Native

A few words and their functions you need to be aware of:

• Screens: Tese are known as our main ideas.

• Assets: Tere are two folders in this directory called images and
animations.

• Components: Tis is the place where you will put all your shared
parts.

• Confgure: You can set the color scheme of your application in the
colors.js fle to keep things in control.

Creating an App

First, install it once worldwide:

$ npm install -g create-react-native-app
or
$ yarn global add create-react-native-app

You need to make sure that you are using Node v6 or a later version
with npm v3 or narn v4 version of Yarn. We are not asking you to use npm
v5 because of the big problems you are experiencing in that npm version.

Ten to create an app, use:

$ create-react-native-app my-application
$ cd my-application

Afer applying the above-mentioned line of codes, the directory will be
created with the word ‘my-app’ within the current active directory. Tis
will also produce the initial design of the project within “my plan” so keep
adding all the basics. If you have previously worked with React Native,
you will know that you will not see any “android” or “ios” directories.
Terefore, once the installation is complete, further instructions will be
executed by you in the project guide:

At the Start of NPM

It will run your application in the development mode with interactive
command, and to launch it without notice, use the ‘- and interactive’ fag.
If you want to watch it, open it in the Expo app on your phone to view the
fle. And it will reload if you save the edits to your fles. With this, you can
also see construction errors appear and log in to the terminal.

http://www.colors.js

         

Building Your First Application ◾ 61

What Is Cross-Platform Development?

React Native is a separate open-source development sofware developed in
Javascript and difers from other platforms for diferent platforms. React
Native apps are usually developed in key languages such as Javascript for
Android and Objective C or Swif for iOS. Tis is the reason for the rapid
operation of native applications. React Native was launched on Facebook’s
internal hackathon in 2013. Since then, it has been available for testing in
January 2015 and has been moving to the current mobile development
platform.

Cross-platform development is the practice of making sofware that is
compatible with more than one type of hardware platform. Te cross-plat-
form application can run on Microsof Windows, Linux, and macOS, or
both. A good example of a cross-platform app is a web browser or Adobe
Flash that does the same, regardless of which computer or mobile device
you are using.

Cross-platform is considered a sacred sofware development tool – you
can build your own codebase once and run it on any platform, as opposed
to sofware traditionally built for a particular platform. Engineers can use
the tools they know well, such as JavaScript or C #, to build anonymous
forums. Sofware owners are also interested in you as product develop-
ment, in terms of marketing time and cost, slows down.

What Are Some of the Features of Cross-Platform Development?
A Lot of Listeners
You do not have to decide which audience to target, that is, iOS or Android
users, as diferent platform sofware works on both, giving you access to a
wider user base.

Stability of the Court
Tere is a diference between roaming and design between iOS and
Android, which – in the development of the platform – is handled auto-
matically, thanks to a shared codebase. Tis helps to create app brand
ownership in both forums with less efort than the native one.

Reusable Code
Tis is one of the biggest benefts of platform development – you can cre-
ate your own codebase for Android and iOS at the same time. Indigenous
app development requires coding separately and usually requires two dif-
ferent sofware developers to do the job – one for iOS and the other for
Android.

 62 ◾ Mastering React Native

Rapid Development
With only one codebase required to manage iOS and Android, and when
everything is in one place, product development is very fast. Cross-platform
applications are built as single projects, although they can support various
devices, a large amount of code can be reused between platforms.

Reduced Costs
Building cross-platform applications can be 30% cheaper than building
traditional applications, all thanks to the ability to reuse code and rapid
development, which directly contributes to costs.

What you have learned so far may lead you to conclude that cross-plat-
form development is fawless – no, it is not. Let us get into them right now.

Requires Additional Technology to Ensure High Performance
It is a common myth that cross-platform applications don’t work as well
as their native counterparts. For example, both Flutter and React Native's
goal is to run at 60 frames per second. In most cases, cross-platform appli-
cations can work in the same way as native applications as long as the
developers have sufcient skills and expertise.

As cross-platform applications have to respond to a variety of devices
and platforms, it makes encoding extremely difcult. Tis creates a lot of
work for engineers who have to incorporate variables into diferent devices
and platforms to account for diferences – especially when it comes to
more complex aspects.

CHAPTER SUMMARY
Tis chapter covered React Native fundamental installation. Tis allows
the creation of a multiplatform application using the same codebase.
Essentially it enables the developers to use the React Native framework
along with the other native platform capabilities. It also explains its
features.

C H A P T E R 4

Components for
Mobile Development

IN THIS CHAPTER

¾ Components for mobile

¾ Analogies between HTML elements and native components

¾ Working with touch and gestures

¾ Working with organizational components

¾ Platform-specifc components

In the previous chapter, we learned about building the frst application
with React Native. In this chapter, we are going to learn about the compo-
nents for mobile application development.

COMPONENTS FOR MOBILE
Analogies between HTML and Native Components

When you are developing for the web, we make use of various basic HTML
elements. Tese include , <div>, and , as well organiza-
tional elements such as , , and <table>. (You could include a
consideration of HTML elements such as <audio>, <svg>, <canvas>, and
so on, but we will ignore them for now.)

DOI: 10.1201/9781003310440-4 63

https://dx.doi.org/10.1201/ 9781003310440-4

 

64 ◾ Mastering React Native

When dealing with React Native, we do not use these HTML elements,
but we use various components that are nearly analogous to them.

HTML React Native

div View
img Image
span, p Text
ul/ol, li ListView, child items

Although these elements serve almost the same purpose, they do not
change. Let us take a look at how these components work on mobile with
React Native and how they difer from their browser-based counterparts.

The Text Component

Rendering text is a basic function; any application needs to render text
somewhere. However, text within the context of React and mobile devel-
opment work separately from text rendering for the web.

When working with text in HTML, you could include raw text strings
in a variety of elements. More, you can style them with child tags like
 element and element. So, you end up with a snippet
(HTML) that looks like this:

For example,

<p>The quick brown over the lazy
dog.</p>

In React Native, the <Text> element components can have plain text
nodes as children. In other words, this is not valid:

<View>
 Text does not go here!
</View>

Instead, wrap the text in a <Text> component:

<View>
<Text>This is OK!</Text>

</View>

When you deal with <Text> components in React Native, you will no
longer have access to subtags such as and , and you can
apply styles to achieve similar efects through the use of attributes such

         

 

 

 
     
 
 
     
 

 
   
   
     
   
 

 
   
   
     
   
 

Components for Mobile Development ◾ 65

as fontWeight and fontStyle. Here is how you might achieve an efect by
making use of inline styles:

<Text>
The quick <Text style={{fontStyle: "arial
"}}>brown</Text> fox
jumped over the lazy <Text style={{fontWeight:
"bold"}}>dog</Text>.
</Text>

Tis approach could quickly become verbose. You will likely want to
create styled components as a sort of shorthand when dealing with text, as
shown in Example 4.1.

Example 4.1. Creating reusable components for styling text

var styles = StyleSheet.create({
bold: {
fontWeight: "bold"

},
italic: {
fontStyle: "italic"

}
});
var Strong = React.createClass({
render: function() {
return (
<Text style={styles.bold}>
{this.props.children}

</Text>);
}
});
var Em = React.createClass({
render: function() {
return (
<Text style={styles.italic}>
{this.props.children}

</Text>);
}
});

Once you have declared these styled components, you can easily make
use of styled nesting. Now the React Native version quite similar to the
HTML version (see Example 4.2).

http://www.StyleSheet.create
http://www.styles.bold
http://www.styles.italic

 
 

     

66 ◾ Mastering React Native

Example 4.2. Using styled components for rendering text

<Text>
The quick brown fox jumped
over the lazy dog.

</Text>

Similarly, React Native does not inherently have a concept of header
elements (h1, h2, etc.), but it is easy to declare own styled <Text> elements
and use them as needed.

In general, when dealing with styled text, React Native allows you to
change your approach. Style inheritance React Native is limited, so you
lose the default font settings for nodes in the tree. Once again, Facebook
recommends solving this by using styled components:

You have probably noticed a pattern here: React Native is very opinion-
ated in its preference for the reuse of styled components over the reuse of
styles. We will further discuss this in the next chapter.

THE IMAGE COMPONENT
If text is the basic element in an application, images are closed for both the
mobile and the web. When writing HTML and CSS for the Webpage, we
include images in various ways. Sometimes we use the tag, while
we apply images using CSS, such as when we use the background-image
property. But in React Native, we have a similar <Image> component, but
it behaves diferently.

Te simple usage of the <Image> component is easy and straightfor-
ward; just set the source prop:

<Image source={require('image!puppies')} />

It is worth that it is also possible to include web page-based image
sources instead of bundling assets with any application. Te Facebook
application does this as one of the examples in the UIExplorer application:

<Image source={{uri: 'https://facebook.git.io/react
/img/logo_log.png'}}

 style={{width: 300, height: 300}} />

When utilizing network resources, you need to specify dimensions
manually.

https://facebook.git.io
https://facebook.git.io

         

 

Components for Mobile Development ◾ 67

Downloading images via the network rather than as assets has some
advantages. During development, for example, it may be easier to use this
approach while prototyping rather than importing all of the assets ahead
of time. It changes the size of your bundled mobile application so that
users need not download all of your assets. However, it means that you
will be relying on the user’s data plan whenever they access your applica-
tion in the future. For most cases, you will want to avoid using the URI-
based method.

If you are wondering about working with the user’s own images, we will
cover the camera roll in Chapter 6.

Because React Native for mobile emphasizes a component-based
approach, images include as an <Image> component instead of being
referenced via styles. For instance, we wanted to use an image as a back-
ground for weather application. Whereas in HTML and CSS you would
like to use the background-image property to apply a background image,
in React Native you use the <Image> as a container component, like so:

<Image source={require('image!puppies')}>
{/* Your content here... */}

</Image>

Styling the images is fairly straightforward. In addition to using styles,
certain props control how the image will be rendered. You will usually
use resizeModeprop, for example, which can be set to enlarge, cover, or
contain. Te UIExplorer app demonstrates this well.

Te <Image> component is easy to work with and very fexible. You
will make extensive use of it in your own applications.

WORKING WITH TOUCH AND GESTURES
Web-based interface is ofen designed for mouse-based controls. We use
features such as high-speed status to show interaction and respond to user
interaction. For mobile, this is an important touch. Mobile forums have
their own rules around the interaction you would like to design. Tis var-
ies in some ways from one platform to another: iOS behaves diferently
than Android or Windows.

React Native provides a number of APIs for you to use as you create links
ready to touch. In this section, you get to look at the <TouchableHighlight>
container section, as well as the low-level APIs ofered by PanResponder
and the Gesture Responder program.

 
 
 
   
     
       
     
   

68 ◾ Mastering React Native

USING TOUCHABLEHIGHLIGHT
Any interface elements that respond to the user’s touch (like buttons, con-
trol elements, etc.) should usually have a <TouchableHighlight> wrapper.
<TouchableHighlight> causes overlay when the view is touched, giving the
user a visual response. Te important interactions that cause a mobile app
to feel, as opposed to a mobile-optimized website, where touch response
is limited. As a general rule, you should use <TouchableHighlight> wher-
ever there may be a button or link on the web.

For its basic functionality, you just need to wrap your part in the
<TouchableHighlight>, which will add a simple overlay when pressed.
Te <TouchableHighlight> section also gives you hooks for events like
asonPressIn, onPressOut, onLongPress, and so on, so you can use these
events in React programs.

Example 4.3 shows how to wrap a component data in a
TouchableHighlight so that the user can give feedback.

Example 4.3. By using the TouchableHighlight component

<TouchableHighlight
onPOut={this._onPressOut}
onPressIn={this._onPressIn}
style={styles.touchable}>
<View style={styles.button}>
<Text style={styles.welcome}>
{this.state.pressing ? 'EEK!' : 'PUSH ME'}

</Text>
</View>

</TouchableHighlight>

When a user presses a button, an overlay appears, and the text changes
to <TouchableHighlight> to give the user a visual response – the lef-
handed (lef) and the highlighted right (right).

Tis is a built-in example, but it shows the basic interaction that makes
the “world” button afect the mobile. Overlay is an important piece of
feedback that lets the user know that something can be pressed. Note that
in order to use overlay, there is no need to apply any logic to our styles;
<TouchableHighlight> carries with us what is logical.

http://www.styles.button

         

 
 
 
 

 
   
     
   
 
 
   
 
 
   
 
 
   
     
       
         
         
         
         
           
             
           
         
       
     
   
 

Components for Mobile Development ◾ 69

Touch/PressDemo.js illustrates the use of TouchableHighlight

'use strict';
var React = require('react-native');
var {
Text,
View,
StyleSheet,
TouchableHighlight
} = React;
var Button = React.createClass({
getInitialState: function() {
return {
clicking: false
}
},
_onPressIn: function() {
this.setState({clicking: true});
},
_onPressOut: function() {
this.setState({clicking: false});
},
render: function() {
return (
<View style={styles.container}>
<TouchableHighlight
onPressIn={this._onPressIn}
onPressOut={this._onPressOut}
style={styles.touchable}>
<View style={styles.button}>
<Text style={styles.welcome}>
{this.state.pressing ? 'EEK!' : 'PUSH ME'}

</Text>
</View>

</TouchableHighlight>
</View>
);
}
});

http://www.PressDemo.js
http://www.styles.button

 
   
   
   
   
 
 
   
   
   
   
 
 
   
 
 
   
   
   
   
   
 

70 ◾ Mastering React Native

var styles = StyleSheet.create({
container: {
flex: 1,
justifyContent: 'center',
alignItems: 'center',
backgroundColor: '#F5FCFF',
},
welcome: {
fontSize: 20,
textAlign: 'center',
margin: 10,
color: '#FFFFFF'
},
touchable: {
borderRadius: 100
},
button: {
backgroundColor: '#FF0000',
borderRadius: 100,
height: 200,
width: 200,
justifyContent: 'center'
},
});
module.exports = Button;

Try setting this button to respond to other events using hooks such as
Press and on LongPress. Te way to get an idea of how these events relate
to user interaction is to test using a real device.

GESTURERESPONDER SYSTEM
What if you want more than just to make things “fun”? React Native
also introduces two custom touch management APIs: ActionResponder
and PanResponder. GestureResponder is a low-level API, while
PanResponder provides useful captions. We will begin by looking
at how the GestureResponder system works because it is the basis of
PanResponderAPI.

Touch on mobile is very complex. Most mobile platforms can only sup-
port multitouch, which means that there can be multiple active touch
points on the display at the same time. (However, not all of these fnger-
prints; consider the difculty of, for example, fnding the palm of the user

http://www.StyleSheet.create

         

Components for Mobile Development ◾ 71

in the corner of the screen.) Additionally, there is a problem of which view
should handle a given touch. Tis problem is similar to the way mouse
events are handled on the web, and the default behavior is also the same:
the top child has an auto-touch event. With React Native’s touch system,
however, we can reverse this behavior if we choose to do so.

Te touch responder is an idea that captures a given touch event. In the
last section, we saw that the <TouchableHighlight> section acts as a touch
response. We can make our parts a touch response, too. Te life cycle dis-
cussed in this process is a bit complicated. Te idea you want to get in
touch with the touch responder should use four accessories:

1. View.props.onStartShouldSetResponder

2. View.props.onMoveShouldSetResponder

3. View.props.onResponderGrant

4. View.props.onResponderReject

A view can request to be the responder during the begin or the move phase.
Tis behavior is by onStartShouldSetResponder and onMoveShouldSe-
tResponder. When these functions return true, the view attempts to claim
responder status.

Afer an idea has been attempted to claim respondent status, your
attempt has been rejected. Appropriate callback or RResponderGrantoron
ResponderReject – will be requested.

Te responder ignores functions that are called in a bubbling pattern. If
more views try to fnd the status of the respondent, the deeper part will be
the respondent. Tis is usually the desired behavior; if not, you will have
difculty adding the afected parts as buttons to the larger view. If you
want to write over this behavior, parent sections can use onStartShouldSe-
tResponderCapture and onMoveShouldSetResponderCapture. Returning
the truth from any of these will prevent the children of the party from
being a touch response.

Afer the view successfully seeks out the status of the touch responder,
it is appropriate holders can be called. Here is an excerpt from the
GestureResponder:

View.props.onResponderMove: It is responder is works
when user is moving her finger

http://www.View.props.onStartShouldSetResponder
http://www.View.props.onMoveShouldSetResponder
http://www.View.props.onResponderGrant
http://www.View.props.onResponderReject
http://www.View.props.onResponderMove:

72 ◾ Mastering React Native

View.props.onResponderRelease: It is responder is
works when user fired at the end of the touch (i.e.,
"touchUp")
View.props.onResponderTerminationRequest: If
something else you want to become responder. Should
the view release the responder?: Returning true
allows release
View.props.onResponderTerminat:Responder removed
from view. It may take another l look after the call
toonResponderTerminationRequest, or OS without
question (happens via the control center /
notification center on iOS).

In most cases, you will be more concerned with RespondingMoveReport.
All of these methods get the action of the touch event, attached to the fol-
lowing format (again, quoted in documents):

changedTouches: It is an array of all touch events
that have changed since the last event
Identifier: The ID of the touch
location: The X position is relative to the element
location: The Y position is relative to the element
pageX: The X position is relative to the screen
pageY: The Y position is relative to the screen
Target: The node id of receiving the touch event
Timestamp : A time identifier is useful for velocity
calculation
 It touches Array of all current touches on the
screen

You can use this information when deciding whether to respond to
an event. Maybe your vision only cares about the touch of two fngers,
for example. Tis is a low-level API; if you want to fnd and respond to
touch in this way, you will need to spend a good time adjusting the correct
parameters and fnding out what values you should be concerned about.
In the section, we will look at PanResponder, which provides high-quality
user friendly interpretation.

PanResponder

Unlike <TouchableHighlight>, PanResponder is not a part but a class
assigned to React Native. It provides a higher-level API than the basic

http://www.View.props.onResponderRelease:
http://www.View.props.onResponderTerminationRequest:
http://www.View.props.onResponderTerminat:Responder

         

 
 

Components for Mobile Development ◾ 73

events detected by the Gesture Responder program while still providing
access to those green events. A PanResponder gesture Stateobject provides
you access to the following, in accordance with PanResponder documents:

stateID: ID of the gestureState (there at least
single touch on screen)
moveX: The screen coordinates of the moved touch
recently
moveY: The screen coordinates of the moved touch
recently
x0: It is a screen coordinates of the responder
grant for x axis
y0: It is a screen coordinates of the responder
grant

for y axis

dx: It accumulated distance of the gesture since the
touch started
dy: It accumulated distance of the gesture since the
touch started
vx: It is a current velocity of the gesture
vy: It is a current velocity of the gesture
numberActiveTouches: It is a number of touches
currently on screen

As you can see, in addition to the green area data, a gesture Stateobject
also includes information such as current touch speeds and aggregated
distances.

In order to use the PanResponder in component, we need to create a
PanResponder object and attach it to the component in a subformat.

To create a PanResponder we need to specify the appropriate
PanResponder events holders

Creating a PanResponder requires us to pass a set of callbacks

this._panResponder = PanResponder.create({
this._handleStartShouldSetPanResponder,
this._handleMoveShouldSetPanResponder,
onStartShouldSetPanResponder:
onPanResponderMove: this._handlePanResponderMove,

http://www.PanResponder.create

 

 
   
     
     
   
 

 
 

74 ◾ Mastering React Native

onPanResponderTerminate:
this._handlePanResponderEnd,
});

Ten, we use syntax to attach the PanResponder to the view in the com-
ponent’s render method

Attaching the PanResponder using spread syntax

render: function() {
return (
<View
{...this._panResponder.panHandlers}>
{ /* View contents here */ }

</View>
);
}

Afer this, the holders you have transferred to PanResponder.create call
will be requested during the appropriate action events if a touch appears
within this view.

Example 4.7 shows a modifed version of the PanResponder model code
provided for React Native. Tis version listens to touch events in the con-
tainer view, in contrast to just a circle, so the values are printed on the
screen as you interact with the app. If you plan to use your touch sensors,
I suggest you try this app on a real device to get a feel of how these values
respond. It shows a screenshot of this example, but you will need help with
a device with a real touch screen.

Touch/PanDemo.js explain the use of PanResponder

// Adapted from below github link
// xlink:href="https://github.com/facebook/react
-native/blob/master/">https://github.com/facebook/
react-native/blob/master/
// Examples/UIExplorer/PanResponderExample.js
'use strict';
var React = require('react-native');
var {
StyleSheet,
PanResponder,

http://www....﻿this﻿._panResponder.panHandlers
http://www.PanResponder.create
http://www.PanDemo.js
https://github.com
https://github.com
https://github.com
https://github.com
http://www.PanResponderExample.js

         

 
 

 
 
 
 
 
 
 
   
     
     
     
     
     
     
     
     
     
   
 
 
   
     

     

     

     
     

     

   
   
   

Components for Mobile Development ◾ 75

View,
Text
} = React;
var CIRCLE_SIZE = 40;
var CIRCLE_COLOR = 'blue';
var CIRCLE_HIGHLIGHT_COLOR = 'green';
var PanResponderExample = React.createClass({
// Set some initial values.
_panResponder: {},
_previousLeft: 0,
_previousTop: 0,
_circleStyles: {},
circle: null,
getInitialState: function() {
return {
numberActiveTouches: 0,
moveX: 0,
moveY: 0,
x0: 0,
y0: 0,
dx: 0,
dy: 0,
vx: 0,
vy: 0,
}
},
componentWillMount: function() {
this._panResponder = PanResponder.create({
onStartShouldSetPanResponder:
this._handleStartShouldSetPanResponder,
onMoveShouldSetPanResponder:
this._handleMoveShouldSetPanResponder,
onPanResponderGrant:
this._handlePanResponderGrant,
onPanResponderMove: this._handlePanResponderMove,
onPanResponderRelease:
this._handlePanResponderEnd,
onPanResponderTerminate:
this._handlePanResponderEnd,
});
this._previousLeft = 20;
this._previousTop = 84;

http://www.PanResponder.create

   
     
     
   
 
 
   
 
 
   
     
       
         
           
         
         
         
       
         
         
         
         
         
       
     
   
 
 

 
 
   
     
   
 
 
   
     

   
 

76 ◾ Mastering React Native

this._circleStyles = {
left: this._previousLeft,
top: this._previousTop,
};
},
componentDidMount: function() {
this._updatePosition();
},
render: function() {
return (
<View style={styles.container}>
<View
ref={(circle) => {
this.circle = circle;
}}
style={styles.circle}
{...this._panResponder.panHandlers}/>

<Text>
{this.state.numberActiveTouches} touches,
dx: {this.state.dx},
dy: {this.state.dy},
vx: {this.state.vx},
vy: {this.state.vy}

</Text>
</View>
);
},
// It is _highlight and _unHighlight get called by
PanResponder methods,
// It is providing visual feedback to the user.
_highlight: function() {
this.circle && this.circle.setNativeProps({
backgroundColor: CIRCLE_HIGHLIGHT_COLOR
});
},
_unHighlight: function() {
this.circle && this.circle.setNativeProps({
backgroundColor: CIRCLE_COLOR (any color passed

as arguments)
});
},

http://www.styles.circle
http://www....﻿this﻿._panResponder.panHandlers
https://this.state.vy
https://this.state.vx
https://this.state.dy
https://this.state.dx

         

 

 
   

 
  

   

   
 
 
 

   

   
 
 

   
 
 

   
     
     
     
     
     
     
     
     
     
     

   
   
   

Components for Mobile Development ◾ 77

// We are controlling the circle's position
directly with setNativeProps.
_updatePosition: function() {
this.circle && this.circle.setNativePr

ops(this._circleStyles);
},
_handleStartShouldSetPanResponder:
function(e: Object, gestureState: Object): boolean
{
// It should become active when the user presses

down on the circle.
return true;
},
_handleMoveShouldSetPanResponder:
function(e: Object, gestureState: Object): boolean
{
//It should we become active when the user moves a

touch over the circle.
return true;
},
_handlePanResponderGrant: function(e: Object,
gestureState: Object) {
this._highlight();
},
_handlePanResponderMove: function(e: Object,
gestureState: Object) {
this.setState({
stateID: gestureState.stateID,
moveX: gestureState.moveX,
moveY: gestureState.moveY,
x0: gestureState.x0,
y0: gestureState.y0,
dx: gestureState.dx,
dy: gestureState.dy,
vx: gestureState.vx,
vy: gestureState.vy,
numberActiveTouches: gestureState.

numberActiveTouches
});
// Calculate current position using deltas
this._circleStyles.left = this._previousLeft +

gestureState.dx;

http://www.gestureState.dx,
http://www.gestureState.dy,
http://www.gestureState.vx,
http://www.gestureState.vy,
http://www.gestureState.dx;
https://gestureState.x0

   

   
 
 

   
   
   
 

 
   
   
   
   
   
   
   
 
 
   
   
 

78 ◾ Mastering React Native

this._circleStyles.top = this._previousTop +
gestureState.dy;
this._updatePosition();
},
_handlePanResponderEnd: function(e: Object,
gestureState: Object) {
this._unHighlight();
this._previousLeft += gestureState.dx;
this._previousTop += gestureState.dy;
},
});
var styles = StyleSheet.create({
circle: {
width: CIRCLE_SIZE,
height: CIRCLE_SIZE,
borderRadius: CIRCLE_SIZE / 2,
backgroundColor: CIRCLE_COLOR,
position: 'absolute',
left: 0,
top: 0,
},
container: {
flex: 1,
paddingTop: 64,
},
});
module.exports = PanResponderExample;

CHOOSING A TOUCH MANAGEMENT METHOD
You should decide when to use the touch and APIs discussed in this sec-
tion. It depends on what you want to build. To give the user a basic response
and to indicate that the button or other element is “touching,” use the
<TouchableHighlight> section. To use your custom touch links, use the
green GestureResponder system, or PanResponder. Chances are you will
always love the PanResponder method because it also gives you access to
the simple touch events ofered by the GestureResponder system. If you
begin designing a game, or an application with interactions, then you need
to spend time building the interaction you want by using these APIs.

For other applications, you do not need to implement any custom touch
handling with either the Gesture Responder system or the PanResponder.
In the next section, we have looked at some of the higher-level components
that implement common UI patterns for you.

http://www.gestureState.dy;
http://www.gestureState.dx;
http://www.gestureState.dy;
http://www.StyleSheet.create

         

Components for Mobile Development ◾ 79

WORKING WITH ORGANIZATIONAL COMPONENTS
In this section, we will look at parts of the organization that you can use to
control the normal fow within your application. Tis includes <TabView>,
<NavigatorView>, and <ListView>, all using some of the most common
mobile interactions and navigation patterns. Once you have set up your
app navigation fow, you will fnd that these components are very helpful
in making your application more realistic.

Using ListView

Let us start with the <ListView> component. In this section, you will cre-
ate an app that lists Te New York Times’ bestsellers list and allows us to
view data about each book. If you would like, you can claim your API
token from Te New York Times. If not, use the API token encoded in the
sample code.

Te list is very useful for mobile development, and you will notice that
many mobile user links include them as a central object. A <ListView> is
simply viewing, optional with special viewers of categories, titles, or footer.
For example, you can see the interaction pattern in Dropbox, Twitter, and
iOS apps.

<ListView> is a good example of where React Native shines because it
can use its host domain. For mobile, the traditional part of <ListView>
is ofen greatly improved so that the presentation is smooth and lan-
guage free. If you expect to give a very large amount of items to your
<ListView>, you should try to keep the child’s view easy, to try to mini-
mize stuttering. Te basic React Native <ListView> component has two
props: dataSource and renderRow data. Te source, as the name implies,
is a source of information about the data that needs to be provided. Te
renderRow should return the data-based component from a single data
source element.

Tis basic usage is explained in SimpleList.js. We will start by adding
a dataSource to our <SimpleList> component. A ListView.DataSource
needs to implement the rowHasChanged method. Here is a simple
example:

var ds = new ListView.DataSource({rowHasChanged:
(r1, r2) => r1 !== r2});

To set the right contents of a dataSource, we use cloneWithRows. Let us
return the dataSource in our getInitialState call:

getInitialState: function() {

http://www.SimpleList.js.

 

 
   

 

 

 
 
 

 

 
   
 

 

80 ◾ Mastering React Native

var ds = new ListView.DataSource({rowHasChanged:
(r1, r2) => r1 !== r2});
return {
dataSource: ds.cloneWithRows(['a', 'b', 'c', 'a

longer example', 'd', 'e'])
};
}

Another prop we need is renderRow, which should be a function that
returns some of the JSX-based data for a given row:

_renderRow: function(rowData) {
return <Text style={styles.row}>{rowData}</Text>;
}

Now we can put it all together to see a simple <ListView>, by rendering
a <ListView> like so:

<ListView
dataSource={this.state.dataSource}
renderRow={this._renderRow}
/>

Let us create a <ListView> with more complex data. We will use the
NY Times API to create a Sellers application, which renders the NY Times
Seller list.

First, we initialize the data source to be empty because we will need to
fetch the data:

getInitialState: function() {
var ds = new ListView.DataSource({rowHasChanged:
(r1, r2) => r1 !== r2});
return {
dataSource: ds.cloneWithRows([])
};
}

Ten, we can also add a method for fetching and updating the data once
we have it. Te method gets called from componentDidMount:

_refreshData: function() {
var endpoint =

http://www.styles.row

         

 

 
 
   
   
     
       

     
   

 
   
                   
                    
 

 
   
     
       
     
     
 

Components for Mobile Development ◾ 81

'http://api.nytimes.com/svc/books/v3/lists/
hardcover-fiction?response-format
=json&api-key=' + API_KEY;
fetch(endpoint)
.then((response) => response.json())
.then((rjson) => {
this.setState({
dataSource: this.state.dataSource.cloneWithRow

s(rjson.results.books)
});
});

}

Each book returned by the NYTimes APIs has three properties: cover-
URL, author, and title.

We update the <ListView> function to return a component based on
those props.

For _renderRow, we only pass along the
suitable data to the <BookItem>

_renderRow: function(rowData) {
return <BookItem coverURL={rowData.book_image}

title={rowData.title}
author={rowData.author}/>;

},

We will also toss in a header and footer component and how these work.
Note that for a <ListView>, the header and footer are not that sticky; even
they scroll with the rest of the list. If you want a sticky header or footer,
it is probably easiest to render them separately from the <ListView>
component.

Adding methods render to header and footer elements in BookListV2.js

_renderHeader: function() {
return (<View style={styles.sectionDivider}>
<Text style={styles.headingText}>
Bestsellers in Hardcover Fiction

</Text>
</View>);

},

http://api.nytimes.com
http://api.nytimes.com
http://www.response.json
http://www.rjson.results.books
http://www.rowData.title
http://www.rowData.author
http://www.BookListV2.js

 
   
     
       
         
       
     
     
 

 
 
 
 

 
   

   
     
   
 

82 ◾ Mastering React Native

_renderFooter: function() {
return(
<View style={styles.sectionDivider}>
<Text>
The data from the New York Times Seller list.

</Text>
</View>
);

},

Altogether, the Sellers application consists of two fles: BookListV2.js and
BookItem.js. BookListV2.js is shown in Example 4.10. (BookList.js is a
simpler fle that fetches data from an API, and also included in the GitHub
repository for your reference.)

Bestsellers/BookListV2.js

'use strict';
var React = require('react-native');
var {
 Text,
View,
Image,
StyleSheet,
ListView,
} = React;
var BookItem = require('./BookItem');
var API_KEY = '73b19491b83909c7e07016f4bb4644f9:2
:60667290';
var QUERY_TYPE = 'hardcover-fiction';
var API_STEM = 'http://api.nytimes.com/svc/books/v3/
lists'
var ENDPOINT = `${API_STEM}/${QUERY_TYPE}?response
-format=json&api-key=${API_KEY}`;
var BookList = React.createClass({
getInitialState: function() {
var ds = new ListView.DataSource({rowHasChanged:

(r1, r2) => r1 !== r2});
return {
dataSource: ds.cloneWithRows([])
};
},

http://www.BookListV2.js
http://www.BookItem.js.
http://www.BookListV2.js
http://www.BookList.js
http://www.BookListV2.js
http://api.nytimes.com
http://api.nytimes.com

         

 
   
 
 
   
   
   
 
 
   
     
       
     
     
 
 
   
     
       

     
     
 
 
   
     
     
       
         

       
     
 
 
   
       
         
         
         
         
         
         

Components for Mobile Development ◾ 83

componentDidMount: function() {
this._refreshData();
},
_renderRow: function(rowData) {
return <BookItem coverURL={rowData.book_image}
title={rowData.title}
author={rowData.author}/>;
},
_renderHeader: function() {
return (<View style={styles.sectionDivider}>
<Text style={styles.headingText}>
Bestsellers in Hardcover Fiction

</Text>
</View>);

},
_renderFooter: function() {
return(
<View style={styles.sectionDivider}>
<Text>Data from the New York Times Best Seller

list.</Text>
</View>
);

},
_refreshData: function() {
fetch(ENDPOINT)
.then((response) => response.json())
.then((rjson) => {
this.setState({
dataSource: this.state.dataSource.cloneWithRow

s(rjson.results.books)
});
});

},
render: function() {
return (

<ListView
style=
dataSource={this.state.dataSource}
renderRow={this._renderRow}
renderHeader={this._renderHeader}
renderFooter={this._renderFooter}
/>

http://www.rowData.title
http://www.rowData.author
http://www.response.json
http://www.rjson.results.books

   
 

 
   
   
   
   
   
 
 
   
   
 
 
   
   
 
 
   
   
   
   
   
 
 
   
   
   
 
 
   
   
   
 

84 ◾ Mastering React Native

);
}
});
var styles = StyleSheet.create({
container: {
flex: 1,
justifyContent: 'center',
alignItems: 'center',
backgroundColor: '#FFFFFF',
paddingTop: 24
},
list: {
flex: 1,
flexDirection: 'row'
},
listContent: {
flex: 1,
flexDirection: 'column'
},
row: {
flex: 1,
fontSize: 24,
padding: 42,
borderWidth: 1,
borderColor: '#DDDDDD'
},
sectionDivider: {
padding: 8,
backgroundColor: '#EEEEEE',
alignItems: 'center'
},
headingText: {
flex: 1,
fontSize: 24,
alignSelf: 'center'
}
});
module.exports = BookList;

Te <BookItem> is a simple component that can also handle rendering
each child view in the list

http://www.StyleSheet.create

         

 
 
 
 
 

 
   
   
   
   
   
   
 
 
   
   
   
 
 
   
   
   
   
   
 
 
   
 
 
   
   
 

 

Components for Mobile Development ◾ 85

Bestsellers/BookItem.js

'use strict;
var React = require('react-native');
var {
StyleSheet,
Text,
View,
Image,
ListView,
} = React;
var styles = StyleSheet.create({
bookItem: {
flex: 1,
flexDirection: 'row',
backgroundColor: '#FFFFFF',
borderBottomColor: '#AAAAAA',
borderBottomWidth: 2,
padding: 5
},
cover: {
flex: 1,
height: 150,
resizeMode: 'contain'
},
info: {
flex: 3,
alignItems: 'flex-end',
flexDirection: 'column',
alignSelf: 'center',
padding: 20
},
author: {
fontSize: 18
},
title: {
fontSize: 18,
fontWeight: 'bold'
}
});
var BookItem = React.createClass({
propTypes: {

http://www.BookItem.js
http://www.StyleSheet.create

   
   
   
 
 
   
     
       
       
         

         

       
     
     
 

86 ◾ Mastering React Native

coverURL: React.PropTypes.string.isRequired,
author: React.PropTypes.string.isRequired,
title: React.PropTypes.string.isRequired
},
render: function() {
return (
<View style={styles.bookItem}>
<Image style={styles.cover} source=/>
<View style={styles.info}>
<Text style={styles.author}>{this.props.aut

hor}</Text>
<Text style={styles.title}>{this.props.title}</

Text>
</View>

</View>
);

}
});
module.exports = BookItem;

If you have complex data, or a very long list, you will need to pay attention
to enabled functionality in some of the more complex <ListView> layouts
of your choice. However, for most applications, this will sufce.

USING NAVIGATORS
<ListView> is a great example of combining multiple views together into
a more usable collaboration. At the highest level, we can use features such
as <Navigator> to present diferent application screens, just as we may
have diferent pages on a website.

Te Navigator is a hidden but key component and is used in many
common applications. For example, the iOS Settings app can be used as a
combination of <Navigator> and multiple <ListView> components. Te
Dropbox app also uses Navigator.

<Navigator> allows your application to switch between diferent
screens (commonly referred to as “scenes”), while keeping “multiple”
routes, so you can push, pop, or rotate regions. You can think as similar to
the history API on the web. “Route” is the screen title, which corresponds
to the index.

For example, in the Settings application, initially, the stack is empty. If
you select one of the submenus, the frst group is pushed into the stack.
Te “back” tap, in the upper lef corner of the screen, will close it again.

http://www.React.PropTypes.string.isRequired,
http://www.React.PropTypes.string.isRequired,
http://www.React.PropTypes.string.isRequired
http://www.styles.cover
http://www.styles.info
http://www.styles.author
http://www.styles.title

         

Components for Mobile Development ◾ 87

If you are interested in how these play, UIExplorerapp has a good demo
of a few ways to use the Navigator API. Note that there are two Navigator
options: cross-platform <Navigator> component and <NavigatorIOS>
component. In this book, we will choose to use <Navigator>.

OTHER ORGANIZATIONAL COMPONENTS
Tere are a lot of other parts of the organization, too. For example, a
few ones include <TabBarIOS> and <SegmentedControlIOS> and
<DrawerLayoutAndroid> and <ToolbarAndroid>.

You will notice that all of these are named with feld-specifc appen-
dixes. Tat is because they are loading native APIs into feld-specifc UI
elements.

Tese features are useful for setting up multiple screens within your
app. <TabBarIOS> and <DrawerLayoutAndroid>, for example, give an
easy way to switch between multiple functions. <SegmentedControlIOS>
and <ToolbarAndroid> are suited for well-analyzed controls.

You will want to look at the feld-specifc design guidelines on how to
best use these components:

• Android Interface Design Guide

• iOS Interface Design Guidelines

How do you make use of platform-specifc components? Let us now take
a look at how to handle platform-specifc components in cross-platform
applications.

PLATFORM-SPECIFIC COMPONENTS
Not every component is available on all platforms, and even not all inter-
action patterns are appropriate for all devices. It doesn’t mean that you
cannot use platform-specifc code in your application, though! In this sec-
tion, we will cover platform-specifc components, as well as strategies for
how to incorporate them in your cross-platform applications.

iOS- or Android-Only Components

Some components are available on a specifc platform. It includes things
like <TabBarIOS> or <SwitchAndroid>. Tey are usually platform spe-
cifc because they wrap some kind of underlying platform-specifc API.
For some components, having a platform-agnostic version does not

 
   
 
 
   
   
     
   
 
 
   

88 ◾ Mastering React Native

make sense. For example, the <ToolbarAndroid> component exposes an
Android-specifc API for a view type that does not exist on iOS anyway.

Platform-specifc components are named afer the appropriate appen-
dix: IOS or Android. If you try to install one in the wrong place, your
application will crash.

Components can also have feld-specifc resources. Tese are tagged
in documents with a small badge indicating their use. For instance,
<TextInput> has props that are platform-agnostic, others that are specifc
to iOS or Android

Components with Platform-Specifc Versions

So, how can you handle platform-specifc components or props in a cross-
platform application? Te good news is that you still use these compo-
nents. Keep in mind how the app has both an index.ios.js and an index
.android.js fle. Te naming convention can be used for any fle to create a
component that has diferent implementations on Android and iOS.

As an example, we will use the <SwitchIOS> and <SwitchAndroid>
components. Tey reveal slightly diferent APIs, but what if we just want
to use a simple switch? Let’s create a wrap-up section, <Switch>, which
provides a specifc section for the forum.

We will start by implementing switch.ios.js. It’s a quite simple wrapper
around <SwitchIOS>, and allows us to provide a callback for when the
switch value changes.

Switch.ios.js

var React = require('react-native');
var { SwitchIOS } = React;
var Switch = React.createClass({
getInitialState() {
return {value: false};
},
_onValueChange(value) {
this.setState({value: value});
if (this.props.onValueChange) {
this.props.onValueChange(value);
}
},
render() {
return (

http://www.index.ios.js
http://www.index.android.js
http://www.index.android.js
http://www.switch.ios.js.
http://www.Switch.ios.js

         

     
       
       
     
 

 
   
 
 
   
   
     
   
 
 
   
     
       
       
     
 

Components for Mobile Development ◾ 89

<SwitchIOS
onValueChange={this._onValueChange}
value={this.state.value}/>
);

}
});
module.exports = Switch;

Next, let us implement switch.android.js

Switch.android.js

var React = require('react-native');
var { SwitchAndroid } = React;
var Switch = React.createClass({
getInitialState() {
return {value: false};
},
_onValueChange(value) {
this.setState({value: value});
if (this.props.onValueChange) {
this.props.onValueChange(value);
}
},
render() {
return (
<SwitchAndroid
onValueChange={this._onValueChange}
value={this.state.value}/>
);

}
});
module.exports = Switch;

Note that it looks almost identical to switch.ios.js, and it implements
the same API. Te diference is that it uses <SwitchAndroid> instead
of <SwitchIOS>. We can now import our <Switch> component from
another fle with the syntax:

var Switch = require('./switch');
...

http://www.switch.android.js
http://www.Switch.android.js
http://www.switch.ios.js,

 
 

 
   
 
 
   
 
 
   

   
     
       
         
       
       
     
   
 

 
   
   
   
 

90 ◾ Mastering React Native

var switchComp = <Switch onValueChange={(val) =>
{console.log(val); }}/>;

Let us actually use the <Switch> component. Create a new fle,
CrossPlatform.js, and also include the code shown below. We have the
background color change based on the current value of a <Switch>.

CrossPlatform.js Makes Use of the <Switch> Component

var React = require('react-native');
var {
Text,
View,
StyleSheet,
} = React;
var Switch = require('./switch');
var CrossPlatform = React.createClass({
getInitialState() {
return {val: false};
},
_onValueChange(val) {
this.setState({val: val});
},
render: function() {
var colorClass = this.state.val ? styles.

blueContainer : styles.redContainer;
return (
<View style={[styles.container, colorClass]}>
<Text style={styles.welcome}>
Make me blue!

</Text>
<Switch onValueChange={this._onValueChange}/>

</View>
);
}
});
var styles = StyleSheet.create({
container: {
flex: 1,
justifyContent: 'center',
alignItems: 'center',
},

http://www.console.log
http://www.CrossPlatform.js,
http://www.CrossPlatform.js
http://www.StyleSheet.create

         

 
   
 
 
   
 
 
   
   
   
 

Components for Mobile Development ◾ 91

blueContainer: {
backgroundColor: '#5555FF'
},
redContainer: {
backgroundColor: '#FF5555'
},
welcome: {
fontSize: 20,
textAlign: 'center',
margin: 10,
}
});
module.exports = CrossPlatform;

Note that there is also a switch.jsfle, but we can callrequire (./ switch).
Te React Native package will automatically select the right application
based on our platform, and use the appropriate eitherswitch.ios.jsorswit
ch.android.jsas. Lastly, return the contents of index.android.js and index
.ios.jsso so that we can provide the <CrossPlatform> section. Te fles of
index.ios.js and index.android.js should be identical, and they may simply
import a crossplatform.js fle.

var React = require('react-native');
var { AppRegistry } = React;
var CrossPlatform = require('./crossplatform');
AppRegistry.registerComponent('PlatformSpecific',
() => CrossPlatform);

Now we can run application on both iOS and Android .

WHEN TO USE PLATFORM-SPECIFIC COMPONENTS
When is it appropriate to use the feld-specifc section? In most cases,
you will want to do so when there is an interaction pattern specifc to the
platform to which you want your application to adhere. If you want the
application to feel truly “traditional,” it is worth paying attention to the
UI-specifc UI processes.

Apple and Google both provide guidelines for human interaction on
their platforms, which should be discussed:

• IOS Human Interface Guidelines

• Android Design Reference

http://www.switch.jsfile,
http://www.eitherswitch.ios.jsorswitch.android.jsas.
http://www.eitherswitch.ios.jsorswitch.android.jsas.
http://www.index.android.js
http://www.index.ios.jsso
http://www.index.ios.jsso
http://www.index.ios.js
http://www.index.android.js
http://www.crossplatform.js
http://www.AppRegistry.registerComponent

 92 ◾ Mastering React Native

By creating feld-specifc versions only for specifc sections, you can achieve
a balance between reusing code and customizing feld-based customiza-
tion. In most cases, you should need a separate use of a few components to
support both iOS and Android.

SUMMARY
In this chapter, we have covered various details of the most important
aspects of React Native. We have discussed how to use low-level basic
components, such as <Text> ,<Image>, as well as advanced order com-
ponents such as <ListView>, <Navigator>, and <TabBarIOS>. We looked
at how you can use diferent touch-focused APIs and components if you
want to build your own custom touch handles. Finally, we saw how to use
the feld-specifc components in our programs.

At this point, you should be able to build basic, functional apps using
React Native! Now that you are familiar with the features discussed in this
chapter, building on them and integrating them to make your own apps
you should feel incredibly similar to working with React on the web.

Of course, building basic, functional applications is part of the battle.
In the next chapter, we will focus on styling, as well as how to use React
Native styles to get the look and feel you want on a mobile phone.

CONCLUSION
In this chapter, we learned about analogies between HTML elements and
native components working with touch and gestures working with orga-
nizational components platform-specifc components, and in the next
chapter we are going to learn about styles in React Native.

C H A P T E R 5

Styles and Layouts

IN THIS CHAPTER

¾ Styles

¾ Declaring and manipulating styles

¾ Organization and inheritance

¾ Positioning and designing layouts

In the previous chapter, we learned about components for mobile, what
they are and how they are used. In this chapter, we are going to learn about
styles ofered by React Native.

React Native projects adapt to the way in which they can be organized,
especially when it comes to the use of style. We fnd many diferences
between the applications we run in the way they set up and organize styles.
Tis leads to more overhead when new features of new projects are created
and sometimes projects that reside in certain patterns make it difcult to
duplicate in construction.

We have learned a few simple strategies that will lead us to more excit-
ing activities as we work on React Native projects. Here are some of the
ideas for using styles to enhance ergonomics and readability. Tis allows
us to develop and replicate designs quickly, easily, and consistently.

If you would like to learn by looking directly at a particular code, we
have included a small template application to show these ideas. You can
fnd it here: RNStylingTemplate

DOI: 10.1201/9781003310440-5 93

https://dx.doi.org/10.1201/ 9781003310440-5

94 ◾ Mastering React Native

1. STYLES ARE IMPORTANT: MAKE THEM EASY TO FIND
Keep styles in the root source folder.

Styling is a beginner class concern with as styles that can be accessible
from a top folder in the application code.

MyReactNativeApp

- src

- assets

- compontents

- MyComponent.js

- styles

- colors.js

- index.js

- typography.js

- ...

...

We refer to styles in almost every category and making them as accessible
as possible will result in pure code.

Another way is to reduce the use of. / ‘s in our related systems. Tis not
only reduces the amount of overhead in calculating the folders placed in
the nest, but also allows for simplicity and understanding as the project
progresses.

import { MyStyles } from "../styles"

is easier to work with than:
import { MyStyles } from "../../../../common/utils/
styles/my_styles"

2. GET ATOMIC!
Build complicated styles from simpler styles.

By using object construction in a style
announcement, we get really short and readable
styles that allow us to advertise in our sections.

http://www.MyComponent.js
http://www.colors.js
http://www.index.js
http://www.typography.js
http://www.buttons.js

         

 

Styles and Layouts ◾ 95

// buttons.js
export const small = {
paddingHorizontal: 10,
paddingVertical: 12,
width: 75
};
export const rounded = {
borderRadius: 50
};
export const smallRounded = {
...base,
...small,
...rounded
};
// src/MyComponent/index.js
const styles = StyleSheet.create({
button: {
...Buttons.smallRounded,
},
})
It is easier to understand the intent and maintain
than:
// src/MyComponent/index.js
const styles = StyleSheet.create({
button: {
paddingHorizontal: 10,
paddingVertical: 12,
width: 75,
borderRadius: 50
},
})

3. STYLES ARE IMPORTANT: MAKE THEM EASY TO USE
Group the same variables into modules and bundle them into an index
.jsfle. Te fexibility of the style is easy to fnd and understand when it is
planned for work. Terefore, they must live with purposeful fles. When
we place an index.jsin in this folder, we can use JavaScript ES6 to import
syntax for importing all styles at once.

• styles

• colors.js

• index.js

http://www....base,
http://www....small,
http://www.index.js
http://www.StyleSheet.create
http://www.index.js
http://www.StyleSheet.create
http://www.index.jsfile.
http://www.index.jsfile.
http://www.index.jsin
http://www.colors.js
http://www.index.js
https://buttons.js

96 ◾ Mastering React Native

• spacing.js

• typography.js

• buttons.js

// src/styles/index.js
import * as Buttons from './buttons'
import * as Colors from './colors'
import * as Spacing from './spacing'
import * as Typography from './typography'
export { Typography, Spacing, Colors, Buttons }

Tis allows us to:

• import only what we need

• import from the same fle every time

• give the variables descriptive, short names that are contained in a
descriptive object.

• easily extend and modify the common styles

• write more concise and expressive code.

// src/MyComponent/index.js
import { Typography, Colors, Spacing } from '../
styles'
...
const styles = StyleSheet.create({
container: {
backgroundColor: Colors.background,
alignItems: 'center',
padding: Spacing.base,
},
header: {
flex: 1,
...Typography.mainHeader,
},
section: {
flex: 3,
...Typography.section,

http://www.spacing.js
http://www.typography.js
http://www.buttons.js
http://www.index.js
http://www.index.js
http://www.StyleSheet.create
http://www.Spacing.base,

         

 

Styles and Layouts ◾ 97

}
})

is better than:

// src/MyComponent/index.js
import {
largePadding,
smallest,
small,
large,
base,
} from '../../../common/utils/styles/spacing'
import {
largeRadius,
baseTextColor,
headerFontSize,
smallFontSize,
} from '../../../common/utils/styles/common'
import { background, shuttleGray } from '../../../
common/utils/styles/colors'
const styles = StyleSheet.create({
container: {
backgroundColor: background,
padding: largePadding,
},
header: {
flex: 1,
alignItems: 'center',
backgroundColor: '#b7bdc5',
flexDirection: 'row',
justifyContent: 'center',
borderRadius: largeRadius,
color: shuttleGray,
fontSize: headerFontSize,
paddingBottom: base,
},
section: {
flex: 3,
alignItems: 'center',
backgroundColor: background,
flexDirection: 'row',

http://www.index.js
http://www.StyleSheet.create

 

98 ◾ Mastering React Native

justifyContent: 'center',
borderRadius: largeRadius,
color: baseTextColor,
fontSize: smallFontSize,
lineHeight: 19,
}
})

Tis summarizes the consensus of constantly pulling styles from
the same place includes signifcant savings in the development period
throughout the project life.

4. KEEP STYLES CLOSE
Te simplicity of needing only to update a single fle to improve one style
change in part is fast and leads to fewer errors. Keep StyleSheets in line
with sections. Defning StyleSheets in fles similar to your part can help
ensure that:

• styles of one section will not be written over another section in future
repetitions;

• styles will be maintained as the segment grows;

• parts may change during design duplication;

• there is a small amount of mental overhead while using component
designs as there is one area to look at styles than many.

One of the reasons you may want to not use online style sheets is to reduce
the number of repetitions in code, but now that you are creating global style
variables in fles with active names, you can still remember to do D.R.Y.
(Do not duplicate) coding, without reusing the style sheets themselves.

// src/MyNewComponent/index.js
import { Typography } from '../styles'
const MyNewComponent = () => (
<View style={styles.container}>
<View style={styles.header}>
<MyComponent />
</View>
<View style={styles.body}>

<MyOtherComponent />

http://www.index.js
http://www.styles.header
http://www.styles.body

         

 
 
   

 

Styles and Layouts ◾ 99

<View>
</View>
)
const styles = StyleSheet.create({
container: {
flex: 1,
},
header: {
...Typography.header
},
body: {
...Typography.body

},
})

is more self-contained than:

// src/MyNewComponent/index.js
import { styleSheetA, styleSheetB, styleSheetC }
from './stylesheets'
const MyNewComponent = () => (
<View style={styleSheetC.container}>
<View style={styleSheetA.header}>
<MyComponent />
</View>
<View style={styleSheetB.body}>

<MyOtherComponent />
<View>
</View>
)

Te simplicity of needing only to update a single fle to improve one
style change in part is fast and leads to fewer errors.

Caveats

What we have shown here works well as a start for us and our customers,
but JavaScript and React Native are big and fast. Tere is no one-size-fts-
all solution for projects, so distance may vary.

Larger projects with hundreds of components or projects with specifc
business needs may beneft from diferent patterns. Parts with themes and
styles that are not in line, for example, some patterns may work better in
your particular situation.

http://www.StyleSheet.create
http://www....Typography.header
http://www....Typography.body
http://www.index.js
http://www.styleSheetA.header
http://www.styleSheetB.body

100 ◾ Mastering React Native

It is all a trade-of and here, we prepare for the speed and clarity of
design implementation. Eventually you will need to replicate and fnd out
what works for your project and team.

With React Native, you create the style for your application using
JavaScript. All major components adopt a prop-styled prop style. Te
names and style are usually consistent with the way CSS works on the web,
with the exception of words written using camel skin, e.g., backgrounder
is the background color.

Styleprop can be an old JavaScript object. Tat is what we usually use as
an example code. You can also skip many styles – the last style in the list
is advanced, so you can use this to get styles as an asset.

As the segment grows more complex, it is ofen convenient to use the
Style Sheet.create to defne a few styles in one place. Here is an example:

One common pattern is accepting the styleprop which is used to style
the lower parts. You can use this to make styling the way they do in CSS.
Tere are many ways to customize the text style. See the References sec-
tion of the text for a complete list.

Now you can make your text beautiful. Te next step in becoming a
stylist is learning how to control part size. Tere are a few ways to make
your elements in React Native. You can use style property to add styles to
the line. However, this is not a particularly good practice because it can be
difcult to read the code.

In this chapter, we will use Stylesheet to create style.

Container Component
In this section, we will simplify the container component from our previ-
ous chapter.

App.js

import React from 'react';
import { StyleSheet, Text, View } from
'react-native';
import PresentationalComponent from './
PresentationalComponent'
export default class App extends React.Component {
state = {
myState: 'This is my state'
}
render() {

http://www.Sheet.create
http://www.App.js

         

 

Styles and Layouts ◾ 101

return (
<View>
<PresentationalComponent myState = {this.state.mySt
ate}/>
</View>
);
}
}

Presentational Component
In the following example, we shall import the StyleSheet. At the bottom
of the fle, you will create your stylesheet and assign it to the style’s con-
stant. Note that your styles are in camelCase and we do not use px or %
for styling.

To apply styles to any text, we add style = {styles.myText} property to
the Text element.

import React, { Component } from 'react';
import {StyleSheet , Text, View, } from
'react-native';
const PresentationalComponent = (props) => {
return (
<View>
<Text style = {styles.myState}>
{props.myState}
</Text>
</View>
)
}
export default PresentationalComponent
const styles = StyleSheet.create ({
myState: {
marginTop: 20,
textAlign: 'center',
color: 'blue',
fontWeight: 'bold',
fontSize: 20
}
})

When we run this application, we will receive the following output.

http://www.this.state.myState
http://www.this.state.myState
http://www.StyleSheet.create

102 ◾ Mastering React Native

REACT NATIVE STYLE METHOD
React Native gives us two powerful ways to automatically write our app:

Style Props

You can add style to your section using style props by simply adding style
props to your element to accommodate the architectural object.

Import React,{Component}from 'react';
import {Platform, StyleSheet, Text, View} from
'react-native';
export default class App extends Component<Props> {
render() {
return (
<View style={{flex:1,justifyContent:"left",backgrou
ndColor:"#fff", alignItems:"center"}}>
<View style={{width:250,height:50,backgroundColor:"
red",padding:10}}>
<Text style={{fontSize:20, color:"#666"}}>Styled
with style props</Text>
</View>
</View>
);
}
}

If you look at our code using CSS-enabled features, note that some
properties are not supported traditionally, an error will occur if you try to
use any unsupported assets. CSS3 animations are not supported by React
Native.

REACT NATIVE APPLICATION: THE FLEXBOX ARCHITECTURE
It is a great tool for defning the structure of your React Native application,
elsewhere it doesn’t work in the same way as CSS but is actually easier to
use and more fexible.

import React, {Component} from 'react';
import { Text, View} from 'react-native';
export default class App extends Component<Props> {
render() {
return (
<View style={{flex:1,justifyContent:"center",backgr
oundColor:"#000", alignItems:"stretch"}}>

         

Styles and Layouts ◾ 103

<View style={{flex:1,backgroundColor:"red"}}>
<Text style={{fontSize:20, color:"#fff"}}>Item
number 1</Text>
</View>
<View style={{flex:1,backgroundColor:"blue"}}>
<Text style={{fontSize:20, color:"#fff"}}>Item
number 1</Text>
</View>
<View style={{flex:1,backgroundColor:"purple"}}>
<Text style={{fontSize:20, color:"#fff"}}>Item
number 1</Text>
</View>
<View style={{flex:1,backgroundColor:"orange"}}>
<Text style={{fontSize:20, color:"#fff"}}>Item
number 1</Text>
</View>
</View>
);
}
}

React Native fexbox is a wonderful way to deal with the layout.
Manipulation is so easy. You can design the layout but you need some
basic understanding of fexbox.

Using StyleSheet

If you have a large codebase or want to set multiple layouts in your ele-
ments, writing our style rules directly within the styles will make our
code more complex which is why React Native gives us another option
that allows us to write a shortcode using StylesSheet.

Example:

import { View, StyleSheet } from 'react-native';

To assign some styling properties use the create () method that can take
an object with properties.

const styles = StyleSheet.create({
container: {
flex:1,
justifyContent:"center",

http://www.StyleSheet.create

 104 ◾ Mastering React Native

backgroundColor:"#fff",
alignItems:"stretch"
},
title: {
fontSize:20,
color:"#fff"
},
item1: {
backgroundColor:"orange",
flex:1
},
item2: {
backgroundColor:"purple",
flex:1
},
item3: {
backgroundColor:"yellow",
flex:1
},
item4: {
backgroundColor:"red",
flex:1
},
});

And then we pass the styling object to the component via the style
props:

<View style={styles.container}>
<View style={styles.item1}>
<Text style={{fontSize:20, color:"#fff"}}>Item
number 1</Text>
</View>
<View style={styles.item2}>
<Text style={{fontSize:20, color:"#fff"}}>Item
number 1</Text>
</View>
<View style={styles.item3}>
<Text style={{fontSize:20, color:"#fff"}}>Item
number 1</Text>
</View>
<View style={styles.item4}>
<Text style={{fontSize:20, color:"#fff"}}>Item
number 1</Text>

         

   
     
     
   
   
   

Styles and Layouts ◾ 105

</View>
</View>

Our code looks so concise with StyleSheet and the result is still the
same as fexbox.

Te styling method that Reacts Native uses has excellent features that
allow us to do some dynamic styling but it is limited especially when it
comes to applying some CSS properties that are not supported by React
Native, for example, applying box-shadow to your components you may
have to do the following:

const Card=()=>(<View style={styles.ca
rd}>  <Text>Hello!</Text>
</View>
)//our style const styles=StyleSheer.create({card:{
width:100,
height:120,
shadowColor: '#000000',
shadowOffset: {
width: 0,
height: 3
},
shadowRadius: 5,
shadowOpacity: 1.0}

})

Whereas if you have to do the same then add shadow in CSS:

.card{
width:100px,
height:120px,
box-shadow:0 0 5 #000000;
}

It is easier to do it with CSS, we all would love to do the same in React
Native; unfortunately, we cannot write CSS directly in React Native.

Styled-Component in React Native

Yes, you can now use the style and native section to record your styles in
React Native as you would type in a standard CSS. It is easy to install in
your project and does not require any link. Just use the following com-
mand in the root directory of your application to install it:

http://www.styles.card
http://www.styles.card
http://www.styles=StyleSheer.create

 
   
     
           
           
           
           
           
           
           
           
           
           

106 ◾ Mastering React Native

>>> yarn add styled-components

And then simply start using it in components:

import React, {Component} from 'react';
import { StyleSheet,Text, View} from 'react-native';
import styled from 'styled-components'
const container=styled.View`
flex:1;
padding:20px 0;
 justify-content:center;
background-color:#f4f4f4;
align-items:center
`
const Title=styled.Text`
font-size:20px;
text-align:center;
 color:red;
`
const Item=styled.View`
flex:1;
border:1px solid #ccc;
margin:2px 0;
border-radius:10px;
box-shadow:0 0 10px #ccc;
background-color:#fff;
width:80%;
padding:10px;
`
export default class App extends Component {
render() {
return (
<Container>

<Item >
<Title >Item number 1</Title>
</Item>
<Item >
<Title >Item number 2</Title>
</Item>
<Item >
<Title >Item number 3</Title>
</Item>
<Item >

         

             
           
     
   
 

   
   
   
   
   

Styles and Layouts ◾ 107

<Title >Item number 4</Title>
</Item>

</Container>
);
}
}

Even though you can completely write CSS with React Native and we
provide those elements made in style, I prefer to use style elements to make
my React Native style a day as I have found that it supports React Native
gives me more freedom to style I easily and use better-parts- from now on
and get the benefts of CSS to make a nice UI make your code cleaner, you
can split your styles into one fle away from your parts that will make your
code more. it is organized. on the other hand, you can use the best features
that give us style elements such as theming and passing props to create a
fexible style as follows:

import React, {Component} from 'react';
import { StyleSheet,Text, View} from 'react-native';
import styled from 'styled-components'
const container=styled.View`
flex:1;
padding:50px 0;
justify-content:center;
background-color:#f4f4f4;
align-items:center

`
const Title=styled.Text`
font-size:20px;
text-align:center;
 color:red;
const Item=styled.View`
flex:1;
border:1px solid #ccc;
margin:2px 0;
border-radius:10px;
box-shadow:0 0 10px #ccc;
height:200px;
// execute a specific style based on the props
background-color:${props=>props.transparent?"red":"b
lue"};
width:80%;

http://www.props.transparent?

 
   
     
           

           
           
             
           
           
             
           
           
             
           
           
     
   
 

108 ◾ Mastering React Native

padding:10px;
`
const Shape=styled.View`
clip-path: polygon(50% 0%, 0% 100%, 100% 100%);
`
export default class App extends Component {
render() {
return (
<Container>

<Item transparent>{/*pass the props to the
components*/}

<Title >Item number 1</Title>
</Item>
<Item primary>
<Title >Item number 1</Title>
</Item>
<Item transparent>
<Title >Item number 1</Title>
</Item>
<Item primary>
<Title >Item number 1</Title>
</Item>

</Container>
);
}
}

Sometimes you may want to draw some complex shapes that include
circles and a specifc background style or gradient as an example (the
background of a CSS gradient is not based on React Native). You might
consider using other CSS methods that provide like clip-path or any other
method that allows you to create complex situations in CSS, unfortu-
nately, those methods are not supported in React Native at this time or
using styled-components that allow you to use CSS to React Now in this
case, we have to use other solutions such as using SVG.

Using React Native SVG to Draw Certain Conditions

React Native community brings react-native-sv that allows you to use SVG
in React Native. You can add it to the project using yarn or NPM:

// using yarn
yarn add react-native

         

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Styles and Layouts ◾ 109

// npm
npm i react-native

Ten make sure you connect it using the following command line:

react-native link react-native-SVG

And now let us start something with it:

/**
 * Sample React Native App
* https://github.com/facebook/react-native
 *
 * @format
 * @flow
 * @lint-ignore-every XPLATJSCOPYRIGHT1
 */
import React, { Component } from "react";
import { StyleSheet, Text, View } from
"react-native";
import styled from "styled-components";
import Svg, {
Circle,
Ellipse,
G,
TSpan,
TextPath,
Path,
Polygon,
Polyline,
Line,
Rect,
Use,
Image,
Symbol,
Defs,
LinearGradient,
RadialGradient,
Stop,
ClipPath,
Pattern,
Mask
} from "react-native-svg";

https://github.com

 
 
 
 
 

 
 
 

 
 
 
 
 
 
 

 
 

 
   
     
       
         
           

             

             

           
         
         

       
       

110 ◾ Mastering React Native

const Container = styled.View`
flex: 1;
padding: 50px 0;
justify-content: center;
background-color: #f4f4f4;
align-items: center;
`;
const Title = styled.Text`
font-size: 20px;
text-align: center;
color: red;
`;
const Item = styled.View`
flex: 1;
border: 1px solid #ccc;
margin: 2px 0;
border-radius: 10px;
box-shadow: 0 0 10px #ccc;
height: 200px;
background-color: ${props => (props.transparent ?
"red" : "blue")};
width: 80%;
padding: 10px;
`;
export default class App extends Component {
render() {
return (
<Container>
<Svg height="150" width="300">
<Defs>
<LinearGradient id="grad" x1="123" y1="0"

x2="170" y2="0">
<Stop offset="0" stopColor="rgb(255,255,0)"

stopOpacity="0" />
<Stop offset="1" stopColor="red"

stopOpacity="1" />
</LinearGradient>

</Defs>
<Ellipse cx="150" cy="43" rx="85" ry="55"

fill="url(#grad)" />
</Svg>
<Svg height="100" width="100">

         

         
           
             
             
             
             
             
             
             
             
           
             

             

           
           
             
               
               
               
               
               
                 
                 
                 
                 
                 
                 
               
                 
               
             
           
         
         
           
           
           
           
           
           

Styles and Layouts ◾ 111

<Defs>
<RadialGradient
id="grad"
cx="50%"
cy="50%"
rx="50%"
ry="50%"
fx="50%"
fy="50%"
gradientUnits="userSpaceOnUse"

>
<Stop offset="0%" stopColor="#ff0"

stopOpacity="1" />
<Stop offset="100%" stopColor="#00f"

stopOpacity="1" />
</RadialGradient>
<ClipPath id="clip">
<G scale="0.9" x="10">
<Circle cx="40" cy="30" r="20" />
<Ellipse cx="60" cy="70" rx="20" ry="10" />
<Rect x="65" y="15" width="50" height="50" />
<Polygon points="20,60 20,80 50,70" />
<Text
x="50"
y="30"
fontSize="32"
fonWeight="bold"
textAnchor="middle"
scale="1.2"

>
Q

</Text>
</G>

</ClipPath>
</Defs>
<Rect
x="0"
y="0"
width="100"
height="100"
fill="url(#grad)"
clipPath="url(#clip)"

         
       
       
         
           
             
               
               
               
             
           
         
         
         
       
     
   
 

 
 
   
 

112 ◾ Mastering React Native

/>
</Svg>
<Svg height="100" width="300">
<Defs>
<G id="shape">
<G>
<Circle cx="50" cy="50" r="50" />
<Rect x="50" y="50" width="60" height="50" />
<Circle cx="50" cy="50" r="5" fill="#c00" />

</G>
</G>

</Defs>
<Use href="#shape" x="20" y="0" />
<Use href="#shape" x="170" y="0" />

</Svg>
</Container>
);
}
}

As you can see you can go so far with react-native-svgin, create a cer-
tain shape and gradient background and things you usually do with SVG.
You can check the ofcial documents to see the available options.

You can still use the React style method to do so, but it is always weird
if we want to create complex styles, so you need to use other tools like
react-native-SVG to do that to make the usual style we do. Te stylish
parts make things easier and we hope the React Native community will
bring more support to other style options that will give us the freedom to
make things easier.

ORGANIZATION AND INHERITANCE
Style Inheritance of React Native

In fact, React Native has a style heritage approach. In the ofcial docu-
ment, they show the following example:

<Text style={{fontWeight: ‘bold’}}>
I am bold
<Text style={{color: ‘red’}}>
and red

</Text>
</Text>

         

 
   
     

   
 

 
   
   
 

Styles and Layouts ◾ 113

It works. Parts of the Nested text will be verifed by an inherited system.
But that is all a legacy of style so far. React Native still has the concept of a
heritage asset, but is limited to subtitles.

Terefore, it is exceedingly difcult to use this machine in real develop-
ment. Plus, I think we should not do and follow this way. Because it will
create confusion in the future. Part of the React should behave in the same
way everywhere and every time we use it.

Ten, how do we achieve our expectation?

Realistic Way to Implement Custom Fonts to Your App

My recommendation is to create a custom section of your app. Usually,
you can prepare your own piece of text as follows:

// shared/Typography.js
import React, { Component } from 'react';import {
View, Text, StyleSheet } from 'react-native';BASE_
FONT = 'YOUR_CUSTOM_FONTS_FAMILY';export class
AppText extends Component {
render() {
return (
<Text {...this.props} style={[styles.myAppText,

this.props.style]}>{this.props.children}</Text>
)
}
}
const styles = StyleSheet.create({
myAppText: {
fontFamily: BASE_FONT,
fontSize: 16,
},
});

Ten, you can use your AppText component in your view.

...
import { AppText } from 'PATH_TO_YOUR_COMPONENT/T
ypography';export default class MyView extends
Component {
...
render() {

http://www.Typography.js
http://www....this.props
http://www.this.props.style
http://www.this.props.children
http://www.StyleSheet.create

 

 
   
     

       
     
   
 

114 ◾ Mastering React Native

return (<AppText>Customized text is here</
AppText>)
}}

If you change the basic fonts, just change Typography.js. Afer a while, you
will feel like you want to change a certain screen style or part from time to time.
When you transfer the style tool to AppText, it will extract the default styles
that you have defned. Some resources serve as part of the traditional text.

If you fnd that you are passing the same style on your particular screen
or section many times, I highly recommend you specify another section
wrapped by AppTextcomponent in Typography.js. For example, if you use
the title text more than once, simply state this:

export class AppHeading extends Component {
render() {
return (
<AppText {...this.props} style={[styles.

myAppHeading, this.props.style]}>
{this.props.children}

</AppText>
)
}
}

Inheritance is a concept that plays a key role in object-oriented pro-
gramming. It is a technique that allows objects to have those structures
that already exist in the past.

Two classes exist are:

1. Superclass(Parent Class)

2. Subclass(Child Class)

In React, the design model is used instead of the asset, so that the code
can be reused between the components. In React the keywork “extend”
uses the main function, i.e., the builder function. By using the extended
keyword, you can make the current part have all the features of the com-
ponent from the existing component. Te design model uses a small class
relationship by transcending status and resources. Part of the lower stage
can achieve any further progression to another.

http://www.Typography.js.
http://www.Typography.js.
http://www....this.props
http://www.this.props.style
http://www.this.props.children

         

 
   
       
       
           
       
   
     
       
           
               

           
       
   

Styles and Layouts ◾ 115

Creating React Application

Step 1: Create a React application by using the following command in
the terminal/ command prompt:

create-react-app foldername

Step 2: Afer creating the folder, move it using the following command:

cd foldername.

Here, you have two components, i.e., AppComponent and a
ChildComponent, and the child component takes over all the app
properties.

Example: Now write the given following code in the App.js fle. Here,
the App is our default (parent) part where we write our code. In the below
code, this.state.message is passed to ChildComponent.

• App.js

import logo from './logo.svg';
import React from 'react';
import './App.css';
import ChildComponent from "./ChildComponent";
class App extends React.Component {
constructor(props) {
super(props);
this.state = {
message: " Message"

};
}
render() {
return (

<div>
<ChildComponent message={this.state.message}

/>
</div>

);
}

}
export default App;

http://www.App.js
http://www.this.state.message
http://www.App.js
http://www.logo.svg
http://www.App.css
http://www.this.state
http://www.this.state.message

 
   
       
       
           
             

           
       
   

 

116 ◾ Mastering React Native

Now write below the following code in the ChildComponent.js fle. Te
child component accepts all the app component properties.

• ChildComponent.js

import React from "react";
class ChildComponent extends React.Component {
render() {
const { message } = this.props;
return (

<div>
<p> Message from App component : {message} </

p>
</div>

);
}

}
export default ChildComponent;

Step to Run Application
Run the application by the command from the main (root) directory of
the project:

npm start

Output: Positioning and Designing Layouts
Positioning
“When I reconcile things and excuse the content of the text or the visual
elements never focus and go to random places.”

Starting with the View
Te View component is a tool that creates structure using FlexBox and
is a considerably basic part of creating our UI. Views are divof React
Native.

Positioning Basics
With React Native, we have Flexbox that works in the same way as CSS
with a few diferences in default.

Knowing your route through Flexbox will help set things up easily.
Some of RN’s Flexbox highlights are listed below.

http://www.ChildComponent.js
http://www.ChildComponent.js
http://www.this.props;

         

 
 
 

 

 

 

 
 
 

Styles and Layouts ◾ 117

Flex
All container features such as View in React Native are automatic Flex
containers. To explain how container children will fll the available space
near the main axis set fexproperty. Te fexproperty for each element will
be used to divide space.

<View style={{ flex: 1}}>
<View style={{ flex: 1 }}>A</View>
<View style={{ flex: 2 }}>B</View>
<View style={{ flex: 3 }}>C</View>

</View>

Flex Direction
Defaults to column where the children of the container will be on top of
each other on the y-axis.

<View style={{ flex: 1, flexDirection: 'column'}}>
<View style={{ flex: one, borderWidth: 10,
borderColor: 'red'}}/>
<View style={{ flex: two, borderWidth: 10,
borderColor: 'orange' }}/>
<View style={{ flex: three, borderWidth: 10,
borderColor: 'green' }}/>
</View>

Changing the direction to row will arrange the children on the x-axis
side by side (lef to right).

<View style={{ flex: 1, flexDirection: 'row'}}>
<View style={{ flex: 1, borderColor: 'red'}}/>
<View style={{ flex: 2, borderColor: 'orange' }}/>
<View style={{ flex: 3, borderColor: 'green' }}/>

</View>

Justify Content
To align children between x-axis (main axis) in a container set to justify-
Contentproperty. Te isfex-start default will align children at the begin-
ning of the main axis of the containers.

Here is a quick look at the options available.

 
   
   
 

 

 
   

 
 

 
     
       
         

 
         
     
     

 
     
   
         

118 ◾ Mastering React Native

Align Items
To align children within the y-axis (cross axis) in the container, set the
alignItems property. Te default is stretch which corresponds to the length
of the container crossing axis. One thing to note is that stretching will not
have an efect if this is clarifed for children.

Here is a quick look at the options available.

Let Us Position Tings
Now let us see how to align that text input to the centre.

<View style={{ flex: 1, justifyContent: 'auto',
alignItems: 'center' }}>

<TextInput
 style={{height: 40, borderWidth: 1}}
 value="Text Input"
 />

</View>

Positioning
Create a View section and place two TextInput and button features. Flexible
View section replaces the full phone. TextInput and button objects are set
to the default fex axis (like column).

import React, { Component } from "react";
import { StyleSheet, TextInput, View , Button } from
"react-native";
export default class App extends Component {
state = {
placeName: "",
places: []
};
placeNameChangedHandler = val => {
this.setState({

placeName: val
});

};
placeSubmitHandler = () => {

alert("button clicked")
};
render() {

return (

         

                 
                         

  
                         
               
                 
                         
                         
               
           
         
     

 
   
     
         
         
         
         
     

 

 

 
   

 
         
         
     
     
         
             
         

Styles and Layouts ◾ 119

<View style={styles.container}> 
<TextInput

placeholder="An awesome place"
onChangeText={this.placeNameChangedHandler}

style={styles.placeInput}
/> 
<Button

title="Button"
onPress={this.placeSubmitHandler}

/> 
</View> 

);
}

}
const styles = StyleSheet.create({
container: {
flex: 1,
padding: 26,
backgroundColor: "#fff",
justifyContent: "flex-start"

}
});

Example 1:
In this example, we will place the Right Button in the TextInput element.
Add child View section within parent View with fex: 1andfexDirtec-
tion: "row". Settingfex: 1Interior view takes place everywhere from top to
bottom and lef to right. TefexDirtection: "line" sets the elements in the
form of a line within the internal viewing component.

import React, { Component } from "react";
import { StyleSheet, View, TextInput, Button } from
"react-native";
export default class App extends Component {
state = {

placeName: "",
places: []

};
placeNameChangedHandler = val => {
this.setState({
placeName: val

});

http://www.this.placeNameChangedHandler
http://www.this.placeSubmitHandler
http://www.StyleSheet.create

     
       
         
     
       
         
           
               
                     
                             
                             
                   
                             
                             
                   
               
           
         
     

 
   
     
         
         
         
         

     
     

     
 

 

120 ◾ Mastering React Native

};
placeSubmitHandler = () => {
alert("button clicked")

};
render() {
return (

<View style={styles.container}> 
<View style={styles.innerContainer}> 

<TextInput
placeholder="An awesome place"
onChangeText={this.placeNameChangedHandler}

/> 
title="Button"
onPress={this.placeSubmitHandler}

/> 
</View> 

</View> 
);

}
.}
const styles = StyleSheet.create({
container: {
flex: 1,
padding: 26,
backgroundColor: "#fff",
justifyContent: "flex-start"

. },
innerContainer:{

. }
});

Te fex: 1Internal view takes up full space which does not look good as
TextInput and button take up all the space from top to bottom.

Example 2:
In this example, we remove the fexible inner view and additional width:
100%. Extract the fexible internal form View. Set the default size of
objects. Set width: “100%" Internal view takes the full width and default
length of objects.

import React, { Component } from "react";

http://www.this.placeNameChangedHandler
http://www.this.placeSubmitHandler
http://www.StyleSheet.create

         

 
   
     
         
         
     
       
         
             
         
     
     
         
     
       
         
           
               
                     
                             
                           

  
                             
                   
                     
                             
                             
                   
               
           
         
     

 
  

     
         
         
         
         
     
     

Styles and Layouts ◾ 121

import { StyleSheet, View, TextInput, Button } from
"react-native";
export default class App extends Component {
state = {
placeName: "",
places: []

};
placeNameChangedHandler = val => {
this.setState({
placeName: val

});
};
placeSubmitHandler = () => {
alert("button clicked")

};
render() {
return (

<View style={styles.container}> 
<View style={styles.innerContainer}> 

<TextInput
placeholder="An awesome place"
onChangeText={this.placeNameChangedHan

dler}
style={styles.textStyle}

/> 
<Button

title="Button"
onPress={this.placeSubmitHandler}

/> 
</View> 

</View> 
);

}
}
const styles = StyleSheet.create({
container: {
flex: 1,
padding: 26,
backgroundColor: "#fff",
justifyContent: "flex-start"

},
innerContainer:{

http://www.this.placeNameChangedHandler
http://www.this.placeNameChangedHandler
http://www.this.placeSubmitHandler
http://www.StyleSheet.create

       
         

 
         
         
     
     
         
         
     
     
         
     

 

122 ◾ Mastering React Native

 // flex: 1,
width: "100%",

flexDirection: "row",
justifyContent: "space-between",
alignItems: "center"

},
textStyle:{
width: "70%",
backgroundColor: "gray",

},
buttonStyle:{
width: "30%",

}
});

LAYOUT WITH FLEXBOX
Te component can determine the layout of its children using the Flexbox
algorithm. Flexbox is designed to provide a consistent format for a variety
of screen sizes.

You will usually use a combination of fexDirection, Align Items, and
edit Content to get the right layout.

Flexbox works in the same way in React Native as we do in CSS with the
exception of a few exceptions. Default is diferent, there is fexDirection-
defaulting to column instead of sorrow, alignDefault default variable-start
instead of stretch, fexSomatically reduce to 0 instead of 1, the variable
parameter supports only one number.

Flex

Flex will explain how your items will “fll” the space available next to
your main axis. Te space will be divided according to the layout of each
element.

Flex Direction

fexionDirection controls how node children are positioned. Tis is also
called the main axis. A cross axis is an axis facing the main axis, or axis
on which the folding lines are placed.

• column (default) Align from top to bottom: If the wrap is enabled,
the next row will start to the right of the frst item at the top of the
container.

         

Styles and Layouts ◾ 123

• row Align children from lef to right: If the wrap is enabled, the next
row will start under the frst item on the lef side of the container.

• column‑reverse Arrange children from bottom to top: If the wrap
is enabled, the next row will start to the right of the frst item under
the container.

• row‑reverse Align the children from right to lef: If the wrap is
enabled, the next row will start under the frst item on the right of
the container.

Layout Direction

Layout direction specifes the way in which children and section text
should be placed. Te structural guide also contributes to what the edge
start and end refer to. By default, React Native sets the LTR architecture
direction. In this mode, start refers to the lef and then to the right.

• LTR (default value) text and children are displayed from lef to right.
Te margin and pads used at the beginning of the item are used on
the lef side.

• RTLT text and children are spread from right to lef. Margins and
pads used at the beginning of the item are used on the right.

Justify Content

justifyContent describes how to align the given children within the axes of
their container. For example, you can use this structure to place a child in
the center horizontally inside a container with a fexDirectionset to row or
straight inside a container with a fexDirectionset column.

• fex‑start (default value): Align the children of the container at the
beginning of the main container axis.

• fex‑end: Align the container kids at the end of the main container
axis.

• Center: Align the children of the container in the center of the main
axis of the container.

• Space‑between: Equerate space between children across the main
axis of the container, distributing the remaining space between the
children.

124 ◾ Mastering React Native

• Space‑around: A equilibrium space for children within the main
axis of the container, distributing the remaining space around the
children. Compared to mid-space, using space-environment will
result in space being distributed at the beginning of the frst child
and the end of the last child.

• space‑evenly distributed: Children evenly within the directional
container near the main axis. Te space between each pair of adja-
cent objects, the edge of the main object and the frst object, and the
main edge and the end object, are exactly the same.

Align Items

alignItems describes a way to align children to the cross-section of their
container. Same for giving one content instead of using it on the main
axis, align the Tools on the cross axis.

• stretch (fxed value): Stretch the children of the container to match
the length of the opposite axis of the container.

• fex‑start: Direct children container at the beginning of the con-
tainer crossing axis.

• fex‑end: Align the container children at the end of the axis of the
container cross.

• Center: Align the children of the container in the center of the con-
tainer axis.

• Baseline: Align children of a container at baseline then Individual
children can be set to the reference baseline for their parents.

Children do not have a fxed dimension along the secondary axis for
stretch to have an efect. For example, setting the alignItems: stretch; does
nothing until the width: 50 is removed from the children.

Align Yourself

alignSelf has the same options and efects as alignItems. You can use this
structure on a single child to change alignment within its parent instead
of touching the children inside the container. It removes any parent-set
option by aligning Items.

         

Styles and Layouts ◾ 125

Align Content

It defnes the distribution of lines along the cross axis. Tis only afects if
the items are folded in multiple rows using fexWrap.

• fex‑start (the default value): Align the folded lines at the beginning
of the opposite axis of the container.

• fex‑end: Direct the folded lines at the end of the container crossing
axis.

• stretch: Extend the folded lines to match the length of the container
crossing axis.

• Center: Align lines wrapped around the center of the container
crossing axis.

• Space‑between: Te folded lines of equal space between the cross
axis of the container, scatter the remaining space between the lines.

• Space‑around: Refned lines of equal space between container cross
axis, dispersing the remaining space in the rows. Compared to mid-
range, using space-surroundings will result in space being distrib-
uted at the beginning of the line and the end of the last line.

Flex Wrap

Te fexWraproperty is set in containers and controls what happens when
children overfow the container size near the main axis. By default, chil-
dren are forced to form a single line (which can shrink the elements). If
folding is allowed, items are folded in multiple rows with the main axis if
needed.

When folding lines, alignContent can be used to determine how the
rows are placed in a container.

Flex Basis, Grow, and Shrink

• FlexBasis is an independent axis method of providing a fxed size of
an object associated with the main axis. Flex setting A child’s founda-
tion is the same as setting a child’s width if his or her parent smokes
fex. Te fexBasos object is a fxed object size, object size before any
fexGrowandfexShrinkcalculations calculations are performed.

126 ◾ Mastering React Native

• FlexGrow explains how any space inside a container should be
distributed among its children near the main axis. Afer laying its
young, the container will distribute any remaining space according
to the ever-growing values specifed by its ofspring.

• FlexGrow Accept any foating-point value > = 0, 0 fxed value. Te
container will distribute any remaining space between its children
loaded with childrenfexGrowvalues.

• FlexShrink describes how to reduce children to the main axis in a
situation where the total size of the children exceeds the container
size on the main axis. Flexofrrinks such as tofexTr growth can be
viewed in the same way if any size is considered to be the wrong bal-
ance. Te two structures also work well together to allow children to
grow and shrink as needed.

• FlexShrink accepts any foating-point value > = 0, 0 fxed value (on
the web, 1 default). Te container will reduce its weight in children
with fexShrinkvalues.

Width and Height

Te width property specifes the spatial area of element content. Similarly,
heightproperty specifes the spatial area of element content. Both the
width and the length can take the following values:

• default (default value) React Native calculates the width/length of an
element based on its content, whether other children, text, or image.

• pixelsDefne width/height in whole pixels. Depending on the styles
set in the section, this may or may not be the fnal size of the node.

• percentDefnes the width or height as a percentage of the width or
height of its parent, respectively.

Absolute and Relative Layout

Te type of object location describes how it is placed inside its parent.

• relative (default value): By default, the element is similar. Tis
means that the element is positioned according to the normal fow
of the structure, and then the ofset is compared to that area based

         

Styles and Layouts ◾ 127

on the values above, right, down, and lef. Ofset does not afect the
location of any of your siblings or parental elements.

• Absolute: If it is completely placed; the elements do not participate
in the fow of normal structure. Instead, it is set apart from their
siblings. Location is determined based on the values of the top, right,
bottom, and lef.

CONCLUSION
In this chapter, we learned about styles ofered by React Native. In the next
chapter we are going to learn about Platform APIs.

https://taylorandfrancis.com/

C H A P T E R 6

Platform APIs

IN THIS CHAPTER

¾ Using gio-location

¾ Accessing the user’s image and camera

¾ Storing persistent data with asynstore

In the previous chapter, we learned about styles of React Native used in
mobile devices, in this chapter, we are going to learn about platform APIs .

PLATFORM APIS
Te term “API Platform” has been used in a similar way by other vendors
with API Management, Full Life API Management, and the API Gateway.
Everyone likes to spice up a topic with the word platform, but loosening
the word breaks the topic. What is an API Platform? Te API Platform is
all these things and more.

Te purpose of the API Platform is to take advantage of new applica-
tion development – building new skills, new knowledge, nurturing eco-
systems, and more. Te table anchors here are API Management, Full Life
API Management, and API Gate. Tis brings the design and development
of a health API, health cycle management, policy, and safety implementa-
tion, analysis, and growing development communities as users of these
APIs. All critical.

API Platform is over. Te API Platform becomes the ultimate desti-
nation for digital developers to innovate quickly and efciently and as a

DOI: 10.1201/9781003310440-6 129

https://dx.doi.org/10.1201/ 9781003310440-6

130 ◾ Mastering React Native

standard catalog of services and managed services. Learn fve skills that
every API Management Platform should have.

When you create mobile applications, you will naturally want to take
advantage of certain forum APIs. React Native makes it easy to access
things like a phone camera, location, and ongoing storage. Tese APIs are
made available to React Native through the included modules, providing
us with JavaScript links that are easy to use for these tasks.

React Native doesn’t automatically threaten the performance of its
hosting forum; most of the forum APIs will require to write own modules,
or use modules written by others in the Native community. We will cover
that process in Chapter 7. Documentation is the best place to test whether
the API is supported.

Tis chapter covers some of the available APIs. For example, we will
make some changes to the Weather system from the beginning. We will
add geolocation to the app, so it can automatically detect the user’s loca-
tion. We’ll also add “memory” to the app, so it can remember your previ-
ously searched locations. Finally, we will use the camera roll to transform
the background image into one of the user’s photos.

Although the appropriate code snippets will be introduced in each sec-
tion, the full app code is included in the “Smart Weather Program.”

Two things to look for:

1. Te amount of services required to get a complete back-enddigital.

2. How to work with a standard catalog of services.

First look at the table stakes – the extension of the Full Life Cycle
Management API. Businesses accept APIs. Tese are the very foundations
of modern integration and the provision of innovations and remnants of
new developments. Te API Platform integrates background APIs, which
are published for integration and the fnal APIs are discussed, protected,
and published by developers with prior knowledge.

Meditation begins to play with various skills to integrate APIs to meet
previous needs. Mediation also helps to protect the environment for
safety and implementation policies, as well as to provide performance and
performance analysis, threat monitoring, and SLA monitoring. A stan-
dard catalog of services provides one true source for all background and
front-end APIs, with access and visibility controlled by groups including
domain, dev groups, and sometimes even the community. Tis method
goes beyond a simple API portfolio.

         

Platform APIs ◾ 131

Let’s take a look at the total number of services over the API Platform
for managing API development teams currently working on this catalog.
APIs and API management is important and develop teams that build
good sense and need a solid set of background services to speed up their
work. Tese include:

• MESHmicroservices management

• Developer tools and API Mediation

• Occupation time services

• Data as a service

• Streams/Event-Driven APIs

• Front-built rear services

• Application connectors

What Is an API Platform?
Adding to the Traditional Look in Managing the Full Life API

• MESH and microservices management: Any transformation
step will go beyond a good app and requires background thinking
and skills to be developed. Dev teams will be looking at modern
microservice facilities. Packed maturity of small services, such as
visibility and trafc management API within the mesh, with Ingres
and Egress from the mesh key.

• Developer and Mediation API Tools: Developer tools include sub-
code tools to build new APIs that work as microservices, to reduce
or join APIs, to streamfow across all services. Tis allows develop-
ment teams to build on background APIs and publish previous APIs
specifc to previous projects, mobile, IoT, or more.

• Operating Time Services: Quickly moving the back end without a
server that can rotate up and down and scale alternately is required.
Tis is important for creation from dev teams – containers and
microservices, as well as APIs created by dev teams to launch critical
infrastructure to support their previous projects. Learn more about
how Axway provides, as part of its AMPLIFY platform, Runtime
Services is an expandable infrastructure (Vessel As a Service) run-
ning your applications.

 

132 ◾ Mastering React Native

• Data as a service: Te latter experience may require a custom data
store that needs to be quickly deprecated and estimated, continu-
ously. Pre-existing information can drive hundreds of millions of
API calls to existing background information, and this requires pro-
tection from the load. Data as a service, as a layer between systems
is ofen used as a protection between post-business systems and the
front end.

⚬ Data as a service provides a scale to the asset limit at a lower
cost (with the SQL line scale) and can work to reduce complex-
ity and ensure the availability of any key information. LEARN
MORE: Axway ofers, as part of its AMPLIFY platform, Mobile
Background Services, and cURL Firehose.

• Streaming/Hosted API: For applications where time is of the
essence, event-driven properties are essential for getting real-time
user information. Te API Platform combines the capabilities of
converting any application response API into an event-driven
API to push data to successfully registered clients and to protect
the conclusion of a common error in the previous voting. Learn
more about how AMPLIFY Streams allows you to upgrade your
API infrastructure with an event-based layout to publish data from
your APIs.

• Pre‑built Background Services: Usually referred to as mBaaS from
its mobile roots, any new experience will need to be exploited by
standard services, including user management preferences, Photos,
Files, Locations, Logs, Posts, Events, Push Notifcations, and more.
We call these Backbound Services as this goes beyond mobile.

• Application Connectors: Controls API Platform is a complete set of
mixed platform capabilities connected by a catalog feel. Verify from
iPaaSone or more of over 200+ applications that expose the API end-
points that should be used in your launch.

Another map beneft to create a canonical API archive to update multiple
recording systems in anAPI Call. Extra power comes from data open-
ing with the API Platform part of the API enabled Hybrid Integration
Platform Strategy!

API Platform is about managing the full life cycle of APIs and much
more, bringing new applications and information. Te API Platform must

         

Platform APIs ◾ 133

be built on the basis of providing teams of developers with skills through
a rich catalog of accessibility and tools for teams to operate independently
and successfully in their operations.

We have suggested this, but it is interesting to understand the cross-
roads with the Hybrid Integration Platform (HIP) and the development
strategies to be developed. Te API Platform can be part of a personal HIP
or split – but the API Platform always comes up with a personal integra-
tion strategy.

In other words, the real power comes when the human integration
strategy is aligned with and supports the API Platform for innovation
and this remains the case with the well-used Hybrid Integration Platform
(HIP).

Tis leads to the fact that these are not separate “objects” and when
viewed properly, they are two sides of the same coin! When you look at
one side, you have the idea of integration, you look at another creative
concept. Both scenarios provide engineers and designers with an inte-
grated multi-dimensional catalog where they can perform independently
and quickly.

USING GEOLOCATION
Geolocation is more important now than ever. It’s a great way to add a
“program-like” feature to your ongoing web app. We like to know what
businesses, attractions and destinations, where we are, and how we get to
where we are going.

Browsers ofer a standard JavaScript geolocation service that you can
use to enrich your HTML-driven experience. Common uses of geoloca-
tion are to indicate where stores are located and possible driving direc-
tions. Geolocation is not just about selling. Delivery and driving services
use location to let you and the drivers know where they are and how much
time is lef. I use it to fnd places of interest in relation to my location. Now
that smartphones are everywhere, we want information right now, wher-
ever we are. Popular apps like Google Maps, Yelp, and Facebook allow us
to fnd businesses and friends near our locations right on our phone.

We have been amazed by geolocation-based data for a few years now
and have watched the technology change. Prior to smartphones, specify-
ing a user’s location was the limit on mapping with a geo-coordinated
IP site.

To access a geo-coordinated website, you need to sign up for a service
that can translate an IP address into latitude and longitude, or you need to

   
           
           

134 ◾ Mastering React Native

keep a local website with this information. Tis also had to be done on the
server, which added a delay.

Any option was not cheap or completely reliable. To the others’ knowledge,
an IP address does not always associate with a device location. For example,
we used to have Sprint 3G service for my laptop. Te account that opened my
service was in the Chicago, IL area. Whenever I visited sites using geolocated
content, we found content related to the Chicago metro area.

Ironically the only time we were in the Chicago metropolitan area was
changing planes at the airport! We’ve got a better way to identify user
location thanks to http://www.w3.org/TR/geolocation-API/ ”HTML
Geolocation API. HTML Geolocation API. All browsers support and have
supported native API geolocation support for nearly a decade. Terefore,
the API is safe to use.

Using the geolocation API integrated with a map service such as
Microsof Bing, MapsGoogle, and MapsPlatforms provides detailed infor-
mation about the end user. You can add a map service to the site to add
more value and app-like information to expand your product.

Now you can pinpoint the visitor’s location and add nearby locations
to the map, provide driving directions, and more. You should be aware
that these services charge for some features. You will need to consult the
service pages to understand their price model, so you are not surprised.

Although every browser supports the geolocation API, it is still recom-
mended to install it to see if the API is supported. Te geolocation object
must be a member of the navigator object, so you can check that it is in
the navigator.

Detecting Geolocation Support

if ("geolocation" in navigator) {
} else {
}

Te reason is that you should install a detector in case the user disables the
app. You should also note that modern browsers now install the API afer
HTTPS and some need to get user permission before the API can run.

• Permission for ShapeGeolocation Prompt

• You can use HTTP if you are working locally, using the local host
root. Tis helps to facilitate development. Te geolocation object has
three modes:

http://www.w3.org

         

Platform APIs ◾ 135

1. getCurrentPosition: a direct call to get the current location of the
device;

2. WatchPosition: activates when device location changes;

3. clearWatch: stops or deletes a clock created by running the
watchPosition mode.

Using getCurrentPosition

Easy use of geolocation object to locate the device with a single call using the
getCurrentPosition method. Te system has three parameters, a successful
callback, a repeat call, and an optional item. Te last two parameters are vol-
untary. Rewinding success will have one transfer parameter, a Local object.
Similarly, the back drive error gets one parameter, the PositionError object.
Te options parameter is a PositionOptions item.

Position Error Timeout

• maximum: the total number (milliseconds) indicating how much
archive storage is valid;

• expiration time: how many milliseconds before the error holder is
requested, default is not closing time;

• enableHighAccuracy: true or false, false automatically.
Empowerment results in more energy consumption and more time
to accumulate position.

All PositionOptions structures are selected. If the value is not specifed,
the geolocation system uses the default. Te successful Callback object
feature has two properties, codes (the coordinates item), and a timestamp.
Links have all the (read-only) values we follow:

• latitude: double

• length: double

• height: twice, meters above sea level

• accuracy: it is also called as radius of accuracy in meters

• altitudeAc accuracy: accuracy or radius of accuracy in meters

• subject: how many degrees from the true North mobile device

• speed: speed in meters/second the device is moving

       
           

           
           
           
       
   
       
           

       

       

       

       

       

       

   

136 ◾ Mastering React Native

You should be aware that not all prices will be provided. You will always
fnd the least latitude and length. I will update the accuracy afer a while.
Te height depends on the power of the device, so you should consider the
prices not given. Create a positive enhancement experience when height
adds value to the app’s feel. Te timestamp value is a data item that deter-
mines when a location was determined.

if (navigator.geolocation) {
navigator.geolocation.getCurrentPosition(

setCurrentPosition, positionError, {
enableHighAccuracy: false,
timeout: 15000,
maximumAge: 0

});
}
function setCurrentPosition(position) {
document.querySelector('.accuracy').innerHTML

= position.coords.accuracy;
document.querySelector('.altitude').innerHTML

= position.coords.altitude;
document.querySelector('.altitudeAccuracy'

).innerHTML = position.coords.altitudeAccuracy;
document.querySelector('.heading').innerHTML =

position.coords.heading;
document.querySelector('.latitude').innerHTML

= position.coords.latitude;
document.querySelector('.longitude').innerHTML

= position.coords.longitude;
document.querySelector('.speed').innerHTML =

position.coords.speed;
}

Managing Position Errors
If there is a problem recording the location of the user’s device the error
dialing function will be started. Te PositionError item contains a numer-
ical code feature, as well as a message. Te code feature is an unsigned
shortcut that you can compare from the error item value.

• UNKNOWN_ERROR: Code 0, Te most common error because
the location could not be determined and the browser does not know
why.

http://www.navigator.geolocation.getCurrentPosition
http://www.position.coords.accuracy;
http://www.position.coords.altitude;
http://www.position.coords.altitudeAccuracy;
http://www.position.coords.heading;
http://www.position.coords.latitude;
http://www.position.coords.longitude;
http://www.position.coords.speed;

         

   
           
           
                               

               
               
                   

               
               
                   

               
               
                   

               
       
   

Platform APIs ◾ 137

• PERMISSION_DENIED: Code 1, User denied permission to use
geolocation API from permission.

• POSITION_UNAVAILABLE: Code 2, Device location was not
found.

• LIFESTYLE: Code 3, Location could not be collected during closing
time

Tis is an example of how an error handling callback might work.

function positionError(error) {
switch (error.code) {
case error.PERMISSION_DENIED:

console.error("User denied the
request.");

break;
case error.POSITION_UNAVAILABLE:
console.error("Location is unavailable."

);
break;
case error.TIMEOUT:
console.error("The request to get location

timed out.");
break;
case error.UNKNOWN_ERROR:
console.error("An unknown error occurred."

);
break;

}
}

Tracking Position Changes
GetCurrentPosition is good for fnding the current user’s location. But if
your app needs to track user status changes, consider switching by chang-
ing driving directions or tracking speed, for the device to provide updated
links that work best.

Tanks to the position of the Position Clock that starts re-dialing when
the device location is updated. If this is not the case, you would probably
need to use the setInterval or applicationAnimationFrame to get getCur-
rentPosition repeatedly.

http://www.error.code
http://www.console.error
http://www.console.error
http://www.console.error
http://www.console.error

       
       
               
                   

                   

                               

                           
               
       
   

   
   

138 ◾ Mastering React Native

Enabling the device to trigger an update when the device update is at
its best. Tis saves battery and excessive CPU usage. Te Watch Position
method has the same signature as the getCurrentPosition, so you can eas-
ily update using the watchPosition method. Te method returns a number
id, similar to setInterval. You can use this id to stop the clock later.

var geoWatch;
function startWatch() {

if (!geoWatch) {
if ("geolocation" in navigator &&

"watchPosition" in navigator.geolocation) {
geoWatch = navigator.geolocation.

watchPosition(setCurrentPosition, positionError, {
enableHighAccuracy: false, timeout:

15000, maximumAge: 0
});

}
}

}

Te geolocation clearWatch method accepts the clock id and clears the
clock back. In this example, I forward the geoWatch id to the clearWatch
path to stop calling again. I also set the unspecifed variable because I
check if it is in use before calling the watch Position method.

function stopWatch() {
navigator.geolocation.clearWatch(geoWatch);
geoWatch = undefined;

}

Now you can also turn your phone into an expensive counter!
Just for fun you can also create an ongoing web version of Pokemon Go.

Te geolocation watchPosition method can use to track where a player is
found to show small monsters. We will leave it now on you to fnd out how
to use monsters to get used to pointing.

Setting Links Using Chromium Developer Tools

In Chrome, the new Edge and other Chromium-based browsers have
developer tools with a “sensor” tab. In this panel, you can set the latitude
and longitude of the device. You can also adjust the shape of the device,
but that is in line with the gyroscope API.

         

Platform APIs ◾ 139

Geolocation sensor simulation comes with many of the world’s largest
cities already set. You can add more locations as needed.

To select a location, simply click on the “Geolocation” right input feld.
It looks like a text entry, but it will show a list of available locations.

By pressing the button “Manage” will display a list of locations and the
ability to add a new location.

Tis is a great feature you can use when developing geolocation-based
applications. Te only result is that you can’t mimic a moving device. But
since watchPosition has the same signature as the getCurrentPosition
method, you can at least ensure that the fow of your work processes the
object of the position correctly.

How the Position Is Determined
Tere are three ways devices determine location.

1. Wi-Fi

2. Satellite

3. Cell Tower Triangulation

When using Wi-Fi network router, it is usually in a fxed location and
turns out to be very popular. Tere are several very accurate services that
track that type of item, and all major retailers use one or more of these
kinds of services to determine the location of the device.

Remember in the old days you needed access to an IP site and a more
accurate website or service was more expensive? Well, Apple, Google,
Microsof, etc., take care of this, as long as you use the geolocation API.

As far as I know, these numbers usually have my pinned area within
100 feet or about 30 meters. Browsers are not a deciding factor when deter-
mining the location and accuracy. Tey simply asked for the visual inter-
face of the GPS hardware operating system.

The next step is to connect to a geolocation satellite. These figures
are often extremely accurate, within ten meters. The problem is to have
an unobstructed view of one of the satellites, usually when you are
outside.

Tis means that when you are inside the building, you cannot use this
method, but the Wi-Fi method should be replaced. However, if one of these
methods is not available and you have a mobile device, the last option is to
triangle the cell tower areas.

140 ◾ Mastering React Native

Te accuracy of this process is not very good, usually between 1000 and
3500 meters. Because these methods may vary, it is a good idea to always check
the accuracy to see if you need to adjust your application response properly.
Remember that you do not control how the user device receives its links, but
you can determine how you use the location value based on accuracy.

Nearby iOS Location
Apple has introduced a new setting for iOS 14, almost locally. Te purpose
is to protect user privacy by providing a wide range of locations. Since
devices can provide the most accurate locations, this can lead to bad peo-
ple fnding you.

Limited location adjustment adds some obfuscation to your location.
My interpretation is that it will report your location, such as if removed by
a triangle from cell towers, or approximately within 1 km distance.

Te problem with this is that your app needs specifc locations. An
example is a request to share a ride. Te driver needs to know where the
rider stands so that he can pick him up. Because Apple did not disclose the
user's option to control this in-app level, it is an all-or-nothing confgura-
tion. When a user chooses almost the location of his iPhone it afects all
apps.

Tere is no fag or value the app can check to see if the location is accu-
rate or approximate. You can use the accuracy feature to determine how
true a reported situation is. Even setting the high precision feature to real-
ity does not change the value.

Price is reported on the 15-minute rise. So there are no updates when
the user leaves. You will not know for 15 minutes.

Find User Location
Te geolocation API of HTML is used to locate the user’s location. As this
may reduce privacy, the position is not available unless the user authorizes it.

Using the Geolocation API
Te TegetCurrentPosition () method is used to retrieve user location. Te
example below returns the latitude and length of the user’s location:

Example:

<script>
const x = document.getElementById("demo");

         

 
   

 
   

 

 

 

 
   
     
     
   

Platform APIs ◾ 141

function getLocation() {
if (navigator.geolocation) {
navigator.geolocation.getCurrentPosition(showPos

ition);
} else {
x.innerHTML = "Geolocation is does not supported

by this browser.";
}
}
function showPosition(position) {
x.innerHTML = "Latitude: " + position.coords.latit
ude +
"
Longitude: " + position.coords.longitude;
}
</script>

An example is explained:

• Check that geolocation is supported.

• If supported, use the getCurrentPosition () method. If not, show a
message to the user.

• If the getCurrentPosition () method returns the link object to the
function specifed in the parameter (showPosition) when it succeeds.

• Te ShowPosition () function determines Latitude and Longitude.

Te example above is a basic geolocation script, with no error handling.

Handling Errors and Rejections
Te second parameter of thegetCurrentPosition () method is used to
manage errors. Specifes the function to start if it fails to locate the user's
location:

Example:

function showError(error) {
switch(error.code) {
case error.PERMISSION_DENIED:
x.innerHTML = "User denied the request."
break;
case error.POSITION_UNAVAILABLE:

http://www.navigator.geolocation.getCurrentPosition
http://www.position.coords.latitude
http://www.position.coords.latitude
http://www.position.coords.longitude;
http://www.error.code

     

     
   
     

       
     
     
 

 

 

 

 

142 ◾ Mastering React Native

x.innerHTML = "Location information is not
aviabable."

break;
case error.TIMEOUT:
x.innerHTML = "The request to user location timed

out."
case error.UNKNOWN_ERROR:
x.innerHTML = "An unknown error."
break;

}
}

Showing the Result in the Map
To show the result on the map, you need to access a map service, such as
Google Maps. In the example below, the restored latitude and longitude
are used to show the location in Google Map (using still image).

Example:

function showPosition(position) {
let latlon = position.coord.latitude + "," +
position.coord.longitude;
let imgUrl = "https://maps.googleapix.com/maps/api/
staticmap?center=
"+lat-lon+"&zoom=14&size=420x320&sensor=false&key
=YOUR_KEY";
//console.log("IMG")
document.getElementById("mapholder").innerHTML =
"";
}

Location-Specifc Information
Tis page has shown how to display the user’s position on the map.
Geolocation is also very useful for geographical information, such as:

• Latest local information.

• Displays points of interest near the user.

• Turn-by-turn navigation (GPS).

http://www.position.coord.latitude
http://www.position.coord.longitude;
https://maps.googleapix.com
https://maps.googleapix.com
http://www.console.log

         

 

 

Platform APIs ◾ 143

THE GETCURRENTPOSITION() METHOD – RETURN DATA
Te getCurrentPosition() returns an object on success. Te latitude, lon-
gitude, and accuracy properties are returned. Te other properties are
returned if available:

Property Returns

coords.latitude It is a decimal number (always returned).
coords.longitude It is a decimal number (always returned).
coords.accuracy It is accuracy of position (always returned).
coords.altitude It is altitude in meters above the mean sea level (returned if

available).
coords.altitudeAccuracy It is altitude accuracy of position (returned if available)
coords.heading It is heading as degrees clockwise from North (returned if

available).
coords.speed It is speed in meters per second (returned if available).
timestamp It is date/time of the response (returned if available).

GEOLOCATION OBJECT – OTHER INTERESTING METHODS
Te geolocation object has other methods:

• watchPosition(): It returns the exact position of the user and then
continues to return updated position as the user moves it (like the
GPS in a car).

• clearWatch(): It stops the watchPosition() method.

Te below example shows the watchPosition() method. You will need an
accurate GPS device to test this like smartphone:

Example:

<script>
const x = document.getElementById("demo");
function showPosition(position) {
x.innerHTML = "Latitude: " + position.coords.latit
ude +
"
Longitude is : " + position.coords.longitude;
}

 
   
 
   
 

   

144 ◾ Mastering React Native

function getLocation() {
if (navigator.geolocation) {
navigator.geolocation.watchPosition(showPosition);
} else {
x.innerHTML = "Geolocation is not supported.";
}
}
}

</script>

@capacitor/geolocation

Te geolocation API provides methods for getting and tracking the exact
position of the device by using GPS with altitude, heading, and speed
information if available.

Install

• npm install @capacitor/geolocation

• npx cap sync

iOS

It requires privacy descriptions to be specifed in Info.plist for location
information:

• NSLocationAlwaysUsageDescription (Privacy for Location Always
Usage)

• NSLocationWhenInUseUsageDescription (Privacy for Location
When In Use Usage)

Read about confguring from the Info.plist in the iOS Guide for further
information on setting iOS permissions in Xcode.

Android

It is an API that requires the following permissions to be added to your
AndroidManifest.xml:

<!-- Geolocation API -->
<uses-permission android:name="android.permissi
on.ACCESS_COARSE_LOCATION" />

         

 

 

Platform APIs ◾ 145

<uses-permission android:name="android.permissi
on.ACCESS_FINE_LOCATION" />
<uses-feature android:name="android.hardware.locati
on.gps" />

Te frst two permissions will be location data, both for fne and coarse,
and the last line is so optional but necessary if the app requires GPS to
function. You can leave it out, though keep with you that this may mean
the app is installed on devices lacking GPS hardware.

Read about permissions (Setting) in the Android Guide for further
information on setting Android permissions.

Variables
Is plugin will use the following project variables (it will defne in your
app’s variables.gradle fle):

• $playServicesLocationVersion version of com.google.android.gms:pl
ay-services-location (default: 17.1.0)

Example:

import { Geolocation } from '@capacitor/
geolocation';
const printCurrentPosition = async () => {
const coordinates = await Geolocation.
getCurrentPosition();
console.log('Current position:', coordinates);
};

API

• getCurrentPosition(...)

• watchPosition(...)

• clearWatch(...)

• checkPermissions()

• requestPermissions(...)

• Interfaces

• Type Aliases

146 ◾ Mastering React Native

getCurrentPosition(…)
getCurrentPosition(options?: PositionOptions | undefned) => Promise
<Position>

It gets the current GPS location of the device.

Arguments

options

Type

PositionOptions

Returns: Promise<Position>
Since: 1.0.0

watchPosition(…)

watchPosition(options: PositionOptions, callback:
WatchPositionCallback) => Promise<CallbackID>

It sets up a watch for location changes that consumes a large amount of
energy, then be smart only when you need to.

Param Type

options PositionOptions
callback WatchPositionCallback

Returns: Promise<string>
Since: 1.0.0

clearWatch(…)

clearWatch(options: ClearWatchOptions) =>
Promise<void>

Clear a given watch.

Param Type

options ClearWatchOptions

Since: 1.0.0

checkPermissions()

checkPermissions() => Promise<PermissionStatus>

         

Platform APIs ◾ 147

Check location permissions.
Returns: Promise<PermissionStatus>
Since: 1.0.0

requestPermissions(…)

requestPermissions(permissions?:
GeolocationPluginPermissions | undefined) =>
Promise<PermissionStatus>

Request location permissions.

Arguments Type

permissions GeolocationPluginPermissions

Returns: Promise<PermissionStatus>

Interfaces
Position

Prop Type Description

timestamp Number Creation timestamp
for coords

coords { latitude: num; longitude: number; accuracy:
num; altitudeAccuracy: num | null; altitude:
num | null; speed: num | null; heading: num |
null; }

Te GPS coordinates
with the accuracy of
the data

PositionOptions

Prop Type Description Default

enableHighAccuracy boolean It is high accuracy mode (such as false
GPS). On Android 12+ devices it
will be ignored if users didn’t
grant ACCESS_FINE_
LOCATION permissions (can
also be checked with location
alias).

timeout number Te maximum waiting time in 10000
milliseconds for location updates.

maximumAge number Te maximum age in milliseconds 0 1.0.0
of a possible cached position that
is acceptable to return.

 148 ◾ Mastering React Native

ClearWatchOptions

Prop Type

id CallbackID

PermissionStatus

Prop Type Description Since

location PermissionState Permission state for location alias. On 1.0.0
Android it requests/checks both ACCESS_
COARSE_LOCATION and ACCESS_
FINE_LOCATION permissions. On iOS
and web it requests/checks location
permission.

coarseLocation PermissionState Permission state for coarseLocation alias. 1.2.0
On Android it requests/checks ACCESS_
COARSE_LOCATION. On Android 12+,
users can choose between Approximate
location (ACCESS_COARSE_
LOCATION) or Precise location
(ACCESS_FINE_LOCATION), so this
alias can be used if the app doesn’t need
high accuracy. On iOS and web, it will
have the same value as the location alias.

GeolocationPluginPermissions

Prop Type

permissions GeolocationPermissionType[]

Type Aliases
WatchPositionCallback

(position: Position | null, err?: any): void

CallbackID

string

PermissionState

'prompt' | 'prompt-with-rationale' | 'granted' |
'denied'

         

Platform APIs ◾ 149

GeolocationPermissionType

'location' | 'coarseLocation'

Accessing the User’s Images and Camera

Among the many developing utilities in HTML5 are various methods for
accessing user pictures from mobile devices and webcams. In this tuto-
rial, we will use the Camera API to import a user photo into a web page,
displaying it in a canvas element. Te Camera API is primarily aimed at
browsers on mobile devices running systems such as Android and iOS.
Te process involves a little JavaScript, but you should be able to complete
it as long as you have basic scripting experience.

CREATE THE PAGE
Start by creating a new HTML5 page – use the following outline:

<!DOCTYPE html>
<html>
<head>
<style type="text/css">
</style>
<script type="text/javascript">
</script>
</head>
<body>
<div>
</div>
</body>
</html>

We will be adding to the HTML body and the script section in the page
head throughout the tutorial.

ADD FILE INPUT
With the Camera API, you can use a fle input element set to accept images.
Add a little explanatory text to the body section of your page frst:

1 <p>
2 Choose a picture from device or capture one

with any of your camera now:
3 </p>

150 ◾ Mastering React Native

Next add the input element:

1 <input type="file" accept="image/*" onchange=
"picChange(event)"/>

Te element is set to accept any type of image. We also set a function
to execute when the onchange event occurs, which will be whenever the
user either chooses an image fle from their device or takes one with the
device camera.

Notice that the input element is much the same as the standard fle input
element you will have seen on other pages. As well as accepting images
from a mobile device camera, the input element will also accept image fles
selected from the device, for example, via a gallery app or fle explorer.

ADD A CANVAS
To demonstrate what you can do with the photo taken by the user, we will
write the image into an HTML5 canvas element. Add one afer the input
element, along with some more explanatory information:

<p>
Photo:
</p>
<canvas id="capturedPhoto" width="500"
height="400">
</canvas>

We give the canvas an ID attribute so that we can refer to it in JavaScript
and set dimensions – feel free to change these if you like.

You can optionally add the following CSS declarations to the page style
section:

RESPOND TO CHANGE
Now let’s add the function we specifed as onchange event listener for the
input element – in the script section:

function picChange(evt){
//bring selected photo in
}

Te remainder of the code for the tutorial should be placed in this func-
tion. Remember that we passed the event as a parameter when calling the

         

Platform APIs ◾ 151

function – we will be able to retrieve the input data from it. Inside the
function, do that now:

//get files captured through input
var fileInput = evt.target.files;

Te input fle is retrieved as an array, so we will need to access the frst
element in it. First make sure we have a minimum of one element:

if(fileInput.length>0){
//get the file
}

Te rest of the function code will sit inside this conditional block. Start
by getting a reference to the window URL:

//window url
var windowURL = window.URL || window.webkitURL;

Now attempt to get the URL representing the location of the fle we are
trying to import into the page:

//picture url
var picURL = windowURL.
createObjectURL(fileInput[0]);

Te fle may be one the user selected from their device gallery or one
they have just taken using their device camera. Either way, we need its
location to bring it into the page. Te createObjectURL call lets us do that.

If the createObjectURL method is not supported by the user’s browser,
this code will fail. You can take steps to use the FileReader object instead
if that happens – see this tutorial for an example of how you could do
that.

DRAW INTO THE CANVAS
Now let’s draw the user photo into the canvas. Afer calling createObjec-
tURL, get a reference to the canvas element we added to the page earlier:

//get canvas
var photoCanvas = document.getElementById("captu
redPhoto");

 
 

152 ◾ Mastering React Native

We use the ID value we gave the element to retrieve it. Now get the
context:

var ctx = photoCanvas.getContext("2d");

Now let’s create an Image object for the photo:

//create image
var photo = new Image();

We won’t attempt to draw the photo into the page until it has loaded, so
add an onload function next:

photo.onload = function(){
//draw photo into canvas when ready
ctx.drawImage(photo, 0, 0, 500, 400);
};

We draw the image using the context object, setting X and Y coordi-
nates followed by width and height – adjust these any way you like. Afer
the onload function, load the image by setting it as source for the Image
element we created:

//load photo into canvas
photo.src = picture;

When the image has loaded, the onload function will execute, writing it
into the canvas element on the page. Finally, revoke the ObjectURL:

//release object URL
windowURL.revokeObjectURL(picURL);

You should be able to test your page on a mobile device. When you
click the input button, your device may prompt you with a pop-up dialog
asking which application you want to use to select a picture, including the
camera application and your gallery or fle explorer. When you select the
camera, what happens next will depend on your device’s operating system.
For example, on Android, you are taken to the camera and asked whether
you want to save/accept any image you capture – if you choose to save,
the fle is returned to the page where the code we added writes it into the
canvas element.

         

 
   
     
     
   

Platform APIs ◾ 153

Te code we used in this tutorial demonstrates writing the user-cap-
tured photo into a canvas element so that you could then manipulate it.
However, another option is to simply write the image into an img element,
by setting its URL as the src attribute in your JavaScript function, instead
of loading it into the Image object.

OPTIONS
Te above coding approach is aimed at capturing photos on mobile
devices – a range of other utilities are currently under development for
capturing images from webcams, including the getUserMedia method.
You may also wish to consider using utilities such as Modernizr to handle
feature detection on the user device and browser.

Storing Persistent Data with asyncstore

AsyncStorage is an unencrypted, persistent, key-value system storage that
is global to the app. It should be used instead of LocalStorage.

It is recommended that you use abstraction on AsyncStorage instead
of AsyncStorage directly on anything other than light consumption as it
operates worldwide.

For iOS, AsyncStorage is supported by native code that stores small
amounts in a fxed dictionary and large amounts in separate fles. For
Android, AsyncStorage will use RocksDB or SQLite based on what is
available.

TeAsyncStorage JavaScript code is a facade that provides a clear
JavaScript API, realErrorobjects, and not many functions. Each path to
the API returns a Promiseobject.

Importing AsyncStorage Library

import { AsyncStorage } from 'react-native';

Persisting Data

_storeData = async () => {
try {
await AsyncStorage.setItem(
'@MySuperStore:key',
'I like to save it.'
);

 
   
 

 
   
   
     
     
   
 
   
 

154 ◾ Mastering React Native

} catch (error) {
// Error saving data
}
};

Fetching Data

_retrieveData = async () => {
try {
const value = await AsyncStorage.getItem('TASKS');
if (value !== null) {
// We have data!!
console.log(value);
}
} catch (error) {
// Error retrieving data
}
};

Methods
getItem()

static getItem(key: string, [clbk]: ?(error: ?err,
result: ?string) => void)

It fetches an item for a key and invokes a callback upon completion.
Returns a Promise object.

Arguments

Name Data Type Description

key
callback

string
?(error: ?err, result: ?string) => void

It is a key of the item to fetch.
Function that will call with a result if
found or any error.

setItem()

static setItem(key: str, value: str, [clbk]:
?(error: ?Error) => void)

         

Platform APIs ◾ 155

It sets the value for a key and also invokes a callback upon completion.
Returns a Promise as object.

Arguments

NAME TYPE DESCRIPTION

key
value
callback

string
string
?(error: ?Error) => void

Yes
No

Key of the item to set.
Value to set for the key.
Function that called with an error.

removeItem()

static removeItem(key: string, [clbk]: ?(error:
?err) => void)

It removes an item for a key and invokes a callback upon completion and
also returns a Promise object.

Parameters

NAME TYPE DESCRIPTION

key string Key of the item to remove.
callback ?(error: ?Error) => void Function that called with an error.

mergeItem()

static mergeItem(key: str, value: str, [clbk]:
?(error: ?Error) => void)

Merges an existing key-value with an input value, assuming both values
are stringifed JSON. It also returns a Promise object.

Note: It is not supported by all native implementations.

Arguments

Name Type Description

key string Key of the item to modify.
value string New value to merge for the key.
callback ?(error: ?Error) => void Tis function that will be called with an error.

 
 
 

 

 
 

 
 
 
   
     
     
     
       

         
       
     
   
 

   

156 ◾ Mastering React Native

Example:

let UID223_object = {
name: 'ABC',
age: 50,
traits: { hair: 'red', eyes: 'grey' }
};
// You need to define what will be added or updated
let UID223_delta = {
age: 50,
traits: { eyes: 'green', shoe_size: 20 }
};
AsyncStorage.setItem(
'UID124',
JSON.stringify(UID124_object),
() => {
AsyncStorage.mergeItem(
'UID124',
JSON.stringify(UID123_delta),
() => {
AsyncStorage.getItem('UID124', (err, result) =>

{
console.log(result);
});
}
);
}
);
// Console result:
// => {'name':'ABC','age':14,'traits':
// {'shoe_size':10,'hair':'red ','eyes':'blue'}}

clear()

static clear([clback]: ?(error: ?Error) => void)

It can erase all AsyncStorage for all clients, libraries, etc. You don’t want
to use this; use removeItem or multiRemove to clear only your app’s keys.
Returns a Promise object.

         

Platform APIs ◾ 157

Parameters

NAME TYPE REQUIRED DESCRIPTION

callback ?(error: ?Error) => void No Function that called with an error.

getAllKeys()

static getAllKeys([clbk]: ?(error: ?Error, keys:
?Array<string>) => void)

Gets all keys known to your app; for all callers, libraries, etc. Returns a
Promise object.

Arguments

NAME TYPE DESCRIPTION

callback ?(error: ?Error, keys: Function that will with all keys
?Array<string>) => void found and any error.

fushGetRequests()

static flushGetRequests(): [object Object]

Flushes are pending requests using a single batch call to get the data.
//

multiGet()

static multiGet(keys: Array<string>, [clbk]:
?(errors: ?Array<err>, result: ?Array<Array<str>>)
=> void)

Tis allows to batch the fetching of given an array items of key inputs.
Ten your callback will be invoked with an array of key-value pairs found:

multiGet(['aa1', 'k2'], cb) -> cb([['aa1', 'val1'],
['k2', 'val2']])

Te method returns a Promise object.

 
   
     

     
     
   
 

158 ◾ Mastering React Native

Parameters

NAME TYPE DESCRIPTION

keys
callback

Array<string>
?(err: ?Array<err>, result:

?Array<arr<string>>) =>
void

Array of key for the getting the items.
Function that will call with a key‑

value array of the results, then an
array of key‑specifc errors found.

Example:

AsyncStorage.getAllKeys((err, keys) => {
AsyncStorage.multiGet(keys, (err, stores) => {
stores.map((result, value , store) => {
// get at each store's key/value,you can work

with it
let key = store[i][0];
let value = store[i][1];
});
});
});

multiSet()

static multiSet(keyValPairs: Array<Array<string>>,
[callback]: ?(errors: ?Array<Error>) => void)

Use this as a operation for storing multiple key-value pairs. When the
operation get completed you'll get a single callback with any errors:

multiSet([['aa1', 'val1'], ['bb2', 'val2']], cb);

Te method returns a Promise object.

Arguments

NAME TYPE DESCRIPTION

keyValuePairs Array<Array<string>> It is an array of key‑value array
for the items to set.

callback ?(errors: ?Array<Error>) =>
void

Function that will call the an
array of key‑specifc errors
found.

         

 
 

Platform APIs ◾ 159

multiRemove()

static multiRemove(keys: Array<str>, [clbk]:
?(errors: ?Array<Error>) => void)

It calls this to batch the deletion of all keys in the keys array. Returns a
Promise object.

Arguments

NAME TYPE DESCRIPTION

keys Array<string> Array of keys for the deleting the items.
callback ?(errors: ?Array<Error>) Function that will call an array of

=> void key-specifc errors found.

Example:

let keys = ['k1', 'k2'];
AsyncStorage.multiRemove(keys, (err) => {
// keys k1 & k2 removed, if they existed
// most stuff after removal
});
});
//multimerge function

multiMerge()

static multiMerge(keyValuePairs:
Array<arr<string>>, [callback]: ?(errors:
?Array<err>) => void)

Batch operation to merge in existing and then new values for a set of keys.
Its values are stringifed JSON and returns a Promise object.

Note: It is not supported by all native implementations.

Arguments

NAME TYPE DESCRIPTION

keyValuePairs

callback

Array<Array<string>>

?(errors: ?Array<Error>) =>
void

Array of key-values for
merging the items.

Function that will be called
with an array of key-specifc
errors found.

 
 
 

 
 

 
 
 

 
 

 
 

 
 

 

   

     
       
       
       
     

160 ◾ Mastering React Native

Example:

// first user, initial values
let UID134_object = {
name: 'ABC',
age: 15,
traits: { hair: 'brown', eyes: 'brown' }
};
// first user, delta values
let UID134_delta = {
age: 31,
traits: { eyes: 'blue', shoe_size: 10 }
};
// second user, initial values
let UID145_object = {
name: 'Marge',
age: 25,
traits: { hair: 'blonde', eyes: 'blue' }
};
// second user, delta values
let UID345_delta = {
age: 26,
traits: { eyes: 'green', shoe_size: 6 }
};
let multi_set_pairs = [
['UID234', JSON.stringify(UID234_object)],
['UID345', JSON.stringify(UID345_object)]
];
let multi_merge_pairs = [
['UID234', JSON.stringify(UID234_delta)],
['UID345', JSON.stringify(UID345_delta)]
];
AsyncStorage.multiSet(multi_set_pairs, (err) => {
AsyncStorage.multiMerge(multi_merge_pairs, (err) =>
{
AsyncStorage.multiGet(['UID234', 'UID345'], (err,

stores) => {
stores.map((result, i, store) => {
let key = store[i][0];
let val = store[i][1];
console.log(key, val);
});

         

   
 

 
     
 

 
     
 

Platform APIs ◾ 161

});
});
});
// Console log results:
// => UID234 {"name":"Chris","age":31,"traits":{
"shoe_size":10,"hair":"brown","eyes":"blue"}}
// => UID345 {"name":"Marge","age":26,"traits":{
"shoe_size":6,"hair":"blonde","eyes":"green"}}

In this chapter, we will see you how to persist your data using
AsyncStorage.

Step 1: Presentation: In this step, we will create the our fle named
App.js fle.

import React from 'react';
import AsyncStorageExample from './async_storage
_example.js'
const App = () => {
 return (

<AsyncStorageExample />
)
}
export default App

Step 2: Logic:

• Name from the initial state is an empty string. We will update it
from storage when the component is mounted.

• setName function will take the text from our input feld, save it
by using the AsyncStorage and update the state.

async_storage_example.js

import React, { Component } from 'react'
import { StatusBar } from 'react-native'
import { AsyncStorage, Text, View, TextInput,
StyleSheet } from 'react-native'
class AsyncStorageExample extends Component {
 state = {
'name': ''

 }

https://async_storage_example.js
https://example.js

 

   
     
     
 
 
     
       
           

           
           
             
           
       
     
 

 
     
     
     
 
 
     
     
     
     
 

162 ◾ Mastering React Native

componentDidMount = () => AsyncStorage.getItem
('name').then((value) => this.setState({ 'name':
value }))
 setName = (value) => {
AsyncStorage.setItem('name', value);
this.setState({ 'name': value });

 }
 render() {
return (

<View style = {styles.container}>
<TextInput style = {styles.textInput}

autoCapitalize = 'none'
onChangeText = {this.setName}/>
<Text>
{this.state.name}

</Text>
</View>

)
 }
}
export default AsyncStorageExample
const styles = StyleSheet.create ({
 container: {
flex: 1,
alignItems: 'center',
marginTop: 50

 },
 textInput: {
margin: 5,
height: 100,
borderWidth: 1,
backgroundColor: '#7685ed'

 }
})

CONCLUSION
In this chapter, we learned about platform APIs. In the next chapter we are
going to learn about modules of React Native.

C H A P T E R 7

React Native Modules

IN THIS CHAPTER

¾ Installing JavaScript libraries with NMP

¾ Native modules for iOS

¾ Native modules for Android

¾ Cross-platform native modules

In the previous chapter, we learned about platform APIs in React Native;
in this chapter, we will learn about React Native modules.

MODULES
Native Modules Intro

A React Native app may require access to a native platform API that is
not available by default in JavaScript, such as the native APIs for Apple or
Google Pay. You want to leverage some existing Objective-C, Swif, Java,
or C++ libraries without having to reimplement them in JavaScript or
build some high-performance, multi-threaded code for image processing.

Te NativeModule system exposes instances of Java/Objective-C/C++
(native) classes as JS objects to JavaScript (JS), allowing you to run arbi-
trary native code from within JS. While we do not anticipate this func-
tionality to be part of the standard development process, its existence is
critical. If React Native does not expose a native API that your JS project
requires, you should be able to create one. If React Native does not expose
a native API that your JS project requires, you should be able to create one!

DOI: 10.1201/9781003310440-7 163

https://dx.doi.org/10.1201/ 9781003310440-7

 

164 ◾ Mastering React Native

INSTALLING JAVASCRIPT LIBRARIES WITH NPM
Libraries include pre-written codes that a developer may combine with
their own code to do various activities that would otherwise need consid-
erable, difcult coding.

Libraries, sub-packages, and other fles can be included in packages.
Libraries and packages are synonymous in several languages.

What Exactly Is NPM?

NPM is a package manager for the Node.js packages that is used to obtain
and integrate packages into JavaScript scripts. Tese packages include all
the fles necessary for a module (library).

NPM is an essential component of the JavaScript ecosystem, including
a plethora of open-source sofware, libraries, modules, and packages. It
makes developing code much easier since developers may rely on already
created code to do various operations.

How to Download NPM?

NPM is included with node.js and is installed automatically when you
install node.js. So, frst, we must download and install node.js from their
ofcial website: https://nodejs.org/en/download/.

Download the LTS (Recommended) version of node.js from the above-
mentioned URL. Install node.js in your system afer the download is
complete. NPM will be installed immediately afer node.js has been suc-
cessfully installed on your machine.

You may use the command prompt (cmd) to check whether node.js and
NPM have been correctly installed on your system.

> Node -v
> Npm -v

How to Download Packages Using NPM?

Now we will use NPM to get a package, which is a simple operation. To
download any package using NPM, start a terminal and use the following
syntax:

> npm install [package_name]

Now we will use NPM to get a package, which is a simple operation. To
download any package using NPM, start a terminal and use the following
syntax:

http://www.Node.js
http://www.node.js
http://www.node.js.
http://www.node.js
https://nodejs.org
http://www.node.js
http://www.node.js
http://www.node.js
http://www.node.js

         

React Native Modules ◾ 165

> npm install chalk

To store the package, NPM generates a new subdirectory called “node_
modules” (if it does not already exist). Tis folder will now include all your
downloaded packages.

Run the following command to confrm that package was successfully
installed:

> ls node_modules

How to Download Packages Globally with NPM

Te technique described above only installs the NPM package locally,
which implies that the package can only be accessed by the current proj-
ect. If you wish to install an NPM package that can be accessed by any
project on your system, use the following syntax:

> npm install -g [package_name]
> npm install -g upper-case

How to Use the package

Te following is how an NPM package may be inserted into JavaScript
source code:

const upper_case = require(‘upper-case’);
console.log(upper_case.upperCase(“Hello Linux
Hint!”));

Node.js, as most of you are undoubtedly aware, is a server-side technol-
ogy. So, when we execute the above-mentioned code in a browser, we get
the following error:

Tis issue may be avoided by installing a utility that handles all the
requirements of the need() method in a browser. Browserify will be used
in this case. Run the following command to install Browserify:

npm install -g browserify

Use the following command to generate a fle containing all your source
code’s dependencies:

> browserify source-code_file-name.js -o bundle.js

http://www.console.log
http://www.Node.js,
http://www.source-code_file-name.js
http://www.bundle.js

166 ◾ Mastering React Native

If you get an error when performing the above-mentioned command,
open the Windows Power Shell and run the following instructions before
running the above-mentioned command:

> Set-ExecutionPolicy -Scope CurrentUser
-ExecutionPolicy Unrestricted
> Set-ExecutionPolicy RemoteSigned

Run the above-mentioned command again; it should work this time.
Now, in the HTML fle’s header, replace the script source from your
source-code fle’s name with bundle.js and execute the code again. Tis
time, the code will execute correctly and will not generate any errors.

IOS NATIVE MODULES
Welcome to Native Modules for iOS. Please begin by reading the Native
Modules Intro for an overview of what native modules are.

Create a Calendar Native Module

Te following session will walk you through the process of creating a
native module, CalendarModule, that will allow you to use Apple’s cal-
endar APIs from JavaScript. In conclusion, you should be able to invoke
CalendarModule. createCalendarEvent(‘Dinner Party,’ ‘My House’); is a
JavaScript method that invokes a native function that creates a calendar
event.

Te React Native team is presently re-architecting the Native Module
framework. TurboModules is a new mechanism that will allow for more
efcient type-safe communication between JavaScript and native code
without relying on the React Native bridge. It will also allow for new
expansions that were not previously available with the Native Module
framework. More information may be found here. We’ve added notes
throughout this documentation concerning Native Modules characteris-
tics that will change in the TurboModules release, as well as how to best
prepare for a smooth transition to TurboModules.

Setup

To begin, launch Xcode and navigate to the iOS project within your React
Native application. Within a React Native app, you can access your iOS
project here:

http://www.bundle.js

         

 

React Native Modules ◾ 167

We recommend writing your native code with Xcode. Xcode is designed
for iOS programming, and utilizing it will assist you in swifly resolving
minor issues such as code syntax.

Create Custom Native Module Files
Te frst step is to design our primary custom native module header and
implementation fles. Make a new fle with the name RCTCalendarModule.h.
and then add the following:

// RCTCalendarModule.h
#import <React/RCTBridgeModule.h>
@interface RCTCalendarModule : NSObject
<RCTBridgeModule>
@end

You may choose any name that corresponds to the native module
you are creating. Because you are constructing a calendar native mod-
ule, name the class RCTCalendarModule. Because ObjC does not have
language-level support for namespaces like Java or C++, the class name is
prefxed with a substring. Tis might be an abbreviation for your applica-
tion or infra name. In this case, RCT stands for React.

Te CalendarModule class implements the RCTBridgeModule pro-
tocol, as illustrated below. An Objective-C class that implements
RCTBridgeModule protocol is referred to as a native module.

Next, let us get started on developing the native module. In the same
folder, create the related implementation fle, RCTCalendarModule.m,
and contain the following content:

// RCTCalendarModule.m
#import “RCTCalendarModule.h”
@implementation RCTCalendarModule
// To export a module named RCTCalendarModule
RCT_EXPORT_MODULE();
@end

Module Name
For the time being, the only macro in your RCTCalendarModule.m
native module is RCT EXPORT MODULE, which exports and registers
the native module class with React Native. Te RCT EXPORT MODULE

168 ◾ Mastering React Native

macro accepts an extra parameter that defnes the module name in your
JavaScript code.

Tis is not a string literal parameter. In the following example, RCT
EXPORT MODULE(CalendarModuleFoo) is used instead of RCT
EXPORT MODULE (“CalendarModuleFoo”).

// To export a module named CalendarModuleFoo
RCT_EXPORT_MODULE(CalendarModuleFoo);

Te native module may then be accessed in JS as follows:

const { CalendarModuleFoo } = ReactNative.
NativeModules;

If no name is specifed, the JavaScript module name will be the same as
the Objective-C class name, with “RCT” or “RK” prefxes removed.

Let us use the following example to use RCT EXPORT MODULE
without any parameters. Terefore, because CalendarModule is the
Objective-C class name, the module will provide to React Native with the
RCT removed.

// Without passing in a name this will export native
module name as the Objective-C class name with “RCT”
removed
RCT_EXPORT_MODULE();

In JS, the native module may then be accessed as follows:
const { CalendarModule } = ReactNative.
NativeModules;

Export a Native Method to JavaScript
Unless expressly instructed, React Native will not expose any methods
in a native module to JavaScript. Te RCT_EXPORT_METHOD macro
can be used to do this. Because methods written in the RCT_EXPORT_
METHOD macro are asynchronous, the return type is always void. You
can utilize callbacks or emit events to transmit a result from an RCT_
EXPORT_METHOD function to JavaScript (covered below). Let us use
the RCT_EXPORT_METHOD macro to create a native method for our
CalendarModule native module. Call it createCalendarEvent() for the

         

React Native Modules ◾ 169

time being, and accept name and location inputs as strings. Te various
argument types will be discussed.

RCT_EXPORT_METHOD(createCalendarEvent:(NSString *)
name location:(NSString *)location)
{
}

Keep in mind that the RCT_EXPORT_METHOD macro is not required
when using TurboModules unless the method relies on RCT argument
conversion. We discourage users from using RCTConvert since React
Native will eventually delete RCT_EXPORT_MACRO. Alternatively, you
may do the parameter conversion within the method body.

Before you extend the functionality of the createCalendarEvent()
method, include a console log in the method to ensure that it was invoked
from JavaScript in your React Native application. Make use of React’s
RCTLog APIs. Let us add the log call afer importing that header at the
start of your code.

#import <React/RCTLog.h>
RCT_EXPORT_METHOD(createCalendarEvent:(NSString *)
name location:(NSString *)location)
{
RCTLogInfo(@”Pretending to create event %@ at %@”,
name, location);
}

Synchronous Methods
To construct a synchronous native method, utilize the RCT_EXPORT_
BLOCKING SYNCHRONOUS METHOD.

RCT_EXPORT_BLOCKING_SYNCHRONOUS_METHOD(getName)
{
return [[UIDevice currentDevice] name];
}

Tis method’s return type must be of object type (id) and serializable
to JSON. As a result, the hook may only return nil or JSON data (e.g.,
NSNumber, NSString, NSArray, NSDictionary).

 
   
 
 
   
     
     
     
   
 

170 ◾ Mastering React Native

At the time, we do not encourage utilizing synchronous methods
because they might have signifcant performance implications and bring
threading-related issues into your native modules. Keep in mind that if
you utilize RCT_EXPORT_BLOCKING_SYNCHRONOUS_METHOD,
your app will no longer be able to use the Google Chrome debugger. Tis
is since synchronous methods need the JS VM to share memory with
the app. React Native operates inside the JS VM in Google Chrome and
connects asynchronously with mobile devices using WebSockets for the
Google Chrome debugger.

Test What You Have Built
You have now completed the fundamental scafolding for your native
iOS module. Access native module and invoke its exported method in
JavaScript to test this.

Locate a location in your application where you want to include a call
to the native module’s createCalendarEvent() function. An example of a
component, NewModuleButton, that you may use in your app is shown
below. Within the onPress() method of NewModuleButton, you may call
the native module.

import React from ‘react’;
import { NativeModules, Button } from
‘react-native’;
const NewModuleButton = () => {
const onPress = () => {
console.log(‘We will invoke native module here!’);
};
return (
<Button
title=“Click to invoke native module!”
color=“#841584”
onPress={onPress}
/>
);
};
export default NewModuleButton;

To access native module from JavaScript, you must frst import
NativeModules from React Native:

import { NativeModules } from ‘react-native’;

http://www.console.log

         

 

React Native Modules ◾ 171

Te CalendarModule native module may then be accessed using
NativeModules.

const { CalendarModule } = NativeModules;

Now that you have the CalendarModule native module, you may call
your native function createCalendarEvent(). It is added to the onPress()
procedure of NewModuleButton like follows:

const onPress = () => {
CalendarModule.createCalendarEvent(‘testName’,
‘testLocation’);
};

Te last step is to rebuild the React Native app so that you have access to
the most recent native code (including your new native module!). Execute
the following commands from the command line where you discovered
the React Native application:

npx react-native run-ios

Building as You Iterate
As you go through these steps and iterate on your native module, you will
need to execute a native rebuild of your application to access your most
recent JavaScript modifcations. Tis is since the code you are develop-
ing is contained within the native portion of your program. While React
Native’s metro bundler can listen for changes in JavaScript and rebuild the
JS bundle on the fy, it cannot do the same for native code. If you wish to
test your most recent native modifcations, you must rebuild with the npx
react-native run-ios command.

Recap
In JavaScript, you should now be able to call your native module’s create-
CalendarEvent() function. Because you are using RCTLog in the function,
you can verify that your native method is being called by setting debug
mode in your app and inspecting the JS console in Chrome or the mobile
app debugger Flipper. Each time you use the native module function, you
should see your RCTLogInfo(@“Pretending to create an event %@ at %@”,
name, location); message.

At this point, you have generated an iOS native module and used
JavaScript to call a function on it in your React Native application.

http://www.CalendarModule.createCalendarEvent

172 ◾ Mastering React Native

Continue reading to learn more about what argument types your native
module function accepts and how to confgure callbacks and promises
within your native module.

Beyond a Calendar Native Module
Better Native Module Export
Importing your native module by fetching it from NativeModules is a little
clumsy.

You may develop a JavaScript wrapper for your native module to avoid
customers from having to do this each time they want to access your
native module. Make a new JavaScript fle called NativeCalendarModule
.js and fll it with the following code:

/**
* This exposes native CalendarModule module as a JS
module. This has a
* function ‘createCalendarEvent’ which takes
following arguments:
* 1. String name: A string representing name of the
event
* 2. String location: A string representing location
of the event
*/
import { NativeModules } from ‘react-native’;
const { CalendarModule } = NativeModules;
export default CalendarModule;

Tis JavaScript fle is also a lovely place to implement any JavaScript
side functionality. If you use a type system, such as TypeScript, you may
add type annotations for your native module here. While React Native
does not yet enable Native to JS type safety, these type annotations will
ensure that all your JS code is type-safe. Tese annotations will also make
it easier to transition to type-safe native modules in the future. Here is an
example of how to provide type safety to the Calendar Module:

/**
* This exposes native CalendarModule module as a JS
module. This has a
* function ‘createCalendarEvent’ which takes
following parameters:
*
* 1. String name: A string representing name of the
event

http://www.NativeCalendarModule.js
http://www.NativeCalendarModule.js

         

 

React Native Modules ◾ 173

* 2. String location: A string representing location
of the event
*/
import { NativeModules } from ‘react-native’;
const { CalendarModule } = NativeModules
interface CalendarInterface {
 createCalendarEvent(name: string, location:
string): void;
}
export default CalendarModule as CalendarInterface;

You may access the native module and invoke its function in other
JavaScript fles by doing the following:

import NativeCalendarModule from ‘./
NativeCalendarModule’;
NativeCalendarModule.createCalendarEvent(‘foo’,
‘bar’);

It should be noted that this implies the place where you are importing
CalendarModule is in the same hierarchy as CalendarModule.js. Please
keep the relative import up to date as needed.

Argument Types
When a JavaScript native module method is called, React Native translates
the parameters from JS objects to Objective-C/Swif object analogs. For
example, if your Objective-C Native Module method takes an NSNumber,
you must call it with a number in JS. Te conversion will be handled by
React Native. Te following is a list of the parameter types supported by
native module methods, as well as the JavaScript equivalents.

OBJECTIVE‑C JAVASCRIPT

NSString string, ?string
BOOL boolean
NSNumber ?boolean
double number
NSNumber ?number
NSArray Array, ?Array
NSDictionary Object, ?Object
RCTResponseSenderBlock Function (success)
RCTResponseSenderBlock, RCTResponseErrorBlock Function (failure)
RCTPromiseResolveBlock, RCTPromiseRejectBlock Promise

http://www.NativeCalendarModule.createCalendarEvent
http://www.CalendarModule.js.

174 ◾ Mastering React Native

Te kinds listed below are presently supported but will not be in
TurboModules. Please refrain from using them.

• Function (failure) -> RCTResponseErrorBlock

• Number -> NSInteger

• Number -> CGFloat

• Number -> foat

You can also create native iOS module methods that accept any argu-
ment type supported by the RCTConvert class (see RCTConvert for
details about what is supported). All the RCTConvert helper functions
take a JSON value as input and convert it to a native Objective-C type
or class.

Exporting Constants
By overriding the native function constantsToExport, a native module can
export constants(). ConstantsToExport() is overridden below and returns
a Dictionary with a default event name property that you may access in
JavaScript as follows:

- (NSDictionary *)constantsToExport
{
return @{ @”DEFAULT_EVENT_NAME”: @”New Event” };
}

Te constant may then be accessible in JS by using getConstants() on
the native module as follows:

const { DEFAULT_EVENT_NAME } = CalendarModule.
getConstants();
console.log(DEFAULT_EVENT_NAME);

Technically, constants exported via constantsToExport() can be
accessed straight from the NativeModule object. Tis will no longer be
supported by TurboModules, thus we recommend the community to use
the above solution to avoid future migration.

Because constants are only exported at startup time, changing con-
stantsToExport() values during runtime has no efect on the JavaScript
environment.

http://www.console.log

         

               
               

React Native Modules ◾ 175

If you override constantsToExport() on iOS, you need also
implement + requiresMainQueueSetup to notify React Native that your
module must be initialized on the main thread before any JavaScript
code runs. Otherwise, unless you explicitly opt-out with + requiresMain-
QueueSetup, you will get a warning that your module may be started on
a background thread in the future. If your module does not require UIKit
access, answer to + requiresMainQueueSetup with NO.

Callbacks
A callback is a special type of argument that is only supported by native
modules. For asynchronous methods, callbacks are utilized to transmit
data from Objective-C to JavaScript. Tey may also be used to run JS asyn-
chronously from the native side.

Callbacks are implemented in iOS using the type
RCTResponseSenderBlock. Te callback argument myCallBack is intro-
duced to the createCalendarEventMethod() just below the callback
parameter:

RCT_EXPORT_METHOD(createCalendarEvent:(NSString *)
title

location:(NSString *)location
myCallback:(RCTResponseSenderBlock)callback)

Te callback may then be invoked in your native code, with any
result you want to give to JavaScript as an array. It is worth noting that
RCTResponseSenderBlock only takes one argument: an array of argu-
ments to give to the JavaScript callback. You will return the ID of an event
produced in a previous call in the section below.

It is crucial to note that the callback is not immediately executed
when the native function completes – remember, the communication is
asynchronous.

RCT_EXPORT_METHOD(createCalendarEvent:(NSString *)
title location:(NSString *)location callback:
(RCTResponseSenderBlock)callback)
{
NSInteger eventId = ...
callback(@[@(eventId)]);
RCTLogInfo(@”Pretending to create an event %@ at
%@”, title, location);
}

 
   
   
   
     

   
 

 
 

 
   
   
   
     
       
     
     
   
 

176 ◾ Mastering React Native

Tis method could then be accessed in JavaScript by typing:

const onSubmit = () => {
CalendarModule.createCalendarEvent(
‘Party’,
‘04-12-2020’,
(eventId) => {
console.log(`Created a new event with id

${eventId}`);
}
);
};

A native module should only call its callback once. It can, however, cache
the callback and subsequently activate it. Tis method is frequently used
to cover iOS APIs that need delegates; for example, see RCTAlertManager.
Some memory is leaked if the callback is never triggered.

Tere are two techniques for managing errors using callbacks. Te frst
method is to adhere to Node’s practice and consider the frst input sup-
plied to the callback array as an error object.

RCT_EXPORT_METHOD(createCalendarEventCallback:(NSS
tring *)title location:(NSString *)location
callback: (RCTResponseSenderBlock)callback)
{
NSNumber *eventId = [NSNumber numberWithInt:123];
callback(@[[NSNull null], eventId]);
}
The first parameter may then be checked in
JavaScript to verify if an error was sent through:
const onPress = () => {
CalendarModule.createCalendarEventCallback(
‘testName’,
‘testLocation’,
(error, eventId) => {
if (error) {
console.error(`Error found! ${error}`);
}
console.log(`event id ${eventId} returned`);
}
);
};

http://www.console.log
http://www.CalendarModule.createCalendarEventCallback
http://www.console.error
http://www.console.log

         

                 
                 

                 

 
   
   
 
 
   
 

 
   
   
   
     
   
   
     
   
 

React Native Modules ◾ 177

Another possibility is to utilize two distinct callbacks: onFailure and
onSuccess.

RCT_EXPORT_METHOD(createCalendarEventCallback:(NSS
tring *)title

location:(NSString *)location
errorCallback: (RCTResponseSenderBlock)

errorCallback
successCallback: (RCTResponseSenderBlock)

successCallback)
{
@try {
NSNumber *eventId = [NSNumber numberWithInt:123];
successCallback(@[eventId]);
}
@catch (NSException *e) {
errorCallback(@[e]);
}
}

Ten, in JavaScript, you can add a callback for both error and success
responses:

const onPress = () => {
CalendarModule.createCalendarEventCallback(
‘testName’,
‘testLocation’,
(error) => {
console.error(`Error found! ${error}`);
},
(eventId) => {
console.log(`event id ${eventId} returned`);
}
);
};

Use RCTMakeError from RCTUtils.h to provide error-like objects
to JavaScript. For the time being, this merely sends an Error-shaped
dictionary to JavaScript, but React Native intends to build true
JavaScript Error objects in the future. You may additionally include an
RCTResponseErrorBlock parameter, which is used for error callbacks and

http://www.CalendarModule.createCalendarEventCallback
http://www.console.error
http://www.console.log

               
               
               

   
 
   

 

 
   

     
     
   
   

 

178 ◾ Mastering React Native

takes an NSError * object. Please keep in mind that TurboModules will
not accept this argument type.

Promises
Native modules may also fulfll a promise, which can help to sim-
plify your JavaScript, especially when utilizing the async/await syntax
of ES2016. When the last parameter of a native module function is an
RCTPromiseResolveBlock or RCTPromiseRejectBlock, the equivalent JS
method returns a JS Promise object.

Te following is the result of refactoring the above code to use promise
instead of callbacks:

RCT_EXPORT_METHOD(createCalendarEvent:(NSString *)
title

 location:(NSString *)location
 resolver:(RCTPromiseResolveBlock)resolve
 rejecter:(RCTPromiseRejectBlock)reject)

{
NSInteger eventId = createCalendarEvent();
if (eventId) {
resolve(@(eventId));
} else {
reject(@”event_failure”, @”no event id returned”,

nil);
}
}

Tis method’s JavaScript equivalent returns a Promise. Tis implies
that within an async function, you may use the await keyword to call it
and wait for result:

const onSubmit = async () => {
try {
const eventId = await CalendarModule.

createCalendarEvent(
‘Party’,
‘my house’
);
console.log(`Created a new event with id

${eventId}`);
} catch (e) {

http://www.console.log

         

   
 

 

 

   
   

React Native Modules ◾ 179

console.error(e);
}
};

Sending Events to JavaScript
Native modules can send events to JavaScript without being directly
called. For example, you could want to notify JavaScript that a calendar
event from the native iOS calendar app is approaching. Te ideal method
is to subclass RCTEventEmitter, implement supportedEvents, and then
call self sendEventWithName:

Import RCTEventEmitter and subclass RCTEventEmitter in your
header class:

// CalendarModule.h
#import <React/RCTBridgeModule.h>
#import <React/RCTEventEmitter.h>
@interface CalendarModule : RCTEventEmitter
<RCTBridgeModule>
@end

JavaScript code may subscribe to these events by enclosing your module
in a new NativeEventEmitter class.

If you waste resources by sending an event when there are no listeners,
you will receive a warning. You can override startObserving and stopOb-
serving in your RCTEventEmitter subclass to avoid this and improve your
module’s burden (for example, by unsubscribing from upstream notifca-
tions or suspending background processes).

@implementation CalendarManager
{
bool hasListeners;
}
// Will be called when this module’s first listener
is added.
-(void)startObserving {
hasListeners = YES;
// Set up any upstream listeners or background

tasks as necessary
}
// Will be called when this module’s last listener
is dealloc or removed.

http://www.console.error

   
   

 

 

   

 

 

180 ◾ Mastering React Native

-(void)stopObserving {
hasListeners = NO;
// Remove upstream listeners, stop unnecessary

background tasks
}
- (void)calendarEventReminderReceived:(NSNotificatio
n *)notification
{
NSString *eventName = notification.
userInfo[@”name”];
if (hasListeners) { // Only send events if anyone
is listening
[self sendEventWithName:@”EventReminder” body:@

{@”name”: eventName}];
}
}

Threading
Unless the native module ofers its own method queue, it should not make
any assumptions about the thread on which it is called. Currently, if a
native module lacks a method queue, React Native will build a separate
GCD queue for it and execute its methods from there. Keep in mind
that this is an implementation detail that may change. Override (dis-
patch_queue_t) methodQueue method in the native module if you want
to explicitly specify a method queue for it. If it wants to utilize a main-
thread-only iOS API, for example, it should express this via:

- (dispatch_queue_t)methodQueue
{
return dispatch_get_main_queue();
}

Similarly, if an operation is likely to take a long time to complete, the
native module can defne its own queue on which to conduct operations.
Again, React Native will now ofer a distinct method queue for your native
module, but this is an implementation detail on which you should not rely.
If you do not ofer your own method queue, your native module’s long-
running activities may wind up blocking async calls being done on unre-
lated native modules in the future. Te RCTAsyncLocalStorage module,
for example, generates its own queue to avoid blocking the React queue
while waiting on slow disk access.

         

 
 
 
 

React Native Modules ◾ 181

- (dispatch_queue_t)methodQueue
{
return dispatch_queue_create(“com.facebook.React.Asy
ncLocalStorageQueue”, DISPATCH_QUEUE_SERIAL);
}

Te method specifed in the queue will be shared by all your module’s
methods. If only one of our methods is long-running (or must run on a
separate queue than the others for any reason), you may use dispatch_
async inside the method to execute that method’s code on a diferent
queue without impacting the others:

RCT_EXPORT_METHOD(doSomethingExpensive:(NSString *)
param callback:(RCTResponseSenderBlock)callback)
{
dispatch_async(dispatch_get_global_queue(DISPATCH_
QUEUE_PRIORITY_DEFAULT, 0), ^{
 // Call long-running code on the background thread
 ...
 // we can invoke callback from any thread/queue
 callback(@[...]);
});
}

Modules can share dispatch queues.
Te methodQueue function will be called once when the module is ini-

tialized and then maintained by React Native, so you do not need to hold
a reference to the queue unless you want to utilize it within your module.
However, if you want to share the same queue between many modules,
you must keep and return the same queue object for each of them.

Dependency Injection
Any registered native modules will be created and initialized automati-
cally by React Native. However, you may want to create and initialize your
own module instances to inject dependencies, for example.

Create a class that implements the RCTBridgeDelegate Protocol,
then initialize an RCTBridge with the delegate as an argument and an
RCTRootView with the initialized bridge.

id<RCTBridgeDelegate> moduleInitialiser =
[[classThatImplementsRCTBridgeDelegate alloc] init];

http://www.com.facebook.React.AsyncLocalStorageQueue
http://www.com.facebook.React.AsyncLocalStorageQueue

                       
                           
                   

 

 

182 ◾ Mastering React Native

RCTBridge *bridge = [[RCTBridge alloc] initWithDeleg
ate:moduleInitialiser launchOptions:nil];
RCTRootView *rootView = [[RCTRootView alloc]

initWithBridge:bridge
moduleName:kModuleName

 initialProperties:nil];
(“ios - Dependency Injection in React Native modules
- Stack Overflow”)

Exporting Swift
Because Swif does not allow macros, exposing native modules and their
functions to JavaScript within React Native needs a little more setup.
However, it functions in a comparable manner. Assume you have the same
CalendarModule but in Swif:

// CalendarManager.swift
@objc(CalendarManager)
class CalendarManager: NSObject {
@objc(addEvent:location:date:)
func addEvent(_ name: String, location: String,
date: NSNumber) -> Void {
 // Date is ready to use!
}
@objc
func constantsToExport() -> [String: Any]! (“Swift
Native Module export하기 - Tistory”) {
 return [“someKey”: “someValue”]
}
}

It is critical to utilize the @objc modifcations to guarantee that the
class and functions are correctly exported to the Objective-C runtime.

Ten, build a private implementation fle in which you will register the
necessary information with React Native:

// CalendarManagerBridge.m
#import <React/RCTBridgeModule.h>
@interface RCT_EXTERN_MODULE(CalendarManager,
NSObject)
RCT_EXTERN_METHOD(addEvent:(NSString *)name
location:(NSString *)location date:(nonnull
NSNumber *)date)
@end

http://www.CalendarManager.swift

         

React Native Modules ◾ 183

If you are new to Swift and Objective-C, combining the two lan-
guages in an iOS project will also necessitate the use of an additional
bridging file, known as a bridging header, to expose the Objective-C
files to Swift. If you use the Xcode File>New File menu option
to add your Swift file to your application, Xcode will offer to con-
struct this header file for you. In this header file, you must include
RCTBridgeModule.h.

// CalendarManager-Bridging-Header.h
#import <React/RCTBridgeModule.h>

Reserved Method Names
invalidate()
On iOS, native modules can comply with the RCTInvalidating protocol by
implementing the invalidate() function. When the native bridge is invali-
dated, this function can be called (i.e., on devmode reload). Please utilize
this technique when needed to provide the appropriate cleaning for your
native module.

NATIVE MODULES FOR ANDROID
Welcome to Native Modules for Android. Please begin by reading the
Native Modules Intro to learn more about native modules.

Create a Calendar Native Module

Te following tutorial will explain the process of creating a native mod-
ule, CalendarModule, that will allow you to use Android’s calendar APIs
from JavaScript. You will be able to call CalendarModule toward the end.
In JavaScript, call createCalendarEvent(‘Dinner Party,’ ‘My House’); to
invoke a Java function that generates a calendar event.

The React Native team is presently re-architecting the Native
Module framework. TurboModules is a new mechanism that will
allow for more efficient type-safe communication between JavaScript
and native code without relying on the React Native bridge. It will
also allow for new expansions that were not previously available with
the Native Module framework. More information may be found here.
We’ve included comments throughout this documentation regard-
ing Native Modules features that will change in the TurboModules
release, as well as how to best prepare for a seamless transition to
TurboModules.

 
     
 

184 ◾ Mastering React Native

Setup
To begin, launch Android Studio and navigate to the Android project
within your React Native application. Within a React Native app, you may
access your Android project here:

• We recommend writing your native code in Android Studio. Android
Studio is an IDE designed for Android programming that can assist
you in swifly resolving small issues such as code syntax mistakes.

• We also recommend that you use Gradle Daemon to accelerate
builds while you iterate on Java code.

Create Custom Native Module File
Te frst step is to create CalendarModule.java Java fle in the folder andro
id/app/src/main/java/com/your-app-name/. Tis Java fle will include the
Java class for your native module.

Ten add the following information:

package com.your-app-name; // replace com.your-app
-name with app’s name
import com.facebook.react.bridge.NativeModule;
import com.facebook.react.bridge.ReactApplicationCon
text;
import com.facebook.react.bridge.ReactContext;
import com.facebook.react.bridge.ReactContextBaseJav
aModule;
import com.facebook.react.bridge.ReactMethod;
import java.util.Map;
import java.util.HashMap;
public class CalendarModule extends
ReactContextBaseJavaModule {
 CalendarModule(ReactApplicationContext context) {
 super(context);

 }
}

Your CalendarModule class, as you can see, extends the
ReactContextBaseJavaModule class. Java native modules for Android are
built as classes that extend ReactContextBaseJavaModule and implement
the JavaScript functionality.

http://www.CalendarModule.java
http://www.com.your-app-name;
http://www.com.your-app-name
http://www.com.your-app-name
http://www.com.facebook.react.bridge.NativeModule;
http://www.com.facebook.react.bridge.ReactApplicationContext;
http://www.com.facebook.react.bridge.ReactApplicationContext;
http://www.com.facebook.react.bridge.ReactContext;
http://www.com.facebook.react.bridge.ReactContextBaseJavaModule;
http://www.com.facebook.react.bridge.ReactContextBaseJavaModule;
http://www.com.facebook.react.bridge.ReactMethod;
http://www.java.util.Map;
http://www.java.util.HashMap;

         

 

React Native Modules ◾ 185

It is worth noting that for a Java class to be considered a Native Module
by React Native, it only must extend the BaseJavaModule class or imple-
ment the NativeModule interface.

However, as stated, we recommend that you utilize
ReactContextBaseJavaModule. ReactContextBaseJavaModule grants
Native Modules access to the ReactApplicationContext (RAC), which is
handy for hooking into activity lifecycle functions.

Using ReactContextBaseJavaModule will also make future type safety
of your native module easy. For native module type safety, which will be
available in future versions, React Native examines the JavaScript spec
for each native module and constructs an abstract base class that extends
ReactContextBaseJavaModule.

Module Name
Te getName() function must be implemented by all Java native mod-
ules in Android. Tis function returns a string that refects the native
module’s name. Te name of the native module may then be used to
access it in JavaScript. In the code below, for example, getName() yields
“CalendarModule.”

// add to CalendarModule.java
@Override
public String getName() {
 return “CalendarModule”;
}

In JS, the native module may then be accessed as follows:
const { CalendarModule } = ReactNative.
NativeModules;

Export a Native Method to JavaScript
Ten, in your native module, add a function that will generate calendar
events that may be triggered in JavaScript. All native module methods
that are intended to be called from JavaScript must be annotated with @
ReactMethod.

Create a function for CalendarModule called createCalendarEvent()
that can be called in JS through CalendarModule.

http://www.CalendarModule.java

 

 

186 ◾ Mastering React Native

createCalendarEvent(). For the time being, the method will accept
strings for a name and a location. Te various argument types will be dis-
cussed shortly.

@ReactMethod
public void createCalendarEvent(String name, String
location) {
}

When you call the method from your application, add a debug log to
validate that it was invoked. Te code demonstrates how to import and
utilize the Log class from Android util package:

import android.util.Log;
@ReactMethod
public void createCalendarEvent(String name, String
location) {
 Log.d(“CalendarModule”, “Create event called with
the name: “ + name
 + “ and location: “ + location);
}

Once you have fnished creating the native module and connecting it
to JavaScript, you may use the following steps to examine your app’s logs.

Synchronous Methods
You may mark a native method as synchronous by passing it isBlocking-
SynchronousMethod = true.

@ReactMethod(isBlockingSynchronousMethod = true)

We do not currently suggest this since invoking methods synchronously
might have signifcant performance penalties and introduce threading-
related issues into your native modules. Keep in mind that if you enable
isBlockingSynchronousMethod, your app will no longer be able to use the
Google Chrome debugger. Tis is since synchronous methods need the
JS VM to share memory with the app. React Native operates inside the JS
VM in Google Chrome and connects asynchronously with mobile devices
using WebSockets for the Google Chrome debugger.

http://www.android.util.Log;

         

 
 

     
 
 
 
         
     
     
     
 

React Native Modules ◾ 187

Register the Module (Android Specifc)
Afer creating a native module, it must be registered with React Native.
To accomplish this, put your native module to a ReactPackage and reg-
ister the ReactPackage with React Native. During startup, React Native
will loop through all packages, registering each native module within each
ReactPackage.

To obtain a list of native modules to register, React Native calls the func-
tion createNativeModules() on a ReactPackage. If a module is not built
and returned by createNativeModules for Android, it will not be accessible
from JavaScript..

To add Native Module to ReactPackage, frst build a new Java Class
named MyAppPackage.java in android/app/src/main/java/com/app-
name/ folder that implements ReactPackage:

Ten provide the following information:

package com.your-app-name; // replace app-name with
your app’s name
import com.facebook.react.ReactPackage;
import com.facebook.react.bridge.NativeModule;
import com.facebook.react.bridge.ReactApplicationCon
text;
import com.facebook.react.uimanager.ViewManager;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
public class MyAppPackage implements ReactPackage {
 @Override
 public List<ViewManager> createViewManagers(R
eactApplicationContext reactContext) {

 return Collections.emptyList();
 }
 @Override
 public List<NativeModule> createNativeModules(

 ReactApplicationContext reactContext) {
 List<NativeModule> modules = new ArrayList<>();
modules.add(new CalendarModule(reactContext));
 return modules;

 }
}

http://www.MyAppPackage.java
http://www.com.your-app-name;
http://www.com.facebook.react.ReactPackage;
http://www.com.facebook.react.bridge.NativeModule;
http://www.com.facebook.react.bridge.ReactApplicationContext;
http://www.com.facebook.react.bridge.ReactApplicationContext;
http://www.com.facebook.react.uimanager.ViewManager;
http://www.java.util.ArrayList;
http://www.java.util.Collections;
http://www.java.util.List;
http://www.modules.add

 
   
   

   

   
   
 

188 ◾ Mastering React Native

Tis fle imports the native module CalendarModule that you wrote.
Te CalendarModule is then instantiated within the createNativeMod-
ules() method and returned as a list of NativeModules to register. If you
subsequently add more native modules, you may instantiate them and add
them to the list returned here.

It is worth mentioning that this method of registering native mod-
ules immediately initializes all native modules when the program
starts, which increases the application’s starting time. As an alterna-
tive, you may utilize TurboReactPackage. TurboReactPackage offers a
getModule(String name, ReactApplicationContext rac) function that
produces the native module object as necessary, rather than creat-
eNativeModules, which returns a list of instantiated native module
objects. TurboReactPackage is now more difficult to implement. In
addition to implementing getModule() method, you must also imple-
ment a getReactModuleInfoProvider() method, which returns a list
of all the native modules that the package may instantiate as well as a
function to do so, as seen below. Again, utilizing TurboReactPackage
will help your application to start faster, but it is currently a bit dif-
ficult to develop. So, if you decide to utilize TurboReactPackages, pro-
ceed with caution.

To register the CalendarModule package, add MyAppPackage to the list
of packages provided by the getPackages() function of ReactNativeHost.
Open the MainApplication.java fle, which is in the following path: andro
id/app/src/main/java/com/your-app-name/MainApplication.java

Locate ReactNativeHost’s getPackages() function and add your pack-
age to the list of packages returned by getPackages():

@Override
protected List<ReactPackage> getPackages() {
@SuppressWarnings(“UnnecessaryLocalVariable”)
List<ReactPackage> packages = new

PackageList(this).getPackages();
// below MyAppPackage is add to the list of

packages returned
packages.add(new MyAppPackage());
return packages;
}

You have now successfully registered your native Android module.

http://www.MainApplication.java
http://www.MainApplication.java
http://www.packages.add

         

 
   
 
 
   
     
     
     
   
 

React Native Modules ◾ 189

Test What You Have Built
You have now completed the fundamental framework for your native
module on Android. To test this, access the native module and call its
exported function in JavaScript.

Locate a location in your application where you want to include a call
to the native module’s createCalendarEvent() function. An example of a
component, NewModuleButton, that you may use in your app is shown
below. Within the onPress() method of NewModuleButton, you may call
the native module.

import React from ‘react’;
import { NativeModules, Button } from
‘react-native’;
const NewModuleButton = () => {
const onPress = () => {
console.log(‘We will invoke native module here!’);
};
return (
<Button
title=“Click to invoke your native module!”
color=“#841594”
onPress={onPress}
/>
);
};
export default NewModuleButton;

To access native modules from JavaScript, you must frst import
NativeModules from React Native:

import { NativeModules } from ‘react-native’;

Te CalendarModule native module may then be accessed using
NativeModules.

const { CalendarModule } = NativeModules;

Now that you have CalendarModule native module, you may call your
native function createCalendarEvent (). It is added to the onPress() proce-
dure of NewModuleButton as follows:

http://www.console.log

 

190 ◾ Mastering React Native

const onPress = () => {
CalendarModule.createCalendarEvent(‘testName’,
‘testLocation’);
};

Te ultimate step is to rebuild the React Native app so that you have
access to the most recent native code (including your new native module!).
Run the following commands from the command line where you fnd the
React Native application:

npx react-native run-android

Building as You Iterate
As you go through these steps and iterate on your native module, you will
need to execute a native rebuild of your application to access your most
recent JavaScript modifcations. Tis is because the code you are developing
is contained within the native portion of your program. While the React
Native metro bundler can listen for changes in JavaScript and recompile on
the fy, it will not do so for native code. To test your newest native modifca-
tions, you must rebuild using the npx React Native run-android command.

Recap
You should now able to call your native module’s createCalendarEvent()
function from within the app. In our case, this is accomplished by press-
ing the NewModuleButton. You may verify this by inspecting the log you
provide in your createCalendarEvent() function. You may access ADB
logs in your app by following these instructions. You should now be able
to search for your Log.d message (in our illustration, “Create event called
with the name: testName and location: testLocation”) and see it logged
each time you execute your native module function.

You have now generated an Android native module and called its native
function from JavaScript in your React Native app. Continue reading to
discover more about the parameter types accessible to a native module
method, as well as how to set up callbacks and promises.

Beyond a Calendar Native Module
Better Native Module Export
Importing your native module by pulling it from NativeModules is a little
clumsy.

http://www.CalendarModule.createCalendarEvent

         

React Native Modules ◾ 191

You may develop a JavaScript wrapper for your native module to avoid
customers from having to do this each time they wish to access your native
module. Make a new JavaScript fle called CalendarModule.js and fll it
with the following code:

/**
* This exposes native CalendarModule module as a JS
module. This has a
* function ‘createCalendarEvent’ which takes the
following parameters:
* 1. String name: String representing name of event
* 2. String location: String representing the
location of event
*/
import { NativeModules } from ‘react-native’;
const { CalendarModule } = NativeModules;
export default CalendarModule;

Tis JavaScript fle is also a delightful place to implement any JavaScript
side functionality. If you use a type system, such as Typescript, you may
add type annotations for your native module here. While React Native
does not yet provide type safety from Native to JS, all your JS code will
be. Tis will also make it easier to transition to type-safe native mod-
ules in the future. Here is an example of how to apply type safety to the
CalendarModule:

/**
* This exposes native CalendarModule module as a JS
module. This has a
* function ‘createCalendarEvent’ which takes
following parameters:
*
* 1. String name: A string representing name of the
event
* 2. String location: A string representing location
of the event
*/
import { NativeModules } from ‘react-native’;
const { CalendarModule } = NativeModules
interface CalendarInterface {

http://www.CalendarModule.js

 

192 ◾ Mastering React Native

 createCalendarEvent(name: string, location:
string): void;
}
export default CalendarModule as CalendarInterface;

You may access the native module and invoke its function in other
JavaScript fles by doing the following:

import CalendarModule from ‘./CalendarModule’;
CalendarModule.createCalendarEvent(‘foo’, ‘bar’);

Tis implies that the location from which you are importing
CalendarModule is in the same directory as CalendarModule.js. Please
keep the relative import up to date as needed.

Argument Types
When a JavaScript native module method is called, React Native translates
the parameters from JS objects to Java object counterparts. For example, if
your Java Native Module method supports a double, you must call it with a
number in JS. Te conversion will be handled by React Native. Te follow-
ing is a list of the parameter types supported by native module methods,
as well as the JavaScript equivalents.

JAVA JAVASCRIPT

Boolean ?boolean
boolean boolean
Double ?number
double number
String string
Callback Function
ReadableMap Object
ReadableArray Array

Te kinds listed below are presently supported but will not be in
TurboModules. Please refrain from using them:

• Integer -> ?number

• int -> number

• Float -> ?number

• foat -> number

http://www.CalendarModule.createCalendarEvent
http://www.CalendarModule.js.

         

   
   

   
   
       
   

 

 
 

React Native Modules ◾ 193

You must handle the conversion for argument kinds that are not stated
above. Date conversion, for example, is not supported out of the box on
Android. You may handle the conversion to the Date type yourself within
the native method by doing the following:

String dateFormat = “yyyy-MM-dd”;
SimpleDateFormat sdf = new

SimpleDateFormat(dateFormat);
Calendar eStartDate = Calendar.getInstance();
try {
eStartDate.setTime(sdf.parse(startDate));

}

Exporting Constants
A native module can export constants by implementing the native method
getConstants(), which is accessible in JS. In the following code, you will
implement getConstants() and return a Map containing a DEFAULT_
EVENT_NAME constant that you can access in JavaScript:

@Override
public Map<String, Object> getConstants() {
 final Map<String, Object> constants = new
HashMap<>();
 constants.put(“DEFAULT_EVENT_NAME”, “New Event”);
 return constants;
}
(“[RN] React Native Docs #10 : Native Modules ::
leejiwonn.log”)

Te constant may then be retrieved by calling the native module’s get-
Constants method in JS:

const { DEFAULT_EVENT_NAME } = CalendarModule.
getConstants();
console.log(DEFAULT_EVENT_NAME);

Technically, constants exported in getConstants() can be accessed
straight from the native module object. Tis will no longer be supported
by TurboModules thus, we recommend the community use the above
solution to avoid future migration.

Constants are presently exposed solely at startup time, therefore chang-
ing getConstants values during runtime has no efect on the JavaScript

http://www.sdf.parse
http://www.constants.put
http://www.leejiwonn.log
http://www.console.log

 
 

     
     
 

194 ◾ Mastering React Native

environment. Tis will change with the introduction of TurboModules.
With TurboModules, getConstants() is transformed into a standard native
module function, and each invocation is sent to the native side.

Callbacks
A callback is an argument that is only supported by native modules. For
asynchronous methods, callbacks are utilized to transmit data from Java
to JavaScript. Tey can also be used to run JavaScript asynchronously
from the native side.

To add a callback to a native module method, frst import the Callback
interface, and then add a new argument of type Callback to your native
module function. Tere are a few quirks with callback parameters that will
be eliminated with TurboModules. To begin, your function parameters
can only include two callbacks: a successCallback and a failureCallback.

import com.facebook.react.bridge.Callback;
@ReactMethod
public void createCalendarEvent(String name, String
location, Callback callBack) {
}

You may call the callback from your Java method, passing any data you
wish to JavaScript. Please keep in mind that only serializable data may be
sent from native code to JavaScript. If you need to return a native object,
use WriteableMaps; if you need to return a collection, use WritableArrays.
It is also worth noting that the callback is not called right afer the native
function fnishes. Te ID of an event produced in a previous call is sup-
plied to the callback below.

@ReactMethod
 public void createCalendarEvent(String name,
String location, Callback callBack) {

 Integer eventId = ...
callback.invoke(eventId);

 }
(“[RN] React Native Docs #10 : Native Modules ::
leejiwonn.log”)

In JavaScript, this function might then be accessed as follows:

http://www.com.facebook.react.bridge.Callback;
http://www.callback.invoke
http://www.leejiwonn.log

         

 
   
   
   
     

   
 

   
   

 
   
   
   
     
       
     
     
   
 

React Native Modules ◾ 195

const onPress = () => {
CalendarModule.createCalendarEvent(
‘Party’,
‘My House’,
(eventId) => {
console.log(`Created new event with id

${eventId}`);
}
);
};

Keep in mind that a native module method may only call one callback
at a time. Tis means that you can only call a success or failure callback,
not both, and each callback can only be called once. A native module, on
the other hand, can save the callback and call it later.

Tere are two techniques for managing errors using callbacks. Te frst
is to follow Node’s approach and treat the callback’s frst parameter as
error object.

@ReactMethod
public void createCalendarEvent(String name, String
location, Callback callBack) {
Integer eventId = ….
callBack.invoke(null, eventId);

}

Te frst parameter may then be checked in JavaScript to verify if an
error was sent through:

const onPress = () => {
CalendarModule.createCalendarEventCallback(
‘testName’,
‘testLocation’,
(error, eventId) => {
if (error) {
console.error(`Error found! ${error}`);
}
console.log(`event id ${eventId} returned`);
}
);
};

http://www.console.log
http://www.callBack.invoke
http://www.CalendarModule.createCalendarEventCallback
http://www.console.error
http://www.console.log

 
   
   
   
     
   
   
     
   
 

   
       
       
   
       
   

196 ◾ Mastering React Native

Another possibility is to utilize onSuccess and onFailure callbacks:

@ReactMethod
public void createCalendarEvent(String name, String
location, Callback myFailureCallback, Callback
mySuccessCallback) {
}

Ten, in JavaScript, you can add callback for both success and error
responses:

const onPress = () => {
CalendarModule.createCalendarEventCallback(
‘testName’,
‘testLocation’,
(error) => {
console.error(`Error found! ${error}`);
},
(eventId) => {
console.log(`event id ${eventId} returned`);
}
);
};

Promises
Native modules may also fulfll a Promise, which can help to simplify your
JavaScript, especially when utilizing the async/await syntax of ES2016.
When the last parameter of a native module Java function is a Promise,
the corresponding JS method will return a JS Promise object.

Te following is the efect of rewriting the preceding code to utilize
promises rather than callbacks:

import com.facebook.react.bridge.Promise;
@ReactMethod
public void createCalendarEvent(String name, String
location, Promise promise) {
try {
Integer eventId = ...
promise.resolve(eventId);

} catch(Exception e) {
promise.reject(“Create Event Error”, e);

}
}

http://www.CalendarModule.createCalendarEventCallback
http://www.console.error
http://www.console.log
http://www.com.facebook.react.bridge.Promise;
http://www.promise.reject

         

 
   

     
     
   
   

 
   
 

React Native Modules ◾ 197

A native module method, like callbacks, can reject or resolve a prom-
ise (but not both) but only once. Tis means that you can only call a suc-
cess or failure callback, not both, and each callback can only be called
once. A native module, on the other hand, can save the callback and call
it later.

Tis method’s JavaScript equivalent returns a Promise. Tis implies
that within an async function, you may use the await keyword to call it
and wait for its result:

const onSubmit = async () => {
try {
const eventId = await CalendarModule.

createCalendarEvent(
‘Party’,
‘My House’
);
console.log(`Created new event with id

${eventId}`);
} catch (e) {
console.error(e);
}
};

Te reject approach can be used with a variety of arguments,
including:

String code, String message, Throwable throwable,
WritableMap userInfo

Te Promise.java interface may be found here for further information.
React Native will set userInfo to null if it is not given. React Native will
use a default value for the remaining arguments. Te message parameter
specifes the error message that appears at the top of the error call stack.
Te following is an example of a JavaScript error message caused by the
following Java reject call.

Java reject call:

promise.reject(“Create the Event error”, “Error
parsing date”, e);

When a promise is refused, the error me

http://www.console.log
http://www.console.error
http://www.Promise.java
http://www.promise.reject

                     
                     

   

   

 

 

 

198 ◾ Mastering React Native

Sending Events to JavaScript
Native modules can send events to JavaScript without being directly
called. For example, you could want to notify JavaScript that a calen-
dar event from the native Android calendar app is approaching. Te
RCTDeviceEventEmitter, which can be retrieved from the ReactContext.

...
import com.facebook.react.modules.core.DeviceEventMa
nagerModule;
import com.facebook.react.bridge.WritableMap;
import com.facebook.react.bridge.Arguments;
...
private void sendEvent(ReactContext reactContext,

String eventName,
@Nullable WritableMap params) {

reactContext
.getJSModule(DeviceEventManagerModule.RCTDevi

ceEventEmitter.class)
 .emit(eventName, params);

}
@ReactMethod
public void addListener(String eventName) {
// Setup any upstream listeners or background tasks
as necessary
}
@ReactMethod
public void removeListeners(Integer count) {
// Remove the upstream listeners, stop unnecessary
background tasks
}
...
WritableMap params = Arguments.createMap();
params.putString(“eventProperty”, “someValue”);
...
sendEvent(reactContext, “EventReminder”, params);

Afer that, JavaScript modules can register to accept events by using
addListener on the NativeEventEmitter class.

import { NativeEventEmitter, NativeModules } from
‘react-native’;
...
componentDidMount() {
 ...

http://www.com.facebook.react.modules.core.DeviceEventManagerModule;
http://www.com.facebook.react.modules.core.DeviceEventManagerModule;
http://www.com.facebook.react.bridge.WritableMap;
http://www.com.facebook.react.bridge.Arguments;
http://www.DeviceEventManagerModule.RCTDeviceEventEmitter.class
http://www.DeviceEventManagerModule.RCTDeviceEventEmitter.class

         

 

 

     
 
 

 

 
 

React Native Modules ◾ 199

 const eventEmitter = new NativeEventEmitter(Native
Modules.ToastExample);
this.eventListener = eventEmitter.addListener(

‘EventReminder’, (event) => {
console.log(event.eventProperty) // “someValue”

 });
 ...
}
componentWillUnmount() {
this.eventListener.remove(); //Removes the

listener
}

Getting Activity Result from startActivityForResult
If you want to retrieve results from an activity you began using startActiv-
ityForResult, you will need to listen to onActivityResult. You must extend
BaseActivityEventListener or implement ActivityEventListener to do this.
Te former is chosen since it is less susceptible to API changes. Ten, in
the module’s constructor, register the listener as follows:

reactContext.addActivityEventListener(mActivityRes
ultListener);

You can now listen for onActivityResult events by implementing the
following method:

@Override
public void onActivityResult(
final Activity activity,
final int requestCode,
final int resultCode,
final Intent intent) {
// logic here
}

To show this, lets create a simple image picker. When invoked, the
image picker will expose the function pickImage to JavaScript, which will
return the path to the picture.

public class ImagePickerModule extends
ReactContextBaseJavaModule {
private static final int IMAGE_PICKER_REQUEST = 1;
private static final String E_ACTIVITY_DOES_NOT_
EXIST = “E_ACTIVITY_DOES_NOT_EXIST”;

http://www.eventEmitter.addListener
http://www.console.log
http://www.this.eventListener.remove
http://www.reactContext.addActivityEventListener

 

 

 

 
 

   
   

     
       
         
           

         
           
           
             

           
             
           
         
         
       
     
   
 
 

   
   
   

 
 
 
   

200 ◾ Mastering React Native

private static final String E_PICKER_CANCELLED =
“E_PICKER_CANCELLED”;
private static final String E_FAILED_TO_SHOW_PICKER
= “E_FAILED_TO_SHOW_PICKER”;
private static final String E_NO_IMAGE_DATA_FOUND =
“E_NO_IMAGE_DATA_FOUND”;
private Promise mPickerPromise;
private final ActivityEventListener
mActivityEventListener = new
BaseActivityEventListener() {
@Override
public void onActivityResult(Activity activity,

int requestCode, int resultCode, Intent intent) {
if (requestCode == IMAGE_PICKER_REQUEST) {
if (mPickerPromise != null) {
if (resultCode == Activity.RESULT_CANCELED) {
mPickerPromise.reject(E_PICKER_CANCELLED,
“Image picker was cancelled”);
} else if (resultCode == Activity.RESULT_OK) {
Uri uri = intent.getData();
if (uri == null) {
mPickerPromise.reject(E_NO_IMAGE_DATA_FOUND,
“No image data found”);
} else {
mPickerPromise.resolve(uri.toString());
}
}
mPickerPromise = null;
}
}
}
};
ImagePickerModule(ReactApplicationContext
reactContext) {
super(reactContext);
// Add listener for the `onActivityResult`
reactContext.addActivityEventListener(mActivityE

ventListener);
}
@Override
public String getName() {
return “ImagePickerModule”;

http://www.mPickerPromise.reject
http://www.mPickerPromise.reject
http://www.mPickerPromise.resolve
http://www.uri.toString

         

 
 
 
   
   
     

     
   
   

   
   
     

     
     

     

   
     

     
   
 

React Native Modules ◾ 201

}
@ReactMethod
public void pickImage(final Promise promise) {
Activity currentActivity = getCurrentActivity();
if (currentActivity == null) {
promise.reject(E_ACTIVITY_DOES_NOT_EXIST,
“Activity doesn’t exist”);
return;
}
// Store promise to resolve or reject when picker

returns the content
mPickerPromise = promise;
try {
final Intent galleryIntent = new Intent(Intent.
ACTION_PICK);
galleryIntent.setType(“image/*”);
final Intent chooserIntent = Intent.

createChooser(galleryIntent, “Pick an image”);
currentActivity.startActivityForResult(chooserI
ntent, IMAGE_PICKER_REQUEST);
} catch (Exception e) {
mPickerPromise.reject(E_FAILED_TO_SHOW_
PICKER, e);
mPickerPromise = null;
}
}
}

Listening to Lifecycle Events
Listening to LifeCycle events of the activity, such as onResume,
onPause, and so on, is quite like how ActivityEventListener was built.
LifecycleEventListener must be implemented in the module. Ten, in the
constructor of the module, register a listener as follows:

reactContext.addLifecycleEventListener(this);

You may now listen to the activity’s LifeCycle events using the follow-
ing methods:

@Override
public void onHostResume() {

http://www.promise.reject
http://www.currentActivity.startActivityForResult
http://www.mPickerPromise.reject
http://www.reactContext.addLifecycleEventListener

 

 

 

202 ◾ Mastering React Native

 // Activity `onResume`
}
@Override
public void onHostPause() {
 // Activity `onPause`
}
@Override
public void onHostDestroy() {
 // Activity `onDestroy`
}

Threading
On Android, all native module async functions are currently executed on
a single thread. Native modules should not make any assumptions about
the thread on which they are being called, as the present assignment is
susceptible to change in the future. If a blocking call is necessary, the hard
lifing should be delegated to an internally controlled worker thread, from
which any callbacks should be distributed.

CROSS-PLATFORM NATIVE MODULES
A cross-platform app development framework is a collection of tech-
nologies that enables you to create native or native-like apps for several
platforms, including Android, iOS, Windows, and Web, from a single
codebase.

Tis enables you to reach a signifcantly larger target audience across
many platforms at a cheaper cost and in less time.

Based on programming languages, below are some of the top open-
source cross-platform app development frameworks:

Programming Language Framework

Java Codename One
JavaScript React Native, Cordova, Ionic, NativeScript, Appcelerator
Python Kivy, BeeWare
C# Xamarin
C++ Qt
Ruby RubyMotion
Dart Flutter
Basic B4A

         

React Native Modules ◾ 203

WHAT ARE THE ADVANTAGES OF CROSS-PLATFORM
APPLICATION DEVELOPMENT FRAMEWORKS?
Here are a few advantages of cross-platform app development frameworks.

Code Reusability

Te ability to reuse code is the most signifcant advantage of cross-plat-
form app development frameworks. Developers just need to write code
once, and that codebase can then be utilized to deliver the program across
numerous platforms. Tis is known colloquially as “Write Once Run
Anywhere,” or WORA.

WORA eliminates repetition, resulting in lower operational expenses.
A unifed codebase also enables you to easily add another platform in the
future.

Reduced Costs and Resources

Cross-platform app development frameworks enable you to be agile
while employing a smaller team with a single skill set and codebase for
several platforms, allowing you to strike a solid balance between quality
and cost.

It is as easy as this: Lower expenses are related to less time, money, and
eforts spent on app development.

Easy Deployment and Maintenance

Developers just need to produce and maintain an only source code because
there is a single codebase for many platforms. Tis means that deploy-
ment, maintenance, upgrades, and bug fxes are simple and quick.

Changes to the code are instantly synced across several platforms and
devices, saving time and efort.

Wider Market Reach

Cross-platform frameworks provide you with the most exposure to your
target audience by allowing you to launch your program on numerous
platforms, such as Android, iOS, Windows, MacOS, and web. Tese guar-
antee that potential consumers have a broader market reach.

Uniform Design

Cross-platform frameworks make it possible to share a consistent UI/UX
across several platforms while adhering to platform-specifc standards.

 204 ◾ Mastering React Native

Users will be able to recognize and interact with the app on every platform
if they have a consistent experience.

CONCLUSION
Installing JavaScript Libraries with NPM, Native Modules for iOS, Native
Modules for Android, and Cross-Platform Native Modules were all cov-
ered in this chapter. In the following chapter, we will learn about debug-
ging and developer tools.

C H A P T E R 8

Debugging and
Developer Tools

IN THIS CHAPTER

¾ Debugging and developer tools

¾ JavaScript debugging practices, translated

¾ React Native debugging tools

¾ Debugging beyond JavaScript

In the previous chapter, we learned about modules in React Native, in this
chapter, we are going to learn about debugging and developer tools.

DEBUGGING AND DEVELOPER TOOLS
Shaking your smartphone or heading to the Hardware menu in the iOS
Simulator and selecting “Shake Gesture” will take you to the Developer
Menu. Use the D keyboard shortcut while your app is running in the iOS
Simulator, M when running in an Android emulator on the Mac OS, and
Ctrl+M on Windows and Linux. To reach the Dev Menu on Android, exe-
cute the command adb shell input keyevent 82. (82 being the Menu key
code.)

DOI: 10.1201/9781003310440-8 205

https://dx.doi.org/10.1201/ 9781003310440-8

206 ◾ Mastering React Native

Enabling Fast Refresh

React Native’s Fast Refresh functionality gives near-instant feedback for
modifcations to React components. It may be benefcial to have Fast
Refresh activated while troubleshooting. Fast Refresh is enabled by default
and may be turned of by toggling the “Enable Fast Refresh” option in the
React Native Developer Menu. Many of your changes should be apparent
in a second or two if enabled.

Enabling Keyboard Shortcuts

In iOS Simulator, React Native supports a few keyboard shortcuts. Tey
are detailed further down. To activate them, go to the Hardware menu,
choose Keyboard, and tick the “Connect Hardware Keyboard” box.

LogBox

In development builds, errors and warnings are presented in LogBox
within your program.

LogBox is disabled by default in release (production) versions.

Console Errors and Warnings
Console faults and warnings are presented on-screen as on-screen alerts
with a red or yellow badge, as well as the number of errors or warnings in
the console. To view a console problem or warning, press the notice to get
full-screen details about the log and to paginate through all the console’s
logs.

Tese alerts can be hidden by using LogBox.ignoreAllLogs(). Tis is
useful for product demos, for example. LogBox.ignoreLogs() may also be
used to hide notifcations on a per-log basis. Tis is handy when a loud
warning cannot be corrected, such as those in a third-party reliance.

As a last option, ignore logs and set a task to fx any ignored logs.

import { LogBox } from ‘react-native’;
// Ignore log notification by message:
LogBox.ignoreLogs([‘Warning: ...’]);
// Ignore all log notifications:
LogBox.ignoreAllLogs();

Copy

Unhandled Errors
Unhandled JavaScript errors, like undefned, are not a function and will
result in a full-screen LogBox error displaying the fault source. When

         

Debugging and Developer Tools ◾ 207

these problems occur, they are dismissible and minimized so you can
monitor the state of your app, but they should always be fxed.

Syntax Errors
When syntax errors occur, the full-screen LogBox error will appear, dis-
playing the stack trace and the location of the syntax problem. Tis error
cannot be ignored since it signifes faulty JavaScript execution, which
must be corrected before proceeding with your program. Fix the syntax
problem and either save to automatically dismiss or cmd+r to reload to
dismiss these errors.

Chrome Developer Tools

To debug the JavaScript code in Chrome, go to the Developer Menu and
select “Debug JS Remotely.” Tis will launch a new tab with the address
http://localhost:8081/debugger-ui.

To launch the Developer Tools, go to the Chrome Menu and select
Tools Developer Tools. You may also use keyboard shortcuts to access the
DevTools. For a better debugging experience, you may also wish to acti-
vate Pause On Caught Exceptions.

On Android, if the times between the debugger and the device have
shifed, features like animation, event behavior, and so on may not operate
correctly, or the results may be inaccurate. Please fx this by executing adb
shell “date +%m%d%H%M%Y.%S%3N on your debugger computer. For
usage on a genuine device, root access is necessary.

Please keep in mind that the React Developer Tools Chrome extension
does not support React Native, but you may use its standalone version
instead.

Debugging Using a Custom JavaScript Debugger
To use a custom JavaScript debugger instead of Chrome Developer Tools,
set the REACT DEBUGGER environment variable to a command that
will run your own debugger instead of Chrome Developer Tools. Ten,
from the Developer Menu, click “Debug JS Remotely” to begin debugging.

Te debugger will get a list of all project roots, separated by a space.
If you set REACT_DEBUGGER=“node/path/to/launchDebugger.js --port
2345 --type ReactNative”, the command node /path/to/launchDebugger.
js —port 2345 --type ReactNative /path/to/reactNative/app will be used to
launch your debugger.

Custom debugger commands run in this manner should be short-lived
processes that emit no more than 200 kilobytes of output.

http://www.launchDebugger.js
http://www.launchDebugger.js
http://www.launchDebugger.js
http://localhost:8081/debugger-ui

208 ◾ Mastering React Native

Safari Developer Tools

You may use Safari to debug your iOS app without having to activate
“Debug JS Remotely.”

• Enable Develop menu in the Safari: Preferences → Advanced →
Select “Show Develop menu in menu bar”

• Select your app’s JSContext: Develop → Simulator → JSContext

• Safari’s Web Inspector should open which has Console and a
Debugger

While sourcemaps are not enabled by default, they may be enabled by fol-
lowing these steps or viewing this video and adding breakpoints at the
appropriate places in the source code.

However, every time the app is restarted (either via live reload or manu-
ally), a new JSContext is produced. You may avoid having to manually
choose the most current JSContext by selecting “Automatically Show Web
Inspectors for JSContexts.”

React Developer Tools

To debug the React component hierarchy, you may utilize the standalone
version of React Developer Tools. Install the react-devtools package glob-
ally to utilize it:

React-devtools version 4 requires react-native version 0.62 or higher to
function properly.

• npm

• Yarn

npm install -g react-devtools

Now, from the terminal, run react-devtools to launch the standalone
DevTools app:

react-devtools

It should connect to your simulator in a matter of seconds.

         

Debugging and Developer Tools ◾ 209

Add react-devtools as a project dependency to avoid global installations.
Add react-devtools package to your project using npm install --save-dev
react-devtools, then add “react-devtools”: “react-devtools” to your pack-
age.json’s scripts section, and then activate the DevTools with npm run
react-devtools from your project folder.

Integration with React Native Inspector
Select “Toggle Inspector” from the in-app Developer Menu. It will provide
an overlay that allows you to tap on any UI element to get information
about it.

When react-devtools is running, Inspector will collapse and instead
use the DevTools as the primary UI. In this mode, clicking on something
in the simulator will bring up the relevant components in the DevTools:

To escape this mode, select “Toggle Inspector” from the same menu.

Inspecting Component Instances
When debugging JavaScript in Chrome, you may view the React compo-
nents’ properties and state in the browser console.

To begin, open the Chrome console by following the steps for debug-
ging in Chrome.

Check that the debuggerWorker.js option in the top lef corner of the
Chrome console is selected. Tis is a critical stage.

Ten, in React DevTools, choose a React component. A search bar at
the top allows you to fnd one by name. When you pick it, it will appear
in the Chrome console as $r, allowing you to explore its props, state, and
instance attributes.

Performance Monitor

By selecting “Perf Monitor” from the Developer Menu, you may activate a
performance overlay to assist you in debugging performance issues.

Debugging Application State

Reactotron is an open-source desktop program for inspecting Redux or
MobX-State-Tree application state, as well as seeing custom logs, running
custom commands like resetting state, storing, and restoring state snap-
shots, and other useful debugging capabilities for React Native apps.

Te README fle contains installation instructions. If you are using
Expo, here is an article that will walk you through the installation process.

http://www.package.json
http://www.package.json
http://www.debuggerWorker.js

210 ◾ Mastering React Native

Native Debugging
Projects with Native Code Only
Te next section only applies to projects that have exposed native code. If
you are using the managed expo-cli process, check the ejecting tutorial to
learn how to utilize this API.

Accessing Console Logs

You may see an iOS or Android app’s console logs by executing the follow-
ing commands in a terminal while the program is running:

npx react-native log-ios
npx react-native log-android

Tese may also be viewed using the iOS Simulator’s Debug Open
System Log option or by running adb logcat *:S. ReactNative:V When an
Android app is running on a device or emulator, type ReactNativeJS:V in
a terminal.

Console logs display in the same terminal output as the bundler
whether you are using Create React Native App or Expo CLI.

Debugging on a Device with the Chrome Developer Tools

If you are using Create React Native App or Expo CLI, this is already set
up for you.

On iOS, open the fle RCTWebSocketExecutor.mm and replace “local-
host” with your computer’s IP address, then choose “Debug JS Remotely”
from the Developer Menu.

You may use the adb command line tool on Android 5.0+ devices con-
nected via USB to confgure port forwarding from the device to your
computer:

adb reverse tcp:8081 tcp:8081

Alternatively, under the Developer Menu, click “Dev Settings,” then
adjust the “Debug server host for device” setting to match your computer’s
IP address.

If you encounter any problems, it is conceivable that one of your
Chrome extensions is interfering with the debugger in unexpected ways.
Disable all extensions and then re-enable them one by one until you fnd
the defective one.

http://www.RCTWebSocketExecutor.mm

         

Debugging and Developer Tools ◾ 211

Debugging Native Code

When working with the native code, such as when developing native mod-
ules, you may launch the app from Android Studio or Xcode and utilize
native debugging tools (for example, setting breakpoints) exactly as you
would when building a standard native app.

JAVASCRIPT DEBUGGING PRACTICES TRANSLATED
Debugging is a challenging task. It is a talent that every developer should
be able to master. When developing code, developers are constantly prone
to making mistakes. We cannot completely eradicate bugs, but we can
learn how to deal with them intelligently.

We will look at numerous approaches for debugging JavaScript code in
this section. Te good news is that all current browsers provide a built-in
JavaScript debugger.

Best Practices

It is preferable to keep our code from being prone to bugs. A single piece
of code/logic can be written in a variety of ways. Te quality with which
programmers and beginners write their code is important here. We also
need well-structured code that will aid in debugging later.

Beautify to Debug
We might have to debug in production. However, if our code has been
minifed or unindented, we may un-minify it into a more legible style.

Te code will not be as useful as our actual code, but at least we will
know what is going on. Below is a button accessible in Chrome for beauti-
fying our code and making it more readable.

Debugging Methods
Console Method
To debug the JavaScript code, we may utilize a console API. For the con-
sole API, there are several possibilities.

• console.log(): We may use console.log() to output any string or
object value in the browser’s debugger window.

function add(num1, num2) {return num1 + num2}let num1 =
5, num2 = 6;let result = add(num1, num2);console.log(“%d + %d
= %d”, num1, num2, result);console.info(“%d + %d = %d”, num1,

http://www.console.log
http://www.console.log
http://www.;console.log
http://www.;console.info

212 ◾ Mastering React Native

num2, result);console.warn(“%d + %d = %d”, num1, num2, result);
console.error(“%d + %d = %d”, num1, num2, result);

• console.table(data, obj): Tis method accepts one necessary argu-
ment data, which must be an array or an object, and one optional
parameter columns, which is an array of strings. It outputs data in
the form of a table.

function Band(frstName, lastName, roll) {this.frstName =
frstName;this.lastName = lastName;this.roll = roll;}var Zack
= new Band(“Zack”, “Wyld”, 1);var Ozzy = new Band(“Ozzy”,
“Osbourne”, 2);var Ronie = new Band(“Ronie”, “Dio”, 3);console
.table([zack,ozzy,ronie]);

We may use the optional columns argument to display only a sub-
set of the columns:

console.table([Zack,Ozzy,Ronie],[“frstName”,”lastName”]);

• console.trace(): Tis will display the call path used to get to the point
where you called console.trace ()

function func1() {func2();}function func2()
{func3();}function func3() {console.trace();}
func1();

• console.assert(expression,object): If the assertion is false, this
method prints an error message to the console. Nothing happens if
the statement is true.

function isOddNumber(num1) {let result = num1 % 2
!== 0console.assert(result,{ number: num1, errorMsg:
“this number is even” });return result;}
isOddNumber(6)

Using a Debugger
Since ES5, the keyword debugger has been reserved in EcmaScript. When
we insert the debugger into our code, the Javascript execution is halted.

When we launch our inspector tool, it can only take efect and we may
begin debugging.

Breakpoints
Tere are several approaches we may use to debug our code. At each
breakpoint, JavaScript will pause its execution and allow us to inspect the
values within our code.

http://www.;console.warn
http://www.console.error
http://www.console.table
http://www.lastName;this.roll
http://www.;console.table
http://www.;console.table
http://www.console.table
http://www.console.trace
http://www.console.trace
http://www.console.trace
http://www.console.assert
http://www.0console.assert

         Debugging and Developer Tools ◾ 213

Unconditional Breakpoints
Te unconditional breakpoint is used when we wish to interrupt the exe-
cution of the code when we reach its line. By clicking on the line number
on the lef, we may establish an unconditional breakpoint.

Te line number is shown by a red dot.
Here is the simple code sample above, with our unconditional break-

point set at line number 5. And from there, we can delve deeper into our
debugging process.

Using a Breakpoint List
Te unconditional breakpoint is used when we wish to interrupt the exe-
cution of the code when we reach its line. By clicking on the line number
on the lef, we may establish an unconditional breakpoint.

Te line number is shown by a red dot.
Here is the simple code sample above, with our unconditional break-

point set at line number 5. And from there, we can delve deeper into our
debugging process.

Adding Logpoints
Sometimes we want to see the value of a variable but do not want to inter-
rupt execution. We can utilize logpoints for this method.

Logpoints assist us by printing a message to the Console without halt-
ing the code’s execution. When we set a logpoint, a red bubble with a little
caret appears.

We may also examine our log point in the right panel of breakpoints.
When we hit a logpoint, the message we defned is written directly into
the console.

Unsetting Breakpoints
If we already have it set, we may unset it again. Tat is, we can just delete
the breakpoint as well.

We may delete breakpoints by right-clicking on the number.
Tis is a huge time saver since we will be able to readily retrieve the

information we want to identify until that point of execution.

Using Watches
Watch is the same as witnessing any expression in our code that we want
to observe. To discover problems, we may utilize a watch expression in
conjunction with the inspector tool.

 214 ◾ Mastering React Native

We may watch the variables by clicking on the watch icon in the watch
panel and entering the variable name.

In this instance, we are looking at two variables, one minute and one
second. Using watches, we can evaluate any expression we want into our
code.

Using Call Stack
It is a bottom-up method. If we used a breakpoint to enable call stack in
the browser, it would provide us with the function calls one afer the other.
Te function that was performed frst would remain at the bottom, while
the function that came before it would remain at the top.

Peek at the code, for example. Tree primary calls are stacked on top of
each other in this case. Te one at the bottom is the frst to execute.

Debugging Tools
Rookout
Rookout is a debugging platform that lets developers defne when and how
a breakpoint is triggered. You may test their sandbox environment to see
it in action.

Tis remote debugging tool provides us with detailed information
about our program without requiring us to restart, redeploy, or create
code. It is simple to debug at every step, whether cloud, local, develop-
ment, or production, monolithic or Microservices architecture, including
Serverless architecture.

NodeJS Inspector
Backend developers that use JS have access to a GUI-based debugger for
Node as well. It may also be triggered by entering the following command
into our terminal:

npm install -g node-inspectorpath:\>node-inspector
--web-port=5500

Using a Code Editor
Tere are many wonderful text editors available, and we can locate sev-
eral addons that can help us debug our code. Sublime, Visual Studio,
Webstorm, Vim, and more well-known editors are available.

         

Debugging and Developer Tools ◾ 215

Framework Debugging Tools (Angular, React, Vue)
Tere are browser addons/extensions for debugging frameworks for
framework enthusiasts. Te main and popular frameworks, such as React,
Vue, and Angular, each have their own extensions that may be installed
for debugging.

JSON Formatter and Validator
JSON might be tough to interpret at times. To work with JSON data, we
ofer a JSON formatter and a validator. Te frst assists us in formatting it
into a human-readable format, while the validator assists us in determin-
ing if our JSON is legitimate or not.

“use strict” Mode
Tis is the method for restricting specifc variants in our JavaScript code
that was introduced in ECMAScript5. Browsers that don’t support strict
mode will run the code in a diferent manner.

Strict mode modifes both runtime behavior and syntax. We normally
use strict mode for the entire script as well as individual functions, but it
does not apply to a block of statements enclosed by braces.

REACT NATIVE DEBUGGING TOOLS
Top 6 Debugging Tools for React Native Developers

Many people have contributed numerous tools to the ecosystem that will
beneft other React Native developers. Here is a list of the best six debug-
ging tools for React Native developers to debug rapidly to increase produc-
tivity and handle any problems.

Chrome’s DevTools
It is the frst tool that springs to mind when a developer thinks of debug-
ging React Native. We may use it to debug web apps developed on React
Native.within since it is driven by JavaScript.

Requirements
Connect both devices to the same Wi-Fi network to utilize this tool for
React Native debugging.

Previously, the simplest method to debug any code was to use Chrome’s
DevTools. In MacOS, use Ctrl+D to launch the iOS simulator and Ctrl+M
to launch the Android emulator in Chrome. Use Ctrl + M if you are using

http://www.Native.within

 216 ◾ Mastering React Native

Windows (like iOS). Remote debugging is also possible by shaking the
mobile device to reveal in-app developer choices. Select Debug JS remotely,
and then open Chrome to the URL http://localhost:8081/debugger-ui/ to
launch the basic debugger with the fundamental functionality.

Tis tool’s confguration can be a bit difcult. For answers to your
query, you can look at GitHub demonstrations or Stack Overfow. You can
quickly toggle the Chrome inspector afer it is linked. It should be noted
that it does not debug styles or alter their properties. When investigating
React’s component hierarchy, things become much more difcult.

Other high-level debugging tools for professionals are listed below.

React Developer Tools
Tis tool may be used to debug React Native using the desktop app. Te
setup is quite straightforward. Simply add the following command, either
locally or globally.

yarn add react-devtools

Use the command below to install NPM.

npm install react-devtools --save

You can now run yarn react-devtools to launch the app. Using this
tool, you may inspect the React component hierarchy. In addition, you
can debug styles in React Native, implement style properties, and see the
direct refection of changes made without reloading.

React Native Debugger
It is a desktop program that is available for macOS, Windows, and
Linux. Tis is the most recommended debugging tool, especially if you
are creating your React Native application with Redux. Other debug-
ging tools, such as Redux’s DevTools and React’s Developer Tools, can be
integrated. As a result, you may mix all these tools to get the most out of
them. Furthermore, unlike the React Developer Tools, no installation is
necessary.

Every developer would advocate this combo since it has all the fun-
damental pieces and functionalities necessary for React Native mobile
development. You may analyze and debug React elements by inspecting
and debugging the redux logs and actions using an interface and another

http://localhost:8081/debugger-ui/

         

Debugging and Developer Tools ◾ 217

interface for React Developer Tools. Its setup is extremely simple and
quick. Te installation process may be found here. In addition, the tog-
gling inspector from the Dev Menu allows you to examine and alter the
React elements. Some of the top features available in this combo are listed
below.

1. Elements: Inspect the element’s styles, edit, and view the results
instantly in the simulator.

2. Profler: Get a famegraph with components render duration to
detect performance issues.

3. Console: Inspect errors and warnings.

4. Sources: Debugg javascript, set breakpoints and step through the
code.

5. Network: Inspect and record network requests (enable it with
MacBook touch bar button).

6. Memory – Check memory leaks.

Redux DevTools
Redux, as you may know, is a standalone framework for common state
management that is widely used in both React JS and React Native. As a
result, you cannot simply ignore this critical function when troubleshoot-
ing. Redux Devtools is regarded as the greatest debugging tool for that
specifc function. You can easily explore the relationships between activi-
ties and their repercussions on your data store.

Redux DevTools allows you to seamlessly dock redux debugging com-
ponents into your application. However, this will add to the complexities.
However, Redux DevTools has some of the most helpful functionalities,
like as

1. Inspector showing real-time actions

2. Action tab

3. State tab

4. Dif tab

5. Test tab

218 ◾ Mastering React Native

6. Log Monitor

7. Dispatcher

8. Chart

9. Slider

10. Export/import

Redux Devtools Extension may also install in your Chrome or Firefox
browser. Tis addon uses a pre-built debugging UI that is kept indepen-
dent from your application code.

Nuclide – Atom’s Plug-in
It is an open-source React Native tool that is installed as a plug-in on top
of Atom, a popular IDE created by Facebook.

Tis debugger’s strong community support allows you to get the help
you need to do anything with Nuclide. It is regarded as the fnest because of
its built-in support for the React Native framework. It also includes an extra
set of components and extensions that allow you to develop in the Flow and
JavaScript programming languages, as well as the React UI framework.

Inline errors, auto-complete, jump-to-defnition features, and addi-
tional services such as Remote and JavaScript development, Hack devel-
opment, built-in debugging, working sets, mercurial support, task runner,
and so on are among the expressive features of Nuclide.

Reactotron
It is a 2016 open-source desktop program developed by Infnite Red that
is accessible for several platforms such as Windows, MacOS, and Linux. It
is the best substitute for React Native Debugger, which ofers just identical
functionality.

Te same application may be used to debug both React JS and React
Native projects. In addition, developers may watch the console and follow
the status of the program, record messages, make API requests, examine,
and do additional operations. It is simple and quick to install, as is the
installation method. Set up various extensions quickly and easily to con-
duct activities more fexibly. Te most useful feature of this React Native
debugging tool is that it mixes redux actions with console answers.

Some of Reactotron’s fnest features are listed below.

         

Debugging and Developer Tools ◾ 219

1. Connections: Run multiple devices and quickly switch debugging.

2. Timeline tab: track app events and redux actions.

3. State tab.

4. React Native tab.

Furthermore, there are several tools available for debugging React
Native. Other prominent tools include Expo, Flow, Visual Studio Code,
ESLint, Ignite, and others. Choose the proper React Native Debugging
tool by considering the project’s unique demands as well as the devel-
oper’s convenience. Choose the one that will save you time and money
eventually.

DEBUGGING BEYOND JAVASCRIPT
The Basics of Console Logging

Let us start with the fundamentals of console debugging. I am sure most
of you have used these, but if you are new to JavaScript, here are some
of the common techniques for console logging to aid in debugging your
application.

• console.log: Logs a message or object to the console.

• console.info: Logs a message or object to the console, which is
informational.

• console.warn: Logs the console log message as a warning, to indicate
a potential problem.

• console.error: Logs the console log message as an error, to indicate
an error has occurred.

console.log(‘Hello Everyone’);
console.info(‘Informational Logging’);
console.warn(‘Warning to indicate something weird’);
console.error(‘This is bad, here is error’);

Te above list includes the most frequent console logs found in various
codebases. Tese are quite useful for troubleshooting a program, but that
is not all.

http://www.console.log:
http://www.console.info:
http://www.console.warn:
http://www.console.error:
http://www.console.log
http://www.console.info
http://www.console.warn
http://www.console.error

 
 
 

 
 
 

 
 
 

220 ◾ Mastering React Native

Beyond the Basics of Console Logging

To see all the examples, right-click -> inspect and open the console in any
browser. And, while reading this text, follow along and write the instruc-
tions on the console to better comprehend them.

console.table()
I only recently learned about console.table() and wish I had known about
it sooner for easier debugging. Let us defne an object called myShopping-
Cart below:

const myShoppingCart = [{
id: “1”,
name: “Banana”,
price: 10,
},
{
id: “2”,
name: “Apple”,
price: 20,
},
{
id: “3”,
name: “Orange”,
price: 30,
}];

If I used the standard console.log() function to log the myShopping-
Cart, the output would be as follows:

Assume you have a large object that would seem cleaner and be easier
to debug if it were in the form of a table. Look no further. To gain a bet-
ter look, use console.table() to output your object in the form of a lovely
table.

Isn’t this beautiful?
One thing to remember is that console.table() can only handle up to

1000 rows.

console.assert()
You may conduct conditional logging without using an if-else condition
by using console.assert(). console.assert(condition, message) is the syntax.
When a condition is falsely passed, the assertion can be recorded. See the
examples below to better understand them.

http://www.console.table
http://www.console.table
http://www.console.log
http://www.console.table
http://www.console.table
http://www.console.assert
http://www.console.assert
http://www.console.assert

         

 

Debugging and Developer Tools ◾ 221

console.trace()
Tis is another another important console feature. Te console.trace()
function is used to print a stack trace to the console. Tis is handy if you
are debugging and get stuck at a given point in the code and want to look at
the stack trace in more detail. Tis is incredibly important for confrming
that your code is operating as it should and for navigating the stack trace.

console.count()
Tis is handy if you have the same piece of code running numerous times
and want to keep track of it for whatever reason. See the sample below to
see how it is used.

It is worth noting that the console.count() function returns the current
count each time the same piece of code is performed.

console.memory
If you need a fast snapshot of your memory use, you may access the
JavaScript heap size using the console.memory property.

Tis can come in useful if you suspect a performance leak while the
code is running and want to get a brief snapshot of the memory usage on
the console.

console.time()
Te control.time() function launches a timer on the console.

var i;
console.time(“test1”);
for (i = 0; i < 1000000000; i++) {
// some code
}
console.timeEnd(“test1”);
VM732:6 test1: 2624.0439453125ms

It may be used to determine how long a piece of code takes to execute.
Te console.timEnd() function can be used to stop the timer. As illus-
trated in the sample above, you may pass a label to these methods to keep
track of the console logging.

CONCLUSION
In this chapter, we learned about React Native debugging and developer
tools; in the following chapter, we will learn about bringing it all together
in React Native.

http://www.console.trace
http://www.console.trace
http://www.console.count
http://www.console.count
http://www.console.memory
http://www.console.memory
http://www.console.time
http://www.control.time
http://www.console.time

https://taylorandfrancis.com/

C H A P T E R 9

Putting It All Together

IN THIS CHAPTER

¾ Putting it all together

¾ Te fashcard application

¾ Modeling and storing data

¾ Using the navigator

Let’s put it all together now that we’ve covered many of the components
you’ll need to create your own React Native applications. We have worked
with minor cases up to this point. We will look at the structure of a bigger
application in this chapter. We will go through how to utilize Refux, a
Flux-based framework for unidirectional datafow. We’ll also look at how
to resize text to match diferent screen sizes using the Dimensions API.
Finally, we will go through some homework: assignments that you can
do to get a sense of what it is like to add new features to an existing React
Native codebase.

Here are some stages to assist you synthesize everything you have
learned from this book to answer the two key questions: should I create a
legal company for my frm, and if so, what kind? At this point, it is good
setting aside several of this book’s issues that are not related to these basic
questions. Choosing a name for your company is enjoyable, but it can wait.
Also, it is good to take a break from all the technical intricacies about
how LLCs and companies work that this book has thrown at you. If the
answers to the truly key issues indicate a certain company structure, it will

DOI: 10.1201/9781003310440-9 223

https://dx.doi.org/10.1201/ 9781003310440-9

224 ◾ Mastering React Native

be worth the time and efort to master the little administrative nuances,
no matter how opaque they appear today.

Step 1: Evaluate Your Business Risk: Why shouldn’t I run my business
the right way? is another approach to frame the question regarding
whether to create a legal structure for your frm. Te major reason
for founding an LLC or company, as we discussed in Chapter 1, is to
control your personal risk. Risk management in corporate organiza-
tions is concerned with two issues: taxation and legal responsibility.
Recognizing your risk tolerance and desire for risk are important
considerations in the decision you face.

Consider the kind of risks you encounter in your frm. Do you
have any litigious clients? Do you work with high-value, delicate
materials? Do you frequently travel for business? Consider how
your company will grow in the future. If your ambitions lead you
into riskier ground than you have previously explored, you should
consider this while making your decisions. When you begin a large,
dangerous project, it is much simpler to hold your system to identify
if it is already organized.

Consider your risk tolerance. Do you possess property that you
want to shield from potential corporate creditors, such as a home or
a retirement account? How willing are you to subject your own assets
to the hazards that you anticipate encountering?

Step 2: What Business Form Best Manages Your Risk? We examined
three forms of freelancing businesses: sole proprietorships, limited
liability companies (LLCs), and corporations. Because the state in
which you reside may have such a signifcant impact on which of
these forms is best for you, this book is unlikely to provide a conclu-
sive answer as to which is best for your case. However, if we set aside
the insignifcant details, such as how these entities are generated and
handled, we may gain a feel of them in a larger context. Compare
the major characteristics of the various company kinds using the
provided.

Step 3: Tink about Your Existing Business: If you have been run-
ning your frm as a single proprietor for a time, chances are you have
amassed some assets (hard assets like a computer and sof assets
like customer testimonials) and administrative details (accounting

         

Putting It All Together ◾ 225

records, websites, service contracts). Many freelancers’ most valu-
able company assets will be their own brand and a network of exist-
ing clients. How will you handle rebranding under a new legal entity
so that your current and future clients are aware that the profes-
sional behind your single proprietorship will be working under a
new name? Do you have any long-term contracts that you would like
to transfer to a new entity? What do they say about transferability if
you do?

Consider how you now operate your business and how that may
need to alter if you create a legal organization. Is there anything you
will need to do to be organized, such as choosing a new bank for
business purposes, that will take some time? Do you require a new
website or e-mail address?

Step 4: Map Out Costs and Consider Taxes: Before deciding on a
business structure, it is a promising idea to conduct an approxi-
mate estimate of your projected revenue and costs. Consider how
much money you intend to make each year. Ten, write a list of
all your expected normal business costs. Tis can begin with your
state’s expenses for founding and maintaining a legal company.
Typically, this information is easily available on the website of a
state’s Secretary of State. Will you be purchasing health insurance
via your employer? What about liability coverage? What kind of
service contracts and other business costs do you expect your orga-
nization to accrue?

Once you have estimated your revenue and expenses, assess if
your predicted income is sufcient to cover the costs of having a
business. Ten consider whether your frm might beneft from
becoming a tax-regarded entity. If a high cost is tax deductible for
a C corporation but not for an S corporation, having your frm pay
separate taxes may turn out to be advantageous. If you are having
trouble fguring these things out, get a tax specialist and run your
circumstances by them. Making wise decisions from the outset may
save you a lot of money in taxes overall, so hiring an expert is money
well spent.

Afer going through these processes, ideally, you will have learned
more than enough to make the best decision for your company. Te
good news is that afer you have selected a decision and become

226 ◾ Mastering React Native

organized, the time-consuming task of establishing your company
will be over. You can enjoy the fun of running your business know-
ing that your risks are under control and that your bottom line is not
smaller than it should be.

THE FLASHCARD APPLICATION
React Native Flashcards

Allows you to create your own fashcards and continue studying daily.

How to Install

In your Terminal(mac)/Command Line(Windows), enter the commands
below (“React Native Flashcard App Tutorial - 01/2021”)

$ git clone https://github.com/amazeIvy/react-native-fashcards.git

$ cd react-native-fashcards

$ yarn install

$ yarn start OR $ expo start

How to Run

Tis app requires a simulator or a mobile device to run. Te simplest
method is to install the Expo App on your mobile device and then con-
nect to the app.

• Expo on App Store: iOS

• Expo on Google Play: Android

MODELING AND STORING DATA
Every major app requires local storage to save part of the user’s informa-
tion locally even afer the user is ofine; this aids in gathering all the infor-
mation once again when you log in and provides the user with a smooth
experience. For this reason, it also enables local storage. We should not
mix up the stored data with the state data because it is not a replacement
for it. When the app is closed, all state data is removed. Async Storage can
also be used for local storage. AsyncStorage can also be utilized in place of
Local Storage since it is more efcient in terms of data storage techniques
such as database systems.

https://github.com

         

Putting It All Together ◾ 227

STORING DATA IN THE REACT NATIVE
LOCAL STORAGE WITH EXAMPLES
Examples of data storage are provided below:

1. Simple React Native Local Storage: Components inside the src
folder:

Components inside the src folder:

• index.js

• styles.css

a. index.js

import React from "react";
import ReactDOM from "react-dom";
import "./styles.css";
const initialState = { color: "green", showEmoji:
false };
class App extends React.Component { state = {
...initialState };
componentDidMount() { try {
const deserialisedState = JSON.parse(window.
localStorage.getItem("state")
);
this.setState({ ...deserialisedState });
} catch (err) {}
}
componentDidUpdate() {
const serialisedState = JSON.stringify(this.state);
window.localStorage.setItem("state",
serialisedState);
}
toggleShowEmoji = () => {
this.setState({ showEmoji: !this.state.showEmoji });
};
handleChangeColor = e => {
this.setState({ color: e.target.value });
};

http://www.index.js
http://www.styles.css
http://www.index.js
http://www.styles.css
http://www.JSON.parse
http://www.this.state
http://www.!this.state.showEmoji
http://www.e.target.value

228 ◾ Mastering React Native

handleClearLocalStorage = () => { window
.localStorage.clear();
};
render() { return (
<div className={`App ${this.state.color}`}>
<div className="flex">
<button className="flex-child" onClick={() => this.
toggleShowEmoji()}>
{`ClickHere to ${this.state.showEmoji ? "Hide" :
"Display"}
Emoji`}{" "}
</button>
<div className="emoji">{`${this.state.showEmoji ?
"" : ""}`}</div>
<label> Drop-down Menu Helps in Selecting
Background Colors</label>
<select onChange={e => this.handleChangeColor(e)}>
<option value="red">GREEN</option>
<option value="yellow">BLACK</option>
<option value="purple">BLUE</option>
</select>
<button
className="flex-child"
onClick={() => this.handleClearLocalStorage()}
>
For the Clearing Local Storage, Click Here.
</button>
</div>
</div>
);
}
}
const rootElement = document.getElementById("root");
ReactDOM.render(<App />, rootElement);

b. styles.css

.App {
font-family: sans-serif; text-align: center; height:
90vh;
width: 90%;
}

http://www.window.localStorage.clear
http://www.window.localStorage.clear
http://www.this.state.color
http://www.this.state.showEmoji
http://www.this.state.showEmoji
http://www.ReactDOM.render
http://www.styles.css

         

Putting It All Together ◾ 229

.App.black {
background-image: linear-gradient(
to right bottom, #ffef0a, #f5ee3f, #def297, #f7f391,
#fcfaa8
);
}.App.green {
background-image: linear-gradient(to top,
#f50f17, #f20b17, #e64b59,
#f29c8b, #ffd0c8
);
}.App.purple {
background-image: linear-gradient(to top,
#9000ff,
#de58ed, #be7ae6, #bc8de0, #f6b8fc
);
}
.App.black {
background-image: linear-gradient(to right bottom,
#ffef0a, #f5ee2f, #def297, #f7f382,
#fcfaa9
);
}
.flex {
display: flex;
flex-direction: column; width: fit-content; margin:
auto;
}
.flex-child {
margin: 3vh auto 7px auto; background-color:
#b9fa8e; border-radius: 6px;
}
.emoji {
font-size: 42pt;
}
button {
font-size: 18px; padding: 7px 11px 6px;
}
button:hover {
background-color: #fc84aa; color: #fcf7f8;
transition: color 201ms ease-in, background-color
301ms ease-in;

http://www..App.black
http://www..App.green
http://www..App.purple
http://www..App.black

230 ◾ Mastering React Native

2. React Native Counter with the Local Storage: Components inside
the src folder:

• index.js

• styles.css

a. index.js

import React from "react";
import ReactDOM from "react-dom";
import "./styles.css";
console.log("new counter-example");
class Counter extends React.Component {
constructor(props) {
super(props);
this.handleAddOne = this.handleAddOne.bind(this);
this.handleMinusOne = this.handleMinusOne.b
ind(this); this.handleReset = this.handleReset.b
ind(this); this.state = {
count: 0
};
}
componentDidMount() {
const stringCount = localStorage.getItem("count");
const count = parseInt(stringCount, 12);
if (!isNaN(count)) { this.setState(() => ({ count
}));
}
}
componentDidUpdate(prevProps, prevState) {
if (prevState.count !== this.state.count) {
localStorage.setItem("count", this.state.count);}
}
handleAddOne() { this.setState(prevState => {
return {
count: prevState.count + 1
};
});
}
handleMinusOne() { this.setState(prevState => {
return {
count: prevState.count - 1

http://www.index.js
http://www.styles.css
http://www.index.js
http://www.styles.css
http://www.console.log
http://www.this.handleAddOne.bind
http://www.this.handleMinusOne.bind
http://www.this.handleMinusOne.bind
http://www.this.handleReset.bind
http://www.this.handleReset.bind
http://www.this.state
http://www.prevState.count
http://www.this.state.count
http://www.this.state.count
http://www.prevState.count
http://www.prevState.count

         

Putting It All Together ◾ 231

};
});
}
handleReset() { this.setState(() => {
return { count: 0
};
});
}
render(){
return (
<div class="container">
<h1>Count Value: {this.state.count}</h1>
<button onClick={this.handleMinusOne}>-1</button>
<button onClick={this.handleAddOne}>+1</button>
<button onClick={this.handleReset}>reset</button>
<p>Count start from Last Number you entered.</p>
<p>This is done, by storing the data in Local
Storage.</p>
</div>
);
}
}
const rootElement = document.getElementById("root");
ReactDOM.render(<Counter />, rootElement);

b. styles.css

.container {
margin-top: 42px; margin-left: auto; margin-right:
auto; width: 59%;
border: 17px solid#c4f782; padding: 10px;
text-align: center; background-color: #fff186;
}

3. Movie List with React Native Local Storage: Main fles

• main folder

• header folder

• App.js

• index.html

http://www.this.state.count
http://www.this.handleMinusOne
http://www.this.handleReset
http://www.ReactDOM.render
http://www.styles.css
http://www.App.js
http://www.index.html

232 ◾ Mastering React Native

• index.js

• movie folder

• NotFound.js

• index.css

• index.js

Components inside header folder:

• Header.css

• Header.js

Components inside main folder:

• movies folder

• navigation folder

• Main.css

• Main.js

Components inside movies folder:

• MovieListItem.css

• MovieListItem.js

• Movies.css

• Movies.js

Components inside navigation folder:

• Button.css

• Button.js

• Navigation.css

• Navigation.js

http://www.index.js
http://www.NotFound.js
http://www.index.css
http://www.index.js
http://www.Header.css
http://www.Header.js
http://www.Main.css
http://www.Main.js
http://www.MovieListItem.css
http://www.MovieListItem.js
http://www.Movies.css
http://www.Movies.js
http://www.Button.css
http://www.Button.js
http://www.Navigation.css
http://www.Navigation.js

         

Putting It All Together ◾ 233

• Selection.css

• Selection.js

• Slider.css

• Slider.js

Components inside movie folder:

• LoadingMovie.js

• Movie.css

• Movie.js

a. Header.css

header { display: flex; height: 81px;
justify-content: center; align-items: center;
border-bottom: 3px solid #98bad4;
}
header h1 {
font-size: 3rem; color: #d4f23d;
}

b. Header.js

import React from "react"; import "./Header.css";
const Header = () => (
<header>
<h1>Movie Mannia</h1>
</header>
);
export default Header;

c. Main.css

.main {
display: flex;
}

http://www.Selection.css
http://www.Selection.js
http://www.Slider.css
http://www.Slider.js
http://www.LoadingMovie.js
http://www.Movie.css
http://www.Movie.js
http://www.Header.css
http://www.Header.js
http://www.Header.css
http://www.Main.css

234 ◾ Mastering React Native

d. Main.js

import React from "react";
import "./Main.css"
import Navigation from "./navigation/Navigation";
import Movies from "./movies/Movies";
class Main extends React.Component { state = {
movies: [], total_pages: 1,
page: 1,
url:
`https://api.themoviedb.org/3/genre/movie/list?api
_key=651925d45022d1ae6580
63b443c99784&language=en-US`,
moviesUrl:
`https://api.themoviedb.org/3/discover/movie?api_key
=651925d45022d1ae658063 b443c99784&language=en-
US&sort_by=popularity.desc&include_adult=false&inc
lude_video=false&page=1`,
genre: "Comedy", genres: [], year: {
label: "year", min: 1992,
max: 2022,
step: 1,
value: { min: 2001, max: 2022 }
},
rating: {
label: "rating", max: 10,
min: 0,
step: 1,
value: { min: 7, max: 10 }
},
runtime: {
label: "runtime", max: 300,
min: 0,
step: 20,
value: { min: 59, max: 119 }
}
}
componentDidMount(){
const savedState = this.getStateFromLocalStorage();
if (!savedState || (savedState && !savedState
.movies.length)) { this.fetchMovies(this.state
.moviesUrl);

http://www.Main.js
http://www.Main.css
https://api.themoviedb.org
https://api.themoviedb.org
https://api.themoviedb.org
https://api.themoviedb.org
http://www.sort_by=popularity.desc&include_adult=false&include_video=false&page=1
http://www.sort_by=popularity.desc&include_adult=false&include_video=false&page=1
http://www.!savedState.movies.length
http://www.!savedState.movies.length
http://www.this.state.moviesUrl
http://www.this.state.moviesUrl

         

Putting It All Together ◾ 235

} else {
this.setState({ ...savedState }); this.
generateUrl(savedState);
}
}
componentWillUpdate(nextProps, nextState) { this.
saveStateToLocalStorage();
if (this.state.moviesUrl !== nextState.moviesUrl) {
this.fetchMovies(nextState.moviesUrl);
}
if (this.state.page !== nextState.page) { this.
generateUrl(nextState);
}
}
onGenreChange = event => {
this.setState({ genre: event.target.value });
}
setGenres = genres => { this.setState({genres});
}
onChange = data => { this.setState({
[data.type]: {
...this.state[data.type], value: data.value
}
});
};
generateUrl = params => {
const {genres, year, rating, runtime, page } =
params; const selectedGenre = genres.find(genre =>
genre.name ===
params.genre);
const genreId = selectedGenre.id;
const moviesUrl = `https://api.themoviedb.org/3/
discover/movie?` +
`api_key=651925d45022d1ae658063b443c99784&` +
`language=en-US&sort_by=popularity.desc&` +
`with_genres=${genreId}&` +
`primary_release_date.gte=${year.value.min}-01-01&` +
`primary_release_date.lte=${year.value.max}-12-31&` +
`vote_average.gte=${rating.value.min}&` +
`vote_average.lte=${rating.value.max}&` +
`with_runtime.gte=${runtime.value.min}&` +
`with_runtime.lte=${runtime.value.max}&` +

http://www.this.state.moviesUrl
http://www.this.state.page
http://www.nextState.page
http://www.event.target.value
http://www.data.type
http://www....this.state
http://www.data.type
http://www.data.value
http://www.genres.find
http://www.genre.name
http://www.params.genre
http://www.selectedGenre.id;
https://api.themoviedb.org
https://api.themoviedb.org
http://www.sort_by=popularity.desc&
http://www.primary_release_date.gte=
http://www.year.value.min
http://www.primary_release_date.lte=
http://www.year.value.max
http://www.vote_average.gte=
http://www.rating.value.min
http://www.vote_average.lte=
http://www.rating.value.max
http://www.with_runtime.gte=
http://www.runtime.value.min
http://www.with_runtime.lte=
http://www.runtime.value.max

236 ◾ Mastering React Native

`page=${page}`;
this.setState({ moviesUrl });
}
onSearchButtonClick = () => { this.setState({page:
1}); this.generateUrl(this.state);
}
saveStateToLocalStorage = params => { localStora
ge.setItem("sweetpumpkins.params",
JSON.stringify(this.state));
}
getStateFromLocalStorage = () => {
return JSON.parse(localStorage.getItem("sweetpumpkin
s.params"));
}
fetchMovies = (url) => { fetch(url)
.then(response => response.json())
.then(data => this.storeMovies(data))
.catch(error => console.log(error));
}
storeMovies = data => {
const movies = data.results.map(result => {
const {
vote_count, id, genre_ids, poster_path, title, vote_
average, release_date
} = result;
return { vote_count, id, genre_ids, poster_path,
title, vote_average, release_date };
});
this.setState({ movies, total_pages: data.total_
pages });
};
onPageIncrease = () => {
const { page, total_pages } = this.state const
nextPage = page + 1;
if (nextPage <= total_pages) { this.setState({
page: nextPage })
}
}
onPageDecrease = () => {
const nextPage = this.state.page - 1; if (
nextPage
> 0) {

http://www.this.state
http://www.localStorage.setItem
http://www.localStorage.setItem
http://www.sweetpumpkins.params
http://www.this.state
http://www.JSON.parse
http://www.localStorage.getItem
http://www.sweetpumpkins.params
http://www.sweetpumpkins.params
http://www.response.json
http://www.console.log
http://www.data.results.map
http://www.this.state
http://www.this.state.page

         

Putting It All Together ◾ 237

this.setState({ page: nextPage })
}
}
render() { return (
<section className="main">
<Navigation onChange={this.onChange}
onGenreChange={this.onGenreChange} setGenres={this.
setGenres} onSearchButtonClick={this.onSearchButton
Click}
{...this.state} />
<Movies movies={this.state.movies} page={this.state
.page}
onPageIncrease={this.onPageIncrease}
onPageDecrease={this.onPageDecrease}
/>
</section>
)
}
}
export default Main;

e. MovieListItem.css

.movie-item {
flex-basis: 23%; display: flex;
flex-direction: column; list-style: none;
box-sizing: border-box;
margin: 1.6%;
border: 1px solid #ffffff;
box-shadow: 0 11px 27px -6px #050505;
}
.movie-item img {
width: 90%;
}
.thumbnail {
display: flex;
flex-direction: column; flex-grow: 1;
cursor: pointer;
text-decoration: none;
}
.movie-description {
display: flex; flex: 1 0 99%;

http://www....this.state
http://www.this.state.movies
http://www.this.state.page
http://www.this.state.page
http://www.MovieListItem.css

238 ◾ Mastering React Native

flex-direction: column; justify-content:
space-between;
padding: 12px;
}
.movie-description h2 { color: #63bdc8; font-weight:
bold;
margin-bottom: 22px;
}
.movie-details {
display: flex; margin-top: auto;
justify-content: space-between;
}
.movie-details span { color: #75d1ff; font-size:
0.8rem; font-weight: bold;
}
.movie-year, .movie-rating { display: flex;
flex-direction: column;
}
.movie-year .title, .movie-rating .title { color:
#70a8c4;
margin-bottom: 7px; font-size: 0.69rem; font-weight:
normal;
}
.movie-rating {
align-items: flex-end;

f. MovieListItem.js

import React from "react";
import "./MovieListItem.css";
import { Link } from "react-router-dom";
const MovieListItem = ({ movie }) => {
const { id, title, poster_path, release_date, vote_
average } = movie; const imgUrl = `https://image
.tmdb.org/t/p/w342/${poster_path}`; const year =
release_date.substring(0, 4);
return (
<li className="movie-item">
<Link to={`/movie/${id}`} className="thumbnail">

<div className="movie-description">
<h2>{title}</h2>

http://www.MovieListItem.js
http://www.MovieListItem.css
https://image.tmdb.org
https://image.tmdb.org

         

Putting It All Together ◾ 239

<section className="movie-details">
<div cassName="movie-year">
YEAR
{year}
</div>
<div className="movie-rating">
RATING
{vote_average}
</div>
</section>
</div>
</Link>

);
};
export default MovieListItem;

g. Movies.css

.movies {
flex-basis: 83%; display: flex; flex-wrap: wrap;
margin: 0;
padding: 22px 0;
}
.pagination { display: flex;
justify-content: space-between; padding: 42px 23px;

h. Movies.js

import React from "react"; import "./Movies.css";
import MovieListItem from "./MovieListItem"; import
Button from "../navigation/Button";
const Movies = ({ movies,
page, onPageIncrease, onPageDecrease
}) => (
<section>
<ul className="movies">
{movies.map(movie => (
<MovieListItem key={movie.id} movie={movie} />
))}

<div className="pagination">

http://www.Movies.css
http://www.Movies.js
http://www.Movies.css
http://www.movies.map
http://www.movie.id

240 ◾ Mastering React Native

<Button onClick={onPageDecrease}>PREVIOUS</Button>
{`Page ${page}`}
<Button onClick={onPageIncrease}>NEXT</Button>
</div>
</section>
)
export default Movies;

i. Button.css

.search-button { display: flex;
justify-content: center;
}
.search-button button { padding: 13px 22px;
background: #c4708a; color: #fcfafb;
font-size: 1.2rem; cursor: pointer;
transition: color 0.22s ease-out; outline: 0;
border: 0;
}
.search-button button:hover { color:#ffffff;
}

j. Button.js

import React from "react"; import "./Button.css"
const Button = ({ onClick
, children }) => (
<div className="search-button">
<button onClick={onClick}>
{children}
</button>
</div>
)
export default Button;

k. Navigation.css

.navigation {
flex-basis: 22%; min-width: 302px; padding: 42px;
}

http://www.Button.css
http://www.Button.js
http://www.Button.css
http://www.Navigation.css

         

Putting It All Together ◾ 241

l. Navigation.js

import React from "react"; import "./Navigation.c
ss";
import Selection from "./Selection"; import Slider
from './Slider'; import Button from './Button'
class Navigation extends React.Component {
componentDidMount() { fetch(this.props.url)
.then(response => response.json())
.then(data => this.props.setGenres(data.genres))
.catch(error => console.log(error));
}
render() {
“const { genre, genres, onGenreChange, onChange,
year, rating, runtime, onSearchButtonClick } = this
.props;” (“React Native Local Storage | Examples of
React Native Local Storage - EDUCBA”)
return (
<section className="navigation">
<Selection genre={genre} genres={genres}
onGenreChange={onGenreChange}
/>
<Slider data={year} onChange={onChange} />
<Slider data={rating} onChange={onChange} />
<Slider data={runtime} onChange={onChange} />
<Button onClick={onSearchButtonClick}> Search
</Button>
</section>
)
}
}
export default Navigation;

m. Selection.css

.selection { display: flex;
flex-direction: column; margin-bottom: 62px;
}
.selection label { font-size: 1.2rem; margin-bottom:
12px; color: #bda4a4;
}

http://www.Navigation.js
http://www.Navigation.css
http://www.Navigation.css
http://www.this.props.url
http://www.response.json
http://www.this.props.setGenres
http://www.data.genres
http://www.console.log
http://www.this.props;
http://www.this.props;
http://www.Selection.css

242 ◾ Mastering React Native

.selection select { max-width: 153px;
}

n. Selection.js

import React from "react"; import "./Selection.css";
const Selection = ({genre, genres, onGenreChange })
=> (
<div className="selection">
<label>Genre</label>
<select value={genre} onChange={onGenreChange}>
{ genres.map(genre => (
<option value={genre.name} key={genre.id}>{genre.na
me}</option>
))}
</select>
</div>
);
export default Selection;

15. Slider.css

.slider {
margin-bottom: 42px;
}
.slider label { color: #948890; font-size: 1.2rem;
margin-bottom: 22px; display: block;
text-transform: capitalize;
}
.input-range slider { background: #c466a2; border:
none;
}
.input-range track { background: #f0e9e9;
}
.input-range track--active { background: #c466a2;
}
.input-range label--value .input-range label-
container { background: #c466a2;
color: #ffffff; font-size: 0.68rem; padding: 4px
7px; border-radius: 3px;
}
.input-range label--min .input-range
label-container,

http://www.Selection.js
http://www.Selection.css
http://www.genres.map
http://www.genre.name
http://www.genre.id
http://www.genre.name
http://www.genre.name
http://www.Slider.css

         

Putting It All Together ◾ 243

.input-range label--max .input-range label-container
{
font-size: 0.68rem; color: #ada5ab; left: 0;
}
.input-range label--max .input-range label-container
{ left: 27%;

o. Slider.js

import React from "react";
import InputRange from "react-input-range";
import 'react-input-range/lib/css/index.css'; import
"./Slider.css"
class Slider extends React.Component { onChange =
range => {
this.props.onChange({
type: this.props.data.label, value: range
});
}
render() {
const { min, max, step, value, label } = this.props
.data; return (
<div className="slider">
<label>{label}</label>
<InputRange minValue={min} maxValue={max}
step={step}
onChange={this.onChange} value={value}
/>
</div>
)
}
}
export default Slider;

p. LoadingMovie.js

import React from "react";
const LoadingMovie = () => <h2>Movie Loading</h2>
export default LoadingMovie;

q. Movie.css

.movie-page {

http://www.Slider.js
http://www.index.css
http://www.Slider.css
http://www.this.props.onChange
http://www.this.props.data.label,
http://www.this.props.data;
http://www.this.props.data;
http://www.LoadingMovie.js
http://www.Movie.css

244 ◾ Mastering React Native

display: flex;
flex-direction: column;
}
.movie-page h5 { color: #888;
font-weight: normal; line-height: 1.27rem;
}
.movie-page h5 span { font-size: inherit; font-
weight: normal; color: #000001; padding-left:
1.2rem;
}
.movie-page h4 { margin: 0;
font-size: 1.27rem; line-height: 4;
}
.movie-page p { color: #bdb3b3; line-height: 1.59;
}
.movie-page .movie-image {
flex-basis: 90%;
height: 579px; background-size: cover;
background-position: center center;
}
.movie-page .movie-details { display: flex;
flex-direction: column; max-width: 804px;
margin: 23px auto 62px auto;
}
.movie-page .movie-details h1 { line-height: 1.56em;
}
.movie-page .movie-details h1 span { font-size:
inherit;
font-weight: normal; padding-left: 1.2rem; color:
#d9cece;
line-height: inherit;
}
.movie-page .genres { display: flex;
margin-bottom: 1.2rem;
}.movie-page .genres span { font-weight: normal;
}.movie-page .separator { color: #e8dfdf; padding: 0
12px;
}

r. Movie.js

import React from "react";
import LoadingMovie from "./LoadingMovie"; import
"./Movie.css";

http://www.Movie.js
http://www.Movie.css

         

Putting It All Together ◾ 245

class Movie extends React.Component { state = {
isLoading: true, movie: {}
}
componentDidMount() {
const { movieId } = this.props.match.params; const
movieUrl =
`https://api.themoviedb.org/3/movie/${movieId}?api_
key=651925d45022d1ae6580
63b443c99784&language=en-US`;
fetch(movieUrl)
.then(response => response.json())
.then(data => {
this.setState({ movie: data, isLoading: false })
})
.catch(error => console.log("Error:", error));
}
render() {
const { isLoading } = this.state; const {
title, backdrop_path, release_date, genres,
overview, vote_average, runtime
} = this.state.movie;
const year = release_date ? release_date.
substring(0, 4) : null;
const backgroundStyle = { backgroundImage:
`url(http://image.tmdb.org/t/p/
w128/${backdrop_path})`
}
return (
<div className="movie-page">
{
isLoading
? <LoadingMovie />
: <div>
<div className="movie-image" style={backgroundStyle} />
<div className="movie-details">
<h1>
{title}
({year})
</h1>
<section className="genres">
{genres.map((genre, index) => (
<div key={genre.id}>
{genre.name}
{index < genres.length - 1 && (

http://www.this.props.match.params;
https://api.themoviedb.org
http://www.response.json
http://www.console.log
http://www.this.state;
http://www.this.state.movie;
http://image.tmdb.org
http://image.tmdb.org
http://www.genres.map
http://www.genre.id
http://www.genre.name
http://www.genres.length

246 ◾ Mastering React Native

|
)}
</div>
))}
</section>
<h5>
Ratings of the Movie:
{vote_average}
</h5>
<h5>
Runtime of the Movie:
{`${runtime} min`}
</h5>
<h4>Overview of Movie</h4>
<p>{overview}</p>
</div>
</div>
}
</div>
)
}
export default Movie;

s. App.js

import React from "react"; import { BrowserRouter
, Switch
, Route } from "react-router-dom" import Header from
"./header/Header"; import Main from "./main/Main";
import Movie from "./movie/Movie"; import NotFound
from "./NotFound";
const App = () => { return (
<BrowserRouter>
<div>
<Header />
<Switch>
<Route exact path='/' component={Main} />
<Route path="/movie/:movieId" component={Movie} />
<Route component={Not-Found} />
</ Switch>
</div>

http://www.App.js

         

Putting It All Together ◾ 247

</BrowserRouter>
);
};
export default App;

t. NotFound.js

import React from "react";
import { Link } from "react-router-dom";
const NotFound = () => (
<div>
<h3>Unable to find Movie that you are looking for
:(</h3>
<Link to="/">Below is List of Movies that can
browse</Link>
</div>
);
export default NotFound;

u. index.css

body {
margin: 1;
padding: 1;
font-family: sans-serif; box-sizing: border-box;
}

v. index.html

<div id="root"></div>

w. index.js

import React from 'react';
import ReactDOM from 'react-dom'; import App from
'./App';
import './index.css';
ReactDOM.render(<App />, document.
getElementById("root"));

http://www.NotFound.js
http://www.index.css
http://www.index.html
http://www.index.js
http://www.index.css
http://www.ReactDOM.render

248 ◾ Mastering React Native

USING THE NAVIGATOR
React Navigation is one of the well-known React navigation frameworks.
In this session, we will go over the principles of React Native navigation,
show you how to get started with React Navigation in a React Native proj-
ect, and walk through many React Native navigation examples.

React Navigation is developed in JavaScript and does not directly use
iOS and Android’s native navigation APIs. It instead recreates a subset of
those APIs. Tis enables the integration of third-party JS plugins, maxi-
mum customization, and simpler debugging without the need to learn
Objective-C, Swif, Java, Kotlin, and other programming languages.

React Navigation 5.0

So the time of writing, the most stable version of React Navigation is
React Navigation 5.0, which was published in February 2020. Te current
update, according to the React Navigation blog, seeks to make the core
React Navigation library and API more dynamic.

React Navigation 5.0 includes the following signifcant modifcations
and new features:

• Confguration is dynamic and component based.

• UseNavigation, useRoute, and useNavigationState are new hooks for
typical use cases.

• A new setOptions method that simplifes specifying screen naviga-
tion options.

• Teme system has been redesigned to allow for greater
personalization.

• TypeScript provides frst-rate autocompletion and type-checking.

• Integration of Redux DevTools.

• Native stack navigator that navigates with react-native-screens by
utilizing native navigation primitives.

• New Material top tab navigator backends based on react-native-
viewpager and ScrollView.

Installing React Navigation

Te frst step is to build a React Native app, assuming you have Yarn
installed. Expo tools are the easiest way to get started with React Native

         Putting It All Together ◾ 249

since they allow you to build a project without having to install and con-
fgure Xcode or Android Studio.

Install Expo by running this:

npm install -g expo-cli

If you receive an issue on your Mac, try executing it as follows:

sudo npm install --unsafe-perm -g expo-cli

Ten, to start a new React Native project, use the following commands:

expo init ReactNavigationDemo

Tis will initiate some downloads and prompt you to provide certain
confguration parameters. As seen below, select expo-template-blank and
yarn for the dependency installation:

Next, cd into the project folder and launch your code editor:

cd ReactNavigationDemo

If you are using Visual Studio Code, you may access the current folder
in the editor by typing:

Start the app with:

yarn start

 
   
     

       
         
         
         

250 ◾ Mastering React Native

Te following step is to include the react-navigation library in your
React Native project:

yarn add react-navigation

The React Native Stack Navigator

React Navigation is written in JavaScript and allows you to develop com-
ponents and navigation patterns that look and feel like they are native to
the platform.

React Navigation employs a stack navigator to handle a user’s naviga-
tion history and the presentation of the relevant screen based on the route
taken inside the app. At any one moment, a user is only shown one screen.

Consider a stack of paper; navigating to a new screen adds it to the
stack, and navigating back removes it. Te stack navigator also includes
transitions and motions that are like those seen on native iOS and Android
devices. It should note that an app can have many stack navigators.

React Native Navigation Examples

In this section, we’ll look at several React Native navigation patterns and
how to use the React Navigation module to implement them.

Using Stack Navigator to Navigate between the Screen Components
Let us begin by establishing /components folder in the project’s root direc-
tory. Ten we make two fles, Homescreen.js and Aboutscreen.js.

// Homescreen.js
import React, { Component } from 'react';
import { Button, View, Text } from 'react-native';
import { createStackNavigator, createAppContainer }
from 'react-navigation';
export default class Homescreen extends Component {
render() {
return (
<View style={{ flex: 1, alignItems: 'left',

justifyContent: 'center' }}>
<Text>Home Screen</Text>
<Button
title="Go to About"
onPress={() => this.props.navigation.navi

gate('About')}
/>

http://www.Homescreen.js
http://www.Aboutscreen.js.
http://www.Homescreen.js
http://www.this.props.navigation.navigate
http://www.this.props.navigation.navigate

         

     
   
 

 
   
     

       
     
   
 

Putting It All Together ◾ 251

</View>
)
}
}

Note onPress prop of the button above we will explain what it does later.

// Aboutscreen.js
import React, { Component } from 'react';
import { Button, View, Text } from 'react-native';
import { createStackNavigator, createAppContainer }
from 'react-navigation';
export default class Aboutscreen extends Component {
render() {
return (
<View style={{ flex: 1, alignItems: 'left',

justifyContent: 'center' }}>
<Text>About Screen</Text>

</View>
)
}
}

Your project folder should look like what is shown in.

Look of the project folder.

http://www.Aboutscreen.js

 
   
 

 
   
 
 
   
 

 
   
   
   
   
 

252 ◾ Mastering React Native

Let us make some modifcations to App.js as well. We will import
everything we need from react-navigation and use that to construct our
navigation.

We can create our navigation in the main App.js fle since the compo-
nent exported from Project.js is the entry point (or root component) for a
React Native app and every other component is a child.

Every other component will be encapsulated within the navigation rou-
tines, as you will see.

// App.js
import React from 'react';
import { StyleSheet, Text, View } from
'react-native';
import { createStackNavigator, createAppContainer }
from "react-navigation";
import HomeScreen from './components/HomeScreen';
import AboutScreen from './components/AboutScreen';
export default class App extends React.Component {
render() {
return <AppContainer />;
}
}
const AppNavigator = createStackNavigator({
Home: {
screen: HomeScreen
},
About: {
screen: AboutScreen
}
});
const AppContainer = createAppContainer(AppNaviga
tor);
const styles = StyleSheet.create({
container: {
flex: 1,
backgroundColor: '#fff',
alignItems: 'center',
justifyContent: 'center',
},
});

In the code above, createStackNavigator allows our program to
transition between screens by stacking each new screen on top of the

http://www.App.js
http://www.App.js
http://www.Project.js
http://www.App.js
http://www.StyleSheet.create

         

 
   
 
 
   
 

       

Putting It All Together ◾ 253

previous one. It is meant to resemble iOS and Android: on iOS, fresh
displays glide in from the right, whereas on Android, they fade in from
the bottom.

Te createStackNavigator method is passed through a route confgura-
tion object. Te Home route is equivalent to the HomeScreen, while the
About route is equivalent to the AboutScreen.

Te {screen: HomeScreen} confguration format is an optional, more
succinct way of describing the route confguration.

In addition, as indicated by the API, we can optionally include another
options object. We may add a separate object to specify which route is the
initial one:

const AppNavigator = createStackNavigator({
Home: {
screen: HomeScreen
},
About: {
screen: AboutScreen
}
},{

initialRouteName: "Home"
});

It is worth noting that the Home and About route name-value pairs are
surrounded by an overall route object. Te choices object is not contained
but exists as a distinct object.

Behind the scenes, the createStackNavigator method sends a naviga-
tion prop to the HomeScreen and AboutScreen components. You may use
the navigate prop to go to a certain screen component. Terefore, we can
use it on a button in HomeScreen.js that, when clicked, takes us to the
AboutScreen page, as seen below.

<Button title="Go to About"
onPress={() => this.props.navigation.navi
gate('About')}
/>

We generated an app container in the App.js code by using const
AppContainer = createAppContainer(AppNavigator);. Tis container
oversees navigation state.

http://www.HomeScreen.js
http://www.this.props.navigation.navigate
http://www.this.props.navigation.navigate
http://www.App.js

 
   
     

       
     
   
 

254 ◾ Mastering React Native

You must download the Expo client program before you can use the
app. Versions for iOS and Android are available. While your command
line is pointing to the project folder, type the following command.

npm start

On the terminal, you should see a QR code. Scan the QR code using the
Expo app for Android, or the normal iPhone camera for iOS, which will
provide you with a command to click to start the Expo app.

Using Tab Navigation
Most smartphone apps feature many screens. Tab-based navigation
is a prevalent way of navigation in such mobile apps. In this section,
we will look at how to use createBottomTabNavigator to construct tab
navigation.

Create a ContactScreen.js fle inside/components to add another screen
to our project.

import React, { Component } from 'react'
export default class ContactScreen extends Component
{
render() {
return (
<View style={{ flex: 2, alignItems: 'center',

justifyContent: 'center' }}>
<Text>Contact Screen</Text>

</View>
)
}
}

Let us add to the imports at the top of App.js fle:

import ContactScreen from './components/ContactScreen';

Remember that we may create our navigation in the base App.js compo-
nent. As a result, we will build our tab navigation in App.js by importing
createBottomTabNavigator. Replace createStackNavigator with:

http://www.ContactScreen.js
http://www.App.js
http://www.App.js
http://www.App.js

         

 
   
 
 
   
 

 

 
   
 
 
   
 
 
   
 

 

Putting It All Together ◾ 255

import { createBottomTabNavigator,
createAppContainer } from "react-navigation";

Also replace createStackNavigator with createBottomTabNavigator in
the AppNavigator object:

const AppNavigator = createBottomTabNavigator({
Home: {
screen: HomeScreen
},
About: {
screen: AboutScreen
}
}, {
initialRouteName: "Home"
});

Add new screen to the navigator object:

const AppNavigator = createBottomTabNavigator({
Home: {
screen: HomeScreen
},
About: {
screen: AboutScreen
},
Contact: {
screen: ContactScreen
}
}, {
initialRouteName: "Home"
});

You should see the bottom nav implemented if you run the project with
npm start and open it in your Expo client.

Using Drawer Navigation
To begin building drawer navigation right away, replace createBottomTab-
Navigator in the code with createDrawerNavigator.

 
   
 
 
   
 
 
   
 

   
 

 
   
   
     
       
       
     

256 ◾ Mastering React Native

Let’s begin with the import statements:

import { createDrawerNavigator, createAppContainer }
from "react-navigation";

Let’s also update the AppNavigator variable:

const AppNavigator = createDrawerNavigator({
Home: {
screen: HomeScreen
},
About: {
screen: AboutScreen
},
Contact: {
screen: ContactScreen
}
}, {
initialRouteName: "Home"
});

You should be able to see the changes immediately away if you run npm
start. To access the drawer navigation, swipe from the lef.

You may personalize your drawer navigation by placing icons next to
the route names.

We can customize by adding navigationOptions to the following screen
component fles:

// in HomeScreen.js
import React, { Component } from 'react';
import { Button, View, Text, Image, StyleSheet }
from 'react-native';
import { createStackNavigator, createAppContainer }
from 'react-navigation';
export default class HomeScreen extends Component {
static navigationOptions = {
drawerLabel: 'Home',
drawerIcon: ({ tintColor }) => (
<Image
source={require('../assets/home-icon.png')}
style={[styles.icon, { tintColor: tintColor }]}
/>

http://www.HomeScreen.js
http://www.home-icon.png
http://www.styles.icon,

         

   
 
 
   
     

       
       
         
         

       
     
   
 

 
   
   
 

 
   
   
         
 
 
   
             
         
 

 

Putting It All Together ◾ 257

),
};
render() {
return (
<View style={{ flex: 1, alignItems: 'center',

justifyContent: 'center' }}>
<Text>Home Screen</Text>
<Button
title="Go to About"
onPress={() => this.props.navigation.navi

gate('About')}
/>

</View>
)
}
}
const styles = StyleSheet.create({
icon: {
width: 24,
height: 24,
}
});
// in AboutScreen.js
import React, { Component } from 'react';
import { Button, View, Text, Image, StyleSheet }
from 'react-native';
import { createStackNavigator, createAppContainer }
from 'react-navigation';
export default class AboutScreen extends Component {
static navigationOptions = {
drawerLabel: 'About',
drawerIcon: ({ tintColor }) => (

),
};
render() {
return (

About Screen
)

}
}
const styles = StyleSheet.create({
icon: {

http://www.this.props.navigation.navigate
http://www.this.props.navigation.navigate
http://www.StyleSheet.create
http://www.AboutScreen.js
http://www.StyleSheet.create

   
   
 

 
   
   
         
 
 
   
             
         
 

 
   
   
 

 
   
 
 
   
 
 
   

258 ◾ Mastering React Native

width: 24,
height: 24,
}
});
// in ContactScreen.js
import React, { Component } from 'react';
import { Button, View, Text, Image, StyleSheet }
from 'react-native';
export default class ContactScreen extends Component
{
static navigationOptions = {
drawerLabel: 'Contact',
drawerIcon: ({ tintColor }) => (

),
};
render() {
return (

Contact Screen
)

}
}
const styles = StyleSheet.create({
icon: {
width: 24,
height: 24,
}
});

You may use the tintColor prop to apply any color based on the active
or inactive states of navigation tabs and labels. For example, we may alter
the color of our nav drawer labels while they are in the active state. Add
the following to the AppNavigator variable’s options object:

const AppNavigator = createDrawerNavigator({
Home: {
screen: HomeScreen
},
About: {
screen: AboutScreen
},
Contact: {
screen: ContactScreen

http://www.ContactScreen.js
http://www.StyleSheet.create

         

 

   
     
       
   
 

Putting It All Together ◾ 259

}
}, {
initialRouteName: "Home",
contentOptions: {
activeTintColor: '#e91e63'

 }
});

Passing parameters to routes is as easy as two steps:

1. Add parameters to a route by passing them as a second argument to
the navigation.navigate function:

this.props.navigation.navigate('RouteName', { /* params go here */ })

2. Examine the parameters of your screen component:

this.props.navigation.getParam(paramName, defaultValue)

CONCLUSION
In this chapter, we learned how to put it all together; in the following chap-
ter, we will learn how to deploy it to the iOS app store.

http://www.this.props.navigation.navigate
http://www.this.props.navigation.getParam

https://taylorandfrancis.com/

C H A P T E R 10

Deploying to the
iOS App Store

IN THIS CHAPTER

¾ Deploying to the iOS App Store

¾ Preparing your Xcode project

¾ Uploading your application

¾ Beta testing with TestFlight

¾ Submitting the application for review

We taught you how to put everything together in the previous chapter; in
this chapter, we will learn how to dismantle it.

You’ll want to get your excellent application into the hands of your cus-
tomers now that you’ve made it. Depending on the platform, this proce-
dure will be diferent. Tis chapter will cover the steps of presenting an
app to the iOS App Store.

As web developers, we’re accustomed to having more control over our
deployment operations. You’re probably used to sending code to produc-
tion several times in a single day, and versions are typically unimportant.
Te iOS App Store makes deployment far more complicated, and new ver-
sion releases frequently need 1–2 weeks of testing. As a result, it’s vital to
think about the App Store submission and approval process throughout
the planning process.

DOI: 10.1201/9781003310440-10 261

https://dx.doi.org/10.1201/ 9781003310440-10

262 ◾ Mastering React Native

iOS application development is a method of developing mobile appli-
cations for Apple devices such as the iPhone, iPad, and iPod Touch. Te
application is designed in Swif or Objective-C and then made accessible
on the App Store for download.

You might be afraid of iOS development if you’re a mobile app devel-
oper. Every developer, for example, requires a Mac computer, which is
ofen more expensive than Windows-based competitors. Furthermore,
once your product is complete, it must go through a stringent quality
assurance process before it can be published on the App Store.

Regardless of whether your company’s workers, clients, or partners are
among the hundreds of millions of Apple iPhone and iPad users across
the world, there are compelling reasons to engage in iOS app develop-
ment. Furthermore, despite potentially high entry barriers, designing an
iOS app may be just as simple (if not easier) as developing for Android.
With proper preparation and materials, anyone may join the ranks of iOS
app developers.

Are you ready to get started with iOS mobile app development? IBM
provides step-by-step instructions for developing an iOS app with cloud-
based push notifcations and performance monitoring.

COMPLY WITH THE DEVELOPER’S SPECIFICATIONS
Before you create a single line of code in the iOS app development process,
you must have the following:

• An Apple Mac machine running the most recent version of macOS,
as well as Xcode, the integrated development environment (IDE) for
macOS, which is accessible for free from the Mac App Store.

• An active Apple Developer account, which costs $99 per year.

Tese three requirements complement one another: Only active Apple
Developer Program members can submit an app to the Apple App Store.
Only apps signed and published by Xcode may be submitted to the App
Store. Xcode is only available on macOS, which can only be found on
Apple systems.

Te good news is that Xcode provides far more than simply the ability
to sign and publish your fnished project. Te IDE includes a user interface
designer, code editor, testing engine, asset library, and other features that
are essential for iOS app development.

         

Deploying to the iOS App Store ◾ 263

CHOOSE AN IOS PROGRAMMING LANGUAGE
For the time being, there are two programming languages available for
iOS app development.

1. Objective‑C: Introduced in the early 1980s, Objective-C served
as the dominant programming language for all Apple devices
for decades. Objective-C, which is based on the C programming
language, is an object-oriented programming language that
focuses on sending messages to multiple processes (as opposed
to invoking a process in traditional C programming). Many
developers prefer to keep their traditional Objective-C programs
rather than integrate them into the Swift framework, which was
launched in 2014.

2. Swif: Swif is the new “ofcial” programming language for iOS.
While Swif and Objective-C have many similarities, Swif is intended
to utilize a simpler syntax and is more security-focused than its pre-
decessor. Because it shares a run time with Objective-C, legacy code
may easily be merged into modern projects. Swif is straightforward
to learn, especially for programmers who are new to the language.
Swif is quicker, more secure, and easier to use than Objective-C, so
unless you have a compelling reason to continue with Objective-C,
you should intend to use it to create your iOS app.

TAP INTO APIS AND LIBRARIES
Te wide array of developer materials available to you is one of the key
benefts of iOS app development. Because of the standardization, func-
tionality, and consistency of iOS app development, Apple is able to dis-
tribute reliable, feature-rich, and easy-to-use native APIs and libraries as
kits. Tese iOS SDKs allow you to efortlessly link your app with Apple’s
current infrastructure.

If you’re developing an app controller for a smart toaster oven, for exam-
ple, you may utilize HomeKit to standardize communication between the
toaster and the phone. Users will be able to communicate with their smart
toaster oven and smart cofee maker simultaneously. Tere are developer
kits for games, health applications, navigation, cameras, and Siri, Apple’s
virtual assistant.

Tese comprehensive kits let you easily make use of iOS capabilities and
integrate third-party applications, allowing you to create apps that link to

 264 ◾ Mastering React Native

the social network, use the camera or native calendar app, or automati-
cally capture replay footage of a particularly intense gaming moment.

EXPAND INTO THE CLOUD
iPhones are extremely powerful smartphones. However, when dealing
with resource-intensive jobs, consider shifing the heavy lifing to the
cloud. You may leverage the cloud for storage, database administration,
and even app caching by connecting your app to cloud-based services via
APIs. You may also add new next-generation services to your app.

IBM Cloud® enables server-side Swif frameworks, such as Kitura, for
developing iOS back ends and web apps. REST APIs may be accessed from
inside the iOS app. Kitura allows you to interact with a variety of IBM
Cloud services, including push alerts and databases, as well as mobile ana-
lytics and machine learning.

TEST LOCALLY, TEST GLOBALLY
Even the fnest coders don’t always create ideal code the frst time. Afer
you fnish developing your iOS app, you’ll need to test it. Fortunately,
unlike when building for Android, you will not need to test mobile devices
from numerous manufacturers. iOS is Apple’s exclusive mobile operating
system, and it is only available on Apple iPhones. Even if you wish to test
your iOS app on many versions of iPhones (with diferent operating sys-
tems), there are fewer devices to test on than with Android.

Your initial line of testing should be done in Xcode. Xcode has auto-
mated UI testing in addition to the typical unit tests you’re familiar with.
To fnd bugs, you may develop tests that traverse around your UI and
interact with your app as if it were a user. Te UI testing does not com-
municate with your code via APIs; instead, it simulates a genuine user’s
interaction with your app. As long as you build tests that cover every part
of your app, you may achieve UI testing that is frequently more thorough
than anything a human can do.

However, until your tests account for every conceivable interaction a
user can have with your app, you should allow people to beta test it. While
you may sideload programs to iOS devices without submitting them to the
Tool Store, Apple’s TestFlight app makes it simple for friends, family, or
your user base to sample your app. Apple Developer Program participants
can use TestFlight to conduct internal testing with up to 25 team members
on up to 30 devices apiece. You may allow your iOS app development team

         

Deploying to the iOS App Store ◾ 265

to test your app in a limited group and prepare for the Apple Beta review
before releasing your new iOS app to external testers.

Once the app has been approved by Apple according to its App Store
review rules, you may invite up to 10,000 people to download a test ver-
sion. Tese people install the TestFlight app and access your app through
a unique URL. You may divide your external testers into bespoke groups
and release diferent builds to each group, allowing you to do A/B testing
and compare responses to features. In exchange, you will get use statistics
immediately, and users will be able to readily provide feedback on any dif-
fculties they encounter.

PUBLISH YOUR APP TO THE APP STORE
You’ll need to submit your iOS app to the App Store once you’ve com-
pleted building and testing it. Xcode allows you to quickly publish and
sign your sofware. Be patient: Te app review process may be time con-
suming, ofen involving numerous cycles of rejection-revision-resubm
ission-rejection before receiving ultimate clearance.

Once you’ve received all necessary permissions, you may create your
App Store page via a tool called App Store Connect and publish your app
to the App Store. If you want to sell your program, keep in mind that
Apple takes 30% of your sales in addition to the $99 yearly Developer
Program cost.

Are you ready to dive into iOS app development? Want to see your iOS
app on iPhones, iPads, and other Apple devices all around the world? IBM
provides a step-by-step instruction for creating an iOS app with cloud-
based push alerts and performance monitoring.

Te Introduction to Mobile Foundation course, which is part of the
IBM Cloud Professional Developer Program, educates you about the
IBM Mobile Foundation’s features and capabilities, as well as IBM Push
Notifcations.

Creating an Xcode Project for an App

Begin by establishing an Xcode project from a template for your app.

Overview
To start an Xcode project for your app, pick a template for the platform on
which it will run and the sort of app you want to create, such as a single
view, game, or document-based for iOS. Xcode templates ofer necessary

266 ◾ Mastering React Native

project information and fles to enable you to get started on building your
app as soon as possible.

Prepare Confguration Information
Gather the information that Xcode needs to identify your app and you as
a developer before starting a project:

• Product name: Te name of your app as it will appear in the App
Store and when installed on a device. Te product name must be at
least two characters long and no more than 255 bytes in length, and
it should be comparable to the app name you input later in App Store
Connect.

• Organization identifer: A reverse DNS string that is unique to
your business. Use com.example if you don’t have a company iden-
tifcation. followed by the name of your organization, then replace it
before distributing your app.

• Organization name: Te name that displays across your project
folder in boilerplate language. Te organization name, for example,
appears in the source and header fle copyright strings. Te organi-
zation name in your project difers from the organization name on
the App Store.

Important
By default, the organization identification is included in the bundle
ID (CFBundleIdentifier). When you first start your app on a device,
Xcode utilizes the bundle ID to register an App ID. If you are not part
of the Apple Developer Program, you are limited to a certain amount
of App IDs, and you cannot change the App ID after submitting a
build to App Store Connect, so choose your organization identifica-
tion carefully.

Create a Project
Launch Xcode, then select File > New > Project or click “Create a new
Xcode project” in the Welcome to Xcode window. Under Application,
choose the target operating system or platform and a template from the
sheet that displays. Fill out the forms and select choices on the following
pages to confgure your project.

         

Deploying to the iOS App Store ◾ 267

You must include a product name and an organization identity since
these are required to generate the bundle identifcation, which is used to
identify your app throughout the system. Enter the name of your organiza-
tion as well. Enter your name if you are not a member of an organization.

Choose SwifUI as the user interface before clicking Next on this sheet
to build for all platforms and receive an in

Manage Files in the Main Window
When you start a new project or access an existing one, the main window
displays the fles and resources required to construct your programe.

Te navigation section in the main window allows you to reach vari-
ous aspects of your project. Select fles to edit in the editor area using the
project navigator. When you choose a Swif fle in the project navigator, for
example, the fle opens in the source editor, allowing you to alter the code
and create breakpoints.

Te inspector box on the right additionally displays information about
the selected fle. To update the properties of a fle or user interface element,
utilize the Attributes inspector in the inspector area. Click the “Conceal
or reveal the Inspectors” button in the upper-right corner of the toolbar to
hide the inspector to make more area for the editor.

Te toolbar is used to design and launch your program on a simulated or
real device. Choose the app target and a simulator or device from the run
destination option in the toolbar for iOS apps, then click the Run button.

For macOS programs, just press the Run button. When you run your
app, the debug section appears, allowing you to manage the execution
of your program and analyze variables. When the program reaches the
breakpoint, utilize the debug controls to walk through the code or resume
execution. When you’re through with the program, click the Stop button
on the toolbar.

You may get an interactive preview of the user interface while creating
your app if you utilize SwifUI. Te changes you make in the source fle, the
canvas on the right, and the inspector are all kept in sync by Xcode. You
may also run the app with the debugger using the controls in the preview.
See Creating Your App’s Interface with SwifUI for more information.

To alter the properties you specifed when you created your project,
click the project name in the project navigator at the top, and the proj-
ect editor appears in the editing area. Te majority of the properties you
entered are displayed in the project editor’s General pane.

268 ◾ Mastering React Native

BETA TESTING WITH TESTFLIGHT
Testfight Is Used for Beta Testing

It is general knowledge that beta testing is one of the acceptance testing
procedures used by a client base. Its objective is to allow clients to assess
their level of satisfaction with the project.

Customers, therefore, examine the product’s usefulness, usability, qual-
ity, and interoperability with other apps. Beta testing is ofen carried out
immediately following alpha testing.

We get prior experience working with the application and sending
requests with its design, functionality, and interface during testing and
based on its results.

Because beta testers evaluate the GM version of the app with all poten-
tial functionalities, these qualities provide for a qualitative evaluation of
the fnal product.

Tere are two types of beta testing:

1. Open: When a large number of testers participate in the process it
enables for a large number of recommendations and comments. Any
interested party can participate in such testing and provide comments.

2. Closed: Tis testing may only be carried out by those who have been
invited. Typically, this is done in small groups.

Advantages of Beta Testing

Te key benefts of this type of testing should be highlighted:

1. Testers with access to the app and its functionality can assess the
fnal product;

2. Tis sort of testing is performed by a wide number of people, each of
whom brings a distinct viewpoint to the project and its qualities;

3. It’s possible to cover a wide range of platforms, browsers, and operat-
ing systems;

4. Te programe makes it easier to fnd and fx bugs in the app. Afer
beta testing, regular usability issues (which clients confront and
which were previously regarded as minor faws) might turn into seri-
ous defects. Because of the problems, users are unable to fully utilize
all of the product’s capabilities.

         

Deploying to the iOS App Store ◾ 269

Beta Testing by Using Testfight

You must use your own services if you want quick access to program data
for beta testing. We’ll look at one of the most commonly used applications
for this type of testing. Tis product was released by Apple experts. It has
to do with TestFlight.

Apple’s ofcial program for iOS devices, TestFlight, was designed with
the goal of performing open beta testing of these devices. Tis solution
helps to make the process of gathering code from devices that are being
tested easier (UDID).

Customers can also use TestFlight to review new apps for iOS, watchOS,
and tvOS that aren’t yet available in the AppStore.

Because there are a few iOS devices with older versions than this one,
this product only works with applications version 8.0 and up.

Te fact that TestFlight is free is a signifcant beneft. Furthermore, the
developers claim that the core functionality will remain free.

Main Functions of Testfight

• 1000 beta testers will have open access to the program via e-mail;

• Multiple devices will be tested simultaneously;

• Developers will be able to download, install, and update program
testing builds;

• It is possible to download an ofcial app from the App Store without
providing the developer with a UDID code for testing purposes;

• Messaging on the release of a new sofware build (before e-mails);

• Beta testers can provide comments on this service to the customer or
developer of the sofware;

• Tere are several test runs and sofware failures visible. Tere is also
information about debugging.

TestFlight makes beta testing new products simple and straightforward.

Algorithm for Testing the Application’s Beta Versions

1. Download TestFlight from the App Store. Tis procedure is identical
to that of installing any other app on an iOS device.

270 ◾ Mastering React Native

2. Afer receiving a TestFlight invitation, you must download an of-
cial beta version of the program from the App Store (the link is in the
TestFlight).

3. Te service can activate from the home display once the installation
is complete. Because of the orange dot before the program’s name,
you can tell this version is a demo.

4. In TestFlight, you can get more information about a product by click-
ing on its name. Developers occasionally provide information about
topics that should be tested or new upgrades. It is possible to install
the new application version from that screen. If you need to compare
the functional capabilities of diferent versions, click to “Previous
builds” and search for the ones you require.

5. Te “Send Beta Feedback” tool allows you to send data regarding
detected faults or write to the developers.

6. If you no longer want to test the sofware, simply click “Stop Testing”
on the TestFlight window.

Not only may the TestFlight service be used to test the program’s beta ver-
sions. It is also used to distribute program builds to testers.

Internal Testers

Up to 100 employees of your organization with the roles of Account
Holder, Admin, App Manager, Developer, or Marketing can be designated
as beta testers. You can even make numerous groups and assign diferent
builds to each one, depending on the qualities each one should emphasize.
While you iterate on your app, each user can test beta builds on up to 30
devices and have access to all of your beta builds.

External Testers and Groups

Invite up to 10,000 external testers by e-mail or by enabling and publish-
ing a public link, which invites anyone to test your app. Create a group of
testers and assign them to the builds you want them to test. You can even
make numerous groups and assign diferent builds to each one based on
the aspects you wish to emphasize. Before testing can begin, the initial
build of your app must be authorized by TestFlight App Review. When
you add a build to a group, it is automatically sent for review.

         

Deploying to the iOS App Store ◾ 271

Using E-mail to Invite Testers
If you have a tester’s e-mail address, you can send them an invitation
along with a link to download and test your app. E-mail can be an excel-
lent approach to distributing beta versions of your sofware with an
existing group of external testers or specifc persons you’d like to ask to
test.

Using Public Links to Invite Testers
If you don’t already have a network of testers, public links are a great way
to connect with individuals who can test your app. It is not necessary to
give any contact information. Simply go to your app’s TestFlight page,
choose an existing group, and then click Enable Public Link. Afer that,
the URL may be copied and shared on social media, messaging platforms,
e-mail campaigns, and other platforms. To promote your sofware, don’t
localize the TestFlight name or generate TestFlight badges.

You can also use the public link to limit the number of testers who can
join. If the group limit is reached or your public link is disabled, anyone
seeking to join your beta will receive a warning saying your beta is no
longer accepting new testers. Consider where you distribute your public
link and when it might be appropriate to remove it to provide a positive
user experience.

Test Information
When sharing your app with external testers, you’ll need to tell them what
to test as well as any other pertinent information. Tese details should be
entered on the Test Information tab of your app in App Store Connect.
You should also include an e-mail address that you check regularly so that
you can receive and respond to tester comments. When sending your sof-
ware to internal testers, test information is optional.

Getting Feedback
Testers can give feedback immediately from your app using the TestFlight
app for iOS, iPadOS, and macOS by taking a snapshot. Tey can also
provide more information about an app crash right afer it happens. Go
to your app’s TestFlight page in App Store Connect and click Crashes
or Screenshots in the Feedback section to see this feedback. Te e-mail
address you give in Test Information will get feedback from testers on iOS
12 or earlier, tvOS, or watchOS.

272 ◾ Mastering React Native

SUBMITTING THE APPLICATION FOR REVIEW
You’re publishing your frst app, or you haven’t done so in a long. To sub-
mit an app to App Store, it’s not as simple as clicking a start button, but it’s
not as complicated as it may look.

Tis guide assumes you’ve already joined the Apple Developer Program,
that your app complies with Apple’s App Review and Human Interface
Guidelines, and that you’re ready to release. It’s an updated version of
Gustavo Ambrozio and Tony Dahbura’s excellent guide, complete with
information from the most recent version of Xcode, which streamlines
some of the procedures and more context from Apple’s own documenta-
tion. Here’s how to get your app into the App Store for the beta testing or
to go live in the App Store.

Code Signing: Create iOS Distribution Provisioning
Profle and Distribution Certifcate

You’ve been utilizing a development provisioning profle and a develop-
ment certifcate that are only for specifed devices. To distribute your pro-
gram to beta testers or consumers via the App Store, you’ll need a separate
distribution provisioning profle and distribution certifcate.

Te most straightforward method is to use Xcode. Xcode will build and
manage certifcates, signing IDs, and device registration for you if auto-
matic signing is enabled. You can skip to step 2 if automatic signing is
already activated or if you don’t require assistance with signing.

(In some circumstances, manual signature may be preferable.) Here’s a
step-by-step guide to manually signing your app. Keep in mind that the
signature mechanism for all targets in a bundle should be the same.

• First, if you haven’t already, add your Developer Program account to
Xcode. Select Xcode from the top menu, then Preferences.

• Go to Accounts and choose it. Press the + sign in the lower-lef cor-
ner of the window, then Add Apple ID.

• Click Sign In afer entering your Apple ID and password for the
Apple Developer Program.

• Afer that, turn on automatic signing. Choose a target in the Project
Editor and then General.

         

Deploying to the iOS App Store ◾ 273

• To expand the settings, scroll down to the “Signing” section and
click the triangle icon.

• Select the box that says “Automatically manage signatures.” Choose
your team.

When you attach a new device to your Mac, Xcode detects it
and adds it to your team provisioning profle automatically. It’s
worth noting that in order for your app to run on a device, the
device must register on your team provisioning profle.

Create App Store Connect Record for Your App

Get an App Store Connect account by:

• Being the team agent and creating your own App Store Connect
organization.

• Being invited by existing organization as a user with Admin,
Technical, or App Manager role.

• Signing in with the Apple ID you used to enroll in the Apple
Developer Program. More information regarding App Store Connect
user accounts may be found here.

For Paid Apps
If you’re releasing a paid app, you’ll need to sign a contract outlining pay-
ment arrangements.

• On the App Store Connect dashboard, choose Agreements, Tax, and
Banking.

• Under “Request Contracts,” select Request.

• Examine the agreement that displays, check the box indicating that
you agree to the conditions, and then click “Submit.”

• In the Contact Info column of “Contracts In Process,” select Set Up.

• Click Add New Contact in the pop-up window and fll in your details.

274 ◾ Mastering React Native

• Click Set Up, then Add Bank Account in the “Bank Info” column
of the “Contracts In Process” column to preserve your account
information.

• Click Set Up in the “Tax Info” box. Because a U.S. Tax Form is
required, click Set Up and fll out the necessary information. Set up
any additional country tax forms that are required.

• Te contract’s status will now be “Processing” afer you’ve performed
the steps above. Te contract will now display under “Contracts
In Efect” afer Apple has verifed the information you submitted,
which should take around one hour.

Add a New App
Select My Apps from App Store Connect panel and click the + sign in the
upper lef-hand corner, then New App.

To create a new App Store Connect record, you’ll need the follow-
ing information: platform, app name, default language, bundle ID, and
SKU. You won’t be able to change these details aferward, so proceed with
caution.

• To make your app more discoverable, include keywords in the name.

• Te bundle ID must match the bundle identifcation in your Xcode
project Info.plist fle (General > Identity section of the target).

• Te SKU is hidden from users and must be specifed by you. It could
be a frm identity or something else that has personal importance
for you. Letters, numerals, hyphens, periods, and underscores are
all acceptable characters, and it must start with a letter or number.

At this point, you can also set user access if necessary.

Archive and Upload App Using Xcode

You must upload the build through Xcode before submitting your app for
evaluation through App Store Connect.

• Select the Generic iOS Device as the deployment target in Xcode.

• From top menu, select Product and then Archive.

• Te Xcode Organizer will open, revealing any previous archives
you’ve generated.

http://www.Info.plist

         

 

 

 

 

Deploying to the iOS App Store ◾ 275

• In the right-hand panel, make sure the current build is chosen and
click Upload to App Store.

• Click Choose afer selecting your credentials.

• Click Upload in the bottom right-hand corner of the next window
that displays.

When the upload is complete, a success message will show. Afer that,
click Done.

Confgure App’s Metadata and Further Details
in its App Store Connect Record

Additional languages, categories, and your app’s Privacy Policy URL can
be added to the “App Information” page in the “App Store” tab of App
Store Connect.

• On the “Pricing and Availability” page, make your app free or choose
a price tier.

• You can confgure any App Store technology in your app, such as
Game Center and in-app purchases, under the “Features” page.

• In the lef-hand panel under “App Store,” your app is indicated with
a yellow dot and the state “Prepare for Submission.” Choose the build
you want to customize. Tis is where you’ll fll in the details for your
App Store product page.

• Screenshots of your sofware should be uploaded (in JPEG or PNG
format and without status bars). You can upload a group of screen-
shots for one device and then utilize them across all sizes.

• Afer your screenshots have fnished uploading, click Save in the
upper right-hand corner of the window.

⚬ Fill in your app’s description, keywords, support URL, and mar-
keting URL by scrolling down.

⚬ Te description and keywords for your app are quite important.
Make sure they’re search engine friendly.

⚬ Te support URL might be as simple as a contact form on a land-
ing page.

⚬ Te marketing URL is optional and can be your app’s website.

 

 

 

 

 

 

276 ◾ Mastering React Native

• Upload your app’s icon, version number, copyright, and contact
information in the “General App Information” box below.

⚬ Your app’s icon should be 1024px x 1024px, and the version num-
ber in Xcode should match exactly.

⚬ Te copyright information is usually in the form of “Copyright
(c) 2017, Instabug, Inc.”

⚬ Tis is where users will see your contact information.

• Select the appropriate choices for your app by clicking Edit next to
“Rating.” Be truthful; if your app doesn’t match its rating, it may be
rejected during review.

• Enter your contact information, any notes you have for the reviewer,
and the version release date in the “App Review Information” area.

⚬ Te reviewer’s contact information is listed here in case they
need to contact you directly.

⚬ Details regarding specifc hardware they might need or user
account information they might need for access can be included
in the reviewer’s notes.

⚬ For frst releases, the version release date should usually be set to
automatic.

• Click Save in the upper right-hand corner. You’re almost ready to hit
the “Submit for Review” button.

Submit Your App for Review

• Scroll to the “Build” section in your app’s App Store Connect record.

• Select “Select a build before submitting your app” from the drop-
down menu.

• Select the Xcode build that you’ve uploaded. Ten click Done in the
bottom right corner, Save in the top right corner, and Submit for
Review.

• Finally, click Submit afer answering the questions about Export
Compliance, Content Rights, and Advertising Identifer.

• Te status of your app is currently “Waiting For Review.”

         

Deploying to the iOS App Store ◾ 277

Check on the Status of App

Select Activity from the top horizontal menu in App Store Connect, then
App Store Versions from the lef-hand panel.

How Long Does It Take to Get Approval from an App Store?
Approval usually takes one to three days, and it can take up to 24 hours
for your app to show in the App Store once it has been approved. Here’s a
look at the current average app store review times.

At each level, you’ll get an e-mail notifcation. Here is where you can
fnd out more about each of the statuses.

You can request an accelerated review if you’re on a tight deadline and
need to time your release with a certain event or if you need to release a
new version with an urgent bug patch.

If Your Application Has Been Rejected
Before you can resubmit your app for evaluation, you’ll need to make
the necessary changes. If you have any questions, use the Resolution
Center in App Store Connect to contact Apple. If you think your app was
wrongfully denied, you have the option to escalate the situation and fle
an appeal.

Performance is one of the most prevalent grounds for rejection from
the Apple App Store. Make sure your program is fnished, that you’ve
thoroughly tested it, and that all bugs have been fxed. Using a bug report-
ing tool during beta testing will lessen the likelihood of your app being
rejected due to performance issues.

If Your Application Has Been Approved
Congratulations! You’ve arrived at the App Store. App Store Connect
allows you to see downloads, sales, ratings, and reviews immediately.

SUMMARY
Here’s how to submit your app to the Apple App Store:

1. Create an iOS distribution provisioning profle and distribution
certifcate.

2. Create an App Store Connect record for your app.

3. Archive and upload your app using Xcode.

278 ◾ Mastering React Native

4. Confgure your app’s metadata and further details in its App Store
Connect record.

5. Submit your app for review.

6. Check on the status of your app.

CONCLUSION
In this chapter we learned about deploying an app to IOS App Store, in
the next chapter we will learn about deploying apps to the Android store.

C H A P T E R 11

Deploying Android
Applications

IN THIS CHAPTER

¾ Deploying Android applications

¾ Setting application icon

¾ Building the APK for release

¾ Distributing via e-mail or other links

¾ Submitting your application to the play store

Here, you will learn how to install an application using Kubernetes WebUI
and CLI. We will disclose the application through NodePort Service.

• Uninstall the app from the dashboard.

• Move the application from a YAML fle using kubectl.

• Display the service using NodePort.

• Access the app without the Minikube collection.

We will start the minikube dashboard.

DOI: 10.1201/9781003310440-11 279

https://dx.doi.org/10.1201/ 9781003310440-11

           
                           

                       
                       

                               
                 

280 ◾ Mastering React Native

Launching this command will open a browser with Kubernetes Web
UI. By default, the dashboard is connected to the defaultNamespace. All
operations will be performed within the default name feld.

In the event that the browser does not open a tab, try to access the dash-
board in this URL:

http://127.0.0.1:377/api/v1/namespaces/kubernetes.dashboard/services/
https:kubernetes-dashboard:/proxy/.

Uninstall a web server using the Nginx image.
In the dashboard, we can access the creative interface, by clicking on the

‘+’ icon. We will use the Create from the form tab to create our application.
Fill in the application name feld, using the web dash. Dock image to

use isnginx. We will set up 1 Pod, and defne the Service feld as external,
the visible port is defned as 8080 and the target port as 80.

In advanced options, we can specify options such as labels, Namespace,
etc. Just by clicking the Install button, we will activate the whole program.
As expected, we see the post named web-dash in the default namespace.
It will create ReplicaSet, which will eventually create an iPod with the
default k8s: web-dashlabel.Applications is displayed Te dashboard com-
pares individual services displayed in CLI viakubectl.

We count the post.

$ kubectl get deploy
NAME READY UP-TO-DATE AVAILABLE AGE
web-dash 1/1 1 1 4m6s
We list the ReplicaSet
$ kubectl get rs
NAME DESIRED CURRENT READY AGE
web-dash-7797d85794 1 1 1 4m46s

And also list the Pods

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
web-dash-7797d85794-rrqt2 1/1 Running 0 5m34s

Let’s also look at labels and selectors, which play a key role in equally
collecting a subset of items for tasks.

See Pod Details, using the same word as kubectl fnd pods

http://127.0.0.1:377/

         

       
   

   
       

 
     

             
 

     
         

           
 

 
     

             
         

             
         
             
           
             
     

                                 
   

                   

Deploying Android Applications ◾ 281

$ kubectl describe pod
Name: web-dash-7797d85794-rrqt2
Namespace: default
Priority: 1
Node: minikube/191.168.237.232
Start Time: Tue, 15 Jan 2021 20:28:23 +0100
Labels: k8s-app==web-dash

pod-template-hash==7797d85794
Annotations: <none>
Status: Running
IP: 172.17.0.5
IPs:
IP: 172.17.0.5
Controlled By: ReplicaSet/web-dash-7797d85794
Containers:
web-dash:
Container ID: docker://dfda29f03732b43da02904faab

a5a874f355d653e2eb35a976a5beb67344c7cb
Image: nginx
Image ID: docker-pullable://nginx@sha256:10b8

cc432d56da8b61b070f4c7d2543a9ed17c2b23010b43af434f
d40e2ca4aa
Port: <none>
Host Port: <none>
State: Running
Started: Tue, 14 Jan 2021 20:28:37 +0100
Ready: False
Restart Count: 1

...

We will only focus on the Labels feld, then we have a set Label to k8s-
app=web-dash, while the is more information about the Pod.

LIST THE PODS, WITH THEIR ATTACHED LABELS
With the L option we can add additional columns to the output to include
Pods with their own labeled keys and their values.

$ kubectl get pods -L k8s-app, label2
NAME READY STATUS RESTARTS AGE
K8S-APP LABEL2
web-dash-7797d85794-rrqt2 1/1 Running 0 12m
web-dash

                               
                 

 
 
   

 
 
   
     
 
   
     
       

282 ◾ Mastering React Native

SELECT PODS WITH THE LABEL PROVIDED
With the -l option we select all Pods with the Keyboard application for the
k8s application set to create a web-dash

$ kubectl get pods -l k8s-app=web-dash
NAME READY STATUS RESTARTS AGE
web-dash-7797d85794-rrqt2 1/1 Running 0 15m

DEPLOY A WEBSERVER USING THE CLI
We will uninstall the application using CLI next, let’s frst uninstall the
Post we created.

$ kubectl delete deploy web-dash
deployment.apps “web-dash” deleted

It will delete the ReplicaSet and Pods it created.

$ kubectl get rs
No resources found in default namespace.
$ kubectl get pods
No resources found in default namespace.

.
We will create a YAML confguration fle with post details. We will

name it webserver.yaml

apiVersion: applications / v1
type: Posting
metadata:
Name: webserver
labels:
app: nginx

spec:
templates: 3
selector:
matchL Labels:
app: nginx

template:
metadata:
labels:
app: nginx

http://www.deployment.apps
http://www.webserver.yaml

         

   
     
     
       
       
       

                       
                       

                               
                 
                 
                 

 
 
   

 
 
 
   

Deploying Android Applications ◾ 283

spec:
containers:
- name: nginx
photo: nginx: alpine
ports:
- ContainerPort: 80

Next, we will create a post from this fle. By using the -f option you can
transfer the fle as specifed.

$ kubectl create -f webserver.YAML
deployment.apps/webserver created

LIST REPLICASETS AND PODS

$ kubectl get rs
NAME DESIRED CURRENT READY AGE
webserver-7fb7fd49b4 3 3 3 51s
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
webserver-7fb7fd49b4-5csv6 1/1 Running 0 64s
webserver-7fb7fd49b4-89d5l 1/1 Running 0 65s
webserver-7fb7fd49b4-l9ttt 1/1 Running 0 64s

EXPOSING AN APPLICATION
We have explored diferent ServiceTypes, with which we can defne how
to access the service. When we connect to that hole from anywhere, we
are sent to ClusterIP Service. Let’s create a NodePort ServiceType. We are
building a webserver-svc.yaml.

apiVersion: v1
kind: Service
metadata:
name: web-service
labels:
run: web-service

specfic:
type: NodePort
ports:
- port: 8080
protocol: TCP

http://www.deployment.apps/webserver
http://www.webserver-svc.yaml.

 
   

                               

                 
       

       
       

                   
               

                 
             

               
                   

             
                     

                     
                   

             
               

284 ◾ Mastering React Native

selector:
application: nginx

We will create a service object.

$ kubectl create -f webserver-svc.yaml
service / web service created

We are also provided with a direct way to create a Service by exposing
Pre-built Submissions

$ kubectl expose deployment webserver --name = web-
service --type = NodePort
service / web service revealed

We can see its ClusterIP with a map of 80: 32255 in the port section,
which means we have kept a 32255 vertical hole in place.

$ kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
kubernetes ClusterIP 10.96.0.1 <none>  443/
TCP 36m
web-service NodePort 10.100.112.57
<none>  80:32255/TCP 2m19s

To get more details about the Service, we are going to describe it.

$ kubectl get svc web-service
Name: web-service
Namespace: default
Labels: run=web-service
Annotations: <none>
Selector: app=nginx
Type: NodePort
IP Families: <none>
IP: 10.100.112.57
IPs: <none>
Port: <unset> 80/TCP
TargetPort: 80/TCP
NodePort: <unset> 32255/TCP/UDP

http://www.webserver-svc.yaml
https://10.100.112.57
https://10.100.112.57

         

                

 
                 

 
   
 

Deploying Android Applications ◾ 285

Endpoints: 272.17.0.5:80,172.17.0.0:80,172.
17.0.7:80
External Traffic Policy: Cluster
Events: <none>

We can see that the service is using app=nginx as a Selector to logi-
cal group our three Pods, which are used as endpoints in the Endpoints
section.

ACCESSING AN APPLICATION
First let us examine the IP of our minikube cluster

$ minikube IP
192.168.237.232

Now we should access our Nginx server via this IP and the hole in the
list using kubectl get command.

LIFE AND READINESS TO TEST
In some cases, our requests may not be answered or may be delayed dur-
ing the presentation. Lifetime Use and Readiness Testing allows Beletto
to control app life in the Pod container and force re-responding of the
unresponsive app container. It is to allow sufcient time for the Readiness
Probe to fail a few times before passing, and only to check the Liveness
Probe. Otherwise we may be caught in endless re-creation – loop failure,
as the container may not reach the right situation. Liveness Probes can be
set by specifying the Liveness command, Liveness HTTP request, or TCP
Liveness probe.

Useful if the app crashes into a deadlock or crashes suddenly. In that
case, the container will no longer work and may restart the container to
make the request available again. For example, liveliveness command
checks for fle / tmp / health presence.

apiVersion: v1
kind: Pod
metadata:
labels:
test: liveness
name: liveness-exec
spec:

 
 
   
   
   
   
   

   
     
       
       
       
     
     
     

                         
                         
     

 

                     

                     

                     

                     

---- ------ ---- ---- -------

286 ◾ Mastering React Native

containers:
- name: liveness
image: k8s.gcr.io/busybox
args:
- /bin/sh
- -c
- touch /tmp/healthy; sleep 30; rm -rf /tmp/

healthy; sleep 600
livenessProbe:
exec:
command:
- cat
- /tmp/healthy
initialDelaySeconds: 3
failureThreshold: 1
periodSeconds: 5

File presence / tmp / health is scheduled to be checked every fve sec-
onds using the periodSeconds parameter. Te frst DelaySeconds param-
eter asks the kubelet to wait three seconds before the initial investigation.
If you use a command-line argument on a container, we will frst create
a / tmp / healthy fle, and then delete it afer 30 seconds. File extraction
will trigger probe failure, while the faillanceTreshold parameter set to 1
instructs kubelet to declare an unhealthy container afer a single probe
failure and trigger container reload as a result.

Afer 30 seconds we will explain the iPod, and look at its Events section.

$ kubectl describe pod liveness-exec
Events:
Type Reason Age from Message

Normal Scheduled 63s default-
scheduler Successfully assigned default/liveness-
exec to minikube
Normal Pulling 63s kubelet Pulling image
“k8s.gcr.io/busybox”
Normal Pulled 62s kubelet Successfully
pulled image “k8s.gcr.io/busybox” in 1.147125841s
Normal Created 62s kubelet Created container
liveness
Normal Started 61s kubelet Started container
liveness

http://www.k8s.gcr.io/busybox
http://www.k8s.gcr.io/busybox
http://www.k8s.gcr.io/busybox

         

                 

                     

       

             

       

             

       

             

                                     

 
   
 

 
 
   
   
   
   
     

Deploying Android Applications ◾ 287

Warning Unhealthy 28s kubelet Liveness probe
failed: cat: cannot open ‘/tmp/healthy’: No such
file or directory
Normal Killing 28s kubelet Container
liveness failed liveness probe, will be restarted
Normal Pulling 28s (x3 over 2m3 (about twice the
volume of a large
refrigerator)8s) kubelet Pulling image “k8s.gcr
.io/busybox”
Normal Created 27s (x3 over 2m3 (about twice the
volume of a large
refrigerator)7s) kubelet Created container
liveness
Normal Started 27s (x3 over 2m3 (about twice the
volume of a large
refrigerator)6s) kubelet Started container
liveness
Normal Pulled 27s kubelet Successfully
pulled image “k8s.gcr.io/busybox” in 566.481414ms
(about half second)

We note that in some cases, the Liveness investigation failed when it
was unable to resolve the cat command order in / tmp / healthyfle. Afer
that failed test, the container will be created again.

In the following example kubelet sends an HTTP GET request to the
application’s location / health point. If it returns a failure, the kubelet will
restart the afected container.

apiVersion: v1
kind: Pod
metadata:
labels:
test: liveness
name: liveness-http
spec:
containers:
- name: liveness
image: k8s.gcr.io/liveness
args:
- /server
livenessProbe:
httpGet:

http://www.k8s.gcr.io/busybox
http://www.k8s.gcr.io/busybox
http://www.k8s.gcr.io/busybox
http://www.k8s.gcr.io/liveness

       
       
       
       
         
     
     

 
 
   

 
 
   
   
   
   
     
       
     
     
   
     
       
     
     

288 ◾ Mastering React Native

path: /healthz
port: 8080
httpHeaders:
- name: Custom-Header
value: Awesome

initialDelaySeconds: 3
periodSeconds: 3

With the TCP Liveness Probe, kubelet attempts to open the TCP Socket
in a container, which uses the app, failing which the kubelet will mark it
as unhealthy and restart the afected container.

apiVersion: v1
kind: Pod
metadata:
name: goproxy
labels:
app: goproxy

spec:
containers:
- name: goproxy
image: k8s.gcr.io/goproxy:0.1
ports:
- containerPort: 8080
readinessProbe:
tcpSocket:
port: 8080
initialDelaySeconds: 5
periodSeconds: 10
livenessProbe:
tcpSocket:
port: 8080
initialDelaySeconds: 15
periodSeconds: 20

Afer 15 seconds, view Pod events to verify that liveness probes.

BUILDING THE APK FOR RELEASE
React Native developers are ofen in a position to release their React Native
apps in the Google Play Store for Android users to download. In this tuto-
rial, we will learn how to create an APK for creating indigenous Releases
for Android, using both ReactNative CLI and Studio IDE.

http://www.k8s.gcr.io/goproxy:0.1

         

Deploying Android Applications ◾ 289

We have released all of our React Native to production templates
(Google Play Store demos), so we are aware of the process and errors that
may occur during the production of the React Native Release Android for
APK. We write what we learn in this React Native tutorial to help mobile
developers submit their Android apps for faster production.

Tere are two diferent ways to create a ready-to-produce Android app,
so we present both below.

USING THE REACT NATIVE CLI
First of all, make sure the Android project is fawless. Tat is, it integrates
and works successfully on an Android device or device. So, open an
Android project using Android Studio or launch it in the command line.
If everything is going as planned, you are ready to go.

STEP 1: Generate a Keystore

You will need the Java-generated signature key which is the store key fle
used to generate the usable React Native binary for Android. You can cre-
ate one using keytool terminal with the following command

1. keytool -genkey -v -Keystore your_key_name.
Keystore your_key_alias -keyalg RSA -keysize 2048 -
validity 10000.

Once you have started the keytool service, you will be asked to type a
password. Make sure you remember the password:

You can change your_your_word by any name you want, as well as
your_your_ keywords. Tis key uses 2048 key size, instead of the default
1024 for security reasons.

Terefore, this command asks you to fnd the Keystore password, real
key, and separate word felds for your key. Terefore, everything should be
done manually and carefully.

• Enter your Keystore password: password123

• Re-enter new password: password123

• What is your frst and last name? ABC

• What is the name of organizational unit? Sample Company

• What is the name of organization? Sample

290 ◾ Mastering React Native

• What is the Locality? XYZ

• What is the State or Province? ABC

• What is the country code for this unit? XX

Your terminal output will similar to this:
Press Enter when you are prompted to enter the password for <my-key-

alias>. Note: If you have a new key password, then type it in.
As a result, it generates a store-key fle in your project directory called

my-release-key.Keystore for 10,000 days (approximately 27.5 years). Most
importantly, make a backup copy of this Keystore fle and its details (store
password, nickname, and password) that will be required later.

STEP 2: Adding Keystore to Your Project

First, you need to copy your_key_name.Keystore fle and paste it under the
Android/app directory in your React Native project folder.On Terminal.

mv my-release-key.Keystore /android/app

You need to open your fle location such as android\app\build.Gradle
fle and add the Keystore confguration. Tere are two methods of con-
fguring the project with keystore. First, the common and unsecured way:

1. ^android {
2. ^....
3. ^signingConfigs {
4. ^release {
5. ^storeFile file(‘your_key_name.keystore’)
6. ^storePassword ‘your_key_store_password’
7. ^keyAlias ‘your_key_alias’
8. ^keyPassword ‘your_key_file_alias_password’
9. ^}
10. ^}
11. ^
12. ^buildTypes {
13. ^
14. ^release {
15. ^....
16. ^signingConfig signingConfigs.release
17. ^
18. ^}

https://folder.On

         

Deploying Android Applications ◾ 291

19. ^}
20. ^}

Tis is not a good protection practice as you keep the password secret.
Instead of storing your Keystore password in a .gradle fle, you can set a
build process to notify these passwords when you create a command line.

To request a password for the Gradle build fle, change the confgura-
tion shown above to:

1. ^signingConfigs {
2. ^free {
3. ^storeFile file (‘your_key_name.keystore’)
4. ^storePassword System.console (). readLine (“\

nShop password:”)
5. ^keyAlias System.console (). readLine (“\

nAlias:”)
6. ^keyPassword System.console (). readLine (“\

Alias password:”)
7. ^}
8. ^}

Terefore, you should make sure that the signing blockConfgs appear
before the blockchain buildTypes to avoid unnecessary errors. Additionally,
before proceeding, make sure you have an asset folder under android/app/
src/main/assets. If not, create one. Ten run the next command to build a
pile.

1. React Native bundle – platform android – dev false index.js – bun-
dle-output android / app / src / assets / index.android.bundle

2. --assets-dest android / app / src / main / res /

Note: If you have a flename installed, such as index.android.js, change it
within the command.

STEP 3: Uninstall the APK Generation

Set your fnal guide on android using:

1. cd android

Ten run the next command.

http://www.index.js
http://www.index.android.bundle
https://index.android.js

292 ◾ Mastering React Native

For Windows,

1. Gradlew assembleReleased

With Linux and Mac OSX:

1. ./gradlew assembleRelease

As a result, the APK process is done. You can get the generated APK in
android/app/build/outputs/apk/app-release.apk. Tis is a real app, which
you can download to your phone or download to the Google Play Store.
Congratulations, you have just released the React Native Release Build
APK for Android.

Tere are some common errors that occur in this process sometimes,
such as in the React Native app, when the React Native varies. We present
here the most common Native building mistakes we have encountered in
order to save time and headaches.

If your building fails by the following error:

1. : app: processReleaseResources FAILED

2. FAILURE: Te structure failed without selection.

3. * What went wrong:

4. Failure at work ‘: app: processReleaseResources’.

5. > com.android.ide.common.process.ProcessException: Failed to use
aapt

You can fx this React Native Android build error by getting started:

1. ^cd ..
2. ^
3. ^rm -rf android / app / src / res / drawable- *
4. ^
5. ^Lots of react-native --platform android --dev

false \
6. ^--entry-file index.js \
7. ^
8. ^--bundle-output android / app / src / assets /

index.android.bundle \

http://www.com.android.ide.common.process.ProcessException:
http://www.index.js
http://www.index.android.bundle

         

  

Deploying Android Applications ◾ 293

9. ^
10. ^--assets-dest android / app / build / res /

merged / release /
11. ^
12. ^cd android && gradlew assembleRelease

Tese are the steps to create an APK Signed Out of React Native for
Android apps, which can be published on the Google Play Console.

Generate React Native Release Build with Android Studio
As before, make sure your Android project is fawless.

Step 1: Set Your Android Product Location: To create an APK (app
format you will download from the Google Store), you need to install
Android Studio. Most importantly, make sure you have 27 versions
of the SDK as React Native is used.

Step 2: Install JDK: You need to make sure you have the latest
Java development kit installed (as in version 8). Installation var-
ies depending on your location. As a result, you use Oracle’s Java
SDK or you can use SDKMAN to install other options, such as
OpenJDK.

Step 3: Generate the released APK using Android Studio: Navigate
to the app’s side-release bar. Here, you can see a list of tracks for the
various test categories. Click MANAGE on the production track.
Ten click CREATE RELEASE to create a Native Android build
APK.

You will encounter a message about using Google Play Signing App. Tis
is a new feature that puts key management in Google. Tis is an important
feature because if you manage your keys and lose them, you will no longer
be able to issue updates to your app.

In fact, you have to create a new one under a new name. For that, you
need to generate an upload key.

1. Open that application in Editor by browsing the folder of your React
Project.

2. Navigate to the Build tab, click on Generate signed bundle / APK

294 ◾ Mastering React Native

3. Select APK to generate release APK for React Android project., Click
on Next.

4. Under Key store path click Create new.

5. Pick a path like /home/User/keystores/android.jks.

6. Select passwords for the Keystore key and then enter the certifcate
information.

Tus, click on OK, then on Next. Select both the V1, and V2 signature ver-
sion, then click Finish.

As a result, a build starts afer which you can see both app-x86-release
.apk & app-armeabi-v7a-release.apk inside of android/app/release in the
project folder.

Tis way, you can generate an APK release version of your React Native
Android project. Tis is the last step in producing the React Native Release
Build for Android. You can now download your app to Google Play.

HOW TO SEND E-MAIL FROM REACT NATIVE APPLICATION
in fact, we will go to, cc, bcc, subject, body in function and open the Gmail
name box. For this, we need to use the communication dependence i.e.,
React Native-communications. In the app, the client needs to send an
e-mail to the support section or make a token. Today this is a common
feature of the program so let us start with an example.

1. Create a new project.

In our case, we are using a previous expo project. You can create a new
project using the following command:

>>> react-native init projectName

2. Add Dependence.

We need to use the communication dependence. use the following com-
mand to install it afer successfully installing the next import command:

npm install react-native-communications --save

http://www.android.jks.
http://www.app-x86-release.apk
http://www.app-x86-release.apk
http://www.app-armeabi-v7a-release.apk

         

 
 
 
 
 

 
 

 

 
   
     

     
     
     
     
   
 

Deploying Android Applications ◾ 295

3. Import the following components.

Import the following components in JS fle

enter React, {Part} from “react”;
enter {
Remember,
Style Sheet,
Text,
Text input,
Button,
Consolidation,
Court,
Warning
} from “react-native”;
import Communication from “traditional-speaking”;

4. Send an e-mail from the tradition.

al app
We use the following method to open the e-mail inbox. You can trans-

fer to, cc, bcc, title, body text by parameters as below

/ * Email delivery function (to, cc, bcc, title,
body) * /
openEmail = () => {
Communications.email (
[“techupcode@gmail.com”, “contact@techup.co.in”],

<---- local emails
null, <--- CC email
null, <--- bcc
“Enter Title”, <--- Title
“Enter body mail” <--- Body text
);
};

We need to call this function by clicking a button because I added one
button so let’s see the full point code for a better understanding.

5. App.js

http://www.Communications.email
http://www.techupcode@gmail.com
http://www.contact@techup.co.in
http://www.App.js

 
 
 
 
 
 
 
 

 
   
   
     
   
 
 

 
   
     
     
     
     
     
   
 
 
   
     
       
         

       
         

296 ◾ Mastering React Native

Check this full score code from How to send e-mail from React Native
application

import React, { Component } from “react”;
import {
View,
StyleSheet,
Text,
TextInput,
Button,
Linking,
Platform,
Alert
} from “react-native”;
import Communications from
“react-native-communications”;
export default class App extends Component {
constructor(props) {
super(props);
this.state = {
bodayText: ““
};
}
/*Function to send the mail function(to, cc, bcc,
subject, body)*/
openEmail = () => {
Communications.email(
[“techupcode@gmail.com”, “contact@techup.co.in”],
null,
null,
”Enter Subject”,
”Enter body for the mail”
);
};
render() {
return (
<View style={styles.container}>
<Text
style={{ textAlign: “center”, fontSize: 20,

paddingVertical: 30 }}
>
Send Email from React-native App

http://www.this.state
http://www.Communications.email
http://www.techupcode@gmail.com
http://www.contact@techup.co.in

         

       
       
         
         

         
         
       
       
         

       
     
   
 

 
   
   
   
   
 
 
   
   
   
   
   
   
   
   
 

Deploying Android Applications ◾ 297

</Text>
<TextInput
value={this.state.bodayText}
onChangeText={bodayText => this.setState({

bodayText })}
placeholder={“Enter Body”}
style={styles.input}
/>
<View style={{ marginTop: 20 }}>
<Button onPress={this.openEmail} title=“Send

Email” />
</View>

</View>
);
}
}
const styles = StyleSheet.create({
container: {
flex: 1,
alignItems: “center”,
padding: 30,
backgroundColor: “#ffffff”
},
input: {
width: 255,
height: 44,
padding: 10,
margin: 10,
backgroundColor: “#FFF”,
borderColor: “#000”,
borderRadius: 0.5,
borderWidth: 0.5
}
});

DISTRIBUTING THE REACT NATIVE APP
WITH MICROSOFT APP CENTER
Afer all the challenging work you have done in building the app, it is
time to spread it out. Tere are many ways in which distribution can be
done. Ad hoc distribution is done mainly using Diawi, upload to cloud
storage, etc.

http://www.this.state.bodayText
http://www.styles.input
http://www.StyleSheet.create

298 ◾ Mastering React Native

Here we will look at the App center. It is a Microsof distribution tool.
If you use App center, you can track download value, download region,
and much more. It also tracks the built-in so you can track if something
is wrong inside.

Getting Started

1. If you have already created your application in the portal, you can
skip this step.

2. Go to app center.ms.

3. Register or log in ahead, click on Add new, then select Add an appli-
cation from the drop-down menu.

4. Enter a word and a description of your choice.

5. Select the suitable OS (Android or iOS) and select React Native as the
platform.

6. Click the bottom right button Add a new app.

7. Once you have created the app, you can see the Application Secret on
the Settings page. It will be used later.

8. Insert SDK into your application:

9. NPM: npm install appcenter-analytics appcenter-crashes -save-exact.

ART: thread add app center-analytics app center-crashs -exact

Integrating SDKs: To compile SDKs you can fnd ofcial docu-
ments here.

10. Create ad hoc layouts for consecutive locations with appropriate
keys.

11. Go to the app page in the app center, click create new releases, and
upload properties.

12. Create test groups to distribute properties to users.

13. Uninstall the app. Users will receive an e-mail from App center
that the new system has been downloaded. Users can download the
application using the link provided in the e-mail. You can see the
statistics going to the statistics tab.

http://www.center.ms.

         

   
   
   
   
       
       
       
       
   
   
       
   
   
   

Deploying Android Applications ◾ 299

14. Tree ways to send e-mails from your React Native app.

15. Let us explore three separate ways to share e-mails with users in your
React Native app.

Three Ways to Send E-mails from React Native App

Let us explore three separate ways how to share e-mails with users from
your React Native application.

Confguring Linking API
Te way to make a request is to send electronic mail via React’s Linking
API. Tey can help not only by sending e-mails but also by inter-linking
the application within the application, as well as pre-flling error report-
ing e-mails or submitting requests. To create and send an e-mail, let us
use OpenURL (), a method used to open diferent links in the app. Before
redirecting people to a client, the method will always ask to confrm their
intent.

Suppose you need to send a quick customer satisfaction survey just afer
the frst month to gather user information about your app. Since you will
not be able to use the Linking API to post attachments, you will only need
to enter the link. As well as the full version to encode:

// send-email.js
import qs from ‘qs’;
import { Linking } from ‘react-native’;
Export async sendEmail function (in, title, body,
options = {}) {
const {cc, bcc} = options;
let url = `mailto: $ {to}`;
// Create an email link query
const query = qs.stringify ({
theme: theme,
body: body,
cc: cc,
bcc: bc

});
if (question.t)) {
url + = `? $ {query}`;

}
// check if we can use this link
const canOpen = await Linking.canOpenURL (url);

http://www.send-email.js

   
       

   
   

   
     
   

   

300 ◾ Mastering React Native

if (! can unlock) {
drop New Error (‘provided URL cannot be

managed’);
}
return Linking.openURL(url);

}
// example.js
import { sendEmail } from ‘./send-email’;
sendEmail(
‘user@domain.com’,
 ‘We need your feedback’,
‘UserName, we need 2 minutes of time to fill quick

survey [link]’,
{ cc: ‘user@domain.com; user2@domain.com; userx@
domain1.com’ }
).then(() => {
console.log(‘Your message was successfully

sent!’);
});

Te method is time efective, but again, you cannot send attachments.

Working with Your Own Server
For those who avoid working with third-party services providers, there is
a single option to set up their server to enable outside system e-mail. One
includes sending a message via Nodemailer. However, this method has
its disadvantages; in order to use it, you will need to add details to your
SMTP server, which may be a concern for security.

Another option is to set up a hosting server. While it allows sending
e-mails away from the device, it also calls for additional upgrades and
faster delivery. Usually, preparing your server for delivery takes a lot of
time and efort, but this is an option if you do not want third parties to
participate in this process.

Using Third-Party Tools
One of the strongest ways to send messages through the React Native app
is to use third-party services. In order to share e-mails with others in the
back of the app, you need to confgure certain triggers example, clicking
the “sign-in” button, etc. To do this, there are a number of third-party
tools you can use.

http://www.example.js
http://www.user@domain.com
http://www.user@domain.com;
http://www.user2@domain.com;
http://www.userx@domain1.com
http://www.userx@domain1.com
http://www.console.log

         Deploying Android Applications ◾ 301

First, you can combine Firebase with SendGrid and Zapier. Afer mak-
ing an account with Firebase, the goal is to deliver the e-mails afer a
child’s new record appears on the Firebase Website.

Since you can’t send them directly, Zapier will activate the action in the
tool you eventually select (for example, SendGrid), and add one “zaps” to
the child’s record.

Second, you have the option to integrate Firebase CloudBase, Gmail,
and Nodemailer already known. As mentioned above, Firebase can quickly
create multi-event number triggers based on user actions within the app
and send redirecting people to their e-mail requests. Firebase CloudBase
allows us to send such e-mails via Nodemailer. For this last one to work
properly, you need to have an e-mail account that will handle the sending
of letters. One of the tools you can use is Gmail, but you are free to choose
SendGrid in any other way.

Tis method requires setting up and integrating a few tools, which may
cause security concerns, but nevertheless, it is a very fexible way to get
your React Native app to send e-mails.

Wrap Up
Making the app send e-mails by 2021 is worth trying to upgrade UX.
Other than that, doing it in the React Native app is not a challenging task.
You only need to choose the right path. If you just want to deliver sim-
ple e-mails with physical links, API Linking is your way of going. It is
extremely easy and does not take much time to repair.

By sending several types of activated e-mails with custom HTML
templates, you will need to integrate third-party tools. It takes time and
money, though. For those on a less budget, setting up your proxy server
would be a wonderful way to try, but you should spend time setting every-
thing up properly.

Submit Your Request to the Google Play Store
Android requires that every application be signed with a certifcate before
it can be installed. In order to distribute your Android app with the Google
Play Store, the store needs to be signed with the release key that needs to
be used for all future updates. As of 2017 it is possible for Google Play to
control the automatic sign-of release due to the Google Play functionality
app signing. However, before your binary application can be uploaded to
Google Play, it needs to be signed with a download key. Designing Your
Applications page in Android Developer Documents explains the topic

302 ◾ Mastering React Native

in detail. Tis guide summarizes the process and lists the steps needed to
pack a lot of JavaScript.

Produces the Upload Key
You can create a private signing key using the key tool. In Windowskeytool,
it should run in the C: \ Program Files \ Java \ jdkx.x.x_x \ bin.

keytool -genkeypair -v -storetype PKCS12 -.keystore
-alias my-key-alias -keyalg RSA -keysize 2048
-validity 10000

Tis command tells you to fnd the passwords in the key and key store
and the Keyword felds for your key. It then generates a Keystore as a fle
called my-upload-key.keystore.

Te key store contains a single key, which is valid for 10,000 days (about
27.5 years). A noun is a word you will use later when you sign up for your
application, so remember to recognize the nickname.

On Mac, if you are not sure where your JDK bin folder is, do the follow-
ing command to fnd it:

/usr/libexec/java_home

It will issue a JDK guide, which will look like this:

/Library/Java/JavaVirtualMachines/jdkX.X.X_XXX.JDK/
Contents/Home

Navigate to those texts using your commandcd / j /k / JDK / path and
use the keytool command with sudo permission as shown below.

sudo keytool -genkey -v -Keystore my-upload-key.
-alias -keyalg RSA -keysize 2048 -validity 10000

Note: Keep the Keystore fle private. In the event that you lose your
loading key or are in danger, you must follow these instructions.

• Insert the the my fle upload-key.Keystore under the Android/app
directory in your project folder.

         

   
   
   
       
           

               
               
               
               
           
       
   

Deploying Android Applications ◾ 303

• Edit the fle ~ / .gradle / gradle.propertiesorandroid / gradle.proper-
ties, and add the following (exchange ***** enter the correct keystore
password, nickname, and key password).

MYAPP_UPLOAD_STORE_FILE=my-upload-key.keystore
MYAPP_UPLOAD_KEY_ALIAS=my-key-alias
MYAPP_UPLOAD_STORE_PASSWORD=*****
MYAPP_UPLOAD_KEY_PASSWORD=*****

Tese will be the global Gradle variables, which we can use later in our
Gradle confguration to sign our application.

Be careful with the git: Gradle’s fexible storage above ~ / .gradle / gra-
dle.properties instead ofandroid / gradle.properties prevents them from
getting into the git. You may need to create ~ / .gradle / gradle.properties-
fle in your user’s home directory before adding a separate one.

Security precautions: If you do not want to keep your passwords in
plain text and use macOS, you can also store your personal information in
the Keychain Access app. Ten you can skip the last two lines of ~ / .gradle
/ Gradle.properties.

Add a Signing Setting to Gradle for Your App

Te last step in the confguration that needs to be done is to set the output
of the properties to be signed using the upload key. Edit the fle android /
app / build.gradlein folder for your project, then add the signature setting,

...
android {
...
defaultConfig { ... }
signingConfigs {
release {
if (project.hasProperty(‘MYAPP_UPLOAD_STORE

_FILE’)) {
storeFile file(MYAPP_UPLOAD_STORE_FILE)
storePassword MYAPP_UPLOAD_STORE_PASSWORD
keyAlias MYAPP_UPLOAD_KEY_ALIAS
keyPassword MYAPP_UPLOAD_KEY_PASSWORD

}
}

}

http://www.MYAPP_UPLOAD_STORE_FILE=my-upload-key.keystore
http://www.project.hasProperty

   
       
           
           
       
   

304 ◾ Mastering React Native

buildTypes {
release {
...
signingConfig signingConfigs.release

}
}

}
...

Generating the Release AAB
Run the following in a terminal:

cd android
./gradlew bundleRelease

Gradle’sbundleRelease will integrate all the JavaScript required to
launch your application in AAB (Android App Bundle). If you need to
change the way JavaScript bulk and/or compile applications are collected
(e.g., if you have changed the default fle/folder names or standard project
layouts), see the Android / app / build.gradleto to see how you can update
them to refect these changes.

Note: Make suregradle.properties does not includeorg.gradle.confg-
ureondemand = trueas which will override the overlay of JS and assets
into the binary of the app.

Product AAB can be downloaded under android / app / build / outputs
/ bundle / release / app.aab, and is ready for download on Google Play.

For Google Play to accept the AAB format Signing the Google Play App
requires your app confguration on the Google Play Console. If you are
reviewing an existing application that does not use Google Play Signing
App, please check our Transfer section to learn how to make such a con-
fguration change.

Checking the release of your application release

Testing the Release Build of Your App

Before you upload a release layout to the Google Play Store, be sure to
check it out properly. Start by uninstalling any previous version of the app
that you have already installed. Install it on that same device using the fol-
lowing command at the root of the project:

http://www.includeorg.gradle.configureondemand
http://www.includeorg.gradle.configureondemand
http://www.app.aab,

         

Deploying Android Applications ◾ 305

npx react-native run-android --variant=release

Note that exception is only available if you have set the signature as
described above. You can override any active batch situations, as your
entire framework and JavaScript code are accumulated in the APK assets.

Publishing in Other Stores

By default, the generated APK contains your native code for both x86 and
ARMv7a CPU architectures. Tis makes it easy to share APKs that work
on almost all Android devices. However, this has the disadvantage that
there will be unused native code on any device, leading to unnecessarily
large APKs.

You can create an APK for each CPU by changing the following line in
android / app / build.Gradle:

- ndk {
- abiFilters “armeabi-v7a”, “x86”
-}
- def enableSeparateBuildPerCPUArchitecture = false
+ def enableSeparateBuildPerCPUArchitecture = true

Download both of these market fles that support device identifcation,
such as Google Play and Amazon AppStore, and users will automatically
receive the appropriate APK. If you want to download to other markets,
such as APKFiles, which does not support multiple APKs for a single
application, change the next line again to create a default universal APK
for both dual CPUs.

- universalApk lies // If true, and generate a
universal APK
+ universalApk true // If true, generate a universal
APK

Enables Proguard to Reduce APK Size (Optional)

Proguard is a tool that can reduce the size of the APK. It does this by
removing parts of the React Native Java bypass (and its dependencies) that
your app does not use. Important: Make sure you thoroughly check your
application when you enable Proguard. Proguard usually requires a spe-
cifc setup for each library you use. See app / proguard-rules.pro.

http://www.proguard-rules.pro.

306 ◾ Mastering React Native

To enable Proguard, editandroid / app / build.gradle:

/**
* To run the Proguard to shrink the bytecode in
release builds.
*/
def enableProguardInReleaseBuilds = true

Modify Old Android React Native Apps to
Use Google Play Signing App

If you migrate to the previous version of React Native, chances are that
your app does not use the Google Play app signing feature. We recom-
mend that you allow that to take advantage of features such as the default
app split. To get out of the old sign-up process, you need to start by gener-
ating a new download key and replacing it with the inandroid release / app
/ build.Gradle release to use the download key instead of the release (see
the section on adding the slow signature setting). Once that is done, you
must follow the instructions from the Google Play Help website to submit
your actual release key to Google Play.

CONCLUSION
Here, we learned how to deploy apps in the Android play store.

http://www.build.gradle:

Appraisal

In the previous chapter, we learned about deploying Android appli-
cations and a variety of associated topics; in this chapter, we will learn

about appraisal.

PERFORMANCE OVERVIEW
Te ability to achieve 60 frames per second and a native appearance and
feel for your apps is a strong incentive to use React Native instead of
WebView-based solutions. We might want React Native to do the proper
thing and help you focus on your app rather than performance optimiza-
tion where possible, but there are some areas where we are not yet there,
and others where React Native (like writing native code directly) cannot
determine the best way to optimise for you and so manual intervention
will be required. We do our best to provide buttery-smooth UI perfor-
mance by default, but this is not always possible.

Tis tutorial is meant to educate you on some fundamentals to assist
you in troubleshooting performance difculties, as well as to explain typi-
cal sources of problems and proposed remedies.

What You Need to Know about Frames

For a reason, your grandparents’ generation referred to movies as “moving
pictures”: genuine motion in video is an illusion manufactured by rapidly
changing static images at a steady speed. Each of these photos is referred
to as a frame. Te number of frames presented per second has a direct
infuence on how smooth and lifelike a video appears to be. iOS devices
show 60 frames per second, giving you and the UI system about 16.67
ms to do all work required to build the static picture that the user will
view on the screen during that period. If you are unable to complete the
work required to create that frame within the permitted 16.67ms, you will
“drop a frame” and the UI will become unresponsive.

307

308 ◾ Appraisal

To further complicate matters, go to your app’s developer menu and
enable the Show Perf Monitor option. Tere are two distinct frame rates
to observe.

JS Frame Rate (JavaScript Thread)
Your business logic will be executed on the JavaScript thread in most
React Native applications. Tis is where your React application sits, where
API calls are performed, touch events are handled, and so on. Unless you
specify useNativeDriver: true, the Animated API presently calculates each
keyframe on the JavaScript thread, whereas LayoutAnimation utilises
Core Animation and is unafected by JS thread and main thread frame
drops. If the JavaScript thread is not responsive for a frame, the frame is
deemed dropped. For example, if you used this.setState on the root com-
ponent of a complicated application and it resulted in the re-rendering
of computationally expensive component subtrees, it is possible that this
might take 200 ms and result in the loss of 12 frames. During that period,
any JavaScript-controlled animations would appear to freeze. Te user
will notice if anything takes more than 100 ms.

Tis frequently occurs during Navigator transitions: when you push a
new route, the JavaScript thread must render all the scene’s components
to send the right commands to the native side to generate the supporting
views. Because the JavaScript thread controls the transition, it is common
for the process to take a few frames and generate junk. Components may
sometimes perform additional work on componentDidMount, resulting
in a second stall in transition.

Another instance is responding to touches: if you are working over
many frames on the JavaScript thread, you may notice a delay in respond-
ing to TouchableOpacity, for example. Tis is due to the JavaScript thread
being overloaded and unable to process the raw touch events sent across
from the main thread. As a result, TouchableOpacity is unable to respond
to touch events and instruct the native view to alter its opacity.

UI Frame Rate (Main Thread)
Many users have noted that NavigatorIOS performs better out of the box
than Navigator. Te reason for this is that the transition animations are
entirely done on the main thread and so are not interrupted by frame
drops on the JavaScript thread.

Similarly, even when the JavaScript thread is locked, you can merrily
scroll up and down via a ScrollView since the ScrollView is on the main

         

 
   
     
   
 

Appraisal ◾ 309

thread. Te scroll events are sent to the JS thread, but they are not required
for the scroll to happen.

Common Sources of Performance Problems
Running in Development Mode (dev=true)
When operating in dev mode, JavaScript thread performance falls. Tis
is unavoidable: much more work must be done at runtime to give you
useful warnings and error messages, such as verifying propTypes and
numerous other assertions. Be careful to always test performance in
release builds.

Using console.log Statements
Tese statements can cause a signifcant slowdown in the JavaScript
thread while executing a packaged program. Tis includes debugging
library calls like redux-logger, so be sure to remove them before bun-
dling. You can also delete all console.* calls with this babel plugin.
You must frst install it using NPM I babel-plugin-transform-remove-
console – save-dev before editing the .babelrc fle in your project direc-
tory as follows:

{
“env”: {
“production”: {
“plugins”: [“transform-remove-console”]
}
}
}

Tis will delete all console.* calls from your project’s release (produc-
tion) versions.

ListView Initial Rendering Is Slow or Scroll
Performance Is Bad for Large Lsts
Instead, use the new FlatList or SectionList components. Aside from sim-
plifying the API, the new list components feature considerable efciency
improvements, the most notable of which is near-constant memory use for
whatever number of rows.

If your FlatList is taking too long to render, make sure you have used
getItemLayout to minimize rendering speed by skipping the measurement
of rendered items.

http://www.console.log

310 ◾ Appraisal

JS FPS Plunges When Re-rendering View That Hardly
Changes (“Performance Overview React Native”)
If you use a ListView, you must provide a rowHasChanged method, which
helps save time by immediately assessing whether a row must be re-ren-
dered. If you are working with immutable data structures, all you would
need is a reference equality check.

Similarly, you can use shouldComponentUpdate to specify the condi-
tions under which you want the component to re-render. You may use
PureComponent to perform this for you if you develop pure components
(where the return result of the render method is fully based on props and
state). Immutable data structures are important again to keep things fast – if
you need to execute a thorough comparison of a huge list of objects, re-ren-
dering your whole component may be faster, and it will surely need less code.

Dropping the FPS of the JS Thread Since I’m Performing a
Lot of Work on the JavaScript Thread at the Same Time
Te most typical expression of this is “slow Navigator transitions,” but
it can occur at other times as well. InteractionManager can be a useful
option, but if the cost of the user experience is too great to postpone work
during an animation, you should choose LayoutAnimation.

Te Animated API currently calculates each keyframe on the
JavaScript thread unless you specify useNativeDriver: true, whereas
LayoutAnimation uses Core Animation and is unafected by JS thread
and main thread frame drops.

One example is animating in a modal (sliding down from the top and
fading in a translucent overlay) while initializing and getting responses
for numerous network queries, displaying the contents of the modal,
and updating the view from whence the modal was launched. For addi-
tional details on how to use LayoutAnimation, see the Animations
documentation.

Caveats

• LayoutAnimation is only used for fre-and-forget animations
(also known as “static” animations); if it has to be interrupted, use
Animated.

Moving View on the Screen (Scrolling, Rotating, or
Translating) Reduces the FPS of the UI Thread
Tis is especially true when text with a transparent backdrop is placed on
top of an image or in any other case where alpha compositing is necessary

         

 
   
 

Appraisal ◾ 311

to redraw the view on each frame. Enabling shouldRasterizeIOS or ren-
derToHardwareTextureAndroid can assist with this.

Be cautious not to overdo this, as your memory consumption will sky-
rocket. When utilizing these props, keep track of your performance and
memory utilization. Turn this property of if you no longer intend to relo-
cate a view.

Changing the Size of a Picture Reduces UI Thread FPS
When you modify the height or width of a Picture component on iOS,
the picture is re-cropped and resized. Tis may be costly, especially for
huge photos. To animate the size, use the transform: [{scale}] style attri-
bute instead. When you tap a picture and zoom it in to full screen, here is
an example of when you may do this.

My TouchableX View Is Not Very Responsive
If we perform an action while modifying the opacity or highlight of a com-
ponent that is responsive to a touch, changing the size of a picture reduces
UI thread FPS. You may not notice the efect until afer the onPress method
has returned. Tis might happen if onPress performs a setState that causes
a lot of work and a few frames to be lost. A solution is to encapsulate any
activity within your onPress handler with requestAnimationFrame:

handleOnPress() {
requestAnimationFrame(() => {
this.doExpensiveAction();
});
}

Slow Navigator Transitions
Te JavaScript thread, as previously stated, controls Navigator anima-
tions. Consider the “push from right” scene transition: each frame, the
new scene is shifed from right to lef, starting ofscreen (say, at an x-ofset
of 320) and eventually settling at an x-ofset of 0. Te JavaScript thread
must deliver a new x-ofset to the main thread every frame throughout
this transition. If the JavaScript thread is locked, it is unable to do so,
resulting in no update on that frame and the animation stuttering.

Allowing JavaScript-based animations to be ofoaded to the main
thread is one way. If we used this strategy to accomplish the same thing
as in the previous example, we could build a list of all x-ofsets for the
new scene when we start the transition and pass it to the main thread to

 312 ◾ Appraisal

execute in an optimal manner. Because the JavaScript thread is no lon-
ger responsible for this, it is not a huge concern if it skips a few frames
while rendering the scene – you will not notice because you will be too
distracted by the gorgeous transition.

One of the key purposes of the new React Navigation library is to solve
this. React Navigation views employ native components and the animated
package to provide 60 FPS animations that operate on the native thread.

Bibliography

adivinartec, by. (2021, January 7). How to Publish Your App to the App Store in
2021. Adivinar Tec. https://adivinartec.com/how-to-publish-your-app-to
-the-app-store-in-2021/

Agarwal, H. (2020, July 31). React Native Pros and Cons for Mobile App
Development. Techexactly. https://techexactly.com/blogs/advantages-and
-disadvantages-of-using-react-native

ALGO, & View My Complete Profle. (2020, December 10). My Collections: 2020.
https://sunzhen.blogspot.com/2020/

Anderson, W. (n.d.). Cross-Platform App Development Benefts Tat Your Business
Require. Retrieved July 9, 2022, from https://morioh.com/p/258b3596afc3

Android Native Modules. (n.d.). React Native - W3cubDocs. Retrieved July 9,
2022, from https://docs.w3cub.com/react_native/native-modules-android
.html

Android Native Modules. (2022, June 22). Android Native Modules - React Native.
https://reactnative.dev/docs/native-modules-android

AsyncStorage. (n.d.). AsyncStorage -·React Native Archive. Retrieved July 9, 2022,
from https://archive.reactnative.dev/docs/asyncstorage

Atluri, V., Cakmak, U., Lee, R., and Varanasi, S. (2012). Making smartphones
brilliant: Ten trends. A publication of the Telecommunications, Media,
and Technology Practice, McKinsey & Company. https://www.mckinsey.
com/~/media/mckinsey/dotcom/client_service/high%20tech/pdfs/mak-
ing_smartphones_brilliant_march_2012.pdf.

Best Apps for Studying. (2019, August 20). Swinburne Onlinehttps://www.swin-
burneonline.edu.au/blog/best-apps-for-studying

Best Programming Language for Cross-Platform Mobile Development. (n.d.).
Retrieved July 9, 2022, from https://distinguished.io/blog/best-cross-plat-
form-programming-language

Building Your First Desktop Application. (n.d.). Cross-Platform Desktop
Applications: Using Node, Electron, and NW.js. Retrieved July 9, 2022, from
https://livebook.manning.com/book/cross-platform-desktop-applications/
chapter-3

Capacitor: Cross-Platform Native Runtime for Web Apps. (n.d.). Retrieved July 9,
2022, from https://capacitorjs.com/docs/apis/geolocation

CDK_Developer_Guide.pdf (jboss.org) (No proper page)

313

https://adivinartec.com
https://adivinartec.com
https://techexactly.com
https://techexactly.com
https://sunzhen.blogspot.com
https://morioh.com
https://docs.w3cub.com
https://docs.w3cub.com
https://reactnative.dev
https://archive.reactnative.dev
https://www.mckinsey.com
https://www.mckinsey.com
https://www.mckinsey.com
https://www.swinburneonline.edu.au
https://www.swinburneonline.edu.au
https://distinguished.io
https://distinguished.io
https://livebook.manning.com
https://livebook.manning.com
https://capacitorjs.com
http://www.CDK_Developer_Guide.pdf
http://www.jboss.org

314 ◾ Bibliography

Debugging. (2020, October 29). React Native. https://reactnative.dev/docs/0.62/
debugging

Debugging Methods for React Native Applications. (2022, March 9). https://
www.topcoder.com/thrive/articles/debugging-methods-for-react-native-
applications

Deploying a Stand-Alone Application - Chapter 11. (2021, January 24). Wahnsinn.
https://blog.andreaskrahl .de/deploying-a-stand-alone-application-
chapter-11/

Deshpande, V., & View My Complete Profle. (2019, February 11). Debugging a
Microsof Teams Tab Built with SharePoint Framework. https://www.vrdmn
.com/2019/02/debugging-microsof-teams-tab-built.html

Diference between Black Box Testing and White Box Testing. (2014, December
10). Sofware Testing Class. https://www.sofwaretestingclass.com/difer-
ence-between-black-box-testing-and-white-box-testing/

Dikson. (2018, August 5). How to Create Custom Component in React native?
Skcript. https://skcript.com/svr/how-to-create-custom-component-in-react
-native/

Discord Hyperlinks: How to Make Links with Bot Embeds (2022 Guide). (2022,
January 17). Shufegazine. https://shufegazine.com/make-discord-hyper-
links-bot-embeds/

Dissanayake, R. (n.d.). Mixing PHP and Java on Linux Systems. Retrieved July 9,
2022, from https://www.raditha.com/php/java.php

Durgahee, CNN, B. A. (2012, March 20). Goodbye Maps, Hello Apps: Planning
Travel On the Go. CNN. https://edition.cnn.com/2012/03/20/business/
travel-apps/index.html

Education, I. C. (2020, December 21). iOS App Development. IBM. https://www.
ibm.com/cloud/learn/ios-app-development-explained

eHam.net. (n.d.). Retrieved July 9, 2022, from https://www.eham.net/reviews/
view-product?id=15324

Eisenman, B. (n.d.). Learning React Native Building Native Mobile Apps with
JavaScript 2nd Edition pdf. Retrieved July 9, 2022, from https://123dok.com
/document/zx9kjjdz-learning-react-native-building-native-mobile-javas-
cript-edition.html

Evkoski, B. (2018, April 9). React Native: What it is and How it Works. Medium.
https://medium.com/we-talk-it/react-native-what-it-is-and-how-it-works
-e2182d008f5e

facebook. (n.d.). react-native-website/fexbox.md at main · facebook/react-native-
website. GitHub; . github.com. Retrieved July 9, 2022, from https://github
.com/facebook/react-native-website/blob/main/docs/fexbox.md

facebook. (2022, June 21). react-native-website/signed-apk-android.md at main ·
facebook/react-native-website. GitHub. https://github.com/facebook/react
-native-website/blob/main/docs/signed-apk-android.md

Fullsour. (2017, August 6). Style Inheritance of React Native. Medium. https://
medium.com/@fullsour/style-inheritance-of-react-native-eca1c974f02b

Geolocation API. (n.d.). Retrieved July 9, 2022, from https://www.w3schools.com
/js/js_api_geolocation.asp

https://reactnative.dev
https://reactnative.dev
https://www.topcoder.com
https://www.topcoder.com
https://www.topcoder.com
https://blog.andreaskrahl.de
https://blog.andreaskrahl.de
https://www.vrdmn.com
https://www.vrdmn.com
https://www.softwaretestingclass.com
https://www.softwaretestingclass.com
https://skcript.com
https://skcript.com
https://shufflegazine.com
https://shufflegazine.com
https://www.raditha.com
https://edition.cnn.com
https://edition.cnn.com
https://www.ibm.com
https://www.ibm.com
https://www.eham.net
https://www.eham.net
https://123dok.com
https://123dok.com
https://123dok.com
https://medium.com
https://medium.com
http://www.flexbox.md
http://www.github.com.
https://github.com
https://github.com
http://www.signed-apk-android.md
https://github.com
https://github.com
https://medium.com
https://medium.com
https://www.w3schools.com
https://www.w3schools.com

         

Bibliography ◾ 315

Getting Started. (2020, October 29). React Native. https://reactnative.dev/docs/0
.60/enviroment-setup

Gite, S. (2020, August 30). How to Send Email from React-Native Application.
Techup. www.techup.co.in. https://www.techup.co.in/how-to-send-email
-from-react-native-application/

Goklani, B. (2018, September 7). Important Tips to Follow for Improving the
Performance of your React Native App. www.mindinventory.com. https://
www.mindinventory.com /blog /optimizing-performance -of-react-
native-app/

googlecreativelab. (2017, December 7). GitHub - googlecreativelab/mystery-ani-
mal: A New Spin on the Classic 20-questions Game. GitHub. https://github
.com/googlecreativelab/mystery-animal

Hamedani, M. (2019, November 4). JavaScript Console Debugging: Beyond Te
Basics. Programming with Mosh. https://programmingwithmosh.com/
javascript/javascript-console-logging-beyond-the-basics/?shared=email
&msg=fail

How to Generate a React Native Release Build APK for Android. (2022, March 27).
Instamobile; instamobile.io. https://instamobile.io/android-development/
generate-react-native-release-build-android/

How Long Does it Take to Get Approval Afer Filing Form I-131? (2012, March
23). Immigration Direct. www.immigrationdirect.com. https://www.immi-
grationdirect.com/immigration-articles/how-long-does-it-take-to-get
-approval-afer-fling-form-i-131/

How to Register Your App with Apple’s App Store. (2022, April 24). Te Tech
Outlook. www.thetechoutlook.com. https://www.thetechoutlook.com/apps
/how-to-register-your-app-with-apples-app-store/

How to Reserve an App Name on Windows Store and… Harry’s Memo. harrys-
memo.com

How to Send an Account Verifcation Email in React Native? (n.d.). Retrieved July
9, 2022, from https://www.devasking.com/issue/how-to-send-an-account
-verifcation-email-in-react-native

How to Submit Your App to the App Store in 2022. (2022, May 25). Blog. https://
www.swing2app.com/blog/how-to-submit-your-app-to-the-app-store-in
-2022/

How to Submit Your App to the App Store in 2022. (2022, January 5). Instabug
Blog. https://blog.instabug.com/how-to-submit-app-to-app-store/

How to Use Doom 3 Map Editor. (n.d.). Deltapreview. Retrieved July 9, 2022, from
https://deltapreview.weebly.com/how-to-use-doom-3-map-editor.html

HTML Geolocation API. (n.d.). Retrieved July 9, 2022, from https://www
.w3schools.com/html/html5_geolocation.asp

An iDiot’s Guide to Lilu and its Plug-ins. (2018, September 26). Tonymacx86.
Com. https://www.tonymacx86.com/threads/an-idiots-guide-to-lilu-and-
its-plug-ins.260063/

Inc., A. (n.d.). TestFlight. Apple Developer. Retrieved July 9, 2022, from https://
developer.apple.com/testfight/

https://reactnative.dev
https://reactnative.dev
http://www.techup.co.in
https://www.techup.co.in
https://www.techup.co.in
http://www.mindinventory.com
https://www.mindinventory.com
https://www.mindinventory.com
https://www.mindinventory.com
https://github.com
https://github.com
https://programmingwithmosh.com
https://programmingwithmosh.com
https://programmingwithmosh.com
http://www.instamobile.io.
https://instamobile.io
https://instamobile.io
http://www.immigrationdirect.com
https://www.immigrationdirect.com
https://www.immigrationdirect.com
https://www.immigrationdirect.com
http://www.thetechoutlook.com
https://www.thetechoutlook.com
https://www.thetechoutlook.com
http://www.harrysmemo.com
http://www.harrysmemo.com
https://www.devasking.com
https://www.devasking.com
https://www.swing2app.com
https://www.swing2app.com
https://www.swing2app.com
https://blog.instabug.com
https://deltapreview.weebly.com
https://www.w3schools.com
https://www.w3schools.com
https://www.tonymacx86.com
https://www.tonymacx86.com
https://developer.apple.com
https://developer.apple.com

 

316 ◾ Bibliography

intigriti. (2021, November 30). Insecure Direct Object Reference (IDOR). Intigriti.
https://blog.intigriti.com/hackademy/idor/

Introduction to React Native. (2017, June 7). GeeksforGeeks. https://www.geeks-
forgeeks.org/introduction-react-native/

iOS Native Modules. (2022, April 1). React Native. https://reactnative.dev/docs/0
.65/native-modules-ios

Istio - Argo Rollouts - Kubernetes Progressive Delivery Controller. (n.d.). Retrieved
July 9, 2022, from https://argoproj.github.io/argo-rollouts/features/trafc
-management/istio/

Jackson, E. (n.d.). Understanding Styling in React Native. Retrieved July 9, 2022,
from https://morioh.com/p/f38ebbe8f9fc

Jamil, M. S. (2021, October 20). How to add Tab Navigation or Simple Navigation
or Drawer Navigation in React Native. Medium. https://medium.com/@
fa18-bcs-062/how-to-add-tab-navigation-or-simple-navigation-or-drawer
-navigation-in-react-native-a4374db12d23

javascript - Browser Crashes When Taking Picture with Camera. (2015, March 30).
Stack Overfow. https://stackoverfow.com/questions/29352106/browser
-crashes-when-taking-picture-with-camera

Krishnakumar. (2019, February 6). Learn How to Build an Android App in React
Native. Eduonix Blog. https://blog.eduonix.com/android-tutorials/building
-android-app-react-native/

Kumar, S. (2017, June 13). How React Native Works? GeeksforGeeks. https://www
.geeksforgeeks.org/react-native-works/

Layout with Flexbox. (2022, March 30). React Native. https://reactnative.dev/docs
/0.68/fexbox

Learn React Native Tutorial. (n.d.). Javatpoint. Retrieved July 9, 2022, from
https://www.javatpoint.com/react-native-tutorial

Learning React Native. (n.d.). O’Reilly Online Learning. Retrieved July 9,
2022, from https://www.oreilly.com/library/view/learning-react-native
/9781491929049/ch06.html

leejiwonn. (2021, December 6). [RN] React Native Docs #10 0N] React Native.
Leejiwonn.Log. https://leejiwonn.tistory.com/67

Mobile Development. (n.d.). Mysol. Retrieved July 9, 2022, from https://mysol
.tech/mobile-development

Must Declare the Scalar Varible “@Value1LastUpdatedDate.” (2007, May 1).
https://social.msdn.microsoft.com/Forums/en-US/45a0693a-47ab-4dea
-ae24-7ce973ae1e65/must-declare-the-scalar-varible-quotvalue1lastupdat
eddatequot?forum=aspdatasourcecontrols

My Super Cat. (2022, June 18). https://fathimazainudheen.blogspot.com/2022/06
/is-react-native-react-native-is-open.html

National Convention Continuing Education Saturday. (n.d.). American Massage
Terapy Association. Retrieved July 9, 2022, from https://www.amtamas-
sage.org/continuing-education/national-convention/continuing-education
/continuing-education-saturday/

Nobrega, M. de. (2018, November 15). Firebase Authentication with .NET Core
(Including SignalR). Medium. https://medium.com/@matt.denobrega/fre-
base-authentication-with-net-core-including-signalr-b2c0034f0206

https://blog.intigriti.com
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://reactnative.dev
https://reactnative.dev
https://argoproj.github.io
https://argoproj.github.io
https://morioh.com
https://medium.com
https://medium.com
https://medium.com
https://stackoverflow.com
https://stackoverflow.com
https://blog.eduonix.com
https://blog.eduonix.com
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://reactnative.dev
https://reactnative.dev
https://www.javatpoint.com
https://www.oreilly.com
https://www.oreilly.com
https://leejiwonn.tistory.com
https://mysol.tech
https://mysol.tech
https://social.msdn.microsoft.com
https://social.msdn.microsoft.com
https://social.msdn.microsoft.com
https://fathimazainudheen.blogspot.com
https://fathimazainudheen.blogspot.com
https://www.amtamassage.org
https://www.amtamassage.org
https://www.amtamassage.org
https://medium.com
https://medium.com

         

Bibliography ◾ 317

NVIDIA GPUs with Google Cloud’s Anthos — NVIDIA Cloud Native
Technologies Documentation. (2022, July 1). https://docs.nvidia.com/data-
center/cloud-native/kubernetes/anthos-guide.html

Obtain Your Developer Token. (n.d.). Google Developers. Retrieved July 9, 2022,
from https://developers.google.com/google-ads/api/docs/frst-call/dev-
token

Online Course: Node Package Manager Course: Build and Publish NPM Modules
from Udemy. (2022, May 9). Class Central. www.classcentral.com. https://
www.classcentral.com/course/udemy-node-package-manager-course
-build-and-publi-24299

Orsmond, Q. (2021, July 17). How to Position Tings in React Native? www.bit-
stoliveby.com. https://www.bitstoliveby.com/posts/how-to-position-things
-in-react-native/

Performance – React Native | A Framework for Building Native Apps Using
REACT. (n.d.). Retrieved July 9, 2022, from https://www.decoide.org/react
-native/docs/performance.html

Performance Overview. (2022, April 21). React Native. https://reactnative.dev/
docs/0.64/performance

Pickus, I. (2020, June 3). Broadband Progress, Policy Varies by State. WAMC.
https://www.wamc.org/the-roundtable/2020-06-03/broadband-progress
-policy-varies-by-state

Platform Specifc Code. (n.d.). React Native. Retrieved July 9, 2022, from https://
scarcoco.github.io/react-native/docs/0.10/platform-specifc-code

Platform Specifc Code. (2022, March 30). React Native. https://reactnative.dev/
docs/0.68/platform-specifc-code

Prince, S. (2022, May 18). JAMB Result Checker: How to Check 2022 JAMB Result.
Nairablink. https://www.nairablink.com/jamb-result-checker-how-to
-check-2022-jamb-result/

Te Process of Beta Testing Using TestFlight. (2019, November 28). TestMatick.
https://testmatick.com/the-process-of-beta-testing-using-testfight/

Progress KB - 4GL/ABL: Sample Code Using the IMPORT and EXPORT Statements
with BLOB Fields. (n.d.). Progress Sofware Knowledgebase. Retrieved July
9, 2022, from https://knowledgebase.progress.com/articles/Article/P113369

Publishing to Google Play Store. (n.d.). React Native Archive. Retrieved July 9,
2022, from https://archive.reactnative.dev/docs/0.39/signed-apk-android

Publishing to Google Play Store. (2020, October 29). React Native. https://reactna-
tive.dev/docs/0.61/signed-apk-android

React Native - AsyncStorage. (n.d.). Retrieved July 9, 2022, from https://www
.tutorialspoint.com/react_native/react_native_asyncstorage.htm

React Native - Styling. (n.d.). Retrieved July 9, 2022, from https://www.tutorial-
spoint.com/react_native/react_native_styling.htm

React Native AsyncStorage Methods. (n.d.). Javatpoint. Retrieved July 9, 2022,
from https://www.javatpoint.com/react-native-asyncstorage-methods

React-native Architecture - [Part One]. (2022, February 18). DEV Community.
https://dev.to/salemabderaouf/react-native-architecture-part-one-26fg

Returns, P., & View My Complete Profle. (2013, July 17). Tax Depreciation: July
2013. Tax Depreciation. https://taxdepreciation12.blogspot.com/2013/07/

https://docs.nvidia.com
https://docs.nvidia.com
https://developers.google.com
https://developers.google.com
http://www.classcentral.com
https://www.classcentral.com
https://www.classcentral.com
https://www.classcentral.com
http://www.bitstoliveby.com
http://www.bitstoliveby.com
https://www.bitstoliveby.com
https://www.bitstoliveby.com
https://www.decoide.org
https://www.decoide.org
https://reactnative.dev
https://reactnative.dev
https://www.wamc.org
https://www.wamc.org
https://scarcoco.github.io
https://scarcoco.github.io
https://reactnative.dev
https://reactnative.dev
https://www.nairablink.com
https://www.nairablink.com
https://testmatick.com
https://knowledgebase.progress.com
https://archive.reactnative.dev
https://reactnative.dev
https://reactnative.dev
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.javatpoint.com
https://dev.to
https://taxdepreciation12.blogspot.com

318 ◾ Bibliography

Riekert, M. (2022, March 22). Risk Tolerance vs Your Investments Goals - A
Personal Journey that Needs to be Explored. https://www.fanews.co.za/arti-
cle/investments/8/general/1133/risk-tolerance-vs-your-investments-goals-a
-personal-journey-that-needs-to-be-explored/34138

Rogers, D. (2022, April 11). Can I Inherit Styles When Using CreateStyles? https://
www.devasking.com/issue/can-i-inherit-styles-when-using-createstyles

Ryan, S. (2019, August 2). What is an API Platform? | Discover the API Platform
Defnition. Axway Blog. https://blog.axway.com/amplify-products/api
-management/what-is-an-api-platform

Saha, R. (2020, October 23). Random. Random. https://arrayofrandommusings
.blogspot.com/

SaidHayani@. (2020, November 13). Styling in React Native. Explore the Best
Ways to Style a React…. Medium. https://blog.bitsrc.io/styling-in-react
-native-c48caddfe47?gi=be1bb0742df4

SAP on Azure Implementation Guide. (n.d.). O’Reilly Online Learning. Retrieved
July 9, 2022, from https://www.oreilly.com/library/view/sap-on-azure
/9781838983987/Text/Chapter_2.xhtml

Schoeman, J., & Larsson, V. (2019, March 18). React Native Styling: Structure for
Style Organization. Toughtbot. https://thoughtbot.com/blog/structure-for
-styling-in-react-native

Setting Up the Development Environment. (2021, July 22). React Native. https://
reactnative.dev/docs/0.64/environment-setup

shanepeckham. (n.d.). GitHub - shanepeckham/CADLab_Loyalty_Security:
Tis Lab Demonstrates How to Secure the Loyalty Scenario Lab. GitHub.
Retrieved July 9, 2022, from https://github.com/shanepeckham/CADLab
_Loyalty_Security

Smit, A., & Schlegel, R. (n.d.). Chapter 11 Linear Mixed Models. Basic Statistics.
Retrieved July 9, 2022, from https://ajsmit.github.io/Basic_stats/linear
-mixed-models.html

Style. (2022, March 30). React Native. https://reactnative.dev/docs/0.68/style
superkolos. (2021, January 1). GitHub - superkolos/Audi-MIB2-Toolbox: Audi

MIB Toolbox. GitHub. https://github.com/superkolos/Audi-MIB2-Toolbox
TechnologyHQ. (2021, October 22). Want to Try your Hand at iOS App

Development? Herè s How - TechnologyHQ. TechnologyHQ - All about
Technology, AI, Blockchain, Cybersecurity, Business. https://www.tech-
nologyhq.org/want-to-try-your-hand-at-ios-app-development-heres-how/

Top 10+ Hybrid Mobile App Development Companies. (n.d.). Firms Explorer.
Retrieved July 9, 2022, from https://www.frmsexplorer.com/top-app
-development-companies/hybrid/

Tsurbeliov, M. (2021, October 15). How does React Native Works? Medium.
https://medium.com/akveo-engineering/how-does-react-native-works
-3b7d5b4a007e

Tudip. (2021, October 5). Distributing React Native App via Microsof Appcenter.
Tudip. https://tudip.com/blog-post/distributing-react-native-app-via
-microsof-appcenter/

https://www.fanews.co.za
https://www.fanews.co.za
https://www.fanews.co.za
https://www.devasking.com
https://www.devasking.com
https://blog.axway.com
https://blog.axway.com
https://arrayofrandommusings.blogspot.com
https://arrayofrandommusings.blogspot.com
https://blog.bitsrc.io
https://blog.bitsrc.io
https://www.oreilly.com
https://www.oreilly.com
https://thoughtbot.com
https://thoughtbot.com
https://reactnative.dev
https://reactnative.dev
https://github.com
https://github.com
https://ajsmit.github.io
https://ajsmit.github.io
https://reactnative.dev
https://github.com
https://www.technologyhq.org
https://www.technologyhq.org
https://www.firmsexplorer.com
https://www.firmsexplorer.com
https://medium.com
https://medium.com
https://tudip.com
https://tudip.com

         

 

Bibliography ◾ 319

Ugorji, S. (2022, July 3). How to Search Trough a Table with JavaScript. Medium.
https://blog.devgenius.io/how-to-search-through-a-table-with-javascript
-b8cbe5ec9757

“use strict” in Javascript. (2013, February 15). Stack Overfow. https://stackover-
fow.com/questions/14889967/use-strict-in-javascript

Using Contingency Tables for Probability and Dependence. (2014, June 8). Learn
Math and Stats with Dr. G. http://www.mathandstatistics.com/learn-stats
/probability-and-percentage/using-contingency-tables-for-probability-and
-dependence

Vajiram IAS App for UPSC Aspirants. (n.d.). WHO Considers Declaring
Monkeypox a Global Health Emergency. Retrieved July 9, 2022, from
https://vajiramias.com/article/who-considers-declaring-monkeypox-a
-global-health-emergency/62b586e72acb75510dfa1ae2/

Walsh, D. (2015, April 30). Mobilize Joins Microsof on Windows 10 Tool.
Mobilize.Net. www.mobilize.net. https://www.mobilize.net/press/mobilize
.net-accelerates-developer-adoption-of-windows-10

Webex Meetings: Adding Registration. https://www.in.gov/iot/fles/WebEx
-Registration-Guide.pdf

What is Components Inheritance in React ? (2021, July 12). GeeksforGeeks. www
.geeksforgeeks.org. https://www.geeksforgeeks.org/what-is-components
-inheritance-in-react/

What is React Native? (n.d.). Retrieved July 9, 2022, from https://www.tutorial-
spoint.com/what-is-react-native

Yashpal. (n.d.). How to Create Components in React Native? Studytonight.
Retrieved July 9, 2022, from https://www.studytonight.com/post/how-to
-create-components-in-react-native

Yusufu, E. (2021, January 16). React Native Navigation: React Navigation
Examples and Tutorial. LogRocket Blog. https://blog.logrocket.com/navi-
gating-react-native-apps-using-react-navigation/

https://blog.devgenius.io
https://blog.devgenius.io
https://stackoverflow.com
https://stackoverflow.com
http://www.mathandstatistics.com
http://www.mathandstatistics.com
http://www.mathandstatistics.com
https://vajiramias.com
https://vajiramias.com
http://www.mobilize.net
https://www.mobilize.net/press/mobilize.net
https://www.mobilize.net/press/mobilize.net
https://www.in.gov
https://www.in.gov
http://www.geeksforgeeks.org
http://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.studytonight.com
https://www.studytonight.com
https://blog.logrocket.com
https://blog.logrocket.com
https://Mobilize.Net

https://taylorandfrancis.com/

Index

A

Aboutscreen.js, 251
ActionResponder, 70
ActivityEventListener, 199–201
Advantages

class performance, 9
community support, 10
cost reduction, 12
external plugin support, 12
hot reload, 10
indigenous components, 10
JavaScript, 10
Live and Hot Loading apps, 11
modular architecture, 12
performance enhancement, 11
pre-made solutions and libraries, 13
reusable code, 11
simplifed UI, 12
stability and reliability, 12
uncertain, 10
upgrade time, 10
use of cross-platform, 9

Android application, 20, 42
accessing an application, 285
APK creation, 288–289
blank React Native project creation,

49–50
connect Android device to system, 50
distributing with Microsof App

center, 297–299
adding signing setting, 303–304
Google Play Signing App, 306
Proguard, reducing APK size,

305–306
publishing in other stores, 305
testing the release, 304–305

ways to send e-mails, 299–303
exposing an application, 283–285
fetchMoviesData method, 51
Java Development Kit installation,

41–42
Life Cycle componentDidMount

Method, 51
lifetime use and readiness testing,

285–288
minikube dashboard, 279–280
movidedb application, 49–51
Pods

listing, 280–281
list replicasets and, 283
selection, 282

React Native CLI
adding keystore to project, 290–291
errors, 292–293
generating keystore, 289–290
releasing with Android studio,

293–294
uninstalling APK generation,

291–292
“render-Row” method, 52–53
return() method, 52–53
send e-mail

adding dependence, 294
App.js, 295–297
creating new project, 294
importing components, 295
from tradition, 295

uninstalling web server, Nginx
image, 280

using CLI, 279, 282–283
using Kubernetes WebUI, 279
view creation, 51–52

321

http://www.Aboutscreen.js,
http://www.App.js,

322 ◾ Index

Android JDK, 41–42
AndroidTextView, 20
API Gate, 129
API Platform

application connectors, 132
AsyncStorage

clear() method, 156–157
fetching data, 154
fushGetRequests() method, 157
getAllKeys() method, 157
getItem() method, 154
for iOS, 153
JavaScript code, 153
mergeItem() method, 155
multiGet() method, 157–158
multiMerge() method, 159–161
multiRemove() method, 159
multiSet() method, 158
persisting data, 153–154
removeItem() method, 155
setItem() method, 154–155
setName function, 161–162

camera API, 149–150, 152
capturing photos on mobile devices,

151–153
createObjectURL, 151
Data as a service, 132
developer tools, 131
for digital developers, 129
fle input element, 149–150
geolocation

Android, 144–145
checkPermissions(...), 146–147
chromium developer tools, 138–142
ClearWatchOptions, 146, 148
delivery and driving services, 133
geo-coordinated website, 133
GeolocationPluginPermissions, 148
geolocation support detection,

134–135
getCurrentPosition method,

135–138, 146
iOS, 144
JavaScript geolocation service, 133
MapsGoogle, 134
MapsPlatforms, 134
Microsof Bing, 134
PermissionStatus, 148
position, 147

PositionOptions, 147
requestPermissions(...), 147
Sprint 3G service, 134
watchPosition() method, 143, 146

HTML5 page creation, 149
Hybrid Integration Platform (HIP), 133
mediation, 130
MESH and microservices

management, 131
onchange event listener, 150–151
onload function, 152
operating time services, 131
pre-built background services, 132
“Smart Weather Program,” 130
streaming/hosted API, 132

App.js, 57–58, 100–101, 115, 246–247, 252,
295–297

AppNavigator, 255–256, 258
Async skills expansion, 20
AsyncStorage

clear() method, 156–157
fetching data, 154
fushGetRequests() method, 157
getAllKeys() method, 157
getItem() method, 154
for iOS, 153
JavaScript code, 153
mergeItem() method, 155
multiGet() method, 157–158
multiMerge() method, 159–161
multiRemove() method, 159
multiSet() method, 158
persisting data, 153–154
removeItem() method, 155
setItem() method, 154–155
setName function, 161–162

B

BaseActivityEventListener, 199
Browserify, 165
Button.css, 240
Button.js, 240

C

CalendarModule creation
Android, 183
iOS, 166

http://www.App.js,
http://www.Button.css,
http://www.Button.js,

         

Index ◾ 323

Callbacks
Android, 194–196
iOS, 175–178

Camera API, 149–150, 152
Chrome developer tools, 207, 215–216

cell tower triangulation, 139
debugging with, 210
geolocation satellite, 139
geolocation sensor simulation, 139
Google Maps, 142
handling errors and rejections,

141–142
location-specifc information, 142
nearby iOS location, 140
React Native developers, 215–216
TegetCurrentPosition () method,

140–141
user’s location, 140
Wi-Fi network, 139

Classroom-based component, 27
clear() method, 156–157
clearWatch method, 138
Code editor, 214
componentDidCatch() method, 24
ComponentDidMount() method, 22
componentDidUpdate () method, 23
componentWillUnmount () method, 23
console.assert(), 220
console.assert(expression,object), 212
console.count(), 221
Console errors and warnings, 206
console.log(), 211–212
Console logging, 219–221
console.log statements, 309
console.memory, 221
Console method, 211–212
console.table(), 220
console.table(data, obj), 212
console.trace(), 212, 221
constantsToExport(), 174–175
Constructor() method, 22
control.time(), 221
createBottomTabNavigator, 254–255
createCalendarEvent()

Android, 183, 185–186
iOS, 170, 171

createDrawerNavigator, 255–256
createNativeModules(), 187–188
createStackNavigator method, 252–253

Cross-platform development, 61–62
Cross-platform native modules

code reusability, 203
easy deployment and maintenance, 203
programming languages, 202
reduced costs and resources, 203
uniform design, 203–204
wider market reach, 203

Cross-platform support, 2
Custom Text feld

Custom section creation, 24
render() method, 24–26

D

Dart, 46
dataSource method, 52
Debugging

application state, 209
beyond javascript, 219–221
with Chrome developer tools, 210
JavaScript

beautifying, 211
best practices, 211
debugging tools, 214–215
methods, 211–214

native code, 211
native debugging, 210
for React Native developers

Chrome’s DevTools, 215–216
Nuclide–Atom’s Plug-in, 218
React developer tools, 216
React Native debugger, 216–217
Reactotron, 218–219
Redux DevTools, 217–218

DelaySeconds parameter, 286
Developer tools, 205

Chrome, 207
enabling Fast Refresh, 206
enabling keyboard shortcuts, 206
LogBox, 206–207
performance monitor, 209
React, 208–209
Safari, 208

Development process, 17, 20
Disadvantages

complex UI, 14
hard to learn, 13–14
immaturity, 13

http://www.console.assert
http://www.console.assert
http://www.console.count
http://www.console.log
http://www.console.log
http://www.console.memory,
http://www.console.table
http://www.console.table
http://www.console.trace
http://www.control.time

324 ◾ Index

long initialization time, 14
low security, 14
memory management, 14

Drawer navigation, 255–259

E

Error callbacks, 177
Expo CLI, 4

App modifcation, 48
“AwesomeProject,” 47–48
installation, 4
native features, 40
NPM, 47
Quickstart, 47, 48
React notes, 48
running React Native application, 48
traditional reaction, 40

F

faillanceTreshold parameter, 286
failureCallback, 194–195
fetchMoviesData method, 51
Firebase, 301
Flashcard application, 226
FlatList, 309
FlexBasis, 125
Flexbox architecture

absolute and relative layout, 126–127
Align Content, 125
alignItems, 124
alignSelf, 124
complex shapes, 108
FlexBasis, 125
FlexGrow, 125
fexionDirection controls, 122–123
FlexShrink, 126
fexWraproperty, 125
justifyContent, 123–124
layout direction, 123
React Native SVG, 108–112
styled-component, 105–108
StylesSheet, 103–105
theming and passing props, 107
width and height, 126

FlexGrow, 125

Flexible planning language, 18
fexionDirection controls, 122–123
FlexShrink, 126
fushGetRequests() method, 157
Frames, 307–308

JS frame rate, 308
dropping FPS of, 310

UI frame rate, 308–309
changing size of picture, 311
moving view on screen, 310–311

Framework debugging tools, 215
Full Life API Management, 129, 130

G

Geolocation
Android, 144–145
checkPermissions(...), 146–147
chromium developer tools, 138–142
ClearWatchOptions, 146, 148
delivery and driving services, 133
geo-coordinated website, 133
GeolocationPluginPermissions, 148
geolocation support detection, 134–135
getCurrentPosition method,

135–138, 146
iOS, 144
JavaScript geolocation service, 133
MapsGoogle, 134
MapsPlatforms, 134
Microsof Bing, 134
PermissionStatus, 148
position, 147
PositionOptions, 147
requestPermissions(...), 147
Sprint 3G service, 134
watchPosition() method, 143, 146

GestureResponder system
accessories, 71
bubbling pattern, 71
onMoveShouldSetResponder, 71
onStartShouldSetResponder, 71
PanResponder, 70, 72–78
RespondingMoveReport, 72
touch responder, 71

getAllKeys() method, 157
getConstants(), 193–194

         

Index ◾ 325

getCurrentPosition method
accuracy properties, 143
position error management, 136–137
position error timeout, 135–136
tracking position changes, 137–138

getDerivedStateFromError() method, 23
getItem() method, 154
getName() function, 185
getPackages() function, 188
getReactModuleInfoProvider()

method, 188
getSnapshotBeforeUpdate() method, 23
Git Bash, 37
Git Gui, 37
GitHub, 34–36
Git installation, 36–37
Google Maps, 142
Google Play Signing App, 293

modifng old Android React Native
apps, 306

H

Header.css, 233
Header.js, 232, 233
History of React Native, 5
Homescreen.js, 250–251
Host platform APIs

Android Platform version, 30
iOS version, 30–31
native-specifc extensions, 31
platform module, 29–30
platform-specifc extensions, 31
writing modules, 28

Hot Module Replacement (HMR), 11, 19
Hybrid Integration Platform (HIP), 133

IBM Cloud®, 264
index.css, 247
index.html, 247
index.js, 227–228, 230–231, 247
Inheritance

AppComponent, 115
AppText component, 113–114
ChildComponent, 115–116

Creating React Application, 115
custom fonts, 113–114
heritage asset, 113
step to run application, 116
Subclass(Child Class), 114
Superclass(Parent Class), 114

invalidate() function, 183
iOS App Store deployment, 261–262

APIs and libraries, 263–264
App publishing, 265–267
IBM Cloud®, 264
local and global testing, 264–265
programming language selection, 263
specifcations, 262
TestFlight, beta testing with (see

TestFlight)
isBlockingSynchronousMethod, 186

J

Java, 3
JAVA_HOME fexible environment

Android SDK installation, 44–45
Android Studio installation, 42–44
installation directory, 42
Visual Studio Code (IDE), 45–46

JavaScript Core model, 49
JavaScript debugger, 207

beautifying, 211
best practices, 211
debugging tools, 214–215
methods

adding logpoints, 213
breakpoints, 212–213
console.assert(expression,object), 212
console.log(), 211–212
console.table(data, obj), 212
console.trace(), 212
EcmaScript, 212
using call stack, 214
using watches, 213–214

JavaScript ES6, 95–96
JavaScript thread, 308–309

dropping FPS of, 310
slow Navigator transitions, 311–312

JSON formatter and validator, 215
JSX, 2, 13, 17

I

http://www.Header.css,
http://www.Header.js,
http://www.Homescreen.js,
http://www.index.css,
http://www.index.html,
http://www.index.js,
http://www.console.assert
http://www.console.log
http://www.console.table
http://www.console.trace

L

326 ◾ Index

K

Keystore password, 289–291
Kubernetes WebUI, 279, 280

LayoutAnimation, 310
Life Cycle componentDidMount

Method, 51
LifecycleEventListener, 201–202
Life cycle phases

error handling, 21, 23–24
fow chart, 21
mounting, 21–22
unmounting, 21, 23
updating, 21–23

Linking API, 299–300
ListView component, 310

Bestsellers/BookItem.js, 85–86
BookListV2.js, 81–84
componentDidMount method, 80–81
dataSource, 79
ListView.DataSource, 79
NY Times API, 80
renderRow data, 79, 80
SimpleList.js., 79

Live and Hot Loading apps, 11
Liveness Probe, 285–288
LoadingMovie.js, 243
LogBox, 206–207

M

Main.css, 233
Main.js, 234–237
Main Series, see UI Tread
mergeItem() method, 155
methodQueue method, 180–181
Mobile components

ActionResponder, 70
GestureResponder system

accessories, 71
bubbling pattern, 71
onMoveShouldSetResponder, 71
onStartShouldSetResponder, 71
PanResponder, 70, 72–78
RespondingMoveReport, 72

touch responder, 71
HTML elements, 63, 64
image component, 66–67
ListView component

Bestsellers/BookItem.js, 85–86
BookListV2.js, 81–84
componentDidMount method,

80–81
dataSource, 79
ListView.DataSource, 79
NY Times API, 80
renderRow data, 79, 80
SimpleList.js., 79

mouse-based controls, 67
navigators, 86–87
PanResponder, 70, 74–78
platform-specifc components

CrossPlatform.js, 90–91
iOS- or android-only components,

87–88
naming convention, 88
<SwitchAndroid> components, 88
Switch.android.js, 89
<SwitchIOS> components, 88
Switch.ios.js, 88–89

text component
 element, 64
inline styles, 65
raw text strings, 64
reusable components, 65
 element, 64
styled components, 66
subtags, 64

TouchableHighlight component, 67–70
touch management method, 78
Touch/PressDemo.js, 69–70

movidedb application, 49–51
Movie.css, 243–244
Movie.js, 244–246
MovieListItem.css, 237–238
MovieListItem.js, 238–239
Movies.css, 239
Movies.js, 239–240
multiGet() method, 157–158
multiMerge() method, 159–161
multiRemove() method, 159
multiSet() method, 158
MyReactNativeApp, 94

http://www.BookItem.js,
http://www.BookListV2.js,
http://www.SimpleList.js.,
http://www.LoadingMovie.js,
http://www.Main.css,
http://www.Main.js,
http://www.BookItem.js,
http://www.BookListV2.js,
http://www.SimpleList.js.,
http://www.CrossPlatform.js,
http://www.Switch.android.js,
http://www.Switch.ios.js,
http://www.PressDemo.js,
http://www.Movie.css,
http://www.Movie.js,
http://www.MovieListItem.css,
http://www.MovieListItem.js,
http://www.Movies.css,
http://www.Movies.js,

         

Index ◾ 327

N

Native debugging, 210
NativeModule system, 163
Native Module Tread, 16
Navigation.css, 240
Navigation.js, 241
NewModuleButton, 170–171, 189, 190
Nginx image, 280
NodeJS inspector, 214
Node.js installation, 3, 164–165

download, 37
installation from browser, 38
requirements, 37

Node Package Manager (NPM)
for Android

argument types, 192–193
better native module export,

190–192
CalendarModule creation, 183
callbacks, 194–196
custom native module fle creation,

184–185
exporting constants, 193–194
getting activity result, 199–201
iteration, 190
listening to LifeCycle events,

201–202
module name, 185
native method to Javascript export,

185–186
promises, 196–197
recap, 190
registering module, 187–188
sending events to Javascript,

198–199
setup, 184
synchronous methods, 186
testing, 189–190
threading, 202

command-line (CLI) tool, 38
for cross-platform, 202–204
downloading, 163–164
installation, 38–39
installing Javascript libraries, 164–166
for iOS

argument types, 173–174
better native module export, 172–173

CalendarModule creation, 166
callbacks, 175–178
custom native module fles

creation, 167
dependency injection, 181–182
exporting constants, 174–175
exporting Swif, 182–183
iteration, 171
module name, 167–168
native method to Javascript export,

168–169
promises, 178–179
recap, 171–172
reserved method names, 183
sending events to Javascript, 179–180
synchronous methods, 169–170
testing, 170–171
threading, 180–181

native API, 163
Node Version Manager (NVM), 38
package manager, 163
repository support, 17
requirements, 37
updation, 39–40
using the package, 165–166

NodePort Service, 279
Node v6, 60
Node Version Manager (NVM), 38
NotFound.js, 247
NPM, see Node Package Manager (NPM)
Nuclide–Atom’s Plug-in, 218

O

Object.Finalize element, 7
Objective-C Native Module method, 173,

263
onActivityResult, 199–200
onFailure callback, 177, 196
onPress() method

Android, 189
iOS, 170–171

onSuccess callback, 177, 196

P

PanResponder, 70
attaching using spread syntax, 74

http://www.Navigation.css,
http://www.Navigation.js,
http://www.Node.js
http://www.NotFound.js,

328 ◾ Index

events holders, 73–74
gesture Stateobject, 73
touch events, 74
Touch/PanDemo.js, 74–78

Perf Monitor, 209
Performance optimization

animation, 8
image size reduction, 6–7
JSON data upgrade, 7–8
lack of multithreading, 9
maps usage, 9
memory leaks, 8
navigation development, 8–9
photo caching, 7
release time, 7
screen orientations improvement, 9
system size reduction, 6

Performance overview
frames, 307–309
problems, common sources of

changing size of picture, 311
dropping FPS of JS thread, 310
JS FPS plunges, 310
listview initial rendering, 309
moving view on screen, 310–311
running in development

mode, 309
slow Navigator transitions,

310–312
TouchableX view, 311
using console.log statements, 309

Platform-agnosticism, 19
Platform-specifc components

CrossPlatform.js, 90–91
iOS- or android-only components,

87–88
naming convention, 88
<SwitchAndroid> components, 88
Switch.android.js, 89
<SwitchIOS> components, 88
Switch.ios.js, 88–89

Pods
listing, 280–281
list replicasets and, 283
selection, 282

PowerShell, 34
Proguard for reducing APK size, 305–306
Python, 40–41

R

RCTAsyncLocalStorage module, 180–181
RCTBridgeDelegate Protocol, 181–182
RCTBridgeModule protocol, 167
RCTCalendarModule, 167
RCTDeviceEventEmitter, 198–199
RCTEventEmitter class, 179
RCT_EXPORT_BLOCKING

SYNCHRONOUS METHOD,
169–170

RCT_EXPORT_METHOD macro,
168–169

RCTInvalidating protocol, 183
RCTRootView, 181–182
ReactandComponent, 27
ReactApplicationContext (RAC), 185
React Components

EC5 functions, 59
Folder Layout, 59
props, 54–55
state, 56–57
stateful and stateless components, 57
State Hook, 56
Updating State, 58–59
Using State, 57–58

ReactContext, 198
ReactContextBaseJavaModule class,

184–185
React developer tools, 208–209, 216
React Native application creation

business forms, risk management, 224
business risk, evaluation of, 224
existing business, 224–225
fashcard application, 226
mapping out costs and taxes, 225–226
modeling and storing data, 226–247
using navigator, 248–259

React Native components, 2
React Native debugger, 216–217
React Native release, 3
React Navigation

installation, 248–250
React Native navigation examples

drawer navigation, 255–259
stack navigator between screen

components, 250–254
tab-based navigation, 254–255

http://www.PanDemo.js,
http://www.console.log
http://www.CrossPlatform.js,
http://www.Switch.android.js,
http://www.Switch.ios.js,

         

Index ◾ 329

stack navigator, 250
React Navigation 5.0, 248
Reactotron, 209, 218–219
ReactPackage, 187
Readiness Probe, 285, 286
Reconciler, 16
Redux DevTools, 217–218
removeItem() method, 155
render() method, 22, 24–26
“render-Row” method, 52–53
Render Tread, 16
renderToHardwareTextureAndroid, 311
Reuse of code, 18
Rookout, 214
rowHasChanged method, 310

S

Safari developer tools, 208
SectionList, 309
Selection.css, 241–242
Selection.js, 242
Send e-mail, React Native application

adding dependence, 294
App.js, 295–297
creating new project, 294
importing components, 295
from tradition, 295

SendGrid, 301
setItem() method, 154–155
Shadow Cable, 16
Shadow string, 16
shouldComponentUpdate () method, 23
shouldRasterizeIOS, 311
Slider.css, 242–243
Slider.js, 243
“Smart Weather Program,” 130
Stack navigator, 250–254
startActivityForResult, 199–201
static getDerivedStateFromProps()

method, 22
Storing data, in React Native local storage

movie list, 231–247
src folder, components inside,

227–231
Styles

complicated styles, 94–95
container component, 100–101

D.R.Y. (Do not duplicate) coding,
98–99

fexbox architecture (see Flexbox
architecture)

fexibility of, 95
global style variables, 98
inheritance

AppComponent, 115
AppText component, 113–114
ChildComponent, 115–116
Creating React Application, 115
custom fonts, 113–114
heritage asset, 113
step to run application, 116
Subclass(Child Class), 114
Superclass(Parent Class), 114

JavaScript ES6, 95–96
MyReactNativeApp, 94
positioning and designing layouts

1andfexDirtection, 119
Align Items, 118
fex direction, 117
fexible internal form View,

120–122
fexproperty, 117
justify content, 117
positioning basics, 116
TextInput and button objects,

118–119
TextInput element, 119
TefexDirtection, 119
View component, 116

presentational component, 101
prop-styled prop style, 100
style props, 102
StyleSheets, 98, 101

styles.css, 228–229, 231
successCallback, 194–195
Swif, 182–183, 263
Synchronous methods

Android, 186
iOS, 169–170

Syntax errors, 207

T

Tab navigation, 254–255
TestFlight

http://www.Selection.css,
http://www.Selection.js,
http://www.App.js,
http://www.Slider.css,
http://www.Slider.js,
http://www.styles.css,

330 ◾ Index

beta testing with
advantages, 268
algorithm for, 269–270
application submission for review,

272–277
approval, 277
closed type, 268
external testers and groups,

270–271
internal testers, 270
open type, 268
rejection, 277

main functions, 269
Text component

 element, 64
inline styles, 65
raw text strings, 64
reusable components, 65
 element, 64
styled components, 66
subtags, 64

TegetCurrentPosition () method,
140–141

3D group libraries, 18
Toggle Inspector, 209
TouchableHighlight component,

67–70
Touch management method, 78
TurboModules, 183, 193–194
TurboReactPackage, 188

U

UI-rich skills, 19
UI Tread, 15, 308–309

changing size of picture, 311
moving view on screen, 310–311

Unhandled JavaScript errors, 206–207
“Use strict” mode, 215

V

Visual Studio Code (IDE), 45–46

W

Watch Position method, 138
Windows Terminal installation

Chocolatey, 35
Command Prompt, 34
from GitHub, 34–36
on Microsof Store, 34, 35
using PowerShell, 34, 35
in Windows 10, 34
in Windows 11, 34
WSL, 34

Work-based component, 28
Write Once Run Anywhere (WORA), 203

Z

Zapier, 301

	Cover
	Half Title
	Series Page
	Title Page
	Copyright Page
	Table of Contents
	Mastering Computer Science Series Preface
	About the Editor
	Chapter 1 Getting Started with React Native
	In This Chapter
	What Is React Native
	JSX
	Building and Testing the React Native App
	About React Native Release
	Prerequisite
	Installation

	History of React Native
	Various Steps to Optimizing the Performance of the React Native Applications
	Reduce System Size
	Reduce Image Size
	Photo Caching
	Improving Application Release Time
	JSON Data Upgrade
	Do Not Give if Not Needed
	Memory Leaks
	Animation in React Native
	Navigation Development
	Lack of Multithreading
	Improving Screen Orientations
	Make Maps Better
	Benefits of React Native

	Advantages
	Key Benefits
	Community Support
	Proper Performance
	Reusable Code and Advanced Components
	Benefits of Live and Hot Reloads
	Expensive Solution
	Simplified UI
	External Plugin Support
	Modular Architecture
	Growing Stability and Reliability
	Access to Libraries and Ready-to-Do Solutions

	Disadvantages of Native React
	Immaturity
	Hard to Learn
	Low Security
	Complex UI
	Long Initialization Time
	Memory Management

	Conclusion

	Chapter 2 Working with React Native
	In This Chapter
	How Does React Native Work?
	Process Involved in Working of React Native
	React Native Architecture
	Development Process
	React Native Features
	NPM Repository Support
	Reuse of Code
	Flexible Planning Language
	A Powerful Community
	Supports 3D Group Libraries
	Use High Performance in Mobile Environments
	HMR (Hot Module Replacement)
	UI-rich Skills
	The Future of React Native
	Development of Broadcast Model
	Advances in Platform-Agnosticism
	Ease of the Bridge

	Async Skills Expansion
	What Does the Development Process Look Like?

	React Native Component Life Cycle Phases
	Mounting Phase
	Constructor()
	static getDerivedStateFromProps()
	render()
	ComponentDidMount()

	Updating Phase
	Static getDerivedStateFromProps()
	shouldComponentUpdate()
	render()
	getSnapshotBeforeUpdate()
	componentDidUpdate()

	Unmounting Phase
	componentWillUnmount()

	Error Handling Phase
	getDerivedStateFromError()
	componentDidCatch()

	Creates Components in a Traditional Responsive Way

	What Is the Component of React Native?
	React Native – Class Component
	Description

	React Native – Function Component
	Description

	Host Platform APIs
	Platform Module
	Detecting Android version
	Getting iOS Version
	Platform-Specific Extensions
	Native-specific Extensions (i.e. Sharing Code with NodeJS and Web)​

	Conclusion

	Chapter 3 Building Your First Application
	In This Chapter
	Installation of React Native CLI
	Installing Windows Terminal
	Ways to Install Windows Terminal

	Installing Git
	How to Download Git?
	Install Git

	Installing Node​.​js and NPM package manager
	Introduction
	Requirements

	Installing Node​.​js and NPM on Windows System
	What Is NPM?
	How to Install or Update NPM

	Installing React Native CLI
	Installing Python
	React Native CLI
	Installing Android JDK

	JAVA_HOME Flexible Environment
	Installing Android Studio
	Android Studio: https://developer​.android​.com​/studio
	Android Studio Configuration

	Installing Android SDK
	Android Studio SDK configuration

	Installing Visual Studio Code (IDE)
	How to Download and Install Visual Studio Code?
	How to Install VStudio Code on Windows?
	Why Do You Use React Native?

	Setting Up Your Environment
	Running React Native Application
	Modifying Your App
	Exploring the Sample code

	Building an App
	Building an Android App with React Native
	STEP 1: Blank React Native Project Creation
	STEP 2: Connect Android Device
	STEP 3: Getting Information from the Moviedb API
	STEP 4: Defining the fetchMoviesData Method
	STEP 5: Creating the Life Cycle componentDidMount Method
	STEP 6: View Creation
	STEP 7: Reconstructing the Return Method
	STEP 8: Running the App
	Conclusion

	React Native – Default Application
	Props and State Definition
	State
	Difference between State and Props
	Using State
	Updating State

	Build Your First App with React Native
	Creating an App
	At the Start of NPM
	What Is Cross-Platform Development?
	What Are Some of the Features of Cross-Platform Development?
	A Lot of Listeners
	Stability of the Court
	Reusable Code
	Rapid Development
	Reduced Costs
	Requires Additional Technology to Ensure High Performance

	Chapter Summary

	Chapter 4 Components for Mobile Development
	In This Chapter
	Components for Mobile
	Analogies between HTML and Native Components
	The Text Component

	The Image Component
	Working with Touch and Gestures
	Using TouchableHighlight
	Touch/PressDemo​.​js illustrates the use of TouchableHighlight

	GestureResponder System
	PanResponder
	Creating a PanResponder requires us to pass a set of callbacks
	Attaching the PanResponder using spread syntax
	Touch/PanDemo​.​js explain the use of PanResponder

	Choosing a Touch Management Method
	Working with Organizational Components
	Using ListView
	For _renderRow, we only pass along the suitable data to the <BookItem>
	Adding methods render to header and footer elements in BookListV2​.​js
	Bestsellers/BookItem​.​js

	Using Navigators
	Other Organizational Components
	Platform-Specific Components
	iOS- or Android-Only Components
	Components with Platform-Specific Versions
	Switch​.ios​​.js
	CrossPlatform​.​js Makes Use of the <Switch> Component

	When to Use Platform-Specific Components
	Summary
	Conclusion

	Chapter 5 Styles and Layouts
	In This Chapter
	1. Styles Are Important: Make Them Easy to Find
	2. Get Atomic!
	3. Styles Are Important: Make Them Easy to Use
	4. Keep Styles Close
	Caveats
	Container Component
	Presentational Component

	React Native Style Method
	Style Props

	React Native Application: The Flexbox Architecture
	Using StyleSheet
	Styled-Component in React Native
	Using React Native SVG to Draw Certain Conditions

	Organization and Inheritance
	Style Inheritance of React Native
	Realistic Way to Implement Custom Fonts to Your App
	Creating React Application
	Step to Run Application

	Output: Positioning and Designing Layouts
	Positioning
	Starting with the View
	Positioning Basics

	Layout with Flexbox
	Flex​
	Flex Direction​
	Layout Direction​
	Justify Content​
	Align Items​
	Align Yourself
	Align Content​
	Flex Wrap​
	Flex Basis, Grow, and Shrink​
	Width and Height​
	Absolute and Relative Layout​

	Conclusion

	Chapter 6 Platform APIs
	In This Chapter
	Platform APIs
	What Is an API Platform?
	Adding to the Traditional Look in Managing the Full Life API

	Using Geolocation
	Detecting Geolocation Support
	Using getCurrentPosition
	Position Error Timeout
	Managing Position Errors
	Tracking Position Changes

	Setting Links Using Chromium Developer Tools
	How the Position Is Determined
	Nearby iOS Location
	Find User Location
	Using the Geolocation API
	Handling Errors and Rejections
	Showing the Result in the Map
	Location-Specific Information

	The getCurrentPosition() Method – Return Data
	Geolocation Object – Other interesting Methods
	@capacitor/geolocation
	Install
	iOS
	Android
	Variables

	API
	getCurrentPosition(…)
	watchPosition(…)
	clearWatch(…)
	checkPermissions()
	requestPermissions(…)
	Interfaces
	Type Aliases

	Accessing the User’s Images and Camera

	Create the Page
	Add File Input
	Add a Canvas
	Respond to Change
	Draw into the Canvas
	Options
	Storing Persistent Data with asyncstore
	Importing AsyncStorage Library
	Persisting Data
	Fetching Data

	Methods​
	getItem()​
	setItem()​
	removeItem()​
	mergeItem()​
	clear()​
	getAllKeys()​
	flushGetRequests()​
	multiGet()​
	multiSet()​
	multiRemove()​
	multiMerge()​

	Conclusion

	Chapter 7 React Native Modules
	In This Chapter
	Modules
	Native Modules Intro

	Installing JavaScript Libraries with NPM
	What Exactly Is NPM?
	How to Download NPM?
	How to Download Packages Using NPM?
	How to Download Packages Globally with NPM
	How to Use the package

	iOS Native Modules
	Create a Calendar Native Module​
	Setup​
	Create Custom Native Module Files​
	Module Name​
	Export a Native Method to JavaScript​
	Synchronous Methods​
	Test What You Have Built​
	Building as You Iterate​
	Recap

	Beyond a Calendar Native Module​
	Better Native Module Export​
	Argument Types​
	Exporting Constants​
	Callbacks​
	Promises​
	Sending Events to JavaScript​
	Threading​
	Dependency Injection​
	Exporting Swift​
	Reserved Method Names

	Native Modules for Android
	Create a Calendar Native Module​
	Setup​
	Create Custom Native Module File​
	Module Name​
	Export a Native Method to JavaScript​
	Synchronous Methods​
	Register the Module (Android Specific)​
	Test What You Have Built​
	Building as You Iterate​
	Recap​

	Beyond a Calendar Native Module​
	Better Native Module Export​
	Argument Types​
	Exporting Constants​
	Callbacks​
	Promises​
	Sending Events to JavaScript​
	Getting Activity Result from startActivityForResult​
	Listening to Lifecycle Events​
	Threading​

	Cross-Platform Native Modules
	What Are the Advantages of Cross-Platform Application Development Frameworks?
	Code Reusability
	Reduced Costs and Resources
	Easy Deployment and Maintenance
	Wider Market Reach
	Uniform Design

	Conclusion

	Chapter 8 Debugging and Developer Tools
	In This Chapter
	Debugging and Developer Tools
	Enabling Fast Refresh
	Enabling Keyboard Shortcuts​
	LogBox​
	Console Errors and Warnings​
	Unhandled Errors​
	Syntax Errors​

	Chrome Developer Tools​
	Debugging Using a Custom JavaScript Debugger​

	Safari Developer Tools​
	React Developer Tools​
	Integration with React Native Inspector​
	Inspecting Component Instances​

	Performance Monitor​
	Debugging Application State​
	Native Debugging
	Projects with Native Code Only

	Accessing Console Logs​
	Debugging on a Device with the Chrome Developer Tools​
	Debugging Native Code​

	Javascript Debugging Practices Translated
	Best Practices
	Beautify to Debug

	Debugging Methods
	Console Method
	Using a Debugger
	Breakpoints
	Unconditional Breakpoints
	Using a Breakpoint List
	Adding Logpoints
	Unsetting Breakpoints
	Using Watches
	Using Call Stack

	Debugging Tools
	Rookout
	NodeJS Inspector
	Using a Code Editor
	Framework Debugging Tools (Angular, React, Vue)
	JSON Formatter and Validator
	“use strict” Mode

	React Native Debugging Tools
	Top 6 Debugging Tools for React Native Developers
	Chrome’s DevTools
	React Developer Tools
	React Native Debugger
	Redux DevTools
	Nuclide – Atom’s Plug-in
	Reactotron

	Debugging Beyond JavaScript
	The Basics of Console Logging
	Beyond the Basics of Console Logging
	console​.tab​le()
	console​.asse​rt()
	console​.tra​ce()
	console​.cou​nt()
	console​.memo​ry
	console​.ti​me()

	Conclusion

	Chapter 9 Putting It All Together
	In This Chapter
	The Flashcard Application
	React Native Flashcards
	How to Install
	How to Run

	Modeling and Storing Data
	Storing Data in the React Native Local Storage with Examples
	Using the Navigator
	React Navigation 5.0
	Installing React Navigation
	The React Native Stack Navigator
	React Native Navigation Examples
	Using Stack Navigator to Navigate between the Screen Components
	Using Tab Navigation
	Using Drawer Navigation

	Conclusion

	Chapter 10 Deploying to the iOS App Store
	In This Chapter
	Comply with the Developer’s Specifications
	Choose an iOS Programming Language
	Tap into APIs and Libraries
	Expand into the Cloud
	Test Locally, Test Globally
	Publish Your App to the App Store
	Creating an Xcode Project for an App
	Overview
	Prepare Configuration Information
	Important
	Create a Project
	Manage Files in the Main Window

	Beta Testing With Testflight
	Testflight Is Used for Beta Testing
	Advantages of Beta Testing
	Beta Testing by Using Testflight
	Main Functions of Testflight
	Algorithm for Testing the Application’s Beta Versions
	Internal Testers
	External Testers and Groups
	Using E-mail to Invite Testers
	Using Public Links to Invite Testers
	Test Information
	Getting Feedback

	Submitting the Application for Review
	Code Signing: Create iOS Distribution Provisioning Profile and Distribution Certificate
	When you attach a new device to your Mac, Xcode detects it and adds it to your team provisioning profile automatically. It’s worth noting that in order for your app to run on a device, the device must register on your team provisioning profile.
	Create App Store Connect Record for Your App
	For Paid Apps
	Add a New App

	Archive and Upload App Using Xcode
	Configure App’s Metadata and Further Details in its App Store Connect Record
	Submit Your App for Review
	Check on the Status of App
	How Long Does It Take to Get Approval from an App Store?
	If Your Application Has Been Rejected
	If Your Application Has Been Approved

	Summary
	Conclusion

	Chapter 11 Deploying Android Applications
	In This Chapter
	List the Pods, with Their Attached Labels
	Select Pods with the Label Provided
	Deploy a Webserver Using the CLI
	List ReplicaSets and Pods
	Exposing an Application
	Accessing an Application
	Life and Readiness to Test
	Building the APK for Release
	Using the React Native CLI
	STEP 1: Generate a Keystore
	STEP 2: Adding Keystore to Your Project
	STEP 3: Uninstall the APK Generation
	Generate React Native Release Build with Android Studio

	How to Send E-mail From React Native Application
	Distributing the React Native App with Microsoft App Center
	Getting Started
	Three Ways to Send E-mails from React Native App
	Configuring Linking API
	Working with Your Own Server
	Using Third-Party Tools
	Wrap Up
	Submit Your Request to the Google Play Store
	Produces the Upload Key

	Add a Signing Setting to Gradle for Your App
	Generating the Release AAB​

	Testing the Release Build of Your App​
	Publishing in Other Stores
	Enables Proguard to Reduce APK Size (Optional)
	Modify Old Android React Native Apps to Use Google Play Signing App

	Conclusion

	Appraisal
	Bibliography
	Index

